

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

RX850 Pro Ver. 3.30
Real-Time Operating System

Coding for CubeSuite

User’s Manual

Target Tool
 RX850 Pro Ver.3.30

Document No. U19429EJ1V0UM00 (1st edition)
Date Published December 2008

Printed in Japan
© NEC Electronics Corporation 2008

User’s Manual U19429EJ1V0UM 2

[MEMO]

User’s Manual U19429EJ1V0UM 3

SUMMARY OF CONTENTS

CHAPTER 1 OVERVIEW ... 17

CHAPTER 2 SYSTEM CONSTRUCTION ... 19

CHAPTER 3 NUCLEUS ... 33

CHAPTER 4 TASK MANAGEMENT FUNCTION .. 35

CHAPTER 5 SYNCHRONOUS COMMUNICATION FUNCTIONS 40

CHAPTER 6 INTERRUPT MANAGEMENT FUNCTION ... 55

CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTION 62

CHAPTER 8 TIME MANAGEMENT FUNCTION ... 69

CHAPTER 9 SCHEDULER .. 76

CHAPTER 10 SYSTEM INITIALIZATION .. 83

CHAPTER 11 INTERFACE LIBRARY ... 86

CHAPTER 12 SYSTEM CALLS ... 90

CHAPTER 13 SYSTEM CONFIGURATION FILE ... 203

CHAPTER 14 CONFIGURATOR (CF850 Pro) .. 240

APPENDIX A WINDOW REFERENCE ... 245

APPENDIX B PROGRAMMING METHODS ... 261

APPENDIX C MEMORY AND MEMORY CAPACITY ESTIMATION 271

APPENDIX D INDEX ... 283

User’s Manual U19429EJ1V0UM 4

Windows, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in

the United States and/or other countries.

TRON is the abbreviation of "The Real-time Operating system Nucleus."

ITRON is the abbreviation of "Industrial TRON."

μ ITRON is the abbreviation of "Micro Industrial TRON."

TRON, ITRON, and μ ITRON do not refer to any specific product or products.

The μ ITRON4.0 Specification is an open real-time kernel specification developed by TRON Association.

The μ ITRON4.0 Specification document can be obtained from the TRON Association web site

(http://www.assoc.tron.org/).

The copyright of the μ ITRON4.0 Specification document belongs to TRON Association.

User’s Manual U19429EJ1V0UM 5

The information in this document is current as of December, 2008. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC Electronics data
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not
all products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of
each NEC Electronics product before using it in a particular application.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

•

•

•

•

•

•

M8E 02. 11-1

(1)

(2)

"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).

Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.
Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).
Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

"Standard":

"Special":

"Specific":

User’s Manual U19429EJ1V0UM 6

[MEMO]

User’s Manual U19429EJ1V0UM 7

INTRODUCTION

Readers This manual is intended for users who design and develop application systems using

V850 microcontrollers products.

Purpose This manual is intended for users to understand the functions of RX850 Pro

described the organization listed below.

Organization This manual consists of the following major sections.

 • OVERVIEW

 • SYSTEM CONSTRUCTION

 • NUCLEUS

 • TASK MANAGEMENT FUNCTION

 • SYNCHRONOUS COMMUNICATION FUNCTIONS

 • INTERRUPT MANAGEMENT FUNCTION

 • MEMORY POOL MANAGEMENT FUNCTION

 • TIME MANAGEMENT FUNCTION

 • SCHEDULER

 • SYSTEM INITIALIZATION

 • INTERFACE LIBRARY

 • SYSTEM CALLS

 • SYSTEM CONFIGURATION FILE

 • CONFIGURATOR (CF850 Pro)

How to read this manual It is assumed that the readers of this manual have general knowledge in the fields of

electrical engineering, logic circuits, microcontrollers, C language, and assemblers.

 To understand the hardware functions or instruction functions of the V850

microcontrollers

 → Refer to the User’s Manual of each product.

Conventions Data significance: Higher digits on the left and lower digits on the right

 Note: Footnote for item marked with Note in the text

 Caution: Information requiring particular attention

 Remark: Supplementary information

 Numerical representation: Binary...XXXX or XXXXB

 Decimal...XXXX

 Hexadecimal...0xXXXX

 Prefixes indicating power of 2 (address space and memory capacity):

 K (kilo) 210 = 1024

 M (mega) 220 = 10242

User’s Manual U19429EJ1V0UM 8

Related Documents Read this manual together with the following documents.

 The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

Documents related to development tools (user’s manuals)

Document Name Document No.

Start for CubeSuite U19428E RX Series

Message for CubeSuite U19433E

Coding for CubeSuite This document

Debug for CubeSuite U19431E

Analysis for CubeSuite U19432E

RX850 Pro Ver.3.30

Internal Structure for CubeSuite U19434E

Start U19549E

Programming U19390E

Message U19550E

V850 Coding U19383E

V850 Build U19386E

V850 Debug U19389E

CubeSuite

Integrated Development Environment

V850 Design U19380E

User’s Manual U19429EJ1V0UM 9

CONTENTS

CHAPTER 1 OVERVIEW ... 17
1.1 Outline .. 17

1.1.1 Real-time OS ... 17
1.1.2 Multitask OS .. 17

1.2 Applications .. 18

CHAPTER 2 SYSTEM CONSTRUCTION ... 19
2.1 Outline .. 19

2.2 Creating System Configuration File .. 21

2.3 Creating System Initialization Processing ... 22
2.3.1 Boot processing ... 23
2.3.2 Hardware initialization module ... 24
2.3.3 Nucleus initialization module ... 24
2.3.4 Initialization handler ... 24
2.3.5 Interrupt entry .. 25

2.4 Creating Processing Programs ... 26

2.5 Creating Initialization Data Save Area .. 26

2.6 Creating Llink Directive File .. 27

2.7 Creating Load Module .. 28

2.8 Embedding System ... 32

CHAPTER 3 NUCLEUS ... 33
3.1 Outline .. 33

3.2 Functions .. 34

CHAPTER 4 TASK MANAGEMENT FUNCTION .. 35
4.1 Outline .. 35

4.2 Task States ... 35

4.3 Creating Tasks .. 37

4.4 Activating Tasks .. 37

4.5 Terminating Tasks .. 37

4.6 Deleting Tasks .. 38

4.7 Internal Processing of Task .. 38
4.7.1 Acquiring task information ... 39
4.7.2 Acquiring ID number .. 39

CHAPTER 5 SYNCHRONOUS COMMUNICATION FUNCTIONS 40
5.1 Outline .. 40

5.2 Semaphores ... 40
5.2.1 Generating semaphores .. 40
5.2.2 Deleting semaphores ... 41
5.2.3 Returning resources .. 41
5.2.4 Acquiring resources ... 41
5.2.5 Acquiring semaphore information .. 42
5.2.6 Acquiring ID number .. 42
5.2.7 Exclusive control using semaphores ... 43

5.3 Eventflags ... 45

10 User’s Manual U19429EJ1V0UM

5.3.1 Generating eventflags ... 45
5.3.2 Deleting eventflags .. 45
5.3.3 Setting a bit pattern ... 46
5.3.4 Clearing a bit pattern ... 46
5.3.5 Checking a bit pattern .. 46
5.3.6 Acquiring eventflag information ... 47
5.3.7 Acquiring ID number .. 47
5.3.8 Wait function using eventflags ... 48

5.4 Mailboxes .. 50
5.4.1 Generating mailboxes .. 50
5.4.2 Deleting mailboxes .. 50
5.4.3 Transmitting a message .. 51
5.4.4 Receiving a message .. 51
5.4.5 Messages .. 52
5.4.6 Acquiring mailbox information ... 52
5.4.7 Acquiring ID number .. 52
5.4.8 Inter task communication using mailboxes .. 53

CHAPTER 6 INTERRUPT MANAGEMENT FUNCTION ... 55
6.1 Outline .. 55

6.2 Interrupt Handler ... 55
6.2.1 Interrupt source numbers .. 55

6.3 Directly Activated Interrupt Handler .. 56
6.3.1 Registering directly activated interrupt handler ... 56
6.3.2 Processing in directly activated interrupt handler .. 56

6.4 Indirectly Activated Interrupt Handler .. 57
6.4.1 Registering indirectly activated interrupt handler ... 57
6.4.2 Processing in indirectly activated interrupt handler ... 58

6.5 Disabling/Resuming Maskable Interrupt Acknowledgement ... 59

6.6 Changing/Acquiring Interrupt Control Register ... 60

6.7 Non-Maskable Interrupts .. 60

6.8 Clock Interrupts ... 60

6.9 Multiple Interrupts ... 61

CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTION 62
7.1 Outline .. 62

7.2 Management Objects .. 62

7.3 Memory Pool and Memory Blocks .. 63
7.3.1 Generating a memory pool .. 64
7.3.2 Deleting a memory pool ... 64
7.3.3 Acquiring a memory block ... 64
7.3.4 Returning a memory block ... 65
7.3.5 Acquiring memory pool information ... 66
7.3.6 Acquiring ID number .. 66
7.3.7 Dynamic management of memory block by memory pool ... 67

CHAPTER 8 TIME MANAGEMENT FUNCTION ... 69
8.1 Outline .. 69

8.2 System Clock .. 69
8.2.1 Setting and reading the system clock .. 69

8.3 Timer Operations .. 69

8.4 Delayed Task Wake-Up .. 69

8.5 Timeout ... 70

User’s Manual U19429EJ1V0UM 11

8.6 Cyclic Handler ... 72
8.6.1 Registering a cyclic handler ... 72
8.6.2 Activity state of cyclic handler .. 72
8.6.3 Internal processing performed by cyclic handler ... 74
8.6.4 Acquiring cyclic handler information .. 75
8.6.5 Interrupts in cyclic handler ... 75

CHAPTER 9 SCHEDULER .. 76
9.1 Outline .. 76

9.2 Drive Method .. 76

9.3 Scheduling Method ... 76
9.3.1 Priority method .. 76
9.3.2 FCFS method .. 77

9.4 Implementing a Round-Robin Method .. 77

9.5 Scheduling Lock Function ... 80

9.6 Scheduling While Handler Is Operating .. 82

9.7 Idle Handler .. 82

CHAPTER 10 SYSTEM INITIALIZATION .. 83
10.1 Outline .. 83

10.2 Boot Processing .. 84

10.3 Hardware Initialization Module .. 84

10.4 Nucleus Initialization Module .. 85

10.5 Initialization Handler ... 85

10.6 Interrupt Entry ... 85

CHAPTER 11 INTERFACE LIBRARY ... 86
11.1 Outline .. 86

11.2 Processing in the Interface Library ... 86

11.3 Types of Interface Libraries .. 87

11.4 Change Interface Libraries ... 87

11.5 System Call Interface Library .. 88

11.6 Extended SVC Handler Interface Library .. 89

CHAPTER 12 SYSTEM CALLS ... 90
12.1 Outline .. 90

12.2 Calling System Calls ... 91

12.3 System Call Function Codes .. 91

12.4 Data Types of Parameters .. 92

12.5 Parameter Value Range ... 93

12.6 System Call Return Values ... 94

12.7 System Call Extension .. 94

12.8 Explanation of System Calls ... 95
12.8.1 Task management system calls .. 97
12.8.2 Task-associated synchronization system calls .. 116
12.8.3 Synchronous communication system calls .. 124
12.8.4 Interrupt management system calls ... 162
12.8.5 Memory pool management system calls ... 173
12.8.6 Time management system calls .. 187

12 User’s Manual U19429EJ1V0UM

12.8.7 System management system calls .. 196

CHAPTER 13 SYSTEM CONFIGURATION FILE ... 203
13.1 Outline .. 203

13.2 Declaration .. 203

13.3 Configuration Information ... 204
13.3.1 Real-time OS information .. 204
13.3.2 SIT information .. 205
13.3.3 SCT information ... 207

13.4 Specification Format for Real-Time OS Information ... 209
13.4.1 RX series information .. 209

13.5 Specification Format for SIT Information .. 210
13.5.1 System information .. 210
13.5.2 System maximum value information .. 212
13.5.3 System memory information .. 213
13.5.4 Task information .. 214
13.5.5 Semaphore information ... 216
13.5.6 Eventflag information ... 217
13.5.7 Mailbox information ... 218
13.5.8 Indirectly activated interrupt handler information ... 219
13.5.9 Memory pool information ... 220
13.5.10 Cyclic handler information ... 221
13.5.11 Extended SVC handler information ... 223
13.5.12 Initialization handler information .. 224

13.6 Specification Format for SCT Information ... 225
13.6.1 Task management/task-associated synchronization management function system call information 225
13.6.2 Synchronous communication (semaphore) management function system call information 226
13.6.3 Synchronous communication (eventflag) management function system call information 227
13.6.4 Synchronous communication (mailbox) management function system call information 228
13.6.5 Interrupt management function system call information .. 229
13.6.6 Memory pool management function system call information ... 230
13.6.7 Time management function system call information ... 231
13.6.8 System management function system call information ... 232

13.7 Cautions .. 233

13.8 Description Example ... 234

CHAPTER 14 CONFIGURATOR (CF850 Pro) .. 240
14.1 Outline .. 240

14.2 Activation Method ... 241
14.2.1 Activating from command line ... 241
14.2.2 Activating from CubeSuite ... 242
14.2.3 Command file .. 243

14.3 Command Input Examples ... 244

APPENDIX A WINDOW REFERENCE ... 245
A.1 Description .. 245

APPENDIX B PROGRAMMING METHODS ... 261
B.1 Outline .. 261

B.2 Keywords .. 261

B.3 Reserved Words ... 262

B.4 Hardware Status When Processing Program Is Activated ... 262

B.5 Tasks .. 264

User’s Manual U19429EJ1V0UM 13

B.6 Directly Activated Interrupt Handler .. 265
B.6.1 Recommended .. 265
B.6.2 To implement functionsequivalent to indirectly activated interrupt handler ... 265

B.7 Indirectly Activated Interrupt Handler .. 267

B.8 Cyclic Handler ... 269

B.9 Extended SVC Handler ... 270

APPENDIX C MEMORY AND MEMORY CAPACITY ESTIMATION 271
C.1 SPOL and UPOL .. 271

C.2 Memory Capacity in Management Area ... 272

C.3 Capacity of Task Stack ... 274

C.4 Capacity of Stack for Interrupt Handler ... 276

C.5 Memory Pool Capacity .. 280

C.6 Examples of Estimating Memory Capacity ... 281

APPENDIX D INDEX ... 283

14 User’s Manual U19429EJ1V0UM

LIST OF FIGURES

Figure 2-1 Example of System Construction ..20
Figure 2-2 Flow of System Initialization Processing ...22
Figure 2-3 Project Tree Panel (After Adding sys.cfg) ...29
Figure 2-4 Property Panel: [RX850 Pro] Tab ...30
Figure 2-5 Property Panel: [System Configuration File Related Information] Tab ...30
Figure 2-6 Project Tree Panel (After Running Build) ..32
Figure 3-1 Nucleus Configuration ...33
Figure 4-1 Task State Transition ..36
Figure 5-1 State of Semaphore Counter ..43
Figure 5-2 State of Wait Queue (When wai_sem Is Issued) ..43
Figure 5-3 State of Wait Queue (When sig_sem Is Issued) ...44
Figure 5-4 Exclusive Control Using Semaphores ...44
Figure 5-5 State of Wait Queue (When wai_flg Is Issued) ...48
Figure 5-6 State of Wait Queue (When set_flg Is Issued) ..48
Figure 5-7 Wait and Control by Eventflags ...49
Figure 5-8 State of Task Wait Queue (When rcv_msg Is Issued) ..53
Figure 5-9 State of Task Wait Queue (When snd_msg Is Issued) ...53
Figure 5-10 Inter-Task Communication Using Mailboxes ..54
Figure 6-1 Flow of Processing Performed by Directly Activated Interrupt Handler ..56
Figure 6-2 Operation Flow of Indirectly Activated Interrupt Handler ..57
Figure 6-3 Control Flow if Interrupt Mask Processing Is Not Performed (Normal) ...59
Figure 6-4 Control Flow if loc_cpu Is Issued ..59
Figure 6-5 Processing Flow for Handling Multiple Interrupts ..61
Figure 7-1 Typical Arrangement of Management Objects ..63
Figure 7-2 State of Wait Queue (When get_blk Is Issued) ...67
Figure 7-3 State of Wait Queue (When rel_blk Is Issued) ..67
Figure 7-4 Dynamic Use of Memory by Memory Pool ..68
Figure 8-1 Flow of Processing After Issuance of dly_tsk ...70
Figure 8-2 Flow of Processing After Issuance of act_cyc (TCY_ON) ..73
Figure 8-3 Flow of Processing After Issuance of act_cyc (TCY_ON|TCY_INI) ..74
Figure 9-1 Ready Queue State (1) ...77
Figure 9-2 Ready Queue State (2) ...78
Figure 9-3 Ready Queue State (3) ...78
Figure 9-4 Flow of Processing by Using Round-Robin Method ...79
Figure 9-5 Flow of Control if Scheduling Processing Is Not Delayed (Normal) ..80
Figure 9-6 Flow of Control if dis_dsp Is Issued ..81
Figure 9-7 Flow of Control if loc_cpu Is Issued ..81
Figure 9-8 Flow of Control if wup_tsk Is Issued ...82
Figure 10-1 Flow of System Initialization ..83
Figure 11-1 Position of Interface Library ..86
Figure 11-2 Example of System Call Interface Library ...88
Figure 11-3 Example of Extended SVC Handler Interface Library ...89
Figure 12-1 System Call Description Format ...95
Figure 13-1 System Configuration File Description Format ...233
Figure 13-2 Example of System Configuration File ..237
Figure 14-1 Example of Command File ..243
Figure B-1 Task (C Language) ...264
Figure B-2 Task (Assembly Language) ..264
Figure B-3 Directly Activated Interrupt Handler (Assembly Language) ..265

User’s Manual U19429EJ1V0UM 15

Figure B-4 Indirectly Activated Interrupt Handler (C Language) ...267
Figure B-5 Indirectly Activated Interrupt Handler (Assembly Language) ..268
Figure B-6 Cyclic Handler (C Language) ..269
Figure B-7 Cyclic Handler (Assembly Language) ...269
Figure B-8 Extended SVC Handler (C Language) ..270
Figure B-9 Extended SVC Handler (Assembly Language) ...270
Figure C-1 Estimation of Stack Area for Interrupt Handlers ..279

16 User’s Manual U19429EJ1V0UM

LIST OF TABLES

Table 2-1 Configuration of System Initialization Processing ...22
Table 2-2 Configuration of Processing Program ...26
Table 2-3 Essential Sections for RX850 Pro ...27
Table 2-4 Options Prohibited for Setting ...31
Table 7-1 Memory Information Allocation Combination ..62
Table 12-1 System Call Function Codes ...91
Table 12-2 Data Types of Parameters ..92
Table 12-3 Ranges of Parameter Values ..93
Table 12-4 System Call Return Values ...94
Table 12-5 Task Management System Calls ..97
Table 12-6 Task-Associated Synchronization System Calls ...116
Table 12-7 Synchronous Communication System Calls ...124
Table 12-8 Interrupt Management System Calls ...162
Table 12-9 Memory Pool Management System Calls ...173
Table 12-10 Time Management System Calls ..187
Table 12-11 System Management System Calls ..196
Table 13-1 Types of Values ..203
Table A-1 List of Window/Panels ...245
Table B-1 Hardware Status (Task) ..262
Table B-2 Hardware Status (Directly Activated Interrupt Handler) ..262
Table B-3 Hardware Status (Indirectly Activated Interrupt Handler) ..262
Table B-4 Hardware Status (Cyclic Handler) ...263
Table B-5 Hardware Status (Extended SVC Handler) ...263
Table B-6 Hardware Status (Initialization Handler) ...263
Table C-1 Types of Memory Pools and Assigned Items ..271
Table C-2 Size of Object Management Area ...272
Table C-3 Size Used for Task Stack ..274
Table C-4 Size of Task Stack Used for Extended SVC Handler ...274
Table C-5 Summary of Size Used for Task Stack ...275
Table C-6 Stack Size for Interrupt Handler in System Not Enabling Multiple Interrupts ..277
Table C-7 Stack Size for Interrupt Handler in System Enabling Multiple Interrupts ..278
Table C-8 Size of Memory Pool ...280

CHAPTER 1 OVERVIEW

User’s Manual U19429EJ1V0UM 17

CHAPTER 1 OVERVIEW

Rapid advances in semiconductor technologies have led to the explosive spread of microprocessors such that they are
now to be found in more fields than many would have imagined only a few years ago. In line with this spread, the number
of processing programs that must be created for microprocessors is also increasing. This rule of growth makes it difficult to
create processing programs specific to given hardware.

For this reason, there is a need for operating systems (OSs) that can fully exploit the capabilities of the latest generation
of ever-newer high-performance, multi-function microprocessors.

Operating systems are broadly classified into 2 types: program-development OSs and control OSs. Program-
development OSs are to be found in those environments in which standard OSs (e.g., Windows®) predominate because
the hardware configuration to be used for development can be limited to some extent (e.g., personal computers).

Conversely, control OSs are incorporated into control units. That is, these OSs are found in those environments where
standard OSs cannot easily be applied because the hardware configuration varies from system to system and because
efficient operation matching the application is required.

To satisfy these demands, NEC Electronics has developed and released not only the V850 microcontrollers but also the
RX850 Pro operating system, which allows users to fully exploit the functions of these microcontrollers and support
systematic software creation.

The RX850 Pro is a control OS for real-time, multitasking processing; it has been developed to increase the application
range of high-performance, multi-function microprocessors and further improve their versatility.

1.1 Outline
The RX850 Pro is an embedded real-time, multitask control OS that provides a highly efficient real-time, multitasking

environment to increase the application range of processor control units.
The RX850 Pro is a high-speed, compact OS capable of being stored in and run from the ROM of a target system.

1.1.1 Real-time OS
Control equipment demands systems that can rapidly respond to events occurring both internal and external to the

equipment. Conventional systems have utilized simple interrupt handling as a means of satisfying this demand. As control
equipment has become more powerful, however, it has proved difficult for systems to satisfy these requirements by means
of simple interrupt handling alone.

In other words, the task of managing the order in which internal and external events are processed has become
increasingly difficult as systems have increased in complexity and programs have become larger.

Real-time operating systems have been designed to overcome this problem.
The main purpose of a real-time OS is to respond to internal and external events rapidly and execute programs in the

optimum order.

1.1.2 Multitask OS
A "task" is the minimum unit in which a program can be executed by an OS. "Multitasking" is the name given to the

mode of operation in which a single processor processes multiple tasks concurrently.
Actually, the processor can handle no more than one program (instruction) at a time. But, by switching the processor’s

attention to individual tasks on a regular basis (at a certain timing) it appears that the tasks are being processed
simultaneously.

A multitask OS enables the parallel processing of tasks by switching the tasks to be executed as determined by the
system.

One important purpose of a multitask OS is to improve the throughput of the overall system through the parallel
processing of multiple tasks.

CHAPTER 1 OVERVIEW

18 User’s Manual U19429EJ1V0UM

1.2 Applications
The RX850 Pro is suitable for the following devices.

- Systems using motor controllers
PPCs, printers, FAXes

- Systems requiring low power consumption
Cellular phones, personal handyphones (PHS), digital still cameras

CHAPTER 2 SYSTEM CONSTRUCTION

User’s Manual U19429EJ1V0UM 19

CHAPTER 2 SYSTEM CONSTRUCTION

This chapter explains how to construct an application system using the RX850 Pro.

2.1 Outline
System construction involves incorporating created load modules into a target system, using the file group copied from

the RX850 Pro distribution media to the user development environment (host machine).
The system construction procedure is outlined below.

1) Creating System Configuration File

2) Creating System Initialization Processing

- Boot processing

- Hardware initialization module

- Initialization handler

- Interrupt entry

3) Creating Processing Programs

- Tasks

- Directly Activated Interrupt Handler

- Indirectly Activated Interrupt Handler

- Cyclic Handler

- Extended SVC Handler

Remark The programs are created by using C language or assembly language.

4) Creating Initialization Data Save Area

5) Creating Llink Directive File

6) Creating Load Module

7) Embedding System

Figure 2-1 shows the procedure for organizing the system.

CHAPTER 2 SYSTEM CONSTRUCTION

20 User’s Manual U19429EJ1V0UM

Figure 2-1 Example of System Construction

sys.cfg

Configurator

Information File
sys.s
sct.s

System Initialization

boot.s
init.c
varfunc.c

Processing Program
task.c

Compiler/Assembler

Initialization Data

rompcrt.o

Linker

Load Module (not including ROM information)
sample.out

Load Module (including ROM information)
sample.out

ROMization processor

Hexadecimal converter

Load Module (HEX format)
sample.hex

Information File
sys.o

System Initialization

boot.o
init.o
varfunc.o

Processing Progam
task.o

sys.h

Other
sample.dir

Initialization Data

rompcrt.s

entry.s

sct.o

entry.o

handler.c

handler.o

System Configuration
File

Prcessing Save Area

Prcessing Save Area
librxp.a/librxpm.a
libchp.a/libncp.a/libdbp.a
rxtmcore.o/rxcore.o/rxdbtmcore.o/rxdbcore.o
Runtime Library

CHAPTER 2 SYSTEM CONSTRUCTION

User’s Manual U19429EJ1V0UM 21

The flow of organizing the system is explained based on the sample program supplied with the CA850.
The program is stored in the following folder if the RX850 Pro has been installed in the folder <rx_root>.

<rx_root>\smp850e\rx85p\src

2.2 Creating System Configuration File
Create an information table, called a system configuration file, which holds the various data used with the RX850 Pro.
This file is necessary for creating the following using the configurator.

- System information table file

- System call table file

- System information header file

The "system information table file" contains information on the resources of the RX850 Pro, such as tasks, semaphores,
and memory pools. The "system call table file" contains a list of system calls used for applications. The "system
information header file" has a description that makes the symbol names specified as resource IDs, such as those of tasks
and semaphores created with the system information table file, correspond to the actual symbol ID numbers, by using the
#define instruction.

The sample system configuration file is:

- sys.cfg

For the contents and syntax of the system configuration file, see "CHAPTER 13 SYSTEM CONFIGURATION FILE".

CHAPTER 2 SYSTEM CONSTRUCTION

22 User’s Manual U19429EJ1V0UM

2.3 Creating System Initialization Processing
The system initialization processing is a function consisting of program segments that are dependent upon the user's

target system. This function is used to facilitate porting and customization.
The sample file is as follows.

Table 2-1 Configuration of System Initialization Processing

The rough flow of the system initialization processing is illustrated below. Each processing is explained next.

Figure 2-2 Flow of System Initialization Processing

Sample File Name Type Function Name Role

boot.s Boot processing _boot Boot processing of system

init.c Hardware initialization module reset Initialization processing of hardware

varfunc.c Initialization handler varfunc Initialization processing of software

entry.s Interrupt entry None Processing to branch to interrupt servicing

V850 microcontrollers
Reset entry

Boot processing

Hardware initialization module
__boot :

:

jarl _reset, lp
reset (void) {

::
: }

:
:

:

mov
mov

:
jmp

#_sit, r10
#__rx_start, lp

[lp]

Nucleus

Nucleus initialization module

__rx_start :

:
:

:
:
:

:
jmp

TaskScheduler

Initialization handler

varfunc (void) {
:
:

}

:
:

CHAPTER 2 SYSTEM CONSTRUCTION

User’s Manual U19429EJ1V0UM 23

2.3.1 Boot processing
The boot processing is assigned to the reset entry (handler address: 0x0) of the V850 microcontrollers and is the

system initialization processing that is executed first.
The description following the label "_boot" in the sample file boot.s is the entity of the boot processing. The instructions

that cause execution to jump from the reset entry to this label are as follows. These instructions are in the same entry.s
file.

The lower 2 lines of the instructions are assigned to the handler address [0x0]. When reset is executed, therefore, these
instructions are executed, execution jumps to _boot, and the boot processing is executed.

The following must be performed as part of the boot processing.

1) Setting of stack pointer (sp) used in boot processing

2) Setting of text pointer (tp) and global pointer (gp)
3) Setting of symbol _sit to r10 register address
4) Setting of symbol __rx_start to lp register
5) Issuance of jmp instruction to transfer control to nucleus initialization module

In addition to the above, processing (jarl_reset, lp) that causes execution to jump to the reset function, which is a
"hardware initialization module", is executed between 3) and 4) in the sample.

The stack pointer to be set in 1) above is independent of the stack for tasks and interrupt handlers. After the RX850 Pro
has been started, the stack used by tasks and interrupt handlers is managed by the RX850 Pro itself, by using the system
information table file, and the stack pointer is automatically switched by means of task switching or interrupts. Therefore,
the stack pointer specified in the boot processing is used before the RX850 Pro is started.

This stack pointer is used, for example, when execution jumps to a function and that function has data to be saved to the
stack. This stack pointer is used if it is necessary to use the stack with the reset function of the sample.

Although the sample program uses a stack of 0x28000 bytes, such a high-capacity stack is not usually necessary. This
stack area is of the size defined by the system memory area used for the RX850 Pro ("System memory information" in the
system configuration file), and is used as the system memory area after the RX850 Pro has been started.

In the sample, the bss area on RAM is initialized (cleared to 0) in boot processing.
The default value data is copied by creating an area of the default value data (rompcrt.s) and by using the function

_rcopy. See CubeSuite V850 Build User's Manual for details.
At the end of the boot processing, processing for 4) to 6) is necessary. Perform the following processing.

The description in the RX850 Pro following the symbol "__rx_start" is the nucleus initialization processing of the RX850
Pro. After the boot processing has been completed, transfer control to the nucleus initialization processing by using the
jmp instruction. At this time, substitute the address of _sit symbol into the r10 register. This is because resources are
created and initialized based on this address substituted into the r10 register and the "system information table file"
created from the system configuration file.

NEC Electronics recommends changing the description of the boot processing to an environment suitable for the user,
based on the boot processing of the sample.

.section "RESET"

.extern __boot

mov #__boot, lp
jmp [lp]

.extern _sit
mov #_sit, r10

.extern __rx_start
mov #__rx_start, lp
jmp [lp]

CHAPTER 2 SYSTEM CONSTRUCTION

24 User’s Manual U19429EJ1V0UM

2.3.2 Hardware initialization module
The hardware initialization module consists of functions called from the boot processing in the sample program. These

functions are provided to initialize the hardware on the target system, as a series of boot processing.
In the sample program, the reset function initializes the hardware. This function is called from the boot processing.

There is no problem even if this function is not used, if initializing the hardware is not necessary or if the hardware is
initialized by other processing.

The hardware initialization module of the sample program performs the following processing.

1) Initialization of interrupt controller/clock controller

2) Initialization of peripheral I/O register/controller
3) Returning control to boot processing

2.3.3 Nucleus initialization module
The nucleus initialization module is an internal routine of the RX850 Pro that is executed after completion of the boot

processing. This module creates the RX850 Pro system management block, and creates and initializes information on
items such as tasks, semaphores, and memory pools, based on the "system information table file" created from the
system configuration file.

The RX850 Pro places the CPU in the HALT status if initialization was not correctly performed by the nucleus
initialization module. If the RX850 Pro is not started and the CPU enters the HALT status after execution has jumped from
the boot processing to the initialization processing, the system memory area ("System memory information" in the system
configuration file) used to create the management block of the RX850 Pro is probably insufficient. Check that a sufficient
memory capacity has been reserved.

Once initialization has been completed in the nucleus initialization module, an initialization handler is called. This
initialization handler is specified by "Initialization handler information" of the system configuration file and is the varfunc
function in the sample program. For details of this function, see "2.3.4 Initialization handler".

When control has returned from the initialization handler, the scheduler is started, and then the RX850 Pro is started.

2.3.4 Initialization handler
The initialization handler is a function that is called from the nucleus initialization module. Describe the processing to be

performed before starting the RX850 Pro.
The initialization handler calls a function specified by "Initialization handler information" of the system configuration file.

In the sample program, this function is varfunc. Even if the processing is not necessary, create the function as a function
that performs no processing. At the end of the handler, return to the nucleus initialization processing by using the return
instruction.

In the sample program, this function is defined as a function that executes nothing. The default data value can be copied
into the initialization handler. See CubeSuite V850 Build User's Manual for details about how to copy the default value
data.

Remark1 When passing control from the nucleus initialization module to the initialization handler, the RX850 Pro
switches the current stack to the system stack that is specified in System information during configuration.

Remark2 When passing control from the nucleus initialization module to the initialization handler, the RX850 Pro
switches the values of the text pointer (tp) and global pointer (gp) to values that are defined in Initialization
handler information during configuration.

Remark3 The RX850 Pro performs no operations on the element pointer (ep). The ep value used during the
initialization handler processing therefore differs from the value set during boot processing.

Remark4 The initialization handler is called before the RX850 Pro completes all of the initialization processing.
Therefore, if interrupts for the initialization handler are enabled or a system call is issued by the initialization
handler, the operation is not guaranteed.

CHAPTER 2 SYSTEM CONSTRUCTION

User’s Manual U19429EJ1V0UM 25

2.3.5 Interrupt entry
An interrupt entry is an instruction that is executed if an interrupt occurs, and is assigned to the "interrupt handler

address" of the V850 microcontrollers. The interrupt entry must be defined for all the interrupts used by the user, and must
be described in assembly language. The interrupt handler of the sample is described in "entry.s".

The interrupts of the RX850 Pro are handled by 2 types of handlers: a "directly activated interrupt handler" and an
"indirectly activated interrupt handler", each of which differs from the other in entry description.

In the directly activated interrupt handler, describe a branch instruction in the same manner as an ordinary interrupt
entry. In the sample program (for V850ES/V850E1/V850E2 core), the interrupt "INTP110 (handler address: 0x180)" is an
example of a directly activated interrupt handler.

The .section quasi directive is used. See CubeSuite V850 Build User's Manual for details about each instruction.
The entry of the directly activated interrupt handler is as follows.

The destination label "_intp110_entry" is defined in the same file, and execution jumps to the entity of the handler
(intp130) after the preprocessing and post-processing of the directly activated interrupt handler are described (macro
description).

The indirectly activated interrupt handler uses the macro provided for the RX850 Pro. This means that the contents of
the macro must be assigned to the handler address. The macro name is "RTOS_IntEntry_Indirect". In the sample program
(for V850ES/V850E1/V850E2 core), the interrupt "INTP120 (handler address: 0x1c0)" is used as an example of an
indirectly activated interrupt handler.

The .section quasi directive is used. See CubeSuite V850 Build User's Manual for details about each instruction.
The entry of the indirectly activated interrupt handler is as follows.

An interrupt entry must also be registered for the clock interrupt used with the RX850 Pro in the same manner as the
indirectly activated interrupt handler. This interrupt entry is described in the sample program (for V850ES/V850E1/V850E2
core,) as follows because "INTCMD0 (handler address: 0x240)" is used as a clock interrupt.

Remark For the interrupt handler defined in Indirectly activated interrupt handler information and the clock handler
that corresponds to the interrupt source numbers of the timer defined in System information, the configurator
automatically outputs the relevant interrupt entry to the system information table, so the user is not required
to write the relevant interrupt entry.
If -ne is specified as the configurator start option, output of the interrupt entry to the system information table
is suppressed.

.section "INTP110"
jr _intp110_entry

.section "INTP120"
RTOS_IntEntry_Indirect

.section "INTCMD0"
RTOS_IntEntry_Indirect

CHAPTER 2 SYSTEM CONSTRUCTION

26 User’s Manual U19429EJ1V0UM

2.4 Creating Processing Programs
Create a processing program (application).
The application processing units required for the RX850 Pro are broadly classified into the following.

- Tasks

- Directly Activated Interrupt Handler

- Indirectly Activated Interrupt Handler

- Cyclic Handler

- Extended SVC Handler

The contents of the sample, except the extended SVC handler, are shown below. The following table shows the files
included in the sample program for V850 cores.

Table 2-2 Configuration of Processing Program

If a processing program described in C issues a system call, include the header file "stdrx85p.h" supplied by the RX850
Pro. This file contains the definition necessary for using the system call. The header file "usr.h" in the sample program
defines constants used by functions as necessary and is included in the program. In the sample program, only a macro of
constants is defined.

2.5 Creating Initialization Data Save Area
It is necessary to create an area for saving the initialization data. This is because it is necessary to store the initialization

data in ROM and to copy the default values of the data to RAM before executing a program. Creating a saving area for the
initialization data involves reserving a ROM area in which the initialization data is to be stored.

See the description of "ROMization processor" in CubeSuite V850 Build User's Manual for details about how to create
this area.

Sample File Name Type Function Name Role

task.c Task task1
task2 Task entity

handler.c
Indirectly activated interrupt handler
Directly activated interrupt handler
Cyclic handler

inthdr1
inthdr2
cychdr1
cychdr2

Handler processing

CHAPTER 2 SYSTEM CONSTRUCTION

User’s Manual U19429EJ1V0UM 27

2.6 Creating Llink Directive File
Create a link directive file (section map file) containing the "section information" and "address information" referenced by

the linker when it links modules. The following sample file is a link directive file.
The following file of the sample is the link directive file.

- sample.dir

The sections listed in the table below are essential for the RX850 Pro.

Table 2-3 Essential Sections for RX850 Pro

".sit" has a const attribute, 4 system memory areas have a bss attribute, and the other sections have a text attribute.
Information on these sections must be defined in the link directive file (section map file). As described in the file of the
sample, these sections define position information.

The file of the sample (for V850 core) that corresponds to these sections is as follows.

In addition, define sections related to the RAM area, such as .data/.bss section, and those related to the ROM area,
such as the const section, as necessary. NEC Electronics recommends changing the description of the link directive file
(section map file) to an environment suitable for the user.

See CubeSuite V850 Build User's Manual for details about how to describe the link directive file.

Section Name Type of Area Remark

.sit System information area Essential

.system RX850 Pro system call location area Essential

.system_cmn RX850 Pro scheduler-related area Essential

.system_int RX850 Pro interrupt servicing-related area Essential

.text RX850 Pro interface library location area Essential

Any Area in which system memory area System Memory Pool 0 is assigned Essential

Any Area in which system memory area System Memory Pool 1 is assigned Can be omitted

Any Area in which system memory area User Memory Pool 0 is assigned Can be omitted

Any Area in which system memory area User Memory Pool 1 is assigned Can be omitted

 :
 :
CONST : !LOAD ?R V0x00002000 {
 .sit = $PROGBITS ?A .sit;
 .const = $PROGBITS ?A .const;
};
TEXT :!LOAD ?RX {
 .pro_epi_rutime = $PROGBITS ?AX .pro_epi_runtime;
 .system = $PROGBITS ?AX .system;
 .system_cmn = $PROGBITS ?AX .system_cmn;
 .system_int = $PROGBITS ?AX .system_int;
 .text = $PROGBITS ?AX .text;
};
S0MEMA :!LOAD ?RW V0xffffc000 {
 .spol0area = $NOBITS ?AW .spol0area;
};
S1MEMA :!LOAD ?RW V0xffffcc00 {
 .spol1area = $NOBITS ?AW .spol1area;
};
U0MEMA :!LOAD ?RW V0xffffd200 {
 .upol0area = $NOBITS ?AW .upol0area;
};
 :
 :

CHAPTER 2 SYSTEM CONSTRUCTION

28 User’s Manual U19429EJ1V0UM

2.7 Creating Load Module
Run a build on CubeSuite for files created in sections from "2.2 Creating System Configuration File" to "2.6 Creating

Llink Directive File", and library files provided by the RX850 Pro and CA850, to create a load module.

1) Create or load a project
Create a new project, or load an existing one.

Note See RX Series Start User's Manual or CubeSuite Start User's Manual for details about creating a new
project or loading an existing one.

2) Set a build target project
When making settings for or running a build, set the active project.
If there is no subproject, the project is always active.

Note See CubeSuite V850 Build User's Manual for details about setting the active project.

3) Set build target files
For the project, add or remove build target files and update the dependencies.

Note See CubeSuite V850 Build User's Manual for details about adding or removing build target files for the
project and updating the dependencies.

The following lists the files required for creating a load module.

- System configuration file created in "2.2 Creating System Configuration File"

Note Specify "cfg" as the extention of the system configuration file name.
If the extension is different, "cfg" is automatically added (for example, if you designate "aaa.c" as a file
name, the file is named as "aaa.c.cfg").

- C/assembly language source files created in "2.3 Creating System Initialization Processing"

- C/assembly language source files created in "2.4 Creating Processing Programs"

- C/assembly language source files created in "2.5 Creating Initialization Data Save Area"

- Link directive file created in "2.6 Creating Llink Directive File"

Note 1 If the system configuration file is added to the Project Tree panel, the Realtime OS generated files node is
appeared.
The following information files are appeared under the Realtime OS generated files node. However, these
files are not generated at this point in time.

- System information table file

- System information header file

- System call table file

CHAPTER 2 SYSTEM CONSTRUCTION

User’s Manual U19429EJ1V0UM 29

Figure 2-3 Project Tree Panel (After Adding sys.cfg)

Note 2 When replacing the system configuration file, first remove the added system configuration file from the
project, then add another one again.

Note 3 Although it is possible to add more than one system configuration files to a project, only the first file added
is enabled. Note that if you remove the enabled file from the project, the remaining additional files will not
be enabled; you must therefore add them again.

4) Specify library and object linking
When linking applications that use the RX850 Pro, the following libraries must be referenced and objects must be
linked.

- Nucleus library

librxp.a: Immediately before rel_blk is issued, the first 4 bytes of the target memory block need to be
cleared to 0.

librxpm.a: Immediately before rel_blk is not issued, the first 4 bytes of the target memory block need to
be cleared to 0.

- Interface library

libchp.a: With parameter check
libncp.a: Without parameter check

- Nucleus common object

rxtmcore.o: In the cyclic handler, the acceptance of maskable interrupts that have higher priority than
clock interrupts is enabled.

rxcore.o: In the cyclic handler, the acceptance of all maskable interrupts is enabled.

CHAPTER 2 SYSTEM CONSTRUCTION

30 User’s Manual U19429EJ1V0UM

Select the Realtime OS node on the project tree to open [RX850 Pro] tab on the Property panel.
Set the nucleus library, interface library, and nucleus common object linking on each property.

Figure 2-4 Property Panel: [RX850 Pro] Tab

Two types of interface libraries and 2 types of nucleus common objects are available. Which type is to be used
should be determined according to the application. For details of the nucleus library, see "CHAPTER 11
INTERFACE LIBRARY". For details of the nucleus common object, refer to "CHAPTER 8 TIME MANAGEMENT
FUNCTION".

5) Set the output of information files
Select the system configuration file on the project tree to open the Property panel.
On the [System Configuration File Related Information] tab, set the output of information files (system information
table file, system information header file, and system call table file).

Figure 2-5 Property Panel: [System Configuration File Related Information] Tab

CHAPTER 2 SYSTEM CONSTRUCTION

User’s Manual U19429EJ1V0UM 31

6) Specify the output of a load module file
Set the output of a load module file as the product of the build.

Note See CubeSuite V850 Build User's Manual for details about specifying the output of a load module file.

7) Set build options
Set the options for the compiler, assembler, linker, and the like.

Note 1 See CubeSuite V850 Build User's Manual for details about setting build options.

Note 2 The following table lists the compiler option specifications that are prohibited.

Table 2-4 Options Prohibited for Setting

Compiler Option Remark

-reg22
-reg26

Specification of these options is prohibited because the RX850 Pro only supports
the 32-register mode.

-Xpack=1
-Xpack=2

Specification of these options is prohibited because the RX850 Pro performs
processing on the assumption that data structures are assigned to areas with 4-byte
alignment.

CHAPTER 2 SYSTEM CONSTRUCTION

32 User’s Manual U19429EJ1V0UM

8) Run a build
Run a build to create a load module.

Note See CubeSuite V850 Build User's Manual for details about runnig a build.

Figure 2-6 Project Tree Panel (After Running Build)

The load module file created by the linker correctly locates the initialization data in RAM. If initialization data exists
in the application, a module that reserves an initialization data saving area and that incorporates a copy routine
must be created. In this case, a load module that passes through a ROMization processor must be created for the
load module created by the linker.
See CubeSuite V850 Build User's Manual for details about how to use the ROMization processor and for details of
the copy routine.

9) Save the project
Save the setting information of the project to the project file.

Note See CubeSuite Start User's Manual for details about saving the project.

2.8 Embedding System
If the output of a hex file are set in 6) of "2.7 Creating Load Module", a hex file is created.
Then, embed this file into the system by using a ROM writer, etc.

CHAPTER 3 NUCLEUS

User’s Manual U19429EJ1V0UM 33

CHAPTER 3 NUCLEUS

This chapter describes the nucleus, which is the core of the RX850 Pro.

3.1 Outline
The nucleus forms the heart of the RX850 Pro, a system that supports real-time, multitask control. The nucleus provides

the following functions.

- Creation/initialization of management objects

- Processing of system calls issued by processing program (task/non-task)

- Selection of the processing program (task/non-task) to be executed next, according to an event that occurs internal or
external to the target system

Management object creation/initialization and system call processing are executed by management modules. Program
selection is performed by a scheduler.

The configuration of the RX850 Pro nucleus is shown below.

Figure 3-1 Nucleus Configuration

Time management Memory pool management

Interrupt managementSystem management

Other

Synchronous communication

Task management

Task-associated

Scheduler
 management

synchronization

CHAPTER 3 NUCLEUS

34 User’s Manual U19429EJ1V0UM

3.2 Functions
The nucleus consists of various kinds of management modules and a scheduler.
This section outlines the functions of the management modules and scheduler.
See "CHAPTER 4 TASK MANAGEMENT FUNCTION" through "CHAPTER 9 SCHEDULER" for details of the

individual functions.

- Task management function
This module manipulates and manages the states of a task, the minimum unit in which processing is performed by the
RX850 Pro. For example, the module can create, start, run, stop, terminate, and delete a task.

- Synchronous communication function
This module enables 3 functions related to synchronous communication between tasks: exclusive control, wait, and
communication.

Exclusive control function: Semaphore
Wait function: Eventflag
Communication function: Mailbox

- Interrupt management function
This module executes the processing related to maskable interrupts, such as the registration of an indirectly activated
interrupt mask, return from a directly activated interrupt handler, and change or acquisition of the interrupt-enable
level.

- Memory pool management function
This module manages the memory area specified at configuration, dividing it into the following 2 areas.

- RX850 Pro area
Management objects
Memory pool

- Processing program (task/non-task) area
Text area
Data area
Stack area

The RX850 Pro also applies dynamic memory pool management. For example, the RX850 Pro provides a function for
acquiring and returning a memory area to be used as a work area as required.
By exploiting this ability to dynamically manage memory, the user can utilize a limited memory area with maximum
efficiency.

- Time management function
This module supports a timer operation function (such as delayed wake-up of a task or activation of a cyclic handler)
that is based on clock interrupts generated by hardware (such as a clock controller).

- Scheduler
By monitoring the dynamically changing states of tasks, this module manages and determines the order in which
tasks are executed and optimally assigns tasks a processing time.
The RX850 Pro determines the task execution order according to assigned priority levels and by applying the FCFS
method. When started, the scheduler determines the priority levels assigned to the tasks, selects an optimum task
from those ready to be executed (run or ready state), and optimally assigns tasks a processing time.

Remark In the RX850 Pro, the smaller the value of the priority assigned to the task, the higher the priority.

CHAPTER 4 TASK MANAGEMENT FUNCTION

User’s Manual U19429EJ1V0UM 35

CHAPTER 4 TASK MANAGEMENT FUNCTION

This chapter describes the task management function performed by the RX850 Pro.

4.1 Outline
Tasks are execution entities of arbitrary sizes, making them difficult to manage directly. The RX850 Pro manages task

states and tasks themselves by using management objects that correspond to tasks on a one-to-one basis.

Remark A task uses the execution environment information provided by the program counter, work registers, and the
like when it executes processing. This information is called the task context. When the task execution is
switched, the current task context is saved and the task context for the next task is loaded.

4.2 Task States
The task changes its state according to how resources required to execute the processing are acquired, whether an

event occurs, and so on.
The RX850 Pro classifies task states into the following 7 types.

- Non-existent state
A task in this state has not been created or has been deleted.
A task in the non-existent state is not managed by the RX850 Pro even if its execution entity is located in memory.

- Dormant state
A task in this state has just been created or has already completed its processing.
A task in the dormant state is not scheduled by the RX850 Pro.
This state differs from the wait state in the following points:

- All resources are released.

- The task context is initialized when the processing is resumed.

- A state manipulation system call (ter_tsk, chg_pri, etc.) causes an error.

- Ready state
A task in this state is ready to perform its processing. This task has been waiting for a processing time to be assigned
because another task having a higher (or the same) priority level is being executed.
A task in the ready state is scheduled by the RX850 Pro.

- Run state
A task in this state has been assigned a processing time and is currently performing its processing.
Within the entire system, only a single task can be in the run state at any one time.

- Wait state
A task in this state has been stopped because the requirements for performing its processing are not satisfied.
The processing of this task is resumed from the point at which it was stopped, so the values that were being used
immediately before the stop are restored to the task context required to resume the processing.
The RX850 Pro further divides tasks in the wait state into the following 6 groups, according to the conditions which
caused the transition to the wait state.

Wake-up wait state: A task enters this state if the counter for the task (registering the number of times the
wake-up request has been issued) indicates 0x0 upon the issuance of slp_tsk or
tslp_tsk.

Resource wait state: A task enters this state if it cannot acquire a resource from the relevant semaphore
upon the issuance of wai_sem or twai_sem.

Eventflag wait state: A task enters this state if a relevant eventflag does not satisfy a predetermined
condition upon the issuance of wai_flg or twai_flg.

CHAPTER 4 TASK MANAGEMENT FUNCTION

36 User’s Manual U19429EJ1V0UM

Message wait state: A task enters this state if it cannot receive a message from the relevant mailbox upon
the issuance of rcv_msg or trcv_msg.

Memory block wait state: A task enters this state if it cannot acquire a memory block from the relevant memory
pool upon the issuance of get_blk or tget_blk.

Timeout wait state: A task enters this state upon the issuance of dly_tsk.

- Suspend state
A task in this state has been forcibly stopped by another task.
The processing of this task is resumed from the point at which it was stopped, so the values that were being used
immediately before the stop are restored to the task context required for resuming the processing.

Remark RX850 Pro supports nesting of more than one level of the suspend state (up to 127 times).

- Wait-suspend state
This state is a combination of the wait and suspend states.
A task in this state has entered the suspend state upon exiting from the wait state, or has entered the wait state upon
exiting from the suspend state.

