

RL78 Family
EEPROM Emulation Software
RL78 Type 03

User’s Manual

 RENESAS Microcontrollers
RL78 / F22
RL78 / F25

U
ser's M

anual

All information contained in these materials, including products and product specifications, represents
information on the product at the time of publication and is subject to change by Renesas Electronics
Corp. without notice. Please review the latest information published by Renesas Electronics Corp.
through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

www.renesas.com
Rev.1.01 May 2025

EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 2 of 114
May.30.25

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of
these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or
other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home
electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims
any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is
inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not
limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products
are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury,
injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety
design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging
degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.
(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.
(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered trademarks
are the property of their respective owners.

 © 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 3 of 114
May.30.25

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit
Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products
covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must

be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate.

When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices

must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work

benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare

hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register

settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the

states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product

that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which

resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-

up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow

the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in

the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an

associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a

reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an

external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (Max.) and

VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is

fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The

characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of

internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating

margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for

the given product.

EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 4 of 114
May.30.25

How to Use This Manual

• Readers
This manual is intended for users who wish to understand the features of the RL78 microcontrollers
EEPROM Emulation and to use the EEPROM Emulation Software (EES) RL78 Type 03 in designing and
developing application systems.

• Purpose

This manual is intended to give users an understanding of the methods for using the EEPROM Emulation
Software (EES) RL78 Type 03 to reprogram the data flash memory in the RL78/F22, F25 microcontrollers
(i.e. write constant data by the application).

• Organization

This manual is separated into the following sections.
- Overview
- System Configuration
- EEPROM Emulation
- Using EEPROM Emulation
- User Interface
- Sample Programs
- Creating a Sample Project for EES RL78 Type 03

• How to Read this Manual

It is assumed that the readers of this manual have general knowledge in the fields of electrical
engineering, logic circuits, microcontrollers, C language, and assemblers.
To understand the hardware functions of the RL78/F22, F25:

- Refer to the User's Manual of the target RL78/F22, F25 devices.

• Conventions

- Data significance: Higher digits on the left and lower digits on the right
- Active low representations: ××× (overscore over pin and signal name)
- Note: Footnote for item marked with Note in the text
- Caution: Information requiring particular attention
- Remark: Supplementary information
- Numeric representation:

Binary: ×××× or ××××B
Decimal: ××××
Hexadecimal: ××××H or 0x××××

- Prefixes indicating power of 2 (address space and memory capacity):
K (kilo) 210 = 1024
M (mega) 220 = 10242

EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 5 of 114
May.30.25

• Related Documents
The related documents indicated in this publication may include preliminary versions. However,
preliminary versions are not marked as such.

No Document Title Document Number
1 RL78/F22, F25 User’s Manual Hardware R01UH1061EJ

2 RL78 Family Renesas Flash Driver RL78 Type 03
User’s Manual

R20UT5454EJ

3 E1/E20/E2 Emulator, E2 Emulator Lite Additional Document for
User’s Manual (Notes on Connection of RL78)

R20UT1994EJ

EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 6 of 114
May.30.25

Table of Contents

1. Overview .. 10
1.1 Outline ... 10

1.1.1 Purpose ... 10
1.2 Contents .. 10
1.3 Features .. 11
1.4 Operating Environment ... 12
1.5 Points for Caution.. 13
1.6 C Compiler Definitions .. 16

2. System Configuration ... 17
2.1 System Configuration .. 17
2.2 EES Architecture ... 17

2.2.1 EES Block ... 17
2.2.2 EES Pool ... 18

2.3 File Structure ... 19
2.3.1 Folder Structure .. 19
2.3.2 List of Files .. 20

2.4 Resources of RL78/F22, F25 .. 21
2.4.1 Memory Map ... 21
2.4.2 Allocation of Blocks ... 22

2.5 Resources Used in EES RL78 Type 03 ... 23
2.5.1 Sections Used in EES RL78 Type 03 ... 23
2.5.2 Software Resources .. 23

3. EEPROM Emulation ... 24
3.1 Specifications of EEPROM Emulation .. 24
3.2 Outline of Functions .. 24
3.3 EES Pool ... 25

