LENESANS

-
%
@
ﬁ\
7
<
)
-
-
o

RX Family Simulator/Debugger V.1.01

User’'s Manual

Renesas Microcomputer Development Environment System

Renesas Electronics

www.renesas.com ReV.l.OO 2010.04

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy;, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Trademarks

Microsoft, MS-DOS, Windows, Windows NT are registered trademarks of Microsoft Corporation. Visual SourceSafe is
a trademark of Microsoft Corporation.

IBM is a registered trademark of International Business Machines Corporation.

All brand or product names used in this manual are trademarks or registered trademarks of their respective companies
or organizations.

Rev. 1.00 Apr. 01, 2010 Page i of vii
RENESAS REJ10J2162-0100

About This Manual

This manual describes the HEW system. This manual is composed of two parts. HEW part describes information on
the basic “look and feel” of the HEW and customizing the HEW environment and detail the build. Figure in the HEW
part are those of the SH series. Simulator/Debugger part describes Debugger functions of the High-performance
Embedded Workshop.

This manual does not intend to explain how to write C/C++ or assembly language programs, how to use any particular
operating system or how best to tailor code for the individual devices. These issues are left to the respective manuals.

Document Conventions
This manual uses the following typographic conventions:

Table 1 Typographic Conventions

Convention Meaning
[Menu->Menu Option] Bold text with *->' is used to indicate menu options
(for example, [File->Save As...]).
FILENAME.C Uppercase names are used to indicate filenames.
“enter this string” Used to indicate text that must be entered (excluding the “” quotes).
Key + Key Used to indicate required key presses. For example, CTRL+N means press the CTRL key

and then, whilst holding the CTRL key down, press the N key.

) When this symbol is used, it is always located in the left hand margin. It indicates that the

(The “how to” symbol) text to its immediate right is describing “how to” do something.

For inquiries about the contents of this document or product, email to your local distributor.

Renesas Tools Homepage http://www.renesas.com/tools

Rev. 1.00 Apr. 01, 2010 Page ii of vii
REJ10J2162-0100 RENESAS

Contents

SECHION L OVEIVIBW ...ttt bbbttt se et b e b etk b st et e b et e st s benbenbenne e 1
Section 2 Simulator/Debugger FUNCLIONSccviiiiiieiiiie et 3
N - LT =T USRS 3
2.2 Target USEI PrOGIAIM .. .c.uiitiiiiitietieieit ettt e e b bbbt e et er e bt eh et e e e e e e e n e e nne s 4
20 T T - S 4
P AV =100 To T A AV, LA E=To =T =T o | O PP TU PSS UPPTR 5
2.5 INStruction-EXECUtiON RESEt PrOCESSING......ciieieiiiieiteitistesteeeeeetesaestestestestesteaseesaesesteseestestesaesresseeseeseessessessens 5
2.6 EXCEPLION PrOCESSING ...uvitiitiiteitieieeiete sttt sttt e ettt be bt s be e st e e e eb e ke sbeeb e e b e e bt e s e e b e besbeeb e beeheebeaneaneeneenbenbesbeas 6
2 R 1o T OSSP 6
p 0 R o [T g I 1 T 3 = OSSR 6
2.7.2 Endian of the EXternal MEMOIY ATCa........ccciviveierierieiesiesesiesteseeeeseesseseessessessessessesssssesseesseseessessessens 6
2.8 Simulation of Peripheral FUNCHIONS.c.coiiiiiiiiie ettt st et eenaete e e eneesnesbesresneas 7
P2 T R I 1 1= SO SOURTSOURPSPRT 7
2.8.2 Serial CommUNICALIONS INTEITACE.........c.iiiiiieii et st sb 8
2.8.3 INTEITUPL CONIIOIIET ...ttt bbbttt bbbt 12
A T S O [0 To] < S PSSSRRPRN 13
2.8.5 USING Peripheral FUNCHIONS.cvcieiiicesese sttt st re e sneene e e enaesaenrenrenneas 13
PN R I - 1o PP PR PRSPPI 13
2.10 Standard 1/O and File 1/O PrOCESSING......c.ciuiiieiiiiiieiteeteseeteiteste e stestestestesraesaeseesaestestestestesseesseseeseeseeseessessessens 14
B 1 =T 1 @] 3 To 11 o] T OSSOSO UPU PR 15
2.12 FIOAHING-POINE DALA......ccvieetiiteiieieite ettt b ettt b etk e et b b e bbb e bt bt s bt et e e b et et s bt et enrns 17
2.13 Display of FUNCLION CAll HISTOMYc.oiiiiiiiieiie bbbt sttt 17
2.14 Performance MEASUIEMENTciiiieiite ettt ettt sttt s b et s b etk b et et b e st et sb bt e s b et besbe st benbns 18
A R = (o)] T SOOI SPRPO 18
2.14.2 PerformanCe ANAIYSISc.ciiiiieiiee i eiet e s e ste e se et et e s besbesbeete e e e st et e st e tesbeareereenbenrenrenreaneas 18
N T SN o (o T [= g 1o OSSPSR 18
N R O 1Y =T 7 To TP TP P URPRURTPPRPRPN 18
S TTot £ [0 TG B =T oW o o 1o ST SSTSS 21
3.1 Creating the Workspace for Simulator/DeDUGQETcviviieiieiece ettt s ae b sne s 22
3.1.1 Selecting a Debugging PIatfOrmcoviiiiiiiieei ettt sre s 22
3.1.2 Setting up a Workspace for the SImulator/DebUQGQEN..........c.ooeiiririiiieee e 22
3.2 Starting up the SIMUIALOT/DEDUGGETc.ciueieieieeieie ettt bbbt b et r et ben e 24
3.3 Modifying the Simulator/Debugger SETHINGScoviiieiiereire e e 24
3.3.1 Setting the Endian and FrequenCy 0F CPUccooviiiiieiiice e 24
3.3.2 Modifying the SIMUIAtOr SYSIEMcvciiiiiie e b e re e sr b seesrenes 25
3.3.3 Madifying the Memory Map and Memory ReSOUICe SEtINGS......cccoveieveriieseseseeeeeeee e 26
3.3.4 Set Memory Map DiIalog BOX......coiiiriiieiiiiie et 28
3.3.5 Set Memory ReSOUICE DIalog BOXccciviuiiiiiniiieisieisie sttt bbb 30
3.4 Simulating Peripheral FUNCLIONSciiiiiiieiee ettt bbbt 30
3.4.1 Registering Peripheral Function Simulation MOAUIESccceveiiiieieiiic e 30
3.4.2 Changing the Addresses of Peripheral FUNCHIONSccccoiiiiiieiicie e e 32
3.4.3 Changing the Interrupt Source Information of Peripheral FUNCLIONS............ccccevievcii i 32
3.4.4 Memory Resources for CONtrol REGISIEIS.......coiiiiiiiiieieree e 34
3.4.5 Viewing the Names of Connected Peripheral FUNCLIONScoooiiiiiiiineceee e, 34
Renesas

3.4.6 Inputto and Output from ViIrtUal POIS........ccccoiiiiiiiecieec e 35

3.5 OPEratioNS FOr IMBIMOIYciiiiiiciieeete ettt sttt bttt b e b e bbbt b e e bt e e e e e besbeeb e e beebe et e e neanbeneenbenbeaneas 39
3.5.1 Regularly Updating Contents of the [Memory] WindoW...........ccccovireiiiinnininseee e 39
3.5.2 Viewing and Modifying the Settings for the 1/O Ar€a.........ccoeiiiiiiiniiieree e 39
3.6 Using the Simulator/Debugger BreakpOiNtscccciviiveiieiieriie e seseseseseeee e s esiesreste e sneeeesseaeseessessesnens 39
3.6.1 LiSting the BreaKPOINtS.......ccuiiuiiieiiiitieicieiie sttt e sttt te s be s te e esa et e st e sbesbesteabeetaesnebeseesnears 39
3.6.2 SEtting @ BreakPOiNt........ccvciiiiiii ettt et b r e tenae et et nrenrenrs 41
3.6.3 MOdifying BreaKPOINTSc.iiiiiie ittt bbbt e bbbttt b e e b e b e 48
3.6.4 ENabling @ BreakPOiNtccciiuiiiiiiieieiste sttt bbbt bbbt 48
3.6.5 Disabling @ BreakPOiNtcveiiieiiirieieiesiee ettt bbbttt 48
3.6.6 Deleting @ BreakpPOiNt........coivieeiiieie s et e et e e a et e st b e resne s e e et e ae e e tennennenren 48
3.6.7 Deleting All BreaKPOINtSccciiiiiiieieiieie it se et ese e se ettt esbe e s e esae e e bestesbestesaeesaeseeteseesnenrs 49
3.6.8 Viewing the Source Line for a BreakpOiNtccccoeiiiiiiiiie st se e sre e sne s 49
3.6.9 ClosiNg INPUL OF OUEPUL FIIEcveiiieie et bbbt n e e b s 49
3.6.10 Closing All INput and OUEPUL FIIESc.oiuiiiiieieieseee e e 49
3.7 Viewing Trace INFOMMALION.ooiiiiiie ettt bttt ettt 49
3.7.1 0pening the TraCe WINUOWviveieiiie e sie et ee et a e e et et st stesneesa e s enseeesaenaeseennenrs 49
3.7.2 Specifying Trace Acquisition CONAItIONScccviiiiiiiieiiie e sre e 49
3.7.3 Setting EVENTS TOF TTACINGveiviviiieiticesi ettt e b et se s e et e besbesteeneene e e e teseesnears 51
3.7.4 Acquiring Trace INFOrMALIONcc.oiiiiiiee et see e 52
3.7.5 Searching for Trace INFOrMatioN...........coociiiiiiiii e 55
3.7.6 Filtering Trace INFOrMALION.ccci ittt 56
3.7.7 Clearing the Trace INfOrMatioN.........cciiiiiiiiiiese e snenrs 56
3.7.8 Saving the Trace INformation iN @ Flec.coveiiiiiiiie e e 56
3.7.9 Viewing the SOUICE Fil......coiiiiiie et b et ne e se et seesrears 57
3.7.10 Switching TimeStAMP DISPIAYoviiiriiriiititiiee e bbb et e b s 57
3.7.11 Showing the History of FUNCEION EXECULIONcccciiiiiirieicieriee e 58
3.8 Viewing the Profile INTOrMAtioNc..ciiiiiiiee e et 58
3.8.1 Stack INFOrMAtioN FIlES......cciiiiieicire bttt bt 58
3.8.2 Loading Stack INfOrmation FilES..........ccciviiiiiieeicieicce ettt sre e 60
3.8.3 ENADIING the PrOfile .ccuvoeeice e ettt r et e nre e 60
3.8.4 Specifying MeasuremMeNt IMOUEouiiiiiiiie ettt b et se b e b e 61
3.8.5 Executing the Program and Checking the RESUILS ... 61
IR G 1)] 1 PSSR 61
3BT TTEE SNBBL .t bbb bbbt b et b 62
3.8.8 Profile-Chart WINUOW.coiiiiiiie ittt st sttt sttt bbbt nnens 64
3.8.9 Types and Purposes of DiSplayed Data..........c.ccccvveiverieieiiniie e eee et s e st sre e e sn e seesresnas 65
3.8.10 Creating Profile INfOrmation FIlES ..o e 66
R I A A\ [(- PP UTRPRRTR 66
3.9 ANAIYZING PEITOIMANCE ...ttt bt b e et b e et b bbbt s bbbt et b et et n e 67
3.9.1 Opening the Performance Analysis WINUOWcccoveieiereieiisiie et 67
3.9.2 Specifying @ Target FUNCION........ccviiiiiie ettt sttt et e e e sr e b e seesnears 67
3.9.3 Starting Performance Data ACQUISITIONccciviiiiieiiiic ettt sre e 68
3.9.4 RESELLING DIALA. ... cveiteieieieeieie ettt ettt b et e b bt bt b e bt e st et e b et bt b e Rt e Rt et et neeenenes 68
3.9.5 Deleting @ Target FUNCLIONcoiiiiiieieie ettt ettt bbbt 68
3.9.6 Deleting All Target FUNCLIONSciiiiieiieee ettt 68
3.9.7 Saving the Currently Displayed CONENES.........cvcveiieriererere e sr e srenes 68
3.10 MeaSUING COUE COVEIAGE......uiiueireieeieiteitestestesteateeeestestestestesteessesse st e besbesteaseeseeseetestestesteaseeneatesssenseseeseestenrens 69
3.10.1 Opening the CoVErage WINUOW..........couiiieiiiiiiieieeeeieeite ettt e e et s restestesbe e e e e e e sresteseesrenrs 69
3.10.2 Acquiring All Coverage INFOrMALtIONcoiiiiiiiieiee e e 71
Ez\slléfzolép(r)l%% 2010 Page iv of vii RENESAS

3.10.3 Clearing All Coverage INFOrmMAationcccociviiiiieiiic et sre s 71

3.10.4 Viewing the SOUICE WINGOWcciiiriiieieieeie ettt sttt se bbbt b e e e ee e b neas 71
3.10.5 Specifying the NeW COVErage RANGEcccoiiiiiiiieiieiee ettt bbb 71
3.10.6 Changing the COVErage RANQE.........c.ci it bbbt 71
3.10.7 Deleting the Selected COVErage RANQEcccviviieeeieiereses e e e ae et re e e saesaesresrenrs 72
3.10.8 Acquiring Coverage INfOrMAtiONccccviieiiii et sr b resreees 72
3.10.9 Clearing Coverage INfOrMAtioNcooiiiiiiiiie e et re e e et sresaenes 72
3.10.10 Saving Coverage INformation in @ File ... s 72
3.10.11 Loading Coverage Information from a File ..o 73
3.10.12 Updating the INFOrMALION........cciiiiiiiieeee ettt ettt 73
3.10.13 Confirmation Request DIalog BOX.......c.ccvieriiiiesieieeiesesiese st se e ee e sae st e e enaesnesseseesnenns 73
3.10.14 Save Coverage Data DIialog BOXc.coeiiiiiiiieiicieeieeie sttt sttt s e e na et seesre e 74
3.10.15 Displaying the Coverage Information in the EAitor Windowc.ccccoceviviiiiieiiecie e 75
3.10.16 Displaying the Coverage Information in the [Disassembly] Windowcccoovieiiiinniiinicncnnne, 76
3.11 Generating a Pseudo-Interrupt ManUAITYc.coviiiiiiiiee e 77
3111 [THQGEIT WINTOW ..ottt ettt b e bbbtk b et b ettt et bt nn e 77
T8 7 €1 U I 7@] AT o [0 S 79
3.12 Standard 1/O and File 1/O PrOCESSING......c.ciuiiieiiertiie st eteeeeeeite st e estestestestesraeaeseesaestestestestesseenseseeseeseeseeseessessens 80
3.12.1 Opening the Simulated /O WINGOW..........cceciiiiiiiieicic ettt sn e sne e 81
3122 1O FUNCHIONS ...ttt bbbttt bt bbbt e Rt e e et ek e b e e bt e bt e b e e st ebe e s e e e e benbeebenras 81
3.13 Creating @ VIrtUal /O PaNBL.......cociiiieiieee et bbbttt 83
3.13.1 Opening the [GUI I/O] WINGOWc.coeieiiiiieienieisie sttt sttt 83
T 7 O (7= L T = T =01 (o OSSR 84
3.13.3 Creating @ LADEL........ocieiece ettt bt e e r e r et nrenrenrs 85
3.13.4 Creating @n LEDcooiiiie ettt ettt r et st b et e e n e e nr et nre e e nres 87
3.13.5 Creating FIXEO TEXLeeeeieieieeite sttt sttt e b e bbb et ese e e et e b sb e e b e ebe et e e e e beneeebeneas 89
3.13.6 Changing the Size and POSItIoN OF aN TTEM ..o 90
3137 COPYING AN TEBIM....iiiiiteiee ettt bbbttt b et b bbbt bbbt e bt b et et b et et nn e 90
TN T T 1= T =T N - S 91
TN e T 3 1o VL oo R L= 1 T S 91
3.13.10 Saving 1/0 Panel INFOrMALtiONc.coeiiiiiieiiie ettt s te e et sresrenrs 91
3.13.11 Loading 1/O Panel INFOrMALtIONcoiiiiieiiie et et sae s 91
SECHION 4 WINTOWS ...ttt bbbttt bbbkt b et e b e bbb bbb e 93
SECtion 5 COMMANG LINES ...ccuviiiiiiieite ittt bbbttt nee bt beene e 95
5.1 Commands (FUNCLIONAL OFAEI)c.vicieiiiiiie ittt st e et et e e e e s aesbesbesaeeteeneeseeseestesrenneas 95
L0 0 R T o o OO RU RO UR PR 95
LTR[0T Vo OSSR 95
TN T o (=T 11 (=T OO SO OO SO PP R VSO UR PR TOPR PO 95
LTt S |V 1= o 1 2SR 96
5.1.5 ASSEMDIE/DISASSEMBIEoiviiiiiiiieicie ettt b et bbbt 96
LT T =T £ | OSSOSO PSP 97
LT A I - Uo! T U TPV U O P PR PR 97
LT I B G101V o T TP U PRSPPI PP 97
TR e =T 0] 14 g ot OSSR 98
BULLD WAL ...ttt bbb bbb E R R bR et b et be bbbt bne 98
L0 ot o 7 oo o 13T SRS 98
5.1.12 IMIBIMOIY RESOUITE ... eiitiieiiiteiie sttt estee e te e e sttt e be e e sba et eesbe e et b e e sbae et e e be e e bb e e be e e bb e e be e e sbeeenbeeanbeesbeeanbenans 98
5.1.13 SimUlator/DebUGQEr SEIINGSooviiverteitirieii ettt bbb b et se et bbb e b e 99
Renesas

5.1.14 Standard 1/O and FilE 1Ouuiiieiiceee ettt sttt e e s b s s ba e s sbe e s sbe e s sbe s s baesabesans 99

L0 0 S T U1 1 OSSOSO 99
B5.1.16 PrOJECHWVOIKSPACEcviiiiteieeiiete sttt b bbb et b bbb b et b bbbt b et et ne e 99
B.LAT TESETOOI FACHILY ...ttt bbbttt b ettt et 100
5.1.18 Debugging Functions for the Realtime OScccioiiiiiiri e ens 100
5.1.19 File Input and Output through Virtual POtScccciviiieiiiiii et 100
5.2 Commands (AIPhAbEtiCAl OTAEI)ciiiieeeieieitese ettt e e et e besbesteeseeneeseeseeneeseesbenresrens 101
SECTION B IMIESSAGES ...ttt b bbbttt bbbt bt bt et e et e bbbt bt be e 105
6.1 INTOIMALION IMESSAGES ... e.veeieteiteiiete ettt ettt sttt b e bbb bbbt b e bt b e bt b e e bt bbbtk b et bbbt b n e 105
O T g o] |V [TStSF: T T3S 106
S TTot £ o] A V1 (o] -1 RO RTR TR 109
8 R o 1o 1= U o] ST URUSTRPURPRN 109
701 SAMPIE PrOGIaM . .cieieiiiitiieiiet etttk bbb bbb bbb etk b et bbbt bbbt 109
7.1.2 Creating the SAMPIE PrOgIam ..ottt bbbt 109
A 1= 1] o i (o g I T=T oW oo [T USSR 109
7.2.1 Allocating the IMEMOIY RESOUICEcc.ciuiiiiiieiieieeeeteite e e ste s e ste e eesaesae e esbestesbestesaestaeseesseseenseseestens 109
7.2.2 Downloading the SamPpIe PrOgramccoiiiiiiiiiiicicse ettt st sresrestesne 110
7.2.3 Displaying the SOUICE PrOGIAMcciiiiiiiie ettt st st b et se e e e b seesbesbe b 112
7.24 Setting @ PC BreaKPOiNt........cciuiiiiiiiiitiieiiitriest sttt bbbttt 113
7.25 SEttiNg the PrOFIIEr ..ottt 113
7.2.6 Setting the SIMUIALEA /Ooce i et re e e e seesrenrenne s 114
7.2.7 Setting the Trace Information Acquisition CONAItIONSc.ccivveieiiieie e 115
7.2.8 Setting the Stack Pointer and Program COUNTET..........c.cccvieiieieiicie ettt st re e eneas 116
O T =1 D o 10 Fo o 1 To [OOSR URUUUPUPRN 116
7.3 1 EXECULING @ PrOGIAM .. .ciiiiitiitiniitiiteeetist ettt bbb bbb bt bbb bbbt 116
7.3.2 USING the Trace BUTTE.......ciiiiie e 120
7.3.3 Performing Trace SEAICHcccvii ettt re e s e e enaesaenrenrenne s 121
7.3.4 ChecKing SIMUIALEA 1/O.......uiiiiicieiie et sttt e teene e e et e besrenbestenrea 122
7.3.5 Checking the BreaKpPOINTScccvcieiiiieiiiitiiesieste e e et te et e steste e e e esae e e sbestesbestesaeesaeseeseeseestestenrens 123
7.3.6 WaALChING VarIADIES.... ..ot ettt b et b et b et et e st e snesbe st st 123
7.3.7 Executing the Program in SINGIE STEPS......coiiiiiiiriiesee e 124
7.3.8 Checking Profile INfOrmMationooiiiiiiiii e 128
Ez\slléfzolép(r)l%% 2010 Page vi of vii RENESAS

Rev. 1.00 Apr. 01, 2010 Page vii of vii
RENESAS REJ10J2162-0100

Section 1 Overview

Section 1 Overview

The simulator/debugger is a powerful development environment tool for embedded applications to run on Renesas
Electronics microcomputers.

The simulator/debugger is used with the High-performance Embedded Workshop (HEW). The HEW provides a
graphical user interface that eases the development and debugging of applications written in the C/C++ programming
languages or assembly language for Renesas Electronics microcomputers. Its aim is to provide a powerful yet intuitive
way of accessing, observing and modifying the debugging platform on which the application is running.

READ the simulator/debugger and HEW help information before using the simulator/debugger.

Rev. 1.00 Apr. 01, 2010 Page 1 of 130
RENESAS REJ10J2162-0100

Section 1 Overview

Rev. 1.00 Apr. 01, 2010 Page 2 of 130
REJ10J2162-0100 :{ENESAS

Section 2 Simulator/Debugger Functions

Section 2 Simulator/Debugger Functions

This section describes the functions of the RX600 series simulator/debugger.

2.1

Features

e Since the simulator/debugger runs on a host computer, software debugging can start without using an actual user
system, thus reducing overall system development time.

o The simulator/debugger performs a simulation to calculate the number of instruction execution cycles for a program
and time taken by instruction execution, thus enabling performance evaluation without using an actual user system.

o The simulator/debugger provides pseudo-interrupt and I/O-simulation functions for simple system-level simulation.
o The simulator/debugger offers the following functions that enable efficient program testing and debugging.

The ability to handle all of the RX600 series CPUs

Functions to stop or continue execution when an error occurs during user program execution
Profile data acquisition and function-unit performance measurement

A comprehensive set of break functions

Functions to set or edit memory maps

Functions to display function call history

Coverage information is displayed in the C/C++ or assembly-source level

Visual debugging functions provided through the display of images or waveforms

¢ The breakpoints, memory map, performance, and trace can be set through the dialog boxes under Windows®.
Environments corresponding to each memory map of the RX600 series microcomputers can be set through the
dialog box.

Intuitive user interface
Online help
Common display and operability

Rev. 1.00 Apr. 01, 2010 Page 3 of 130
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

2.2 Target User Program

Load modules in the Elf/Dwarf2 format can be symbolically debugged with the simulator/debugger. Load modules in
other formats can be downloaded, and their instructions can be executed; however, they cannot be symbolically
debugged. For details, refer to the High-performance Embedded Workshop User’s Manual.

2.3 Range

The simulator/debugger provides simulation functions for the RX600 series microcomputers.

The simulator/debugger supports the following RX600 series microcomputer functions:

All CPU instructions
Exception processing
Registers

All address space

The simulator/debugger does not support the following RX600 series MCU functions. Programs that use these functions
must be debugged with the RX600 series emulator.

Item Remarks

Low power state Simulation is stopped on the execution of a WAIT instruction.

Non-maskable interrupt (NMI)

Reception of an interrupt during execution of any of The interrupt is accepted when execution of the instruction is
the following instructions: (RMPA, SCMPU, SMOVF, completed.
SMOVB, SMOVU, SSTR, SUNTIL, SWHILE)

Values in memory and registers that become
undefined after the execution of instructions

Lower-order 16 bits of the accumulator (ACC)

Rev. 1.00 Apr. 01, 2010 Page 4 of 130
REJ10J2162-0100 :(ENESAS

Section 2 Simulator/Debugger Functions

2.4 Memory Management

Memory Map Specification: A memory map is used to calculate the number of memory access cycles during
simulation. The following items can be specified:

o Memory type

o Start and end addresses of the memory area
e Number of memory access cycles

e Memory data bus width

e Endian

On the memory map, the endian is only specifiable for the external area.
For the internal ROM area and internal RAM area, the [Endian] specified on the [CPU Configuration] tabbed page of
the [Set Simulator] dialog box (displayed when the simulator debugger is started up) applies.

For details, refer to section 3.3.3, Modifying the Memory Map and Memory Resource Settings.

Memory Resource Specification: A memory resource must be specified to load and execute a user program. The
following items can be specified:

e Start address
e End address
e Access type

The access type is readable/writable, read-only, or write-only.

Since an error occurs if the user program attempts an illegal access (for example, trying to write to read-only memory),
such an illegal access in the user program can be easily detected.

For details on memory resource setting, refer to section 3.3.3, Modifying the Memory Map and Memory Resource
Settings.

2.5 Instruction-Execution Reset Processing

Counting by the simulator/debugger of executed instructions, cycles for instruction execution, and time taken by
instruction execution is reset in the following cases.

e The program counter (PC) is modified after the instruction simulation stops and before it restarts.
e The Run command to which the execution start address has been specified is executed.
o Initialization is performed or the program is loaded.

Rev. 1.00 Apr. 01, 2010 Page 5 of 130
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

2.6 Exception Processing

The simulator/debugger detects the generation of exceptions in the RX600 series and simulates exception processing.
Accordingly, simulation can be performed even when an exception occurs.

The simulator/debugger simulates exception processing with the following procedures.

1. Detects an exception during instruction execution.

2. The PC and PSW are saved in the dedicated registers (for the fast interrupt) or the stack area (for a normal
interrupt). If an error occurs when saving, the simulator/debugger stops exception processing, shows that the
exception processing error has occurred, and returns to the command input wait state.

3. Bits of the PSW are set as follows.
uUu=0,1=0,PM=0

4. Reads the start address from the vector address corresponding to the vector number. If an error occurs when
reading, the simulator/debugger stops exception processing, shows that the exception processing error has
occurred, and returns to the command input wait state.

5. Starts instruction execution from the start address.
2.7 Endian

2.7.1 Endian of the CPU

The endian of the CPU can be specified in the [CPU Configuration] tabbed page in the [Set Simulator] dialog box,
which is displayed at initiation of the simulator debugger. The endian of the CPU are applied to the internal ROM and
the internal RAM. For details, refer to section 3.3.1, Setting the Endian and Frequency of CPU.

2.7.2 Endian of the External Memory Area

The endian of the external memory area can be set in the [Set Memory Map] dialog box. For details, refer to section
3.3.4, Set Memory Map Dialog Box.

Rev. 1.00 Apr. 01, 2010 Page 6 of 130
REJ10J2162-0100 :(ENESAS

Section 2 Simulator/Debugger Functions

2.8 Simulation of Peripheral Functions

28.1 Timer
(1) Supported Range

The RX600 series simulator/debugger supports a total of four compare match timer (CMT) channels, i.e. two CMT
units (unit 0 and unit 1), each with two 16-bit timers.

(2) Control Registers
Table 2.1 lists the control registers of the CMT that are supported by the simulator/debugger.
In access to control registers, ensure that the unit of access is the same as the size of the register.

Table 2.1 Control Registers of the CMT Supported by the Simulator/Debugger

Peripheral Unit Supported Control Register Support
Module

CMT Unit 0 CMSTRO
CMCRO

CMCNTO

CMCORO

CMCR1

CMCNT1

CMCOR1

Unit 1 CMSTR1
CMCR2

CMCNT2

CMCOR2

CMCRS3

CMCNT3

CMCORS3

0| 0|0|0|O0|0O|0O|0O|0O|0|0O|0O|0O|O

Note: O: Supported

The addresses of the control registers can be referred to or modified in the [Peripheral Module Configuration] dialog
box. Refer to section 3.4, Simulating Peripheral Functions, for details on this dialog box.

Rev. 1.00 Apr. 01, 2010 Page 7 of 130
REN ESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

2.8.2 Serial Communications Interface
(1) Supported Range

The RX600 series simulator/debugger supports a total of seven serial communications interface (SCI) channels. Table
2.2 lists the supported SCI functions.