Task state transitions are shown in Figure 4-1.

Figure 4-1 Task State Transition

redy
Ready state

wait
Wait state

suspend
Suspend state

dormant
Dormant state

non-existent
Non-existent state

wait-suspend
Wait-suspend state

run
Run state

Wait released Wait condition

Stop Resume

Wait released

Forced termination Forced termination

Activation Termination
Deletion Creation

Termination and deletion

Dispath

Preempt

Stop

Resume

CHAPTER 4 TASK MANAGEMENT FUNCTION

User’s Manual U19429EJ1V0UM 37

4.3 Creating Tasks
2 types of interfaces are provided in the RX850 Pro to create tasks: A task is created statically at system initialization (in

the nucleus initialization module), or dynamically according to a system call issued from a processing program.
Task in the RX850 Pro consists of 3 steps: A task management area (management object) is allocated in system

memory. Then, the allocated task management area is initialized. Finally, the task state is changed from the non-existent
state to the dormant state.

- Static registration of a task
To register a task statically, specify it in Task information during configuration.
The RX850 Pro creates a task according to the information defined in the information files (system information table
and system information header file) at system initialization, and makes the task manageable.

- Dynamic registration of a task
To register a task dynamically, issue cre_tsk from a processing program (task).
The RX850 Pro generates a task according to the information specified with parameters upon the issuance of cre_tsk,
and makes the task manageable.

4.4 Activating Tasks
In task activation in the RX850 Pro, a task is switched from the dormant state to the ready state, and scheduled.
A task is activated by issuing sta_tsk, specifying the task by the parameters.

- sta_tsk
A task specified by the parameters is switched from the dormant state to the ready state.

4.5 Terminating Tasks
In task termination in the RX850 Pro, a task is switched from the ready state, run state, wait state, suspend state, or

wait-suspend state to the dormant state and excluded from the schedule by the RX850 Pro.
In the RX850 Pro, a task can be terminated in either of the following 2 ways.

Normal termination: A task terminates upon completing all processing and when it need not be subsequently
scheduled.

Forced termination: When a number of troubles occur during processing and processing must be terminated
immediately, this enables termination from another task.

The task terminates upon the issuance of the following system calls.

- ext_tsk
The task that issued thissystem call is switched from the run state to the dormant state.

- exd_tsk
The task that issued this system call is switched from the run state to the non-existent state.

- ter_tsk
The task specified by the parameters is forcibly switched to the dormant state.

CHAPTER 4 TASK MANAGEMENT FUNCTION

38 User’s Manual U19429EJ1V0UM

4.6 Deleting Tasks
In task deletion in the RX850 Pro, a task is switched from the run or dormant state to the non-existent state, and

excluded from management by the RX850 Pro.
A task is deleted upon the issuance of the following system calls.

- exd_tsk
The task that issued this system call is switched from the run state to the non-existent state.

- del_tsk
The task specified by the parameters is switched from the dormant state to the non-existent state.

4.7 Internal Processing of Task
The RX850 Pro utilizes a unique means of scheduling to switch tasks.
Therefore, when describing a task's processing, observe the following points.

- Saving/restoring registers
When switching tasks, the RX850 Pro saves and restores the contents of work registers in line with the function call
conventions of the C compiler. This eliminates the need for coding processing to save the contents at the beginning of
a task and to restore the contents at the end.
If a task coded in assembly language uses a register for a register variable, however, the processing for saving the
contents of that register must be coded at the beginning of the task, and the processing for restoring the contents at
the end.

- Stack switching
When switching tasks, the RX850 Pro switches to the special task stack of the selected task. The processing for
switching the stack need not be coded at the beginning and end of the task.

- Limitations imposed on system calls
Some of the RX850 Pro system calls cannot be issued within a task.
The following system calls can be issued within a task:

- Task management system calls
cre_tsk, del_tsk, sta_tsk, ext_tsk, exd_tsk, ter_tsk, dis_dsp, ena_dsp, chg_pri, rot_rdq, rel_wai, get_tid, ref_tsk,
vget_tid

- Task-associated synchronization system calls
sus_tsk, rsm_tsk, frsm_tsk, slp_tsk, tslp_tsk, wup_tsk, can_wup

- Synchronous communication system calls
cre_sem, del_sem, sig_sem, wai_sem, preq_sem, twai_sem, ref_sem, vget_sid, cre_flg, del_flg, set_flg, clr_flg,
wai_flg, pol_flg, twai_flg, ref_flg, vget_fid, cre_mbx, del_mbx, snd_msg, rcv_msg, prcv_msg, trcv_msg, ref_mbx,
vget_mid

- Interrupt management system calls
def_int, ena_int, dis_int, loc_cpu, unl_cpu, chg_icr, ref_icr

- Memory pool management system calls
cre_mpl, del_mpl, get_blk, pget_blk, tget_blk, rel_blk, ref_mpl, vget_pid

- Time management system calls
set_tim, get_tim, dly_tsk, def_cyc, act_cyc, ref_cyc

- System management system calls
get_ver, ref_sys, def_svc, viss_svc

CHAPTER 4 TASK MANAGEMENT FUNCTION

User’s Manual U19429EJ1V0UM 39

4.7.1 Acquiring task information
Task information is acquired upon the issuance of ref_tsk.

- ref_tsk
Task information (such as extended information or the current priority) for the task specified by the parameters is
acquired.
The contents of the task information are as follows:

- Extended information

- Current priority

- Task status

- Wait cause

- ID number of wait object (semaphore, eventflag, etc.)

- Number of wake-up requests

- Number of suspend requests

- Key ID number

4.7.2 Acquiring ID number
The ID number of a task can be acquired by issuing vget_tid.

- vget_tid
Acquires the ID number of the task specified by the parameter.
To manipulate a task with a system call, the ID number of the task is necessary. Whether the ID number is determined
univocally by the user or automatically assigned can be specified when a task is created. If automatic assignment of
the ID number is specified, however, the user cannot learn the ID number of a task. To do so, a "key ID number" is
necessary. The key ID number is univocally specified when a task is created.
By issuing this system call with this key ID number as a parameter, the ID number of the task having that key ID
number can be acquired.

CHAPTER 5 SYNCHRONOUS COMMUNICATION FUNCTIONS

40 User’s Manual U19429EJ1V0UM

CHAPTER 5 SYNCHRONOUS COMMUNICATION FUNC-
TIONS

This chapter describes the synchronous communication functions performed by the RX850 Pro.

5.1 Outline
In an environment where multiple tasks are executed concurrently (multitasking), a result produced by a preceding task

may determine the next task to be executed or affect the processing performed by the subsequent task. In other words,
some task execution conditions vary with the processing performed by another task, or the processing performed by some
tasks is related.

Therefore, liaison functions between tasks are required, so that task execution will be suspended to await the result
output by another task or until necessary conditions have been established to enable the processing to be continued.

In the RX850 Pro, these functions are called "synchronization functions". The synchronization functions include an
exclusive control function and a wait function. The RX850 Pro provides semaphores that act as the exclusive control
function and eventflags that act as the wait function.

For multitasking, an inter task communication function is also required to enable one task to receive the processing
result from another.

In the RX850 Pro, this function is called a "communication function". The RX850 Pro provides mailboxes that act as the
communication function.

5.2 Semaphores
Multitasking requires a function to prevent the resource contention that would occur when concurrently operating

multiple tasks attempt to use a limited number of resources such as an A/D converter, coprocessors, files, and programs.
To implement this contention preventive function, the RX850 Pro provides non-negative counter-type semaphores.

The following system calls are used to dynamically manipulate a semaphore:

cre_sem: Generates a semaphore.
del_sem: Deletes a semaphore.
sig_sem: Returns a resource.
wai_sem: Acquires a resource.
preq_sem: Acquires a resource (by polling).
twai_sem: Acquires a resource (with timeout setting).
ref_sem: Acquires semaphore information.
vget_sid: Acquires semaphore ID number.

Remark In RX850 Pro, those elements required to execute tasks are called resources. In other words, resources
comprehensively refer to hardware components such as the A/D converter and coprocessor, as well as
software components such as files and programs.

5.2.1 Generating semaphores
The RX850 Pro provides 2 interfaces for generating semaphores. One enables the static generation of a semaphore

during system initialization (in the nucleus initialization module). The other dynamically generates a semaphore by issuing
a system call from within a processing program.

To generate a semaphore in the RX850 Pro, an area in system memory is allocated for managing that semaphore (as
an object of management by the RX850 Pro), then initialized.

- Static registration of a semaphore
To register a semaphore statically, specify it in Semaphore information during configuration.
The RX850 Pro generates that semaphore according to the semaphore information defined in the information file
(including system information tables and system information header files) during system initialization. The semaphore
is subsequently managed by the RX850 Pro.

CHAPTER 5 SYNCHRONOUS COMMUNICATION FUNCTIONS

User’s Manual U19429EJ1V0UM 41

- Dynamic registration of a semaphore
To dynamically register a semaphore, issue cre_sem from within a processing program (task).
The RX850 Pro generates that semaphore according to the information specified with parameters when cre_sem is
issued. The semaphore is subsequently managed by the RX850 Pro.

5.2.2 Deleting semaphores
A semaphore is deleted by issuing del_sem.

- del_sem
This system call deletes the semaphore specified by the parameter.
That semaphore is then no longer managed by the RX850 Pro.
If a task is queued into the wait queue of the semaphore specified by this system call parameter, that task is removed
from the wait queue, after which it leaves the wait state (the resource wait state) and enters the ready state.
E_DLT is returned to the task released from the wait state as the value returned in response to the system call
(wai_sem or twai_sem) that triggered the transition of the task to the wait state.

5.2.3 Returning resources
A resource is returned by issuing sig_sem.

- sig_sem
By issuing this system call, the task returns a resource to the semaphore specified by the parameter (the semaphore
counter is incremented by 0x1).
If a task or tasks are queued into the wait queue of the semaphore specified by these system call parameter, the
relevant resource is passed to the first task in the wait queue without being returned to the semaphore (thus, the
semaphore counter is not incremented).
That task is then removed from the wait queue, after which it either leaves the wait state (the resource wait state) and
enters the ready state, or leaves the wait-suspend state and enters the suspend state.

5.2.4 Acquiring resources
A resource is acquired by issuing wai_sem, preq_sem, or twai_sem.

- wai_sem
By issuing this system call, the task acquires a resource from the semaphore specified by the parameter (the
semaphore counter is decremented by 0x1.)
After issuing this system call, if the task cannot acquire the resource from the specified semaphore (no idle resource
exists), the task itself is queued into the wait queue of this semaphore. Thus, the task leaves the run state and enters
the wait state (the resource wait state).
The resource wait state is canceled in the following cases, and the task returns to the ready state.

- When sig_sem is issued.

- When del_sem is issued and the specified semaphore is deleted.

- When rel_wai is issued and the wait state is forcibly canceled.

Remark When a task queues in the wait queue of the specified semaphore, it is executed in the order (FIFO order
or priority order) specified when that semaphore was generated (during configuration or when cre_sem
was issued).

- preq_sem
By issuing this system call, the task acquires a resource from the semaphore specified by the parameter (the
semaphore counter is decremented by 0x1.)
After this system call is issued, if the task cannot acquire the resource from the specified semaphore (no idle resource
exists), E_TMOUT is returned as the return value.

- twai_sem
By issuing this system call, the task acquires a resource from the semaphore specified by the parameter (the
semaphore counter is decremented by 0x1.)
After issuing this system call, if the task cannot acquire the resource from the specified semaphore (no idle resource

CHAPTER 5 SYNCHRONOUS COMMUNICATION FUNCTIONS

42 User’s Manual U19429EJ1V0UM

exists), the task itself is queued into the wait queue of this semaphore. Thus, the task leaves the run state and enters
the wait state (the resource wait state).
The resource wait state is canceled in the following cases, and the task returns to the ready state.

- When the given wait time specified by a parameter has elapsed.

- When sig_sem is issued.

- When del_sem is issued and the specified semaphore is deleted.

- When rel_wai is issued and the wait state is forcibly canceled.

Remark When a task queues in the wait queue of the specified semaphore, it is executed in the order (FIFO order
or priority order) specified when that semaphore was generated (during configuration or when cre_sem
was issued).

5.2.5 Acquiring semaphore information
Semaphore information is acquired by issuing ref_sem.

- ref_sem
By issuing this system call, the task acquires the semaphore information (extended information, queued tasks, etc.)
for the semaphore specified by the parameter.
The semaphore information consists of the following:

- Extended information

- Existence of waiting task

- Current resource count

- Maximum resource count

- Key ID number

5.2.6 Acquiring ID number
The ID number of a semaphore can be acquired by issuing vget_sid.

- vget_sid
Acquires the ID number of a semaphore specified by the parameter.
To manipulate a semaphore with a system call, the ID number of the semaphore is necessary. Whether the ID number
is determined univocally by the user or automatically assigned can be specified when a task is created. If automatic
assignment of the ID number is specified, however, the user cannot learn the ID number of a semaphore.
To do so, a "key ID number" is necessary. The key ID number is univocally specified when a semaphore is created.
By issuing this system call with this key ID number as a parameter, the ID number of the semaphore having that key
ID number can be acquired.

CHAPTER 5 SYNCHRONOUS COMMUNICATION FUNCTIONS

User’s Manual U19429EJ1V0UM 43

5.2.7 Exclusive control using semaphores
The following is an example of using semaphores to manipulate the tasks under exclusive control.

[Conditions]

- Task priority
Task A > Task B

- State of tasks
Task A: Run state
Task B: Ready state

- Semaphore attributes
Initial resource count: 0x1
Maximum resource count: 0x5
Task queuing method: FIFO

(1) Task A issues wai_sem.
The number of resources assigned to this semaphore and managed by the RX850 Pro is 0x1. Thus, the RX850 Pro
decrements the semaphore counter by 0x1.
At this time, task A does not enter the wait state (the resource wait state). Instead, it remains in the run state.
The relevant semaphore counter changes as shown in Figure 5-1.

Figure 5-1 State of Semaphore Counter

(2) Task A issues wai_sem.
The number of resources assigned to this semaphore and managed by the RX850 Pro is 0x0. Thus, the RX850 Pro
changes the state of task A from run to the wait state (resource wait state) and places the task at the end of the wait
queue for this semaphore.
The wait queue of this semaphore changes as shown in Figure 5-2.

Figure 5-2 State of Wait Queue (When wai_sem Is Issued)

(3) As task A enters the resource wait state, the state of task B changes from ready to run.

(4) Task B issues sig_sem.
At this time, the state of task A that has been placed in the wait queue of this semaphore changes from the
resource wait state to ready state.
The wait queue of this semaphore changes as shown in Figure 5-3.

Before issuing

After issuing

Number of resource: 0x1

Number of resource: 0x0

Task A: wai_sem

Before issuing

After issuing

Wait queue

Wait queue

Task A: wai_sem

Task A

CHAPTER 5 SYNCHRONOUS COMMUNICATION FUNCTIONS

44 User’s Manual U19429EJ1V0UM

Figure 5-3 State of Wait Queue (When sig_sem Is Issued)

(5) The state of task A having the higher priority changes from ready to run.
At the same time, task B leaves the run state and enters the ready state.

Figure 5-4 shows the transition of exclusive control in steps (1) to (5).

Figure 5-4 Exclusive Control Using Semaphores

Before issuing

After issuing

Wait queue

Wait queue

Task B: sig_sem

Task A

Task A

Priority: High

Task B

Priority: Low

wai_sem

wai_sem

sig_sem

CHAPTER 5 SYNCHRONOUS COMMUNICATION FUNCTIONS

User’s Manual U19429EJ1V0UM 45

5.3 Eventflags
In multitasking, an intertask wait function, in which other tasks wait to resume execution of processing until the results of

processing by a given task are output, is necessary. In such a case, it is good to have a function for other tasks to judge
whether or not the "processing results output" event has occurred or not, and in the RX850 Pro, an eventflag is provided in
order to realize this kind of function.

An eventflag is a set of data consisting of 1-bit flags that indicate whether a particular event has occurred. 32-bit
eventflags are used in the RX850 Pro. 32 bits are handled as a set of information with each bit or a combination of bits
having a specific meaning.

The following system calls regarding eventflags are used to dynamically manipulate an eventflag.

cre_flg: Generates an eventflag.
del_flg: Deletes an eventflag.
set_flg: Sets a bit pattern.
clr_flg: Clears a bit pattern.
wai_flg: Checks a bit pattern.
pol_flg: Checks a bit pattern (by polling).
twai_flg: Checks a bit pattern (with timeout setting).
ref_flg: Acquires eventflag information.
vget_fid: Acquires eventflag ID number.

5.3.1 Generating eventflags
The RX850 Pro provides 2 interfaces for generating eventflags. One is for statically generating an eventflag during

system initialization (in the nucleus initialization module). The other is for dynamically generating an eventflag by issuing a
system call from within a processing program.

To generate an eventflag in the RX850 Pro, an area in system memory is allocated for managing that eventflag (as an
object of management by the RX850 Pro), then initialized.

- Static registration of an eventflag
To register an event flag statically, specify it in Eventflag information during configuration.
The RX850 Pro generates that eventflag according to the eventflag information defined in the information file
(including system information tables and system information header files) during system initialization.
Subsequently, the eventflag is managed by the RX850 Pro.

- Dynamic registration of an eventflag
To dynamically register an eventflag, issue cre_flg from within a processing program (task).
The RX850 Pro generates that eventflag according to the information specified by a parameter when cre_flg is
issued. Subsequently, the eventflag is managed by the RX850 Pro.

5.3.2 Deleting eventflags
An eventflag is deleted by issuing del_flg.

- del_flg
This system call deletes the eventflag specified by the parameter.
That eventflag is then no longer managed by the RX850 Pro.
If a task is queued into the wait queue of the eventflag specified by this system call parameter, that task is removed
from the wait queue, after which it leaves the wait state (the eventflag wait state) and enters the ready state.
E_DLT is returned to the task released from the wait state as the return value for the system call (wai_flg or twai_flg)
that triggered the transition of the task to the wait state.

CHAPTER 5 SYNCHRONOUS COMMUNICATION FUNCTIONS

46 User’s Manual U19429EJ1V0UM

5.3.3 Setting a bit pattern
The eventflag bit pattern is set by issuing set_flg.

- set_flg
This system call sets a bit pattern for the eventflag specified by the parameter.
When this system call is issued, if the given condition for a task queued into the wait queue of the specified eventflag
is satisfied, that task is removed from the wait queue.
The task then either leaves the wait state (the eventflag wait state) and enters the ready state, or leaves the wait-
suspend state and enters the suspend state.

5.3.4 Clearing a bit pattern
The eventflag bit pattern is cleared by issuing clr_flg.

- clr_flg
This system call clears the bit pattern of the eventflag specified by the parameter.
Note that when this system call is issued, if the bit pattern of the specified eventflag has already been cleared to zero,
it is not regarded as an error.

5.3.5 Checking a bit pattern
The eventflag bit pattern is checked by issuing wai_flg, pol_flg, or twai_flg.

- wai_flg
This system call checks whether the bit pattern is set to satisfy the wait condition required for the eventflag specified
by the parameter.
If the bit pattern does not satisfy the wait condition required this task is queued at the end of the wait queue of this
eventflag. Thus, the task leaves the run state and enters the wait state (the eventflag wait state).
The eventflag wait state is canceled in the following cases, and the task returns to the ready state.

- When set_flg is issued and the required wait condition is set.

- When del_flg is issued and this eventflag is deleted.

- When rel_wai is issued and the wait state is forcibly canceled.

- pol_flg
This system call checks whether the bit pattern is set to satisfy the wait condition required for the eventflag specified
by the parameter.
If the bit pattern does not satisfy the wait condition required for the eventflag specified by this system call parameter,
E_TMOUT is returned as the return value.

- twai_flg
This system call checks whether the bit pattern is set to satisfy the wait condition required for the eventflag specified
by the parameter.
If the bit pattern does not satisfy the wait condition required for the eventflag specified by this system call parameter,
the task that issues this system call is queued at the end of the wait queue for this eventflag.
Thus, the task leaves the run state and enters the wait state (the eventflag wait state).
The eventflag wait state is canceled in the following cases, and the task returns to the ready state.

- Once the given wait time specified by the parameter has elapsed.

- When set_flg is issued and the required wait condition is set.

- When del_flg is issued and this eventflag is deleted.

- When rel_wai is issued and the wait state is forcibly canceled.

Also, the eventflag wait conditions and processing when the conditions are established can be specified as follows in
the RX850 Pro.

CHAPTER 5 SYNCHRONOUS COMMUNICATION FUNCTIONS

User’s Manual U19429EJ1V0UM 47

- Wait conditions

- AND wait
The wait state continues until all bits to be set to 1 in the required bit pattern have been set in the relevant
eventflag.

- OR wait
The wait state continues until any bit to be set to 1 in the required bit pattern has been set in the relevant
eventflag.

- When the condition is satisfied

- Clearing a bit pattern
When the wait condition specified for the eventflag is satisfied, the bit pattern for the eventflag is cleared.

5.3.6 Acquiring eventflag information
Eventflag information is acquired by issuing ref_flg.

- ref_flg
By issuing this system call, the task acquires the eventflag information (extended information, queued tasks, etc.) for
the eventflag specified by the parameter.
Details of eventflag information are as follows:

- Extended information

- Existence of waiting task

- Current bit pattern

- Key ID number

5.3.7 Acquiring ID number
The ID number of an eventflag can be acquired by issuing vget_fid.

- vget_fid
Acquires the ID number of the eventflag specified by the parameter.
To manipulate an eventflag with a system call, the ID number of the eventflag is necessary. Whether the ID number is
determined univocally by the user or automatically assigned can be specified when an eventflag is created.
If automatic assignment of the ID number is specified, however, the user cannot learn the ID number of an eventflag.
To do so, a "key ID number" is necessary. The key ID number is univocally specified when an eventflag is created.
By issuing this system call with this key ID number as a parameter, the ID number of the eventflag having that key ID
number can be acquired.

CHAPTER 5 SYNCHRONOUS COMMUNICATION FUNCTIONS

48 User’s Manual U19429EJ1V0UM

5.3.8 Wait function using eventflags
The following is an example of manipulating the tasks under wait and control using eventflags.

[Conditions]

- Task priority
Task A > Task B

- State of tasks
Task A: Run state
Task B: Ready state

- Eventflag attributes
Initial bit pattern: 0x0
Whether waiting for multiple tasks: Disabled

(1) Task A issues wai_flg. The required bit pattern is 0x1 and the wait condition is TWF_ANDW|TWF_CLR.
The current bit pattern of the relevant eventflag managed by the RX850 Pro is 0x0. Thus, the RX850 Pro changes
the state of task A from run to wait (the eventflag wait state). Task A is then queued at the end of the wait queue for
this eventflag.
The wait queue of this eventflag changes as shown in Figure 5-5.

Figure 5-5 State of Wait Queue (When wai_flg Is Issued)

(2) As task A enters the eventflag wait state, the state of task B changes from ready to run.

(3) Task B issues set_flg. The bit pattern is set to 0x1.
This bit pattern satisfies the wait condition for task A that has been queued into the wait queue of the relevant
eventflag. Thus, task A leaves the eventflag wait state and enters the ready state.
Since TWF_CLR was specified when task A issued the wai_flag, the bit pattern of this eventflag is cleared.
The wait queue for this eventflag changes as shown in Figure 5-6.

Figure 5-6 State of Wait Queue (When set_flg Is Issued)

(4) The state of task A having the higher priority changes from ready to run.
At the same time, task B leaves the run state and enters the ready state.

Before issuing

After issuing

Wait queue

Wait queue

Task A: wai_flg

Task A

Before issuing

After issuing

Wait queue

Wait queue

Task B: set_flg

Task A

CHAPTER 5 SYNCHRONOUS COMMUNICATION FUNCTIONS

User’s Manual U19429EJ1V0UM 49

Figure 5-7 shows the transition of wait and control by eventflags in steps (1) to (4).

Figure 5-7 Wait and Control by Eventflags

Task A

Priority: High

TAsk B

Priority: Low

wai_flg

set_flg

CHAPTER 5 SYNCHRONOUS COMMUNICATION FUNCTIONS

50 User’s Manual U19429EJ1V0UM

5.4 Mailboxes
Multitasking requires an inter task communication function, so that the tasks can be informed of the results output by

other tasks. To implement this function, the RX850 Pro provides mailboxes.
The mailboxes used in the RX850 Pro have 2 different queues, one dedicated to tasks and the other dedicated to

messages. They can be used for both an inter task message communication function and an inter task wait function.
The following mailbox-related system calls are used to dynamically operate a mailbox.

cre_mbx: Generates a mailbox.
del_mbx: Deletes a mailbox.
snd_msg: Sends a message.
rcv_msg: Receives a message.
prcv_msg: Receives a message (by polling).
trcv_msg: Receives a message (with timeout setting).
ref_mbx: Acquires mailbox information.
vget_mid: Acquires mailbox ID number.

5.4.1 Generating mailboxes
The RX850 Pro provides 2 interfaces for generating mailboxes. One is for statically generating a mailbox during system

initialization (in the nucleus initialization module). The other is for dynamically generating a mailbox by issuing a system
call from within a processing program.

To generate a mailbox in the RX850 Pro, an area in system memory is allocated for managing that mailbox (as an
RX850 Pro management object), then initialized.

- Static registration of a mailbox
To register a mailbox statically, specify it in Mailbox information during configuration.
The RX850 Pro generates the mailbox according to the mailbox information defined in the information file (including
system information tables and system information header files) during system initialization.
Subsequently, the mailbox is managed by the RX850 Pro.

- Dynamic registration of a mailbox
To dynamically register a mailbox, issue cre_mbx from within a processing program (task).
The RX850 Pro generates the mailbox according to the information specified by the parameter when cre_mbx is
issued. Subsequently, the mailbox is managed by the RX850 Pro.

5.4.2 Deleting mailboxes
A mailbox is deleted by issuing del_mbx.

- del_mbx
This system call deletes the mailbox specified by the parameter.
That mailbox is then no longer managed by the RX850 Pro.
If a task is queued into the task wait queue of the mailbox specified by this system call parameter, that task is
removed from the task wait queue, after which it will leave the wait state (the message wait state) and enter the ready
state.
E_DLT is returned to the task released from the wait state as the return value for the system call (rcv_msg or
trcv_msg) that triggered the transition of the task to the wait state.
If a message is queued to the message wait queue of the specified mailbox when this system call is issued, the
message is released from the wait queue and is returned to the memory pool from which the message area is
acquired. Consequently, if an area other than the memory block acquired from a memory pool is used as a message
area, the operation of deleting a mailbox is not guaranteed. Be sure to use a memory block acquired from a memory
pool as the message area for the mailbox that may be deleted by this system call.

CHAPTER 5 SYNCHRONOUS COMMUNICATION FUNCTIONS

User’s Manual U19429EJ1V0UM 51

5.4.3 Transmitting a message
A message is transmitted from the task by issuing snd_msg.

- snd_msg
Upon the issuance of snd_msg, the task transmits a message to the mailbox specified by the parameter.
If a task or tasks are queued into the task wait queue of the mailbox specified by this system call parameter, the
message is delivered to the first task in the task wait queue without being queued into the mailbox.
The first task is then removed from the wait queue, after which it either leaves the wait state (the message wait state)
and enters the ready state, or leaves the wait-suspend state and enters the suspend state.
If no tasks are queued in the task wait queue of the object mailbox, the message is placed in the message wait queue
of the object mailbox.

Remark When a message queues into the message wait queue of the specified mailbox, it is executed in the
order (FIFO order or priority order) specified when the mailbox was generated (during configuration or
when cre_mbx was issued).

5.4.4 Receiving a message
A message is received by the task upon the issuance of rcv_msg, prcv_msg, or trcv_msg.

- rcv_msg
Upon the issuance of this system call, the task receives a message from the mailbox specified by the parameter.
If the task cannot receive a message from the mailbox specified by this system call parameter (no message exists in
the message wait queue of that mailbox), the task that issued this system call is queued at the end of the task wait
queue for this mailbox. Thus, the task leaves the run state and enters the wait state (the message wait state).
The message wait state is canceled in the following cases and the task returns to the ready state.

- When snd_msg is issued.

- When del_mbx is issued and this mailbox is deleted.

- When rel_wai is issued and the wait state is forcibly canceled.

Remark When a task queues in the task wait queue of the specified mailbox, it is executed in the order (FIFO order
or priority order) specified when that mailbox was generated (during configuration or when cre_mbx was
issued).

- prcv_msg
Upon the issuance of this system call, the task receives a message from the mailbox specified by the parameter.
If the task cannot receive a message from the mailbox specified by this system call parameter (no message exists in
the message wait queue for that mailbox), E_TMOUT is returned as the return value.

- trcv_msg
Upon the issue of this system call, the task receives a message from the mailbox specified by the parameter.
If the task cannot receive a message from the mailbox specified by this system call parameter (no message exists in
the message wait queue for that mailbox), the task that issued this system call is queued at the end of the task wait
queue for this mailbox. Thus, the task leaves the run state and enters the wait state (the message wait state).
The message wait state is canceled in the following cases and the task returns to the ready state.

- When the given time specified by the parameter has elapsed.

- When snd_msg is issued.

- When del_mbx is issued and this mailbox is deleted.

- When rel_wai is issued and the wait state is forcibly canceled.

Remark When a task queues in the task wait queue of the specified mailbox, it is executed in the order (FIFO order
or priority order) specified when that mailbox was generated (during configuration or when cre_mbx was
issued).

CHAPTER 5 SYNCHRONOUS COMMUNICATION FUNCTIONS

52 User’s Manual U19429EJ1V0UM

5.4.5 Messages
In the RX850 Pro, all items of information exchanged between tasks, via mailboxes, are called "messages".
Messages can be transmitted to an arbitrary task via a mailbox. In inter task communication in the RX850 Pro, however,

only the start address of a message is delivered to a receiving task, enabling the task to access the message. The
contents of the message are not copied to any other area.

- Allocating message areas
NEC Electronics recommends that the memory pool managed by the RX850 Pro be allocated for messages.
To make a memory pool area available for a message, the task should issue get_blk, pget_blk, or tget_blk.
The first 4 bytes of each message are used as the block for linkage to the message wait queue when queued.
Therefore, save messages after the first 4 bytes of the message area.

- Composition of messages
RX850 Pro does not prescribe the length and composition of messages to be transmitted to mailboxes. The message
length, except for the first 4 bytes, and its composition are defined by the tasks that communicate with each other via
mailboxes.

Remark The RX850 Pro prescribes that the first 4 bytes of each message are used as the block for linkage to the
message wait queue when queued. For this reason, when a message is transmitted to the relevant
mailbox, the first 4 bytes of the message must be set to 0x0 before snd_msg is issued.
If the first 4 bytes of the message are set to a value other than 0x0 when snd_msg is issued, the RX850
Pro determines that this message has already been queued into the message wait queue. Thus, the
RX850 Pro does not send the message to the mailbox and returns E_OBJ as the return value.

- Priority of messages
The RX850 Pro can specify the priority according to which a message is to be queued. To specify the priority of a
message, 2 bytes are necessary in addition to the 4 bytes of the link area that is used to queue the message to the
message wait queue. Therefore, store the message in an area 6 bytes after the beginning of the message area. The
message priority is specified by a positive integer of 1 to 0x7fff. The lower the value, the higher the priority.

5.4.6 Acquiring mailbox information
Mailbox information is acquired by issuing ref_mbx.

- ref_mbx
Upon the issuance of this system call, the task acquires the mailbox information (extended information, queued tasks,
etc.) for the mailbox specified by the parameter.
The mailbox information consists of the following:

- Extended information

- Existence of waiting task

- Existence of waiting message

- Key ID number

5.4.7 Acquiring ID number
The ID number of a mailbox can be acquired by issuing vget_mid.

- vget_mid
Acquires the ID number of a mailbox specified by the parameter.
To manipulate a mailbox with a system call, the ID number of the mailbox is necessary. Whether the ID number is
determined univocally by the user or automatically assigned can be specified when a mailbox is created. If automatic
assignment of the ID number is specified, however, the user cannot learn the ID number of a mailbox. To do so, a "key
ID number" is necessary. The key ID number is univocally specified when a mailbox is created.
By issuing this system call with this key ID number as a parameter, the ID number of the mailbox having that key ID
number can be acquired.

CHAPTER 5 SYNCHRONOUS COMMUNICATION FUNCTIONS

User’s Manual U19429EJ1V0UM 53

5.4.8 Inter task communication using mailboxes
The following is an example of manipulating the tasks in inter task communication using mailboxes.

[Conditions]

- Task priority
Task A > Task B

- State of tasks
Task A: Run state
Task B: Ready state

- Mailbox attributes
Task queuing method: FIFO
Message queuing method: FIFO

(1) Task A issues rcv_msg.
No message is queued in the message wait queue of the relevant mailbox managed by the RX850 Pro.
Thus, the RX850 Pro changes the state of task A from run to wait (the message wait state). The task is queued at
the end of the task wait queue for this mailbox.
The task wait queue for this mailbox changes as shown in Figure 5-8.

Figure 5-8 State of Task Wait Queue (When rcv_msg Is Issued)

(2) As task A enters the message wait state, the state of task B changes from ready to run.

(3) Task B issues get_blk.
By means of this system call, a memory pool area is allocated for a message (as a memory block).

(4) Task B writes a message into this memory block.

(5) Task B issues snd_msg.
This changes the state of task A that has been placed in the task wait for the relevant mailbox from the message
wait state to ready state.
The task wait queue for this mailbox changes as shown in Figure 5-9.

Figure 5-9 State of Task Wait Queue (When snd_msg Is Issued)

(6) The state of task A having the higher priority changes from ready to run.
At the same time, task B leaves the run state and enters the ready state.

Before issuing

After issuing

Wait queue

Wait queue

Task A: rcv_msg

Task A

Before issuing

After issuing

Wait queue

Wait queue

Task B: snd_msg

Task A

CHAPTER 5 SYNCHRONOUS COMMUNICATION FUNCTIONS

54 User’s Manual U19429EJ1V0UM

(7) Task A issues rel_blk.
This releases the memory block allocated for the message in the memory pool.

The flow of communications between tasks as explained in (1) to (7) is shown in Figure 5-10.

Figure 5-10 Inter-Task Communication Using Mailboxes

Task A

Priority: High

Task B

Priority: B

rcv_msg

get_blk

A message is generated

snd_msg

rel_blk

CHAPTER 6 INTERRUPT MANAGEMENT FUNCTION

User’s Manual U19429EJ1V0UM 55

CHAPTER 6 INTERRUPT MANAGEMENT FUNCTION

This chapter describes the interrupt management function provided by the RX850 Pro.

6.1 Outline
The RX850 Pro interrupt management function enables the following:

- Registration of an interrupt handler

- Activation of an interrupt handler

- Return from an interrupt handler

- Change or acquisition of the interrupt enable level

6.2 Interrupt Handler
The interrupt handler is a routine dedicated to interrupt servicing, which is activated immediately after an interrupt

occurs. The interrupt handler is handled independently from tasks. So even if a task that has the highest priority in the
system is running, the processing is suspended and control is passed to the interrupt handler.

Interrupt handlers which cannot use the functions of the RX850 Pro (such as system call issuance) in an interrupt
handler (i.e. ordinary interrupt servicing) are called directly activated interrupt handlers, and the ones which can use the
functions of the RX850 Pro are called indirectly activated interrupt handlers, respectively.

- Directly activated interrupt handler
A routine dedicated to interrupt servicing that is not managed by the RX850 Pro.
With this handler, system call execution, and multiple interrupt servicing through an indirectly activated interrupt
handler are not possible. Multiple interrupt servicing through a directly activated interrupt handler is possible.
This routine does not have any overhead for managing RX850 Pro functions, so it achieves higher response,
compared with indirectly activated interrupt handlers.

- Indirectly activated interrupt handler
A routine dedicated to interrupt servicing that is managed by the RX850 Pro.
With this handler, system call execution, and multiple interrupt servicing through a directly activated interrupt handler
and an indirectly activated interrupt handler are possible.
This routine has overhead for managing RX850 Pro functions, so the response speed being degraded compared with
directly activated interrupt handlers.

If a system call is issued while the interrupt handler is performing processing, scheduling is performed in a way specific
to the RX850 Pro.

That is, if a system call (chg_pri, sig_sem, etc.) that requires task scheduling is issued during processing by the interrupt
handler, the RX850 Pro merely queues the tasks into the wait queue. The actual processing of task scheduling is batched
and deferred until a return from the interrupt handler has been made (by issuing the return instruction).

6.2.1 Interrupt source numbers
Interrupt source numbers are numbers used to indicate interrupt sources, which are calculated by "(exception code -

0x80) / 0x10", and are used to define System information clkhdr, System maximum value information maxintfactor, and
Indirectly activated interrupt handler information inthdr in a system configuration file, or issuing def_int, chg_icr, or ref_icr
from the processing program.

CHAPTER 6 INTERRUPT MANAGEMENT FUNCTION

56 User’s Manual U19429EJ1V0UM

6.3 Directly Activated Interrupt Handler
A directly activated interrupt handler is a routine dedicated to interrupt processing without using the RX850 Pro upon the

occurrence of an interrupt. Accordingly, a high-speed response close to the hardware limitation is expected.
The flow of the interrupt handler's operation is shown in Figure 6-1.

Figure 6-1 Flow of Processing Performed by Directly Activated Interrupt Handler

6.3.1 Registering directly activated interrupt handler
The directly activated interrupt handler is registered by allocating the handler to the handler address to which the

processor transfers control if an interrupt occurs, or by setting a branch instruction that branches execution to the directly
activated interrupt handler. For details, refer to "B.6 Directly Activated Interrupt Handler".

6.3.2 Processing in directly activated interrupt handler
Note the following points when coding directly activated interrupt handler processing.

- Saving and restoring the register contents
The RX850 Pro is not involved in activation of directly activated interrupt handlers and returning from the interrupt
routine. When using work registers in a directly activated interrupt handler, therefore, the code to save the work
registers must be written at the beginning of the directly activated interrupt handler, and the code to restore the work
registers must be written at the end of the handler.

- Switching stacks
The stack pointer (sp) value used by a directly activated interrupt handler is the value given when an interrupt occurs.

- Restrictions on issuing system calls
The RX850 Pro prohibits the issuance of system calls in directly activated interrupt handlers.

- Processing to return from directly activated interrupt handler
Processing to return from a directly activated interrupt handler is performed by issuing a return instruction if the
handler is written in C, or by issuing a reti instruction if the handler is written in assembly language, at the end of the
handler.

Remark The values of the global pointer (gp) and text pointer (tp) used by a directly activated interrupt handler are
values given when an interrupt occurs.

Occurrence of interrupt Task Directly activated interrupt handlerRX850 Pro

return

Scheduling processing

CHAPTER 6 INTERRUPT MANAGEMENT FUNCTION

User’s Manual U19429EJ1V0UM 57

6.4 Indirectly Activated Interrupt Handler
The indirectly activated interrupt handler is an interrupt processing routine that is activated after the interrupt

preprocessing of the RX850 Pro (such as saving the registers and switching the stack) has been performed if an interrupt
occurs.

Because interrupt preprocessing is performed by the RX850 Pro, the indirectly activated interrupt handler has an
advantage in that system calls can be issued in the handler, despite response speed being degraded compared with the
directly activated interrupt handler.

Figure 6-2 shows the flow of the operation of the indirectly activated interrupt handler.

Figure 6-2 Operation Flow of Indirectly Activated Interrupt Handler

6.4.1 Registering indirectly activated interrupt handler
The RX850 Pro has 2 types of interfaces for registering an indirectly activated interrupt handler: "statically register the

handler by system initialization (nucleus initialization module)" and "dynamically register the handler by issuing a system
call from the processing program".

Registration of an indirectly activated interrupt handler with the RX850 Pro means allocating an area that manages the
indirectly activated interrupt handler (management object) from the system memory area and initializing this area.

- Static registration
To register an indirectly activated interrupt handler statically, specify it in Indirectly activated interrupt handler
information during configuration.
The RX850 Pro registers and manages the indirectly activated interrupt handler based on the information defined in
the information files (system information table and system information header file) when system initialization is
performed.

- Dynamic registration
To dynamically register an indirectly activated interrupt handler, issue def_int from the processing program (task or
non-task).
The RX850 Pro registers and manages the indirectly activated interrupt handler based on the information specified by
the parameter when def_int is issued.

Remark For the interrupt handler defined in Indirectly activated interrupt handler information and the clock handler
that corresponds to the interrupt source numbers of the timer defined in System information, the configurator
automatically outputs the relevant interrupt entry to the system information table, so the user does not need
to write the relevant interrupt entry.
If -ne is specified as the configurator start option, however, the user must write the interrupt entry because
output of the interrupt entry to the system information table is suppressed.
For details on interrupt entry, refer to "B.7 Indirectly Activated Interrupt Handler".

Occurrence of interrupt Task Indirectly activated interrupt handlerRX850 Pro

return (TSK_NULL)

Scheduling processing

Interrupt post processing

Interrupt preprocessing

CHAPTER 6 INTERRUPT MANAGEMENT FUNCTION

58 User’s Manual U19429EJ1V0UM

6.4.2 Processing in indirectly activated interrupt handler
Keep in mind the following points when describing the processing of an indirectly activated interrupt handler.

- Saving and restoring registers
The RX850 Pro saves and restores the contents of the work registers in compliance with the function calling
convention of the C compiler when it transfers control to an indirectly activated interrupt handler or when execution
returns from the handler. It is therefore not necessary to save the work registers at the beginning of the indirectly
activated interrupt handler and to restore the registers at the end.

- Switching stack
The RX850 Pro switches the stack when it transfers control to an indirectly activated interrupt handler and when
execution returns from the handler. It is therefore not necessary to switch the task between that for the handler and
that for ordinary purposes at the beginning and end of the indirectly activated interrupt handler.
If the stack for handler is not defined when configuration is performed, however, the stack is not switched, and the
stack for ordinary purposes is used.

- Issuing system calls
Here is a list of the system calls that can be issued in the indirectly activated interrupt handler.

- Task management system calls
sta_tsk, chg_pri, rot_rdq, rel_wai, get_tid, ref_tsk, vget_tid

- Task-associated synchronization system calls
sus_tsk, rsm_tsk, frsm_tsk, wup_tsk, can_wup

- Synchronous communication system calls
sig_sem, preq_sem, ref_sem, vget_sid, set_flg, clr_flg, pol_flg, ref_flg, vget_fid, snd_msg, prcv_msg, ref_mbx,
vget_mid

- Interrupt management system calls
def_int, ena_int, dis_int, chg_icr, ref_icr

- Memory pool management system calls
pget_blk, rel_blk, ref_mpl, vget_pid

- Time management system calls
set_tim, get_tim, def_cyc, act_cyc, ref_cyc

- System management system calls
get_ver, ref_sys, def_svc, viss_svc

- Return processing from indirectly activated interrupt handler
To exit an indirectly activated interrupt handler, issue the return instruction at the end of the handler.

- return (TSK_NULL) instruction
Performs return from the indirectly activated interrupt handler.

- return (ID tskid) instruction
Issues a wake-up request to the task specified by the parameters then returns from the indirectly activated
interrupt handler.

The RX850 Pro only manipulates the queues if a system call requiring scheduling of a task (such as chg_pri and
sig_sem) is issued in an indirectly activated interrupt handler. The actual scheduling is postponed until execution
returns from the indirectly activated interrupt handler, and is then performed all at once.

Remark The return instruction does not notify an external interrupt controller of the end of processing (by issuing
the EOI command). To exit from an indirectly activated interrupt handler that has been activated by an
external interrupt request, therefore, notify the external interrupt controller of the end of the processing
before issuing these system calls.

CHAPTER 6 INTERRUPT MANAGEMENT FUNCTION

User’s Manual U19429EJ1V0UM 59

6.5 Disabling/Resuming Maskable Interrupt Acknowledgement
RX850 Pro provides a function for disabling or resuming the acknowledgement of maskable interrupts, so that whether

maskable interrupts are acknowledged can be specified from a user processing program.
This function is used by issuing the following system calls from within a task or interrupt handler.

- loc_cpu
This system call disables the acknowledgement of maskable interrupts, as well as the performing of dispatch
processing (task scheduling).
Once this system call has been issued, control is not passed to any other task or interrupt handler until unl_cpu is
issued.

- unl_cpu
The issue of this system call enables the acknowledgement of maskable interrupts, and resuming dispatch
processing (task scheduling).
This system call enables the acknowledgement of maskable interrupts which is disabled by loc_cpu and resumes
dispatch processing.

Figure 6-3 shows the flow of control if an interrupt is not masked (normal) and Figure 6-4 shows the flow of control if
loc_cpu is issued.

Figure 6-3 Control Flow if Interrupt Mask Processing Is Not Performed (Normal)

Figure 6-4 Control Flow if loc_cpu Is Issued

Occurrence of intrrupt

Task A Interrupt handlerTask B

return

slp_tsk

wup_tsk

slp_tsk

Priority: HighPriority: Low

Occurrence of interrupt

Task A Interrupt handlerTask B

return

slp_tsk

wup_tsk

slp_tsk

Priority: HighPriority: Low

unl_cpu

loc_cpu

CHAPTER 6 INTERRUPT MANAGEMENT FUNCTION

60 User’s Manual U19429EJ1V0UM

6.6 Changing/Acquiring Interrupt Control Register
The interrupt control register is changed or acquired by issuing chg_icr or ref_icr.

- chg_icr
This system call changes the interrupt control register specified by the parameter.

- ref_icr
This system call is available for acquiring the interrupt control register specified by the parameter.

Remark When the RX850 Pro is operated on the V850ES/V850E1/V850E2 core, if the interrupt control register-
related chg_icr and ref_icr are issued, the desired interrupt control register may not be operated. In the
RX850 Pro, the interrupt control register address is calculated from the interrupt source number. However, in
the V850ES/V850E1/V850E2 core, the correct register address cannot be obtained since the alignment of
the interrupt source numbers and interrupt control registers differs from other V850 microcontrollers
products. Therefore, use of chg_icr and ref_icr is restricted. For manipulating the interrupt control register via
an application, directly manipulate the register without using these system calls.

6.7 Non-Maskable Interrupts
A non-maskable interrupt is not subject to management based on interrupt priority and has priority over all other

interrupts. It can be acknowledged even if the processor is placed in the interrupt disabled state (setting the ID flag of
psw).

Therefore, even while processing is being executed by the RX850 Pro or an interrupt handler, a non-maskable interrupt
can be acknowledged.

If a system call is issued during the processing of an interrupt handler that supports non-maskable interrupts, its
operation cannot be assured in the RX850 Pro.

6.8 Clock Interrupts
In the RX850 Pro, time management is performed using clock interrupts, which can be generated periodically by

hardware (clock controller, etc.).
If a clock interrupt is issued, RX850 Pro system clock processing is called and the processing related to time, such as

the timeout wait of a task or the activation of the cyclic handler, is performed.
For details about the time management, see "CHAPTER 8 TIME MANAGEMENT FUNCTION".

CHAPTER 6 INTERRUPT MANAGEMENT FUNCTION

User’s Manual U19429EJ1V0UM 61

6.9 Multiple Interrupts
The occurrence of another interrupt while processing is being performed by an interrupt handler is called "multiple

interrupts". The RX850 Pro also responds to multiple interrupts.
All interrupt handlers, however, start their operation in the interrupt-disabled state (setting the ID flag of psw). To enable

the acknowledgement of multiple interrupts, the canceling of the interrupt disabled state should be described in the
interrupt handler.

Figure 6-5 shows the flow of the processing for handling multiple interrupts.

Figure 6-5 Processing Flow for Handling Multiple Interrupts

Occurrence of interrupt

Task Directly activatedRX850 Pro

return

return

Interrupt-disabled state canceld

Scheduling processing

Occurrence of interrupt Directly activated
interrupt handler interrupt handler

Interrupt-disabled state

Interrupt-enabled state

Interrupt-disabled state

Interrupt-enabled state

CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTION

62 User’s Manual U19429EJ1V0UM

CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTION

This chapter describes the memory pool management function of the RX850 Pro.

7.1 Outline
The information table to manage systems, memory areas where the management blocks for implementing functions are

allocated, and memory areas to use the memory pool are required for the RX850 Pro.
The items above are allocated in the following 4 types of memory areas.

- System Memory Pool 0 (Keyword: SPOL0)

- System Memory Pool 1 (Keyword: SPOL1)

- User Memory Pool 0 (Keyword: UPOL0)

- User Memory Pool 1 (Keyword: UPOL1)

The resource management block, task stack, interrupt handler stack, and memory for memory pool are allocated in the
above memory areas. The combination of allocatable areas is as follows.

Table 7-1 Memory Information Allocation Combination

The start address and size of each memory area are set using the configuration file. SPOL0 must be created.
SPOL1 needs to be created when the task stack and interrupt stack are to be allocated in other than SPOL0. UPOL0

and UPOL1 need to be created if the memory pool management function is to be used. In addition, UPOL1 can be created
if UPOL0 has already been created.

7.2 Management Objects
The objects required for implementing the functions provided by the RX850 Pro are listed below. These management

objects are generated and initialized during system initialization, according to the information specified at configuration.
These management objects are allocated to SPOL0 (SPOL1 also is available for task stacks and interrupt handler stacks).

- Operating system management Table

- Task management block

- Semaphore management block

- Eventflag management block

- Mailbox management block

- Memory pool management block

- Memory block management block

- Cyclic handler management block

- Extended SVC handler management block

- Memory pool

- Task stack

- Interrupt handler stack

- Interrupt handler management block

Figure 7-1 shows a typical arrangement of the management objects.

Resource Management Block Task Stack Interrupt Stack Memory Pool

SPOL0 SPOL0 or SPOL1 SPOL0 or SPOL1 UPOL0 or UPOL1

CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTION

User’s Manual U19429EJ1V0UM 63

Figure 7-1 Typical Arrangement of Management Objects

7.3 Memory Pool and Memory Blocks
The RX850 Pro executes a dynamic memory pool management function through which memory areas are acquired and

released during application. Using this function, the memory area is acquired if required for working, and if it becomes
unnecessary, the memory area is released. This function enables efficient use of limited memory area.

Memory areas UPOL0 and UPOL1 can be used as a memory pool. Which is used (UPOL0 or UPOL1) can be specified
by defining Memory pool information during configuration, or when creating a memory pool by issuing cre_mpl.

