Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics atta abooks, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU ROHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp. Customer Support Dept. April 1, 2003

Cautions

Keep safety first in your circuit designs!

 Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate

measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.

SuperH[™] RISC engine Simulator/Debugger

User's Manual

Renesas Microcomputer Development Environment System

Renesas Electronics

Rev.2.0 2002.05

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- Products and product specifications may be subject to change without notice. Confirm that you
 have received the latest product standards or specifications before final design, purchase or
 use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

Trademarks:

Microsoft[®] and Windows[®] are registered trademarks of Microsoft Corporation in the United States and/or other countries.

IBM PC is the name of a computer administered by International Business Machines Corporation.

ELF/DWARF2 is the name of an object format developed by the Tool Interface Standards Committee.

All products or brand names used in the manual are trademarks or registered trademarks of their respective companies.

Read First:

- 1. Hitachi, Ltd. (including its subsidiaries, hereafter collectively referred to as Hitachi) pursues a policy of continuing improvement in design, performance, and safety of the system. Hitachi reserves the right to change, wholly or partially, the specifications, design, user's manual, and other documentation at any time without notice.
- 2. This user's manual and this system are copyrighted and all rights are reserved by Hitachi. No part of this user's manual, all or part, may be reproduced or duplicated in any form, in hard-copy or machine-readable form, by any means available without Hitachi's prior written consent.
- 3. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.

Preface

Read First

READ this user's manual before using the simulator debugger.

KEEP the user's manual handy for future reference.

Do not attempt to use the system until you fully understand its mechanism.

About this Manual

This manual explains the use of the simulator debugger and the Hitachi Embedded Workshop (HEW) for Hitachi microcomputer development tools. The following section will provide a brief *Introduction* to the debugging interface and simulator/debugger, and list its key features.

The following sections, *System Overview*, *Simulator/Debugger Functions*, *Menus*, *Windows and Dialog Boxes*, *Command Lines*, and *Messages*, give reference information about the operation and facilities available from these respective areas.

This manual assumes that the HEW is used on the English version of Microsoft[®] Windows[®]Me operating system running on the IBM PC.

Assumptions

It is assumed that the reader has a competent knowledge of the C/C++ programming language, assembly-language mnemonics for the processor being debugged and is experienced in using Microsoft[®] Windows[®] applications.

Document Conventions

This manual uses the following typographic conventions:

CONVENTION	MEANING
[Menu->Menu Option]	Bold text with '->' is used to indicate menu options (for example, [File->Save As]).
FILENAME.C	Uppercase names are used to indicate file names.
"enter this string"	Used to indicate text that must be entered (excluding the "" quotes).
Key+Key	Used to indicate required key presses. For example, Ctrl+N means press the Ctrl key and then, while holding the Ctrl key down, press the N key.
• (The "how to" symbol)	When this symbol is used, it is always located in the left-hand margin. It indicates that the text to its immediate right is describing "how to" do something.

Table 1 Typographic Conventions

Contents

Read	irsti		
About	this Manuali		
Assun	ptionsi		
Docur	ent Conventionsii		
Secti	on 1 Overview		
1.1	Features		
1.1	Farget User Program		
1.2	Simulation Range		
~ .			
Secti	5		
2.1	User Interface		
2.2	Data Entry7		
	2.2.1 Operators		
	2.2.2 Data Formats 7		
	2.2.3 Precision		
	2.2.4 Expression Examples		
	2.2.5 Symbol Format		
	2.2.6 Symbol Examples		
Secti	on 3 Simulator/Debugger Functions 11	l	
3.1	Simulator/Debugger Memory Management		
	3.1.1 Memory Map Specification		
	3.1.2 Memory Resource Specification		
3.2	Endian		
3.3	Pipeline Reset Processing		
3.4	Memory Management Unit (MMU)		
3.5	Cache		
	3.5.1 Displaying Cache Contents	-	
	3.5.2 Cache Hit Rate		
3.6	Bus State Controller (BSC)		
3.7	Direct Memory Access Controller (DMAC)		
3.8	SH-4/SH-4 (SH7750R) Supporting Functions		
	3.8.1 BSC		
	3.8.2 DMA		
	3.8.3 External/Internal Clock Ratio		
	3.8.4 Control Registers		
3.9	Exception Processing		
3.10			
3.11	22		

3.12	Standar	d I/O and File I/O Processing	. 25
3.13	Break C	Conditions	.35
	3.13.1	Break Due to the Satisfaction of a Break Command Condition	. 35
	3.13.2	Break Due to the Detection of an Error During Execution of the User Program.	.36
	3.13.3	Break Due to a Trace Buffer Overflow	.37
	3.13.4	Break Due to Execution of the SLEEP Instruction	. 38
	3.13.5	Break Due to the [STOP] Button	. 38
3.14	Floating	g-Point Data	. 38
3.15	Display	of Function Call History	. 39
3.16	Profiler		. 39
3.17	Pseudo	-Interrupts	.40
3.18		ge	
Secti	on 4 1	Menus	.43
4.1	View 43	3	
	4.1.1	Workspace	.43
	4.1.2	Output	.43
	4.1.3	Breakpoints	.43
	4.1.4	Command Line	.44
	4.1.5	Disassembly	.44
	4.1.6	ΙΟ	.44
	4.1.7	Labels	.44
	4.1.8	Locals	.44
	4.1.9	Memory	.44
	4.1.10	Performance Analysis	.44
	4.1.11	Profile	.44
	4.1.12	Registers	.45
	4.1.13	Status	.45
	4.1.14	Trace	.45
	4.1.15	Watch	.45
	4.1.16	TLB	.45
	4.1.17	Cache	.45
	4.1.18	Simulated I/O	.45
	4.1.19	Stack Trace	.45
	4.1.20	Coverage	.46
	4.1.21	Image	.46
	4.1.22	Waveform	.46
	4.1.23	Trigger	.46
4.2	Options		
	4.2.1	Debug Settings	
	4.2.2	Radix	
	4.2.3	Simulator	
4.3	Debug.		.47

	4.3.1	Reset CPU	47
	4.3.2	Go	47
	4.3.3	Reset Go	47
	4.3.4	Go To Cursor	47
	4.3.5	Set PC To Cursor	47
	4.3.6	Run	48
	4.3.7	Step In	48
	4.3.8	Step Over	48
	4.3.9	Step Out	48
	4.3.10	Step	48
	4.3.11	Step Mode	48
	4.3.12	Halt Program	48
	4.3.13	Initialize	
	4.3.14	Disconnect	49
	4.3.15	Download Modules	49
		Unload Modules	
4.4	Memor	у	49
	4.4.1	Search	49
	4.4.2	Сору	49
	4.4.3	Compare	
	4.4.4	Fill.	49
	4.4.5	Refresh	50
	4.4.6	Configure Overlay	50
~ .			
		Windows and Dialog Boxes	
5.1	Break V	Vindow	
	5.1.1	Add	52
	5.1.2	Edit	52
	5.1.3	Enable	-
	5.1.4	Disable	
	5.1.5	Delete	52
	5.1.6	Delete All	52
	5.1.7	Go to Source	52
	5.1.8	Close File	53
	5.1.9	Close All Files	53
5.2		ak Dialog Box (Condition Sheet)	
5.3	Set Bre	ak Dialog Box (Action Sheet)	55
5.4	Comma	and Line Window	57
	5.4.1	Set Batch File	58
	5.4.2	Play	58
	5.4.3	Stop	58
	5.4.4	Set Log File	58
	5.4.5	Logging	59

	5.4.6	Browse	. 59
	5.4.7	Placeholder	
	5.4.8	Select All	. 59
	5.4.9	Сору	
	5.4.10	Paste	
5.5		mbly Window	
	5.5.1	View Source	
	5.5.2	Go to Cursor	
	5.5.3	Set Address	
	5.5.4	Set PC Here	
	5.5.5	Edit	
	5.5.6	Code Bytes	
	5.5.7	Toggle Breakpoint	
5.6		dow	
5.7		Vindow	
0.7	5.7.1	Add	
	5.7.2	Edit	
	5.7.3	Delete	
	5.7.4	Delete All	
	5.7.5	Load	
	5.7.6	Save	
	5.7.7	Save As	
	5.7.8	Find.	
	5.7.9	Find Next	
	5.7.10		
5.8		Window	
5.0	5.8.1	Edit Value	
	5.8.2	Radix	
	5.8.3	Сору	
5.9		y Window	
5.9	5.9.1	Lock Refresh	
	5.9.2	Refresh	
	5.9.3	Start Address.	
	5.9.4	Format	
	5.9.4 5.9.5	Search	
	5.9.5 5.9.6		
		Search Next Copy	
	5.9.7		
	5.9.8	Compare	
	5.9.9	Fill	
	5.9.10	Save	
5 10	5.9.11		
5.10		nance Analysis Window	
	5.10.1	Add Range	. /1

	5.10.2 Edit R	Range	72
	5.10.3 Reset	Counts/Times	72
	5.10.4 Enable	e Analysis	72
	5.10.5 Delete	e Range	72
	5.10.6 Delete	e All Ranges	72
5.11	Performance (Option Dialog Box	72
5.12	Register Wind	low	73
	5.12.1 Edit		73
5.13	Source Windo	W	74
	5.13.1 Toggl	e Breakpoint	74
	5.13.2 Enable	e/Disable Breakpoint	74
	5.13.3 Instan	t Watch	75
	5.13.4 Go To) Cursor	75
	5.13.5 Set PC	C Here	75
	5.13.6 Go to	Disassembly	75
5.14	Source Addres	ss Column	75
5.15	Debugger Col	umn	77
5.16	Status Window	N	78
5.17	Trace Window	v	79
	5.17.1 Find		83
	5.17.2 Find N	Next	83
	5.17.3 Acqui	sition	83
	5.17.4 Clear.		84
	5.17.5 Save		84
	5.17.6 View	Source	84
	5.17.7 Trim S	Source	84
	5.17.8 Statist	tic	84
5.18	Trace Acquisi	tion Dialog Box	85
5.19	Trace Search I	Dialog Box	86
5.20	Trace Statistic	Dialog Box	87
5.21	Trigger Windo	ЭW	88
	5.21.1 Settin	g	88
	5.21.2 Size		88
5.22	Trigger Setting	g Dialog Box	89
5.23	Watch Window	W	90
		Update	
	5.23.2 Auto	Update All	91
		e Auto Update	
		e Auto Update All	
		Vatch	
		/alue	
		9	-
	5.23.8 Delete	e All	91

	5.23.9 Radix	91
	5.23.10 Copy	.92
	5.23.11 Save As	.92
	5.23.12 Go To Memory	92
5.24	Simulator System Dialog Box	.92
5.25	Memory Map Modify Dialog Box	.95
5.26	Set State Dialog Box	.96
5.27	Simulator Memory Resource Dialog Box	.98
5.28	System Memory Resource Modify Dialog Box	.99
5.29	TLB Dialog Box	100
5.30	TLB Modify Dialog Box	101
5.31	TLB Find Dialog Box	103
5.32	Open TLB Dialog Box	104
5.33	Instruction TLB Dialog Box	104
5.34	Instruction TLB Modify Dialog Box	106
5.35	Instruction TLB Find Dialog Box	107
5.36	Unified TLB Dialog Box	108
5.37	Unified TLB Modify Dialog Box	109
5.38	Unified TLB Find Dialog Box	111
5.39	Cache Dialog Box	.112
5.40	Cache Modify Dialog Box	113
5.41	Open Cache Dialog Box	114
5.42	Instruction Cache Dialog Box	115
5.43	Instruction Cache Modify Dialog Box	117
5.44	Operand Cache Dialog Box	119
5.45	Operand Cache Modify Dialog Box	121
5.46	Simulated I/O Window	
5.47	Stack Trace Window	124
	5.47.1 Go to Source	124
	5.47.2 View Setting	.124
	5.47.3 Copy	125
5.48	Profile Window (List Sheet)	126
5.49	Profile Window (Tree Sheet)	127
	5.49.1 View Source	128
	5.49.2 View Profile-Chart	128
	5.49.3 Enable Profiler	129
	5.49.4 Not trace the function call	129
	5.49.5 Find	129
	5.49.6 Find Data	129
	5.49.7 Clear Data	130
	5.49.8 Output Profile Information Files	130
	5.49.9 Output Text File	130
	5.49.10 Setting	130

	5.49.11	Properties	131
5.50	Profile	Chart Window	131
	5.50.1	View Source	131
	5.50.2	View Profile-Chart	131
	5.50.3	Enable Profiler	132
	5.50.4	Clear Data	132
	5.50.5	Multiple View	132
	5.50.6	Output Profile Information File	132
	5.50.7	Expands Size	132
	5.50.8	Reduces Size	132
5.51	Image '	View Window	133
	5.51.1	Auto Refresh	133
	5.51.2	Refresh Now	133
	5.51.3	Property	134
5.52	Image l	Properties Dialog Box	134
5.53	Pixel Ir	nformation Dialog Box	137
5.54	Wavefo	orm Window	138
	5.54.1	Auto Refresh	138
	5.54.2	Refresh Now	138
	5.54.3	Zoom In	138
	5.54.4	Zoom Out	139
	5.54.5	Reset Zoom	139
	5.54.6	Zoom Magnification	139
	5.54.7	Scale	139
	5.54.8	Clear Cursor	139
	5.54.9	Sample Information	139
	5.54.10) Property	139
5.55	Wavefo	orm Properties Dialog Box	140
5.56	Sample	Information Dialog Box	141
5.57	Covera	ge Window	142
	5.57.1	View Source	143
	5.57.2	Go to Address	143
	5.57.3	Set Range	143
	5.57.4	Enable Coverage	143
	5.57.5	Clear Data	143
	5.57.6	Save Data	143
	5.57.7	Load Data	143
	5.57.8	Refresh	143
	5.57.9	Lock Refresh	143
5.58	Open C	Coverage Dialog Box	144
5.59	Go To .	Address Dialog Box	145
5.60	Covera	ge Range Dialog Box	145
5.61	Save D	ata Dialog Box	146

5.62	Load Data Dialog Box	146
5.63	Confirmation Request Dialog Box	147
5.64	Save Coverage Data Dialog Box	147
Secti	on 6 Command Lines	149
6.1	!(COMMENT)	151
6.2	ANALYSIS	152
6.3	ANALYSIS_RANGE	152
6.4	ANALYSIS_RANGE_DELETE	153
6.5	ASSEMBLE	154
6.6	ASSERT	154
6.7	BREAKPOINT	155
6.8	BREAK_ACCESS	156
6.9	BREAK_CLEAR	159
6.10	BREAK_CYCLE	159
6.11	BREAK_DATA	161
6.12	BREAK_DISPLAY	163
6.13	BREAK_ENABLE	164
6.14	BREAK_REGISTER	164
6.15	BREAK_SEQUENCE	167
6.16	CHANGE_CONFIGURATION	168
6.17	CHANGE_PROJECT	169
6.18	CLOCK_RATE	169
6.19	COVERAGE	170
6.20	COVERAGE_DISPLAY	171
6.21	COVERAGE_LOAD	171
6.22	COVERAGE_RANGE	172
6.23	COVERAGE_SAVE	172
6.24	DEFAULT_OBJECT_FORMAT	173
6.25	DISASSEMBLE	173
6.26	ERASE	174
6.27	EVALUATE	174
6.28	FILE_LOAD	175
6.29	FILE_SAVE	176
6.30	FILE_VERIFY	177
6.31	GO	
6.32	GO_RESET	179
6.33	GO_TILL	179
6.34	HALT	180
6.35	INITIALIZE	181
6.36	LOG	181
6.37	MAP_DISPLAY	182
6.38	MAP_SET	182

6.39	MEMORY_DISPLAY	
6.40	MEMORY_EDIT	184
6.41	MEMORY_FILL	
6.42	MEMORY_MOVE	186
6.43	MEMORY_TEST	186
6.44	OPEN_WORKSPACE	187
6.45	PROFILE	
6.46	PROFILE_DISPLAY	
6.47	PROFILE_SAVE	189
6.48	QUIT	190
6.49	RADIX	190
6.50	REGISTER_DISPLAY	191
6.51	REGISTER_SET	191
6.52	RESET	
6.53	RESPONSE	193
6.54	SLEEP	193
6.55	STEP	194
6.56	STEP_MODE	194
6.57	STEP_OUT	
6.58	STEP_OVER	195
6.59	STEP_RATE	
6.60	STEP_UNIT	
6.61	SUBMIT	197
6.62	SYMBOL_ADD	
6.63	SYMBOL_CLEAR	
6.64	SYMBOL_LOAD	
6.65	SYMBOL_SAVE	
6.66	SYMBOL_VIEW	
6.67	TCL	
6.68	TRACE	
6.69	TRACE_ACQUISITION	
6.70	TRACE_SAVE	
6.71	TRACE_STATISTIC	
Secti	ion 7 Messages	205
7.1	Information Messages	
7.2	Error Messages	
App	endix A - GUI Command Summary	209
	•	

Figures

Figure 1.1	Creation of Target User Programs	3
Figure 4.1	Menus	.43
Figure 5.1	Break Window	.51
Figure 5.2	Set Break Dialog Box (Condition Sheet)	.53
Figure 5.3	Set Break Dialog Box (Action Sheet)	.55
Figure 5.4	Command Line Window	. 57
Figure 5.5	Set Batch File Dialog Box	.58
Figure 5.6	Open Log File Dialog Box	. 59
Figure 5.7	Disassembly Window	.60
Figure 5.8	IO Window	. 62
Figure 5.9	Label Window	.63
Figure 5.10	Add Label Dialog Box	. 64
Figure 5.11	Edit Label Dialog Box	. 64
Figure 5.12	Message Box for Confirming Label Deletion	.65
Figure 5.13	Message Box for Confirming All Label Deletion	.65
Figure 5.14	Load Symbols Dialog Box	.66
	Find Label Dialog Box	
Figure 5.16	Locals Window	. 68
Figure 5.17	Memory Window	. 69
Figure 5.18	Performance Analysis Window	.71
	Performance Option Dialog Box	
Figure 5.20	Register Window	.74
Figure 5.21	Source Window	.75
Figure 5.22	Instant Watch Dialog Box	.76
Figure 5.23		
Figure 5.24	Global Column State Dialog Box	.78
Figure 5.25		
Figure 5.26	Trace Window (for SH-1, SH-2, SH-2E, and SH2-DSP Series)	.79
Figure 5.27	Trace Window (for SH-3 and SH-3E Series)	. 80
Figure 5.28	Trace Window (for SH3-DSP Series)	. 81
Figure 5.29	Trace Window (for SH-4 Series)	. 82
Figure 5.30		
Figure 5.31	Trace Search Dialog Box	.86
Figure 5.32	Trace Statistic Dialog Box	. 87
Figure 5.33	Trigger Window	. 88
Figure 5.34	Trigger Setting Dialog Box	. 89
Figure 5.35	Watch Window	.90
Figure 5.36		
Figure 5.37		
Figure 5.38	Set State Dialog Box (Normal Memory)	.96

Figure 5.39	Set State Dialog Box (DRAM)	96
Figure 5.40	Set State Dialog Box (SDRAM)	97
Figure 5.41	Set State Dialog Box (MPX)	97
Figure 5.42	Simulator Memory Resource Dialog Box	98
Figure 5.43	System Memory Resource Modify Dialog Box	99
Figure 5.44	TLB Dialog Box	.100
Figure 5.45	TLB Modify Dialog Box	.101
Figure 5.46	TLB Find Dialog Box	.103
Figure 5.47	Open TLB Dialog Box	.104
Figure 5.48	Instruction TLB Dialog Box	.104
Figure 5.49	Instruction TLB Modify Dialog Box	.106
Figure 5.50	Instruction TLB Find Dialog Box	. 107
Figure 5.51	Unified TLB Dialog Box	.108
Figure 5.52	Unified TLB Modify Dialog Box	. 109
Figure 5.53	Unified TLB Find Dialog Box	.111
Figure 5.54	Cache Dialog Box (for SH-3 and SH-3E Series)	.112
Figure 5.55	Cache Modify Dialog Box	.113
Figure 5.56	Open Cache Dialog Box	.114
Figure 5.57	Instruction Cache Dialog Box (for SH-4/SH-4BSC)	.115
Figure 5.58	Instruction Cache Dialog Box (for SH-4 (SH7750R))	.116
Figure 5.59	Instruction Cache Modify Dialog Box (for SH-4/SH-4BSC)	.117
Figure 5.60	Instruction Cache Modify Dialog Box (for SH-4 (SH7750R))	.118
Figure 5.61	Operand Cache Dialog Box (for SH-4/SH-4BSC)	.119
Figure 5.62	Operand Cache Dialog Box (for SH-4 (SH7750R))	.120
Figure 5.63	Operand Cache Modify Dialog Box (for SH-4/SH-4BSC)	.121
Figure 5.64	Operand Cache Modify Dialog Box (for SH-4 (SH7750R))	.122
Figure 5.65	Simulated I/O Window	.123
Figure 5.66	Stack Trace Window	.124
Figure 5.67	Stack Trace Setting Dialog Box	.125
Figure 5.68	Profile Window (List Sheet)	.126
Figure 5.69	Profile Window (Tree Sheet)	.127
Figure 5.70	Find Data Dialog Box	.129
Figure 5.71	Profile-Chart Window	. 131
Figure 5.72	Image View Window	.133
Figure 5.73	Image Properties Dialog Box	.134
Figure 5.74	Pixel Information Window Dialog Box	.137
Figure 5.75	Waveform Window	.138
Figure 5.76	Waveform Properties Dialog Box	.140
Figure 5.77	Sample Information Dialog Box	.141
Figure 5.78	Coverage Window	
Figure 5.79	Open Coverage Dialog Box	.144
Figure 5.80	Go To Address Dialog Box	. 145
Figure 5.81	Coverage Range Dialog Box	.145

Figure 5.82	Save Data Dialog Box	146
Figure 5.83	Load Data Dialog Box	146
Figure 5.84	Confirmation Request Dialog Box	147
Figure 5.85	Save Coverage Data Dialog Box	147

Tables

	_
Simulator/Debugger Functions and the Corresponding CPUs	5
Specifiable Cache Capacity for SH-3 and SH-3E Series Simulator/Debugg	er14
Memory Types for the SH-4BSC Simulator/Debugger	16
Memory Types for the SH-4/SH-4 (7750R) Simulator/Debugger	17
Control Registers Supported by the SH-4/SH-4E (SH7750R)	
Simulator/Debugger (1)	18
Control Registers Supported by the SH-4/SH-4E (SH7750R)	
Simulator/Debugger (2)	19
I/O Functions	
Processing When a Break Condition is Satisfied	
Simulation Errors	
Register States at Simulation Error Stop	
Simulator/Debugger Commands	149
	Simulator/Debugger (1)

Section 1 Overview

The Hitachi Embedded Workshop (HEW) is a Graphical User Interface intended to ease the development and debugging of applications written in C/C++ programming language and assembly language for Hitachi microcomputers. Its aim is to provide a powerful yet intuitive way of accessing, observing and modifying the debugging platform in which the application is running.

Key Features

- Intuitive interface
- On-line help
- Common "Look & Feel"

Note: The HEW does not run on Windows[®] version 3.1.

When used with the following software, the simulator/debugger reduces the time required for software development.

- SuperHTM RISC engine series C/C++ compiler
- SuperH[™] RISC engine series cross assembler
- Optimizing linkage editor

1.1 Features

- Since the simulator/debugger runs on a host computer, software debugging can start without using an actual user system, thus reducing overall system development time.
- The simulator/debugger performs a pipeline simulation to calculate the number of instruction execution cycles for a program, thus enabling performance evaluation without using an actual user system.
- The simulator/debugger offers the following features and functions that enable efficient program testing and debugging.
 - The ability to handle all of the Super H^{TM} RISC engine series CPUs
 - Functions to stop or continue execution when an error occurs during user program execution
 - Profile data acquisition and function-unit performance measurement
 - A comprehensive set of break functions (Pseudo interrupts are also possible)
 - Functions to set or edit memory maps
 - Functions to display function call history
 - Coverage information is displayed at the C/C++ or assembly-source level
 - Visual debugging functions provide the display of data as images or waveforms
- The breakpoint, memory map, performance, and trace can be set through the dialog box under Windows[®]. Environments corresponding to each memory map of the SuperH[™] RISC engine microprocessors can be set through the dialog box.

1.2 Target User Program

Load modules in ELF/DWARF2 format and S-type format can be debugged with the simulator/debugger. These load modules are called user programs in this manual.

Figure 1.1 shows the creation of target user programs to be debugged.

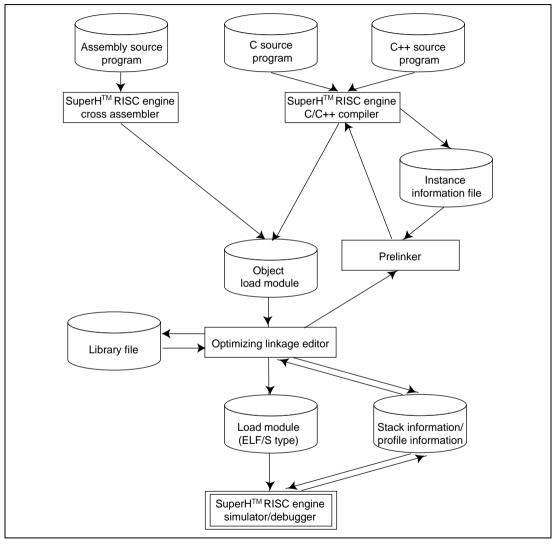


Figure 1.1 Creation of Target User Programs

1.3 Simulation Range

The simulator/debugger provides simulation functions for SuperH[™] RISC engine series (SH-1, SH-2, SH-2E, SH-3, SH-3E, SH3-DSP, SH-4, and SH2-DSP series) microprocessors and provides debugging functions for programs written in C, C++, or assembly language. Therefore, the simulator/debugger promotes efficient debugging of programs. In "the SH-4 series", there are two types of microprocessors, "SH-4" and "SH-4 (SH7750R)", which have different cache specifications. In addition, "the SH-4" consists of two different-version microprocessors; one improves the simulation speed by limiting a part of simulation functions (called "SH-4" in this manual) and one provides high-level functions (called "SH-4BSC" in this manual). "The SH2-DSP series" consists of "the SH2-DSP (Core) ", "the SH2-DSP (SH7410) ", and "the SH2-DSP (SH7065) " which do not have cache, and "the SH2-DSP (SH7612) ", which has on-chip cache. "The SH3-DSP series" consists of "the SH3-DSP (Core)" and "the SH3-DSP", and these two types have different DSP functions. Note that, in this manual, "the SH-4 series" means "the SH-4", "SH-4BSC", and "SH-4 (SH7750R)". "The SH2-DSP series" means "the SH2-DSP (Core)", "the SH2-DSP (SH7410)", "the SH2-DSP (SH7065)", and "the SH2-DSP (SH7612)". "The SH3-DSP series" means "the SH3-DSP (Core)", "the SH2-DSP (SH7410)", "the SH2-DSP (SH7065)", and "the SH2-DSP (SH7612)". "The SH3-DSP series" means "the SH-4", "SH-4BSC", and "SH-4 (SH7750R)". "The SH2-DSP series" means "the SH2-DSP (Core)", "the SH2-DSP (SH7410)", "the SH2-DSP (SH7065)", and "the SH2-DSP (SH7612)". "The SH3-DSP series" means "the SH3-DSP (Core)", "the SH2-DSP (SH7612)". "The SH3-DSP series" means "the SH3-DSP (Core)", "the SH2-DSP (SH7410)", "the SH3-DSP (Core)" and "the SH3-DSP".

The simulator/debugger supports the following SuperH[™] RISC engine series microcomputer functions:

- All CPU instructions (pipeline simulation)
- Exception processing
- Registers
- All address areas
- Peripheral functions shown in table 1.1

Names of Debugging Platforms	Endian	MMU	Cache	Register	BSC	DMAC
SH-1		_	—	—	_	—
SH-2/SH-2E		_	—	—	_	—
SH-3/SH-3E	0	0	0	0	_	—
SH3-DSP	0	0	0	0	_	_
SH3-DSP (Core)	0	0	0	0	_	_
SH-4	0	0	0	0	\bigtriangleup	
SH-4BSC	0	0	0	0	0	0
SH-4 (SH7750R)	0	0	0	0	Δ	_
SH2-DSP (SH7410)		_	—	—	_	_
SH2-DSP (Core)				_	_	_
SH2-DSP (SH7065)	0			_	_	_
SH2-DSP (SH7612)	0		0	0	_	

Table 1.1 Simulator/Debugger Functions and the Corresponding CPUs

Note: O: Supported

--: Not supported

 \triangle : Partly supported

The simulator/debugger does not support the following SuperHTM RISC engine series MCU functions. Programs that use these functions must be debugged with the SuperHTM RISC engine series emulator.

- 16-bit free-running timer (FRT)
- Serial communication interface (SCI)
- I/O ports
- Interrupt controller (INTC)

Section 2 System Overview

HEW is a modular software system, utilizing self-contained modules for specific tasks. These modules are linked to a general purpose Graphical User Interface, which provides a *common look* & *feel* independent of the particular modules with which the system is configured.

2.1 User Interface

The HEW Graphical User Interface is a Windows[®] application that presents the debugging platform to you and allows you to set up and modify the system. Refer to a standard Windows[®] user manual for details on how to operate within a Windows[®] application.

2.2 Data Entry

When entering numbers in any dialog box or field you can always enter an expression instead of a simple number. This expression can contain symbols and can use the operators in the C/C++ programming languages. Use of C/C++ programming language features such as arrays and structures is only available if the ELF/DWARF2 format that supports C/C++ programming language debugging is in use.

In some dialogs, where there is a control expecting an end address, it is possible to enter a range by prefixing the value with a + sign. This will set the actual end address to be equal to the start address plus the entered the value.

2.2.1 Operators

The C/C++ programming language operators are available:

 $+,-,*,/,\&,|,^{\wedge},\sim,!,>>,<<,\%,(,),<,>,<=,>=,==,!=,\&\&,||$

2.2.2 Data Formats

Unprefixed data values will be taken as being in the default radix set by the [**Options->Radix**] menu option. The exception is count field which use decimal values by default (independent of the current default system radix).

Symbols may be used by name and ASCII character strings can be entered if surrounded by single quote characters, e.g. 'demo'.

The following prefixes can be used to identify radices:

- B' Binary
- O' Octal
- D' Decimal
- H' Hexadecimal
- 0x Hexadecimal

The contents of a register may be used by specifying the register name, prefixed by the # character, e.g.:

#R1, #FR2

2.2.3 Precision

All mathematics in expression evaluation is done using 64 bits (signed). Any values exceeding 64 bits are truncated.

2.2.4 Expression Examples

```
Buffer_start + 0x1000
#R1 | B'10001101
((pointer + (2 * increment_size)) & H'FFFF0000) >> D'15
!(flag ^ #R4)
```

2.2.5 Symbol Format

You can specify and reference symbols in the same format as in C/C++ programming language. Cast operators may be used together with symbols, and you can reference data after its type has been converted. Note the following limitations.

- Pointers can be specified up to four levels.
- Arrays can be specified up to three dimensions.
- No typedef name can be used.

2.2.6 Symbol Examples

Object.value
p_Object->value
Class::value
*value
array[0]
Object.*value
::g_value
Class::function(short)

(struct STR) *value

- : Specifies direct reference of a member (C/C++)
- : Specifies indirect reference of a member (C/C++)
- : Specifies reference of a member with class (C++)
- : Specifies a pointer (C/C++)
- : Specifies an array (C/C++)
- : Specifies reference of a pointer to member (C++)
- : Specifies reference of a global variable (C/C++)
- : Specifies a member function (C++)
- : Specifies cast operation (C/C++)

Section 3 Simulator/Debugger Functions

This section describes the functions of the SuperH[™] RISC engine series simulator/debugger.

3.1 Simulator/Debugger Memory Management

3.1.1 Memory Map Specification

A memory map can be specified in the **Simulator System** dialog box to calculate the number of memory access cycles during simulation.

The following items can be specified:

- Memory type
- Start and end addresses of the memory area
- Number of memory access cycles
- Memory data bus width

The memory types that can be specified depend on the CPU. For details, refer to section 5.24, Simulator System Dialog Box. The user program can be executed in all areas except for the internal I/O area.

3.1.2 Memory Resource Specification

A memory resource must be specified to load and execute a user program.

The memory resource, including the following items, can be specified in the **System Memory Resource** dialog box.

- Start address
- End address
- Access type

The access type can be read/write, read-only, or write-only. Since an error occurs if the user program attempts an illegal access (for example, trying to write to a read-only memory), such an illegal access in the user program can be easily detected.

3.2 Endian

In the SH-3, SH-3E, SH3-DSP series, SH-4 series, SH2-DSP (SH7065), and SH2-DSP (SH7612), little endian as well as big endian can be specified as the data allocation format in the memory; a

user program created in the little endian format can also be simulated and debugged. Specify the endian when selecting the debugging platform.

The specified endian is valid for all accesses to external memory, and in the SH3-DSP series it is also valid for accesses to the X or Y memory; word or longword data is written to or read from the memory in the specified byte order.