Table 2.2 SCI Functions Supported by the Simulator/Debugger

Iltem Support
Serial communications Asynchronous or clock synchronous O
mode

Smart card interface —

Clock sources for the on- PCLK clock O

chip baud rate generator "5y w4 PCLK/16, and PCLK/64 —

Full-duplex communications O
Interrupt sources Transmit-end, transmit-data-empty, receive-data-full, and receive error O
Asynchronous mode Data length 7 or 8 bits O
Transmission stop bit 1 or 2 bits O
Parity Even, odd, or none O
Receive error detection Parity, overrun, and framing errors (@)
Break detection —
Clock source Internal clock O
External clock or transfer rate clock input —
from TMR
Clock synchronous mode Data length 8 bits O
Receive error detection Overrun errors O
Note: O: Supported
—: Not supported

(2) Control Registers
Table 2.3 shows control registers of the SCI supported by the simulator/debugger.

In access to control registers, ensure that the unit of access is the same as the size of the register.

Rev. 1.00 Apr. 01, 2010 Page 8 of 130
REJ10J2162-0100 :{ENESAS

Section 2 Simulator/Debugger Functions

Table 2.3 Control Registers of the SCI Supported by the Simulator/Debugger

Peripheral Channel Supported Control Register Support
Module

SCI Oto6 SMR
BRR
SCR
TDR
SSR
RDR
SCMR
SEMR

>|>|ol>|ol>| o>

Note: O: Supported
A: Partly supported (bits for the function described in section 2.8.2 (1), Supported Range)

The addresses of the control registers can be referred to or modified in the [Peripheral Module Configuration] dialog
box. Refer to section 3.4, Simulating Peripheral Functions, for details on this dialog box.

(3) Input and Output of Data

For the simulator/debugger, some pins are allocated to memory as virtual ports. Programs being debugged and
debuggers are only able to access those pins through the virtual ports. Table 2.4 lists the addresses of virtual ports for
the SCI.

Table 2.4 Addresses of Virtual Ports for the SCI

Channel Virtual Port Name Address Access Unit Description
0 RxDO H'00088224 16 Channel 0 receive data
TxDO H'00088226 16 Channel 0 transmit data
1 RxD1 H'00088228 16 Channel 1 receive data
TxD1 H'0008822A 16 Channel 1 transmit data
2 RxD2 H’0008822C 16 Channel 2 receive data
TxD2 H'0008822E 16 Channel 2 transmit data
3 RxD3 H’00088230 16 Channel 3 receive data
TXD3 H'00088232 16 Channel 3 transmit data
4 RxD4 H'00088234 16 Channel 4 receive data
TxD4 H'00088236 16 Channel 4 transmit data
5 RxD5 H'00088238 16 Channel 5 receive data
TxD5 H’0008823A 16 Channel 5 transmit data
6 RxD6 H’0008823C 16 Channel 6 receive data
TxD6 H'0008823E 16 Channel 6 transmit data

Tables 2.5 and 2.6 show the configurations of virtual ports RxD and TxD, respectively. Table 2.7 lists the functions of
the bits in RxD and TxD.

Rev. 1.00 Apr. 01, 2010 Page 9 of 130
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

Table 2.5 Configuration of RxD

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|se|pPE|[FE| -] -] -]-]-|p7|D6|D5|Da|D3|D2]D1]D0]|
Table 2.6 Configuration of TxD
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
!se| - | - | -] -]-]-]-]p7|pe|p5|Da|D3|D2]D1]DO |
Table 2.7 Bitsin RxD and TxD
Bit Bit Name Initial R/W Description
Value
0 DO 0 R/W Data Bits
1 D1 0 R/W D7 to DO are used for reception or transmission of 8-bit data.
2 D2 0 R/W D6 to DO are used for reception or transmission of 7-bit data.
3 D3 0 RIW
4 D4 0 R/W
5 D5 0 R/W
6 D6 0 R/W
7 D7 0 R/W
12t0 8 - AllO - Reserved
This bit is always read as 0. The write value should always be 0.
13 FE 0 R/W Framing Error Bit
The SCI detects a framing error if this bit included in a frame is 1.
14 PE 0 R/W Parity Error Bit
The SCI detects a parity error if this bit included in a frame is 1.
15 SB 1 R/W Start Bit

The value of this bit changes from 1 to 0 when transmission starts and
from O to 1 when transmission ends.

Reception and transmission of data that are visible in the simulator/debugger are abstract: all data are transmitted and
received at the same time. Figures 2.1 and 2.2 respectively show the reception and transmission of data in the

simulator/debugger.

Rev. 1.00 Apr. 01, 2010 Page 10 of 130
REJ10J2162-0100

RENESAS

Section 2 Simulator/Debugger Functions

RxD.SB (virtual port)

|
|
RxD.Dn (virtual pOFt) Received data |
f
|
|
RSR register Received data !
|
!
RDR register I Received data
' |
' |
When RxD.SBis setto O, When RxD.SBis setto 1,
the SCI transfers received the SCI transfers data in
datato RSR. RSR to RDR.

Note: RxD.SB is not used in clock synchronous mode.

Figure 2.1 Reception of Data in the Simulator/Debugger

TDR register Transmit data

TSR register Transmit data

|
Time taken for transmission of one frame

g !
| |
] I
TxD.Dn (virtual port) Transmit data |
|
T
| |
TxD.SB (virtual port)
| |
I |
Witing to TDR causes the SCI When the data transfer is
to transfer the data to TxD.Dn completed, the SCI sets
and set TxD.SB to 0. TxD.SBto 1.

Note: The time taken for transmission of one frame differs with the selected mode.
Asynchronous mode: (Time taken for transmission of one bit) x (start bit + data size [7,8] + parity bit [0,1] +
stop bit [1,2])
Clock synchronous mode: (Time taken for transmission of one bit) x (data size [8])

Figure 2.2 Transmission of Data in the Simulator/Debugger

The simulator/debugger allows input to and output from files through virtual ports. For details, refer to section 3.4.6,
Input to and Output from Files through Virtual Ports.

Rev. 1.00 Apr. 01, 2010 Page 11 of 130
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

2.8.3 Interrupt Controller
(1) Supported Range

The RX600 series simulator/debugger supports the interrupt controller unit (ICU) that is related to the CMT and SCI.
The ICU can convey interrupts to the CPU but cannot activate the DTC or DMAC.

(2) Control Registers
Table 2.8 shows control registers of the ICU that are supported by the simulator/debugger.
In access to control registers, ensure that the unit of access is the same as the size of the register.

Table 2.8 Control Registers of the ICU Supported by the Simulator/Debugger

Peripheral Supported Control Register Support
Module

ICU IRn (n =028 and 029, 214 to 241)
ISELR028
ISELRO29
ISELR0O30
ISELRO31
ISELR215
ISELR216
ISELR219
ISELR220
ISELR223
ISELR224
ISELR227
ISELR228
ISELR231
ISELR232
ISELR235
ISELR236
ISELR239
ISELR240
IERO3
IER1A
IER1B
IER1C
IER1D
IER1E
IPRm (m = 04 to 07, 80 to 86)
FIR

olole|lololole|>|e|be|lbp|b|e|>|e|>e|>s|>|e|>e|>]0

Note: O: Supported
A: Partly supported (bits for the function described in section 2.8.3 (1), Supported Range)

Rev. 1.00 Apr. 01, 2010 Page 12 of 130
REJ10J2162-0100 :{ENESAS

Section 2 Simulator/Debugger Functions

The addresses of the control registers, the interrupt vector numbers, and the position of the priority register can be
referred to or modified in the [Peripheral Module Configuration] dialog box. Refer to section 3.4, Simulating Peripheral
Functions, for details on this dialog box.

(3) Note on Using the ICU

To select whether an interrupt should cause a break in execution, use the [Simulator System] dialog box or
EXEC_STOP_SET command.

2.84 Clocks

The simulator/debugger supports a system clock that provides timing in access to memory, a peripheral function clock,
and clocks for operating the timers.

The numbers of cycles of the internal clock required for access to memory correspond to the specifications for the
memory map. Set the frequency ratio of the system clock to the peripheral function clock in the [Set Peripheral
Function Simulation] dialog box.

Use the timer control register to specify the division ratio to create the clock for operating the timers.

2.8.5 Using Peripheral Functions

To use a peripheral function, the corresponding module must be registered in the [Set Peripheral Function Simulation]
dialog box, which is opened on initiation of the simulator/debugger.

For details on the module registration, refer to section 3.4, Simulating Peripheral Functions.

2.9 Trace

The simulator/debugger writes the execution results of each instruction into the trace buffer. The conditions for trace
information acquisition can be specified in the [Trace Acquisition] dialog box. Right-clicking on the [Trace] window
displays the pop-up menu. Choose [Acquisition...] from the pop-up menu to display the [Trace Acquisition] dialog box.
The acquired trace information is displayed in the [Trace] window.

The trace information can be searched. The search conditions can be specified in the [Find] dialog box. Right-clicking
on the [Trace] window displays the pop-up menu. Choose [Find -> Find...] from the pop-up menu to display the [Find]
dialog box.

For details, refer to section 3.7, Viewing Trace Information.

Rev. 1.00 Apr. 01, 2010 Page 13 of 130
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

2.10 Standard I/O and File 1/0O Processing

The simulator/debugger enables the standard 1/0 and file 1/0 processing to be executed by the user program. When the
1/0O processing is executed, the [Simulated 1/O] window must be open.

Table 2.10 shows the supported I/O functions.

Table 2.10 1/0 Functions

No. Function Code Function Name Description

1 H'21 GETC Inputs one byte from the standard input
2 H'22 PUTC Outputs one byte to the standard output
3 H'23 GETS Inputs one line from the standard input
4 H'24 PUTS Outputs one line to the standard output
5 H'25 FOPEN Opens a file

6 H'06 FCLOSE Closes a file

7 H'27 FGETC Inputs one byte from a file

8 H'28 FPUTC Outputs one byte to a file

9 H'29 FGETS Inputs one line from a file

10 H'2A FPUTS Outputs one line to a file

11 H'0B FEOF Checks for end of the file

12 H'0C FSEEK Moves the file pointer

13 H'0D FTELL Returns the current position of the file pointer

For details on I/O functions, refer to section 3.12, Standard 1/0 and File 1/0 Processing.

Rev. 1.00 Apr. 01, 2010 Page 14 of 130
REJ10J2162-0100 :{ENESAS

Section 2 Simulator/Debugger Functions

2.11 Break Conditions

The simulator/debugger provides the following conditions for interrupting the simulation of a user program during
execution.

e Break due to the satisfaction of a break command condition

e Break due to the detection of an error during execution of the user program
e Break due to a trace buffer overflow

e Break due to execution of the WAIT instruction

e Break due to the [STOP] button

Break Due to Satisfaction of a Break Command Condition: There are nine break commands as follows:

o BREAKPOINT: Break based on the address of the instruction executed

e BREAK_ACCESS: Break based on access to a memory range

e BREAK_CYCLE: Break based on the instruction execution cycles

e BREAK _DATA: Break based on the value of data written to memory

e BREAK _DATA DIFFERENCE: Break based on a difference between values in
memory

e BREAK_DATA_INVERSE: Break based on sign inversion of a value in memory

o BREAK_DATA_ RANGE: Break based on the range of values in memory

e BREAK REGISTER: Break based on the value of data written to a register

e BREAK_SEQUENCE: Break based on a specified execution sequence

If [Stop] is specified as the action to take when a break condition is satisfied, user program execution stops when the
break condition is satisfied. For details, refer to section 3.6, Using the Simulator/Debugger Breakpoints.

When a break condition is satisfied and user program execution stops, the instruction at the breakpoint may or may not
be executed before a break depending on the type of break, as listed in table 2.11.

Table 2.11 Processing When a Break Condition is Satisfied

Command Instruction When a Break Condition is Satisfied
BREAKPOINT Not executed

BREAK_ACCESS Executed

BREAK_CYCLE Executed

BREAK_DATA Executed

BREAK_DATA_DIFFERENCE Executed

BREAK_DATA_INVERSE Executed

BREAK_DATA_RANGE Executed

BREAK_REGISTER Executed

BREAK_SEQUENCE Not executed

For BREAKPOINT and BREAK_SEQUENCE, if a breakpoint is specified at an address that is not the beginning of an
instruction, the break will not be detected.

When a break condition is satisfied during user program execution, a break condition satisfaction message is displayed
in the [Output] window and the execution stops.

Rev. 1.00 Apr. 01, 2010 Page 15 of 130
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

Break Due to Error Detection during User Program Execution: The simulator/debugger detects simulation errors,
that is, program errors that cannot be detected by the CPU exception generation functions. The [Simulator System]
dialog box specifies whether to stop or continue the simulation when such an error occurs. Table 2.12 lists the error
messages, error causes, and the action of the simulator/debugger in the continuation mode.

Table 2.12 Simulation Errors

Error Message Error Cause Processing in Continuation Mode
Memory Access Error Access to a memory area that has not been On memory write, nothing is written; on
(ADDRESS: H'nnnnnnnn) allocated memory read, all bits are read as 1.

Write to a memory area having the write-protected
attribute

Read from a memory area having the read disable
attribute

Access to an area where memory data do not
exist

When a simulation error occurs in the stop mode, the simulator/debugger returns to the command input wait state after
stopping instruction execution and displaying the error message. Table 2.13 lists the states of the program counter (PC)
at a simulation error stop. Also, after a stop due to a simulation error, the contents of the PSW are not changed.

Table 2.13 Register States at Simulation Error Stop

Error Message PC Value

Memory Access Error e When an instruction is read:
The start address of the instruction that caused the error.
e When an instruction is executed:
The instruction address following the instruction that caused the error.

Use the following procedure when debugging programs that include instructions that generate simulation errors.

1. First execute the program in the stop mode and confirm that there are no errors except those in the intended
locations.

2. After confirming the above, execute the program in the continuation mode.

Note: If an error occurs in the stop mode and simulation is continued after changing the simulator/debugger mode to
the continuation mode, simulation may not be performed correctly. When restarting simulation, always restore
the register contents and the memory contents to the state prior to the occurrence of the error.

Break Due to a Trace Buffer Overflow: After the [Stop] mode is specified with [Trace Buffer Full Handling] in the
[Trace Acquisition] dialog box, the simulator/debugger stops execution when the trace buffer becomes full. The
following message is displayed in the [Output] window when execution is stopped.

Trace Buffer Full

Break Due to Execution of a WAIT Instruction: Execution of a WAIT instruction causes execution by the
simulator/debugger to stop. The following message is displayed in the [Output] window.

WAIT Instruction

Note: When restarting execution, change the PC value to the instruction address at the restart location.

Rev. 1.00 Apr. 01, 2010 Page 16 of 130
REJ10J2162-0100 :(ENESAS

Section 2 Simulator/Debugger Functions

Break Due to the [Stop] Button: Users can forcibly terminate execution by clicking the [HALT] button during
instruction execution. The following message is displayed on the status bar when execution is stopped.

Stop

Execution can be resumed with the GO or STEP command.

2.12 Floating-Point Data

Floating-point numbers can be used for the following real-number data, which makes floating-point data processing
easier. The following data can be specified for floating-point data:

e Data when the break type is set to [Break Data] or [Break Register] in the [Select Break Type] dialog box
¢ Data in the [Memory] window

e Data in the [Fill Memory] dialog box

o Data in the [Search Memory] dialog box

e Input data in the [Register] dialog box

The floating-point data format conforms to the ANSI C standard.

In the simulator/debugger, the round-to-nearest (RN) mode is applied as the rounding mode for floating-point decimal-
to-binary conversion.

If a denormalized number is specified for binary-to-decimal or decimal-to-binary conversion, it is left as a denormalized
number in RN mode. If an overflow occurs during decimal-to-binary conversion, the infinity is returned in RN mode.

2.13 Display of Function Call History

The simulator/debugger displays the function call history in the [Stack Trace] window when simulation stops, which
enables program execution flow to be checked easily. Selecting a function name in the [Stack Trace] window displays
the corresponding source program in the [Editor] window. This allows the function that has called the current function
to also be checked.

The displayed function call history is updated in the following cases:

e When simulation stops due to the break conditions described in section 2.11, Break Conditions.
o When register values are modified while simulation stops due to the above break conditions.
e While single-step execution is performed.

For details, refer to the High-performance Embedded Workshop User’s Manual.

Rev. 1.00 Apr. 01, 2010 Page 17 of 130
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

2.14 Performance Measurement

The simulator/debugger has the profiler function and performance analysis function for performance measurement of
the user program.

2.14.1 Profiler

The profiler function displays the memory address and size allocated to functions and global variables, the number of
function calls, and the profile data for the entire user program. The profile data to be displayed depends on the CPU.

Profile information is displayed in list, tree, and chart formats.

Profile information is useful in optimizing user programs by reducing the size and putting the most frequently called
functions in-line.

When using the profile information saved in a file, it is possible to optimize user programs based on dynamic
information using the optimizing linkage editor.

For details, refer to section 3.8, Viewing the Profile Information.

2.14.2 Performance Analysis

The performance analysis function displays the number of execution cycles and function calls for the specified function
in the user program. Since performance data for only the specified function is acquired, faster simulation is possible.
For details, refer to section 3.9, Analyzing Performance.

2.15 Pseudo-Interrupts
The simulator/debugger can generate pseudo-interrupts during simulation in the following two ways:

1. Pseudo-interrupts generated by satisfaction of break conditions

A pseudo-interrupt can be generated using a break command to specify [Interrupt] as the action when a break
condition is satisfied. For details, refer to refer to section 3.6, Using the Simulator/Debugger Breakpoints.

2. Pseudo-interrupts generated from windows

A pseudo-interrupt can be generated by clicking a button in the [Trigger] or [GUI I/O] window. For details, refer to
section 3.11, Generating a Pseudo-Interrupt Manually.

If another pseudo-interrupt occurs between a pseudo-interrupt occurrence and its acceptance, only the interrupt that has
a higher priority can be accepted.

3. Break by pseudo-interrupts

The user can select whether or not to cause a break when a pseudo-interrupt occurs. This can be set in the [Simulator
System] dialog box or by the EXEC_STOP_SET command.

Note: For a pseudo-interrupt, the vector number and priority level of the interrupt are specified. The priority level of
an interrupt can be specified as a value from 0 to 8 or from 0 to H'10. The fast interrupt is specified by the value
8 when the range is from 0 to 8 and H'10 when the range is from 0 to H'10.

2.16 Coverage

The simulator/debugger acquires instruction coverage information during instruction execution within the measurement
range specified by the user.

Rev. 1.00 Apr. 01, 2010 Page 18 of 130
REJ10J2162-0100 :(ENESAS

Section 2 Simulator/Debugger Functions

In the measurement range, addresses are directly specified, and all functions in a file whose name has been specified are
set.

The state of each instruction execution can be monitored through the instruction coverage information. In addition, this
information can be used to determine which part of a program has not been executed.

The [Coverage] window displays the acquired instruction coverage information.

The instruction coverage information can be displayed in the [Editor] window by highlighting the column
corresponding to the source line of the executed instruction.

For the address range or function to be measured, the coverage statistical information is displayed in percentage. This
gives the user a clear idea how much the program has been executed.

The instruction coverage information can be saved in or loaded from a file. Only a file in the .COV format can be
loaded.

For details, refer to section 3.10, Measuring Code Coverage.

Rev. 1.00 Apr. 01, 2010 Page 19 of 130
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

Rev. 1.00 Apr. 01, 2010 Page 20 of 130
REJ10J2162-0100 :{ENESAS

Section 4 Windows

Section 3 Debugging

This section describes the simulator/debugger operations and their related windows and dialog boxes.
For details on the functions common to the HEW listed below, refer to the HEW help information.

— Preparations for Debugging

— Viewing a Program

— Operating Memory

— Displaying Memory Contents as Waveforms
— Displaying Memory Contents as an Image
— Modifying the Memory Contents

— Viewing the I/0 Memory

— Looking at Registers

— Executing Your Program

— Viewing the Current Status

— Synchronizing Multiple Debugging Platforms
— Debugging with the Command Line Interface
— EIf/Dwarf2 Support

— Looking at Labels

Rev. 1.00 Apr. 01, 2010 Page 21 of 130
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

3.1 Creating the Workspace for Simulator/Debugger

To use the simulator/debugger, a workspace for the simulator/debugger must be created. This section only describes the
procedures specific to the simulator/debugger. For details, refer to the High-performance Embedded Workshop user's
manual.

3.1.1 Selecting a Debugging Platform

When you create a new workspace, the dialog box shown below appears. Specify the debugging platform in step 8.

Mew Project-8/10-5etting the Target System for Debugging |

— Targets

T arqet type : IHKEEIEI j
Target CPLU : I-":"-" CPUs j

< Back | et = I Finizh | Cancel |

Figure 3.1 Debugger Target Setting Display (8/10)

[Targets] Sets the debugger targets. Select (by checking) the debugger targets. No selection or a selection
of more than one target is possible.

[Target type] Specifies the type of the targets displayed under [Targets].
[Target CPU] Specifies the type of the CPUs displayed under [Targets].

3.1.2 Setting up a Workspace for the Simulator/Debugger

Set up the workspace for the simulator/debugger in step 9/10.

Rev. 1.00 Apr. 01, 2010 Page 22 of 130
REJ10J2162-0100 :{ENESAS

Section 4 Windows

2]x]|

Mew Project-3/10-5etting the Debugger Options

Target name :
|Fi=600 Simulatar

Core :

I <zingle cores j
Configuration narne :

|SimDebug_RE00

— Detail options :

[kem | Setting
Sirnulatar 140 | dizable
Sirnulator 1/0 addr. | 0x0
Bus mode 1]
Endian | Little
Patch i

i |

[Iritial zezzion

< Back

| st = I

Finizh | Cancel |

Figure 3.2 Debugger Option Setting Display (9/10)

[Detail options]

Sets the debugger target options. To modify an option, select [Item] and click [Modify]. If

the selected item cannot be modified, [Modify] remains gray even when [Item] is

selected.
[Simulator 1/0]

[Simulator 1/0 addr.]

[Bus mode]
[Endian]
[Patch]

Simulation for standard 1/0 or file 1/0O

from the user program is enabled ([Enable])

or disabled ([Disable]).

Address for the above simulated 1/0.

Currently not used by the simulator/debugger.

Displays the endian of CPU.

Priority levels of interrupts and whether the

MVTIPL instruction is enabled or disabled.

[Off] Available priority levels for
interrupts are from 0 to 15.
The MVTIPL instruction is
enabled.

[RX610] Available priority levels for
interrupts are from 0 to 7.
The MVTIPL instruction is
disabled.

Refer to the High-performance Embedded Workshop User's Manual for items other than those listed under [Detail

options].

RENESAS

Rev. 1.00 Apr. 01, 2010 Page 23 of 130
REJ10J2162-0100

Section 2 Simulator/Debugger Functions

3.2 Starting up the Simulator/Debugger

You can connect to the simulator/debugger by selecting a session file in which simulator/debugger settings have already
been defined. When you have selected targets in the process of creating a project, the number of session files is the
same as the number of selected targets. Select the session file that corresponds to the current target from the drop-down
list shown in figure 3.3.

JJ 2 ||Debug

Figure 3.3 Selecting a Session File

If you have selected a session file with which the simulator/debugger has been registered but the simulator/debugger is
disconnected, select [Debug -> Connect] or click on the [Connect] toolbar button #

To disconnect the simulator/debugger, on the other hand, select [Debug -> Disconnect] or click on the [Disconnect]
toolbar button .

3.3 Modifying the Simulator/Debugger Settings

This section describes how to modify the simulator system after the simulator/debugger is started.

3.3.1 Setting the Endian and Frequency of CPU

The endian and operating frequency of CPU are set on the [CPU Configuration] tabbed page in the [Set Simulator]
dialog box, which is displayed on initiation of the simulator/debugger.

Set Simulator |
CPU Canfiguration | Peripheral Function Simulation |

Endiar:
=

Syatem Clock [ICLE] Freguency:
100 MHz

[T Don't show this dislog bos k. I Canecel |

Figure 3.4 Set Simulator Dialog Box (CPU Configuration)

The following items can be specified in this dialog box:

Rev. 1.00 Apr. 01, 2010 Page 24 of 130
REJ10J2162-0100 :(ENESAS

Section 4 Windows

[Endian] Endian of CPU.
[Big] Big endian
[Little] Little endian

[System Clock (ICLK) Frequency] Operating frequency of the CPU (unit: MHz)
Specifiable range: 1 to 1000

If you do not wish this dialog box to be opened when the simulator/debugger is subsequently initiated, check [Don’t
show this dialog box].
3.3.2 Modifying the Simulator System

The [System] tab in the [Simulator System] dialog box is used to modify the location to start the simulated 1/0 and
execution mode.

Choose [Setup -> Simulator -> System...] or click the [Simulator System] toolbar button ﬂ to open the [System] tab in
this dialog box.

Simulator System ElEd |
System | Memu:ur_l,ll

CPU:
| <600 =l
Bit zize: Simulated 140 Addrezs: ¥ Enable
BEE |H'D0000000 =] |
Endian; E wecution Mode:
ILittIe Endian | 5top | Detail. |
|nterrupt Prionity Lewvel: Rezponze:
|n-? [Disable MY TIPL instruction) |D'4nnnn
[Cache the results of decoding instructions and accelerate simulation

Cancel |]

Figure 3.5 Simulator System Dialog Box (System Tab)

Rev. 1.00 Apr. 01, 2010 Page 25 of 130
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

The following items can be specified in this dialog box:

[CPU] The current CPU.
[Bit Size] Size of the address space (as the number of bits in addresses.
[Endian] Endian of the CPU.

[Priority Level of Interrupts] Priority levels of interrupts and whether the MVTIPL instruction is enabled or disabled.
0 to 7 (Disable MVTIPL instruction): Available priority levels for interrupts are from 0 to
7.
0 to 15 (Enable MVTIPL instruction): Available priority levels for interrupts are from 0 to
15.

[Simulated I/O Address] Specifies the start address of a simulated 1/0 that performs standard input/output or file
input/output processing from the user program.
[Enable] Checking this box enables the simulated 1/0.

[Response] Specifies the window refresh timing; that is, how many instructions should be executed
between refresh operations (D'1 to D'2,147,483,647. The default is D’40000).

[Execution Mode] Specifies whether the simulator/debugger stops or continues operation when a simulation
error (including interrupts) occurs. It is also possible to specify an action to take place
when an interrupt occurs by clicking the [Detail...] button.

[Stop] Stops simulation.
[Continue] Continues simulation.

[Cache the results of decoding instructions and accelerate simulation]
Selects whether or not to save the results of decoding instructions at the time of their
execution and reuse the results of decoding when instructions at the same addresses are
reused.
Selecting this box enables the caching facility for decoded instructions, making simulation
faster.

Clicking the [OK] or [Apply] button stores the modified settings. Clicking the [Cancel] button closes this dialog box
without modifying the settings.

Note: The caching facility for decoded instructions reuses results of decoding so is not applicable to programs that
contain self-modifying code. Furthermore, errors in the form_of an instruction being overwritten due to
unexpected behavior of the program may not be correctly detected.

3.3.3 Modifying the Memory Map and Memory Resource Settings

The [Memory] tab in the [Simulator System] dialog box is used to set and modify the memory map and memory
resource.

Rev. 1.00 Apr. 01, 2010 Page 26 of 130
REJ10J2162-0100 :(ENESAS

Section 4 Windows

Simulator System E |
Syzbem Memnry|
temany bap: H‘}’u e‘hl xi|l:3|3| b emorny Besournce; ‘ﬂhle‘h “il
Beain | End | Tupe | Size | Fead | Wit | Beain | End | Attribute
Q0000000 QO0TFFFF | Rak | - 1 1 Q0000000 00007FFF Read '
Q0020000 Q0OFFFFF | 1/0 1 1 FFFF2000 FFFFFFFF Read '
00100000 Q0107FFF | ROM 1 1
Q07F2000 Q0FFIFFF | RAM 1 1
QOFFCOO0 | OOFFCAFF | 140 1 1
QOFFFCO0 | OOFFFFFF | 140 1 1
QOEQOOOO | OOFFFFFF | ROM 1 1
FEFFEOOO | FEFFFFFF | ROM 1 1
FFFFCOO0 | FF7FFFFF | ROR 1 1
FFEOOOOO | FFFFFFFF | ROM 1 1
a [s B
|] 4 I Cancel | Spply |

Figure 3.6 Simulator System Dialog Box (Memory Tab)

The following items can be specified in this dialog box:

[Memory Map]

[Memory Resource]

cycles.

[Memory Map] can be added, modified, or deleted using the following buttons:

X
=

Displays the memory type, start and end addresses, data bus width, and the number of access

Displays the access type and start and end addresses of the current memory resource.

Adds [Memory Map] items. Clicking this button opens the [Set Memory Map] dialog box (figure 3.6), and
memory map items can be added.

Modifies [Memory Map] items. Select an item to be modified in the list box and click this button. The [Set
Memory Map] dialog box (figure 3.6) opens and memory map items can be modified.

Deletes [Memory Map] items. Select an item to be deleted in the list box and click this button.

[Memory Resource] can be added, modified, or deleted using the following buttons:

Adds [Memory Resource] items. Clicking this button opens the [Set Memory Resource] dialog box, and
memory map items can be specified.

