

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

User’s Manual

Target device
V850 family™

Target real-time OS
RX850 Ver. 3.13 or later

RX850
Real-Time Operating System

Basics

Document No. U13430EJ2V1UM00 (2nd edition)
Date Published October 2001 J CP(K)

© 1998
Printed in Japan

1998, 2000

User's Manual U13430EJ2V1UM2

[MEMO]

User's Manual U13430EJ2V1UM 3

SUMMARY OF CONTENTS

CHAPTER 1 OVERVIEW...19

CHAPTER 2 NUCLEUS...29

CHAPTER 3 TASK MANAGEMENT FUNCTION..31

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS..39

CHAPTER 5 INTERRUPT MANAGEMENT FUNCTION ...59

CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTION ..71

CHAPTER 7 TIME MANAGEMENT FUNCTION...79

CHAPTER 8 SCHEDULER..89

CHAPTER 9 SYSTEM INITIALIZATION ...99

CHAPTER 10 SYSTEM CALLS ..103

APPENDIX A PROGRAMMING METHODS ...187

APPENDIX B INDEX...209

APPENDIX C REVISION HISTORY..217

User's Manual U13430EJ2V1UM4

V800 Series, V850 family, V851, V852, V853, V854, V850/SA1, V850/SB1, V850/SB2, V850/SV1, V850E/MS1,

V850E/MA1, and V850E/IA1 are trademarks of NEC Corporation.

UNIX is a trademark of X/Open Company, Ltd. licensed in the USA and other countries.

Windows and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the

United States and/or other countries.

Green Hills Software and MULTI are trademarks of Green Hills Software, Inc.

PC/AT is a trademark of IBM Corporation.

Solaris, SPARCstation, and SunOS are trademarks of SPARC International, Inc.

HP9000 series 700 is a trademark of Hewlett-Packard Company.

TRON is an abbreviation for The Realtime Operating system Nucleus.

ITRON is an abbreviation for Industrial TRON.

User's Manual U13430EJ2V1UM 5

M8E 00. 4

The information in this document is current as of March, 2000. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
and/or types are available in every country. Please check with an NEC sales representative for
availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.
NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.
Customers must check the quality grade of each semiconductor product before using it in a particular
application.
 "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio

and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for

NEC (as defined above).

•

•

•

•

•

•

The export of this product from Japan is prohibited without governmental license. To export or re-export this product from
a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales
representative.

User's Manual U13430EJ2V1UM6

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, pIease contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
 800-366-9782
Fax: 408-588-6130
 800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana s.r.l.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-3067-5800
Fax: 01-3067-5899

NEC Electronics (France) S.A.
Madrid Office
Madrid, Spain
Tel: 091-504-2787
Fax: 091-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 253-8311
Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP, Brasil
Tel: 11-6462-6810
Fax: 11-6462-6829

J01.2

User's Manual U13430EJ2V1UM 7

MAJOR REVISIONS IN THIS EDITION

Pages Description

p.22 Modification of description in Section 1.7

p.23 Modification of description in Section 1.8

p.26 Correction of Figure 1-1

p.27 Correction of Figure 1-2

p.207 Addition of Appendix A.8

p.217 Addition of Appendix C

The mark shows major revised points.

User's Manual U13430EJ2V1UM8

[MEMO]

User's Manual U13430EJ2V1UM 9

PREFACE

Users This manual is intended for those users who design and develop application systems of

the V850 family.

Purpose This manual explains the functions of the RX850.

Organization This manual includes the following:

• Overview • Memory pool management function

• Nucleus • Time management function

• Task management function • Scheduler

• Synchronous communication functions • System initialization

• Interrupt management function • System calls

How to read this manual It is assumed that the readers of this manual have general knowledge on electric

engineering, logic circuits, microcontrollers, the C language, and assembler.

To learn the hardware functions of the V850 family

→ Refer to User's Manual, Hardware for each product.

To learn the instruction functions of the V850 family

→ Refer to User's Manual, Architecture for each product.

Notation Data signification : Left: higher digit, right: lower digit

Note : Explanation of item indicated in the text

Caution : Information to which the user should afford special attention

Remark : Supplementary information

Numeric value : Binary : XXXX or XXXXB

Decimal : XXXX

Hexadecimal : 0xXXXX

Units for representing powers of 2 (address space or memory space):

K (kilo) : 210 = 1,024

M (mega) : 220 = 1,0242

User's Manual U13430EJ2V1UM10

Related documents When using this manual, also refer to the following documents. Some related documents

may be preliminary versions. Note, however, that whether a related document is

preliminary is not indicated in this document.

Documents related to development tools (User's manual)

Document name Document No.

IE-703002-MC (In-circuit emulator for V851TM, V852TM, V853TM, V854TM,

V850/SA1TM, V850/SB1TM, V850/SB2TM, V850/SV1TM)

U11595E

IE-703003-MC-EM1 (Peripheral I/O board for V853) U11596E

IE-703008-MC-EM1 (Peripheral I/O board for V854) U12420E

IE-703017-MC-EM1 (Peripheral I/O board for V850/SA1) U12898E

IE-703037-MC-EM1 (Peripheral I/O board for V850/SB1, V850/SB2) U14151E

IE-703040-MC-EM1 (Peripheral I/O board for V850/SV1) U14337E

IE-703102-MC (In-circuit emulator for V850E/MS1TM) U13875E

IE-703102-MC-EM1, IE-703102-MC-EM1-A (Peripheral I/O board for

V850E/MS1)

U13876E

IE-V850E-MC (In-circuit emulator for V850E/IA1TM),

IE-V850E-MC-A (In-circuit emulator for V850E1 (NB85E core), V850E/MA1TM)

U14487E

IE-V850E-MC-EM1-A (Peripheral I/O board for V850E1 (NB85E core)) To be prepared

IE-V850E-MC-EM1-B, IE-V850E-MC-MM2 (Peripheral I/O board for V850E1

(NB85E core))

U14482E

IE-703107-MC-EM1 (Peripheral I/O board for V850E1/MA1) U14481E

IE-703116-MC-EM1 (Peripheral I/O board for V850E1/IA1) To be prepared

V800 SeriesTM Development Tool (for 32-bit) Application Note

Tutorial Guide Windows-based

U14218E

Operation U14568E

C U14566E

Project manager U14569E

CA850 (C compiler package)

Assembly language U14567E

ID850 (Ver.2.20) (Integrated debugger) Operation Windows-based U14580E

SM850 (Ver.2.20) (System simulator) Operation Windows-based U14782E

Basics This manual

Installation U13410E

RX850 (Real-time OS)

Technical U13431E

Basics U13773E

Installation U13774E

RX850 Pro (Real-time OS)

Technical U13772E

RD850 (Task debugger) U13737E

RD850 Pro (Task debugger) U13916E

AZ850 (System performance analyzer) U14410E

PG-FP3 (Flash memory programmer) U13502E

User's Manual U13430EJ2V1UM 11

TABLE OF CONTENTS

CHAPTER 1 OVERVIEW ..19

1.1 OVERVIEW...19

1.2 REAL-TIME OS...19

1.3 MULTITASKING OS ...19

1.4 FEATURES...20

1.5 CONFIGURATION ..21

1.6 APPLICATIONS..22

1.7 EXECUTION ENVIRONMENT ..22

1.8 DEVELOPMENT ENVIRONMENT..23

1.8.1 Hardware Environment.. 23

1.8.2 Software Environment... 24

1.9 SYSTEM CONSTRUCTION PROCEDURE ..25

CHAPTER 2 NUCLEUS..29

2.1 OVERVIEW...29

2.2 FUNCTIONS ...29

CHAPTER 3 TASK MANAGEMENT FUNCTION...31

3.1 OVERVIEW...31

3.2 TASK EXECUTION RIGHT...31

3.3 TASK STATES ...32

3.4 TASK GENERATION..35

3.5 TASK ACTIVATION..35

3.6 TASK TERMINATION...36

3.7 IN-TASK PROCESSING...36

3.8 ACQUIRING AN ID NUMBER...38

3.9 ACQUIRING TASK INFORMATION...38

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS ..39

4.1 OVERVIEW...39

4.2 SEMAPHORES...40

4.2.1 Semaphore Generation ... 40

4.2.2 Returning a Resource ... 40

4.2.3 Acquiring Resources... 41

4.2.4 Acquiring Semaphore Information .. 42

4.2.5 Exclusive Control Using Semaphores ... 42

4.3 EVENT FLAGS ...44

4.3.1 Event Flag Generation .. 44

4.3.2 Setting a Bit Pattern .. 45

4.3.3 Clearing a Bit Pattern .. 45

User's Manual U13430EJ2V1UM12

4.3.4 Checking Bit Patterns ... 45

4.3.5 Acquiring Event Flag Information ... 46

4.3.6 Wait Function Using Event Flags ... 47

4.4 1-BIT EVENT FLAGS ...49

4.4.1 1-Bit Event Flag Generation .. 49

4.4.2 Setting a Bit ... 50

4.4.3 Clearing a Bit ... 50

4.4.4 Checking a Bit.. 50

4.4.5 Acquiring 1-Bit Event Flag Information.. 51

4.4.6 Wait Function Using 1-Bit Event Flags.. 52

4.5 MAILBOXES...54

4.5.1 Mailbox Generation... 54

4.5.2 Sending a Message .. 54

4.5.3 Receiving a Message.. 55

4.5.4 Messages .. 56

4.5.5 Acquiring Mailbox Information.. 57

4.5.6 Inter-Task Communication Using Mailboxes.. 57

CHAPTER 5 INTERRUPT MANAGEMENT FUNCTION..59

5.1 OVERVIEW...59

5.2 INTERRUPT HANDLER ...59

5.3 DIRECTLY ACTIVATED INTERRUPT HANDLER...59

5.3.1 Registering a Directly Activated Interrupt Handler.. 60

5.3.2 Internal Processing Performed by the Directly Activated Interrupt Handler 60

5.4 INDIRECTLY ACTIVATED INTERRUPT HANDLER ...63

5.4.1 Registering an Indirectly Activated Interrupt Handler.. 63

5.4.2 Internal Processing Performed by the Indirectly Activated Interrupt Handler........................... 63

5.5 DISABLING/RESUMING MASKABLE INTERRUPT ACCEPTANCE..66

5.6 CHANGING/ACQUIRING THE CONTENTS OF AN INTERRUPT CONTROL REGISTER68

5.7 NONMASKABLE INTERRUPTS ..68

5.8 CLOCK INTERRUPTS..68

5.9 MULTIPLE INTERRUPTS ..69

CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTION...71

6.1 OVERVIEW...71

6.2 MANAGEMENT OBJECTS ..71

6.3 FIXED-SIZE MEMORY POOL ..73

6.3.1 Fixed-Size Memory Pool Generation .. 73

6.3.2 Acquiring a Fixed-Size Memory Block .. 74

6.3.3 Returning a Fixed-Size Memory Block .. 75

6.3.4 Acquiring Fixed-Size Memory Pool Information ... 75

6.4 VARIABLE-SIZE MEMORY POOL...76

6.4.1 Variable-Size Memory Pool Generation .. 76

6.4.2 Acquiring a Variable-Size Memory Block .. 77

6.4.3 Returning a Variable-Size Memory Block .. 78

User's Manual U13430EJ2V1UM 13

6.4.4 Acquiring Variable-Size Memory Pool Information ... 78

CHAPTER 7 TIME MANAGEMENT FUNCTION..79

7.1 OVERVIEW...79

7.2 TIMER OPERATION...80

7.3 DELAYED TASK WAKE-UP ..80

7.4 TIMEOUT ..81

7.5 CYCLIC HANDLER...83

7.5.1 Registering a Cyclic Handler.. 83

7.5.2 Activity State of the Cyclic Handler ... 83

7.5.3 Internal Processing Performed by the Cyclic Handler... 85

7.5.4 Acquiring Cyclic Handler Information .. 87

CHAPTER 8 SCHEDULER...89

8.1 OVERVIEW...89

8.2 DRIVE METHOD...89

8.3 SCHEDULING METHOD ..90

8.3.1 Priority Method ... 90

8.3.2 FCFS (First-Come, First-Served) Method.. 90

8.4 IDLE HANDLER..91

8.4.1 Internal Processing Performed by the Idle Handler .. 91

8.5 IMPLEMENTING A ROUND-ROBIN METHOD ..92

8.6 SCHEDULING LOCK FUNCTION ..95

8.7 SCHEDULING WHILE THE HANDLER IS OPERATING...97

CHAPTER 9 SYSTEM INITIALIZATION...99

9.1 OVERVIEW...99

9.2 RESET ROUTINE ...100

9.3 NUCLEUS INITIALIZATION SECTION ..101

9.4 INITIALIZATION HANDLER...102

CHAPTER 10 SYSTEM CALLS..103

10.1 OVERVIEW...103

10.2 CALLING SYSTEM CALLS..105

10.3 DATA TYPES OF PARAMETERS..105

10.4 SYSTEM CALL RETURN VALUES..106

10.5 EXPLANATION OF SYSTEM CALLS ..107

10.5.1 Task Management System Calls .. 109

10.5.2 Task-Associated Synchronization System Calls .. 121

10.5.3 Synchronous Communication System Calls .. 129

10.5.4 Interrupt Management System Calls... 155

10.5.5 Memory Pool Management System Calls.. 164

10.5.6 Time Management System Calls.. 177

10.5.7 System Management System Calls .. 182

APPENDIX A PROGRAMMING METHODS...187

User's Manual U13430EJ2V1UM14

A.1 OVERVIEW...187

A.2 KEYWORDS ...188

A.3 RESERVED WORDS..188

A.4 DESCRIBING TASKS...189

A.4.1 When CA850 Is Used ... 189

A.4.2 When CCV850 Is Used ... 191

A.5 DESCRIBING A DIRECTLY ACTIVATED INTERRUPT HANDLER ..193

A.5.1 When Using reti (for CA850)... 193

A.5.2 When Using reti (for CCV850) .. 194

A.5.3 When Using ret_int or ret_wup (for CA850) .. 194

A.5.4 When Using ret_int or ret_wup (for CCV850).. 196

A.6 DESCRIBING AN INDIRECTLY ACTIVATED INTERRUPT HANDLER..199

A.6.1 When CA850 Is Used ... 199

A.6.2 When CCV850 Is Used ... 201

A.7 DESCRIBING CYCLIC HANDLER ...203

A.7.1 When CA850 Is Used ... 203

A.7.2 When CCV850 Is Used ... 205

A.8 CONSTRAINTS AND NOTES ..207

A.8.1 When Using V850E .. 207

A.8.2 Location of .sit Section and .pool0 Section ... 207

A.8.3 Range in Which System Calls Can Be Called.. 207

APPENDIX B INDEX...209

APPENDIX C REVISION HISTORY ...217

User's Manual U13430EJ2V1UM 15

LIST OF FIGURES (1/2)

Figure No. Title Page

1-1 System Construction Procedure When Using CA850 ..26

1-2 System Construction Procedure When Using CCV850 ..27

3-1 Task State Transition ...34

4-1 State of Semaphore Counter...42

4-2 State of Queue ..43

4-3 State of Queue ..43

4-4 Exclusive Control Using Semaphores ..43

4-5 State of Queue ..47

4-6 State of Queue ..47

4-7 Wait and Control by Event Flags ...48

4-8 State of the Queue...52

4-9 State of the Queue...52

4-10 Wait and Control by 1-Bit Event Flags..53

4-11 State of Task Queue ..57

4-12 State of Task Queue ..58

4-13 Inter-Task Communication Using Mailboxes ...58

5-1 Flow of Processing Performed by the Directly Activated Interrupt Handler...59

5-2 Saving the Register Contents..60

5-3 Flow of Processing Performed by the Indirectly Activated Interrupt Handler...63

5-4 Control Flow During Normal Operation...66

5-5 Control Flow When the loc_cpu System Call Is Issued ..67

5-6 Control Flow When the dis_int System Call Is Issued ..67

5-7 Contents of an Interrupt Control Register ...68

5-8 Flow of Processing for Handling Multiple Interrupts ...69

6-1 Typical Arrangement of Management Blocks ..72

7-1 Clock Handler Processing...79

7-2 Flow of Processing After Issue of dly_tsk ..80

7-3 Flow of Processing After Issue of act_cyc (TCY_ON) ..84

7-4 Flow of Processing After Issue of act_cyc (TCY_ON|TCY_INI)...85

8-1 Ready Queue State..92

8-2 Ready Queue State..93

8-3 Ready Queue State..93

8-4 Processing Flow When the Round-Robin Method Is Used ...94

User's Manual U13430EJ2V1UM16

LIST OF FIGURES (2/2)

Figure No. Title Page

8-5 Control Flow During Normal Operation... 95

8-6 Control Flow When the dis_dsp System Call Is Issued.. 96

8-7 Control Flow When the loc_cpu System Call Is Issued.. 96

8-8 Control Flow When the wup_tsk System Call Is Issued.. 97

9-1 Flow of System Initialization.. 99

9-2 Positioning of Hardware Initialization Section ... 100

9-3 Positioning of Nucleus Initialization Section.. 101

9-4 Positioning of Initialization Handler .. 102

10-1 System Call Description Format .. 107

A-1 Task Basic Format (in C) When Using CA850 .. 189

A-2 Task Basic Format (in Assembly Language) When Using CA850 ... 190

A-3 Task Basic Format (in C) When Using CCV850 .. 191

A-4 Task Basic Format (in Assembly Language) When Using CCV850... 192

A-5 Example of Description to Restore from a Directly Activated Interrupt Handler

Using reti (CA850) .. 193

A-6 Example of Description to Restore from a Directly Activated Interrupt Handler by

Using reti (CCV850).. 194

A-7 Example of Description to Restore from a Directly Activated Interrupt Handler by

Using ret_int or ret_wup (CA850).. 195

A-8 Example of Description to Restore from a Directly Activated Interrupt Handler by

Using ret_int or ret_wup (CCV850)... 197

A-9 Basic Format of Indirectly Activated Interrupt Handler (in C) When Using CA850............................... 199

A-10 Basic Format of Indirectly Activated Interrupt Handler (in Assembly Language) When

Using CA850 ... 200

A-11 Basic Format of Indirectly Activated Interrupt Handler (in C) When Using CCV850 201

A-12 Basic Format of Indirectly Activated Interrupt Handler (in Assembly Language) When

Using CCV850... 202

A-13 Basic Format of Cyclic Handler (in C) When Using CA850... 203

A-14 Basic Format of Cyclic Handler (in Assembly Language) When Using CA850 204

A-15 Basic Format of Cyclic Handler (in C) When Using CCV850 .. 205

A-16 Basic Format of Cyclic Handler (in Assembly Language) When Using CCV850 206

User's Manual U13430EJ2V1UM 17

LIST OF TABLES

Table No. Title Page

10-1 Data Types.. 105

10-2 Return Values.. 106

10-3 List of Task Management System Calls.. 109

10-4 List of Task-Associated Synchronization System Calls .. 121

10-5 List of Synchronous Communication System Calls .. 129

10-6 List of Interrupt Management System Calls .. 155

10-7 List of Memory Pool Management System Calls ... 164

10-8 List of Time Management System Calls ... 177

10-9 List of System Management System Calls.. 182

User's Manual U13430EJ2V1UM18

[MEMO]

User's Manual U13430EJ2V1UM 19

CHAPTER 1 OVERVIEW

1.1 OVERVIEW

The RX850 is a built-in real-time, multitasking control OS that provides a highly efficient real-time, multitasking

environment to increases the application range of the V850 family control units.

The RX850 is a high-speed, compact OS capable of being stored in and run from the ROM of a target system.

1.2 REAL-TIME OS

Control equipment demands systems that can rapidly respond to events occurring both internal to and external to

the equipment. Conventional systems have utilized simple interrupt handling as a means of satisfying this demand.

As control equipment has become more powerful, however, it has proved difficult for systems to satisfy these

requirements by means of simple interrupt handling alone.

In other words, the task of managing the order in which internal and external events are processed has become

increasingly difficult as systems have increased in complexity and programs have become ever larger.

To overcome this problem, real-time operating systems have been designed.

The main goals of a real-time OS are to respond to internal and external events rapidly and execute programs in

the optimum order.

1.3 MULTITASKING OS

A task is the minimum unit in which a program can be executed by an OS. Multitasking is the name given to the

mode of operation in which a single processor processes multiple tasks concurrently.

Actually, the processor can handle no more than one program (instruction) at a time. But, by switching the

processor's attention to individual tasks on a regular basis (at a certain timing) it appears that the tasks are being

processed simultaneously.

A multitasking OS enables the parallel processing of tasks by switching the tasks to be executed as determined by

the system.

A major goal of a multitasking OS is to improve the throughput of the overall system through the parallel

processing of multiple tasks.

CHAPTER 1 OVERVIEW

User's Manual U13430EJ2V1UM20

1.4 FEATURES

The RX850 has the following features:

(1) Conformity with µµµµITRON 3.0 specification

The RX850 is designed to conform with the µITRON 3.0 specification, that defines a typical built-in control OS

architecture. The RX850 implements µITRON 3.0 functions of up to level S.

The µITRON 3.0 specification applies to a built-in, real-time control OS.

(2) High generality

The RX850 supports all the system calls specified by the µITRON 3.0 specification to offer superior

application system generality.

The RX850 can be used to create a real-time, multitasking OS that is compact and optimum for the user's

needs because the functions (system calls) to be used by the application system can be selected.

(3) Realization of real-time processing and multitasking

The RX850 supports the following functions to realize complete real-time processing and multitasking:

• Task management function

• Task-associated synchronization function

• Synchronous communication function

• Interrupt management function

• Memory pool management function

• Time management function

• System management function

• Scheduling function

(4) Scheduling lock function

The RX850 supports functions that allow a user processing program to disable and resume dispatching (task

scheduling).

(5) Compact design

The RX850 is a real-time, multitasking OS that has been designed on the assumption that it will be

incorporated into the target system; it has been made as compact as possible to enable it to be loaded into a

system's ROM.

(6) Utilization of original instructions

The high-speed execution speed of the V850 family, combined with the original instructions, enables high-

speed processing.

(7) Utility support

The RX850 supports the following utility to aid in system construction:

• CF850 (configurater)

CHAPTER 1 OVERVIEW

User's Manual U13430EJ2V1UM 21

1.5 CONFIGURATION

The RX850 consists of three subsystems: the nucleus, system initialization, and cofigurater.

These subsystems are outlined below:

(1) Nucleus

The nucleus forms the heart of the RX850, a system that supports real-time, multitasking control. The

nucleus provides the following functions:

• Generation/initialization of a management object

• Processing of a system call issued by a program being processed (task, handler)

• Selection of the program (task, handler) to be executed next, according to an event that occurs internal to

or external to the target system

Management object generation/initialization and system call processing are executed by management

modules. Program selection is performed by a scheduler.

(2) System initialization

The system initialization supports both hardware initialization, necessary to enable the operation of the

RX850, and software initialization.

Upon the activation of a system running under the RX850, system initialization is executed first.

The RX850 provides sample source files for processing that is dependent on the hardware configuration of

the execution environment (reset routine), as well as for the processing for customizing the user software

environment (initialization handler).

This improves portability to target systems and facilitates customization.

(3) Configurater CF850

To construct a system using the RX850, information files containing the data to be supplied to the RX850

(system information table and system information header file) are required.

As such information files consist of data arranged in a specified format, they can be written using an editor.

But, files written in such a way are relatively difficult to write and subsequently understand.

The RX850 provides Configurater CF850, a utility tool for inputting data in interactive mode and outputting the

results as an information file.

Configurater CF850 allows the user to easily create a new information file or change an existing information

file.

CHAPTER 1 OVERVIEW

User's Manual U13430EJ2V1UM22

1.6 APPLICATIONS

The RX850 can be applied to the following systems:

• Control over systems which use servo motors

Example PPCs

Printers

NC machine tools

• Control over systems which require a rapid response

Example Engines

Cellular telephones

PHS

Digital still cameras

1.7 EXECUTION ENVIRONMENT
The RX850 has been developed as an OS for embedded control and runs on a target system equipped with the

following hardware.

(1) Target CPU

• V851 • V850E/MS1

• V852 • V850E/MA1

• V853 • NB85E core

• V854 • V850E/IA1

• V850/SA1

• V850/SBx

• V850/SV1

(2) Peripheral controller

The RX850 eliminates the hardware-dependent portions from the nucleus and supplies them as sample

source files, in order to support a range of execution environments. If these sample source files are rewritten

for the respective target systems, a specific peripheral controller is not required.

CHAPTER 1 OVERVIEW

User's Manual U13430EJ2V1UM 23

1.8 DEVELOPMENT ENVIRONMENT

This section explains the hardware and software environments required to develop application systems.

1.8.1 Hardware Environment

(1) Host machine

• PC-9800 series

• PC/ATTM-compatible machine

• SPARCstationTM

• HP9000 series 700TM

(2) In-circuit emulators

• IE-703002-MC (V851, V852, V853, V854, V850/SA1, V850/SBx, V850/SV1)

• IE-703102-MC (V850E/MS1)

• IE-V850E-MC-A (V850E/MA1, NB85E core)

• IE-V850E-MC (V850E/IA1)

(3) I/O board for in-circuit emulator

• IE-703003-MC-EM1 (V853)

• IE-703008-MC-EM1 (V854)

• IE-703017-MC-EM1 (V850/SA1)

• IE-703037-MC-EM1 (V850/SBx)

• IE-703040-MC-EM1 (V850/SV1)

• IE-703102-MC-EM1 (V850E/MS1 5 V)

• IE-703102-MC-EM1-A (V850E/MS1 3.3 V)

• IE-703107-MC-EM1 (V850E/MA1)

• IE-703116-MC-EM1 (V850E/IA1)

• IE-V850E-MC-EM1-A (NB85E core 5 V)

• IE-V850E-MC-EM1-B (NB85E core 3.3 V)

Caution These I/O boards must be used in combination with the in-circuit emulator.

(4) PC interface boards

• IE-70000-98-IF-C (for PC-9800 series C bus)

• IE-70000-PC-IF-C (for PC/AT-compatible machines ISA bus)

• IE-70000-CD-IF-A (for PCMCIA socket)

• IE-70000-PCI-IF (for PCI bus)

CHAPTER 1 OVERVIEW

User's Manual U13430EJ2V1UM24

1.8.2 Software Environment

(1) OS ((): host machine)

• Windows 95/Windows 98/Windows NTTM 4.0 (PC-9800 series, PC/AT-compatible machines)

• SolarisTM 2.x (SPARCstation)

• SunOSTM 4.1.x (SPARCstation)

(2) Cross tools

• CA850 (NEC Corporation)

• CCV850 (Green Hills Software Inc.)

(3) Debuggers

• ID850 (NEC Corporation)

• SM850 (NEC Corporation)

• MULTITM (Green Hills Software Inc.)

• PARTNER (Kyoto Microcomputer)

(4) Task debugger

• RD850 (NEC Corporation)

(5) System performance analyzer

• AZ850 (NEC Corporation)

CHAPTER 1 OVERVIEW

User's Manual U13430EJ2V1UM 25

1.9 SYSTEM CONSTRUCTION PROCEDURE

System construction involves incorporating created load modules into a target system, using the file group copied

from the RX850 distribution media to the user development environment (host machine).

The system construction procedure is outlined below.

For details, refer to the RX850 User's Manual, Installation (U13410E).

(1) Creating an information file

• System information table

• System information header file

(2) Creating system initialization

• Reset routine

• Initialization handler

(3) Creating idle handlers

(4) Creating processing programs

• Task

• Directly activated interrupt handler

• Indirectly activated interrupt handler

• Cyclic handler

(5) Creating an initialization data save area

(6) Creating a link directive file

(7) Creating a load module

(8) Incorporating the load module into the system

Caution When the CCV850 is used, an initialization data save area need not be created.

Figures 1-1 and 1-2 show the system construction procedures.

Figure 1-1 illustrates the system construction procedure when the CA850 is used. Figure 1-2 illustrates the

system construction procedure when the CCV850 is used.

CHAPTER 1 OVERVIEW

User's Manual U13430EJ2V1UM26

Figure 1-1. System Construction Procedure When Using CA850

CF definition file

Configurater (formatter section)

Information file
 System information table
 System information
 header file

Processing program
 Task
 Directly activated interrupt handler
 Indirectly activated interrupt handler
 Cyclic handler
Initialization data save area

System initialization
 Hardware initialization
 section
 Initialization handler
Idle handler

Load module
 HEX format

Hexadecimal converter

Load module
 Including data in ROM

Processor in ROM

 Load module
 Excluding data in ROM

Link editor

C compiler/assembler

Information file
 System information table

Processing program
 Task
 Directly activated interrupt
 handler
 Indirectly activated interrupt
 handler
 Cyclic handler
Initialization data save area

System initialization
 Hardware initialization
 section
 Initialization handler
Idle handler

Link directive file
Run-time library
Nucleus library

CHAPTER 1 OVERVIEW

User's Manual U13430EJ2V1UM 27

Figure 1-2. System Construction Procedure When Using CCV850

CF definition file

Configurater (formatter section)

Information file
 System information table
 System information
 header file

Processing program
 Task
 Directly activated interrupt handler
 Indirectly activated interrupt handler
 Cyclic handler

System initialization
 Hardware initialization
 section
 Initialization handler
Idle handler

Load module
 HEX format

Hexadecimal converter

Load module
 Including data in ROM

Link editor

C compiler/assembler

Information file
 System information table

Processing program
 Task
 Directly activated interrupt
 handler
 Indirectly activated interrupt
 handler
 Cyclic handler

System initialization
 Hardware initialization
 section
 Initialization handler
Idle handler

Link directive file
Run-time library
Nucleus library

User's Manual U13430EJ2V1UM28

[MEMO]

User's Manual U13430EJ2V1UM 29

CHAPTER 2 NUCLEUS

This chapter describes the nucleus, the heart of the RX850.

2.1 OVERVIEW

The nucleus forms the heart of the RX850, a system that supports real-time, multitasking control. The nucleus

provides the following functions:

• Initialization of a management object

• Processing of a system call issued by a program being processed (task, handler)

• Selection of the program (task, handler) to be executed next, according to an event that occurs internal to or

external to the target system

Management object initialization and system call processing are executed by management modules. Program

selection is performed by a scheduler.

2.2 FUNCTIONS

The nucleus consists of management modules and a scheduler.

This section overviews the functions of the management modules and scheduler.

See Chapters 3 to 8 for details of the individual functions.

(1) Task management function

This module manipulates and manages the states of a task, the minimum unit in which processing is

performed by the RX850. For example, the module can start and terminate a task.

(2) Synchronous communication function

This module enables three functions related to synchronous communication between tasks: exclusive

control, wait, and communication.

• Exclusive control function : Semaphore

• Wait function : Event flag, 1-bit event flag

• Communication function : Mailbox

(3) Interrupt management function

This module performs the processing related to an interrupt, such as the activation of an interrupt handler,

return from an interrupt handler, disablement or resumption of acceptance of maskable interrupts, and

change or acquisition of the contents of an interrupt control register.

CHAPTER 2 NUCLEUS

User's Manual U13430EJ2V1UM30

(4) Memory pool management function

This module manages the memory area specified at configuration, dividing it into the following two areas:

(a) RX850 area

• Management objects

• Memory pool

(b) Processing program (task, handler) area

• Text area

• Data area

• Stack area

The RX850 also applies dynamic memory pool management. For example, the RX850 provides a function

for obtaining and returning a memory area to be used as a work area as required.

By exploiting this ability to dynamically manage memory, the user can utilize a limited memory area with

maximum efficiency.

(5) Time management function

This module supports a timer operation function (such as task timeout wait or activation of a cyclic handler)

that is based on clock interrupts generated by the hardware at regular intervals.

(6) Scheduler

This module manages and determines the order in which tasks are executed and manages how the

processor is applied to individual tasks.

The RX850 determines the task execution order according to assigned priority method and by applying the

FCFS method. When started, the scheduler determines the priority levels assigned to the tasks, selects an

optimum task from those ready to be executed (run or ready state), and assigns the task processing time.

Caution In the RX850, the smaller the value of the priority assigned to the task, the higher the

priority.

User's Manual U13430EJ2V1UM 31

CHAPTER 3 TASK MANAGEMENT FUNCTION

This chapter describes the task management performed by the RX850.

3.1 OVERVIEW

Tasks are execution entities of arbitrary sizes, such that they are difficult to manage directly. The RX850

manages task states and tasks themselves by using management objects that correspond to tasks on a one-to-one

basis.

3.2 TASK EXECUTION RIGHT

Each task requires a "stack." The stack for a task (task stack) is used to store information such as the register

information that is used when a task is switched and information on the values of the automatic variables used in a

task. Because a task stack must be allocated to each task, the amount of RAM consumed for the stack increases

considerably.