Note: The specified endian is applied to all accesses to external memory in common. The actual SH2-DSP (SH7612) and SH2-DSP (SH7065) have the function for specifying endian in memory area units, but the simulator/debugger does not support this function.

3.3 Pipeline Reset Processing

The simulator/debugger, which simulates the pipeline execution, resets the pipeline when:

- The program counter (PC) is modified after the instruction simulation stops and before it restarts.
- The Run command to which the execution start address has been specified is executed.
- Initialization is performed, or a program is loaded.
- Memory data being currently fetched and decoded is rewritten.

When the pipeline is reset, data already fetched and decoded is cleared, and new data is fetched and decoded from the current PC. In addition, the number of executed instructions and the number of instruction execution cycles are zero-cleared.

3.4 Memory Management Unit (MMU)

For the SH-3, SH-3E, SH3-DSP series, and SH-4 series, the simulator/debugger simulates MMU operations such as TLB operations, address translation, or MMU-related exceptions (TLB miss exception, TLB protection exception, TLB invalid exception, and initial page write exception). The user program using address translation by the MMU can be simulated and debugged. In addition, the MMU-related exception handler routines can be simulated and debugged. The MMU functions depend on the CPU.

SH-3, SH-3E, and SH3-DSP Series:

The following dialog boxes are provided to manipulate the 32-entry 4-way TLB contents.

- TLB dialog box: Displays and flushes the TLB contents
- TLB Modify dialog box: Modifies the TLB contents
- TLB Find dialog box: Searches the TLB contents

For details, refer to section 5.29, TLB Dialog Box, section 5.30, TLB Modify Dialog Box, and section 5.31, TLB Find Dialog Box.

The TLB is mapped in the range H'F2000000 to H'F3FFFFFF, that is, all entries of the TLB are allocated within this range.

SH-4 Series:

The following dialog boxes are provided to manipulate the 4-entry instruction TLB (ITLB) and 64-entry unified TLB (UTLB) contents:

- Instruction TLB dialog box: Displays and flushes the ITLB contents
- Instruction TLB Modify dialog box: Modifies the ITLB contents
- Instruction TLB Find dialog box: Searches the ITLB contents
- Unified TLB dialog box: Displays and flushes the UTLB contents
- Unified TLB Modify dialog box: Modifies the UTLB contents
- Unified TLB Find dialog box: Searches the UTLB contents

For details, refer to section 5.33, Instruction TLB Dialog Box, through section 5.38, Unified TLB Find Dialog Box.

The ITLB is mapped in the range H'F2000000 to H'F3FFFFFF, and the UTLB is mapped in the range H'F6000000 to H'F7FFFFFF. The simulator/debugger does not support data array 2 for both ITLB and UTLB.

As well as during user program execution, the MMU translates virtual addresses into physical addresses during address display or input in the dialog boxes or windows. Therefore, in the dialog boxes and windows, memory can be accessed with the virtual addresses used in the user program. However, note that physical addresses must be used in the [Memory map] and [System memory resource].

Note: If an associative write to a TLB entry is performed by using the Memory window, the entry may not be modified correctly. In this case, use the Edit dialog box in the longword format. To open the Edit dialog box in the longword format, open the Memory window in the longword format and double-click the data to be modified.

3.5 Cache

For the SH-3, SH-3E, SH3-DSP series, SH-4 series, and SH2-DSP (SH7612), the simulator/debugger simulates cache operations and displays the cache contents and cache hit rate. Cache operations during user program execution can be monitored. The cache functions depend on the CPU.

3.5.1 Displaying Cache Contents

SH-3, SH-3E, SH3-DSP series, and SH2-DSP (SH7612):

The following dialog boxes are provided to manipulate the cache:

- Cache dialog box: Displays and flushes the cache contents
- Cache Modify dialog box: Modifies the cache contents

For the SH-3 and SH-3E series, the **Cache** dialog box enables the cache capacity to be modified and the half of the cache to be used as internal RAM. Table 3.1 shows the cache capacity and the ways to be used.

Table 3.1	Specifiable Cache	Capacity for SH-3 and SH	-3E Series Simulator/Debugger

Cache Capacity	Ways to Be Used	Internal RAM Specification (Ways that Can Be Used as Internal RAM)
8 kbytes	Ways 0 to 3	Ways 2 and 3 can be used as internal RAM
4 kbytes	Ways 0 and 1	Way 1 can be used as internal RAM
2 kbytes	Way 0	No way can be used as internal RAM

For details, refer to section 5.39, Cache Dialog Box, and section 5.40, Cache Modify Dialog Box.

The cache is mapped in the range H'F0000000 to H'F1FFFFFF in the SH-3, SH-3E, and SH3-DSP series. In the SH2-DSP (SH7612), the address array is mapped in the range H'60000000 to H'7FFFFFFF, and the data array is mapped in the range H'C0000000 to H'C0000FFF.

SH-4/SH-4BSC:

The simulator/debugger simulates operations of the 8-kbyte instruction cache (IC), the 16-kbyte operand cache (OC), and two 32-byte store queues (SQ).

The following dialog boxes are provided to manipulate the IC and OC contents:

- Instruction Cache dialog box: Displays and flushes the IC contents
- Instruction Cache Modify dialog box: Modifies the IC contents
- Operand Cache dialog box: Displays and flushes the OC contents
- Operand Cache Modify dialog box: Modifies the OC contents

For details, refer to section 5.42, Instruction Cache Dialog Box, through section 5.45, Operand Cache Modify Dialog Box.

The IC is mapped in the range H'F0000000 to H'F1FFFFFF, the OC is mapped in the range H'F4000000 to H'F5FFFFFF, and the SQ is mapped in the range H'E00000000 to H'E3FFFFFF.

Note: If an associative write to a cache entry or modification of a cache address array is performed by using the Memory window, the entry or array may not be modified correctly. In this case, use the Edit dialog box in the longword format. To open the Edit dialog box in the longword format, open the Memory window in the longword format and double-click the data to be modified.

The simulator/debugger does not change the high-order three bits of the address tag stored in a cache address array to zeros.

When loading a program, by using the **Load Object File** dialog box, to the area where the cache is mapped, or copying memory data to this area by using the **Copy Memory** dialog box, clear the AT bit of the MMUCR to zero to disable the MMU.

SH-4 (SH7750R):

The simulator/debugger simulates operations of the 16-kbyte instruction cache (IC), the 32-kbyte operand cache (OC), and two 32-byte store queues (SQ).

The following dialog boxes are provided to manipulate the IC and OC contents:

- Instruction Cache dialog box: Displays and flushes the IC contents
- Instruction Cache Modify dialog box: Modifies the IC contents
- Operand Cache dialog box: Displays and flushes the OC contents
- Operand Cache Modify dialog box: Modifies the OC contents

For details, refer to section 5.42, Instruction Cache Dialog Box, through section 5.45, Operand Cache Modify Dialog Box.

The IC is mapped in the range H'F0000000 to H'F1FFFFFF, the OC is mapped in the range H'F4000000 to H'F5FFFFFF, and the SQ is mapped in the range H'E00000000 to H'E3FFFFFF.

Note: If an associative write to a cache entry or modification of a cache address array is performed by using the Memory window, the entry or array may not be modified correctly. In this case, use the Edit dialog box in the longword format. To open the Edit dialog box in the longword format, open the Memory window in the longword format and double-click the data to be modified.

The simulator/debugger does not change the high-order three bits of the address tag stored in a cache address array to zeros.

When loading a program, by using the **Load Object File** dialog box, to the area where the cache is mapped, or copying memory data to this area by using the **Copy Memory** dialog box, clear the AT bit of the MMUCR to zero to disable the MMU.

3.5.2 Cache Hit Rate

Checking and Displaying the Cache Hit Rate: The simulator/debugger displays the cache hit rate in percentage in the **Platform** sheet in the **System Status** window. The cache hit rate is obtained by dividing the cache hit count by the cache access count (the sum of the cache hit count and cache miss count). The cache hit count and the cache miss count are also displayed.

Initializing the Cache Hit Rate: The displayed cache hit rate is reset to zero when the simulator/debugger is initiated, the pipeline is reset, or the CCR register value is modified. In the SH3-DSP series, the cache hit rate is reset to zero also when the CCR2 control register value is modified.

3.6 Bus State Controller (BSC)

For the SH-4BSC, the simulator/debugger has the functions for specifying and modifying the memory map to use the BSC; the user program using the BSC can be debugged.

Table 3.2 lists the memory types that can be specified for the SH-4BSC.

Address	Specifiable Memory Types
H'00000000 to H'03FFFFFF (area 0)	Normal memory, burst ROM, and MPX
H'04000000 to H'07FFFFFF (area 1)	Normal memory, byte control SRAM, and MPX
H'08000000 to H'0BFFFFFF (area 2)	Normal memory, DRAM, SDRAM, and MPX
H'0C000000 to H'0FFFFFF (area 3)	Normal memory, DRAM, SDRAM, and MPX
H'10000000 to H'13FFFFFF (area 4)	Normal memory, byte control SRAM, and MPX
H'14000000 to H'17FFFFFF (area 5)	Normal memory, burst ROM, and MPX
H'18000000 to H'1BFFFFFF (area 6)	Normal memory, burst ROM, and MPX
H'1C000000 to H'1FFFFFF (area 7)	Cannot be specified
H'7C000000 to H'7C001FFF	Internal RAM (cannot be changed)
H'E0000000 to H'FFFFFFF	I/O (cannot be changed)

 Table 3.2
 Memory Types for the SH-4BSC Simulator/Debugger

The high-order three bits of the addresses for areas 0 to 7 in table 3.2 must be ignored; H'00000000 and H'20000000 are both in area 0.

The simulator/debugger does not support the PCMCIA.

For details on memory mapping, refer to section 5.24, Simulator System Dialog Box.

3.7 Direct Memory Access Controller (DMAC)

For the SH-4BSC, the simulator/debugger simulates the 4-channel DMAC operations; the user program using the DMAC can be debugged.

3.8 SH-4/SH-4 (SH7750R) Supporting Functions

3.8.1 BSC

For the SH-4/SH-4 (SH7750R), by eliminating the bus control function in the BSC, only SRAM, bus width, and the number of states can be specified.

Table 3.3 lists the memory types that can be specified for the SH-4/SH-4 (7750R).

Table 3.3 Memory Types for the SH-4/SH-4 (7750R) Simulator/Debugger

Address	Specifiable Memory Types
H'00000000 to H'03FFFFFF (area 0)	SRAM
H'04000000 to H'07FFFFFF (area 1)	
H'08000000 to H'0BFFFFFF (area 2)	
H'0C000000 to H'0FFFFFF (area 3)	_
H'10000000 to H'13FFFFFF (area 4)	_
H'14000000 to H'17FFFFFF (area 5)	
H'18000000 to H'1BFFFFFF (area 6)	_
H'1C000000 to H'1FFFFFF (area 7)	Cannot be specified
H'7C000000 to H'7C001FFF	Internal RAM (cannot be changed)
H'E0000000 to H'FFFFFFF	I/O (cannot be changed)

3.8.2 DMA

The DMA function cannot be used.

3.8.3 External/Internal Clock Ratio

The external/internal clock ratio is 1:1. This can be modified by the CLOCK_RATE command only for the SH-4 series. For details on the CLOCK_RATE command, refer to section 6.18, CLOCK_RATE.

3.8.4 Control Registers

Table 3.4 lists the control registers supported by the SH-4/SH-4E (SH7750R) simulator/debugger.

Register Name	Whether or Not Supported
PTEH	Supported
PTEL	Supported
TTB	Supported
TEA	Supported
MMUCR	Supported
EXPEVT	Supported
INTEVT	Supported
TRA	Supported
CCR	Supported
QACR0, QACR1	Supported
SAR0-SAR3	Not supported
DAR0-DAR3	Not supported
DMATCR0-DMATCR3	Not supported
CHCR0-CHCR3	Not supported
DMAOR	Not supported
MCR	Not supported
BCR1, BCR2	Partly supported
WCR1, WCR2	Partly supported
WCR3	Not supported
RTCSR	Not supported
RTCNT	Not supported
RTCOR	Not supported
RFCR	Not supported

Table 3.4Control Registers Supported by the SH-4/SH-4E (SH7750R)Simulator/Debugger (1)

Note: Even if values are modified or referenced for the registers that are not supported via a dialog box that controls registers, etc., the simulator/debugger execution will not be affected.

The following shows how each control register is supported by each field.

Register Name	Field Name	Whether or Not Supported
BCR1	ENDIAN	Supported
	MASTER	Not supported
	A0MPX	Not supported
	A0BST	Not supported
	A5BST	Not supported
	A6BST	Not supported
	DRAMTP	Not supported
	IPUP	Not supported
	OPUP	Not supported
	A1MBC	Not supported
	A4MBC	Not supported
	BREQEN	Not supported
	PSHR	Not supported
	MEMMPX	Not supported
	HIZMEM	Not supported
	HIZCNT	Not supported
	A56PCM	Not supported
BCR2	A6SZ-A0SZ	Supported
	PORTEN	Not supported
WCR1	DMAW	Not supported
	A6IW-A0IW	Supported
WCR2	A6W-A0W	Supported
	A6B	Not supported
	A5B	Not supported
	A0B	Not supported

Table 3.5Control Registers Supported by the SH-4/SH-4E (SH7750R)
Simulator/Debugger (2)

Note: If values are modified or referenced for the registers that are not supported via a window such as IO, etc., the simulator/debugger execution will not be affected.

3.9 Exception Processing

The simulator/debugger detects the generation of exceptions corresponding to TRAPA instructions, general illegal instructions, slot illegal instructions, and address errors. In addition, for the SH-3, SH-3E, SH3-DSP series, and SH-4 series, the simulator/debugger simulates MMU-related exception processing (TLB miss, TLB protection exception, TLB invalid exception, and initial page write). For the SH-2E, SH-3E, and SH-4 series, the simulator/debugger also simulates FPU exception processing.

The simulator/debugger simulates exception processing with the following procedures, depending on the **[Execution Mode]** setting in the **Simulator System** dialog box.

SH-1, SH-2, SH-2E and SH2-DSP Series:

- When [Continue] is selected (continuation mode):
 - 1. Detects an exception during instruction execution.
 - 2. Saves the PC and SR in the stack area.
 - 3. Reads the start address from the vector address corresponding to the vector number.
 - 4. Starts instruction execution from the start address. If the start address is 0, the simulator/debugger stops exception processing, displays that an exception processing error has occurred, and enters the command input wait state.
- When the **[Stop]** is selected (stop mode): Executes steps 1 to 3 above, then stops.

SH-3, SH-3E, and SH3-DSP Series:

- When [Continue] is selected (continuation mode):
 - 1. Detects an exception during instruction execution.
 - 2. Saves the PC and SR to the SPC and SSR, respectively.
 - 3. Sets the BL bit, RB bit, and MD bit in the SR to 1s.
 - 4. Sets an exception code in control register EXPEVT. If necessary, appropriate values are set in other control registers.
 - 5. Sets the PC to the vector address corresponding to the exception cause. (If an exception is detected when the BL bit in the SR is 1, reset vector address H'A0000000 is set in the PC regardless of the exception cause.)
 - 6. Starts instruction execution from the address set in the PC.
- When the **[Stop]** is selected (stop mode):

Executes steps 1 to 5 above, then stops.

SH-4 Series:

- When [Continue] is selected (continuation mode):
 - 1. Detects an exception during instruction execution.
 - 2. Saves the PC and SR to the SPC and SSR, respectively.
 - 3. Sets the BL bit, RB bit, and MD bit in the SR to 1s.
 - 4. Sets the FD (FPU disable) bit in the SR to 0 at reset.
 - 5. Sets an exception code in control register EXPEVT. If necessary, appropriate values are set in other control registers.
 - 6. Sets the PC to the vector address corresponding to the exception cause. (If an exception is detected when the BL bit in the SR is 1, reset vector address H'A0000000 is set in the PC regardless of the exception cause.)
 - 7. Starts instruction execution from the address set in the PC.
- When the **[Stop]** is selected (stop mode):

Executes steps 1 to 6 above, then stops.

3.10 Control Registers

For the SH-3, SH-3E, SH3-DSP series, and SH-4 series, the simulator/debugger supports the memory-mapped control registers that are used for exception processing, MMU control, and cache control. In addition, for the SH-4 series, the simulator/debugger also supports the control registers that are used for BSC and DMAC control. For the SH2-DSP (SH7612), the simulator/debugger only supports the CCR register that is used for cache control. Therefore, a user program using exception processing, MMU control, cache control, BSC control, and DMAC control can be simulated and debugged.

The registers supported by the simulator/debugger are listed below.

MMU	PTEH:	Page table entry high register
	PTEL:	Page table entry low register
	TTB:	Translation table base register
	TEA:	TLB exception address register
	MMUCR:	MMU control register
Exception processing	TRA:	TRAPA exception register
	EXPEVT:	Exception event register
	INTEVT:	Interrupt event register
Cache	CCR:	Cache control register
	$CCR2^{*1}$:	Cache control register 2
QACR0 a	nd QACR1 ^{*2} :	Queue address control registers 0 and 1

BSC	BCR1 and BCR2 ^{*2} :	Bus control registers 1 and 2
	WCR1 to WCR3 *2 :	Wait state control registers 1 to 3
	MCR ^{*2} :	Individual memory control register
	RTCSR ^{*2} :	Refresh timer control/status register
	RTCNT ^{*2} :	Refresh timer/counter
	RTCOR ^{*2} :	Refresh time constant register
	RFCR ^{*2} :	Refresh count register
DMAC	SAR0 to SAR 3^{*2} :	DMA source address registers 0 to 3
		DMA destination address registers 0 to 3
	DMATCR0 to DMATCR3 ^{*2} :	DMA transfer count registers 0 to 3
	CHCR0 to CHCR3 ^{*2} :	DMA channel control registers 0 to 3
	DMAOR ^{*2} :	DMA operation register

Notes: 1. The register marked with *1 is supported only for the SH3-DSP series.

2. The registers marked with *2 are supported only for the SH-4 series. Only the CCR register is supported for the SH2-DSP (SH7612).

The simulator/debugger does not support the PCMCIA interface and the synchronous DRAM mode register.

To modify or display a control register value, use the **IO** window and the dialog box for each register. For details, refer to section 5.6, IO Window.

3.11 Trace

The simulator/debugger writes the results of each instruction execution into the trace buffer. The conditions for the trace information acquisition can be specified in the **Trace Acquisition** dialog box. Click the right mouse button in the **Trace** window and choose [**Acquisition...**] from the popup menu to display the **Trace Acquisition** dialog box. The acquired trace information is displayed in the **Trace** window. The trace information displayed in the **Trace** window depends on the target CPU as follows.

SH-1, SH-2, SH-2E, and SH2-DSP Series:

- Total number of instruction execution cycles
- Instruction address
- Pipeline execution status
- Instruction mnemonic
- Data access information (destination and accessed data)
- C/C++ or assembly-language source programs

SH-3 and SH-3E Series:

- Total number of instruction execution cycles
- Data on the address bus
- Data on the data bus
- Instruction code
- Instruction number
- Instruction mnemonic
- Instruction number that was fetched (enclosed by [] when the instruction did not access memory)
- Instruction number that was decoded
- Instruction number that was executed
- Instruction number that accessed memory
- Instruction number that wrote back data
- Data access information (destination and accessed data)
- C/C++ or assembly-language source programs

SH3-DSP Series:

- Total number of instruction execution cycles
- Program counter value
- Instruction code
- Instruction number that was fetched (enclosed by [] when the instruction did not access memory)
- Instruction number that was decoded
- Instruction number that was executed
- Instruction number that accessed memory
- Instruction number that wrote back data
- Instruction number
- Instruction mnemonic
- Data access information (destination and accessed data)
- C/C++ or assembly-language source programs

SH-4 Series:

- Total number of instruction execution cycles (CPU internal clock)
- Program counter value
- Fetched instruction code
- Instruction number that was executed, accessed memory, or wrote back data in the EX pipeline
- Instruction number that was executed, accessed memory, or wrote back data in the LS pipeline
- Instruction number that was executed, accessed memory, or wrote back data in the BR pipeline
- Instruction number that was executed, accessed memory, or wrote back data in the FP pipeline
- Instruction number assigned to the instruction to be executed
- Memory address, instruction code, and mnemonic of the instruction to be executed
- Data access information (destination and accessed data)
- C/C++ or assembly-language source programs

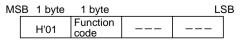
The trace information can be searched. The search conditions can be specified in the **Trace Search** dialog box. Click the right mouse button in the **Trace** window and choose [Find...] from the popup menu to display the **Trace Search** dialog box.

For details, refer to section 5.17, Trace Window.

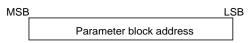
3.12 Standard I/O and File I/O Processing

The simulator/debugger provides the **Simulated I/O** window to enable the standard I/O and file I/O processing listed in table 3.6 to be executed by the user program. When the I/O processing is executed, the **Simulated I/O** window must be open.

	Function		
No.	Code	Function Name	Description
1	H'21	GETC	Inputs one byte from the standard input device
2	H'22	PUTC	Outputs one byte to the standard output device
3	H'23	GETS	Inputs one line from the standard input device
4	H'24	PUTS	Outputs one line to the standard output device
5	H'25	FOPEN	Opens a file
6	H'06	FCLOSE	Closes a file
7	H'27	FGETC	Inputs one byte from a file
8	H'28	FPUTC	Outputs one byte to a file
9	H'29	FGETS	Inputs one line from a file
10	H'2A	FPUTS	Outputs one line to a file
11	H'0B	FEOF	Checks for end of file
12	H'0C	FSEEK	Moves the file pointer
13	H'0D	FTELL	Returns the current position of the file pointer


Table 3.6I/O Functions

To perform I/O processing, use the **[System Call Address]** in the **Simulator System** dialog box in the following procedure.


- 1. Set the address specialized for I/O processing in the [System Call Address], select [Enable] and execute the program.
- 2. When detecting a subroutine call instruction (BSR, JSR, or BSRF), that is, a system call to the specialized address during user program execution, the simulator/debugger performs I/O processing by using the R0 and R1 values as the parameters.

Therefore, before issuing a system call, set as follows in the user program:

• Set the function code (table 3.6) to the R0 register

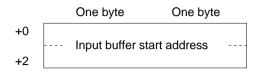
• Set the parameter block address to the R1 register (for the parameter block, refer to each function description)

• Reserve the parameter block and input/output buffer areas

Each parameter of the parameter block must be accessed in the parameter size.

After the I/O processing, the simulator/debugger resumes simulation from the instruction that follows the system call instruction.

Note: When a JSR, BSR, or BSRF instruction is used as a system call instruction, the instruction following the JSR, BSR, or BSRF instruction is executed as a normal instruction, not a slot instruction. Therefore, the instruction placed immediately after the system call instruction (JSR, BSR, or BSRF) must not be one that produces different results depending on whether executed as a normal instruction or as a slot instruction.

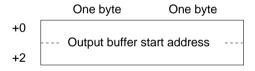

Each I/O function is described in the following format:

(1)	(2)	(4)	
	(3)		
	•		
Param	eter Block		
(5)			
(2)			
(C)			
(5) Param	eters		

- (1) Number corresponding to table 3.6
- (2) Function name
- (3) Function code
- (4) I/O overview
- (5) I/O parameter block
- (6) I/O parameters

1	GETC	Inputs one byte from the standard input device
	H'21	

Parameter Block

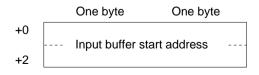


Parameters

• Input buffer start address (input) Start address of the buffer to which the input data is written to.

2	PUTC	Outputs one byte to the standard output device
	H'22	

Parameter Block

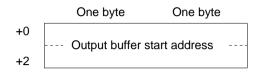


Parameters

• Output buffer start address (input) Start address of the buffer in which the output data is stored.

3	GETS	Inputs one line from the standard input device
	H'23	

Parameter Block



Parameters

• Input buffer start address (input) Start address of the buffer to which the input data is written to.

4	PUTS	Outputs one line to the standard output device
	H'24	

Parameter Block

Parameters

• Output buffer start address (input) Start address of the buffer in which the output data is stored.

5	FOPEN	Opens a file
	H'25	

The FOPEN opens a file and returns the file number. After this processing, the returned file number must be used to input, output, or close files. A maximum of 256 files can be open at the same time.

Parameter Block

	One byte	One byte
+0	Return value	File number
+2	Open mode	Unused
+4	Start address	s of file name
+6		

Parameters

• Return value (output)

0: Normal completion

-1: Error

• File number (output)

The number to be used in all file accesses after opening.

• Open mode (input)

H'00: "r"

- H'01: "w"
- H'02: "a"
- H'03: "r+"

H'04: "w+" H'05: "a+" H'10: "rb" H'11: "wb"

- H'12: "ab"
- H'13: "r+b"

H'14: "w+b"

H'15: "a+b"

These modes are interpreted as follows.

"r": Open for reading.

"w": Open an empty file for writing.

"a": Open for appending (write starting at the end of the file).

"r+": Open for reading and writing.

"w+": Open an empty file for reading and writing.

"a+" : Open for reading and appending.

"b" : Open in binary mode.

• Start address of file name (input)

The start address of the area for storing the file name.

6	FCLOSE	Closes a file
	H'06	

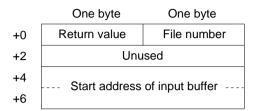
Parameter Block

	One byte	One byte
+0	Return value	File number

Parameters

• Return value (output)

0: Normal completion


-1: Error

• File number (input)

The number returned when the file was opened.

7	FGETC	Inputs one byte from a file
	H'27	

Parameter Block

Parameters

• Return value (output)

0: Normal completion

- -1: EOF detected
- File number (input) The number returned when the file

The number returned when the file was opened.

• Start address of input buffer (input) The start address of the buffer for storing input data.

8	FPUTC	Outputs one byte to a file
	H'28	

Parameter Block

	One byte	One byte
+0	Return value	File number
+2	Unus	ed
+4	Ctort address a	foutout huffor
+6	Start address of output buffer	

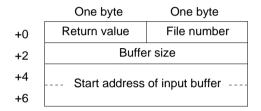
Parameters

• Return value (output)

0: Normal completion

- -1: Error
- File number (input)

The number returned when the file was opened.


• Start address of output buffer (input)

The start address of the buffer used for storing the output data.

9	FGETS	Reads character string data from a file
	H'29	

Reads character string data from a file. Data is read until either a new line code or a NULL code is read, or until the buffer is full.

Parameter Block

Parameters

• Return value (output)

0: Normal completion

- -1: EOF detected
- File number (input)

The number returned when the file was opened.

• Buffer size (input)

The size of the area for storing the read data. A maximum of 256 bytes can be stored.

• Start address of input buffer (input) The start address of the buffer for storing input data.

10	FPUTS	Writes character string data to a file
	H'2A	

Writes character string data to a file. The NULL code that terminates the character string is not written to the file.

Parameter Block

 One byte
 One byte

 +0
 Return value
 File number

 +2
 Unused

 +4
 ---- Start address of output buffer ---

Parameters

• Return value (output)

0: Normal completion

-1: Error

• File number (input)

The number returned when the file was opened.

• Start address of output buffer (input)

The start address of the buffer used for storing the output data.

11	FEOF	Checks for end of file
	H'0B	

Parameter Block

	One byte	One byte
+0	Return value	File number

Parameters

• Return value (output)

0: File pointer is not at EOF

- -1: EOF detected
- File number (input)

The number returned when the file was opened.

12	FSEEK	Moves the file pointer to the specified position
	H'0C	

Parameter Block

	One byte	One byte	
+0	Return value	File number	
+2	Direction	Unused	
+4		(a.a.t.	
+6	UI UI	fset	

Parameters

• Return value (output)

0: Normal completion

-1: Error

• File number (input)

The number returned when the file was opened.

• Direction (input)

0: The offset specifies the position as a byte count from the start of the file.

1: The offset specifies the position as a byte count from the current file pointer.

- 2: The offset specifies the position as a byte count from the end of the file.
- Offset (input)

The byte count from the location specified by the direction parameter.

13	FTELL	Returns the current position of the file pointer
	H'0D	

Parameter Block

	One byte	One byte
+0	Return value	File number
+2	Unused	
+4	Off	sot
+6		501

Parameters

- Return value (output)
 - 0: Normal completion
 - -1: Error
- File number (input)

The number returned when the file was opened.

• Offset (output)

The current position of the file pointer, as a byte count from the start of the file.

The following shows an example for inputting one character as a standard input (from a keyboard)

	MOV.L	PAR_ADR,R1
	MOV.L	REQ_COD,R0
	MOV.L	CALL_ADR,R3
	JSR	@R3
	NOP	
STOP	NOP	
SYS_CALL	NOP	
	.ALIGN	4
CALL_ADR	.DATA.L	SYS_CALL
REQ_COD	.DATA.L	н′01210000
PAR_ADR	.DATA.L	PARM
PARM	.DATA.L	INBUF
INBUF	.RES.B	2
	.END	

3.13 Break Conditions

The simulator/debugger provides the following conditions for interrupting the simulation of a user program during execution.

- Break due to the satisfaction of a break command condition
- Break due to the detection of an error during execution of the user program
- Break due to a trace buffer overflow
- Break due to execution of the SLEEP instruction
- Break due to the [STOP] button

3.13.1 Break Due to the Satisfaction of a Break Command Condition

There are six break commands as follows:

- BREAKPOINT: Break based on the address of the instruction executed
- BREAK_ACCESS: Break based on access to a range of memory
- BREAK_CYCLE Break based on the number of execution cycles
- BREAK_DATA: Break based on the value of data written to memory
- BREAK_REGISTER: Break based on the value of data written to a register
- BREAK_SEQUENCE: Break based on a specified execution sequence

If **[Stop]** is specified as the action for a break condition, user program execution stops when the break condition is satisfied. For details, refer to section 5.1, Break Window.

When a break condition is satisfied and user program execution stops, the instruction at the breakpoint may or may not be executed before a break depending on the type of break, as listed in table 3.7.

Command	Instruction When a Break Condition is Satisfied
BREAKPOINT	Not executed
BREAK_ACCESS	Executed
BREAK_CYCLE	Executed
BREAK_DATA	Executed
BREAK_REGISTER	Executed
BREAK_SEQUENCE	Not executed

Table 3.7 Processing When a Break Condition is Satisfied

For BREAKPOINT and BREAK_SEQUENCE, if a breakpoint is specified at an address other than the beginning of the instruction, the break condition will not be detected.

When a break condition is satisfied during user program execution, a break condition satisfaction message is displayed on the status bar and execution stops.

3.13.2 Break Due to the Detection of an Error During Execution of the User Program

The simulator/debugger detects simulation errors, that is, program errors that cannot be detected by the CPU exception generation functions. The **Simulator System** dialog box specifies whether to stop or continue the simulation when such an error occurs. Table 3.8 lists the error messages, error causes, and the action of the simulator/debugger in the continuation mode.

Error Message	Error Cause	Processing in Continuation Mode	
Memory Access Error	Access to a memory area that has not been allocated	On memory write, nothing is written; on memory read, all bits	
	Write to a memory area having the write protect attribute	[−] are read as 1.	
	Read from a memory area having the read disable attribute	-	
	Access to an area where memory does not exist	-	
Illegal Operation	Zero division executed by the DIV1 instruction	Operates in the same way as the actual device operation.	
	Writing zero by the SETRC instruction		
Illegal DSP Operation	Shift of more than 32 bits executed by the PSHA instruction	_	
	Shift of more than 16 bits executed by the PSHL instruction	-	
Invalid DSP Instruction Code	Invalid DSP instruction code	Always stops.	
TLB Multiple Hit	Hit to multiple TLB entries at MMU address translation (only for the SH-3, SH-3E, and SH3-DSP series)	Undefined.	

Table 3.8Simulation Errors

When a simulation error occurs in the stop mode, the simulator/debugger returns to the command wait state after stopping instruction execution and displaying the error message. Table 3.9 lists the states of the program counter (PC) at simulation error stop. The status register (SR) value does not change at simulation error stop.

Error Message	PC Value
Memory Access Error	When an instruction is read:
	— SH2-DSP and SH3-DSP series
	The third instruction address before the instruction that caused the error.
	— SH-1, SH-2, SH-2E, SH-3, SH-3E, and SH-4 series
	The instruction address before the instruction that caused the error.
	The slot address if an error occurs when a branch destination is
	read.
	When an instruction is executed:
	The instruction address following the instruction that caused the error.
Illegal Operation	The instruction address following the instruction that caused the error.
Illegal DSP Operation	The second instruction address following the instruction that caused the error.
Invalid DSP Instruction Code	The second instruction address following the instruction that caused the error.
TLB Multiple Hit	The address of the instruction that caused the error.

Table 3.9 Register States at Simulation Error Stop

Use the following procedure when debugging programs which include instructions that generate simulation errors.

- a. First execute the program in the stop mode and confirm that there are no errors except those in the intended locations.
- b. After confirming the above, execute the program in the continuation mode.
- Note: If an error occurs in the stop mode and simulation is continued after changing the simulator mode to the continuation mode, simulation may not be performed correctly. When restarting a simulation, always restore the register contents (general, control, and system registers) and the memory contents to the state prior to the occurrence of the error.