The RX850 Pro provides a variable-length memory pool, but not a fixed-length memory pool.
The memory pool consists of memory blocks and is allocated in units of memory blocks.
Dynamic generation of a memory pool and access to the memory pool are performed using the following memory pool-

related system calls:

cre_mpl: Generates a memory pool.
del_mpl: Deletes the memory pool.
get_blk: Acquires a memory block.
pget_blk: Acquires a memory block (by polling).
tget_blk: Acquires a memory block (with timeout setting).
rel_blk: Release a memory block.
ref_mpl: Acquires memory pool information.
vget_pid: Acquires ID information of the memory pool.

Task stack

Interrupt handler management block

Extended SVC handler management block

Cyclic handlermanagement block

Memory pool management block

Semaphore management block

Eventflag management block

Mailbox management block

Task management block

Interrupt handler stack

Operating system management table

High address

Low address

CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTION

64 User’s Manual U19429EJ1V0UM

7.3.1 Generating a memory pool
The RX850 Pro provides 2 interfaces for generating (registering) a memory pool. One enables static generation during

system initialization (in the nucleus initialization module). The other enables dynamic generation by issuing a system call
from within a processing program.

To generate a memory pool in the RX850 Pro, certain areas in system memory are allocated to enable management of
the memory pool (as an object of RX850 Pro management) and for the memory pool main body, then initialized.

- Static registration of a memory pool
To register a memory pool statically, specify it in Memory pool information during configuration.
The RX850 Pro generates the memory pool, based on the information defined in the information file (including system
information tables and system information header files) during system initialization. The memory pool is subsequently
managed by the RX850 Pro.

- Dynamic registration of a memory pool
To dynamically register a memory pool, issue cre_mpl from within a processing program (task).
The RX850 Pro generates the memory pool, according to the information specified by the parameters when cre_mpl
is issued. The memory pool is subsequently managed by the RX850 Pro.

Remark When a memory pool is created, the RX850 Pro uses the first 8 bytes of the memory pool as a memory pool
management area, in addition to the specified size of memory. Therefore, the size of the created memory
pool is "specified size + 8 bytes".

7.3.2 Deleting a memory pool
A memory pool is deleted upon the issuance of del_mpl.

- del_mpl
This system call deletes the memory pool specified by the parameter.
Subsequently, that memory pool is no longer subject to management by the RX850 Pro.
If a task is queued into the wait queue of the memory pool specified by this system call parameter, that task is
removed from the wait queue, leaves the wait state (the memory block wait state) and enters the ready state.
E_DLT is returned to the task released from the wait state as the return value for the system call (get_blk or tget_blk)
that triggered the transition of the task to the wait state.
If this system call is issued, the RX850 Pro excludes the memory block managed by the specified memory pool from
management. If the task has already acquired a memory block from the memory pool before this system call is
issued, the operation of the memory block is not guaranteed, and care must be exercised in deleting a memory pool.

7.3.3 Acquiring a memory block
A memory block is acquired by issuing get_blk, pget_blk, or tget_blk.

Remark In the RX850 Pro, memory clear is not performed when a memory block is acquired.
Therefore, the acquired memory block's contents are undefined.

When a memory block is acquired, the RX850 Pro uses 8 bytes of the memory pool as a memory management area, in
addition to the requested size of memory. The RX850 Pro also aligns the requested size by 4 bytes.

Check the remaining memory block size.
The size of the acquired memory block can be calculated by this expression:

Size of memory block (blk_siz) = align 4 (user requested size) + 8

- get_blk
Upon the issuance of this system call, the processing program (task) acquires a memory block from the memory pool
specified by the parameter.
After the issue of this system call, if the task cannot acquire the block from the specified memory pool (because no
free block of the required size exists), the task itself is queued in the wait queue of this memory pool. Thus, the task
leaves the run state and enters the wait state (the memory block wait state).
The memory block wait state is canceled in the following cases and the task returns to the ready state.

- When rel_blk is issued and a memory block of the required size is returned.

CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTION

User’s Manual U19429EJ1V0UM 65

- When del_mpl is issued and the specified memory pool is deleted.

- When rel_wai is issued and the wait state is forcibly canceled.

Remark When a task queues in the wait queue of the specified memory pool, it is executed in the order (FIFO
order or priority order) specified when that memory pool was generated (during configuration or when
cre_mpl was issued).

- pget_blk
Upon the issuance of this system call, the processing program (task) acquires a memory block from the memory pool
specified by a parameter.
For this system call, if the task cannot acquire the block from the memory pool specified by this system call parameter
(because no free block of the required size exists), E_TMOUT is returned as the return value.

- tget_blk
By issuing this system call, the processing program (task) acquires a memory block from the memory pool specified
by a parameter.
After the issue of this system call, if the task cannot acquire the block from the specified memory pool (because no
free block of the required size exists), the task itself is queued into the wait queue of this memory pool. Thus, the task
leaves the run state and enters the wait state (the memory block wait state).
The memory block wait state is canceled in the following cases and the task returns to the ready state.

- When the wait time specified by the parameter has elapsed.

- When rel_blk is issued and a memory block of the required size is returned.

- When del_mpl is issued and the specified memory pool is deleted.

- When rel_wai is issued and the wait state is forcibly canceled.

Remark When a task queues in the wait queue of the specified memory pool, it is executed in the order (FIFO
order or priority order) specified when that memory pool was generated (during configuration or when
cre_mpl was issued).

7.3.4 Returning a memory block
A memory block is returned upon the issuance of rel_blk.

- rel_blk
Upon the issuance of this system call, a processing program (task) returns a memory block to the memory pool
specified by the parameter.
For this system, if the memory block returned by this system call is of the size required by the first task in the wait
queue of the specified memory pool, this block is passed to that task.
Thus, the first task is removed from the wait queue, leaves the wait state (the memory block wait state), and enters
the ready state, or leaves the wait-suspend state and enters the suspend state.

Remark1 The contents of a returned memory block area not cleared by the RX850 Pro. Thus, the contents of a
memory block may be undefined when that memory block is returned.

Remark2 The RX850 Pro includes 2 different specifications for this system call.

(1) When a memory block is returned by this system call, if the first 4 bytes of the memory block are not
filled with zeros, the return value E_OBJ is used for termination instead of returning the memory
block.

(2) When this system call is issued, the memory block is returned even if the first 4 bytes of the
memory block are not filled with zeros (return value = E_OK).

The first specification applies when the memory block is used as a mailbox's message area, and this is the
specification that has been used for this system call as it has been implemented thus far in the RX850 Pro.
When the memory block is used as a mailbox's message area, the first 4 bytes serve as the link area for
the message's wait queue. In other words, if messages are queued in the mailbox, when this system call is
issued and the memory block must be returned, in which case it is the message area linked to the queue
that is returned. To prevent this, the specification requires the first 4 bytes that comprise the link area to be
filled with zeros, otherwise it will be recognized as the memory block used as the message area and the
return value E_OBJ will be used for termination instead of returning the memory block. Under this
specification, the first 4 bytes must be cleared to zero in order to use this system call to return the memory

CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTION

66 User’s Manual U19429EJ1V0UM

block.
These specifications of this system call are stored in separate libraries so that one or the other this system
call specification can be used. Link to the library of this system call specification to be used.

(1) Library containing this system call that requires zero-clearing of first 4 bytes of memory block
---> librxp.a

(2) Library containing this system call that does not require zero-clearing of first 4 bytes of memory
block
---> librxpm.a

Remark3 Treat a memory pool that returns a memory block the same as a memory pool specified when issuing
get_blk, pget_blk, or tget_blk.

7.3.5 Acquiring memory pool information
Memory pool information is acquired by issuing ref_mpl.

- ref_mpl
Upon the issuance of this system call, the processing program (task) acquires the memory pool information (extended
information, queued tasks, etc.) for the memory pool specified by the parameter.
The memory pool information consists of the following:

- Extended information

- Existence of waiting task

- Total size of free area

- Maximum memory block size that can acquired

- Key ID number

7.3.6 Acquiring ID number
The ID number of a memory pool can be acquired by issuing vget_pid.

- vget_pid
Acquires the ID number of a memory pool specified by the parameter.
To manipulate a memory pool with a system call, the ID number of the memory pool is necessary. Whether the ID
number is determined univocally by the user or automatically assigned can be specified when a memory pool is
created. If automatic assignment of the ID number is specified, however, the user cannot learn the ID number of a
memory pool. To do so, a "key ID number" is necessary. The key ID number is univocally specified when a memory
pool is created.
By issuing this system call with this key ID number as the parameter, the ID number of the memory pool having that
key ID number can be acquired.

CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTION

User’s Manual U19429EJ1V0UM 67

7.3.7 Dynamic management of memory block by memory pool
Here is an example of an operation to dynamically use the memory for tasks by using a memory pool.

[Conditions]

- Task priority
Task A > Task B

- State of tasks
Task A: Run state
Task B: Ready state

- Memory pool attributes
Vacant memory block size: 0x20
Task queuing method: FIFO

(1) Task A issues get_blk.
The requested memory block size is "0x30".
At present, the vacant memory block size of the memory pool under management of the RX850 Pro is "0x20".
Therefore, the RX850 Pro changes the state of task A from run to wait (waiting for a memory block), and queues
the task to the end of the wait queue of tasks waiting for a memory pool.
At this time, this wait queue is in the state as shown in Figure 7-2.

Figure 7-2 State of Wait Queue (When get_blk Is Issued)

(2) As the state of task A changes from run to wait, the state of task B changes from ready to run.

(3) Task B issues rel_blk.
The returned memory block size is "0x16".
As a result, the requested memory block size of task A queued waiting for a memory pool is satisfied and task A
changes its state from wait to ready.
At this time the wait queue of tasks waiting for a memory pool is as shown in Figure 7-3.

Figure 7-3 State of Wait Queue (When rel_blk Is Issued)

(4) The task A with the higher priority changes its state from ready to run.
Task B changes its state from run to ready.

Before issuing

After issuing

Wait queue

Wait queue

Task A: get_blk

Task A

Before issuing

After issuing

Wait queue

Wait queue

Task A: rel_blk

Task A

CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTION

68 User’s Manual U19429EJ1V0UM

Figure 7-4 shows the flow of dynamic use of memory by the memory pool explained in (1) through (4) above.

Figure 7-4 Dynamic Use of Memory by Memory Pool

Task A

Priority: High

Task B

Priority: Low

get_blk

rel_blk

CHAPTER 8 TIME MANAGEMENT FUNCTION

User’s Manual U19429EJ1V0UM 69

CHAPTER 8 TIME MANAGEMENT FUNCTION

This chapter describes the time management function of the RX850 Pro.

8.1 Outline
Time management in the RX850 Pro is performed using clock interrupts which can be generated periodically by

hardware (clock controller, etc.).
If a clock interrupt is issued, the RX850 Pro system clock processing is called and system clock update as well as

processing related to time, such as delayed task wake-up, timeout, and starting of the cyclic handler, is executed.

8.2 System Clock
The system clock is a software timer that provides the time (in units of milliseconds, with a width of 48 bits) used for time

management by the RX850 Pro.
The system clock is set to "0x0" during system initialization, and then updated during system clock processing, in the

basic clock cycle (specified in System information during configuration) units.

Remark The system clock managed by the RX850 Pro shall have a fixed width of 48 bits. The RX850 Pro ignores any
overflow (that exceeding 48 bits) for the clock value.

8.2.1 Setting and reading the system clock
The system clock setting is executed by issuing set_tim, and reading by issuing get_tim.

- set_tim
This system call sets the time specified by the parameter to the system clock.

- get_tim
This system call stores the current time of the system clock into the packet specified by the parameter.

8.3 Timer Operations
Real-time processing requires functions synchronized with time (timer operation functions) such as stopping the

processing of a certain task for a specific time and executing the processing of a handler for specific time. The RX850 Pro
therefore provides the functions of delayed wake-up of a task, timeout, and starting of a cyclic handler, as timer operation
functions.

8.4 Delayed Task Wake-Up
Delayed task wake-up changes the state of a task from run to wait (the timeout wait state) and leaves the task in this

state for a given period. Once this period elapses, the task is released from the wait state and returns to the ready state.
Delayed task wake-up is performed by issuing dly_tsk.

- dly_tsk
Upon the issue of this system call, the state of the task from which this system call was issued changes from run to
wait (the timeout wait state).
The timeout wait state is canceled in the following cases and the task returns to the ready state.

- Upon the elapse of the delay specified by a parameter.

- Upon the issue of rel_wai and the forcible cancelation of the wait state.

CHAPTER 8 TIME MANAGEMENT FUNCTION

70 User’s Manual U19429EJ1V0UM

Figure 8-1 shows the flow of the processing after the issue of this system call.

Figure 8-1 Flow of Processing After Issuance of dly_tsk

8.5 Timeout
If the conditions required for a certain action are not satisfied when that action is requested by a task, the timeout

function changes the state of the task from run to wait (wake-up wait state, resource wait state, etc.) and leaves the task in
the wait state for a given period. Once that period elapses, the timeout function releases the task from the wait state. The
task then returns to the ready state.

The timeout function is enabled by issuing tslp_tsk, twai_sem, twai_flg, trcv_msg, or tget_blk.

- tslp_tsk
Upon the issuance of this system call, one request for wake-up, issued for the task from which this system call is
issued, is canceled (the wake-up request counter is decremented by 0x1).
If the wake-up request counter of the task from which this system call is issued currently indicates 0x0, the wake-up
request is not canceled (decrement of the wake-up request counter) and the task enters the wait state (the wake-up
wait state) from the run state.
The wake-up wait state is canceled in the following cases, and the task returns to the ready state.

- When the given wait time specified by a parameter has elapsed.

- When wup_tsk is issued.

- When rel_wai is issued and the wait state is forcibly canceled.

- twai_sem
Upon the issuance of this system call, the task acquires a resource from the semaphore specified by a parameter (the
semaphore counter is decremented by 0x1).
After the issuance of this system call, if the task cannot acquire a resource from the semaphore specified by the
parameter (no free resource exists), the task itself is queued in the wait queue of this semaphore. Thus, the task
leaves the run state and enters the wait state (the resource wait state).
The resource wait state is canceled in the following cases, and the task returns to the ready state.

- When the given wait time specified by a parameter has elapsed.

- When sig_sem is issued.

- When del_sem is issued and the specified semaphore is deleted.

- When rel_wai is issued and the wait state is forcibly canceled.

- twai_flg
This system call checks whether the bit pattern is set so as to satisfy the wait condition required for the eventflag
specified by the parameter.
If the bit pattern does not satisfy the wait condition required for the eventflag specified by this system call parameter,
the task from which this system call is issued is queued at the end of the wait queue of this eventflag. Thus, the task
leaves the run state and enters the wait state (the eventflag wait state).
The eventflag wait state is canceled in the following cases, and the task returns to the ready state.

- When the given wait time specified by a parameter has elapsed.

- When set_flg is issued and the required wait condition is satisfied.

- When del_flg is issued and the specified eventflag is deleted.

Task A Task B

Priority: Low

dly_tsk

Priority: High

Delay time

CHAPTER 8 TIME MANAGEMENT FUNCTION

User’s Manual U19429EJ1V0UM 71

- When rel_wai is issued and the wait state is forcibly canceled.

- trcv_msg
Upon the issuance of this system call, the task receives a message from the mailbox specified by the parameter.
After the issuance of this system call, if the task cannot receive a message from the specified mailbox (no messages
exist in the message wait queue of that mailbox), the task itself is queued at the end of the task wait queue of this
mailbox. Thus, the task leaves the run state and enters the wait state (the message wait state).
The message wait state is canceled in the following cases, and the task returns to the ready state.

- When the given time specified by a parameter has elapsed.

- When snd_msg is issued.

- When del_mbx is issued and this mailbox is deleted.

- When rel_wai is issued and the wait state is forcibly canceled.

- tget_blk
Upon the issuance of this system call, the task acquires a memory block from the memory pool specified by the
parameter.
After the issuance of this system call, if the task cannot acquire the block from the specified memory pool (because no
free block of the required size exists), the task itself is queued in the wait queue of this memory pool. Thus, the task
leaves the run state and enters the wait state (the memory block wait state).
The memory block wait state is canceled in the following cases, and the task returns to the ready state.

- When the given wait time specified by a parameter has elapsed.

- When rel_blk is issued and a memory block of the required size is returned.

- When del_mpl is issued and the specified memory pool is deleted.

- When rel_wai is issued and the wait state is forcibly canceled.

CHAPTER 8 TIME MANAGEMENT FUNCTION

72 User’s Manual U19429EJ1V0UM

8.6 Cyclic Handler
The cyclic handler is an exclusive period processing routine which starts immediately when a predetermined start time

arrives, and is a processing program which has optimally small overhead within the periodic processing program
described by the user until execution is started.

The cyclic handler is treated as independent of the task. For this reason, even if a task with the highest priority order is
being executed in the system, that processing is interrupted and the system switches to the cyclic handler's control.

The following system calls and instructions relevant to a cyclic handler are used in the dynamic operation of a cyclic
handler.

def_cyc: Registers a cyclic handler.
act_cyc: Controls the activity state of the cyclic handler.
ref_cyc: Acquires cyclic handler information.
return: Performs return from the cyclic handler.

8.6.1 Registering a cyclic handler
The RX850 Pro provides 2 interfaces for registering a cyclic handler. One enables static registration during system

initialization (in the nucleus initialization module). The other enables dynamic registration by issuing a system call from
within a processing program.

To register a cyclic handler with the RX850 Pro, an area in system memory is allocated for managing the cyclic handler
(to be managed by the RX850 Pro), then initialized.

- Static registration of a cyclic handler
To register a cyclic handler statically, specify it in Cyclic handler information during configuration.
The RX850 Pro performs the processing for registering the cyclic handler, based on the information defined in the
information file (including system information tables and system information header files) during system initialization.
The cyclic handler is subsequently managed by the RX850 Pro.

- Dynamic registration of a cyclic handler
To dynamically register a cyclic handler, issue def_cyc from within a processing program (task or non-task).
The RX850 Pro performs the processing for registering the cyclic handler, according to the information specified by
the parameter when def_cyc is issued.
The cyclic handler is subsequently managed by the RX850 Pro.

8.6.2 Activity state of cyclic handler
The activity state of a cyclic handler is used as a criterion for determining whether the RX850 Pro activated the cyclic

handler.
The activity state is set when the cyclic handler is registered (during configuration or when def_cyc is issued). However,

the RX850 Pro allows the user to change the activity state of the cyclic handler from a user processing program.

- act_cyc
Upon the issuance of this system call, the activity state of the cyclic handler is switched ON/OFF, as specified by the
parameter.

TCY_OFF: Switches the activity state of the cyclic handler to OFF.
TCY_ON: Switches the activity state of the cyclic handler to ON.
TCY_INI: Initializes the cycle counter of the cyclic handler.

While the RX850 Pro is running, the cycle counter continues to count even when the activity state of the cyclic handler
is OFF. In some cases, when act_cyc is issued to switch the activity state of the cyclic handler from OFF to ON, the first
restart request could be issued sooner than the activation time interval specified when it was registered (during
configuration or upon the issuance of def_cyc). To prevent this, the user must specify TCY_INI to initialize the cycle
counter as well as TCY_ON to restart the cyclic handler when issuing act_cyc. The first restart request will then be issued
in sync with the time interval, specified when it was registered.

Figure 8-2 and Figure 8-3 show the flow of processing after the issuance of act_cyc from a processing program to
switch the activity state of the cyclic handler from OFF to ON.

In those figures, ΔT indicates the activation time interval specified upon the registration of the cyclic handler. In addition,
the relationship between Δt and ΔT in Figure 8-2 is assumed to be Δt < ΔT.

CHAPTER 8 TIME MANAGEMENT FUNCTION

User’s Manual U19429EJ1V0UM 73

Figure 8-2 Flow of Processing After Issuance of act_cyc (TCY_ON)

Cyclocally activated handler

act_cyc (TCY_ON)

Task

Δt

act_cyc (TCY_OFF)

return

return
ΔT

ΔT

return
ΔT

CHAPTER 8 TIME MANAGEMENT FUNCTION

74 User’s Manual U19429EJ1V0UM

Figure 8-3 Flow of Processing After Issuance of act_cyc (TCY_ON|TCY_INI)

8.6.3 Internal processing performed by cyclic handler
After the occurrence of a clock interrupt, the RX850 Pro performs preprocessing for interruption before control is passed

to the cyclic handler. When control is returned from the cyclic handler, the RX850 Pro performs interrupt postprocessing.
When describing the processing to be performed by the activated interrupt handler, note the following:

- Saving/restoring the registers
Based on the function call protocol for the C compiler, the RX850 Pro saves the work registers when control is passed
to the cyclic handler, and restores them upon the return of control from the handler. Therefore, the cyclic handler does
not have to save the work registers when it starts, nor restore them upon the completion of its processing. Save/
restoration of the registers should not be coded in the description of the cyclic handler.

- Stack switching
The RX850 Pro performs stack switching when control is passed to the cyclic handler and upon a return from the
handler. Therefore, the cyclic handler does not have to switch to the interrupt handler stack when it starts, nor switch
to the original stack upon the completion of its processing. However, if the interrupt handler stack is not defined during
configuration, stack switching is not performed and system continues to use that stack being used upon the
occurrence of an interrupt.

- Limitations imposed on system calls
The following lists the system calls that can be issued during the processing performed by a cyclic handler:

- Task management system calls
sta_tsk, chg_pri, rot_rdq, rel_wai, get_tid, ref_tsk, vget_tid

- Task-associated synchronization system calls
sus_tsk, rsm_tsk, frsm_tsk, wup_tsk, can_wup

Cyclic handler

act_cyc (TCY_ON | TCY_INI)

Task

ΔT

act_cyc (TCY_OFF)

return

return
ΔT

ΔT

return
ΔT

CHAPTER 8 TIME MANAGEMENT FUNCTION

User’s Manual U19429EJ1V0UM 75

- Synchronous communication system calls
sig_sem, preq_sem, ref_sem, vget_sid, set_flg, clr_flg, pol_flg, ref_flg, vget_fid, snd_msg, prcv_msg, ref_mbx,
vget_mid

- Interrupt management system calls
def_int, ena_int, dis_int, chg_icr, ref_icr

- Memory pool management system calls
pget_blk, rel_blk, ref_mpl, vget_pid

- Time management system calls
set_tim, get_tim, def_cyc, act_cyc, ref_cyc

- System management system calls
get_ver, ref_sys, def_svc, viss_svc

- Return processing from the cyclic handler
Return processing from the cyclic handler is performed by issuing a return instruction upon the completion of the
processing performed by cyclic handler.
When a system call (chg_pri, sig_sem, etc.) that requires task scheduling is issued during the processing of a cyclic
handler, RX850 Pro merely queues that task into the wait queue. The actual task scheduling is batched and deferred
until return from the cyclic handler has been completed (by issuing a return instruction).

8.6.4 Acquiring cyclic handler information
Information related to a cyclic handler is acquired by issuing ref_cyc.

- ref_cyc
By issuing this system call, the task acquires information (including extended information, remaining time, etc.)
related to the cyclic handler specified by a parameter.
The cyclic handler information consists of the following:

- Extended information

- Time remaining until the next start of the cyclic handler

- Current activity state

8.6.5 Interrupts in cyclic handler
Interrupts are disabled for the cyclic handler at startup. To use interrupts during cyclic handler processing, enable

interrupts at the beginning of the handler.
Since the RX850 Pro provides 2 types of nucleus common parts (rxtncore.o and rxcore.o), the interrupts that can be

acknowledged within the cyclic handler differ depending on the nucleus common part used.

- When rxtmcore.o is used
Although the cyclic handler is called from the clock handler, only the interrupts with a higher priority than clock
interrupts can be acknowledged because the interrupt processing is not performed during clock handler execution. In
addition, since clock interrupts are held pending even when interrupts are enabled, to execute a time-consuming
processing within the cyclic handler, caution is required because displacement may occur between the time that has
actually elapsed and the time managed by the RX850 Pro.
Because the cyclic handler is developed as an indirectly activated interrupt handler, it operates on the handler stack
at execution.

- When rxcore.o is used
Although the cyclic handler is called from the clock handler, all levels of interrupts can be acknowledged because the
interrupt processing is performed during clock handler execution.

Because the cyclic handler is developed as an indirectly activated interrupt handler, it operates on the handler stack at
execution.

CHAPTER 9 SCHEDULER

76 User’s Manual U19429EJ1V0UM

CHAPTER 9 SCHEDULER

This chapter explains the task scheduling performed by the RX850 Pro.

9.1 Outline
By monitoring the dynamically changing task states, the RX850 Pro scheduler manages and determines the sequence

in which tasks are executed, and assigns a processing time to a specific task.

9.2 Drive Method
The RX850 Pro scheduler uses an event-driven technique, in which the scheduler operates in response to the

occurrence of some event.
The "occurrence of some event" means the issue of a system call that may cause a task state change, the issue of a

return instruction that causes a return from a handler, or the occurrence of a clock interrupt.
When these phenomena occur, task scheduling processing is executed with the scheduler driving.
The following system calls can be used to drive the scheduler.

- Task management system calls
sta_tsk, ext_tsk, exd_tsk, ena_dsp, chg_pri, rot_rdq, rel_wai

- Task-associated synchronization system calls
rsm_tsk, frsm_tsk, slp_tsk, tslp_tsk, wup_tsk

- Synchronous communication system calls
del_sem, sig_sem, wai_sem, twai_sem, del_flg, set_flg, wai_flg, twai_flg, del_mbx, snd_msg, rcv_msg, trcv_msg

- Interrupt management system calls
unl_cpu

- Memory pool management system calls
del_mpl, get_blk, tget_blk, rel_blk

- Time management system call
dly_tsk

9.3 Scheduling Method
The RX850 Pro uses the priority and FCFS (First-Come, First-Served) scheduling method. When driven, the scheduler

checks the priority of each task that can be executed (in the run or ready state), selects the optimum task, and assigns a
processing time to the selected task.

9.3.1 Priority method
Each task is assigned a priority that determines the sequence in which it will be executed.
The scheduler checks the priority of each task that can be executed (in the run or ready state), selects the task having

the highest priority, and assigns a processing time to the selected task.

Remark In the RX850 Pro, a task to which a smaller value is assigned as the priority level has a higher priority.

CHAPTER 9 SCHEDULER

User’s Manual U19429EJ1V0UM 77

9.3.2 FCFS method
The RX850 Pro can assign the same priority to more than one task. Because the priority method is used for task

scheduling, there is the possibility of more than one task having the highest priority being selected.
Among those tasks having the highest priority, the scheduler selects the first to become executable (the task that has

been in the ready state for the longest time) and assigns a processing time to the selected task.

9.4 Implementing a Round-Robin Method
In scheduling based on the priority and FCFS methods, even if a task has the same priority as that currently running, it

cannot be executed unless the task to which a processing time has been assigned first enters another state or
relinquishes control of the processor.

The RX850 Pro provides system calls such as rot_rdq to implement a scheduling method (round-robin method) that can
overcome the problems incurred by the priority and FCFS methods.

The round-robin method can be implemented as follows:

[Conditions]

- Task priority
Task A = Task B = Task C

- State of tasks
Task A: Run state
Task B: Ready state
Task C: Ready state

- Cyclic handler attributes
Activity state: ON
Activation interval: ΔT (unit: Basic clock cycle)
Processing: Rotation of the ready queues (issue of rot_rdq)

(1) Task A is currently running.
The other tasks (B and C) have the same priority as task A, but they cannot be executed unless task A enters
another state or relinquishes control of the processor.
The ready queue becomes as shown in Figure 9-1.

Figure 9-1 Ready Queue State (1)

Priority: High

Priority: Low

Activation wait state

Ready queue

Run state

Task A Task B Task C

Readystate Ready state

Handler

CHAPTER 9 SCHEDULER

78 User’s Manual U19429EJ1V0UM

(2) Cyclic handler starts when the predetermined period of time has passed and issues rot_rdq.
In this way, task A is queued at the tail end of the ready queue in accordance with its priority level and changes from
the run state to ready state.
The ready queue changes to the state shown in Figure 9-2.

Figure 9-2 Ready Queue State (2)

(3) Task A changes from the run state to the ready state and task B changes from the ready state to the run state.
Figure 9-3 shows the ready queue state at this time.

Figure 9-3 Ready Queue State (3)

(4) By issuing rot_rdq from the cyclic handler, which is started at constant intervals, the scheduling method (round-
robin method) in which tasks are switched every time the specified period (ΔT) elapses is implemented.

Priority: High

Priority: Low

Processing execution state

Ready queue

Ready state

Task B Task C

Ready state Ready state

Handler

Task A

Priority: High

Priority: Low

Activation wait state

Ready queue

Run state

Task B Task C Task A

Ready state Ready state

Handler

CHAPTER 9 SCHEDULER

User’s Manual U19429EJ1V0UM 79

Figure 9-4 shows the processing flow when the round-robin method is used.

Figure 9-4 Flow of Processing by Using Round-Robin Method

Task A Cyclic handlerTask B Task C

rot_rdq

return

return

rot_rdq

return

rot_rdq

rot_rdq

return

ΔT

ΔT

ΔT

CHAPTER 9 SCHEDULER

80 User’s Manual U19429EJ1V0UM

9.5 Scheduling Lock Function
In the RX850 Pro a function is offered which drives the scheduler from a user processing program (task) and which

disables or resumes dispatch processing (task scheduling processing).
This function is implemented by issuing the following system calls from within a task.

- dis_dsp
Disables dispatching (task scheduling).
If this system call is issued, control is not passed to another task until ena_dsp is issued.

- ena_dsp
Resumes dispatching (task scheduling).
When dis_dsp has been issued, if a system call that requires task scheduling (such as chg_pri or sig_sem) is issued,
the RX850 Pro merely executes processing such as wait queue operation until this system call is issued. Actual
scheduling is delayed and batch-executed upon the issuance of this system call.

- loc_cpu
Disables the acknowledgement of maskable interrupts, then disables dispatching (task scheduling).
If this system call is issued, control will not be passed to another task or handler until unl_cpu is issued.

- unl_cpu
Enables the acknowledgement of maskable interrupts, then restarts dispatching (task scheduling).
If a maskable interrupt has occurred between the issuance of loc_cpu and that of this system call, transfer of control
to the corresponding interrupt handling (processing of the interrupt handler) is delayed until this system call is issued.
Also, if a system call which is necessary for task scheduling processing (such as chg_pri or sig_sem) is issued during
the interval after loc_cpu is issued and until this system call is issued, only processing of wait queue operations is
delayed until this system call is issued, being performed by batch processing.

The flow of control if scheduling processing is not delayed (normal) is shown in Figure 9-5 and the flow of control if
dis_dsp and loc_cpu are issued is shown in Figure 9-6 and Figure 9-7.

Figure 9-5 Flow of Control if Scheduling Processing Is Not Delayed (Normal)

Occurrence of interrupt

Priority: Low

Interrupt handler

Priority: High

slp_tsk

return

Task A Task B

wup_tsk

CHAPTER 9 SCHEDULER

User’s Manual U19429EJ1V0UM 81

Figure 9-6 Flow of Control if dis_dsp Is Issued

Figure 9-7 Flow of Control if loc_cpu Is Issued

Occurrence of interrupt

Priority: Low

Interrupt handler

Priority: High

slp_tsk

return

Task A Task B

ena_dsp

dis_dsp

wup_tsk

Occurrence of interrupt

Priority: Low

Interrupt handler

Priority: High

slp_tsk

return

Task A Task B

unl_cpu

loc_cpu

wup_tsk

CHAPTER 9 SCHEDULER

82 User’s Manual U19429EJ1V0UM

9.6 Scheduling While Handler Is Operating
To quickly terminate handlers (interrupt handlers and cyclic handlers), the RX850 Pro delays the driving of the scheduler

until processing within the handler terminates.
Therefore, if a system call (such as chg_pri and sig_sem) that requires task scheduling during handler processing is

issued, the RX850 Pro only performs processing such as the wait queue operation, but the actual scheduling is performed
all at once after processing to return from the handler (by executing a return instruction or the like) is completed.

Figure 9-8 shows the control flow when a handler issues a system call that requires scheduling.

Figure 9-8 Flow of Control if wup_tsk Is Issued

9.7 Idle Handler
The idle handler is started from the scheduler if all the tasks (user defined tasks) are not in the run state or not in the

ready state, that is, if there is not even one task which is an object of RX850 Pro scheduling in the system.
The processing of the idle handler is to switch the CPU to the HALT state. Therefore, if there is not even one task in the

system, the RX850 Pro switches the CPU to the HALT state.
However, this idle handler cannot switch the CPU to the IDLE or STOP state. To switch to the IDLE or STOP state, or to

describe idle processing, create a task with the lowest priority and use it as an idle task. This realizes processing identical
to the idle handler. However, since the HALT, IDLE, or STOP state is released by an interrupt, be sure not to leave
interrupts in a disabled state in the idle task.

Occurrence of interrupt

Priority: Low

Interrupt handler

Priority: High

slp_tsk

return

Task A Task B

wup_tsk

CHAPTER 10 SYSTEM INITIALIZATION

User’s Manual U19429EJ1V0UM 83

CHAPTER 10 SYSTEM INITIALIZATION

This chapter explains the system initialization performed by the RX850 Pro.

10.1 Outline
System initialization consists of initializing the hardware required by the RX850 Pro, as well as initializing the software.

In other words, in the RX850 Pro, the processing performed immediately after the system has been started is system
initialization.

Figure 10-1 shows the flow of system initialization.

Figure 10-1 Flow of System Initialization

V850 microcontollers
reset entry

Boot processing

Hardware

Initialization handler

Nucleus

Scheduler Task

Nucleus

initialization module

initialization module

CHAPTER 10 SYSTEM INITIALIZATION

84 User’s Manual U19429EJ1V0UM

10.2 Boot Processing
Boot processing is the function assigned to the V850 microcontrollers reset entry (handler address: 0x0) and the first

function executed in system initialization. The files boot.s are used in the sample boot processing (function name: __boot).
The following must be performed as part of the boot processing.

- Setting of stack pointer (sp) used in boot processing

- Setting of text pointer (tp) and global pointer (gp)

- Issuance of jarl instruction to transfer control to hardware initialization module

- Setting of symbol _sit to r10 register address

- Setting of symbol __rx_start to lp register

- Issuance of jmp instruction to transfer control to nucleus initialization module

In the sample boot processing, the processing can be rewritten to adapt to user needs.

10.3 Hardware Initialization Module
The hardware initialization module is a function called from the boot processing and it is prepared for initializing the

hardware in the execution environment (target system). The file init.c is used in the sample initialization (function name:
reset).

In this hardware initialization module, the following processing is performed.

- Initialization of the internal unit

- Initialization of an interrupt controller

- Initialization of a clock controller

- Initialization of a peripheral controller

- Returns control to boot processing

The hardware initialization module depends on the hardware configuration of the execution environment.
Designing this section into the LSI improves portability to the target system and simplifies customization. Rewrite in

accordance with the user execution environment.

CHAPTER 10 SYSTEM INITIALIZATION

User’s Manual U19429EJ1V0UM 85

10.4 Nucleus Initialization Module
The nucleus initialization module is a function called after the boot processing completion and it generates and initializes

the management objects based on the information (such as task information or semaphore information) described in the
information files (system information table and system information header file). The RX850 Pro is activated after
completion of this processing. This processing section is included in the nucleus library.

The nucleus initialization module performs the following processing.

- Generation/initialization of management objects

- Task generation

- Generation/initialization of a semaphore

- Generation/initialization of eventflags

- Generation/initialization of a memory pool

- Registration of the indirectly activated interrupt handler

- Registration of the cyclic handler

- Registration of the extended SVC handler

- Activation of an initial task

- Activation of the system task (idle task)

- Calling of the initialization handler

- Transfer of control to the scheduler

10.5 Initialization Handler
The initialization handler is a function called from the nucleus initialization module and used if some processing is to be

executed before the activation of the RX850 Pro. The file varfunc.c is used in the sample processing (function name:
varfunc).

The initialization handler performs the following processing.

- Copying of an initialization data

- Returns control to the nucleus initialization module

Remark1 When passing control from the nucleus initialization module to the initialization handler, the RX850 Pro
switches the current stack to the system stack that is specified in System information during configuration.

Remark2 When passing control from the nucleus initialization module to the initialization handler, the RX850 Pro
switches the values of the text pointer (tp) and global pointer (gp) to values that are defined in Initialization
handler information during configuration.

Remark3 The RX850 Pro performs no operations on the element pointer (ep). The ep value used during the
initialization handler processing therefore differs from the value set during boot processing.

Remark4 The initialization handler is called before the RX850 Pro completes all of the initialization processing.
Therefore, if interrupts for the initialization handler are enabled or a system call is issued by the initialization
handler, the operation is not guaranteed.

10.6 Interrupt Entry
An interrupt entry is an instruction that is executed if an interrupt occurs, and is assigned to the "interrupt handler

address" of the V850 microcontrollers. The interrupt entry must be defined for all the interrupts used by the user, and must
be described in assembly language. The files entry.s are used in the sample interrupt entry.

CHAPTER 11 INTERFACE LIBRARY

86 User’s Manual U19429EJ1V0UM

CHAPTER 11 INTERFACE LIBRARY

This chapter describes the interface libraries provided by the RX850 Pro.

11.1 Outline
The RX850 Pro provides an interface library that is positioned between the user's processing program and the nucleus

of the RX850 Pro. The interface library performs the data setting and other processing required for the nucleus to carry out
its functions, before passing control to the nucleus.

Processing programs (tasks, non-tasks) coded in C are generated in the external function format which is used to issue
system calls and call extended SVC handlers. The issuance format that can be recognized by the nucleus (nucleus
issuance format), however, differs from the external function format.

This necessitates a procedure (interface) for converting the external function format, used to issue system calls and to
call extended SVC handlers, into a format that can be issued to the nucleus. This type of interface between a processing
program and the nucleus is provided for each system call. The interface library contains a collection of such interfaces.

Figure 11-1 shows the interface library position.

Figure 11-1 Position of Interface Library

11.2 Processing in the Interface Library
The interface library performs the following processing.

- Sets necessary information to table managed by nucleus

- Sets necessary data to registers

- Sets error values of system calls (except errors set in nucleus) and returns control to processing program

By preparing the interface library, the nucleus and the processing program of the user can be easily separated. The
interface library is linked to the user application. Even if it is necessary to change the processing program of the user after
the entity of the nucleus has been stored in ROM, therefore, the ROM storing the nucleus entity does not have to be
changed. Also, the user can create load modules while separating them into different sections. The syntax of the interface
library for calling system calls is described in “11.5 System Call Interface Library”, and the syntax of the interface library of
extended SVC handler is described in “11.6 Extended SVC Handler Interface Library”. Refer to these sections for details.

Task

System call issue
External function

Interface library

Interface processing
Nucleus issuance

Nucleus

System call processingformat format

CHAPTER 11 INTERFACE LIBRARY

User’s Manual U19429EJ1V0UM 87

11.3 Types of Interface Libraries
The RX850 Pro supplies 2 types of interface libraries: one that has a function to check the parameters of system calls

and another that does not. Specify which of the interfaces is to be embedded in the system during linkage.
If the library with the parameter check function is used, and if an illegal parameter is specified when a system call is

issued, a return value is always returned. If the library without the parameter check function is used, no return value is
returned even if an illegal parameter is specified when a system call is issued.

These 2 types of libraries are used for different applications. For example, the library with the parameter check function
may be used for debugging, while the library without the parameter check function is actually embedded in the system, in
order to improve the cost effectiveness of the program and save the memory capacity.

Remark1 Errors in which return values are returned with the library which does not have a parameter check function
are marked by "*" in the system call return value column in "CHAPTER 12 SYSTEM CALLS".

Remark2 When the library without the parameter check function is used, if errors occur in which return values are not
returned, the operation of the application system cannot be guaranteed.

11.4 Change Interface Libraries

To change the interface library as necessary, it is necessary to rewrite the interface library.
Once an interface library has been modified, it must be assembled and then defined again as a library.

CHAPTER 11 INTERFACE LIBRARY

88 User’s Manual U19429EJ1V0UM

11.5 System Call Interface Library
The main operation of the system call interface library is detailed below.
The method of system call parameter passing, however, complies with the C compiler used.

- Saves the function code setting of the system call into the r10 register.

- Saves the address setting for the return from the system call into the lp register.

- Checks the system call parameters.

- Acquires the address of the system call entry (the value of the hp register + address 0x100).

- Jumps to the system call entry.

If an error is detected as the result of the system call parameter check, the interface library executes the following.

- Saves the error code associated with the detected error into the r10 register.

Figure 11-2 shows an example of the coding of a system call interface library.

Figure 11-2 Example of System Call Interface Library

 .text
 .globl _syscall_name
 .align 2
_syscall_name :
 -- Set the function code to be saved.
 mov func_code, r10

 -- Parameter check.
 :
 :

 jz _syscall_err

 -- Acquire the address of the system call entry.
 ld.w 0x100[hp], r12

 -- Jump to the system call entry.
 jmp [r12]

CHAPTER 11 INTERFACE LIBRARY

User’s Manual U19429EJ1V0UM 89

11.6 Extended SVC Handler Interface Library
The main operation of the extended SVC handler interface library is detailed below.
The method of extended SVC handler parameter passing, however, complies with the C compiler being used.

- Saves the function code setting of the extended SVC handler into the r10 register.

- Saves the address setting for the return from the extended SVC handler into the lp register.

- Checks the extended SVC handler parameters.

- Saves the setting of the extended SVC handler parameter area size into the r11 register.

Exp. In the case of 4 parameters of int type, 0x10 is saved into the r11 register.

- Acquires the address of the extended SVC handler entry (the value of the hp register + address 0x108).

- Jumps to the extended SVC handler entry.

If an error is detected as a result of the extended SVC handler parameter check, the interface library executes the
following.

- Saves the error code associated with the detected error into the r10 register.

Figure 11-3 shows an example of coding an extended SVC handler interface library.

Figure 11-3 Example of Extended SVC Handler Interface Library

 .text
 .globl _svchdr_name
 .align 2
_svchdr_name :
 -- Set the function code to be saved.
 mov func_code, r10

 -- Parameter check.
 :
 :

 jz _svchdr_err

 -- Set the parameter area size to be saved.
 mov prm_siz, r11

 -- Acquire the address of the extended SVC handler entry.
 ld.w 0x108[hp], r12

 -- Jump to the extended SVC handler entry.
 jmp [r12]

CHAPTER 12 SYSTEM CALLS

90 User’s Manual U19429EJ1V0UM

CHAPTER 12 SYSTEM CALLS

This chapter describes the system calls supported by the RX850 Pro.

12.1 Outline
A system call is a procedure or function for invoking RX850 Pro service routines from the user's processing programs

(tasks/non-tasks). The user can use system calls to indirectly manipulate those resources (such as counters and queues)
that are managed directly by the RX850 Pro.

The RX850 Pro supports its own system calls as well as the system calls defined in the uITRON 3.0 specifications, thus
enhancing the versatility of application systems.

System calls can be classified into the following 7 groups, according to their functions.

- Task management system calls (14)
These system calls are used to manipulate the status of a task.
This group provides functions for creating, activating, terminating, and deleting a task, a function for disabling and
resuming dispatch processing, a function for changing the task priority, a function for rotating a task ready queue, a
function for forcibly releasing a task from the wait state, and a function for referencing the task status.

cre_tsk, del_tsk, sta_tsk, ext_tsk, exd_tsk, ter_tsk, dis_dsp, ena_dsp, chg_pri, rot_rdq, rel_wai, get_tid, ref_tsk,
vget_tid

- Task-associated synchronization system calls (7)
These system calls perform synchronous operations associated with tasks.
This group provides a function for placing a task in the suspend state and restarting a suspended task, a function for
placing a task in the wake-up wait state and waking up a task currently in the wake-up wait state, and another function
for canceling a task wake-up request.

sus_tsk, rsm_tsk, frsm_tsk, slp_tsk, tslp_tsk, wup_tsk, can_wup

- Synchronous communication system calls (25)
These system calls are used for the synchronization (exclusive control and queuing) and communication between
tasks.
This group provides a function for manipulating semaphores, a function for manipulating events and flags, and a
function for manipulating mailboxes.

cre_sem, del_sem, sig_sem, wai_sem, preq_sem, twai_sem, ref_sem, vget_sid, cre_flg, del_flg, set_flg, clr_flg,
wai_flg, pol_flg, twai_flg, ref_flg, vget_fid, cre_mbx, del_mbx, snd_msg, rcv_msg, prcv_msg, trcv_msg, ref_mbx,
vget_mid

- Interrupt management system calls (7)
These system calls perform processing that is dependent on the maskable interrupts.
This group provides a function for registering an indirectly activated interrupt handler and subsequently canceling the
registration, a function for returning from a directly activated interrupt handler, and a function for changing or
referencing an interrupt-enabled level.

def_int, ena_int, dis_int, loc_cpu, unl_cpu, chg_icr, ref_icr

- Memory pool management system calls (8)
These system calls allocate memory.
This group provides a function for creating and deleting a memory pool, a function for acquiring and returning a
memory block, and a function for referencing the status of a memory pool.

cre_mpl, del_mpl, get_blk, pget_blk, tget_blk, rel_blk, ref_mpl, vget_pid

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 91

- Time management system calls (6)
These system calls perform processing that is dependent on time.
This group provides a function for setting or referencing the system clock, a function for placing a task in the timeout
wait state, a function for registering a cyclic handler and subsequently canceling the registration, and a function for
controlling and referencing the state of a cyclic handler.

set_tim, get_tim, dly_tsk, def_cyc, act_cyc, ref_cyc

- System management system calls (4)
These system calls perform processing that varies with the system.
This group provides a function for acquiring version information, a function for referencing the system status, a
function for registering an extended SVC handler and subsequently canceling the registration, and a function for
calling an extended SVC handler.

get_ver, ref_sys, def_svc, viss_svc

12.2 Calling System Calls
System calls issued from processing programs (task/non-task) written in C language are called as C language

functions. Their parameters are passed as arguments.
When issuing system calls from processing programs written in assembly language, set parameters and a return

address according to the function calling rules of the C compiler, used before calling them with the jarl instruction.

Remark The RX850 Pro declares the prototype of a system call in the stdrx85p.h file. Accordingly, when issuing a
system call from a processing program, the following must be coded to include the header file:

#include <stdrx85p.h>

12.3 System Call Function Codes
The system calls supported by the RX850 Pro are assigned function codes conforming to the uITRON3.0 specifications.
Table 12-1 lists the function codes assigned to system calls.
In the RX850 Pro, a value of 1 or greater is used when registering an extended SVC handler described by the user.

Table 12-1 System Call Function Codes

Function Code Classification

-256 to -225 RX850 Pro original system calls

-224 to -5 System calls conforming to the uITRON3.0 specifications

-4 to 0 Reserved by the system

1 or more Extended SVC handler

CHAPTER 12 SYSTEM CALLS

92 User’s Manual U19429EJ1V0UM

12.4 Data Types of Parameters
The system calls supported by the RX850 Pro have parameters that are defined based on data types that conform to

the uITRON3.0 specifications.
Table 12-2 lists the data types of the parameters specified upon the issuance of a system call.

Table 12-2 Data Types of Parameters

Macro Data Type Description

B signed char Signed 8-bit integer

H signed short Signed 16-bit integer

INT signed int Signed 32-bit integer

W signed long Signed 32-bit integer

UB unsigned char Unsigned 8-bit integer

UH unsigned short Unsigned 16-bit integer

UINT unsigned int Unsigned 32-bit integer

UW unsigned long Unsigned 32-bit integer

VB signed char Variable data type value (8 bits)

VH signed short Variable data type value (16 bits)

VW signed long Variable data type value (32 bits)

*VP void Variable data type value (pointer)

(*FP) () void Processing program start address

BOOL signed short Boolean value

FN signed short Function code

ID signed short Object ID number

BOOL_ID signed short Wait task available or not

HNO signed short Cyclic handler specification number

ATR unsigned short Object attribute

ER signed long Error code

PRI signed short Task priority

TMO signed long Wait time

CYCTIME signed long Cyclically activated time interval (residual time)

DLYTIME signed long Delay time

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 93

12.5 Parameter Value Range
Some of the system call parameters supported by the RX850 Pro have a range of permissible values, while others allow

the use of only system reserved specific values.
Table 12-3 lists the ranges of parameter values that can be specified upon the issuance of a system call.

Table 12-3 Ranges of Parameter Values

Note1 max_cnt: The maximum number of objects specified in System maximum value information during system
configuration.

Note2 "0x0" cannot be specified for the object key ID number.

Parameter Type Value Range

Object ID number 0x0 to max_cntNote1

Object key ID number -0x8000 to 0x7FFFNote2

Interrupt handler interrupt level 0x0 to 0xF

Specification number of cyclic handler 0x1 to max_cnt

Extended function code of extended SVC
handler 0x1 to max_cnt

Object priority 0x1 to max_cnt

Maximum resource count 0x1 to max_cnt

Interrupt enable level of maskable interrupt 0x0 to 0xF

System clock time 0x0 to 0x7FFF FFFF FFFF

Wait time -0x1 to 0x7FFF FFFF

Delay time 0x0 to 0x7FFF FFFF

Activation time interval of cyclic handler 0x1 to 0x7FFF FFFF

Task stack size 0x0 to 0x7FFF FFFF

Memory pool size 0x1 to 0x7FFF FFFF

Memory block size 0x1 to 0x7FFF FFFF

Message priority 0x1 to 0x7FFF

CHAPTER 12 SYSTEM CALLS

94 User’s Manual U19429EJ1V0UM

12.6 System Call Return Values
The system call return values supported by the RX850 Pro are based on the uITRON3.0 specifications.
Table 12-4 lists the system call return values.

Table 12-4 System Call Return Values

12.7 System Call Extension
The RX850 Pro supports the extension of system calls (functions coded by users are registered in the nucleus as

extended system calls).
No limitations are imposed on those functions registered as extended system calls; standard system calls (system calls

supported by the RX850 Pro) can also be included. If, however, standard system calls that can be issued only in the task
state are included, the issuance state of the extended system calls is limited to "issuable only from task".

Extended system calls are positioned as user-defined system calls, despite their having properties similar to tasks.
That is, like standard system calls, the scheduler is started upon the termination of processing and an optimum task is

selected.
If a standard system call is included in extended system calls, note that control may pass to another task that is currently

processing an extended system call because the scheduler is also started upon the termination of a standard system call.

Macro Value Description

E_OK 0 Normal termination.

E_NOMEM -10 An area for objects cannot be allocated.

E_NOSPT -17 A system call with the CF not defined, or an
unregistered extended SVC handler was called.