In a system, however, some tasks are never executed at the same time. If these tasks can share a stack, the

amount of RAM consumed can be reduced substantially.

The RX850 groups tasks and provides related functions. One of the functions allows only one task to be

started in a single group. The task grouping functions allow the memory areas allocated to tasks by the RX850

(task stack areas) to be shared, thus assisting the user in optimizing the efficiency of memory use. A group is called

a task execution right group. A task execution right is the processing right assigned when a task is started. In

other words, a task having the task execution right in a group is ready to be executed. To execute other tasks in the

same group, the task currently having the execution right must relinquish the right. This is done by using system call

ext_tsk (terminates the task issuing this system call) or ter_tsk (terminating the other system call).

Cautions 1. If a task cannot acquire the execution right after it has been activated, it enters the task

execution right wait state.

2. A task uses the execution environment information provided by a program counter, work

registers, and the like when it executes processing. This information is called the task

context. When the task execution is switched, the current task context is saved and the task

context for the next task is loaded. The task context is allocated in the task stack.

CHAPTER 3 TASK MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM32

3.3 TASK STATES

The task changes its state according to how resources required to execute the processing are obtained, whether

an event occurs, and so on.

The RX850 classifies task states into the following six types:

(1) Dormant state

A task in this state is not started or has already completed its processing.

A task in the dormant state is not scheduled by the RX850.

This state differs from the wait state in the following points:

• All resources are released.

• The execution environment information (task context) given by the program counter, work registers, and the

like is initialized when the processing is resumed.

• A state manipulation system call (ter_tsk, chg_pri, sus_tsk, wup_tsk, etc.) causes an error.

(2) Ready state

A task in this state has the task execution right and is ready to perform its processing. This task waits for a

processing time to be assigned while another task having a higher (or the same) priority level is performing its

processing.

A task in the ready state is scheduled by the RX850.

(3) Run state

A task in this state has been assigned a processing time and is currently performing its processing.

Within the entire system, only a single task can be in the run state at any one time.

(4) Wait state

A task in this state has been stopped because the requirements for performing its processing are not

satisfied.

The processing of this task is resumed from the point at which it was stopped. Execution environment

information (task context) given by the program counter, work registers, and the like that was being used up

until the stop is restored.

The RX850 further divides tasks in the wait state into the following seven groups, according to the

conditions:

(a) Task execution right wait state

A task enters this state if it cannot obtain the task execution right from the relevant task execution right

group upon the issue of an sta_tsk system call.

(b) Wake-up wait state

A task enters this state if the counter for the task (registering the number of times the wake-up request

has been issued) indicates 0x0 upon the issue of an slp_tsk or tslp_tsk system call.

(c) Resource wait state

A task enters this state if it cannot obtain a resource from the relevant semaphore upon the issue of a

wai_sem or twai_sem system call.

CHAPTER 3 TASK MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM 33

(d) Event flag wait state

A task enters this state if a relevant event flag does not satisfy a predetermined condition upon the issue

of a wai_flg or twai_flg system call.

(e) 1-bit event flag wait state

A task enters this state if 1 is not set in a relevant 1-bit event flag upon the issue of a vwai_flg1 or

vtwai_flg1 system call.

(f) Message wait state

A task enters this state if it cannot receive a message from the relevant mailbox upon the issue of a

rcv_msg or trcv_msg system call.

(g) Memory block wait state

A task enters this state if it cannot obtain a memory block from the relevant memory pool upon the issue

of a get_blf, tget_blf, get_blk, or tget_blk system call.

(h) Timeout wait state

A task enters this state upon the issue of a dly_tsk system call.

(5) Suspend state

A task in this state has been stopped by a system call issued by another task.

The processing of this task is resumed from the point at which it was stopped. Execution environment

information (task context) given by the program counter, work registers, and the like that was being used up

until the stop is restored.

(6) Wait_suspend state

This state is a combination of the wait and suspend states.

A task in this state has entered the suspend state upon exiting from the wait state, or has entered the wait

state upon exiting from the suspend state.

CHAPTER 3 TASK MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM34

Figure 3-1 shows the relationship between task states.

Figure 3-1. Task State Transition

wait state

wait_suspend state

suspend state

dormant state

run stateready state

CHAPTER 3 TASK MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM 35

3.4 TASK GENERATION

RX850 tasks to be used by the system are specified at configuration. In other words, RX850 tasks can only be

statically generated using the information specified at configuration (generation during system initialization). They

cannot be dynamically generated using system calls.

To generate RX850 tasks, an area for managing each task (the management object) is allocated and initialized.

The RX850 recognizes such an area allocated in memory as a task and manages it accordingly.

The following task information is specified at configuration:

• Task name

• Task activation address

• Task stack size

• Type of system memory in which task stacks are allocated (.pool0 or .pool1 section)

• Initial task priority

• Initial task state

• Task activation code

• Specification of whether acceptance of maskable interrupts is enabled or disabled at the time of task activation

Caution For task system calls, an ID number is used to specify the task to be manipulated (target task).
Configurater CF850 consecutively assigns integers, starting with 0x1 to tasks as ID numbers,

based on task information stored in the system information table.

3.5 TASK ACTIVATION

Task activation under the RX850 involves assigning a task execution right to a task in the dormant state, and

switching that task to the ready state.

A task is activated by issuing an sta_tsk system call.

• sta_tsk system call

Issuing the sta_tsk system call assigns a task execution right to the task specified by the parameter, then

switches that task from the dormant state to the ready state.

When this system call is issued, if the task cannot acquire a task execution right from the relevant task

execution right group, the task itself is queued at the end of the queue of this task execution right group. Thus,

the task leaves the dormant state and enters the wait state (the task execution right wait state).

CHAPTER 3 TASK MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM36

3.6 TASK TERMINATION

Task termination under the RX850 involves switching a task to dormant state and excluding that task from those

to be scheduled by the RX850.

Under the RX850, a task can be terminated in either of the following two ways:

• Normal termination: A task terminates upon completing all processing and when it need not be subsequently

scheduled.

• Forced termination : A task is terminated by another task when the task must immediately stop the processing

because of an error that occurs prior to the completion of the processing.

The task terminates upon the issue of an ext_tsk or ter_tsk system call.

• ext_tsk system call

A task which issued the ext_tsk system call is switched from the run state to the dormant state.

• ter_tsk system call

A task specified by the parameters is forcibly switched to the dormant state.

3.7 IN-TASK PROCESSING

The RX850 utilizes a unique means of scheduling to switch tasks.

Note the following when coding task processing.

(1) Saving and restoring the contents of a register

When switching tasks, the RX850 saves and restores the contents of work registers in line with the function

call conventions of the C compiler (CA850 or CCV850). This eliminates the need for coding processing to

save the contents at the beginning of a task and that for restoring the contents at the end.

If a task coded in assembly language uses a register for a register variable, however, the processing for

saving the contents of that register must be coded at the beginning of the task, and that for restoring the

contents at the end.

Caution When switching tasks, the RX850 does not switch the gp, tp, and ep registers.

(2) Switching stacks

When switching tasks, the RX850 switches to the special task stack of the selected task. The processing for

switching the stack need not be coded at the beginning and end of the task.

CHAPTER 3 TASK MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM 37

(3) Limitations imposed on system calls

The following system calls can be issued within a task:

• Task management system calls

sta_tsk ext_tsk ter_tsk dis_dsp ena_dsp

chg_pri rot_rdq rel_wai get_tid ref_tsk

• Task-associated synchronization system calls

sus_tsk rsm_tsk frsm_tsk slp_tsk tslp_tsk

wup_tsk can_wup

• Synchronous communication system calls

sig_sem wai_sem preq_sem twai_sem ref_sem

set_flg clr_flg wai_flg pol_flg twai_flg

ref_flg vset_flg1 vclr_flg1 vwai_flg1 vpol_flg1

vtwai_flg1 vref_flg1 snd_msg rcv_msg prcv_msg

trcv_msg ref_mbx

• Interrupt management system calls

loc_cpu unl_cpu dis_int ena_int chg_icr

ref_icr

• Memory pool management system calls

get_blf pget_blf tget_blf rel_blf ref_mpf

get_blk pget_blk tget_blk rel_blk ref_mpl

• Time management system calls

dly_tsk act_cyc ref_cyc

• System management system calls

get_ver ref_sys

CHAPTER 3 TASK MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM38

3.8 ACQUIRING AN ID NUMBER

To acquire the ID number of a task being executed, use system call get_tid.

Because the ID number of a task is specified with a symbol by the configuration file when the task is created, that

system is usually used as the ID number of the task. If, however, the same program code is shared by two or more

tasks, this system call is used to determine which task is executing the program code.

3.9 ACQUIRING TASK INFORMATION

Task information is acquired upon the issue of a ref_tsk system call.

(1) ref_tsk system call

Task information (such as extended information or the current priority) for the task specified by the

parameters is acquired.

The contents of the task information are as follows:

• Extended information

• Current priority

• Task state

TTS_RUN (H'01) : run state

TTS_RDY (H'02) : ready state

TTS_WAI (H'04) : wait state

TTS_SUS (H'08) : suspend state

TTS_WAS (H'0c) : wait_suspend state

TTS_DMT (H'10) : dormant state

TTS_WTX (H'20) : Task execution right wait state

TTS_WTS (H'28) : Task execution right wait + suspend state

• Type of the wait state

TTW_SLP (H'0001) : Wake-up wait state

TTW_DLY (H'0002) : Timeout wait state

TTW_FLG (H'0010) : Event flag wait state

TTW_SEM (H'0020) : Resource wait state

TTW_MBX (H'0040) : Message wait state

TTW_MPL (H'1000) : Variable-size memory block wait state

TTW_MPF (H'2000) : Fixed-size memory block wait state

TTW_1FLG (H'4000) : 1-bit event flag wait state

• ID number of the object to be processed

User's Manual U13430EJ2V1UM 39

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

This chapter explains the manages synchronous communication functions performed by the RX850.

4.1 OVERVIEW

In an environment in which multiple tasks are executed concurrently (multitasking), the next task to be executed,

or the contents of the processing performed by a task, may depend on the processing results output by a preceding

task. In other words, a task may set the execution conditions for another's processing, or the contents of tasks'

processing may be mutually related.

Therefore, functions enabling communication between such tasks are required. These functions are used when a

task stops its processing to await the results output by another task, and when a task must wait until a condition

required to continue processing is satisfied.

In the RX850, these functions are called synchronization functions. There are two synchronization functions:

the exclusive control function and the wait function. The RX850 provides semaphores for the exclusive control

function and event flags and 1-bit event flags for the wait function.

For multitasking, an inter-task communication function is also required to allow a task to receive the processing

results output by another.

In the RX850, this function is called the communication function. The RX850 provides mailboxes for the

communication function.

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

User's Manual U13430EJ2V1UM40

4.2 SEMAPHORES

In multitasking, a function is required to prevent resource contentions from occurring. A resource contention

occurs when concurrently executing multiple tasks simultaneously use a limited number of resources such as A/D

converters, coprocessors, files, and programs. To prevent contentions from occurring, the RX850 provides non-

negative counter-type semaphores.

A semaphore is a counter used to manage the number of resources. An the RX850 semaphore is a 7-bit counter

used to exercise exclusive control over tasks.

The following semaphore system calls are used to dynamically operate a semaphore:

sig_sem : Returns a resource.

wai_sem : Acquires a resource.

preq_sem : Acquires a resource (by polling).

twai_sem : Acquires a resource (with timeout setting).

ref_sem : Acquires semaphore information.

Cautions 1. For the RX850, the elements required to execute a task are called resources. In other words,

resources include all hardware components such as A/D converters and coprocessors, as

well as software components such as files and programs.

2. For semaphore system calls, an ID number is used to specify the semaphore to be

manipulated (target semaphore).
Configurater CF850 consecutively assigns integers, starting with 0x1, to semaphores as ID

numbers, based on semaphore information stored in the system information table.

4.2.1 Semaphore Generation

RX850 semaphores to be used by the system are specified at configuration. In other words, RX850 semaphores

can only be statically generated using the information specified at configuration (generation during system

initialization). They cannot be dynamically generated using system calls.

To generate RX850 semaphores, an area for managing each semaphore (the management object) is allocated

and initialized.

The RX850 recognizes such an area allocated in memory as a semaphore and manages it accordingly.

The following semaphore information is specified at configuration:

• Semaphore name

• Initial count of semaphore resources

4.2.2 Returning a Resource

A resource is returned by issuing a sig_sem system call.

(1) sig_sem system call

By issuing the sig_sem system call, the task returns a resource to the semaphore specified by parameter

(the semaphore counter is incremented by 0x1).

If a task or tasks are queued into the queue of the semaphore specified by this system call parameter, the

relevant resource is passed to the first task in the queue without being returned to the semaphore (thus, the

semaphore counter is not incremented).

Then, that task is removed from the queue, after which it leaves the wait state (the resource wait state) and

enters the ready state. Or, it leaves the wait_suspend state and enters the suspend state.

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

User's Manual U13430EJ2V1UM 41

4.2.3 Acquiring Resources

A resource is acquired by issuing a wai_sem, preq_sem, or twai_sem system call.

(1) wai_sem system call

By issuing the wai_sem system call, the task acquires a resource from the semaphore specified by a

parameter (the semaphore counter is decremented by 0x1.)

After issuing this system call, if the task cannot acquire the resource from the specified semaphore (no idle

resource exists), the task itself is placed at the end of the queue of this semaphore. Thus, the task leaves the

run state and enters the wait state (the resource wait state).

The task shall be released from this resource wait state and return to the ready state in the following cases:

• When a sig_sem system call is issued.

• When a rel_wai system call is issued and the wait state is forcibly canceled.

Caution Tasks are queued into the queue of the specified semaphore in the order (FIFO) in which the

tasks make resource acquisition requests.

(2) preq_sem system call

By issuing the preq_sem system call, the task acquires a resource from the semaphore specified by a

parameter (the semaphore counter is decremented by 0x1.)

After this system call is issued, if the task cannot acquire the resource from the specified semaphore (no idle

resource exists), E_TMOUT is returned as the return value.

(3) twai_sem system call

By issuing the twai_sem system call, the task acquires a resource from the semaphore specified by a

parameter (the semaphore counter is decremented by 0x1.)

After issuing this system call, if the task cannot acquire the resource from the specified semaphore (no idle

resource exists), the task itself is placed at the end of the queue of this semaphore. Thus, the task leaves the

run state and enters the wait state (the resource wait state).

The task shall be released from this resource wait state and returned to the ready state in the following

cases:

• When the given wait time specified by a parameter has elapsed.

• When a sig_sem system call is issued.

• When a rel_wai system call is issued and the wait state is forcibly canceled.

Caution Tasks are queued into the queue of the specified semaphore in the order (FIFO) in which the

tasks make resource acquisition requests.

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

User's Manual U13430EJ2V1UM42

4.2.4 Acquiring Semaphore Information

Semaphore information is acquired by issuing the ref_sem system call.

(1) ref_sem system call

By issuing the ref_sem system call, the task acquires the semaphore information (extended information,

queued tasks, etc.) for the semaphore specified by parameter.

The semaphore information consists of the following:

• Extended information

• Whether tasks are queued

FALSE(0) : No task is queued.

Value : ID number of the first task in the queue

• The number of currently available resources

4.2.5 Exclusive Control Using Semaphores

The following is an example of using semaphores to manipulate the tasks under exclusive control.

(Prerequisites)

• Task priority

Task A > Task B

• State of tasks

Task A: run state

Task B: ready state

• Semaphore attribute

Number of resources initially assigned to the semaphore: 0x1

(1) Task A issues the wai_sem system call.

The number of resources assigned to this semaphore and managed by the RX850 is 0x1. Thus, the RX850

decrements the semaphore counter by 0x1.

At this time, task A does not enter the wait state (the resource wait state). Instead, it remains in the run

state.

Figure 4-1 shows the state of the relevant semaphore counter.

Figure 4-1. State of Semaphore Counter

Number of resources: 0x1
Before issuing
the system call

Number of resources: 0x0
After issuing
the system call

Task A: wai_sem

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

User's Manual U13430EJ2V1UM 43

(2) Task A issues the wai_sem system call.

The number of resources assigned to this semaphore and managed by the RX850 is 0x0. Thus, the RX850

changes the state of task A from run to the resource wait state and places the task at the end of the queue

for this semaphore.

Figure 4-2 shows the state of the queue of this semaphore.

Figure 4-2. State of Queue

(3) As task A enters the resource wait state, the state of task B changes from ready to run.

(4) Task B issues the sig_sem system call.

At this time, the state of task A that has been placed in the queue of this semaphore changes from the

resource wait state to the ready state.

Figure 4-3 shows the state of the queue of this semaphore.

Figure 4-3. State of Queue

(5) The state of task A having the higher priority changes from ready to run.

At the same time, task B leaves the run state and enters the ready state.

Figure 4-4 shows the transition of exclusive control in steps (1) to (5).

Figure 4-4. Exclusive Control Using Semaphores

Queue
Before issuing
the system call

Queue
After issuing
the system call

Task A: wai_sem

Task A

Queue
Before issuing
the system call

Queue
After issuing
the system call

Task B: sig_sem

Task A

wai_sem

sig_sem

Task A
Priority: High

Task B
Priority: Low

wai_sem

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

User's Manual U13430EJ2V1UM44

4.3 EVENT FLAGS

For multitasking, an inter-task wait function is required to place a task in the wait state until another task outputs its

processing results. The waiting task need only monitor the occurrence of an event upon which the processing results

are output. To enable this, the RX850 provides event flags.

An event flag is aggregate data consisting of 1-bit flags indicating whether a particular event has occurred. For an

RX850 event flag, 32 bits are handled as a set of information. A meaning can be assigned not only to each of the 32

bits but also to combinations of several bits.

The following event flag system calls are used to dynamically manipulate an event flag:

set_flg : Sets a bit pattern.

clr_flg : Clears a bit pattern.

wai_flg : Checks a bit pattern.

pol_flg : Checks a bit pattern (by polling).

twai_flg: Checks a bit pattern (with timeout setting).

ref_flg : Acquires event flag information.

Caution For event flag system calls, an ID number is used to specify the event flag to be manipulated

(target event flag).
Configurater CF850 consecutively assigns integers, starting from 0x1, to event flags as ID

numbers, based on event flag information stored in the system information table.

4.3.1 Event Flag Generation

RX850 event flags to be used by the system are specified at configuration. In other words, RX850 event flags can

only be statically generated using information specified at configuration (generation at system initialization). They

cannot be dynamically generated using system calls.

To generate RX850 event flags, an area for managing each event flag (the management object) is allocated and

initialized.

The RX850 recognizes such an area allocated in memory as an event flag and manages it accordingly.

The following event flag information is specified at configuration:

• Event flag name

Cautions 1. If an event flag is generated during system initialization, the RX850 sets 0x0 as the initial bit

pattern.

2. The RX850 specifies that only one task can be queued into the queue of an event flag.

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

User's Manual U13430EJ2V1UM 45

4.3.2 Setting a Bit Pattern

A bit pattern is set by issuing a set_flg system call.

(1) set_flg system call

The set_flg system call sets a bit pattern for the event flag specified by a parameter.

When this system call is issued, if the given condition for a task queued into the queue of the specified event

flag is satisfied, that task shall be removed from the queue.

Then, this task will leave the wait state (the event flag wait state) and enter the ready state. Or, it will leave

the wait_suspend state and enter the suspend state.

4.3.3 Clearing a Bit Pattern

A bit pattern is cleared by issuing a clr_flg system call.

(1) clr_flg system call

The clr_flg system call clears the bit pattern of the event flag specified by a parameter.

When this system call is issued, if the bit pattern of the specified event flag has already been cleared to zero,

it is not regarded as an error. Pay particularly careful attention to this point.

4.3.4 Checking Bit Patterns

Bit pattern check is performed by issuing the wai_flg, pol_flg, or twai_flg system call.

(1) wai_flg system call

The wai_flg system call checks whether the bit pattern is set to satisfy the wait condition required for the

event flag specified by a parameter.

If the bit pattern does not satisfy the wait condition required for the event flag specified by this system call

parameter, the task that issues this system call is queued into the queue of this event flag. Thus, the task

leaves the run state and enters the wait state (the event flag wait state).

The task shall be released from this event flag wait state, then return to the ready state, in the following

cases:

• When a set_flg system call is issued and the required wait condition is set.

• When a rel_wai system call is issued and the event flag wait state is forcibly canceled.

(2) pol_flg system call

The pol_flg system call checks whether the bit pattern is set to satisfy the wait condition required for the

event flag specified by a parameter.

If the bit pattern does not satisfy the wait condition required for the event flag specified by this system call

parameter, E_TMOUT is returned as the return value.

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

User's Manual U13430EJ2V1UM46

(3) twai_flg system call

The twai_flg system call checks whether the bit pattern is set to satisfy the wait condition required for the

event flag specified by a parameter.

If the bit pattern does not satisfy the wait condition required for the event flag specified by this system call

parameter, the task that issues this system call is queued into the queue for this event flag. Thus, the task

leaves the run state and enters the wait state (the event flag wait state).

The task shall be released from the event flag wait state and return to the ready state in the following cases:

• Once the given wait time specified by parameter has elapsed.

• When a set_flg system call is issued and the required wait condition is set.

• When a rel_wai system call is issued and the event flag wait state is forcibly canceled.

Remark The RX850 allows the specification of either of the two wait conditions, as well as the processing to

be performed when the specified wait condition is satisfied, as described below:

(1) Wait conditions

• AND wait

The wait state continues until all bits to be set to 1 in the required bit pattern have been set in the

relevant event flag.

• OR wait

The wait state continues until any bit to be set to 1 in the required bit pattern has been set in the

relevant event flag.

(2) When the condition is satisfied

• The bit pattern is cleared.

When the wait condition specified for the event flag is satisfied, the bit pattern for the event flag is

cleared.

4.3.5 Acquiring Event Flag Information

Event flag information is acquired by issuing the ref_flg system call.

(1) ref_flg system call

By issuing the ref_flg system call, the task acquires the event flag information (extended information,

queued tasks, etc.) for the event flag specified by a parameter.

Details of event flag information are as follows:

• Extended information

• Whether tasks are queued

FALSE(0) : No task is queued.

Value : ID number of the task in the queue

• Current bit pattern

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

User's Manual U13430EJ2V1UM 47

4.3.6 Wait Function Using Event Flags

The following is an example of manipulating the tasks under wait and control using event flags.

(Prerequisites)

• Task priority

Task A > Task B

• State of tasks

Task A: run state

Task B: ready state

• Event flag attribute

Initial bit pattern: 0x0

(1) Task A issues the wai_flg system call. The required bit pattern is 0x1. The wait condition and the

processing to be performed when the condition is satisfied are specified as TWF_ANDW|TWF_CLR.

The current bit pattern of the relevant event flag managed by RX850 is 0x0. Thus, RX850 changes the state

of task A from run to wait (the event flag wait state). Then, task A is queued into the queue for this event

flag.

Figure 4-5 shows the state of the queue of this event flag.

Figure 4-5. State of Queue

(2) As task A enters the event flag wait state, the state of task B changes from ready to run.

(3) Task B issues the set_flg system call. The bit pattern is set to 0x1.

This bit pattern satisfies the wait condition for task A that has been queued into the queue of the relevant

event queue. Thus, task A leaves the event flag wait state and enters the ready state.

Since TWF_CLR was specified when task A issued the wai_flg system call, the bit pattern of this event flag

is cleared.

Figure 4-6 shows the state of the queue for this event flag.

Figure 4-6. State of Queue

Queue
Before issuing
the system call

Queue
After issuing
the system call

Task A: wai_flg

Task A

Queue
Before issuing
the system call

Queue
After issuing
the system call

Task B: set_flg

Task A

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

User's Manual U13430EJ2V1UM48

(4) The state of task A having the higher priority changes from ready to run.

At the same time, task B leaves the run state and enters the ready state.

Figure 4-7 shows the transition of wait and control by event flags in steps (1) to (4).

Figure 4-7. Wait and Control by Event Flags

Task A
Priority: High

Task B
Priority: Low

wai_flg

set_flg

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

User's Manual U13430EJ2V1UM 49

4.4 1-BIT EVENT FLAGS

For multitasking, an inter-task wait function is required to place a task in the wait state until another task outputs its

processing results. The waiting task need only monitor the occurrence of an event upon which the processing results

are output. To enable this, the RX850 provides 1-bit event flags.

A 1-bit event flag is a single bit indicating whether a particular event has occurred. For an RX850 1-bit event flag,

one bit is handled as a unit of information.

Only one task can be queued for one event flag if an event flag is used as described in Section 4.3. However,

this 1-bit event flag can queue two or more tasks. It is also used to simultaneously release two or more tasks from

the wait state.

The following 1-bit event flag system calls are used to dynamically manipulate a 1-bit event flag:

vset_flg1 : Sets a bit.

vclr_flg1 : Clears a bit.

vwai_flg1 : Checks a bit.

vpol_flg1 : Checks a bit (by polling).

vtwai_flg1 : Checks a bit (with timeout setting).

vref_flg1 : Acquires 1-bit event flag information.

Caution For 1-bit event flag system calls, an ID number is used to specify the 1-bit event flag to be

manipulated (target 1-bit event flag).
Configurater CF850 consecutively assigns integers, starting from 0x1, to 1-bit event flags as ID

numbers, based on 1-bit event flag information stored in the system information table.

4.4.1 1-Bit Event Flag Generation

RX850 1-bit event flags to be used by the system are specified at configuration. In other words, RX850 1-bit

event flags can only be statically generated using information specified at configuration (generation at system

initialization). They cannot be dynamically generated using system calls.

To generate RX850 1-bit event flags, an area for managing each 1-bit event flag (the management object) is

allocated and initialized.

The RX850 recognizes such an area allocated in memory as a 1-bit event flag and manages it accordingly.

The following 1-bit event flag information is specified at configuration:

• 1-bit event flag name

Caution When a 1-bit event flag is generated during system initialization, the RX850 sets 0 as the initial

bit value.

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

User's Manual U13430EJ2V1UM50

4.4.2 Setting a Bit

A bit is set by issuing a vset_flg1 system call.

(1) vset_flg1 system call

The vset_flg1 system call sets 1 in the 1-bit event flag specified by a parameter.

When this system call is issued, if any tasks have been queued into the queue of the specified 1-bit event

flag, the first task to the task which specifies bit clearing are removed from the queue.

Then, these task will leave the wait state (the 1-bit event flag wait state) and enter the ready state. Or, they

will leave the wait_suspend state and enter the suspend state.

4.4.3 Clearing a Bit

A bit is cleared by issuing a vclr_flg1 system call.

(1) vclr_flg1 system call

The vclr_flg1 system call sets 0 in the 1-bit event flag specified by a parameter.

This system call does not queue clear requests. Note that, if the 1-bit event flag specified in the current

vclr_flg1 system call has already been cleared by the previous vclr_flg1 system call, no processing is

performed and it is not handled as an error.

4.4.4 Checking a Bit

Bit check is performed by issuing the vwai_flg1, vpol_flg1, or vtwai_flg1 system call.

(1) vwai_flg1 system call

The vwai_flg1 system call checks whether 1 is set in the 1-bit event flag specified by a parameter.

When this system call is issued, if 1 is not set in the specified 1-bit event flag, the task that issued this system

call is queued at the end of the queue of this 1-bit event flag. Thus, the task leaves the run state and enters

the wait state (the 1-bit event flag wait state).

The task shall be released from this 1-bit event flag wait state, then return to the ready state, in the following

cases:

• When a vset_flg1 system call is issued.

• When a rel_wai system call is issued and the 1-bit event flag wait state is forcibly canceled.

Caution Tasks are queued into the queue of the specified 1-bit event flag in the order (FIFO) in which

bit checking for the tasks was performed.

(2) vpol_flg1 system call

The vpol_flg1 system call checks whether 1 is set in the 1-bit event flag specified by a parameter.

When this system call is issued, if 1 is not set in the specified 1-bit event flag, E_TMOUT is returned as the

return value.

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

User's Manual U13430EJ2V1UM 51

(3) vtwai_flg1 system call

The vtwai_flg1 system call checks whether 1 is set in the 1-bit event flag specified by a parameter.

When this system call is issued, if 1 is not set in the specified 1-bit event flag, the task that issued this system

call is queued at the end of the queue of this 1-bit event flag. Thus, the task leaves the run state and enters

the wait state (the 1-bit event flag wait state).

The task shall be released from the 1-bit event flag wait state and return to the ready state in the following

cases:

• Once the given wait time specified by parameter has elapsed.

• When a vset_flg1 system call is issued.

• When a rel_wai system call is issued and the 1-bit event flag wait state is forcibly canceled.

Caution Tasks are queued into the queue of the specified 1-bit event flag in the order (FIFO) in which

bit checking for the tasks was performed.

Remark RX850 allows the specification of the processing to be performed when the wait condition specified for

the 1-bit event flag is satisfied, as follows:

(1) When the condition is satisfied

• The bit is not cleared.

When the wait condition specified for the 1-bit event flag is satisfied, the bit of the 1-bit event flag is not

cleared.

• The bit is cleared.

When the wait condition specified for the 1-bit event flag is satisfied, the bit of the 1-bit event flag is

cleared.

4.4.5 Acquiring 1-Bit Event Flag Information

1-bit event flag information is acquired by issuing the vref_flg1 system call.

• vref_flg1 system call

By issuing the vref_flg1 system call, the task acquires the 1-bit event flag information (extended information,

queued tasks, etc.) for the 1-bit event flag specified by a parameter.

Details of 1-bit event flag information are as follows:

• Extended information

• Whether tasks are queued

FALSE(0) : No task is queued.

Value : ID number of the first task in the queue

• Current bit value

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

User's Manual U13430EJ2V1UM52

4.4.6 Wait Function Using 1-Bit Event Flags

The following is an example of manipulating the tasks under wait and control using 1-bit event flags.

(Prerequisites)

• Task priority

Task A > Task B

• State of tasks

Task A: run state

Task B: ready state

• 1-bit event flag attribute

Initial bit value: 0

(1) Task A issues the vwai_flg1 system call. The processing performed when the condition is satisfied is

specified as TWF_CLR.

The current bit pattern of the relevant 1-bit event flag managed by the RX850 is 0. Thus, the RX850 changes

the state of task A from run to wait (the event flag wait state). Then, task A is queued at the end of the

queue for this 1-bit event flag.

Figure 4-8 shows the state of the queue of this 1-bit event flag.

Figure 4-8. State of the Queue

(2) As task A enters the event flag wait state, the state of task B changes from ready to run.

(3) Task B issues the vset_flg1 system call.

Task A that has been queued into the queue of the relevant 1-bit event queue leaves the event flag wait state

and enters the ready state.

Since TWF_CLR was specified when task A issued the vwai_flg1 system call, the bit pattern of this

1-bit event flag is cleared.

Figure 4-9 shows the state of the queue for this 1-bit event flag.

Figure 4-9. State of the Queue

Queue
Before issuing
the system call

Queue
After issuing
the system call

Task A: vwai_flg1

Task A

Queue
Before issuing
the system call

Queue
After issuing
the system call

Task B: vset_flg1

Task A

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

User's Manual U13430EJ2V1UM 53

(4) The state of task A having the higher priority changes from ready to run.

At the same time, task B leaves the run state and enters the ready state.

Figure 4-10 shows the transition of wait and control by 1-bit event flags in steps (1) to (4).

Figure 4-10. Wait and Control by 1-Bit Event Flags

Task A
Priority: High

Task B
Priority: Low

vwai_flg1

vset_flg1

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

User's Manual U13430EJ2V1UM54

4.5 MAILBOXES

In multitasking, an inter-task communication function is required to enable the results of a task's processing to be

passed to other tasks. To enable this, the RX850 provides mailboxes.

RX850 mailboxes have one wait queue dedicated to tasks (task wait queue) and another dedicated to messages

(message wait queue). They can be used with the inter-task wait function as well as with the inter-task message

communication function.

The following mailbox system calls are used to dynamically manipulate a mailbox:

snd_msg : Sends a message.

rcv_msg : Receives a message.

prcv_msg : Receives a message (by polling).

trcv_msg : Receives a message (with timeout setting).

ref_mbx : Acquires mailbox information.

Caution For mailbox system calls, an ID number is used to specify the mailbox to be manipulated (target

mailbox).
Configurater CF850 consecutively assigns integers, starting with 0x1, to mailboxes as ID

numbers, based on the mailbox information stored in the system information table.

4.5.1 Mailbox Generation

RX850 mailboxes to be used by the system are specified at configuration. In other words, RX850 mailboxes can

only be statically generated using the information specified at configuration (generation at system initialization). They

cannot be dynamically generated using system calls.

To generate RX850 mailboxes, an area for managing each mailbox (the management object) is allocated and

initialized.

The RX850 recognizes such an area allocated in memory as a mailbox and manages it accordingly.