3.13.3 Break Due to a Trace Buffer Overflow

After the **[Break]** mode is specified with **[Trace Buffer Full Handling]** in the **Trace Acquisition** dialog box, the simulator/debugger stops execution when the trace buffer becomes full. The following message is displayed when execution is stopped.

Trace Buffer Full

3.13.4 Break Due to Execution of the SLEEP Instruction

When the SLEEP instruction is executed during instruction execution, the simulator/debugger stops execution. The following message is displayed when execution is stopped.

Sleep

Note: When restarting execution, change the PC value to the instruction address at the restart location.

3.13.5 Break Due to the [STOP] Button

Users can forcibly terminate execution by clicking the **[STOP]** button during instruction execution. The following message is displayed when execution is terminated.

Stop

Execution can be resumed with the Go or Step command.

3.14 Floating-Point Data

Floating-point numbers can be displayed and input for the following real-number data, which makes floating-point data processing easier.

- Data in the **Set Break** dialog box when the break type is set to **[Break Data]** or **[Break Register]**
- Data in the **Memory** window
- Data in the Fill Memory dialog box
- Data in the Search Memory dialog box
- Register values displayed in the **Registers** window
- Input data in the **Register** dialog box

The floating-point data format conforms to the ANSI C standard.

In the simulator/debugger, the rounding mode for floating-point decimal-to-binary conversion can be selected in the **Simulator System** dialog box. One of the following two modes can be selected:

- Round to nearest (RN)
- Round to zero (RZ)

If a denormalized number is specified for binary-to-decimal or decimal-to-binary conversion, it is converted to zero in RZ mode, and it is left as a denormalized number in RN mode. If an overflow occurs during decimal-to-binary conversion, the maximum floating-point value is returned in RZ mode, and the infinity is returned in RN mode.

3.15 Display of Function Call History

The simulator/debugger displays the function call history in the **Stack Trace** window when simulation stops, which enables program execution flow to be checked easily. Selecting a function name in the **Stack Trace** window displays the corresponding source program in the **Source** window; the function that has called the current function can also be checked.

The displayed function call history is updated in the following cases:

- When simulation stops under the break conditions described in section 3.13, Break Conditions.
- When register values are modified while simulation stops due to the above break conditions.
- While single-step execution is performed.

For details, refer to section 5.47, Stack Trace Window.

3.16 Profiler

The simulator/debugger displays the memory address and size allocated to functions and global variables, the number of function calls and the profile data. The profile data displayed differs according to the CPU. The displayed contents are as follows.

- SH-1/SH-2/SH-2E series, SH2-DSP (Core), SH2-DSP (SH7410) and SH2-DSP (SH7065):
 - Times (the number of times a function was called or a global variable was accessed.)
 - Cycle (the number of execution cycles)
 - Ext_mem (the number of times the external memory was accessed)
 - I/O_area (the number of times the input/output area was accessed)
 - Int_mem (the number of times the internal memory was accessed)
- SH-3/SH-3E/SH3-DSP Series and SH2-DSP (SH7612):
 - Times (the number of times a function was called or a global variable was accessed.)
 - Cycle (the number of execution cycles)
 - Cache miss (the number of Instruction cache misses)
 - Ext_mem (the number of times the external memory was accessed)
 - I/O_area (the number of times the input/output area was accessed)
 - Int_mem (the number of times the internal memory was accessed)
- SH-4 Series:
 - Times (the number of times a function was called or a global variable was accessed.)
 - Cycle (the number of execution cycles)
 - ICache miss (the number of Instruction cache misses)
 - OCache miss (the number of Operand cache misses)

- Ext_mem (the number of times the external memory was accessed)
- I/O_area (the number of times the input/output area was accessed)
- Int_mem (the number of times the internal memory was accessed)

Profile information is displayed in list, tree and chart formats. Using profile information it is possible to optimize user programs by reducing the size and putting the most frequently called functions in-line. Further, using the profile information saved to a file, it is possible to optimize user programs based on operational information using the optimizing linkage editor.

For details, refer to sections 5.48, Profile Window (List Sheet), through section 5.50, Profile Chart Window, and section 4.2.3, Optimize Option Profile in the Optimizing Linkage Editor User's Manual.

3.17 Pseudo-Interrupts

The simulator/debugger can generate pseudo-interrupts during simulation in two ways:

1. Pseudo-interrupts generated by break conditions

A pseudo-interrupt can be generated by using a break command to specify **[Interrupt]** as the action when a break condition is satisfied. For details, refer to section 5.1, Break Window.

2. Pseudo-interrupts generated from the **Trigger** window

A pseudo-interrupt can be generated by clicking a trigger button in the **Trigger** window. For details, refer to section 5.21, Trigger Window.

If another pseudo-interrupt occurs between a pseudo-interrupt occurrence and its acceptance, only the interrupt that has a higher priority can be processed.

Note: Whether an interrupt is accepted is determined by the specifications of the CPU for the selected debugging platform. Note, however, that when H'11 is specified as the priority level of an interrupt, that interrupt is always accepted. The simulator/debugger does not simulate the operation of the interrupt controller.

3.18 Coverage

The simulator/debugger acquires instruction coverage information during instruction execution within the address range specified by the user.

The coverage window displays the following items of the acquired instruction coverage information:

- Times (instruction execution count)
- Pass (result of a conditional branch instruction)

T: Execution has branched in all cases.

F: Execution has not branched in any cases.

T/F: Execution has branched in some cases, but not in others.

- -: The target instruction is not a branch instruction or the instruction has not been executed.
- Address (instruction address)
- Assembler (disassembled display)
- Source (C/C++ or assembly-language source program)

The instruction coverage information can also be displayed in the editor window by highlighting the column corresponding to the source line of the executed instruction.

The instruction coverage information can be saved in or loaded from a file. Only a file in the .COV format can be loaded.

The status of each instruction execution can be monitored through the instruction coverage information. In addition, this information can be used to determine which part of a program has not been executed. For details, refer to section 5.57, Coverage Window, through section 5.64, Save Coverage Data Dialog Box.

Section 4 Menus

This document uses the standard Microsoft® menu naming convention.

/lenu bar	🛞 tutorial - Hitachi Embedded Workshop - [tutorial.c]
	Sile Edit View Project Options Build Debug Tools Window Help Memory
	🐺 🕙 💯 👼 10 Hitachi SuperH RISC engine Standard Toolchain 🛛 🔊 🏂 💯 💷 🐺 🖗 🔳 🖂 國 🗉 🕼
)rop-down	[요요요 화 탄F 탄] (<u>D</u> ebug Settings SH-1 고 가 때 제 음 음 우 주 요 요
nenu	
	Build Phases
Menu	Build Configurations
option	Image: Simulator Simulator Image: Simulator Image: Simulator Image: Sim

Figure 4.1 Menus

Check marks indicate that the feature provided by the menu option is selected.

Ellipsis indicates that selecting the menu option will open a dialog box that requires extra information to be entered.

Refer to your Windows[®] user manual for details on how to use the Windows[®] menu system.

4.1 View

The View menu is used to select and open new child windows. If the menu option is grayed, then the features provided by the window are not available with the current debugging platform.

4.1.1 Workspace

Opens the Workspace window displaying a list of source files.

4.1.2 Output

1

Opens the **Output** window displaying a message when using the debugger.

4.1.3 Breakpoints

Opens the **Breakpoints** window allowing the user to view and edit current breakpoints.

4.1.4 Command Line

Opens the **Command Line** window allowing the user to enter text-based commands to control the debugging platform. These commands can be piped in from a batch file, and the results piped out to a log file, allowing automatic tests to be performed.

4.1.5 Disassembly

Launches the **Set Address** dialog box allowing the user to enter the address that you wish to view.

4.1.6	ю
-------	---

I/0

Opens the IO window allowing the user to view and modify the control register.

4.1.7 Labels

Launches the **Labels** window allowing the user to manipulate the current program's symbols (labels).

4.1.8 Locals

Opens the **Locals** window allowing the user to view and edit the values of the variables defined in the current function. The contents are blank unless the PC is within a C/C++ source-level function.

4.1.9 Memory...

Launches the **Set Address** dialog box allowing the user to specify a memory block and view format to display within a **Memory** window.

4.1.10 Performance Analysis

E Launches the **Performance Analysis** window allowing the user to set up and view the number of times that particular sections of the user program have been called.

4.1.11 Profile

Opens the **Profile** window allowing the user to view the address and size of a function or a global variable, the number of times the function is called, and profile data.

4.1.12 Registers

Opens the **Registers** window allowing the user to view all the current CPU registers and their contents.

4.1.13 Status

Opens the **System Status** window allowing the user to view the debugging platform's current status and the current session and program names.

4.1.14 Trace

Opens the Trace window allowing the user to see the current trace information.

4.1.15 Watch

Opens the **Watch** window allowing the user to enter C/C++-source level variables and view and modify their contents.

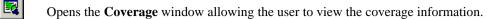
4.1.16 TLB...

Opens the **Open TLB** dialog box allowing the user to enter the type of TLB that you wish to view.

4.1.17 Cache...

Opens the **Open Cache** dialog box allowing the user to enter the type of cache that you wish to view.

4.1.18 Simulated I/O


Opens the Simulated I/O window enabling the standard I/O and file I/O.

4.1.19 Stack Trace

Opens the Stack Trace window displaying the current stack trace information.

4.1.20 Coverage...

4.1.21 Image...

4.1.22 Waveform...

Opens the **Waveform** window displaying the memory contents as waveforms.

4.1.23 Trigger

Opens the **Trigger** window displaying trigger buttons to generate manual interrupts during simulation.

4.2 **Options**

The Options menu is used to change the settings for the debugging interface of the HEW and make the settings for the debugging platform.

4.2.1 Debug Settings...

Launches the **Debug Settings** dialog box allowing the user to modify the settings for the debugging interface of the HEW (not debugging platform dependent settings).

4.2.2 Radix

Lo lo lo cascades a menu displaying a list of radix in which the numeric values will be displayed and entered by default (without entering the radix prefix). The current radix has a toolbar button to its left is locked down.

For example, if the current radix is decimal then the number ten will be displayed as "10" and may be entered as "10", "H'A", "0x0a", etc.; if the current radix is hexadecimal then the number ten will be displayed as "0A" and entered as "A", "D'10", etc.

4.2.3 Simulator

System...:

14 Launches a **Simulator System** dialog box allowing the user to modify the debugging platform settings. Refer to section 5.24, Simulator System Dialog Box for more details.

Memory Resource...:

Opens the **Simulator Memory Resource** window allowing the user to view and edit the debugging platform's current memory map.

4.3 Debug

The Debug menu controls the execution of the user program in the debugging platform.

4.3.1	Reset	CPU

Resets the user system hardware and sets the PC to the reset vector address.

4.3.2 Go

Starts executing the user program at the current PC.

4.3.3 Reset Go

Executes the user program from the reset vector address.

4.3.4 Go To Cursor

Starts executing the user program at the current PC and continues until the PC equals the address indicated by the current text cursor (not mouse cursor) position.

4.3.5 Set PC To Cursor

L_{PC} Changes the value of the Program Counter (PC) to the address at the row of the text cursor (not mouse cursor). Disabled if no address is available for the current row.

4.3.6 Run...

Launches the **Run Program** dialog box allowing the user to enter temporary breakpoints before executing the user program.

4.3.7 Step In

Executes a block of user program before breaking. The size of this block is normally a single instruction but may be set by the user to more than one instruction or a C/C++-source line (see also section 4.3.10, Step...). If a subroutine call is reached, then the subroutine will be entered and the view is updated to include its code.

4.3.8 Step Over

O Executes a block of user program before breaking. The size of this block is normally a single instruction but can be set by the user to more than one instruction or a C/C++-source line (see also section 4.3.10, Step...). If a subroutine call is reached, then the subroutine will not be entered and sufficient user program will be executed to set the current PC position to the next line in the current view.

4.3.9 Step Out

(P) Executes sufficient user program to reach the end of the current function and set the PC to the next line in the calling function before breaking.

4.3.10 Step...

Launches the Step Program dialog box allowing the user to modify the settings for stepping.

4.3.11 Step Mode

Specifies the **Step Mode** allowing the user to select a unit of stepping from **Auto** (automatic selection), **Assembly** (assembly instruction units), or **Source** (C/C++ source level).

4.3.12 Halt Program

Stops the execution of the user program.

4.3.13 Initialize

Disconnects the debugging platform and connects it again.

4.3.14 Disconnect

Disconnects the debugging platform.

4.3.15 Download Modules

Downloads the object program.

4.3.16 Unload Modules

Unloads the object program.

4.4 Memory

The Memory menu is used for aspects of the user program that access memory.

4.4.1 Search...

Launches the **Search Memory** dialog box allowing the user to specify the start and end addresses and the data value to be searched and to perform the search. Search conditions (match/unmatch and search direction) can also be specified.

4.4.2 Copy...

Launches the **Copy Memory** dialog box allowing the user to copy a block of the debugging platform's memory to an address within the same memory area. The blocks may overlap, in which case any data within the overlapped region of the source block will be overwritten. If a block of memory is highlighted in a **Memory** window, these will be automatically entered as the start and end addresses when the dialog box is displayed. Data in the source block can be compared with that in the destination while being copied.

4.4.3 Compare...

Launches the **Compare Memory** dialog box, allowing the user to select a start and an end address in the memory area, to check against another area in memory. If a block of memory is highlighted in a **Memory** window, these will be automatically entered as the start and end addresses when the dialog box is displayed.

4.4.4 Fill...

Launches the **Fill Memory** dialog box allowing the user to fill a block of the debugging platform's memory with a value. If a block of memory is highlighted in a **Memory** window, these will be automatically entered as the start and end addresses when the dialog box is displayed.

4.4.5 Refresh

Forces a manual update of the contents of all open Memory windows.

4.4.6 Configure Overlay...

Launches the **Overlay** dialog box. When the overlay function is used, the target section group can be selected in the dialog box.

Section 5 Windows and Dialog Boxes

This section describes types of windows and dialog boxes, the features that they support and the options available through their associated popup menu.

5.1 Break Window

📣 Break		
Enable Typ	e Condition	Action
Enable BP Enable BR	PC=H'00001000 Register=R3	Stop Stop
•		Þ

Figure 5.1 Break Window

This window displays all of the specified breakpoints. Items that can be displayed are listed below.

Displays whether the breakpoint is enabled or disabled.
Enable: Valid
Disable: Invalid

- [Type] Displays break types BP: PC break BA: Break access BD: Break data BR: Break register (Register name) BS: Break sequence BCY: Break cycle
- [Condition] Displays the conditions that satisfies a break condition. The contents displayed differ from the type of the break. When the type of the break is BR, the register name is displayed, and when the type of the break is BCY, the number of cycles is displayed.
 BP: PC = Program counter (Corresponding file name, line, and symbol name)
 BA: Address = Address (Symbol name)
 BD: Address = Address (Symbol name)
 BR: Register = Register name
 BS: PC = Program counter (Corresponding file name, line, and symbol name)
 BCY: Cycle = Number of cycles (displayed in hexadecimal)

 [Action] Displays the operation of the simulator/debugger when a break condition is satisfied. Stop: Execution halts

File Input (file name) [File state: Memory data is read from file] File Output (file name) [File state: Memory data is written to file] Interrupt (Interrupt type/priority): Interrupt processing Only for SH3-DSP (Interrupt type 1, interrupt type 2/priority) is displayed.

When a breakpoint is double-clicked in this window, the **Set Break** dialog box is opened and break conditions can be modified.

A popup menu containing the following options is available by right-clicking within the window.

5.1.1 Add...

Sets breakpoints. Clicking this item will open the **Set Break** dialog box and break conditions can be specified.

5.1.2 Edit...

Only enabled when one breakpoint is selected. Select a breakpoint to be edited and click this item. The **Set Break** dialog box will open and break conditions can be changed.

5.1.3 Enable

Enables the selected breakpoint(s).

5.1.4 Disable

Disables the selected breakpoint(s). When a breakpoint is disabled, the breakpoint will remain in the list, but a break will not occur when specified conditions have been satisfied.

5.1.5 Delete

Removes the selected breakpoint. To retain the details of the breakpoint but not have it cause a break when its conditions are met, use the Disable option (see section 5.1.4, Disable).

5.1.6 Delete All

Removes all breakpoints.

5.1.7 Go to Source

Only enabled when one breakpoint is selected. Opens **Source** or **Disassembly** window at address of breakpoint.

5.1.8 Close File

Closes the selected File Input or File Output data file and resets the address to read the file.

5.1.9 Close All Files

Closes all the selected File Input and File Output files and resets the address to read the file.

5.2 Set Break Dialog Box (Condition Sheet)

Set Break		<u>? ×</u>	
Condition Action			
<u>B</u> reak type :	PC Breakpoint		
<u>A</u> ddress :	H'10000		
<u>C</u> ount :	D'1		
	ок с	ancel	

Figure 5.2 Set Break Dialog Box (Condition Sheet)

This dialog box specifies break conditions.

A break type to be set is specified using the radio buttons in the **[Break type]** box. Items that can be specified are listed below.

[PC Breakpoint]	Up to 255 breakp	points can be specified			
-	[Address]	Address where a break occurs			
	[Count]	Number of times that a specified instruction is fetched (when			
		the prefix is omitted, values must be input and are displayed in			
		decimal) (1 to 16383, default: 1)			
[Break Access]	Up to two addres	sses can be specified			
	[Start address]	Start address of memory where a break occurs if the memory			
	OF 1 11 1	is accessed			
	[End address]	End address of memory where a break occurs if the memory is accessed (If no data is input, only the start address is break			
		range)			
	[Access type]	Read, Write, or Read/Write			
[Break Data]	Up to eight value	es of data can be specified			
	[Start address]	Address of memory where a break occurs			
	[Data]	Data value that causes a break			
	[Size]	Data size			
	[Option]	Data match/mismatch			
[Break Register]	Up to eight register names can be specified				
	[Register]	Register name where break conditions are specified			
	[Size]	Data size			
	[Data]	Data value that causes a break (If no data is input, a break			
		occurs whenever data is written to the register)			
	[Option]	Data match/mismatch			
[Break Sequence]]Only one address	s can be specified			
	[Address1] to	Pass addresses that are the conditions to generate a break.			
	[Address8]	(All eight breakpoints do not have to be set.)			
[Break Cycle]	Up to 255 cycles	can be specified			
	[Cycle]	Number of cycles to determine a break (H'1 to H'FFFFFFF).			
		A condition will be satisfied by a number of cycles of [Cycle]			
		x n. However, the specified number of cycles and the number			
		of cycles that satisfied the condition may be different.			
	[Count]	Number of times breaks will occur			
	[count]	[ALL] A break will occur whenever a condition is satisfied.			
		[Times] (when the prefix is omitted, values must be input and			
		are displayed in hexadecimal) (1 to 65535)			
		A break will occur only when the number of times			
		the conditions is satisfied is equal to or below the			
		value specified for [Times].			
		value specifica for [Times].			

When **[PC Breakpoint]** and **[Break Sequence]** is selected, if an overloaded function or class name including a member function is specified in address, the **Select Function** dialog box opens. In the dialog box, select a function. For details, refer to the HEW Debugger User's Manual.

Clicking the **[OK]** button sets the break conditions. Clicking the **[Cancel]** button closes this dialog box without setting the break conditions.

Note: For the SH3-DSP series, specify values within the range H'A5000000 to H'A501FFFF (X and Y memory virtual addresses, corresponding to physical addresses H'05000000 to H'0501FFFF) as the [Start address] and [End address] in [Break Access] and as the [Start address] in [Break Data] for X or Y memory accesses by the MOVX or MOVY instruction.

5.3 Set Break Dialog Box (Action Sheet)

Set Break	<u>? ×</u>
Condition Action	
Action type : Stop	
ОК Са	ancel

Figure 5.3 Set Break Dialog Box (Action Sheet)

This dialog box specifies the operation when a break condition is satisfied. First set the operation in [Action type]. The following show the items that can be set in each operation.

[Stop]	Stops the operation of user program when a condition is satisfied. There is no item to be set.				
[File Input]	The data of a specified file is referred to and its contents are written to the specified memory when a condition has been satisfied				
	[Input file]	Data file to refer to.			
	[input inc]	When the simulator/debugger has reached referring to the end of a file, it will repeat referring to the beginning of the same file.			
	[Address]	Memory address where data should be written to.			
	[Data size]	Data size to be written to $(1/2/4/8)$.			
	[Count]	Number of data to be written to (when the prefix is omitted, values must be input and are displayed in decimal) (H'1 to H'FFFFFFFF).			
[File Output]	The contents of a	specified memory is written to the specified file when a			
	condition has bee				
	[Output file]	Data file to be written to.			
	[Append]	When a existing file is specified for the [Output File],			
	[Address]	Memory address to read data to.			
	[Data size]	Size of one data to refer to $(1/2/4/8)$.			
	[Count]	Number of data to refer to (when the prefix is omitted, values must be input and are displayed in decimal) (H'1 to			
	[Ontion]	H'FFFFFFF).			
[Intomunt]	[Option]	Data match/mismatch			
[Interrupt]	section 3.13, Pser	gram when a condition has been satisfied. For details, refer to			
		Specifies the following values for each CPU (when the prefix			
	[interrupt type1]	is omitted, values must be input and are displayed in hexadecimal)			
		• SH-1, SH-2, and SH2-DSP series			
		Interrupt vector number (H'0 to H'FF)			
		• SH-3, SH-4, and SH3-DSP series			
		INTEVT (H'0 to H'FFF)			
	[Interrupt type?]	Only the SH3-DSP series can specify the following (when the			
	[interrupt type2]	prefix is omitted, values must be input and are displayed in hexadecimal):			
		INTEVT2 (H'0 to H'FFF)			
	[Priority]	Interrupt priority (when the prefix is omitted, values must be			
		input and are displayed in hexadecimal) (H'0 to H'11)			
		When H'10 is specified, the interrupt is always accepted regardless of the I bit in SR, but is masked by the BL bit in			

SR.

When H'11 is specified, the interrupt is always accepted regardless of the I and BL bits in SR.

Note: When the same file is specified for multiple File Inputs, the simulator/debugger will read data from the file in the order conditions are satisfied. When the same file is specified for multiple File Outputs, the simulator/debugger will write data to the file in the order conditions are satisfied. However, when File Input and File Output specify the same file, only the operation for the first condition satisfied is valid.

5.4 Command Line Window

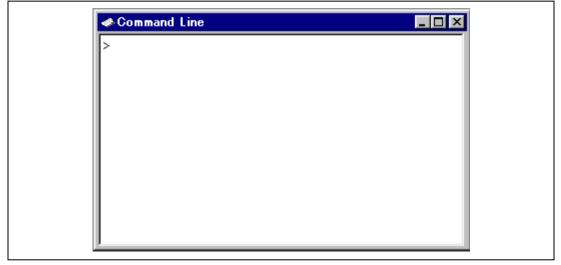


Figure 5.4 Command Line Window

Allows the user to control the debugging platform by sending text-based commands instead of the window menus and commands. It is useful if a series of predefined commands need to be sent to the debugging platform by calling them from a batch file and, optionally, recording the output in a log file. The command can be executed by pressing 'Enter' after the command is input to the last line (or, the **Enter** button in the right of the text box is clicked). For information about the available commands, refer to the on-line help.

If available, the window title displays the current batch and log file names separated by colons.

Pressing the Ctrl + \uparrow or Ctrl + \downarrow keys on the last line displays the previously executed command line.

The functionality of the toolbar buttons is identical to the popup menu options shown below.

Clicking the right mouse button on the **Command Line** window displays the popup menus. The menus include the following options.

5.4.1 Set Batch File...

Launches the **Set Batch File** dialog box, allowing the user to enter the name of a command file (*.hdc). Clicking the **[Play]** button closes the dialog box and the specified command file runs. Clicking the **[OK]** button displays the specified command file name as the window title. Clicking the **[Cancel]** button closes the dialog box without modifying the setting.

Set Batch File		? ×
<u>B</u> atch File: 	Browse ₂ .	<u>P</u> lay <u>Q</u> K <u>C</u> ancel

Figure 5.5 Set Batch File Dialog Box

5.4.2 Play

Runs the command file (*.hdc) selected in the **Set Batch File** dialog box. It is displayed in a recessed state while the batch file is running and can be used to stop an executing batch file and return control to the user.

5.4.3 Stop

Stops the execution of a command. The button becomes valid during the execution of the command.

5.4.4 Set Log File...

Launches the **Open Log File** dialog box, allowing the user to enter the name of a log file (*.log). The logging option is automatically set and the name of the file shown on the window title bar.

Opening a previous log file will ask the user if they wish to append or over-write the current log.

Open Log File		? ×
Log File:	Browse _y .	<u>OK</u> <u>C</u> ancel

Figure 5.6 Open Log File Dialog Box

5.4.5 Logging

Toggles logging to file on and off. When logging is active, the button becomes effective. Note that the contents of the log file cannot be viewed until logging is completed, or temporarily disabled by clearing the check box. Re-enabling logging will append to the log file.

5.4.6 Browse...

Displays the **Browse** dialog box. This dialog box pastes the full path of the selected file to the cursor location. This option can only be used when the cursor is at the last line.

5.4.7 Placeholder

Pastes the selected placeholder to the cursor location. This function is only available when the cursor is located on the last line.

5.4.8 Select All

Selects all contents output in the Command Line window.

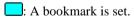
5.4.9 Copy

Only available if a block of text is highlighted. This copies the highlighted text into the Windows[®] clipboard, allowing it to be pasted into other applications.

5.4.10 Paste

This option pastes the contents of the Windows[®] clipboard to the current cursor location. This option can only be used when the cursor is at the last line.

5.5 Disassembly Window


This window is used to display code at the assembly-language level.

Assembly-language information is obtained by disassembling the memory contents, and may be edited or viewed directly from memory without requiring debug information from the object file.

Disassembly			
00001000			<u> </u>
D0001002		#H'01,R0	
00001004	6103 MOV	RO,R1	
00001006	D204 MOV	L @(H'0010:8,PC),F	2
\$00001008	AA02 BRA	@H'0410:12	
0000100A	0009 NOF		
00001000	6013 MOV	R1,R0	
0000100E	71FF ADD	#H'FF,R1	
00001010	8906 BT	@H'1020:8	
00001012	0009 NOF		
00001014			
00001016			
00001018		L R3,@(H'10:4,R2)	
0000101A			
00001010		@H'0574:12	
0000101E		@H'0798:12	-
	0000 000	GH 0700.12	

Figure 5.7 Disassembly Window

This window displays address information, addresses, instruction code, and instruction mnemonic. The following are the address information items:

E: A PC Break is set.

⇒: PC location

A popup menu containing the following options is available by right-clicking within the window:

5.5.1 View Source

Opens the **Source** window including the source program corresponding to the text cursor (not the mouse cursor) position. Only available when the selected source line is valid.

5.5.2 Go to cursor

Commences to execute the user program starting from the current PC address. The program will continue to run until the PC reaches the address indicated by the text cursor (not the mouse cursor) or another break condition is satisfied. PC breakpoint is used for this function. The function is not available when 255 PC breakpoints have already been specified.

5.5.3 Set Address...

Displays the Set Address dialog box. Specify the address from which the display should start.

5.5.4 Set PC Here

Changes the value of the PC to the address indicated by the text cursor (not the mouse cursor).

5.5.5 Edit...

Launches the **Assembler** dialog box allowing the user to modify the instruction at that address. Note that changes to the machine code do not modify the source file, and any changes will be lost at the end of the session.

5.5.6 Code Bytes

Selects whether or not the instruction code is displayed.

5.5.7 Toggle Breakpoint

Enables or disables PC breakpoints.

Name	Address	Value	Access	
🖻 – Register00	00000F00	FE	RW	
Bitfield001		1	RW	
Bitfield000		0	RW	
	0000FF00		W	
⊡… Module1				
Register10	00FF0000		RW	
	OOFFOFOO		R(W)	
i⊞ Module2 i≣ Module3				

Figure 5.8 IO Window

Refers to and sets the values of control registers.

Double-clicking the plus mark (+) or minus mark (-), or entering the plus key (+) or minus key (-) will expand or compress the information of control registers, and then display it.

Double-clicking the **Name** column displays the Edit Register dialog box. The value of the control registers can be modified.

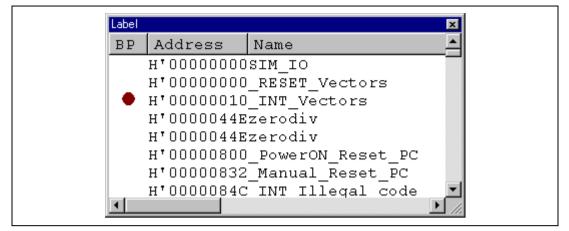


Figure 5.9 Label Window

You can view symbols sorted either alphabetically (by ASCII code) or by address value by clicking on the respective column heading.

It supports column-specific double-click actions:

• BP - Sets or cancels a PC breakpoint at that address.

A popup menu containing the following options is available by right-clicking within the window:

5.7.1 Add...

Launches the Add Label dialog box:

Name: I Address: H'00000000	• •	OK Cancel

Figure 5.10 Add Label Dialog Box

Enter the new label name into the **Name** field and the corresponding value into the **Address** field and press **[OK]**. The **Add Label** dialog box closes and the label list is updated to show the new label. When an overloaded function or a class name is entered in the **Address** field, the **Select Function** dialog box opens for you to select a function. For details, refer to the HEW Debugger User's Manual.

5.7.2 Edit...

Launches the Edit Label dialog box:

Edit Label _main			? X
<u>N</u> ame:	_main	•	ОК
<u>A</u> ddress:	H'000001012	•	Cancel

Figure 5.11 Edit Label Dialog Box

Edit the label name and value as required and then press **[OK]** to save the modified version in the label list. The list display is updated to show the new label details. When an overloaded function or a class name is entered in the **Address** field, the **Select Function** dialog box opens for you to select a function. For details, refer to the HEW Debugger User's Manual.

5.7.3 Delete

Deletes the currently selected label from the symbol list. Alternatively use the **Delete** accelerator key. A confirmation message box appears:

Confirmation Request	×
Delete Label_BTBL	
Don't ask this question again	

Figure 5.12 Message Box for Confirming Label Deletion

If you click **[OK]**, the label is removed from label list and the window display is updated. If the message box is not required then do not select the **Delete Label** option of the **Confirmation** sheet in the **HEW Options** dialog box.

5.7.4 Delete All

Deletes all the labels from the list. A confirmation message box appears:

Confirmation Request	×
Delete All Labels	
Don't ask this question again	

Figure 5.13 Message Box for Confirming All Label Deletion

If you click **[OK]**, all the labels are removed from the HEW system's symbol table and the list display will be cleared. If the message box is not required then do not select the **Delete All Labels** option of the **Confirmation** sheet in the **HEW Options** dialog box.

5.7.5 Load...

Merges a symbol file into HEW's current symbol table. The Load Symbols dialog box opens:

Load Symbol	8		? ×
Look jn:	🔄 H8stut	-	
(1) my_code.s (1) tutorial.syn			
File <u>n</u> ame:	my_code.sym		<u>O</u> pen
Files of type:	Symbol Files (*.sym)	•	Cancel
Files of <u>type</u> :	Symbol Files (*.sym)	•	Cancel

Figure 5.14 Load Symbols Dialog Box

The dialog box operates like a standard Windows[®] **Open File** dialog box; select the file and click **[Open]** to start loading. The standard file extension for symbol files is ".sym". When the symbol loading is complete a confirmation message box may be displayed showing how many symbols have been loaded (this can be switched off in the **Confirmation** sheet on the **HEW Options** dialog box).

5.7.6 Save

Saves HEW's current symbol table to a symbol file.

5.7.7 Save As...

The **Save Symbols** dialog box operates like a standard Windows[®] **Save File As** dialog box. Enter the name for the file in the **File name** field and click **[Open]** to save HEW's current label list to a symbol file. The standard file extension for symbol files is ".sym".

See appendix B of the HEW Debugger User's Manual for symbol file format.

5.7.8 Find...

Launches the Find Label dialog box:

Find Label		? ×
<u>N</u> ame:	×	OK
☐ <u>M</u> atch Case	▼ I	Cancel

Figure 5.15 Find Label Dialog Box

Enter all or part of the label name that you wish to find into the edit box and click **[OK]** or press **ENTER**. The dialog box closes and HEW searches the label list for a label name containing the text that you entered.

Note: Only the label is stored by 1024 characters of the start, therefore the label name must not overlap mutually in 1024 characters or less. Labels are case sensitive.

5.7.9 Find Next

Finds the next occurrence of the label containing the text that you entered.

5.7.10 View Source

Opens the Source or Disassembly window containing the address corresponding to the label.

5.8 Locals Window

Name	Value	Туре	
j	{0x00000fd4 }	(long)	
j	D'8410 {0x00000fd0 }	(long)	
min	D'10 {0x00000fcc }	(int)	
min	D'0 {0x00000fc8 }	(int)	
max	D'22117 {0x00000fc4 }	(int)	

Figure 5.16 Locals Window

Allows the user to view and modify the values of all the local variables. The contents of this window are blank unless the current PC can be associated to a function containing local variables in the source files *via* the debugging information available in the object file.

The following items are displayed.

 [Name]
 Name of the variable

 [Value]
 Value, assigned location. The assigned location is enclosed by { }.