Modifies [Memory Resource] items. Select an item to be modified in the list box and click this button. The
[Set Memory Resource] dialog box opens and memory map items can be modified.

Deletes [Memory Resource] items. Select an item to be deleted in the list box and click this button.

RENESAS

Rev. 1.00 Apr. 01, 2010 Page 27 of 130

REJ10J2162-0100

Section 2 Simulator/Debugger Functions

[Memory Resource] is the same setting information as that of [Memory Resource] of the [Debugger] sheet in the [RX
Standard Toolchain] dialog box. Modifications are reflected on both items.

[Memory Map] can be reset to the default value by the ﬂl button. Clicking the [OK] or [Apply] button stores the
modified settings. Clicking the [Cancel] button closes this dialog box without modifying the settings.

When there is a linkage list file (.map) output by the optimizing linkage editor, the memory resource can be
automatically allocated according to the memory map and linkage map information. For details, refer to Automatically
Allocating the Memory Resource, in the High-performance Embedded Workshop User's Manual.

3.3.4 Set Memory Map Dialog Box
The [Set Memory Map] dialog box specifies the memory map of the target CPU.

The contents displayed in this dialog box depend on the target CPU. The values are used in simulation of memory
access by the simulator/debugger.

Set Memory Map HE

temany type:

EXT - :
I J Cancel |

Beqgin address:

[H00000000 =]
End address:
[HFFFFFFFF =]

Data bug zize:

|32 =]
RBead state count:

|1

Wwirite state count;

|1

Endiar:

| Little =l

Figure 3.7 Set Memory Map Dialog Box

Rev. 1.00 Apr. 01, 2010 Page 28 of 130
REJ10J2162-0100 :(ENESAS

Section 4 Windows

The following items are specified:

[Memory type] Memory type
[ROM] Internal ROM
[RAM] Internal RAM
[EXT] External memory
[10] Internal 1/0
[Begin address] Start address of the memory corresponding the memory type
[End address] End address of the memory corresponding to the memory type
[Data bus size] Memory data bus width
[Read state count] Number of cycles (“states”) for read access to the specified type of memory
[Write state count] Number of cycles (“states™) for write access to the specified type of memory
[Endian] Endian of the specified area of memory

Clicking the [OK] button stores the settings. Clicking the [Cancel] button closes this dialog box without modifying the
settings.

Notes: 1. The memory map setting for the area allocated to a system memory resource cannot be deleted or modified.
First delete the system memory resource allocation on the [Memory] tab of the [Simulator System] dialog
box, then delete or modify the memory map setting.

2. The data bus size cannot be displayed or modified for any type of memory other than external memory.

3. The data bus size, read state count, and write state count do not affect to the instruction simulations. The
number of states (cycles) for memory access is always 1.

4. The memory map must start and end on 16-byte boundaries. If any other setting is made, the map is adjusted
to the closest 16-byte boundaries that include the set values.

5. ltis not possible to view or modify the current endian for the internal 1/0 area.

6. The endian for the internal ROM and RAM areas is only modifiable through the [Set Simulator] dialog box.

For details on the [Set Simulator] dialog box, refer to section 3.3.1, Setting the Endian and Frequency of
CPU.

Rev. 1.00 Apr. 01, 2010 Page 29 of 130
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

3.35 Set Memory Resource Dialog Box

The [Set Memory Resource] dialog box sets and modifies memory resources.

Set Memory Resource HE

Beqin Address;
|H'unnnunnn

End Address:
|H'D000FFFF

Attribuibe;
I FeadMwrite j

Figure 3.8 Set Memory Resource Dialog Box
The following items are specified:
[Begin Address] Address where the memory area to be secured starts

[End Address] Address where the memory area to be secured ends

[Attribute] Access type
[Read] Read only
[Write] Write only

[Read/Write] Readable/writable

Click the [OK] button after specifying the [Begin Address], [End Address], and [Attribute]. Clicking the [Cancel]
button closes this dialog box without modifying the settings.

Notes: 1. If memory resources are set, memory in the host computer will be used. If the user allocates too much
memory resources, operation of the host computer will be extremely slow.

2. The memory area must start and end on 16-byte boundaries. If any other setting is made, the area is adjusted
to the closest 16-byte boundaries that include the set values. Furthermore, concerning the type of access,
boundaries become 16 bytes.

When using a resource with units smaller than 16 bytes, use the memory within an area in accord with the
hardware manual.

3. Attempts by instructions to write to memory for which only reading is permitted or to read from memory for
which only writing is permitted cause memory-access errors.

3.4 Simulating Peripheral Functions

The simulator/debugger is able to simulate peripheral functions by using DLL modules. This section describes how to
register the peripheral function simulation modules to enable the simulation of individual peripheral functions, and how
to set their configurations.

3.4.1 Registering Peripheral Function Simulation Modules

Peripheral function simulation modules can be registered in the [Peripheral Function Simulation] tabbed page of the
[Set Simulator] dialog box, which is opened on initiation of the simulator/debugger.

Rev. 1.00 Apr. 01, 2010 Page 30 of 130
REJ10J2162-0100 :(ENESAS

Section 4 Windows

Once a peripheral function simulation module has been registered in this dialog box, the simulated peripheral function
provided by that simulation module becomes available. The registered settings cannot be modified after the
simulator/debugger has fully started up. To change the peripheral function simulation modules that are in use, restart the
simulator/debugger to bring up this dialog box.

Set Simulator |

CPU Configuration Peripheral Function Simulation |

— Peripheral Functions;

b odule Mame | File Mame Enable All |
O T C:AProgram Files\Reneszas_Evaluation_FxiF :
Oicu C:\Program FilestRenesas_E valuation_Ri=hF Disati= Al |

[eta).

i

1] | i

Peripheral Clock, R ate: I 1 - I

[~ Don't show this dialog bos | Ok, I Cancel |

Figure 3.9 Set Simulator Dialog Box (Peripheral Function Simulation Tab)

The following items are specified in this dialog box:

[Peripheral Functions]

[Enable All]
[Disable All]

[Detail...]

[Peripheral Clock Rate]

Shows information on the peripheral function simulation modules.

[Module Name] Names of peripheral functions to be simulated

[File Name] Names of files holding peripheral function simulation
modules

Check the checkbox under [Module Name] to register the

corresponding peripheral function simulation module and make it

available.

Enables all peripheral function simulation modules.
Disables all peripheral function simulation modules.

Opens the [Peripheral Module Configuration] dialog box, allowing you to view information
on the corresponding peripheral function, and change the address where it starts and the
interrupt-source information.

The ratio between the peripheral clock and the system clock (the
number of cycles of the system clock corresponding to one cycle of the
peripheral clock) is specified here. The clock rate setting can be
selected as 1, 2, 3, 4, 6, 8, 12, 16, 24, or 32.

Clicking the [OK] button makes the settings effective. Clicking the [Cancel] button closes this dialog box without

storing the settings.

If you do not wish this dialog box to be opened when the simulator/debugger is subsequently initiated, check [Don’t

show this dialog box].

Rev. 1.00 Apr. 01, 2010 Page 31 of 130
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

3.4.2 Changing the Addresses of Peripheral Functions

The addresses of peripheral functions can be changed on the [Peripheral Module Configuration] dialog box. The
addresses of the peripheral functions which have interrupt source information can be changed on the [Address] tabbed
page of the [Peripheral Module Configuration] dialog box. To open this dialog box, select a peripheral function in
[Peripheral Functions] on the [Peripheral Function Simulation] tabbed page of the [Set Simulator] dialog box and then
press the [Detail...] button.

Peripheral Module Configuration |

Address I [Fkermupt I

Module:

ficu =l

Beqgin Addrezs[Reqizter]:

|Hoo0&zo10 |

RBeaqizter Address:
R egister | Addrezz ~
IRO2a Qooayoc
IRO29 Doog7oID
[RO30 QooavE
IRO31 Qooa7 I F
ISELROZ23 Q00a7 110
i il

(] 4 I Cancel | Sppl

Figure 3.10 Peripheral Module Configuration Dialog Box

The following items can be set or displayed in this dialog box:

[Module] Name of the peripheral function supported by the selected peripheral function simulation
module

[Start Address] Start address of the peripheral function selected in [Module]

[Register Address] Names and addresses of registers of the peripheral function selected in [Module]. It is not

possible to change the register addresses.

Clicking the [OK] or [Set] button makes the settings effective. Clicking the [Cancel] button closes this dialog box
without storing the settings.

3.4.3 Changing the Interrupt Source Information of Peripheral Functions

The interrupt source information of peripheral functions can be changed in the [Interrupt] tab of the [Peripheral Module
Configuration] dialog box. To open this dialog box, select a peripheral function in [Peripheral Functions] on the
[Peripheral Function Simulation] tabbed page of the [Set Simulator] dialog box and then press the [Detail...] button.

Rev. 1.00 Apr. 01, 2010 Page 32 of 130
REJ10J2162-0100 :(ENESAS

Section 4 Windows

Peripheral Module Configuration |

Address Intermupt |

Irnterrpt Source Infarmation:

Intermupt So... | Wector Mum... | Frionty Begister

CkIn 28 00027304/2-0
CrN 29 00027305/2-0
CMIZ 30 000:E7306/2-0
ChI3 K} 000:E7307/2-0

1] i B
k. I Canicel | Sl |

Figure 3.11 Peripheral Module Configuration Dialog Box (Interrupt Tab)
The following items can be displayed in this dialog box:

Interrupt Source: Name of the interrupt source (or sources) supported by the
peripheral function

Vector Number: Interrupt vector number
Priority Register Address/ Address of the interrupt priority register and positions of bits in
Bit Field Position: the register

To change the interrupt-source information, open the [Set Interrupt Source Information] dialog box by double-clicking

on the line for the interrupt source to be changed.

RENESAS Rev. 1.00 Apr. 01, 2010 Page 33 of 130

REJ10J2162-0100

Section 2 Simulator/Debugger Functions

Set Interrupt Source Information |

|Rterrupt Source;
|I:MIIII

Cancel |

Interrupt Wectar Mumber:
|2E=

Frionty Register Address:
| 0x00087304 =]

Prionty Register Size:
| 3-bit =]
Prionty Register Bit Position:

o]

Figure 3.12 Set Interrupt Source Information Dialog Box
The following items can be set or displayed in this dialog box:
Interrupt Source: Interrupt source name

Interrupt Vector Number: Interrupt vector number
(when the prefix is omitted, values input are taken as decimal,
and the display is in decimal notation)

Priority Register Address: Address of the interrupt priority register
Priority Register Size: Size of the interrupt priority register
Priority Register Bit Position: Positions of bits in the interrupt priority register

Clicking the [OK] button makes the settings effective. Clicking the [Cancel] button closes this dialog box without
storing the settings.

3.4.4 Memory Resources for Control Registers

The peripheral function simulation module secures memory resources in the control register area. Do not perform
operations that lead to the deletion or alteration of memory resources for control registers after they have been allocated.
For details on the setting of memory resources, refer to section 3.3.3, Modifying the Memory Map and Memory
Resource Settings.

3.4.5 Viewing the Names of Connected Peripheral Functions

After the simulator/debugger has been initiated, [Peripheral Modules] on the [Platform] sheet of the [Status] window
shows the names of the peripheral functions that are connected.

Rev. 1.00 Apr. 01, 2010 Page 34 of 130
REJ10J2162-0100 :(ENESAS

Section 4 Windows

3.4.6 Inputto and Output from Virtual Ports

For the simulator/debugger, some pins are allocated to memory as virtual ports. These can be used for input to and
output from files. For details on the virtual ports supported by the simulator/debugger, refer to section 2.8.2 (3), Input
and Output of Data.

(1) Viewing the List of File Input and Output

To view the list of file input and output that is currently defined, open the [Port I/O] tabbed page of the [Simulator
System] dialog box that is displayed by selecting [Setup -> Simulator -> System...]. If no modules with virtual ports
have been registered, the [Port 1/O] tab does not appear.

Simulator System EE |

S_I,Isteml Memaory Part 140 |

hodule | Part | File M ame | |40 | hode | Repeat Start | State |

k. I Cancel |]

Figure 3.13 Simulator System Dialog Box (Port 1/O Tab)

Rev. 1.00 Apr. 01, 2010 Page 35 of 130
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

The following items are displayed in this dialog box:

[Module]: Module name
[Port]: Port name
[File Name]: Filename
[I/0O]: Input or output
[In]: File input
[Out]: File output
[Mode]: Mode of file input or output
[Repeat]: Repeated input
[Once]: Input only once
[Overwrite]: Write output over existing files
[Append]: Append output to existing files
[Repeat Start]: Line number where repeated input starts
[State]: Whether the file is open or closed

[Open]: Open
[Close]: Closed

(2) Adding a File

Right-click on the [Port 1/0O] tabbed page and select [Add] from the popup menu or double-click on an item in the list to

open the [Set Port 1/0] dialog box.

Set Port 1/0

— Port zelect
todule:;

Fart:

|sci

=] |rso_0

=~

— File zetting
File:

140

&+ |n
= Out

[nput mode

" Fepeat

Start Lite |1

&+ Once

ﬂ Browse. .. |

Output mode

£ Hremrite
) bppend

Cancel |

Figure 3.14 Set Port I/O Dialog Box

The following items can be set in this dialog box:

[Port select]
[Module]:

Select the module for the port that data are to be input to or output

Rev. 1.00 Apr. 01, 2010 Page 36 of 130
REJ10J2162-0100

RENESAS

Section 4 Windows

from.
[Port]: Select the port name.

[File setting]
[File]: Specify the filename.
If the filename extension is omitted, .csv is
automatically appended.

[1/0] [Input]: File input
[Output]: File output
[Input mode] [Repeat]: When the end of the file is reached, the input is

repeated from the start.
[Start Line]: Line number where repeated input starts

(1 to 65535)
[Once]: When the end of the file is reached, the input is
ended.
[Output mode] [Overwrite]: If an output file with the specified name already
exists, that file is overwritten.
[Append]: If an output file with the specified name already

exists, output data are appended to the end of the file.

Each port can be allocated to one file for input and one file for output. A single file can also be allocated to two or more
input ports.

(3) Opening a File

To open a file, click on the line where the filename appears on the [Port 1/0O] tabbed page and select [Open] from the
popup menu.

(4) Opening All Files
To open all files, right-click on the [Port 1/0] tabbed page and select [Open All] from the popup menu.
(5) Closing a File

To close a file, click on the line where the filename appears on the [Port I/0] tabbed page and select [Close] from the
popup menu.

(6) Closing All Files
To close all files, right-click on the [Port 1/O] tabbed page and select [Close All] from the popup menu.
(7) Modifying File Setting

Click on the line where the filename appears and select [Edit] from the popup menu or simply double-click on the line
to open the [Set Port 1/0] dialog box, where the settings for the file can be modified.

(8) Deleting a File

To delete a file, click on the line where the filename appears on the [Port 1/0] tabbed page and select [Delete] from the
popup menu.

Rev. 1.00 Apr. 01, 2010 Page 37 of 130
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

(9) Format for Virtual Port Files

Virtual port files are in the CSV format. The input file format is as follows.

<Time>, <Data>

Data values in input files must be accompanied by descriptions of the times they are input. Each time is the difference
in picoseconds (integer value: must be 1 or larger) from the time for the previous value. The values are hexadecimal
integers.

The output file format is as follows.

[Module]

<Module nhame>

[Port]

<Port name>

[Length]

<Number of bits in data>
[Data]

<Time>, <Data>

The name of the module that outputs the data, port name, number of bits in the values, times, and the values themselves
are output in an output file. The time indicates the duration from the start of simulation to the output of the value in
picoseconds (as an integer).

Rev. 1.00 Apr. 01, 2010 Page 38 of 130
REJ10J2162-0100 :(ENESAS

Section 4 Windows

3.5 Operations for Memory

35.1 Regularly Updating Contents of the [Memory] Window

Selecting [Auto Refresh] from the pop-up menu of the [Memory] window leads to regular updating of the contents
displayed in the [Memory] window during execution of the user program.

The default value and specifiable range for the update interval are given below.

Default value for the update interval: 100 ms

Specifiable range for the update interval: 10 ms to 10,000 ms

3.5.2 Viewing and Modifying the Settings for the 1/0O Area

If you wish to view or modify the settings for the I/O area through the [Memory] window, ensure that the access size
defined in the hardware manual is selected for display in the [Memory] window. Otherwise the settings may not be
correctly displayed or modified.

3.6 Using the Simulator/Debugger Breakpoints

Sophisticated breakpoint functions are available in the simulator/debugger in addition to the HEW standard PC
breakpoints. The user can specify break conditions and actions after a break condition is satisfied, and can display the
breakpoints set.

3.6.1 Listing the Breakpoints

Choose [View -> Code -> Eventpoints] or click the [Eventpoints] toolbar button £l 1o open the [Event] window,
which lists the breakpoints set.

«# Event O] x|
LI A ||§| |
Type I Statel Condition | Action |

EF Enable PC=FFFFO0E4 [(Tutorial.c/38) Stop

MSnﬂ:ware Break .f{'. Software Event ,|r"

Figure 3.15 Event Window

Rev. 1.00 Apr. 01, 2010 Page 39 of 130
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

The following items are displayed:

[Type] Break types
[BP]: PC break
[BA]: Access break
[BD]: Data break
[BR]: Register break (register name)
[BS]: Sequential break
[BCY]: Number-of-cycles break

[State] Whether the breakpoint is enabled or disabled
[Enable]: Valid
[Disable]: Invalid

[Condition] Condition that causes a break. The contents to be displayed depend on the type of the break. When the
type of the break is BR, the register name is displayed, and when the type of the break is BCY, the number
of cycles is displayed.

BP: PC = Program counter (Corresponding file name, line, and symbol name)
BA: Address = Address (Symbol name)

BD: Address = Address (Symbol name)

BR: Register = Register name

BS: PC = Program counter (Corresponding file name, line, and symbol name)
BCY: Cycle = Number of cycles (displayed in hexadecimal)

[Action] Operation of the simulator/debugger when a break condition is satisfied.
[Stop]: Execution halts
[File Input] (file name) [File state]: Memory data is read from file
[File Output] (file name) [File state]: Memory data is written to file
[Interrupt] (Interrupt type/priority): Interrupt processing
[Trace Trigger]: Tracing starts

Conditions specifying [Stop] for [Action] is displayed on the [Software Break] tab and the conditions specifying
another action type is on the [Software Event] tab.

Rev. 1.00 Apr. 01, 2010 Page 40 of 130
REJ10J2162-0100 :(ENESAS

Section 4 Windows

3.6.2 Setting a Breakpoint

Selecting [Add...] from the pop-up menu in the [Event] window opens the [Select Break Type] dialog box, which
allows the user to set a breakpoint.

Two further dialog boxes can be opened from the [Select Break Type] dialog box: [Set xx Condition] for specifying a
break condition and [Set xx Action] for specifying an action to take when the break condition is satisfied. To open the
[Select Break Type] dialog box from the [Event] window when you wish to select [Stop] as [Action type] in the [Select
Break Type] dialog box, select [Add...] from the pop-up menu on the [Software Break] tab; if you wish to select another
action type, select [Add...] from the pop-up menu on the [Software Event] tab.

Selecting a Break Type:

Selecting [Add...] from the popup menu on the [Event] window opens the [Select Break Type] dialog box. Select a
break type in the [Break type] field of this dialog box.

Helect Break Type ilil

Break type: CrEETTT
P Breakpoint - Detail.. |
I reaspoin —I Canicel |

Action type:

I File Tnput LI Detail.. |

Figure 3.16 Select Break Type Dialog Box
The following options are available:

[Break type]
[PC Breakpoint]: Breakpoint set at an instruction
[Break Access]: Break on access to a memory range
[Break Data]: Break on detection of a memory value
[Break Register]: Break on detection of a register value
[Break Sequence]: Sequential breakpoints
[Break Cycle]: Break after the specified number of cycles

Rev. 1.00 Apr. 01, 2010 Page 41 of 130
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

Setting Break Conditions:

Click on [Detail...] after selecting the break type in the [Select Break Type] dialog box. This opens a dialog box that
allows you to set conditions for the selected break type.

e [PC Breakpoint]

Set PG Breakpoint Condition

Address: [Hononoa00 =l

Ciount: ID'1 ﬂl

Figure 3.17 Set PC Breakpoint Condition Dialog Box

Up to 1024 PC-breakpoint conditions can be specified.
[Address]: Address of the instruction where a break will occur
[Count]: Number of times that the specified instruction is fetched
(1 to 16,383; the default value is 1; if the prefix is omitted, values input
are taken as decimal, and the display is in decimal notation).

e [Break Access]

Set Break Access Gondition

Beein addrez=: IH'DEIEIDEIEIEIEI J T
End address: IH'DEIEIDEIEIEIEI _I Cancel |
ficcess type: | Read itiite |

Figure 3.18 Set Break Access Condition Dialog Box

Up to 1024 access break conditions can be specified.

[Begin address]: First address of the range of memory for which access generates a break
[End address]: Last address of the range of memory for which access generates a break

(if no data is input, the range corresponds to the first address alone)
[Access type]: Read, write, or read/write

Note: For string and multiply-and-accumulate instructions, only the last data-access operation is checked for access
break conditions.

Rev. 1.00 Apr. 01, 2010 Page 42 of 130
REJ10J2162-0100 :{ENESAS

Section 4 Windows

e [Break Register]

Set Break Reeister Condition

Regizter: IRJ] =] e
Option: I Equal | Cancel |
Data: IH'EIEIEIEI

[~ Data mask: [HFFFFFFFF

Size: |w.:rc| |

Figure 3.19 Set Break Register Condition Dialog Box

Up to 1024 register break conditions can be specified.
[Register]: Register name for which the break condition is specified
[Option]: ~ Match or mismatch with the data
[Data]: Data value used in the break condition (if no data is input here, a break
will occur whenever data is written to the register)
[Data mask]: Mask condition (specifying 0 for a bit masks the bit)
[Size]: Data size

Notes: 1. For string and multiply-and-accumulate instructions, only the last register-access operation is checked for
register break conditions.
2. Checking of registers when stack pointer registers are specified as break registers is as shown below.

Register Specification Accessed Register
ISP USP
RO Checked Checked
ISP Checked Not Checked
uUspP Not Checked Checked
Renesas

Section 2 Simulator/Debugger Functions

e [Break Sequence]

Set Break Sequence Condition

Address]: [Hononoa00 _|

_I _ﬂ Cancel |

Address:
fddress3: j E
fddressd: j E

|
|
|
Addressh: | =&
|
|
|

fiddressh: ;I E
fddressT: j E
fddressD: j E

Figure 3.20 Set Break Sequence Condition Dialog Box

Only one sequential break condition can be specified.
[Address1] to [Address8]: Addresses that must be passed as conditions to generate the break (not all
of the eight breakpoints have to be set).

e [Break Cycle]

Set Break Cycle Condition

Chyle: IH'1 g
Ciount: Cancel |
o AL
i~ Times: I

Figure 3.21 Set Number-of-Cycles Break Condition Dialog Box

Up to 1024 number-of-cycles break conditions can be specified.
[Cycle]: Number of cycles required to cause a break (H'1 to H'FFFFFFFF).
The condition will be satisfied by execution for the number of cycles in
the [Cycle] setting x n.
However, the specified number of cycles may differ from the number
of cycles on which the condition is satisfied.
[Count]: Number of times the break will occur
[ALL]: The break will occur whenever the condition is satisfied.
[Times]: The break will only occur up to the number of times specified as
[Times] (1 to 65535; if the prefix is omitted, values input are taken as
hexadecimal, and the display is in hexadecimal notation).

Rev. 1.00 Apr. 01, 2010 Page 44 of 130
REJ10J2162-0100 :{ENESAS

Section 4 Windows

e [Break Data]

Set Data Break Condition E |

Address: |H'nnunnnun =]

Optiar: I Equal j
Datal: IH gl
Dataz: I

[Datamask: | FFFFFFFF
Size:

Sign:

ILDng wiard j
I Signed j

Figure 3.22 Set Break Data Condition Dialog Box

Data break conditions should be set as follows.

Up to 1024 data break conditions can be specified.
[Address]: Address in memory for which the break condition is specified
[Option]: ~ How the data value is used to form the condition that must be satisfied
for break generation

[Equal]:
[Not equall:
[Inverse sign]**:

[Difference]*":

[GT()]:
LTI
[GE(>=)]:
[LE(<=)]:
[IN]:

[OUT]:

The value written to memory matches [Data].

The value written to memory does not match [Data].

The sign of the value written to memory is the inverse of that
for the previous value.

The difference between the current and previous values
written to memory exceeds [Data].

A value written to memory is greater than [Data].

A value written to memory is less than [Data].

A value written to memory is greater than or equal to [Data].
A value written to memory is less than or equal to [Data].

A value written to memory is within the range between
[Data 1] and [Data 2] ([Data 1] <= value written to memory
<= [Data 2]).

A value written to memory is outside the range between
[Data 1] and [Data 2] (value written to memory <

[Data 1] | [Data 2] < value written to memory).

[Data 1]: Data value used in the break condition. When [IN] or [OUT] has been
selected, [Data 1] is the beginning of a range for use in the break
condition.

[Data 2]: Data value that is the end of a range for use in the break condition.
This option is only available when [IN] or [OUT] has been selected.

[Data mask]: Mask condition (specifying 0 for a bit masks the bit). This option is not
available when [Inverse sign] or [Difference] has been selected.

[Size]: Data size

[Sign]: Sign of the data.

This option is only available in the following cases.

RENESAS Rev. 1.00 Apr. 01, 2010 Page 45 of 130

REJ10J2162-0100

Section 2 Simulator/Debugger Functions

e The selection for [Option] is [Difference].

o The selection for [Option] is [GT(>)], [LT(<)], [GE(>=)], [LE(<=)],
[IN], or [OUT] and the selection for [Size] is [Byte], [Word], or
[Long word].

Notes: 1. Since [Inverse sign] and [Difference] require comparison of the data with the value previously written to
memory, the break will never occur on the first test after a reset or break generation when either of these
conditions has been selected.

2. For string and multiply-and-accumulate instructions, only the last data-access operation is checked for data
break conditions.

Selecting an Action in Response to a Break:

If you click on [OK] after setting break conditions in the dialog boxes described on the preceding pages, the [Select
Break Type] dialog box is opened again. Select an action type in the [Action type] field of this dialog box.

Select Break Type el .4
Tk R T
PCBredgom =] Detal. | |
| Feakpoir x| Cancel
Action type:

I File Tnput LI Detail.. |

Figure 3.23 Select Break Type Dialog Box
The following options are available:

[Stop]: Execution of the user program is stopped when the condition is satisfied.

[File Input]: The contents of a specified file are read out and written to the specified memory
when the condition is satisfied.

[File Output]: The contents of the specified memory are read out and written to the specified
file when the condition is satisfied.

[Interrupt]: Interrupt processing proceeds when the condition is satisfied.

[Trace Trigger]: Tracing starts when the condition is satisfied (only in cases where triggering of
tracing by events has been enabled).

Setting Details of the Action:

Click on [Detail...] after selecting the action type in the [Select Break Type] dialog box. This opens a dialog box that
allows you to set details of the selected action (except [Stop] and [Trace Trigger]).

Rev. 1.00 Apr. 01, 2010 Page 46 of 130
REJ10J2162-0100 :{ENESAS

Section 4 Windows

[File Input]

Set File Input Action ed B
I ;I Browmze, . | Cancel |
— Destination

Address: |H00000000 |
Data gize: |1 ;I
Crount: ID"I

Figure 3.24 Set File Input Action Dialog Box

When the condition is satisfied, data are read out from the specified file and written to the specified location in memory.

[Input file]:

[Address]:
[Data size]:
[Count]:

[File Output]

File from which data are to be read out. When reading out by the simulator/debugger reaches
the end of the file, reading out recommences from the beginning of the same file.

Memory address to which data should be written.

Size of each data value in bytes (1/2/4/8).

Number of values to be written (H’1 to H’FFFFFFFF; when the prefix is omitted, values
input are taken as decimal, and the display is in decimal notation).

Set File Output Action id |
Output file: [~ fppend R
I LI Browze,. | Gancel |
— SOUrcE
Addrezs: |H00000000 -]
Data zize: |1 ;l
Crourt: ID'1

Figure 3.25 Set File Output Action Dialog Box

When the condition is satisfied, the contents at the specified location in memory are written to the specified file.
[Output file]: Data file to which data are written.

[Append]:

[Address]:
[Data size]:
[Count]:

Selects whether the data should be appended to the file if an existing file is specified as the
output file.

Memory address to read data from.

Size of each data value to be read (1/2/4/8).

Number of values to be read (H’1 to H’FFFFFFFF; when the prefix is omitted, values input
are taken as decimal, and the display is in decimal notation).