E_RSATR -24 Invalid object attribute specification.

E_PAR -33 Invalid parameter specification.

E_ID -35 Invalid ID number specification.

E_NOEXS -52 No relevant object exists.

E_OBJ -63 The status of the specified object is invalid.

E_OACV -66 An unauthorized ID number was specified.

E_CTX -69 The state in which the system call is issued is
invalid.

E_QOVR -73 The count exceeded 127.

E_DLT -81 The target object was deleted.

E_TMOUT -85 Timeout.

E_RLWAI -86 A wait state was forcibly canceled by rel_wai.

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 95

12.8 Explanation of System Calls
The following explains the system calls supported by the RX850 Pro, in the format shown below.

Figure 12-1 System Call Description Format

..............................
....................................... (.........)

..............................

[Overview]

..............................

[C format]

..............................

..............................

[Parameter(s)]

I/O Parameter Description

[Explanation]

..............................

..............................

..............................

..............................

[Return value]

(1) (2) (3)

(4)(5)

(6)

(7)

(8)

(9)

Macro Value Description

CHAPTER 12 SYSTEM CALLS

96 User’s Manual U19429EJ1V0UM

(1) Name
Indicates the name of the system call.

(2) Semantics
Indicates the source of the name of the system call.

(3) Function code
Indicates the function code of the system call.

(4) Origin of system call
Indicates where the system call can be issued.

Task: The system call can only be issued from a task.
Non-task: The system call can only be issued from a non-task (directly activated

interrupt handler, indirectly activated interrupt handler and cyclic handler).
Task/Non-task: The system call can be issued from both a task and a non-task.
Directly activated interrupt handler: The system call can only be issued from a directly activated interrupt handler.

(5) [Overview]
Outlines the functions of the system call.

(6) [C format]
Indicates the format to be used when describing a system call to be issued in C language.

(7) [Parameter(s)]
System call parameters are explained in the following format.

A: Parameter classification

I... Parameter input to RX850 Pro
O ... Parameter output from RX850 Pro

B: Parameter data type

C: Description of parameter

（8）[Explanation]
Explains the function of a system call.

（9）[Return value]
Indicates a system call's return value using a macro and value.

Return value marked with an asterisk (*): Value returned by both RX850 Pro having and that not having the
parameter check function

Return value not marked with an asterisk (*): Value returned only by RX850 Pro having the parameter check
function

I/O Parameter Description

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 97

12.8.1 Task management system calls
This section explains the group of system calls that are used to manipulate the task status (task management system

calls).
Table 12-5 lists the task management system calls.

Table 12-5 Task Management System Calls

System Call Function

cre_tsk Creates another task.

del_tsk Deletes another task.

sta_tsk Activates another task.

ext_tsk Terminates the task which issued the system call.

exd_tsk Terminates the task which issued the system call, then deletes it.

ter_tsk Forcibly terminates another task.

dis_dsp Disables dispatch processing.

ena_dsp Resumes dispatch processing.

chg_pri Changes the priority of a task.

rot_rdq Rotates a task ready queue.

rel_wai Forcibly releases another task from a wait state.

get_tid Acquires the ID number of the task that issued the system call.

ref_tsk Acquires task information.

vget_tid Acquires the task ID number.

CHAPTER 12 SYSTEM CALLS

98 User’s Manual U19429EJ1V0UM

create task (-17)
cre_tsk

Task

[Overview]
Creates a task.

[C format]
- When an ID number is specified
#include <stdrx85p.h>
ER ercd = cre_tsk (ID tskid, T_CTSK *pk_ctsk);

- When an ID number is not specified
#include <stdrx85p.h>
ER ercd = cre_tsk (ID_AUTO, T_CTSK *pk_ctsk, ID *p_tskid);

[Parameter(s)]

[Structure of task creation information T_CTSK]

[Explanation]
The RX850 Pro supports 2 types of interfaces for task creation: one in which an ID number is specified for task creation,

and another in which an ID number is not specified.

- When an ID number is specified
A task having the ID number specified by tskid is created based on the information specified by pk_ctsk.
The specified task changes from the non-existent state to the dormant state, in which it is managed by the RX850
Pro.

- When an ID number is not specified
A task is created based on the information specified by pk_ctsk.
The specified task changes from the non-existent state to the dormant state, in which it is managed by the RX850
Pro.
An ID number is allocated by the RX850 Pro and the allocated ID number is stored in the area specified by p_tskid.

I/O Parameter Description

I ID tskid; Task ID number

I T_CTSK *pk_ctsk; Start address of packet storing task creation information

O ID *p_tskid; Address of area used to store ID number

typedef struct t_ctsk {
 VP exinf; /*Extended information*/
 ATR tskatr; /*Task attribute*/
 FP task; /*Task activation address*/
 PRI itskpri; /*Task priority at activation (initial priority)*/
 INT stksz; /*Task stack size*/
 VP gp; /*gp register-specific value for task*/
 VP tp; /*tp register-specific value for task*/
 ID keyid; /*Task key ID number*/
} T_CTSK;

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 99

The following describes task creation information in detail.

exinf ... Extended information
exinf is an area for storing user-specific information on a specified task. It can be used as necessary by the
user.
Information set in exinf can be acquired dynamically by issuing ref_tsk from a processing program (task/non-
task).

tskatr ... Task attribute
Bit 0 ... Task language

TA_ASM (0): Assembly language
TA_HLNG (1): C language

Bit 8 ... Existence of key ID number specification
TA_KEYID (1): Specifies key ID number

Bit 9 ... Memory area specification
TA_SPOL0 (0): Secures the stack area from system memory area 0.
TA_SPOL1 (1): Secures the stack area from system memory area 1.

Bit 10 ... Existence of gp register-specific value specification
TA_DPID (1): Specifies a gp register-specific value.

Bit 11 ... Existence of tp register-specific value specification
TA_DPIC (1): Specifies a tp register-specific value.

Bit 12 ... Maskable interrupt acknowledgement enabled or disabled
TA_ENAINT (0): When a task is activated, the acknowledgement of maskable interrupts is

enabled.
TA_DISINT (1): When a task is activated, the acknowledgement of maskable interrupts is

disabled.

task ... Task activation address

itskpri ... Task initial priority (assigned upon activation)

stksz ... Stack size of task (unit: bytes)

gp ... gp register-specific value for task

tp ... tp register-specific value for task

keyid ... Task key ID number

Remark If the value of Bit 8 is not 1 (TA_KEYID), the contents of keyid are meaningless.
If the value of Bit 10 is not 1 (TA_DPID), the contents of gp are meaningless.
If the value of Bit 11 is not 1 (TA_DPIC), the contents of tp are meaningless.

[Return value]

Macro Value Description

*E_OK 0 Normal termination.

*E_NOMEM -10 An area for task management block cannot be allocated.

*E_NOSPT -17 This system call is not defined as CF.

E_RSATR -24 Invalid specification of attribute tskatr.

Task language
Existence of key ID number specification

Memory area specification
Existence of gp register-specific value specification

Existence of tp register-specific value specification

015 89101112

Maskable interrupt acknowledgement enabled or disabled

CHAPTER 12 SYSTEM CALLS

100 User’s Manual U19429EJ1V0UM

E_PAR -33

Invalid parameter specification.

- The start address of the packet storing task creation information
is invalid (pk_ctsk = 0).

- Invalid activation address specification (task = 0).

- Invalid initial priority specification (itskpri < 0, maximum priority <
itskpri).

- Invalid key ID number specification (keyid = 0) (at TA_KEYID
attribute specification).

- The address of the area used to store the ID number is invalid
(p_tskid = 0) (When a task is created with no ID number
specified).

E_ID -35 Invalid ID number specification (maximum number of tasks created <
tskid).

*E_OBJ -63 A task having the specified ID number has already been created.

E_OACV -66 An unauthorized ID number (tskid < 0) was specified.

E_CTX -69 This system call was issued from a non-task.

Macro Value Description

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 101

delete task (-18)
del_tsk

Task

[Overview]
Deletes another task.

[C format]
#include <stdrx85p.h>
ER ercd = del_tsk (ID tskid);

[Parameter(s)]

[Explanation]
This system call changes the task specified by tskid from the dormant state to the non-existent state.
This releases the target task from the control of the RX850 Pro.
Note that exd_tsk is used when it is necessary for a task to delete itself.

Remark This system call does not queue delete requests. Accordingly, if the target task is not in the dormant state,
this system call returns E_OBJ as the return value.

[Return value]

I/O Parameter Description

I ID tskid; Task ID number

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_ID -35 Invalid ID number specification (maximum number of tasks created <
tskid).

*E_NOEXS -52 The target task does not exist.

*E_OBJ -63 The target task is not in the dormant state.

E_OACV -66 An unauthorized ID number (tskid < 0) was specified.

E_CTX -69 This system call was issued from a non-task.

CHAPTER 12 SYSTEM CALLS

102 User’s Manual U19429EJ1V0UM

start task (-23)
sta_tsk

Task/Non-task

[Overview]
Activates another task.

[C format]
#include <stdrx85p.h>
ER ercd = sta_tsk (ID tskid, INT stacd);

[Parameter(s)]

[Explanation]
This system call changes the task specified by tskid from the dormant state to the ready state.
The target task is scheduled by the RX850 Pro.
For stacd, specify the activation code to be passed to the target task. The target task can be manipulated by handling

the activation code as if it were a function parameter.

Remark This system call does not queue activation requests. Accordingly, when a target task is not in the dormant
state, this system call returns E_OBJ as the return value.

[Return value]

I/O Parameter Description

I ID tskid; Task ID number

I INT stacd; Activation code

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_ID -35 Invalid ID number specification (maximum number of tasks created <
tskid).

*E_NOEXS -52 The target task does not exist.

*E_OBJ -63 The target task is not in the dormant state.

E_OACV -66 An unauthorized ID number (tskid < 0) was specified.

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 103

exit task (-21)
ext_tsk

Task

[Overview]
Terminates the task that issued the system call.

[C format]
#include <stdrx85p.h>
void ext_tsk (void);

[Parameter(s)]
None.

[Explanation]
This system call changes the state of the task from the run state to the dormant state.
The task is excluded from RX850 Pro scheduling.

Remark1 This system call initializes the "task creation information" specified at task creation (at configuration or upon
the issuance of cre_tsk).

Remark2 If a task is coded in assembly language, perform coding as follows to terminate the issuing task.

jr _ext_tsk

Remark3 If this system call is issued from a non-task or in the dispatch disabled state, its operation is not guaranteed.

Remark4 This system call does not release those resources (memory block, semaphore count, etc.) that were
acquired before the termination of the issuing task. Accordingly, the user has to release such resources
before issuing this system call.

[Return value]
None.

CHAPTER 12 SYSTEM CALLS

104 User’s Manual U19429EJ1V0UM

exit and delete task (-22)
exd_tsk

Task

[Overview]
Terminates the task that issued the system call, then deletes it.

[C format]
#include <stdrx85p.h>
void exd_tsk (void);

[Parameter(s)]
None.

[Explanation]
This system call changes the task from the run state to the non-existent state.
This releases the task from the control of the RX850 Pro.

Remark1 If this system call is issued from a non-task or in the dispatch disabled state, its operation is not guaranteed.

jr _exd_tsk

Remark2 If this system call is issued from a non-task or in the dispatch disabled state, its operation is not guaranteed.

Remark3 This system call does not release those resources (memory block, semaphore count, etc.) that were
acquired before the termination of the issuing task. Accordingly, the user has to release such resources
before issuing this system call.

[Return value]
None.

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 105

terminate task (-25)
ter_tsk

Task

[Overview]
Forcibly terminates another task.

[C format]
#include <stdrx85p.h>
ER ercd = ter_tsk (ID tskid);

[Parameter(s)]

[Explanation]
This system call forcibly changes the state of the task specified by tskid to the dormant state.

Remark1 This system call initializes the "task creation information" specified at task creation (at configuration or upon
the issuance of cre_tsk).

Remark2 This system call does not queue termination requests. Accordingly, if a target task is not in the ready, wait,
suspend, or wait-suspend state, this system call returns E_NOEXS or E_OBJ as the return value.

Remark3 This system call does not release those resources (memory block, semaphore count, etc.) that were
acquired before the termination of the issuing task. Accordingly, the user has to release such resources
before issuing this system call.

[Return value]

I/O Parameter Description

I ID tskid; Task ID number

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_ID -35 Invalid ID number specification (maximum number of tasks created <
tskid).

*E_NOEXS -52 The target task does not exist.

*E_OBJ -63 The target task is the task that issued this system call, or the task is in
the dormant state.

E_OACV -66 An unauthorized ID number (tskid < 0) was specified.

E_CTX -69 This system call was issued from a non-task.

CHAPTER 12 SYSTEM CALLS

106 User’s Manual U19429EJ1V0UM

disable dispatch (-30)
dis_dsp

Task

[Overview]
Disables dispatch processing.

[C format]
#include <stdrx85p.h>
ER ercd = dis_dsp (void);

[Parameter(s)]
None.

[Explanation]
This system call disables dispatch processing (task scheduling).
Dispatch processing is disabled until ena_dsp is issued after this system call has been issued.
If a system call such as chg_pri or sig_sem is issued to schedule tasks after this system call is issued but before

ena_dsp is issued, the RX850 Pro merely performs operations on a wait queue and delays actual scheduling until
ena_dsp is issued, at which time the processing is performed in batch.

Remark1 This system call does not queue disable requests. Accordingly, if this system call has already been issued
and dispatch processing has been disabled, no processing is performed and a disable request is not
handled as an error.

Remark2 If a system call such as wai_sem and wai_flg is issued, causing the state of the task to change to the wait
state after this system call is issued but before ena_dsp is issued, the RX850 Pro returns E_CTX as the
return value, regardless of whether the wait conditions are satisfied.

[Return value]

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

*E_CTX -69

Context error.

- This system call was issued from a non-task.

- This system call was issued after loc_cpu was issued.

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 107

enable dispatch (-29)
ena_dsp

Task

[Overview]
Enables dispatch processing.

[C format]
#include <stdrx85p.h>
ER ercd = ena_dsp (void);

[Parameter(s)]
None.

[Explanation]
This system call enables dispatch processing (task scheduling).
If a system call such as chg_pri and sig_sem is issued to schedule tasks after dis_dsp is issued but before this system

call is issued, the RX850 Pro merely performs operations on a wait queue and delays actual scheduling until this system
call is issued, at which time the processing is performed in batch.

Remark This system call does not queue resume requests. Accordingly, if this system call has already been issued
and dispatch processing has been resumed, no processing is performed.
The resume request is not handled as an error.

[Return value]

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

*E_CTX -69

Context error.

- This system call was issued from a non-task.

- This system call was issued after loc_cpu was issued.

CHAPTER 12 SYSTEM CALLS

108 User’s Manual U19429EJ1V0UM

change priority (-27)
chg_pri

Task/Non-task

[Overview]
Changes the priority of a task.

[C format]
#include <stdrx85p.h>
ER ercd = chg_pri (ID tskid, PRI tskpri);

[Parameter(s)]

[Explanation]
This system call changes the value of the task priority specified by tskid to that specified by tskpri.
If the target task is in the run state or the ready state, this system call executes priority change processing and queues

the target task at the tail end of the ready queue in accordance with its priority.

Remark1 If the specified task is queued in a wait queue according to its priority, the issue of this system call may
change the wait order.

[Example]
When 3 tasks (task A: priority 10, task B: priority 11, task C: priority 12) are placed in a semaphore wait
queue according to their priority, and if the priority of task B is changed from 11 to 9, then the wait order of
the wait queue changes as shown below.

Remark2 The value specified by tskpri is active until the next this system call is issued, or until the target task changes
to the dormant state.

Remark3 The task priority in the RX850 Pro becomes higher as its value decreases.

I/O Parameter Description

I ID tskid;

Task ID number

TSK_SELF (0): Local task
Value: Task ID number

I PRI tskpri;

Task priority

TPRI_INI (0): Task initial priority
Value: Task priority

Semaphore Task A

Priority: 10

Task B

Priority: 11

Task C

Priority: 12

chg_pri (Task B, 9)

Semaphore Task B

Priority: 9

Task A

Priority: 10

Task C

Priority: 12

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 109

[Return value]

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33 Invalid priority specification (tskpri < 0, maximum priority < tskpri).

E_ID -35

Invalid ID number specification.

- Maximum number of tasks created < tskid.

- When this system call was issued from a non-task, TSK_SELF
was specified in tskid.

*E_NOEXS -52 The target task does not exist.

*E_OBJ -63 The target task is in the dormant state.

E_OACV -66 An unauthorized ID number (tskid < 0) was specified.

CHAPTER 12 SYSTEM CALLS

110 User’s Manual U19429EJ1V0UM

rotate ready queue (-28)
rot_rdq

Task/Non-task

[Overview]
Rotates a task ready queue.

[C format]
#include <stdrx85p.h>
ER ercd = rot_rdq (PRI tskpri);

[Parameter(s)]

[Explanation]
This system call queues the first task in a ready queue to the end of the queue according to the priority specified by

tskpri.

Remark1 If no task of the specified priority exists in a ready queue, this system call performs no processing.
This is not regarded as an error.

Remark2 By issuing this system call at regular intervals, round-robin scheduling can be achieved.

[Return value]

I/O Parameter Description

I PRI tskpri;

Task priority

TPRI_RUN (0): Priority of task in run state
Value: Task priority

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33 Invalid priority specification (tskpri < 0, maximum priority < tskpri).

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 111

release wait (-31)
rel_wai

Task/Non-task

[Overview]
Forcibly releases another task from the wait state.

[C format]
#include <stdrx85p.h>
ER ercd = rel_wai (ID tskid);

[Parameter(s)]

[Explanation]
This system call forcibly releases the task specified by tskid from the wait state.
The target task is excluded from a wait queue, and its state changes from the wait state to the ready state, or from the

wait-suspend state to the suspend state.
For a task released from the wait state by this system call, E_RLWAI is returned as the return value of the system call

(slp_tsk, wai_sem, etc.) that caused transition to the wait state.

Remark This system call does not release the suspend state.

[Return value]

I/O Parameter Description

I ID tskid; Task ID number

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_ID -35 Invalid ID number specification (maximum number of tasks created <
tskid).

*E_NOEXS -52 The target task does not exist.

*E_OBJ -63 The target task is in neither the wait nor wait-suspend state.

E_OACV -66 An unauthorized ID number (tskid < 0) was specified.

CHAPTER 12 SYSTEM CALLS

112 User’s Manual U19429EJ1V0UM

get task identifier (-24)
get_tid

Task/Non-task

[Overview]
Acquires a task ID number.

[C format]
#include <stdrx85p.h>
ER ercd = get_tid (ID *p_tskid);

[Parameter(s)]

[Explanation]
This system call stores the ID number of the task that issued this system call in the area specified by p_tskid.

Remark If this system call is issued from a non-task, FALSE (0) is stored in the area specified by p_tskid.

[Return value]

I/O Parameter Description

O ID *p_tskid; Address of area used to store ID number

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33 The address of the area used to store the ID number is invalid (p_tskid
= 0).

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 113

refer task status (-20)
ref_tsk

Task/Non-task

[Overview]
Acquires task information.

[C format]
#include <stdrx85p.h>
ER ercd = ref_tsk (T_RTSK *pk_rtsk, ID tskid);

[Parameter(s)]

[Structure of task information T_RTSK]

[Explanation]
This system call stores the task information (extended information, current priority, etc.) specified by tskid in the packet

specified by pk_rtsk.
The following describes the task information in detail.

exinf ... Extended information

tskpri ... Current priority

tskstat ... Task state
TTS_RUN (0x1): Run state
TTS_RDY (0x2): Ready state
TTS_WAI (0x4): Wait state
TTS_SUS (0x8): Suspend state
TTS_WAS (0xc): Wait-suspend state
TTS_DMT (0x10): Dormant state

tskwait ... Type of wait state
TTW_SLP (0x1): Wake-up wait state
TTW_DLY (0x2): Timeout wait state
TTW_FLG (0x10): Eventflag wait state
TTW_SEM (0x20): Resource wait state
TTW_MBX (0x40): Message wait state
TTW_MPL (0x1000): Memory block wait state

I/O Parameter Description

O T_RTSK *pk_rtsk; Start address of packet used to store task information

I ID tskid;

Task ID number

TSK_SELF (0): Local task
Value: Task ID number

typedef struct t_rtsk {
 VP exinf; /*Extended information*/
 PRI tskpri; /*Current priority*/
 UINT tskstat; /*Task status*/
 UINT tskwait; /*Wait cause*/
 ID wid; /*ID number of wait object*/
 INT wupcnt; /*Number of wake-up requests*/
 INT suscnt; /*Number of suspend requests*/
 ID keyid; /*Key ID number*/
} T_RTSK;

CHAPTER 12 SYSTEM CALLS

114 User’s Manual U19429EJ1V0UM

wid ... ID number of wait object (semaphore, event, flag, etc.)

wupcnt ... Number of wake-up requests

suscnt ... Number of suspend requests

keyid ... Key ID number
FALSE (0): No key ID number specified at creation
Value: Key ID number

Remark1 When the value of tskstat is other than TTS_WAI or TTS_WAS, the contents of tskwait will be undefined.

Remark2 When the value of tskwait is other than TTW_FLG, TTW_SEM, TTW_MBX, or TTW_MPF, the contents of
wid will be undefined.

[Return value]

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33 The start address of the packet used to store task information is
invalid (pk_rtsk = 0).

E_ID -35

Invalid ID number specification.

- Maximum number of tasks created < tskid.

- When this system call was issued from a non-task, TSK_SELF
was specified in tskid.

*E_NOEXS -52 The target task does not exist.

E_OACV -66 An unauthorized ID number (tskid < 0) was specified.

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 115

get task Identifier (-248)
vget_tid

Task/Non-task

[Overview]
Acquires a task ID number.

[C format]
#include <stdrx85p.h>
ER ercd = vget_tid (ID *p_tskid, ID keyid);

[Parameter(s)]

[Explanation]
This system call stores the task ID number specified by keyid in the area specified by p_tskid.

[Return value]

I/O Parameter Description

O ID *p_tskid; Address of area used to store ID number

I ID keyid; Task key ID number

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33

Invalid parameter specification.

- The address of the area used to store the ID number is invalid
(p_tskid = 0).

- Invalid key ID number specification (keyid = 0).

*E_NOEXS -52 The target task does not exist.

CHAPTER 12 SYSTEM CALLS

116 User’s Manual U19429EJ1V0UM

12.8.2 Task-associated synchronization system calls
This section explains the group of system calls that perform the synchronous operations associated with tasks (task-

associated synchronization system calls).
Table 12-6 lists the task-associated synchronization system calls.

Table 12-6 Task-Associated Synchronization System Calls

System Call Function

sus_tsk Places another task in the suspend state.

rsm_tsk Restarts a task in the suspend state.

frsm_tsk Forcibly restarts a task in the suspend state.

slp_tsk Places the task that issued this system call into the wake-up wait state.

tslp_tsk Places the task that issued this system call into the wake-up wait state (with timeout).

wup_tsk Wakes up another task.

can_wup Invalidates a request to wake up a task.

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 117

suspend task (-33)
sus_tsk

Task/Non-task

[Overview]
Places another task in the suspend state.

[C format]
#include <stdrx85p.h>
ER ercd = sus_tsk (ID tskid);

[Parameter(s)]

[Explanation]
This system call issues a suspend request to the task specified by tskid (the suspend request counter is incremented by

0x1).
If the target task is in the ready or wait state when this system call is issued, this system call changes the target task

from the ready state to the suspend state or from the wait state to the wait-suspend state, and also issues a suspend
request (increments the suspend request counter).

Remark The suspend request counter managed by the RX850 Pro consists of 7 bits. Therefore, once the number of
suspend requests exceeds 127, this system call returns E_QOVR as the return value without incrementing
the suspend request counter.

[Return value]

I/O Parameter Description

I ID tskid; Task ID number

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_ID -35 Invalid ID number specification (maximum number of tasks created <
tskid).

*E_NOEXS -52 The target task does not exist.

*E_OBJ -63

Invalid state of the specified task.

- The target task is in the dormant state.

- The issuing task is specified as the target task when this system
call is issued from a task.

E_OACV -66 An unauthorized ID number (tskid < 0) was specified.

*E_QOVR -73 The number of suspend requests exceeded 127.

CHAPTER 12 SYSTEM CALLS

118 User’s Manual U19429EJ1V0UM

resume task (-35)
rsm_tsk

Task/Non-task

[Overview]
Restarts a task in the suspend state.

[C format]
#include <stdrx85p.h>
ER ercd = rsm_tsk (ID tskid);

[Parameter(s)]

[Explanation]
This system call cancels only one of the suspend requests that are issued to the task specified by tskid (the suspend

request counter is decremented by 0x1).
If the issuance of this system call causes the suspend request counter for the target task to be 0x0, this system call

changes the task from the suspend state to the ready state or from the wait-suspend state to the wait state.

Remark This system call does not queue cancel requests. Accordingly, if a target task is not in the suspend or wait-
suspend state, this system call returns E_OBJ as the return value without decrementing the suspend
request counter.

[Return value]

I/O Parameter Description

I ID tskid; Task ID number

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_ID -35 Invalid ID number specification (maximum number of tasks created <
tskid).

*E_NOEXS -52 The target task does not exist.

*E_OBJ -63 The target task is not in the suspend or wait-suspend state.

E_OACV -66 An unauthorized ID number (tskid < 0) was specified.

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 119

force resume task (-36)
frsm_tsk

Task/Non-task

[Overview]
Forcibly restarts a task in the suspend state.

[C format]
#include <stdrx85p.h>
ER ercd = frsm_tsk (ID tskid);

[Parameter(s)]

[Explanation]
This system call cancels all the suspend requests issued to the task specified by tskid (the suspend request counter is

set to 0x0).
The target task changes from the suspend state to the read state or from the wait-suspend state to the wait state.

Remark This system call does not queue cancel requests. Accordingly, if a target task is not in the suspend or wait-
suspend state, this system call returns E_OBJ as the return value without setting the suspend request
counter.

[Return value]

I/O Parameter Description

I ID tskid; Task ID number

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_ID -35 Invalid ID number specification (maximum number of tasks created <
tskid).

*E_NOEXS -52 The target task does not exist.

*E_OBJ -63 The target task is not in the suspend or wait-suspend state.

E_OACV -66 An unauthorized ID number (tskid < 0) was specified.

CHAPTER 12 SYSTEM CALLS

120 User’s Manual U19429EJ1V0UM

sleep task (-38)
slp_tsk

Task

[Overview]
Places the task that issued this system call into the wake-up wait state.

[C format]
#include <stdrx85p.h>
ER ercd = slp_tsk (void);

[Parameter(s)]
None.

[Explanation]
This system call cancels only one of the wake-up requests issued to the task (the wake-up request counter is

decremented by 0x1).
If the wake-up request counter for the task is 0x0 when this system call is issued, this system call changes the state of

the task from the run state to the wait state (wake-up wait state) without canceling a wake-up request (decrementing the
wake-up request counter).

The wake-up wait state is released when wup_tsk or rel_wai is issued. The task changes from the wake-up wait state to
the ready state.

[Return value]

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_CTX -69

Context error.

- This system call was issued from a non-task.

- This system call was issued in the dispatch disabled state.

*E_RLWAI -86 The wake-up wait state was forcibly released by rel_wai.

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 121

sleep task with timeout (-37)
tslp_tsk

Task

[Overview]
Places the task that issued this system call into the wake-up wait state (with timeout).

[C format]
#include <stdrx85p.h>
ER ercd = tslp_tsk (TMO tmout);

[Parameter(s)]

[Explanation]
This system call cancels only one of the wake-up requests issued to the task (the wake-up request counter is

decremented by 0x1).
If the wake-up request counter for the task is 0x0 when this system call is issued, this system call changes the task from

the run state to the wait state (wake-up wait state) without canceling a wake-up request (decrementing the wake-up
request counter).

Note that the wake-up wait state is canceled if the wait time specified by tmout elapses or if wup_tsk or rel_wai is
issued, and the issuing task changes to the ready state.

[Return value]

I/O Parameter Description

I TMO tmout;

Wait time (unit: ms)

TMO_POL (0): Quick return
TMO_FEVR (-1): Permanent wait
Value: Wait time

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33 Invalid wait time specification (tmout < TMO_FEVR).

E_CTX -69

Context error.

- This system call was issued from a non-task.

- This system call was issued in the dispatch disabled state.

*E_TMOUT -85 The wait time has elapsed.

*E_RLWAI -86 The wake-up wait state was forcibly released by rel_wai.

CHAPTER 12 SYSTEM CALLS

122 User’s Manual U19429EJ1V0UM

wakeup task (-39)
wup_tsk

Task/Non-task

[Overview]
Wakes up another task.

[C format]
#include <stdrx85p.h>
ER ercd = wup_tsk (ID tskid);

[Parameter(s)]

[Explanation]
This system call issues a wake-up request to the task specified by tskid (the wake-up request counter is incremented by

0x1).
If the target task is in the wait state (wake-up wait state) when this system call is issued, this system call changes the

task from the wake-up wait state to the ready state without issuing a wake-up request (incrementing the wakeup request
counter).

Remark The wake-up request counter managed by the RX850 Pro consists of 7-bits. Therefore, when the number of
wake-up requests exceeds 127, this system call returns E_QOVR as the return value without incrementing
the wake-up request counter.

[Return value]

I/O Parameter Description

I ID tskid; Task ID number

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_ID -35 Invalid ID number specification (maximum number of tasks created <
tskid).

*E_NOEXS -52 The target task does not exist.

*E_OBJ -63

Invalid state of the specified task.

- The target task is in the dormant state.

- The issuing task is specified as the target task when this system
call is issued from a task.

E_OACV -66 An unauthorized ID number (tskid < 0) was specified.

*E_QOVR -73 The number of wake-up requests exceeded 127.

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 123

cancel wakeup task (-40)
can_wup

Task/Non-task

[Overview]
Invalidates a request to wake up a task.

[C format]
#include <stdrx85p.h>
ER ercd = can_wup (INT *p_wupcnt, ID tskid);

[Parameter(s)]

[Explanation]
This system call cancels all the wake-up requests issued to the task specified by tskid (the wake-up request counter is

set to 0x0).
The number of wake-up requests canceled by this system call is stored in the area specified by p_wupcnt.

[Return value]

I/O Parameter Description

O INT *p_wupcnt; Address of area used to store the number of wake-up requests

I ID tskid;

Task ID number

TSK_SELF (0): Local task
Value: Task ID number

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33 The address of the area used to store the number of wake-up
requests is invalid (p_wupcnt = 0).

E_ID -35

Invalid ID number specification.

- Maximum number of tasks created < tskid.

- When this system call was issued from a non-task, TSK_SELF
was specified for tskid.

*E_NOEXS -52 The target task does not exist.

*E_OBJ -63 The target task is in the dormant state.

E_OACV -66 An unauthorized ID number (tskid < 0) was specified.

CHAPTER 12 SYSTEM CALLS

124 User’s Manual U19429EJ1V0UM

12.8.3 Synchronous communication system calls
This section explains the group of system calls that are used for synchronization (exclusive control and queuing) and

communication between tasks (synchronous communication system calls).
Table 12-7 lists the synchronous communication system calls.

Table 12-7 Synchronous Communication System Calls

System Call Function

cre_sem Creates a semaphore.

del_sem Deletes a semaphore.

sig_sem Returns resources.

wai_sem Acquires resources.

preq_sem Acquires resources (polling).

twai_sem Acquires resources (with timeout).

ref_sem Acquires semaphore information.

vget_sid Acquires a semaphore ID number.

cre_flg Creates an eventflag.

del_flg Deletes an eventflag.

set_flg Sets a bit pattern.

clr_flg Clears a bit pattern.

wai_flg Checks a bit pattern.

pol_flg Checks a bit pattern (polling).

twai_flg Checks a bit pattern (with timeout).

ref_flg Acquires eventflag information.

vget_fid Acquires an eventflag ID number.

cre_mbx Creates a mailbox.

del_mbx Deletes a mailbox.

snd_msg Transmits a message.

rcv_msg Receives a message.

prcv_msg Receives a message (polling).

trcv_msg Receives a message (with timeout).

ref_mbx Acquires mailbox information.

vget_mid Acquires a mailbox ID number.

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 125

create semaphore (-49)
cre_sem

Task

[Overview]
Creates a semaphore.

[C format]
- When an ID number is specified
#include <stdrx85p.h>
ER ercd = cre_sem (ID semid, T_CSEM *pk_csem);

- When an ID number is not specified
#include <stdrx85p.h>
ER ercd = cre_sem (ID_AUTO, T_CSEM *pk_csem, ID *p_semid);

[Parameter(s)]

[Structure of semaphore creation information T_CSEM]

[Explanation]
The RX850 Pro provides 2 types of interfaces for semaphore creation: one in which an ID number must be specified,

and one in which an ID number is not specified.

- When an ID number is specified
A semaphore having an ID number specified by semid is created based on the information specified by pk_csem.

- When an ID number is not specified
A semaphore is created based on the information specified by pk_csem.
An ID number is allocated by the RX850 Pro and the allocated ID number is stored in the area specified by p_semid.

Semaphore creation information is described in detail below.

exinf ... Extended information
An area for storing user-specific information on a target semaphore. The user can use this area as required.
Information set in exinf can be dynamically acquired by issuing ref_sem from a processing program (tasks
and non-tasks).

I/O Parameter Description

I ID semid; Semaphore ID number

I T_CSEM *pk_csem; Start address of packet containing semaphore creation information

O ID *p_semid; Address of area used to store ID number

typedef struct t_csem {
 VP exinf; /*Extended information*/
 ATR sematr; /*Semaphore attribute*/
 INT isemcnt; /*Initial resource count*/
 INT maxsem; /*Maximum resource count*/
 ID keyid; /*Semaphore key ID number*/
} T_CSEM;

CHAPTER 12 SYSTEM CALLS

126 User’s Manual U19429EJ1V0UM

sematr ... Semaphore attribute
Bit 0 ... Method of queuing into a wait queue

TA_TPRI (0): Priority order
TA_TFIFO (1): FIFO order

Bit 8 ... Existence of specifying the key ID number
TA_KEYID (1): Specifies the key ID number

isemcnt ... Initial resource count

maxsem ...Maximum resource count

keyid ... Semaphore key ID number

Remark If the value of bit 8 is not TA_KEYID in sematr, the contents of keyid are meaningless.

[Return value]

Macro Value Description

*E_OK 0 Normal termination.

*E_NOMEM -10 The semaphore management block area cannot be secured.

*E_NOSPT -17 This system call is not defined as CF.

E_RSATR -24 Invalid specification of attribute sematr.

E_PAR -33

Invalid parameter specification.

- The start address of a packet storing semaphore creation
information is invalid (pk_csem = 0).

- The initial resource count is invalid (isemcnt < 0).

- The maximum resource count is invalid (maxsem < 0, maxsem <
isemcnt).

- Invalid key ID number specification (keyid = 0) (when TA_KEYID
attribute specified).

- The address of the area used to store an ID number is invalid
(p_semid = 0) (When a semaphore is created without an ID
number specified).

E_ID -35 Invalid ID number specification (maximum number of semaphores
created < semid).

*E_OBJ -63 A semaphore having the specified ID number has already been
created.

E_OACV -66 An unauthorized ID number (semid < 0) was specified.

E_CTX -69 This system call was issued from a non-task.

Method of queuing into a wait queue
Existence of specifying the key ID number

015 8

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 127

delete semaphore (-50)
del_sem

Task

[Overview]
Deletes a semaphore.

[C format]
#include <stdrx85p.h>
ER ercd = del_sem (ID semid);

[Parameter(s)]

[Explanation]
This system call deletes the semaphore specified by semid.
The target semaphore is released from the control of the RX850 Pro.
The task released from the wait state (resource wait state) by this system call has E_DLT returned as the return value of

the system call (wai_sem or twai_sem) that initiated transition to the wait state.

[Return value]

I/O Parameter Description

I ID semid; Semaphore ID number

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_ID -35 Invalid ID number specification (maximum number of semaphores
created < semid).

*E_NOEXS -52 The target semaphore does not exist.

E_OACV -66 An unauthorized ID number (semid < 0) was specified.

E_CTX -69 This system call was issued from a non-task.

CHAPTER 12 SYSTEM CALLS

128 User’s Manual U19429EJ1V0UM

signal semaphore (-55)
sig_sem

Task/Non-task

[Overview]
Returns resources.

[C format]
#include <stdrx85p.h>
ER ercd = sig_sem (ID semid);

[Parameter(s)]

[Explanation]
This system call returns resources to the semaphore specified by semid (the semaphore counter is incremented by

0x1).
If tasks are queued in the wait queue of the target semaphore when this system call is issued, this system call passes

the resources to the relevant task (the first task in the wait queue) without returning the resources (incrementing the
semaphore counter).

Consequently, the relevant task is removed from the wait queue, and its state changes from the wait state (resource wait
state) to the ready state, or from the wait-suspend state to the suspend state.

Remark The semaphore counter managed by the RX850 Pro counts up to the maximum resource count that can be
acquired as specified at the time it is created. Therefore, when the number of resources exceeds the
maximum resource count, by issuing this system call, E_QOVR is returned as the return value without
incrementing the semaphore counter.

[Return value]

I/O Parameter Description

I ID semid; Semaphore ID number

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_ID -35 Invalid ID number specification (maximum number of semaphores
created < semid).

*E_NOEXS -52 The target semaphore does not exist.

E_OACV -66 An unauthorized ID number (semid < 0) was specified.

*E_QOVR -73 The resource count exceeded the maximum resource count specified
at creation.

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 129

wait on semaphore (-53)
wai_sem

Task

[Overview]
Acquires resources.

[C format]
#include <stdrx85p.h>
ER ercd = wai_sem (ID semid);

[Parameter(s)]

[Explanation]
This system call acquires resources from the semaphore specified by semid (the semaphore counter is decremented by

0x1).
When this system call is issued, if no resource can be acquired from a target semaphore (when there are no free

resources), this system call places the task in the wait queue of the specified semaphore, then changes it from the run
state to the wait state (resource wait state).

The resource wait state is released upon the issuance of sig_sem, del_sem, or rel_wai, and the task returns to the
ready state.

Remark When a task queues in the wait queue of the target semaphore, it is executed in the order (FIFO order or
priority order) specified when that semaphore was created (at configuration or when cre_seml was issued).

[Return value]

I/O Parameter Description

I ID semid; Semaphore ID number

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_ID -35 Invalid ID number specification (maximum number of semaphores
created < semid).

*E_NOEXS -52 The target semaphore does not exist.

E_OACV -66 An unauthorized ID number (semid < 0) was specified.

E_CTX -69

Context error.

- This system call was issued from a non-task.

- This system call was issued in the dispatch disabled state.

*E_DLT -81 The specified semaphore was deleted by del_sem.

*E_RLWAI -86 The resource wait state was forcibly released by rel_wai.

CHAPTER 12 SYSTEM CALLS

130 User’s Manual U19429EJ1V0UM

poll and request semaphore (-107)
preq_sem

Task/Non-task

[Overview]
Acquires resources (polling).

[C format]
#include <stdrx85p.h>
ER ercd = preq_sem (ID semid);

[Parameter(s)]

[Explanation]
This system call acquires resources from the semaphore specified by semid (the semaphore counter is decremented by

0x1).
When this system call is issued, if no resource can be acquired from a target semaphore (when there are no free

resources), this system call returns E_TMOUT as the return value.

[Return value]

I/O Parameter Description

I ID semid; Semaphore ID number

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_ID -35 Invalid ID number specification (maximum number of semaphores
created < semid).

*E_NOEXS -52 The target semaphore does not exist.

E_OACV -66 An unauthorized ID number (semid < 0) was specified.

*E_TMOUT -85 The resource count for the target semaphore is 0x0.

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 131

wait on semaphore with timeout (-171)
twai_sem

Task

[Overview]
Acquires resources (with timeout).

[C format]
#include <stdrx85p.h>
ER ercd = twai_sem (ID semid, TMO tmout);

[Parameter(s)]

[Explanation]
This system call acquires resources from the semaphore specified by semid (the semaphore counter is decremented by

0x1).
When this system call is issued, if no resource can be acquired from a target semaphore (when there are no free

resources), this system call places the task in the wait queue of the target semaphore, then changes it from the run state
to the wait state (resource wait state).

The resource wait state is released when the wait time specified by tmout elapses or when sig_sem, del_sem, or
rel_wai is issued, at which time it changes to the ready state.

Remark The task is queued into the wait queue of a target semaphore in the order (FIFO order or priority order)
specified when the semaphore was created (at configuration or upon the issuance of cre_sem).

[Return value]

I/O Parameter Description

I ID semid; Semaphore ID number

I TMO tmout;

Wait time (unit: ms)

TMO_POL (0): Quick return
TMO_FEVR (-1): Permanent wait
Value: Wait time

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33 Invalid wait time specification (tmout < TMO_FEVR).

E_ID -35 Invalid ID number specification (maximum number of semaphores
created < semid).

*E_NOEXS -52 The target semaphore does not exist.

E_OACV -66 An unauthorized ID number (semid < 0) was specified.

E_CTX -69

Context error.

- This system call was issued from a non-task.

- This system call was issued in the dispatch disabled state.

*E_DLT -81 A target semaphore was deleted by del_sem.

*E_TMOUT -85 Wait time elapsed.

CHAPTER 12 SYSTEM CALLS

132 User’s Manual U19429EJ1V0UM

*E_RLWAI -86 The resource wait state was forcibly released by rel_wai.

Macro Value Description

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 133

refer semaphore status (-52)
ref_sem

Task/Non-task

[Overview]
Acquires semaphore information.

[C format]
#include <stdrx85p.h>
ER ercd = ref_sem (T_RSEM *pk_rsem, ID semid);

[Parameter(s)]

[Structure of semaphore information T_RSEM]

[Explanation]
This system call stores the semaphore information (extended information, existence of waiting task, etc.) for the

semaphore specified by semid in the packet specified by pk_rsem.
Semaphore information is described in detail below.

exinf ... Extended information

wtsk ... Existence of waiting task
FALSE (0): There is no waiting task
Value: ID number of first task in wait queue

semcnt ... Current resource count

maxsem ...Maximum resource count specified at creation

keyid ... Key ID number
FALSE (0): No key ID number specified at creation
Value: Key ID number

[Return value]

I/O Parameter Description

O T_RSEM *pk_rsem; Start address of packet used to store semaphore information

I ID semid; Semaphore ID number

typedef struct t_rsem {
 VP exinf; /*Extended information*/
 BOOL_ID wtsk; /*Existence of waiting task*/
 INT semcnt; /*Current resource count*/
 INT maxsem; /*Maximum resource count*/
 ID keyid; /*Key ID number*/
} T_RSEM;

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33 The start address of the packet used to store semaphore information
is invalid (pk_rsem = 0).

CHAPTER 12 SYSTEM CALLS

134 User’s Manual U19429EJ1V0UM

E_ID -35 Invalid ID number specification (maximum number of semaphores
created < semid).

*E_NOEXS -52 The target semaphore does not exist.

E_OACV -66 An unauthorized ID number (semid < 0) was specified.

Macro Value Description

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 135

get semaphore identifier (-246)
vget_sid

Task/Non-task

[Overview]
Acquires the semaphore ID number.

[C format]
#include <stdrx85p.h>
ER ercd = vget_sid (ID *p_semid, ID keyid);

[Parameter(s)]

[Explanation]
This system call stores the semaphore ID number specified by keyid in the area specified by p_semid.

[Return value]

I/O Parameter Description

O ID *p_semid; Address of area used to store ID number

I ID keyid; Semaphore key ID number

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33

Invalid parameter specification.

- The address of the area used to store the ID number is invalid
(p_semid = 0).

- Invalid key ID number specification (keyid = 0).

*E_NOEXS -52 The target semaphore does not exist.

CHAPTER 12 SYSTEM CALLS

136 User’s Manual U19429EJ1V0UM

create eventflag (-41)
cre_flg

Task

[Overview]
Creates an eventflag.

[C format]
- When an ID number is specified
#include <stdrx85p.h>
ER ercd = cre_flg (ID flgid, T_CFLG *pk_cflg);

- When an ID number is not specified
#include <stdrx85p.h>
ER ercd = cre_flg (ID_AUTO, T_CFLG *pk_cflg, ID *p_flgid);

[Parameter(s)]

[Structure of eventflag creation information T_CFLG]

[Explanation]
The RX850 Pro provides 2 types of interfaces for eventflag creation: one in which an ID number must be specified and

one in which an ID number is not specified.

- When an ID number is specified
An eventflag having the ID number specified by flgid is created based on the information specified by pk_cflg.

- When an ID number is not specified
An eventflag is created based on the information specified by pk_cflg.
An ID number is allocated by the RX850 Pro and the allocated ID number is stored in the area specified by p_flgid.

Eventflag creation information is described in detail below.

exinf ... Extended information
exinf is an area used for storing user-specific information on a target eventflag. The user can use this area
as required.
Information set in exinf can be dynamically acquired by issuing ref_flg from a processing program (task or
non-task).

I/O Parameter Description

I ID flgid; Eventflag ID number

I T_CFLG *pk_cflg; Start address of packet storing eventflag creation information

O ID *p_flgid; Address of area used to store ID number

typedef struct t_cflg {
 VP exinf; /*Extended information*/
 ATR flgatr; /*Eventflag attribute*/
 UINT iflgptn; /*Initial bit pattern of eventflag*/
 ID keyid; /*Eventflag key ID number*/
} T_CFLG;

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 137

flgatr ... Eventflag attribute
Bit 3 ... Number of tasks that can be queued into a wait queue

TA_WSGL (0): One task only
TA_WMUL (1): 2 or more tasks

Bit 8 ... Existence of key ID number specification
TA_KEYID (1): Key ID number specified

iflgptn ... Initial bit pattern of eventflag

keyid ... Eventflag key ID number

Remark If the value of bit 8 is not TA_KEYID in flgatr, the contents of keyid are meaningless.

[Return value]

Macro Value Description

*E_OK 0 Normal termination.

*E_NOMEM -10 The eventflag management block area cannot be secured.

*E_NOSPT -17 This system call is not defined as CF.

E_RSATR -24 Invalid specification of attribute flgatr.

E_PAR -33

Invalid parameter specification.

- The start address of the packet storing eventflag creation
information is invalid (pk_cflg = 0).

- Invalid key ID number specification (keyid = 0) (when TA_KEYID
attribute specified).

- The address of the area used to store the ID number is invalid
(p_flgid = 0) (When an eventflag is created with no ID number
specified).

E_ID -35 Invalid ID number specification (maximum number of eventflags
created < flgid).

*E_OBJ -63 An eventflag having the specified ID number has already been
created.

E_OACV -66 An unauthorized ID number (flgid < 0) was specified.

E_CTX -69 This system call was issued from a non-task.

Number of tasks that can be queued into a wait queue
Existence of key ID number specification

015 8 3

CHAPTER 12 SYSTEM CALLS

138 User’s Manual U19429EJ1V0UM

delete eventflag (-42)
del_flg

Task

[Overview]
Deletes an eventflag.

[C format]
#include <stdrx85p.h>
ER ercd = del_flg (ID flgid);

[Parameter(s)]

[Explanation]
This system call deletes the eventflag specified by flgid.
The target eventflag is released from the control of the RX850 Pro.
The task released from the wait state (eventflag wait state) by this system call has E_DLT returned as the return value of

the system call (wai_flg or twai_flg) that initiated transition to the wait state.

[Return value]

I/O Parameter Description

I ID flgid; Eventflag ID number

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_ID -35 Invalid ID number specification (maximum number of eventflags
created < flgid).

*E_NOEXS -52 The target eventflag does not exist.

E_OACV -66 An unauthorized ID number (flgid < 0) was specified.

E_CTX -69 This system call was issued from a non-task.

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 139

set eventflag (-48)
set_flg

Task/Non-task

[Overview]
Sets a bit pattern.

[C format]
#include <stdrx85p.h>
ER ercd = set_flg (ID flgid, UINT setptn);

[Parameter(s)]

[Explanation]
This system call executes a logical OR between the bit pattern specified by flgid and that specified by setptn, and sets

the result in the specified eventflag.
For example, when this system call is issued, if the target eventflag's bit pattern is B'1100 and the bit pattern specified by

setptn is B'1010, the bit pattern of the target eventflag becomes B'1110.
When this system call is issued, if the wait condition for a task queued in the wait queue of the target eventflag is

satisfied, the task is removed from the wait queue.
Consequently, the relevant task changes from the wait state (eventflag wait state) to the ready state, or from the wait-

suspend state to the suspend state.

[Return value]

I/O Parameter Description

I ID flgid; Eventflag ID number

I UINT setptn; Bit pattern to be set (32-bit width)

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_ID -35 Invalid ID number specification (maximum number of eventflags
created < flgid).

*E_NOEXS -52 The target eventflag does not exist.

E_OACV -66 An unauthorized ID number (flgid < 0) was specified.

CHAPTER 12 SYSTEM CALLS

140 User’s Manual U19429EJ1V0UM

clear eventflag (-47)
clr_flg

Task/Non-task

[Overview]
Clears a bit pattern.

[C format]
#include <stdrx85p.h>
ER ercd = clr_flg (ID flgid, UINT clrptn);

[Parameter(s)]

[Explanation]
This system call executes a logical AND between the bit pattern specified by flgid and that specified by clrptn, and sets

the result in the specified eventflag.
For example, when this system call is issued, if the target eventflag's bit pattern is B'1100 and the bit pattern specified by

clrptn is B'1010, the target eventflag's bit pattern becomes B'1000.

[Return value]

I/O Parameter Description

I ID flgid; Eventflag ID number

I UINT clrptn; Bit pattern to be cleared (32-bit width)

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_ID -35 Invalid ID number specification (maximum number of eventflags
created < flgid).

*E_NOEXS -52 The target eventflag does not exist.

E_OACV -66 An unauthorized ID number (flgid < 0) was specified.

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 141

wait eventflag (-46)
wai_flg

Task

[Overview]
Checks a bit pattern.

[C format]
#include <stdrx85p.h>
ER ercd = wai_flg (UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode);

[Parameter(s)]

[Explanation]
This system call checks whether a bit pattern that satisfies the request bit pattern specified by waiptn, as well as the wait

condition specified by wfmode, is set in the eventflag specified by flgid.
If a bit pattern satisfying the wait condition is set in the target eventflag, this system call stores the bit pattern of the

eventflag in the area specified by p_flgptn.
When this system call is issued, if the bit pattern of the target eventflag does not satisfy the wait condition, this system

call queues the task at the end of the wait queue for the target eventflag, then changes it from the run state to the wait
state (eventflag wait state).