3.3.1 EES Pool State ... 25
3.3.2 Structure of EES Block ... 27
3.3.3 EES Block Header .. 28
3.3.4 Structure of Stored Data ... 29
3.3.5 EES Block Overview ... 31

4. Using EEPROM Emulation .. 32
4.1 Number of Stored User Data Items and Total User Data Size .. 32
4.2 Initial Values to be Set by User ... 33

5. User Interface ... 36
5.1 Request Structure (st_ees_request_t) Settings ... 36

5.1.1 User Write Access... 37
5.1.2 User Read Access .. 37

5.2 List of API Functions and R_EES_Execute function commands for the EES ... 38
5.2.1 API Functions for the EES .. 38
5.2.2 Commands for R_EES_Execute Function ... 39
5.2.3 RFD control API functions for EES ... 40

5.3 State Transitions ... 41
5.4 Basic Flowchart ... 43
5.5 Command Operation Flowchart .. 45

EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 7 of 114
May.30.25

5.6 Data Type Definitions .. 46
5.6.1 Data Types .. 46
5.6.2 Global Variables .. 46
5.6.3 Enumerations .. 48

5.7 Specifications of API Functions .. 50
5.7.1 Specifications of API Functions for EES RL78 Type 03 ... 51
5.7.2 RFD control API Functions for EES .. 59
5.7.3 Internal Functions for the EES .. 61

6. Sample Programs .. 64
6.1 File Structure ... 64

6.1.1 Folder Structure .. 64
6.1.2 List of Files .. 65

6.2 Data Type Definitions .. 65
6.2.1 Macro Defines ... 65

6.3 Sample Program Functions .. 66
6.3.1 Sample Program for Controlling the EEPROM Emulation ... 66

6.4 Specifications of Sample Program Functions ... 72
6.4.1 Sample Program Functions for Controlling the EEPROM Emulation .. 72

7. Creating a Sample Project for EES RL78 Type 03 .. 74
7.1 Creating a Project in the Case of Using a CC-RL Compiler ... 74

7.1.1 Example of Creating a Sample Project ... 75
7.1.2 Example of Registration of Target Folders and Target Files .. 78
7.1.3 Build Tool Settings .. 80
7.1.4 Debug Tool Settings ... 87

7.2 Creating a Project in the Case of Using IAR Compiler ... 89
7.2.1 Example of Creating a Sample Project ... 90
7.2.2 Example of Registration of Target Folders and Target Files .. 92
7.2.3 Integrated Development Environment (IDE) Settings .. 94
7.2.4 Linker Configuration File (.icf) Settings ... 96
7.2.5 On-chip Debug Settings .. 99

7.3 Configurations Modify Procedure for Changing Device ... 100
7.3.1 CC-RL Compiler Environment Settings .. 102
7.3.2 IAR Compiler Environment Settings ... 106

8. Revision History ... 112
8.1 Major Modifications in this Revision .. 112

EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 8 of 114
May.30.25

Abbreviations
Abbreviation Description

EES EEPROM Emulation Software

RFD Renesas Flash Driver

API Application Program Interface

BGO
Background Operation
Instructions in the code flash memory can be executed during reprogramming of the
data flash memory.

RAM
Random Access Memory
Randomly accessible volatile memory. It is memory for holding values that are to be
changed during program execution.

ROM
Read-Only Memory
Non-volatile memory. It is memory whose contents cannot be changed. The code flash
memory may be called ROM.

EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 9 of 114
May.30.25

Terminology
Terminology Description

Code flash memory Flash memory for storing application code and constant data.
Note that this memory may be abbreviated as “CF” in this document.

Data flash memory Flash memory for storing data.
Note that this memory may be abbreviated as “DF” in this document.

Extra area Generic name of the configuration setting area, security setting area,
lock protection area, and boot swap setting area.

Flash memory sequencer The RL78 microcontroller has a dedicated circuit for controlling the flash
memory. This circuit is called the flash memory sequencer in this
document. The flash memory sequencer consists of the code/data flash
area sequencer, which reprograms the code flash area or data flash area,
and the extra area sequencer, which reprograms the extra area.

Flash memory control mode The flash memory sequencer has the following modes, which indicate the
programming enabled or disabled state.

- Code flash memory programming mode
- Data flash memory programming mode
- Non-programmable mode

Code flash memory
programming mode

The code flash memory (and extra area) can be reprogrammed in this
mode.