Rev. 1.00 Apr. 01, 2010 Page 47 of 130

RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

e [Interrupt]

Set Interrupt Action

Tnterrupt tvpel: IH'U

Interrupt types: I Cancel |

Briority: IH'EI

Figure 3.26 Set Interrupt Action Dialog Box

When the condition is satisfied, interrupt processing proceeds. For details, refer to section 2.15, Pseudo-Interrupts.
[Interrupt type 1]: Sets the following values for each CPU (when the prefix is omitted, values input are
taken as hexadecimal, and the display is in hexadecimal notation)

[Priority] Interrupt priority (0 to 8 or 0 to H’10: if the prefix is omitted, values input are taken
as hexadecimal, and the display is hexadecimal). The value is in the range from 0 to
8 or H'10.

The fast interrupt is specified by the value 8 when the range is from 0 to 8 and H'10
when the range is from 0 to H'10.

. Point for Caution

When the same file is specified for multiple [File Input] actions, the simulator/debugger will read data from the file in
the order of condition satisfaction. When the same file is specified for multiple [File Output] actions, the
simulator/debugger will write data to the file in the order of condition satisfaction. However, when the same file is
specified for [File Input] and [File Output], the only valid action is that for the first condition to be satisfied.

3.6.3 Modifying Breakpoints

Select a breakpoint to be modified, and choose [Edit...] from the pop-up menu to open the [Select Break Type] dialog
box, which allows the user to modify the break conditions. The [Edit...] menu is only available when one breakpoint is
selected.

3.6.4 Enabling a Breakpoint

Select a breakpoint and choose [Enable] from the pop-up menu to enable the selected breakpoint.

3.6.5 Disabling a Breakpoint

Select a breakpoint and choose [Disable] from the pop-up menu to disable the selected breakpoint. When a breakpoint is
disabled, the breakpoint will remain in the list, but a break will not occur when the specified conditions have been
satisfied.

3.6.6 Deleting a Breakpoint

Select a breakpoint and choose [Delete] from the pop-up menu to remove the selected breakpoint. To retain the
breakpoint but not have it cause a break when its conditions are met, use the [Disable] option (see section 3.6.5,
Disabling a Breakpoint).

Rev. 1.00 Apr. 01, 2010 Page 48 of 130
REJ10J2162-0100 :{ENESAS

Section 4 Windows

3.6.7 Deleting All Breakpoints

Choose [Delete All] from the pop-up menu to remove all breakpoints.

3.6.8 Viewing the Source Line for a Breakpoint

Select a breakpoint and choose [Go to Source] from the pop-up menu to open the [Source] or [Disassembly] window at
the address of the breakpoint. The [Go to Source] menu is only available when one breakpoint is selected.

3.6.9 Closing Input or Output File

Select a breakpoint and choose [Close File] from the pop-up menu to close the selected [File Input] or [File Output]
data file and to reset the address to read the file.

3.6.10 Closing All Input and Output Files

Choose [Close All Files] from the pop-up menu to close all [File Input] and [File Output] data files and to reset the
address for reading the file.

3.7 Viewing Trace Information

The simulator/debugger acquires the results of each instruction execution as trace information and displays it in the
[Trace] window. The conditions for the trace information acquisition can be specified in the [Trace Acquisition] dialog
box.

3.7.1 Opening the Trace Window

To open the [Trace] window, choose [View -> Code -> Trace] or click the [Trace] toolbar button J

3.7.2 Specifying Trace Acquisition Conditions

After the [Trace] window opens, specify the trace acquisition conditions in the [Trace Acquisition] dialog box. To open
this dialog box, choose [Acquisition...] from the pop-up menu.

Rev. 1.00 Apr. 01, 2010 Page 49 of 130
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

Tioce Acauision |
Trace Function: I Enahle j
Trace Buffer Full Handling: I Cantinue j
Trace Lapacity: I B553E records j
&cquizition Condition: I Al j
— Trace Event:

Type | Condition | Add

Delete
Delete Al

Enable Al

Dizable Al

EREERE

Cancel

Figure 3.27 Trace Acquisition Dialog Box
This dialog box specifies the conditions for trace information acquisition.

[Trace Function]
[Disable] Disables trace information acquisition.
[Enable] Enables trace information acquisition.

[Trace Buffer Full Handling]
[Continue] Continues acquiring trace information even if the trace information acquisition buffer becomes
full.
[Break] Stops execution when the trace information acquisition buffer becomes full.

[Trace Capacity]
[65536 records] The size of the trace buffer is 64 Krecords.
[131072 records] The size of the trace buffer is 128 Krecords.
[262144 records] The size of the trace buffer is 256 Krecords.
[524288 records] The size of the trace buffer is 512 Krecords.
[1048576 records] The size of the trace buffer is 1 Mrecord.

[Acquisition Condition]
[All] Trace information is acquired until execution of the program is stopped.
[Event Trigger] A total of 512 records of trace data (i.e. 255 records before the event, the event point itself,
and 256 records after the event) are acquired every time the trigger event is encountered.

[Trace Event]
Shows information on the events to start tracing.
The following items are displayed.
[Type] Event type

Rev. 1.00 Apr. 01, 2010 Page 50 of 130
REJ10J2162-0100 :{ENESAS

Section 4 Windows

[Condition] Condition
Events of the type selected for [Type] (with the checkbox selected) are valid.

[Add...] Opens a dialog box in which events can be added.
[Delete] Deletes the selected event.

[Delete All] Deletes all events.

[Enable All] Enables all events.

[Disable All] Disables all events.

Modifying a setting in the [Trace Acquisition] dialog box clears the trace information.

Clicking the [OK] button stores the settings. Clicking the [Cancel] button closes this dialog box without modifying the
settings.

3.7.3 Setting Events for Tracing

Break conditions are utilized as events for tracing. When a specified event is encountered, trace data around the event
point are acquired. Such events can be set in the [Select Break Type] dialog box.

To open the [Select Break Type] dialog box, click on the [Add] button in the [Trace Acquisition] dialog box or select
[Add...] from the popup menu opened by right-clicking on the [Software event] tabbed page of the [Event] window.

For details on the conditions and actions to take, refer to section 3.6, Using the Simulator/Debugger Breakpoints.

If you wish to modify the condition of an event for tracing, double-click on the event condition in the [Trace Event]
section to open the [Select Break Type] dialog box.

Rev. 1.00 Apr. 01, 2010 Page 51 of 130
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

3.7.4 Acquiring Trace Information

After trace acquisition is enabled, trace information is acquired during instruction execution. The acquired information
will be displayed in the [Trace] window.
Bus display, disassembly display, and source display or mixtures of these are available.

(1) Bus Display Mode
In the pop-up menu, select [Display Mode -> BUS].

(@) “Acquire All” Mode
In this mode, the [Trace] window shows all trace data from the start to the end of simulation.

e s =/
Ve sSaxzrE|Ed) |FQaQG

Range: -0036E72, 0000000 Wl@cle -0035976 |Address: FFFFO071 |Time: 00:00:00.000.021.760 |—

ETR | Zebel | 2ddress | Time Steamp | EsW | Instruction | Interrupt Zecess Daka ;I
-0035376 _main FFFFI071 00:00:00.000.021.760 OPUI---C ADD #-30H, RO, RO - USP<-00001A74 =
-0035975 FFFFO074 00:00:00.000.021.770 OPUI---C MOV.L #-00007BE4H, RS — RS<-FFFFR41C
-0035874 FFFFO07A 00:00:00.000.021.780 QOPUI---C SUB #4H, RO - USP<-00001A470
-0035373 FFFFO07C 00:00:00.000.021.790 QPUI---C MOV.L RS, [RO] - 00001270<-FFFFE41
-0035972 FFFFI07E 00:00:00.000.021.820 OPUI---C ESR.A _printf - 00001A6C<-FFFFE08
-0035871 _printf FFFF9349 00:00:00.000.021.830 0PUI---C MOV.L #0H, RS - R5<-00000000
-0035870 FFFFO34E 00:00:00.000.021.840 0PUI---C PUSH.L RS - 00001288<-000000C
-0035369 FFFFO34Dp 00:00:00.000.021.850 QOPUI---- ADD #08H, RO, R4 - R4<-00001a70
-0035368 FFFFO350 00:00:00.000.021.860 OPUI---- ADD #7H, R4 - R4<-00001877
0035967 FFFF9352 00:00:00.000.021.870 OPUI---- MOV.T 08H[RO], R3 - RI<-FFFFA41C
-0025966 FFFFO354 00:00:00.000.021.880 OPUI---- AND #-04H, R4 - R4<-00001A74
-00358365 FFFFO357 00:00:00.000.021.890 0PUI---- MOV.L #OOOO15ABH,RZ - RZ<-000015A8
-0035964 FFFFO35Dp 00:00:00.000.021.900 Q0PUI---- MOV.L #-0000ECDEH, R1 — R1<-FFFFO3Za
-0035963 FFFFI363 00:00:00.000.021.930 OPUI---- ESR.A _ Printf - 00001A64<-FFFFE3E
-0025862 _ Printf FFFFO6AC 00:00:00.000.021.970 OPUI---- PUSHM RE-RD - 00001260<-000000C
-0035861 FFFFOEAE 00:00:00.000.021.980 OPUI---C ADD #-00A4H, RO, R0 - USP<-0000159B0 =
1|] ¥

Figure 3.28 Trace Window in “All Acquire” Mode (Bus Display Mode)

This window displays the following trace information items:

[PTR] Pointer in the trace buffer (0 for the last executed instruction)
[Label] Label corresponding to the address (only displayed when a label is set).
[Address] Instruction address
[Time Stamp] Total instruction execution time

(hours: minutes: seconds: milliseconds: microseconds: hanoseconds)
[PSW] Display the value of the processor status word (PSW) as a mnemonic.
[Instruction] Instruction mnemonic
[Interrupt] Interrupt ("Interrupt” if an interrupt is generated, ”-" if not)
[Access Data] Data access information (display format: destination <- accessed data)”

Note: For string and multiply-and-accumulate instructions, this is only the last data to have been accessed.

(b) Event Trigger Mode

In this mode, the [Trace] window shows a set of 512 records of data around an event that has been encountered.

To view data on another event, select [Trace Point -> Trace Point Previous] or [Trace Point -> Trace Point Next]
from the popup menu of the [Trace] window. After the simulation stops, the [Trace] window shows information

on the oldest event.

Rev. 1.00 Apr. 01, 2010 Page 52 of 130
REJ10J2162-0100 :(ENESAS

Section 4 Windows

A Tace Y = .
-VE sarz|r-EEd4D Flaas

Range: 0000255, 0000256 ,ﬁh:y:le -0000008 |Address: FFFFB03E | Time: D0:00:00.000.021.310 ’—

Ho.| PTR | Zabel | Address | Time Stamp | s | Instruction Interrupt Access Data ”:I
1 —-0ooooog FFFFO03E 00:00:00.000.021.310 0--I-5-- PUSH.L Rl - 00001B88«<-FFFFE0

1 —-0ooo0o7 FFFFO040 00:00:00.000.021.370 OPUI---- RTE - PC<-FFFFB043 ISP

1 —-0o0000e FFFFO043 00:00:00.000.021.380 OPUI---- NOP -

1 —-0o0o0os FFFFH044 00:00:00.000.021.410 OPUI---- BSR.2 _main - 00001ABC<—FFFFE0

1 -0000004 wain FFFFS042Z 00:00:00.000.0Z21.42Z0 OPUI---C ADD #-30H, RO, RO - USP<-00001a5¢C

1 —-0o0o0o3 FFFFO045 00:00:00.000.021.430 OPUI---C MOV.L #-00007BCCH, RS - RS<-FFFF8434

1 —-0oooooz FFFF904E 00:00:00.000.0Z21.440 0PUI---C SUE #4H, RO - USP<-00001A58

1 —-0o0o0o1 FFFF904D 00:00:00.000.021.450 OPUI---C MOV.L R3, [RO] - 00001A58<-FFFFE4

1 0000000 FFFFY04F 00:00:00.000.021.480 OPUI---C BSR.A _printf - 00001A54<-FFFFI0

1 0000001 _printf FFFF931Z 00:00:00.000.021.490 OPUT---C MOV.T #0H, RS - R5<-00000000

1 oooooonz FFFF9314 00:00:00.000.0Z&1.500 OPUI---C PUSH.L RS - 00001A50+«-000000

1 oooooons FFFF9316 00:00:00.000.021.510 OPUI---- ADD #08H, RO, R4 - R4<-00001a58

1 0000004 FFFF9318 00:00:00.000.021.520 OPUI---- ADD #7H, R4 - R4-<-00001A5F

1 0000005 FFFF931B 00:00:00.000.021.530 OPUI---- MOV.L O8H[RO], R3 - RI<-FFFFG434

1 00oo00e FFFF931D 00:00:00.000.021.540 OPUI---- AND #-04H, R4 - R4<-00001a5C

1 00oooo07 FFFF9320 00:00:00.000.021.550 OPUI---- MOV.L #00001520H, RZ - RZ<-00001590

1 oooooons FFFFY9326 00:00:00.000.021.560 OPUI---- MOV.L #-00006p0OBH, R1 - R1<-FFFFYZF5 LI

Figure 3.29 Trace Window in Event Trigger Mode (Bus Display Mode)

This window displays the following trace information items:

[No.] Number of times that the trace point has been encountered once the
simulation has started
[PTR] Pointer to entry in the trace buffer (0 for the trigger of the event)
[Label] Label corresponding to the address (only displayed when a label is set)
[Address] Instruction address
[Time Stamp] Total instruction execution time
(hours: minutes: seconds: milliseconds: microseconds: hanoseconds)
[PSW] Display the value of the processor status word (PSW) as a mnemonic.
[Instruction] Instruction mnemonic
[Interrupt] Interrupt ("Interrupt” if an interrupt is generated, ”-" if not)
[Access Data] Data access information (display format: destination <- accessed data)”

Note: For string and multiply-and-accumulate instructions, this is only the last data to have been accessed.

(2) Disassembly Display Mode
In the pop-up menu, select [Display Mode -> DIS]. This enables reference to executed instructions.

& Trace = (O] x|

“ve seaxz|rHEH Ed) 5 QGG

Fange: 0036672, 0000000 lﬁwycle: -0035976 |Address: FFFFa071 |Time: 00:00:00.000.021. 760 |—

ETE | Takel | address | ohiect Code | Instruction | Time Stamp []=]
-0035976 _main FFFFI071 710000 ADD #-30H, RO, RO 00:00:00.000.021.760 =
—-0035975 FFFFI074 FESZ1CB4FFFF MOV.L #-00007EE4H, RS 00:00:00.000,021.770
-0035974 FFFFO074 &040 STUE #4H, RO 00:00:00.000.021.780
—-0035973 FFFFO07C E305 MOV.L BRI, [RO] 00:00:00.000,021.790
-0035972 FFFFOOYE O5CEODZO0 BSR.A _printf 00:00:00.000.021.820
-0035971 printf FFFF2349 £605 MOV, L #0H, RS 00:00:00.000.021.830
-0035970 FFFFO34E TEAS PUSH.L RS 00:00:00.000.021.240
-0035969 FFFFO34D 710408 ALD #02H, RO, R4 00:00:00.000.021.850
—-0035968 FFFF9350 6274 ALD #7H, R4 00:00:00.000.021.860
-0035967 FFFF9352 ABB3 MOV T 08H[RO], R3 00:00:00.000.021.870
-0035966 FFFFO354 753Z4FcC AND #-04H, r4 00:00:00.000.021.880
-0035965 FFFFO357 FEZZAB150000 MOV.L #000015a8H, B2 00:00:00.000.021.890
-0035964 FFFF335L FE1ZZA93FFFF MOV.L #-00006CD6H, R1 00:00:00.000,021.900
-0035963 FFFF9363 05490300 ESR.A _ Printf 00:00:00.000.021.930
-0035962 _ Printf FFFF96AC GEED EUIHM RE-ROD 00:00:00.000.021.970
-0035961 FFFFI6AE 7Z00SCFF ADD #-00A4H, RO, RO 00:00:00.000,021.980
—-0035960 FFFFO6EZ ETOZZ6 MOV.L RZ,98H[ERO] 00:00:00.000,021.990 LI

Figure 3.30 Trace Window (Disassembly Display Mode)

=

01, 2010 Page 53 of 130

Rev. 1.00 Apr.
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

(3) Source Display Mode

From the pop-up menu, choose [Display Mode -> SRC]. This display mode allows you to inspect the source
program’s execution path. The execution path can be verified by stepping through the source within trace data

forward or backward from the current trace cycle.

=10 x|

it+

=

printf ("### Data Input ###\n");

printf ("al%d]=%1d\n",i,a[i]};

- Trace

=V FSazz rEEd) #aQG
Fange: -00236672, 0000000 |File: Tutarial. o |Eyu:|e: 0036976 |.&|:I|:Iress: FFFFA071 |Time: 00:00:00.000.0:21. 760 |_
Line Address Mot Source

OO0o0E2 FEFEFS07 1 . wioid main (woid)
ooooz 3

0000z 4 long =[10];
DO00Z5 long 3;

D000Z & int i;

ooooz T

Donoza FFEFS074 =

oooozg

oooo30 FFEFFO0E 4 = for(i=0; i<l0;
Oooo3 1 FFEF2020 = 3 = rand(};
oooo3z FFEEO099 = ifiy < 0} ¢
nooo33 FFEFO0AD = 3= -3;
Oooo3 4 '

Oooo3s FFEF20AE = ali]l = 3;
00003 & FFEFO0EZ =

Oooo3T }

ooooae FFEFOOE4 = zort (a) ;

(4) Mixed Display Mode
This display mode provides a mixed display of bus, disassemble or source display.
After choosing [Display Mode -> BUS] from the pop-up menu, select [Display Mode -> DIS]. That way, you can
produce a bus and disassemble mixed display. In the same way, you can produce a bus and source, a disassemble

Figure 3.31 Trace Window (Source Display Mode)

and source or a bus, disassemble and source mixed display.

To revert to a bus only display after viewing a bus and disassemble mixed display, choose [Display Mode-> DIS]

from the pop-up menu again.

@Tace -
sve sazxzrEE4d) & aga

Range: -0038672, 0000000 |File: |Cyc|e 0035576 |Address: FFFFa071 ‘Time 00:00:00.000.021. 760 ’—

4]

PTR | zabel | address | Time Stamp | zzm | Instruction | Interrupt| iccess Data :J
FFFFO071 main ADD #-30H, =0, RO =

—~0035876 _main FFFFS071 00:00:00.000.021.760 OPUTI-——C ADD #-30H, RO, RO - USP<-00001474
FFFFOO7TE MOW. L #-00007VEBE4H, RS

-0035273 FFFFO074 00:00:00.000.021.770 OPUI---C MOV.L #-00007BE4H, RS - RS<-FFFFE41C
FFFFOO7TA SUB #4H, RO

-0035974 FFFFS074 00:00:00.000.021.780 OPUI---¢ 3UE #4H, RO - TSEP<-00001470
FFEFO07C MOV . L RS, [RO]

—-00358973 FFFFS07C 00:00:00.000.021.790 OPUI-——C MOV.L RS, [RO] - 00001A70<-FFFF841
FFFFOO7E EZR.A _printf

-0035972 FFFFO07E 00:00:00.000.021.820 OPUI---C BSR.A _printf - 0000 1AGC<-FFFFI08
FFFFO349 _printf MOV L #0H, RS

-0035871 printf FFFF9349 00:00:00.000.021.830 0PUI---C MOV.L #0H, RS - RS5<-00000000
FFFFO34E PU3H.L R3S

-0035870 FFFF934E 00:00:00.000.021.840 OPUI---C PUSH.L RS - 00001468 <-000000C
FFFFO34D ADD #03H, RO, R4

-00352643 FFFF934Dp 00:00:00.000.021.850 OPUI---- ADD #08H, RO, R4 -

Rd<-00001A70 =
| LIJ

Figure 3.32 Trace Window (Mixed Display Mode)

Rev. 1.00 Apr. 01, 2010 Page 54 of 130

REJ10J2162-0100

RENESAS

Section 4 Windows

3.7.5 Searching for Trace Information

Use the [Find] dialog box to search for trace information. To open it, select [Find -> Find...] from the pop-up menu.

X

Find EHE

LCombination: Find Item:

Ermd Erewmme

DAddress
[Time Stamp Trace cycle: " Specify range Fitid [Ent

L

[Instruction

[Inkerrpt II:I . II:I

[Exclusion of the specified condition

Find Setting Contents:

Delete

Delete Al

(i

Histany:

Clogze

f

Figure 3.33 Trace Search Dialog Box

Rev. 1.00 Apr. 01, 2010 Page 55 of 130
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

Select the conditions required for the search by checking the corresponding buttons in the [Combination] list. Details of
the condition can be specified under [Find Item]. When several conditions have been chosen in the [Combination] list,
specify the details of the individual conditions. The target of the search is the logical AND of the several conditions.

Item Contents Search Conditions

[PTR] Pointer in the trace buffer Specified decimal value
A range is specifiable.

Searching for values other than the specified value is
selectable.

[Address] Instruction address Specified hexadecimal value
A range is specifiable.

Searching for values other than the specified value is
selectable.

[Time stamp] Execution time of total instruction ~ Value specified in an edit box in the unit of time
A range is specifiable.
Searching for values other than the specified value is

selectable.

[Instruction] Instruction mnemonic Specified string
Searching for values other than the specified value is
selectable.

[Interrupt] Interrupt occurrence Fixed string: "Interrupt”

Searching for values other than the specified value is
selectable.

The conditions you have set are shown in the [Find Setting Contents] list box.
After setting search conditions, click the [Find Previous] or [Find Next] button to start a search.

When a matching trace record is found by a search, the relevant line in the [Trace] window is highlighted. If no
matching trace records are found, a message dialog box is displayed.

When an instance of the trace record was successfully found, choose the [Find Previous] or [Find Next] button from the
pop-up menu. The next instance of the trace record will be searched for.

3.7.6 Filtering Trace Information

Use the filter function to extract only the necessary records from the acquired trace information. To use the filter
function, select [Auto Filter] from the pop-up menu of the [Trace] window. When [Auto Filter] is turned on, each
column of the [Trace] window is marked with an auto-filter arrow [=]. Click on an arrow and select [Options...] from
the drop-down list to bring up the [Options...] dialog box to select the conditions for filtering. The available kinds of
filtering and filtering conditions are the same as for the kinds of targets and search conditions for trace record searching.

Note: Filtering is not possible in the event trigger mode.

3.7.7 Clearing the Trace Information

Re-executing instruction simulation after trace information has been acquired clears the trace information.

3.7.8 Saving the Trace Information in a File

The trace information displayed in the [Trace] window is saved in text format and cannot be saved in binary format.
Choose [File-> Save...] from the pop-up menu to open the [Save As] dialog box, which allows the user to save the

Rev. 1.00 Apr. 01, 2010 Page 56 of 130
REJ10J2162-0100 :(ENESAS

Section 4 Windows

contents of the trace buffer as a text file. A range can be specified based on [Start — End Cycle]. Note that this file
cannot be reloaded into the trace buffer.

3.7.9 Viewing the Source File

An [Editor] window corresponding to a selected trace record can be displayed in the source display mode by selecting
[File -> Edit Source] from the pop-up menu.

To display another source file in the source display mode of the [Trace] window, use the [Display Source] dialog box.
Choose [File -> Display Source] from the pop-up menu to open the [Display Source] dialog box.

Dizplay Source E |

Source File: ITutu:uriaI.I: j

Function:

mair
zort
change

Cancel |

Figure 3.34 Display Source Dialog Box

The source file to be displayed in the [Trace] window can be selected in this dialog box. After setting the conditions,
click on the [OK] button to display the source file in the [Trace] window, with the first line of the selected function
highlighted.

3.7.10 Switching Timestamp Display

The timestamp displayed in the [Trace] window can be switched to absolute time, differential time or relative time. In
the initial state, the timestamp is displayed in absolute time.

(1) Absolute time

From the pop-up menu, choose [Time -> Absolute Time] or click the [Absolute Time] button ﬂ in the toolbar.
(2) Differential time

From the pop-up menu, choose [Time -> Differences] or click the [Differences] button E in the toolbar.
(3) Relative time

From the pop-up menu, choose [Time -> Relative Time] or click the [Relative Time] button E in the toolbar.

Rev. 1.00 Apr. 01, 2010 Page 57 of 130
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

3.7.11 Showing the History of Function Execution

To show the history of function execution from the acquired trace information, choose [Function Execution History ->
Function Execution History] from the pop-up menu or click the [Function Execution History] button Fg | in the toolbar.
An upper pane of the window will be displayed. (Initially, this window is blank.) When you choose [Analyze Execution
History] from the pop-up menu or click the [Analyze Execution History] button E in the toolbar, the

simulator/debugger starts analyzing the execution history from the end of the trace result and shows the result in a tree
structure.

[@Trace N = [
wvep sazzlrE E4r #laga

Fl- < PowerON Reset PC> (FFFFE043) =]
B <_PowerCN_Reset_PC> [FEFFE02Z) J

- __INITSCT (FFFF9386) <- FFFFEOIE
. Bl INIT_IOLIB (FFEFSCDB) <- FEFF8022
E _main (FFFFO071) <~ FFFFS044
i printf (FFFFY340) <- FFFFO0TE
rand [FFFFO36A) <- FFFFO000
_printf (FFFE9343] <- FEFFI0CE
_rand [FEFFO364) <- FFFFO0O0
Bl _printf (FFFFO348) <- FFEFOOCE =

Range: -0036672, 0000000 |File: |Cyc\e. 0035576 ‘Addless. FFFFa07 |T\me. 00:00:00.000.021. 760 |—

Interrupt | Access Data

FFFF9071 00:00:0 21, Opu D #-30H, RO, RO
FFFFO074 00:00:00.000.021.770 OPUI---C MOV.L #-00007EE4H,

-0035974 FFFF907A 00:00:00.000.021.780 OPUI---C 3UE #4H, RO - Usp<-00001470
-00355973 FFFF907C 00:00:00.000.021.750 OPUI---C MOV.L R3, [RO] - 00001ATO<-FFFFB41C
-0035872 FFFFO07E 00:00:00.000.021.820 OPUI---C BSR.A _printf - 00001kEC<-FFFFO082
—-0035571 _printcf FFFF9340 00:00:00.000.021.830 0PUI---C MOV.L #0H, RS - R3<-00000000
-0035970 FFFF934E 00:00:00.000.021.840 OPUI---C PUSH.L RS - 00001468 <-00000000
-0035960 FFFF934D 00:00:00.000.021.850 OPUI---- ADD #02H, RO, R4 - R4<-00001A70
-0035968 FFFF9350 00:00:00.000.021.860 OPUI---- ADD #7H, R4 - R4<-00001a77
-0035967 FFFF9352 00:00:00.000.021.870 0OPUI---- MOV.L 08H[RO], RZ - R3I<-FFFFB41c
—-0035966 FFFF9354 00:00:00.000.0£1.860 OPUI--—— AND #-04H, R4 - R4<-00001A74
-0035965 FFFF9357 00:00:00.000.021.890 0PUI---- MOV.L #OOOOL5ABH, R - REZ<-000015a8

Figure 3.35 Trace Window

The lower pane of the window shows the trace result beginning with the cycle in which the function selected in the
upper pane was called.

Note: The history of function execution is not displayable in the event trigger mode.

3.8 Viewing the Profile Information

The profile function enables function-by-function measurement of the performance of the application program in
execution. This makes it possible to identify parts of an application program that degrade its performance and the
reasons for such degradation.

The HEW displays the results of measurement in three windows, according to the method and purpose of viewing the
profile data.

3.8.1 Stack Information Files

The profile function allows the HEW to read the stack information files (extension: .SNI) which are output by the
optimizing linkage editor (ver. 7.0 or later). Each of these files contains information related to the calling of static
functions in the corresponding source file. Reading the stack information file makes it possible for the HEW to display
information related to the calling of functions without executing the user application (i.e. before measuring the profile
data). However, this feature is not available when [Setting->Only Executed Functions] is checked in the pop-up menu
of the [Profile] window.

Rev. 1.00 Apr. 01, 2010 Page 58 of 130
REJ10J2162-0100 :{ENESAS

Section 4 Windows

When the HEW does not read any stack information files, only the data on the functions executed during measurement
will be displayed by the profile function.

To make the linkage editor create a stack information file, choose [Build -> RX600 Standard Toolchain...], and select
[Other] from the [Category] list box and check the [Stack information output] box in the [Link/Library] sheet of the
[Standard Toolchain] dialog box.