[Type] Displays the type of variable

The variables are listed with a plus indicating that the information may be expanded by doubleclicking on the variable name, and a minus indicating that the information may be collapsed. Alternatively, the plus and minus keys may be used. For more information on the display of information, refer to the HEW Debugger User's Manual.

A popup menu containing the following options is available by right-clicking within the window:

5.8.1 Edit Value...

Launches a dialog box to modify the selected variable's value.

5.8.2 Radix

Changes the radix for the selected local variable display.

5.8.3 Copy

Only available if a block of text is highlighted. This copies the highlighted text into the Windows[®] clipboard, allowing it to be pasted into other applications.

5.9 Memory Window

🤌 Memory		_ 🗆 🗵
Address	Data	Value 🛉
OOFFECOO	48 69 74	61 Hita
OOFFECO4	63 68 00	00 ch
OOFFECO8	00 00 00	00
OOFFECOC	00 00 00	00
OOFFEC10	00 00 00	00
OOFFEC14	00 00 00	00
OOFFEC18	00 00 00	00

Figure 5.17 Memory Window

Allows the user to view and modify the contents of the debugging platform's memory. Memory may be viewed in ASCII, byte, word, longword, single-precision floating-point, and double-precision floating-point formats, and the title bar indicates the current view style and the address shown as the offset from the previous label (symbol).

The contents of memory can be edited by double-clicking on a data item. The latter will launch the **Edit** dialog box, allowing the user to enter a new value using a complex expression. If the data at that address cannot be modified (i.e. within ROM or guarded memory) then the message "Invalid address value" is displayed.

Double-clicking within the Address column will launch the **Set Address** dialog box, allowing the user to enter an address. Clicking the **[OK]** button will update the window so that the address entered in the **Set Address** dialog box is the first address displayed in the top-left corner.

A popup menu containing the following options is available by right-clicking within the window:

5.9.1 Lock Refresh

Controls the **Memory** window so that it is not automatically updated when user program execution stops.

5.9.2 Refresh

Forcibly updates the Memory window contents.

5.9.3 Start Address...

Launches the **Set Address** dialog box, allowing the user to enter new start and end addresses. The window will be updated so that this is the first address displayed in the top-left corner. When an overloaded function or a class name including a member function is entered, the **Select Function** dialog box opens for you to select a function. For details, refer to section 7.3, Supporting Duplicate Labels in the HEW Debugger User's Manual. The size to display data can be specified.

5.9.4 Format...

Displays the **Format Memory Display** dialog box. The size to display data, the format to display data, and the font used to display data can be specified.

5.9.5 Search...

Launches the **Search Memory** dialog box, allowing the user to search a block of the debugging platform's memory for a specified data value. If a block of memory is highlighted, the start and end fields in the dialog box will be set automatically with the start and end addresses corresponding to the highlighted block, respectively. Search conditions (match/unmatch and search direction) can also be specified. The **Memory** window is updated to start with the address which holds the data that satisfies the search conditions.

5.9.6 Search Next

Only available when data has been found with the **Search...** option. This option starts search from the address following the one found with the last search operation.

5.9.7 Copy...

Launches the **Copy Memory** dialog box, allowing the user to copy a block of memory within the debugging platform to another location within the same memory space. The blocks may overlap. The start and end fields may be set similarly to the **Search** option (see section 5.9.5, Search...). Data in the source block can be compared with that in the destination while being copied.

5.9.8 Compare...

Launches the **Compare Memory** dialog box, allowing the user to select a start and an end address in the memory area, to check against another area in memory. If a block of memory is highlighted in a **Memory** window, these will be automatically set as the start and end addresses when the dialog box is displayed.

Similar to Verify memory, but compares two blocks in memory.

5.9.9 Fill...

Launches the **Fill Memory** dialog box, allowing the user to fill a block of the debugging platform's memory with a specified value. The start and end fields may be set similarly to the **Search** option (see section 5.9.5, Search...).

5.9.10 Save...

Launches the **Save Memory As** dialog box, allowing the user to save a block of the debugging platform's memory in an S-Record file (*.mot). The start and end fields may be set similarly to the **Search** option (see section 5.9.5, Search...).

5.9.11 Load...

Launches the **Load Memory** dialog box, allowing the user to load to the debugging platform's memory from an S-Record file (*.mot) without deleting the current debug information. The offset field may be used to move the address values specified in the file to a different set of addresses. The optional verify flag can be used to check that the information has been downloaded correctly.

5.10 Performance Analysis Window

ndex	Function	Cycle	Count	%	Histogram	
	_main	1304	1	0%		
	printf	1100	22	0%		
	rand	440	10	Ŭ%		

Figure 5.18 Performance Analysis Window

This window displays the number of execution cycles required for the specified functions.

The number of execution cycles can be obtained from the difference between the total number of execution when the target function is called and that when execution returns from the function.

The following items are displayed:

[Index]	Index number of the set condition
[Function]	Name of the function to be measured (or the start address of the function)
[Cycle]	Total number of instruction execution cycles
[Count]	Total number of calls for the function
[%]	Ratio of execution cycle count required for the function to the execution cycle count required for the whole program
[Histogram]	Histogram display of the above ratio

Double-clicking a function to be evaluated displays the **Performance Option** dialog box. In this dialog box, functions can be modified.

A popup menu containing the following options is available by right-clicking within the view area:

5.10.1 Add Range...

Adds a new function to be evaluated. Clicking this option launches the **Performance Option** dialog box, allowing the user to add a function. The **Performance Option** dialog box can also be opened by the Insert key.

5.10.2 Edit Range...

Only enabled when the highlighting bar is on a user-defined range. Launches the **Performance Option** dialog box, allowing the user to modify the range's settings. The **Performance Option** dialog box can also be opened by the Enter key.

5.10.3 Reset Counts/Times

Clears the current performance analysis data.

5.10.4 Enable Analysis

Toggles the collection of performance analysis data. When performance analysis is active, a check mark is shown to the left of the text.

5.10.5 Delete Range

Only enabled when the highlighting bar is on a user-defined range. Deletes the range and immediately recalculates the data for the other ranges. The range can also be deleted by the Delete key.

5.10.6 Delete All Ranges

Deletes all the current user-defined ranges, and clears the performance analysis data.

5.11 Performance Option Dialog Box

Performance Option	? ×
Eunction Name	ОК
	Cancel

Figure 5.19 Performance Option Dialog Box

This dialog box specifies functions (including labels) to be evaluated. Evaluation results are displayed in the **Performance Analysis** window.

Note that when an overloaded function or a class name including a member function is specified, the **Select Function** dialog box opens. In the dialog box, select a function. For details, refer to section 7.3, Supporting Duplicate Labels in the HEW Debugger User's Manual.

Clicking the **[OK]** button stores the setting. Clicking the **[Cancel]** button closes this dialog box without setting the function to be evaluated.

5.12 Register Window

🦇 Register		- 🗆 ×
Register Name	Register Value	
RO	H'0000000	
R1	H'00000000	
R2	H'00000000	
R3	H'00000000	
R4	H'00000000	
R5	H'00000000	
R6	H'00000000	
R7	H'00000000	
R8	H'00000000	
R9	H'00000000	
R10	H'00000000	
R11	H'0000000	
R12	H'0000000	
R13	H'0000000	
R14	H'00000000	
R15	H'00000000	
PC	H'00001008	
SR GBR	MBB1111	
VBR	H'00000000 H'00000000	
MACH	H'00000000	
MACL	H'00000000	
PR	H'00000000	
SSR	H'00000000	
SPC	H'00000000	-
• I	110000000	

Figure 5.20 Register Window

Allows the user to view and modify the current register values.

A popup menu containing the following options is available by right-clicking within the window:

5.12.1 Edit...

Launches the **Edit Register** dialog box, allowing the user to set the value of the register indicated by the text cursor (not mouse cursor).

5.13 Source Window

The **Source** window can be used to view any source file that was included within the object file's debug information - this may be C/C++ and assembly language. This window also displays the coverage information.

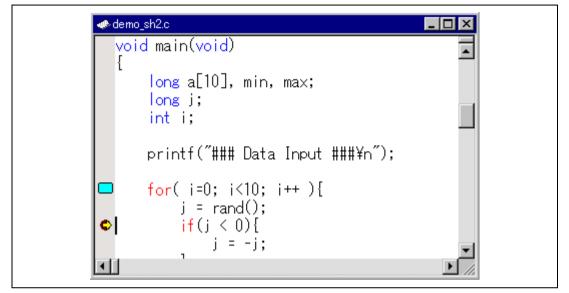


Figure 5.21 Source Window

In this window, the following items are shown on the left as line information.

: A bookmark is set.

: A PC Break is set.

⇒: PC location

A popup menu containing the following options is available by right-clicking within the window:

5.13.1 Toggle Breakpoint

Sets or removes PC breakpoints.

5.13.2 Enable/Disable Breakpoint

Enables or disables PC breakpoints.

5.13.3 Instant Watch...

Opens the Instant Watch dialog box and displays the variable at the cursor location.

Instant Watch	×
⊞-str {0x7c000088}(struct strB)	Add

Figure 5.22 Instant Watch Dialog Box

"+" shown to the left of the variable name indicates that the information may be expanded by clicking on the variable name, and "-" indicates that the information may be collapsed. Clicking **[Add]** registers the variable in the **Watch** window. Clicking **[Close]** closes the window without registering the variable in the **Watch** window.

5.13.4 Go To Cursor

Commences to execute the user program starting from the current PC address. The program will continue to run until the PC reaches the address indicated by the text cursor (not the mouse cursor) or another break condition is satisfied. PC breakpoint is used for this function. The function is not available when 255 PC breakpoints have already been specified.

5.13.5 Set PC Here

Changes the value of the PC to the address indicated by the text cursor (not the mouse cursor).

5.13.6 Go to Disassembly

Opens a **Disassembly** window showing code disassembled from the address that corresponds to the current line of source code.

5.14 Source Address Column

When a program is downloaded, the **Source** window display is updated to the current source file addresses. The source file addresses are displayed in the left part of the **Source** window.

These addresses are helpful when setting the PC value or a breakpoint. Figure 5.23 shows the **Source** window and the **address** column.

🐗 demo_sh2.c		
0x00001000	void main(void) { long a[10], min, max; long j; int i;	
0×00001006	• printf("### Data Input ###¥n");	
0x00001010 0x00001018 0x00001020 0x00001024	<pre>for(i=0; i<10; i++){ j = rand(); if(j < 0){ j = -j; .</pre>	T
0x00001024	j = -j;	•

Figure 5.23 Source Window and Address Column

Use the following procedure to display or close the address column for all files:

- 1. Right-click the mouse in the editor window.
- 2. Click the [Define Column Format...] menu item.
- 3. The Global Editor Column States dialog box will appear.
- 4. Each check box specifies whether the corresponding column is displayed. If the check box is selected, the column is displayed. If the check box is shaded, the column is displayed for some files and not displayed in the other files.
- 5. Click the [OK] button to update the display with the new settings.

For a single file, use the following procedure to display or close the address column:

- 1. Right-click the mouse in the editor window of the column that needs to be changed, and an editor popup menu will appear.
- 2. Click the [Column] menu item to display a list of the column names. When a check mark is shown to the left of the column name, the column is displayed. Clicking on a column name can display or close the column.

Global Editor Column States	×
✓Coverage ✓Editor ☐Source Address	Cancel

Figure 5.24 Global Editor Column States Dialog Box

5.15 Debugger Column

Each component can add a specific column in the **Disassembly** and **Source** windows. A typical example of a debugger column is the coverage column that displays the code coverage in a graphical form during debugging. Another example is the target component column that shows the hardware breakpoints set in the user system.

Right-clicking on a column displays a popup menu specifically for that column. The menu items differ between columns. The operation when a column is double-clicked depends on the column. For example, double-clicking on the target column will specify a hardware breakpoint.

Item	Status
Memory Mode	None
Target Device Configuration	00000000-07FFFFF EXT
	20000000-27FFFFFF EXT
	40000000-47FFFFF EXT
	COOOOOO-COOOOFFF EXT
	FFFF8000-FFFFBFFF RAM
	FFFFFE00-FFFFFFFF I/0
System Memory Resources	00000000-00007FFF Read/Write
	06000000-06000FFF Read/Write
	07FFF000-07FFFFFF Read/Write
	FFFFFE00-FFFFFFFF Read/Write
Program Name	Memory Loaded Area
ug_SH-2\demo_sh2.abs	H'00000000 - H'00000017
	H'00000800 - H'0000084F
	H'00001000 - H'00005BB5

Figure 5.25 Status Window

Allows the user to view the current status of the debugging platform.

The **Status** window is split into three sheets:

- 1. Memory contains information about the current memory status including the memory mapping resources and the areas used by the currently loaded object file.
- 2. Platform contains information about the current status of the debugging platform, typically including CPU type and mode; and run status.
- 3. Events contains information about the current event (breakpoint) status, including resource information.

5.17 Trace Window

This window displays trace information. The displayed information items depend on the target CPU. The trace acquisition conditions can be specified in the **Trace Acquisition** dialog box.

PTR	Cycle	Address	Pipeline	Instru	ction	Access_Data	Source	Label
04282	0000007395	00001000	FFDE>MM	MOV.L	R14, 0	07FFFFEC<-0000000A	void	_main
-04281	0000007397	00001002	fD>E>MM>>	STS.L	PR, 0-R15	07FFFFE8<-00000824		
-04280	0000007401	00001004	FFD>< <e></e>	ADD	#BC, R15	R15<-07FFFFA4		
-04279	0000007403	00001006	f>< <d></d>	MOV.L	0(00000	R2<-00005BB8	p	
-04278	0000007406	00001008	FFD< <e>MM</e>	MOV.L	R2, @R15	07FFFFA4<-00005BB8		
-04277	0000007408	0000100A	f< <d>E</d>	MOV.L	0(00000	R3<-0000172C		
-04276	0000007412	0000100C	FFD>< <e< td=""><td>JSR</td><td>0R3</td><td>PC<-0000172C</td><td></td><td></td></e<>	JSR	0R3	PC<-0000172C		
-04275	0000007415	0000100E	f><<-D>E	NOP				
-04274	0000007416	0000172C	FFDE>MM	STS.L	PR, 0-R15	07FFFFA0<-00001010		_pr
-04273	0000007418	0000172E	fD>E>	ADD	#FC, R15	R15<-07FFFF9C		
-04272	0000007420	00001730	FFD>E>	MOV	R15, R6	R6<-07FFFF9C		
-04271	0000007422	00001732	f>D>E	ADD	#08, R6	R6<-07FFFFA4		
-04270	0000007423	00001734	FFDE>	MOV	R6, R2	R2<-07FFFFA4		
-04269	0000007425	00001736	fD>E	ADD	#04, R2	R2<-07FFFFA8		
-04268	0000007426	00001738	FFDE>	MOV	R2, R0	RO<-07FFFFA8		
-04267	0000007428	0000173A	fD>E	TST	#03, RO	T<-(1)		

SH-1, SH-2, SH-2E, and SH2-DSP Series:

Figure 5.26 Trace Window (for SH-1, SH-2, SH-2E, and SH2-DSP Series)

[PTR]	Pointer in the trace buffer (0 for the last executed instruction)
[Cycle]	Total number of instruction execution cycles (cleared by pipeline reset)
[Address]	Instruction address
[Pipeline]	 Pipeline execution status Each symbol has the following meaning: F: Instruction fetch (with memory access) f: Instruction fetch (without memory access) D: Instruction decode E: Instruction execution M: Memory access W: Write back P: DSP m: Multiplier execution -: Stall inherent in the instruction >: Split <: Stall due to conflict

	Refer to the programming manual of each device for more information on pipeline operation.
[Instruction]	Instruction mnemonic
[Access Data]	Data access information (display format: destination <- accessed data)
[Source]	C/C++ or assembly-language source programs

SH-3 and SH-3E Series:

Trace		1				-				
PTR	Cycle	Addre	Data	Code	NO	Instr	_IF_DE	Access	Source	Label 📥
-05262	0000005038	00002000	D308	0009			BA		void main(void)	_mair
-05261	0000005039	00002002	2FE6	2 FE 6	BA	MOV.L	[BB]BA	(B7):P		
-05260	0000005040	00002004	2FE6	4F22	BB	STS.L	BC BB			
-05259	0000005041	7FFFFFEC	7FBC	7FBC	BC	ADD #	[BD]BC	(BA):7		
-05258	0000005043	7FFFFFE8	0000	D267	BD	MOV.L	BD	(BB):7		
-05257	0000005045	00002008	0000	D267			BF	(BB):R		
-05256	0000005046	000021A4	2F22	2F22	BF	MOV.L	[CO]BF	(BC):R		
-05255	0000005047	0000200C	0000	D367	CO	MOV.L	C1 CO	(BD):R		
-05254	0000005048	7FFFFFA4	430B	430B	C1	JSR 0	[C2]C1	(BF):7		
-05253	0000005050	000021A8	0000	430B						
-05252	0000005051	00002010	0000	0009	С2	NOP	C3 C2	(CO):R	for(i=0	
-05251	0000005052	000026F8	EE00	0009			C4			_pr
-05250	0000005053	000026FA	4F22	4F22	C4	STS.L	[C5]C4	(C1):P		
-05249	0000005054	000026FC	4F22	7FFC	C5	ADD #	C6 C5			-
1										I II

Figure 5.27 Trace Window (for SH-3 and SH-3E Series)

[PTR]	Pointer in the trace buffer (0 for the last executed instruction)
[Cycle]	Total number of instruction execution cycles (cleared by pipeline reset)
[Address Bus]	Data on the address bus
[Data Bus]	Data on the data bus
[Code]	Instruction code
[No]	Instruction number (corresponds to execution number in each stage)
[Instruction]	Instruction mnemonic
[IF]	Instruction number that was fetched (enclosed by [] when the instruction did not access memory)
[DE]	Instruction number that was decoded
[EX]	Instruction number that was executed
80	

[MA]	Instruction number that accessed memory
[SW]	Instruction number that wrote back data
[Access Data]	Data access information (display format: destination <- accessed data)
[Source]	C/C++ or assembly-language source programs

SH3-DSP Series:

PTR	Cycle	Address	Code	IF DE	No	Instruction	Access Data	Source	Lab
-05261	0000005225	00002000	2FE6	09 08	08	MOV.L R1	(05):PR<	void main(void)	 na
-05260	0000005226	00002002	4F22	OA 09	09	STS.L PR			-
05259	0000005227	00002004	7FBC	[OB]OA	0A	ADD #BC,	(08):0501		
05258	0000005229	00002006	D267	OB	0B	MOV.L @((09):0501	printf("	
05257	0000005231		D267	OD			(09):R15<		
05256	0000005232	00002008	2F22	[OE]OD	OD	MOV.L R2	(OA):R15<		
05255	0000005233	0000200A	D367	OF OE	0E	MOV.L @((OB):R2<		
05254	0000005234	0000200C	430B	[10]0F	OF	JSR @R3	(OD):0501		
05253	0000005236		430B						
05252	0000005237	0000200E	0009	11 10	10	NOP	(OE):R3<		
05251	0000005238		0009	12					
05250	0000005239	000026F4	4F22	13 12	12	STS.L PR	(OF):PR<		_pr
05249	0000005240	000026 F 6	7FFC	14 13	13	ADD #FC,			
05248	0000005241	000026 F 8	66F3	[15]14	14	MOV R15,	(12):0501		

Figure 5.28 Trace Window (for SH3-DSP Series)

[PTR]	Pointer in the trace buffer (0 for the last executed instruction)
[Cycle]	Total number of instruction execution cycles (cleared by pipeline reset)
[Address]	Program counter value
[Code]	Instruction code
[IF]	Instruction number that was fetched (enclosed by [] when the instruction did not access memory)
[DE]	Instruction number that was decoded
[EX]	Instruction number that was executed
[MA]	Instruction number that accessed memory
[SW]	Instruction number that wrote back data
[No]	Instruction number (corresponds to execution number in each stage)

[Instruction]Instruction mnemonic[Access Data]Data access information (display format: destination <- accessed data)</td>[Source]C/C++ or assembly-language source programs

SH-4 Series:

🚸 Trace												_ 🗆 ×
PTR	Cycle	Addres	Codel	Code2	EX_EAS	LS_EAS	BR_EAS	FP_EXASD	No	Address	Code	Inst
-04949	0000078087	00002008	2FC6	*2FD6	хED	ххх	хDх	x x x	5	00002000	2FC6	MOV.
-04948	0000078088	0000200C	2 FE 6	*2FD6	ххE	5 x x	ххD	x x x	6	00002002	2FD6	MOV.
-04947	0000078127	0000200C	*2FE6	4F22	ххх	6 5 x	ххх	x x x	7	00002004	2FE6	MOV.
-04946	0000078182	00002010	7FBC	*4F22	ххх	765	ххх	x x x	8	00002006	4F22	STS.
-04945	0000078200	00002014	7FBC	*4F22	ххх	876	ххх	x x x				
-04944	0000078201	00002014	*7FBC	D273	ххх	887	ххх	x x x	9	00002008	7FBC	ADD
-04943	0000078201	00002014	*7FBC	D273	ххх	887	ххх	x x x	A	0000200A	D273	MOV.
-04942	0000078219	00002014	*2F22	D373	9 x x	A 8 8	ххх	x x x				
-04941	0000078271	00002018	*2F22	D373	х 9 х	XÀ8	ххх	x x x	в	0000200C	2 F 22	MOV.
-04940	0000078272	0000201C	430B	*D373	x x 9	ВхÀ	ххх	x x x	С	0000200E	D373	MOV.
-04939	0000078290	0000201C	*430B	0009	ххх	СВх	ххх	x x x				
-04938	0000078323	0000201C	*430B	0009	ххх	хСВ	ххх	x x x				
-04937	0000078324	00002020	*430B	0009	ххх	ххС	ххх	x x x	D	00002010	430B	JSR
-04936	0000078343	0000277C	*430B	0009	Dхх	ххх	ххх	x x x	Е	00002012	0009	NOP
-04935	0000078366	00002780	XXXX	xxxx	ЕDх	ххх	Dхх	x x x				
-04934	0000078389	00002784	4F22	*7FFC	хED	ххх	хDх	x x x	5	0000277C	4F22	STS. 🔻
•												

Figure 5.29 Trace Window (for SH-4 Series)

[PTR]	Pointer within the trace buffer (The latest instruction is 0)
[Cycle]	Total number of instruction execution cycles (cleared by pipeline reset). The CPU internal clock cycles are counted as execution cycles. The rates of the external and internal clocks can be specified using the Clock Rate command. For the SH-4BSC, one execution cycle is equivalent to three external cycles.
[Address Bus]	Program counter value
[Code1]	Fetched code 1
[Code2]	Fetched code 2
	The code currently decoded is marked with *. If the two codes are executed in parallel, the code fetched at the smaller address is marked with *.
[EX-EAS]	Instruction number that was executed (in the E stage), accessed memory (in the A stage), or wrote back data (in the S stage) in the EX pipeline

[LS-EAS]	Instruction number that was executed, accessed memory, or wrote back data in the LS pipeline
[BR-EAS]	Instruction number that was executed, accessed memory, or wrote back data in the BR pipeline
[FP-EXASD]	Instruction number that was executed, accessed memory, or wrote back data in the FP pipeline (only for FSCA, FSRRA, FIPR, and FTRV instructions in the X stage, and for FDIV and FSQRT instructions in the D stage)
[No]	Instruction number (corresponds to execution number in each stage)
[Address]	Executed instruction address
[Code]	Executed instruction code
[Instruction]	Executed instruction mnemonic
[Access Data]	Data access information (display format: destination <- transfer data)
[Source]	C/C++ or assembly-language source programs

Double-clicking a line in the **Trace** window opens the **Source** window or **Disassembly** window. In the window, the source code is displayed and the selected line is indicated by the cursor.

A popup menu containing the following options is available by right-clicking within the window:

5.17.1 Find...

Launches the **Trace Search** dialog box, allowing the user to search the current trace buffer for a specific trace record.

5.17.2 Find Next

If a find operation is successful, and the item found is non-unique, then this will move to the next similar item.

5.17.3 Acquisition

Launches the **Trace Acquisition** dialog box, allowing the user to define the area of user program to be traced.

5.17.4 Clear

Empties the trace buffer in the debugging platform. If more than one trace window is open, all **Trace** windows will be cleared as they all access the same buffer.

5.17.5 Save...

Launches the **Save As** file dialog box, allowing the user to save the contents of the trace buffer as a text file. A range can be defined based on the PTE number (saving the complete buffer may take several minutes). Note that this file cannot be reloaded into the trace buffer.

5.17.6 View Source

Displays the source program corresponding to the address.

5.17.7 Trim Source

Removes white space from the left side of the source.

5.17.8 Statistic

Analyzes statistical information under the specified conditions.

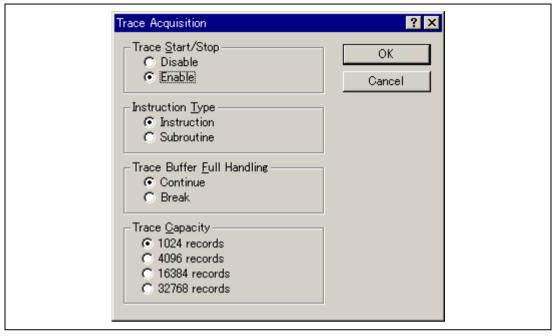


Figure 5.30 Trace Acquisition Dialog Box

This dialog box specifies the conditions for trace information acquisition.

[Trace Start/Stop] [Disable] [Enable]	Disables trace information acquisition. Enables trace information acquisition.	
[Instruction Type]		
[Instruction]	Acquires trace information for all instructions.	
[Subroutine]	Acquires trace information for the subroutine instructions only.	
[Trace Buffer Full Handling]		
[Continue]	Continues acquiring trace information even if the trace information	
	acquisition buffer becomes full.	
[Break]	Stops execution when the trace information acquisition buffer becomes full.	
The trease huffer connective can be calculated from 1024 records 4006 records 16284 records and		

The trace buffer capacity can be selected from 1024 records, 4096 records, 16384 records, and 32768 records in the **[Trace Capacity]**.

Clicking the **[OK]** button stores the settings. Clicking the **[Cancel]** button closes this dialog box without modifying the settings.

5.19 Trace Search Dialog Box

Trace Search	? 🗙
Item C PTR C Cycle C Address (Instruction	OK Cancel
⊻alue: BRA	

Figure 5.31 Trace Search Dialog Box

This dialog box specifies the conditions for searching trace information. Specify a search item in **[Item]** and search for the specified contents in **[Value]**.

[PTR]	Pointer in the trace buffer (0 for the last executed instruction, specify in the form of -nnn)
[Cycle]	Total number of instruction execution cycles
[Address]	Instruction address
[Instruction]	Instruction mnemonic

Clicking the **[OK]** button stores the settings. Clicking the **[Cancel]** button closes this dialog box without searching.

End : Result Clear	Statistic Statistic Analysis O Default O Range		×
code1=XXXX 2 -00015,-00014 ADDRESS=0000000C 3 -00012,-00011,-00010 code1=E320 3 -00007,-00006,-00005 code2=*2322 & code1=E320 3 -00007,-00006,-00005			New Result
	code1=XXXX ADDRESS=0000000C code1=E320 code2=*2322 & code1=E320	2 -00015,-000 3 -00012,-000 3 -00007,-000	111,-00010 106,-00005 106,-00005

Figure 5.32 Trace Statistic Dialog Box

Allows the user to analyze statistical information concerning the trace data. The target of analysis is specified in **[Item]** and the input value or character string is specified by **[Start]** and **[End]**.

When **[Default]** is selected, the input value or character string cannot be specified as a range. To specify a range, select **[Range]**.

[Set]	Adds a new condition to the current one
-------	---

[New] Creates a new condition

[Result] Obtains the result of statistical information analysis

[Clear] Clears all condition and results of statistical information analysis

Clicking the [Close] button closes this dialog box.

5.21 Trigger Window

Displays trigger buttons to manually generate interrupts. The details of the interrupt to be generated by pressing each trigger button can be specified in the **Trigger Setting** dialog box.

Up to 16 trigger buttons can be used.

For details on the interrupt processing in the simulator/debugger, refer to section 3.17, Pseudo-Interrupts.



Figure 5.33 Trigger Window

A popup menu containing the following options is available by right-clicking the mouse within the window:

5.21.1 Setting...

Launches the **Trigger Setting** dialog box, allowing the user to specify the details of the interrupt to be generated by pressing each trigger button.

5.21.2 Size

Specifies the size of trigger buttons displayed in the **Trigger** window. Large, Normal, or Small can be selected from the submenu.

5.22 Trigger Setting Dialog Box

Trigger Setting		<u>?×</u>	
Trigger <u>N</u> o. 1	•	<u> </u>	
		<u>C</u> ancel	
🔽 <u>E</u> nable			
N <u>a</u> me:	1		
Interrupt Type <u>1</u> :	H'000		
Interrupt Type <u>2</u> :	H'00		
<u>P</u> riority:	0 💌		

Figure 5.34 Trigger Setting Dialog Box

Allows the user to specify the details of the interrupt to be generated by pressing each trigger button.


[Trigger No.]	Selects a trigger button to specify details
[Name]	Specifies the name of the selected trigger button, which will be displayed in the Trigger window
[Enable]	Enables the trigger button when this box is checked.
[Interrupt Type1]	Specifies the following values for each CPU SH-1, SH-2, and SH2-DSP series: Interrupt vector number (H'0 to H'FF) SH-3, SH-4, and SH3-DSP series: INTEVT (H'0 to H'FFF)
[Interrupt Type2]	Only the SH3-DSP series can specify the following: INTEVT2 (H'0 to H'FFF)
[Priority]	Interrupt priority (when the prefix is omitted, values must be input and are displayed in hexadecimal) (H'0 to H'11) When H'10 is specified, the interrupt is always accepted regardless of the I bit in SR, but is masked by the BL bit in SR. When H'11 is specified, the interrupt is always accepted regardless of the I and BL bits in SR.

Clicking the **[OK]** button stores the setting. Clicking the **[Cancel]** button closes this dialog box without setting the details of the interrupt.

Note: If the [Cancel] button is clicked after multiple trigger button settings are modified, the modifications of all those buttons are canceled.

Name	Value	Туре
R a	{0x7c000024}	(int[10])
R [0]	H'00000000 { 0x7c000024 }	(int)
R [1]	H'00000000 { 0x7c000028 }	(int)
R [2]	H'00000000 { 0x7c00002c }	(int)
R [3]	H'00000000 { 0x7c000030 }	(int)
R [4]	H'00000000 { 0x7c000034 }	(int)
R [5]	H'00000000 { 0x7c000038 }	(int)
R [6]	H'00000000 { 0x7c00003c }	(int)
R [7]	H'00000000 { 0x7c000040 }	(int)
R [8]	H'00000000 { 0x7c000044 }	(int)
R [9]	H'00000000 { 0x7c000048 }	(int)
	H'00000000 { 0x7c00004c }	(int)

5.23 Watch Window

Allows the user to view and modify C/C++-source level variables. The contents of this window are displayed only when the debugging information available in the absolute file (*.abs) includes the information on the C/C++ source program. The variable information is not displayed if the source program information is excluded from the debugging information during optimization by the compiler. In addition, the variables that are declared as macro cannot be displayed.

The following items are displayed.

[Name] Name of the variable

[Value] Value, assigned location, and type. The assigned location is enclosed by { }.

[Type] Displays the type of variable

"+" shown to the left of the variable name indicates that the information may be expanded by double-clicking on the variable name, and "-" indicates that the information may be collapsed. Alternatively, the "+" and "-" keys may be used.

"R" specifies whether the corresponding variable is updated in real time. When a "R" is bold, the value of the corresponding variable will be updated in real time during user program execution.

A popup menu containing the following options is available by right-clicking within the window:

5.23.1 Auto Update

"R" mark of the selected variable becomes bold-faced type and updates the variable in real time.

5.23.2 Auto Update All

All "R" marks become bold-faced type and update all the displayed variables in real time.

5.23.3 Delete Auto Update

"R" mark of the selected variable becomes not bold-typed face and cancels real time update.

5.23.4 Delete Auto Update All

All "R" marks become not bold-faced type and cancel real time update.

5.23.5 Add Watch...

Launches the Add Watch dialog box, allowing the user to enter a variable to be watched.

5.23.6 Edit Value...

Launches the **Edit Value** dialog box, allowing the user to change the variable's value. Particular care should be taken when the value of a pointer is changed as it may no longer point to valid data.

5.23.7 Delete

Removes the selected variable from the Watch window.

5.23.8 Delete All

Removes all the variables from the **Watch** window.

5.23.9 Radix

Modifies the radix for the selected variable display.

5.23.10 Copy

Only available if a block of text is highlighted. This copies the highlighted text into the Windows[®] clipboard, allowing it to be pasted into other applications.

5.23.11 Save As...

Launches the **Save As** dialog box, allowing the user to specify the name of a file and saves the contents of the **Watch** window in the file. If the **Append** check box is selected, the window contents are appended to the existing file, and if it is not selected, the existing file is overwritten.

5.23.12 Go To Memory...

Displays the memory contents to which the selected variable is assigned in the Memory window.