Data flash memory
programming mode

The data flash memory can be reprogrammed in this mode.

Non-programmable mode The flash memory (and extra area) cannot be reprogrammed in this
mode.

Self-programming A method of reprogramming the flash memory by executing a user
program instead of using an external flash memory programming tool.

RFD function A generic term for the functions offered by the RFD.

EES function A generic term for the functions offered by the EES.

RFD control functions for
EES

A generic term for the RFD control functions offered by the EES.

EES Block An abbreviation of blocks that the EEPROM emulation software
accesses. In this user’s manual, EEPROM emulation blocks are hereafter
referred to as EES block.

EES RL78 Type 03 1. Overview

R20UT5477EJ0101 Rev.1.01 Page 10 of 114
May.30.25

1. Overview

1.1 Outline

EEPROM emulation is a feature used to store data in the on-board flash memory in the same way as
EEPROM. In EEPROM emulation, EEPROM Emulation Software RL78 Type 03 operates the Renesas Flash
Driver (RFD) RL78 Type 03. And RFD writes and reads the data flash memory.

EEPROM Emulation Software RL78 Type 03 (hereafter called EES RL78 Type 03) is software for
reprogramming the data flash memory in the RL78/F22, F25.

For information on Renesas Flash Driver (RFD) RL78 Type 03, refer to the RL78 Family Renesas Flash
Driver RL78 Type 03 User's Manual.

1.1.1 Purpose

This manual is intended to give users an understanding of the methods for using the EEPROM Emulation
Software (EES) RL78 Type 03 to reprogram the data flash memory in the RL78/F22, F25 microcontrollers
(i.e. write constant data by the application).

1.2 Contents

The API function of EES RL78 Type 03 is called from the user program. And reprogramming of the data in
the EEPROM emulation block (EES block) placed into the data flash memory is possible.

The EES RL78 Type 03 package includes the following.

• This user's manual
• Source code files of EES RL78 Type 03 for controlling the data flash memory incorporated in the

RL78/F22, F25.
• Sample program for operating the EES RL78 Type 03.

EES RL78 Type 03 1. Overview

R20UT5477EJ0101 Rev.1.01 Page 11 of 114
May.30.25

1.3 Features

EES RL78 Type 03 calls API functions for RFD RL78 Type 03 to operate the flash memory sequencer. Each
API function of EES RL78 Type 03 consists of a single sub-function or two or more sub-functions, and the
necessary processing is implemented by combinations of individual sub-functions and user processing. Such
a configuration is adopted so as to flexibly handle processing dependent on the user application, such as,
timeout processing in which the timeout value varies with the conditions of user application program
execution.

Figure 1-1 shows the flash memory control by the user application using the API functions of EES RL78
Type 03.

EES RL78 Type 03 provides sample programs of the processing that is implemented by combinations of two
or more API functions and user programs. Refer to the sample programs when embedding EEPROM
emulation processing in the user application.

Figure 1-1 Data Flash Memory Control Using API Functions of EES RL78 Type 03

Flash memory hardware

User program

User application
(EES RL78 Type 03 API functions are called.)

RFD RL78 Type 03 API functions
(Flash memory sequencer is controlled.)

Flash memory sequencer
(Hardware for controlling the flash memory)

Data flash memory

EES RL78 Type 03 API functions
(RFD RL78 Type 03 API functions are called.)

EES RL78 Type 03 1. Overview

R20UT5477EJ0101 Rev.1.01 Page 12 of 114
May.30.25

1.4 Operating Environment

• Host Computer
The operation of EES RL78 Type 03 does not depend on the host computer but the appropriate
environment for the C compiler package, debugger and emulator must be prepared. (EES RL78 Type 03
was developed and tested on Windows10 Enterprise.)

• C Compiler Package

Table 1-1 shows the target C compiler packages for EES RL78 Type 03.

Table 1-1 The target C Compiler Packages for EES RL78 Type 03

Compiler IDE (Integrated Development
Environment)

Manufacturer Version

CC-RL CS+ or e2 studio Renesas Electronics V1.13 or later

IAR IAR Embedded WorkbenchⓇ for
Renesas RL78 IAR SystemsⓇ V5.10.3 or later

Note. Integrated development environment and compiler must support the target device.