R Standard Toolchain EE

Configuration C/C+ | Assembly LinkeLibrary | Standard Library | CPU 4| |
ISlmDeI:uug_FiXEEIEI j Categony : IElther j

Mizcellaneous options ;

= All Loaded Projects
5@
& C zource file
-] T+ source file
I:I Azzembly zource file
|:| Linkage symbaol file

[JAlways output 59 record at the end
Stack information output

[]Compresz debug information
Lo memany use dunng inkage
[1Dizplays total section size LI

Uzer defined ophions : Abzolute/Helocatable/Libran j

=

[~

Optionz Link.Librany :

-foprelink -rom=0=R.0_1=R_1.0_2=R_2 -nomeszage ﬂ
ligt="$[COMNFIGDIR]$[PROJECT HAME).map" -nooptimize
a I_"I -start=B_1.R_1B_2R_2B.R.5U.51/01000 PResetPRG A0 ll

ak I Cancel |

Figure 3.36 Standard Toolchain Dialog Box (1)

Rev. 1.00 Apr. 01, 2010 Page 59 of 130
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

3.8.2 Loading Stack Information Files

You can select whether or not to read the stack information file in a message box for confirmation that is displayed
when a load module is loaded. Clicking the [OK] button of the message box loads the stack information file. The
message box for confirmation will be displayed when:

e There are stack information files (extension: .SNI)

e The [Load Stack Information Files (SNI files)] check box is checked in the [Confirmation] tab of the [Options]
dialog box (figure 3.37) that can be opened by choosing
[Setup -> Options...] from the main menu.

Options EHE |

Build I E ditar I Del:uugl wWirkspace Confimation | Netwu:urkl

— Dizplay confirmation dialogs for:

[w]E mtermal editar change warning ;I Set All |

[w]Go when no programs downloaded
[w]Initiglize T arget Clear &l |

[wlrvealid macro initial direchon
[wF.eyboard zhortcut owenarite

[[JLoad Program

ML oad Stack Information Files (S filez)
[JLoading Labelz
[[JLoze sezzion changes on refresh

[w]bdacra recording with non supported target
[w]Mested symbalz expanzion

[w|Relnad out-of-date dovnload modules

[w]Save Coverage at Seszzion Saving

[w]Save Coverage data again after zave

[w]Save file changes before mode zwitch

[(1Save mermary

[[]Saving Labels

[w]Show component dialog on work.space open
[w]Switch from dizazsembly bo new source

[JUnload Programm

[w]'farn on clean build

[w]' arning when warkzpace anddor project iz read anly

0k, I Cancel

Figure 3.37 Options Dialog Box

3.8.3 Enabling the Profile
Choose [View->Performance->Profile] to open the [Profile] window.

Choose [Enable Profiler] from the pop-up menu of the [Profile] window. The item on the menu will be checked.

Rev. 1.00 Apr. 01, 2010 Page 60 of 130
REJ10J2162-0100 :(ENESAS

Section 4 Windows

3.8.4 Specifying Measurement Mode

You can specify whether to trace functions calls while profile data is acquired. When function calls are traced, the
relations of function calls during user program execution are displayed as a tree diagram. When not traced, the relations
of function calls cannot be displayed, but the time for acquiring profile data can be reduced.

To stop tracing function calls, choose [Disable Tree (Not traces function call)] from the pop-up menu in the [Profile]
window (a check mark is shown to the left of the menu item).

When acquiring profile data of the program in which functions are called in a special way, such as task switching in the
OS, stop tracing function calls.

3.8.,5 Executing the Program and Checking the Results

After the user program has been executed and execution has been halted, the results of measurement are displayed in
the [Profile] window.

The [Profile] window has two sheets; a [List] sheet and a [Tree] sheet.

3.8.6 List Sheet

This sheet lists functions and global variables and displays the profile data for each function and variable.

+#* Profile (=13
Er == ||E|":!|Show Functionz v ariables j?;;ta &7

Function/Variabhle | F/Vl Address | Size | Times | Cyclel Ext mem I I/0 area I Int mem | ;I
_mwain F FFFFOO71 H'OODOODODY 1 738 a a 271

_sort F FFFFO142 H'OODOODOFD 1 1370 a a 774

_change F FFFFOI3F H'O0OODOGA 1 425 a a 166
_freopen F FFFFOZa9 H'OODOOQOZE 3 96 a a &0

_felose F FFFFOZIDT H'ODOODOS53 3 126 a a 39

FEFFOIZA F FFFFO3Za H'000000CO 183 3700 0] 2013
_printf F FFFFO349 H'000000Z1 ZZ 374]] 176

_rand F FFFFO36A H'00000C1c 10 110]] 30

_ INITSCT F FFFFO386 H'00000CCO 1 087 a a 3z

_fwrite F FFFFO3DO0 H'O0000C0CCF 183 24459 0 a £348
_fflush F FFFFO49F H'0000CCYE 252 13254 0O o 4245
__Foprep F FFFFO5S1D H'0000CCER 3 415 o o g7
__Fofree F FFFFOLSE H'00000051 3 13 o o 11

_ Printf F FFFFO6AC H'00000Z292 22 12713 0 a 3345 LI
4 List 4 Tree

Figure 3.38 List Sheet

Clicking the column header sorts the items in an alphabetical or ascending/descending order. Clicking the
[Function/Variable] or [Address] column displays the source program corresponding to the address in the line.

Right-clicking on the mouse within the window displays a pop-up menu. For details on this pop-up menu, refer to
section 3.8.7, Tree Sheet.

Rev. 1.00 Apr. 01, 2010 Page 61 of 130
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

3.8.7 Tree Sheet

This sheet displays the relation of function calls along with the profile data that are values when the function is called.
This sheet is available when [Disable Tree (Not traces function call)] is not selected from the pop-up menu in the
[Profile] window.

«# Profile =] S
B =& ||E|";!|Show Functions/ariables j | &
Function |Address | Size | Stack Size | Times | Cycle | Ext meml I1/0 area | Int mem |ﬂ
o main FFFFO071 H'O00000p1 H'O0O0OOCOO 1 738 u] u] 271
_printf FFFFO349 H'O000000Z1 H'000000O0 22 374 u] u] 176
_rand FFFFO3 64 H'O000001c H'O000OOOO 10 110 u] u] an
_change FFFFOZ3F H'O000006a H'O0DOOOCOOO 1 425 u] u] 166
FFFFO142 H'O00000FD H'O0O00COOO 1 1870 u] u] 774
FFFFEDF7 H'O000004F H'O0OOOQCOOO 1 510 o] o] 144
FFFFECDE H'O000011F H'O0OOOQCOO 1 29 o] o] a1
FFFFO2a0 H'O00000ZE H'O00QOOOO 3 a6 o] o] &0
FFFFO2ZD7 H'00000053 H'00000000 3 126 o] o] 20
FFFFO40F H'O000007E H'O000OOOO 3 57 o] o] 1z
_ Fofree FFFFOESE H'O0000051 H'0000000O0 3 13 o] o] 36
_close FFFFEEEL H'00000009 H'O000OOOO 3 21 o o (3
_ Foprep FFFFO51D H'O00000E2 H'00000000 3 415 o] o] a7 =
ARI List A Tree

Figure 3.39 Tree Sheet

Double-clicking a function in the [Function] column expands or reduces the tree structure display. The expansion or
reduction is also provided by the “+” or “-” key. Double-clicking the [Address] column displays the source program
corresponding to the specific address.

Right-clicking on the mouse within the window displays a pop-up menu. Supported menu options are as follows:

e View Source

Displays the source program or disassembled memory contents for the address in the selected line.
e View Profile-Chart

Displays the [Profile-Chart] window focused on the function in the specified line.
e Enable Profiler

Toggles acquisition of profile data. When profile data acquisition is enabled, a check mark is shown to the left of the
menu text.

¢ Not trace the function call
Stops tracing function calls while profile data is acquired. This menu is used when acquiring profile data of the
program in which functions are called in a special way, such as task switching in the OS.
To display the relation of function calls in the [Tree] sheet of the [Profile] window, acquire profile data without
selecting this menu. In addition, do not select this menu when optimizing the program by the optimizing linkage
editor using the acquired profile information file.

e Find...
Displays the [Find Text] dialog box to find a character string in the [Function] column. Search is started by entering
a character string to be found in the edit box and clicking [Find Next] or pressing the Enter key.

e Find Data...
Displays the [Find Data] dialog box.

Rev. 1.00 Apr. 01, 2010 Page 62 of 130
REJ10J2162-0100 :(ENESAS

Section 4 Windows

Find Data

Colume:
I dddress

Firnd Data
& Maximum

" Minimum

Figure 3.40 Find Data Dialog Box

By selecting the column to be searched in the [Column] combo box and the search type in the [Find Data] group
then pressing [Find Next] button or Enter key, search is started. If the [Find Next] button or the Enter key is input
repeatedly, the second larger data (the second smaller data when Minimum is specified) is searched for.

Clear Data

Clears the number of times functions are called and the profile data. Data in the [List] sheet of the [Profile] window
and the data in the [Profile-Chart] window are also cleared.

Output Profile Information Files...

Displays the [Save Profile Information Files] dialog box. Profiling results are saved in a profile information file
(.pro extension).

Output Text File...
Displays the [Save Text of Profile Data] dialog box. Displayed contents are saved in a text file.
Setting
This menu has the following submenus (the menus available only in the [List] sheet are also included).
— Show Functions/Variables
Displays both functions and global variables in the [Function/Variable] column.
— Show Functions
Displays only functions in the [Function/Variable] column.
— Show Variables
Displays only global variables in the [Function/Variable] column.
— Only Executed Functions

Only displays the executed functions. If a stack information file (.sni extension) output from the optimizing
linkage editor does not exist in the directory where the load module is located, only the executed functions are
displayed even if this check box is not checked.

— Include Data of Child Functions

Sets whether or not to display information for a child function called in the function as profile data.
Properties...
This menu cannot be used in this simulator/debugger.

Rev. 1.00 Apr. 01, 2010 Page 63 of 130
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

3.8.8 Profile-Chart Window

The [Profile-Chart] window displays the relation of calls for a specific function. This window displays the specified
function in the middle, with the callers of the function on the left and the callees of the function on the right. The
numbers of times the function calls the functions or is called by the functions are also displayed in this window.

«# Profile-Chart =]
B € ||| 2 | =@ 24

_f ------

_fflush

Figure 3.41 Profile-Chart Window

Right-clicking the mouse within the window displays a pop-up menu. Supported menu options are as follows:

View Source

Displays the source program or disassembled memory contents for the address of the function on which the cursor is
placed when the right-hand mouse button is clicked. If the cursor is not placed on a function when the right-hand
mouse button is clicked, this menu option remains gray.

View Profile-Chart
Displays the [Profile-Chart] window for the specific function on which the cursor is placed when the right-hand

mouse button is clicked. If the cursor is not placed on a function when the right-hand mouse button is clicked, this
menu option remains gray.

Enable Profiler

Toggles acquisition of profile data. When profile data acquisition is enabled, a check mark is shown to the left of the
menu text.

Clear Data

Clears the number of times functions are called. Data in the [List] and [Tree] sheets of the [Profile] window are also
cleared.

Multiple View

If a further [Profile-Chart] window is opened while an existing [Profile-Chart] window is already open, this option
selects whether a new window is opened or the new data is displayed in the existing window. When a check mark is
shown to the left of this menu item, a new window will be opened.

Output Profile Information Files...

Displays the [Save Profile Information Files] dialog box. Profiling results are saved in a profile information file
(.pro extension). The optimizing linkage editor optimizes user programs according to the profile information in this
file. For details on optimization with the profile information, refer to the user’s manual for the optimizing linkage
editor.

Expands Size

Redo the display with larger intervals between functions. The "+" key can also be used to do this.
Reduces Size

Redo the display with smaller intervals between functions. The “-” key can also be used to this.

Rev. 1.00 Apr. 01, 2010 Page 64 of 130
REJ10J2162-0100 :{ENESAS

Section 4 Windows

3.8.9 Types and Purposes of Displayed Data
The profile function is able to acquire the following information:

Address You can view the locations in memory to which the functions are allocated.
Sorting the list of functions and global variables in order of their addresses
allows the user to view the way the items are allocated in the memory space.

Size Sorting in order of size makes it easy to find small functions that are frequently
called. Setting such functions as inline may reduce the overhead of function
calls.

Stack Size When there is deep nesting of function calls, pursue the route of the function

calls and obtain the total stack size for all of the functions on that route to
estimate the amount of stack being used.

Times Sorting by the number of calls or accesses makes it easy to identify the
frequently called functions and frequently accessed global variables.

Profile Data Measurement of a variety of CPU-specific data is also available as follows:

[Cycle] (the number of cycles execution requires)
[Ext_mem] (the number of external memory accesses)
[I/0_area] (the number of internal 1/0 area accesses)
[Int_mem] (the number of internal memory accesses)

The number of cycles is calculated by subtracting the number of cycles until the specified function is called from the
number of cycles when the return instruction for the function is called.

Note: A string or multiply-and-accumulate instruction is treated as accessing data only once (i.e. the last data-access
operation).

Rev. 1.00 Apr. 01, 2010 Page 65 of 130
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

3.8.10 Creating Profile Information Files

To create a profile information file, choose the [Output Profile Information Files...] menu option from the pop-up
menu. The [Save Profile Information Files] dialog box is displayed. Pressing the [Save] button after selecting a file
name will write the profile information to the selected file. Pressing the [Save All] button will write the profile
information to all of the profile information files.

Save Profile Information Files

Prafile [nformation files
Frogram Files | Profile Information files
Tutarial C:Wwiorkspace_Ewvaluation FshTuke

Cloze

Have

Save All

Ll

Erowze...

1| | i

Figure 3.42 Save Profile Information Files Dialog Box

3.8.11 Notes

1. The number of executed cycles for an application program as measured by the profile function includes a margin of
error. The profile function only allows the measurement of the proportions of execution time that the functions
occupy in the overall execution of the application program. Use the Performance Analysis function to precisely
measure the numbers of executed cycles.

2. The names of the corresponding functions may not be displayed when the profile information on a load module with
no debugging information is measured.

3. The stack information file (extension: .SNI) must be in the same directory as the load module file (extension: .ABS).
4. ltis not possible to store the results of measurement.
5. Itis not possible to modify the results of measurement.

Rev. 1.00 Apr. 01, 2010 Page 66 of 130
REJ10J2162-0100 :{ENESAS

Section 4 Windows

3.9 Analyzing Performance

Use the [Performance Analysis] window to select a function name and analyze the performance.

3.9.1 Opening the Performance Analysis Window

Choose [View -> Performance -> Performance Analysis] or click the [PA] toolbar button @ to open the [Performance

Analysis] window.

«# Performance Analysis O] x|
T % a *B | B [

Index | Function | Cyole | Count | Histogram |
0 wain 78 1 o+ I
1 sort 1870 1 ———

2 changs 425 1 0+ I

Figure 3.43 Performance Analysis Window
This window displays the number of execution cycles required for each specified function.
The number of execution cycles is calculated as follows:

Execution cycles = total number of execution cycles when execution returns from the function
— total number of execution cycles when the target function is called

The following items are displayed:

[Index] Index number of the set condition

[Function] =~ Name of the function to be measured (or the start address of the function)
[Cycle] Total number of instruction execution cycles

[Count] Total number of calls for the function

[Histogram] Ratio of number of cycles for execution of the function to the number of cycles for execution of the

whole program, displayed as a percentage and histogram

3.9.2 Specifying a Target Function

After the [Performance Analysis] window is open, choose [Add Range...] from the pop-up menu or press the Insert key
to open the [Performance Option] dialog box, which allows the user to specify a function to be analyzed.

RENESAS Rev. 1.00 Apr. 01, 2010 Page 67 of 130

REJ10J2162-0100

Section 2 Simulator/Debugger Functions

Performance Option
Function Mame:
I j | Cancel |

Figure 3.44 Performance Option Dialog Box
This dialog box specifies a function (including a label) to be evaluated. Up to 255 functions can be specified in total.

Clicking the [OK] button stores the setting. Clicking the [Cancel] button closes this dialog box without setting the
function to be evaluated.

Select a function that has been set and choose [Edit Range] from the pop-up menu or press the Enter key to open the
[Performance Option] dialog box and to change the function to be evaluated.

3.9.3 Starting Performance Data Acquisition

Choose [Enable Analysis] from the pop-up menu (a check mark is shown to the left of [Enable analysis]) to start
acquiring performance analysis data.

3.9.4 Resetting Data

Choose [Reset Counts/Times] from the pop-up menu to clear the current performance analysis data.

3.9.5 Deleting a Target Function

Select a function and choose [Delete Range] from the pop-up menu to delete the selected target function and to
recalculate the data within other ranges. The selected function can also be deleted by the Delete key.

3.9.6 Deleting All Target Functions

Choose [Delete All Ranges] from the pop-up menu to delete all the current target functions to be evaluated and to clear
the performance analysis data.

3.9.7 Saving the Currently Displayed Contents

The contents currently displayed in the window can be saved in a text file. Select [Save to File...] from the pop-up
menu.

Rev. 1.00 Apr. 01, 2010 Page 68 of 130
REJ10J2162-0100 :(ENESAS

Section 4 Windows

3.10 Measuring Code Coverage

The [Coverage] window acquires code coverage information (CO coverage and C1 coverage) in the range specified by

the user, and displays the information.

3.10.1 Opening the Coverage Window

Choose [View -> Code -> Coverage...] or click the [Coverage] toolbar button @ to open the [Open Coverage] dialog

box.

Open Coverage |

— Optionz
i Mew Window

* Start address: IH'UUUEUU j
End address: IH'UDDEE3 j

" File I ﬂ En::wse,.l

™ Open a recent coverage file

| I

" Browse to another coverage file

LCancel |

Figure 3.41 Open Coverage Dialog Box

This dialog box specifies the coverage measuring range. To set coverage for a new range, the following two ways are

available:

e Specifying the start and end addresses on the new window
[Start Address] Start address of coverage information display

(When a prefix is omitted, values input are taken as hexadecimal.)

[End Address] End address of coverage information display

(When a prefix is omitted, values input are taken as hexadecimal.)

o Specifying the file on the new window

[File] Source file whose extension is .C or .CPP in the current project.
Functions in the specified file can be set as the coverage range.

If the extension of the file is omitted, .C is complemented.

The file that has other extensions than .C or .CPP cannot be specified.

A placeholder or the [Browse...] button is available.

To use the settings saved in a coverage information file, choose the file from [Open a recent coverage file], or open a
file open dialog box by [Browse to another coverage file] and select the file. When [Open a recent coverage file] is

selected, up to four recent files that have been saved are displayed.

Clicking [OK] opens the [Coverage] window.

RENESAS

Rev. 1.00 Apr. 01, 2010 Page 69 of 130

REJ10J2162-0100

Section 2 Simulator/Debugger Functions

When the [Coverage] window has already been displayed for specifying address, settings are added in the window.

o Coverage window (specifying address)

< Coverage O] x|
B X | w

Range I Statisticl atatus
FFFFO071- FFFF9141 096% Enable

Figure 3.42 Coverage Window (Specifying Address)

This window displays the coverage range and statistical information. The following items are displayed:

[Range] Address range
[Statistic] Percentage of the instructions executed within the range
[Status] Enable or Disable status of the coverage range

When the [Coverage] window is closed, the acquired coverage information and the conditions to acquire information
will be cleared.

o Coverage window (specifying source file)

<& Coverage O]

o E X%

Functions | Statistic | Status I

—main Q6% Enabhle
—-zort Q7% Enahle
—change 100% Enshle

Figure 3.43 Coverage Window (Specifying Source File)

This window displays the coverage range and statistical information. The following item is displayed:

[Functions] List of functions
[Statistic] Percentage of the instruction executed within the function
[Status] Enable or Disable status of the respective function

Note: The functions can be sorted by their names or percentage, either in ascending or descending order, by clicking
the column tab ([Functions] or [Statistic]).

When the [Coverage] window is closed, the acquired coverage information and the conditions to acquire information
will be cleared.

Rev. 1.00 Apr. 01, 2010 Page 70 of 130
REJ10J2162-0100 :{ENESAS

Section 4 Windows

3.10.2 Acquiring All Coverage Information

Choose [Enable All] from the pop-up menu and execute the user program to acquire all coverage information. By
default, [Enable All] is selected.

3.10.3 Clearing All Coverage Information

Choosing [Clear All] from the popup menu clears all the coverage information that has been acquired.

3.10.4 Viewing the Source Window

Choose [View Source] from the pop-up menu to open the [Editor] window and to display the [Editor] window
corresponding to the cursor location in the [Coverage] window.

3.10.5 Specifying the New Coverage Range

Choose [Add Range...] from the pop-up menu to open the [Open Coverage] dialog box (figure 3.41). For the [Open
Coverage] dialog box, refer to section 3.10.1, Opening the Coverage Window.

3.10.6 Changing the Coverage Range

o Specifying the coverage range with an address
Choose the coverage range and [Edit Range...] from the pop-up menu to open the [Coverage Range] dialog box.

Coverage Range |

v Start address: IH'UDDBDD j

Erd address: [H'D00963 =] Cancel |

£ Fie | v

Figure 3.44 Coverage Range Dialog Box (Specifying Address)

This dialog box specifies the condition to acquire instruction execution information. The following items can be
specified.

[Start address] ~ Start address (When a prefix is omitted, values input are taken as hexadecimal.)
[End address] End address (When a prefix is omitted, values input are taken as hexadecimal.)

Clicking [OK] changes the coverage range.

Rev. 1.00 Apr. 01, 2010 Page 71 of 130
:{ENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

e Specifying the coverage range with a source file
Choose [Edit Range...] from the pop-up menu to open the [Coverage Range] dialog box.

Coversge Range TR
 Start address: I j E
Erd addiess: I j _@

i File Iresetprg.c ﬂ Er-:uwse;..l

Figure 3.45 Coverage Range Dialog Box (Specifying Source File)

This dialog box specifies the condition to acquire instruction execution information. The following items can be
specified.

[File] Source file whose extension is .C or .CPP in the current project.
Functions in the specified file can be set as the coverage range.
If the extension of the file is omitted, .C is complemented.
The file that has other extensions than .C or .CPP cannot be specified.
A placeholder or the [Browse...] button is available.

Clicking [OK] changes the coverage range.

3.10.7 Deleting the Selected Coverage Range

Select a coverage range and choose [Delete Range] from the pop-up menu to delete the selected coverage range.

3.10.8 Acquiring Coverage Information

Specify a coverage range, choose [Enable Coverage] from the pop-up menu, and execute the user program to acquire
coverage information. By default, [Enable Coverage] is selected.

3.10.9 Clearing Coverage Information

Specify a coverage range and choose [Clear Data] from the pop-up menu to clear the acquired coverage information.

3.10.10 Saving Coverage Information in a File

Choose [Save Data...] from the pop-up menu to open the [Save Data] dialog box, which allows the user to save the
coverage information in a file.

Save Data H
Eile name:
Ifile'l .Cow ﬂ Browse, .. | Cancel |

Figure 3.46 Save Data Dialog Box

Rev. 1.00 Apr. 01, 2010 Page 72 of 130
REJ10J2162-0100 :(ENESAS

Section 4 Windows

This dialog box specifies the location and name of a coverage information file to be saved. The placeholder or the
[Browse...] button can be used.

If a file name extension is omitted, .COV is automatically added. If a file name extension other than .COV or .TXT is
specified, an error message will be displayed.

3.10.11 Loading Coverage Information from a File

Choose [Load Data...] from the pop-up menu to open the [Load Data] dialog box, which allows the user to load the
coverage information from a file.

Load Data EBEE
File name:
[t | Browse. | Cancel |

Figure 3.47 Load Data Dialog Box

This dialog box specifies the location and name of a coverage information file to be loaded. The placeholder or the
[Browse...] button can be used.

Only .COV files can be loaded. If a file name extension other than .COV is specified, an error message will be
displayed.

3.10.12 Updating the Information

Choose [Refresh] from the pop-up menu to update the [Coverage] window to the latest information.

3.10.13 Confirmation Request Dialog Box

A confirmation request dialog box will appear when [Clear All], [Clear Data], [Edit Range...], or [Delete Range] is
clicked or an attempt is made to close the [Coverage] window.

Confirmation Bequest |

Coverage data will be cleared.

¥ Save Coverage data

LCancel |

Figure 3.48 Confirmation Request Dialog Box

Clicking [OK] clears the coverage data. Choosing [Save Coverage data] opens the [Save Data] dialog box (figure 3.46)
to save the coverage data in a file before it is cleared.

Rev. 1.00 Apr. 01, 2010 Page 73 of 130
:{ENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

3.10.14 Save Coverage Data Dialog Box

When [File -> Save Session] menu option is clicked, the [Save Coverage Data] dialog box will appear, which allows the
user to save the [Coverage] window data in separate files or a single file.

Save Coverage Data B |

Address range: 00007000 - 00007 0B1

Mo Mo Toall ez Toall..

Figure 3.49 Save Coverage Data Dialog Box

When multiple [Coverage] windows are open, a [Save Coverage Data] dialog box will appear for each open coverage
window.

Clicking the [No To All] button closes the dialog box without saving any coverage data.
Clicking the [Yes To All] button saves the data of all [Coverage] windows in a single file.

Note: If a file is specified for the coverage range, not all [Coverage] windows can be saved in a single file.

Rev. 1.00 Apr. 01, 2010 Page 74 of 130
REJ10J2162-0100 :(ENESAS

Section 4 Windows

3.10.15 Displaying the Coverage Information in the Editor Window

The coverage information is reflected to the [Editor] window by highlighting the coverage columns corresponding to
the source lines of executed instructions. When the coverage settings are modified in the [Coverage] window, the

coverage column display will be updated.

« Tutornial.c

=10 x|

Line Source Addrezs | Coverage

S/

Source |

22 |FFFFS071
Z3
Z4
25
Z6
Z7
23 |FFFF2074
29
30 |FFFFo054
31 |FFFF20350
& |FFFF2053
33 |FFFF20LO
34
35 |FFFF20LS
ig |FFFFS0EZ
37
38 |FFFFSOE4
39 |FFFFSOEEBE
40 |FFFFSOFEBE
41 |FFFF2107
4z
43 |FFFF2133
44

{

void wain(wvoid) j

long a[10];

long J:

int i:

printf ("H#H#H Data Input EHEHEn™)

for| i=0; i<10;
j = randi):;

if(3] < 04
1= -1

it++)4

H

afi]l = 3¢

princf("alsd]=%1d\n",i,a[il);
1

sart (a):
printf (™¥*%% Jorting results **+yn");
for(i=0; i<10; i++)4

printf(malzd]=%1ld\n"™,i,a[i]1:
H
change (a) ;

Figure 3.50 [Coverage] Column (Source)

RENESAS

Rev. 1.00 Apr. 01, 2010 Page 75 of 130
REJ10J2162-0100

Section 2 Simulator/Debugger Functions

3.10.16 Displaying the Coverage Information in the [Disassembly] Window

The coverage information is reflected to the [Disassembly] window by highlighting the [Coverage — ASM] columns
corresponding to the disassembly lines of executed instructions. When the coverage settings are modified in the
[Coverage] window, the [Coverage — ASM] column display will be updated.

wt Tutorial_c - Disazsembly =] E3
||
Coverage - A5k | 5. Dizaszembly Addrezz | Obj code Label Dizazzembly |
FFFF2132 ELOEOE MOW.L ZCH[RO] ,R14 j
FFFF9135 G1LE CHP #OLH,R14
Ty FFFF9137 29D0 ELT.E OFFFFS107H
FFFFO130 EFO1 MOV, L O, R1
FFFFO13E 3900401 BIR. T _change
FFFF913E 710030 ADD #30H, RO, RO
FFFF9141 oz RT3
FFFF9142 T100ES _sort ADD #-18H, RO, RO
FFFF9145 L3109 MOV . L R1,14H[RO]
FFFF2147 665E MOW.L #5H,R14
FFFF914% EYOEO4 MOW.L Rl4a, 10H[RO)]
FFFF914C EDOEO4 MOV, L 10H[RO] ,R14
FFFFO14F &10E CHP #OH,R14
T FFFFO151 2405 EGT.E OFFFF9156H
| FFFFo153 38EB00 BRL.T OFFFF923EH
FFFF9156 660K MOV.L #0OH,R14
FFFF9158 EVOEO3 MOV . L R14,0CH[ERO]
FFFF915B EDOEO4 MOV, L 10H[ERO] ,R14
FFFF915E ALEED MOV . L OCH[RO] , RS
FFFF2160 47ES CMP R14,R5S
T FFFF9162 2505 ELT.E OFFFF2167H
FFFF9164 FSEBEOO ERL.TT OFFFFS222H
FFFFO167 EDOEO4 MOV, L 10H[RO] ,R14 -
1| | v

Figure 3.51 Coverage Column (Disassembly)

Rev. 1.00 Apr. 01, 2010 Page 76 of 130
REJ10J2162-0100 :{ENESAS

Section 4 Windows

3.11 Generating a Pseudo-Interrupt Manually

Windows [Trigger] and [GUI 1/O] allow the user to generate a pseudo-interrupt manually by pressing a button on the
window.

3.11.1 [Trigger] Window

Choose [View -> CPU -> Trigger] or click the [Trigger] toolbar button @ to open the [Trigger] window.

< Trigger =]

Tle
2 3 4
b b 7 (i
9 10 11 12
13 14 15 16

Figure 3.52 Trigger Window

This window displays trigger buttons that generate pseudo-interrupts manually. The details of the interrupt to be
generated by pressing each trigger button can be specified in the [Trigger Setting] dialog box.

Up to 256 trigger buttons can be used.

For details on the interrupt processing in the simulator/debugger, refer to section 2.15, Pseudo-Interrupts.