<u>></u> PU	SH-3		ОК
<u>B</u> it size	32	System Call Address ☐ Enable	Cancel
<u>E</u> ndian	Big Endian	Execution Mode	<u>A</u> dd Modify
D <u>l</u> ock Rate		Stop ○ Continue	
	000FFF RAM 32 1 FFFFFF EXT 32 1	Bound Mode Round To Nearest Round To Zero Step Unit Stage O Instraction	<u>D</u> elete

Figure 5.36 Simulator System Dialog Box

This dialog box specifies the endian, system call start location, execution mode, floating-point rounding mode, and memory map.

[CPU] Displays the current CPU. (The CPU must be specified in the Debug Settings dialog box.)
 For the SH2-DSP (SH7410), Internal Mode or External Mode is selected.
 For SH2-DSP (SH7065), one of the following is selected:
 [ROM Disable/Fast Mode] Specifies internal ROM disabled/fast access mode.
 [ROM Disable/Slow Mode] Specifies internal ROM disabled/slow access mode.

	[ROM Enal	uble] Specif	Specifies internal ROM enabled/fast access mode. Specifies internal ROM enabled/slow access mode. the following is selected: ies internal ROM disabled mode. ies internal ROM enabled mode.
[Bit size]	Displays the address bus width. It is fixed to 32 bits.		
[Endian]	Displays the currently specified endian.		
[Clock Rate		specified only for internal clock ra	r SH-4 series. atio when the external clock is assumed 1. (H1 to H'10)
[System Cal	ll Address]	input/output o	start address of a system call that performs standard or file input/output processing from the user system. ecifies whether the system call is enabled or disabled.
[Execution]	a sin [Sto	mulation error of pp] Stops t	ne simulator/debugger stops or continues operating when ccurs. the simulation. nues the simulation.
[Round Mod	[Rou	ifies the roundin and to nearest] and to zero]	g mode for floating-point decimal-to-binary conversion. Rounds to the nearest value. Rounds toward zero.
[Step Unit]	Spec exect [Stag	ifies the status of uted and a PC br	only for SH-3, SH3-DSP series, and SH-4 series. f the instruction executed when STEP command is reak is satisfied. Stops before instruction is executed. Pipeline operation is not affected. Stops after instruction is executed.
	Linsu	luctonj	Pipeline operation is affected, and as a result, the number of effective cycles become incorrect.

In the [Memory Map], the start address, end address, memory type, data bus width, and access cycles are displayed in that order. The memory types are as follows:

- SH-1, SH-2, SH-2E, SH-3, and SH-3E ROM (internal ROM), RAM (internal RAM), EXT (external memory), I/O (internal I/O)
- SH2-DSP (SH7410)/SH3-DSP XROM (internal XROM), YROM (internal YROM), XRAM (internal XRAM), YRAM (internal YRAM), EXT (external memory), I/O (internal I/O)
- SH2-DSP (SH7612)

XRAM (internal XRAM), YRAM (internal YRAM), INTRAM (internal RAM), EXT (external memory), I/O (internal I/O)

• SH2-DSP (SH7065)

XRAM (internal XRAM), YRAM (internal YRAM), INTROM (internal ROM), EXT (external memory), I/O (internal I/O)

• SH2-DSP (Core)

XRAM (internal XRAM), YRAM (internal YRAM), INTROM (internal ROM), INTRAM (internal RAM), EXT (external memory), I/O (internal I/O)

• SH3-DSP (Core)

XRAM (internal XRAM), YRAM (internal YRAM), URAM (user RAM), EXT (external memory), I/O (internal I/O)

- SH-4/SH-4 (SH7750R) NORMAL (normal memory), INTRAM (internal RAM), I/O (internal I/O)
- SH-4BSC

NORMAL (normal memory), MPX (Multiplex), BCSRAM (byte-control SRAM), BSTROM (burst ROM and burst count), DRAM (DRAM), SDRAM (synchronous DRAM), INTRAM (internal RAM), I/O (internal I/O)

[Memory Map] can be specified, modified, or deleted using the following buttons:

- [Add] Specifies [Memory Map] items. Clicking this button opens the Memory Map Modify dialog box, and memory map items can be specified.
- [Modify] Modifies [Memory Map] items. Select an item to be modified in the list box and click the [Modify] button. The Memory Map Modify dialog box opens and memory map items can be modified.
- [Delete] Deletes [Memory Map] items. Select an item to be deleted in the list box and click the **Delete** button.

Notes: For the SH-4BSC, the following must be noted:

- 1. The access cycle count is displayed as --.
- 2. Memory map entries cannot be newly created or canceled. Therefore, only the [Modify] button can be used for [Memory Map].
- 3. For the internal RAM and I/O, the memory map entries cannot be modified. To enable or disable the internal RAM, use the ORA bit of the CCR control register.
- 4. The memory map contents depend on the BSC settings. If the memory map contents cannot be determined due to BSC incorrect settings, this dialog box shows ?????? for memory types and ?? for the bus width.

Clicking the **[OK]** button stores the modified settings. Clicking the **[Cancel]** button closes this dialog box without modifying the settings.

5.25 Memory Map Modify Dialog Box

Memory type	ROM	OK
Start address	H'0000000	Cancel
End address	H'FFFFFFF	
State count	2	Set state
Data bus size	32	

Figure 5.37 Memory Map Modify Dialog Box

This dialog box specifies the memory map of the target CPU of the simulator/debugger.

The contents displayed in this dialog box depend on the target CPU. The specified data is used to calculate the number of cycles for memory access.

[Memory type]	Memory type
[Start address]	Start address of the memory corresponding to a memory type
[End address]	End address of the memory corresponding to a memory type
[State count]	Number of memory access cycles
[Data bus size]	Memory data bus width

For the SH-4 series, **[Start address]** and **[End address]** cannot be modified. Specify **[Memory type]** and **[Data bus size]**.

In addition, for the SH-4 series, clicking the **[Set state...]** button opens the **Set State** dialog box, and the number of wait states to be inserted in areas 0 to 7 can be specified. The specified values correspond to the values in the WCR1 and WCR2 control registers.

Clicking the **[OK]** button stores the settings. Clicking the **[Cancel]** button closes this dialog box without modifying the settings.

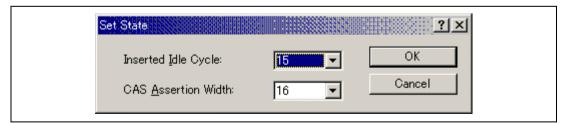
Note: The memory map setting for the area allocated to a system memory resource cannot be deleted or modified. First delete the system memory resource allocation with the Simulator Memory Resource dialog box, then delete or modify the memory map setting.

5.26 Set State Dialog Box

This dialog box specifies the wait state to be inserted in each area. This dialog box is provided only for the SH-4 series.

Note that only the normal memory is supported for the SH-4/SH-4 (SH7750R).

The **Set State** dialog box contents depend on the memory type allocated to the target area. The values set in this dialog box are also set to the WCR1 and WCR2 control registers.


Normal Memory, Burst ROM, and Byte-Control SRAM:

Set State		<u>?×</u>	
Inserted <u>I</u> dle Cycle:	15 🔽	ОК	
Inserted <u>W</u> ait Cycle:	15 💌	Cancel	

Figure 5.38 Set State Dialog Box (Normal Memory)

[Inserted Idle Cycle]	Specifies the number of idle cycles to be inserted when the access type changes from read to write, or when the access area changes (corresponds to the AnIW in WCR1).
[Inserted Wait Cycle]	Specifies the number of wait cycles to be inserted in all accesses (corresponds to the AnW in WCR2).

DRAM:

Figure 5.39 Set State Dialog Box (DRAM)

[Inserted Idle Cycle] Specifies the number of idle cycles to be inserted when the access type changes from read to write, or when the access area changes (corresponds to the AnIW in WCR1).

[CAS Assertion Width] Specifies the \overline{CAS} assertion width (corresponds to the AnW in WCR2).

Inserted Idle Cycle: 15 OK CAS Latency Cycle: Cancel	Set State		<u>?×</u>
CAS Latency Cycle:	Inserted <u>I</u> dle Cycle:	15 💌	ОК
	CAS <u>L</u> atency Cycle:		Cancel

Figure 5.40 Set State Dialog Box (SDRAM)

[Inserted Idle Cycle]	Specifies the number of idle cycles to be inserted when the access type changes from read to write, or when the access area changes (corresponds to the AnIW in WCR1).
[CAS Latency Cycle]	Specifies the number of \overline{CAS} latency cycles (corresponds to AnW in WCR2).

MPX:

Set State		<u>?×</u>
Inserted Idle Oycle:	15 🔽	ОК
First <u>R</u> ead Cycle:	3 💌	Cancel
First <u>W</u> rite Cycle:	3 💌	
<u>S</u> econd After Cycle:	1 💌	

Figure 5.41 Set State Dialog Box (MPX)

[Inserted Idle Cycle]	Specifies the number of idle cycles to be inserted when the access type changes from read to write, or when the access area changes (corresponds to the AnIW in WCR1).
[First Read Cycle]*	Specifies the number of cycles to be inserted in the first cycle for the read access.
[First Write Cycle]*	Specifies the number of cycles to be inserted in the first cycle for the write access.
[Second After Cycle]*	Specifies the number of cycles to be inserted in the second and the following cycles for the burst transfer.

The items marked with * correspond to the AnW in WCR2.

5.27 Simulator Memory Resource Dialog Box

stem Configuration	M <u>e</u> mory Map		Add
PU:SH-3 it Size:32 xec Mode:STOP	00000000 7EFFFFFF EXT 7F000000 7F000FFF RAM 7F001000 DFFFFFFF EXT E0000000 FFFFFFFF I/O	32 1 32 1 32 1 32 1 32 1	<u>M</u> odify Delete
stem Memory Resource 0000000 00003FFF Read 0004000 00007FFF Write 0008000 0000FFFF Read/Write			 Close

Figure 5.42 Simulator Memory Resource Dialog Box

This dialog box sets and modifies a memory map and information on the target CPU.

[System Configuration]	Displays the target CPU, address bus width, and execution mode of the simulator/debugger.
[System memory resour	cce] Displays the access type, start address, and end address of the current memory resources.
[Memory map]	Displays the start address, end address, memory type, data bus width, and access cycles.
[System memory resou	Irce] can be specified, modified, and deleted using the following buttons:
Sy	ecifies [System memory resource] items. Clicking this button opens the stem Memory Resource Modify dialog box, and [System memory source] items can be specified.
the	odifies [System memory resource] items. Select an item to be modified in e list box and click this button. The System Memory Resource Modify alog box opens and [System memory resource] items can be modified.
	eletes [System memory resource] items. Select an item to be deleted in e list box and click this button.

Note that the **[Reset]** button can reset the **[Memory map]** and **[System memory resource]** to the default value. Clicking the **[Close]** button closes this dialog box. **[System memory resource]** contains the same setting information as **[Memory resource]** on the **Simulator** sheet in the **Hitachi SuperH RISC engine Standard Toolchain** dialog box. For details on the **Hitachi SuperH RISC engine Standard Toolchain** dialog box, refer to section 2.3.1, Memory Mapping in the HEW Debugger User's Manual.

5.28 System Memory Resource Modify Dialog Box

<u>S</u> tart Address	H'0000000	OK
<u>E</u> nd Address	H'00003FFF	Cancel
Access Type -	O Write O Read/Write	

This dialog box specifies or modifies system memory settings.

[Start address] Start address of the memory area to be allocated

[End address] End address of the memory area to be allocated

[Access type]	Access type	
	Read:	Read only
	Write:	Write only
	Read/Write:	Read and write

Click the **[OK]** button after specifying the **[Start address]**, **[End address]**, and **[Access type]**. Clicking the **[Cancel]** button closes this dialog box without modifying the setting.

5.29 TLB Dialog Box

В						?
Entry	Way <u>0</u>	Way <u>1</u>	Way <u>2</u>	Way <u>3</u>		OK
00	00000000/00000000	0000000/0000000	0000000/0000000	00000000/00000000	A	OK
ŎĨ	00000000/00000000	00000000/00000000	00000000/00000000	00000000/00000000	_	0
02	00000000/00000000	00000000/00000000	00000000/00000000	00000000/00000000		Cancel
03	00000000/00000000	00000000/00000000	00000000/00000000	00000000/00000000		
04	00000000/00000000	00000000/00000000	00000000/00000000	00000000/00000000		<u>M</u> odify
05	00000000/00000000	00000000/00000000	00000000/00000000	00000000/00000000		
06 07	00000000/00000000	00000000/00000000	00000000/00000000	00000000/00000000		<u>F</u> ind
	00000000/00000000	00000000/00000000	00000000/00000000	00000000/00000000		
08	00000000/00000000	00000000/0000000	00000000/00000000	00000000/00000000		F <u>l</u> ush
09	00000000/00000000	00000000/0000000	00000000/00000000	00000000/00000000		
0A	00000000/00000000	00000000/00000000	00000000/00000000	00000000/00000000		
0B	00000000/00000000	00000000/00000000	00000000/00000000	00000000/00000000		
00	00000000/00000000	00000000/00000000	00000000/00000000	00000000/00000000		
0D	00000000/00000000	00000000/00000000	00000000/00000000	00000000/00000000		
OE OF	00000000/00000000	00000000/00000000	00000000/00000000	00000000/00000000		
Jor	10000000/0000000	10000000/00000000	10000000/0000000	10000000/00000000	_	

Figure 5.44 TLB Dialog Box

This dialog box displays the TLB contents. This dialog box is provided only for the SH-3, SH-3E, and SH3-DSP series.

The following items are displayed.

[Way0]-[Way3] Address array and data array in each way

The TLB contents can be modified, searched, and flushed using the following buttons.

[Modify]	Modifies the TLB contents. After selecting the entry to be modified in the list box, click the button. The TLB Modify dialog box will open and the TLB contents can be modified.
[Find]	Searches the TLB contents. Clicking the button will open the TLB Find dialog box and the search condition can be specified.
[Flush]	Flushes all TLB contents. Clicking the button clears the valid bits of all address arrays and data arrays, and invalidates all TLB entries.

Clicking the **[OK]** button stores the modified contents in the memory. Clicking the **[Cancel]** button closes the dialog box without storing the modified contents.

5.30 TLB Modify Dialog Box

Entry:	<u>V</u> irtual Address:	OK
H'00	H'10000000	
Way:	Physical Addess:	Cancel
0	H'2,000000	
E DARA	ASID(H'0-H'FF):	
✓ Valid	H'00	
✓ Cacheable ✓ Dirty	Protection	
🔽 Share status	PV Mode User Mode	
Page Size	 Read only No access Read/Write No access 	
• 1-Kbyte page	Read only Read only	
C 4-Kbyte page	C Read/Write Read/Write	

This dialog box specifies the TLB contents of the entry and way selected in the **TLB** dialog box. This dialog box is provided only for the SH-3, SH-3E, and SH3-DSP series.

The following items can be specified.

[Entry]	Entry number selected by the TLB dialog box.
[Way]	Way number selected by the TLB dialog box.
[Virtual Address]	Virtual address in longword size. Bits 16 to 12 are set to 0 regardless of the input value. Bits 31 to 10 are used as the virtual address.
[Physical Address]	Physical address in longword size. Bits 31 to 10 are valid.
[ASID]	Address space ID, which specifies the process that can access the virtual page.
[Valid]	Specifies whether or not the entry is valid. Selecting this box makes the entry valid.
[Cacheable]	Enables or disables caching. Selecting this box enables caching of the page.
[Dirty]	Specifies whether or not the page has been written to. Selecting this box assumes that the page has been written to.

[Share status]	Specifies whether or not to share the page with multiple processes. Selecting this box specifies that the page is shared.
[Page Size]	Specifies the page size.

The page protection status can be selected by [Protection].

PV Mode	User Mode	
Read only	No access	Enables read in privileged mode.
Read/Write	No access	Enables read and write in privileged mode.
Read only	Read only	Enables read in privileged or user mode.
Read/Write	Read/Write	Enables read and write in privileged or user mode.

Clicking the **[OK]** button displays the modified contents in the **TLB** dialog box. Clicking the **[Cancel]** button closes the dialog box without modifying the TLB contents.

5.31 TLB Find Dialog Box

TLB Find	?×
<u>A</u> ddress: [H'10000000	Eind
Address Type	Modify
○ Virtual Address	<u>Close</u>
O Physical Address	
Entry Way Address array Data	
00 0 10000100 200001	10E

Figure 5.46 TLB Find Dialog Box

This dialog box searches the TLB contents. This dialog box is provided only for the SH-3, SH-3E, and SH3-DSP series.

The following search conditions can be specified.

[Address] Specifies the address to be searched for.

[Address Type] Specifies whether the address to be searched for is virtual or physical.

After specifying the search condition, clicking the **[Find]** button starts search. The search results are displayed in the list box at the bottom of the dialog box, in the order of TLB entry, way, address array, and data array.

To modify the displayed TLB contents, select the TLB entry in the list box, and click the **[Modify]** button. The **TLB Modify** dialog box will open and the TLB contents can be modified.

This dialog box is closed by clicking the [Close] button.

5.32 Open TLB Dialog Box

Open TLB	OK Cancel	
C Unified TLB		

Figure 5.47 Open TLB Dialog Box

This dialog box selects the TLB to be displayed. This dialog box is provided only for the SH-4 series.

In this dialog box, select one of the following TLBs:

[Instruction TLB] Selects the instruction TLB (ITLB).

[Unified TLB] Selects the unified TLB (UTLB).

Clicking the **[OK]** button displays the selected **TLB** dialog box. Clicking the **[Cancel]** button closes the **Open TLB** dialog box.

5.33 Instruction TLB Dialog Box

Instruction TLB <u>E</u> ntry Address array Data array1	
00 0000000 0000000 01 1000000 1000000 02 2000000 0000000 03 3000000 1000000	Cancel
	<u> </u>

Figure 5.48 Instruction TLB Dialog Box

This dialog box displays the ITLB contents. This dialog box is provided only for the SH-4 series.

The following items are displayed.

[Entry]		Entry number in the ITLB (H'00 to H'03)
[Address art	ray]	Address array in each entry of the ITLB
[Data array]	[]	Data array 1 in each entry of the ITLB
The ITLB c	ontents	can be modified, flushed, and searched using the following buttons.
[Modify]	click t	ies the ITLB contents. After selecting the entry to be modified in the list box, he button. The Instruction TLB Modify dialog box will open and the ITLB ts can be modified.
[Flush]	Flushes all ITLB contents. Clicking the button clears the V bits of all address array and data arrays 1 to zero, and invalidates all ITLB entries.	
[Find]	Searches the ITLB contents. Clicking the button will open the Instruction TLB Find dialog box and the search condition can be specified.	

Clicking the **[OK]** button stores the modified contents in the memory. Clicking the **[Cancel]** button closes the dialog box without storing the modified contents.

5.34 Instruction TLB Modify Dialog Box

Instruction TLB Modify Entry: [H'01 ASID(H'0-H'FF): [H'00	<u>V</u> irtual Address: H'10000000 <u>P</u> hysical Address: H'20000000
Page Size	ess

Figure 5.49 Instruction TLB Modify Dialog Box

This dialog box modifies the ITLB contents of the entry selected in the **Instruction TLB** dialog box. This dialog box is provided only for the SH-4 series.

The following items can be specified.

[Entry]	Entry number selected by the Instruction TLB dialog box.		
[Virtual Address]	Virtual address in longword size. Bits 31 to 10 are valid.		
[Physical Address]	Physical address in longword size. Bits 31 to 10 are valid.		
[Protection]	PV Mode	page protection User Mode No access Read only	status. Enables read in privileged mode. Enables read in privileged or user mode.
[ASID]	Address spac page.	e ID, which spe	cifies the process that can access the virtual
[Valid]	Specifies who valid.	ether or not the	entry is valid. Selecting this box makes the entry

[Cacheable]	Enables or disables caching. Selecting this box enables caching of the page.
[Share status]	Specifies whether or not to share the page with multiple processes. Selecting this box specifies that the page is shared.
[Page Size]	Specifies the page size.

Clicking the **[OK]** button displays the modified contents in the **Instruction TLB** dialog box. Clicking the **[Cancel]** button closes the dialog box without modifying the ITLB contents.

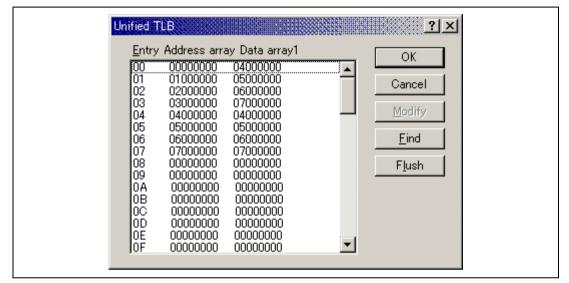
5.35 Instruction TLB Find Dialog Box

Instruction TLB Find	<u>?×</u>	
<u>A</u> ddress: [H'1]000000	<u> </u>	
Address Type	<u>M</u> odify	
Virtual Address	<u>C</u> lose	
C Physical Address		
Entry Address Array Data array 01 10000100 2000014A	1	
01 10000100 2000014A		

Figure 5.50 Instruction TLB Find Dialog Box

This dialog box searches the ITLB contents. This dialog box is provided only for the SH-4 series.

The following search conditions can be specified.


[Address] Specifies the address to be searched for.

[Address type] Specifies whether the address to be searched for is virtual or physical.

After specifying the search condition, clicking the [Find] button starts search. The search results are displayed in the list box at the bottom of the dialog box, in the order of ITLB Entry, Address array, and Data array 1.

To modify the displayed ITLB contents, select the ITLB entry in the list box, and click the **[Modify]** button. The **Instruction TLB Modify** dialog box will open and the ITLB contents can be modified.

Clicking the [Close] button closes this dialog box.

5.36 Unified TLB Dialog Box

Figure 5.51 Unified TLB Dialog Box

This dialog box displays the UTLB contents. This dialog box is provided only for the SH-4 series.

The following items are displayed.

- [Entry] Entry number in the UTLB (H'00 to H'3F)
- [Address array] Address array in each entry of the UTLB
- [Data array1] Data array 1 in each entry of the UTLB

The UTLB contents can be modified, flushed, and searched using the following buttons.

- [Modify] Modifies the UTLB contents. After selecting the entry to be modified in the list box, click the button. The **Unified TLB Modify** dialog box will open and the UTLB contents can be modified.
- [Flush] Flushes all UTLB contents. Clicking the button clears the V bits of all address arrays and data arrays 1 to zero, and invalidates all UTLB entries.

[Find] Searches the UTLB contents. Clicking the button will open the **Unified TLB Find** dialog box and the search condition can be specified.

Clicking the **[OK]** button stores the modified contents in the memory. Clicking the **[Cancel]** button closes the dialog box without storing the modified contents.

5.37 Unified TLB Modify Dialog Box

Entry: H'01 <u>A</u> SID(H'0-H'FF): H'00	<u>V</u> irtual Address: H'01000000 <u>P</u> hysical Address: H'05000000	OK Cancel
Page Size © 1-Kbyte page © 4-Kbyte page © 64-Kbyte page © 1-Mbyte page Protection PV Mode User © Read only No acc © Read/write No ac © Read/write Read/	Valid Valid Cacheable Dirty Share status Mode ess cess nly	

Figure 5.52 Unified TLB Modify Dialog Box

This dialog box specifies the UTLB contents of the entry selected in the **Unified TLB** dialog box. This dialog box is provided only for the SH-4 series.

The following items can be specified.

[Entry]	Entry number selected by the Unified TLB dialog box.
[Virtual Address]	Virtual address in longword size. Bits 31 to 10 are valid.
[Physical Address]	Physical address in longword size. Bits 31 to 10 are valid.
[ASID]	Address space ID, which specifies the process that can access the virtual page.

[Valid]	Specifies who valid.	ether or not the	entry is valid. Selecting this box makes the entry			
[Cacheable]	Enables or di	Selecting this box enables caching of the page.				
[Dirty]	Specifies whether or not the page has been written to. Selecting this box makes the simulator/debugger assume that the page has been written to					
[Share status]	-	ether or not to slifies that the pag	hare the page with multiple processes. Selecting ge is shared.			
[Write through]	Write through bit. Specifies the cache writing mode.					
[Page Size]	Specifies the page size.					
[Protection]	Specifies the PV Mode Read only Read only Read/Write Read/Write	Read only	status. Enables read in privileged mode. Enables read in privileged or user mode. Enables read and write in privileged mode. Enables read and write in privileged or user mode.			

Clicking the **[OK]** button displays the modified contents in the **Unified TLB** dialog box. Clicking the **[Cancel]** button closes the dialog box without modifying the UTLB contents.

5.38 Unified TLB Find Dialog Box

Unified TLB Find	<u>?×</u>
<u>A</u> ddress: [H'01000000	<u>F</u> ind Modify
Address Type © Virtual Address © Physical Address	<u>C</u> lose
<u>E</u> ntry Address Array Data array1 01 01000300 0500010F	

Figure 5.53 Unified TLB Find Dialog Box

This dialog box searches the UTLB contents. This dialog box is provided only for the SH-4 series.

The following search conditions can be specified.

[Address] Specifies the address to be searched for.

[Address type] Specifies whether the address to be searched for is virtual or physical.

After specifying the search condition, clicking the **[Find]** button starts search. The search results are displayed in the list box at the bottom of the dialog box, in the order of UTLB entry, address array, and data array 1.

To modify the displayed UTLB contents, select the UTLB entry in the list box, and click the **[Modify]** button. The **Unified TLB Modify** dialog box will open and the UTLB contents can be modified.

Clicking the [Close] button closes this dialog box.

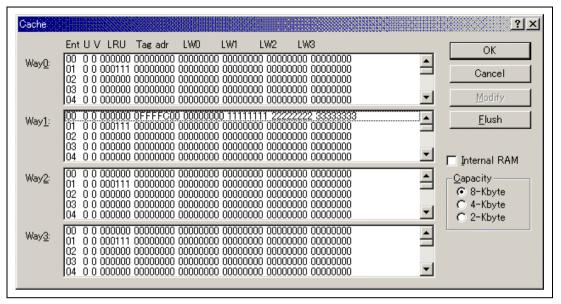


Figure 5.54 Cache Dialog Box (for SH-3 and SH-3E Series)

This dialog box displays the cache contents in [Way0] to [Way3]. This dialog box is provided only for the SH-3, SH-3E, SH3-DSP series, and SH2-DSP (SH7612).

The following items are displayed.

[Ent]	Entry number in the cache. The specifiable value depends on the CPU. SH-3 and SH-3E series: H'00 to H'7F SH3-DSP series: H'00 to H'FF SH2-DSP (SH7612): H'00 to H'3F
[U]	Update bit. When this bit is 1, the entry has been written to.
[V]	Validity bit. When this bit is 1, the entry is valid.
[LRU]	Numerical string that determines which way's entry should be replaced when a cache miss occurs. (The same LRU value is assigned to the same entry in all ways.)
[Tag adr]	Tag address.
[LW0] to [LW3]	Longword data 0 to 3 stored in cache.
[Internal RAM]*	Internal RAM mode. Selecting this box enables a half of the cache to be used as the internal RAM when 8-Kbyte or 4-Kbyte is selected in [Capacity].

[Capacity]* Cache capacity.

Note: The items marked with * are displayed only for the SH-3 and SH-3E series.

The cache contents can be modified and flushed using the following buttons.

[Modify]	Modifies the cache contents. After selecting the entry to be modified in the list box, click the button. The Cache Modify dialog box will open and the cache contents can be modified.
[Flush]	Flushes all cache contents. Clicking the button clears the V, U, and LRU bits of all entries to zero, and invalidates all cache entries.

Clicking the **[OK]** button stores the modified contents in the memory. Clicking the **[Cancel]** button closes the dialog box without storing the modified contents.

5.40 Cache Modify Dialog Box

Cache Modify		<u>?×</u>
Entry: Way: H'01 H'02	Long Word <u>0</u> : H'00000000	ОК
Tag Address: H'10000000	Long Word <u>1:</u> H'1111111	Cancel
LRU: B'000111	Long Word <u>2</u> : H'22222222	
☐ <u>V</u> alid ☐ <u>U</u> pdate	Long Word <u>3</u> : H'33333333	

Figure 5.55 Cache Modify Dialog Box

This dialog box modifies the cache contents of the way and entry selected in the **Cache** dialog box. This dialog box is provided only for the SH-3, SH-3E, SH3-DSP series, and the SH2-DSP (SH7612).

The following items can be specified.

[Entry] Entry number selected by the **Cache** dialog box.

[Way] Way number selected by the **Cache** dialog box.

[Tag Address]	Tag address. A longword physical address must be specified. Bits 31 to 10 are valid.
[LRU]	Numerical string that determines which way's entry should be replaced when a cache miss occurs. The LRU values for the same entries in the other ways are also modified to the specified value.
[Valid]	Specifies whether or not the entry is valid. Selecting this box makes the entry valid.
[Update]	Indicates whether or not the entry has been written to. Selecting this box makes the simulator/debugger assume that the entry has been written to.
[Long Word0] to [Long Word3]	Longword data 0 to 3 to be set to cache entries.

Clicking the **[OK]** button displays the modified contents in the **Cache** dialog box. Clicking the **[Cancel]** button closes the dialog box without displaying the modified contents in the **Cache** dialog box.

5.41 Open Cache Dialog Box

Open Cache Cache Kind Instruction cache Operand cache	OK Cancel
--	--------------

Figure 5.56 Open Cache Dialog Box

This dialog box selects the cache to be displayed. This dialog box is provided only for the SH-4 series.

In this dialog box, select one of the following caches:

[Instruction cache] Selects the instruction cache (IC).

[Operand cache] Selects the operand cache (OC).

Clicking the **[OK]** button displays the selected cache dialog box. Clicking the **[Cancel]** button closes the **Open Cache** dialog box.

5.42 Instruction Cache Dialog Box

This dialog box displays the contents of the IC. This dialog box is provided only for the SH-4 series, and the displayed contents differ according to the target CPU.

SH-4/SH-4BSC:

		Cache	1.000	LW1				LW5	LW6				
En	tν	Tag adr	LWO	L 441	LW2	LW3	LW4	LVVO	LVVO	LW7			OK
100			000000000						55555555			▲	
01			00000000						55555555				Cancel
02			00000000						55555555				
03											00000000		Modify
04											00000000		
05											00000000		Flush
06											00000000		
107											00000000		
08											00000000		
09											00000000		
10A											00000000		
10B											00000000		
00											00000000		
10D											00000000		
10E											00000000	-	
OF	υι	JUUUUUUUU	UUUUUUUUU	0000000	J UUUUUU	00 000	00000	00000000	00000000	00000000	00000000		

The following items are displayed.

[Ent]	Entry number in the IC (H'00 to H'FF).
[V]	Validity bit. When this bit is 1, the entry is valid.
[Tag adr]	Tag address.
[LW0] to [LW7]	Longword data 0 to 7 stored in IC entries.
The IC contents can	be modified and flushed using the following buttons.
[Modify]	Modifies the IC contents. After selecting the entry to be modified in the list box, click the button. The Instruction Cache Modify dialog box will open and the IC contents can be modified.
[Flush]	Flushes all IC entries. Clicking the button clears the V bits of all entries to zero, and invalidates all IC entries.

Clicking the **[OK]** button stores the modified contents in the memory. Clicking the **[Cancel]** button closes the dialog box without storing the modified contents.

istructio	in Ca	che											040000	?)
	Ent	V٦	ag adr	LWO	LW1	LW2	LW3	LW4	LW5	LW6	LW7			ОК
Way <u>0</u> :	00											0 00000000		
	01											0 00000000		Cancel
	102											0 00000000		
	0.3											0 00000000		Modify
	105											0 00000000		
	06											0 00000000		<u>F</u> lush
	07											0 00000000		
	108	00	0000000	00000000	0000000	0 00000	000 0000	00000	00000000	00000000	0000000	0 00000000	-	
	00	0.0	0000000	0000000	000000	0 00000		0000	00000000	00000000	0000000	0 00000000		
Way <u>1</u> :												0 00000000	-	
	lŏ2											0 00000000		
	03	0.0	0000000	00000000	0000000	0 00000	000 0000	00000	00000000	00000000	0000000	0 00000000		
												0 00000000		
	05											0 00000000		
	06											0 00000000		
	08											0 000000000	_	
	100	00	0000000	00000000	0000000	0 00000	000 0000	00000	00000000	00000000	0000000	0 00000000		

Figure 5.58 Instruction Cache Dialog Box (for SH-4 (SH7750R))

This dialog box displays the contents of the cache set on Way0 and Way1. The following items are displayed.

[Ent]	Entry number in the IC (H'00 to H'FF).
[V]	Validity bit. When this bit is 1, the entry is valid.
[Tag adr]	Tag address.
[LW0] to [LW7]	Longword data 0 to 7 stored in IC entries.
The IC contents can	be modified and flushed using the following buttons.
[Modify]	Modifies the IC contents. After selecting the entry to be modified in the list box, click the button. The Instruction Cache Modify dialog box will open and the IC contents can be modified.
[Flush]	Flushes all IC entries. Clicking the button clears the V bits of all entries to zero, and invalidates all IC entries.

Clicking the **[OK]** button stores the modified contents in the memory. Clicking the **[Cancel]** button closes the dialog box without storing the modified contents.