The following mailbox information is specified at configuration:

• Mailbox name

• Method of queuing messages

4.5.2 Sending a Message

A message is sent by issuing a snd_msg system call.

(1) snd_msg system call

Upon the issue of a snd_msg system call, the task transmits a message to the mailbox specified by a

parameter.

If a task or tasks are queued into the task queue of the mailbox specified by this system call parameter, the

message is delivered to the first task in the task queue without being queued into the mailbox.

Then, the first task is removed from the queue, after which it leaves the wait state (the message wait state)

and enters the ready state. Or, it leaves the wait_suspend state and enters the suspend state.

Caution Queuing of a message into the message queue of the mailbox specified by the system call

parameter is performed in the order (FIFO or according to priority) specified when the

mailbox was generated (during configuration).

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

User's Manual U13430EJ2V1UM 55

4.5.3 Receiving a Message

A message is received by the task upon the issue of the rcv_msg, prcv_msg, or trcv_msg system call.

(1) rcv_msg system call

Upon the issue of a rcv_msg system call, the task receives a message from the mailbox specified by a

parameter.

If the task cannot receive a message from the mailbox specified by this system call parameter (no message

exists in the message queue of that mailbox), the task that issued this system call is queued at the end of the

task queue for this mailbox. Thus, the task leaves the run state and enters the wait state (the message

wait state).

The task shall be released from this message wait state and return to the ready state in the following cases:

• When a snd_msg system call is issued.

• When a rel_wai system call is issued and the message wait state is forcibly canceled.

Caution Tasks are queued into the queue of the specified mailbox in the order (FIFO) in which the

tasks make message reception requests. The tasks cannot be queued according to their

priorities.

(2) prcv_msg system call

Upon the issue of the prcv_msg system call, the task receives a message from the mailbox specified by a

parameter.

If the task cannot receive a message from the mailbox specified by this system call parameter (no message

exists in the message queue for that mailbox), E_TMOUT is returned as the return value.

(3) trcv_msg system call

Upon the issue of the trcv_msg system call, the task receives a message from the mailbox specified by a

parameter.

If the task cannot receive a message from the mailbox specified by this system call parameter (no message

exists in the message queue for that mailbox), the task that issued this system call is queued at the end of the

task queue for this mailbox. Thus, the task leaves the run state and enters the wait state (the message

wait state).

The task shall be released from this message wait state and return to the ready state in the following cases:

• When the given time specified by parameter has elapsed.

• When a snd_msg system call is issued.

• When a rel_wai system call is issued and the message wait state is forcibly canceled.

Caution Tasks are queued into the queue of the specified mailbox in the order (FIFO) in which the

tasks make message reception requests.

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

User's Manual U13430EJ2V1UM56

4.5.4 Messages

Under the RX850, all items of information exchanged between tasks, via mailboxes, are called messages.

Messages can be transmitted to an arbitrary task via a mailbox. In inter-task communication under the RX850,

however, only the start address of a message is delivered to a receiving task, enabling the task to access the

message. The contents of the message are not copied to any other area. Pay particularly careful attention to this

point.

(1) Allocating message areas

NEC recommends that the memory pool managed by the RX850 be allocated for messages. To make a

memory pool area available for a message, the task should issue a get_blf, pget_blf, tget_blf,

get_blk, pget_blk, or tget_blk system call.

The first four bytes of each message are used as the block for linkage to the message queue when queued.

Therefore, if areas other than the memory pool are allocated for messages, these message areas must be

aligned with a 4-byte boundary.

Caution If the rel_blf or rel_blk system call is issued while a message is placed in the message

queue of the relevant mailbox, its operation will be unpredictable.

(2) Composing messages

The RX850 does not specially stipulate the length and contents of a message to be transmitted to a mailbox.

If a priority is assigned to the first four bytes of a message and to the message, a one-byte reserved area is

necessary.

The first four bytes of a message are used as a link area that is used to queue that message. The fifth byte is

an area in which the priority of a message is stored. The message itself is stored in the subsequent area. To

allocate the area for the message, these bytes must be taken into consideration.

Cautions 1. If no priority is assigned to a message, the fifth byte and those that follow can be used

as the message itself.

2. If a priority is assigned to a message, theoretically, the sixth byte and those that follow

constitute the message itself. Actually, however, the message starts from the eighth

byte because of the area alignment of the compiler.

3. The priority of a message can be specified within a range of 0 to 31.
4. Set the first four bytes of a message to "0x0" to transmit the message to a mailbox

before issuing system call snd_msg.

5. When using a mailbox for programming in C, "structure of message T_MSG" provided by

the RX850 can be used. For details, refer to the description of system call snd_msg in

Section 10.5.3.

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

User's Manual U13430EJ2V1UM 57

4.5.5 Acquiring Mailbox Information

Mailbox information is acquired by issuing a ref_mbx system call.

(1) ref_mbx system call

Upon the issue of a ref_mbx system call, the task acquires the mailbox information (extended information,

queued tasks, etc.) for the mailbox specified by a parameter.

The mailbox information consists of the following:

• Extended information

• Whether tasks are queued

FALSE(0) : No task is queued.

Value : ID number of the first task in the queue

• Whether messages are queued

NADR(-1) : No message is queued.

Value : Address of the first message in the queue

4.5.6 Inter-Task Communication Using Mailboxes

The following is an example of manipulating the tasks under inter-task communication using mailboxes.

(Prerequisites)

• Task priority

Task A > Task B

• State of tasks

Task A: run state

Task B: ready state

(1) Task A issues a rcv_msg system call.

No message is queued into the message queue of the relevant mailbox managed by the RX850. Thus, the

RX850 changes the state of task A from run to wait (the message wait state). The task is queued at the

end of the task queue for this mailbox.

Figure 4-11 shows the state of the task queue for this mailbox.

Figure 4-11. State of Task Queue

(2) As task A enters the message wait state, the state of task B changes from ready to run.

(3) Task B issues the get_blf system call.

By means of this system call, a memory pool area is allocated for a message (as a memory block).

Queue
Before issuing
the system call

Queue
After issuing
the system call

Task A: rcv_msg

Task A

CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS

User's Manual U13430EJ2V1UM58

(4) Task B writes a message into this memory block.

(5) Task B issues the snd_msg system call.

This changes the state of task A that has been placed in the task wait for the relevant mailbox from the

message wait state to ready state.

Figure 4-12 shows the state of the task queue for this mailbox.

Figure 4-12. State of Task Queue

(6) The state of task A having the higher priority changes from ready to run.

At the same time, task B leaves the run state and enters the ready state.

(7) Task A issues the rel_blf system call.

This releases the memory block allocated for the message in the memory pool.

Figure 4-13 shows the transition of inter-task communication in steps (1) to (7).

Figure 4-13. Inter-Task Communication Using Mailboxes

Queue
Before issuing
the system call

Queue
After issuing
the system call

Task B: snd_msg

Task A

Task A
Priority: High

Task B
Priority: Low

rcv_msg

snd_msg

rel_blf

A message is generated.

get_blf

User's Manual U13430EJ2V1UM 59

CHAPTER 5 INTERRUPT MANAGEMENT FUNCTION

This chapter describes the interrupt management function provided by the RX850.

5.1 OVERVIEW
The RX850 interrupt management function enables the following:

• Initiating an interrupt handler

• Return from an interrupt handler

• Disabling/resuming maskable interrupt acceptance

• Changing/acquiring the contents of an interrupt control register

5.2 INTERRUPT HANDLER

An interrupt handler is a routine dedicated to interrupt processing. Upon the occurrence of an interrupt, the

interrupt handler is initiated immediately and handled independently of all other tasks. Therefore, if a task having the

highest priority in the system is being executed upon the occurrence of an interrupt, its processing is suspended and

control is passed to the interrupt handler.

The RX850 provides two interfaces for interrupt handlers, enabling different levels of response, from the

occurrence of an interrupt until the start of the interrupt handler.

• Directly activated interrupt handler

• Indirectly activated interrupt handler

5.3 DIRECTLY ACTIVATED INTERRUPT HANDLER

The directly activated interrupt handler is a routine dedicated to interrupt processing, initiated without the

intervention of the RX850 upon the occurrence of an interrupt.

Therefore, a rapid response that approaches the maximum level of hardware performance can be expected.

Figure 5-1 shows the flow of the processing performed by the directly activated interrupt handler.

Figure 5-1. Flow of Processing Performed by the Directly Activated Interrupt Handler

Scheduling

ret_int

Task RX850 Directly activated interrupt handler

Occurrence of an interrupt

CHAPTER 5 INTERRUPT MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM60

5.3.1 Registering a Directly Activated Interrupt Handler

A directly activated interrupt handler may be registered by assigning it to an address to which control is passed by

the processor upon the occurrence of an interrupt, or by writing and setting a branch instruction to a directly activated

interrupt handler.

5.3.2 Internal Processing Performed by the Directly Activated Interrupt Handler

It is necessary to describe the internal processing performed by the directly activated interrupt handler, taking the

following into account:

(1) Saving and restoring the contents of a register

When control is passed to a directly activated interrupt handler, the contents of the work registers remain as

is upon the occurrence of the interrupt. If the work registers are used with the directly activated interrupt

handler, the coding should be written such that they are saved when the interrupt handler starts, and restored

upon the termination of interrupt handler operation.

This processing must be described in assembly language. To minimize the workload imposed on the user in

describing processing in assembly language, the RX850 offers a macro for a directly activated interrupt

handler. Because the registers are saved or restored in this macro, use this macro. For details of this macro,

refer to the RX850 User's Manual, Installation.

Figure 5-2 shows the sequence in which the directly activated interrupt handler saves the contents of each

register, for each register mode.

Figure 5-2. Saving the Register Contents

32-register mode

Previous sp

sp

r19

r18

r17

r16

r15

r14

r13

r12

r11

r10

r9

r8

r7

r1

EIPSW

EIPC

r6

26-register mode

Previous sp

sp

r16

r15

r14

r13

r12

r11

r10

r9

r8

r7

r6

r1

EIPSW

EIPC

22-register mode

Previous sp

sp

r14

r13

r12

r11

r10

r9

r8

r7

r6

r1

EIPSW

EIPC

CHAPTER 5 INTERRUPT MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM 61

(2) Stack switching

When control is passed to a directly activated interrupt handler, the stack remains as is upon the occurrence

of the interrupt. If the interrupt handler stack is used, the coding should be written such that the interrupt

handler stack is switched at the start of the directly activated interrupt handler, returning to the original stack

upon the completion of interrupt handler operation. If the macro for a directly activated interrupt handler is

used, however, the processing for switching the stack does not have to be described because that processing

is performed by the macro.

(3) Limitations imposed on system calls

The following lists the system calls that can be issued during the processing performed by a directly activated

interrupt handler:

• Task management system calls

sta_tsk chg_pri rot_rdq rel_wai get_tid

ref_tsk

• Task-associated synchronization system calls

sus_tsk rsm_tsk frsm_tsk wup_tsk can_wup

• Synchronous communication system calls

sig_sem preq_sem ref_sem set_flg clr_flg

pol_flg ref_flg vset_flg1 vclr_flg1 vpol_flg1

vref_flg1 snd_msg prcv_msg ref_mbx

• Interrupt management system calls

ret_int ret_wup dis_int ena_int chg_icr

ref_icr

• Memory pool management system calls

pget_blf rel_blf ref_mpf pget_blk rel_blk

ref_mpl

• Time management system calls

act_cyc ref_cyc

• System management system calls

get_ver ref_sys

CHAPTER 5 INTERRUPT MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM62

(4) Return processing from the directly activated interrupt handler

Return processing from the directly activated interrupt handler is performed by issuing the ret_int or

ret_wup system call upon the completion of interrupt handler operation.

• ret_int system call

The ret_int system call performs return from the directly activated interrupt handler.

• ret_wup system call

The ret_wup system call issues a wake-up request to the task specified by the parameter, and then

performs return from the directly activated interrupt handler.

When a system call (chg_pri, sig_sem, etc.) that requires task scheduling is issued during the processing

of a directly activated interrupt handler, the RX850 merely queues the tasks into the queue. The actual

processing of task scheduling is batched and deferred until return from the directly activated interrupt handler

has been completed (by issuing a ret_int or ret_wup system call).

Caution The ret_int and ret_wup system calls do not notify the external interrupt controllers that

operation of the interrupt handler has terminated (the EOI command is not issued).

Therefore, if a return is made from a directly activated interrupt handler that was initiated by

an external interrupt request, notification of the termination of interrupt handler operation

must be posted to the relevant external interrupt controller before any of these system calls

is issued.

CHAPTER 5 INTERRUPT MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM 63

5.4 INDIRECTLY ACTIVATED INTERRUPT HANDLER

The indirectly activated interrupt handler is a routine dedicated to interrupt processing. Upon the occurrence of an

interrupt, before operation of the indirectly activated interrupt handler starts, RX850 performs the required preparatory

operations (such as saving the registers and stack switching).

Although an indirectly activated interrupt handler is inferior to a directly activated interrupt handler in terms of

response speed, it has the advantage of the processing in the handler being simpler because the RX850 performs

preprocessing of the interrupt.

Figure 5-3 shows the flow of the processing performed by the indirectly activated interrupt handler.

Figure 5-3. Flow of Processing Performed by the Indirectly Activated Interrupt Handler

5.4.1 Registering an Indirectly Activated Interrupt Handler

The indirectly activated interrupt handlers to be used by the RX850 are specified at configuration. They are

registered with the RX850 only statically, based on the information specified at configuration. They cannot be

registered dynamically (using system calls).

The following indirectly activated interrupt handler information is specified at configuration:

• Interrupt level

• Activation address of an indirectly activated interrupt handler

5.4.2 Internal Processing Performed by the Indirectly Activated Interrupt Handler

When describing the processing to be performed by the indirectly activated interrupt handler, note the following:

(1) Saving and Restoring the contents of a register

Based on the function call protocol for C compilers (CA850 or CCV850), the RX850 saves the work registers

when control is passed to the indirectly activated interrupt handler, and restores them upon return from the

interrupt handler. Therefore, the indirectly activated interrupt handler does not have to save the work

registers when it starts, nor perform restoration upon the completion of its processing. Save/restoration of the

registers should not, therefore, be described in the coding for the indirectly activated interrupt handler.

Caution The RX850 does not switch the gp, tp, and ep registers when control is passed to the

indirectly activated interrupt handler.

Interrupt preprocessing

Task RX850 Indirectly activated interrupt handler

Occurrence of an interrupt

Interrupt postprocessing

return (0xff) ;

Scheduling

CHAPTER 5 INTERRUPT MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM64

(2) Stack switching

The RX850 performs stack switching when control is passed to the indirectly activated interrupt handler and

also upon return from the interrupt handler. Therefore, the indirectly activated interrupt handler does not have

to switch to the interrupt handler stack when it starts, nor switch to the original stack upon the completion of

its processing. Stack switching should not, therefore, be described in the coding for the indirectly activated

interrupt handler.

If the interrupt handler stack is not defined during configuration, however, stack switching is not performed by

the RX850. In this case, the system continues to use the stack being used upon the occurrence of the

interrupt.

(3) Limitations imposed on system calls

The following lists the system calls that can be issued during the processing of an indirectly activated interrupt

handler:

• Task management system calls

sta_tsk chg_pri rot_rdq rel_wai get_tid

ref_tsk

• Task-associated synchronization system calls

sus_tsk rsm_tsk frsm_tsk wup_tsk can_wup

• Synchronous communication system calls

sig_sem preq_sem ref_sem set_flg clr_flg

pol_flg ref_flg vset_flg1 vclr_flg1 vpol_flg1

vref_flg1 snd_msg prcv_msg ref_mbx

• Interrupt management system calls

dis_int ena_int chg_icr ref_icr

• Memory pool management system calls

pget_blf rel_blf ref_mpf pget_blk rel_blk

ref_mpl

• Time management system calls

act_cyc ref_cyc

• System management system calls

get_ver ref_sys

CHAPTER 5 INTERRUPT MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM 65

(4) Return processing from the indirectly activated interrupt handler

Return processing from the indirectly activated interrupt handler is performed by issuing a return instruction

upon the completion of interrupt handler operation.

• return (0xff) instruction

Performs return from the indirectly activated interrupt handler.

• return (ID tskid) instruction

Issues a wake-up request to the task specified by the parameters, then returns from the indirectly activated

interrupt handler.

When a system call (chg_pri, sig_sem, etc.) that requires task scheduling is issued during processing by

an indirectly activated interrupt handler, the RX850 merely queues the tasks into the queue. The actual

processing of task scheduling is batched and deferred until return from the indirectly activated interrupt

handler has been made (by issuing a return instruction).

Caution The return instruction does not notify the external interrupt controllers that operation of

the interrupt handler has terminated (the EOI command is not issued). Therefore, if a return

is made from an indirectly activated interrupt handler that was initiated by an external

interrupt request, notification of the termination of interrupt handler operation must be
posted to the relevant external interrupt controller before the return instruction is issued.

CHAPTER 5 INTERRUPT MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM66

5.5 DISABLING/RESUMING MASKABLE INTERRUPT ACCEPTANCE

The RX850 provides a function for disabling or resuming the acceptance of maskable interrupts, so that whether

maskable interrupts are accepted can be specified from a user processing program.

This function is implemented by issuing the following system calls from within a task or interrupt handler.

(1) loc_cpu system call

The loc_cpu system call disables the acceptance of maskable interrupts, as well as the performing of

dispatch processing (task scheduling).

Once this system call has been issued, control is not passed to any other task or interrupt handler until the

unl_cpu system call is issued.

(2) unl_cpu system call

The issue of the unl_cpu system call enables the acceptance of maskable interrupts, and resuming dispatch

processing (task scheduling).

With the issue of this system call maskable interrupt acceptance, that was previously disabled by the issue of

a loc_cpu system call, is enabled and dispatch processing resumes.

(3) dis_int system call

The dis_int system call disables the acceptance of maskable interrupts.

Once this system call has been issued, control is not passed to the handler until the ena_int system call is

issued.

(4) ena_int system call

The ena_int system call resumes the acceptance of maskable interrupts.

With the issue of this system call, the acceptance of maskable interrupts, which has been disabled by the

issue of the dis_int system call, is resumed.

Figure 5-4 shows the control flow during normal operation. Figure 5-5 shows the control flow after the issue of a

loc_cpu system call. Figure 5-6 shows the control flow after the issue of a dis_int system call.

Figure 5-4. Control Flow During Normal Operation

Task A
Priority: Low

Task B
Priority: High Interrupt handler

Occurrence of an interrupt

slp_tsk

slp_tsk

ret_int

wup_tsk

CHAPTER 5 INTERRUPT MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM 67

Figure 5-5. Control Flow When the loc_cpu System Call Is Issued

Figure 5-6. Control Flow When the dis_int System Call Is Issued

Caution System calls ena_int and dis_int enable and disable an interrupt in the task that issued these

system calls. For example, suppose a maskable interrupt occurs after dis_int has been

issued in task A. The interrupt processing remains pending. If, however, the processing moves

to task B because a system call that causes dispatch is issued, and if the maskable interrupt is
not disabled in task B (i.e., if system call dis_int is not issued in task B), the interrupt is

acknowledged. This means that the interrupt processing kept pending in task A is executed

immediately after the processing has been transferred to task B.

If the processing is dispatched to task A again, execution is resumed with the maskable

interrupt disabled.

Task A
Priority: Low

Task B
Priority: High Interrupt handler

Occurrence of an interrupt

ret_int

slp_tsk

unl_cpu

wup_tsk

loc_cpu

slp_tsk

Task A Interrupt handler

dis_int

ena_int

ret_int

Occurrence of an interrupt

CHAPTER 5 INTERRUPT MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM68

5.6 CHANGING/ACQUIRING THE CONTENTS OF AN INTERRUPT CONTROL REGISTER

The contents of an interrupt control register are changed using chg_icr and acquired using ref_icr.

• chg_icr system call

The chg_icr system call changes the contents of the interrupt control register specified by the parameter.

• ref_icr system call

The ref_icr system call acquires the contents of the interrupt control register specified by the parameter.

Figure 5-7 shows the acquired contents of an interrupt control register.

Figure 5-7. Contents of an Interrupt Control Register

5.7 NONMASKABLE INTERRUPTS

A nonmaskable interrupt is not subject to management based on interrupt priority and has priority over all other

interrupts. It can be accepted even if the processor is placed in the interrupt disabled state (the ID flag of PSW is

set).

Therefore, even while processing is being executed by the RX850 or an interrupt handler, a non-maskable

interrupt can be accepted.

If a system call is issued during the processing of an interrupt handler that supports nonmaskable interrupts, its

operation cannot be assured under the RX850.

5.8 CLOCK INTERRUPTS

The RX850 performs time management, using clock interrupts that are based on the clocks supplied by the

hardware (such as a real-time pulse unit) at regular intervals.

Upon the occurrence of a clock interrupt, the time management interrupt handler (clock handler) of the RX850

may be called, so that time-related processing may be performed to leave a task in the wait state for a given period

and subsequently release it, initiate a cyclic handler, and so on.

For details of time management, see Chapter 7.

Bit 7 Bit 0

0 0 0

Interrupt mask flag

0: Enables interrupt handling.

1: Disables interrupt handling (pending).

Interrupt priority

000: Specifies level 0 (highest).

001: Specifies level 1.

010: Specifies level 2.

011: Specifies level 3.

100: Specifies level 4.

101: Specifies level 5.

110: Specifies level 6.

111: Specifies level 7 (lowest).

Interrupt request flag

0: No interrupt request is made.

1: An interrupt request is made.

CHAPTER 5 INTERRUPT MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM 69

5.9 MULTIPLE INTERRUPTS

In the RX850, the occurrence of another interrupt while processing is being performed by an interrupt handler is

called "multiple interrupts."

All interrupt handlers, however, start their operation in the interrupt-disabled state (the ID flag of PSW is set). To

enable the acceptance of multiple interrupts, the canceling of the interrupt disabled state should be described in the

interrupt handler.

Figure 5-8 shows the flow of the processing for handling multiple interrupts.

Figure 5-8. Flow of Processing for Handling Multiple Interrupts

Interrupt-disabled state canceled

Task RX850
Directly activated
interrupt handler

Occurrence of an interrupt

ret_int

Directly activated
interrupt handler

ret_int

Scheduling

Occurrence of an interrupt

User's Manual U13430EJ2V1UM70

[MEMO]

User's Manual U13430EJ2V1UM 71

CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTION

This chapter describes the memory pool management function of the RX850.

6.1 OVERVIEW

The RX850 statically generates and initializes those objects that are under its management during system

initialization. These objects include information tables for managing the overall system and management blocks for

implementing the functions (such as semaphores and event flags).

The RX850 is provided with a dynamic memory pool management function, so that memory areas can be

acquired as required and released once they become unnecessary. The user can thus dynamically allocate the

memory for objects, enabling the efficient use of the memory space.

6.2 MANAGEMENT OBJECTS

The following lists the management objects required for managing the entire system with the RX850, as well as

those required for implementing the functions provided by the RX850.

These management objects are generated and initialized during system initialization, according to the information

(for systems, tasks, etc.) specified at configuration.

• System base table

• Task execution right group management block

• Task management block

• Semaphore management block

• Event flag management block

• 1-bit event flag management block

• Mailbox management block

• Fixed-size memory pool management block

• Variable-size memory pool management block

• Cyclic handler management block

• Memory pool

• Task stack area

• Interrupt handler stack area

Figure 6-1 shows a typical arrangement of the management objects.

CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM72

Figure 6-1. Typical Arrangement of Management Blocks

High address

Low address

Interrupt handler stack area

Memory pool

Cyclic handler management block

Task management block

Task execution right group management block

Mailbox management block

Variable-size memory pool management block

Fixed-size memory pool management block

Semaphore management block

1-bit event flag management block

Event flag management block

System base table

Task stack area

CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM 73

6.3 FIXED-SIZE MEMORY POOL

The RX850 provides a pool of fixed-size memory areas that can be used by processing programs (such as tasks

and handlers).

The fixed-size memory pool consists of more than one fixed-size memory block. Operations on the fixed-size

memory pool are performed in units of blocks.

Dynamic operations for the fixed-size memory pool are performed using the following fixed-size memory pool

system calls.

get_blf : Acquires a fixed-size memory block.

pget_blf: Acquires a fixed-size memory block (by polling).

tget_blf: Acquires a fixed-size memory block (with timeout setting).

rel_blf : Returns a fixed-size memory block.

Cautions 1. Fixed-size memory blocks are acquired and returned in units of blocks.

2. For system calls related to the fixed-size memory pools, an ID number is used to specify the

fixed-size memory pool to be manipulated (target fixed-size memory pool). Configurater
CF850 consecutively assigns integers, starting with 0x1, to fixed-size memory pools as ID

numbers, based on fixed-size memory pool information stored in the system information

table.

6.3.1 Fixed-Size Memory Pool Generation

The RX850 specifies the fixed-size memory pools to be used by the system at configuration. In other words, the

RX850 fixed-size memory pools can be generated only statically (at system initialization) according to the information

specified at configuration. They cannot be generated dynamically using system calls.

RX850 fixed-size memory pool generation consists of the acquisition and initialization of a management object

(area used to manage fixed-size memory pools) and a fixed-size memory pool area.

The RX850 recognizes such areas as being fixed-size memory pools and manages them accordingly.

The following fixed-size memory pool information is specified at configuration:

• Fixed-size memory pool name

• Fixed-size memory pool size

• Type of system memory in which fixed-size memory pools are allocated (.pool0 or .pool1 section)

CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM74

6.3.2 Acquiring a Fixed-Size Memory Block

A fixed-size memory block is acquired by issuing a get_blf, pget_blf, or tget_blf system call.

(1) get_blf system call

Upon the issue of the get_blf system call, the processing program (task) acquires a fixed-size memory

block from the fixed-size memory pool specified by a parameter.

After the issue of this system call, if the task cannot acquire the block from the specified fixed-size memory

pool (because no free block exists), the task itself is enqueued at the end of the queue of this fixed-size

memory pool. Thus, the task leaves the run state and enters the wait state (the fixed-size memory block

wait state).

The task shall be released from the fixed-size memory block wait state and return to the ready state in the

following cases:

• When a rel_blf system call is issued.

• When a rel_wai system call is issued and the fixed-size memory block wait state is forcibly canceled.

Cautions 1. Tasks are queued into the queue of the specified fixed-size memory pool in the order

(FIFO) in which the tasks make fixed-size memory block acquisition requests.

2. The RX850 clears only the first four bytes of any acquired fixed-size memory block.

Thus, the contents of the subsequent bytes will be undefined.

(2) pget_blf system call

Upon the issue of the pget_blf system call, the processing program (task) acquires a fixed-size memory

block from the fixed-size memory pool specified by a parameter.

For this system call, if the task cannot acquire the block from the fixed-size memory pool specified by this

system call parameter (because no free block exists), E_TMOUT is returned as the return value.

Caution The RX850 clears only the first four bytes of any acquired fixed-size memory block. Thus,

the contents of the subsequent bytes will be undefined.

(3) tget_blf system call

By issuing a tget_blf system call, the processing program (task) acquires a fixed-size memory block from

the fixed-size memory pool specified by a parameter.

After the issue of this system call, if the task cannot acquire the block from the specified fixed-size memory

pool (because no free block exists), the task itself is enqueued at the end of the queue of this fixed-size

memory pool. Thus, the task leaves the run state and enters the wait state (the fixed-size memory block

wait state).

The task shall be released from the fixed-size memory block wait state and return to the ready state in the

following cases:

• Once the wait time specified by a parameter has elapsed.

• When a rel_blf system call is issued.

• When a rel_wai system call is issued and the fixed-size memory block wait state is forcibly canceled.

Cautions 1. Tasks are queued into the queue of the specified fixed-size memory pool in the order

(FIFO) in which the tasks make fixed-size memory block acquisition requests.

2. The RX850 clears only the first four bytes of any acquired fixed-size memory block.

Thus, the contents of the subsequent bytes will be undefined.

CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM 75

6.3.3 Returning a Fixed-Size Memory Block

A fixed-size memory block is returned upon the issue of a rel_blf system call.

(1) rel_blf

Upon the issue of a rel_blf system call, a processing program (task) returns a fixed-size memory block to

the fixed-size memory pool specified by a parameter.

When this system call is issued, if any tasks are queued into the queue of the specified fixed-size memory

pool, the fixed-size memory block is not returned, but is passed to the first task in the queue.

Thus, the first task is removed from the queue, leaves the wait state (the fixed-size memory block wait

state), and enters the ready state. Or, it leaves the wait_suspend state and enters the suspend state.

Cautions 1. The contents of a returned fixed-size memory block are not cleared automatically by the

RX850. Thus, the contents of a fixed-size memory block may be undefined when that

memory block is returned.

2. A memory block shall be returned to the same fixed-size memory pool as that specified
by the get_blf, pget_blf, or tget_blf system call.

6.3.4 Acquiring Fixed-Size Memory Pool Information

Fixed-size memory pool information is acquired by issuing a ref_mpf system call.

(1) ref_mpf system call

Upon the issue of a ref_mpf system call, the processing program (task) acquires the fixed-size memory pool

information (extended information, queued tasks, etc.) for the fixed-size memory pool specified by a

parameter.

The fixed-size memory pool information consists of the following:

• Extended information

• Whether tasks are queued

FALSE(0) : No task is queued.

Value : ID number of the first task in the queue

• Number of free blocks

CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM76

6.4 VARIABLE-SIZE MEMORY POOL

The RX850 provides a pool of variable-size memory areas that can be used by processing programs (such as

tasks and handlers).

The variable-size memory pool consists of more than one variable-size memory block. Operations on the

variable-size memory pool are performed in units of blocks.

Dynamic operations for the variable-size memory pool are performed using the following variable-size memory

pool system calls.

get_blk : Acquires a variable-size memory block.

pget_blk: Acquires a variable-size memory block (by polling).

tget_blk: Acquires a variable-size memory block (with timeout setting).

rel_blk : Returns a variable-size memory block.

Cautions 1. Variable-size memory blocks are acquired and returned in units of blocks.

2. For system calls related to the variable-size memory pools, an ID number is used to specify

the variable-size memory pool to be manipulated (target variable-size memory pool).
Configurater CF850 consecutively assigns integers, starting with 0x1, to variable-size

memory pools as ID numbers, based on variable-size memory pool information stored in the

system information table.

6.4.1 Variable-Size Memory Pool Generation

The RX850 specifies the variable-size memory pools to be used by the system at configuration. In other words,

the RX850 variable-size memory pools can be generated only statically (at system initialization) according to the

information specified at configuration. They cannot be generated dynamically using system calls.

RX850 variable-size memory pool generation consists of the acquisition and initialization of a management object

(area used to manage variable-size memory pools) and a variable-size memory pool area.

The RX850 recognizes such areas as being variable-size memory pools and manages them accordingly.

The following variable-size memory pool information is specified at configuration:

• Variable-size memory pool name

• Variable-size memory pool size

• Type of system memory in which variable-size memory pools are allocated (.pool0 or .pool1 section)

CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM 77

6.4.2 Acquiring a Variable-Size Memory Block

A variable-size memory block is acquired by issuing a get_blk, pget_blk, or tget_blk system call.

(1) get_blk system call

Upon the issue of the get_blk system call, the processing program (task) acquires a variable-size memory

block from the variable-size memory pool specified by a parameter.

After the issue of this system call, if the task cannot acquire the block from the specified variable-size memory

pool (because no free block exists), the task itself is enqueued at the end of the queue of this variable-size

memory pool. Thus, the task leaves the run state and enters the wait state (the variable-size memory block

wait state).

The task shall be released from the variable-size memory block wait state and return to the ready state in

the following cases:

• When a rel_blk system call is issued.

• When a rel_wai system call is issued and the variable-size memory block wait state is forcibly canceled.

Cautions 1. Tasks are queued into the queue of the specified variable-size memory pool in the order

(FIFO) in which the tasks make variable-size memory block acquisition requests.

2. The RX850 clears only the first four bytes of any acquired variable-size memory block.

Thus, the contents of the subsequent bytes will be undefined.

(2) pget_blk system call

Upon the issue of the pget_blk system call, the processing program (task) acquires a variable-size memory

block from the variable-size memory pool specified by a parameter.

For this system call, if the task cannot acquire the block from the variable-size memory pool specified by this

system call parameter (because no free block exists), E_TMOUT is returned as the return value.

Caution The RX850 clears only the first four bytes of any acquired variable-size memory block.

Thus, the contents of the subsequent bytes will be undefined.

(3) tget_blk system call

Upon the issue of the tget_blk system call, the processing program (task) acquires a variable-size memory

block from the variable-size memory pool specified by a parameter.