Rev. 1.00 Apr. 01, 2010 Page 77 of 130
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

e Setting a trigger button

Choose [Setting...] from the pop-up menu to open the [Trigger Setting] dialog box and to specify the details of the
pseudo-interrupt to be generated by pressing each trigger button.

Trigger Setting H |

Trigger I 1 ~ I

LCancel |

I+ Enable

I arne; I'I

[nterrupt Topel: IH'EIEIEIEIEIEIDD

=i e =i IH'EIEIEIEIEIEIDD

Ericrity: II:I vI

Figure 3.53 Trigger Setting Dialog Box

This dialog box allows the user to specify the details of the pseudo-interrupt to be generated by pressing each trigger
button.

[Trigger] Selects the trigger button to be specified in detail
[Name] Specifies a name for the selected trigger button; the name will be displayed in the [Trigger] window
[Enable] Checking this box enables the trigger button.

[Interrupt typel] Interrupt vector number

[Priority] Interrupt priority (0 to 8 or O to H'10; when the prefix is omitted, values input are taken as
hexadecimal, and the display is in hexadecimal notation). The fast interrupt is specified by the value
8 when the range is from 0 to 8 and H'10 when the range is from 0 to H'10.

Clicking the [OK] button stores the setting. Clicking the [Cancel] button closes this dialog box without setting the
details of the interrupt.

Note: If the [Cancel] button is clicked after multiple trigger button settings are modified, the modifications of all those
buttons are canceled.

e Changing the number of trigger buttons

Specify the number of trigger buttons displayed in the [Trigger] window in the [Number of Buttons] submenu in the
pop-up menu. [4], [16], [64], or [256] can be selected.

e Changing the size of trigger buttons

Specify the size of trigger buttons displayed in the [Trigger] window in the [Size] submenu in the pop-up menu.
[Large], [Normal], or [Small] can be selected.

Rev. 1.00 Apr. 01, 2010 Page 78 of 130
REJ10J2162-0100 :(ENESAS

Section 4 Windows

3.11.2 [GUI I/O] Window

Choose [View -> Graphic -> GUI 1/0] or click the [GUI /O] toolbar button g to open the [GUI I/O] window.

«=GUI /0 — Sample.pnl =10 x|

A\ X |OER = B

fl1eL|" :j
=t %[555}13 %EEE]ID
1 213

I : start

[rput Parnel

| _>|;I

Figure 3.54 GUI I/O Window

This window displays buttons that generate pseudo-interrupts manually. The details of the interrupt to be generated by
pressing each button can be specified in the [Set Button] dialog box.

For details on the interrupt processing in the simulator/debugger, refer to section 2.15, Pseudo-Interrupts.

e Setting a button

Choose [Create Button] from the pop-up menu or click the [Create Button] toolbar button (EL|). The mouse cursor turns
into a “+” symbol. Create the button by dragging the mouse cursor from a higher-left to a lower-right position.

« GUI 1/0 - new panel M=] E3

A X|[OE" S| WS
2

Figure 3.55 GUI I/0O Window (Create Button)

Rev. 1.00 Apr. 01, 2010 Page 79 of 130
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

Double-click the created button to open the [Set Button] dialog box.

Set Button Dialog |

Buttan Mame: IButtu:un

— Select Button Type

= Input ™ Input and Intermipt

= |t

[]= I.-’-'-.ddress

[]
Sddress; I j El
[t I [Lengths I Buyte - I

Bt bl et
¥ | Hiat ze

flask [Mata: I

GoE s e

g 1S I R I
Eit S prmbal; I 'I Bt &l e IEI "I
— Interupt

Intermpt Tepel: IH'EIEIEIEIEIEI

[rtermupt Trpe: IH'I]I]I]I:II:II:I

Pricrity: I 1] - I
| k. I Canizel

Figure 3.56 Set Button Dialog Box
This dialog box allows the user to specify the details of the pseudo-interrupt to be generated by pressing each button.
[Button Name] Specifies a name for the button; the name will be displayed in the [GUI 1/0] window
[Select Button Type] Select [Input] or [Input and Interrupt].
[Interrupt] [Interrupt Typel] Interrupt vector number

[Priority] Interrupt priority (0 to 8, H'0 to H'10; when the prefix is omitted, values input are
taken as hexadecimal, and the display is in hexadecimal notation).
The fast interrupt is specified by the value 8 when the range is from 0 to 8 and
H'10 when the range is from 0 to H'10.

3.12 Standard I/O and File 1/0O Processing

Use the [Simulated 1/0] window to enable the simulation for standard 1/0 and file 1/O from the user program.

Rev. 1.00 Apr. 01, 2010 Page 80 of 130
REJ10J2162-0100 :{ENESAS

Section 4 Windows

3.12.1 Opening the Simulated 1/0 Window

Choose [View -> CPU -> Simulated 1/0] or click the [Simulated 1/0O] toolbar button g to open the [Simulated 1/0]

window.

«& Simulated 170 M=l E3

Simulated IfO

Figure 3.57 Simulated I/0 Window

The standard output from the user program is displayed in this window. The key input from this window is handled as
the standard input to the user program.

3.12.2 1/O Functions

Table 3.1 lists the supported I/O functions.

Table 3.1 1/O Functions

No. Function Code Function Name Description

1 H'21 GETC Inputs one byte from the standard input
2 H'22 PUTC Outputs one byte to the standard output
3 H'23 GETS Inputs one line from the standard input
4 H'24 PUTS Outputs one line to the standard output
5 H'25 FOPEN Opens a file

6 H'06 FCLOSE Closes a file

7 H'27 FGETC Inputs one byte from a file

8 H'28 FPUTC Outputs one byte to a file

9 H'29 FGETS Inputs one line from a file

10 H'2A FPUTS Outputs one line to a file

11 H'0B FEOF Checks for end of the file

12 H'0C FSEEK Moves the file pointer

13 H'0OD FTELL Returns the current position of the file pointer

To perform 1/0 processing, use the [Simulated I/0 Address] in the [Simulator System] dialog box (refer to section
3.3.2, Modifying the Simulator System) in the following procedure.

1. Set the address specialized for 1/0 processing in the [Simulated 1/0 Address], select [Enable] and execute the

program.

2. When detecting a subroutine call instruction (BSR or JSR), that is, a simulated 1/O instruction to the specified
address during user program execution, the simulator/debugger performs 1/0 processing with the value in R1 and R2

as the parameters.

o Set the function code (table 3.1) in the R1 register

RENESAS Rev. 1.00 Apr. 01, 2010 Page 81 of 130

REJ10J2162-0100

Section 2 Simulator/Debugger Functions

MSB 1byte 1 byte LSB
, Function
| HO1 |code | R | —— |

e Set the parameter block address in the R2 register

MSB LSB

Parameter block address

o Reserve the parameter block and input/output buffer areas
Each parameter of the parameter block must be accessed in the parameter size.

After the I/O processing, the simulator/debugger resumes simulation from the instruction that follows the simulated 1/0
instruction.

Refer to the simulator/debugger help about each 1/0 function.

The following shows an example for inputting one character as a standard input (from a keyboard). Label SYS_CALL
is specified as the simulated 1/O address.

MOV.L #01210000h, R1
MOV.L #PARM, R2
MOV.L #SYS CALL, R3
JSR R3

STOP NOP

SYS CALL NOP
PARM .LWORD INBUF
.SECTION B, DATA

INBUF .BLKB 2
.END

Rev. 1.00 Apr. 01, 2010 Page 82 of 130

REJ10J2162-0100 RENESAS

Section 4 Windows

3.13 Creating a Virtual 1/0 Panel

The simulator/debugger has a GUI 1/0 function for simulating a simple key-input or key-output panel of the user target
system in a window. This virtual 1/0 panel is created in the [GUI 1/0] window. That is, virtual buttons and virtual LEDs
are arranged in this window to allow the input and output of data.

< GUI 10 - Sample.pnl ; - 10| x|

A X 0585 @S

el e i’
A1[3]]a
1 213
I : otart
Input Parel

| _>ILI

Figure 3.58 Example of a GUI 1/O Window

3.13.1 Opening the [GUI 1/0] Window

Choose [View -> Graphic -> GUI 1/0] or click the [GUI 1/O] toolbar button & to open the [GUI 1/0] window.

L ¥ aEes s B

ol ol

Figure 3.59 [GUI I/O] Window
This window is used to arrange the following items.
Button: Press a button for input of data to a virtual port or generation of a virtual interrupt.

Label: A character string which is shown when the value written to a selected address or bit was the specified value
and hidden otherwise.

LED: A defined region in which a specified color is displayed (representing illumination of a LED) when the value
written to a selected address or bit was the specified value.

Rev. 1.00 Apr. 01, 2010 Page 83 of 130
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

Text: A region for the display of a text string.

3.13.2 Creating a Button

Click on the I, button of the toolbar or choose [Create Button] from the pop-up menu. The mouse cursor turns into a
“+” symbol. Create the button by dragging the mouse cursor from a higher-left to a lower-right position.

« GUI 1/0 - new panel M=l E3
X ([OEW S | W

e B

Figure 3.60 GUI I/0O Window (Create Button)

e Specifying the event generated by clicking the button
Press the & button on the toolbar and double-click on the created button to open the [Set Button] dialog box.

Rev. 1.00 Apr. 01, 2010 Page 84 of 130
REJ10J2162-0100 :{ENESAS

Section 4 Windows

5Set Button Dialog

=]|

Eutton Mame; ISet

— Select Button Type

& Irput O Interupt O Input and Intermupt
— Input

Type: I.-’-'-.ddress

Address: |3E|:I

b Eeh

Data: |55 Length: I Byte - I

[
gl

¥ | Hit e

f sk [Wata: I

7 B 5 4 3
pitha: - -] -] -] -

sl

]

Bt Sl I 'I Bt &l IEI "I

= | FEErTEt

=t e e =i IH'EIEIEIEIEIEIDD

ezt S o= [T

Tty I I} - I

Caricel |

Figure 3.61 Set Button Dialog Box

Enter the name of the button, input port address, and input data. The button name must not include white space.

3.13.3 Creating a Label

Click on the =» button of the toolbar or choose [Create Label] from the pop-up menu. The mouse cursor turns into a “+”
symbol. Drag the mouse cursor from a higher-left to a lower-right position. This shows the frame for the label.

«& GUI /0 - new panel

s S E S =T

M[=] E3

...

E

Figure 3.62 GUI 1/O Window (Create Label)

RENESAS Rev. 1.00 Apr. 01, 2010 Page 85 of 130

REJ10J2162-0100

Section 2 Simulator/Debugger Functions

Press the & button on the toolbar or choose [Select Item] from the pop-up menu and double-click on the created label
to open the [Set Label] dialog box. Specify the responses to events. The label name must not include white space.

e Response to writing of either value to a selected bit

The settings shown below set up display of the character string “Printing in progress” or “Printer ready” when the value
of bit 3 at address Ox3EOQ is 0 or 1, respectively.

Set Label Dialog |
Address: |3E|:I j

Bit Or Data
i+ Rit
™ Data

Bit Murm. |3

Mamel: IF'rinting in progress

M ame: IF'rinter ready

— Logic
& Positive { Megative

= lata

[eml ap i amel: I
[em ap ames: I

ak. I Cancel |

Figure 3.63 Set Label Dialog Box (Bit Selection)

e Response to writing of specified values to a selected address
The settings shown below set up display of the character string “Printing in progress” or “Printer ready” when the value
0x10 or 0x20, respectively, is written to address 0x3EO.

Rev. 1.00 Apr. 01, 2010 Page 86 of 130
REJ10J2162-0100 :(ENESAS

Section 4 Windows

Set Label Dialog

Address; |3E':I

Bit Or D ata
" Bit
% Data

Bt Pl arins I

Mamel: IF'rinting in progress
Mamez: IF'rintE!r ready
o I

% Fasttiver) Hegative
—Data

Dizplay Mamel: I-I 0
Dizplay Mame2: IEEI

o]

Cancel |

Figure 3.64 Set Label Dialog Box (Data Selection)

3.13.4 Creating an LED

Click on the ™k button on the toolbar or choose [Create LED] from the pop-up menu. The mouse cursor turns into a “+”
symbol. Drag the mouse cursor from an upper left to a lower right position. This shows the frame for the LED output.

« GUI 1/0 - new panel

I =] E3

...

Figure 3.65 GUI I/O Window (Create LED)

Press the & button on the toolbar or choose [Select Item] from the pop-up menu and double-click on the created LED

to open the [Set LED] dialog box. Specify the events and responses.

RENESAS

Rev. 1.00 Apr. 01, 2010 Page 87 of 130
REJ10J2162-0100

Section 2 Simulator/Debugger Functions

o Response to writing of either value to a selected bit
The settings shown below set up the display of green or red, respectively, in the LED area when the value of bit 2 at
address Ox3EQ is 0 or 1.

Set LED Dialog]|
Address: IEE':I j
Bit Or Data

i Bit
i~ Data

Colaor | |:|
Color2 | -

—Loaiz
% Positive © Mlegative

Bit M. |2

= [ats

= I

I} = B 2 I

Cancel |

Figure 3.66 Set LED Dialog Box (Bit Selection)

Rev. 1.00 Apr. 01, 2010 Page 88 of 130
REJ10J2162-0100 :{ENESAS

Section 4 Windows

e Response to writing of specified values to a selected address
The settings shown below set up the display of green or red, respectively, in the LED area when the value 0x10 or 0x20

is written to address Ox3EQ.

Set LED Dialog

]|

fddress; |3E|:I

Bit Or Data
i Bit
i+ Data

= g

Bt fl L, I

Colaor | |:|
Color2 | -

= W

%) Fasitiver 10 Hegative

—Data

Dizplay Colarl: |1 0

Dizplay ColorZ: |2|:|

Cancel |

Figure 3.67 Set LED Dialog Box (Data Selection)

Clicking the [Color 1] or [Color 2] button opens the [Color] dialog box, which allows you to select the color.

3.13.5 Creating Fixed Text

Click the & button on the toolbar or choose [Create Text] from the pop-up menu. The mouse cursor turns into a “+”
symbol. Create the text box by dragging the mouse cursor from a higher-left to a lower-right position.

« GUI 1/0 - new panel

== =

I =] E3

E

Figure 3.68 GUI I/0O Window (Create Fixed Text)

RENESAS

Rev. 1.00 Apr. 01, 2010 Page 89 of 130
REJ10J2162-0100

Section 2 Simulator/Debugger Functions

e Setting the format for the text
Press the & button on the toolbar and double-click on the created text to open the [Set Text] dialog box.

Set Text Dialog |

Text: ITE:-:t

— Faont
Faont Mame: FixedSps
Font Size: 11 Faont...

— Color

|
e |
E—

Back I

Cancel |

Figure 3.69 Set Text Dialog Box

Click the [Font...] button to select the font and size for the text. Then click the [Text] and [Back] buttons to specify the
colors of the text and its background.

3.13.6 Changing the Size and Position of an Item

Press the & button on the toolbar and click on the item. The item is selected as shown in the figure below.

«# GUI 1/0 - new panel * M=l E3

x| HEE S | He

R F e

Figure 3.70 GUI 1/O Window (Item Selected)

Drag the item to change its position or the control points to change its size.

3.13.7 Copying an Item

Press the 52 button on the toolbar or choose [Copy] from the pop-up menu. The mouse cursor turns into a “+” symbol.
In this state, click on the item you wish to copy. Press the B button on the toolbar or choose [Paste] from the pop-up
menu to create a new item with the same size and attributes.

Rev. 1.00 Apr. 01, 2010 Page 90 of 130
REJ10J2162-0100 :(ENESAS

Section 4 Windows

3.13.8 Deleting an Item

Press the %% button on the toolbar or choose [Delete] from the pop-up menu. The mouse cursor turns into a “+” symbol.
In this state, click on the item you wish to delete.

3.13.9 Showing the Grid

Press the I button on the toolbar or choose [Display Grid] from the pop-up menu. This displays the grid on the
background.

<« GUI 1/0 - new panel * M=l E3
A X |OEm = HE

S]

Button

K1 [

Figure 3.71 GUI I/O Window (Show Grid)

Clicking the I button again hides the grid.

3.13.10 Saving I/O Panel Information

It is possible to reuse created 1/0O panels by saving the information in files. Press the = button on the toolbar or choose
[Save] from the pop-up menu to open the [Save GUI 1/O Panel File] dialog box. Specify the directory where the file is
to be stored and enter the file name.

3.13.11 Loading I/O Panel Information

Press the 2 button on the toolbar or choose [Load] from the pop-up menu to open the [Load GUI I/O Panel File]
dialog box. Specify the file you wish to load. Panel information prior to the load will be deleted.

Rev. 1.00 Apr. 01, 2010 Page 91 of 130
RENESAS REJ10J2162-0100

Section 2 Simulator/Debugger Functions

Rev. 1.00 Apr. 01, 2010 Page 92 of 130
REJ10J2162-0100 :{ENESAS

Section 4 Windows

Table 4.1 lists the windows.

Section 4 Windows

Refer to the simulator/debugger help about the toolbar buttons.

Table 4.1

Window Name

Simulator/Debugger Windows

Function

10 Viewing the 1/0 Memory

Simulated I/O Standard I/O and File I/O Processing
Event Using the Simulator/Debugger Breakpoints
Watch Looking at Variables (any variables)

Editor Displaying the source code

Image Displaying Memory Contents as an Image
Coverage Measuring Code Coverage

Disassembly Viewing the Assembly-Language Code

Command Line

Debugging with the Command Line Interface

Stack Trace

Viewing the Function Call History

Status Viewing the Current Status

Trigger Generating a Pseudo-Interrupt Manually
Trace Viewing the Trace Information

Wave Displaying Memory Contents as Waveforms

Analyzing Performance Register

Analyzing Performance

Profile/Profile-Chart

Viewing the Profile Information

Memory Viewing a Memory Area

Label Looking at Labels

Register Looking at Registers

Local Looking at Variables (local variables)

GUI I/O Creating a Virtual 1/0 Panel

OS Object Displaying the status of OS objects such as tasks and semaphores

Task Trace Measuring the execution history of the program by using the realtime OS.
Task Analyze Displaying the state of CPU occupancy.

RENESAS

Rev. 1.00 Apr. 01, 2010 Page 93 of 130
REJ10J2162-0100

Section 4 Windows

Rev. 1.00 Apr. 01, 2010 Page 94 of 130
REJ10J2162-0100 :{ENESAS

Section 5 Command Lines

51 Commands (Functional Order)

Section 5 Command Lines

The following tables show the commands in functional order.

Refer to the simulator/debugger help about each command.

5.1.1 Execution

Command Name Abbr. Function

GO GO Executes user program

GO_RESET GR Executes user program from reset vector
GO_TILL GT Executes user program until temporary breakpoint
HALT HA Halts the user program

RESET RE Resets CPU

STEP ST Steps program (by instructions or source lines)
STEP_MODE SM Selects the step mode

STEP_OUT SP Steps out of the current function

STEP_OVER SO Steps program, not stepping into functions
STEP_RATE SR Sets or displays rate of stepping

5.1.2 Download

Command Name Abbr. Function

BUILD BU Performs a build on the current project

BUILD_ALL BL Performs a build all on the current project

BUILD_FILE BF Compiles files

BUILD_MULTIPLE BM Builds multiple projects

CLEAN CL Deletes intermediate and output files produced in building
DEFAULT_OBJECT_FORMAT DO Sets the default object (program) format

FILE_LOAD FL Loads an object (program) file

FILE_LOAD_ALL LA Loads all object (program) files

FILE_SAVE FS Saves memory to a file

FILE_UNLOAD FU Unloads an object (program) file from memory
FILE_UNLOAD_ALL UA Unloads all object (program) files from memory
FILE_VERIFY FV Verifies file contents against memory
GENERATE_MAKE_FILE GM Generates a build makefile for the current workspace or deletion

5.1.3 Register

Command Name

Abbreviation

Function

REGISTER_DISPLAY

RD

Displays CPU register values

REGISTER_SET

RS

Changes CPU register contents

Rev. 1.00 Apr. 01, 2010 Page 95 of 130
RENESAS REJ10J2162-0100

Section 5 Command Lines

514 Memory

Command Name

Abbreviation

Function

CACHE

Sets caching on or off

MEMORY_COMPARE MC Compares memory contents

MEMORY_DISPLAY MD Displays memory contents

MEMORY_EDIT ME Modifies memory contents

MEMORY_FILL MF Modifies the content of a memory area by specifying data
MEMORY_FIND Mi Finds a string in an area of memory

MEMORY_MOVE MV Moves a block of memory

MEMORY_TEST MT Tests a block of memory

5.1.5 Assemble/Disassemble

Command Name

Abbreviation

Function

ASSEMBLE AS Assembles instructions into memory
DISASSEMBLE DA Disassembles memory contents
SYMBOL_ADD SA Defines a symbol

SYMBOL_CLEAR SC Deletes a symbol

SYMBOL_LOAD SL Loads a symbol information file
SYMBOL_SAVE SS Saves a symbol information file
SYMBOL_VIEW)Y Displays symbols

Rev. 1.00 Apr. 01, 2010 Page 96 of 130

REJ10J2162-0100

RENESAS

Section 5 Command Lines

5.1.6 Break

Command Name

Abbreviation Function

BREAKPOINT BP Sets a breakpoint at an instruction address

BREAK_ACCESS BA Specifies a memory range access as a break condition

BREAK_CLEAR BC Deletes breakpoints

BREAK_CYCLE BCY Specifies a cycle as a break condition

BREAK_DATA BD Specifies a memory data value as a break condition

BREAK_DATA_DIFFERENCE BDD Specifies a difference between two values of data in memory as a break
condition

BREAK_DATA _INVERSE BDI Specifies inversion of the sign of a value of data in memory as a break
condition

BREAK_DATA_RANGE BDR Specifies a range of values in memory as a break condition

BREAK_DISPLAY BI Displays a list of breakpoints

BREAK_ENABLE BE Enables or disables a breakpoint

BREAK_REGISTER BR Specifies a register data as a break condition

BREAK_SEQUENCE BS Sets sequential breakpoints

SET_DISASSEMBLY_SOFT_ SDB Sets or deletes a software breakpoint at the disassembly level

BREAK

SET_SOURCE_SOFT_BREAK

SSB

Sets or cancels a software breakpoint at source level

STATE_DISASSEMBLY_ TDB Enables or disables a software breakpoint at disassembly level
SOFT_BREAK

STATE_SOURCE_SOFT_ TSB Enables or disables a software breakpoint at source level
BREAK

517 Trace

Command Name Abbr. Function

TRACE TR Displays trace information

TRACE_CONDITION_SET TCS Sets trace information acquisition

TRACE_SAVE TV Outputs trace information into a file

5.1.8 Coverage

Command Name Abbr. Function

COVERAGE CcVv Enables or disables coverage measurement
COVERAGE_DISPLAY CVvD Displays coverage information

COVERAGE_LOAD CVL Loads coverage information

COVERAGE_RANGE CVR Sets a coverage range

COVERAGE_SAVE CVs Saves coverage information

Rev. 1.00 Apr. 01, 2010 Page 97 of 130
RENESAS REJ10J2162-0100

Section 5 Command Lines

519 Performance

Command Name Abbr. Function

ANALYSIS AN Enables or disables performance analysis
ANALYSIS_RANGE AR Sets or displays performance analysis functions

ANALYSIS_RANGE_DELETE AD

Deletes a performance analysis range

PROFILE PR Enables or disables profile

PROFILE_DISPLAY PD Displays profile information

PROFILE_SAVE PS Saves the profile information to file

5.1.10 Watch

Command Name Abbr. Function

WATCH_ADD WA Adds an item for watching
WATCH_AUTO_UPDATE wu Selects or cancels automatic updating of watched items
WATCH_DELETE WD Deletes a watched item

WATCH_DISPLAY Wi Displays the contents of the Watch window
WATCH_EDIT WE Edits the value of a watched item
WATCH_EXPAND WX Expands or collapses a watched item
WATCH_RADIX WR Changes the radix for display of watched items
WATCH_RECORD WO Outputs the history of updating of the values of a watched item to a file
WATCH_SAVE WS Saves the contents of the Watch window to a file
5.1.11 Script/Logging

Command Name Abbr. Function

! - Comment

ASSERT - Checks if an expression is true or false
AUTO_COMPLETE AC Enables or disables the auto-complete function
ERASE ER Clears the [Command Line] window

EVALUATE EV Evaluates an expression

LOG LO Controls command output logging

SLEEP - Delays command execution

SUBMIT SuU Executes a command file

TCL - Displays TCL information

5.1.12 Memory Resource

Command Name Abbr. Function

MAP_DISPLAY

MA

Displays memory resource settings

MAP_SET

MS

Allocates a memory area

Rev. 1.00 Apr. 01, 2010 Page 98 of 130

REJ10J2162-0100

RENESAS

Section 5 Command Lines

5.1.13 Simulator/Debugger Settings

Command Name Abbr. Function
EXEC_MODE EM Sets and displays execution mode
EXEC_STOP_SET ESS Sets or displays the execution mode at the occurrence of an interrupt

5.1.14 Standard I/O and File 1/O

Command Name Abbr. Function

SIMULATEDIO_CLEAR SIoC Clears the contents of the [Simulated 1/0] window

TRAP_ADDRESS TP Sets a simulated I/O address

TRAP_ADDRESS_DISPLAY TD Displays simulated 1/0O address settings

TRAP_ADDRESS_ENABLE TE Enables or disables the simulated I/O

5.1.15 Utility

Command Name Abbr. Function

HELP HE Displays the command line help

INITIALIZE IN Initializes the debugging platform

QUIT QU Exits HEW

RADIX RA Sets default input radix

RESPONSE RP Sets an interval to refresh the window

STATUS STA Displays the debugging platform status

TOOL_INFORMATION TO Outputs information on the currently registered tool to a file

5.1.16 Project/Workspace

Command Name Abbr. Function

ADD_FILE AF Adds a file to the current project

CHANGE_CONFIGURATION CcC Sets the current configuration

CHANGE_PROJECT CP Sets the current project

CHANGE_SESSION Cs Changes the current session

CHANGE_SUB_SESSION CB Changes the currently active session when simultaneous debugging is
enabled

CLEAR_OUTPUT_WINDOW COW Clears the contents of the specified tab in the [Output] window

CLOSE_WORKSPACE CwW Close the current workspace

OPEN_WORKSPACE ow Opens a workspace

REFRESH_SESSION RSE Updates information on the session

REMOVE_FILE REM Removes a file from the current project

SAVE_SESSION SE Saves the current session

SAVE_WORKSPACE SW Saves the current workspace

UPDATE_ALL_DEPENDENCIES UD

Updates all build dependencies of the current project

Rev. 1.00 Apr. 01, 2010 Page 99 of 130
RENESAS REJ10J2162-0100

Section 5 Command Lines

5.1.17 Test Tool Facility

Command Name Abbr. Function
CLOSE_TEST_SUITE CTS Closes a test suite
COMPARE_TEST_DATA CTD Compares test data
OPEN_TEST_SUITE OoTS Opens a test suite
RUN_TEST RT Executes a test

5.1.18 Debugging Functions for the Realtime OS

Command Name Abbr.

Function

OSOBJECT_ALL_ADD OAA

Adds OS objects (of a specific object type)

OSOBJECT_ALL_DELETE OAD

Deletes OS objects (in a specific sheet)

OSOBJECT_AUTO_UPDATE OAU

Changes the automatic-update setting to “Auto” and “Break”.

OSOBJECT_DATA_LOWLINE ODL

Moves an OS object to the next line.

OSOBJECT_DATA_SAVE ODS

Saves the information on an OS object to a file.

OSOBJECT_DATA_UPLINE ODU

Moves an OS object to the previous line.

OSOBJECT_DISPLAY oD Shows the information on an OS object.
OSOBJECT_NO_UPDATE ONU Changes the automatic-update setting to “Lock”.
OSOBJECT_ONE_ADD OO0A Adds an OS object.
OSOBJECT_ONE_DELETE OOD Deletes an OS object.

OSOBJECT_ONE_EDIT OOE Edits an OS object.

OSOBJECT_SETTING_LOAD OSL

Loads OS-object settings from a file.

OSOBJECT_SETTING_SAVE 0SS

Saves OS-object settings in a file.

OSOBJECT_STOP_UPDATE OSU

Changes the automatic-update setting to “Break”.

5.1.19 File Input and Output through Virtual Ports

Command Name Abbr. Function

PORT_FILE_ADD PFA Adds a file for input or output through a virtual port.
PORT_FILE_CLOSE PFC Closes a file for input or output through a virtual port.
PORT_FILE_DELETE PFD Deletes the setting of a file for input or output through a virtual port.
PORT_FILE_OPEN PFO Opens a file for input or output through a virtual port.
PORT_FILE_STATUS PFS Shows the current state of a file for input or output through a virtual port.

Rev. 1.00 Apr. 01, 2010 Page 100 of 130
REJ10J2162-0100

RENESAS

Section 5 Command Lines

5.2

Commands (Alphabetical Order)

Table 5.1 lists the commands in alphabetical order.