5.43 Instruction Cache Modify Dialog Box

This dialog box modifies the IC contents of the entry selected in the **Instruction Cache** dialog box. This dialog box is provided only for the SH-4 series, and the displayed contents differ according to the target CPU.

SH-4/SH-4BSC:

Instruction Cache Modify		?×
Entry: H'01	Tag Address:	H'00000000
Long Word <u>0</u> : [H00000000	Long Word <u>4</u> : H'4444444	— ☑ <u>V</u> alid
Long Word <u>1</u> : H'1111111	Long Word <u>5</u> : H'55555555	ОК
Long Word <u>2:</u> H'2222222	Long Word <u>6</u> : H'666666666	Cancel
Long Word <u>3</u> : H'33333333	Long Word <u>7</u> : [H'77777777	

Figure 5.59 Instruction Cache Modify Dialog Box (for SH-4/SH-4BSC)

The following items can be specified.

[Entry]	Displays the entry number selected by the Instruction Cache dialog box.
[Tag Address]	Tag address. A longword physical address must be specified. Bits 31 to 10 are valid.
[Valid]	Indicates whether or not the entry is valid. Selecting this box makes the entry valid.
[Long Word0] to [Long Word7]	Longword data 0 to 7 to be set to IC entries.

Clicking the **[OK]** button displays the modified contents in the **Instruction Cache** dialog box. Clicking the **[Cancel]** button closes the dialog box without displaying the modified contents in the **Instruction Cache** dialog box.

Instruction Cach	e Modify - Way0, Entry0	0		<u>?×</u>
<u>T</u> ag Address:	H'01000000		🔽 <u>V</u> alid	ОК
Long Word <u>D</u> :	H'0000000	Long Word <u>4</u> :	H'4444444	Cancel
Long Word <u>1</u> :	H'1111111	Long Word <u>5</u> :	H'55555555	
Long Word <u>2</u> :	H'22222222	Long Word <u>6</u> :	H'66666666	
Long Word <u>3</u> :	H'3333333	Long Word <u>7</u> :	H'77777777	

Figure 5.60 Instruction Cache Modify Dialog Box (for SH-4 (SH7750R))

The following items can be specified.

[Tag Address]	Tag address. A longword physical address must be specified. Bits 31 to 10 are valid.
[Valid]	Indicates whether or not the entry is valid. Selecting this box makes the entry valid.
[Long Word0] to [Long Word7]	Longword data 0 to 7 to be set to IC entries.

Clicking the **[OK]** button displays the modified contents in the **Instruction Cache** dialog box. Clicking the **[Cancel]** button closes the dialog box without displaying the modified contents in the **Instruction Cache** dialog box.

5.44 Operand Cache Dialog Box

This dialog box displays the contents of the OC. This dialog box is provided only for the SH-4 series, and the displayed contents differ according to the target CPU.

SH-4/SH-4BSC:

<u>E</u> nt U V Tag adr	LWO LW1	LW2 LW3 L	.W4 LW5	LW6	LW7	ОК
		11 22222222 33333				Cancel
001 1 1 00000000 1 1002 1 1 00000000 1		11 22222222 333333 11 22222222 333333				
						Modify
		00 00000000 000000				
						<u>F</u> lush
		100 00000000 000000 100 00000000 000000				
		00 00000000 000000				
		000 00000000 00000 000 0000000 00000				
		100 000000000 000000				
		000000000000000000000000000000000000000				

The following items are displayed.

[Ent]	Entry number in the OC (H'000 to H'1FF).
[U]	Update bit. When this bit is 1, the entry has been written to.
[V]	Validity bit. When this bit is 1, the entry is valid.
[Tag adr]	Tag address.
[LW0] to [LW7]	Longword data 0 to 7 stored in OC entries.
The OC contents ca	n be modified and flushed using the following buttons.
[Modify]	Modifies the OC contents. After selecting the entry to be modified in the list box, click the button. The Operand Cache Modify dialog box will open and the OC contents can be modified.
[Flush]	Flushes all OC entries. Clicking the button clears the U and V bits of all entries to zero, and invalidates all OC entries.

Clicking the **[OK]** button stores the modified contents in the memory. Clicking the **[Cancel]** button closes the dialog box without storing the modified contents.

erand			J Tag adr	LWO	LW1	LW2	LW3	LW4	LW5	LW6	LW7	rsesesesesesesusunununu			· · · · · · · · · · · · · · · · · · ·
	-		-											-	OK
/ay0:												0 00000000			
												0 00000000	<u> </u>		Cancel
												0 00000000			
												10 00000000 10 00000000			Modify
												0 00000000			<u>H</u> odiny
												0 00000000			Flush
												0 00000000			Liush
												0 00000000		-1	
	1000	00	0000000	5 0000000	0 00000	000 0000	0000 00	000000	00000000	00000000	0000000	0 0000000			
	Inno	0.0			0 00000	000 0000	0000.00	000000	00000000	00000000	0000000	0 0000000		7	
/ay <u>1</u> :												0 00000000	-	1	
												0 00000000	-	-	
												0 00000000			
												0 00000000			
												0 00000000			
												0 00000000			
												0 00000000			
												0 00000000		-1	
	1000	00	00000000	5 0000000	0 00000	0000 0000	0000 00	000000	00000000	00000000	0000000	0 0000000		_	

This dialog box displays the contents of the cache set on Way0 and Way1. The following items are displayed.

[Ent]	Entry number in the OC (H'000 to H'1FF).
[V]	Validity bit. When this bit is 1, the entry is valid.
[U]	Update bit. When this bit is 1, the entry has been written to.
[Tag adr]	Tag address.
[LW0] to [LW7]	Longword data 0 to 7 stored in OC entries.
The OC contents ca	n be modified and flushed using the following buttons.
[Modify]	Modifies the OC contents. After selecting the entry to be modified in the list box, click the button. The Operand Cache Modify dialog box will open and the OC contents can be modified.
[Flush]	Flushes all OC entries. Clicking the button clears the U and V bits of all entries to zero, and invalidates all OC entries.

Clicking the **[OK]** button stores the modified contents in the memory. Clicking the **[Cancel]** button closes the dialog box without storing the modified contents.

5.45 Operand Cache Modify Dialog Box

This dialog box modifies the OC contents of the entry selected in the **Operand Cache** dialog box. This dialog box is provided only for the SH-4 series, and the displayed contents differ according to the target CPU.

SH-4/SH-4BSC:

Operand Cache Modify		?×
Entry: H'001	<u>T</u> ag Address:	H'00000000
Long Word <u>0</u> : [H'00000000	Long Word <u>4</u> : H'4444444	<mark> </mark>
Long Word <u>1</u> : H'1111111	Long Word <u>5</u> : H'55555555	
Long Word <u>2</u> : H'2222222	Long Word <u>6</u> : H'66666666	Cancel
Long Word <u>3</u> : [H'33333333	Long Word <u>7</u> : H'77777777	

Figure 5.63 Operand Cache Modify Dialog Box (for SH-4/SH-4BSC)

The following items can be specified.

[Entry]	Entry number selected by the Operand Cache dialog box.
[Tag Address]	Tag address. A longword physical address must be specified. Bits 31 to 10 are valid.
[Update]	Indicates whether or not the entry has been written to. Selecting this box makes the simulator/debugger assume that the entry has been written to.
[Valid]	Indicates whether or not the entry is valid. Selecting this box makes the entry valid.
[Long Word0] to [Long Word7]	Longword data 0 to 7 to be set to OC entries.

Clicking the **[OK]** button displays the modified contents in the **Operand Cache** dialog box. Clicking the **[Cancel]** button closes the dialog box without displaying the modified contents in the **Operand Cache** dialog box.

Operand Cache I	Modify - Way0, Entry001			<u>?×</u>
Tag Address:	H'01000000	🔽 Update	🔽 <u>V</u> alid	ОК
Long Word <u>D</u> :	H'00000000	Long Word <u>4</u> :	H'4444444	Cancel
Long Word <u>1</u> :	H'1111111	Long Word <u>5</u> :	H'55555555	
Long Word <u>2</u> :	H'22222222	Long Word <u>6</u> :	H'66666666	
Long Word <u>3</u> :	H'3333333	Long Word <u>7</u> :	H'77777777	

Figure 5.64 Operand Cache Modify Dialog Box (for SH-4 (SH7750R))

The following items can be specified.

[Tag Address]	Tag address. A longword physical address must be specified. Bits 31 to 10 are valid.
[Update]	Indicates whether or not the entry has been written to. Selecting this box makes the simulator/debugger assume that the entry has been written to.
[Valid]	Indicates whether or not the entry is valid. Selecting this box makes the entry valid.
[Long Word0] to [Long Word7]	Longword data 0 to 7 to be set to OC entries.

Clicking the **[OK]** button displays the modified contents in the **Operand Cache** dialog box. Clicking the **[Cancel]** button closes the dialog box without displaying the modified contents in the **Operand Cache** dialog box.

5.46 Simulated I/O Window

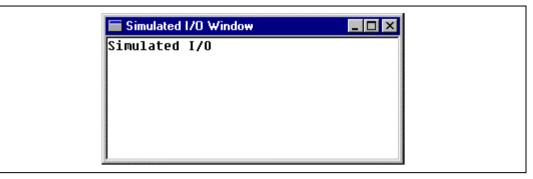


Figure 5.65 Simulated I/O Window

This window is for standard I/O and file I/O system calls from the user program.

Clicking the right mouse button on the **Simulated I/O** window displays the following popup menus.

[Copy]	Copies the highlighted text to the Windows [®] clipboard so that the text can be pasted to another application.
[Paste]	Pastes the text from the Windows [®] clipboard to the Simulated I/O window.
[Erase All]	Clears the contents of the Simulated I/O window.

For the I/O processing, refer to section 3.12, Standard I/O and File I/O Processing.

🗖 Sta	ack Trace	
Kin	d Name	Value
F	<pre>func3(short *)</pre>	{ 0x00000094 }
P	param_3	0x00003ffa { 0x00003fd8 } (short*)
L	local_3	D'3 { 0x00003fd4 } (unsigned long)
F	func2(short *)	{ 0x00000072 }
P	param_2	0x00003ffa { 0x00003fe4 } (short*)
L	local_2	D'2 { 0x00003fe0 } (unsigned long)
F	func1(short *)	{ 0x000003e }
Р	param_1	0x00003ffa { 0x00003ff0 } (short*)
L	local_1	D'1 { 0x00003fec } (unsigned long)
F	main()	{ 0x0000012 }
L	start	D'103 { 0x00003ffa } (short)

Figure 5.66 Stack Trace Window

This window displays the function call history.

The following items are displayed.

[Kind]	Indicates the type of the symbol. F: Function P: Function parameter L: Local variable
[Name]	Indicates the symbol name.
[Value]	Indicates the value, address, and type of the symbol.

Right-clicking on the mouse within the window displays a popup menu. Supported menu options are described in the following sections:

5.47.1 Go to Source

Displays, in the Source window, the source program corresponding to the selected function.

5.47.2 View Setting...

Launches the **Stack Trace Setting** dialog box, allowing the user to specify the **Stack Trace** window settings.

Stack Trace Setting	? 🗙
<u>N</u> est level (1-64) Display symbol <u>P</u> arameter <u>L</u> ocal Variable	
Diaplay Radix <u>H</u> exadecimal <u>D</u> ecimal <u>O</u> ctal <u>B</u> inary	OK Cancel

[Nest level]	Specifies the level of function call nesting to be displayed in the Stack Trace window.
[Display symbol]	Specifies the symbol types to be displayed in addition to functions.
[Display Radix]	Specifies the radix for displays in the Stack Trace window.

5.47.3 Copy

Copies the highlighted text into the Windows[®] clipboard, allowing it to be pasted into other applications.

5.48 **Profile Window (List Sheet)**

Profile	s.			331177		3	SSS	×.	- 3886 I
Function/Variable	F/V	Address	Size	Times	Cycle	Ext mem	I/O area	Int mem	
_\$BTBL	V	H'00005C6C	H'00000008	0	0	0	0	0	
_sbrk_size	V	H'00005C68	H'00000004	0	0	0	0	0	
\$conexp\$28	V	H'00005C48	H'00000020	0	0	0	0	0	
_\$conmits\$29	V	H'00005BC8	H'00000080	0	0	0	0	0	
_\$w\$12	V	H'00005AE8	H'000000E0	0	0	0	0	0	
_\$table\$25	V	H'00005A60	H'00000088	0	0	0	0	0	_
_ctype	V	H'00005960	H'00000100	0	0	0	0	0	
_nfiles	V	H'00005944	H'00000004	0	0	0	0	0	
_memset	F	H'00005884	H'00000064	0	0	Û	0	Û	
_rsft	F	H'0000584C	H'00000038	0	0	0	0	0	
_pow10	F	H'000057B4	H'00000098	0	0	0	0	0	
_mult	F	H'000056BC	H'000000F8	0	0	0	0	0	
_add	F	H'00005674	H'00000048	0	0	0	0	0	
_\$_morecor	F	H'00005618	H'0000005C	0	0	0	0	0	
_malloc	F	H'0000557C	H'00000000	0	0	0	0	0	
setsbit	F	H'000054EC	H'00000090	0	0	0	0	0	
rnd	F	H'000053E4	H'00000108	0	0	0	0	0	
power	F	H'00005268	H'0000017C	0	0	0	0	0	
_mult64	F	H'00005200	H'00000068	0	0	0	0	0	
List Tree /	-				- 6		- 9		

Figure 5.68 Profile Window (List Sheet)

This window displays the address and size of a function or a global variable, the number of times the function is called or the global variable is accessed, and profile data. Displayed profile data differs according to the target CPU as follows:

SH-1/SH-2/SH-2E Series, SH2-DSP (SH7410), SH2-DSP (Core), and SH2-DSP (SH7065):

Times (the number of times a function is called or a global variable is accessed)

Cycle (the number of execution cycles)

Ext_mem (the number of external memory accesses)

I/O_area (the number of internal I/O accesses)

Int_mem (the number of internal memory accesses)

SH-3/SH-3E/SH3-DSP Series and SH2-DSP (SH7612):

Times (the number of times a function is called or a global variable is accessed)

Cycle (the number of execution cycles)

Cache miss (the number of cache misses)

Ext_mem (the number of external memory accesses)

I/O_area (the number of internal I/O accesses)

Int_mem (the number of internal memory accesses)

SH-4 Series:

Times (the number of times a function is called or a global variable is accessed)

Cycle (the number of execution cycles)

ICache miss (the number of instruction cache misses)

OCache miss (number of operand cache misses)

Ext_mem (the number of external memory accesses) I/O_area (the number of internal I/O accesses) Int_mem (the number of internal memory accesses)

The number of execution cycles and cache misses are calculated by subtracting the total execution cycles or cache misses at a specific function call instruction execution from the total execution cycles or cache misses at a return instruction execution of a specific function.

When the column header is clicked, data are sorted in alphabetic or numeric ascending/descending order.

Double-clicking the **Function/Variable** or **Address** column displays the source program corresponding to the address in the line. Right-clicking on the mouse within the window displays a popup menu. For details on this popup menu, refer to section 5.49, Profile Window (Tree Sheet).

Function	Address	Size	Stack Size	Times	Cycle	Ext mem	I/O area	Int mem
nC:¥Hew¥Sample¥Sample.at								
- PowerON Reset PC	H'00000800	H'0000002C	H'00000000	0	0	0	0	0
	H'00001170	H'000000B2	H'0000000C	0	0	0	0	0
📥main	H'000012C0	H'00000080	H'00000050	0	Û	Ö	Ö	0
sort	H'00001340	H'00000088	H'0000001C	0	0	0	0	0
rand	H'00001614	H'0000002C	H'00000004	0	0	0	0	0
printf	H'000015D8	H'0000003C	H'00000008	0	0	0	0	0
	H'000013C8	H'00000040	H'00000028	0	0	0	0	0
CLOSEALL	H'00001222	H'0000007A	H'00000018	0	0	0	0	0
memmove	H'00003EB0	H'00000080	H'0000000C	0	0	0	0	0
fputc	H'00002DAC	H'000000DC	H'0000000C	0	0	0	0	0
lseek	H'0000116C	H'00000004	H'00000000	0	0	0	0	0
····· read	H'000010CA	H'0000005A	H'0000001C	0	0	0	0	0
Dummy	H'00000848	H'00000004	H'00000000	0	0	0	0	0
INT_Illegal_code	H'00000844	H'00000004	H'00000000	0	0	0	0	0
Manual_Reset_PC	H'0000082C	H'00000018	H'00000000	0	0	0	0	0
List A Tree								

5.49 Profile Window (Tree Sheet)

Figure 5.69 Profile Window (Tree Sheet)

This window displays the relation of function calls in a tree structure. Displayed contents are the address, size, stack size, number of function calls, and profile data. The stack size, number of function calls, and profile data are values when the function is called.

Displayed profile data differ according to the target CPU as follows:

SH-1/SH-2/SH-2E Series, SH2-DSP (SH7410), SH2-DSP (Core), and SH2-DSP (SH7065):

Times (the number of times a function is called) Cycle (the number of execution cycles) Ext_mem (the number of external memory accesses) I/O_area (the number of input/output area accesses) Int_mem (the number of internal memory accesses)

SH-3/SH-3E/SH3-DSP Series and SH2-DSP (SH7612):

Times (the number of times a function is called) Cycle (the number of execution cycles) Cache miss (the number of cache misses) Ext_mem (the number of external memory accesses) I/O_area (the number of input/output area accesses) Int_mem (the number of internal memory accesses)

SH-4 Series:

Times (the number of times a function is called) Cycle (the number of execution cycles) ICache miss (the number of instruction cache misses) OCache miss (the number of operand cache misses) Ext_mem (the number of external memory accesses) I/O_area (the number of input/output area accesses) Int_mem (the number of internal memory accesses)

The number of execution cycles and cache misses are calculated by subtracting the total execution cycles or cache misses at a specific function call instruction execution from the total execution cycles or cache misses at a return instruction execution of a specific function.

Note: Displayed stack size does not represent the actual size. Use it as a reference value when the function is called. If there is no stack information file (.sni extension) output from the optimizing linkage editor, the stack size is not displayed. For details of the stack information file, refer to the manual of the optimizing linkage editor.

Double-clicking a function in the Function column expands or reduces the tree structure display. The expansion or reduction is also provided by the "+" or "-" key. Double-clicking the Address column displays the source program corresponding to the specific address.

Right-clicking on the mouse within the window displays a popup menu. Supported menu options are described in the following sections:

5.49.1 View Source

Displays the source program or disassembled memory contents for the address in the selected line.

5.49.2 View Profile-Chart

Displays the Profile-Chart window focused on the function in the specified line.

5.49.3 Enable Profiler

Toggles acquisition profile data. When profile data acquisition is active, a check mark is shown to the left of the menu text.

5.49.4 Not trace the function call

Stops tracing function calls while profile data is acquired. This menu is used when acquiring profile data of the program in which functions are called in a special way, such as task switching in the OS.

To display the relation of function calls in the **Tree** sheet of the **Profile** window, acquire profile data without selecting this menu. In addition, do not select this menu when optimizing the program by the optimizing linkage editor using the acquired profile information file.

5.49.5 Find...

Displays the **Find Text** dialog box to find a character string in the Function column. Search is started by inputting a character string to be found in the edit box and clicking [**Find Next**] or pressing ENTER.

5.49.6 Find Data...

Displays the **Find Data** dialog box. When the cursor is in the Function column, this menu option is displayed in gray characters.

Find Data	×
Find Data © <u>Maximum</u> © M <u>i</u> nimum	<u>E</u> ind Next <u>C</u> ancel

Figure 5.70 Find Data Dialog Box

By selecting the column to be searched in the **Column** combo box and the search type in the **Find Data** group and entering **[Find Next]** button or **ENTER** key, search is started. If the **[Find Next]** button or the **ENTER** key is input repeatedly, the second larger data (the second smaller data when the Minimum is specified) is searched for.

5.49.7 Clear Data

Clears the number of times functions are called and profile data. Data in the **Profile** window **List** sheet and the **Profile-Chart** window are also cleared.

5.49.8 Output Profile Information Files...

Displays the **Save Profile Information Files** dialog box. Profiling results are saved in a profile information file (.pro extension). The optimizing linkage editor optimizes user programs according to the profile information in this file. For details of the optimization using the profile information, refer to the manual of the optimizing linkage editor.

Note: If profile information has been acquired by selecting the Not trace the function call menu, the program cannot be optimized by the optimizing linkage editor.

5.49.9 Output Text File...

Displays the Save Text of Profile Data dialog box. Displayed contents are saved in a text file.

5.49.10 Setting

This menu has the following submenus (the menus available only in the **List** sheet are also included).

1. Show Functions/Variables

Displays both functions and global variables in the Function/Variable column.

2. Show Functions

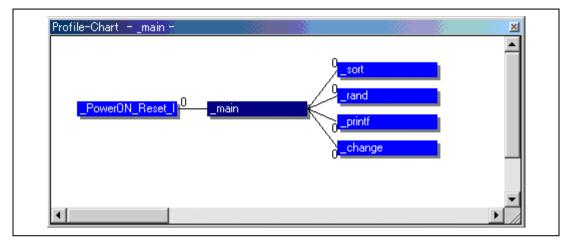
Displays only functions in the Function/Variable column.

3. Show Variables

Displays only global variables in the Function/Variable column.

4. Only Executed Functions

Only displays the executed functions. If a stack information file (.sni extension) output from the optimizing linkage editor does not exist in the directory where the load module is located, only the executed functions are displayed even if this check box is not checked.


5. Include Data of Child Functions

Sets whether or not to display information for a child function called in the function as profile data.

5.49.11 Properties...

This menu cannot be used in this simulator/debugger.

5.50 Profile Chart Window

Figure 5.71 Profile-Chart Window

This window displays the relation of calls for a specific function. This window displays the calling relation for the function specified in the List sheet or Tree sheet in the **Profile** window. The specified function is displayed in the middle, the calling function on the left side, and the called function on the right side. Values beside the calling and called functions show the number of times the function has been called.

Right-clicking on the mouse within the window displays a popup menu. Supported menu options are described in the following.

5.50.1 View Source

Displays the source program or disassembled memory contents for the address of the function on which the cursor is placed when the right side button of the mouse is clicked. If the cursor is not placed on a function when the right side button is clicked, this menu option is displayed in gray characters.

5.50.2 View Profile-Chart

Displays the **Profile-Chart** window for the specific function on which the cursor is placed when the right side button of the mouse is clicked. If the cursor is not placed on a function when the right side button is clicked, this menu option is displayed in gray characters.

5.50.3 Enable Profiler

Toggles acquisition of profile data. When profile data acquisition is active, a check mark is shown to the left of the menu text.

5.50.4 Clear Data

Clears the number of times functions are called and profile data. Data in the **List** sheet and **Tree** sheet in the **Profile** window are also cleared.

5.50.5 Multiple View

If the **Profile-Chart** window is going to be opened when it has already been opened, selects whether another window is to be opened or the same window is to be used to display data. When a check mark is shown to the left side of the menu text, another window is opened.

5.50.6 Output Profile Information File...

Displays the **Save Profile Information File** dialog box. Profiling results are saved in a profile information file (.pro extension). The optimizing linkage editor optimizes user programs according to the profile information in this file. For details of the optimization using the profile information, refer to the manual of the optimizing linkage editor.

5.50.7 Expands Size

Expands spaces between each function. The "+" key can also be used to expand spaces.

5.50.8 Reduces Size

Reduces spaces between each function. The "-" key can also be used to reduce spaces.

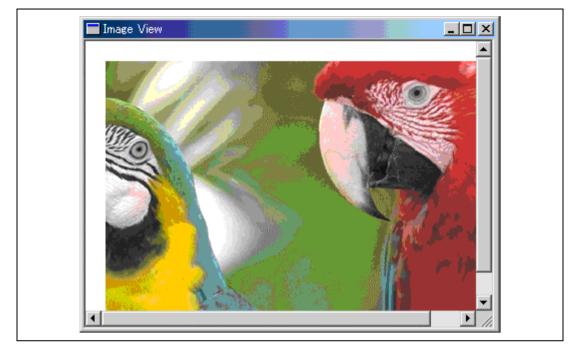


Figure 5.72 Image View Window

Displays the contents of memory in an image. The method used to display the image can be specified in the **Image Properties** dialog box.

Double-clicking within the window displays information, in the Pixel Information dialog box, on the pixel on which the mouse pointer is located.

Right-clicking on the mouse within the window displays a popup menu. Supported menu options are described in the subsequent sections.

5.51.1 Auto Refresh

When this menu is checked, the contents of the window is automatically updated when the user program is executed.

5.51.2 Refresh Now

Updates the contents of the window.

5.51.3 Property...

Displays the Image Property dialog box and specifies the format of the displayed image.

5.52 Image Properties Dialog Box

C MONOC	HROME	<u>B</u> it/Pixel:	24bit	-
RGB GBR		Sampline:	4:4:4	-
C YCbCr		<u>F</u> ormat:	chunky	-
Buffer Infomatio	n:			
Data <u>A</u> ddress:	H'00000000)		-
Palette Address	H'00000000)	[-
Width/Height \$	Size:	Buffer	Sino:	7
110 10 (5: 0	1.11	- Duller	0126.	
Width(Pixel):	3		H'00000000 Byt	e
<u>W</u> idth(Pixel): <u>H</u> eight(Pixel):			H'00000000 Byt	e
Height(Pixel):	n:	0	H'00000000 Byt	e
Height(Pixel): View Information	r	Position:		
Height(Pixel): View Information View Mode: Full Size		0 Position: X Position:		
Height(Pixel): View Information View Mode: — Full Size Part Size		0 Position: ⊻ Position: ⊻ Position:		
Height(Pixel): View Information View Mode: — ○ Full Size ○ Part Size ○ Start Position:		0 Position: X Position: Y Position:	e:	
Height(Pixel): View Information View Mode: — Full Size Part Size		0 Position: ⊻ Position: ⊻ Position:	e: (

Figure 5.73 Image Properties Dialog Box

Specifies the method to display the **Image** window.

[Color Information]	Specifies the color infor	Specifies the color information of the image to be displayed.				
[Mode]	Specifies the format. [MONOCHROME] [RGB] [BGR] [YCbCr]	Displays in black and white. Displayed in R (red), G (green), and B (blue) Displayed in B (blue), G (green), and R (red) Displayed by Y (brightness), Cb (color difference in blue), and Cr (color difference in red)				
[Bit/Pixel]	Specifies Bit/Pixel according to the selected [Mode]. (Valid when RGB/BGR is selected)					
[Sampling]	Specifies the format of	sampling. (Valid when YCbCr is selected)				
[Format]	Specifies Chunky/plana	r. (Valid when YCbCr is selected)				
[Buffer Information]	Specifies the area to sto	Specifies the area to store data, size, and the address of the palette.				
[Data Address]	Specifies the start address of memory where image data is be displayed. (Displayed in hexadecimal)					
[Palette Address]	Specifies the start address of memory of the color palette data. (Displayed in hexadecimal) (Valid when 8Bit is selected for R BGR)					
[Width/Height Size	e] Specifies the width and [Width (Pixel)] [Height (Pixel)]	Specifies the width of the image. (When a prefix is omitted, the values are input and displayed in decimal.) Specifies the height of the image.				
	[Buffer Size]	(When a prefix is omitted, the values are input and displayed in decimal.) Displays the buffer size of the image from the width and height (Displayed in hexadecimal)				
[View Information]	Specifies the location, s displayed among the en	ize, and the data start location of the part tire image.				

[View Mode]	Specifies the entire/part	t to be displayed in the image.
	[Full Size]	Displays the entire image.
	[Part Size]	Displays part of the image.
[Start Position]		
	[Top]	Displays data from the upper left.
	[Bottom]	Displays data from the lower left.
[Position]	Specifies the start posit	ion of the image where part of the image is
	to be displayed. This is	valid when [Part Size] is selected.
	[X Position]	Specifies the X axis of the start location.
		(When a prefix is omitted, the values are
		input and displayed in decimal.)
	[Y Position]	Specifies the Y axis of the start location.
		(When a prefix is omitted, the values are
		input and displayed in decimal.)
[Width/Height Size]	Specifies the height and	l width of the image to be displayed partly.
	[Width(Pixel)]	Displays the width of display.
		(When a prefix is omitted, the values are
		input and displayed in decimal.)
	[Height(Pixel)]	Displays the height of display.
		(When a prefix is omitted, the values are
		input and displayed in decimal.)

5.53 Pixel Information Dialog Box

Pixel Information	<u>? ×</u>
Color mode:	RGB 24bit
Pixel:	R:101,G:134,B:58
Position X	325 Y: 251
Buffer Size Width:	640 Height: 480
Image Size Width:	384 Height: 256
	<u>(OK</u>]

The cursor location displays pixel information.

[Color Mode]	Displays the format of the image.
[]	

[Pixel]	Displays col	or information of the cursor location. (Displayed in decimal)
[Position]	Displays the [X] [Y]	cursor location in X and Y axis. (Displayed in decimal) Displays the X axis of the cursor location. Displays the Y axis of the cursor location.
[Buffer Size]	Displays the [Width] [Height]	buffer size. (Displayed in decimal) Displays the buffer width. Displays the buffer height.
[Image Size]	Displays the [Width] [Height]	width and height of the display. (Displayed in decimal) Displays the width. Displays the height.

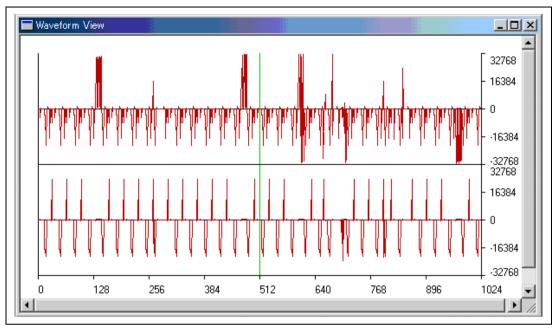


Figure 5.75 Waveform Window

Displays memory view in waveform. The X axis shows the number of sampling data and the Y axis shows the sampling value.

Clicking the right mouse button on the **Waveform View** window displays the popup menus. The menus include the following options.

5.54.1 Auto Refresh

Updates the display when instruction execution has stopped.

5.54.2 Refresh Now

Updates the display.

5.54.3 Zoom In

The horizontal axis is enlarged and displayed.

5.54.4 Zoom Out

The horizontal axis is reduced and displayed.

5.54.5 Reset Zoom

The size is returned to its original size.

5.54.6 Zoom Magnification

The zoom magnification can be selected from 2, 4, or 8 in the submenu.

5.54.7 Scale

The size of the X axis can be selected from 128, 256, or 512 Pixel from the submenu.

5.54.8 Clear Cursor

The cursor display is cleared.

5.54.9 Sample Information...

Displays the **Sample Information** dialog box. The sampling information is displayed.

5.54.10 Property...

Displays the Waveform Property dialog box. The waveform data format can be specified.

5.55 Waveform Properties Dialog Box

Waveform Properties		<u>?×</u>
Data <u>A</u> ddress:	H'0000000	•
Data <u>S</u> ize:	16Bit	-
Channel: C Mono	€ Stereo	
<u>B</u> uffer Size:	H'00001000	•
ОК	Cancel	

Figure 5.76 Waveform Properties Dialog Box

Specifies the waveform format. The following items can be specified.

- [Data Address] Specifies the start address of data in memory. (Displayed in hexadecimal)
- [Data Size] Selects 8Bit or 16Bit.
- [Channel] Specifies Mono or Stereo.
- [Buffer Size] Specifies the buffer size of data. (Displayed in hexadecimal)

5.56 Sample Information Dialog Box

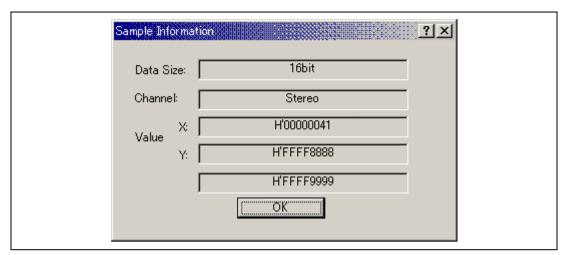


Figure 5.77 Sample Information Dialog Box

Displays the sampling information of the cursor location in the Waveform View window. The following information is displayed.

[Data Size] Displays 8bit or 16bit.

[Channel] Displays the data channel.

[Value] [X] Displays the X axis of cursor location.

[Y] Displays the Y axis of cursor location (displays Y axes for both the upper and lower plots when Stereo is selected).

Times	Pass	Address	Assembler Source	<u>▲</u>
0	-	00000000	MOV.L R0,@(H'0	_
0		00000002	MOV.B RO,@RO	
0	-	00000004	CMP/EQ RO,RO	
0	-	00000006	.DATA.W H'0000	
0	-	00000008	.DATA.W H'0000	
0	-	A0000000 A	.DATA.W H'0000	
0	-	0000000C	.DATA.W H'0000	
0	-	000000E	.DATA.W H'0000	
0	-	00000018	.DATA.W H'0000	
0	-	0000001A	.DATA.W H'0000	
0	-	0000001E	.DATA.W H'0000	
0	-	00000020	.DATA.W H'0000	
0	-	00000022	.DATA.W H'0000	
0	-	00000026	.DATA.W H'0000	
0		00000028	.DATA.W H'0000	-

Figure 5.78 Coverage Window

Displays the instruction execution information in C/C++ and assembly-language level. Note that the conditions to acquire instruction execution information can be set through the **Open Coverage** dialog box or **Coverage Range** dialog box. When the **Coverage** window is closed, the settings of the acquired instruction execution information and the conditions to acquire information will be cleared.