After the issue of this system call, if the task cannot acquire the block from the specified variable-size memory

pool (because no free block exists), the task itself is enqueued at the end of the queue of this variable-size

memory pool. Thus, the task leaves the run state and enters the wait state (the variable-size memory block

wait state).

The task shall be released from the variable-size memory block wait state and return to the ready state in

the following cases:

• Once the wait time specified by a parameter has elapsed.

• When a rel_blk system call is issued.

• When a rel_wai system call is issued and the variable-size memory block wait state is forcibly canceled.

Cautions 1. Tasks are queued into the queue of the specified variable-size memory pool in the order

(FIFO) in which the tasks make variable-size memory block acquisition requests.

2. The RX850 clears only the first four bytes of any acquired variable-size memory block.

Thus, the contents of the subsequent bytes will be undefined.

CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM78

6.4.3 Returning a Variable-Size Memory Block

A variable-size memory block is returned upon the issue of a rel_blk system call.

(1) rel_blk

Upon the issue of a rel_blk system call, a processing program (task) returns a variable-size memory block

to the variable-size memory pool specified by a parameter.

When this system call is issued, if any tasks are queued into the queue of the specified variable-size memory

pool, the variable-size memory block is not returned, but is passed to the first task in the queue.

Thus, the first task is removed from the queue, leaves the wait state (the variable-size memory block wait

state), and enters the ready state. Or, it leaves the wait_suspend state and enters the suspend state.

Cautions 1. The contents of a returned variable-size memory block are not cleared automatically by

the RX850. Thus, the contents of a variable-size memory block may be undefined when

that memory block is returned.

2. A memory block shall be returned to the same variable-size memory pool as that
specified by the get_blk, pget_blk, or tget_blk system call.

6.4.4 Acquiring Variable-Size Memory Pool Information

Variable-size memory pool information is acquired by issuing a ref_mpl system call.

(1) ref_mpl system call

Upon the issue of a ref_mpl system call, the processing program (task) acquires the variable-size memory

pool information (extended information, queued tasks, etc.) for the variable-size memory pool specified by a

parameter.

The variable-size memory pool information consists of the following:

• Extended information

• Whether tasks are queued

FALSE(0) : No task is queued.

Value : ID number of the first task in the queue

• Number of free blocks

User's Manual U13430EJ2V1UM 79

CHAPTER 7 TIME MANAGEMENT FUNCTION

This chapter describes the time management function of the RX850.

7.1 OVERVIEW

The RX850 uses a clock interrupt, generated by hardware (real-time pulse unit) at regular intervals, for time

management.

Each time a clock interrupt occurs, the time management interrupt handler of the RX850 (clock handler) starts and

controls processing such as managing the timeout wait state of tasks and starting the cyclic handler.

Figure 7-1 shows the processing performed by the clock handler.

Figure 7-1. Clock Handler Processing

Occurrence of the clock interrupt

Task wake-up processing

Prescribed time
elapsed?

Any task waiting?

Cyclic handler?

Prescribed time
elapsed?

Activity state?

Start cyclic handler

Clock handlerTask or handler

No

Yes

Yes

No

No

Off

No

Yes

On

Yes

CHAPTER 7 TIME MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM80

7.2 TIMER OPERATION

Real-time processing requires a clock synchronization function (based on timer operation) to suspend the

processing of a task for a given period, perform periodic handler processing, and so on. RX850 provides functions,

based on timer operation, such as delayed task wake-up, timeout, and the initiation of a cyclic handler.

7.3 DELAYED TASK WAKE-UP

Delayed task wake-up changes the state of a task from run to wait (the timeout wait state) and leaves the task in

this state for a given period. Once this period elapses, the task is released from the wait state and returns to the

ready state.

Delayed task wake-up is performed by issuing a dly_tsk system call.

(1) dly_tsk system call

Upon the issue of a dly_tsk system call, the state of the task from which this system call was issued

changes from run to wait (the timeout wait state).

The task shall be released from the timeout wait state and return to the ready state in the following cases:

• Upon the elapse of the delay specified by a parameter.

• Upon the issue of a rel_wai system call and the forcible cancelation of the timeout wait state.

Figure 7-2 shows the flow of the processing after the issue of the dly_tsk system call.

Figure 7-2. Flow of Processing After Issue of dly_tsk

Task A
Priority: High

Task B
Priority: Low

dly_tsk (Delay time)

Delay time

CHAPTER 7 TIME MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM 81

7.4 TIMEOUT

If the conditions required for a certain action are not satisfied when that action is requested by a task, the timeout

function changes the state of the task from run to wait (wake-up wait state, resource wait state, etc.) and leaves the

task in the wait state for a given period. Once that period elapses, the timeout function releases the task from the

wait state. Then, the task returns to the ready state.

The timeout function is enabled by issuing a tslp_tsk, twai_sem, twai_flg, vtwai_flg1, trcv_msg,

tget_blf, or tget_blk system call.

(1) tslp_tsk system call

Upon the issue of a tslp_tsk system call, one request for wake-up, issued for the task from which this

system call is issued, is canceled (the wake-up request counter is decremented by 0x1).

If the wake-up request counter of the task from which this system call is issued currently indicates 0x0, the

wake-up request is not canceled (the wake-up request counter is not decremented) and the task enters the

wait state (the wake-up wait state) from the run state.

The task shall be released from the wake-up wait state and return to the ready state in the following cases:

•••• When the given wait time specified by a parameter has elapsed.

• When a wup_tsk system call is issued.

• When a ret_wup system call is issued.

• When a rel_wai system call is issued and the wake-up wait state is forcibly canceled.

(2) twai_sem system call

Upon the issue of a twai_sem system call, the task acquires a resource from the semaphore specified by a

parameter (the semaphore counter is decremented by 0x1).

After the issue of this system call, if the task cannot acquire a resource from the semaphore specified by a

parameter (no free resource exists), the task itself is enqueued at the end of the queue of this semaphore.

Thus, the task leaves the run state and enters the wait state (the resource wait state).

The task shall be released from this resource wait state and return to the ready state in the following cases:

•••• When the given wait time specified by a parameter has elapsed.

• When a sig_sem system call is issued.

• When a rel_wai system call is issued and the resource wait state is forcibly canceled.

(3) twai_flg system call

The twai_flg system call checks whether the bit pattern is set so as to satisfy the wait condition required

for the event flag specified by a parameter.

If the bit pattern does not satisfy the wait condition required for the event flag specified by this system call

parameter, the task from which this system call is issued is enqueued into the queue of this event flag. Thus,

the task leaves the run state and enters the wait state (the event flag wait state).

The task shall be released from this event flag wait state and return to the ready state in the following cases:

•••• When the given wait time specified by a parameter has elapsed.

• When a set_flg system call is issued and the required wait condition is satisfied.

• When a rel_wai system call is issued and the event flag wait state is forcibly canceled.

CHAPTER 7 TIME MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM82

(4) vtwai_flg1 system call

The vtwai_flg1 system call checks whether 1 is set in the 1-bit event flag specified by a parameter.

If 1 is not set in the 1-bit event flag specified by this system call parameter, the task from which this system

call is issued is enqueued at the end of the queue of this event flag. Thus, the task leaves the run state and

enters the wait state (the event flag wait state).

The task shall be released from this event flag wait state and return to the ready state in the following cases:

•••• When the given wait time specified by a parameter has elapsed.

• When a vset_flg1 system call is issued.

• When a rel_wai system call is issued and the event flag wait state is forcibly canceled.

(5) trcv_msg system call

Upon the issue of a trcv_msg system call, the task receives a message from the mailbox specified by a

parameter.

After the issue of this system call, if the task cannot receive a message from the specified mailbox (no

messages exist), the task itself is enqueued at the end of the task queue of this mailbox. Thus, the task

leaves the run state and enters the wait state (the message wait state).

The task shall be released from the message wait state and return to the ready state in the following cases:

•••• When the given time specified by a parameter has elapsed.

• When a snd_msg system call is issued.

• When a rel_wai system call is issued and the message wait state is forcibly canceled.

(6) tget_blf system call

Upon the issue of a tget_blf system call, the task acquires a fixed-size memory block from the fixed-size

memory pool specified by a parameter.

After the issue of this system call, if the task cannot acquire the block from the specified fixed-size memory

pool (because no free block exists), the task itself is enqueued into the queue of this fixed-size memory pool.

Thus, the task leaves the run state and enters the wait state (the fixed-size memory block wait state).

The task shall be released from this fixed-size memory block wait state and return to the ready state in the

following cases:

•••• When the given wait time specified by a parameter has elapsed.

• When a rel_blf system call is issued.

• When a rel_wai system call is issued and the fixed-size memory block wait state is forcibly canceled.

(7) tget_blk system call

Upon the issue of a tget_blk system call, the task acquires a variable-size memory block from the variable-

size memory pool specified by a parameter.

After the issue of this system call, if the task cannot acquire the block from the specified variable-size memory

pool (because no free block exists), the task itself is enqueued into the queue of this variable-size memory

pool. Thus, the task leaves the run state and enters the wait state (the variable-size memory block wait

state).

The task shall be released from this variable-size memory block wait state and return to the ready state in

the following cases:

•••• When the given wait time specified by a parameter has elapsed.

• When a rel_blk system call is issued.

• When a rel_wai system call is issued and the variable-size memory block wait state is forcibly canceled.

CHAPTER 7 TIME MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM 83

7.5 CYCLIC HANDLER

A cyclic handler is a routine dedicated to cyclic processing, initiated at regular intervals. The cyclic handler is

handled independently of all other tasks. Even if a task of the highest priority in the system is currently being

executed, it is interrupted by this handler.

The cyclic handler is a processing program with the minimum overhead of the processing programs that is

described by the user and which is executed cyclically, up to the start of execution.

7.5.1 Registering a Cyclic Handler

The cyclic handler to be used by the RX850 is specified at configuration. It can be registered only statically (at

system initialization) based on the information specified at configuration. It cannot be registered dynamically (using

system calls).

In the RX850, registration of the cyclic handler consists of the acquisition and initialization of a management object

(area used to manage the cyclic handler).

The following cyclic handler information is specified at configuration:

• Name of cyclic handler

• Activation address of cyclic handler

• Initial activity state of cyclic handler

• Activation interval of cyclic handler

Caution For system calls related to the cyclic handler, an ID number is used to specify which cyclic

handler is to be manipulated (target cyclic handler). Configurater CF850 consecutively assigns
integers, starting with 0x1, to cyclic handlers, as ID numbers based on cyclic handler

information stored in the system information table.

7.5.2 Activity State of the Cyclic Handler

The activity state of a cyclic handler is one of the criteria which the RX850 uses to determine whether to start the

cyclic handler.

The activity state of a cyclic handler is specified at system generation according to the information specified at

configuration. The RX850 provides a function that enables a user processing program to dynamically change the

activity state of a cyclic handler.

• act_cyc system call

This system call changes the activity state of a cyclic handler specified by the parameter.

TCY_OFF : Switches the activity state of the cyclic handler to OFF.

TCY_ON : Switches the activity state of the cyclic handler to ON.

TCY_INI : Enqueues the cyclic handler into the timer queue, then initializes a cycle counter.

TCY_ULNK : Switches the activity state of the cyclic handler to OFF, then detaches the handler from the

timer queue.

CHAPTER 7 TIME MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM84

Under the RX850, while the cyclic handler is queued into the timer queue, the cycle counter continues to count

even if the activity state of that handler is OFF. In some cases, when the act_cyc system call is issued to switch the

activity state of the cyclic handler from OFF to ON, the first activation request could be issued sooner than the

activation interval specified at configuration. To prevent this, the user must specify TCY_INI to initialize the cycle

counter as well as TCY_ON to restart the cyclic handler when issuing the act_cyc system call. Then, the first

activation request will be issued in sync with the activation interval specified at configuration.

Figures 7-3 and 7-4 show the flow of the processing after the issue of an act_cyc system call from a processing

program to switch the activity state of the cyclic handler from OFF to ON.

In these figures, ∆T is assumed to be the activation time interval, specified for the cyclic handler at configuration.

In Figure 7-3, the relationship between ∆t and ∆T is ∆t ≤ ∆T.

Figure 7-3. Flow of Processing After Issue of act_cyc (TCY_ON)

 T

 T

Cyclic handler

 t

act_cyc (TCY_ON)

Task

act_cyc (TCY_OFF)

return

return

return

 T

CHAPTER 7 TIME MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM 85

Figure 7-4. Flow of Processing After Issue of act_cyc (TCY_ON|TCY_INI)

7.5.3 Internal Processing Performed by the Cyclic Handler

After the occurrence of a clock interrupt, the RX850 performs preprocessing for interruption before control is

passed to the cyclic handler. When control is returned from the cyclic handler, the RX850 performs interrupt post

processing.

When describing the processing to be performed by the cyclic handler, note the following:

(1) Saving and restoring the contents of a register

Based on the function call protocol for C compilers (CA850 or CCV850), the RX850 saves the work registers

when control is passed to the cyclic handler, and restores them upon the return of control from the handler.

Therefore, the cyclic handler does not have to save the work registers when it starts, nor restore them upon

the completion of its processing. Save/restoration of the registers should not be coded in the description of

the cyclic handler.

Caution When passing control to the cyclic handler, the RX850 does not switch the gp, tp, or ep

register.

 T

 T

Cyclic handler

act_cyc (TCY_ON | TCY_INI)

Task

return

return

return

act_cyc (TCY_OFF)

 T

 T

CHAPTER 7 TIME MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM86

(2) Stack switching

The RX850 performs stack switching when control is passed to the cyclic handler and upon a return from the

handler. Therefore, the cyclic handler does not have to switch to the interrupt handler stack when it starts,

nor switch to the original stack upon the completion of its processing. Stack switching should not be coded in

the description of the cyclic handler.

If the interrupt handler stack is not defined during configuration, however, stack switching is not performed by

the RX850. In this case, the system continues to use that stack being used upon the occurrence of an

interrupt.

(3) Limitations imposed on system calls

The following lists the system calls that can be issued during the processing performed by a cyclic handler:

• Task management system calls

sta_tsk chg_pri rot_rdq rel_wai get_tid

ref_tsk

• Task-associated synchronization system calls

sus_tsk rsm_tsk frsm_tsk wup_tsk can_wup

• Synchronous communication system calls

sig_sem preq_sem ref_sem set_flg clr_flg

pol_flg ref_flg vset_flg1 vclr_flg1 vpol_flg1

vref_flg1 snd_msg prcv_msg ref_mbx

• Interrupt management system calls

dis_int ena_int chg_icr ref_icr

• Memory pool management system calls

pget_blf rel_blf ref_mpf pget_blk rel_blk

ref_mpl

• Time management system calls

act_cyc ref_cyc

• System management system calls

get_ver ref_sys

(4) Return processing from the cyclic handler

Return processing from the cyclic handler is performed by issuing an return system call upon the

completion of the processing performed by the cyclic handler.

• return system call

The return system call performs return from the cyclic handler.

When a system call (chg_pri, sig_sem, etc.) that requires task scheduling is issued during the processing

of a cyclic handler, the RX850 merely queues that task into the queue. The actual task scheduling is batched

and deferred until return from the cyclic handler has been completed (by issuing an return system call).

CHAPTER 7 TIME MANAGEMENT FUNCTION

User's Manual U13430EJ2V1UM 87

7.5.4 Acquiring Cyclic Handler Information

Information related to a cyclic handler is acquired by issuing a ref_cyc system call.

(1) ref_cyc system call

By issuing a ref_cyc system call, the task acquires information (including extended information, remaining

time, etc.) related to the cyclic handler specified by a parameter.

The cyclic handler information consists of the following:

• Extended information

• Time remaining until the next start of the cyclic handler

• Current activity state

User's Manual U13430EJ2V1UM88

[MEMO]

User's Manual U13430EJ2V1UM 89

CHAPTER 8 SCHEDULER

This chapter explains the task scheduling performed by the RX850.

8.1 OVERVIEW

By monitoring the dynamically changing task states, the RX850 scheduler manages and determines the sequence

in which tasks are executed, and assigns a processing time to a specific task.

8.2 DRIVE METHOD

The RX850 scheduler uses an event-driven technique, in which the scheduler operates in response to the

occurrence of some event.

The "occurrence of some event" means the issue of a system call that may cause a task state change, the issue

of a return instruction that causes a return from a handler, or the occurrence of a clock interrupt.

In other words, the scheduler is activated and performs task scheduling according to the issue of a system call

that may cause a task state shift, the issue of a return instruction by a handler, or the occurrence of a clock interrupt.

The following system calls can be used to drive the scheduler.

• Task management system calls

sta_tsk ext_tsk ena_dsp chg_pri rot_rdq

rel_wai

• Task-associated synchronization system calls

rsm_tsk frsm_tsk slp_tsk tslp_tsk wup_tsk

• Synchronous communication system calls

sig_sem wai_sem twai_sem set_flg wai_flg

twai_flg vset_flg1 vwai_flg1 vtwai_flg1 snd_msg

rcv_msg trcv_msg

• Interrupt management system calls

ret_int ret_wup unl_cpu

• Memory pool management system calls

get_blf tget_blf rel_blf get_blk tget_blk

rel_blk

• Time management system calls

dly_tsk

CHAPTER 8 SCHEDULER

User's Manual U13430EJ2V1UM90

8.3 SCHEDULING METHOD

The RX850 uses the priority and FCFS (first-come, first-served) scheduling method.

When driven, the scheduler checks the priority of each task that can be executed (in the run or ready state),

selects the optimum task, and assigns a processing time to the selected task.

8.3.1 Priority Method

Each task is assigned a priority that determines the sequence in which it will be executed.

The scheduler checks the priority of each task that can be executed (in the run or ready state), selects the task

having the highest priority, and assigns a processing time to the selected task.

Caution In the RX850, a task to which a smaller value is assigned as the priority level has a higher

priority.

8.3.2 FCFS (First-Come, First-Served) Method

The RX850 can assign the same priority to more than one task. Because the priority method is used for task

scheduling, there is the possibility of more than one task having the highest priority being selected.

Among those tasks having the highest priority, the scheduler selects the first to become executable (that task

which has been in the ready state for the longest time) and assigns a processing time to the selected task.

CHAPTER 8 SCHEDULER

User's Manual U13430EJ2V1UM 91

8.4 IDLE HANDLER

An idle handler is a routine which is activated by the scheduler when all the tasks have left the run or ready

state, that is, when there are no tasks to be scheduled by the RX850 in the system. This routine is handled

independently of the tasks.

The idle handler is used to exploit the power save function of the V850 Family. For the processing of the idle

handler, sample source files are provided.

8.4.1 Internal Processing Performed by the Idle Handler

The idle handler sets the power save function provided by the V850 Family. The following describes this power

save function.

(1) HALT mode

In this mode, the clock generators (oscillator and PLL synthesizer) continues to operate, while the processor

operating clock is no longer supplied. However, clocks are still supplied to other internal peripheral functions

so that these functions continue to operate.

By combining HALT mode with normal operation mode to provide intermittent operation, the total power

consumption in the system can be reduced.

To switch the system to HALT mode, the dedicated instruction (HALT instruction) must be issued.

(2) IDLE mode

In this mode, the clock generators (oscillator and PLL synthesizer) continue to operate, while the internal

system clock is no longer supplied so that the entire system is stopped.

When IDLE mode is canceled, the clock settling time (such as the oscillation settling time for the oscillator) is

not required. This allows the system to enter normal operation mode quickly.

IDLE mode stands midway between HALT mode and STOP mode in terms of power consumption and clock

settling time. This mode can be used for those applications that require less power consumption and

operation without the clock settling time.

To switch the system to IDLE mode, the control register (power save control register PSC) must be set.

(3) STOP mode

In this mode, the clock generators (oscillator and PLL synthesizer) are stopped so that the entire system is

stopped.

While in STOP mode, the system consumes the least power, in that only the leakage current flows.

To switch the system to STOP mode, the control register (power save control register PSC) must be set.

CHAPTER 8 SCHEDULER

User's Manual U13430EJ2V1UM92

8.5 IMPLEMENTING A ROUND-ROBIN METHOD

The RX850 uses the priority and FCFS scheduling methods. In scheduling based on these methods, even if tasks

have the same priority as that currently running, they cannot be executed unless that task to which a processing time

has been assigned first enters another state or relinquishes control of the processor.

The RX850 provides system calls such as rot_rdq to implement a scheduling method (round-robin method) that

can overcome the problem incurred by the priority and FCFS methods.

An example of exclusive control among tasks by using semaphores in the round-robin method is given below.

(Prerequisites)

• Task priority

Task A = task B = task C

• State of tasks

Task A: run state

Task B: ready state

Task C: ready state

• Cyclic handler attributes

Activity state : ON

Activation interval : ∆T (unit: Clock interrupt period)

Processing : Rotation of the ready queues (issue of the rot_rdq system call)

(1) Task A is currently running.

The other tasks (B and C) have the same priority as task A, but they cannot be executed unless task A enters

another state or relinquishes control of the processor.

The ready queue becomes as shown in Figure 8-1.

Figure 8-1. Ready Queue State

run state

Task B

ready state

Task C

ready state

Priority

High

Low

Ready queue

Task A

CHAPTER 8 SCHEDULER

User's Manual U13430EJ2V1UM 93

(2) With the elapse of time, the cyclic handler starts and issues the rot_rdq system call.

Task A is added to the end of the ready queue having the same priority, and changes from the run state to

the ready state.

The ready queue changes to the state shown in Figure 8-2.

Figure 8-2. Ready Queue State

(3) As task A enters the ready state, task B changes from the ready state to the run state.

The ready queue changes to the state shown in Figure 8-3.

Figure 8-3. Ready Queue State

Task B

ready state

Task C

ready state

Task A

ready state

Priority

High

Low

Ready queue

run state

Task C

ready state

Task A

ready state

Priority

High

Low

Ready queue

Task B

CHAPTER 8 SCHEDULER

User's Manual U13430EJ2V1UM94

(4) By issuing the rot_rdq system call from the cyclic handler that is started at constant intervals, that

scheduling method (round-robin method) in which tasks are switched every time the specified period (∆T)

elapses is implemented.

Figure 8-4 shows the processing flow when the round-robin method is used.

Figure 8-4. Processing Flow When the Round-Robin Method Is Used

 T

 T

Task A

 T

return

rot_rdq

return

rot_rdq

return

rot_rdq

return

rot_rdq

 T

 T

Task B Task C Cyclic handler

return

rot_rdq

CHAPTER 8 SCHEDULER

User's Manual U13430EJ2V1UM 95

8.6 SCHEDULING LOCK FUNCTION

The RX850 supports that enable a user processing program to drive the scheduler and disable or resume

dispatching (task scheduling).

These functions are implemented by issuing the following system calls from within a task.

(1) dis_dsp system call

Disables dispatching (task scheduling).

If this system call is issued, control is not passed to another task until the ena_dsp system call is issued.

(2) ena_dsp system call

Resumes dispatching (task scheduling).

When this system call is issued, dispatching which was disabled by the issue of the dis_dsp system call is

resumed.

(3) loc_cpu system call

Disables the acceptance of maskable interrupts, then disables dispatching (task scheduling).

If this system call is issued, control will not be passed to another task or handler until the unl_cpu system

call is issued.

(4) unl_cpu system call

Enables the acceptance of maskable interrupts, then restarts dispatching (task scheduling).

When this system call is issued, the acceptance of maskable interrupts which was disabled by the issue of

the loc_cpu system call is re-enabled, allowing dispatching to be resumed.

Figure 8-5 shows the normal control flow. Figure 8-6 shows the control flow when the dis_dsp system call is

issued. Figure 8-7 shows the control flow when the loc_cpu system call is issued.

Figure 8-5. Control Flow During Normal Operation

Task A
Priority: Low

Task B
Priority: High

Interrupt handler

Occurrence of an interrupt

ret_int

wup_tsk

slp_tsk

CHAPTER 8 SCHEDULER

User's Manual U13430EJ2V1UM96

Figure 8-6. Control Flow When the dis_dsp System Call Is Issued

Figure 8-7. Control Flow When the loc_cpu System Call Is Issued

Task A
Priority: Low

Task B
Priority: High

Interrupt handler

Occurrence of an interrupt

ret_int

wup_tsk

dis_dsp

ena_dsp

slp_tsk

Task A
Priority: Low

Task B
Priority: High

Interrupt handler

Occurrence of an interrupt

ret_int

wup_tsk

loc_cpu

unl_cpu

slp_tsk

CHAPTER 8 SCHEDULER

User's Manual U13430EJ2V1UM 97

8.7 SCHEDULING WHILE THE HANDLER IS OPERATING

To quickly terminate handlers (interrupt handlers and cyclic handlers), the RX850 delays the driving of the

scheduler until processing within the handler terminates.

Therefore, if a system call that requires task scheduling (such as chg_pri or sig_sem) is issued, the RX850

merely executes processing such as queue operation until the completion of return processing from the handler (such

as ret_int or return). Actual scheduling is delayed and executed at one time upon the completion of return

processing.

Figure 8-8 shows the control flow when a handler issues a system call that requires scheduling.

Figure 8-8. Control Flow When the wup_tsk System Call Is Issued

Task A
Priority: Low

Task B
Priority: High

Interrupt handler

Occurrence of an interrupt

ret_int

wup_tsk

slp_tsk

User's Manual U13430EJ2V1UM98

[MEMO]

User's Manual U13430EJ2V1UM 99

CHAPTER 9 SYSTEM INITIALIZATION

This chapter explains the system initialization to be performed by the RX850.

For details of the system initialization, refer to the RX850 User's Manual, Installation.

9.1 OVERVIEW

System initialization consists of initializing the hardware required by the RX850 (the reset routine), as well as

initializing the software (the nucleus initialization section and initialization handler).

For this reason, in the RX850, the processing performed immediately after the system has been started is system

initialization.

Figure 9-1 shows the flow of system initialization.

Figure 9-1. Flow of System Initialization

Caution System initialization is performed while the acceptance of maskable interrupts is disabled. If

the acceptance of maskable interrupts is enabled during system initialization, its operation

cannot be assured.

Reset routine

V850 family reset entry

Scheduler

Nucleus

Task

Initialization handler

Nucleus initialization section

CHAPTER 9 SYSTEM INITIALIZATION

User's Manual U13430EJ2V1UM100

9.2 RESET ROUTINE

The reset routine is the system initialization processing that is executed first.

This routine performs initialization processing that is not related to the memory used by the RX850, i.e., it

executes initialization of the target system and sets the pointers (tp, gp, and ep) necessary for program execution.

The reset routine performs the following processing.

• Setting of tp, gp, and ep registers

• Initialization related to bus control

• Initialization of internal units and peripheral controllers

• Initialization of data area without initial value

• Copy of initialization data

• Branch instruction to nucleus

Because the reset routine must be described in assembly language, make sure that the routine performs the

minimum initialization processing and that the remainder of the processing is performed by an initialization handler

that can be described in C.

Rewrite the above processing according to the needs of the user.

Figure 9-2 shows the positioning of the hardware initialization section in the RX850.

Figure 9-2. Positioning of Hardware Initialization Section

Reset routine

V850 family reset entry

Scheduler

Nucleus

Task

Nucleus initialization section

Initialization handler

CHAPTER 9 SYSTEM INITIALIZATION

User's Manual U13430EJ2V1UM 101

9.3 NUCLEUS INITIALIZATION SECTION

The nucleus initialization section is a function called by the reset routine. It generates and initializes the

management objects based on the information (such as system information or task information) described in the

system information table.

The nucleus initialization section performs the following processing:

• Generation/initialization of management objects

• Activation of a taskNote

• Registration of indirectly activated interrupt handlers

• Registration of cyclic handlers

• Registration of time management interrupt handlers (clock handlers)

• Calling of the initialization handler

• Transfer of control to the scheduler

Note The task activated in the nucleus initialization section specifies ready as the initial status when a task is

created by using the CF definition file. For details, refer to RX850 User's Manual, Installation.

Caution The nucleus initialization section is one of the functions provided by the RX850. The user need

not code the nucleus initialization section.

Figure 9-3 shows the positioning of the nucleus initialization section in the RX850.

Figure 9-3. Positioning of Nucleus Initialization Section

Nucleus initialization section

V850 family reset entry

Reset routine

Scheduler

Nucleus

Task

Initialization handler

CHAPTER 9 SYSTEM INITIALIZATION

User's Manual U13430EJ2V1UM102

9.4 INITIALIZATION HANDLER

The initialization handler is a function that is called from the nucleus. The nucleus is initialized after the reset

routine has issued a branch instruction to the nucleus. When initialization of the nucleus has been completed, the

initialization handler is called. When processing of the initialization handler is completed, the scheduler of the RX850

is activated, and the operation of the OS is started.

Make sure that processing that has not been performed by the reset routine is performed by this initialization

handler (see Section 9.2). Examples of the processing are as follows:

• Initialization of interrupt control unit

• Initialization of timer/counter unit

• Initialization of system clock

• Branch instruction to nucleus

In addition to the above processing, the initialization handler can also initialize a data area without an initial value

and copy data with an initial value.

The above processing should be rewritten according to the needs of the user.

Caution In the initialization handler, system calls that can be issued by the interrupt handler and cyclic

handler can be issued.

Figure 9-4 shows the positioning of the initialization handler in the RX850.

Figure 9-4. Positioning of Initialization Handler

Initialization handler

V850 family reset entry

Reset routine

Scheduler

Nucleus

Task

Nucleus initialization section

User's Manual U13430EJ2V1UM 103

CHAPTER 10 SYSTEM CALLS

This chapter describes the system calls supported by the RX850.

10.1 OVERVIEW

The user can use system calls to indirectly manipulate those resources that are managed directly by the RX850

(such as counters and queues).

The RX850 supports 62 system calls based on the µITRON 3.0 specifications. System calls can be classified into

the following seven groups, according to their functions.

(1) Task management system calls (10)

These system calls are used to manipulate the status of a task.

This group provides functions for activating and terminating a task, a function for inhibiting and restarting

dispatch processing, a function for changing the task priority, a function to rotating a task ready queue, a

function for forcibly releasing a task from the wait state, and a function for referencing the task status.

sta_tsk ext_tsk ter_tsk dis_dsp ena_dsp

chg_pri rot_rdq rel_wai get_tid ref_tsk

(2) Task-associated synchronization system calls (7)

These system calls perform synchronous operations associated with tasks.

This group provides a function for placing a task in the suspend state and restarting a task in the suspend

state, a function for placing a task in the wake-up wait state and waking up a task currently in the wake-up

wait state, and another function for canceling a task wake-up request.

sus_tsk rsm_tsk frsm_tsk slp_tsk tslp_tsk

wup_tsk can_wup

(3) Synchronous communication system calls (22)

These system calls are used for the synchronization (exclusive control and queuing) and communication

between tasks.

This group provides a function for manipulating semaphores, a function for manipulating event flags or 1-bit

event flags, and a function for manipulating mailboxes.

sig_sem wai_sem preq_sem twai_sem ref_sem

set_flg clr_flg wai_flg pol_flg twai_flg

ref_flg vset_flg1 vclr_flg1 vwai_flg1 vpol_flg1

vtwai_flg1 vref_flg1 snd_msg rcv_msg prcv_msg

trcv_msg ref_mbx

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM104

(4) Interrupt management system calls (8)

These system calls perform processing that is dependent on the interrupts.

This group provides a function for returning from a directly activated interrupt handler, a function for inhibiting

and resuming maskable interrupt acceptance, and a function for changing and referencing the contents of an

interrupt control register.

ret_int ret_wup loc_cpu unl_cpu dis_int

ena_int chg_icr ref_icr

(5) Memory pool management system calls (10)

These system calls allocate memory blocks.

This group provides a function for getting and releasing a memory block and a function for referencing the

status of a memory pool.

get_blf pget_blf tget_blf rel_blf ref_mpf

get_blk pget_blk tget_blk rel_blk ref_mpl

(6) Time management system calls (3)

These system calls perform processing that is dependent on time.

This group provides a function for placing a task in the timeout wait state, a function for controlling the state of

a cyclic handler, a function for returning from a cyclic handler, and a function for referencing the status of

cyclic handler.

dly_tsk act_cyc ref_cyc

(7) System management system calls (2)

These system calls perform processing that varies with the system.

This group provides a function for obtaining version information and a function for referencing the system

status.

get_ver ref_sys

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 105

10.2 CALLING SYSTEM CALLS

System calls issued from tasks or handlers (interrupt handlers or cyclic handlers) written in C are called as C

functions. Their parameters are passed as arguments.

When issuing system calls from tasks or handlers written in assembly language, set parameters and a return

address according to the function calling rules of the C compiler (CA850 or CCV850), used before calling them with

the jarl instruction.

Caution The RX850 declares the prototype of a system call in the stdrx850.h file. Accordingly, when

issuing a system call from a task or handler, the following must be coded to include the header

file:
 #include <stdrx850.h>

10.3 DATA TYPES OF PARAMETERS

The system calls supported by the RX850 have parameters that are defined based on data types that conform to

the µITRON 3.0 specifications.