The eventflag wait state is released when a bit pattern satisfying the wait condition is set by set_flg, or when del_flg or
rel_wai is issued, at which time it changes to the ready state.

The specification format for wfmode is shown below.

- wfmode = TWF_ANDW
This system call checks whether all the bits of waiptn that are set to 1 are set in the target eventflag.

- wfmode = (TWF_ANDW | TWF_CLR)
This system call checks whether all the bits of waiptn that are set to 1 are set in the target eventflag.
If the wait condition is satisfied, the bit pattern for the target eventflag is cleared (B'0000 is set).

- wfmode = TWF_ORW
This system call checks whether at least one of the bits of waiptn that are set to 1 is set in the target eventflag.

- wfmode = (TWF_ORW | TWF_CLR)
This system call checks whether at least one of the bits of waiptn that are set to 1 is set in the target eventflag.
If the wait condition is satisfied, the bit pattern of the target eventflag is cleared (B'0000 is set).

Remark1 The RX850 Pro specifies the number of tasks that can be queued into the wait queue of an eventflag at
creation (at configuration or upon the issuance of cre_flg).

TA_WSGL attribute: Only one task can be queued.
TA_WMUL attribute: 2 or more tasks can be queued.

I/O Parameter Description

O UINT *p_flgptn; Address of area used to store bit pattern when condition is satisfied

I ID flgid; Eventflag ID number

I UINT waiptn; Request bit pattern (32-bit width)

I UINT wfmode;

Wait condition or condition satisfaction

TWF_ANDW (0): AND wait
TWF_ORW (2): OR wait
TWF_CLR (1): Bit pattern is cleared

CHAPTER 12 SYSTEM CALLS

142 User’s Manual U19429EJ1V0UM

For this reason, if this system call is issued for the eventflag having the TA_WSGL attribute for which waiting
tasks are already queued, this system call returns E_OBJ as the return value without performing bit pattern
checking.

Remark2 If the eventflag wait state is forcibly released by issuing del_flg or rel_wai, the contents of the area specified
by p_flgptn will be undefined.

[Return value]

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33

Invalid parameter specification.

- The address of the area used to store a bit pattern when a
condition is satisfied is invalid (p_flgptn = 0).

- Invalid specification of request bit pattern (waiptn = 0).

- Invalid specification of wait condition or condition satisfaction
parameter wfmode.

E_ID -35 Invalid ID number specification (maximum number of eventflags
created < flgid).

*E_NOEXS -52 The target eventflag does not exist.

*E_OBJ -63 This system call was issued for the eventflag having the TA_WSGL
attribute for which waiting tasks were already queued.

E_OACV -66 An unauthorized ID number (flgid < 0) was specified.

E_CTX -69

Context error.

- This system call was issued from a non-task.

- This system call was issued from the dispatch disabled state.

*E_DLT -81 The target eventflag was deleted by del_flg.

*E_RLWAI -86 The eventflag wait state was forcibly released by rel_wai.

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 143

poll eventflag (-106)
pol_flg

Task/Non-task

[Overview]
Checks a bit pattern (polling).

[C format]
#include <stdrx85p.h>
ER ercd = pol_flg (UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode);

[Parameter(s)]

[Explanation]
This system call checks whether a bit pattern satisfying both the request bit pattern specified by waiptn and the wait

condition specified by wfmode is set in the eventflag specified by flgid.
If a bit pattern satisfying the wait condition is set in the target eventflag, this system call stores the bit pattern of the

eventflag into the area specified by p_flgptn.
When this system call is issued, if the bit pattern of the target eventflag does not satisfy the wait condition, this system

call returns E_TMOUT as the return value.
The wfmode specification format is shown below.

- wfmode = TWF_ANDW
This system call checks whether all the bits of waiptn that are set to 1 are set in the target eventflag.

- wfmode = (TWF_ANDW | TWF_CLR)
This system call checks whether all the bits of waiptn that are set to 1 are set in the target eventflag.
If the wait condition is satisfied, the bit pattern for the target eventflag is cleared (B'0000 is set).

- wfmode = TWF_ORW
This system call checks whether at least one of the bits of waiptn that are set to 1 is set in the target eventflag.

- wfmode = (TWF_ORW | TWF_CLR)
This system call checks whether at least one of the bits of waiptn that are set to 1 is set in the target eventflag.
If the wait condition is satisfied, the bit pattern of the target eventflag is cleared (B'0000 is set).

Remark The RX850 Pro specifies the number of tasks that can be queued into the wait queue of an eventflag at
creation (at configuration or upon the issuance of cre_flg).

TA_WSGL attribute: Only one task can be queued.
TA_WMUL attribute: 2 or more tasks can be queued.

For this reason, if this system call is issued for an eventflag having the TA_WSGL attribute for which waiting
tasks are already queued, this system call returns E_OBJ as the return value without performing bit pattern
checking.

I/O Parameter Description

O UINT *p_flgptn; Address of area used to store bit pattern when condition is satisfied

I ID flgid; Eventflag ID number

I UINT waiptn; Request bit pattern (32-bit width)

I UINT wfmode;

Wait condition or condition satisfaction

TWF_ANDW (0): AND wait
TWF_ORW (2): OR wait
TWF_CLR (1): Bit pattern is cleared

CHAPTER 12 SYSTEM CALLS

144 User’s Manual U19429EJ1V0UM

[Return value]

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33

Invalid parameter specification.

- The address of the area used to store a bit pattern when a
condition is satisfied is invalid (p_flgptn = 0).

- Invalid specification of request bit pattern (waiptn = 0).

- Invalid specification of wait condition or condition satisfaction
parameter wfmode.

E_ID -35 Invalid ID number specification (maximum number of eventflags
created < flgid).

*E_NOEXS -52 The target eventflag does not exist.

*E_OBJ -63 This system call was issued for the eventflag of TA_WSGL attribute
for which waiting tasks are already queued.

E_OACV -66 An unauthorized ID number (flgid < 0) was specified.

*E_TMOUT -85 The bit pattern of the target eventflag does not satisfy the wait
condition.

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 145

wait eventflag with timeout (-170)
twai_flg

Task

[Overview]
Checks a bit pattern (with timeout).

[C format]
#include <stdrx85p.h>
ER ercd = twai_flg (UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode, TMO
tmout);

[Parameter(s)]

[Explanation]
This system call checks whether a bit pattern satisfying both the request bit pattern specified by waiptn and the wait

condition specified by wfmode is set in the eventflag specified by flgid.
If a bit pattern satisfying the wait condition is set in the target eventflag, this system call stores the bit pattern of the

eventflag in the area specified by p_flgptn.
Upon the issuance of this system call, if the bit pattern of the target eventflag does not satisfy the wait condition, this

system call queues the task at the end of the wait queue for the target eventflag, then changes it from the run state to the
wait state (eventflag wait state).

The eventflag wait state is released upon the elapse of the wait time specified by tmout, when a bit pattern satisfying the
wait condition is set by set_flg, or when del_flg or rel_wai is issued, at which time the task returns to the ready state.

The wfmode specification format is shown below.

- wfmode = TWF_ANDW
This system call checks whether all the bits of waiptn that are set to 1 are set in the target eventflag.

- wfmode = (TWF_ANDW | TWF_CLR)
This system call checks whether all the bits of waiptn that are set to 1 are set in the target eventflag.
If the wait condition is satisfied, the bit pattern for the target eventflag is cleared (B'0000 is set).

- wfmode = TWF_ORW
This system call checks whether at least one of the bits of waiptn that are set to 1 is set in the target eventflag.

- wfmode = (TWF_ORW | TWF_CLR)
This system call checks whether at least one of the bits of waiptn that are set to 1 is set in the target eventflag.
If the wait condition is satisfied, the bit pattern of the target eventflag is cleared (B'0000 is set).

I/O Parameter Description

O UINT *p_flgptn; Address of area used to store bit pattern when condition is satisfied

I ID flgid; Eventflag ID number

I UINT waiptn; Request bit pattern (32-bit width)

I UINT wfmode;

Wait condition or condition satisfaction

TWF_ANDW (0): AND wait
TWF_ORW (2): OR wait
TWF_CLR (1): Bit pattern is cleared

I TMO tmout;

Wait time (unit: ms)

TMO_POL (0): Quick return
TMO_FEVR (-1): Permanent wait
Value: Wait time

CHAPTER 12 SYSTEM CALLS

146 User’s Manual U19429EJ1V0UM

Remark1 The RX850 Pro specifies the number of tasks that can be queued into the wait queue of the eventflag at
creation (at configuration or upon the issuance of cre_flg).

TA_WSGL attribute: Only one task can be queued.
TA_WMUL attribute: 2 or more tasks can be queued.

For this reason, if this system call is issued for an eventflag having the TA_WSGL attribute for which waiting
tasks are already queued, this system call returns E_OBJ as the return value without performing bit pattern
checking.

Remark2 If the eventflag wait state is forcibly released by del_flg or rel_wai, the contents of the area specified by
p_flgptn will be undefined.

[Return value]

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33

Invalid parameter specification.

- The address of the area used to store the bit pattern when the
condition is satisfied is invalid (p_flgptn = 0).

- The specification of the request bit pattern is invalid (waiptn = 0).

- The specification of the wait condition or condition satisfaction
parameter wfmode is invalid.

- Invalid wait time specification (tmout < TMO_FEVR).

E_ID -35 Invalid ID number specification (maximum number of eventflags
created < flgid).

*E_NOEXS -52 The target eventflag does not exist.

*E_OBJ -63 This system call was issued for the eventflag having the TA_WSGL
attribute in which waiting tasks were already queued.

E_OACV -66 An unauthorized ID number (flgid < 0) was specified.

E_CTX -69

Context error.

- This system call was issued from a non-task.

- This system call was issued from the dispatch disabled state.

*E_DLT -81 The specified eventflag was deleted by del_flg.

*E_TMOUT -85 Wait time elapsed.

*E_RLWAI -86 The eventflag wait state was forcibly released by rel_wai.

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 147

refer eventflag status (-44)
ref_flg

Task/Non-task

[Overview]
Acquires eventflag information.

[C format]
#include <stdrx85p.h>
ER ercd = ref_flg (T_RFLG *pk_rflg, ID flgid);

[Parameter(s)]

[Structure of eventflag information T_RFLG]

[Explanation]
This system call stores the eventflag information (extended information, existence of waiting task, etc.) for the eventflag

specified by flgid in the packet specified by pk_rflg.
Eventflag information is described in detail below.

exinf ... Extended information

wtsk ... Existence of waiting task
FALSE (0): There is no waiting task.
Value: ID number of first task in wait queue

flgptn ... Current bit pattern

keyid ... Key ID number
FALSE (0): No key ID number specified at generation
Value: Key ID number[Return value]

[Return value]

I/O Parameter Description

O T_RFLG *pk_rflg; Start address of packet used to store eventflag information

I ID flgid; Eventflag ID number

typedef struct t_rflg {
 VP exinf; /*Extended information*/
 BOOL_ID wtsk; /*Existence of waiting task*/
 UINT flgptn; /*Current bit pattern*/
 ID keyid; /*Key ID number*/
} T_RFLG;

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33 The start address of the packet used to store eventflag information is
invalid (pk_rflg = 0).

E_ID -35 Invalid ID number specification (maximum number of eventflags
created < flgid).

CHAPTER 12 SYSTEM CALLS

148 User’s Manual U19429EJ1V0UM

*E_NOEXS -52 The target eventflag does not exist.

E_OACV -66 An unauthorized ID number (flgid < 0) was specified.

Macro Value Description

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 149

get eventflag identifier (-247)
vget_fid

Task/Non-task

[Overview]
Acquires the eventflag ID number.

[C format]
#include <stdrx85p.h>
ER ercd = vget_fid (ID *p_flgid, ID keyid);

[Parameter(s)]

[Explanation]
This system call stores the eventflag ID number specified by keyid in the area specified by p_flgid.

[Return value]

I/O Parameter Description

O ID *p_flgid; Address of area used to store ID number

I ID keyid; Eventflag key ID number

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33

Invalid parameter specification.

- The address of the area used to store the ID number is invalid
(p_flgid = 0).

- Invalid key ID number specification (keyid = 0).

*E_NOEXS -52 The target eventflag does not exist.

CHAPTER 12 SYSTEM CALLS

150 User’s Manual U19429EJ1V0UM

create mailbox (-57)
cre_mbx

Task

[Overview]
Creates a mailbox.

[C format]
- When an ID number is specified
#include <stdrx85p.h>
ER ercd = cre_mbx (ID mbxid, T_CMBX *pk_cmbx);

- When an ID number is not specified
#include <stdrx85p.h>
ER ercd = cre_mbx (ID_AUTO, T_CMBX *pk_cmbx, ID *p_mbxid);

[Parameter(s)]

[Structure of mailbox creation information T_CMBX]

[Explanation]
The RX850 Pro provides 2 types of interfaces for mailbox creation: one in which an ID number must be specified for

mailbox creation, and one in which an ID number is not specified.

- When an ID number is specified
A mailbox having the ID number specified by mbxid is created based on the information specified by pk_cmbx.

- When an ID number is not specified
A mailbox is created based on the information specified by pk_cmbx.
An ID number is allocated by the RX850 Pro. The allocated ID number is stored in the area specified by p_mbxid.

Mailbox creation information is described in detail below.

exinf ... Extended information
exinf is an area used for storing user-specific information on the target mailbox. The user can use this area
as required.
Information set in exinf can be dynamically acquired by issuing ref_mbx from a processing program (task/
non-task).

I/O Parameter Description

I ID mbxid; Mailbox ID number

I T_CMBX *pk_cmbx; Start address of packet used to store mailbox creation information

O ID *p_mbxid; Address of area used to store ID number

typedef struct t_cmbx {
 VP exinf; /*Extended information*/
 ATR mbxatr; /*Mailbox attribute*/
 ID keyid; /*Mailbox key ID number*/
} T_CMBX;

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 151

mbxatr ... Mailbox attribute
Bit 0 ... Method of queuing into a task wait queue

TA_TPRI (0): Priority order
TA_TFIFO (1): FIFO order

Bit 1 ... Method of queuing into a message wait queue
TA_MPRI (0): Priority order
TA_MFIFO (1): FIFO order

Bit 8 ... Existence of key ID number specification
TA_KEYID (1): Key ID number specified

keyid ... Mailbox key ID number

Remark If the value of bit 8 is not TA_KEYID in mbxatr, the contents of keyid are meaningless.

[Return value]

Macro Value Description

*E_OK 0 Normal termination.

*E_NOMEM -10 The mailbox management block area cannot be secured.

*E_NOSPT -17 This system call is not defined as CF.

E_RSATR -24 Invalid specification of attribute mbxatr.

E_PAR -33

Invalid parameter specification.

- The start address of the packet storing the mailbox creation
information is invalid (pk_cmbx = 0).

- The specification of the key ID number is invalid (keyid = 0) (when
TA_KEYID specified).

- The address of the area used to store the ID number is invalid
(p_mbxid = 0) (When a mailbox is created without an ID number
specified)..

E_ID -35 IInvalid ID number specification (maximum number of mailboxes
created < mbxid).

*E_OBJ -63 A mailbox having the specified ID number has already been created.

E_OACV -66 An unauthorized ID number (mbxid < 0) was specified.

E_CTX -69 This system call was issued from a non-task.

Method of queuing into a task wait queue
Method of queuing into a message wait queue

015 8

Existence of key ID number specification

1

CHAPTER 12 SYSTEM CALLS

152 User’s Manual U19429EJ1V0UM

delete mailbox (-58)
del_mbx

Task

[Overview]
Deletes a mailbox

[C format]
#include <stdrx85p.h>
ER ercd = del_mbx (ID mbxid);

[Parameter(s)]

[Explanation]
This system call deletes the mailbox specified by mbxid.
The target mailbox is released from the control of the RX850 Pro.
The task released from the wait state (message wait state) by this system call has E_DLT returned as the return value of

the system call (rcv_msg or trcv_msg) that instigated the transition to the wait state.

Remark When this system call is issued, any message using a memory block acquired from a memory pool is
queued into the message wait queue of the target mailbox, and the message (memory block) is then
returned to the memory pool.
For this reason, if this system call uses an area other than memory blocks acquired from the memory pool,
operation is not guaranteed. This system call should therefore not be issued in the above case.

[Return value]

I/O Parameter Description

I ID mbxid; Mailbox ID number

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_ID -35 Invalid ID number specification (maximum number of mailboxes
created < mbxid).

*E_NOEXS -52 The target mailbox does not exist.

E_OACV -66 An unauthorized ID number (mbxid < 0) was specified.

E_CTX -69 This system call was issued from a non-task.

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 153

send message (-63)
snd_msg

Task/Non-task

[Overview]
Transmits a message.

[C format]
#include <stdrx85p.h>
ER ercd = snd_msg (ID mbxid, T_MSG *pk_msg);

[Parameter(s)]

[Structure of message T_MSG]

[Explanation]
This system call transmits the message specified in pk_msg to the mailbox specified in mbxid (queues the message into

a message wait queue).
When this system call is issued, if a task is queued into the task wait queue of the target mailbox, this system call

passes the message to the task (first task in the task wait queue) without performing message queuing.
Consequently, the relevant task is removed from the task wait queue, and its state changes from the wait state

(message wait state) to the ready state, or from the wait-suspend state to the suspend state.

Remark1 When a message queues in the message wait queue of the target mailbox, it is executed in the order (FIFO
order or priority order) specified when that mailbox was generated (at configuration or when cre_mbx was
issued).

Remark2 The RX850 Pro uses the first 4 bytes (message management area msgrfu) of a message as a link area for
enabling queuing into a message wait queue. Accordingly, transmitting a message to the target mailbox
requires that 0x0 be set in msgrfu before issuing snd_msg.
If a value other than 0x0 is set in msgrfu when snd_msg is issued, the RX850 Pro recognizes that the
relevant message is already queued into a message wait queue, and this system call returns E_OBJ as the
return value without transmitting the message.

[Return value]

I/O Parameter Description

I ID mbxid; Mailbox ID number

I T_MSG *pk_msg; Start address of packet used to store a message

typedef struct t_msg {
 VW msgrfu; /*Message management area*/
 PRI msgpri; /*Message priority*/
 VB msgcont[]; /*Message body*/
} T_MSG;

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33 The start address of the packet used to store the message is invalid
(pk_msg = 0).

CHAPTER 12 SYSTEM CALLS

154 User’s Manual U19429EJ1V0UM

E_ID -35 Invalid ID number specification (maximum number of mailboxes
created < mbxid).

*E_NOEXS -52 The target mailbox does not exist.

E_OBJ -63 The area specified for a message is already being used for messages.

E_OACV -66 An unauthorized ID number (mbxid < 0) was specified.

Macro Value Description

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 155

receive message from mailbox (-61)
rcv_msg

Task

[Overview]
Receives a message.

[C format]
#include <stdrx85p.h>
ER ercd = rcv_msg (T_MSG **ppk_msg, ID mbxid);

[Parameter(s)]

[Explanation]
This system call receives a message from the mailbox specified by mbxid and stores its start address in the area

specified by ppk_msg.
When this system call is issued, if a message cannot be received from the target mailbox (when no message exists in a

message wait queue), this system call queues the task into the task wait queue of the target mailbox, then changes its
state from the run state to the wait state (message wait state).

The message wait state is released when snd_msg, del_mbx, or rel_wai is issued, and the task returns to the ready
state.

Remark When a task queues in the task wait queue of the target mailbox, it is executed in the order (FIFO order or
priority order) specified when that mailbox was created (at configuration or when cre_mbx was issued).

[Return value]

I/O Parameter Description

O T_MSG **ppk_msg; Address of area used to store start address of message

I ID mbxid; Mailbox ID number

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33 The address of the area used to store the start address of a message
is invalid (ppk_msg = 0).

E_ID -35 Invalid ID number specification (maximum number of mailboxes
created < mbxid).

*E_NOEXS -52 The target mailbox does not exist.

E_OACV -66 An unauthorized ID number (mbxid < 0) was specified.

E_CTX -69

Context error.

- This system call was issued from a non-task.

- This system call was issued from the dispatch disabled state.

*E_DLT -81 The target mailbox was deleted by del_mbx.

*E_RLWAI -86 The message wait state was forcibly released by rel_wai.

CHAPTER 12 SYSTEM CALLS

156 User’s Manual U19429EJ1V0UM

poll and receive message from mailbox (-108)
prcv_msg

Task/Non-task

[Overview]
Receives a message (polling).

[C format]
#include <stdrx85p.h>
ER ercd = prcv_msg (T_MSG **ppk_msg, ID mbxid);

[Parameter(s)]

[Explanation]
This system call receives a message from the mailbox specified by mbxid and stores its start address in the area

specified by ppk_msg.
When this system call is issued, if a message cannot be received from the target mailbox (when no message exists in

the message wait queue), E_TMOUT is returned as the return value.

[Return value]

I/O Parameter Description

O T_MSG **ppk_msg; Address of area used to store the start address of a message

I ID mbxid; Mailbox ID number

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33 The address of the area used to store the start address of the
message is invalid (ppk_msg = 0).

E_ID -35 Invalid ID number specification (maximum number of mailboxes
created < mbxid).

*E_NOEXS -52 A target mailbox does not exist.

E_OACV -66 An unauthorized ID number (mbxid < 0) was specified.

*E_TMOUT -85 No message exists in the target mailbox.

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 157

receive message from mailbox with timeout (-172)
trcv_msg

Task

[Overview]
Receives a message (with timeout).

[C format]
#include <stdrx85p.h>
ER ercd = trcv_msg (T_MSG **ppk_msg, ID mbxid, TMO tmout);

[Parameter(s)]

[Explanation]
This system call receives a message from the mailbox specified by mbxid and stores its start address in the area

specified by ppk_msg.
When this system call is issued, if a message cannot be received from the target mailbox (when no message exists in

the message wait queue), this system call queues the task into the task wait queue of the target mailbox, then changes its
state from the run state to the wait state (message wait state).

The message wait state is released when the wait time specified by tmout elapses or when snd_msg, del_mbx, or
rel_wai is issued, and the task returns to the ready state.

Remark When a task queues in the task wait queue of the target mailbox, it is executed in the order (FIFO order or
priority order) specified when that mailbox was created (at configuration or when cre_mbx was issued).

[Return value]

I/O Parameter Description

O T_MSG **ppk_msg; Address of area used to store start address of message

I ID mbxid; Mailbox ID number

I TMO tmout;

Wait time (unit: ms)

TMO_POL (0): Quick return
TMO_FEVR (-1): Permanent wait
Value: Wait time

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33 The address of the area used to store the start address of a message
is invalid (ppk_msg = 0).

E_ID -35 Invalid ID number specification (maximum number of mailboxes
created < mbxid).

*E_NOEXS -52 The target mailbox does not exist.

E_OACV -66 An unauthorized ID number (mbxid < 0) was specified.

E_CTX -69

Context error.

- This system call was issued from a non-task.

- This system call was issued from the dispatch disabled state.

CHAPTER 12 SYSTEM CALLS

158 User’s Manual U19429EJ1V0UM

*E_DLT -81 The specified mailbox was deleted by del_mbx.

*E_TMOUT -85 The wait time has elapsed.

*E_RLWAI -86 The message wait state was forcibly released by rel_wai.

Macro Value Description

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 159

refer mailbox status (-60)
ref_mbx

Task/Non-task

[Overview]
Acquires mailbox information.

[C format]
#include <stdrx85p.h>
ER ercd = ref_mbx (T_RMBX *pk_rmbx, ID mbxid);

[Parameter(s)]

[Structure of mailbox information T_RMBX]

[Explanation]
This system call stores mailbox information (extended information, existence of waiting task, etc.) for the mailbox

specified by mbxid into the packet specified by pk_rmbx.
Mailbox information is described in detail below.

exinf ... Extended information

wtsk ... Existence of waiting task
FALSE (0): No waiting task
Value: ID number of the first task of wait queue

pk_msg ... Existence of waiting message
NADR (-1): No waiting message
Value: Address of the first message of wait queue

keyid ... Key ID number
FALSE (0): No key ID number specified at creation
Value: Key ID number

[Return value]

I/O Parameter Description

O T_RMBX *pk_rmbx; Start address of packet used to store mailbox information

I ID mbxid; Mailbox ID number

typedef struct t_rmbx {
 VP exinf; /*Extended information*/
 BOOL_ID wtsk; /*Existence of waiting task*/
 T_MSG *pk_msg; /*Existence of waiting message*/
 ID keyid; /*Key ID number*/
} T_RMBX;

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33 The start address of the packet used to store mailbox information is
invalid (pk_rmbx = 0).

CHAPTER 12 SYSTEM CALLS

160 User’s Manual U19429EJ1V0UM

E_ID -35 Invalid ID number specification (maximum number of mailboxes
created < mbxid).

*E_NOEXS -52 The target mailbox does not exist.

E_OACV -66 An unauthorized ID number (mbxid < 0) was specified.

Macro Value Description

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 161

get mailbox identifier (-245)
vget_mid

Task/Non-task

[Overview]
Acquires the mailbox ID number.

[C format]
#include <stdrx85p.h>
ER ercd = vget_mid (ID *p_mbxid, ID keyid);

[Parameter(s)]

[Explanation]
This system call stores the mailbox ID number specified by keyid in the area specified by p_mbxid.

[Return value]

I/O Parameter Description

O ID *p_mbxid; Address of area used to store ID number

I ID keyid; Mailbox key ID number

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33

Invalid parameter specification.

- The address of the area used to store the ID number is invalid
(p_mbxid = 0).

- Invalid key ID number specification (keyid = 0).

*E_NOEXS -52 The target mailbox does not exist.

CHAPTER 12 SYSTEM CALLS

162 User’s Manual U19429EJ1V0UM

12.8.4 Interrupt management system calls
This section explains the group of system calls that perform processing that depends on maskable interrupts (interrupt

management system calls).
Table 12-8 lists the interrupt management system calls.

Table 12-8 Interrupt Management System Calls

System Call Function

def_int Registers an indirectly activated interrupt handler and cancels its registration.

ena_int Enables the acknowledgement of maskable interrupts.

dis_int Disables the acknowledgement of maskable interrupts.

loc_cpu Disables the acknowledgement of maskable interrupts and dispatch processing.

unl_cpu Enables the acknowledgement of maskable interrupts and dispatch processing.

chg_icr Changes the interrupt control register.

ref_icr Acquires the interrupt control register.

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 163

define interrupt handler (-65)
def_int

Task/Non-task

[Overview]
Registers an indirectly activated interrupt handler and cancels its registration.

[C format]
#include <stdrx85p.h>
ER ercd = def_int (UINT eintno, T_DINT *pk_dint);

[Parameter(s)]

[Structure of indirectly activated interrupt handler registration information T_DINT]

[Explanation]
This system call uses the information specified by pk_dint to register the indirectly activated interrupt handler activated

upon the occurrence of the maskable interrupt with the interrupt source number specified by eintno.
Indirectly activated interrupt handler registration information is described in detail below.

intatr ... Attribute of indirectly activated interrupt handler
Bit 0 ... Language in which an indirectly activated interrupt handler is coded

TA_ASM (0): Assembly language
TA_HLNG (1): C language

Bit 10 ... Existence of a gp register-specific value specification
TA_DPID (1): gp register-specific value specified.

Bit 11 .. Existence of a tp register-specific value specification
TA_DPIC (1): tp register-specific value specified.

inthdr ... Activation address of indirectly activated interrupt handler

gp ... gp register-specific value for indirectly activated interrupt handler

tp ... tp register-specific value for indirectly activated interrupt handler

I/O Parameter Description

I UINT eintno; Interrupt source number of indirectly activated interrupt handler

I T_DINT *pk_dint;
Start address of packet storing indirectly activated interrupt handler
registration information

typedef struct t_dint {
 ATR intatr; /*Attribute of indirectly activated interrupt handler*/
 FP inthdr; /*Activation address of indirectly activated interrupt handler*/
 VP gp; /*gp register-specific value*/
 VP tp; /*tp register-specific value*/
} T_DINT;

Language in which an indirectly activated interrupt handler is coded
Existence of a gp register-specific value specification

015 10

Existence of a tp register-specific value specification

11

CHAPTER 12 SYSTEM CALLS

164 User’s Manual U19429EJ1V0UM

When this system call is issued, if an indirectly activated interrupt handler corresponding to the specified interrupt
source number has already been registered, this system call does not handle this as an error and newly registers the
specified indirectly activated interrupt handler.

When this system call is issued, if NADR (-1) is set in the area specified by pk_dint, the registration of the interrupt
handler specified by eintno is canceled.

Remark1 If the value of bit 10 is not 1 (TA_DPID), the contents of gp are meaningless.

Remark2 If the value of bit 11 is not 1 (TA_DPIC), the contents of tp are meaningless.

[Return value]

Macro Value Description

*E_OK 0 Normal termination.

*E_NOMEM -10 The interrupt handler management block area cannot be secured.

*E_NOSPT -17 This system call is not defined as CF.

E_RSATR -24 Invalid specification of attribute intatr.

E_PAR -33

Invalid parameter specification.

- Invalid interrupt source number specification (eintno < 0,
maximum interrupt source number < eintno).

- The start address of the packet storing indirectly activated
interrupt handler registration information is invalid (pk_dint = 0).

- Invalid specification of the activation address (inthdr = 0).

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 165

enable interrupt (-71)
ena_int

Task/Non-task

[Overview]
Enables acknowledgement of maskable interrupts.

[C format]
#include <stdrx85p.h>
ER ercd = ena_int (void);

[Parameter(s)]
None.

[Explanation]
This system call allows the resumption of acknowledgement of maskable interrupts that were disabled by issuing

dis_int.
If a maskable interrupt occurs after dis_int is issued before this system call is issued, the RX850 Pro delays switching to

interrupt processing (a directly activated interrupt handler or an indirectly activated interrupt handler) until this system call
is issued.

Remark This system call does not queue resume requests. Therefore, if this system call has been issued already and
acknowledgement of maskable interrupts has been enabled, no processing is executed and it is not treated
as an error.

[Return value]

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

CHAPTER 12 SYSTEM CALLS

166 User’s Manual U19429EJ1V0UM

disable interrupt (-72)
dis_int

Task/Non-task

[Overview]
Disables acknowledgement of maskable interrupts.

[C format]
#include <stdrx85p.h>
ER ercd = dis_int (void);

[Parameter(s)]
None.

[Explanation]
This system call disables the acknowledgement of maskable interrupts.
This disables the acknowledgement of maskable interrupts before ena_int is issued.
If a maskable interrupt occurs after this system call is issued before ena_int is issued, the RX850 Pro delays switching

to interrupt processing (a directly activated interrupt handler or an indirectly activated interrupt handler) until ena_int is
issued.

Remark This system call does not queue disable requests. Therefore, if this system call has been issued already and
acknowledgement of maskable interrupts has been disabled, no processing is executed and it is not treated
as an error.

[Return value]

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 167

lock CPU (-8)
loc_cpu

Task

[Overview]
Disables the acknowledgement of maskable interrupts and dispatch processing.

[C format]
#include <stdrx85p.h>
ER ercd = loc_cpu (void);

[Parameter(s)]
None.

[Explanation]
This system call disables the acknowledgement of maskable interrupts and dispatch processing (task scheduling).
Therefore, for the period of time from the issuance of this system call to the issuance of unl_cpu, there is no transfer of

control to another handler or task.
If a maskable interrupt occurs after this system call is issued but before unl_cpu is issued, the RX850 Pro delays

processing for the interrupt (interrupt handler) until unl_cpu is issued. If a system call (chg_pri, sig_sem, etc.) requiring
task scheduling is issued, the RX850 Pro merely queues the tasks into a wait queue and delays the actual scheduling until
unl_cpu is issued, at which point all the tasks are processed in batch.

Remark This system call does not queue disable requests. Therefore, if this system call has been issued already and
acknowledgement of maskable interrupts and dispatch processing has been disabled, no processing is
executed and it is not treated as an error.

[Return value]

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_CTX -69 This system call was issued from a non-task.

CHAPTER 12 SYSTEM CALLS

168 User’s Manual U19429EJ1V0UM

unlock CPU (-7)
unl_cpu

Task

[Overview]
Enables the acknowledgement of maskable interrupts and dispatch processing.

[C format]
#include <stdrx85p.h>
ER ercd = unl_cpu (void);

[Parameter(s)]
None.

[Explanation]
This system call allows the resumption of acknowledgement of maskable interrupts and dispatch processing (task

scheduling) disabled by issuing loc_cpu.
If a maskable interrupt occurs after loc_cpu is issued but before this system call is issued, the RX850 Pro delays

processing for the interrupt (interrupt handler) until this system call is issued. If a system call (chg_pri, sig_sem, etc.)
requiring task scheduling is issued, the RX850 Pro merely queues the tasks into a wait queue and delays actual
scheduling until this system call is issued, at which point all the tasks are processed in batch.

Remark1 Dispatch processing that was disabled by the issuance of dis_dsp is reenabled by this system call.

Remark2 This system call does not queue resume requests. Therefore, if this system call has been issued already and
acknowledgement of maskable interrupts and dispatch processing has resumed, no processing is executed
and it is not treated as an error.

[Return value]

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_CTX -69 This system call was issued from a non-task.

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 169

change interrupt control register (-67)
chg_icr

Task/Non-task

[Overview]
Changes the contents of the interrupt control register.

[C format]
#include <stdrx85p.h>
ER ercd = chg_icr (UINT eintno, UB icrcmd);

[Parameter(s)]

[Explanation]
This system call changes the contents of the interrupt control register specified by eintno to the value specified by

icrcmd.
The icrcmd specification formats are as follows:

- icrcmd = ICR_CLRINT
Changes the interrupt request flag of the interrupt control register to 0.

- icrcmd = ICR_CLRMSK
Changes the interrupt mask flag of the interrupt control register to 0.

- icrcmd = ICR_SETMSK
Changes the interrupt mask flag of the interrupt control register to 1.

- icrcmd = (ICR_CHGLVL | value)
Changes the interrupt priority order of the interrupt control register to the value specified by "Value".
The value "0" corresponds to level 0 and value "7" to level 7.

Remark1 Specify the value calculated by [(the exceptional code of the specified interrupt source number - 0x80) /
0x10] for the interrupt source number eintno.

Remark2 When the RX850 Pro is operated on the V850ES/V850E1/V850E2 core, even if this system call is issued,
the desired interrupt control register may not operate. In the RX850 Pro, the interrupt control register
address is calculated from the interrupt source number. However, in the V850ES/V850E1/V850E2 core, the
correct register address cannot be obtained since the alignment of the interrupt source numbers and
interrupt control registers differs from other V850 microcontrollers products. Therefore, use of this system

I/O Parameter Description

I UINT eintno; Interrupt source number

I UB icrcmd;

Specification of interrupt request flag

ICR_CLRINT (0x20): No interrupt request

Specification of interrupt mask flag

ICR_CLRMSK (0x10): Enables interrupt processing
ICR_SETMSK (0x40): Disables interrupt processing

Specification of changing interrupt priority order

ICR_CHGLVL (0x08): Changes interrupt priority order

Specification of interrupt priority order

Value (0 to 7): Interrupt priority order

CHAPTER 12 SYSTEM CALLS

170 User’s Manual U19429EJ1V0UM

call is restricted. For manipulating the interrupt control register via an application, directly manipulate the
register without using this system call.

[Return value]

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33

Invalid parameter specification.

- Invalid specification of interrupt source number (eintno < 0,
maximum interrupt source number < eintno).

- Invalid specification of interrupt request flag (eintno < 0, maximum
interrupt source number < eintno).

- (ICR_CLRMSK || ICR_SETMSK) is specified as an interrupt
request flag.

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 171

refer interrupt control register status (-68)
ref_icr

Task/Non-task

[Overview]
Acquires the contents of the interrupt control register.

[C format]
#include <stdrx85p.h>
ER ercd = ref_icr (UB *p_regptn, UINT eintno);

[Parameter(s)]

[Explanation]
This system call stores the contents of the interrupt control register specified by eintno in the area specified by p_regptn.
The following figure shows the contents of the acquired interrupt control register:

Remark1 Specify the value calculated by [(the exceptional code of the specified interrupt source number - 0x80) /
0x10] for the interrupt source number eintno.

Remark2 When the RX850 Pro is operated on the V850ES/V850E1/V850E2 core, even if this system call is issued,
the desired interrupt control register may not operate. In the RX850 Pro, the interrupt control register

I/O Parameter Description

O UB *p_regptn; Address of area used to store contents of interrupt control register

I UINT eintno;

Interrupt source number
Interrupt mask flag

0: Enables interrupt processing
1: Disables interrupt processing (pending)

Interrupt request flag

0: No interrupt request
1: Interrupt request exists

Interrupt priority order

Interrupt request flag

067

Interrupt mask flag

0 0 0

000: Specifies level 0 (highest)
001: Specifies level 1
010: Specifies level 2
011: Specifies level 3
100: Specifies level 4
101: Specifies level 5
110: Specifies level 6
111: Specifies level 7 (lowest)

0: Enables interrupt processing
1: Disables interrupt processing (pending)

0: No interrupt request
1: Interrupt request exists

CHAPTER 12 SYSTEM CALLS

172 User’s Manual U19429EJ1V0UM

address is calculated from the interrupt source number. However, in the V850ES/V850E1/V850E2 core, the
correct register address cannot be obtained since the alignment of the interrupt source numbers and
interrupt control registers differs from other V850 microcontrollers products. Therefore, use of this system
call is restricted. For manipulating the interrupt control register via an application, directly manipulate the
register without using this system call.

[Return value]

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33

Invalid parameter specification.

- The address of the area used to store the contents of interrupt
control register (p_regptn) is 0.

- Invalid specification of interrupt source number (eintno < 0,
maximum interrupt source number < eintno).

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 173

12.8.5 Memory pool management system calls
This section explains the group of system calls that allocate memory blocks (memory pool management system calls).
Table 12-9 lists the memory pool management system calls.

Table 12-9 Memory Pool Management System Calls

System Call Function

cre_mpl Creates a memory pool.

del_mpl Deletes a memory pool.

get_blk Acquires a memory block.

pget_blk Acquires a memory block (polling).

tget_blk Acquires a memory block (with timeout).

rel_blk Returns a memory block.

ref_mpl Acquires memory pool information.

vget_pid Acquires memory pool ID number.

CHAPTER 12 SYSTEM CALLS

174 User’s Manual U19429EJ1V0UM

create variable-size memory pool (-137)
cre_mpl

Task

[Overview]
Creates a memory pool.

[C format]
- When an ID number is specified
#include <stdrx85p.h>
ER ercd = cre_mpl (ID mplid, T_CMPL *pk_cmpl);

- When an ID number is not specified
#include <stdrx85p.h>
ER ercd = cre_mpl (ID_AUTO, T_CMPL *pk_cmpl, ID *p_mplid);

[Parameter(s)]

[Structure of memory pool creation information T_CMPL]

[Explanation]
The RX850 Pro provides 2 types of interfaces for memory pool creation: one in which an ID number must be specified

for memory pool creation, and one in which an ID number is not specified.

- When an ID number is specified
A memory pool having the ID number specified by mplid is created based on the information specified by pk_cmpl.

- When an ID number is not specified
A memory pool is created based on the information specified by pk_cmpl.
An ID number is allocated by the RX850 Pro and the allocated ID number is stored in the area specified by p_mplid.

Memory pool creation information is described in detail below.

exinf ... Extended information
exinf is an area used for storing user-specific information for the specified memory pool.
The user can use this area as required.
Information set in exinf can be dynamically acquired by issuing ref_mpl from a processing program (task/
non-task).

I/O Parameter Description

I ID mplid; Memory pool ID number

I T_CMPL *pk_cmpl; Start address of packet containing memory pool creation information

O ID *p_mplid; Address of area used to store ID number

typedef struct t_cmpl {
 VP exinf; /*Extended information*/
 ATR mplatr; /*Memory pool attribute*/
 INT mplsz; /*Memory pool size*/
 ID keyid; /*Memory pool key ID number*/
} T_CMPL;

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 175

mplatr ... Memory pool attribute
Bit 0 ... Method of queuing to a wait queue

TA_TPRI (0): Priority order
TA_TFIFO (1): FIFO order

Bit 8 ... Existence of key ID number specification
TA_KEYID (1): Key ID number specified

Bit 9 ... Memory area specification
TA_UPOL0 (0): Secures the memory pool area from user memory area
TA_UPOL1 (1): Secures the memory pool area from user memory area

mplsz ... Memory pool size (unit: byte)

keyid ... Memory pool key ID number

Remark If the value of bit 8 is not 1 (TA_KEYID) in mplatr, the contents of keyid are meaningless.

[Return value]

Macro Value Description

*E_OK 0 Normal termination.

*E_NOMEM -10 A memory pool management block or memory pool area cannot be
allocated.

*E_NOSPT -17 This system call is not defined as CF.

E_RSATR -24 Invalid specification of attribute mplatr.

E_PAR -33

Invalid parameter specification.

- The start address of the packet storing memory pool creation
information is invalid (pk_cmpl = 0).

- Invalid size specification (mplsz < 0).

- Invalid key ID number specification (keyid = 0) (at TA_KEYID
attribute specified).

- The address of the area used to store the ID number is invalid
(p_mplid = 0) (for creation without specifying the ID number).

E_ID -35 Invalid ID number specification (maximum number of memory pools
created < mplid).

*E_OBJ -63 A memory pool having the specified ID number has already been
created.

E_OACV -66 An unauthorized ID number (mplid < 0) was specified.

E_CTX -69 This system call was issued from a non-task.

Method of queuing to a wait queue
Existence of key ID number specification

015 8

Memory area specification

9

CHAPTER 12 SYSTEM CALLS

176 User’s Manual U19429EJ1V0UM

delete variable-size memory pool (-138)
del_mpl

Task

[Overview]
Deletes a memory pool.

[C format]
#include <stdrx85p.h>
ER ercd = del_mpl (ID mplid);

[Parameter(s)]

[Explanation]
This system call deletes the memory pool specified by mplid.
The target memory pool is released from the control of the RX850 Pro.
The task released from the wait state (memory block wait state) by this system call has E_DLT returned as the return

value of the system call (get_blk or tget_blk) that instigated the transition to the wait state.
If this system call is issued when the task acquires a memory block that the target memory pool manages, the memory

block is also released from the control of the RX850 Pro. Accordingly, the contents of the acquired memory block are
undefined.

[Return value]

I/O Parameter Description

I ID mplid; Memory pool ID number

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_ID -35 Invalid ID number specification (maximum number of memory pools
created < mplid).

*E_NOEXS -52 The target memory pool does not exist.

E_OACV -66 An unauthorized ID number (mplid < 0) was specified.

E_CTX -69 This system call was issued from a non-task.

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 177

get variable-size memory block (-141)
get_blk

Task

[Overview]
Acquires a memory block.

[C format]
#include <stdrx85p.h>
ER ercd = get_blk (VP *p_blk, ID mplid, INT blksz);

[Parameter(s)]

[Explanation]
This system call acquires a memory block of the size specified by blksz from the memory pool specified by mplid and

stores its start address in the area specified by p_blk.
If no memory block can be acquired from the target memory pool (when there is no free area of the requested size)

upon the issuance of this system call, this system call places the task in the wait queue of the target memory pool before
changing its state from the run state to the wait state (memory block wait state).

The memory block wait state is released when a memory block that satisfies the requested size is released by rel_blk or
upon the issuance of del_mpl or rel_wai, and the task returns to the ready state.

Remark1 he RX850 Pro does not clear the memory upon acquiring a memory block. Accordingly, the contents of the
acquired memory block are undefined.

Remark2 When a task queues in the wait queue of the target memory pool, it is executed in the order (FIFO order or
priority order) specified when that memory pool was generated (at configuration or when cre_mpl was
issued).

[Return value]

I/O Parameter Description

O VP *p_blk; Address of area used to store start address of memory block

I ID mplid; Memory pool ID number

I INT blksz; Memory block size (unit: bytes)

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33

Invalid parameter specification.

- The address of the area used to store the start address of the
memory block is invalid (p_blk = 0).

- Invalid specification of memory block size (blksz < 0).

E_ID -35 Invalid ID number specification (maximum number of memory pools
created < mplid).

*E_NOEXS -52 The target memory pool does not exist.

E_OACV -66 An unauthorized ID number (mplid < 0) was specified.

CHAPTER 12 SYSTEM CALLS

178 User’s Manual U19429EJ1V0UM

E_CTX -69

Context error.

- This system call was issued from a non-task.

- This system call was issued in the dispatch disabled state.

*E_DLT -81 The target memory pool was deleted by del_mpl.

*E_RLWAI -86 The memory block wait state was forcibly released by rel_wai.

Macro Value Description

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 179

poll and get variable-size memory block (-104)
pget_blk

Task/Non-task

[Overview]
Acquires a memory block (polling).

[C format]
#include <stdrx85p.h>
ER ercd = pget_blk (VP *p_blk, ID mplid, INT blksz);

[Parameter(s)]

[Explanation]
This system call acquires a memory block of the size specified by blksz from the memory pool specified by mplid and

stores its start address in the area specified by p_blk.
When this system call is issued, if no memory block can be acquired from the target memory pool (when there is no free

area of the requested size), this system call returns E_TMOUT as the return value.

Remark The RX850 Pro does not clear the memory upon acquiring a memory block. Accordingly, the contents of the
acquired memory block are undefined.

[Return value]

I/O Parameter Description

O VP *p_blk; Address of area used to store start address of memory block

I ID mplid; Memory pool ID number

I INT blksz; Memory block size (unit: bytes)

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33

Invalid parameter specification.

- The address of the area used to store the start address of a
memory block is invalid (p_blk = 0).

- Invalid specification of memory block size (blksz < 0).

E_ID -35 Invalid ID number specification (maximum number of memory pools
created < mplid).

*E_NOEXS -52 The target memory pool does not exist.

E_OACV -66 An unauthorized ID number (mplid < 0) was specified.

*E_TMOUT -85 There is no free space in the target memory pool.

CHAPTER 12 SYSTEM CALLS

180 User’s Manual U19429EJ1V0UM

get variable-size memory block with timeout (-168)
tget_blk

Task

[Overview]
Acquires a memory block (with timeout).

[C format]
#include <stdrx85p.h>
ER ercd = tget_blk (VP *p_blk, ID mplid, INT blksz, TMO tmout);

[Parameter(s)]

[Explanation]
This system call acquires a memory block of the size specified by blksz from the memory pool specified by mplid and

stores its start address in the area specified by p_blk.
If a memory block cannot be acquired from the target memory pool (when there is no free area of the requested size)

when this system call is issued, this system call places the task in the wait queue of the target memory pool before
changing it from the run state to the wait state (memory block wait state).

The memory block wait state is released when the wait time specified by tmout elapses, when a memory block that
satisfies the requested size is released by rel_blk, or when del_mpl or rel_wai is issued. The task then returns to the ready
state.

Remark1 The RX850 Pro does not clear the memory upon acquiring a memory block. Accordingly, the contents of the
acquired memory block are undefined.

Remark2 When a task queues in the wait queue of the target memory pool, it is executed in the order (FIFO order or
priority order) specified when that memory pool was generated (at configuration or when cre_mpl was
issued).

[Return value]

I/O Parameter Description

O VP *p_blk; Address of area used to store start address of memory block

I ID mplid; Memory pool ID number

I INT blksz; Memory block size (unit: bytes)

I TMO tmout;

Wait time (unit: ms)

TMO_POL (0): Quick return
TMO_FEVR (-1): Permanent wait
Value: Wait time

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33

Invalid parameter specification.

- The address of the area used to store the start address of the
memory block is invalid (p_blk = 0).

- Invalid specification of memory block size (blksz < 0).

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 181

E_ID -35 Invalid ID number specification (maximum number of memory pools
created < mplid).

*E_NOEXS -52 The target memory pool does not exist.

E_OACV -66 An unauthorized ID number (mplid < 0) was specified.

E_CTX -69

Context error.

- This system call was issued from a non-task.

- This system call was issued in the dispatch disabled state.

*E_DLT -81 The target memory pool was deleted by del_mpl.

*E_TMOUT -85 Timeout elapsed.

*E_RLWAI -86 The memory block wait state was forcibly released by rel_wai.

Macro Value Description

CHAPTER 12 SYSTEM CALLS

182 User’s Manual U19429EJ1V0UM

release variable-size memory block (-143)
rel_blk

Task/Non-task

[Overview]
Returns a memory block.

[C format]
#include <stdrx85p.h>
ER ercd = rel_blk (ID mplid, VP blk);

[Parameter(s)]

[Explanation]
This system call returns the memory block specified by blk to the memory pool specified by mplid.
If the size of the returned memory block satisfies the size requested by the (first) task queuing in the target memory

pool's wait queue when this system call is issued, the memory block is transferred to that task.
The relevant task is consequently removed from the wait queue, and changes from the wait state (memory block wait

state) to the ready state, or from the wait-suspend state to the suspend state.

Remark1 The contents of a returned memory block are not cleared by the RX850 Pro. Thus, the contents of a memory
block may be undefined when that memory block is returned.

Remark2 The RX850 Pro includes 2 different specifications for this system call.

(1) When a memory block is returned by this system call, if the first 4 bytes of the memory block are not
filled with zeros, the return value E_OBJ is used for termination instead of returning the memory
block.

(2) When this system call is issued, the memory block is returned even if the first 4 bytes of the memory
block are not filled with zeros (return value = E_OK).

The first specification applies when the memory block is used as a mailbox's message area, and this is the
specification that has been used for this system call as it has been implemented thus far in the RX850 Pro.
When the memory block is used as a mailbox's message area, the first 4 bytes serve as the link area for the
message's wait queue. In other words, if messages are queued in the mailbox, when this system call is
issued and the memory block must be returned, in which case it is the message area linked to the queue that
is returned. To prevent this, the specification requires the first 4 bytes that comprise the link area to be filled
with zeros, otherwise it will be recognized as the memory block used as the message area and the return
value E_OBJ will be used for termination instead of returning the memory block. Under this specification, the
first 4 bytes must be cleared to zero in order to use this system call to return the memory block.
These specifications of this system call are stored in separate libraries so that one or the other this system
call specification can be used. Link to the library of this system call specification to be used.

(1) Library containing this system call that requires zero-clearing of first 4 bytes of memory block
---> librxp.a

(2) Library containing this system call that does not require zero-clearing of first 4 bytes of memory block
---> librxpm.a

Remark3 Treat a memory pool that returns a memory block the same as a memory pool specified when issuing
get_blk, pget_blk, or tget_blk.