The items to be displayed are as follows:

[Times]	Number of times instruction was executed
[Pass]	Conditions to execute condition branch instructions T: Branches because the condition is satisfied F: Does not branch because the condition is not satisfied
[Address]	Instruction Address
[Assembler]	Disassembled and then displayed.
[Source]	C/C++ or assembly-language source

Clicking the right mouse button on the **Coverage** window displays the popup menus. The menus include the following options.

5.57.1 View Source

Displays the **Source** window corresponding to the cursor location on the **Coverage** window.

5.57.2 Go to Address...

Modifies the address displayed in the Coverage window.

5.57.3 Set Range...

Launches the **Coverage Range** dialog box, allowing the user to specify the conditions to acquire instruction execution information.

5.57.4 Enable Coverage

Sets whether to enable or disable the acquisition of instruction execution information.

5.57.5 Clear Data...

Clears the acquired instruction execution information.

5.57.6 Save Data...

Launches the Save Data dialog box, allowing the user to save the coverage information in a file.

5.57.7 Load Data...

Launches the **Load Data** dialog box, allowing the user to load the coverage information from a file.

5.57.8 Refresh

Displays the latest instruction execution information.

5.57.9 Lock Refresh

Lock or unlock the refresh of coverage information. Note that when [Lock Refresh] is [On], window updates only the Times and Pass column after program execution.

5.58 Open Coverage Dialog Box

Open Coverage	? ×
Optione New Window Start Address: Fnd Address: Open a recent coverage file Fnd Browse to another coverage file	Cancel

Figure 5.79 Open Coverage Dialog Box

Clicking the coverage icon opens the **Open Coverage** dialog box.

[New Window], [Open a recent coverage file], or [Browse to another coverage file] can be selected. When [New Window] is selected, the start and end addresses of the coverage information range to be displayed must be specified as follows:

[Start Address]	Start address of coverage information display (When a prefix is omitted, the values is input in hexadecimal.)
[End Address]	End address of coverage information display (When a prefix is omitted, the value is input in hexadecimal.)

When **[Open a recent coverage file]** is selected, up to four recent files that have been saved are displayed.

When [Browse to another coverage file] is selected, a file open dialog box will appear to prompt the user to select a coverage information file.

5.59 Go To Address Dialog Box

Go To Address	? ×
<u>A</u> ddress	<u>O</u> K
H00000800	<u>C</u> ancel

Figure 5.80 Go To Address Dialog Box

Modifies the address displayed in the Coverage window.

5.60 Coverage Range Dialog Box

Coverage Range		<u>?×</u>
<u>S</u> tart Address:	H'00000000	<u>O</u> K
<u>E</u> nd Address:	H'00000FFF	<u>C</u> ancel

Figure 5.81 Coverage Range Dialog Box

Specifies the condition to acquire instruction execution information. The following items can be specified.

[Start Address] Start address (When a prefix is omitted, the value is input in hexadecimal.)

[End Address] End address (When a prefix is omitted, the value is input in hexadecimal.)

Save Data		? ×
<u>F</u> ile name: <mark>file1.cov</mark>	▶ Browsept OK Cance	1

Figure 5.82 Save Data Dialog Box

Specifies the location and name of a coverage information file to be saved. The placeholder or the browse button can be used.

If a file name extension is omitted, .COV is automatically added. If a file name extension other than .COV or .TXT is specified, an error message will be displayed.

5.62 Load Data Dialog Box

Load Data		<u>? ×</u>
<u>F</u> ile name: File1	Browse ₂ .	<u>Q</u> K <u>C</u> ancel

Figure 5.83 Load Data Dialog Box

Specifies the location and name of a coverage information file to be loaded. The placeholder or the browse button can be used.

Only .COV files can be loaded. If a file name extension other than .COV is specified, an error message will be displayed.

5.63 Confirmation Request Dialog Box

Figure 5.84 Confirmation Request Dialog Box

When [Clear Data] or [Set Range...] is clicked or when an attempt is made to close coverage window, the Confirmation Request dialog box will appear.

5.64 Save Coverage Data Dialog Box

Save Coverage Data
Address range: H'00000800 – H'00000850
Yes No To All

Figure 5.85 Save Coverage Data Dialog Box

When **[Save Session]** is selected from the **[File]** menu, the **Save Coverage Data** dialog box will appear, allowing the user to save the coverage window data in separate files or a single file.

When multiple coverage windows are open, the **Save Coverage Data** dialog box will appear for each open coverage window.

Clicking the [Not To All] button close the dialog box without saves the data.

Clicking the [Yes To All] button saves the data of all coverage windows in a single file.

Section 6 Command Lines

Table 6.1 lists the commands.

Table 6.1 Simulator/Debugger Commands

No.	Command Name	Abbreviation	Function
1	!	-	Comment
2	ANALYSIS	AN	Enables or disables performance analysis
3	ANALYSIS_RANGE	AR	Sets or displays performance analysis functions
4	ANALYSIS_RANGE_ DELETE	AD	Deletes a performance analysis range
5	ASSEMBLE	AS	Assembles instructions into memory
6	ASSERT	-	Checks if an expression is true or false
7	BREAKPOINT	BP	Sets a breakpoint at an instruction address
8	BREAK_ACCESS	BA	Specifies a memory range access as a break condition
9	BREAK_CLEAR	BC	Deletes breakpoints
10	BREAK_CYCLE	BCY	Specifies a cycle as a break condition
11	BREAK_DATA	BD	Specifies a memory data value as a break condition
12	BREAK_DISPLAY	BI	Displays a list of breakpoints
13	BREAK_ENABLE	BE	Enables or disables a breakpoint
14	BREAK_REGISTER	BR	Specifies a register data as a break condition
15	BREAK_SEQUENCE	BS	Sets sequential breakpoints
16	CHANGE_CONFIGURA	CC	Sets the current configuration
17	CHANGE_PROJECT	СР	Sets the current project
18	CLOCK_RATE	CKR	Sets a clock rate
19	COVERAGE	CV	Enables or disables coverage measurement
20	COVERAGE_DISPLAY	CVD	Displays coverage information
21	COVERAGE_LOAD	CVL	Loads coverage information
22	COVERAGE_RANGE	CVR	Sets a coverage range
23	COVERAGE_SAVE	CVS	Saves coverage information
24	DEFAULT_OBJECT_FC RMAT	DO	Sets the default object (program) format
25	DISASSEMBLE	DA	Disassembles memory contents
26	ERASE	ER	Clears the Command Line window
27	EVALUATE	EV	Evaluates an expression

Table 6.1 Simulator/Debugger Commands (cont)

No.	Command Name	Abbreviation	n Function
28	FILE_LOAD	FL	Loads an object (program) file
29	FILE_SAVE	FS	Saves memory to a file
30	FILE_VERIFY	FV	Verifies file contents against memory
31	GO	GO	Executes user program
32	GO_RESET	GR	Executes user program from reset vector
33	GO_TILL	GT	Executes user program until temporary breakpoint
34	HALT	HA	Halts the user program
35	INITIALIZE	IN	Initializes the debugging platform
36	LOG	LO	Controls command output logging
37	MAP_DISPLAY	MA	Displays memory mapping
38	MAP_SET	MS	Allocates a memory area
39	MEMORY_DISPLAY	MD	Displays memory contents
40	MEMORY_EDIT	ME	Modifies memory contents
41	MEMORY_FILL	MF	Fills a memory area
42	MEMORY_MOVE	MV	Moves a block of memory
43	MEMORY_TEST	MT	Tests a block of memory
44	OPEN_WORKSPACE	OW	Opens a workspace
45	PROFILE	PR	Enables or disables profile
46	PROFILE_DISPLAY	PD	Displays profile information
47	PROFILE_SAVE	PS	Saves the profile information to file
48	QUIT	QU	Exits HEW
49	RADIX	RA	Sets default input radix
50	REGISTER_DISPLAY	RD	Displays CPU register values
51	REGISTER_SET	RS	Changes CPU register contents
52	RESET	RE	Resets CPU
53	RESPONSE	RS	Sets a window refresh area
54	SLEEP	-	Delays command execution
55	STEP	ST	Steps program (by instructions or source lines)
56	STEP_MODE	SM	Selects the step mode
57	STEP_OUT	SP	Steps out of the current function
58	STEP_OVER	SO	Steps program, not stepping into functions
59	STEP_RATE	SR	Sets or displays rate of stepping
60	STEP_UNIT	SN	Sets the unit of execution

No.	Command Name	Abbreviation	Function
61	SUBMIT	SU	Executes a command file
62	SYMBOL_ADD	SA	Defines a symbol
63	SYMBOL_CLEAR	SC	Deletes a symbol
64	SYMBOL_LOAD	SL	Loads a symbol information file
65	SYMBOL_SAVE	SS	Saves a symbol information file
66	SYMBOL_VIEW	SV	Displays symbols
67	TCL	-	Enables or disables the TCL
68	TRACE	TR	Displays trace information
69	TRACE_ACQUISITION	ТА	Enables or disables trace information acquisition
70	TRACE_SAVE	TV	Outputs trace information into a file
71	TRACE_STATISTIC	TST	Analyzes statistic information

Table 6.1 Simulator/Debugger Commands (cont)

The following describes the syntax of each command.

6.1 !(COMMENT)

Abbreviation: None

Description:

Allows a comment to be entered, useful for documenting log files.

Syntax:

! <text>

Parameter	Туре	Description
<text></text>	Text	Output text

Example:

! Start of test routine	Outputs comment 'Start of test routine' into the Command Line
	window (and to the log file, if logging is active).

6.2 ANALYSIS

Abbreviation: AN

Description:

Enables/disables performance analysis. Counts are not automatically reset before running.

Syntax:

an [<state>]

Parameter	Туре	Description
None		Displays the performance analysis state
<state></state>	Keyword	Enables or disables performance analysis
	Enable	Enables performance analysis
	Disable	Disables performance analysis
	Reset	Resets performance analysis counts

Examples:

ANALYSIS	Displays performance analysis state.
AN enable	Enables performance analysis.
AN disable	Disables performance analysis.
AN reset	Resets performance analysis counts.

6.3 ANALYSIS_RANGE

Abbreviation: AR

Description:

Sets a function for which the performance analysis is provided, or displays a function for which the performance analysis is provided without parameters.

Syntax:

```
ar [<function name>]
```

Parameter	Туре	Description
None		Displays all functions for which the performance analysis is provided
<function name=""></function>	Character string	Name of function for which the performance analysis is provided

Examples:

ANALYSIS_RANGE sort	Provides the performance analysis for the function sort.
AR	Displays the function for which the performance analysis
	is provided.

6.4 ANALYSIS_RANGE_DELETE

Abbreviation: AD

Description:

Deletes the specified function, or all functions if no parameters are specified (it does **not** ask for confirmation).

Syntax:

ad [<index>]

Parameter	Туре	Description
None		Deletes all functions
<index></index>	Numeric	Index number of function to delete

Examples:

ANALYSIS_RANGE_DELETE 6	Deletes the function with index number 6.
AD	Deletes all functions.

6.5 ASSEMBLE

Abbreviation: AS

Description:

Assembles mnemonics and writes them into memory. In assembly mode, '.' exits, '^' steps back a byte, the ENTER key steps forward a byte.

Syntax:

as <address>

Parameter	Туре	Description
<address></address>	Numeric	Address at which to start assembling

Example:

AS H'1000 Starts assembling from H'1000.

6.6 ASSERT

Abbreviation: None

Description:

Checks if an expression is true or false. It can be used to terminate the batch file when the expression is false. If the expression is false, an error is returned. This command can be used to write test harnesses for subroutines.

Syntax:

assert <expression>

Parameter	Туре	Description
<expression></expression>	Expression	Expression to be checked

Example:

ASSERT $\#R0 == 0x100$	Returns an error if R0 does not contain 0x100.
------------------------	--

6.7 BREAKPOINT

Abbreviation: BP

Description:

Specifies a breakpoint at the address where the instruction is written.

Syntax:

bp <address> [<count>] [<Action>]

Parameter	Туре	Description
<address></address>	Numeric	The address of a breakpoint
<count></count>	Numeric	The number of times the instruction at the specified address is to be fetched (1 to 16383, default = 1).
<action></action>	Keyword	Action taken when the conditions are satisfied (optional, default = Stop)
	Stop (P)	Halts the execution of the user program
	Input (I)	Inputs (saves) data to a file
	Output (O)	Outputs (reads) data from a file
	Interrupt (T)	Initiates a pseudo-interrupt

Format:

The method of defining each Action are as follows.

Stop

Input <filename> <addr> <size> <count>

Parameter	Туре	Description
<filename></filename>	Character string	The name of the file from which data is input
<addr></addr>	Numeric	Address to which the data is read.
<size></size>	Numeric	Size per data packet (1/2/4/8)
<count></count>	Numeric	Number of data packets (H'01 to H'FFFFFFFF)

Output <filename> <addr> <size> <count> [<option>]

Parameter	Туре	Description
<filename></filename>	Character string	The name of the file to which data is saved

	Address from which data is output
Numeric	Size per data packet (1/2/4/8)
Numeric	Number of data packets (H'01 to H'FFFFFFF)
Keyword	Specifies a new file or appends to an existing file.
	(optional, makes a new file when abbreviated.)
А	Adds the data to the existing file.
	Numeric Keyword

Interrupt <interrupt type1> <interrupt type2> [<priority>]

Parameter	Туре	Description
<interrupt type1=""></interrupt>	Numeric	Type of interrupt
		SH-1, SH-2, SH-DSP series Interrupt vector number (0 to FF)
		SH-3, SH-4, SH3-DSP series INTEVT (0 to H'FFF)
<interrupt type2=""></interrupt>	Numeric	Value of INTEVT2 (0 to H'FFF)
<priority></priority>	Numeric	Interrupt priority (optional, default = 0)
		0 to 17

Note: <interrupt type2> can only be specified for the SH3-DSP series.

Examples:

BREAKPOINT 0 2	A break occurs when an attempt is made to execute the instruction at address H'0 for the second time.
BP C0 Input in.dat	Eight two-byte data fields are written from file "in.dat" to H'100 when
100 2 8	an attempt is made to execute the instruction at address H'CO.

6.8 BREAK_ACCESS

Abbreviation: BA

Description:

Specifies a memory range as a break condition

Syntax:

```
ba <start address> [<end address>] [<mode>] [<Action>]
```

Parameter	Туре	Description
<start address=""></start>	Numeric	The start address of a breakpoint
<end address=""></end>	Numeric	The end address of a breakpoint (optional, default = <start address="">)</start>
<mode></mode>	Keyword	Access type (optional, default = RW).
	R	A break occurs when the specified range is read.
	W	A break occurs when the specified range is written to.
	RW	A break occurs when the specified range is read or written to.
<action></action>	Keyword	Action taken when the conditions are satisfied (optional, default = Stop)
	Stop (P)	Halts the execution of the user program
	Input (I)	Inputs (saves) data to a file
	Output (O)	Outputs (reads) data from a file
	Interrupt (T)	Initiates a pseudo-interrupt

Format:

The method of defining each Action are as follows.

Stop

Input <filename> <addr> <size> <count>

Parameter	Туре	Description
<filename></filename>	Character string	The name of the file from which data is input
<addr></addr>	Numeric	Address to which the data is read.
<size></size>	Numeric	Size per data packet (1/2/4/8)
<count></count>	Numeric	Number of data packets (H'01 to H'FFFFFFFF)

Output <filename> <addr> <size> <count> [<option>]

Parameter	Туре	Description
<filename></filename>	Character string	The name of the file to which data is saved
<addr></addr>	Numeric	Address from which data is output
<size></size>	Numeric	Size per data packet (1/2/4/8)
<count></count>	Numeric	Number of data packets (H'01 to H'FFFFFFFF)
<option></option>	Keyword	Specifies a new file or appends to an existing file.
		(optional, makes a new file when abbreviated.)
	А	Adds the data to the existing file.

Interrupt <interrupt type1> <interrupt type2> [<priority>]

Parameter	Туре	Description
<interrupt type1=""></interrupt>	Numeric	Type of interrupt
		 SH-1, SH-2, SH2-DSP series interrupt vector number (0 to H'FF)
		• SH-3, SH-4, SH3-DSP series INTEVT (0 to H'FFF)
<interrupt type2=""></interrupt>	Numeric	Value of INTEVT2 (0 to H'FFF)
<priority></priority>	Numeric	Interrupt priority (optional, default = 0)
		0 to 17

Note: <interrupt type2> can only be specified for the SH3-DSP series.

Examples:

BREAK_ACCESS 0 1000 W	A break occurs when the specified range from address H'0 to address H'1000 is written to.
BA FFFF	A break occurs when address H'FFFF is accessed.

Note: For the SH3-DSP series, specify values within the range H'A5000000 to H'A501FFFF (X and Y memory virtual addresses, corresponding to physical addresses H'05000000 to H'0501FFFF) as the start end addresses for X or Y memory accesses by the MOVX or MOVY instruction.

6.9 BREAK_CLEAR

Abbreviation: BC

Description:

Deletes breakpoints.

Syntax:

bc <index>

Parameter	Туре	Description
<index></index>	Numeric	Index of the breakpoint to be canceled. If the index is omitted, all breakpoints are deleted.

Examples:

BREAK_CLEAR 0	The first breakpoint is deleted.
BC	All breakpoints are deleted.

6.10 BREAK_CYCLE

Abbreviation: BCY

Description:

Specifies the number of cycles as a break condition.

Syntax:

by <cycle> [<count>] [<Action>]

Parameter	Туре	Description
<cycle></cycle>	Numeric	The condition matching the number of cycles <cycle>×n.</cycle>
<count></count>	Keyword	The condition satisfying the number of times. (optional, default =ALL)
	All	Break condition is satisfied every time the condition is matched.
	Numeric	1 to H'FFFF
		Break condition is satisfied only when it matches the specified number of times.

<action></action>	Keyword	Action taken when the conditions are satisfied (optional, default = Stop)
	Stop (P)	Halts the execution of the user program
	Input (I)	Inputs(saves) data to a file
	Output (O)	Outputs(reads) data from a file
	Interrupt (T)	Initiates a pseudo-interrupt

Format:

The method of defining each Action are as follows.

Stop

Input <filename> <addr> <size> <count>

Parameter	Туре	Description
<filename></filename>	Character string	The name of the file from which data is input
<addr></addr>	Numeric	Address to which the data is read.
<size></size>	Numeric	Size per data packet (1/2/4/8)
<count></count>	Numeric	Number of data packets (H'01 to H'FFFFFFFF)

Output <filename> <addr> <size> <count> [<option>]

Parameter	Туре	Description
<filename></filename>	Character string	The name of the file to which data is saved
<addr></addr>	Numeric	Address from which data is output
<size></size>	Numeric	Size per data packet (1/2/4/8)
<count></count>	Numeric	Number of data packets (H'01 to H'FFFFFFF)
<option></option>	Keyword	Specifies a new file or appends to an existing file.
		(optional, makes a new file when abbreviated.)
	A	Adds the data to the existing file.

Parameter	Туре	Description
<interrupt type1=""></interrupt>	Numeric	Type of interrupt
		 SH-1, SH-2, SH2-DSP series interrupt vector number (0 to H'FF)
		• SH-3, SH-4, SH3-DSP series INTEVT (0 to H'FFF)
<interrupt type2=""></interrupt>	Numeric	Value of INTEVT2 (0 to H'FFF)
<priority></priority>	Numeric	Interrupt priority (optional, default = 0)
		0 to 17

Interrupt <interrupt type1> <interrupt type2> [<priority>]

Note: <interrupt type2> can only be specified for the SH3-DSP series.

Examples:

BREAK_CYCLE 1000 20	Specifies breaks to occur H'20 times in every H'1000 cycles.
BCY 5000	Specifies a break to occur in every H'5000 cycles.

6.11 BREAK_DATA

Abbreviation: BD

Description:

Specifies a memory data value as a break condition.

Syntax:

bd <address> <data> [<size>] [<option>] [<Action>]

Parameter	Туре	Description
<address></address>	Numeric	The address where the break condition is checked.
<data></data>	Numeric	Access data
<size></size>	Keyword	Size (optional, default = L).
	byte	Byte size
	word	Word size
	longword	Longword size
	single	Single-precision floating-point size
	double	Double-precision floating-point size

<option></option>	Keyword	Match or mismatch of data. The default is EQ.
	EQ	A break occurs when the data matches the specified value.
	NE	A break occurs when the data does not match the specified value.
<action></action>	Keyword	Action taken when the conditions are satisfied (optional, default = Stop)
	Stop (P)	Halts the execution of the user program
	Input (I)	Inputs(saves) data to a file
	Output (O)	Outputs(reads) data from a file
	Interrupt (T)	Initiates a pseudo-interrupt

Format:

The method of defining each Action are as follows.

Stop

Input <filename> <addr> <size> <count>

Parameter	Туре	Description
<filename></filename>	Character string	The name of the file from which data is input
<addr></addr>	Numeric	Address to which the data is read.
<size></size>	Numeric	Size per data packet (1/2/4/8)
<count></count>	Numeric	Number of data packets (H'01 to H'FFFFFFFF)

Output <filename> <addr> <size> <count> [<option>]

Parameter	Туре	Description
<filename></filename>	Character string	The name of the file to which data is saved
<addr></addr>	Numeric	Address from which data is output
<size></size>	Numeric	Size per data packet (1/2/4/8)
<count></count>	Numeric	Number of data packets (H'01 to H'FFFFFFFF)
<option></option>	Keyword	Specifies a new file or appends to an existing file.
		(optional, makes a new file when abbreviated.)
	А	Adds the data to the existing file.

Parameter	Туре	Description
<interrupt type1=""></interrupt>	Numeric	Type of interrupt
		 SH-1, SH-2, SH2-DSP series interrupt vector number (0 to FF)
		• SH-3, SH-4, SH3-DSP series INTEVT (0 to H'FFF)
<interrupt type2=""></interrupt>	Numeric	Value of INTEVT2 (0 to H'FFF)
<priority></priority>	Numeric	Interrupt priority (optional, default = 0)
		0 to 17

Interrupt <interrupt type1> <interrupt type2> [<priority>]

Note: <interrupt type2> can only be specified for the SH3-DSP series.

Examples:

BREAK_DATA 0 100 L EQ	A break occurs when H'100 is written to memory address H'0 in longword.
BD C0 FF B NE	A break occurs when a value other than H'FF is written to memory address H'C0 in byte.
BD 4000 1000	A break occurs when H'1000 is written to memory address H'4000 in longword.

Note: For the SH3-DSP series, specify values within the range H'A5000000 to H'A501FFFF (X and Y memory virtual addresses, corresponding to physical addresses H'05000000 to H'0501FFFF) as the start end addresses for X or Y memory accesses by the MOVX or MOVY instruction.

6.12 BREAK_DISPLAY

Abbreviation: BI

Description:

Displays a list of breakpoints.

Syntax:

bi

Parameter	Туре	Description
None		Displays a list of breakpoints

BREAK_DISPLAY	A list of breakpoints is displayed.
BI	A list of breakpoints is displayed.

6.13 BREAK_ENABLE

Abbreviation: BE

Description:

Enables or disables a breakpoint.

Syntax:

be <flag> [<index>]

Parameter	Туре	Description
<flag></flag>	Keyword	Enables or disables a breakpoint
	E	Enable
	D	Disable
<index></index>	Numeric	Index of the breakpoint to be canceled. If the index is omitted, all breakpoints are deleted.

Examples:

BREAK_ENABLE D 0	The first breakpoint is disabled.
BE E	All breakpoints are enabled.

6.14 BREAK_REGISTER

Abbreviation: BR

Description:

Specifies a register data as a break condition

Syntax:

Parameter	Туре	Description
<register></register>	Character string	Register name.
<data></data>	Numeric	Access data.
<size></size>	Keyword	Access size. If no size is specified, the size of the specified register is assumed. Note that when data is specified, the size must not be omitted.
	byte	Byte size
	word	Word size
	longword	Longword size
	single	Single-precision floating-point size
	double	Double-precision floating-point size
<option></option>	Keyword	Match or mismatch of data. The default is EQ.
	EQ	A break occurs when the data matches the specified value.
	NE	A break occurs when the data does not match the specified value.
<action></action>	Keyword	Action taken when the conditions are satisfied (optional, default = Stop)
	Stop (P)	Halts the execution of the user program
	Input (I)	Inputs(saves) data to a file
	Output (O)	Outputs(reads) data from a file
	Interrupt (T)	Initiates a pseudo-interrupt

br <register name> [<data> <size>] [<option>] [<Action>]

Format:

The method of defining each Action are as follows.

Stop

Input <filename> <addr> <size> <count>

Parameter	Туре	Description
<filename></filename>	Character string	The name of the file from which data is input
<addr></addr>	Numeric	Address to which the data is read.
<size></size>	Numeric	Size per data packet (1/2/4/8)
<count></count>	Numeric	Number of data packets (H'01 to H'FFFFFFF)

Parameter	Туре	Description
<filename></filename>	Character string	The name of the file to which data is saved
<addr></addr>	Numeric	Address from which data is output
<size></size>	Numeric	Size per data packet (1/2/4/8)
<count></count>	Numeric	Number of data packets (H'01 to H'FFFFFFF)
<option></option>	Keyword	Specifies a new file or appends to an existing file.
		(optional, makes a new file when abbreviated.)
	A	Adds the data to the existing file.

Output <filename> <addr> <size> <count> [<option>]

Interrupt <interrupt type1> <interrupt type2> [<priority>]

Parameter	Туре	Description	
<interrupt type1=""></interrupt>	Numeric	Type of interrupt	
		 SH-1, SH-2, SH2-DSP series interrupt vector number (0 to H'FF) 	
		• SH-3, SH-4, SH3-DSP series INTEVT (0 to H'FFF)	
<interrupt type2=""></interrupt>	Numeric	Value of INTEVT2 (0 to H'FFF)	
<priority></priority>	Numeric	Interrupt priority (optional, default = 0)	
		0 to 17	

Note: <interrupt type2> can only be specified for the SH3-DSP series.

Examples:

BREAK_REGISTER R0 FFFF W EQ	A break occurs when the lower two bytes of the R0 register change to H'FFFF.
BR R10	A break occurs when the R10 register is written to.

6.15 BREAK_SEQUENCE

Abbreviation: BS

Description:

Sets sequential breakpoints

Syntax:

bs <address1> [<address2> [<address 3> [...]]] [<Action>]

Parameter	Туре	Description	
<address1> - <address8></address8></address1>	Numeric	Addresses of sequential breakpoints. Up to eight addresses can be specified.	
<action></action>	Keyword	Action taken when the conditions are satisfied (optional, default = Stop)	
	Stop (P)	Halts the execution of the user program	
	Input (I)	Inputs(saves) data to a file	
	Output (O)	Outputs(reads) data from a file	
	Interrupt (T)	Initiates a pseudo-interrupt	

Format:

The method of defining each Action are as follows.

Stop

Input <filename> <addr> <size> <count>

Parameter	Туре	Description
<filename></filename>	Character string	The name of the file from which data is input
<addr></addr>	Numeric	Address to which the data is read.
<size></size>	Numeric	Size per data packet (1/2/4/8)
<count></count>	Numeric	Number of data packets (H'01 to H'FFFFFFFF)

Output <filename> <addr> <size> <count> [<option>]

Parameter	Туре	Description
<filename></filename>	Character string	The name of the file to which data is saved
<addr></addr>	Numeric	Address from which data is output
<size></size>	Numeric	Size per data packet (1/2/4/8)
<count></count>	Numeric	Number of data packets (H'01 to H'FFFFFFFF)
<option></option>	Keyword	Specifies a new file or appends to an existing file.
		(optional, makes a new file when abbreviated.)
	А	Adds the data to the existing file.

Interrupt <interrupt type1> <interrupt type2> [<priority>]

Parameter	Туре	Description	
<interrupt type1=""></interrupt>	Numeric	Type of interrupt	
		 SH-1, SH-2, SH-DSP series interrupt vector number (0 to H'FF) 	
		• SH-3, SH-4, SH3-DSP series INTEVT (0 to H'FFF)	
<interrupt type2=""></interrupt>	Numeric	Value of INTEVT2 (0 to H'FFF)	
<priority></priority>	Numeric	Interrupt priority (optional, default = 0)	
		0 to 17	

Note: <interrupt type2> can only be specified for the SH3-DSP series.

Examples:

BREAK_SEQUENCE 1000 2000	A break occurs when addresses H'1000 and H'2000 are passed in this order.
BS 1000	A break occurs when address H'1000 is executed.

6.16 **CHANGE_CONFIGURATION**

Abbreviation: CC

Description:

Sets the current configuration.

Syntax:

cc <config name>

Parameter	Туре	Description
<config name=""></config>	Character string	Configuration name

Example:

CC Debug Sets the current configuration to Debug.

6.17 CHANGE_PROJECT

Abbreviation: CP

Description:

Sets the current project.

Syntax:

cp <project name>

Parameter	Туре	Description
<project name=""></project>	Character string	Project name

Example:

CP PROJ2

Sets the current project to PROJ2.

6.18 CLOCK_RATE

Abbreviation: CKR

Description:

Sets the internal/external clock rate. This command can only be used in the SH-4 series.

Syntax:

ckr [<rate>]

Parameter	Туре	Description
None		Displays the clock rate.
<rate></rate>	Numeric	When the external clock rate is 1, the internal clock rate is 1 to 16. (default = 1). However, default is 3 only for SH-4 with BSC.

Example:

6.19 COVERAGE

Abbreviation: CV

Description:

Enables or disables the coverage range measurement or resets coverage information.

Syntax:

cv [<state>]

Parameter	Туре	Description
none		Displays coverage state.
<state></state>	enable	Enables coverage measurement.
	disable	Disables coverage measurement.
	reset	Resets result of coverage measurement.

Examples:

COVERAGE	Displays coverage state.
CV enable	Enables coverage measurement.
CV r	Resets result of coverage measurement.

6.20 COVERAGE_DISPLAY

Abbreviation: CVD

Description:

Displays coverage information.

Syntax:

cvd

Parameter	Туре	Description	
none		Displays coverage information.	

Example:

COVERAGE_DISPLAY Displays coverage information.

6.21 COVERAGE_LOAD

Abbreviation: CVL

Description:

Loads the coverage information from a .COV file.

If a wrong file format is specified or the specified file is not found, a warning message will be displayed.

Syntax:

cvl <filename>

Parameter	Туре	Description
filename	Character string	File name

Examples:

COVERAGE_LOAD TEST	Loads the coverage information from the TEST.COV file.
CLV COVERAGE.COV	Loads the coverage information from the COVERAGE.COV file.

6.22 COVERAGE_RANGE

Abbreviation: CVR

Description:

Sets the coverage range or displays the range of coverage measurement without parameters.

Syntax:

cvr [<start> <end>]

Parameter	Туре	Description
none		Displays the coverage measurement range.
<start></start>	Numeric	Start address of the coverage measurement range.
<end></end>	Numeric	End address of the coverage measurement range.

Examples:

COVERAGE_RANGE	Measures the coverage of addresses between H'1000 and
H'1000 H'10FF	H'10FF.
CVR	Displays the range of coverage measurement.

6.23 COVERAGE_SAVE

Abbreviation: CVS

Description:

Saves the coverage information in a .COV or .TXT file. If a wrong file extension is specified, an error message will be displayed.

Syntax:

cvs <filename>

Parameter	Туре	Description	
filename	Character string	File name	
Examples:			

COVERAGE_SAVE TEST	Saves the coverage information in the TEST.COV file.
CVS COVERAGE.COV	Saves the coverage information in the COVERAGE.COV file.

6.24 DEFAULT_OBJECT_FORMAT

Abbreviation: DO

Description:

Sets the default format for loading object (program) files. The format set with this command is only valid when the format specification is omitted from the FILE_LOAD command.

Syntax:

do [<format>]

Parameter	Туре	Description	
none		Displays the default format settings.	
<format></format>	Keyword	Object format	
	Binary	Binary type	
	Elf/Dwarf2	Elf/Dwarf2 type	
	IntelHex	Intel-Hex type	
	S-Record	S type	

Example:

DEFAULT_OBJECT_FORMAT Displays the default format settings.

DO binary

Sets the default format to binary .

6.25 DISASSEMBLE

Abbreviation: DA

Description:

Disassembles memory contents to assembly-language code. The display of disassembled memory is fully symbolic.

Syntax:

da <address> [<length>]

Parameter	Туре	Description
<address></address>	Numeric	Start address
<length></length>	Numeric	Number of instructions (optional, default = 16)

Examples:

DISASSEMBLE H'100 5	Disassembles 5 lines of code starting at H'100.
DA H'3E00 20	Disassembles 20 lines of code starting at H'3E00.

6.26 ERASE

Abbreviation: ER

Description:

Clears the Command Line window

Syntax:

er

Parameter	Туре	Description
none		Clears the Command Line window

Example:

ER Clears the **Command Line** window.