Table 10-1 lists the data types of the parameters specified upon the issue of a system call.

Data type macros are defined in the type.h header file.

Table 10-1. Data Types

Macro Data type Description

B

H

INT

W

UB

UH

UINT

UW

VB

VH

VW

*VP

(*FP)()

BOOL

ID

BOOL_ID

HNO

ER

PRI

TMO

CYCTIME

DLYTIME

char

short

int

long

unsigned char

unsigned short

unsigned int

unsigned long

char

short

long

void

void

char

char

char

char

long

char

long

long

long

Signed 8-bit integer

Signed 16-bit integer

Signed 32-bit integer

Signed 32-bit integer

Unsigned 8-bit integer

Unsigned 16-bit integer

Unsigned 32-bit integer

Unsigned 32-bit integer

Variable data type value (8 bits)

Variable data type value (16 bits)

Variable data type value (32 bits)

Variable data type value (pointer)

Start address of processing program

Boolean value

ID number of object

Existence of waiting task

Specification number of cyclic handler

Error code

Priority of task or message

Wait time

Cyclically activated time interval (residual time)

Delay time

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM106

10.4 SYSTEM CALL RETURN VALUES

The system call return values supported by the RX850 are based on the µITRON 3.0 specifications.

Table 10-2 lists the system call return values.

Return value macros are defined in the errno.h header file.

Table 10-2. Return Values

Macro Value Description

E_OK

E_OBJ

E_CTX

E_QOVR

E_TMOUT

E_RLWAI

0

-63

-69

-73

-85

-86

Normal termination

The status of the specified object is invalid.

Context error

Count overflow

Timeout/polling failure

The wait state was forcibly deleted.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 107

10.5 EXPLANATION OF SYSTEM CALLS

Sections 10.5.1 through 10.5.7 below explain the system calls issued by the RX850 in the following format.

Figure 10-1. System Call Description Format

I/O Parameter Description

Overview4

C format5

Parameter(s)6

Explanation7

Return value(s)8

1 2

3

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM108

1 Name

Indicates the name of the system call.

2 Semantics

Indicates the source of the name of the system call.

3 Origin of system call

Indicates where the system call can be issued.

Task/handler : The system call can be issued from both a task and handler (directly

activated interrupt handler, indirectly activated interrupt handler, and

cyclic handler).

Task : The system call can be issued only from a task.

Directly activated interrupt handler : The system call can be issued only from a directly activated interrupt

handler.

Cyclic handler : The system call can be issued only from a cyclic handler.

4

Outlines the functions of the system call.

5

Indicates the format to be used when describing a system call to be issued in C.

6

System call parameters are explained in the following format.

Macros are defined in the usr.h and option.h header files.

I/O Parameter Description

A B C

A: Parameter classification

I ... Parameter input to the RX850

O ... Parameter output from the RX850

B: Parameter data type

C: Description of parameter

7

Explains the function of a system call.

8

Indicates a system call's return value using a macro and value.

Return value macros are defined in the errno.h header file.

Parameter(s)

Overview

C format

Return value(s)

Explanation

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 109

10.5.1 Task Management System Calls

This section explains a group of system calls (task management system calls) that are used to manipulate the task

status.

Table 10-3 lists the task management system calls.

Table 10-3. List of Task Management System Calls

System call Function schdlNote

sta_tsk

ext_tsk

ter_tsk

dis_dsp

ena_dsp

chg_pri

rot_rdq

rel_wai

get_tid

ref_tsk

Activates another task.

Terminates the task which issued the system call.

Forcibly terminates another task.

Disables dispatch processing.

Resumes dispatch processing.

Change the priority of a task.

Rotates a task ready queue.

Forcibly releases another task from wait state.

Acquires a task ID number.

Acquires task information.

o

o

x

x

o

o

o

o

x

x

Note schdl indicates whether the scheduler is to be activated.

Whether control is to be passed to another task as a result of scheduler activation,

however, depends on the current state.

o: Activates the scheduler.

x: Does not activate the scheduler.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM110

sta_tsk
Start Task

Task/handler

Overview

Activates another task.

C format

ER sta_tsk(ID tskid, INT stacd);

Parameters

I/O Parameter Description

I ID tskid; Task ID number

I INT stacd; Activation code

Explanation

This system call assigns a task execution right to the task specified in tskid, then switches that task from the

dormant state to the ready state.

When this system call is issued, if the task cannot acquire a task execution right from the relevant task execution

right group, the task itself is queued at the end of the queue of this task execution right group. Thus, the task

leaves the dormant state and enters the wait state (the task execution right wait state).

For stacd, specify the activation code to be passed to the specified task. The specified task can be manipulated

by handling the activation code as if it were a function parameter.

Cautions 1. This system call does not queue activation requests. Accordingly, when a specified task is
not in the dormant state, this system call returns E_OBJ as the return value.

2. The task execution wait state is not canceled by the rel_wai system call.

3. Tasks are queued into the queue of the relevant task execution right group according to

their priorities.

Return values

E_OK 0 Normal termination

E_OBJ -63 The specified task is not in the dormant state.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 111

ext_tsk
Exit Task

Task

Overview

Terminates the task which issued the system call.

C format

void ext_tsk();

Parameters

None.

Explanation

This system call returns the task execution right of the task which issued the system call, then switches that task

from the run state to the dormant state.

When this system call is issued, if any tasks are queued into the queue of the relevant task execution right group,

the task execution right is not returned, but is instead passed to the first task in the queue.

Thus, the first task is removed from the queue, such that it leaves the wait state (the task execution right wait

state) and enters the ready state.

Cautions 1. If this system call is issued from a handler or in the dispatch inhibited state, its operation is

not guaranteed.

2. This system call does not release resources (semaphore count, memory block, etc.) that

were acquired before the termination of the task which issued this system call. Accordingly,

the user is responsible for releasing those resources before issuing this system call.

3. If a task is coded in assembly language, code the following to terminate the task.
 jr _ext_tsk

Return value

None.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM112

ter_tsk
Terminate Task

Task

Overview

Forcibly terminates another task.

C format

ER ter_tsk(ID tskid);

Parameters

I/O Parameter Description

I ID tskid; Task ID number

Explanation

This system call returns the task execution right of the task specified in tskid, then forcibly switches that task to the

dormant state.

When this system call is issued, if any tasks are queued into the queue of the relevant task execution right group,

the task execution right is not returned, but is passed to the first task in the queue.

Thus, the first task is removed from the queue, such that it leaves the wait state (the task execution right wait

state) and enters the ready state.

Caution This system call does not release those resources (semaphore count, memory block, etc.) that

were acquired before the termination of the specified task. Accordingly, the user is responsible

for releasing such resources before issuing this system call.

Return values

E_OK 0 Normal termination

E_OBJ -63 The specified task is the task which issued this system call, or the task is in the

dormant state.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 113

dis_dsp
Disable Dispatch

Task

Overview

Disables dispatch processing.

C format

ER dis_dsp();

Parameters

None.

Explanation

This system call disables dispatch processing (task scheduling).

Dispatch processing is disabled until the ena_dsp system call is issued after this system call has been issued.

If a system call such as chg_pri or sig_sem is issued to schedule tasks after this system call is issued but

before the ena_dsp system call is issued, the RX850 merely performs operations on a queue and delays actual

scheduling until the ena_dsp system call is issued, at which time the processing is performed at one time.

Cautions 1. This system call does not queue disable requests. Accordingly, if this system call has

already been issued and dispatch processing has been disabled, no processing is performed

and a disable request is not handled as an error.
2. After this system call is issued but before the ena_dsp system call is issued, if a system call

which may cause state transition of the task (such as ext_tsk or wai_sem) is issued, its

operation cannot be assured.

Return values

E_OK 0 Normal termination

E_CTX -69 This system call was issued after the loc_cpu system call was issued.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM114

ena_dsp
Enable Dispatch

Task

Overview

Resumes dispatch processing.

C format

ER ena_dsp();

Parameters

None.

Explanation

This system call resumes the dispatch processing (task scheduling) that was previously disabled by the issue of a

dis_dsp system call.

If a system call such as chg_pri and sig_sem is issued to schedule tasks after the dis_dsp system call is

issued but before this system call is issued, the RX850 merely performs operations on a queue and delays actual

scheduling until this system call is issued, at which time the processing is performed at one time.

Caution This system call does not queue resume requests. Accordingly, if this system call has already

been issued and dispatch processing has been resumed, no processing is performed. The

resume request is not handled as an error.

Return values

E_OK 0 Normal termination

E_CTX -69 This system call was issued after the loc_cpu system call had been issued.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 115

chg_pri
Change Task Priority

Task/handler

Overview

Changes the priority of a task.

C format

ER chg_pri(ID tskid, PRI tskpri);

Parameters

I/O Parameter Description

I ID tskid; Task ID number

I PRI tskpri; Task priority

Explanation

This system call changes the value of the task priority specified in tskid to that specified in tskpri.

If the specified task is in the run or ready state, this system call rechains the task to the tail of a ready queue

according to the priority and also performs priority change processing.

Cautions 1. The value specified for tskpri remains effective until this system call is reissued or until the
specified task changes to the dormant state.

2. The task priority in the RX850 becomes higher as its value decreases.

Return values

E_OK 0 Normal termination

E_OBJ -63 The specified task is not in the dormant state.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM116

rot_rdq
Rotate Ready Queue

Task/handler

Overview

Rotates a task ready queue.

C format

ER rot_rdq(PRI tskpri);

Parameters

I/O Parameter Description

I PRI tskpri; Task priority

Explanation

This system call rechains the first task in a ready queue to the end of the queue according to the priority specified

in tskpri.

Cautions 1. If no task of a specified priority exists in a ready queue, this system call performs no

processing. This is not regarded as an error.

2. By issuing this system call at regular intervals, round-robin scheduling can be achieved.

Return value

E_OK 0 Normal termination

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 117

rel_wai
Release Wait

Task/handler

Overview

Forcibly releases another task from the wait state.

C format

ER rel_wai(ID tskid);

Parameters

I/O Parameter Description

I ID tskid; Task ID number

Explanation

This system call forcibly releases the task, specified in tskid, from the wait state.

The specified task is excluded from a queue, and its states changes from the wait state to the ready state, or

from the wait_suspend state to the suspend state.

For a task released from the wait state by this system call, E_RLWAI is returned as the return value of the system

call (slp_tsk, wai_sem, etc.) that caused transition to the wait state.

Cautions 1. This system call does not queue release requests. If the specified task is in neither the wait

nor wait_suspend state, E_OBJ is returned as the return value.

2. This system call does not release the task execution right wait state. If the specified task is
in the task execution right wait state, E_OBJ is returned as the return value.

Return values

E_OK 0 Normal termination

E_OBJ -63 The specified task is in neither the wait nor wait_suspend state.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM118

get_tid
Get Task Identifier

Task/handler

Overview

Acquires a task ID number.

C format

ER get_tid(ID *p_tskid);

Parameters

I/O Parameter Description

O ID *p_tskid; Address of an area used to store an ID number

Explanation

This system call stores, in the area specified in p_tskid, the ID number of the task which issued this system call.

Caution If this system call is issued from a handler, FALSE (0) is stored in the area specified in p_tskid.

Return value

E_OK 0 Normal termination

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 119

ref_tsk
Refer Task Status

Task/handler

Overview

Acquires task information.

C format

ER ref_tsk(T_RTSK *pk_rtsk, ID tskid);

Parameters

I/O Parameter Description

O T_RTSK *pk_rtsk; Start address of packet used to store task information

I ID tskid; Task ID number

Structure of task information T_RTSK

typedef struct t_rtsk {

VP exinf; /* Extended information */

PRI tskpri; /* Current priority */

UINT tsksts; /* Task status */

UINT tskwait; /* Wait cause */

ID wid; /* ID number of specified object */

} T_RTSK;

Explanation

This system call stores the task information (extended information, current priority, etc.) specified in tskid in the

packet specified in pk_rtsk.

The following describes the task information in detail.

exinf ... Extended information

tskpri ... Current priority

tsksts ... Task state

TTS_RUN(H'01) : run state

TTS_RDY(H'02) : ready state

TTS_WAI(H'04) : wait state

• Wake-up wait state

• Timeout wait state

• Event flag wait state

• Resource wait state

• Message wait state

• Fixed-size memory block wait state

• Variable-size memory block wait state

• 1-bit event flag wait state

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM120

TTS_SUS(H'08) : suspend state

TTS_WAS(H'0c) : wait_suspend state

• Combination of the wake-up wait and suspend states

• Combination of the timeout wait and suspend states

• Combination of the event flag wait and suspend states

• Combination of the resource wait and suspend states

• Combination of the message wait and suspend states

• Combination of the fixed-size memory block wait and suspend states

• Combination of the variable-size memory block wait and suspend states

• Combination of the 1-bit event flag wait and suspend states

TTS_DMT(H'10) : dormant state

TTS_WTX(H'20) : wait state

• Task execution right wait state

TTS_WTS(H'28) : wait_suspend state

• Combination of the task execution right wait and suspend states

tskwait... Type of wait state

TTW_SLP(H'0001) : Wake-up wait state

TTW_DLY(H'0002) : Timeout wait state

TTW_FLG(H'0010) : Event flag wait state

TTW_SEM(H'0020) : Resource wait state

TTW_MBX(H'0040) : Message wait state

TTW_MPL(H'1000) : Variable-size memory block wait state

TTW_MPF(H'2000) : Fixed-size memory block wait state

TTW_1FLG(H'4000) : 1-bit event flag wait state

wid ... ID number of specified object (semaphore, event flag, etc.)

Cautions 1. When the value of tsksts is other than TTS_WAI or TTS_WAS, the contents of tskwait will

be undefined.
2. When the value of tsksts is other than TTS_WTX, or when the value of tskwait is other than

TTW_FLG, TTW_SEM, TTW_MBX, TTW_MPL, TTW_MPF, or TTW_1FLG, the contents of wid will be

undefined.

Return value

E_OK 0 Normal termination

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 121

10.5.2 Task-Associated Synchronization System Calls

This section explains a group of system calls (task-associated synchronization system calls) that perform the

synchronous operations associated with tasks.

Table 10-4 lists the task-associated synchronization system calls.

Table 10-4. List of Task-Associated Synchronization System Calls

System call Function schdlNote

sus_tsk

rsm_tsk

frsm_tsk

slp_tsk

tslp_tsk

wup_tsk

can_wup

Places another task in the suspend state.

Resumes a task in the suspend state.

Forcibly resumes a task in the suspend state.

Places the task which issued this system macro into the wake-up

wait state.

Places the task which issued this system macro (with timeout) into

the wake-up wait state.

Wakes up another task.

Cancels a request to wake up a task.

x

o

o

o

o

o

x

Note schdl indicates whether the scheduler is to be activated.

Whether control is to be passed to another task as a result of scheduler activation,

however, depends on the current state.

o: Activates the scheduler.

x: Does not activate the scheduler.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM122

sus_tsk
Suspend Task

Task/handler

Overview

Places another task in the suspend state.

C format

ER sus_tsk(ID tskid);

Parameters

I/O Parameter Description

I ID tskid; Task ID number

Explanation

This system call issues a suspend request to the task specified in tskid (0x1 is added to the suspend request

counter).

If a specified task is in the ready or wait state when this system call is issued, this system call changes the

specified task from the ready state to the suspend state or from the wait state to the wait_suspend state,

and also issues a suspend request (increments the suspend request counter).

Caution The suspend request counter managed by the RX850 consists of seven bits. Therefore, once
the number of suspend requests exceeds 127, this system call returns E_QOVR as a return value

without incrementing the suspend request counter.

Return values

E_OK 0 Normal termination

E_OBJ -63 The specified task is the task which issued this system call, or the task is in the

dormant state.

E_QOVR -73 The number of suspend requests exceeded 127.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 123

rsm_tsk
Resume Task

Task/handler

Overview

Resumes a task in the suspend state.

C format

ER rsm_tsk(ID tskid);

Parameters

I/O Parameter Description

I ID tskid; Task ID number

Explanation

This system call cancels only one of the suspend requests that are issued to the task specified in tskid (the

suspend request counter is decremented by 0x1).

If the issue of this system call causes the suspend request counter for the specified task to fall to 0x0, this system

call changes the task from the suspend state to the ready state or from the wait_suspend state to the wait

state.

Caution This system call does not queue cancel requests. Accordingly, if a specified task is not in the
suspend or wait_suspend state, this system call returns E_OBJ as a return value without

decrementing a suspend request counter.

Return values

E_OK 0 Normal termination

E_OBJ -63 The specified task is in neither the suspend nor wait_suspend state.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM124

frsm_tsk
Force Resume Task

Task/handler

Overview

Forcibly resumes a task in the suspend state.

C format

ER frsm_tsk(ID tskid);

Parameters

I/O Parameter Description

I ID tskid; Task ID number

Explanation

This system call cancels all the suspend requests issued to the task specified in tskid (the suspend request

counter is set to 0x0).

The specified task changes from the suspend state to the ready state or from the wait_suspend state to the

wait state.

Caution This system call does not queue cancel requests. Accordingly, if a specified task is in neither
the suspend nor wait_suspend state, this system call returns E_OBJ as the return value

without setting the suspend request counter.

Return values

E_OK 0 Normal termination

E_OBJ -63 The specified task is in neither the suspend nor wait_suspend state.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 125

slp_tsk
Sleep Task

Task

Overview

Places the task which issued this system macro into the wake-up wait state.

C format

ER slp_tsk();

Parameters

None.

Explanation

This system call cancels only one of the wake-up requests issued to the task (the wake-up request counter is

decremented by 0x1).

If the wake-up request counter for the task is 0x0 when this system call is issued, this system call changes the

state of the task from the run state to the wait state (wake-up wait state) without canceling a wake-up request

(the wake-up request counter is decremented).

The wake-up wait state is released when a wup_tsk, ret_wup, or rel_wai system call is issued. The task

changes from the wake-up wait state to the ready state.

Return values

E_OK 0 Normal termination

E_RLWAI -86 The wake-up wait state was forcibly released by the rel_wai system call.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM126

tslp_tsk
Sleep Task with Timeout

Task

Overview

Places the task which issued this system macro (with timeout) into the wake-up wait state.

C format

ER tslp_tsk(TMO tmout);

Parameters

I/O Parameter Description

I TMO tmout; Wait time (unit: basic clock cycle)

TMO_FEVR(-1) : Permanent wait

Value : Wait time

Explanation

This system call cancels only one of the wake-up requests issued to the task (the wake-up request counter is

decremented by 0x1).

If the wake-up request counter for the task is 0x0 when this system call is issued, this system call changes the

task from the run state to the wait state (wake-up wait state) without canceling a wake-up request (the wake-up

request counter is decremented).

The wake-up wait state is released when the wait time specified in tmout has elapsed or when the wup_tsk,

ret_wup, or rel_wai system call is issued. The task changes from the wake-up wait state to the ready state.

Caution When this system call is issued, if 0x0 is specified in tmout as the wait time, its operation

cannot be assured.

Return values

E_OK 0 Normal termination

E_TMOUT -85 The wait time has elapsed.

E_RLWAI -86 The wake-up wait state was forcibly released by a rel_wai system call.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 127

wup_tsk
Wakeup Task

Task/handler

Overview

Wakes up another task.

C format

ER wup_tsk(ID tskid);

Parameters

I/O Parameter Description

I ID tskid; Task ID number

Explanation

This system call issues a wake-up request to the task specified in tskid (increments the wake-up request counter

by 0x1).

If the specified task is in the wait state (wake-up wait state) when this system call is issued, this system call

changes the task from the wake-up wait state to the ready state without issuing a wake-up request (the wake-up

request counter is incremented).

Caution A wake-up request counter managed by the RX850 consists of seven bits. Therefore, when the
number of wake-up requests exceeds 127, this system call returns E_QOVR as the return value

without incrementing the wake-up request counter.

Return values

E_OK 0 Normal termination

E_OBJ -63 The specified task is the task which issued this system call, or the task is in the

dormant state.

E_QOVR -73 The number of wake-up requests exceeded 127.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM128

can_wup
Cancel Wakeup Task

Task/handler

Overview

Cancels a request to wake up a task.

C format

ER can_wup(INT *p_wupcnt, ID tskid);

Parameters

I/O Parameter Description

O INT *p_wupcnt; Address of area used to store the number of wake-up requests

I ID tskid; Task ID number

Explanation

This system call cancels all the wake-up requests issued to the task specified in tskid (sets the wake-up request

counter to 0x0).

The number of wake-up requests canceled by this system call is stored in the area specified in p_wupcnt.

Return values

E_OK 0 Normal termination

E_OBJ -63 The specified task is in the dormant state.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 129

10.5.3 Synchronous Communication System Calls

This section explains a group of system calls (synchronous communication system calls) that are used for

synchronization (exclusive control and queuing) and communication between tasks.

Table 10-5 lists the synchronous communication system calls.

Table 10-5. List of Synchronous Communication System Calls

System call Function schdlNote

sig_sem

wai_sem

preq_sem

twai_sem

ref_sem

set_flg

clr_flg

wai_flg

pol_flg

twai_flg

ref_flg

vset_flg1

vclr_flg1

vwai_flg1

vpol_flg1

vtwai_flg1

vref_flg1

snd_msg

rcv_msg

prcv_msg

trcv_msg

ref_mbx

Returns resources.

Acquires resources.

Acquires resources (polling).

Acquires resources (with timeout).

Acquires semaphore information.

Sets a bit pattern.

Clears a bit pattern.

Checks a bit pattern.

Checks a bit pattern (polling).

Checks a bit pattern (with timeout).

Acquires event flag information.

Sets a bit.

Clears a bit.

Checks a bit.

Checks a bit (polling).

Checks a bit (with timeout).

Acquires 1-bit event flag information.

Sends a message.

Receives a message.

Receives a message (polling).

Receives a message (with timeout).

Acquires mailbox information.

o

o

x

o

x

o

x

o

x

o

x

o

x

o

x

o

x

o

o

x

o

x

Note schdl indicates whether the scheduler is to be activated.

Whether control is to be passed to another task as a result of scheduler activation,

however, depends on the current state.

o: Activates the scheduler.

x: Does not activate the scheduler.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM130

sig_sem
Signal Semaphore

Task/handler

Overview

Returns resources.

C format

ER sig_sem(ID semid);

Parameters

I/O Parameter Description

I ID semid; Semaphore ID number

Explanation

This system call returns resources to the semaphore specified in semid (the semaphore counter is incremented by

0x1).

If tasks are queued in the queue of the specified semaphore when this system call is issued, this system call

passes the resources to the relevant task (the first task in the queue) without returning the resources

(incrementing the semaphore counter).

Consequently, the relevant task is removed from the queue, and its state changes from the wait state (resource

wait state) to the ready state, or from the wait_suspend state to the suspend state.

Caution A semaphore counter managed by the RX850 consists of seven bits. Therefore, when the
number of resources exceeds 127, this system call returns E_QOVR as its return value without

incrementing the semaphore counter.

Return values

E_OK 0 Normal termination

E_QOVR -73 The resource count exceeded 127.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 131

wai_sem
Wait on Semaphore

Task

Overview

Acquires resources.

C format

ER wai_sem(ID semid);

Parameters

I/O Parameter Description

I ID semid; Semaphore ID number

Explanation

This system call acquires resources from the semaphore specified in semid (the semaphore counter is

decremented by 0x1).

When this system call is issued, if no resource can be acquired from a specified semaphore (when there are no

free resources), this system call places the task at the end of the queue of the specified semaphore, then changes

it from the run state to the wait state (resource wait state).

The resource wait state is released upon the issue of a sig_sem or rel_wai system call, at which time it

changes to the ready state.

Return values

E_OK 0 Normal termination

E_RLWAI -86 The resource wait state was forcibly released by a rel_wai system call.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM132

preq_sem
Poll and Request Semaphore

Task/handler

Overview

Acquires resources (polling).

C format

ER preq_sem(ID semid);

Parameters

I/O Parameter Description

I ID semid; Semaphore ID number

Explanation

This system call acquires resources from the semaphore specified in semid (the semaphore counter is

decremented by 0x1).

When this system call is issued, if no resource can be acquired from a specified semaphore (when there are no

free resources), this system returns E_TMOUT as the return value.

Return values

E_OK 0 Normal termination

E_TMOUT -85 The resource count for the specified semaphore is 0x0.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 133

twai_sem
Wait on Semaphore with Timeout

Task

Overview

Acquires resources (with timeout).

C format

ER twai_sem(ID semid, TMO tmout);

Parameters

I/O Parameter Description

I ID semid; Semaphore ID number

I TMO tmout; Wait time (clock interrupt cycles)

TMO_POL(0) : Quick return

TMO_FEVR(-1) : Permanent wait

Value : Wait time

Explanation

This system call acquires resources from the semaphore specified in semid (the semaphore counter is

decremented by 0x1).

When this system call is issued, if no resource can be acquired from a specified semaphore (when there are no

free resources), this system call places the task at the end of the queue of the specified semaphore, then changes

it from the run state to the wait state (resource wait state).

The resource wait state is released when the wait time specified in tmout elapses or when the sig_sem or

rel_wai system call is issued, at which time it changes to the ready state.

Return values

E_OK 0 Normal termination

E_TMOUT -85 Wait time elapsed.

E_RLWAI -86 The resource wait state was forcibly released by the issue of a rel_wai system

call.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM134

ref_sem
Refer Semaphore Status

Task/handler

Overview

Acquires semaphore information.

C format

ER ref_sem(T_RSEM *pk_rsem, ID semid);

Parameters

I/O Parameter Description

O T_RSEM *pk_rsem; Start address of packet used to store semaphore information

I ID semid; Semaphore ID number

Structure of semaphore information T_RSEM

typedef struct t_rsem {

VP exinf; /* Extended information */

BOOL_ID wtsk; /* Existence of waiting task */

INT semcnt; /* Current resource count */

} T_RSEM;

Explanation

This system call stores, into the packet specified in pk_rsem, the semaphore information (extended information,

existence of waiting task, etc.) for the semaphore specified in semid.

Semaphore information is described in detail below.

exinf ... Extended information

wtsk ... Existence of waiting task

FALSE(0) : There is no waiting task.

Value : ID number of first task in queue

semcnt ... Current resource count

Return value

E_OK 0 Normal termination

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 135

set_flg
Set Event Flag

Task/handler

Overview

Sets a bit pattern.

C format

ER set_flg(ID flgid, UINT setptn);

Parameters

I/O Parameter Description

I ID flgid; Event flag ID number

I UINT setptn; Bit pattern to be set (32 bits wide)

Explanation

This system call executes logical OR between the bit pattern specified in flgid and that specified in setptn, and

sets the result in a specified event flag.

When this system call is issued, if the wait condition for a task queued in the queue of the specified event flag is

satisfied, the task is removed from the queue.

Consequently, the relevant task changes from the wait state (event flag wait state) to the ready state, or from

the wait_suspend state to the suspend state.

Example When this system call is issued, if the bit pattern of the specified event flag is B'1100 and that

specified in setptn is B'1010, the bit pattern of the specified event flag will be B'1110.

Return value

E_OK 0 Normal termination

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM136

clr_flg
Clear Event Flag

Task/handler

Overview

Clears a bit pattern.

C format

ER clr_flg(ID flgid, UINT clrptn);

Parameters

I/O Parameter Description

I ID flgid; Event flag ID number

I UINT clrptn; Bit pattern to clear (32 bits wide)

Explanation

This system call executes logical AND between the bit pattern specified in flgid and that specified in clrptn, and

sets the result in a specified event flag.

Example When this system call is issued, if the bit pattern of specified event flag is B'1100 and that specified in

clrptn is B'1010, the bit pattern of the specified event flag will be B'1000.

Return value

E_OK 0 Normal termination

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 137

wai_flg
Wait Event Flag

Task

Overview

Checks a bit pattern.

C format

ER wai_flg(UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode);

Parameters

I/O Parameter Description

O UINT *p_flgptn; Address of area used to store a bit pattern when a condition is satisfied

I ID flgid; Event flag ID number

I UINT waiptn; Request bit pattern (32 bits wide)

I UINT wfmode; Wait condition or condition satisfaction

TWF_ANDW(0) : AND wait

TWF_ORW(2) : OR wait

TWF_CLR(1) : Bit pattern is cleared.

Explanation

This system call checks whether a bit pattern that satisfies the request bit pattern specified in waiptn, as well as

the wait condition specified in wfmode, is set in the event flag specified in flgid.

If a bit pattern satisfying the wait condition is set in a specified event flag, this system call stores the bit pattern of

the event flag in the area specified in p_flgptn.

When this system call is issued, if the bit pattern of the specified event flag does not satisfy the wait condition, this

system call queues the task in the queue for the specified event flag, then changes it from the run state to the

wait state (event flag wait state).

The event flag wait state is released when a bit pattern satisfying the wait condition is set by the set_flg system

call, or when the rel_wai system call is issued, at which time it changes to the ready state.

The specification format for wfmode is shown below.

• wfmode = TWF_ANDW

This system call checks whether all those bits of waiptn that are set to 1 are set in a specified event flag.

• wfmode = (TWF_ANDW|TWF_CLR)

This system call checks whether all those bits of waiptn that are set to 1 are set in a specified event flag.

If the wait condition is satisfied, the bit pattern for the specified event flag is cleared (B'0000 is set).

• wfmode = TWF_ORW

This system call checks whether at least one of those bits of waiptn that are set to 1 is set in a specified event

flag.

• wfmode = (TWF_ORW|TWF_CLR)

This system call checks whether at least one of those bits of waiptn that are set to 1 is set in a specified event

flag.

If a wait condition is satisfied, the bit pattern of the specified event flag is cleared (B'0000 is set).

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM138

Cautions 1. The RX850 specifies that only one task can be queued into the queue of an event flag.

For this reason, if this system call is issued for the event flag for which a waiting task is
already queued, this system call returns E_OBJ as the return value without performing bit

pattern checking.
2. If the event flag wait state is forcibly released by issuing a rel_wai system call, the contents

of the area specified in p_flgptn will be undefined.

Return values

E_OK 0 Normal termination

E_OBJ -63 This system call was issued for the event flag in which waiting tasks were already

queued.

E_RLWAI -86 The event flag wait state was forcibly released by a rel_wai system call.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 139

pol_flg
Poll Event Flag

Task/handler

Overview

Checks a bit pattern (polling).

C format

ER pol_flg(UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode);

Parameters

I/O Parameter Description

O UINT *p_flgptn; Address of area used to store a bit pattern when a condition is satisfied

I ID flgid; Event flag ID number

I UINT waiptn; Request bit pattern (32 bits wide)

I UINT wfmode; Wait condition or condition satisfaction

TWF_ANDW(0) : AND wait

TWF_ORW(2) : OR wait

TWF_CLR(1) : Bit pattern is cleared.

Explanation

This system call checks whether a bit pattern satisfying the request bit pattern specified in waiptn and the wait

condition specified in wfmode is set in the event flag specified in flgid.

If a bit pattern satisfying the wait condition is set in a specified event flag, this system call stores the bit pattern of

the event flag into the area specified in p_flgptn.

When this system call is issued, if the bit pattern of a specified event flag does not satisfy the wait condition, this

system call returns E_TMOUT as the return value.

The wfmode specification format is shown below.

• wfmode = TWF_ANDW

This system call checks whether all those bits of waiptn that are set to 1 are set in a specified event flag.

• wfmode = (TWF_ANDW|TWF_CLR)

This system call checks whether all those bits of waiptn that are set to 1 are set in a specified event flag.

If the wait condition is satisfied, the bit pattern for the specified event flag is cleared (B'0000 is set).

• wfmode = TWF_ORW

This system call checks whether at least one of those bits of waiptn that are set to 1 is set in a specified event

flag.

• wfmode = (TWF_ORW|TWF_CLR)

This system call checks whether at least one of those bits of waiptn that are set to 1 is set in a specified event

flag.

If the wait condition is satisfied, the bit pattern for the specified event flag is cleared (B'0000 is set).

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM140

Caution The RX850 specifies that only one task can be queued into the queue of an event flag.

For this reason, if this system call is issued for an event flag in which a waiting task is already
queued, this system call returns E_OBJ as the return value without performing bit pattern

checking.

Return values

E_OK 0 Normal termination

E_OBJ -63 This system call was issued for the event flag in which waiting tasks are already

queued.

E_TMOUT -85 The bit pattern of the specified event flag does not satisfy the wait condition.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 141

twai_flg
Wait Event Flag with Timeout

Task

Overview

Checks a bit pattern (with timeout).

C format

ER twai_flg(UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode, TMO tmout);

Parameters

I/O Parameter Description

O UINT *p_flgptn; Address of area used to store a bit pattern when a condition is satisfied

I ID flgid; Event flag ID number

I UINT waiptn; Request bit pattern (32 bits wide)

I UINT wfmode; Wait condition or condition satisfaction

TWF_ANDW(0) : AND wait

TWF_ORW(2) : OR wait

TWF_CLR(1) : Bit pattern is cleared.