• Emulator
Table 1-2 shows the emulator on which the operation of EES RL78 Type 03 was confirmed.

Table 1-2 Emulator on which EES RL78 Type 03 operation was confirmed

Emulator Manufacturer

E2 emulator Renesas Electronics

E2 emulator Lite Renesas Electronics

• Target MCU
RL78/F22
RL78/F25

• EEPROM Emulation Software (EES)
Table 1-3 shows the EEPROM Emulation Software (EES) supported by this manual.

Table 1-3 EEPROM Emulation Software (EES) Supported by this Manual

Package Manufacturer Version

EES RL78 Type 03 Renesas Electronics V1.00
 Note. Use the version of RFD RL78 Type 03 listed in Table 1-4.

• Renesas flash driver (RFD)
Table 1-4 shows the Renesas flash driver (RFD) used for EES RL78 Type 03.

Table 1-4 The Renesas flash driver (RFD) used for EES RL78 Type 03

Package Manufacturer Version

RFD RL78 Type 03 Renesas Electronics V1.00

EES RL78 Type 03 1. Overview

R20UT5477EJ0101 Rev.1.01 Page 13 of 114
May.30.25

1.5 Points for Caution

EEPROM emulation is achieved by using a feature for manipulating the RL78/F22, F25 microcontroller data
flash memory. Therefore, it is necessary to note the following.

(1) All EES code and constants must be placed in the same 64 Kbytes flash block such that EES code and
constants do not extend across a 64-Kbyte boundary. (It dependent on each compiler.)

(2) The EES must be initialized by the R_EES_Init function before any EES function is executed.

(3) The data flash memory cannot be read during data flash memory operation by the EES.

(4) It is not allowed to call any RFD function during a command execution of the EES.

(5) It is not allowed to call any RFD control functions for EES directly from other than the EES.

(6) Do not execute STOP mode or HALT mode processing while the EEPROM emulation is being used. If it
is necessary to execute STOP mode or HALT mode processing, be sure to execute all of the
processing up to and including the R_EES_Close function to finish EEPROM emulation.

(7) The watchdog timer does not stop during execution of the EES.

(8) Do not destroy the request structure (st_ees_request_t) during command execution.

(9) Initialize the argument (RAM) that is used by the EEPROM emulation software function. When not
initialized, a RAM parity error is detected and the RL78/F22, F25 microcontrollers might be reset. For a
RAM parity error, refer to “User’s Manual: Hardware” of a target device.

(10) All members of the request structure (st_ees_request_t) must be initialized once before a EES
command is executed. If any unused member exists in the request structure (st_ees_request_t), set a
desired value for the member. If any member is not initialized, the RL78/F22, F25 microcontrollers may
be reset due to a RAM parity error. For details, refer to “User’s Manual: Hardware” of a target device.

(11) The EES does not support multitask execution. Do not execute the EES functions during interrupt
processing.

(12) After the R_EES_Close function have been executed, the requested command and ongoing command
stop and cannot be resumed. Before calling the R_EES_Close function, finish all ongoing commands.

(13) Do not operate the code flash memory by RFD RL78 Type 03 while the EEPROM emulation is
executed. Before the code flash memory is operated, be sure to execute a “R_EES_Close function”
necessary in order to finish the EEPROM emulation. When using EEPROM emulation after executing
the code flash memory operations using the RFD RL78 Type 03, it is necessary to start processing from
the initializing function (the R_EES_Init function).

(14) Before starting the EEPROM emulation, be sure to start up the high-speed on-chip oscillator first. The
high-speed on-chip oscillator must also be activated when using the external clock.

EES RL78 Type 03 1. Overview

R20UT5477EJ0101 Rev.1.01 Page 14 of 114
May.30.25

(15) No checksum is added to user data. If a checksum is needed, add it to user data and check through the
user program.

(16) Do not operate the data flash control register (DFLCTL) during execution of the EES.

(17) To use the data flash memory for EEPROM emulation, it is necessary to execute the
R_EES_ENUM_CMD_FORMAT command upon first starting up to initialize the data flash memory and
make it usable as EES blocks.

(18) In order to use the EES, it is recommended to set at least 3 blocks in the EES block (virtual block).

(19) Do not destroy the EES blocks (virtual block) by the user program operating the data flash memory
using the RFD from other than the EES.