Refer to the simulator/debugger help about each command.

Table5.1 Simulator/Debugger Commands

No. Command Name Abbr. Function

1 1 - Comment

2 ADD_FILE AF Adds a file to the current project

3 ANALYSIS AN Enables or disables performance analysis

4 ANALYSIS_RANGE AR Sets or displays performance analysis functions

5 ANALYSIS_RANGE_ AD Deletes a performance analysis range
DELETE

6 ASSEMBLE AS Assembles instructions into memory

7 ASSERT - Checks if an expression is true or false

8 AUTO_COMPLETE AC Enables or disables the auto-complete function

9 BREAKPOINT BP Sets a breakpoint at an instruction address

10 BREAK_ACCESS BA Specifies a memory range access as a break condition

11 BREAK_CLEAR BC Deletes breakpoints

12 BREAK_CYCLE BCY Specifies a cycle as a break condition

13 BREAK_DATA BD Specifies a memory data value as a break condition

14 BREAK_DATA BDD Specifies a difference between two values of data in memory as a
DIFFERENCE break condition

15 BREAK_DATA_ BDI Specifies inversion of the sign of a value of data in memory as a break
INVERSE condition

16 BREAK_DATA RANGE BDR Specifies a range of values in memory as a break condition

17 BREAK_DISPLAY BI Displays a list of breakpoints

18 BREAK_ENABLE BE Enables or disables a breakpoint

19 BREAK_REGISTER BR Specifies a register data as a break condition

20 BREAK_SEQUENCE BS Sets sequential breakpoints

21 BUILD BU Performs a build on the current project

22 BUILD_ALL BL Performs a build all on the current project

23 BUILD_FILE BF Compiles files

24 BUILD_MULTIPLE BM Builds multiple projects

25 CACHE - Sets caching on or off

26 CHANGE_CONFIGURATION CcC Sets the current configuration

27 CHANGE_PROJECT CP Sets the current project

28 CHANGE_SESSION CSs Changes the current session

29 CHANGE_SUB_SESSION CB Changes the currently active session when simultaneous debugging is

enabled
30 CLEAN CL Deletes intermediate and output files produced in building

Rev. 1.00 Apr. 01, 2010 Page 101 of 130

RENESAS REJ10J2162-0100

Section 5 Command Lines

Table 5.1 Simulator/Debugger Commands (cont)

No. Command Name Abbr. Function

31 CLEAR_OUTPUT_WINDOW COwW Clears the contents of the specified tab in the [Output] window
32 CLOSE_TEST CT Closes a test suite

33 CLOSE_WORKSPACE Cw Close the current workspace

34 COMPARE_TEST_DATA CTD Compares test data

35 COVERAGE Ccv Enables or disables coverage measurement

36 COVERAGE_DISPLAY CVvD Displays coverage information

37 COVERAGE_LOAD CVL Loads coverage information

38 COVERAGE_RANGE CVR Sets a coverage range

39 COVERAGE_SAVE CVs Saves coverage information

40 DEFAULT_OBJECT_FORMAT DO Sets the default object (program) format

41 DISASSEMBLE DA Disassembles memory contents

42 ERASE ER Clears the [Command Line] window

43 EVALUATE EV Evaluates an expression

44 EXEC_MODE EM Sets and displays execution mode

45 EXEC_STOP_SET ESS Sets or displays the execution mode at the occurrence of an interrupt
46 FILE_LOAD FL Loads an object (program) file

47 FILE_LOAD_ALL LA Loads all object (program) files

48 FILE_SAVE FS Saves memory to a file

49 FILE_UNLOAD FU Unloads an object (program) file from memory

50 FILE_UNLOAD_ALL UA Unloads all object (program) files from memory

51 FILE_VERIFY FVv Verifies file contents against memory

52 GENERATE_MAKE_FILE GM Generates a build makefile for the current workspace
53 GO GO Executes user program

54 GO_RESET GR Executes user program from reset vector

55 GO_TILL GT Executes user program until temporary breakpoint
56 HALT HA Halts the user program

57 HELP HE Displays the command line help

58 INITIALIZE IN Initializes the debugging platform

59 LOG LO Controls command output logging

60 MAP_DISPLAY MA Displays memory resource settings

61 MAP_SET MS Allocates a memory area

62 MEMORY_COMPARE MC Compares memory contents

63 MEMORY_DISPLAY MD Displays memory contents

64 MEMORY_EDIT ME Modifies memory contents

65 MEMORY_FILL MF Modifies the content of a memory area by specifying data
66 MEMORY_FIND Ml Finds a string in an area of memory

67 MEMORY_MOVE MV Moves a block of memory

68 MEMORY_TEST MT Tests a block of memory

Rev. 1.00 Apr. 01, 2010 Page 102 of 130

REJ10J2162-0100

RENESAS

Section 5 Command Lines

Table 5.1 Simulator/Debugger Commands (cont)

No. Command Name Abbr. Function

69 OPEN_TEST_SUITE oTS Opens a test suite

70 OPEN_WORKSPACE ow Opens a workspace

71 OSOBJECT_ALL_ADD OAA Adds OS objects (of a specific object type)

72 OSOBJECT_ALL_DELETE OAD Deletes OS objects (in a specific sheet)

73 OSOBJECT_AUTO_UPDATE OAU Changes the automatic-update setting to “Auto” and “Break”.

74 OSOBJECT_DATA_LOWLINE ODL Moves an OS object to the next line.

75 OSOBJECT_DATA_SAVE OoDSs Saves the information on an OS object to a file.

76 OSOBJECT_DATA_UPLINE ODU Moves an OS object to the previous line.

77 OSOBJECT_DISPLAY oD Shows the information on an OS object.

78 OSOBJECT_NO_UPDATE ONU Changes the automatic-update setting to “Lock”.

79 OSOBJECT_ONE_ADD OOA Adds an OS object.

80 OSOBJECT_ONE_DELETE OO0D Deletes an OS object.

81 OSOBJECT_ONE_EDIT OOE Edits an OS object.

82 OSOBJECT_SETTING_LOAD OSL Loads OS-object settings from a file.

83 OSOBJECT_SETTING_SAVE OSS Saves OS-object settings in a file.

84 OSOBJECT_STOP_UPDATE osu Changes the automatic-update setting to “Break”.

85 PORT_FILE_ADD PFA Adds a file for input or output through a virtual port.

86 PORT_FILE_CLOSE PFC Closes a file for input or output through a virtual port.

87 PORT_FILE_DELETE PFD Deletes the setting of a file for input or output through a virtual port.

88 PORT_FILE_OPEN PFO Opens a file for input or output through a virtual port.

89 PORT_FILE_STATUS PFS Shows the current state of a file for input or output through a virtual
port.

90 PROFILE PR Enables or disables the profile

91 PROFILE_DISPLAY PD Displays profile information

92 PROFILE_SAVE PS Saves the profile information to file

93 QUIT QU Exits HEW

94 RADIX RA Sets default input radix

95 REFRESH_SESSION RSE Updates information on the session

96 REGISTER_DISPLAY RD Displays CPU register values

97 REGISTER_SET RS Changes CPU register contents

98 REMOVE_FILE REM Removes a file from the current project

99 RESET RE Resets CPU

100 RESPONSE RP Sets an interval to refresh the window

101 RUN_TEST RT Executes a test

102 SLEEP - Delays command execution

103 SAVE_SESSION SE Saves the current session

104 SAVE_WORKSPACE SW Saves the current workspace

105 SET_DISASSEMBLY_SOFT_ SDB Sets or deletes a software breakpoint at the disassembly level

BREAK

Rev. 1.00 Apr. 01, 2010 Page 103 of 130

RENESAS REJ10J2162-0100

Section 5 Command Lines

Table 5.1 Simulator/Debugger Commands (cont)

No. Command Name Abbr. Function

106 SET_SOURCE_SOFT_BREAK SSB Sets or deletes a software breakpoint at the source level

107 SIMULATEDIO_CLEAR SIoC Clears the contents of the [Simulated I/O] window

108 STATE_DISASSEMBLY_SOFT_ TDB Enables or disables a software breakpoint at the disassembly level
BREAK

109 STATE_SOURCE_SOFT_BREAK TSB Enables or disables a software breakpoint at the source level

110 STATUS STA Displays the debugging platform status

111 STEP ST Steps program (by instructions or source lines)

112 STEP_MODE SM Selects the step mode

113 STEP_OUT SP Steps out of the current function

114 STEP_OVER SO Steps program, not stepping into functions

115 STEP_RATE SR Sets or displays rate of stepping

116 SUBMIT SuU Executes a command file

117 SYMBOL_ADD SA Defines a symbol

118 SYMBOL_CLEAR SC Deletes a symbol

119 SYMBOL_LOAD SL Loads a symbol information file

120 SYMBOL_SAVE SS Saves a symbol information file

121 SYMBOL_VIEW Sy Displays symbols

122 TCL - Enables or disables the TCL

123 TOOL_INFORMATION TO Outputs information on the currently registered tool to a file

124 TRACE TR Displays trace information

125 TRACE_CONDITION_SET TCS Sets trace information acquisition

126 TRACE_SAVE TV Outputs trace information into a file

127 TRACE_STATISTIC TST Analyzes statistic information

128 TRAP_ADDRESS TP Sets a simulated I/O address

129 TRAP_ADDRESS_DISPLAY TD Displays simulated 1/O address settings

130 TRAP_ADDRESS_ENABLE TE Enables or disables the simulated 1/O

131 UPDATE_ALL_DEPENDENCIES ub Updates all build dependencies of the current project

132 WATCH_ADD WA Adds an item for watching

133 WATCH_AUTO_UPDATE wu Selects or cancels automatic updating of watched items

134 WATCH_DELETE WD Deletes a watched item

135 WATCH_DISPLAY wi Displays the contents of the Watch window

136 WATCH_EDIT WE Edits the value of a watched item

137 WATCH_EXPAND WX Expands or collapses a watched item

138 WATCH_RADIX WR Changes the radix for display of watched items

139 WATCH_RECORD WO Outputs the history of updating of the values of a watched item to a

file
140 WATCH_SAVE WS Saves the contents of the Watch window to a file

Rev. 1.00 Apr. 01, 2010 Page 104 of 130
REJ10J2162-0100

RENESAS

Section 6 Messages

Section 6 Messages

6.1 Information Messages

The simulator/debugger outputs information messages as listed in table 6.1 to notify users of execution status.

Table 6.1 Information Messages

Message

Contents

Break Access (Access
Address: H'nnnnnnnn,
Type: xxxx, Access Size:

yyyy)

An access break condition was satisfied so execution has stopped. The information in
parentheses shows the satisfied access break condition (accessed address, access type,
and access unit).

Break Cycle
(Cycle: H'nnnnnnnn)

A number-of-cycles condition was satisfied so execution has stopped. The information in
parentheses shows the satisfied number-of-cycles condition (number of cycles).

Break Data (Access
Address: H'nnnnnnnn,
Data: H'mmmm)

A data break condition (other than [Inverse sign] or [Difference]) was satisfied so execution
has stopped. The information in parentheses shows the satisfied data break condition
(accessed address and value).

Break Data (Access
Address: H'nnnnnnnn,
Previous Data: H'mmmm,
Current Data: H'mmmm)

A data break condition ([Inverse sign] or [Difference]) was satisfied so execution has stopped.
The information in parentheses shows the satisfied data break condition (accessed address,
and previous and current values).

Break Register (Register:
XX, Value: H'mmmm)

A register break condition was satisfied so execution has stopped. The information in
parentheses shows the satisfied register break condition (register name and value).

Break Sequence
(PC: H'nnnnnnnn)

A sequential break condition was satisfied so execution has stopped. The information in
parentheses shows the satisfied sequential break condition (address of the last instruction).

/O DLL Stop

The peripheral function has stopped.

PC Breakpoint
(PC: H'nnnnnnnn)

A PC breakpoint condition was satisfied so execution has stopped. The information in
parentheses shows the satisfied PC-breakpoint condition (instruction address).

Step Normal End

The step execution succeeded.

Stop

Execution has been stopped by the [Stop] button.

Trace Buffer Full

Since the Break mode was selected by [Trace buffer full handling] in the [Trace Acquisition]
dialog box and the trace buffer became full, execution was terminated.

WAIT Instruction

Instruction execution has been suspended by a WAIT instruction.

Rev. 1.00 Apr. 01, 2010 Page 105 of 130
RENESAS REJ10J2162-0100

Section 6 Messages

6.2 Error Messages

The simulator/debugger outputs error messages to notify users of the errors of user programs or operation. Table 6.2

lists the error messages.

Table 6.2 Error Messages

Message

Contents

Undefined Instruction
Exception

An error has occurred due to undefined instruction exception processing.

Privilege Instruction
Exception

An error has occurred due to privileged instruction exception processing.

Floating-point Exception

An error has occurred due to floating-point exception processing.

Reset Exception

An error has occurred due to reset exception processing.

Interrupt Exception

An error has occurred at the interrupt exception.

INT Instruction Exception

An error has occurred due to unconditional trap (INT instruction) exception processing.

BRK Instruction
Exception

An error has occurred due to unconditional trap (BRK instruction) exception processing.

I/O area not exist

An attempt was made to delete the I/O area. Be sure to set the 1/O area.

I/O DLL lllegal Interrupt
Information (errNum=2xx)

Information on interrupts is incorrect. [errNum] shows the details on this error. Correct the
information.

[errNum]

200: The specified vector is outside the supported range.
201: The specified priority is outside the supported range.

I/O DLL Memory Access
Error (errNum=0xx,
Address=0xXXXXXXXX)

An error has occurred during a memory access to the peripheral function. [errNum] shows the
details on this error and [Address] shows the address where this error occurred. Correct the
user program according to the error information.

[errNum]

001: The specified address is outside the supported range.
002: No memory exists in the specified area.

003: The required memory cannot be allocated.

004: The specified data size is outside the supported range.
005: The specified address cannot be accessed.

I/O DLL Register Access
Error (errNum=1xx,
RegisterName=xxxx)

An error has occurred during a register access to the peripheral function. [errNum] shows the
details on this error and [RegisterName] shows the register where this error occurred. Correct
the user program according to the error information.

[errNum]

100: The register description is incorrect.
101: The specified data value is incorrect.

Rev. 1.00 Apr. 01, 2010 Page 106 of 130 RENESAS

REJ10J2162-0100

Section 6 Messages

Table 6.2 Error Messages (cont)

Message Contents

Memory Access Error One of the following events occurred (the information in parentheses shows the target
(Address: H'nnnnnnnn) address for the operation that generated the error):

¢ A memory area that had not been allocated was accessed.

o Data was written to a memory area having the write-protected attribute.
e Data was read from a memory area having the read-disabled attribute.
e A memory area in which memory does not exist was accessed.

Allocate memory, change the memory attribute, or correct the user program to prevent the
memory from being accessed.

System Call Error Simulated I/O error occurred. Modify the incorrect contents of registers R1, R2, and
parameter block.

The memory resource The memory resource was set outside the range of memory mapping. Modify the memory
has not been set up resource settings so that no error will occur.

Rev. 1.00 Apr. 01, 2010 Page 107 of 130
RENESAS REJ10J2162-0100

Section 7 Tutorial

Rev. 1.00 Apr. 01, 2010 Page 108 of 130
REJ10J2162-0100 :{ENESAS

Section 7 Tutorial

Section 7 Tutorial

7.1 Preparation
The basic functions of the simulator/debugger will be described in this section using a sample program.

Note: The contents of usage examples (figures) in this section will differ depending on the compiler version.

7.1.1 Sample Program

The HEW demonstration program is used for the sample program and is written in C language. It first sorts ten random
data in the ascending order, and then in the descending order. The sample program:

(1) Generates random data for sorting using the main function.

(2) Inputs the array which stores the random data that is generated by the main function, then sorts the data in the
ascending order using the sort function.

(3) Inputs the array generated by the sort function, and sorts the data in the descending order using the change function.
(4) Displays the random data and the sorted data using the printf function.

The HEW demonstration program is used as the sample program.

7.1.2 Creating the Sample Program
Note the following when creating the HEW demonstration program:

o Specify [Demonstration] for [Project Type] in [Creating a New Workspace].

e Specify [RX600] for [CPU Series:].

e Specify [RX600 Simulator] for [Target:].

o Specify [SimDebug_RX600] for the configuration on the toolbar before building the project.
e Specify [SimSessionRX600] for the session on the toolbar.

o This demonstration program uses no peripheral function. In the [Set Peripheral Function Simulation] dialog box that
opens when the session is changed, check [Don’t show this dialog box] and then press the [OK] button.

Since this section explains the debugging function, [Demonstration] has not been optimized. Do not change this setting.
7.2 Settings for Debugging

7.2.1 Allocating the Memory Resource

The allocation of the memaory resource is necessary to run the application being developed. When using the
demonstration project, the memory resource is allocated automatically, so check the setting.

e Select [Simulator->Memory Resource...] from the [Setup] menu, and display the allocation of the current memory
resource.

Rev. 1.00 Apr. 01, 2010 Page 109 of 130
RENESAS REJ10J2162-0100

Section 7 Tutorial

Simulator System E |
Syzbem Memnry|
temany bap: H‘}’u e‘hl xi|l:3|3| b emorny Besournce; ‘ﬂhle‘h “il
Beain | End | Tupe | Size | Fead | Wit | Beain | End | Attribute
Q0000000 QO0TFFFF | Rak | - 1 1 Q0000000 00007FFF Read '
Q0020000 Q0OFFFFF | 1/0 1 1 FFFF2000 FFFFFFFF Read '
00100000 Q0107FFF | ROM 1 1
Q07F2000 Q0FFIFFF | RAM 1 1
QOFFCOO0 | OOFFCAFF | 140 1 1
QOFFFCO0 | OOFFFFFF | 140 1 1
QOEQOOOO | OOFFFFFF | ROM 1 1
FEFFEOOO | FEFFFFFF | ROM 1 1
FFFFCOO0 | FF7FFFFF | ROR 1 1
FFEOOOOO | FFFFFFFF | ROM 1 1
a [s B
|] 4 I Cancel | Spply |

Figure 7.1 Simulator System Dialog Box (Memory Page)

The ranges of addresses from H'FFFF8000 to H'FFFFFFFF and H'00000000 to H'00007FFF are secured as readable and
writable areas for storage of the program and data, respectively.

o Close the dialog box by clicking [OK].

The memory resource can also be referred to or modified by using the [Debugger] page on the [RX Standard Toolchain]
dialog box. Changes made in either of the dialog boxes are reflected.

7.2.2 Downloading the Sample Program
When using the demonstration project, the sample program to be downloaded is automatically set, so check the settings.

e Open the [Debug Setting] dialog box by selecting [Debug Settings...] on the [Debug] menu.

Rev. 1.00 Apr. 01, 2010 Page 110 of 130

REJ10J2162-0100 RENESAS

Section 7 Tutorial

Debug Sethings

| simSessionRXE00

=] {Taigeti] options |

@ Tutorial

Target:

[R50 Simulator

LCare:

Kl

ISingIe Core Target

Debug format:

L

[ERDwart2

Download modules:

Le.

Filename | Offset Address | Farmat

$CONFIGDIRNEPRO... 00000000 Elf/Dwearf2

I odifi..

I

Eemoye

1]}

[GEnr

i

oK I Cancel

Figure 7.2 Debug Settings Dialog Box

Files to be downloaded are listed in [Download Modules].

Close the [Debug Settings] dialog box by clicking the [OK] button.

Download the sample program by selecting [Download Modules->All Download Modules] from the [Debug] menu.

RENESAS

Rev. 1.00 Apr. 01, 2010 Page 111 of 130
REJ10J2162-0100

Section 7 Tutorial

7.2.3 Displaying the Source Program
The HEW supports the source-level debugging. Display the source file ("Tutorial.c™) in the [Source] window.

e Open the [Source] window by double-clicking Tutorial.c on the [Workspace] window.

«& Tutorial.c =] E3
Bl
Line Source Address | C.. 5..] Source |

23 |FFFF2042Z2 oild mwain (woid) j

4 i

25 long a[10]:

26 long j:

27 int i:

28

Z9 |FFFF2045 printt ["HEE Data Input #HHEEHNT)

30

31 |FFFFSOEE for{ i=0; i<10; i++)4

32 |FFFF5061 j = rand():

33 |FFFFS06A if{j] < O)d

34 |FFFF5071 = -1:

35 +

36 |FFFF507S ali] = 1:

37 |FFFFS0835 printf(™alzd]=31ld\n",i,a[i]):

38 H

39 |FFFFSOE3 Sort (a):

40 |(FFFFSOEG printf("FFF Sorting results FEFART); 1.

41 |FFFFS0CE for|{ i=0; i<10; i++)i

42 |FFFF5004 printf("alzd]=%1ld\n", i,a[i]):

43 H

44 |FFFF9104 change (a) ;

45 +

45

47 |FFFF210D wold sort (long *a)

43 i

49 long !

50 int i, j, k., gap:

51 -
4] | v

Figure 7.3 Source Window (Displaying the Source Program)

Rev. 1.00 Apr. 01, 2010 Page 112 of 130
REJ10J2162-0100 :{ENESAS

Section 7 Tutorial

7.2.4 Setting a PC Breakpoint
Breakpoints can be set easily via the [Source] window. To set a breakpoint on a line that includes the sort function call:

e Place the cursor in the line that includes the sort function call and click the right mouse button to launch the pop-up
menu, and select [Toggle Breakpoint] from the pop-up menu.

w® Tutorial ¢ [=]
= &l
Line Source Address .| 5/ Breakpoints | Source |

23 |FFFFoO42 wolid main(wvoid) j

24 {

25 long a[107:

26 long 32

27 int i;

28

Zz9 |FFFFo045 printf ("##H# Data Input #HHEYR™):

30

31 |FFFFOO55 for{ i=0; i<10:; i++)4

32 |FFFFo061 j = randi):

33 |FFFF90GL if(3 < 004

34 |FFFF9071 1= -1:

35 i

36 |FFFFS079 ali] = 3:

37 |FFFF9033 printf("a[%d]=%1d'\n",1i,a[i]):

38 i

39 |FFFFSOE3 [sort (&) :

40 |FFFF2OEBS printf("*** Sorting results *FFhnt);

41 |FFFF90CS for{ i=0; i<10; i++)4

42 |FFFFS0D4 printf("alsd]=%ld\n",i,a[i]):

43 i

44 |FFFFo104 change (a) 2

45 i

46

47 |FFFF210D woid sortilong *a)

48 {

49 long t:

50 int i, Jj, k, gap:

51 -
4| | v

Figure 7.4 Source Window (Setting the Breakpoint)

A [o] is displayed at the line that includes the sort function call, indicating that the PC breakpoint is set at the address.

7.2.5

Setting the Profiler

e Open the [Profile] window by selecting [Profile] from the [View->Performance] menu.

RENESAS

Rev. 1.00 Apr. 01, 2010 Page 113 of 130
REJ10J2162-0100

Section 7 Tutorial

< Profile M[=] 3
S5 == | Ens IShow Functions// ariables ﬂ = | &7
Function/Varishle | E‘/VI Address | Size I Times | Cyclel Ext mem I /0 areal Int meml

A B List A Tree

Figure 7.5 Profile Window

e Open the pop-up menu by right clicking the mouse on the [Profile] window, and select [Enable Profiler] to enable
acquisition of the profile information.

7.2.6 Setting the Simulated 1/0O
When the demonstration project is used, the simulated 1/O is automatically set, so check the setting.

e Open the [Simulator System] dialog box by selecting [Simulator->System] from the [Setup] menu.

Simulator System ElEd |
System | Memu:ur_l,ll

CPU:
| <600 =l
Bit zize: Simulated 140 Addrezs: ¥ Enable
BEE |H'D0000000 =]
Endian; E wecution Mode:
ILittIe Endian | 5top | Detail. |
|nterrupt Prionity Lewvel: Rezponze:
|n-? [Dizable MY TIPL instruction) ID'#EIEIEIEI
[Cache the results of decoding instructions and accelerate simulation

Cancel |]

Figure 7.6 Simulator System Dialog Box (System Page)

e Confirm that [Enable] in [Simulated I/0 Address] is checked.
o Click the [OK] button to enable the simulated 1/O.

e Select [Simulated 1/0O] from the [View->CPU] menu and open the [Simulated 1/0] window. The simulated 1/0 will
not be enabled if the [Simulated 1/0] window is not open.

Rev. 1.00 Apr. 01, 2010 Page 114 of 130
REJ10J2162-0100 :(ENESAS

Section 7 Tutorial

«& Simulated 170 M=l E3

Figure 7.7 Simulated 1/0 Window

7.2.7 Setting the Trace Information Acquisition Conditions

e Select [Trace] from the [View->Code] menu to open the [Trace] window. Open the pop-up menu by right clicking
the mouse on the [Trace] window, and select [Acquisition...] from the pop-up menu.

The [Trace Acquisition] dialog box below will be displayed.

Tiaco Acausion]
Trace Funchion: I Ernahle j
Trace Buffer Eull Handling: IEDntinue j
Trace Capacity: I E5536 records j
Acquizition Condition; I'ﬂ"" j
— Trace Event:

Type | Condition | Add..

Delete

Delete Al

Enahble Al

Digable Al

Cancel

EREEL

Figure 7.8 Trace Acquisition Dialog Box

Rev. 1.00 Apr. 01, 2010 Page 115 of 130
RENESAS REJ10J2162-0100

Section 7 Tutorial

e Set [Trace Function] to [Enable] in the [Trace Acquisition] dialog box, and click the [OK] button to enable the
acquisition of the trace information.

7.2.8 Setting the Stack Pointer and Program Counter

To execute the program, the program counter must be set from the location of the reset vector. In the reset vector of the
sample program, the PC value H'FFFF8000 is written.

o Select [Reset CPU] from the [Debug] menu, or click the [Reset CPU] button on the toolbar.

Set the program counter to H'FFFF8000 from the reset vector.

Eij
Figure 7.9 Reset CPU Button

7.3 Start Debugging

7.3.1 Executing a Program

o Select [Go] from the [Debug] menu, or click the [Go] button on the toolbar.

el
Figure 7.10 Go Button

The program halts where a breakpoint is set. An arrow is displayed in the [Source] window, indicating the location the
execution has stopped. As the termination cause, [PC Breakpoint (PC: H'FFFF90E4)] is displayed in the [Output]
window.

Rev. 1.00 Apr. 01, 2010 Page 116 of 130
REJ10J2162-0100 :(ENESAS

Section 7 Tutorial

«# Tutorial.c

- 10| x|

Line Source Address S5/ Breakpointz | Source |
23 |FFFFoO04z wold wain(woid) j
24 {
z5 long a[10] :

26 long Jj:

27 int 1i:

Z8

29 |FFFF9045 printf ("#H#H Data Input HEHH\n™):
30

31 |FFFF9055 for{ i=0; i<10; i4+4+)4

32 |FFFFo061 i = rand():

33 |FFFF90eL if() < 0){

34 |FFFFo071 1= -3:

35 H

36 |FFFFo079 al[i] = 3:

37 |FFFF9083 princf("alsd]=%1d\n",i,a[i]):
38 H

39 |FFFF90E3 [=43 sort (&) ;

40 |FFFF90ES printf ("F** Sorting results *FFhn') ;o
41 |FFFFo0C3 for(i=0; i<10; i4++)4

4z |FFFF90D4 printf("alzd]=%1d\n",i,a[i]):
43 H

44 |FFFFo104 change (a) ;

45 H

46

47 |FFFFS10D wroid sort(long *a)

45 {

49 long £

j=1n] int i, 1, k, gap:

51 b

1] | v

Figure 7.11 Source Window (Break Status)

The termination cause can be displayed in the [Status] window.

Select [Status] from the [View->CPU] menu to open the [Status] window, and select the [Platform] sheet in the
[Status] window.

RENESAS

Rev. 1.00 Apr. 01, 2010 Page 117 of 130
REJ10J2162-0100

Section 7 Tutorial

- Status |0

Item |Status |
Connected To REEO00 Simulator

CPT REGOD

Exec Mode Stop

Pun Status Ready

Ereak Cauze PC Breakpoint (PC:H'FPFFI0E3)
Execute From Feset

Exec Instructions 358938

Cyeles 58246

Fun Time Count Q0:00:00.000.582.460

CPU Freguency 100 MH=

4 I :I; Mernory }-.Platfurm .-'{. Events f

Figure 7.12 Status Window
The above status window indicates that:

(1) The cause of break is a PC breakpoint

(2) Execution is performed from the reset

(3) The number of instructions executed from a GO command following a reset is 35,898.
(4) The number of cycles of execution following a reset is 58,246.

(5) The execution time following a reset is 582.46 ms.

(6) The operating frequency of the CPU is 100 MHz.

Rev. 1.00 Apr. 01, 2010 Page 118 of 130
REJ10J2162-0100 :{EN ESNAS

Section 7 Tutorial

Register values can be checked in the [Register] window.

o Select [Registers] from the [View->CPU] menu.