I TMO tmount; Wait time (clock interrupt cycles)

TMO_POL(0) : Quick return

TMO_FEVR(-1) : Permanent wait

Value : Wait time

Explanation

This system call checks whether a bit pattern satisfying both the request bit pattern specified in waiptn and the

wait condition specified in wfmode is set in the event flag specified in flgid.

If a bit pattern satisfying wait condition is set in a specified event flag, this system call stores the bit pattern of the

event flag into the area specified in p_flgptn.

Upon the issue of this system call, if the bit pattern of the specified event flag does not satisfy the wait condition,

this system call queues the task in the queue for a specified event flag, then changes it from the run state to the

wait state (event flag wait state).

The event flag wait state is released upon the elapse of the wait time specified in tmout, when a bit pattern

satisfying wait condition is set by the set_flg system call, or when the rel_wai system call is issued, at which

time it changes to the ready state.

The wfmode specification format is shown below.

• wfmode = TWF_ANDW

This system call checks whether all those bits of waiptn that are set to 1 are set in a specified event flag.

• wfmode = (TWF_ANDW|TWF_CLR)

This system call checks whether all those bits of waiptn that are set to 1 are set in a specified event flag.

If the wait condition is satisfied, the bit pattern for the specified event flag is cleared (B'0000 is set).

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM142

• wfmode = TWF_ORW

This system call checks whether at least one of those bits of waiptn that are set to 1 is set in a specified event

flag.

• wfmode = (TWF_ORW|TWF_CLR)

This system call checks whether at least one of those bits of waiptn that are set to 1 is set in a specified event

flag.

If the wait condition is satisfied, the bit pattern of the specified event flag is cleared (B'0000 is set).

Cautions 1. The RX850 specifies that only one task can be queued into the queue of an event flag.

For this reason, if this system call is issued for an event flag in which a waiting task is
already queued, this system call returns E_OBJ as the return value without performing bit

pattern checking.
2. If the event flag wait state is forcibly released by a rel_wai system call, the contents of the

area specified in p_flgptn will be undefined.

Return values

E_OK 0 Normal termination

E_OBJ -63 This system call was issued for the event flag in which waiting tasks were already

queued.

E_TMOUT -85 Wait time elapsed.

E_RLWAI -86 The event flag wait state was forcibly released by the issue of a rel_wai system

call.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 143

ref_flg
Refer Event Flag Status

Task/handler

Overview

Acquires event flag information.

C format

ER ref_flg(T_RFLG *pk_rflg, ID flgid);

Parameters

I/O Parameter Description

O T_RFLG *pk_rflg; Start address of packet used to store event flag information

I ID flgid; Event flag ID number

Structure of event flag information T_RFLG

typedef struct t_rflg {

VP exinf; /* Extended information */

BOOL_ID wtsk; /* Existence of waiting task */

UINT flgptn; /* Current bit pattern */

} T_RFLG;

Explanation

This system call stores, in the packet specified in pk_rflg, the event flag information (extended information,

existence of waiting task, etc.) for the event flag specified in flgid.

Event flag information is described in detail below.

exinf ... Extended information

wtsk ... Existence of waiting task

FALSE(0) : There is no waiting task.

Value : ID number of task in queue

flgptn ... Current bit pattern

Return value

E_OK 0 Normal termination

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM144

vset_flg1
Set 1Bit Event Flag

Task/handler

Overview

Sets a bit.

C format

ER vset_flg1(ID flgid);

Parameters

I/O Parameter Description

I ID flgid; 1-bit event flag ID number

Explanation

This system call sets 1 in the 1-bit event flag specified in flgid.

When this system call is issued, if any tasks are queued in the queue of the specified 1-bit event flag, the first task

to the task which specifies bit clearing are removed from the queue.

Consequently, the relevant tasks change from the wait state (1-bit event flag wait state) to the ready state, or

from the wait_suspend state to the suspend state.

Return value

E_OK 0 Normal termination

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 145

vclr_flg1
Clear 1Bit Event Flag

Task/handler

Overview

Clears a bit.

C format

ER vclr_flg1(ID flgid);

Parameters

I/O Parameter Description

I ID flgid; 1-bit event flag ID number

Explanation

This system call sets 0 in the 1-bit event flag specified in flgid.

Caution This system call does not queue clear requests. If the 1-bit event flag specified in the current
vclr_flg1 system call has already been cleared by the previous vclr_flg1 system call, no

processing is performed and it is not handled as an error.

Return value

E_OK 0 Normal termination

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM146

vwai_flg1
Wait 1Bit Event Flag

Task

Overview

Checks a bit.

C format

ER vwai_flg1(ID flgid, UINT wfmode);

Parameters

I/O Parameter Description

I ID flgid; 1-bit event flag ID number

I UINT wfmode; Condition satisfaction

TWF_NCL(0) : Bit is not cleared.

TWF_CLR(1) : Bit is cleared.

Explanation

This system call checks whether 1 is set in the 1-bit event flag specified in flgid.

When this system call is issued, if 1 is not set in the specified 1-bit event flag, this system call queues the task at

the end of the queue for the specified 1-bit event flag, then changes it from the run state to the wait state (1-bit

event flag wait state).

The 1-bit event flag wait state is released when the vset_flg1 or rel_wai system call is issued, at which time it

changes to the ready state.

Return values

E_OK 0 Normal termination

E_RLWAI -86 The 1-bit event flag wait state was forcibly released by a rel_wai system call.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 147

vpol_flg1
Poll 1Bit Event Flag

Task/handler

Overview

Checks a bit (polling).

C format

ER vpol_flg1(ID flgid, UINT wfmode);

Parameters

I/O Parameter Description

I ID flgid; 1-bit event flag ID number

I UINT wfmode; Condition satisfaction

TWF_NCL(0) : Bit is not cleared.

TWF_CLR(1) : Bit is cleared.

Explanation

This system call checks whether 1 is set in the 1-bit event flag specified in flgid.

When this system call is issued, if 1 is not set in the specified 1-bit event flag, this system call returns E_TMOUT as

the return value.

Return values

E_OK 0 Normal termination

E_TMOUT -85 1 is not set in the specified 1-bit event flag.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM148

vtwai_flg1
Wait 1Bit Event Flag with Timeout

Task

Overview

Checks a bit (with timeout).

C format

ER vtwai_flg1(ID flgid, UINT wfmode, TMO tmout);

Parameters

I/O Parameter Description

I ID flgid; 1-bit event flag ID number

I UINT wfmode; Condition satisfaction

TWF_NCL(0) : Bit is not cleared.

TWF_CLR(1) : Bit is cleared.

I TMO tmount; Wait time (clock interrupt cycles)

TMO_POL(0) : Quick return

TMO_FEVR(-1) : Permanent wait

Value : Wait time

Explanation

This system call checks whether 1 is set in the 1-bit event flag specified in flgid.

Upon the issue of this system call, if 1 is not set in the specified 1-bit event flag, this system call queues the task

at the end of the queue for the specified 1-bit event flag, then changes it from the run state to the wait state

(1-bit event flag wait state).

The 1-bit event flag wait state is released upon the elapse of the wait time specified in tmout, or when the

vset_flg1 or rel_wai system call is issued, at which time it changes to the ready state.

Return values

E_OK 0 Normal termination

E_TMOUT -85 Wait time elapsed.

E_RLWAI -86 The 1-bit event flag wait state was forcibly released by the issue of a rel_wai

system call.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 149

vref_flg1
Refer 1Bit Event Flag Status

Task/handler

Overview

Acquires 1-bit event flag information.

C format

ER vref_flg1(T_RFLG *pk_rflg, ID flgid);

Parameters

I/O Parameter Description

O T_RFLG *pk_rflg; Start address of packet used to store 1-bit event flag information

I ID flgid; 1-bit event flag ID number

Structure of 1-bit event flag information T_RFLG

typedef struct t_rflg {

VP exinf; /* Extended information */

BOOL_ID wtsk; /* Existence of waiting task */

UINT flgptn; /* Current bit value */

} T_RFLG;

Explanation

This system call stores, in the packet specified in pk_rflg, the 1-bit event flag information (extended information,

existence of waiting task, etc.) for the 1-bit event flag specified in flgid.

1-bit event flag information is described in detail below.

exinf ... Extended information

wtsk ... Existence of waiting task

FALSE(0) : There is no waiting task.

Value : ID number of first task in queue

flgptn ... Current bit value

Return value

E_OK 0 Normal termination

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM150

snd_msg
Send Message to Mailbox

Task/handler

Overview

Sends a message.

C format

ER snd_msg(ID mbxid, T_MSG *pk_msg);

Parameters

I/O Parameter Description

I ID mbxid; Mailbox ID number

I T_MSG *pk_msg; Address of area used to store a message

Structure of message T_MSG

typedef struct t_msg {

VW msgrfu; /* Message management area */

PRI msgpri; /* Message priority */

VB msgcont[]; /* Message body */

} T_MSG;

Explanation

This system call sends the message specified in pk_msg to the mailbox specified in mbxid (queues the message

into a message queue).

When this system call is issued, if a task is queued into the task queue of a specified mailbox, this system call

passes the message to the task (first task in the task queue) without performing message queuing.

Consequently, the relevant task is removed from the task queue, and its state changes from the wait state

(message wait state) to the ready state, or from the wait_suspend state to the suspend state.

Cautions 1. A message is queued into the message queue of a specified mailbox in the order (FIFO

order, priority order) specified when the mailbox was created (at configuration).
2. The RX850 uses the first four bytes (message management area msgrfu) of a message as a

link area for enabling queuing into a message queue. Accordingly, sending a message to a
specified mailbox requires that 0x0 be set in msgrfu before issuing this system call.

Return value

E_OK 0 Normal termination

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 151

rcv_msg
Receive Message from Mailbox

Task

Overview

Receives a message.

C format

ER rcv_msg(T_MSG **ppk_msg, ID mbxid);

Parameters

I/O Parameter Description

O T_MSG **ppk_msg; Address of area used to store the start address of a message

I ID mbxid; Mailbox ID number

Explanation

This system call receives a message from the mailbox specified in mbxid and stores its start address into the area

specified in ppk_msg.

When this system call is issued, if a message cannot be received from a specified mailbox (when no message

exists in a message queue), this system call queues the task at the end of the task queue of the specified mailbox,

then changes its state from the run state to the wait state (message wait state).

The message wait state is released when the snd_msg or rel_wai system call is issued, at which time the state

changes from the message wait state to the ready state.

Return values

E_OK 0 Normal termination

E_RLWAI -86 The message wait state was forcibly released by a rel_wai system call.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM152

prcv_msg
Poll and Receive Message from Mailbox

Task/handler

Overview

Receives a message (polling).

C format

ER prcv_msg(T_MSG **ppk_msg, ID mbxid);

Parameters

I/O Parameter Description

O T_MSG **ppk_msg; Address of area used to store the start address of a message

I ID mbxid; Mailbox ID number

Explanation

This system call receives a message from the mailbox specified in mbxid and stores its start address into the area

specified in ppk_msg.

When this system call is issued, if a message cannot be received from a specified mailbox (when no message

exists in the message queue), E_TMOUT is returned as the return value.

Return values

E_OK 0 Normal termination

E_TMOUT -85 No message exists in a specified mailbox.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 153

trcv_msg
Receive Message from Mailbox with Timeout

Task

Overview

Receives a message (with timeout).

C format

ER trcv_msg(T_MSG **ppk_msg, ID mbxid, TMO tmout);

Parameters

I/O Parameter Description

O T_MSG **ppk_msg; Address of area used to store the start address of a message

I ID mbxid; Mailbox ID number

I TMO tmout; Wait time (clock interrupt cycles)

TMO_POL(0) : Quick return

TMO_FEVR(-1) : Permanent wait

Value : Wait time

Explanation

This system call receives a message from the mailbox specified in mbxid and stores its start address into the area

specified in ppk_msg.

When this system call is issued, if a message cannot be received from a specified mailbox (when no message

exists in the message queue), this system call queues the task at the end of the task queue of the specified

mailbox, then changes its state from the run state to the wait state (message wait state).

The message wait state is released when the wait time specified in tmout elapses or when the snd_msg or

rel_wai system call is issued, at which time the state changes from the message wait state to the ready state.

Return values

E_OK 0 Normal termination

E_TMOUT -85 Wait time elapsed.

E_RLWAI -86 The message wait state was forcibly released by a rel_wai system call.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM154

ref_mbx
Refer Mailbox Status

Task/handler

Overview

Acquires mailbox information.

C format

ER ref_mbx(T_RMBX *pk_rmbx, ID mbxid);

Parameters

I/O Parameter Description

O T_RMBX *pk_rmbx; Start address of packet used to store mailbox information

I ID mbxid; Mailbox ID number

Structure of mailbox information T_RMBX

typedef struct t_rmbx {

VP exinf; /* Extended information */

BOOL_ID wtsk; /* Existence of waiting task */

T_MSG **ppk_msg; /* Existence of waiting message */

} T_RMBX;

Explanation

This system call stores mailbox information (extended information, existence of waiting task, etc.) for the mailbox

specified in mbxid into the packet specified in pk_rmbx.

Mailbox information is described in detail below.

exinf ... Extended information

wtsk ... Existence of waiting task

FALSE(0) : There is no waiting task.

Value : ID number of first task of queue

ppk_msg ... Existence of waiting message

NADR(-1) : No waiting message

Value : Address of first message of queue

Return value

E_OK 0 Normal termination

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 155

10.5.4 Interrupt Management System Calls

This section explains a group of system calls (interrupt management system calls) that perform processing that

depends on interrupts.

Table 10-6 lists the interrupt management system calls.

Table 10-6. List of Interrupt Management System Calls

System call Function schdlNote

ret_int

ret_wup

loc_cpu

unl_cpu

dis_int

ena_int

chg_icr

ref_icr

Returns from a directly activated interrupt handler.

Wakes up another task and returns from a directly activated interrupt

handler.

Disables the acceptance of maskable interrupts and dispatch

processing.

Resumes the acceptance of maskable interrupts and dispatch

processing.

Disables the acceptance of maskable interrupts.

Resumes the acceptance of maskable interrupts.

Changes the contents of an interrupt control register.

Acquires the contents of an interrupt control register.

o

o

x

o

x

x

x

x

Note schdl indicates whether the scheduler is to be activated.

Whether control is to be passed to another task as a result of scheduler activation,

however, depends on the current state.

o: Activates the scheduler.

x: Does not activate the scheduler.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM156

ret_int
Return from Interrupt Handler

Directly activated interrupt handler

Overview

Returns from a directly activated interrupt handler.

C format

void ret_int();

Parameters

None.

Explanation

This system call returns from a directly activated interrupt handler.

If a system call (chg_pri, sig_sem, etc.) requiring task scheduling is issued from a directly activated interrupt

handler, the RX850 merely queues the tasks into the queue and delays actual scheduling until a system call (this

system call or ret_wup system call) is issued to return from the directly activated interrupt handler. Then, the

queued tasks are all performed at one time.

Cautions 1. This system call does not notify the external interrupt controller of the termination of

processing (issue of EOI command). Accordingly, for return from the directly activated

interrupt handler activated by an external interrupt request, the external interrupt controller

must be notified of processing termination before the issue of this system call.

2. When an indirectly activated interrupt handler is written in C, return from the indirectly

activated interrupt handler is coded as follows:
 return(0xff);

3. When an indirectly activated interrupt handler is written in assembly language, return from

the indirectly activated interrupt handler is coded as follows:
 mov 0xff, r10

 jmp [lp]

Return value

None.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 157

ret_wup
Return and Wakeup Task

Directly activated interrupt handler

Overview

Wakes up another task and returns from a directly activated interrupt handler.

C format

void ret_wup(ID tskid);

Parameters

I/O Parameter Description

I ID tskid; Task ID number

Explanation

This system call returns from a directly activated interrupt handler after the issue of a wake-up request to the task

specified in tskid (the wake-up request counter is incremented by 0x1).

When this system call is issued, if the specified task is in the wait state (wake-up wait state), without

issuing a wake-up request (incrementing the wake-up request counter), this system call changes the specified

task from the wake-up wait state to the ready state.

If a system call (chg_pri, sig_sem, etc.) requiring task scheduling is issued from a directly activated interrupt

handler, the RX850 merely queues the tasks into a queue and delays the actual scheduling until a system call

(this system call or ret_int system call) is issued to return from the directly activated interrupt handler. Then,

the queued tasks are all performed at one time.

Cautions 1. This system call does not notify the external interrupt controller of processing termination

(issue of the EOI command). Accordingly, for return from the directly activated interrupt

handler activated by an external interrupt request, the external interrupt controller must be

notified of processing termination before the issue of this system call.

2. This system call is responsible only for return from a directly activated interrupt handler if

one of the following errors occurs:
•••• A specified task is in the run or dormant state.

•••• The number of wake-up requests exceeded 127.

3. When an indirectly activated interrupt handler is written in C, another task is woken up, or a

return from the indirectly activated interrupt handler is performed by coding the following:
 return(ID tskid);

4. When an indirectly activated interrupt handler is written in the assembly language, code as

follows to wake up another task or to return from the indirectly activated interrupt handler:
 mov tskid, r10

 jmp [lp]

Return value

None.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM158

loc_cpu
Lock CPU

Task

Overview

Disables the acceptance of maskable interrupts and dispatch processing.

C format

ER loc_cpu();

Parameters

None.

Explanation

This system call disables the acceptance of maskable interrupts and dispatch processing (task scheduling).

The acceptance of maskable interrupts and dispatch processing is inhibited until the unl_cpu system call is

issued after the issue of this system call.

If a maskable interrupt occurs after this system call is issued but before the unl_cpu system call is issued, the

RX850 delays processing for the interrupt (directly activated interrupt handler or indirectly activated

interrupt handler) until the unl_cpu system call is issued. If a system call (chg_pri, sig_sem, etc) requiring

task scheduling is issued, the RX850 merely queues the tasks into a queue and delays the actual scheduling until

the unl_cpu system call is issued. Then, all the tasks are performed at one time.

Cautions 1. This system call does not queue disable requests. Accordingly, if this system call has

already been issued and the acceptance of maskable interrupts and dispatch processing has

been disabled, the system does not handle this as an error and performs no processing.
2. After this system call is issued but before the unl_cpu system call is issued, if a system call

which may cause state transition of the task (such as ext_tsk or wai_sem) is issued, its

operation cannot be assured.
3. After this system call is issued but before the unl_cpu system call is issued, if the ena_int

system call is issued, its operation cannot be assured.

Return value

E_OK 0 Normal termination

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 159

unl_cpu
Unlock CPU

Task

Overview

Resumes the acceptance of maskable interrupts and dispatch processing.

C format

ER unl_cpu();

Parameters

None.

Explanation

This system call resumes the acceptance of maskable interrupts and dispatch processing (task scheduling)

inhibited by the loc_cpu system call.

If a maskable interrupt occurs after the loc_cpu system call is issued but before this system call is issued, the

RX850 delays processing for the interrupt (directly activated interrupt handler or indirectly activated interrupt

handler) until this system call is issued. If a system call (chg_pri, sig_sem, etc) requiring task scheduling is

issued, the RX850 merely queues the tasks into a queue and delays actual scheduling until the unl_cpu system

call is issued. Then all the tasks are performed at one time.

Cautions 1. This system call does not queue resume requests. Accordingly, if this system call has

already been issued, maskable interrupts have been accepted, and dispatch processing has

been resumed, this system call does not handle this as an error and performs no processing.
2. Acceptance of maskable interrupts that was inhibited by the issue of the dis_int system

call is resumed by this system call.
3. Dispatch processing that was inhibited by the issue of the dis_dsp system call is resumed

by this system call.

Return value

E_OK 0 Normal termination

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM160

dis_int
Disable Interrupt

Task/handler

Overview

Disables the acceptance of maskable interrupts.

C format

ER dis_int();

Parameters

None.

Explanation

This system call disables the acceptance of maskable interrupts.

Once this system call has been issued, the acceptance of maskable interrupts is disabled until the ena_int

system call is issued.

If a maskable interrupt occurs after this system call has been issued but before the ena_int system call is

issued, the RX850 delays processing for the interrupt (directly activated interrupt handler or indirectly activated

interrupt handler) until the ena_int system call is issued.

Caution This system call does not queue disable requests. When the current dis_int system call is

issued, if the acceptance of maskable interrupts has already been disabled by the previous
dis_int system call, no processing is performed and it is not handled as an error.

Return value

E_OK 0 Normal termination

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 161

ena_int
Enable Interrupt

Task/handler

Overview

Resumes the acceptance of maskable interrupts.

C format

ER ena_int();

Parameters

None.

Explanation

This system call resumes the acceptance of maskable interrupts, which has been disabled by the issue of the

dis_int system call.

If a maskable interrupt occurs after the dis_int system call is issued but before the ena_int system call is

issued, the RX850 delays processing for the interrupt (directly activated interrupt handler or indirectly activated

interrupt handler) until the ena_int system call is issued.

Caution This system call does not queue resume requests. When the current ena_int system call is

issued, if the acceptance of maskable interrupts has already been resumed by the previous
ena_int system call, no processing is performed and it is not handled as an error.

Return value

E_OK 0 Normal termination

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM162

chg_icr
Change Interrupt Control Register

Task/handler

Overview

Changes the contents of an interrupt control register.

C format

ER chg_icr(UINT eintno, UB icrcmd);

Parameters

I/O Parameter Description

I UINT eintno; Interrupt request number

I UB icrcmd; Specification of an interrupt request flag

ICR_CLRINT (0x20) : No interrupt request is made.

Specification of an interrupt mask flag

ICR_CLRMSK (0x10) : Enables interrupt processing.

ICR_SETMSK (0x40) : Disables interrupt processing.

Specification of the change of an interrupt priority

ICR_CHGLVL (0x08) : Changes an interrupt priority.

Specification of an interrupt priority

Value (0 to 7) : Interrupt priority.

Explanation

This system call changes the contents of the interrupt control register specified in eintno to the value specified in

icrcmd.

The specification format of icrcmd is described below.

• icrcmd = ICR_CLRINT

Changes the interrupt request flag of the interrupt control register to 0.

• icrcmd = ICR_CLRMSK

Changes the interrupt mask flag of the interrupt control register to 0.

• icrcmd = ICR_SETMSK

Changes the interrupt mask flag of the interrupt control register to 1.

• icrcmd = (ICR_CHGLVL|value)

Changes the interrupt priority of the interrupt control register to the specified value.

A value of 0 corresponds to level 0, while 7 corresponds to level 7.

Caution For eintno, specify the value obtained from the following:
(The exception code of the relevant interrupt request number - 0x80) / 0x10

Return value

E_OK 0 Normal termination

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 163

ref_icr
Refer Interrupt Control Register Status

Task/handler

Overview

Acquires the contents of an interrupt control register.

C format

ER ref_icr(UB *p_regptn, UINT eintno);

Parameters

I/O Parameter Description

O UB *p_regptn; Address of the area used to store the contents of an interrupt control register

I UINT eintno; Interrupt request number

Explanation

This system call stores, into the area specified in p_regptn, the contents of the interrupt control register specified

in eintno.

The following figure shows the acquired contents of an interrupt control register.

Caution For eintno, specify the value obtained from the following:
(The exception code of the relevant interrupt request number - 0x80) / 0x10

Return value

E_OK 0 Normal termination

Bit 7 Bit 0

0 0 0

Interrupt mask flag

0: Enables interrupt handling.

1: Disables interrupt handling (pending).

Interrupt priority

000: Specifies level 0 (highest).

001: Specifies level 1.

010: Specifies level 2.

011: Specifies level 3.

100: Specifies level 4.

101: Specifies level 5.

110: Specifies level 6.

111: Specifies level 7 (lowest).

Interrupt request flag

0: No interrupt request is made.

1: An interrupt request is made.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM164

10.5.5 Memory Pool Management System Calls

This section explains a group of system calls that allocate memory blocks (memory pool management system

calls).

Table 10-7 lists the memory pool management system calls.

Table 10-7. List of Memory Pool Management System Calls

System call Function schdlNote

get_blf

pget_blf

tget_blf

rel_blf

ref_mpf

get_blk

pget_blk

tget_blk

rel_blk

ref_mpl

Acquires a fixed-size memory block.

Acquires a fixed-size memory block (polling).

Acquires a fixed-size memory block (with timeout).

Returns a fixed-size memory block.

Acquires fixed-size memory pool information.

Acquires a variable-size memory block.

Acquires a variable-size memory block (polling).

Acquires a variable-size memory block (with timeout).

Returns a variable-size memory block.

Acquires variable-size memory pool information.

o

x

o

o

x

o

x

o

o

x

Note schdl indicates whether the scheduler is to be activated.

Whether control is to be passed to another task as a result of scheduler activation,

however, depends on the current state.

o: Activates the scheduler.

x: Does not activate the scheduler.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 165

get_blf
Get Fixed-size Memory Block

Task

Overview

Acquires a fixed-size memory block.

C format

ER get_blf(VP *p_blf, ID mpfid);

Parameters

I/O Parameter Description

O VP *p_blf; Address of area used to store the start address of the fixed-size memory block

I ID mpfid; Fixed-size memory pool ID number

Explanation

This system call acquires a fixed-size memory block from the fixed-size memory pool specified in mpfid and stores

its start address into the area specified in p_blf.

If no fixed-size memory block can be acquired from a specified fixed-size memory pool (when there is no free

area) upon the issue of this system call, this system call places the task at the end of the queue of a specified

fixed-size memory pool before changing its state from the run state to the wait state (fixed-size memory block

wait state).

The fixed-size memory block wait state is released upon the issue of a rel_blf or rel_wai system call, at

which time it changes to the ready state.

Caution NEC recommends that, under the RX850, a memory block be used as an area for messages

exchanging between tasks via mailboxes. The first four bytes of a message are used as a link

area that is used to queue that message. The RX850, thus, clears only the first four bytes of any

acquired fixed-size memory block.

Return values

E_OK 0 Normal termination

E_RLWAI -86 The fixed-size memory block wait state was forcibly released using a rel_wai

system call.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM166

pget_blf
Poll and Get Fixed-size Memory Block

Task/handler

Overview

Acquires a fixed-size memory block (polling).

C format

ER pget_blf(VP *p_blf, ID mpfid);

Parameters

I/O Parameter Description

O VP *p_blf; Address of area used to store the start address of a fixed-size memory block

I ID mpfid; Fixed-size memory pool ID number

Explanation

This system call acquires a fixed-size memory block from the fixed-size memory pool specified in mpfid and stores

its start address into the area specified in p_blf.

When this system call is issued, if no fixed-size memory block can be acquired from the specified fixed-size

memory pool (when there is no free area), this system call returns E_TMOUT as the return value.

Caution NEC recommends that, under the RX850, a memory block be used as an area for messages

exchanging between tasks via mailboxes. The first four bytes of a message are used as a link

area that is used to queue that message. The RX850, thus, clears only the first four bytes of any

acquired fixed-size memory block.

Return values

E_OK 0 Normal termination

E_TMOUT -85 There is no free space in the specified fixed-size memory pool.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 167

tget_blf
Get Fixed-size Memory Block with Timeout

Task

Overview

Acquires a fixed-size memory block (with timeout).

C format

ER tget_blf(VP *p_blf, ID mpfid, TMO tmout);

Parameters

I/O Parameter Description

O VP *p_blf; Address of area used to store the start address of a fixed-size memory block

I ID mpfid; Fixed-size memory pool ID number

I TMO tmout; Wait time (clock interrupt cycles)

TMO_POL(0) : Quick return

TMO_FEVR(-1) : Permanent wait

Value : Wait time

Explanation

This system call acquires a fixed-size memory block from the fixed-size memory pool specified in mpfid and stores

its start address into the area specified in p_blf.

If no fixed-size memory block can be acquired from a specified fixed-size memory pool (when there is no free

area) when this system call is issued, this system call places the task at the end of the queue of a specified fixed-

size memory pool before changing it from the run state to the wait state (fixed-size memory block wait state).

The fixed-size memory block wait state is released when the wait time specified in tmout elapses, or when the

rel_blf or rel_wai system call is issued. Then, the state changes to the ready state.

Caution NEC recommends that, under the RX850, a memory block be used as an area for messages

exchanging between tasks via mailboxes. The first four bytes of a message are used as a link

area that is used to queue that message. The RX850, thus, clears only the first four bytes of any

acquired fixed-size memory block.

Return values

E_OK 0 Normal termination

E_TMOUT -85 Timeout elapsed.

E_RLWAI -86 The fixed-size memory block wait state was forcibly released by a rel_wai

system call.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM168

rel_blf
Release Fixed-size Memory Block

Task/handler

Overview

Returns a fixed-size memory block.

C format

ER rel_blf(ID mpfid, VP blf);

Parameters

I/O Parameter Description

I ID mpfid; Fixed-size memory pool ID number

I VP blf; Start address of fixed-size memory block

Explanation

This system call returns the fixed-size memory block specified in blf to the fixed-size memory pool specified in

mpfid.

When this system call is issued, if any tasks are queued into the queue of the specified fixed-size memory pool,

the fixed-size memory block is not returned, but is passed to the first task in the queue.

Consequently, the relevant task is removed from the queue, and changes from the wait state (fixed-size memory

block wait state) to the ready state, or from the wait_suspend state, to the suspend state.

Cautions 1. RX850 does not clear the contents of memory when returning a fixed-size memory block.

Accordingly, the contents of an acquired fixed-size memory block will be undefined.

2. The fixed-size memory block to be returned must be the same as that specified upon the
issue a get_blf, pget_blf, or tget_blf system call.

Return value

E_OK 0 Normal termination

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 169

ref_mpf
Refer Fixed-size Memory Pool Status

Task/handler

Overview

Acquires a fixed-size memory pool information.

C format

ER ref_mpf(T_RMPF *pk_rmpf, ID mpfid);

Parameters

I/O Parameter Description

O T_RMPF *pk_rmpf; Start address of packet used to store fixed-size memory pool information

I ID mpfid; Fixed-size memory pool ID number

Structure of fixed-size memory pool information T_RMPF structure

typedef struct t_rmpf {

VP exinf; /* Extended information */

BOOL_ID wtsk; /* Existence of waiting task */

INT frbcnt; /* Number of free blocks */

} T_RMPF;

Explanation

This system call stores the fixed-size memory pool information (extended information, existence of waiting tasks,

etc.) for the fixed-size memory pool specified in mpfid into the packet specified in pk_rmpf.

Fixed-size memory pool information is described in detail below.

exinf ... Extended information

wtsk ... Existence of waiting task

FALSE(0) : There is no waiting task.

Value : ID number of first task in the queue

frbcnt ... Number of free blocks

Return value

E_OK 0 Normal termination

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM170

get_blk
Get Variable-size Memory Block

Task

Overview

Acquires a variable-size memory block.

C format

ER get_blk(VP *p_blk, ID mplid, INT blksz);

Parameters

I/O Parameter Description

O VP *p_blk; Address of area used to store the start address of the variable-size memory

block

I ID mplid; Variable-size memory pool ID number

I INT blksz; Variable-size memory block size (number of bytes)

Explanation

This system call acquires a variable-size memory block of the size specified by blkszNote from the variable-size

memory pool specified by mplid, and stores the first address of the acquired memory block into the area specified

by p_blk.

Because a 4-byte management area is appended to a variable-size memory block, the size of the memory block

that can be acquired is less than the size of the variable-size memory pool.

If no variable-size memory block can be acquired from a specified variable-size memory pool (when there is no

free area) upon the issue of this system call, this system call places the task at the end of the queue of a specified

variable-size memory pool before changing its state from the run state to the wait state (variable-size memory

block wait state).

If a task is queued when this system call is issued, it unconditionally waits for a variable-size memory block,

regardless of the size of the vacant variable-size memory block. In other words, the task is queued only on an

FIFO basis, and is not queued according to its priority or in the sequence of the required block size.

The variable-size memory block wait state is released upon the issue of a rel_blk or rel_wai system call, at

which time it changes to the ready state.

Note The variable-size memory block is acquired in 4-byte units. Therefore, specify a multiple of four for blksz.

If any other value is specified, the number of variable-size memory blocks actually acquired differs from the

specified value of blksz because the memory block is acquired in 4-byte units.

Cautions 1. NEC recommends that, under the RX850, a memory block be used as an area for messages

exchanging between tasks via mailboxes. The first four bytes of a message are used as a

link area that is used to queue that message. The RX850, thus, clears only the first four

bytes of any acquired variable-size memory block.