6.27 EVALUATE

Abbreviation: EV

Description:

Provides a calculator function, evaluating simple and complex expressions, with parentheses, mixed radices, and symbols. All operators have the same priority but parentheses may be used to change the order of evaluation. The operators have the same meaning as in C/C++. Expressions can also be used in any command where a number is required. Register names may be used, but must always be prefixed by the '#' character. The result is displayed in hexadecimal, decimal, octal, or binary.

Syntax:

ev <expression>

Parameter	Туре	Description	
<expression></expression>	Expression	Expression to be evaluated	

Valid operators:

&&	logical AND		logical OR	<<	left arithmetic shift	>>	right arithmetic shift
+	addition	-	subtraction	*	multiplication	/	division
%	modulo		bitwise OR	&	bitwise AND	~	bitwise NOT
^	bitwise exclusive OR	!	logical NOT	==	equal to	!=	unequal to
>	greater than	<	less than	>=	greater than or equal to	<=	less than or equal to

Examples:

Result: H'16E D'366 O'556
B'000000000000000000000000101101110
Result: H'121 D'289 O'441
B'000000000000000000000000000000000000

6.28 FILE_LOAD

Abbreviation: FL

Description:

Loads an object code file to memory with the specified offset. Existing symbols are cleared, and the new ones are defined. If an offset is specified this will be added to the symbols. The file extension default is **.MOT**.

Syntax:

fl [<format>] <filename> [<offset>] [<state>]

Parameter	Туре	Description
<format></format>	Keyword	Object format (optional, default = DEFAULT_OBJECT_FORMAT settings)
	Binary	Binary type
	Elf/Dwarf2	Elf/Dwarf2 type
	IntelHex	Intel-Hex type
	S-Record	S type
<filename></filename>	Character string	File name
<offset></offset>	Numeric	Offset to be added to load address (optional, default = 0)
<state></state>	Keyword	Verify flag (optional, default = V)
	V	Verify
	Ν	No verify

Examples:

FILE_LOAD A:\\BINARY\\TESTFILE.A22	Loads Motorola S-Record file "testfile.a22".
FL ANOTHER.MOT H'200	Loads Motorola S-Record file "another.mot" with an offset of H'200 bytes.

6.29 FILE_SAVE

Abbreviation: FS

Description:

Saves the specified memory area data to a file. The user is warned if about to overwrite an existing file. The file extension default is **.MOT**. Symbols are **not** automatically saved.

Syntax:

fs [<format>] <filename> <start> <end>

Parameter	Туре	Description
<format></format>	Keyword	Object format (optional, default = DEFAULT_OBJECT_FORMAT settings)
	Binary	Binary type
	IntelHex	Intel-Hex type
	S-Record	S type
<filename></filename>	Character string	File name
<start></start>	Numeric	Start address
<end></end>	Numeric	End address

FILE_SAVE TESTFILE 0 H'2013	Saves address range 0-H'2013 as Motorola S- Record file "TESTFILE.MOT".
FS D:\\USER\\ANOTHER.A22 H'4000	Saves address range H'4000-H'4FFF as
H'4FFF	Motorola S-Record format file
	"ANOTHER.A22".

6.30 FILE_VERIFY

Abbreviation: FV

Description:

Verifies file contents against memory contents. The file data must be in a Motorola S-Record format. The file extension default is **.MOT**.

Syntax:

fv <filename> [<offset>]

Parameter	Туре	Description
<filename></filename>	Character string	File name
<offset></offset>	Numeric	Offset to be added to file address (optional, default = 0)

FILE_VERIFY A:\\BINARY\\TEST.A22	Verifies Motorola S-Record file "TEST.A22" against memory.
FV ANOTHER 200	Verifies Motorola S-Record file "ANOTHER.MOT" against memory with an offset of H'200 bytes.

6.31 GO

Abbreviation: GO

Description:

Executes object code (the user program). While the user program is executing, the **Performance Analysis** window is updated. While the user system is halted, a PC value is displayed.

Syntax:

go [<state>] [<address>]

Parameter	Туре	Description	
<state></state>	Keyword	Specifies whether or not to continue command processing during user program execution (optional, default = wait)	
	wait	Causes command processing to wait until user program stops	
	continue	Continues command processing during execution	
<address></address>	Numeric	Start address for PC (optional, default = PC value)	

Wait is the default and this causes command processing to wait until user program stops executing.

Continue allows you to continue to enter commands (but they may not work depending on the debugging platform).

Examples:

GO	Executes the user program from the current PC value. Command processing cannot be continued.
GO CONTINUE H'1000	Executes the user program from H'1000. Command processing can be continued.

6.32 GO_RESET

Abbreviation: GR

Description:

Executes the user program starting at the address specified in the reset vector.

While the user program is executing, the Performance Analysis window is updated.

Syntax:

gr [<state>]

Parameter	Туре	Description
<state></state>	Keyword	Specifies whether or not to continue command processing during user program execution (optional, default = wait)
	wait	Causes command processing to wait until user program stops
	continue	Continues command processing during execution

Wait is the default and this causes command processing to wait until user program stops executing.

Continue allows you to continue to enter commands (but they may not work depending on the debugging platform)

Example:

GR Executes the user program starting at the address specified in the reset vector (does not continue command processing).

6.33 GO_TILL

Abbreviation: GT

Description:

Executes the user program from the current PC with temporary breakpoints. This command takes multiple addresses as parameters, and these are used to set temporary PC breakpoints (these breakpoints only exist for the duration of the command).

Syntax:

gt [<state>] <address>...

Parameter	Туре	Description	
<state></state>	Keyword	Specifies whether or not to continue command processing during user program execution (optional, default = wait)	
	wait	Causes command processing to wait until user program stops	
	continue	Continues command processing during execution	
<address></address>	Numeric	Temporary breakpoint address (list)	

Wait is the default and this causes command processing to wait until user program stops executing

Continue allows you to continue to enter commands (but they may not work depending on the debugging platform)

Example:

6.34 HALT

Abbreviation: HA

Description:

Halts the user program. This command can be used after the GO command if the GO command uses continue for option.

Syntax:

ha

Parameter	Туре	Description
none		Halts the user program
Example:		

HA

Halts the user program.

6.35 INITIALIZE

Abbreviation: IN

Description:

Initializes all breakpoints and memory mapping. It also initializes debugging platform, as if you had reselected the target DLL.

Syntax:

in

Parameter	Туре	Description	
none		Initializes debugging platform.	

Example:

6.36 LOG

Abbreviation: LO

Description:

Controls logging of command output to file. If no parameters are specified, logging status is displayed. If an existing file is specified, you will be warned; if you answer 'No', data will be overwritten to the existing file, otherwise the file will be added. Logging is only supported for the command line interface.

Syntax:

lo [<state>|<filename>]

Parameter	Туре	Description
none		Displays logging status
<state></state>	Keyword	Starts or suspends logging
	+	Starts logging
	-	Suspends logging
<filename></filename>	Numeric	Specifies the logging output file

LOG TEST	Stores the logging in file TEST.
LO -	Suspends logging.
LOG +	Resumes logging.
LOG	Displays logging status

6.37 MAP_DISPLAY

Abbreviation: MA

Description:

Displays memory mapping.

Syntax:

ma

Parameter	Туре	Description
none		Displays the current memory mapping

Example:

MA Displays the current memory mapping.

6.38 MAP_SET

Abbreviation: MS

Description:

Allocates a memory area.

Syntax:

ms <start address> [<end address>] [<mode>]

Parameter	Туре	Description
<start address=""></start>	Numeric	Specified start address
<end address=""></end>	Numeric	Specified end address (optional, default = start address)
<mode></mode>	Keyword	Access type (optional, default = RW)
	R	Read only
	W	Write only
	RW	Displays the current memory mapping

MAP_SET 0000 3FFF RW	A read/write-enabled area is allocated to addresses H'0000 to H'3FFF.
MS 5000	A read/write-enabled area is allocated to address H'5000.

6.39 MEMORY_DISPLAY

Abbreviation: MD

Description:

Displays memory contents.

Syntax:

md <address> [<length>] [<mode>]

Parameter	Туре	Description
<address></address>	Numeric	Start address
<length></length>	Numeric	Length (optional, default = H'100 bytes)
<mode></mode>	Keyword	Display format (optional, default = byte)
	byte	Displays in byte units
	word	Displays in word units (2 bytes)
	long	Displays in longword units (4 bytes)
	ascii	Displays in ASCII codes
	single	Displays in single-precision floating-point format
	double	Displays in double-precision floating-point format

MEMORY_DISPLAY H'C000 H'100 WORD

MEMORY_DISPLAY H'1000 H'FF

Displays H'100 bytes of memory starting at H'C000 in word units

Displays H'FF bytes of memory starting at H'1000 in byte units

6.40 MEMORY_EDIT

Abbreviation: ME

Description:

Allows memory contents to be modified. When editing memory the current location may be modified in a similar way to that described in the **ASSEMBLE** command description.

When editing, '.' exits edit mode, ' $^{\prime}$ goes back one data unit, and blank line goes forward without modification.

Syntax:

me <address> [<mode>] [<state>]

Parameter	Туре	Description
<address></address>	Numeric	Address to edit
<mode></mode>	Keyword	Format (optional, default = byte)
	byte	Edits in byte units
	word	Edits in word units
	long	Edits in longword units
	ascii	Edits in ASCII codes
	single	Edits in the single-precision floating-point format
	double	Edits in the double-precision floating-point format
<state></state>	Keyword	Verify flag (optional, default = V)
	V	Verify
	Ν	No verify

ME H'1000 WORD Modifies memory contents in word units starting from H'1000 (with verification)

6.41 MEMORY_FILL

Abbreviation: MF

Description:

Modifies the contents in the specified memory area to the specified data value.

Syntax:

Parameter	Туре	Description
<start></start>	Numeric	Start address
<end></end>	Numeric	End address
<data></data>	Numeric	Data value
<mode></mode>	Keyword	Data size (optional, default = byte)
	byte	Byte
	word	Word
	long	Longword
	single	Single-precision floating-point
	double	Double-precision floating-point
<state></state>	Keyword	Verify flag (optional, default = V)
	V	Verify
	N	No verify

mf <start> <end> <data> [<mode>] [<state>]

Examples:

MEMORY_FILL H'C000 H'C0FF H'55AA WORD	Modifies memory contents in the range from H'C000 to H'C0FF to word data H'55AA.
MF H'5000 H'7FFF H'21	Modifies memory contents in the range from H'5000 to H'7FFF to data H'21.

6.42 MEMORY_MOVE

Abbreviation: MV

Description:

Moves data in the specified memory area.

Syntax:

mv <start> <end> <dest> [<state>]

Parameter	Туре	Description
<start></start>	Numeric	Start address
<end></end>	Numeric	End address (including this address)
<dest></dest>	Numeric	Destination start address
<state></state>	Keyword	Verify flag (optional, default = V)
	V	Verify
	Ν	No verify

Examples:

MEMORY_MOVE H'1000 H'1FFF H'2000	Moves memory contents in the area from H'1000 to H'1FFF into H'2000.
MV H'FB80 H'FF7F H'3000	Moves memory contents in the area from H'FB80 to H'FF7F into H'3000.

6.43 MEMORY_TEST

Abbreviation: MT

Description:

Performs read, write, and verification testing in the specified address range. The original contents of memory have been replaced by the newly written data. The test will access the memory according to the map settings.

This simulator/debugger does not support the MEMORY_TEST command.

Syntax:

```
mt <start> <end>
```

Parameter	Туре	Description
<start></start>	Numeric	Start address
<end></end>	Numeric	End address (including this address)

MEMORY_TEST H'8000 H'BFFF	Tests from H'8000 to H'BFFF.
MT H'4000 H'5000	Tests from H'4000 to H'5000.

6.44 OPEN_WORKSPACE

Abbreviation: OW

Description:

Opens a workspace.

Syntax:

ow <filename>

Parameter	Туре	Description
filename	Character string	Workspace file name

Example:

OW WKSP.HWS Opens the WKSP.HWS file.

6.45 **PROFILE**

Abbreviation: PR

Description:

Enables, disables or sets the profiler display and resets the profiler information.

Syntax:

pr [<state>]

Parameter	Туре	Description
None		Displays the profiler information.
<state></state>	Keyword	Enables, disables or sets the profiler display and resets the profiler information.
	enable	Enables the profiler.
	tree-off	Enables the profiler but does not trace function calls during profile information acquisition.
	disable	Disables the profiler.
	reset	Resets the profiler information.

PROFILE ENABLE	Enables the profiler.
pr r	Resets the profiler information.

6.46 **PROFILE_DISPLAY**

Abbreviation: PD

Description:

Displays the profiler information.

Syntax:

pd [<mode>] [<state1>] [<state2>] [<count>]

Parameter	Туре	Description
<mode></mode>	Keyword	Specifies the method of displaying the profiler information. (optional, default=list)
	tree	Displays in tree format
	list	Displays in list format
<state1></state1>	Keyword	Specifies whether or not to include child function information in the parent function cycle information. (optional, default=n)
	i	Specifies child function information to be included in the display.
	n	Specifies child function not to be included in the display.
<state2></state2>	Keyword	Specifies whether or not to control displaying functions that are not executed (optional, default=a).
	е	Displays only executed functions.
	а	Displays all functions.
<count></count>	Numeric	Specifies the nesting level for calling functions to be displayed. This can be specified only when the <mode> parameter is 'tree' (optional, default = 16).</mode>

PROFILE_DISPLAY TREE I	Specifies the profiler information to be displayed in tree format and to include child functions.
pd	Specifies the profiler information to be displayed in list format, without child function information.

6.47 **PROFILE_SAVE**

Abbreviation: PS

Description:

Saves the profiler information to a file. The default file extension is **.PRO**.

Syntax:

ps [<filename>]

Parameter	Туре	Description
None		Saves the profiler information on all download modules to files.
<filename></filename>	Character string	Specifies the name of the file to which profiler information is saved.

PROFILE_SAVE PR_INFO Saves profiler information to a file named PR_INFO.PRO.

6.48 QUIT

Abbreviation: QU

Description:

Exits HEW. Closes a log file if it is open.

Syntax:

qu

None	Exits HEW

Example:

QU	Exits HEW.

6.49 RADIX

Abbreviation: RA

Description:

Sets default input radix. If no parameters are specified, the current radix is displayed. Radix can be changed by using B', H', D', or O' before numeric data.

Syntax:

ra [<mode>]

Parameter	Туре	Description	
none		Displays current radix	
<mode></mode>	Keyword	Sets radix to specified type	
	Н	Sets radix to hexadecimal	
	D	Sets radix to decimal	
	0	Sets radix to octal	
	В	Sets radix to binary	

RADIX	Displays the current radix.
RA H	Sets the radix to hexadecimal.

6.50 REGISTER_DISPLAY

Abbreviation: RD

Description:

Displays CPU register contents.

Syntax:

rd

Parameter	Туре	Description
none		Displays all register contents

Example:

RD Displays all register contents

6.51 REGISTER_SET

Abbreviation: RS

Description:

Changes the contents of a register.

Syntax:

rs <register> <value> [<mode>]

Parameter	Туре	Description
<register></register>	Keyword	Register name
<value></value>	Numeric	Register value
<mode></mode>	Keyword	Data size (optional, default = corresponding register size)
	byte	Byte
	word	Word
	long	Longword
	single	Single-precision floating-point
	double	Double-precision floating-point

Examples:

RS PC_StartUp	Sets the program counter to the address defined by the symbol _StartUp	
RS R0 H'1234 WORD	Sets word data H'1234 to R0.	

6.52 RESET

Abbreviation: RE

Description:

Resets the microprocessor. All register values are set to the initial values of the device. Memory mapping and breakpoints are not initialized.

Syntax:

re

Parameter	Туре	Description	
none		Resets the microprocessor	

Example:

RE Resets the microprocessor.

192

6.53 **RESPONSE**

Abbreviation: RP

Description:

Specifies the frequency of the window update.

When a long refresh interval is specified, the simulation becomes faster but the response, such as for the break button, becomes slower. Set a frequency appropriate for the machine used.

Syntax:

rp [<instruction number>]

Parameter	Туре	Description
<instruction number=""></instruction>	Numeric	Specifies the frequency, in number of instruction executions, the window is to update. 1 to 65535 (default=40000)

Example:

RESPONSE 9 Sets the window to refresh every 9 information executions.

6.54 SLEEP

Abbreviation: None

Description:

Delays command execution for a specified period.

Syntax:

sleep <milliseconds>

Parameter	Туре	Description
<milliseconds></milliseconds>	Numeric	Delayed time (ms)

The value must always be specified in decimal.

Example:

SLEEP D'9000 Delays 9 seconds.

6.55 STEP

Abbreviation: ST

Description:

Single step (in source line or instruction units) execution. Performs a specified number of instructions, from current PC. Default is stepping by lines if source debugging is available. Count default is 1.

Syntax:

st [<mode>] [<count>]

Parameter	Туре	Description
<mode></mode>	Keyword	Type of single step (optional)
	instruction	Steps by assembly instruction
	line	Steps by source code line
<count></count>	Numeric	Number of steps (optional, default = 1)

Example:

STEP 9 Steps code for 9 steps.

6.56 STEP_MODE

Abbreviation: SM

Description:

Selects the step mode.

Syntax:

sm <mode> 194

Parameter	Туре	Description
<mode></mode>	Keyword	Type of step mode
	Auto	If Source windows is active, steps by source code line
		If Disasembly windows is active, steps by assembly instruction
	Assembly	Steps by assembly instruction
	Source	Steps by source code line

Example:

STEP_MODE atuo Sets the step mode to auto.

6.57 STEP_OUT

Abbreviation: SP

Description:

Steps the program out of the current function. (i.e., a step up). This works for both assemblylanguage and source level debugging.

Syntax:

sp

Parameter	Туре	Description
none		Steps the program out of the current function

Example:

SP Steps the program out of the current function.

6.58 STEP_OVER

Abbreviation: SO

Description:

Performs a specified number of instructions from current PC.

This command differs from STEP in that it does not perform single step operation in subroutines or interrupt routines. These are executed at full speed.

Syntax:

so [<mode>] [<count>]

Parameter	Туре	Description
<mode></mode>	Keyword	Type of stepping (optional)
	instruction	Steps by assembly instruction
	line	Step by source code line
<count></count>	Numeric	Number of steps (optional, default = 1)

Example:

SO Steps over 1-step code.

6.59 STEP_RATE

Abbreviation: SR

Description:

Controls the speed of stepping in the STEP and STEP_OVER commands. A rate of 6 causes the fastest stepping. A value of 0 is the slowest.

Syntax:

sr [<rate>]

Parameter	Туре	Description
none		Displays the step rate
<rate></rate>	Numeric	Step rate 0 to 6 (6 = fastest)

Examples:

SR	Displays the c	urrent step rate.
SR	Displays the c	urrent step ra

SR 6 Specifies the fastest step rate.

6.60 STEP_UNIT

Abbreviation: SN

Description:

Sets and displays the execution unit. This command is only supported in the SH-3, SH-3E, SH3-DSP, and SH-4 series.

Syntax:

sn [<mode>]

Parameter	Туре	Description
<mode></mode>	Keyword	Sets and displays an instruction unit (optional, default = display).
	stage	Executed in pipeline stage units. Pipeline does not become disordered.
	instruction	Executed in instruction units. Pipeline becomes disordered.

Example:

STEP_UNIT	Executed in instruction units (initiates a break after memory
INSTRUCTION	access).

6.61 SUBMIT

Abbreviation: SU

Description:

Executes a file of emulator commands. This command can be used even in a command file to be processed. Any error aborts the file.

Syntax:

su <filename>

Parameter	Туре	Description
<filename></filename>	Character string	File name

Examples:

SUBMIT COMMAND.HDC	Processes the file COMMAND.HDC.
SU A:SETUP.TXT	Processes the file SETUP.TXT on drive A:.

6.62 SYMBOL_ADD

Abbreviation: SA

Description:

Adds a symbol, or changes an existing one.

Syntax:

sa <symbol> <value>

Parameter	Туре	Description
<symbol></symbol>	Character string	Symbol name
<value></value>	Numeric	Value

Examples:

SYMBOL_ADD start H'1000	Defines the symbol start at H'1000.
SA END_OF_TABLE 1FFF	Uses current default radix and defines END_OF_TABLE at H'1FFF .

6.63 SYMBOL_CLEAR

Abbreviation: SC

Description:

Deletes a symbol. If no parameters are specified, deletes all symbols (after confirmation).

Syntax:

sc [<symbol>]

Parameter	Туре	Description
none		Deletes all symbols
<symbol></symbol>	Character string	Symbol name

Examples:

SYMBOL_CLEAR	Deletes all symbols (after confirmation).
SC start	Deletes the symbol 'start'.

6.64 SYMBOL_LOAD

Abbreviation: SL

Description:

Loads symbols from file. File must be in XLINK Pentica-b format (i.e. 'XXXXH name'). The symbols are added to the existing symbol table.

Syntax:

sl <filename>

Parameter	Туре	Description
<filename></filename>	Character string	File name
Examples:		
SYMBOL_LOAD TEST.SYM		Loads the file TEST.SYM.
SL MY_CODE.SYM		Loads the file MY_CODE.SYM.

6.65 SYMBOL_SAVE

Abbreviation: SS

Description:

Saves symbols to a file in XLINK Pentica-b format. The symbol file extension default is **.SYM**.

Syntax:

ss <filename>

Parameter	Туре	Description
<filename></filename>	Character string	File name

Examples:

SYMBOL_SAVE TEST	Saves symbol table to TEST.SYM.
SS MY_CODE.SYM	Saves the symbol table to MY_CODE.SYM.

6.66 SYMBOL_VIEW

Abbreviation: SV

Description:

Displays all defined symbols, or those containing the case sensitive string pattern.

Syntax:

sv [<pattern>]

Parameter	Туре	Description
none		Displays all symbols
<pattern></pattern>	Character string	Character string that should be contained in the symbols to be displayed

Examples:

SYMBOL_VIEW BUFFER	Displays all symbols containing the word BUFFER.
SV	Displays all the symbols.

6.67 TCL

Abbreviation: None

Description:

Enables or disables the TCL.

Syntax:

tcl [<state>]

Parameter	Туре	Description
None		Displays the TCL information.
<state></state>	Keyword	Enables or disables the TCL
	enable	Enables the TCL
	disable	Disables the TCL

Examples:

TCL Displays the TCL in	formation.
-------------------------	------------

TCL enable Enables the TCL.

TCL d Disables the TCL.

6.68 TRACE

Abbreviation: TR

Description:

Displays the trace buffer contents. The record in the buffer that was executed first is 0; older records have positive offset values.

Syntax:

tr [[<start rec> [<count>]] | [<clear>]]

Parameter	Туре	Description
<start rec=""></start>	Numeric	Record to start display (optional, default = most recent record - 9)
<count></count>	Numeric	Number of records to be displayed (optional, default = 10)
<clear></clear>	Keyword	Clears all trace records (optional)
	clear	Clears all trace records

Note: When a negative value is specified for <start rec> (-0 cannot be specified), the value is recognized as a PTR value.

Examples:

TR 0 20	Displays twenty lines of trace buffer contents starting from the top of the buffer.
TR	Displays ten lines of trace buffer contents starting from the end of the buffer (the ten most recently executed lines).
TR –20 10	Displays trace buffer contents for which the PTR value is between -20 and -11 .
TR C	Clears all trace records.

6.69 TRACE_ACQUISITION

Abbreviation: TA

Description:

Enables or disables trace information acquisition

Syntax:

ta <mode>

Parameter	Туре	Description
<mode></mode>	Keyword	Enables or disables trace information acquisition.
	E	Trace information acquisition is enabled.
	D	Trace information acquisition is disabled.

Examples:

TRACE_ACQUISITION E	Trace information acquisition is enabled.
TA D	Trace information acquisition is disabled.

6.70 TRACE_SAVE

Abbreviation: TV

Description:

Saves the trace information in files. The files are in text format, so the default file extension is **.TXT**.

Syntax:

tv<filename>

Parameter	Туре	Description
<filename></filename>	Character string	File name

Examples:

TRACE_SAVE TEST	Saves the trace information in TEST.TXT.
TV TRACE.TXT	Saves the trace information in TRACE.TXT

6.71 TRACE_STATISTIC

Abbreviation: TST

Description:

Analyzes the statistic information under the specified conditions.

Syntax:

tst <item> <string>

Parameter	Туре	Description
<item></item>	Character string	Statistic information item to be analyzed
<string></string>	Character string	Character string that specifies conditions

Example:

TST CODE1 E630 Analyzes the statistic information under condition CODE1 = E630.

Section 7 Messages

7.1 Information Messages

The simulator/debugger outputs information messages as listed in table 7.1 to notify users of execution status.

Message	Contents	
Break Access	The break access condition was satisfied and execution has stopped.	
Break Cycle	The break cycle condition was satisfied and execution has stopped	
Break Data	The break data condition was satisfied and execution has stopped.	
Break Register	The break register condition was satisfied and execution has stopped.	
Break Sequence	The break sequence condition was satisfied and execution has stopped.	
PC Breakpoint	The breakpoint condition was satisfied and execution has stopped.	
Sleep	Execution has been stopped by the SLEEP instruction.	
Step Normal End	The step execution succeeded.	
Stop	Execution has been stopped by the [Stop] button.	
Trace Buffer Full	Since the Break mode was selected by Trace buffer full handling in the Trace Acquisition dialog box and the trace buffer became full, execution was terminated.	

Table 7.1Information Messages

7.2 Error Messages

The simulator/debugger outputs error messages to notify users of the errors of user programs or operation. Table 7.2 lists the error messages.

Message	Contents		
Address Error	One of the following states occurred:		
	A PC value was an odd number.		
	An instruction was read from the internal I/O area.		
	 Word data was accessed to an address other than a multiple of 2. 		
	• Longword data was accessed to an address other than a multiple of 4.		
	• The VBR or SP was a value other than a multiple of 4.		
	An error occurred in the exception processing of an address error.		
	Correct the user program to prevent the error from occurring.		
Exception Error	An error occurred during exception processing.		
	Correct the user program to prevent the error from occurring.		
File Open Error	An error occurred during opening a file with the break of file-input/output action. Correct the file setting.		
File Input Error	An error occurred during reading a file with the break of file-input/output action. Correct the file setting.		
File Output Error	An error occurred during writing to a file with the break of file-input/output action. Correct the file setting.		
FPU Disable	An attempt was made to execute an FPU instruction while the FPU is disabled (SR.FD = 1). Correct the user program to prevent the error from occurring.		
FPU Error	One of the following states occurred during floating-point operation:		
	An FPU error occurred.		
	An invalid operation occurred.		
	A division by zero occurred.		
	An overflow occurred.		
	An underflow occurred.		
	An inaccurate operation occurred.		
	Correct the user program to prevent the error from occurring.		

Table 7.2Error Messages

Message	Contents	
General Invalid	Either of the following states occurred:	
Instruction	A code other than an instruction was executed.	
	An error occurred in the exception processing of a reserved instruction	
	exception.	
	Correct the user program to prevent the error from occurring.	
Illegal CCR2 Set	The CCR2 value is illegal. Check the setting.	
Illegal DSP	Either of the following states occurred:	
Operation	A shift of more than 32 bits was executed with the PSHA instruction.	
	A shift of more than 16 bits was executed with the PSHL instruction.	
	Correct the user program to prevent the error from occurring.	
Illegal LRU Set	LRU value of the cache is invalid. Check the setting.	
Illegal Operation	Either of the following states occurred:	
	A division by zero occurred during DIV1 instruction execution.	
	Zero was written to by the SETRC instruction.	
	Correct the user program to prevent the error from occurring.	
Illegal PR bit	An attempt was made to execute an FPU instruction while the PR bit value of the FPSCR is illegal. Correct the user program to prevent the error from occurring.	
Initial Page Write	Initial page write occurred during simulation. Take necessary procedures such as updating the TLB contents.	
Instruction TLB Illegal LRU	An LRU value in the instruction TLB is illegal. Check the setting.	
Instruction TLB Miss	An instruction TLB miss occurred during memory access. Take necessary procedures such as updating the TLB contents.	
Instruction TLB Protection Violation	An instruction TLB protection exception occurred during memory access. Take n necessary procedures such as updating the TLB contents.	
Interrupt Exception	An interrupt exception occurred, execution halted	
Invalid DSP Instruction Code	An invalid instruction code was detected in the DSP parallel instruction. Correct the user program to prevent the error from occurring.	
Invalid Slot	Either of the following states occurred:	
Instruction	• An instruction that changes a PC value (a branch instruction) immediately	
	after a delayed branch instruction was executed.	
	• An error occurred during the exception processing of an invalid slot instruction.	
	Correct the user program to prevent the error from occurring.	

Table 7.2 Error Messages (cont)

Table 7.2 Error Messages (cont)

Message	Contents		
Illegal Combination BSC Register	An attempt was made to access the area for which the BSC register setting is invalid. Correct the user program to prevent the error from occurring.		
Memory Access	One of the following states occurred:		
Error	A memory area that had not been allocated was accessed.		
	• Data was written to a memory area having the write protect attribute.		
	Data was read from a memory area having the read disable attribute.		
	A memory area in which memory does not exist was accessed.		
	Allocate memory, change the memory attribute, or correct the user program to prevent the memory from being accessed.		
Multiple Exception	Multiple exceptions occurred. Correct the user program to prevent the error from occurring.		
Slot FPU Disable	An attempt was made to execute an FPU instruction in a delay slot while the FPU is disabled (SR.FD = 1). Correct the user program so that no error occurs.		
System Call Error	System call error occurred. Modify the incorrect contents of registers R0, R1, and parameter block.		
TLB Invalid	TLB invalid exception occurred during simulation or during command execution. Take necessary procedures such as updating the TLB contents.		
TLB Miss	TLB miss occurred during simulation or during command execution. Take necessary procedures such as updating the TLB contents.		
TLB Multiple Hit	Multiple TLB entries were hit when a virtual address was accessed during simulation or command execution. TLB is not correctly set. Modify TLB contents and user program (handler routine).		
TLB Protection Violation	Illegal TLB protection exception occurred during simulation.		
Unified TLB Miss	A unified TLB miss occurred during memory access. Take necessary procedures such as updating the Unified TLB (UTLB) contents.		
Unified TLB Multiple Hit	Multiple unified TLB entries were hit when a virtual address was accessed. TLB is not correctly set. Modify TLB contents and user program (handler routine).		
Unified TLB Protection Violation	A unified TLB protection exception occurred during memory access. Take necessary procedures such as updating the Unified TLB (UTLB) contents.		

Appendix A - GUI Command Summary

Menu	ltem	Accelerator	Toolbar Graphic
<u>V</u> iew	Wor <u>k</u> space	Alt+K	
	O <u>u</u> tput	Alt+U	
	<u>B</u> reakpoints	Shift+Ctrl+B	(()
	C <u>o</u> verage	Shift+Ctrl+O	
	Command <u>L</u> ine	Ctrl+L	
	<u>D</u> isassembly	Ctrl+D	53
	<u>I</u> O	Ctrl+I	1/0
	Image	Shift+Ctrl+G	
	L <u>a</u> bels	Shift+Ctrl+A	<i>p</i>
	Lo <u>c</u> als	Ctrl+Shift+W	F
	<u>M</u> emory	Ctrl+M	F
	Performance Analysis	Shift+Ctrl+P	
	Pro <u>f</u> ile	Shift+Ctrl+F	
	<u>R</u> egisters	Ctrl+R	RI
	Stat <u>u</u> s	Ctrl+U	4
	<u>T</u> race	Ctrl+T	Q
	<u>W</u> atch	Ctrl+W	R
	Wa <u>v</u> eform	Shift+Ctrl+V	
	<u>T</u> LB		
	Cac <u>h</u> e		1
	Simulated I/O	Shift+Ctrl+I	

Menu	Item	Accelerator	Toolbar Graphic
	Stac <u>k</u> Trace	Ctrl+K	
<u>V</u> iew	Trigger	Shift+Ctrl+R	
<u>O</u> ptions	<u>D</u> ebug Settings		
	<u>R</u> adix <u>H</u> ex <u>D</u> ecimal <u>O</u> ct <u>B</u> in		15 10 8 2
	<u>S</u> imulator <u>S</u> ystem… <u>M</u> emory Resource		++
<u>D</u> ebug	Reset CP <u>U</u>] T
	<u>G</u> o	F5	Ī
	R <u>e</u> set Go	Shift+F5	₽₽
	Go to <u>C</u> ursor		1
	Set PC to Cursor		I _{PC}
	<u>R</u> un		
	Step <u>I</u> n	F11	{}
	Step O <u>v</u> er	F10	0 +
	Step <u>O</u> ut	Shift+F11	P
	S <u>t</u> ep… Step <u>M</u> ode A <u>u</u> to <u>A</u> ssembly <u>S</u> ource		
	<u>H</u> alt Program	Esc	500
	Initiali <u>z</u> e <u>D</u> isconnect Download Modu <u>l</u> es Unload Modules		

Menu	Item	Accelerator	Toolbar Graphic
Memory	<u>S</u> earch		
	<u>С</u> ору		R
	Co <u>m</u> pare		
	<u>F</u> ill		A Contraction of the second se
	<u>R</u> efresh		
	Configure <u>O</u> verlay		