I/O Parameter Description

I ID mplid; Memory pool ID number

I VP blk; Start address of memory block

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 183

[Return value]

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

*E_PAR -33

Invalid parameter specification.

- Invalid specification of the start address of a memory block (blk =
0).

- The memory pool specified when acquired differs from that
specified upon the issuance of this system call.

E_ID -35 Invalid ID number specification (maximum number of memory pools
created < mplid).

*E_NOEXS -52 The target memory pool does not exist.

*E_OBJ -63

Invalid state of the specified memory block.

- A value other than 0x0 is placed in the first 4 bytes of the memory
block to be returned.

- This return value is returned when returning the memory block
used as a message area.

E_OACV -66 An unauthorized ID number (mplid < 0) was specified.

CHAPTER 12 SYSTEM CALLS

184 User’s Manual U19429EJ1V0UM

refer variable-size memory pool status (-140)
ref_mpl

Task/Non-task

[Overview]
Acquires memory pool information.

[C format]
#include <stdrx85p.h>
ER ercd = ref_mpl (T_RMPL *pk_rmpl, ID mplid);

[Parameter(s)]

[Structure of memory pool information T_RMPL]

[Explanation]
This system call stores the memory pool information (extended information, existence of waiting tasks, etc.) for the

memory pool specified by mplid in the packet specified by pk_rmpl.
Memory pool information is described in detail below.

exinf ... Extended information

wtsk ... Existence of waiting task
FALSE (0): No waiting task
Value: ID number of first task in the wait queue

frsz ... Total size of free area (unit: bytes)

maxsz ... Maximum memory block size that can be acquired (unit: bytes)

keyid ... Key ID number
FALSE (0): No specification for key ID number at generation
Value: Key ID number

[Return value]

I/O Parameter Description

O T_RMPL *pk_rmpl; Start address of packet used to store memory pool information

I ID mplid; Memory pool ID number

typedef struct t_rmpl {
 VP exinf; /*Extended information*/
 BOOL_ID wtsk; /*Existence of waiting task*/
 INT frsz; /*Total size of free area*/
 INT maxsz; /*Maximum memory block size that can be acquired*/
 ID keyid; /*Key ID number*/
} T_RMPL;

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33 The start address of the packet used to store memory pool information
is invalid (pk_rmpl = 0).

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 185

E_ID -35 Invalid ID number specification (maximum number of memory pools
created < mplid).

*E_NOEXS -52 The target memory pool does not exist.

E_OACV -66 An unauthorized ID number (mplid < 0) was specified.

Macro Value Description

CHAPTER 12 SYSTEM CALLS

186 User’s Manual U19429EJ1V0UM

get variable-size memory pool identifier (-242)
vget_pid

Task/Non-task

[Overview]
Acquires the memory pool ID number.

[C format]
#include <stdrx85p.h>
ER ercd = vget_pid (ID *p_mplid, ID keyid);

[Parameter(s)]

[Explanation]
This system call stores the memory pool ID number specified by keyid in the area specified by p_mplid.

[Return value]

I/O Parameter Description

O ID *p_mplid; Address of area used to store ID number

I ID keyid; Memory pool key ID number

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33

Invalid parameter specification.

- The address of the area used to store the ID number is invalid
(p_mplid = 0).

- Invalid key ID number specification (keyid = 0).

*E_NOEXS -52 The target memory pool does not exist.

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 187

12.8.6 Time management system calls
This section explains the group of system calls that perform processing dependent on time (time management system

calls).
Table 12-10 lists the time management system calls.

Table 12-10 Time Management System Calls

System Call Function

set_tim Sets the system clock.

get_tim Acquires the time from the system clock.

dly_tsk Changes the task to the timeout wait state.

def_cyc Registers a cyclic handler or cancels its registration.

act_cyc Controls the activity state of a cyclic handler.

ref_cyc Acquires cyclic handler information.

CHAPTER 12 SYSTEM CALLS

188 User’s Manual U19429EJ1V0UM

set time (-83)
set_tim

Task/Non-task

[Overview]
Sets the system clock.

[C format]
#include <stdrx85p.h>
ER ercd = set_tim (SYSTIME *pk_tim);

[Parameter(s)]

[Structure of system clock SYSTIME]

[Explanation]
This system call sets the system clock to the time specified by pk_tim.

[Return value]

I/O Parameter Description

I SYSTIME *pk_tim; Start address of packet storing time

typedef struct t_systime {
 UW ltime; /*Time (lower 32 bits)*/
 H utime; /*Time (higher 16 bits)*/
} SYSTIME;

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33 The start address of the packet storing time is invalid (pk_tim = 0).

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 189

get time (-84)
get_tim

Task/Non-task

[Overview]
Acquires the time from the system clock.

[C format]
#include <stdrx85p.h>
ER ercd = get_tim (SYSTIME *pk_tim);

[Parameter(s)]

[Structure of system clock SYSTIME]

[Explanation]
This system call sets the current system clock time in the packet specified by pk_tim.

[Return value]

I/O Parameter Description

O SYSTIME *pk_tim; Start address of packet storing time

typedef struct t_systime {
 UW ltime; /*Time (lower 32 bits)*/
 H utime; /*Time (higher 16 bits)*/
} SYSTIME;

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33 The start address of the packet storing time is invalid (pk_tim = 0).

CHAPTER 12 SYSTEM CALLS

190 User’s Manual U19429EJ1V0UM

delay task (-85)
dly_tsk

Task

[Overview]
Changes the task to the timeout wait state.

[C format]
#include <stdrx85p.h>
ER ercd = dly_tsk (DLYTIME dlytim);

[Parameter(s)]

[Explanation]
This system call changes the state of the task from the run state to the wait state (timeout wait state) for the delay time

specified by dlytim.
The timeout wait state is released upon the elapse of the delay specified by dlytim or when rel_wai is issued. The task

then returns to the ready state.

Remark The timeout wait state is released by neither wup_tsk.

[Return value]

I/O Parameter Description

I DLYTIME dlytim; Delay time (unit: ms)

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33 Invalid specification of delay time (dlytim < 0).

E_CTX -69

Context error.

- This system call was issued from a non-task.

- This system call was issued in the dispatch disabled state.

*E_RLWAI -86 The timeout wait state was forcibly released by rel_wai.

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 191

define cyclic handler (-90)
def_cyc

Task/Non-task

[Overview]
Registers a cyclic handler or cancels its registration.

[C format]
#include <stdrx85p.h>
ER ercd = def_cyc (HNO cycno, T_DCYC *pk_dcyc);

[Parameter(s)]

[Structure of cyclic handler registration information T_DCYC]

[Explanation]
This system call uses the information specified by pk_dcyc to register the cyclic handler having the specification number

specified by cycno.
Cyclic handler registration information is described in detail below.

exinf ... Extended information
exinf is an area used for storing user-specific information on the specified cyclic handler. The user can use
this area as required.
Information set in exinf can be dynamically acquired by issuing ref_cyc from a processing program (task/
non-task).

cycatr ... Attribute of cyclic handler
Bit 0 ... Language in which the cyclic handler is coded

TA_ASM (0): Assembly language
TA_HLNG (1): C language

Bit 10 ... Existence of gp register-specific value specification
TA_DPID (1): gp register-specific value specified.

Bit 11 ... Existence of tp register-specific value specification
TA_DPIC (1): tp register-specific value specified.

I/O Parameter Description

I HNNO cycno; Specification number of cyclic handler

I T_DCYC *pk_dcyc; Start address of packet storing cyclic handler registration information

typedef struct t_dcyc {
 VP exinf; /*Extended information*/
 ATR cycatr; /*Attribute of cyclic handler*/
 FP cychdr; /*Activation address of cyclic handler*/
 UINT cycact; /*Initial activity state of cyclic handler*/
 CYCTIME cyctim; /*Activation time interval of cyclic handler*/
 VP gp; /*gp register-specific value of cyclic handler*/
 VP tp; /*tp register-specific value of cyclic handler*/
} T_DCYC;

CHAPTER 12 SYSTEM CALLS

192 User’s Manual U19429EJ1V0UM

cychdr ... Activation address of cyclic handler

cycact ... Initial activity state of cyclic handler
TCY_OFF (0): The initial activity state is OFF
TCY_ON (1): The initial activity state is ON

cyctim ... Activation time interval of cyclic handler (unit: basic clock cycles)

gp ... gp register-specific value for cyclic handler

tp ... tp register-specific value for cyclic handler

When this system call is issued, if a cyclic handler corresponding to the target specification number is already
registered, this system call does not handle this as an error and newly registers the specified cyclic handler.

If this system call is issued with NADR (-1) set in the area specified by pk_dcyc, the registration of the cyclic handler
specified by cycno is canceled.

Remark1 If the value of bit 10 is not 1 (TA_DPID) in cycatr, the contents of gp are meaningless.

Remark2 If the value of bit 11 is not 1 (TA_DPIC) in cycatr, the contents of tp are meaningless.

[Return value]

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_RSATR -24 Invalid specification of attribute cycatr.

E_PAR -33

Invalid parameter specification.

- Invalid specification of specification number (cycno < 0, maximum
number of cyclic handlers that can be registered < cycno).

- The start address of the packet storing cyclic handler registration
information is invalid (pk_dcyc = 0).

- Invalid specification of activation address (cychdr = 0).

- Invalid specification of initial activity state cycact.

- Invalid specification of activation time interval (cyctim < 0).

Language in which the cyclic handler is coded
Existence of gp register-specific value specification

015 10

Existence of tp register-specific value specification

11

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 193

activate cyclic handler (-94)
act_cyc

Task/Non-task

[Overview]
Controls the activity state of a cyclic handler.

[C format]
#include <stdrx85p.h>
ER ercd = act_cyc (HNO cycno, UINT cycact);

[Parameter(s)]

[Explanation]
This system call changes the activity state of the cyclic handler specified by cycno to the state specified by cycact.
The specification format of cycact is described below.

- cycact = TCY_OFF
Changes the activity state of the target cyclic handler to the OFF state.
Even when the activation time is reached, the target cyclic handler is not activated.

Remark Even when the activity state of the cyclic handler is OFF, the RX850 Pro increments the cycle counter.

- cycact = TCY_ON
Changes the activity state of the target cyclic handler to the ON state.
When the activation time is reached, the target cyclic handler is activated.

- cycact = TCY_INI
Initializes the cycle counter of the target cyclic handler.

- cycact = (TCY_ON | TCY_INI)
Changes the activity state of the target cyclic handler to the ON state before initializing the cycle counter.
When the activation time is reached, the target cyclic handler is activated.

[Return value]

I/O Parameter Description

I HNO cycno; Specification number of cyclic handler

I UINT cycact;

Specification of activity state and cycle counter

TCY_OFF (0): Changes the activity state to the OFF state.
TCY_ON (1): Changes the activity state to the ON state.
TCY_INI (2): Initializes the cycle counter.

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

CHAPTER 12 SYSTEM CALLS

194 User’s Manual U19429EJ1V0UM

E_PAR -33

Invalid parameter specification.

- The specification number of the cyclic handler is invalid (cycno <
0, maximum number of cyclic handlers that can be registered <
cycno).

- Invalid specification of activity state or cycle counter cycact.

*E_NOEXS -52 The target cyclic handler is not registered.

Macro Value Description

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 195

refer cyclic handler status (-92)
ref_cyc

Task/Non-task

[Overview]
Acquires cyclic handler information.

[C format]
#include <stdrx85p.h>
ER ercd = ref_cyc (T_RCYC *pk_rcyc, HNO cycno);

[Parameter(s)]

[Structure of cyclic handler information T_RCYC]

[Explanation]
This system call stores the cyclic handler information (extended information, remaining time, etc.) of the cyclic handler

specified by cycno in the packet specified by pk_rcyc.
Cyclic handler information is described in detail below.

exinf ... Extended information

lfttim ... Time remaining until the cyclic handler is next activated (unit: basic clock cycles)

cycact ... Current activity state
TCY_OFF (0): Activity state is OFF.
TCY_ON (1): Activity state is ON.

[Return value]

I/O Parameter Description

O T_RCYC *pk_rcyc; Start address of packet used to store cyclic handler information

I HNO cycno; Specification number of cyclic handler

typedef struct t_rcyc {
 VP exinf; /*Extended information*/
 CYCTIME lfttim; /*Remaining time*/
 UINT cycact; /*Current activity state*/
} T_RCYC;

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33

Invalid parameter specification.

- The start address of the packet used to store cyclic handler
information is invalid (pk_rcyc = 0).

- The specification number of the cyclic handler is invalid (cycno <
0, maximum number of cyclic handlers that can be registered <
cycno).

*E_NOEXS -52 The target cyclic handler is not registered.

CHAPTER 12 SYSTEM CALLS

196 User’s Manual U19429EJ1V0UM

12.8.7 System management system calls
This section explains the group of system calls that perform processing dependent on the system (system management

system calls).
Table 12-11 lists the system management system calls.

Table 12-11 System Management System Calls

System Call Function

get_ver Acquires RX850 Pro version information.

ref_sys Acquires system information.

def_svc Registers an extended SVC handler or cancels its registration.

viss_svc Calls an extended SVC handler.

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 197

get version information (-16)
get_ver

Task/Non-task

[Overview]
Acquires RX850 Pro version information.

[C format]
#include <stdrx85p.h>
ER ercd = get_ver (T_VER *pk_ver);

[Parameter(s)]

[Structure of version information T_VER]

[Explanation]
This system call stores the RX850 Pro version information (OS maker, OS format, etc.) in the packet specified by

pk_ver.
Version information is described in detail below.

maker ... OS maker
0x0117: NEC Electronics Corporation

id ... OS format
0x0000: Not used

spver ... Specification version
0x5302: uITRON3.0 Ver.3.02

prver ... OS product version
0x0321: RX850 Pro Ver.3.21

prno[4] ... Product number/product management information
Undefined: Serial number of delivery product (each unit has a unique number)

cpu ... CPU information
0x0d33: V850 core
0x0d37: V850ES/V850E1/V850E2 core

var ... Variation descriptor
0xc000 uITRON level E, file not supported

I/O Parameter Description

O T_VER *pk_ver; Start address of packet used to store version information

typedef struct t_ver {
 UH maker; /*OS maker*/
 UH id; /*OS format*/
 UH spver; /*Specification version*/
 UH prver; /*OS version*/
 UH prno[4]; /*Product number, production management information*/
 UH cpu; /*CPU information*/
 UH var; /*Variation descriptor*/
} T_VER;

CHAPTER 12 SYSTEM CALLS

198 User’s Manual U19429EJ1V0UM

[Return value]

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_PAR -33 The start address of the packet used to store version information is
invalid (pk_ver = 0).

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 199

refer system status (-12)
ref_sys

Task/Non-task

[Overview]
Acquires system information.

[C format]
#include <stdrx85p.h>
ER ercd = ref_sys (T_RSYS *pk_rsys);

[Parameter(s)]

[Structure of system information T_RSYS]

[Explanation]
This system call stores the current value of dynamically-changing system information (system state) in the packet

specified by pk_rsys.
System information is described in detail below.

sysstat ... System state
TSS_TSK (0): Task processing is being performed. Dispatch processing is enabled.
TSS_DDSP (1): Task processing is being performed. Dispatch processing is disabled.
TSS_LOC (3): Task processing is being performed. The acknowledgement of maskable interrupts and

dispatch processing is disabled.
TSS_INDP (4): Processing of a non-task (interrupt handler, cyclic handler, etc.) is being performed.

[Return value]

I/O Parameter Description

O T_RSYS *pk_rsys; Start address of packet used to store system information

typedef struct t_rsys {
 INT sysstat; /*System state*/
} T_RSYS;

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

*E_PAR -33 The start address of the packet used to store system information is
invalid (pk_rsys = 0).

CHAPTER 12 SYSTEM CALLS

200 User’s Manual U19429EJ1V0UM

define supervisor call handler (-9)
def_svc

Task/Non-task

[Overview]
Registers an extended SVC handler or cancels its registration.

[C format]
#include <stdrx85p.h>
ER ercd = def_svc (FN s_fncd, T_DSVC *pk_dsvc);

[Parameter(s)]

[Structure of extended SVC handler registration information T_DSVC]

[Explanation]
This system call uses information specified by pk_dsvc to register the extended SVC handler having the extended

function code specified by s_fncd.
Extended SVC handler registration information is described in detail below.

svcatr ... Attribute of extended SVC handler
Bit 0 ... Language in which the extended SVC handler is coded

TA_ASM (0): Assembly language
TA_HLNG (1): C language

Bit 10 ... Existence of go register-specific value specification
TA_DPID (1): gp register-specific value specified.

Bit 11 ... Existence of tp register-specific value specification
TA_DPIC (1): tp register-specific value specified.

svchdr ... Activation address of extended SVC handler

gp ... gp register-specific value of extended SVC handler

tp ... tp register-specific value of extended SVC handler

I/O Parameter Description

I FN s_fncd; Extended function code of extended SVC handler

I T_DSVC *pk_dsvc; Start address of packet storing the extended SVC handler registration

typedef struct t_dsvc {
 ATR svcatr; /*Attribute of extended SVC handler*/
 FP svchdr; /*Activation address of extended SVC handler*/
 VP gp; /*gp register-specific value for extended SVC handler*/
 VP tp; /*tp register-specific value for extended SVC handler*/
} T_DSVC;

Language in which the extended SVC handler is coded
Existence of gp register-specific value specification

015 10

Existence of tp register-specific value specification

11

CHAPTER 12 SYSTEM CALLS

User’s Manual U19429EJ1V0UM 201

When this system call is issued, if an extended SVC handler corresponding to the target extended function code has
already been registered, this system call does not handle this as an error and newly registers the specified extended SVC
handler.

When this system call is issued, if NADR (-1) is set in the area specified by pk_dsvc, the registration of the extended
SVC handler specified by s_fncd is canceled.

Remark1 If the value of bit 10 is not 1 (TA_DPID) in svcatr, the contents of gp are meaningless.

Remark2 If the value of bit 11 is not 1 (TA_DPIC) in svcatr, the contents of tp are meaningless.

[Return value]

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF.

E_RSATR -24 Invalid specification of attribute svcatr.

E_PAR -33

Invalid parameter specification.

- Invalid specification of extended function code (s_fncd < 0,
maximum number of extended SVC handlers that can be
registered < s_fncd).

- The start address of the packet storing the extended SVC handler
registration information is invalid (pk_dsvc = 0).

- Invalid specification of activation address (svchdr = 0).

CHAPTER 12 SYSTEM CALLS

202 User’s Manual U19429EJ1V0UM

issued supervisor call handler (-250)
viss_svc

Task/Non-task

[Overview]
Calls an extended SVC handler.

[C format]
#include <stdrx85p.h>
ER ercd = viss_svc (FN s_fncd, VW prm1, VW prm2, VW prm3);

[Parameter(s)]

[Explanation]
This system call calls the extended SVC handler having the extended function code specified by s_fncd.

Remark When this system call is used to call an extended SVC handler, the interface library for the extended SVC
handlers need not be coded.

[Return value]

I/O Parameter Description

I FN s_fncd; Extended function code of extended SVC handler

I VW prm1; Parameter 1 passed to extended SVC handler

I VW prm2; Parameter 2 passed to extended SVC handler

I VW prm3; Parameter 3 passed to extended SVC handler

Macro Value Description

*E_OK 0 Normal termination.

*E_NOSPT -17 This system call is not defined as CF, or this system call calls an
extended SVC handler that is not registered.

E_PAR -33 Invalid specification of extended function code (s_fncd < 0, maximum
number of extended SVC handlers that can be registered < s_fncd).

Others - Return value from extended SVC handler.

CHAPTER 13 SYSTEM CONFIGURATION FILE

User’s Manual U19429EJ1V0UM 203

CHAPTER 13 SYSTEM CONFIGURATION FILE

This chapter explains the system configuration file and how to describe it.

13.1 Outline
To organize a system using the RX850 Pro, various data (such as system information and resource information) and

information containing the types of system calls to be used is necessary. The former is called the "system information table
file" and the latter is called the "system call table file".

The system information table file and system call table file are described in assembly language and include data
enumerated in a specified format. These tables can also be described using various editors, but it is time-consuming to
describe them because changing and adding information is very difficult.

Therefore, an application called a configurator (CF850 Pro) is supplied.
This application converts a file in an original format, in which the system and resources of the RX850 Pro and

information on the system calls to be used are described, into the system information table file and system call table file.
Therefore, the user can obtain the system information table file and system call table file by using the configurator and

by creating a system configuration file.
The configurator outputs 3 files from the system configuration file: "system information table file", "system call table file",

and "system information header file". The "system information header file" is a file in which symbol names specified as
resource IDs, such as created tasks and semaphores, are made to correspond to the actual ID numbers by using the
#define instruction.

For how to start the configurator, see "CHAPTER 14 CONFIGURATOR (CF850 Pro)".
How to describe the system configuration file is explained next.

13.2 Declaration
The following shows how to make the necessary declarations when describing a system configuration file.

1) Elements and character codes

a) Character codes
The system configuration file is described in ASCII code. Kanji character codes (SJIS and EUC only) can be
used only in comments.

b) Words
In the system configuration file, any series of characters that does not contain any blank characters (space
code, tab code, or line feed code) is called a word. In the following explanations, values, symbol names, and
keywords are all words.
The configurator distinguishes between uppercase and lowercase characters. For example, "ABC," "Abc," and
"abc" are handled as 3 different words.

c) Statements
In the system configuration file, a series of words delimited by one or more spaces is called a statement. One
statement is delimited from another by a line feed.
In the system configuration file, a "\" appearing at the end of a line means that the line is continued on the next
line. Note that a "\" must be preceded by a space or tab character.

2) Values
Any word beginning with a numerical code is treated as a value. Values are classified as shown in Table 13-1,
according to the numerical code that appears at the beginning.
Unless otherwise specified, any 32-bit width (0x0 to 0xFFFFFFFF) can be specified.

Table 13-1 Types of Values

Type Numerical Code at Beginning Characters Used Example

Decimal 0 0 to 7 0123, 0, 056712

Numerical other than 0 0 to 9 123, 0, 689525

CHAPTER 13 SYSTEM CONFIGURATION FILE

204 User’s Manual U19429EJ1V0UM

3) Symbol names
Symbol names are distinguished from names according to context. A symbol name indicates the name of a function
or variable in a user program.
Note, however, that the first character of a symbol name must be an alphabetic character or an underline.

Remark Up to 255 characters can be used for specifying a symbol name.

4) Comments
Within a system configuration file, all text between "--" and the end of the line is handled as a comment.

5) Keywords
The character strings shown below are keywords reserved for use with the configurator.
The use of these character strings for any other purpose is prohibited.

clkhdr, clktim, cyc, defstk, flg, flgsvc, ini, inthdr, intstk, intsvc, maxcyc, maxflg, maxint, maxintfactor, maxmbx,
maxmpl, maxpri, maxsem, maxsvc, maxtsk, mbx, mbxsvc, mem, mpl, mplsvc, no_use, prtflg, prtmbx, prtmpl,
prtsem, prttsk, RX850PRO, rxsers, sct_def, sem, semsvc, ser_def, sit_def, SPOL0, SPOL1, svc, syssvc,
TA_ASM, TA_DISINT, TA_ENAINT, TA_HLNG, TA_MFIFO, TA_MPRI, TA_TFIFO, TA_TPRI, TA_WMUL,
TA_WSGL, TCY_OFF, TCY_ON, timsvc, tsk, tsksvc, TTS_DMT, TTS_RDY, UPOL0, UPOL1, V850, V850ES,
V850E1, V850E2

13.3 Configuration Information
The system configuration information that is described in the system configuration file is divided into the following 3

main types.

- Real-time OS information
Data related to the real-time OS being used.

- SIT information
Data that is necessary for the operation of the RX850 Pro.

- SCT information
Data that is used to select whether a system function (system call) is to be used.

13.3.1 Real-time OS information
The real-time OS information that is described in the system configuration file consists of the following 1 item.

1) RX series information
The following data is described as RX series information.

- Real-time OS name

- Version number

Octal 0x or 0X 0 to 9, a to f (, A to F), x, X 0x12C, 0X0, 0xabcdef

Type Numerical Code at Beginning Characters Used Example

CHAPTER 13 SYSTEM CONFIGURATION FILE

User’s Manual U19429EJ1V0UM 205

13.3.2 SIT information
The SIT information that is described in the system configuration file consists of the following 12 items.

1) System information
The following data is defined as system information.

- Processor type

- Basic clock cycle

- Clock handler number

- Default stack size

- Stack information for interrupt handler
Stack size
System memoy area type

- Range of protected ID numbers
Range of protected task ID numbers
Range of protected semaphore ID numbers
Range of protected eventflag ID numbers
Range of protected mailbox ID numbers
Range of protected memory pool ID numbers

2) System maximum value information
The following data is defined as system maximum value information.

- Task priority range

- Maximum number of management objects that can be created or registered
Maximum number of tasks
Maximum number of semaphores
Maximum number of eventflags
Maximum number of mailboxes
Maximum number of memory pools
Maximum number of cyclic handlers
Maximum number of extended SVC handlers
Maximum number of indirectly activated interrupt handlers
Maximum interrupt source number

3) System memory information
The following data is defined for each system memory area (System Memory Pool 0, System Memory Pool 1, User
Memory Pool 0, User Memory Pool 1).

- Type

- Section name

- Size

4) Task information
The following data is defined for each task.

- ID number

- Initial status

- Activation code

- Extended information

- Description language

- Activation address

- Initial priority

- Interrupt mask status

- Stack information for task
Stack size
System memory area type

- gp register-specific value

- tp register-specific value

CHAPTER 13 SYSTEM CONFIGURATION FILE

206 User’s Manual U19429EJ1V0UM

- Key ID number

5) Semaphore information
The following data is defined for each semaphore.

- ID number

- Extended information

- Task queuing method

- Initial resource count

- Maximum resource count

- Key ID number

6) Eventflag information
The following data is defined for each eventflag.

- ID number

- Extended information

- Whether waiting for multiple tasks

- Initial bit pattern

- Key ID number

7) Mailbox information
The following data can be defined for each mailbox.

- ID number

- Extended information

- Task queuing method

- Message queuing method

- Key ID number

8) Indirectly activated interrupt handler information
The following data is defined for each indirectly activated interrupt handler.

- Interrupt source number

- Description language

- Activation address

- gp register-specific value

- tp register-specific value

9) Memory pool information
The following data is defined for each memory pool.

- ID number

- Extended information

- Task queuing method

- Memory pool information
memory pool size
type of the system memory area to be allocated

- Key ID number

10) Cyclic handler information
The following data is defined for each cyclic handler.

- Specification number

- Extended information

- Description language

- Activation address

- Initial activation status

CHAPTER 13 SYSTEM CONFIGURATION FILE

User’s Manual U19429EJ1V0UM 207

- Activation interval

- gp register-specific value

- tp register-specific value

11) Extended SVC handler information
The following data is defined for each extended SVC handler.

- Extended function code

- Description language

- Activation address

- gp register-specific value

- tp register-specific value

12) Initialization handler information
The following data is defined for each initialization handler.

- Description language

- Activation address

- gp register-specific value

- tp register-specific value

13.3.3 SCT information
The SCT information that is described in a system configuration file consists of the following 8 items.

1) Task management/task-associated synchronization management function system call information
Defines the task management/task-associated synchronization management function system calls used by a user
program as the task management/task-associated synchronization management function system call information.
The task management/task-associated synchronization management function system calls supported by the
RX850 Pro are listed below.

cre_tsk, del_tsk, sta_tsk, ext_tsk, exd_tsk, ter_tsk, dis_dsp, ena_dsp, chg_pri, rot_rdq, rel_wai, get_tid, ref_tsk,
vget_tid, sus_tsk, rsm_tsk, frsm_tsk, slp_tsk, tslp_tsk, wup_tsk, can_wup

2) Synchronous communication (semaphore) management function system call information
Defines the semaphore management function system calls used by a user program as the semaphore
management function system call information.
The semaphore management function system calls supported by the RX850 Pro are listed below.

cre_sem, del_sem, sig_sem, wai_sem, preq_sem, twai_sem, ref_sem, vget_sid

3) Synchronous communication (eventflag) management function system call information
Defines the eventflag management function system calls used by a user program as the eventflag management
function system call information.
The eventflag management function system calls supported by the RX850 Pro are listed below.

cre_flg, del_flg, set_flg, clr_flg, wai_flg, pol_flg, twai_flg, ref_flg, vget_fid

4) Synchronous communication (mailbox) management function system call information
Defines the mailbox management function system calls used by a user program as the mailbox management
function system call information.
The mailbox management function system calls supported by the RX850 Pro are listed below.

cre_mbx, del_mbx, snd_msg, rcv_msg, prcv_msg, trcv_msg, ref_mbx, vget_mid

5) Interrupt management function system call information
Defines the interrupt processing management function system calls used by a user program as the interrupt
processing management function system call information.
The interrupt processing management function system calls supported by the RX850 Pro are listed below.

def_int, ena_int, dis_int, loc_cpu, unl_cpu, chg_icr, ref_icr

CHAPTER 13 SYSTEM CONFIGURATION FILE

208 User’s Manual U19429EJ1V0UM

6) Memory pool management function system call information
Defines the memory pool management function system calls used by a user program as memory pool
management function system call information.
The memory pool management function system calls supported by the RX850 Pro are listed below.

cre_mpl, del_mpl, get_blk, pget_blk, tget_blk, rel_blk, ref_mpl, vget_pid

7) Time management function system call information
Defines the time management function system calls used by a user program as the time management function
system call information.
The time management function system calls supported by the RX850 Pro are listed below.

set_tim, get_tim, dly_tsk, def_cyc, act_cyc, ref_cyc

8) System management function system call information
Defines the system management function system calls used by a user program as the system management
function system call information.
The system management function system calls supported by the RX850 Pro are listed below.

get_ver, ref_sys, def_svc, viss_svc

CHAPTER 13 SYSTEM CONFIGURATION FILE

User’s Manual U19429EJ1V0UM 209

13.4 Specification Format for Real-Time OS Information
The following describes the format that must be observed when describing the real-time OS information in the system

configuration file.
In the following explanation, bold text indicates a reserved word, while italics indicate a value, symbol name, or keyword

to be supplied by the user.

13.4.1 RX series information
The RX series information defines values for the real-time OS name, version number.
For the system configuration file, the specification of RX series information is required.
The following shows the RX series information format.

The items constituting the RX series information are as follows.

- rtos_nam
Specifies the name of the real-time OS.
The only keyword that can be specified for rtos_nam is “RX850PRO”.

- rtos_ver
Specifies the version number of the real-time OS.
The only keyword that can be specified for rtos_ver is “V32x (x is any number)”.

rxsers rtos_nam rtos_ver

CHAPTER 13 SYSTEM CONFIGURATION FILE

210 User’s Manual U19429EJ1V0UM

13.5 Specification Format for SIT Information
The following describes the format that must be observed when describing the SIT information in the system configura-

tion file.
In the following explanation, bold text indicates a reserved word, while italics indicate a value, symbol name, or keyword

to be supplied by the user.

13.5.1 System information
The system information defines values for the processor type, basic clock cycle, clock handler number, default stack

size, stack information for interrupt handler, range of protected ID numbers.
For the system configuration file, the specification of the system information is required.
The following shows the system information format.

The items constituting the system information are as follows.

- chip_type
Specifies the processor type of the target device.
The keywords that can be specified for the processor type are V850ES, V850E1, and V850E2.

V850ES: V850ES core
V850E1: V850E1 core
V850E2: V850E2 core

If omitted: The processor type of target device is “V850E1”.

- time
Specifies the basic clock cycle of the timer to be used (in ms).
A value between 0x1 and 0x7fff can be specified for time.

Remark1 The basic clock cycle is the cycle at which the RX850 Pro generates the clock interrupts necessary to
realize the time management function (cycle rise, delay rise, timeout).

Remark2 The timer that is used by the RX850 Pro for time management must be initialized so that an interrupt
occurs in the 1-ms cycle.

- clk_intno
Specifies a clock handler number.
The values that can be specified as clk_intno is the interrupt source number specified with a device file, or a value
calculated using "(exception code - 0x80) / 0x10".

- stk_siz
Specifies the default stack size (in bytes).
A value between 0x0 and 0x7ffffffc, aligned to a 4-byte boundary, can be specified for stk_siz.

Remark The default stack size is the smallest task stack size that can exist within the system. If, therefore, at
system activation, a static task is generated or if an active task is generated as a result of a cre_tsk, and a
stack size smaller than the default is specified, that specification is ignored and the default size is used.

[cputype chip_type]
clktim time
clkhdr clk_intno
defstk stk_siz
intstk intstk_siz:mem_nam
prttsk tsk_idlmt
prtsem sem_idlmt
prtflg flg_idlmt
prtmbx mbx_idlmt
prtmpl mpl_idlmt

CHAPTER 13 SYSTEM CONFIGURATION FILE

User’s Manual U19429EJ1V0UM 211

- intstk_siz : mem_nam
Specifies the stack size to be used by a interrupt handler, and the type of the system memory area to be allocated to
that stack (in bytes).
A value between 0x0 and 0x7ffffffc, aligned to a 4-byte boundary, can be specified for intstk_siz.
The keywords that can be specified for mem_nam are SPOL0 and SPOL1.

SPOL0: Allocates the interrupt handler stack to System Memory Pool 0.
SPOL1: Allocates the interrupt handler stack to System Memory Pool 1.

- tsk_idlmt
Specifies the range of protected ID numbers when a task is generated with no ID number specified.
A value between 0x0 and tsk_cnt can be specified for tsk_idlmt.

Remark When 0x0 is specified for tsk_idlmt, no protection is imposed on the ID number. The value defined for the
maximum number of tasks that can be created (maxtsk in the System maximum value information) is used
for tsk_cnt.

- sem_idlmt
Specifies the range of protected ID numbers when a semaphore is generated with no ID number specified.
A value between 0x0 and sem_cnt can be specified for sem_idlmt.

Remark When 0x0 is specified for sem_idlmt, no protection is imposed on the ID number. The value defined for the
maximum number of semaphores that can be created (maxsem in the System maximum value
information), is used for sem_cnt.

- flg_idlmt
Specifies the range of protected ID numbers when an eventflag is generated with no ID number specified.
A value between 0x0 and flg_cnt can be specified for flg_idlmt.

Remark When 0x0 is specified for flg_idlmt, no protection is imposed on the ID number. The value defined for the
maximum number of eventflags that can be created (maxflg in the System maximum value information), is
used for flg_cnt.

- mbx_idlmt
Specifies the range of protected ID numbers when a mailbox is generated with no ID number specified.
A value between 0x0 and mbx_cnt can be specified for mbx_idlmt.

Remark When 0x0 is specified for mbx_idlmt, no protection is imposed on the ID number. The value defined for the
maximum number of mailboxes that can be created (maxmbx in the System maximum value information),
is used for mbx_cnt.

- mpl_idlmt
Specifies the range of protected ID numbers when a memory pool is generated with no ID number specified.
A value between 0x0 and mpl_cnt can be specified for mpl_idlmt.

Remark When 0x0 is specified for mpl_idlmt, no protection is imposed on the ID number. The value defined for the
maximum number of memory pools that can be created (maxmpl in the System maximum value
information), is used for mpl_cnt.

CHAPTER 13 SYSTEM CONFIGURATION FILE

212 User’s Manual U19429EJ1V0UM

13.5.2 System maximum value information
The system maximum value information defines values for the task priority range, maximum number of management

objects that can be created or registered.
For the system configuration file, the specification of the system maximum value information is required.
The following shows the system maximum value information format.

The items constituting the system maximum value information are as follows.

- pri_lvl
Specifies the priority range (priority values) for the task.
A value between 0x1 and 0xfc can be specified for pri_lvl.

- tsk_cnt
Specifies the maximum number of tasks that can be created.
A value between 0x1 and 0x7fff can be specified for tsk_cnt.

- sem_cnt
Specifies the maximum number of semaphores that can be created.
A value between 0x0 and 0x7fff can be specified for sem_cnt.

- flg_cnt
Specifies the maximum number of eventflags that can be created.
A value between 0x0 and 0x7fff can be specified for flg_cnt.

- mbx_cnt
Specifies the maximum number of mailboxes that can be created.
A value between 0x0 and 0x7fff can be specified for mbx_cnt.

- mpl_cnt
Specifies the maximum number of memory pools that can be created.
A value between 0x0 and 0x7fff can be specified for mpl_cnt.

- cyc_cnt
Specifies the maximum number of cyclic handlers that can be registered.
A value between 0x0 and 0x7fff can be specified for cyc_cnt.

- svc_cnt
Specifies the maximum number of extended SVC handlers that can be registered.
A value between 0x0 and 0x7fff can be specified for svc_cnt.

- ith_cnt
Specifies the maximum number of interrupt handlers that can be registered.
A value between 0x0 and (itf_cnt + 1) can be specified for ith_cnt.

- itf_cnt
Specifies the maximum number of interrupt source specified in Indirectly activated interrupt handler information.
The value that can be specified for itf_cnt is limited to the value obtained by "(max. value of interrupt exception code
used by indirectly activated interrupt handler - 0x80) / 0x10" (0x0 to 0x7fff, or 0x0 to "max. value of interrupt exception
code preset by the target processor - 0x80) / 0x10" when a device file is specified.

maxpri pri_lvl
maxtsk tsk_cnt
maxsem sem_cnt
maxflg flg_cnt
maxmbx mbx_cnt
maxmpl mpl_cnt
maxcyc cyc_cnt
maxsvc svc_cnt
maxint ith_cnt
maxintfactor itf_cnt

CHAPTER 13 SYSTEM CONFIGURATION FILE

User’s Manual U19429EJ1V0UM 213

13.5.3 System memory information
The system memory information defines “the type, section name, and size of the system memory area” for each of the

following memory blocks: System Memory Pool 0, System Memory Pool 1, User Memory Pool 0, and User Memory Pool
1.

For the system configuration file, the specification of the data for System Memory Pool 0 is required.
Also, for the system configuration file, when the data for User Memory Pool 1 is specified, the data for User Memory

Pool 0 is required.
The following shows the system memory information format.

The items constituting the system memory information are as follows.

- mem_id
Specifies the type of the system memory area.
The keywords that can be specified for the system memory type are SPOL0, SPOL1, UPOL0, and UPOL1.

SPOL0: System Memory Pool 0 is set as the system memory area type.
SPOL1: System Memory Pool 1 is set as the system memory area type.
UPOL0: User Memory Pool 0 is set as the system memory area type.
UPOL1: User Memory Pool 1 is set as the system memory area type.

- sec_nam
Specifies the section name of the memory area to which the system memory area is allocated.
The values that can be specified as sec_nam are only the “section names (.sec_nam) defined in the link directive file,
from which ‘.’ is deleted.”

Remark For details on link directive files, refer to "2.6 Creating Llink Directive File".

- mem_siz
Specifies the size of the system memory area (in bytes).
A value between 0x100 and 0x7ffffffc, aligned to a 4-byte boundary, can be specified for mem_siz.

mem mem_id sec_nam mem_siz

CHAPTER 13 SYSTEM CONFIGURATION FILE

214 User’s Manual U19429EJ1V0UM

13.5.4 Task information
The task information defines the ID number, initial status, activation code, extended information, description language,

activation address, initial priority, interrupt mask status, gp register-specific value, and tp register-specific value, key ID
number for the task.

For the system configuration file, the specification of at least 1 item of task information is required.
The number of task information items that can be specified is defined as being within the range of 1 to the maximum

number of tasks that can be registered, tsk_cnt, as set in the System maximum value information.
The following shows the task information format.

The items constituting the task information are as follows.

- tsk_id
Specifies the ID number of the task.
A value between 0x0 and tsk_cnt, or a symbol name, can be specified for tsk_id.
When 0x0 or a symbol name is specified, the configurator automatically assigns an unused ID number between
tsk_idlmt and tsk_cnt.
The value defined for the task ID number protected range (prttsk in the System information) is set as tsk_idlmt.
The value defined fot the maximum number of tasks that can be registered (maxtsk in the System maximum value
information) is set as tsk_cnt.

- sts
Specifies the initial status of the task.
The keywords that can be specified for sts are TTS_DMT and TTS_RDY.

TTS_DMT: The system enters the dormant status upon being activated.
TTS_RDY: The system enters the ready status upon being activated.

Remark If the initial status of every static task is set to TTS_DMT, it is assumed that there are no active tasks when
the system is activated. In this case, an appropriate task must be activated using the initialization handler.

- sta_code
Specifies the activation code of the task.
A value between 0x0 and 0xffffffff, or a symbol name, can be specified for sta_code.

Remark sta_code is valid only when TTS_RDY is specified for sts. It is invalid when TTS_DMT is specified for sts.

- ext_inf
Specifies the extended information of the task.
A value between 0x0 and 0xffffffff, or a symbol name, can be specified for ext_inf.

Remark ext_inf is provided to enable the specification of user own information for the relevant task. The user can
specify it as necessary.
The value specified for ext_inf can be dynamically allocated upon the issuance of ref_tsk by a processing
program (task/non-task).

- lang
Specifies the language used to describe the task.
The keywords that can be specified for lang are TA_HLNG and TA_ASM.

TA_HLNG: A task is described in C language.
TA_ASM: A task is described in assembly language.

- sta_adr
Specifies the activation address of the task.
A value between 0x0 and 0xfffffffe, aligned to a 2-byte boundary, or a symbol name, can be specified for sta_adr.

tsk tsk_id sts sta_code ext_inf lang \
 sta_adr pri intr stk_siz:mem_nam \
 data text key_id

CHAPTER 13 SYSTEM CONFIGURATION FILE

User’s Manual U19429EJ1V0UM 215

- pri
Specifies the initial priority of the task.
A value between 0x1 and pri_lvl can be specified for pri.
The value defined for the task priority range (maxpri in the System maximum value information) is set as pri_lvl.

- intr
Specifies the interrupt status at task activation.
The keywords that can be specified for intr are TA_ENAINT and TA_DISINT.

TA_ENAINT: All interrupts are enabled at task activation.
TA_DISINT: All interrupts are disabled at task activation.

- stk_siz : mem_nam
Specifies the stack size to be used by a task, and the type of the system memory area to be allocated to that stack (in
bytes).
A value between 0x0 and 0x7ffffffc, aligned to a 4-byte boundary, can be specified for stk_siz.
The keywords that can be specified for mem_nam are SPOL0 and SPOL1.

SPOL0: Allocates the task stack to System Memory Pool 0.
SPOL1: Allocates the task stack to System Memory Pool 1.

- data
Specifies the gp register-specific value of the task.
A value between 0x0 and 0xffffffff, or a symbol name, can be specified for data and no_use can be specified as a key-
word.

no_use: A gp register-specific value is not set.

- text
Specifies the tp register-specific value of the task.
A value between 0x0 and 0xffffffff, or a symbol name, can be specified for text and no_use can be specified as a key-
word.

no_use: A tp register-specific value is not set.

- key_id
Specifies the key ID number of the task.
A value between 0x0 and 0x7fff can be specified for key_id.

Remark When 0x0 is specified for key_id, the configurator does not assign a key ID number.

CHAPTER 13 SYSTEM CONFIGURATION FILE

216 User’s Manual U19429EJ1V0UM

13.5.5 Semaphore information
The semaphore information defines the ID number, extended information, task queuing method, initial resource count,

maximum resource count, key ID number for the semaphore.
The number of semaphore information items that can be specified is defined as being within the range of 0 to the

maximum number of semaphores that can be registered, sem_cnt, as set in the System maximum value information.
The following shows the semaphore information format.

The items constituting the semaphore information are as follows.

- sem_id
Specifies the ID number of the semaphore.
A value between 0x0 and sem_cnt, or a symbol name, can be specified for sem_id.
When 0x0 or a symbol name is specified, the configurator automatically assigns an unused ID number between
sem_idlmt and sem_cnt.
The value defined for the semaphore ID number protected range (prtsem in the System information) is set as
sem_idlmt.
The value defined fot the maximum number of semaphores that can be registered (maxsem in the System maximum
value information) is set as sem_cnt.

- ext_inf
Specifies the extended information of the semaphore.
A value between 0x0 and 0xffffffff, or a symbol name, can be specified for ext_inf.

Remark ext_inf is provided to enable the specification of user own information for the relevant semaphore. The
user can specify it as necessary.
The value specified for ext_inf can be dynamically allocated upon the issuance of ref_sem by a processing
program (task/non-task).

- twai_opt
Specifies the task queuing method.
The keywords that can be specified for twai_opt are TA_TFIFO and TA_TPRI.

TA_TFIFO: Tasks are queued in the same order as that in which resource requests are issued.
TA_TPRI: Tasks are queued according to their priority.

- init_cnt
Specifies the initial resource count of the semaphore.
A value between 0x0 and max_cnt can be specified for init_cnt.

- max_cnt
Specifies the maximum resource count of the semaphore.
A value between 0x1 and 0x7fffffff can be specified for max_cnt.

- key_id
Specifies the key ID number of the semaphore.
A value between 0x0 and 0x7fff can be specified for key_id.

Remark When 0x0 is specified for key_id, the configurator does not assign a key ID number.

sem sem_id ext_inf twai_opt init_cnt max_cnt key_id

CHAPTER 13 SYSTEM CONFIGURATION FILE

User’s Manual U19429EJ1V0UM 217

13.5.6 Eventflag information
The eventflag information defines the ID number, extended information, whether waiting for multiple tasks, initial bit pat-

tern, key ID number for the eventflag.
The number of ceventflag information items that can be specified is defined as being within the range of 0 to the

maximum number of eventflags that can be registered, flg_cnt, as set in the System maximum value information.
The following shows the eventflag information format.

The items constituting the eventflag information are as follows.

- fig_id
Specifies the ID number of the eventflag.
A value between 0x0 and flg_cnt, or a symbol name, can be specified for flg_id.
When 0x0 or a symbol name is specified, the configurator automatically assigns an unused ID number between
flg_idlmt and flg_cnt.
The value defined for the eventflag ID number protected range (prtflg in the System information) is set as flg_idlmt.
The value defined fot the maximum number of eventflags that can be registered (maxflg in the System maximum
value information) is set as flg_cnt.

- ext_inf
Specifies the extended information of the eventflag.
A value between 0x0 and 0xffffffff, or a symbol name, can be specified for ext_inf.

Remark ext_inf is provided to enable the specification of user own information for the relevant eventflag. The user
can specify it as necessary.
The value specified for ext_inf can be dynamically allocated upon the issuance of ref_flg by a processing
program (task/non-task).

- twai_opt
Specifies whether wait for multiple tasks is disabled/enabled.
The keywords that can be specified for twai_opt are TA_WSGL and TA_WMUL.

TA_WSGL: Wait for multiple tasks is disabled.
TA_WMUL: Wait for multiple tasks is enabled.

- init_ptn
Specifies the initial bit pattern (32-bit width) of the eventflag.
A value between 0x0 and 0xffffffff can be specified for init_ptn.

- key_id
Specifies the key ID number. of the eventflag
A value between 0x0 and 0x7fff can be specified for key_id.

Remark When 0x0 is specified for key_id, the configurator does not assign a key ID number.

flg flg_id ext_inf twai_opt init_ptn key_id

CHAPTER 13 SYSTEM CONFIGURATION FILE

218 User’s Manual U19429EJ1V0UM

13.5.7 Mailbox information
The mailbox information defines the ID number, extended information, task queuing method, message queuing method,

key ID number for the mailbox.
The number of mailbox information items that can be specified is defined as being within the range of 0 to the maximum

number of maiboxes that can be registered, mbx_cnt, as set in the System maximum value information.
The following shows the mailbox information format.

The items constituting the mailbox information are as follows.

- mbx_id
Specifies the ID number of the mailbox.
A value between 0x0 and mbx_cnt, or a symbol name, can be specified for mbx_id.
When 0x0 or a symbol name is specified, the configurator automatically assigns an unused ID number between
mbx_idlmt and mbx_cnt.
The value defined for the mailbox ID number protected range (prtmbx in the System information) is set as mbx_idlmt.
The value defined fot the maximum number of mailboxes that can be registered (maxmbx in the System maximum
value information) is set as mbx_cnt.

- ext_inf
Specifies the extended information of the mailbox.
A value between 0x0 and 0xffffffff, or a symbol name, can be specified for ext_inf.

Remark ext_inf is provided to enable the specification of user own information for the relevant mailbox. The user
can specify it as necessary.
The value specified for ext_inf can be dynamically allocated upon the issuance of ref_mbx by a processing
program (task/non-task).

- twai_opt
Specifies the task queuing method.
The keywords that can be specified for twai_opt are TA_TFIFO and TA_TPRI.

TA_TFIFO: Tasks are queued in the same order as that in which message receive requests are issued.
TA_TPRI: Tasks are queued according to their priority.

- mwai_opt
Specifies the message queuing method.
The keywords that can be specified for mwai_opt are TA_MFIFO and TA_MPRI.

TA_MFIFO: Messages are queued in the same order as that in which messages are issued.
TA_MPRI: Messages are queued according to their priority.

- key_id
Specifies the key ID number of the mailbox.
A value between 0x0 and 0x7fff can be specified for key_id.

Remark When 0x0 is specified for key_id, the configurator does not assign a key ID number.

mbx mbx_id ext_inf twai_opt mwai_opt key_id

CHAPTER 13 SYSTEM CONFIGURATION FILE

User’s Manual U19429EJ1V0UM 219

13.5.8 Indirectly activated interrupt handler information
The indirectly activated interrupt handler information defines the interrupt source number, description language,

activation address, gp register-specific value, and tp register-specific value for the indirectly activated interrupt handler.
The number of indirectly activated interrupt handler information items that can be specified is defined as being within the

range of 0 to the maximum number of indirectly activated interrupt handlers that can be registered, ith_cnt, as set in the
System maximum value information.

The following shows the indirectly activated interrupt handler information format.

The items constituting the indirectly activated interrupt handler information are as follows.

- int_no
Specifies the interrupt source number of the indirectly activated interrupt handler.
The values that can be specified as int_no is the interrupt source number specified with a device file, or a value
calculated using "(exception code - 0x80) / 0x10".

Remark The same interrupt source number cannot be specified for int_no and clk_intno.
clk_intno is a value defined in a clock handler number clkhdr of System information.

- lang
Specifies the language used to describe the indirectly activated interrupt handler.
The keywords that can be specified for lang are TA_HLNG and TA_ASM.

TA_HLNG: A indirectly activated interrupt handler is described in C language.
TA_ASM: A indirectly activated interrupt handler is described in assembly language.