2. If this system call is issued in the dispatch disabled status or from a handler, the operation is

not guaranteed.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 171

Return values

E_OK 0 Normal termination

E_RLWAI -86 The variable-size memory block wait state was forcibly released using a

rel_wai system call.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM172

pget_blk
Poll and Get Variable-size Memory Block

Task/handler

Overview

Acquires a variable-size memory block (polling).

C format

ER pget_blk(VP *p_blk, ID mplid, INT blksz);

Parameters

I/O Parameter Description

O VP *p_blk; Address of area used to store the start address of a variable-size memory block

I ID mplid; Variable-size memory pool ID number

I INT blksz; Variable-size memory block size (number of bytes)

Explanation

This system call acquires a variable-size memory block of the size specified by blkszNote from the variable-size

memory pool specified by mplid, and stores the first address of the acquired memory block into the area specified

by p_blk.

Because a 4-byte management area is appended to a variable-size memory block, the size of the memory block

that can be acquired is less than the size of the variable-size memory pool.

When this system call is issued, if no variable-size memory block can be acquired from the specified variable-size

memory pool (when there is no free area), this system call returns E_TMOUT as the return value.

If a task is queued, to await the specified variable-size memory pool, when this system call is issued, polling fails

unconditionally. Even if a vacant block of the necessary size exists in the variable-size memory pool, if there is a

task waiting to acquire the larger memory block, acquisition of the memory block by that task takes precedence.

Note The variable-size memory block is acquired in 4-byte units. Therefore, specify a multiple of four for blksz.

If any other value is specified, the number of variable-size memory blocks actually acquired differs from the

specified value of blksz because the memory block is acquired in 4-byte units.

Caution NEC recommends that, under the RX850, a memory block be used as an area for messages

exchanging between tasks via mailboxes. The first four bytes of a message are used as a link

area that is used to queue that message. The RX850, thus, clears only the first four bytes of any

acquired variable-size memory block.

Return values

E_OK 0 Normal termination

E_TMOUT -85 There is no free space in the specified variable-size memory pool.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 173

tget_blk
Get Variable-size Memory Block with Timeout

Task

Overview

Acquires a variable-size memory block (with timeout).

C format

ER tget_blk(VP *p_blk, ID mplid, INT blksz, TMO tmout);

Parameters

I/O Parameter Description

O VP *p_blk; Address of area used to store the start address of a variable-size memory block

I ID mplid; Variable-size memory pool ID number

I INT blksz; Variable-size memory block size (number of bytes)

I TMO tmout; Wait time (clock interrupt cycles)

TMO_POL(0) : Quick return

TMO_FEVR(-1) : Permanent wait

Value : Wait time

Explanation

This system call acquires a variable-size memory block of the size specified by blkszNote from the variable-size

memory pool specified by mplid, and stores the first address of the acquired memory block into the area specified

by p_blk.

Because a 4-byte management area is appended to a variable-size memory block, the size of the memory block

that can be acquired is less than the size of the variable-size memory pool.

If no variable-size memory block can be acquired from a specified variable-size memory pool (when there is no

free area) when this system call is issued, this system call places the task at the end of the queue of a specified

variable-size memory pool before changing it from the run state to the wait state (variable-size memory block

wait state).

Tasks are queued on an FIFO basis.

If a task is queued when this system call is issued, it unconditionally enters the variable-size memory block wait

state, regardless of the size of the vacant variable-size memory block.

The variable-size memory block wait state is released when the wait time specified in tmout elapses, or when a

rel_blk or rel_wai system call is issued. Then, the state changes to the ready state.

Note The variable-size memory block is acquired in 4-byte units. Therefore, specify a multiple of four for blksz.

If any other value is specified, the number of variable-size memory blocks actually acquired differs from the

specified value of blksz because the memory block is acquired in 4-byte units.

Caution NEC recommends that, under the RX850, a memory block be used as an area for messages

exchanging between tasks via mailboxes. The first four bytes of a message are used as a link

area that is used to queue that message. The RX850, thus, clears only the first four bytes of any

acquired variable-size memory block.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM174

Return values

E_OK 0 Normal termination

E_TMOUT -85 Timeout elapsed.

E_RLWAI -86 The variable-size memory block wait state was forcibly released by a rel_wai

system call.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 175

rel_blk
Release Variable-size Memory Block

Task/handler

Overview

Returns a variable-size memory block.

C format

ER rel_blk(ID mplid, VP blk);

Parameters

I/O Parameter Description

I ID mplid; Variable-size memory pool ID number

I VP blk; Start address of variable-size memory block

Explanation

This system call returns the variable-size memory block specified in blk to the variable-size memory pool specified

in mplid. If a contiguous area of a size satisfying the requirement by the waiting task is acquired in the variable-

size memory pool as a result of returning of the variable-size memory block, the task is released from the queue

and acquires the variable-size memory block.

When this system call is issued, if any tasks are queued into the queue of the specified variable-size memory pool,

the variable-size memory block is not returned, but is passed to the first task in the queue.

Consequently, the relevant task is removed from the queue, and changes from the wait state (variable-size

memory block wait state) to the ready state, or from the wait_suspend state, to the suspend state.

Cautions 1. The RX850 does not clear the contents of memory when returning a variable-size memory

block. Accordingly, the contents of an acquired variable-size memory block will be

undefined.

2. The variable-size memory block to be returned must be the same as that specified upon the
issue a get_blk, pget_blk, or tget_blk system call.

Return value

E_OK 0 Normal termination

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM176

ref_mpl
Refer Variable-size Memory Pool Status

Task/handler

Overview

Acquires a variable-size memory pool information.

C format

ER ref_mpl(T_RMPL *pk_rmpl, ID mplid);

Parameters

I/O Parameter Description

O T_RMPL *pk_rmpl; Start address of packet used to store variable-size memory pool information

I ID mplid; Variable-size memory pool ID number

Structure of variable-size memory pool information T_RMPL structure

typedef struct t_rmpl {

VP exinf; /* Extended information */

BOOL_ID wtsk; /* Existence of waiting task */

INT frsz; /* Total size of vacant area (bytes) */

INT maxsz; /* Size of maximum vacant area (bytes) */

} T_RMPL;

Explanation

This system call stores the variable-size memory pool information (extended information, existence of waiting

tasks, etc.) for the variable-size memory pool specified in mplid into the packet specified in pk_rmpl.

Variable-size memory pool information is described in detail below.

exinf ... Extended information

wtsk ... Existence of waiting task

FALSE(0) : There is no waiting task.

Value : ID number of first task in the queue

frsz ... Total size of vacant area (bytes)

maxsz … Size of maximum vacant area (bytes)

Return value

E_OK 0 Normal termination

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 177

10.5.6 Time Management System Calls

This section explains a group of system calls (time management system calls) that perform processing that is

dependent on time.

Table 10-8 lists the time management system calls.

Table 10-8. List of Time Management System Calls

System call Function schdlNote

dly_tsk

act_cyc

ref_cyc

Changes the task to the timeout wait state.

Controls the activity state of a cyclic handler.

Acquires cyclic handler information.

o

x

x

Note schdl indicates whether the scheduler is to be activated.

Whether control is to be passed to another task as a result of scheduler activation,

however, depends on the current state.

o: Activates the scheduler.

x: Does not activate the scheduler.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM178

dly_tsk
Delay Task

Task

Overview

Changes the task to the timeout wait state.

C format

ER dly_tsk(DLYTIME dlytim);

Parameters

I/O Parameter Description

I DLYTIME dlytim; Delay (clock interrupt cycles)

Explanation

This system call changes the state of the task from the run state to the wait state (timeout wait state) by the

delay specified in dlytim.

The timeout wait state is released upon the elapse of the delay specified in dlytim or when the rel_wai system

call is issued. Then, the state changes to the ready state.

Caution The timeout wait state is released by neither the wup_tsk nor ret_wup system call.

Return values

E_OK 0 Normal termination

E_RLWAI -86 The timeout wait state was forcibly released by the issue of a rel_wai system

call.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 179

act_cyc
Activate Cyclic Handler

Task/handler

Overview

Controls the activity state of a cyclic handler.

C format

ER act_cyc(HNO cycno, UINT cycact);

Parameters

I/O Parameter Description

I HNO cycno; Specification number of cyclic handler

I UINT cycact; Specification of activity state, cycle counter, and queuing

TCY_OFF(0) : OFF state

TCY_ON(1) : ON state

TCY_INI(2) : Initializes the cycle counter.

TCY_ULNK(4) : Removes the handler from the timer queue.

Explanation

This system call changes the activity state of the cyclic handler specified in cycno to the state specified in cycact.

The specification format of cycact is described below.

• cycact = TCY_OFF

Changes the activity state of the cyclic handler to the OFF state. Even when the activation time is reached, the

cyclic handler is not activated.

Caution Under the RX850, while the cyclic handler is queued in the timer queue, the cycle counter

continues to count even when the activity state of that handler is OFF.

• cycact = TCY_ON

Changes the activity state of a cyclic handler to the ON state. When the activation time is reached, the specified

cyclic handler is activated.

• cycact = TCY_INI

Queues the specified cyclic handler into the timer queue, then initializes the cycle counter.

Caution When this system call is issued, if the specified cyclic handler has already been queued into

the timer queue, only initialization of the cycle counter is performed.

• cycact = (TCY_ON|TCY_INI)

Changes the activity state of the specified cyclic handler to the ON state, queues that handler into the timer

queue, then initializes the cycle counter.

When the activation time is reached, the specified cyclic handler is activated.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM180

• cycact = TCY_ULNK

Changes the activity state of the specified cyclic handler to the OFF state, then removes that handler from the

timer queue.

Even when the activation time is reached, the specified cyclic handler is not activated.

Caution When this system call is issued, if the activity state of the specified cyclic handler is the OFF

state, only the queuing of that handler into the timer queue is performed.

Return value

E_OK 0 Normal termination

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 181

ref_cyc
Refer Cyclic Handler Status

Task/handler

Overview

Acquires cyclic handler information.

C format

ER ref_cyc(T_RCYC *pk_rcyc, HNO cycno);

Parameters

I/O Parameter Description

O T_RCYC *pk_rcyc; Start address of packet used to store cyclic handler information

I HNO cycno; Specification number of cyclic handler

Structure of cyclic handler information T_RCYC

typedef struct t_rcyc {

VP exinf; /* Extended information */

CYCTIME lfttim; /* Remaining time */

UINT cycact; /* Current activity state */

} T_RCYC;

Explanation

This system call stores the cyclic handler information (extended information, remaining time, etc.) of the cyclic

handler specified in cycno into the packet specified in pk_rcyc.

Cyclic handler information is described in detail below.

exinf ... Extended information

lfttim ... Time remaining until the cyclic handler is next activated

(clock interrupt cycles)

cycact ... Current activity state

TCY_OFF(0) : Activity state is OFF.

TCY_ON(1) : Activity state is ON.

TCY_ULNK(4) : The cyclic handler is not in the timer queue.

Caution If the value of cycact is TCY_ULNK, the value of lfttim will be undefined.

Return value

E_OK 0 Normal termination

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM182

10.5.7 System Management System Calls

This section explains a group of system calls (system management system calls) that perform processing that is

dependent on the system.

Table 10-9 lists the system management system calls.

Table 10-9. List of System Management System Calls

System call Function schdlNote

get_ver

ref_sys

Acquires RX850 version information.

Acquires system information.

x

x

Note schdl indicates whether the scheduler is to be activated.

Whether control is to be passed to another task as a result of scheduler activation,

however, depends on the current state.

o: Activates the scheduler.

x: Does not activate the scheduler.

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 183

get_ver
Get Version Information

Task/handler

Overview

Acquires RX850 version information.

C format

ER get_ver(T_VER *pk_ver);

Parameters

I/O Parameter Description

O T_VER *pk_ver; Start address of packet used to store version information

Structure of version information T_VER

typedef struct t_ver {

UH maker; /* OS maker */

UH id; /* OS format */

UH spver; /* Specification version */

UH prver; /* OS version */

UH prno[4]; /* Product number, production management information */

UH cpu; /* CPU information */

UH var; /* Variation descriptor */

} T_VER;

Explanation

This system call stores the RX850 version information (OS maker, OS format, etc.) into the packet specified in

pk_ver.

Version information is described in detail below.

maker ... OS maker

 H'000d : NEC

id ... OS format

 H'0000 : Not used

spver ... Specification version

 H'5302 : µITRON 3.0 Ver. 3.02

prver ... OS product version

 H'03xx : RX850 Ver. 3.xx

prno[4] ... Product number/product management information

 Undefined : Serial number of delivery product (each unit has a unique number)

cpu ... CPU information

 H'0d33 : V850 family

var ... Variation descriptor

 H'8000 : µITRON level S, for single processor use, virtual storage not supported,

MMU not supported, file not supported

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM184

Return value

E_OK 0 Normal termination

CHAPTER 10 SYSTEM CALLS

User's Manual U13430EJ2V1UM 185

ref_sys
Refer System Status

Task/handler

Overview

Acquires system information.

C format

ER ref_sys(T_RSYS *pk_rsys);

Parameters

I/O Parameter Description

O T_RSYS *pk_rsys; Start address of packet used to store system information

Structure of system information T_RSYS

typedef struct t_rsys {

INT sysstat; /* System state */

} T_RSYS;

Explanation

This system call stores the current value of dynamically-changing system information (system state) into the

packet specified in pk_rsys.

System information is described in detail below.

sysstat ... System state

TTS_TSK(0) : Task processing is being performed. Dispatch processing is permitted.

TTS_DDSP(1) : Task processing is being performed. Dispatch processing is inhibited.

TTS_LOC(3) : Task processing is being performed. The acceptance of maskable

interrupts and dispatch processing is inhibited.

TTS_INDP(4) : Processing of a handler (interrupt handler, cyclic handler) is being

performed.

Return value

E_OK 0 Normal termination

User's Manual U13430EJ2V1UM186

[MEMO]

User's Manual U13430EJ2V1UM 187

APPENDIX A PROGRAMMING METHODS

This appendix explains how to write processing programs when the CA850 or the CCV850 is being used.

A.1 OVERVIEW

In the RX850, processing programs are classified according to purpose, as shown below.

These processing programs have their own basic formats according to the general conventions or conventions to

be applied when the RX850 is used.

(1) Task

The minimum unit of a processing program which can be executed by the RX850.

(2) Directly activated interrupt handler

A routine dedicated to interrupt handling. When an interrupt occurs, this handler is activated without the

intervention of the RX850. This routine is handled independently of tasks. When an interrupt occurs,

therefore, the processing of the task currently being executed is canceled even if that task has the highest

priority relative to any other tasks in the system. Then, control is passed to the directly activated interrupt

handler.

In view of direct activation of this handler, a rapid response that approaches the maximum level of hardware

performance can be expected.

(3) Indirectly activated interrupt handler

A routine dedicated to interrupt handling. When an interrupt occurs, this handler is activated upon the

completion of the preprocessing by the RX850 (such as saving the contents of the registers or switching the

stack). This routine is handled independently of tasks. When an interrupt occurs, therefore, the processing of

the task currently being executed is canceled even if that task has the highest priority relative to any other

tasks in the system. Then, control is passed to the indirectly activated interrupt handler.

The response time of the indirectly activated handler is longer than the directly activated interrupt handler.

Because the RX850 completes the required preprocessing, however, the indirectly activated interrupt handler

has the advantage of reducing the amount of internal processing to be performed by the handler.

(4) Cyclic handler

A routine dedicated to cyclic processing. Every time the specified time elapses, this handler is activated

immediately. This routine is handled independently of tasks. At the activation time, therefore, the processing

of the task currently being executed is canceled even if that task has the highest priority relative to all other

tasks in the system. Then, control is passed to the cyclic handler.

A cyclic handler incurs a smaller overhead before the start of execution, relative to any other cyclic

processing programs written by the user.

APPENDIX A PROGRAMMING METHODS

User's Manual U13430EJ2V1UM188

A.2 KEYWORDS

The character strings listed below are reserved as keywords for the configurater. These strings shall not,

therefore, be used for other purposes.

auto clkhdr cyc di ei

flg flg1 inthdr intstk maxpri

mbx mpf no_use no_wait pool0

Pool1 RX850 rxsers sem ser_def

sit_def TA_MFIFO TA_MPRI TCY_ULNK TCY_OFF

TCY_ON tsk tskgrp TTS_DMT TTS_RDY

V310

A.3 RESERVED WORDS

The character strings listed below are reserved as external symbols for the RX850. These strings shall not,

therefore, be used for other purposes.

_CYC* _ID* inthdrH inthdrL Pool0*

Pool1* RX850* Sit* SysIntEnt Timer_Handler

_txcb*

Remark * indicates a character string consisting of one or more characters.

APPENDIX A PROGRAMMING METHODS

User's Manual U13430EJ2V1UM 189

A.4 DESCRIBING TASKS

A.4.1 When CA850 Is Used

When describing a task in C, declare the function using a pragma directive and describe it as an void-type

function having one INT-type argument.

As an argument (stacd), the activation code specified when the sta_tsk system call is issued is set.

Figure A-1 shows the task basic format (in C) when the CA850 is used.

Figure A-1. Task Basic Format (in C) When Using CA850

#include <stdrx850.h>

#pragma

void

{

}

func_task (INT stacd)

rtos_task

ext_tsk();

/* Processing of task func_task */

/* Termination of task func_task */

...................................

...................................

...................................

func_task

Caution For details of function declaration using a pragma directive, refer to the CA830, CA850 Series C

Compiler Package User's Manual, C.

APPENDIX A PROGRAMMING METHODS

User's Manual U13430EJ2V1UM190

When describing a task in assembly language, describe it as a function conforming to the function call

conventions of the CA850.

As an argument (r6 register), the activation code specified when the sta_tsk system call is issued is set.

Figure A-2 shows the task basic format (in assembly language) when the CA850 is used.

Figure A-2. Task Basic Format (in Assembly Language) When Using CA850

#include <stdrx850.h>

_func_task :

.text

jr _ext_tsk

/* */Processing of task func_task

/* Termination of task func_task

..............................

..............................

..............................

.align 4

.globl _func_task

*/

Cautions 1. When describing a task in assembly language, specify .c as the file extension.

2. When describing a task in assembly language, code the following at the beginning of the file:
 #include <stdrx850.h>

To convert the file to an object file, therefore, preprocessing (front-end processing) must be

performed for the CA850.

APPENDIX A PROGRAMMING METHODS

User's Manual U13430EJ2V1UM 191

A.4.2 When CCV850 Is Used

When describing a task in C, describe it as an void-type function having one INT-type argument.

As an argument (stacd), the activation code specified upon the issue of the sta_tsk system call is set.

Figure A-3 shows the task basic format (in C) when the CCV850 is used.

Figure A-3. Task Basic Format (in C) When Using CCV850

#include <stdrx850.h>

void

{

}

func_task (INT stacd)

ext_tsk();

/* Processing of task func_task */

/* Termination of task func_task */

...................................

...................................

...................................

APPENDIX A PROGRAMMING METHODS

User's Manual U13430EJ2V1UM192

When describing a task in assembly language, describe it as a function conforming to the function call

conventions of the CCV850.

As an argument (r6 register), the activation code specified upon the issue of the sta_tsk system call is set.

Figure A-4 shows the task basic format (in assembly language) when the CCV850 is used.

Figure A-4. Task Basic Format (in Assembly Language) When Using CCV850

#include <stdrx850.h>

_func_task :

.text

jr _ext_tsk

/* Processing of task func_task

/*

*/

*/Termination of task func_task

..............................

..............................

..............................

.align 4

.globl _func_task

Cautions 1. When describing a task in assembly language, specify .850 as the file extension.

2. When describing a task in assembly language, code the following at the beginning of the file:
 #include <stdrx850.h>

To convert the file to an object file, therefore, preprocessing (front-end processing) must be

performed for the CCV850.

APPENDIX A PROGRAMMING METHODS

User's Manual U13430EJ2V1UM 193

A.5 DESCRIBING A DIRECTLY ACTIVATED INTERRUPT HANDLER

A directly activated interrupt handler cannot be described in C. Instead, it must be described in assembly

language.

Before the processing of a directly activated interrupt handler, the registers must be saved. After the processing,

the registers must be restored. The RX850 provides a macro that describes the processing for saving and restoring

the registers. This minimizes the workload imposed on the user when he or she describes a handler in assembly

language.

The description of the handler differs depending on how the registers are restored (i.e., whether reti, ret_int,

or ret_wup is used). Each restoration method is described below, together with the points to be noted.

A.5.1 When Using reti (for CA850)

Describe a directly activated interrupt handler as shown in Figure A-5 when using reti to restore the registers.

Figure A-5. Example of Description to Restore from a Directly Activated Interrupt Handler Using reti

(CA850)

#include "stdrx850.inc"

 .section "interrupt source name"

 jr _inthdr

 .text

.align 4

 .globl _inthdr

_inthdr:

 RTOS_IntEntry

 Handler

 RTOS_IntExit

RTOS_IntEntry informs the RX850 of the start of handler processing. RTOS_IntExit informs the RX850 of the

completion of the handler processing, and issues the reti instruction. These macros do not include a means of

saving/restoring the processing performed by registers. Save and restore registers by using the "handler."

The above description cannot be used to switch the stack. The stack of the task that is interrupted is used.

System calls cannot be issued. In addition, an interrupt handler or timer handler that issues a system call cannot

be nested. This description is used only for simple processing such as the manipulation of I/O after which execution

is immediately returned to the main routine.

APPENDIX A PROGRAMMING METHODS

User's Manual U13430EJ2V1UM194

A.5.2 When Using reti (for CCV850)

Describe a directly activated interrupt handler as shown in Figure A-6 when using reti to restore the registers.

Figure A-6. Example of Description to Restore from a Directly Activated Interrupt Handler by Using reti

(CCV850)

#include <stdrx850.h>

 .org 0x00000150 -- Interrupt entry address

 jr _inthdr

 .text

.align 4

 .globl _inthdr

_inthdr:

 RTOS_IntEntry

 Handler

 RTOS_IntExit

RTOS_IntEntry informs the RX850 of the start of handler processing. RTOS_IntExit informs the RX850 of the

completion of the handler processing, and issues the reti instruction. These macros do not include a means of

saving/restoring the processing of registers. Save and restore registers by using the "handler."

The above description cannot be used to switch the stack. The stack of the task that is interrupt is used.

System calls cannot be issued. In addition, an interrupt handler or timer handler that issues a system call cannot

be nested. This description is used only for simple processing such as the manipulation of I/O after which execution

is immediately returned to the main routine.

Caution When compiling the source program, "-D_ _asm_ _" must be used as a compile option.

A.5.3 When Using ret_int or ret_wup (for CA850)

Describe the handler as shown in Figure A-7 when returning execution from the handler by using ret_int or

ret_wup.

APPENDIX A PROGRAMMING METHODS

User's Manual U13430EJ2V1UM 195

Figure A-7. Example of Description to Restore from a Directly Activated Interrupt Handler by Using
ret_int or ret_wup (CA850)

.set Reg26, 1 -- In 26-register mode

.set Reg22, 1 -- In 22-register mode

-- Unnecessary in 32-register mode

#include "stdrx850.inc"

 .section "INTP00" -- Specify an interrupt source name

 jr _inthdr

 .text

 .globl _inthdr

 .align 4

_inthdr:

 RTOS_IntEntry

 RTOS_IntPrologue

 .extern _inthdr_body

 jarl _inthdr_body, lp

 mov r10, r6

 RTOS_IntEpilogue

 jr _ret_wup

#include <stdrx850.h>

ID inthdr_body (void)

{

Handler

return tskid; /* ID number of task to be woken up */

}

APPENDIX A PROGRAMMING METHODS

User's Manual U13430EJ2V1UM196

RTOS_IntEntry informs the RX850 of the start of handler processing. RTOS_IntPrologue saves the
temporary registers and lp, and switches the stack.

Subsequently, registers other than those above (r20 through r30) are saved, and control is transferred to the

handler. In Figure A-7, a C function "inthdr_body", which is the handler, is called.

The handler (after RTOS_IntPrologue) can issue the system call described in Section 5.3. Interrupts can also

be enabled.

After the processing of the handler has been completed, the registers saved by the user are restored and

execution returns from the handler (this is unnecessary in Figure A-7). If the handler is terminated by using

ret_wup, the ID number of the task to be woken up by the handler is set in register r6.

In Figure A-7, the ID of the task is returned as a return value when execution returns from inthdr_body, and its

value is copied into r10. Therefore, the value of r10 is copied into r6. When execution is returned from the handler

by using ret_int, this operation is not necessary.

Once the above processing has been completed, describe macro RTOS_IntEpilogue, and terminate the

handler by using "jr ret_int" or "jr ret_wup". Do not describe any processing between RTOS_IntEpilogue

and "jr ret_int (or ret_wup)".

Caution For details of the .section pseudo instruction, refer to the CA850 C Compiler Package User's

Manual, Assembly Language.

A.5.4 When Using ret_int or ret_wup (for CCV850)

Describe the handler as shown in Figure A-8 when returning execution from the handler by using ret_int or

ret_wup.

APPENDIX A PROGRAMMING METHODS

User's Manual U13430EJ2V1UM 197

Figure A-8. Example of Description to Restore from a Directly Activated Interrupt Handler by Using
ret_int or ret_wup (CCV850)

#include <stdrx850.h>

 .org 0x00000150 -- Interrupt entry address

 jr _inthdr

 .text

 .globl _inthdr

 .align 4

_inthdr:

 RTOS_IntEntry

 RTOS_IntPrologue

 .extern _inthdr_body

 jarl _inthdr_body, lp

 mov r10, r6

 RTOS_IntEpilogue

 jr _ret_wup

#include <stdrx850.h>

ID inthdr_body (void)

{

Handler

return tskid; /* ID number of task to be woken up */

}

File in which handler is described.

APPENDIX A PROGRAMMING METHODS

User's Manual U13430EJ2V1UM198

RTOS_IntEntry informs the RX850 of the start of handler processing. RTOS_IntPrologue saves the temporary

registers and lp, and switches the stack.

Subsequently, registers other than those above (r20 through r30) are saved, and control is transferred to the

handler. In Figure A-8, a C function "inthdr_body", which is the handler, is called.

The handler (after RTOS_IntPrologue) can issue the system call described in Section 5.3. Interrupts can also

be enabled.

After the processing of the handler has been completed, the registers saved by the user are restored and

execution returns from the handler (this is unnecessary in Figure A-8). If the handler is terminated by using

ret_wup, the ID number of the task to be woken up by the handler is set in register r6.

In Figure A-8, the ID of the task is returned as a return value when execution returns from inthdr_body, and its

value is copied into r10. Therefore, the value of r10 is copied into r6. When execution is returned from the handler

by using ret_int, this operation is not necessary.

Once the above processing has been completed, describe macro RTOS_IntEpilogue, and terminate the

handler by using "jr ret_int" or "jr ret_wup". Do not describe any processing between RTOS_IntEpilogue

and "jr ret_int (or ret_wup)".

Cautions 1. A branch instruction must be set in a directly activated interrupt handler for the handler

address to which processing is passed by the processor upon the occurrence of an
interrupt. In Figure A-8, the .org instruction section is equivalent to this. The value

following the .org instruction is equivalent to the handler address of an interrupt.

2. When describing a directly activated interrupt handler in assembly language, specify .850

as the file extension.
3. When compiling the source program, "-D_ _asm_ _" must be used as a compile option.

APPENDIX A PROGRAMMING METHODS

User's Manual U13430EJ2V1UM 199

A.6 DESCRIBING AN INDIRECTLY ACTIVATED INTERRUPT HANDLER

A.6.1 When CA850 Is Used

When describing an indirectly activated interrupt handler in C, describe it as an INT-type function having no

argument.

Figure A-9 shows the basic format of an indirectly activated interrupt handler (in C) when the CA850 is used.

Figure A-9. Basic Format of Indirectly Activated Interrupt Handler (in C) When Using CA850

#include <stdrx850.h>

INT

{

}

func_inthdr()

return(0xff);

/* Processing of indirectly activated interrupt handler func_inthdr */

/* Notifies the external interrupt controller of the termination of processing */

/* Return processing from indirectly activated interrupt handler func_inthdr */

..

..

..

..

Caution An indirectly activated interrupt handler is a subroutine called by interrupt preprocessing of the

RX850. Therefore, when an indirectly activated interrupt handler is described, an instruction for

branching to the indirectly activated interrupt handler need not be set for the handler address to

which the processor passes control upon the occurrence of an interrupt.

APPENDIX A PROGRAMMING METHODS

User's Manual U13430EJ2V1UM200

When describing an indirectly activated interrupt handler in assembly language, describe it as a function

conforming to the function call conventions of the CA850.

Figure A-10 shows the basic format of an indirectly activated interrupt handler (in assembly language) when the

CA850 is used.

Figure A-10. Basic Format of Indirectly Activated Interrupt Handler (in Assembly Language) When Using

CA850

#include <stdrx850.h>

_func_inthdr :

.text

mov 0xff, r10

jmp [lp]

/* Processing of indirectly activated interrupt handler func_inthdr

/* Return processing from indirectly activated interrupt handler func_inthdr

...

...

...

.align 4

.globl _func_inthdr

/*

*/

*/

*/Notifies the external interrupt controller of the termination of processing

...

Cautions 1. When describing an indirectly activated interrupt handler in assembly language, specify .c

as the file extension.

2. When describing an indirectly activated interrupt handler in assembly language, code the

following at the beginning of the file:
 #include <stdrx850.h>

To convert the file to an object file, therefore, preprocessing (front-end processing) must be

performed for the CA850.

3. An indirectly activated interrupt handler is a subroutine called by interrupt preprocessing of

the RX850. Therefore, when an indirectly activated interrupt handler is described, an

instruction for branching to the indirectly activated interrupt handler need not be set for the

handler address to which the processor passes control upon the occurrence of an interrupt.

APPENDIX A PROGRAMMING METHODS

User's Manual U13430EJ2V1UM 201

A.6.2 When CCV850 Is Used

When describing an indirectly activated interrupt handler in C, describe it as an INT-type function having no

argument.

Figure A-11 shows the basic format of an indirectly activated interrupt handler (in C) when the CCV850 is used.

Figure A-11. Basic Format of Indirectly Activated Interrupt Handler (in C) When Using CCV850

#include <stdrx850.h>

INT

{

}

func_inthdr()

return(0xff);

/* Processing of indirectly activated interrupt handler func_inthdr */

/* Notifies the external interrupt controller of the termination of processing */

/* Return processing from indirectly activated interrupt handler func_inthdr */

..

..

..

..

Caution An indirectly activated interrupt handler is a subroutine called by interrupt preprocessing of the

RX850. Therefore, when an indirectly activated interrupt handler is described, an instruction for

branching to the indirectly activated interrupt handler need not be set for the handler address to

which the processor passes control upon the occurrence of an interrupt.

APPENDIX A PROGRAMMING METHODS

User's Manual U13430EJ2V1UM202

When describing an indirectly activated interrupt handler in assembly language, describe it as a function

conforming to the function call conventions of the CCV850.

Figure A-12 shows the basic format of an indirectly activated interrupt handler (in assembly language) when the

CCV850 is used.

Figure A-12. Basic Format of Indirectly Activated Interrupt Handler (in Assembly Language) When Using

CCV850

#include <stdrx850.h>

_func_inthdr :

.text

mov 0xff, r10

jmp [lp]

/* Processing of indirectly activated interrupt handler func_inthdr

/* Return processing from indirectly activated interrupt handler func_inthdr

...

...

...

.align 4

.globl _func_inthdr

/*

*/

*/

*/Notifies the external interrupt controller of the termination of processing

...

Cautions 1. When describing an indirectly activated interrupt handler in assembly language, specify
.850 as the file extension.

2. When describing an indirectly activated interrupt handler in assembly language, code the

following at the beginning of the file:
 #include <stdrx850.h>

To convert the file to an object file, therefore, preprocessing (front-end processing) must be

performed for the CCV850.

3. An indirectly activated interrupt handler is a subroutine called by interrupt preprocessing of

the RX850. Therefore, when an indirectly activated interrupt handler is described, an

instruction for branching to the indirectly activated interrupt handler need not be set for the

handler address to which the processor passes control upon the occurrence of an interrupt.

APPENDIX A PROGRAMMING METHODS

User's Manual U13430EJ2V1UM 203

A.7 DESCRIBING CYCLIC HANDLER

A.7.1 When CA850 Is Used

When describing a cyclic handler in C, describe it as a void-type function having no argument.

Figure A-13 shows the basic format of a cyclic handler (in C) when the CA850 is used.

Figure A-13. Basic Format of Cyclic Handler (in C) When Using CA850

#include <stdrx850.h>

void

{

}

func_cychdr()

return;

/* Processing of cyclic handler func_cychdr */

/* Return processing from cyclic handler func_cychdr */

..

..

..

Caution A cyclic handler is a subroutine called by the time management interrupt handler (clock handler)

of the RX850.