(20) EES descriptor is changed, the EEPROM emulation can no longer be executed. In that case, the EES
pool must be formatted by the R_EES_ENUM_CMD_FORMAT command in addition to initialization of
EES. When adding data, however, the EEPROM emulation can be continuously executed.

(21) About an operating frequency of RL78/F22, F25 microcontrollers and an operating frequency value set
by the initializing function (R_EES_Init), be aware of the following points:
- When using a frequency lower than 4 MHz as an operating frequency of RL78/F22, F25

microcontrollers, only 2 MHz and 3 MHz can be used (frequencies other than integer values like a
2.5 MHz cannot be used). Also, set an integer value 2, or 3 to the operating frequency value set by
the initializing function.

- When using a frequency of 4 MHz or higher Note as an operating frequency of RL78/F22, F25
microcontrollers, a certain frequency can be used as an operating frequency of RL78/F22, F25
microcontrollers.

- This operating frequency is not the frequency of the high-speed on-chip oscillator.
Note: For a maximum frequency, refer to “User’s Manual: Hardware” of a target device.

(22) The precautions in the case of debugging self-programming with an on-chip debugger
In the case which debugs self-programming with an on-chip debugger, because 128 bytes of area is
used from the top address of RAM when a debugger is executed, it is necessary to vacate this area.
Additionally, in case CS+ or e2 studio is used as the development environment, the debugger settings
need to be configured to use flash self-programming
- Example settings for CS+:
On the project, select “Connect Settings” tab from “RL78 E2 [Lite] (Debug Tool)”, and set “Yes” to
“Flash” - “Using the flash self-programming”.

- Example settings for e2 studio:
On the project, select “Property” - “Run/Debug Settings”, and edit the target “HardwareDebug” setting.
On the displayed screen, select “Debugger” tab - “Connection Settings” tab, and set “Yes” to “Flash” -
“Program uses flash self-programming”.

EES RL78 Type 03 1. Overview

R20UT5477EJ0101 Rev.1.01 Page 15 of 114
May.30.25

(23) The precautions in the case of executing the data copy from ROM to RAM, when using CC-RL compiler.
When using CC-RL compiler, the Sample_INITSCT_EES function is called from the main function of
main.c file. This function copies the data for EES RL78 Type 03 to RAM from ROM.
However, the following setting will be necessary if this processing is executed by the start-up routine in
the cstart.asm file which is a CC-RL compiler function.
(CC-RL compiler function: “Initialization of RAM area sections by using an initialization table [V1.12 or
later]”)

- Set “-ram_init_table_section” by linker.
- Set “__USE_RAM_INIT_TABLE” to the column which defines the macro of assemble options.

* For details, please refer to the user's manual of CC-RL compiler.
Because “copy processing from ROM to RAM” of a Sample_INITSCT_EES function duplicates in this
case, It is necessary to set same [Macro definition] as “Compiler Option”, and to cancel processing of a
Sample_INITSCT_EES function.

- Set “__USE_RAM_INIT_TABLE” to the column which defines the macro of compiler options.

EES RL78 Type 03 1. Overview

R20UT5477EJ0101 Rev.1.01 Page 16 of 114
May.30.25

1.6 C Compiler Definitions

The definitions of the target compiler written in the header file (r_ees_compiler.h) for EES RL78 Type 03 are
shown below.

The definitions differ between compilers. The “r_ees_compiler.h” file is used to identify the current compiler
and the definitions for the target compiler are used.

• Definition of CC-RL compiler:
“__CCRL__” is defined.

#define COMPILER_CC (1)
• Definition of IAR compiler:

“__IAR_SYSTEMS_ICC__” is defined.
#define COMPILER_IAR (2)

< Descriptions in the r_ees_compiler.h file >

C Compiler Options

The contents of the C compiler option setup which normal operation can be checking are shown below.