- hdr_adr
Specifies the activation address of the indirectly activated interrupt handler.
A value between 0x0 and 0xfffffffe, aligned to a 2-byte boundary, or a symbol name, can be specified for hdr_adr.

- data
Specifies the gp register-specific value of the indirectly activated interrupt handler.
A value between 0x0 and 0xffffffff, or a symbol name, can be specified for data and no_use can be specified as a key-
word.

no_use: A gp register-specific value is not set.

- text
Specifies the tp register-specific value of the indirectly activated interrupt handler.
A value between 0x0 and 0xffffffff, or a symbol name, can be specified for text and no_use can be specified as a key-
word.

no_use: A tp register-specific value is not set.

inthdr int_no lang hdr_adr data text

CHAPTER 13 SYSTEM CONFIGURATION FILE

220 User’s Manual U19429EJ1V0UM

13.5.9 Memory pool information
The memory pool information defines the ID number, extended information, task queuing method, memory pool

information, key ID number for the memory pool.
The number of memory pool information items that can be specified is defined as being within the range of 0 to the

maximum number of memory pools that can be registered, mpl_cnt, as set in the System maximum value information.
The following shows the memory pool information format.

The items constituting the memory pool information are as follows.

- mpl_id
Specifies the ID number of the memory pool.
A value between 0x0 and mpl_cnt, or a symbol name, can be specified for mpl_id.
When 0x0 or a symbol name is specified, the configurator automatically assigns an unused ID number between
mpl_idlmt and mpl_cnt.
The value defined for the memory pool ID number protected range (prtmpl in the System information) is set as
mpl_idlmt.
The value defined fot the maximum number of memory pools that can be registered (maxmpl in the System maximum
value information) is set as mpl_cnt.

- ext_inf
Specifies the extended information of the memory pool.
A value between 0x0 and 0xffffffff, or a symbol name, can be specified for ext_inf.

Remark ext_inf is provided to enable the specification of user own information for the relevant memory pool. The
user can specify it as necessary.
The value specified for ext_inf can be dynamically allocated upon the issuance of ref_mpl by a processing
program (task/non-task).

- twai_opt
Specifies the task queuing method.
The keywords that can be specified for twai_opt are TA_TFIFO and TA_TPRI.

TA_TFIFO: Tasks are queued in the same order as that in which memory block requests are issued.
TA_TPRI: Tasks are queued according to their priority.

- mpl_siz : mem_nam
Specifies the memory pool size, and the type of the system memory area to be allocated to that memory pool (in
bytes).
A value between 0x4 and 0x7ffffffc, aligned to a 4-byte boundary, can be specified for mpl_siz.
The keywords that can be specified for mem_nam are UPOL0 and UPOL1.

UPOL0: Allocates the memory pool to User Memory Pool 0.
UPOL1: Allocates the memory pool to User Memory Pool 1.

- key_id
Specifies the key ID number of the memory pool.
A value between 0x0 and 0x7fff can be specified for key_id.

Remark When 0x0 is specified for key_id, the configurator does not assign a key ID number.

mpl mpl_id ext_inf twai_opt mpl_siz:mem_nam key_id

CHAPTER 13 SYSTEM CONFIGURATION FILE

User’s Manual U19429EJ1V0UM 221

13.5.10 Cyclic handler information
The cyclic handler information defines the specification number, extended information, description language, activation

address, initial activation status, activation interval, gp register-specific value, and tp register-specific value for the cyclic
handler.

The number of cyclic handler information items that can be specified is defined as being within the range of 0 to the
maximum number of cyclic handlers that can be registered, cyc_cnt, as set in the System maximum value information.

The following shows the cyclic handler information format.

The items constituting the cyclic handler information are as follows.

- cyc_no
Specifies the specification number of the cyclic handler.
A value between 0x1 and cyc_cnt, or a symbol name, can be specified for cyc_no.
When a symbol name is specified, the configurator automatically assigns an unused ID number between 0x1 and
cyc_cnt.
The value defined fot the maximum number of cyclic handlers that can be registered (maxcyc in the System
maximum value information) is set as cyc_cnt.

- ext_inf
Specifies the extended information of the cyclic handler.
A value between 0x0 and 0xffffffff, or a symbol name, can be specified for ext_inf.

Remark ext_inf is provided to enable the specification of user own information for the relevant cyclic handler. The
user can specify it as necessary.
The value specified for ext_inf can be dynamically allocated upon the issuance of ref_cyc by a processing
program (task/non-task).

- lang
Specifies the language used to describe the cyclic handler.
The keywords that can be specified for lang are TA_HLNG and TA_ASM.

TA_HLNG: A cyclic handler is described in C language.
TA_ASM: A cyclic handler is described in assembly language.

- hdr_adr
Specifies the activation address of the cyclic handler.
A value between 0x0 and 0xfffffffe, aligned to a 2-byte boundary, or a symbol name, can be specified for hdr_adr.

- act
Specifies the initial activation status of the cyclic handler.
The keywords that can be specified for act are TCY_ON and TCY_OFF.

TCY_ON: The system enters the ON status upon being activated.
TCY_OFF: The system enters the OFF status upon being activated.

- intvl
Specifies the activation interval of the cyclic handler (in basic clock cycle).
A value between 0x1 and 0xffffffff can be specified for intvl.

- data
Specifies the gp register-specific value of the cyclic handler.
A value between 0x0 and 0xffffffff, or a symbol name, can be specified for data and no_use can be specified as a key-
word.

no_use: A gp register-specific value is not set.

cyc cyc_no ext_inf lang hdr_adr act \
 intvl data text

CHAPTER 13 SYSTEM CONFIGURATION FILE

222 User’s Manual U19429EJ1V0UM

- text
Specifies the tp register-specific value of the cyclic handler.
A value between 0x0 and 0xffffffff, or a symbol name, can be specified for text and no_use can be specified as a key-
word.

no_use: A tp register-specific value is not set.

CHAPTER 13 SYSTEM CONFIGURATION FILE

User’s Manual U19429EJ1V0UM 223

13.5.11 Extended SVC handler information
The extended SVC handler information defines the extended function code, description language, activation address,

gp register-specific value, and tp register-specific value for the extended SVC handler.
The number of extended SVC handler information items that can be specified is defined as being within the range of 0

to the maximum number of extended SVC handlers that can be registered, svc_cnt, as set in the System maximum value
information.

The following shows the extended SVC handler information format.

The items constituting the extended SVC handler information are as follows.

- svc_no
Specifies the extended function code of the extended SVC handler.
A value between 0x1 and svc_cnt, or a symbol name, can be specified for svc_no.
When a symbol name is specified, the configurator automatically assigns an unused ID number between 0x1 and
svc_cnt.
The value defined fot the maximum number of extended SVC handlers that can be registered (maxsvc in the System
maximum value information) is set as svc_cnt.

- lang
Specifies the language used to describe the extended SVC handler.
The keywords that can be specified for lang are TA_HLNG and TA_ASM.

TA_HLNG: A extended SVC handler is described in C language.
TA_ASM: A extended SVC handler is described in assembly language.

- hdr_adr
Specifies the activation address of the extended SVC handler.
A value between 0x0 and 0xfffffffe, aligned to a 2-byte boundary, or a symbol name, can be specified for hdr_adr.

- data
Specifies the gp register-specific value of the extended SVC handler.
A value between 0x0 and 0xffffffff, or a symbol name, can be specified for data and no_use can be specified as a key-
word.

no_use: A gp register-specific value is not set.

- text
Specifies the tp register-specific value of the extended SVC handler.
A value between 0x0 and 0xffffffff, or a symbol name, can be specified for text and no_use can be specified as a key-
word.

no_use: A tp register-specific value is not set.

svc svc_no lang hdr_adr data text

CHAPTER 13 SYSTEM CONFIGURATION FILE

224 User’s Manual U19429EJ1V0UM

13.5.12 Initialization handler information
The initialization handler information defines the description language, activation address, gp register-specific value,

and tp register-specific value for the initialization handler.
Information of the initialization handler can be omitted in the system configuration file. If it is omitted, the RX850 Pro

assumes that there is no initialization handler, and continues processing.
The following shows the initialization handler information format.

The items constituting the initialization handler information are as follows.

- lang
Specifies the language used to describe the initialization handler.
The keywords that can be specified for lang are TA_HLNG and TA_ASM.

TA_HLNG: A initialization handler is described in C language.
TA_ASM: A initialization handler is described in assembly language.

- hdr_adr
Specifies the activation address of the initialization handler.
A value between 0x0 and 0xfffffffe, aligned to a 2-byte boundary, or a symbol name, can be specified for hdr_adr.

- data
Specifies the gp register-specific value of the initialization handler.
A value between 0x0 and 0xffffffff, or a symbol name, can be specified for data and no_use can be specified as a key-
word.

no_use: A gp register-specific value is not set.

- text
Specifies the tp register-specific value of the initialization handler.
A value between 0x0 and 0xffffffff, or a symbol name, can be specified for text and no_use can be specified as a key-
word.

no_use: A tp register-specific value is not set.

ini lang hdr_adr data text

CHAPTER 13 SYSTEM CONFIGURATION FILE

User’s Manual U19429EJ1V0UM 225

13.6 Specification Format for SCT Information
The following describes the format that must be observed when describing the SCT information in the system configura-

tion file.
In the following explanation, bold text indicates a reserved word, while italics indicate a value, symbol name, or keyword

to be supplied by the user.

13.6.1 Task management/task-associated synchronization management function
system call information

The task management/task-associated synchronization management function system call information defines data that
indicates the task management/task-associated synchronization management function system calls used by a user pro-
cessing program for each system call.

If the task management/task-associated synchronization management function system call information is not defined
and system call is used in an application, E_NOSPT (-17) is returned as the return value of the system call.

The following shows the task management/task-associated synchronization management function system call informa-
tion format.

The items constituting the task management/task-associated synchronization management function system call infor-
mation are as follows.

- svc_nam
Specifies a task management/task-associated synchronization management function system call name.
The following keywords can be specified for svc_nam.

cre_tsk, del_tsk, sta_tsk, ext_tsk, exd_tsk, ter_tsk, dis_dsp, ena_dsp, chg_pri, rot_rdq, rel_wai, get_tid, ref_tsk,
vget_tid, sus_tsk, rsm_tsk, frsm_tsk, slp_tsk, tslp_tsk, wup_tsk, can_wup

tsksvc svc_nam

CHAPTER 13 SYSTEM CONFIGURATION FILE

226 User’s Manual U19429EJ1V0UM

13.6.2 Synchronous communication (semaphore) management function system
call information

The synchronous communication (semaphore) management function system call information defines data that indicates
the synchronous communication (semaphore) management function system calls used by a user processing program for
each system call.

If the synchronous communication (semaphore) management function system call information is not defined and sys-
tem call is used in an application, E_NOSPT (-17) is returned as the return value of the system call.

The following shows the synchronous communication (semaphore) management function system call information for-
mat.

The items constituting the synchronous communication (semaphore) management function system call information are
as follows.

- svc_nam
Specifies a synchronous communication (semaphore) management function system call name.
The following keywords can be specified for svc_nam.

cre_sem, del_sem, sig_sem, wai_sem, preq_sem, twai_sem, ref_sem, vget_sid

semsvc svc_nam

CHAPTER 13 SYSTEM CONFIGURATION FILE

User’s Manual U19429EJ1V0UM 227

13.6.3 Synchronous communication (eventflag) management function system call
information

The synchronous communication (eventflag) management function system call information defines data that indicates
the synchronous communication (eventflag) management function system calls used by a user processing program for
each system call.

If the synchronous communication (eventflag) management function system call information is not defined and system
call is used in an application, E_NOSPT (-17) is returned as the return value of the system call.

The following shows the synchronous communication (evet flag) management function system call information format.

The items constituting the synchronous communication (eventflag) management function system call information are as
follows.

- svc_nam
Specifies a synchronous communication (eventflag) management function system call name.
The following keywords can be specified for svc_nam.

cre_flg, del_flg, set_flg, clr_flg, wai_flg, pol_flg, twai_flg, ref_flg, vget_fid

flgsvc svc_nam

CHAPTER 13 SYSTEM CONFIGURATION FILE

228 User’s Manual U19429EJ1V0UM

13.6.4 Synchronous communication (mailbox) management function system call
information

The synchronous communication (mailbox) management function system call information defines data that indicates the
synchronous communication (mailbox) management function system calls used by a user processing program for each
system call.

If the synchronous communication (mailbox) management function system call information is not defined and system
call is used in an application, E_NOSPT (-17) is returned as the return value of the system call.

The following shows the synchronous communication (mailbox) management function system call information format.

The items constituting the synchronous communication (mailbox) management function system call information are as
follows.

- svc_nam
Specifies a synchronous communication (mailbox) management function system call name.
The following keywords can be specified for svc_nam.

cre_mbx, del_mbx, snd_msg, rcv_msg, prcv_msg, trcv_msg, ref_mbx, vget_mid

mbxsvc svc_nam

CHAPTER 13 SYSTEM CONFIGURATION FILE

User’s Manual U19429EJ1V0UM 229

13.6.5 Interrupt management function system call information
The interrupt management function system call information defines data that indicates the interrupt management func-

tion system calls used by a user processing program for each system call.
If the interrupt management function system call information is not defined and system call is used in an application,

E_NOSPT (-17) is returned as the return value of the system call.
The following shows the interrupt management function system call information format.

The items constituting the interrupt management function system call information are as follows.

- svc_nam
Specifies a interrupt management function system call name.
The following keywords can be specified for svc_nam.

def_int, ena_int, dis_int, loc_cpu, unl_cpu, chg_icr, ref_icr

intsvc svc_nam

CHAPTER 13 SYSTEM CONFIGURATION FILE

230 User’s Manual U19429EJ1V0UM

13.6.6 Memory pool management function system call information
The memory pool management function system call information defines data that indicates the memory pool manage-

ment function system calls used by a user processing program for each system call.
If the memory pool management function system call information is not defined and system call is used in an applica-

tion, E_NOSPT (-17) is returned as the return value of the system call.
The following shows the memory pool management function system call information format.

The items constituting the memory pool management function system call information are as follows.

- svc_nam
Specifies a memory pool management function system call name.
The following keywords can be specified for svc_nam.

cre_mpl, del_mpl, get_blk, pget_blk, tget_blk, rel_blk, ref_mpl, vget_pid

mplsvc svc_nam

CHAPTER 13 SYSTEM CONFIGURATION FILE

User’s Manual U19429EJ1V0UM 231

13.6.7 Time management function system call information
The time management function system call information defines data that indicates the time management function sys-

tem calls used by a user processing program for each system call.
If the time management function system call information is not defined and system call is used in an application,

E_NOSPT (-17) is returned as the return value of the system call.
The following shows the time management function system call information format.

The items constituting the time management function system call information are as follows.

- svc_nam
Specifies a time management function system call name.
The following keywords can be specified for svc_nam.

set_tim, get_tim, dly_tsk, def_cyc, act_cyc, ref_cyc

timsvc svc_nam

CHAPTER 13 SYSTEM CONFIGURATION FILE

232 User’s Manual U19429EJ1V0UM

13.6.8 System management function system call information
The system management function system call information defines data that indicates the system management function

system calls used by a user processing program for each system call.
If the system management function system call information is not defined and system call is used in an application,

E_NOSPT (-17) is returned as the return value of the system call.
The following shows the system management function system call information format.

The items constituting the system management function system call information are as follows.

- svc_nam
Specifies a system management function system call name.
The following keywords can be specified for svc_nam.

get_ver, ref_sys, def_svc, viss_svc

syssvc svc_nam

CHAPTER 13 SYSTEM CONFIGURATION FILE

User’s Manual U19429EJ1V0UM 233

13.7 Cautions
In the system configuration file, describe the system configuration information (real-time OS information, SIT

information, SCT information) in the following order.

1) Declaration of the start of the Real-time OS information description

2) Real-time OS information description

3) Declaration of the start of the SIT information description

4) SIT information description

5) Declaration of the start of the SCT information description

6) SCT information description

Figure 13-1 illustrates how the system configuration file is described.

Figure 13-1 System Configuration File Description Format

-- Declaration of the start of the Real-time OS information description
ser_def

-- Real-time OS information description
:
:
:

-- Declaration of the start of the SIT information description
sit_def

-- SIT information description
:
:
:

-- Declaration of the start of the SCT information description
sct_def

-- SCT information description
:
:
:

CHAPTER 13 SYSTEM CONFIGURATION FILE

234 User’s Manual U19429EJ1V0UM

13.8 Description Example
The following describes an example for coding the system configuration file.
The data items shown below are written in the coding example.

< Real-time OS information >

1) RX series information
Real-time OS name: RX850PRO
Version number: V321

< SIT information >

1) System information
Processor type: V850E1 core
Basic clock cycle: 0x1 ms
Clock handler number: 0x1c (INTCMD0)
Default stack size: 0x100 bytes
Stack information for interrupt handler: Allocates a memory area for 0x100 bytes, starting from System

Memory Pool 0
Range of protected task ID numbers: 0x1
Range of protected semaphore ID numbers: 0x1
Range of protected eventflag ID numbers: 0x1
Range of protected mailbox ID numbers: 0x1
Range of protected memory pool ID numbers: 0x1

2) System maximum value information
Task priority range: 0xf
Maximum number of tasks: 0x2
Maximum number of semaphores: 0x1
Maximum number of eventflags: 0x2
Maximum number of mailboxes: 0x3
Maximum number of memory pools: 0x2
Maximum number of cyclic handlers: 0x1
Maximum number of extended SVC handlers: 0x1
Maximum number of interrupt handlers: 0x5
Maximum interrupt source number: 0x30

3) System memory information
System Memory Pool 0: Allocates a memory area for 0x2000 bytes, starting from .syspol0

section
System Memory Pool 1: Allocates a memory area for 0x1000 bytes, starting from .syspol1

section
User Memory Pool 0: Allocates a memory area for 0x7000 bytes, starting from .usrpol0_0

section
User Memory Pool 0: Allocates a memory area for 0x2500 bytes, starting from .usrpol0_1

section
User Memory Pool 1: Allocates a memory area for 0x1500 bytes, starting from .usrpol1

section

4) Task information
ID number: 0x1
Initial status: ready
Activation code: 0x0
Extended information: 0x0
Description language: Assembly language
Activation address: _task01
Initial priority: 0x8
Interrupt mask status: All interrupts enabled
Stack information for task: Allocates a memory area for 0x100 bytes, starting from System

Memory Pool 0
gp register-specific value: Not set
tp register-specific value: Not set
Key ID number: 0x1

ID number: TASK02
Initial status: dormant
Activation code: 0x0

CHAPTER 13 SYSTEM CONFIGURATION FILE

User’s Manual U19429EJ1V0UM 235

Extended information: 0x0
Description language: C language
Activation address: _task02
Initial priority: 0xf
Interrupt mask status: All interrupts disabled
Stack information for task: Allocates a memory area for 0x100 bytes, starting from System

Memory Pool 0
gp register-specific value: Not set
tp register-specific value: Not set
Key ID number: 0x2

5) Semaphore information
ID number: 0x1
Extended information: 0x0
Task queuing method: Same order as that in which resource requests are issued (FIFO)
Initial resource count: 0xff
Maximum resource count: 0xff
Key ID number: 0x1

6) Eventflag information
ID number: 0x1
Extended information: 0x0
Whether waiting for multiple tasks: Disable
Initial bit pattern: 0x0
Key ID number: 0x1

7) Mailbox information
ID number: 0x1
Extended information: 0x0
Task queuing method: Same order as that in which message receive requests are issued

(FIFO)
Message queuing method: Same order as that in which messages are issued (FIFO)
Key ID number: 0x1

8) Indirectly activated interrupt handler information
Interrupt source number: 0x14 (INTP120)
Description language: Assembly language
Activation address: _inthdr01
gp register-specific value: Not set
tp register-specific value: Not set

9) Memory pool information
ID number: 0x1
Extended information: 0x0
Task queuing method: According to task priority
Memory pool information: Allocates a memory area for 0x2000 bytes, starting from User

Memory Pool 0
Key ID number: 0x1

10) Cyclic handler information
Specification number: 0x1
Extended information: 0x0
Description language: C language
Activation address: _cychdr01
Initial activation status: OFF status
Activation interval: 0x100 basic clock cycle
gp register-specific value: Not set
tp register-specific value: Not set

11) Extended SVC handler information
Extended function code: 0x1
Description language: C language
Activation address: _svchdr01
gp register-specific value: Not set
tp register-specific value: Not set

12) Initialization handler information
Description language: C language
Activation address: _varfunc

CHAPTER 13 SYSTEM CONFIGURATION FILE

236 User’s Manual U19429EJ1V0UM

gp register-specific value: Not set
tp register-specific value: Not set

< SCT information >

1) Task management/task-associated synchronization management function system call information
Define the following as the task management/task-associated synchronization management function system call
information used by a user processing program:

sta_tsk, exd_tsk

2) Synchronous communication (semaphore) management function system call information
Define the following as the synchronous communication (semaphore) management function system call
information used by a user processing program:

sig_sem, wai_sem

3) Synchronous communication (eventflag) management function system call information
Define the following as the synchronous communication (eventflag) management function system call information
used by a user processing program:

cre_flg, del_flg, set_flg, wai_flg

4) Synchronous communication (mailbox) management function system call information
Define the following as the synchronous communication (mailbox) management function system call information
used by a user processing program:

cre_mbx, del_mbx, snd_msg, rcv_msg

5) Interrupt management function system call information
Define the following as the interrupt management function system call information used by a user processing
program:

ena_int

6) Memory pool management function system call information
Define the following as the memory pool management function system call information used by a user processing
program:

cre_mpl, del_mpl, get_blk, rel_blk

7) Time management function system call information
Define the following as the time management function system call information used by a user processing program:

act_cyc, ref_cyc

8) System management function system call information
Define the following as the system management function system call information used by a user processing
program:

viss_svc

CHAPTER 13 SYSTEM CONFIGURATION FILE

User’s Manual U19429EJ1V0UM 237

Figure 13-2 Example of System Configuration File

-- Declaration of the start of the Real-time OS information description

ser_def

-- Real-time OS information description

-- RX series information
rxsers RX850PRO V321

--Declaration of the start of the SIT information description

sit_def

-- SIT information description

-- System information
cputype V850E1
clktim 0x1
clkhdr INTCMD0
defstk 0x100
intstk 0x100:SPOL0
prtstk 0x1
prtsem 0x1
prtflg 0x1
prtmbx 0x1
prtmpl 0x1

-- System maximum value information
maxpri 0xf
maxtsk 0x2
maxsem 0x1
maxflg 0x2
maxmbx 0x3
maxmpl 0x2
maxcyc 0x1
maxsvc 0x1
maxint 0x5
maxintfactor 0x30

-- System memory information
mem SPOL0 syspol0 0x2000
mem SPOL1 syspol1 0x1000
mem UPOL0 usrpol0_0 0x7000
mem UPOL0 usrpol0_1 0x2500
mem UPOL1 usrpol1 0x1500

-- Task information
tsk 0x1 TTS_RDY 0x0 0x0 TA_ASM \
 _task01 0x8 TA_ENAINT 0x100:SPOL0 no_use \
 no_use 0x1
tsk TASK02 TTS_DMT 0x0 0x0 TA_HLNG \
 _task02 0xf TA_DISINT 0x100:SPOL0 no_use \
 no_use 0x2

-- Semaphore information
sem 0x1 0x0 TA_TFIFO 0xff 0xff 0x1

CHAPTER 13 SYSTEM CONFIGURATION FILE

238 User’s Manual U19429EJ1V0UM

-- Eventflag information
flg 0x1 0x0 TA_WSGL 0x0 0x1

-- Mailbox information
mbx 0x1 0x0 TA_TFIFO TA_MFIFO 0x1

-- Indirectly activated interrupt handler information
inthdr INTP120 TA_ASM _inthdr01 no_use no_use

-- Memory pool information
mpl 0x1 0x0 TA_TPRI 0x2000:UPOL0 0x1

-- Cyclic handler information
cyc 0x1 0x0 TA_HLNG _cychdr01 TCY_OFF \
 0x100 no_use no_use

-- Extended SVC handler information
svc 0x1 TA_HLNG _svchdr01 no_use no_use

-- Initialization handler information
ini TA_HLNG _varfunc no_use no_use

-- Declaration of the start of the SCT information description

sct_def

-- SCT information description

-- Task management/task-associated synchronization management function system call
information
tsksvc sta_tsk
tsksvc exd_tsk

-- Synchronous communication (semaphore) management function system call information
semsvc sig_sem
semsvc wai_sem

-- Synchronous communication (eventflag) management function system call information
flgsvc cre_flg
flgsvc del_flg
flgsvc set_flg
flgsvc wai_flg

-- Synchronous communication (mailbox) management function system call information
mbxsvc cre_mbx
mbxsvc del_mbx
mbxsvc snd_msg
mbxsvc rcv_msg

-- Interrupt management function system call information
intsvc ena_int

-- Memory pool management function system call information
mplsvc cre_mpl
mplsvc del_mpl
mplsvc get_blk
mplsvc rel_blk

-- Time management function system call information
timsvc act_cyc
timsvc ref_cyc

CHAPTER 13 SYSTEM CONFIGURATION FILE

User’s Manual U19429EJ1V0UM 239

-- System management function system call information
syssvc viss_svc

CHAPTER 14 CONFIGURATOR (CF850 Pro)

240 User’s Manual U19429EJ1V0UM

CHAPTER 14 CONFIGURATOR (CF850 Pro)

This chapter explains how to activate the configurator (CF850 Pro) and how information files (system information table
file, system call table file, system information header file) are created.

14.1 Outline
To build systems (load modules) that use functions provided by the RX850 Pro, the information storing data to be

provided for the RX850 Pro is required.
Since information files are basically enumerations of data, it is possible to describe them with various editors.
Information files, however, do not excel in descriptiveness and readability; therefore substantial time and effort are

required when they are described.
To solve this problem, the RX850 Pro provides a utility tool (configurator CF850 Pro) that converts system configuration

files which excel in descriptiveness and readability into information files.
The CF850 Pro reads system configuration files as input files, and then outputs information files.
The information files output from the CF850 Pro are explained below.

- System information table file
An information file that stores data (resource information on the RX850 Pro such as the tasks, semaphores, and
eventflags) required for the operation of the RX850 Pro.

- System call table file
The system call table file stores data on types of system calls used in the processing program of the user.

- System information header file
An information file that stores matching between ID numbers and object names (e.g. task, semaphore, and eventflag
names) described in system configuration files

CHAPTER 14 CONFIGURATOR (CF850 Pro)

User’s Manual U19429EJ1V0UM 241

14.2 Activation Method

14.2.1 Activating from command line
The following is how to activate the CF850 Pro from the command line.
Note that, in the examples below, "C>" indicates the command prompt, and "Δ" indicates pressing of the space key.
The activation options enclosed in "[]" can be omitted.

The details of each activation option are explained below:

- @cmd_file
Specifies the command file name.

If omitted: The activation options specified on the command line is valid.

Remark1 Specify the command file name "cmd_file" within 255 characters including the path name.

Remark2 For the details on the command file, see "14.2.3 Command file".

- -cpuΔname
Specifies type specification names of target devices.

If omitted: The CF850 Pro does not read device files. Therefore, in system configuration files, definitions using
“interrupt factor names specified in device files” cannot be performed.

- -devpath=path
Retrieves the device file corresponding to the target device specified with -cpuΔname from the path folder.

If omitted: The device file is retrieved in for the current folder.

- -iΔsit_file
Specifies the system information table file name to be output.

If omitted: The CF850 Pro assumes that the following activation option is specified, and performs processing.

-iΔsit.s

Remark1 Specify the output file name "system information table file name: sit_file" within 255 characters including
the path name.

Remark2 When both this activation option and the -ni option are specified at the same time, only that which was
input last is effective.

- -cΔsct_file
Specifies the system call table file name to be output.

If omitted: The CF850 Pro assumes that the following activation option is specified, and performs processing.

-cΔsct.s

Remark1 Specify the output file name "system call table file name: sct_file" within 255 characters including the path
name.

Remark2 When both this activation option and the -nc option are specified at the same time, only that which was
input last is effective.

- -dΔh_file
Specifies the system information header file name to be output.

If omitted: The system changes the extension of the system configuration file name, specified with cf_file, to ".h", and
outputs the file as the system information header file.

Remark1 Specify the output file name "system information header file name: h_file" within 255 characters including
the path name.

C> cf850proΔ[@cmd_file]Δ[-cpuΔname]Δ[-devpath=path]Δ[-iΔsit_file]Δ[-cΔsct_file]Δ[-dΔh_file]Δ[-ni]Δ[-nc]Δ[-
nd]Δ[-ne]Δ[-V]Δ[-help]Δcf_file

CHAPTER 14 CONFIGURATOR (CF850 Pro)

242 User’s Manual U19429EJ1V0UM

Remark2 When both this activation option and the -nd option are specified at the same time, only that which was
input last is effective.

- -ni
Disables output of the system information table file.

If omitted: The CF850 Pro assumes that the following activation option is specified, and performs processing.

-iΔsit.s

Remark When both this activation option and the -iΔsit_file option are specified at the same time, only that which
was input last is effective.

- -nc
Disables output of the system call table file.

If omitted: The CF850 Pro assumes that the following activation option is specified, and performs processing.

-cΔsct.s

Remark When both this activation option and the -cΔsct_file option are specified at the same time, only that which
was input last is effective.

- -nd
Disables output of the system information header file.

If omitted: The system changes the extension of the system configuration file name, specified with cf_file, to ".h", and
outputs the file as the system information header file.

Remark When both this activation option and the -dΔh_file option are specified at the same time, only that which
was input last is effective.

- -ne
Suppresses output of interrupt entries to the system information table file.

If omitted: Interrupt entries are output to the system information table file.

- -V
Outputs version information for the CF850 Pro to the standard output.

If omitted: Version information for the CF850 Pro is not output.

Remark Specifying this activation option nullifies all other activation options.

- -help
Outputs the usage of the activation options for the CF850 Pro to the standard output.

If omitted: The usage of the activation options for the CF850 Pro is not output.

Remark Specifying this activation option nullifies all other activation options.

- cf_file
Specifies the input file name "SYSTEM CONFIGURATION FILE name: cf_file" that input to the CF850 Pro.

If omitted: This activation option cannot be omitted.

Remark Specify the input file name "cf_file" within 255 characters including the path name.

14.2.2 Activating from CubeSuite
This is started when CubeSuite performs a build, in accordance with the setting on the Property panel, on the [System

Configuration File Related Information] tab.

CHAPTER 14 CONFIGURATOR (CF850 Pro)

User’s Manual U19429EJ1V0UM 243

14.2.3 Command file
The CF850 Pro performs command file support from the objectives that eliminate specified probable activation option

character count restrictions in the command lines.
Description formats of command files are described below.

1) Comment lines
Lines that start with # are treated as comment lines.

2) Activation options
For descriptions of different activation options, insert a space or line-feed code between them.
For descriptions of activation options composed of a parameter and a -xxx part such as -cpu, -i, -c, and -d, insert a
space or line-feed code between the parameter and the -xxx part.

Remark When a parameter (whose path name is path) of -devpath has a folder name that contains a space
code, the parameter must be enclosed in double quotes.

-devpath=”Program Files\DEV”

3) Maximum number of characters
The maximum number of characters that can be written to one single line in command files is 4096.

Figure 14-1 shows an example of command file description.
In the example of Figure 14-1 below, it is assumed that the following activation options are described.

Target device: UPD70F3742
Reference folder for the device file: C:\Program Files\NEC Electronics

CubeSuite\CubeSuite\Device\V850\Devicefile
System information table file: sys.s (not including interrupt entries)
System call table file: sit.s
System information header file: sys.h
System configuration file: sys.cfg

Figure 14-1 Example of Command File

Command File
-cpu
f3742
-devpath="C:\Program Files\NEC Electronics CubeSuite\CubeSuite\Device\V850\Device-
file"
-i
sis.s
-c
sct.s
-d
sys.h
-ne
sys.cfg

CHAPTER 14 CONFIGURATOR (CF850 Pro)

244 User’s Manual U19429EJ1V0UM

14.3 Command Input Examples
Examples of command input for the CF850 Pro are given below.
In this example, the UPD70F3742 is used as the target device.

- cf850pro -cpu f3742 -devpath=”C:\Program Files\NEC Electronics CubeSuite\CubeSuite\Device\V850\Devicefile” -i
sitfile.s -c sctfile.s -d hfile.h -ne cffile.cfg
This command loads system configuration file cffile.cfg from the current folder, and the device file corresponding to
device specification name f3742 from ”C:\Program Files\NEC Electronics CubeSuite\CubeSuite\Device\V850\Device-
file” folder as input files, and then outputs the system information table file (not including interrupt entries) sitfile.s,
system call table file sctfile.s, and system information header file hfile.h.

- cf850pro -cpu f3742 -devpath=”C:\Program Files\NEC Electronics CubeSuite\CubeSuite\Device\V850\Devicefile” -i
sitfile.s -ne cffile.cfg
This command loads system configuration file cffile.cfg from the current folder, and the device file corresponding to
device specification name f3742 from ”C:\Program Files\NEC Electronics CubeSuite\CubeSuite\Device\V850\Device-
file” folder as input files, and then outputs the system information table file (not including interrupt entries) sit.s, system
call table file sct.s, and system information header file cffile.h.

- cf850pro -cpu f3742 -devpath=”C:\Program Files\NEC Electronics CubeSuite\CubeSuite\Device\V850\Devicefile” -c
sctfile.s -ne cffile.cfg
This command loads system configuration file cffile.cfg from the current folder, and the device file corresponding to
device specification name f3742 from ”C:\Program Files\NEC Electronics CubeSuite\CubeSuite\Device\V850\Device-
file” folder as input files, and then outputs the system information table file (not including interrupt entries) sit.s, system
call table file sctfile.s, and system information header file cffile.h.

- cf850pro -cpu f3742 -devpath=”C:\Program Files\NEC Electronics CubeSuite\CubeSuite\Device\V850\Devicefile” -d
hfile.h -ne cffile.cfg
This command loads system configuration file cffile.cfg from the current folder, and the device file corresponding to
device specification name f3742 from ”C:\Program Files\NEC Electronics CubeSuite\CubeSuite\Device\V850\Device-
file” folder as input files, and then outputs the system information table file (not including interrupt entries) sit.s, system
call table file sct.s, and system information header file hfile.h.

- cf850pro -cpu f3742 -devpath=”C:\Program Files\NEC Electronics CubeSuite\CubeSuite\Device\V850\Devicefile” -ne
cffile.cfg
This command loads system configuration file cffile.cfg from the current folder, and the device file corresponding to
device specification name f3742 from ”C:\Program Files\NEC Electronics CubeSuite\CubeSuite\Device\V850\Device-
file” folder as input files, and then outputs the system information table file (not including interrupt entries) sit.s, system
call table file sct.s, and system information header file cffile.h.

- cf850pro -V
This command outputs version information for the CF850 Pro to the standard output.

- cf850pro -help
This command outputs the usage of the activation options for the CF850 Pro to the standard output.

　

User’s Manual　U19429EJ1V0UM 245

APPENDIX A WINDOW REFERENCE

This appendix explains the window/panels that are used when the activation option for the CF850 Pro is specified from
the integrated development environment platform CubeSuite.

A.1 Description
The following shows the list of window/panels.

Table A-1 List of Window/Panels

Window/Panel Name Function Description

Main window This is the first window to be open when CubeSuite is launched.

Project Tree panel This panel is used to display the project components in tree view.

Property panel
This panel is used to display the detailed information on the Realtime OS
node, system configuration file, or the like that is selected on the Project
Tree panel and change the settings of the information.

APPENDIX A WINDOW REFERENCE

246 User’s Manual　U19429EJ1V0UM

Main window

Outline
This is the first window to be open when CubeSuite is launched.
This window is used to control the user program execution and open panels for the build process.

This window can be opened as follows:

- Select Windows® [start] -> [All programs] -> [NEC Electronics CubeSuite] -> [CubeSuite]

Display image

APPENDIX A WINDOW REFERENCE

User’s Manual　U19429EJ1V0UM 247

Explanation of each area
1) Menu bar

Displays the menus relate to realtime OS.
Contents of each menu can be customized in the User Setting dialog box.

- [View]

2) Toolbar
Displays the buttons relate to realtime OS.
Buttons on the toolbar can be customized in the User Setting dialog box. You can also create a new toolbar in the
same dialog box.

- Realtime OS toolbar

3) Panel display area
The following panels are displayed in this area.

- Project Tree panel

- Property panel

- Output panel

See the each panel section for details of the contents of the display.

Note See CubeSuite V850 Build User's Manual for details about the Output panel.

Realtime OS The [View] menu shows the cascading menu to start the tools of realtime
OS.

Resource Information Opens the RD850Pro window.
Note that this menu is disabled when the debug tool is not connected.

Performance Analyzer Opens the AZ850 window.
Note that this menu is disabled when the debug tool is not connected.

Opens the RD850Pro window.
Note that this button is disabled when the debug tool is not connected.

APPENDIX A WINDOW REFERENCE

248 User’s Manual　U19429EJ1V0UM

Project Tree panel

Outline
This panel is used to display the project components such as Realtime OS node, system configuration file, etc. in tree

view.

This panel can be opened as follows:

- From the [View] menu, select [Project Tree].

Display image

APPENDIX A WINDOW REFERENCE

User’s Manual　U19429EJ1V0UM 249

Explanation of each area
1) Project tree area

Project components are displayed in tree view with the following given node.

Context menu
1) When the Realtime OS node, Realtime OS related file node, or Realtime OS generated files node is selected

2) When the nucleus common object, system configuration file, or an information file is selected

Node Description

RX850 Pro(Realtime OS)
(referred to as "Realtime OS node")）

Realtime OS to be used.

xxx.cfg System configuration file.

Realtime OS related file
(referred to as "Realtime OS related file
node")）

The following object appear directly below the node created
when project is added.

- Nucleus common object (.o)

This node and object displayed under this node cannot be
deleted.

Realtime OS generated files
(referred to as "Realtime OS generated files
node")）

The following information files appear directly below the
node created when a system configuration file is added.

- System information table file (.s)

- System information header file (.h)

- System call table file (.s)

This node and files displayed under this node cannot be
deleted directly.
This node and files displayed under this node will no longer
appear if you remove the system configuration file from the
project.

Property Displays the selected node's property on the Property panel.

Assemble

Assembles the selected assembler source file.
Note that this menu is only displayed when a system information table file or
system call table file is selected.
Note that this menu is disabled when the build tool is in operation.

Open Opens the selected file with the application corresponds to the file extension.
Note that this menu is disabled when multiple files are selected.

Open with Internal Editor... Opens the selected file with the Editor panel.
Note that this menu is disabled when multiple files are selected.

Open with Selected
Application...

Opens the Open with Program dialog box to open the selected file with the
designated application.
Note that this menu is disabled when multiple files are selected.

Open Folder with Explorer Opens the folder that contains the selected file with Explorer.

Add Shows the cascading menu to add files and category nodes to the project.

APPENDIX A WINDOW REFERENCE

250 User’s Manual　U19429EJ1V0UM

Add File... Opens the Add Existing File dialog box to add the selected file to the project.

Add New File... Opens the Add File dialog box to create a file with the selected file type and
add to the project.

Add New Category

Adds a new category node at the same level as the selected file. You can
rename the category.
This menu is disabled while the build tool is running, and if categories are
nested 20 levels.

Remove from Project
Removes the selected file from the project.
The file itself is not deleted from the file system.
Note that this menu is disabled when the build tool is in operation.

Copy
Copies the selected file to the clipboard.
When the file name is in editing, the characters of the selection are copied to
the clipboard.

Paste This menu is always disabled.

Rename You can rename the selected file.
The actual file is also renamed.

Property Displays the selected file's property on the Property panel.

APPENDIX A WINDOW REFERENCE

User’s Manual　U19429EJ1V0UM 251

Property panel

Outline
This panel is used to display the detailed information on the Realtime OS node, system configuration file, or the like that

is selected on the Project Tree panel by every category and change the settings of the information.

This panel can be opened as follows:

- On the Project Tree panel, select the Realtime OS node, system configuration file, or the like, and then select the
[View] menu -> [Property] or the [Property] from the context menu.

Note When either one of the Realtime OS node, system configuration file, or the like on the Project Tree panel
while the Property panel is opened, the detailed information of the selected node is displayed.

Display image

Explanation of each area
1) Selected node area

Display the name of the selected node on the Project Tree panel.
When multiple nodes are selected, this area is blank.

2) Detailed information display/change area
In this area, the detailed information on the Realtime OS node, system configuration file, or the like that is selected
on the Project Tree panel is displayed by every category in the list. And the settings of the information can be
changed directly.
Mark indicates that all the items in the category are expanded. Mark indicates that all the items are
collapsed. You can expand/collapse the items by clicking these marks or double clicking the category name
See the section on each tab for the details of the display/setting in the category and its contents.

3) Property description area
Display the brief description of the categories and their contents selected in the detailed information display/change
area.

APPENDIX A WINDOW REFERENCE

252 User’s Manual　U19429EJ1V0UM

4) Tab selection area
Categories for the display of the detailed information are changed by selecting a tab.
In this panel, the following tabs are contained (see the section on each tab for the details of the display/setting on
the tab).

- When the Realtime OS node is selected on the Project Tree panel

- [RX850 Pro] tab

- When the system configuration file is selected on the Project Tree panel

- [System Configuration File Related Information] tab

- [File Information] tab

- When the Realtime OS related file node or Realtime OS generated files node is selected on the Project Tree
panel

- [Category Information] tab

- When the nucleus common object is selected on the Project Tree panel

- [Build Settings] tab

- [File Information] tab

- When the system information table file or system call table file is selected on the Project Tree panel

- [Build Settings] tab

- [Individual Assemble Options] tab

- [File Information] tab

- When the system information header file is selected on the Project Tree panel

- [File Information] tab

Note 1 See CubeSuite V850 Build User's Manual for details about the [File Information] tab, [Category
Information] tab, [Build Settings] tab, and [Individual Assemble Options] tab.

Note 2 When multiple components are selected on the Project Tree panel, only the tab that is common to all the
components is displayed. If the value of the property is modified, that is taken effect to the selected
components all of which are common to all.

[Edit] menu (only available for the Project Tree panel)

Context menu

Undo Cancels the previous edit operation of the value of the property.

Cut While editing the value of the property, cuts the selected characters and copies
them to the clip board.

Copy Copies the selected characters of the property to the clip board.

Paste While editing the value of the property, inserts the contents of the clip board.

Delete While editing the value of the property, deletes the selected character string.

Select All While editing the value of the property, selects all the characters of the
selected property.

Undo Cancels the previous edit operation of the value of the property.

Cut While editing the value of the property, cuts the selected characters and copies
them to the clip board.

APPENDIX A WINDOW REFERENCE

User’s Manual　U19429EJ1V0UM 253

Copy Copies the selected characters of the property to the clip board.

Paste While editing the value of the property, inserts the contents of the clip board.

Delete While editing the value of the property, deletes the selected character string.

Select All While editing the value of the property, selects all the characters of the
selected property.

Reset to Default

Restores the configuration of the selected item to the default configuration of
the project.
For the [Individual Assemble Options] tab, restores to the configuration of the
general option.

Reset All to Default

Restores all the configuration of the current tab to the default configuration of
the project.
For the [Individual Assemble Options] tab, restores to the configuration of the
general option.

APPENDIX A WINDOW REFERENCE

254 User’s Manual　U19429EJ1V0UM

[RX850 Pro] tab

Outline
This tab shows the detailed information on RX850 Pro to be used categorized by the following.

- Version Information

- Library

Display image

Explanation of each area
1) [Version Information]

The detailed information on the version of the RX850 Pro are displayed.

Kernel version

Display the version of RX850 Pro to be used.
Note that the version is set permanently when the project is created, and cannot
be changed.

Default Using RX850 Pro version

How to change Changes not allowed

Install folder

Display the folder in which RX850 Pro to be used is installed with the absolute
path.

Default The folder in which RX850 Pro to be used is installed

How to change Changes not allowed

Register mode

Display the register mode set in the project.
Display the same value as the value of the [Select register mode] property of the
build tool.

Default The register mode selected in the property of the build tool

How to change Changes not allowed

APPENDIX A WINDOW REFERENCE

User’s Manual　U19429EJ1V0UM 255

Note An error occurs if the 26-register mode or 22-register mode in the [Select register mode] property of the
build tool is selected. Although it is possible to run the build and create the load module with this
selection, a warning is output.

2) [Library]
The detailed information on the library are displayed and the configuration can be changed.

Nucleus library

Select the nucleus library which is referred when linking the application.

Default librxp.a

How to change Select from the drop-down list.

Restriction

librxp.a

Refers to librxp.a (a nucleus library that
requires the first four bytes of the memory
block to be zero-cleared when a rel_blk is
issued).

librxpm.a

Refers to librxpm.a (a nucleus library that does
not require the first four bytes of the memory
block to be zero-cleared when a rel_blk is
issued).

Interface library

Select the interface library which is referred when linking the application.

Default libchp.a

How to change Select from the drop-down list.

Restriction
libchp.a Refers to libchp.a (library with parameter

check). All error codes are detected.

libncp.a Refers to libncp.a (library without parameter
check). Detects necessary error codes only.

Nucleus common object

Select the nucleus common object which is linked to the user application.
If the object is changed, the name of the object displayed on the project tree.

Default rxtmcore.o

How to change Select from the drop-down list.

Restriction
rxtmcore.o

Links rxtmcore.o (the acceptance of interrupts
that have higher priority than time interrupts is
enabled in the cyclic handler).

rxcore.o Links rxcore.o (the acceptance of all interrupts
is enabled in the cyclic handler).

APPENDIX A WINDOW REFERENCE

256 User’s Manual　U19429EJ1V0UM

[System Configuration File Related Information] tab

Outline
This tab shows the detailed information on the using system configuration file categorized by the following and the

configuration can be changed.

- System information table file

- System information header file

- System call table file

- Output entry information

Display image

APPENDIX A WINDOW REFERENCE

User’s Manual　U19429EJ1V0UM 257

Explanation of each area
1) [System Information Table File]

The detailed information on the system information table file are displayed and the configuration can be changed.

Generate a file

Select whether to generate a system information table file and whether to update
the file when the system configuration file is changed.

Default Yes(It updates the file when the .cfg file is changed)(-i)

How to change Select from the drop-down list.

Restriction

Yes(It updates the file
when the .cfg file is
changed)(-i)

Generates a new system information
table file and displays it on the project
tree.
If the system configuration file is
changed when there is already a
system information table file, then the
system information table file is
updated.

Yes(It does not
update the file when
the .cfg file is
changed)(-ni)

Does not update the system
information table file when the system
configuration file is changed.
An error occurs during build if this
item is selected when the system
information table file does not exist.

No(It does not
register the file to the
project)(-ni)

Does not generate a system
information table file and does not
display it on the project tree.
If this item is selected when there is
already a system information table
file, then the file itself is not deleted.

Output folder

Specify the folder for outputting the system information table file.
If a relative path is specified, the reference point of the path is the project folder.
If an absolute path is specified, the reference point of the path is the project folder
(unless the drives are different).
The following macro name is available as an embedded macro.
%BuildModeName%: Replaces with the build mode name.
If this field is left blank, macro name "%BuildModeName%" will be displayed.
This property is not displayed when [No(It does not register the file that is added
to the project)(-ni)] in the [Generate a file] property is selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder
dialog box which appears when clicking the [...] button.

Restriction Up to 247 characters

File name

Specify the system information table file name.
If the file name is changed, the name of the file displayed on the project tree.
Use the extension ".s". If the extension is different or omitted, ".s" is
automatically added.
This property is not displayed when [No(It does not register the file that is added
to the project)(-ni)] in the [Generate a file] property is selected.

Default sit.s

How to change Directly enter to the text box.

Restriction Up to 259 characters

APPENDIX A WINDOW REFERENCE

258 User’s Manual　U19429EJ1V0UM

2) [System Information Header File]
The detailed information on the system information header file are displayed and the configuration can be changed.

Generate a file

Select whether to generate a system information header file and whether to
update the file when the system configuration file is changed.

Default Yes(It updates the file when the .cfg file is changed)(-d)

How to change Select from the drop-down list.

Restriction

Yes(It updates the file
when the .cfg file is
changed)(-d)

Generates a system information
header file and displays it on the
project tree.
If the system configuration file is
changed when there is already a
system information header file, then
the system information header file is
updated.

Yes(It does not
update the file when
the .cfg file is
changed)(-nd)

Does not update the system
information header file when the
system configuration file is changed.
An error occurs during build if this
item is selected when the system
information header file does not exist.

No(It does not
register the file to the
project)(-nd)

Does not generate a system
information header file and does not
display it on the project tree.
If this item is selected when there is
already a system information header
file, then the file itself is not deleted.

Output folder

Specify the folder for outputting the system information header file.
If a relative path is specified, the reference point of the path is the project folder.
If an absolute path is specified, the reference point of the path is the project folder
(unless the drives are different).
The following macro name is available as an embedded macro.
%BuildModeName%: Replaces with the build mode name.
If this field is left blank, macro name "%BuildModeName%" will be displayed.
This property is not displayed when [No(It does not register the file that is added
to the project)(-nd)] in the [Generate a file] property is selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder
dialog box which appears when clicking the [...] button.

Restriction Up to 247 characters

File name

Specify the system information header file name.
If the file name is changed, the name of the file displayed on the project tree.
Use the extension ".h". If the extension is different or omitted, ".h" is
automatically added.
This property is not displayed when [No(It does not register the file that is added
to the project)(-nd)] in the [Generate a file] property is selected.

Default kernel_id.h

How to change Directly enter to the text box.

Restriction Up to 259 characters

APPENDIX A WINDOW REFERENCE

User’s Manual　U19429EJ1V0UM 259

3) [System Call Table File]
The detailed information on system call table file are displayed and the configuration can be changed.

Generate a file

Select whether to generate a system call table file and whether to update the file
when the system configuration file is changed.

Default Yes(It updates the file when the .cfg file is changed)(-c)

How to change Select from the drop-down list.

Restriction

Yes(It updates the file
when the .cfg file is
changed)(-c)

Generates a system call table file and
displays it on the project tree.
If the system configuration file is
changed when there is already a
system call table file, then the system
information table file is updated.

Yes(It does not
update the file when
the .cfg file is
changed)(-nc)

Does not update the system call table
file when the system configuration file
is changed.
An error occurs during build if this
item is selected when the system call
table file does not exist.