Natne |Value |
RO oooo1lase

Rl Qo0ooo00A

RZ oooolopa

R3 ooooooono

Rd oooo1o01

B3 ooooooono

213 ooooooono

R7 ooooooono

E8 ooooooono

21 ooooooono

R10 ooooooono

Rl1l ooooooono

RlZ ooooooono

R13 ooooooono

Rl14 Qo0ooo00A

R15 oooo19ac

UsFP oooo1lase

ISP Qo001s20

F3W QooQooQoooo1001i0000000000000011 OPUI--ZC
PC FFFFA0E3

INTE FFFF353C

EF3W 00000000

EFPC ooooooono

FINTWV 00000000

FP3W 00000100

AT QooQooQoooooooon

Figure 7.13 Register Window

Register values when the program is terminated can be checked.

RENESAS Rev. 1.00 Apr. 01, 2010 Page 119 of 130

REJ10J2162-0100

Section 7 Tutorial

7.3.2 Using the Trace Buffer

The trace buffer can be used to clarify the history of instruction execution.

e Select [Trace] from the [View->Code] menu and open the [Trace] window. Scroll up to the very top of the main()

function.

«* Trace

Vo|Sazxx i@ E4)

aga

[=1 E3

Range: -0035837, 0000000 |File: |Cycle: 0035207 |Address: FFFF3042 |Time: 00: 00:00.000.021.420 |—

ETE | Lakel |Address | Time Stamp |PSW | Instruction |Interrupt| Access Data Lﬂ
-0035207 _mwain FFFFO042 00:00:00.000.021.420 O0PUI---C ADD #-30H, RO, RO - T2p<-00001A5C)
-0035208 FFFFOO45 00:00:00.000.021.430 O0PUI---C MOV.L #-00007BCCH, RS - R5<-FFFF2434
-0035205 FFFFO04E 00:00:00.000.021.440 O0PUI---C 3UB #4H, RO - UsP<-00001A58
-0035204 FFFFO04p 00:00:00.000.021.450 O0PUI---C MOV.L RS, [RO] - 00001A58 <-FFFFE434
-0035203 FFFFO04F 00:00:00.000.021.480 OPUI---C BESR.A _printf - 00001A54<-FFFFO053
-0035202 _printf FFFF9312 00:00:00.000.021.490 OPUI---C MOV.L #0H, RS - R5<-00000000
-0035201 FFFF9314 00:00:00.000.021.500 O0OPUI---C PUSH.L R3S - 00001A50<-00000000
-0035200 FFFFO316 00:00:00.000.021.510 OPUI---- ADD #08H, RO, R4 - R4<-00001A58
-0035188 FFFF9318 00:00:00.000.021.520 OPUI---- ADD #7H, R4 - R4<-00001A5F
-0035198 FFFF931E 00:00:00,000,021.530 O0PUI---- MOV.L O2H[RO], R3 - R3<-FFFF8434
-0035197 FFFFO31p 00:00:00.000.021.540 OPUI---- AND #-04H, R4 - R4<-00001A5C
-0035196 FFFF93Z0 00:00:00.000.021.550 OPUI---- MOV.L #00001590H, R2 - RZ<-00001590
-0035195 FFFFO3Z6 00:00:00.000.021.560 OPUI---- MOV.L #-00006DOEBH,R1 - R1<-FFFFOZF3
-0035194 FFFFO3Zc 00:00:00.000.021.590 O0PUI---- BESR.A _ Printf - 00001a4c<-FFFFO3320
-0035193 _ Printf FFFFO6YS 00:00:00.000.021.640 OPUI---- PUSHM RE&-R10 - 00001248 <-00000000
-0035192 FFFFO677 00:00:00.000.021.650 OPUI---C ADD #-0044H, RO, RO

- Usp<-00001994 LI

Figure 7.14 Trace Window (Trace Information Display)

Rev. 1.00 Apr. 01, 2010 Page 120 of 130

REJ10J2162-0100

RENESAS

Section 7 Tutorial

7.3.3 Performing Trace Search

Click the right mouse button on the [Trace] window to launch the pop-up menu, and select
[Find -> Find....] to open the [Find] dialog box.

Find 7]
LCombination: Find Iterm:
[FTR Find Previous |
[Address
[Time Stamp i
Instruction p—
[Interrupt IBH'{'"

[Exclusion of the specified condition

Find Setting Contents:

Ingtruction] BRA

Delete

Delete Al

N
[ez |

Higtory:

Cloze

f

Figure 7.15 Trace Search Dialog Box

Check the check boxes for the conditions to be targets of the search in the [Combination] column, and specify the
details of the conditions in the [Find Item] column.

The conditions you have set are shown in the [Find Setting Contents] list box.
After setting search conditions, click the [Find Previous] or [Find Next] button to start a search.

When a matching trace record is found by a search, the relevant line in the [Trace] window is highlighted. When an
instance of the trace record was successfully found, choose the [Find Previous] or [Find Next] button from the pop-up
menu. The next instance of the trace record will be searched for.

Rev. 1.00 Apr. 01, 2010 Page 121 of 130
RENESAS REJ10J2162-0100

Section 7 Tutorial

- Trace

Velsavz kiE Ed4d) = aqa

M[=1E3

Range: -0035857, 0000000 |File: |E_l,lcle: 0035336 |Address: FFFFI35F |Time: 00: 00:00.000.000.200 |—

Address
1 FFFFO35F

—0035885 mnext_loo FFFFR36F 00:00:00.
-0035884 FFFF9371 00:00:00.
-0035883 loopl FFFF93el1 00:00:00.
-0035882 FFFF9364 00:00:00.
-0035881 FFFF9367 00:00:00.
-0035880 FFFF9369 00:00:00.
-0035879 FFFF936E 00:00:00.
-0035878 FFFF936D 00:00:00.
-0035377 mnext_loo FFFFO3EF 00:00:00.
-0035876 FFFF9371 00:00:00.
-0035875 loopl FFFF936l 00:00:00,
-0035874 FFFF9364 00:00:00.
-0035873 FFFF9367 00:00:00.
-0035872 FFFF9369 00:00:00.

-0035871 mnext_loo FFFFE36F 00:00:00.

ooo.
ooo.
ooo.
ooo.
ooo.
ooo.
ooo.
ooo.
ooo.
ooo.
oo,
ooo.
ooo.
ooo.
ooo.

ooo.z210 0---——— C
00o0.z240 O---——- C
000,250 O---—-- C
ooo.z2¥0 0---——- c
ooo.z80 0O---——— C
0o00.z290 0O---——— C
0oo.300 0O---———— C
003.100 0O---——— C
002,110 O0---——- C
003.140 0O---——- C
003,130 0--———- C
0o03.170 0---———— C
oo3.180 0O----- ZC
0o03.z200 0----—- ZC
o03.z1i0 O0---——- C

Instruction

CMP
B&TU.E
MOV. L
MOV. T
CMP
ELEU.E
SUE
S3TR.E
CMP
BGTU.E
MOV.L
MOV.L
CMP
ELEU.E
CMP

loopl
[R4+],R1
[R4+],R3
R1,R3

next loopl
R1,R3

R4,R5
loopl
[R4+],R1
[R4+],R3
R1,R3

next loopl
R4, R5

Interrupt | Access Data
—-FFFFO36F

- PC<-FFFFO9361
- R4<-FFFFE578
- R4<-FFFF837C

- R3<-00000458
- 0000152F<-00
- PC<-FFFF9361
- R4<-FFFF8380

- R4<-FFFFE584

- PC<-FFFFO36F

Rl<-0
R3<-0

Rl<—

R1<-0
R3<-0

Figure 7.16 Trace Window (Searched Result)

7.3.4 Checking Simulated 1/0

Random data that is displayed by the printf function can be checked in the [Simulated 1/0] window.

«t Simulated 1/0 _ O] =]

Data Input #H#

a[0]=0
a[1]=21468
a[Z]=9988
a[3]=22117
a[4]=3408
a[5]=16027
a[6]=16045
a[7]=19741
alB]=12122
a[9]=5410

Figure 7.17 Simulated 1/O Window

e Do not close the [Simulated 1/0] window.

Rev. 1.00 Apr. 01, 2010 Page 122 of 130
REJ10J2162-0100

RENESAS

Section 7 Tutorial

7.3.5 Checking the Breakpoints
A list of all the breakpoints that are set in the program can be checked in the [Event] window.

o Select [Eventpoints] from the [View -> Code] menu.

« Event O] x|
B =

T.. I S .. | Condition | Action
EP Enable PC=FFFFA0E3 (Tutorial.c/39) Stop

y | i

1 }hSnﬂware Break ;{. Software Event f

Figure 7.18 Event Window
A breakpoint can be set, a new breakpoint can be defined, and a breakpoint can be deleted using the [Event] window.

e Close the [Event] window.

7.3.6 Watching Variables

It is possible to watch the values of variables used in your program and to verify that they change in the way that you
expected. For example, set a watch on the long-type array “a” declared at the beginning of the program, by using the
following procedure:

e Select [Watch] from the [View -> Symbol] menu to open the [Watch] window. And click the right mouse button on
the [Watch] window and choose [Add Watch...] from the pop-up menu.

The following dialog box will be displayed.

Add Watch

Wariable or expression;

Ia Cancel |

Figure 7.19 Add Watch Dialog Box
e Type array “a” and click the [OK] button.

The [Watch] window will show the long-type array “a”.

You can double-click the + symbol to the left of array “a” in the [Watch] window to expand the variable and show the
individual elements in the array.

Rev. 1.00 Apr. 01, 2010 Page 123 of 130
RENESAS REJ10J2162-0100

Section 7 Tutorial

<& Watch =]

RE CHEA /X |0 |

(long[10]) [Current

0o001as5c
0O001ae0

----- R [0] H'DODDODOOOO
----- B [1] H'O00053de
----- R [2] H'ODODDDZ704 0o001a64
----- B [3] H'OD0O05665 0O001a68 [long)

{ } (long)
{ }
{ }
{ }
----- R [4] H'O0000daa { OOOO1A6C } [long)
{ }
{ }
{ }
{ }
}

[long)
[long)

----- B [5] H'O00042Z1f 0ooo1a7ao
----- R [6] H'OD0DD3ead 0o001a74
----- B [7] H'O0004d1d oooo1atra
----- R [8] H'ODDDDZfS5a 0o0O1a7c
----- B [9] H'0000Z0da { 0OOOO1A20

[[wateha 4 westehz Jy wiatchs A wiatcha f

[long)
[long)
[long)
[long)

[long)

Figure 7.20 Watch Window

e Close the [Watch] window.

7.3.7 Executing the Program in Single Steps
The simulator/debugger has various stepping menus that are useful in debugging the program.

Menu Description

Step In Executes each statement (includes statements within the function)

Step Over Executes a function call in a single step

Step Out Steps out of a function, and stops at the next statement of the program that called
the function

Step... Executes the specified number of steps at the specified speed
Rev. 1.00 Apr. 01, 2010 Page 124 of 130
REJ10J2162-0100 RENESAS

Section 7 Tutorial

[Step In]: Enters the called function and stops at the statement at the start of the called function.

e To step in the sort function, select [Step In] from the [Debug] menu, or click the [Step In] button on the toolbar.

)

Figure 7.21 Step In Button

«# Tutorial.c

= 10] x|

Line

Source Address

.| S/ Breakpoints | Source

39
40
41
42
43
44
45
46
47
4
49
S0
51
=Y
53
54
55
=1
a7
55
59
60
61

FFFFSOEBES
FFFFSOES
FFFFSO0CE
FFFFSOD4

FFFFS104

FFFFS10D

FFFF911z
FFFFI117
FFFF9121
FFFF9132
FFFF3146
FFFF31529
FFFFS178
FFFFS155
FFFFS1AD

& sort (a) ; j

printf ("¥*¥ Sorting results *F¥in");
for (| i=0; i<10; 1i4++)1
printf(®a[sd]=%1ldyn",i,a[i]):
H
change (a) !
H

= woid sort(long *a)
i
long t©;
int i, 3, k, gap:

gap = 5;
while|{ gap = 0 14
for | k=0:; k<gap:; k++)1{
for | i=k+gap:; i<10; i=i+gap)1
for{j=i-gap: Jj»=k: J=3-gar
if(al[jl»=a[i+gap]l)i
£ = a[il:
a[1] = =a[i+gap]:
a[j+gap]l = t;

| |

Figure 7.22 Source Window (Step In)

e The PC location display (=>) in the [Source] window moves to the statement at the start of the sort function.

Rev. 1.00 Apr. 01, 2010 Page 125 of 130
RENESAS REJ10J2162-0100

Section 7 Tutorial

[Step Out]: Steps out of the called function and stops at the next statement in the called program.

o Select [Step Out] from the [Debug] menu to exit the sort function, or click the [Step Out] button on the toolbar.

¥

Figure 7.23 Step Out Button

«# Tutornial.c =] B

Line Source Address | C..| 5/ Breakpoints | Source |

23 |FFFFo042 oid main (woid) j
24 {
25 long a[10];
= long 32
27 int i;
28
Z9 |FFFF2045 printf ("HEE Data Input HHEEYNR™)
30
31 |FFFFSOEE for|{ i=0: i<10: i++)4
32 |FFFFS0E1 j = rand():
33 |FFFFS0OEL if(3 « 0O)1d
34 |FFFFS071 i = -3:
35 H
36 |FFFFS079 alil = 3j:
37 |FFFFS0E&3 printf (Malid]=3%1dvyn",i,a[i]):
38 H
39 |FFFFO0E3 & sort (&) ;
40 |FFFFOOES o printf ("¥**¥ Sorting results F¥#FFhnfy:
41 |FFFFS0CE for|{ i=0: i<10: i++)4
42 |FFFFS0OD4 printf (Malid]=3%1dvyn",i,a[i]):
43 H
44 |FFFFo104 change (a) 2
45 H
16
47 |FFFF210D woid sort{long *a)
48 {
40 long t2
50 int i, i, k, dap:
51 -
4] | v
Figure 7.24 Source Window (Step Out)
Rev. 1.00 Apr. 01, 2010 Page 126 of 130 RENESAS

REJ10J2162-0100

Section 7 Tutorial

[Step Over]: Executes a function call in a single step, and stops at the next statement in the main program.

Select [Step Over] from the [Debug] menu or click the [Step Over] button on the toolbar to step over the statements in
the printf function.

[T

Figure 7.25 Step Over Button

o Tutorial.c O] =]

Line Source Addresz | C..| S5/ Breakpoints | Source |
23 |FFFFS042 woid main(wvoid) j
24 {

Z5 long a[107 ;

Z6 long j:

27 int i;

28

Zz9 |FFFFo045 printf ("H#H#HE Data Input HHHEYR™):
30

31 |FFFFO055 for(i=0; i<10; i++ 14

32 |FFFFo061 J = randi(]:

33 |FFFFO0GL if{3 < 0O) 4

34 |FFFFoO0O71 1= -3:

35 }

36 |FFFFO079 al[i] = 3:

37 |FFFFO0S3 printf("al3d]=%1d\n",i,a[i]):
38 }

39 |FFFF9OE3 & sort (a) ;

40 |(FFFFOOES printf ("*%*%* Sorting results ¥#%hnMty:
41 |FFFFO0CS = for(i=0; i<10; i++)4

42 |FFFFo0OD4 printf("al3d]=%1d\n",i,a[i]):
43 }

44 (FFFFo104 change (&)

45 }

46

47 |(FFFFo10D woid sortclong %a)

45 {

49 long t:

50 int i, Jj, k, gap:

51 -

| | vl

Figure 7.26 Source Window (Step Over)

When the printf function has been executed, *** Sorting results *** will be displayed in the [Simulated 1/0] window.

Rev. 1.00 Apr. 01, 2010 Page 127 of 130
RENESAS REJ10J2162-0100

Section 7 Tutorial

7.3.8 Checking Profile Information

The profile information can be checked in the [Profile] window.

o Clicking the [Go] button and continuing execution from the current PC executes the BRK instruction and then stops.
[List] Sheet: Displays the profile information as a list.

e Open the [Profile] window by selecting [Profile] from the [View->Performance] menu. The [List] sheet will be
displayed.

« Profile = 0] x]
B == ||E|"ea!|8how Functions/ ariables j piid | &

Function/Varishle | F/VI Address I Size I Times I Cycle | Ext rmem | I/0 aresa I Int mem Id
_furite F FFFF9399 H'ODOODOCE 183 24459 u} u} 6348
__INITSCT F FFFFE34F H'00000O0O 1 959 0 0 3z

_rand F FFFF9333 H'0O000001c 10 110 0 0 30

_printf F FFFFI31Z H'ODDODODZ1 22 374 0 0 193
FFFFOIF5 F FFFFOIF5 H'ODO0OOooOO 183 3477 u} u} 2013
_felose F FFFFOZAZ H'ODODOODS3 3 120 u} u} 39

_freopen F FFFFO274 H'ODOODODZE 3 Q3 u} u} &0

_change F FFFF9Z0A H'0O000O06A 1 424 0 0 166

_sort F FFFFI100 H'O0DDDOOFD 1 1869 0 0 774

_main F FFFFI04Z2 H'0O0000OCE 1 717 0 0 271

_wWrite F FFFFEEEZ H'ODOODOSE 249 15438 u} u} 5478

_close F FFFFEEDS H'ODOODOO9 3 21 u} u} b

_open F FFFFEE44 H'O00DOOOSS 3 192 0 0 39

_ CLOSEALL F FFFFEDFY H'0000O04D 1 470 0 0 144

_ INIT ICLIE F FFFFECDE H'OO00011F 1 a9 u] u] 3l

_charput F FFFFEc93 H'0000D0O0O 249 2739 0 0 747 ﬂ
‘I PI'\ List £ Tree f

Figure 7.27 Profile Window (List Sheet)

In the above figure, it can be found that the __fclose function was called three times, the execution cycle was 120, and
the internal memory was accessed 39 times.

It is possible to search for the critical path, such as a function that is called or accesses the memory many times, for the
program performance.

Rev. 1.00 Apr. 01, 2010 Page 128 of 130
REJ10J2162-0100 :{ENESAS

Section 7 Tutorial

[Tree] Sheet: Displays the profile information as a tree diagram.

e Select the [Tree] sheet. Double-clicking the function name in the [Profile] window expands or minimizes the tree

structure.

«# Profile

- (O] |

(S HE,"eaIIShow Functions ariables j ;;’3 &7
Function |Address |Size |Stack Jize | Times | Ctycle | Ext mem | I/0 area | Int mem |;|
S main FFFFO042 H'OO0O0OCE H'O0000OOO 1 717 i} i} 271
_printf FFFF9312 H'000000Z1 H'O0000OOOO 22 374 i} i} 193
_rand FFFF9333 H'ODODOO1C H'OOODOOOO 10 110 1} 1} a0
_change FFFFOZ0A H'OOODOOOEA H'OODOOOOOD 1 424 i} i} 166
_sort FFFF910D0 H'OOODOODOFD H'OODODOODOOO 1 1869 O 0 T4
_ CLOSEALL FFFFEDFY H'OOOOODO4D H'OODOOODOOD 1 470 1} 1} 144
El-_ INIT IOLIE FFFFECDE H'OODOO11F H'OOOOOOOO 1 a9 i} i} 31
é----ifreopen FFFF9274 H'ODOOODDZE H'OODOOOOOO 3 93 1} 1} 60
E folose FFFFOZAZ H'000000S53 H'O0000OOOO 3 120 i} i} 29
fflush FFFF9468 H'OOO0D0OTE H'O00O0OOOO 3 34 i} i} 12
_ Fofree FFFF96Z4 H'00000051 H'OOOODQOO 3 66 1} 1} 36
_close FFFFBEDS H'OOODOODOOS H'O00ODOOO 3 z1 i} i} 6
----- _ Foprep FFFFO4E6 H'OODOOODOES H'O0OOOOOO 3 421 1} 1} a7 =
A RJ List A Tree

Figure 7.28 Profile Window (Tree Sheet)

In above figure, it can be found that the __close function was called three times from the _fclose function, the execution
cycle was 21, and the internal memory was accessed six times.

RENESAS

Rev. 1.00 Apr. 01, 2010 Page 129 of 130

REJ10J2162-0100

Section 7 Tutorial

[Profile-Chart] Window: Displays the relation of calls for a specific function.

e Selectthe _ flclose function on the [Profile] window. Open the pop-up menu by right clicking the mouse on the
[Profile] window, and select [View Profile-Chart] to display the [Profile-Chart] window.

« Profile-Chart

_freopen

_fflush

Figure 7.29 Profile-Chart Window

In the above figure, it can be found that the __ flclose function was called three times from the __ freopen functions, and
the _close function was called three times.

This is the end of the tutorial using the simulator/debugger.

Rev. 1.00 Apr. 01, 2010 Page 130 of 130
REJ10J2162-0100 :{ENESAS

RX Family Simulator/Debugger V.1.01
User's Manual

Publication Date: Apr. 1,2010 Rev.1.00

Renesas Electronics Corporation
Published by: 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi,
Kanagawa 211-8668 Japan

Edited by: Renesas Solutions Corp.

© 2010 Renesas Electronics Corporation, All rights reserved. Printed in Japan.

RX Family Simulator/Debugger V.1.01
User’'s Manual

LENESAS

Renesas Electronics Corporation
1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

REJ10J2162-0100

	Cover
	Notes regarding these materials
	About This Manual
	Contents
	Section 1 Overview
	Section 2 Simulator/Debugger Functions
	2.1 Features
	2.2 Target User Program
	2.3 Range
	2.4 Memory Management
	2.5 Instruction-Execution Reset Processing
	2.6 Exception Processing
	2.7 Endian
	2.7.1 Endian of the CPU
	2.7.2 Endian of the External Memory Area

	2.8 Simulation of Peripheral Functions
	2.8.1 Timer
	(1) Supported Range
	(2) Control Registers

	2.8.2 Serial Communications Interface
	(1) Supported Range
	(2) Control Registers
	(3) Input and Output of Data

	2.8.3 Interrupt Controller
	(1) Supported Range
	(2) Control Registers
	(3) Note on Using the ICU

	2.8.4 Clocks
	2.8.5 Using Peripheral Functions

	2.9 Trace
	2.10 Standard I/O and File I/O Processing
	2.11 Break Conditions
	2.12 Floating-Point Data
	2.13 Display of Function Call History
	2.14 Performance Measurement
	2.14.1 Profiler
	2.14.2 Performance Analysis

	2.15 Pseudo-Interrupts
	2.16 Coverage

	Section 3 Debugging
	3.1 Creating the Workspace for Simulator/Debugger
	3.1.1 Selecting a Debugging Platform
	3.1.2 Setting up a Workspace for the Simulator/Debugger

	3.2 Starting up the Simulator/Debugger
	3.3 Modifying the Simulator/Debugger Settings
	3.3.1 Setting the Endian and Frequency of CPU
	3.3.2 Modifying the Simulator System
	3.3.3 Modifying the Memory Map and Memory Resource Settings
	3.3.4 Set Memory Map Dialog Box
	3.3.5 Set Memory Resource Dialog Box

	3.4 Simulating Peripheral Functions
	3.4.1 Registering Peripheral Function Simulation Modules
	3.4.2 Changing the Addresses of Peripheral Functions
	3.4.3 Changing the Interrupt Source Information of Peripheral Functions
	3.4.4 Memory Resources for Control Registers
	3.4.5 Viewing the Names of Connected Peripheral Functions
	3.4.6 Input to and Output from Virtual Ports
	(1) Viewing the List of File Input and Output
	(2) Adding a File
	(3) Opening a File
	(4) Opening All Files
	(5) Closing a File
	(6) Closing All Files
	(7) Modifying File Setting
	(8) Deleting a File
	(9) Format for Virtual Port Files

	3.5 Operations for Memory
	3.5.1 Regularly Updating Contents of the [Memory] Window
	3.5.2 Viewing and Modifying the Settings for the I/O Area

	3.6 Using the Simulator/Debugger Breakpoints
	3.6.1 Listing the Breakpoints
	3.6.2 Setting a Breakpoint
	3.6.3 Modifying Breakpoints
	3.6.4 Enabling a Breakpoint
	3.6.5 Disabling a Breakpoint
	3.6.6 Deleting a Breakpoint
	3.6.7 Deleting All Breakpoints
	3.6.8 Viewing the Source Line for a Breakpoint
	3.6.9 Closing Input or Output File
	3.6.10 Closing All Input and Output Files

	3.7 Viewing Trace Information
	3.7.1 Opening the Trace Window
	3.7.2 Specifying Trace Acquisition Conditions
	3.7.3 Setting Events for Tracing
	3.7.4 Acquiring Trace Information
	3.7.5 Searching for Trace Information
	3.7.6 Filtering Trace Information
	3.7.7 Clearing the Trace Information
	3.7.8 Saving the Trace Information in a File
	3.7.9 Viewing the Source File
	3.7.10 Switching Timestamp Display
	3.7.11 Showing the History of Function Execution

	3.8 Viewing the Profile Information
	3.8.1 Stack Information Files
	3.8.2 Loading Stack Information Files
	3.8.3 Enabling the Profile
	3.8.4 Specifying Measurement Mode
	3.8.5 Executing the Program and Checking the Results
	3.8.6 List Sheet
	3.8.7 Tree Sheet
	3.8.8 Profile-Chart Window
	3.8.9 Types and Purposes of Displayed Data
	3.8.10 Creating Profile Information Files
	3.8.11 Notes

	3.9 Analyzing Performance
	3.9.1 Opening the Performance Analysis Window
	3.9.2 Specifying a Target Function
	3.9.3 Starting Performance Data Acquisition
	3.9.4 Resetting Data
	3.9.5 Deleting a Target Function
	3.9.6 Deleting All Target Functions
	3.9.7 Saving the Currently Displayed Contents

	3.10 Measuring Code Coverage
	3.10.1 Opening the Coverage Window
	3.10.2 Acquiring All Coverage Information
	3.10.3 Clearing All Coverage Information
	3.10.4 Viewing the Source Window
	3.10.5 Specifying the New Coverage Range
	3.10.6 Changing the Coverage Range
	3.10.7 Deleting the Selected Coverage Range
	3.10.8 Acquiring Coverage Information
	3.10.9 Clearing Coverage Information
	3.10.10 Saving Coverage Information in a File
	3.10.11 Loading Coverage Information from a File
	3.10.12 Updating the Information
	3.10.13 Confirmation Request Dialog Box
	3.10.14 Save Coverage Data Dialog Box
	3.10.15 Displaying the Coverage Information in the Editor Window
	3.10.16 Displaying the Coverage Information in the [Disassembly] Window

	3.11 Generating a Pseudo-Interrupt Manually
	3.11.1 [Trigger] Window
	3.11.2 [GUI I/O] Window

	3.12 Standard I/O and File I/O Processing
	3.12.1 Opening the Simulated I/O Window
	3.12.2 I/O Functions

	3.13 Creating a Virtual I/O Panel
	3.13.1 Opening the [GUI I/O] Window
	3.13.2 Creating a Button
	3.13.3 Creating a Label
	3.13.4 Creating an LED
	3.13.5 Creating Fixed Text
	3.13.6 Changing the Size and Position of an Item
	3.13.7 Copying an Item
	3.13.8 Deleting an Item
	3.13.9 Showing the Grid
	3.13.10 Saving I/O Panel Information
	3.13.11 Loading I/O Panel Information

	Section 4 Windows
	Section 5 Command Lines
	5.1 Commands (Functional Order)
	5.1.1 Execution
	5.1.2 Download
	5.1.3 Register
	5.1.4 Memory
	5.1.5 Assemble/Disassemble
	5.1.6 Break
	5.1.7 Trace
	5.1.8 Coverage
	5.1.9 Performance
	5.1.10 Watch
	5.1.11 Script/Logging
	5.1.12 Memory Resource
	5.1.13 Simulator/Debugger Settings
	5.1.14 Standard I/O and File I/O
	5.1.15 Utility
	5.1.16 Project/Workspace
	5.1.17 Test Tool Facility
	5.1.18 Debugging Functions for the Realtime OS
	5.1.19 File Input and Output through Virtual Ports

	5.2 Commands (Alphabetical Order)

	Section 6 Messages
	6.1 Information Messages
	6.2 Error Messages

	Section 7 Tutorial
	7.1 Preparation
	7.1.1 Sample Program
	7.1.2 Creating the Sample Program

	7.2 Settings for Debugging
	7.2.1 Allocating the Memory Resource
	7.2.2 Downloading the Sample Program
	7.2.3 Displaying the Source Program
	7.2.4 Setting a PC Breakpoint
	7.2.5 Setting the Profiler
	7.2.6 Setting the Simulated I/O
	7.2.7 Setting the Trace Information Acquisition Conditions
	7.2.8 Setting the Stack Pointer and Program Counter

	7.3 Start Debugging
	7.3.1 Executing a Program
	7.3.2 Using the Trace Buffer
	7.3.3 Performing Trace Search
	7.3.4 Checking Simulated I/O
	7.3.5 Checking the Breakpoints
	7.3.6 Watching Variables
	7.3.7 Executing the Program in Single Steps
	7.3.8 Checking Profile Information

	Colophon