- [CC-RL(CS+)]

Major compile options:
-cpu=S3 -g -g_line -lang=c99

- [IAR(Embedded Workbench)]

Major compile options:
--core s3 --calling_convention v2 --code_model far --data_model near -e -Ol --no_cse --no_unroll
--no_inline --no_code_motion --no_tbaa --no_cross_call --no_scheduling --no_clustering --debug

/* Compiler definition */
#define EES_COMPILER_CC (1)
#define EES_COMPILER_IAR (2)

#if defined (__CCRL__)
 #define EES_COMPILER EES_COMPILER_CC
#elif defined (__IAR_SYSTEMS_ICC__)
 #define EES_COMPILER EES_COMPILER_IAR
#else
 /* Unknown compiler error */
 #error “Non-supported compiler.”
#endif

/* Compiler dependent definition */
#if (EES_COMPILER_CC == EES_COMPILER)
 #define R_EES_FAR_FUNC __far
#elif (EES_COMPILER_IAR == EES_COMPILER)
 #define R_EES_FAR_FUNC __far_func
#else
 /* Unknown compiler error */
 #error “Non-supported compiler.”
#endif

EES RL78 Type 03 2. System Configuration

R20UT5477EJ0101 Rev.1.01 Page 17 of 114
May.30.25

2. System Configuration

2.1 System Configuration

The EES offers interface for accessing the data flash area (the EES pool) defined by the user. The API
functions provided by EES accesses the EES pool via the RFD control functions for EES, or RFD.

The arrows shown in the Figure 2-1 below indicate the flow of processing.

Figure 2-1 System Configuration

2.2 EES Architecture

This chapter describes the EES architecture required for the user to rewrite data flash memory (the EES
pool) by using the EES.

2.2.1 EES Block

EES uses multiple blocks of the data flash memory as one virtual block. This area is called an EES block.
The size of a block of the data flash memory mounted in RL78/F22, F25 are 1 Kbyte. When EES block size
is set to a 2K-byte, two blocks of the data flash memory are gathered, and EES is handled as a 2K-byte's
virtual block.

Be sure to set the size of an EES block in consideration of the size and the total number of blocks of the data
flash memory mounted in the target device. Refer to “4.2 Initial Values to be Set by User” for the setting
method. The schematic diagram for the EES block 0 when 1 K-byte or 2 K-byte are set by EES block is
shown in “Figure 2-2 Schematic diagram of EES block 0”.

Maximum number of blocks that can be set in the EES block of a product equipped with 16 Kbytes of data
flash memory:
 - When the EES block size is set to 1 K-byte , the maximum number of blocks is 16.
 - When the EES block size is set to 2 K-byte , the maximum number of blocks is 8.

Before using the EEPROM
Emulation, initialize the RFD.
(R_EES_Init and R_EES_Open
functions)

 Code flash memory

User program

EES

Data flash memory
(EES pool)

RFD control
functions for EES

RFD

EES RL78 Type 03 2. System Configuration

R20UT5477EJ0101 Rev.1.01 Page 18 of 114
May.30.25

Figure 2-2 Schematic diagram of EES block 0

2.2.2 EES Pool

The EES pool is a user-defined data flash area that is accessible by the EES. The user program can access
the data flash only by using this EES pool in the data flash via the RFD control functions for EES and the
EES. The EES pool size must be specified with the number of size in the data flash of the target device. For
the procedure to specify the number of blocks, see section 4.2 Initial Values to be Set by User.

Figure 2-3 shows an example of pool configuration for a device with 16 Kbytes data flash memory.
(Example using 8Kbytes of 16Kbytes of data flash memory for EES block)

Figure 2-3 EES pool configuration example (EES block size: 1 Kbyte)

EES Block 0

When using 1 Kbyte

Data flash memory
Block 0

0xF1000

Absolute path
EES Block 0

When using 2 Kbytes
(1024 bytes × 2 blocks)

Data flash memory
Block 0

0xF1000

0xF1400

Absolute path

Data flash memory
Block 1

Physical
block

0

Physical
block

1

Physical
block

2

Physical
block

3

Physical
block

4

Physical
block

5

Physical
block

6

Physical
block

7

EES
block

0

Data flash memory

EES pool

EES
block

1

EES
block

2

EES
block

3

EES
block

4

EES
block

5

EES
block

6

EES
block

7

EES RL78 Type 03 2. System Configuration

R20UT5477EJ0101 Rev.1.01 Page 19 of 114
May.30.25

2.3 File Structure

2.3.1 Folder Structure

Figure 2-4 shows the folder structure of EES RL78 Type 03.