No(It does not
register the file to the
project)(-nc)

Does not generate a system call table
file and does not display it on the
project tree.
If this item is selected when there is
already a system call table file, then
the file itself is not deleted.

Output folder

Specify the folder for outputting the system call table file.
If a relative path is specified, the reference point of the path is the project folder.
If an absolute path is specified, the reference point of the path is the project folder
(unless the drives are different).
The following macro name is available as an embedded macro.
%BuildModeName%: Replaces with the build mode name.
If this field is left blank, macro name "%BuildModeName%" will be displayed.
This property is not displayed when [No(It does not register the file that is added
to the project)(-nc)] in the [Generate a file] property is selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder
dialog box which appears when clicking the [...] button.

Restriction Up to 247 characters

File name

Specify the system call table file name.
If the file name is changed, the name of the file displayed on the project tree.
Use the extension ".s". If the extension is different or omitted, ".s" is
automatically added.
This property is not displayed when [No(It does not register the file that is added
to the project)(-nc)] in the [Generate a file] property is selected.

Default sct.s

How to change Directly enter to the text box.

Restriction Up to 259 characters

APPENDIX A WINDOW REFERENCE

260 User’s Manual　U19429EJ1V0UM

4) [Output Entry Information]
The detailed information on the output of entry information are displayed and the configuration can be changed.

Generate entry
information

Select whether to output the entry information into the system information table
file.

Default Yes

How to change Select from the drop-down list.

Restriction
Yes

Outputs the entry information into the system
information table file.
The file is not output when [No(It does not
register the file that is added to the project)(-
ni)] on the [Generate a file] property in the
[System Information Table File] category is
selected.

No(-ne) Does not output the entry information into the
system information table file.

APPENDIX B PROGRAMMING METHODS

User’s Manual U19429EJ1V0UM 261

APPENDIX B PROGRAMMING METHODS

This appendix explains how to describe processing programs when using the CA850 C compiler for the NEC
Electronics V850 microcontrollers.

B.1 Outline
In the RX850 Pro, processing programs are classified according to purpose, as shown below.

- Task
The minimum unit of a processing program that can be executed by the RX850 Pro.

- Directly activated interrupt handler
A routine dedicated to interrupt processing. When an interrupt occurs, this handler is activated without using the
RX850 Pro.
Because the RX850 Pro does not intervene, it cannot issue system calls in the handler, but the response speed is
expected to be high.

- Indirectly activated interrupt handler
A routine dedicated to interrupt processing. When an interrupt occurs, this handler is activated upon the completion of
the interrupt preprocessing by the RX850 Pro (such as saving the contents of the registers or switching the stack).
Because interrupt preprocessing is performed by the RX850 Pro, the indirectly activated interrupt handler has an
advantage in that system calls can be issued in the handler, despite response speed being degraded compared with
the directly activated interrupt handler.

- Cyclic handler
A routine dedicated to cyclic processing. Every time the specified time elapses, this handler is activated immediately.
This routine is handled independently of tasks. When the activation time has been reached, therefore, the processing
of the task currently being executed is canceled even if that task has the highest priority relative to all other tasks in
the system, and control is passed to the cyclic handler.
A cyclic handler incurs a smaller overhead before the start of execution, relative to any other cyclic processing
programs written by the user.

- Extended SVC handler
A function registered by the user as an extended system call.
These processing programs have their own basic formats according to the general conventions or conventions to be
applied when the RX850 Pro is used.

B.2 Keywords
The character strings listed below are reserved as keywords for the configurator. These strings cannot, therefore, be

used for other purposes.

clkhdr, clktim, cyc, defstk, flg, flgsvc, ini, inthdr, intstk, intsvc, maxcyc, maxflg, maxint, maxintfactor, maxmbx, maxmpl,
maxpri, maxsem, maxsvc, maxtsk, mbx, mbxsvc, mem, mpl, mplsvc, no_use, prtflg, prtmbx, prtmpl, prtsem, prttsk,
RX850PRO, rxsers, sct_def, sem, semsvc, ser_def, sit_def, SPOL0, SPOL1, svc, syssvc, TA_ASM, TA_DISINT,
TA_ENAINT, TA_HLNG, TA_MFIFO, TA_MPRI, TA_TFIFO, TA_TPRI, TA_WMUL, TA_WSGL, TCY_OFF, TCY_ON,
timsvc, tsk, tsksvc, TTS_DMT, TTS_RDY, UPOL0, UPOL1

APPENDIX B PROGRAMMING METHODS

262 User’s Manual U19429EJ1V0UM

B.3 Reserved Words
The character strings listed below are reserved as external symbols for the RX850 Pro. These strings cannot,
therefore, be used for other purposes.

x, _f_, _e_, _rx_

Remark The use of these character strings is prohibited when a single load module is created. There is no problem if
a symbol starting with any of these character strings is used when a load module that separates the RX850
Pro and application is created.

B.4 Hardware Status When Processing Program Is Activated
The hardware statuses (indicated by the ID bit of sp, tp, gp, ep, and psw) when the processing program is activated are

listed below.

Table B-1 Hardware Status (Task)

Table B-2 Hardware Status (Directly Activated Interrupt Handler)

Table B-3 Hardware Status (Indirectly Activated Interrupt Handler)

Task

Stack pointer (sp) Task stack
(value in the pool area specified during task generation)

Text pointer (tp) Value given when __rx_start is called

Global pointer (gp) alue specified during task generation
(undefined if no_use is specified)

Element pointer (ep) alue specified during task generation
(undefined if no_use is specified)

Interrupt status (ID bit of psw) Value specified during task generation
(default: Interrupts are enabled)

Directly Activated Interrupt Handler

Stack pointer (sp) Stack when an interrupt occurs

Text pointer (tp) Undefined

Global pointer (gp) Value given when an interrupt occurs

Element pointer (ep) Value given when an interrupt occurs

Interrupt status (ID bit of psw) Interrupts are disabled

Indirectly Activated Interrupt Handler

Stack pointer (sp) System stack
(value in the pool area specified during system stack definition)

Text pointer (tp) Undefined
(value given when __rx_start is called)

Global pointer (gp) Value specified during generation of indirectly activated interrupt handler
(undefined if no_use is specified)

Element pointer (ep) Value specified during generation of indirectly activated interrupt handler
(undefined if no_use is specified)

Interrupt status (ID bit of psw) Interrupts are disabled

APPENDIX B PROGRAMMING METHODS

User’s Manual U19429EJ1V0UM 263

Table B-4 Hardware Status (Cyclic Handler)

Table B-5 Hardware Status (Extended SVC Handler)

Table B-6 Hardware Status (Initialization Handler)

Cyclic Handler

Stack pointer (sp) System stack
(value in the pool area specified during system stack definition)

Text pointer (tp) Undefined
(value given when __rx_start is called)

Global pointer (gp) Value specified during cyclic handler generation
(undefined if no_use is specified)

Element pointer (ep) Value specified during cyclic handler generation
(undefined if no_use is specified)

Interrupt status (ID bit of psw) Interrupts are disabled

Extended SVC Handler

Stack pointer (sp) Stack when an extended SVC handler is called

Text pointer (tp) Undefined
(value given when __rx_start is called)

Global pointer (gp) Value specified during extended SVC handler generation
(undefined if no_use is specified)

Element pointer (ep) Value specified during extended SVC handler generation
(undefined if no_use is specified)

Interrupt status (ID bit of psw) Status when an extended SVC handler is called

Initialization Handler

Stack pointer (sp) System stack
(value in the pool area specified during system stack definition)

Text pointer (tp) Undefined
(value given when __rx_start is called)

Global pointer (gp) Value specified during initialization handler generation
(undefined if no_use is specified)

Element pointer (ep) Value specified during initialization handler generation
(undefined if no_use is specified)

Interrupt status (ID bit of psw) Interrupts are disabled

APPENDIX B PROGRAMMING METHODS

264 User’s Manual U19429EJ1V0UM

B.5 Tasks
When describing a task in C language, describe it as a void-type function having one INT-type argument after function

declaration by pragma directive.
An activation code that is specified in Task information during configuration or an activation code that is specified upon

issuance of sta_tsk is specified for the argument (stacd).
Figure B-1 shows the task description format (in C language).

Figure B-1 Task (C Language)

Remark See CubeSuite Coding User's Manual for details about the function declaration by pragma directive.

When describing a task in assembly language, describe it as a function conforming to the function call conventions of
the CA850.

An activation code that is specified in Task information during configuration or an activation code that is specified upon
issuance of sta_tsk is specified for the argument (r6 register).

Figure B-2 shows the task description format (in assembly language).

Figure B-2 Task (Assembly Language)

#include <stdrx85p.h>

#pragma rtos_task func_task

void
func_task (INT stacd)
{
 /*Processing of task func_task*/

 /*Termination of task func_task*/
 ext_tsk ();
}

.include "stdrx85p.inc"

 .text
 .align 4
 .globl _func_task
_func_task :
 #Processing of task func_task

 #Termination of task func_task
 jr _ext_tsk

APPENDIX B PROGRAMMING METHODS

User’s Manual U19429EJ1V0UM 265

B.6 Directly Activated Interrupt Handler

B.6.1 Recommended
Use C (using pragma or the like) or assembly language for coding directly activated interrupt handlers.
See the hardware user's manual for the V850 microcontroller used or CubeSuite Coding User's Manual for details.

B.6.2 To implement functionsequivalent to indirectly activated interrupt handler
Using the directly activated interrupt handler, the functions equivalent to the indirectly activated interrupt handler can be

implemented (such as enabling calling of system calls, etc.).
Assembly language is used for implementation, but it is also possible to code the main processing in C and calling it

using the Jarl instruction.
The register data must be saved before processing for implementation, and restored after the processing.
However, the RX850 Pro provides a macro that performs saving and restoring the register data, which reduces the load

on the user in writing the handlers in assembly language.
If the functions equivalent to the indirectly activated interrupt handler are implemented using the directly activated

interrupt handler, the functions are equivalent but the response speed is degraded. In addition, the definition method is
more complicated than that for the indirectly activated interrupt handler.

That is, there are a few merits in terms of function and performance but there is a demerit in terms of definition
complexity, compared with the indirectly activated interrupt handler.

To use the RX850 Pro functions such as interrupt handler system calls, usually the use of indirectly activated interrupt
handler is therefore recommended.

The following figure shows the description format (in assembly language) of the directly activated interrupt handler when
the CA850 is used.

Figure B-3 Directly Activated Interrupt Handler (Assembly Language)

.include "stdrx85p.inc"

 /*Interrupt entry*/
 .section "int_name", text
 jr _func_inthdr

 .text
 .align 4
 .globl _func_inthdr
_func_inthdr :
 /*Saving registers, switching stack*/
 RTOS_IntEntry

 /*Main processing of directly activated interrupt handler*/
 .extern _inthdr_body
 jarl _inthdr_body, lp

 /*r10: ID of task to be woken up after returning from handler*/
 /*Switching stack, restoring registers*/
 /*Return from directly activated interrupt handler and waking up task*/
 RTOS_IntReturnWakeup r10

APPENDIX B PROGRAMMING METHODS

266 User’s Manual U19429EJ1V0UM

First, describe the interrupt handler entry processing (jr instruction) at the handler address. Refer to the second and
third rows in this example.

Next, describe the interrupt handler main unit processing.
The macro RTOS_IntEntry notifies the RX850 Pro of the activation of the handler, the saving of the temporary register

and lp, and the switching of the task. The other registers (r20 to r30) are then saved, and control is transferred to the
handler. In the above example, the C function, inthdr_body, of the handler is called. Before the execution of the handler
main unit processing, set the tp (text pointer) and gp (global pointer) used by the handler.

As described in "6.3 Directly Activated Interrupt Handler", the values of the gp and tp become undefined. Since this
setting must be described in assembly language, use the __asm instruction as in the above example or the #pragma asm
to pragma endasm directives to describe the handler in C language. In the handler, "the system calls that can be issued
from the handler" explained in the user's manual can be issued.

When the issuance processing of the handler is completed, the registers saved by the user must be restored and
execution must return from the interrupt handler. To wake up a task specified after execution has returned from an
interrupt, the ID of the task to be woken up must be set to register r10. In the above example, a task ID is returned as a
return value when execution returns from inthdr_body, and its value is copied to r10. This operation is performed with the
code output from the CA850.

The reti instruction can also be used to return from the interrupt through simple processing. At that time, data in the
register must be restored before issuing the instruction.

Remark Set a branch instruction that branches to the directly activated interrupt handler at the handler address to
which the processor transfers control if an interrupt occurs. This is done by the .section quasi directive in
Figure B-3.
See CubeSuite Coding User's Manual for details about the .section quasi directive. Specify an interrupt
request name defined in the device file as "int_name".

#include <stdrx85p.h>

ID
inthdr_body (void)
{
 __asm ("mov #__tp_TEXT, tp");
 __asm ("mov #__gp_DATA, gp");

 /*Processing of directly activated interrupt handler func_inthdr*/

 /*Return from directly activated interrupt handler func_inthdr*/
 return (tskid);
}

APPENDIX B PROGRAMMING METHODS

User’s Manual U19429EJ1V0UM 267

B.7 Indirectly Activated Interrupt Handler
When describing an indirectly activated interrupt handler in C language, describe it as an ID-type function having no

argument.
Figure B-4 shows the description format of an indirectly activated interrupt handler (in C language).

Figure B-4 Indirectly Activated Interrupt Handler (C Language)

Remark An indirectly activated interrupt handler is a subroutine called by interrupt processing in the nucleus.
Therefore, when an indirectly activated interrupt handler is described, an instruction for branching to the
indirectly activated interrupt handler needs to be set for the handler address to which the processor passes
control upon the occurrence of an interrupt. This setting must be described in assembly language.
However, because the RX850 Pro provides the processing that should be described as the branch
instruction in the form of a macro, this macro should be used. For example, to use the INTP100 (address:
0x100) maskable interrupt as an indirectly activated interrupt handler, describe as follows.

.section "INTP100"
RTOS_IntEntry_Indirect

The same description is required for clock interrupts since they are handled as indirectly activated interrupt
handlers.

#include <stdrx85p.h>

ID
func_inthdr (void)
{
 /*Processing of indirectly activated interrupt handler func_inthdr*/

 /*Return processing from indirectly activated interrupt handler func_inthdr*/
 return (TSK_NULL);
}

APPENDIX B PROGRAMMING METHODS

268 User’s Manual U19429EJ1V0UM

When describing an indirectly activated interrupt handler in assembly language, describe it as a function conforming to
the function call conventions of the CA850.

Figure B-5 shows the description format of an indirectly activated interrupt handler (in assembly language) when the
CA850 is used.

Figure B-5 Indirectly Activated Interrupt Handler (Assembly Language)

Remark An indirectly activated interrupt handler is a subroutine called by interrupt processing in the nucleus.
Therefore, when an indirectly activated interrupt handler is described, an instruction for branching to the
indirectly activated interrupt handler needs to be set for the handler address to which the processor passes
control upon the occurrence of an interrupt. This setting must be described in assembly language.
However, because the RX850 Pro provides the processing that should be described as the branch
instruction in the form of a macro, this macro should be used. For example, to use the INTP100 (address:
0x100) maskable interrupt as an indirectly activated interrupt handler, describe as follows.

.section "INTP100"
RTOS_IntEntry_Indirect

The same description is required for clock interrupts since they are handled as indirectly activated interrupt
handlers.

.include "stdrx85p.inc"

 .text
 .align 4
 .globl _func_inthdr

_func_inthdr :
 #Processing of indirectly activated interrupt handler func_inthdr

 #Return processing from indirectly activated interrupt handler func_inthdr
 mov TSK_NULL, r10
 jmp [lp]

APPENDIX B PROGRAMMING METHODS

User’s Manual U19429EJ1V0UM 269

B.8 Cyclic Handler
When describing a cyclic handler in C language, describe it as a void-type function having no argument.
Figure B-6 shows the description format of a cyclic handler (in C language).

Figure B-6 Cyclic Handler (C Language)

Remark A cyclic handler is a subroutine called by system clock processing in the nucleus.

When describing a cyclic handler in assembly language, describe it as a function conforming to the function call
conventions of the CA850.

Figure B-7 shows the description format of a cyclic handler (in assembly language) when the CA850 is used.

Figure B-7 Cyclic Handler (Assembly Language)

Remark A cyclic handler is a subroutine called by system clock processing in the nucleus.

#include <stdrx85p.h>

void
func_cychdr (void)
{
 /*Processing of cyclic handler func_cychdr*/

 /*Return processing from cyclic handler func_cychdr*/
 return;
}

.include "stdrx85p.inc"

 .text
 .align 4
 .globl _func_cychdr
_func_cychdr :
 #Processing of cyclic handler func_cychdr

 #Return processing from cyclic handler func_cychdr
 jmp [lp]

APPENDIX B PROGRAMMING METHODS

270 User’s Manual U19429EJ1V0UM

B.9 Extended SVC Handler
When describing an extended SVC handler in C language, describe it as an INT-type function.
Figure B-8 shows the description format of an extended SVC handler (in C language).

Figure B-8 Extended SVC Handler (C Language)

When describing an extended SVC handler in assembly language, describe it as a function conforming to the function
call conventions of the CA850.

Figure B-9 shows the description format of an extended SVC handler (in assembly language).

Figure B-9 Extended SVC Handler (Assembly Language)

#include <stdrx85p.h>

INT
func_svchdr (VW prm1, VW prm2, VW prm3)
{
 int ret;

 /*Processing of extended SVC handler func_svchdr*/

 /*Return processing from extended SVC handler func_svchdr*/
 return (INT ret);
}

.include "stdrx85p.inc"

 .text
 .align 4
 .globl _func_svchdr
_func_svchdr :
 #Processing of extended SVC handler func_svchdr

 #Return processing from extended SVC handler func_svchdr
 mov ret, r10
 jmp [lp]

APPENDIX C MEMORY AND MEMORY CAPACITY ESTIMATION

User’s Manual U19429EJ1V0UM 271

APPENDIX C MEMORY AND MEMORY CAPACITY ESTI-
MATION

This chapter explains how the RX850 Pro manages the memory (RAM), and the memory capacity used.

C.1 SPOL and UPOL
The RX850 Pro uses the following 4 RAM areas:

SPOL0: System Memory Pool 0
SPOL1: System Memory Pool 1
UPOL0: User Memory Pool 0
UPOL1: User Memory Pool 1

The location information of these memory areas is determined by specifying their "first address" and "size" in the system
configuration file. In other words, the addresses and size of the usable RAM areas must be specified.

The usage of these memory pools are predetermined as indicated in the table below.

Table C-1 Types of Memory Pools and Assigned Items

SPOL0 must always be generated because information on the system of the RX850 Pro is located in this memory pool.
SPOL1 does not have to be generated if SPOL0 suffices. It is possible to improve the performance of the system by
locating SPOL0, in which management blocks are located, in the internal RAM, and SPOL1, which requires a relatively
large size, in the external RAM.

UPOL1 is necessary for using the memory management function of the RX850 Pro. In this case, also create UPOL0. It
is not possible to create just UPOL1.

Memory Pool Name Assigned Items

SPOL0

Operating system management table (SBT)
Ready queue
Management blocks
Stack for task
Stack for interrupt handler

SPOL1
Stack for task
Stack for interrupt handler
Memory pool

UPOL0 Memory pool

UPOL1 Memory pool

APPENDIX C MEMORY AND MEMORY CAPACITY ESTIMATION

272 User’s Manual U19429EJ1V0UM

C.2 Memory Capacity in Management Area
This section explains the size used by the operating system management table and management blocks of the RX850

Pro. The operating system management table and management blocks are reserved from SPOL0. Table C-2 shows the
size of a management

area used per object and how to calculate the size.

Table C-2 Size of Object Management Area

Object Name Management Area Size
Per Object (in bytes) Size Calculation Method (in bytes)

Operating system management
table, ready queue 520 to 1048

504 + align 32 (Task priority range + 4) / 8 +
align 4 ((Task priority range + 4) * 2)

“Task priority range" is the value of pri_lvl of the
System maximum value information specified
during configuration.

System memory area
management block 8

8 * 4 = 32

8 bytes for SPOL0, SPOL1, UPOL0, and
UPOL1 each. Even when all the 4 memory
pools are not created, 32 bytes are always
reserved because 4 tables are always reserved.

Task management block 56

56 * Maximum number of tasks

"Maximum number of tasks" is the value of
tsk_cnt of the System maximum value
information specified during configuration.

Semaphore management block 20

20 * Maximum number of semaphores

"Maximum number of semaphores" is the value
of sem_cnt of the System maximum value
information specified during configuration.

Eventflag management block 20

20 * Maximum number of eventflags

"Maximum number of eventflags" is the value of
flg_cnt of the System maximum value
information specified during configuration.

Mailbox management block 20

20 * Maximum number of mailboxes

"Maximum number of mailboxes" is the value of
mbx_cnt of the System maximum value
information specified during configuration.

Interrupt handler management
block 16

16 * Maximum number of interrupt handlers +
align 4 (Maximum interrupt source number)

"Maximum number of interrupt handlers" is the
value of ith_cnt of the System maximum value
information specified during configuration.
"Maximum interrupt source number" is the value
of itf_cnt of the System maximum value
information specified during configuration.

Cyclic handler management block 40

40 * Maximum number of cyclic handlers

"Maximum number of cyclic handlers" is the
value of cyc_cnt of the System maximum value
information specified during configuration.

Memory pool management block 24

24 * Maximum number of memory pools

"Maximum number of memory pools" is the
value of mpl_cnt of the System maximum value
information specified during configuration.

APPENDIX C MEMORY AND MEMORY CAPACITY ESTIMATION

User’s Manual U19429EJ1V0UM 273

Extended SVC handler
management block 16

16 * Maximum number of extended SVC
handlers

"Maximum number of extended SVC handlers"
is the value of svc_cnt of the System maximum
value information specified during configuration.

Object Name Management Area Size
Per Object (in bytes) Size Calculation Method (in bytes)

APPENDIX C MEMORY AND MEMORY CAPACITY ESTIMATION

274 User’s Manual U19429EJ1V0UM

C.3 Capacity of Task Stack
The task stack area is classified into the following 4 areas:

- Stack management block

- Context area

- Interrupt stack frame

- Task area

When generating a task (during configuration or when cre_tsk is issued), the task stack size must be specified. The
specified value is the total size of the interrupt stack frame and the area used for tasks. For the stack size actually secured
on the memory, the sizes of the stack management table and context area and the value aligned to 4 bytes are also
added.

The size of the "task area" varies depending on the user application. However, the size of the "stack management
block", "context area", and "interrupt stack frame" is predetermined, as follows.

Table C-3 Size Used for Task Stack

When a task is generated (during configuration or when cre_tsk is issued) and 100 bytes is specified for the task stack
size, the stack size actually secured on the memory is as follows.

100 + 28 + 148 = 276 bytes

If the extended SVC handler is started from a task, an area in which registers are saved for handler execution and the
stack area consumed by the SVC handler are necessary. The size of these areas is as follows.

Table C-4 Size of Task Stack Used for Extended SVC Handler

The task stack area is reserved from SPOL0 or SPOL1 when a task is created, and is released when the task is deleted
(by del_tsk, exd_tsk, or ter_tsk). If there is a possibility that all tasks could be simultaneously created, therefore, the size of
each task must be calculated and the size of SPOL0 and SPOL1 must be determined so that the total size of all the tasks
can be reserved. If all tasks are not created at the same time, calculate the maximum size of the combination of tasks that
are created at the sometime, and determine the size of SPOL0 and SPOL1 based on this size.

Next, the method for calculating the task stack size is summarized. The total size of the all items is the size that must be
secured as the memory area, and the total size of the shaded portions shall be specified as the task stack size when a
task is generated (during configuration or when cre_tsk is issued). The value secured for the memory size must be aligned
to 4 bytes.

Task Stack Area Size (in bytes)

Stack management block 28

Context area
(Interrupt stack frame: 72 bytes) 148

Task area Depends on application

Task Stack Area Size (in bytes)

Register saving area for extended
SVC handler 28

Extended SVC handler area Depends on application

APPENDIX C MEMORY AND MEMORY CAPACITY ESTIMATION

User’s Manual U19429EJ1V0UM 275

Table C-5 Summary of Size Used for Task Stack

Task Stack Area Size (in bytes) Remark

Stack management block 28 -

Context area
(Interrupt stack frame: 72 bytes) 148 -

Task area Depends on application

Calculate and specify size of stack where
tasks are pushed and popped.
Take the number of variables used into
consideration.
Add 4 bytes because the RX850 Pro pushes lp
(r31) when a system call is issued from a task.

Register saving area extended
SVC handler 28 Unnecessary if the extended SVC handler is

not used

Extended SVC handler area Depends on application

Unnecessary if the extended SVC handler is
not used.
Add 4 bytes because the RX850 Pro pushes lp
(r31) when a system call is issued from the
extended SVC handler.

APPENDIX C MEMORY AND MEMORY CAPACITY ESTIMATION

276 User’s Manual U19429EJ1V0UM

C.4 Capacity of Stack for Interrupt Handler
The stack area for the interrupt handler is used by the following 4 handlers and task.

- Initialization handler

- Idle task

- Interrupt handler

- Cyclic handler

The size used by each handler or task is explained below.

1) Initialization handler
Reserve an area of the size consumed by functions (for pushing and popping) described as the initialization
handler. While the initialization handler is being executed, no task or interrupt handler is started. If the consumed
size is less than the area size explained in 2 below, therefore, the stack size consumed by the initialization handler
does not have to taken into account.

2) Idle task
A stack area is consumed by an interrupt that occurs before the next task is executed while an idle task is being
executed or after a task has been terminated (by issuance of del_tsk, exd_tsk, or ter_tsk). The size of this area is
72 bytes. In some cases, the more stack area may be necessary. In those cases, refer to “3) Interrupt handler”
below and the sections that follow.
Because this 72-byte stack area is added during initialization processing, it does not have to be taken into account
during configuration. This means that the memory size actually reserved is the stack area for interrupt handlers
specified during configuration plus 72 bytes.

3) Interrupt handler
When an interrupt is generated for the first time (when a task is interrupted), an interrupt handler is generated in a
task stack or an area for idle tasks described in "2) Idle task". If multiple interrupts may occur after that, the
interrupt stack frame size multiplied by the maximum nest count must be added.
To activate an interrupt handler, an additional 28 bytes must be secured as the register data save area, separately
from the interrupt stack frame size. This is the total amount that, for example, after information of the interrupt stack
frame is stored in a task stack, the stack pointer (sp) points to the stack for the interrupt handler, and additional data
is stored. This size must be considered in a system in which multiple interrupts are enabled. Therefore, multiply 28
by "the maximum interrupt nest count + 1 (for the first interrupt)" and add the value to the stack size used by the
interrupt handler.
Moreover, add the additional stack size by making allowances for the case where a function that is used as an
interrupt handler consumes the stack for pushing or popping the stack elements, and interrupt nests are at the
maximum count. That is, add 4 bytes when issuing system calls in the interrupt handler, or 28 bytes when issuing
an extended SVC handler. Add an additional 4 bytes if system calls are issued in the extended SVC handler.
The clock handler is treated as an interrupt handler that does not consume the stack by pushing and popping.
Calculate the stack size taking this into consideration.

4) Cyclic handler
The cyclic handler is provided as a subroutine that is called by the clock handler.
If another cyclic handler is started because a new clock interrupt occurs while 1 cyclic handler is being executed,
the processing of the cyclic handler already under execution takes precedence. Therefore, add the maximum stack
size consumed by the function of all the functions described as a cyclic handler to the size of the handler stack.

APPENDIX C MEMORY AND MEMORY CAPACITY ESTIMATION

User’s Manual U19429EJ1V0UM 277

The table below summarizes the methods of calculating the size of the stack for interrupt handlers. The total size must
be reserved as a memory area, and the total of the shaded sizes is the size for the interrupt handler specified during
configuration. Note that the value reserved on the memory area is aligned to 4 bytes.

Table C-6 Stack Size for Interrupt Handler in System Not Enabling Multiple Interrupts

This table indicates the stack size used when multiple interrupts are not enabled. If the cyclic handler is interrupted and
if that interrupt is acknowledged, this is equivalent to multiple interrupts. In other words, the stack size in this table applies
to an application that is executed when rxtmcore.o (version that can acknowledge an interrupt with a higher priority than
the clock interrupt in the cyclic handler) is used as the nucleus common object, when an interrupt with a priority higher
than that of the clock interrupt is not used, and when all the interrupt handlers are disabled.

Interrupt Handler Stack Area Size (in bytes) Remarks

Idle task area 144 -

Register saving area for interrupt
handler 28 -

Interupt handler area Depends on application

Calculate and specify the size of the stack
where the interrupt handler pushes and pops.
Take the number of variables used into
consideration.
Add 4 bytes because the RX850 Pro pushes lp
(r31) when a system call is issued from an
interrupt handler.
Specify the stack size used by the handler
(including a cyclic handler) that uses the stack
most of all the interrupt handlers used.

Register saving area for extended
SVC handler\ 28 Unnecessary if an interrupt handler does not

call the extended SVC handler.

Extended SVC handler area Depends on application

Unnecessary if an interrupt handler does not
call the extended SVC handler.
Add 4 bytes because the RX850 Pro pushes lp
(r31) when a system call is issued from the
extended SVC handler.

APPENDIX C MEMORY AND MEMORY CAPACITY ESTIMATION

278 User’s Manual U19429EJ1V0UM

Table C-7 Stack Size for Interrupt Handler in System Enabling Multiple Interrupts

In the above table, n indicates the maximum number of times interrupts are nested, and m indicates the number of
interrupt handlers using the extended SVC handler.

Interrupt Handler Stack Area Size (in bytes) Remarks

Idle task area 144 -

Interrupt stack frame 72 * n -

Register saving area for interrupt
handler 28 * (n+1) -

Interupt handler area Depends on application

Calculate and specify the size of the stack
where the interrupt handler pushes and pops.
Take the number of variables used into
consideration.
Add 4 bytes because the RX850 Pro pushes lp
(r31) when a system call is issued from an
interrupt handler.
Specify the stack size used by the handler
(including a cyclic handler) that uses the stack
most of all the interrupt handlers used.

Register saving area for extended
SVC handler 28 * m Unnecessary if an interrupt handler does not

call the extended SVC handler.

Extended SVC handler area Depends on application

Unnecessary if an interrupt handler does not
call the extended SVC handler.
Add 4 bytes because the RX850 Pro pushes lp
(r31) when a system call is issued from the
extended SVC handler.

APPENDIX C MEMORY AND MEMORY CAPACITY ESTIMATION

User’s Manual U19429EJ1V0UM 279

Figure C-1 Estimation of Stack Area for Interrupt Handlers

Interrupt handler 2

Interrupt handler 3
(multiple interrupts disabled)

Interrupt handler 1
(multiple interrupts enabled)

Clock handler
(multiple interrupts enabled)

4

28 （20）

72

4

4

28 （20）

72

72

28 （20）

28 （20）

72

Area to which register data is saved by clock handler

Area used when an interrupt occurs while an idle task is running

Area used when an interrupt occurs

Area to which register data saved upon

Area used by the interrupt handler

Issuance of extended SVC

Issuance of system calls from interrupt handler

Area used by the extended

Issuance of system calls

(multipleinterrupts disabled)

Automatically added
during initialization

Size that must be specified
during configuration

interrupt handler activation

4

28 （20）

from extended SVC handler

SVC handler

handler from interrupt handler

APPENDIX C MEMORY AND MEMORY CAPACITY ESTIMATION

280 User’s Manual U19429EJ1V0UM

C.5 Memory Pool Capacity
The following describes the capacity of memory areas (system memory, memory pool, and memory block).
The memory area is secured using the procedure as follows:

- Secure an area from the system memory (UPOL0 or UPOL1) (mem during configuration)

- Secure a memory pool from the system memory (UPOL0 or UPOL1) (during configuration or when cre_mpl is issued)

- Acquire a memory block from the memory pool (by issuing get_blk, pget_blk, or tget_blk)

The capacity of each memory area (system memory, memory pool, memory block) must be obtained by adding 8 bytes
to the size actually used by the application (for memory area management), and aligning the value to 4 bytes.

Table C-8 Size of Memory Pool

Object Name Method of Calculating Size (in bytes)

Memory pool
align 4 (Size of memory pool + 8)

The value of the memory pool size is the same as the value at the time of the
issuance of cre_mpl or the value of Memory pool information mpl_siz.

APPENDIX C MEMORY AND MEMORY CAPACITY ESTIMATION

User’s Manual U19429EJ1V0UM 281

C.6 Examples of Estimating Memory Capacity
This section shows examples of estimating the capacity of the memory area used as the management area (SPOL and

UPOL) of the RX850 Pro. In these examples, it is assumed that the V850E1 core is used as the CPU, and that the system
calls "cre_tsk" and "cre_mpl" are not issued.

< Application information >

Information Value (in bytes)

Stack area for interrupt handler
intstk_siz 256 bytes from SPOL0

Task priority range
pri_lvl 15

Maximum number of tasks
maxtsk 2

Maximum number of semaphores
maxsem 1

Maximum number of eventflags
maxflg 2

Maximum number of mailboxes
maxmbx 3

Maximum number of interrupt
handlers
maxint

4

Maximum number of memory
pools
maxmpl

2

Maximum number of cyclic han-
dlers
maxcyc

1

Maximum number of extended
SVC handlers
maxsvc

1

Maximum interrupt source
number
maxintfactor

56

Task stack information 256 bytes from SPOL0
0 byte from SPOL1

Temory pool information 4096 bytes from UPOL0
8192 bytes from UPOL1

APPENDIX C MEMORY AND MEMORY CAPACITY ESTIMATION

282 User’s Manual U19429EJ1V0UM

< Estimation method] >

From the above calculation result, the following capacity is necessary.

SPOL0: 548 + 32 + 112 + 20 + 40 + 60 + 120 + 48 + 40 + 16 + 864 + 428 = 2328 bytes
SPOL1: 0 bytes
UPOL0: 4104 bytes
UPOL1: 8200 bytes

Object Information Calculation Expression Size (in bytes)

Operating system management
table

[from SPOL0]
504 + align 32 (15 + 4) / 8 + align 4 ((15 + 4) * 2) = 548

System memory management
block

[from SPOL0]
8 * 4 = 32

Task management block [from SPOL0]
56 * 2 = 112

Semaphore management block [from SPOL0]
20 * 1 = 20

Eventflag management bloc [from SPOL0]
20 * 2 = 40

Mailbox management block [from SPOL0]
20 * 3 = 60

Interrupt handler management
block

[from SPOL0]
16 * 4 + align 4 (56) = 120

Memory pool management block [from SPOL0]
24 * 2 = 48

Cyclic handler management block [from SPOL0]
40 * 1 = 40

Extended SVC handler
management block

[from SPOL0]
16 * 1 = 16

Task stack [from SPOL0]
align 4 (28 + 148 + 256) + align 4 (28 + 148 + 256) = 864

Interrupt handler stack [from SPOL0]
align 4 (144 + 28 + 256) = 428

Memory pool

[from UPOL0]
4096 + 8 = 4104
[from UPOL1]
8192 + 8 = 8200

User’s Manual U19429EJ1V0UM 283

A
act_cyc .. 193
Activation Option ... 241

C
can_wup .. 123
chg_icr ... 169
chg_pri .. 108
clkhdr ... 210
clktim ... 210
clr_flg ... 140
Command File ... 243
Configuration Information .. 204
Configurator .. 240
cputype .. 210
cre_flg ... 136
cre_mbx .. 150
cre_mpl ... 174
cre_sem .. 125
cre_tsk ... 98
cyc ... 221

D
def_cyc .. 191
def_int ... 163
defstk ... 210
def_svc .. 200
del_flg .. 138
del_mbx ... 152
del_mpl .. 176
del_sem ... 127
del_tsk ... 101
Directly Activated Interrupt Handler 56, 265
dis_dsp .. 106
dis_int .. 166
dly_tsk ... 190

E
ena_dsp .. 107
ena_int .. 165
Event Flag Information .. 217
exd_tsk .. 104
Extended SVC Handler Information 223
ext_tsk ... 103

F
flg ... 217
flgsvc .. 227
frsm_tsk ... 119

G
get_blk ... 177
get_tid .. 112
get_tim ... 189
get_ver ... 197

I
ini ... 224
Initialization Handler Information 224
Interrupt Source Numbers ... 55
inthdr .. 219
intstk .. 210
intsvc .. 229

L
loc_cpu .. 167

M
Mailbox Information ... 218
Main window .. 246
maxcyc ... 212
maxflg .. 212
maxint .. 212
maxintfactor ... 212
maxmbx ... 212
maxmpl .. 212
maxpri .. 212
maxsem ... 212
maxsvc ... 212
maxtsk ... 212
mbx .. 218
mbxsvc ... 228
mem ... 213
Memory Pool Information ... 220
mpl ... 220
mplsvc .. 230

APPENDIX D INDEX

284 User’s Manual U19429EJ1V0UM

P
pget_blk ... 179
pol_flg .. 143
prcv_msg ... 156
preq_sem .. 130
Project Tree panel ... 248
Property panel ... 251
prtflg .. 210
prtmbx ... 210
prtmpl .. 210
prtsem ... 210
prttsk ... 210

R
rcv_msg ... 155
Real-Time OS Information .. 209
ref_cyc ... 195
ref_flg .. 147
ref_icr .. 171
ref_mbx ... 159
ref_mpl .. 184
ref_sem ... 133
ref_sys ... 199
ref_tsk ... 113
rel_blk .. 182
rel_wai ... 111
rot_rdq ... 110
rsm_tsk .. 118
[RX850 Pro] tab ... 254
RX Series Information ... 209
rxsers .. 209

S
Scheduler .. 76
SCT Information .. 225
sem ... 216
Semaphore Information ... 216
semsvc .. 226
set_flg .. 139
set_tim ... 188
sig_sem ... 128
SIT Information .. 210
slp_tsk ... 120
snd_msg .. 153
sta_tsk ... 102
sus_tsk .. 117
svc ... 223
syssvc ... 232
[System Configuration File Related Information] tab ... 256

System Calls .. 90
System Configuration File .. 203
System Construction .. 19
SystemInformation ... 210
System Maximum Value Information 212
System Memory Information .. 213

T
Task Information .. 214
Task Management Function .. 35
ter_tsk .. 105
tget_blk .. 180
Time Management Function .. 69
timsvc ... 231
trcv_msg .. 157
tsk .. 214
tsksvc ... 225
tslp_tsk ... 121
twai_flg ... 145
twai_sem .. 131

U
unl_cpu .. 168

V
vget_fid .. 149
vget_mid .. 161
vget_pid ... 186
vget_sid ... 135
vget_tid .. 115
viss_svc ... 202

W
wai_flg .. 141
wai_sem ... 129
wup_tsk .. 122

User’s Manual U19429EJ1V0UM 285

[MEMO]

NEC Electronics Corporation
1753, Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8668,
Japan
Tel: 044-435-5111
http://www.necel.com/

[America]

NEC Electronics America, Inc.
2880 Scott Blvd.
Santa Clara, CA 95050-2554, U.S.A.
Tel: 408-588-6000
 800-366-9782
http://www.am.necel.com/

[Asia & Oceania]

NEC Electronics (China) Co., Ltd
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian
District, Beijing 100083, P.R.China
Tel: 010-8235-1155
http://www.cn.necel.com/

Shanghai Branch
Room 2509-2510, Bank of China Tower,
200 Yincheng Road Central,
Pudong New Area, Shanghai, P.R.China P.C:200120
Tel:021-5888-5400
http://www.cn.necel.com/

Shenzhen Branch
Unit 01, 39/F, Excellence Times Square Building,
No. 4068 Yi Tian Road, Futian District, Shenzhen,
P.R.China P.C:518048
Tel:0755-8282-9800
http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.
Unit 1601-1613, 16/F., Tower 2, Grand Century Place,
193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: 2886-9318
http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R. O. C.
Tel: 02-8175-9600
http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,
#12-08 Novena Square,
Singapore 307684
Tel: 6253-8311
http://www.sg.necel.com/

NEC Electronics Korea Ltd.
11F., Samik Lavied’or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku,
Seoul, 135-080, Korea
Tel: 02-558-3737
http://www.kr.necel.com/

For further information,
please contact:

G0706

[Europe]

NEC Electronics (Europe) GmbH
Arcadiastrasse 10
40472 Düsseldorf, Germany
Tel: 0211-65030
http://www.eu.necel.com/

Hanover Office
Podbielskistrasse 166 B
30177 Hannover
Tel: 0 511 33 40 2-0

Munich Office
Werner-Eckert-Strasse 9
81829 München
Tel: 0 89 92 10 03-0

Stuttgart Office
Industriestrasse 3
70565 Stuttgart
Tel: 0 711 99 01 0-0

United Kingdom Branch
Cygnus House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 6NP, U.K.
Tel: 01908-691-133

Succursale Française
9, rue Paul Dautier, B.P. 52
78142 Velizy-Villacoublay Cédex
France
Tel: 01-3067-5800

Sucursal en España
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 091-504-2787

Tyskland Filial
Täby Centrum
Entrance S (7th floor)
18322 Täby, Sweden
Tel: 08 638 72 00

Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, Italy
Tel: 02-667541

Branch The Netherlands
Steijgerweg 6
5616 HS Eindhoven
The Netherlands
Tel: 040 265 40 10

	COVER
	INTRODUCTION
	CHAPTER 1 OVERVIEW
	1.1 Outline
	1.1.1 Real-time OS
	1.1.2 Multitask OS

	1.2 Applications

	CHAPTER 2 SYSTEM CONSTRUCTION
	2.1 Outline
	2.2 Creating System Configuration File
	2.3 Creating System Initialization Processing
	2.3.1 Boot processing
	2.3.2 Hardware initialization module
	2.3.3 Nucleus initialization module
	2.3.4 Initialization handler
	2.3.5 Interrupt entry

	2.4 Creating Processing Programs
	2.5 Creating Initialization Data Save Area
	2.6 Creating Llink Directive File
	2.7 Creating Load Module
	2.8 Embedding System

	CHAPTER 3 NUCLEUS
	3.1 Outline
	3.2 Functions

	CHAPTER 4 TASK MANAGEMENT FUNCTION
	4.1 Outline
	4.2 Task States
	4.3 Creating Tasks
	4.4 Activating Tasks
	4.5 Terminating Tasks
	4.6 Deleting Tasks
	4.7 Internal Processing of Task
	4.7.1 Acquiring task information
	4.7.2 Acquiring ID number

	CHAPTER 5 SYNCHRONOUS COMMUNICATION FUNCTIONS
	5.1 Outline
	5.2 Semaphores
	5.2.1 Generating semaphores
	5.2.2 Deleting semaphores
	5.2.3 Returning resources
	5.2.4 Acquiring resources
	5.2.5 Acquiring semaphore information
	5.2.6 Acquiring ID number
	5.2.7 Exclusive control using semaphores

	5.3 Eventflags
	5.3.1 Generating eventflags
	5.3.2 Deleting eventflags
	5.3.3 Setting a bit pattern
	5.3.4 Clearing a bit pattern
	5.3.5 Checking a bit pattern
	5.3.6 Acquiring eventflag information
	5.3.7 Acquiring ID number
	5.3.8 Wait function using eventflags

	5.4 Mailboxes
	5.4.1 Generating mailboxes
	5.4.2 Deleting mailboxes
	5.4.3 Transmitting a message
	5.4.4 Receiving a message
	5.4.5 Messages
	5.4.6 Acquiring mailbox information
	5.4.7 Acquiring ID number
	5.4.8 Inter task communication using mailboxes

	CHAPTER 6 INTERRUPT MANAGEMENT FUNCTION
	6.1 Outline
	6.2 Interrupt Handler
	6.2.1 Interrupt source numbers

	6.3 Directly Activated Interrupt Handler
	6.3.1 Registering directly activated interrupt handler
	6.3.2 Processing in directly activated interrupt handler

	6.4 Indirectly Activated Interrupt Handler
	6.4.1 Registering indirectly activated interrupt handler
	6.4.2 Processing in indirectly activated interrupt handler

	6.5 Disabling/Resuming Maskable Interrupt Acknowledgement
	6.6 Changing/Acquiring Interrupt Control Register
	6.7 Non-Maskable Interrupts
	6.8 Clock Interrupts
	6.9 Multiple Interrupts

	CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTION
	7.1 Outline
	7.2 Management Objects
	7.3 Memory Pool and Memory Blocks
	7.3.1 Generating a memory pool
	7.3.2 Deleting a memory pool
	7.3.3 Acquiring a memory block
	7.3.4 Returning a memory block
	7.3.5 Acquiring memory pool information
	7.3.6 Acquiring ID number
	7.3.7 Dynamic management of memory block by memory pool

	CHAPTER 8 TIME MANAGEMENT FUNCTION
	8.1 Outline
	8.2 System Clock
	8.2.1 Setting and reading the system clock

	8.3 Timer Operations
	8.4 Delayed Task Wake-Up
	8.5 Timeout
	8.6 Cyclic Handler
	8.6.1 Registering a cyclic handler
	8.6.2 Activity state of cyclic handler
	8.6.3 Internal processing performed by cyclic handler
	8.6.4 Acquiring cyclic handler information
	8.6.5 Interrupts in cyclic handler

	CHAPTER 9 SCHEDULER
	9.1 Outline
	9.2 Drive Method
	9.3 Scheduling Method
	9.3.1 Priority method
	9.3.2 FCFS method

	9.4 Implementing a Round-Robin Method
	9.5 Scheduling Lock Function
	9.6 Scheduling While Handler Is Operating
	9.7 Idle Handler

	CHAPTER 10 SYSTEM INITIALIZATION
	10.1 Outline
	10.2 Boot Processing
	10.3 Hardware Initialization Module
	10.4 Nucleus Initialization Module
	10.5 Initialization Handler
	10.6 Interrupt Entry

	CHAPTER 11 INTERFACE LIBRARY
	11.1 Outline
	11.2 Processing in the Interface Library
	11.3 Types of Interface Libraries
	11.4 Change Interface Libraries
	11.5 System Call Interface Library
	11.6 Extended SVC Handler Interface Library

	CHAPTER 12 SYSTEM CALLS
	12.1 Outline
	12.2 Calling System Calls
	12.3 System Call Function Codes
	12.4 Data Types of Parameters
	12.5 Parameter Value Range
	12.6 System Call Return Values
	12.7 System Call Extension
	12.8 Explanation of System Calls
	12.8.1 Task management system calls
	cre_tsk
	del_tsk
	sta_tsk
	ext_tsk
	exd_tsk
	ter_tsk
	dis_dsp
	ena_dsp
	chg_pri
	rot_rdq
	rel_wai
	get_tid
	ref_tsk
	vget_tid

	12.8.2 Task-associated synchronization system calls
	sus_tsk
	rsm_tsk
	frsm_tsk
	slp_tsk
	tslp_tsk
	wup_tsk
	can_wup

	12.8.3 Synchronous communication system calls
	cre_sem
	del_sem
	sig_sem
	wai_sem
	preq_sem
	twai_sem
	ref_sem
	vget_sid
	cre_flg
	del_flg
	set_flg
	clr_flg
	wai_flg
	pol_flg
	twai_flg
	ref_flg
	vget_fid
	cre_mbx
	del_mbx
	snd_msg
	rcv_msg
	prcv_msg
	trcv_msg
	ref_mbx
	vget_mid

	12.8.4 Interrupt management system calls
	def_int
	ena_int
	dis_int
	loc_cpu
	unl_cpu
	chg_icr
	ref_icr

	12.8.5 Memory pool management system calls
	cre_mpl
	del_mpl
	get_blk
	pget_blk
	tget_blk
	rel_blk
	ref_mpl
	vget_pid

	12.8.6 Time management system calls
	set_tim
	get_tim
	dly_tsk
	def_cyc
	act_cyc
	ref_cyc

	12.8.7 System management system calls
	get_ver
	ref_sys
	def_svc
	viss_svc

	CHAPTER 13 SYSTEM CONFIGURATION FILE
	13.1 Outline
	13.2 Declaration
	13.3 Configuration Information
	13.3.1 Real-time OS information
	13.3.2 SIT information
	13.3.3 SCT information

	13.4 Specification Format for Real-Time OS Information
	13.4.1 RX series information

	13.5 Specification Format for SIT Information
	13.5.1 System information
	13.5.2 System maximum value information
	13.5.3 System memory information
	13.5.4 Task information
	13.5.5 Semaphore information
	13.5.6 Eventflag information
	13.5.7 Mailbox information
	13.5.8 Indirectly activated interrupt handler information
	13.5.9 Memory pool information
	13.5.10 Cyclic handler information
	13.5.11 Extended SVC handler information
	13.5.12 Initialization handler information

	13.6 Specification Format for SCT Information
	13.6.1 Task management/task-associated synchronization management function system call information
	13.6.2 Synchronous communication (semaphore) management function system call information
	13.6.3 Synchronous communication (eventflag) management function system call information
	13.6.4 Synchronous communication (mailbox) management function system call information
	13.6.5 Interrupt management function system call information
	13.6.6 Memory pool management function system call information
	13.6.7 Time management function system call information
	13.6.8 System management function system call information

	13.7 Cautions
	13.8 Description Example

	CHAPTER 14 CONFIGURATOR (CF850 Pro)
	14.1 Outline
	14.2 Activation Method
	14.2.1 Activating from command line
	14.2.2 Activating from CubeSuite
	14.2.3 Command file

	14.3 Command Input Examples

	APPENDIX A WINDOW REFERENCE
	A.1 Description
	Main window
	Project Tree panel
	Property panel
	[RX850 Pro] tab
	[System Configuration File Related Information] tab

	APPENDIX B PROGRAMMING METHODS
	B.1 Outline
	B.2 Keywords
	B.3 Reserved Words
	B.4 Hardware Status When Processing Program Is Activated
	B.5 Tasks
	B.6 Directly Activated Interrupt Handler
	B.6.1 Recommended
	B.6.2 To implement functionsequivalent to indirectly activated interrupt handler

	B.7 Indirectly Activated Interrupt Handler
	B.8 Cyclic Handler
	B.9 Extended SVC Handler

	APPENDIX C MEMORY AND MEMORY CAPACITY ESTIMATION
	C.1 SPOL and UPOL
	C.2 Memory Capacity in Management Area
	C.3 Capacity of Task Stack
	C.4 Capacity of Stack for Interrupt Handler
	C.5 Memory Pool Capacity
	C.6 Examples of Estimating Memory Capacity

	APPENDIX D INDEX