APPENDIX A PROGRAMMING METHODS

User's Manual U13430EJ2V1UM204

When describing a cyclic handler in assembly language, describe it as a function conforming to the function call

conventions of the CA850.

Figure A-14 shows the basic format of a cyclic handler (in assembly language) when the CA850 is used.

Figure A-14. Basic Format of Cyclic Handler (in Assembly Language) When Using CA850

#include <stdrx850.h>

_func_cychdr :

.text

jmp [lp]

/* Processing of cyclic handler func_cychdr

/*

*/

*/Return processing from cyclic handler func_cychdr

...

...

...

.align 4

.globl _func_cychdr

Cautions 1. When describing a cyclic handler in assembly language, specify .c as the file extension.

2. When describing a cyclic handler in assembly language, code the following at the beginning

of the file:
 #include <stdrx850.h>

To convert the file to an object file, therefore, preprocessing (front-end processing) must be

performed for the CA850.

3. A cyclic handler is a subroutine called by the time management interrupt handler (clock

handler) of the RX850.

APPENDIX A PROGRAMMING METHODS

User's Manual U13430EJ2V1UM 205

A.7.2 When CCV850 Is Used

When describing a cyclic handler in C, describe it as a void-type function having no argument.

Figure A-15 shows the basic format of a cyclic handler (in C) when the CCV850 is used.

Figure A-15. Basic Format of Cyclic Handler (in C) When Using CCV850

#include <stdrx850.h>

void

{

}

func_cychdr()

return;

/* Processing of cyclic handler func_cychdr */

/* Return processing from cyclic handler func_cychdr */

..

..

..

Caution A cyclic handler is a subroutine called by the time management interrupt handler (clock handler)

of the RX850.

APPENDIX A PROGRAMMING METHODS

User's Manual U13430EJ2V1UM206

When describing a cyclic handler in assembly language, describe it as a function conforming to the function call

conventions of the CCV850.

Figure A-16 shows the basic format of a cyclic handler (in assembly language) when the CCV850 is used.

Figure A-16. Basic Format of Cyclic Handler (in Assembly Language) When Using CCV850

#include <stdrx850.h>

_func_cychdr :

.text

jmp [lp]

/* Processing of cyclic handler func_cychdr

/*

*/

*/Return processing from cyclic handler func_cychdr

...

...

...

.align 4

.globl _func_cychdr

Cautions 1. When describing a cyclic handler in assembly language, specify .850 as the file extension.

2. When describing a cyclic handler in assembly language, code the following at the beginning

of the file:
 #include <stdrx850.h>

To convert the file to an object file, therefore, preprocessing (front-end processing) must be

performed for the CCV850.

3. A cyclic handler is a subroutine called by the time management interrupt handler (clock

handler) of the RX850.

APPENDIX A PROGRAMMING METHODS

User's Manual U13430EJ2V1UM 207

A.8 CONSTRAINTS AND NOTES

A.8.1 When Using V850E

The RX850 can be used with the V850E (V850E/MS1, V850E/MA1, V850E/IA1) but its functions are limited. The

V850E architecture has an original instruction, CALLT, that is not provided to any other members of the V850 family.

This instruction uses two registers: CTPSW and CTPC. The RX850, however, does not save or restore these

registers by using a scheduler. If this instruction is used in the program, the operation cannot be guaranteed.

Therefore, use of the CALLT instruction is limited.

Do not use the CALLT instruction when describing a task handler in assembly language. When compiling a file in

which a task handler is described in C, specify an option that specifies "the CALLT instruction is not used". For

details on the compiler option, refer to the manual for each compiler.

A.8.2 Location of .sit Section and .pool0 Section

The RX850 limits the addresses to which the .sit section and .pool0 section can be located. These sections

are loaded or stored with a single instruction in r0 (address 0) relative mode, and the range in which they can be

located is limited to ±32 Kbytes. Therefore, the range in which these sections can be located is as follows:

• 0xffff8000 to 0xffffffff (However, 0xfffff000 to x0ffffffff constitute an internal peripheral I/O area.)

• 0x0 to 0x7fff (However, a few hundred bytes from 0x0 are used as an interrupt handler address area.)

Because the .sit section can be embedded in ROM, it should be located at 0x0 to 0x7fff in the internal ROM

area of the V850 family. The .pool0 section must be located in the RAM area, and it is recommended that it be

located it in the range of 0xffffe000 to 0xffffefff in the internal RAM area of the V850 family.

If an address to which ROM or RAM is actually allocated (physical address) is specified when linking the

applications, however, a link error may occur with some CPUs. For example, with the V850E/MS1, the physical

address of the internal RAM area is 0x3ffe0000. If the .pool0 section is located by using an address in the vicinity

of this address, a link error occurs. In this case, link the applications by using the image (mirror image) of the

physical address. For details of the image of the physical address, refer to the relevant Hardware Manual.

A.8.3 Range in Which System Calls Can Be Called

The system calls of the RX850 are called by using the jarl instruction. This instruction can access only a 22-bit

range because of the architecture, and access is not possible if this range is exceeded by the calling side or called

side. Of the 22 bits, the highest bit is a sign bit. Therefore, the positive and negative 21 bits are the limits.

Therefore, do not exceed 0x1fffff (2,097,151).

User's Manual U13430EJ2V1UM208

[MEMO]

User's Manual U13430EJ2V1UM 209

APPENDIX B INDEX

[1]

1-bit event flag... 29, 39, 49

1-bit event flag information 51, 149

checking a bit................................50, 146, 147, 148

cleaning a bit ... 50

clearing a bit .. 145

generation.. 49

setting a bit .. 50, 144

1-bit event flag management block.......................... 71

1-bit event flag wait state... 33

[A]

act_cyc ... 83, 177, 179

activity state .. 83, 179

[C]

can_wup ... 121, 128

CF850 ... 20, 21

chg_icr ... 68, 155, 162

chg_pri ... 109, 115

clock handler ... 79

clock interrupt.. 68, 79

clr_flg ... 45, 129, 136

communication function..................................... 29, 39

mailbox .. 29, 39, 54

configurater ... 21

CF850.. 20, 21

constraints and notes .. 207

cross tool... 24

CA850.. 24

CCV850 ... 24

cyclic handler25, 83, 187, 203

activity state... 83

basic format for CA850 203, 204

basic format for CCV850 205, 206

cyclic handler information 87, 181

limitation imposed on system calls....................... 86

processing performed by the handler 85

registering.. 83

return processing ... 86

saving/restoring the registers............................... 85

stack switching... 86

cyclic handler management block 71

[D]

data type ... 105

(*FP)().. 105

*VP .. 105

B .. 105

BOOL .. 105

BOOL_ID ... 105

CYCTIME... 105

DLYTIME ... 105

ER .. 105

H .. 105

HNO .. 105

ID .. 105

INT .. 105

PRI .. 105

TMO .. 105

UB .. 105

UH .. 105

UINT .. 105

UW .. 105

VB .. 105

VH .. 105

VW .. 105

W .. 105

debugger ... 24

ID850 ... 24

MULTI.. 24

SM850 ... 24

delayed wake-up ... 80

dly_tsk.. 80, 177, 178

development environment 23

hardware environment ... 23

software environment .. 24

directly activated interrupt handler25, 59, 187, 193

flow of processing .. 59

limitation imposed on system calls....................... 61

processing performed by the handler 60

registering.. 60

return processing 62, 156, 157

returning by using ret_int or ret_wup for

CCV850 ... 196

returning by using ret_int or ret-wup for

CA850 .. 194

APPENDIX B INDEX

User's Manual U13430EJ2V1UM210

returning by using reti for CA850 193

returning by using reti for CCV850................. 194

saving/restoring the registers............................... 60

stack switching .. 61

dis_dsp ..95, 109, 113

dis_int ..66, 155, 160

dispatching ...20, 66, 95

disabling ...66, 95, 113, 158

resuming...66, 95, 114, 159

dly_tsk ..80, 177, 178

dormant state .. 32

drive method ... 89

event-driven technique .. 89

[E]

ena_dsp ..95, 109, 114

ena_int ..66, 155, 161

event flag..29, 39, 44

checking a bit pattern45, 137, 139, 141

cleaning a bit pattern ... 136

clearing a bit pattern .. 45

event flag information46, 143

event flag management block.............................. 71

generation.. 44

setting a bit pattern45, 135

event flag wait state .. 33

event-driven technique.. 89

exclusive control function 29, 39

semaphore... 29, 39

execution environment .. 22

ext_tsk ..36, 109, 111

[F]

FCFS method.. 90

fixed-size memory block.. 74

acquiring ...74, 75, 165, 167

returning ...75, 168

fixed-size memory pool ... 73

acquiring a fixed-size memory block

..74, 165, 166, 167

fixed-size memory pool information75, 169

generation.. 73

returning a fixed-size memory block75, 168

fixed-size memory pool management block 71

forced termination ..36, 112

frsm_tsk ..121, 124

[G]

get_blf ..74, 164, 165

get_blk ..77, 164, 170

get_tid ..38, 109, 118

get_ver ..182, 183

[H]

HALT mode... 91

hardware environment .. 23

host machine ... 23

I/O board.. 23

in-circuit emulator .. 23

PC interface board... 23

host machine... 23

HP9000 series 700 .. 23

PC/AT-compatible machine 23

PC-9800 series.. 23

SPARCstation.. 23

[I]

I/O board ... 23

IE-703003-MC-EM1... 23

IE-703008-MC-EM1... 23

IE-703017-MC-EM1... 23

IE-703037-MC-EM1... 23

IE-703040-MC-EM1... 23

IE-703102-MC-EM1... 23

IE-703102-MC-EM1-A ... 23

IE-703107-MC-EM1... 23

IE-703116-MC-EM1... 23

IE-V850E-MC-EM1-A .. 23

IE-V850E-MC-EM1-B .. 23

idle handler.. 25, 91

HALT mode ... 91

IDLE mode... 91

sample source file.. 91

STOP mode... 91

IDLE mode .. 91

in-circuit emulator

IE-703002-MC ... 23

IE-703102-MC ... 23

IE-V850E-MC .. 23

IE-V850E-MC-A... 23

in-circuit emulators .. 23

indirectly activated interrupt handler

...25, 59, 63, 187, 199

basic format for CA850...............................199, 200

basic format for CCV850201, 202

APPENDIX B INDEX

User's Manual U13430EJ2V1UM 211

flow of processing .. 63

limitation imposed on system calls....................... 64

processing performed by the handler 63

registering.. 63

return processing ... 65

saving/restoring the registers............................... 63

stack switching... 64

information file... 25

system information header file 25

system information table...................................... 25

initialization data save area 25

initialization handler... 25, 102

interrupt control register 68, 162, 163

acquiring .. 68, 163

changing .. 68, 162

interrupt handler .. 59

directly activated interrupt handler 59, 193

indirectly activated interrupt handler 59, 63, 199

interrupt management function.......................... 29, 59

interrupt management system call................. 104, 155

chg_icr.. 68, 155, 162

dis_int.. 66, 155, 160

ena_int.. 66, 155, 161

loc_cpu...66, 95, 155, 158

ref_icr.. 68, 155, 163

ret_int.. 62, 155, 156

ret_wup.. 62, 155, 157

unl_cpu...66, 95, 155, 159

[K]

keyword... 188

auto .. 188

clkhdr ... 188

cyc .. 188

di .. 188

ei .. 188

flg .. 188

flg1 .. 188

inthdr.. 188

intstk .. 188

maxpri.. 188

mbx .. 188

mpf .. 188

no_use... 188

no_wait .. 188

pool0.. 188

Pool1 ... 188

RX850.. 188

rxsers... 188

sem .. 188

ser_def... 188

sit_def .. 188

TA_MFIFO... 188

TA_MPRI ... 188

TCY_OFF .. 188

TCY_ON .. 188

TCY_ULNK.. 188

tsk .. 188

tskgrp... 188

TTS_DMT .. 188

TTS_RDY .. 188

V310 .. 188

[L]

link directive file ... 25

load module... 25

loading into a ROM.. 20

loc_cpu ..66, 95, 155, 158

location of .pool0 section.................................... 207

location of .sit section .. 207

[M]

mailbox.. 29, 39, 54

generation.. 54

mailbox information...................................... 57, 154

receiving a message.....................55, 151, 152, 153

sending a message...................................... 54, 150

mailbox management block..................................... 71

management object... 71

1-bit event flag management block 71

arrangement image.. 72

cyclic handler management block........................ 71

event flag management block.............................. 71

fixed-size memory pool management block......... 71

interrupt handler stack area 71

mailbox management block 71

memory pool .. 71

semaphore management block 71

task execution right group management block 71

task management block....................................... 71

task stack area... 71

variable-size memory pool management block.... 71

maskable interrupt..................................... 66, 95, 155

disabling acceptance66, 95, 155, 158

resuming acceptance......................66, 95, 155, 159

memory block wait state.. 33

APPENDIX B INDEX

User's Manual U13430EJ2V1UM212

memory pool management function 30, 71

memory pool management system call104, 164

get_blf ..74, 164, 165

get_blk ..77, 164, 170

pget_blf ..74, 164, 166

pget_blk ..77, 164, 172

ref_mpf ..75, 164, 169

ref_mpl ..78, 164, 176

rel_blf ..75, 164, 168

rel_blk ..78, 164, 175

tget_blf74, 82, 164, 167

tget_blk77, 82, 164, 173

memory system call

ref_mpf .. 75

message.. 56

allocating an area .. 56

composing of messages...................................... 56

message wait state ... 33

multiple interrupt.. 69

flow of processing.. 69

multitasking ... 19

multitasking OS... 19

[N]

nonmaskable interrupt... 68

normal termination ...36, 111

nucleus.. 21, 29

function.. 29

nucleus initialization section 101

[O]

operating system specification 20

µITRON 3.0 specification..................................... 20

OS... 24

Solaris 2.x.. 24

SunOS 4.1.x .. 24

Windows 95 ... 24

Windows 98 ... 24

Windows NT 4.0 .. 24

[P]

parameter.. 105

data type.. 105

PC interface board .. 23

IE-70000-98-IF-C... 23

IE-70000-CD-IF-A.. 23

IE-70000-PC-IF-C.. 23

IE-70000-PCI-IF .. 23

peripheral controller .. 22

pget_blf ..74, 164, 166

pget_blk ..77, 164, 172

pol_flg ..45, 129, 139

power save function .. 91

setting.. 91

prcv_msg ..55, 129, 152

preq_sem ..41, 129, 132

priority method .. 30, 90

processing program .. 25

cyclic handler..25, 187, 203

directly activated interrupt handler........25, 187, 193

indirectly activated interrupt handler25, 187, 199

task...25, 187, 189

programming ... 187

cyclic handler for CA850.................................... 203

cyclic handler for CCV850 205

directly activated interrupt handler for

CA850...193, 195

directly activated interrupt handler for

CCV850 ..194, 197

idle handler .. 91

indirectly activated interrupt handler for

CA850.. 199

indirectly activated interrupt handler for

CCV850 ... 201

initialization handler ... 102

reset routine... 100

task for CA850... 189

task for CCA850 .. 191

[R]

range in which system calls can be called 207

rcv_msg ..55, 129, 151

ready state... 32

real-time OS.. 19

real-time processing.. 20

ref_cyc ..87, 177, 181

ref_flg ..46, 129, 143

ref_icr ..68, 155, 163

ref_mbx ..57, 129, 154

ref_mpf ..75, 164, 169

ref_mpl ..78, 164, 176

ref_sem ..42, 129, 134

ref_sys ..182, 185

ref_tsk ..38, 109, 119

rel_blf ..75, 164, 168

rel_blk ..78, 164, 175

APPENDIX B INDEX

User's Manual U13430EJ2V1UM 213

rel_wai ... 109, 117

reserved word ... 188

_CYC*.. 188

_ID* .. 188

_txcb*... 188

inthdrH ... 188

inthdrL.. 188

Pool0* .. 188

Pool1* .. 188

RX850* .. 188

Sit* .. 188

SysIntEnt ... 188

Timer_Handler ... 188

reset routine .. 25, 100

resource wait state .. 32

ret_int ... 62, 155, 156

ret_wup ... 62, 155, 157

return... 86

return instruction65, 86, 156, 157

return value ... 106

E_CTX ... 106

E_OBJ ... 106

E_OK .. 106

E_QOVR.. 106

E_RLWAI... 106

E_TMOUT.. 106

rot_rdq ... 92, 109, 116

round-robin method ... 92

rsm_tsk ... 121, 123

run state ... 32

RX850 ... 19

application ... 22

configuration .. 21

development environment 23

execution environment... 22

features.. 20

[S]

sample source file ... 21, 22

idle handler .. 91

initialization handler 21, 102

reset routine... 21, 100

scheduler... 30, 89

drive method.. 89

lock function... 20, 95

scheduling method... 90

scheduling method .. 90

FCFS method .. 90

priority method... 90

round-robin method ... 92

semaphore .. 29, 40

acquiring resources41, 131, 132, 133

generation.. 40

returning resources...................................... 40, 130

semaphore information 42, 134

semaphore management block 71

set_flg ... 45, 129, 135

sig_sem ... 40, 129, 130

slp_tsk ... 121, 125

snd_msg ... 54, 129, 150

software environment .. 24

cross tool ... 24

debugger ... 24

OS ... 24

system performance analyzer.............................. 24

task debugger.. 24

sta_tsk ... 35, 109, 110

state transition... 32, 34

dormant state... 32

ready state ... 32

run state ... 32

suspend state... 33

wait state ... 32

wait_suspend state .. 33

STOP mode .. 91

sus_tsk ... 121, 122

suspend state .. 33

synchronization function

1-bit event flag ... 29, 39, 49

event flag ... 39

semaphore... 39

synchronization function.. 39

event flag ... 29, 44

semaphore... 29, 40

synchronous communication function 29, 39

synchronous communication system call 103, 129

clr_flg.. 45, 129, 136

pol_flg.. 45, 129, 139

prcv_msg ... 55, 129, 152

preq_sem ... 41, 129, 132

rcv_msg.. 55, 129, 151

ref_flg.. 46, 129, 143

ref_mbx.. 57, 129, 154

ref_sem.. 42, 129, 134

set_flg.. 45, 129, 135

sig_sem.. 40, 129, 130

APPENDIX B INDEX

User's Manual U13430EJ2V1UM214

snd_msg ..54, 129, 150

trcv_msg55, 82, 129, 153

twai_flg46, 81, 129, 141

twai_sem41, 81, 129, 133

vclr_flg1 ..50, 129, 145

vpol_flg1 ..50, 129, 147

vref_flg1 ..51, 129, 149

vset_flg1 ..50, 129, 144

vtwai_flg151, 82, 129, 148

vwai_flg1 ..50, 129, 146

wai_flg ..45, 129, 137

wai_sem ..41, 129, 131

system base table ... 71

system call .. 103

act_cyc ..83, 177, 179

calling .. 105

can_wup ...121, 128

chg_icr ..68, 155, 162

chg_pri..109, 115

clr_flg ..45, 129, 136

dis_dsp ..95, 109, 113

dis_int ..66, 155, 160

dly_tsk ..80, 177, 178

ena_dsp ..95, 109, 114

ena_int ..66, 155, 161

ext_tsk ..36, 109, 111

frsm_tsk ..121, 124

get_blf ..74, 164, 165

get_blk ..77, 164, 170

get_tid ..38, 118

get_ver..182, 183

loc_cpu ..66, 95, 155, 158

parameter .. 105

pget_blf ..74, 164, 166

pget_blk ..77, 164, 172

pol_flg ..45, 129, 139

prcv_msg ..55, 129, 152

preq_sem ..41, 129, 132

rcv_msg ..55, 129, 151

ref_cyc ..87, 177, 181

ref_flg ..46, 129, 143

ref_icr ..68, 155, 163

ref_mbx ..57, 129, 154

ref_mpf ...164, 169

ref_mpl ..78, 164, 176

ref_sem ..42, 129, 134

ref_sys..182, 185

ref_tsk ..38, 109, 119

rel_blf ..75, 164, 168

rel_blk ..78, 164, 175

rel_wai ..109, 117

ret_int ..62, 155, 156

ret_wup ..62, 155, 157

return value.. 106

rot_rdq ..92, 109, 116

rsm_tsk...121, 123

set_flg ..45, 135

sig_sem ..40, 129, 130

slp_tsk ..121, 125

snd_msg ..54, 129, 150

sta_tsk ..35, 109, 110

sus_tsk ...121, 122

ter_tsk ..36, 109, 112

tget_blf74, 82, 164, 167

tget_blk77, 82, 164, 173

trcv_msg55, 82, 129, 153

tslp_tsk ..81, 121, 126

twai_flg46, 81, 129, 141

twai_sem41, 81, 129, 133

unl_cpu ..66, 95, 155, 159

vclr_flg1 ..50, 129, 145

vpol_flg1 ..50, 129, 147

vref_flg1 ..51, 129, 149

vset_flg1 ..50, 129, 144

vtwai_flg151, 82, 129, 148

vwai_flg1 ..50, 129, 146

wai_flg ..45, 129, 137

wai_sem .. 41

wup_tsk ..121, 127

system construction procedure 25

CA850.. 26

CCV850... 27

system information header file 25

system information table ... 25

system initialization21, 25, 99

flow of processing.. 99

initialization handler21, 25, 102

nucleus initialization section 101

reset routine..21, 25, 100

sample source file.. 21, 22

system management system call104, 182

get_ver..182, 183

ref_sys..182, 185

system performance analyzer 24

AZ850.. 24

APPENDIX B INDEX

User's Manual U13430EJ2V1UM 215

[T]

task...19, 25, 187, 189

activating ... 35, 110

basic format for CA850 189, 190

basic format for CCV850 191, 192

delayed wake-up.. 80

generation.. 35

in-task processing.. 36

limitation imposed on system calls....................... 37

saving/restoring the registers............................... 36

state transition ... 32, 34

task context ... 31

task execution right.. 31

task execution right group.................................... 31

task information ... 119

ter_tsk.. 36

terminating... 36, 111, 112

timeout wait ... 178

task debugger ... 24

RD850 ... 24

task execution right group management block 71

task execution right wait state 32

task information... 38

task management block .. 71

task management function 29, 31

task management system call 103, 109

chg_pri... 109, 115

dis_dsp.. 95, 109, 113

ena_dsp.. 95, 109, 114

ext_tsk.. 36, 109, 111

get_tid.. 38, 109, 118

ref_tsk.. 38, 109, 119

rel_wai ... 109, 117

rot_rdq.. 92, 109, 116

sta_tsk.. 35, 109, 110

ter_tsk.. 36, 109, 112

task-associated synchronization system call

... 103, 121

can_wup .. 121, 128

frsm_tsk ... 121, 124

rsm_tsk .. 121, 123

slp_tsk ... 121, 125

sus_tsk .. 121, 122

tslp_tsk ... 81, 121, 126

wup_tsk ... 121, 127

ter_tsk ... 36, 109, 112

tget_blf ..74, 82, 164, 167

tget_blk ..77, 82, 164, 173

time management function 30, 79

time management interrupt handler......................... 79

time management system call 104, 177

act_cyc.. 83, 177, 179

dly_tsk.. 80, 177, 178

ref_cyc.. 87, 177, 181

timeout .. 81

tget_blf... 82

tget_blk .. 82

trcv_msg .. 82

tslp_tsk .. 81

twai_flg .. 81

twai_sem ... 81

vtwai_flg1... 82

timeout wait state .. 33

timer operation .. 80

trcv_msg ..55, 82, 129, 153

tslp_tsk ... 81, 121, 126

twai_flg ..46, 81, 129, 141

twai_sem ..41, 81, 129, 133

[U]

unl_cpu ..66, 95, 155, 159

utility tool ... 20

CF850.. 20, 21

[V]

variable-size memory block..................................... 76

acquiring77, 78, 170, 172, 173

returning .. 78, 175

variable-size memory pool 76

acquiring a variable-size memory block

..77, 170, 172, 173

generation.. 76

returning a variable-size memory block 78, 175

variable-size memory pool information 78, 176

variable-size memory pool management block 71

vclr_flg1 ... 50, 129, 145

vpol_flg1 ... 50, 129, 147

vref_flg1 ... 51, 129, 149

vset_flg1 ... 50, 129, 144

vtwai_flg1......................................51, 82, 129, 148

vwai_flg1 ... 50, 129, 146

[W]

wai_flg ... 45, 129, 137

wai_sem ... 41, 129, 131

APPENDIX B INDEX

User's Manual U13430EJ2V1UM216

wait function .. 29, 39

1-bit event flag ..29, 39, 49

event flag ..29, 39, 44

wait state... 32

1-bit event flag wait state 33

event flag wait state... 33

memory block wait state 33

message wait state.. 33

resource wait state .. 32

task execution right wait state.............................. 32

timeout wait state... 33

wake-up wait state... 32

wait_suspend state ... 33

wake-up wait state .. 32

wup_tsk ..121, 127

User's Manual U13430EJ2V1UM 217

APPENDIX C REVISION HISTORY

A history of revisions up to this edition is shown below. “Applied to:” indicates the chapters to which the revision

was applied.

Edition Contents Applied to:

Modification of description of target CPU of execution environment

Modification of description of hardware environment and software

environment of development environment

Deletion of configurater (GUI section) from the illustration of the system

construction procedure

Chapter 12nd edition

Addition of description of constraints and notes Appendix A

User's Manual U13430EJ2V1UM218

[MEMO]

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we’ve taken, you may
encounter problems in the documentation.
Please complete this form whenever
you’d like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: +82-2-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: +886-2-2719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: +1-800-729-9288

+1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6462-6829

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Semiconductor Technical Hotline
Fax: +81- 44-435-9608

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 01.2

Name

Company

From:

Tel. FAX

Facsimile Message

	COVER
	MAJOR REVISIONS IN THIS EDITION
	PREFACE
	CHAPTER 1 OVERVIEW
	1.1 OVERVIEW
	1.2 REAL-TIME OS
	1.3 MULTITASKING OS
	1.4 FEATURES
	1.5 CONFIGURATION
	1.6 APPLICATIONS
	1.7 EXECUTION ENVIRONMENT
	1.8 DEVELOPMENT ENVIRONMENT
	1.8.1 Hardware Environment
	1.8.2 Software Environment

	1.9 SYSTEM CONSTRUCTION PROCEDURE

	CHAPTER 2 NUCLEUS
	2.1 OVERVIEW
	2.2 FUNCTIONS

	CHAPTER 3 TASK MANAGEMENT FUNCTION
	3.1 OVERVIEW
	3.2 TASK EXECUTION RIGHT
	3.3 TASK STATES
	3.4 TASK GENERATION
	3.5 TASK ACTIVATION
	3.6 TASK TERMINATION
	3.7 IN-TASK PROCESSING
	3.8 ACQUIRING AN ID NUMBER
	3.9 ACQUIRING TASK INFORMATION

	CHAPTER 4 SYNCHRONOUS COMMUNICATION FUNCTIONS
	4.1 OVERVIEW
	4.2 SEMAPHORES
	4.2.1 Semaphore Generation
	4.2.2 Returning a Resource
	4.2.3 Acquiring Resources
	4.2.4 Acquiring Semaphore Information
	4.2.5 Exclusive Control Using Semaphores

	4.3 EVENT FLAGS
	4.3.1 Event Flag Generation
	4.3.2 Setting a Bit Pattern
	4.3.3 Clearing a Bit Pattern
	4.3.4 Checking Bit Patterns
	4.3.5 Acquiring Event Flag Information
	4.3.6 Wait Function Using Event Flags

	4.4 1-BIT EVENT FLAGS
	4.4.1 1-Bit Event Flag Generation
	4.4.2 Setting a Bit
	4.4.3 Clearing a Bit
	4.4.4 Checking a Bit
	4.4.5 Acquiring 1-Bit Event Flag Information
	4.4.6 Wait Function Using 1-Bit Event Flags

	4.5 MAILBOXES
	4.5.1 Mailbox Generation
	4.5.2 Sending a Message
	4.5.3 Receiving a Message
	4.5.4 Messages
	4.5.5 Acquiring Mailbox Information
	4.5.6 Inter-Task Communication Using Mailboxes

	CHAPTER 5 INTERRUPT MANAGEMENT FUNCTION
	5.1 OVERVIEW
	5.2 INTERRUPT HANDLER
	5.3 DIRECTLY ACTIVATED INTERRUPT HANDLER
	5.3.1 Registering a Directly Activated Interrupt Handler
	5.3.2 Internal Processing Performed by the Directly Activated Interrupt Handler

	5.4 INDIRECTLY ACTIVATED INTERRUPT HANDLER
	5.4.1 Registering an Indirectly Activated Interrupt Handler
	5.4.2 Internal Processing Performed by the Indirectly Activated Interrupt Handler

	5.5 DISABLING/RESUMING MASKABLE INTERRUPT ACCEPTANCE
	5.6 CHANGING/ACQUIRING THE CONTENTS OF AN INTERRUPT CONTROL REGISTER
	5.7 NONMASKABLE INTERRUPTS
	5.8 CLOCK INTERRUPTS
	5.9 MULTIPLE INTERRUPTS

	CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTION
	6.1 OVERVIEW
	6.2 MANAGEMENT OBJECTS
	6.3 FIXED-SIZE MEMORY POOL
	6.3.1 Fixed-Size Memory Pool Generation
	6.3.2 Acquiring a Fixed-Size Memory Block
	6.3.3 Returning a Fixed-Size Memory Block
	6.3.4 Acquiring Fixed-Size Memory Pool Information

	6.4 VARIABLE-SIZE MEMORY POOL
	6.4.1 Variable-Size Memory Pool Generation
	6.4.2 Acquiring a Variable-Size Memory Block
	6.4.3 Returning a Variable-Size Memory Block
	6.4.4 Acquiring Variable-Size Memory Pool Information

	CHAPTER 7 TIME MANAGEMENT FUNCTION
	7.1 OVERVIEW
	7.2 TIMER OPERATION
	7.3 DELAYED TASK WAKE-UP
	7.4 TIMEOUT
	7.5 CYCLIC HANDLER
	7.5.1 Registering a Cyclic Handler
	7.5.2 Activity State of the Cyclic Handler
	7.5.3 Internal Processing Performed by the Cyclic Handler
	7.5.4 Acquiring Cyclic Handler Information

	CHAPTER 8 SCHEDULER
	8.1 OVERVIEW
	8.2 DRIVE METHOD
	8.3 SCHEDULING METHOD
	8.3.1 Priority Method
	8.3.2 FCFS (First-Come, First-Served) Method

	8.4 IDLE HANDLER
	8.4.1 Internal Processing Performed by the Idle Handler

	8.5 IMPLEMENTING A ROUND-ROBIN METHOD
	8.6 SCHEDULING LOCK FUNCTION
	8.7 SCHEDULING WHILE THE HANDLER IS OPERATING

	CHAPTER 9 SYSTEM INITIALIZATION
	9.1 OVERVIEW
	9.2 RESET ROUTINE
	9.3 NUCLEUS INITIALIZATION SECTION
	9.4 INITIALIZATION HANDLER

	CHAPTER 10 SYSTEM CALLS
	10.1 OVERVIEW
	10.2 CALLING SYSTEM CALLS
	10.3 DATA TYPES OF PARAMETERS
	10.4 SYSTEM CALL RETURN VALUES
	10.5 EXPLANATION OF SYSTEM CALLS
	10.5.1 Task Management System Calls
	10.5.2 Task-Associated Synchronization System Calls
	10.5.3 Synchronous Communication System Calls
	10.5.4 Interrupt Management System Calls
	10.5.5 Memory Pool Management System Calls
	10.5.6 Time Management System Calls
	10.5.7 System Management System Calls

	APPENDIX A PROGRAMMING METHODS
	A.1 OVERVIEW
	A.2 KEYWORDS
	A.3 RESERVED WORDS
	A.4 DESCRIBING TASKS
	A.4.1 When CA850 Is Used
	A.4.2 When CCV850 Is Used

	A.5 DESCRIBING A DIRECTLY ACTIVATED INTERRUPT HANDLER
	A.5.1 When Using reti (for CA850)
	A.5.2 When Using reti (for CCV850)
	A.5.3 When Using ret_int or ret_wup (for CA850)
	A.5.4 When Using ret_int or ret_wup (for CCV850)

	A.6 DESCRIBING AN INDIRECTLY ACTIVATED INTERRUPT HANDLER
	A.6.1 When CA850 Is Used
	A.6.2 When CCV850 Is Used

	A.7 DESCRIBING CYCLIC HANDLER
	A.7.1 When CA850 Is Used
	A.7.2 When CCV850 Is Used

	A.8 CONSTRAINTS AND NOTES
	A.8.1 When Using V850E
	A.8.2 Location of .sit Section and .pool0 Section
	A.8.3 Range in Which System Calls Can Be Called

	APPENDIX B INDEX
	APPENDIX C REVISION HISTORY