Figure 2-4 Folder Structure of EES RL78 Type 03

Note: Figure 2-4 shows an example of using RL78/F25. Refer to “6.1.1 Folder Structure” for the sample
folder.

Sample programs

EES RL78 Type 03
include files

EES RL78 Type 03
program source files

EES RL78 Type 03
user-own files

: Folders of this product

EES RL78 Type 03 2. System Configuration

R20UT5477EJ0101 Rev.1.01 Page 20 of 114
May.30.25

2.3.2 List of Files

2.3.2.1 List of Source Files

Table 2-1 shows the program source files in the “source\ees\” folder.

Table 2-1 Program Source Files in the “source\ees\” Folder

No. Source File Name Description

1 r_ees_api.c This file contains the API functions for EEPROM

emulation control.

2 r_ees_exrfd_api.c This file contains the API functions RFD control functions

for EES

3 r_ees_sub_api.c This file contains API functions that are used as internal

functions for EEPROM emulation control.

Table 2-2 shows the program source file in the “userown\” folder.

Table 2-2 Program Source File in the “userown\” Folder

No. Source File Name Description

1 r_ees_descriptor.c EES descriptor source file.

2.3.2.2 Header File List of Header Files

Table 2-3 shows the program header files in the “include\” folder.

Table 2-3 Program Header Files in the “include\” Folder

No. Header File Name Description

1 r_ees_api.h This file defines the prototypes used in EEPROM control

functions.

2 r_ees_exrfd_api.h This file defines the prototypes used in RFD control

functions for EES.

3 r_ees_sub_api.h This file defines the prototypes for internal functions

used in EEPROM emulation control functions.

Table 2-4 shows the program header files in the “userown\include\” folder.

Table 2-4 Program Header Files in the “userown\include\” Folder

No. Header File Name Description

1 r_ees_descriptor.h EES descriptor header file.

2 r_ees_user_types.h This file defines the types of user data used in EES.

EES RL78 Type 03 2. System Configuration

R20UT5477EJ0101 Rev.1.01 Page 21 of 114
May.30.25

Table 2-5 shows the program header files in the “include\ees” folder.

Table 2-5 Program Header Files in the “include\ees” Folder

No. Header File Name Description
1 r_ees.h Common header file.

2 r_ees_compiler.h This file defines the compiler-dependent macros used in
EES RL78 Type 03.

3 r_ees_defines.h This file describes the definitions that differ between
compilers used in EES RL78 Type 03.

4 r_ees_device.h This file defines the hardware-specific macros used in
EES RL78 Type 03.

5 r_ees_memmap.h This file defines macros to describe sections used in
EES RL78 Type 03.

6 r_ees_types.h This file defines the types of variables used in EES RL78
Type 03.

7 r_typedefs.h This file defines the types of data used in EES RL78
Type 03.

2.4 Resources of RL78/F22, F25

2.4.1 Memory Map

Table 2-6 shows the memory map (code flash memory [CF: 1 block = 2 Kbytes], data flash memory
[DF: 1 block = 1 Kbyte], and RAM) of the RL78/F22, F25.

Table 2-6 Memory Map (Code Flash Memory, Data Flash Memory and RAM)

Device Code Flash Memory: CF Data Flash Memory: DF RAM

RL78/F22
R7F122FxG (x=7, B, G)

128 Kbytes

(00000H-1FFFFH)

8 Kbytes

(F1000H-F2FFFH)

12 Kbytes

(FCF00H-FFEFFH)

RL78/F25
R7F125FxL (x=G, L, M, P)

512 Kbytes

(00000H-7FFFFH)

16 Kbytes

(F1000H-F4FFFH)

40 Kbytes

(F5F00H-FFEFFH)

EES RL78 Type 03 2. System Configuration

R20UT5477EJ0101 Rev.1.01 Page 22 of 114
May.30.25

2.4.2 Allocation of Blocks

Figure 2-5 shows the allocation of blocks in the code flash memory (CF).

RL78/F22 (Code flash memory: 128 Kbytes) RL78/F25 (Code flash memory: 512 Kbytes)

Figure 2-5 Blocks in the Code Flash Memory

Figure 2-6 shows the allocation of blocks in the data flash memory (DF).

RL78/F22 (Data flash memory: 8 Kbytes) RL78/F25 (Data flash memory: 16 Kbytes)

Figure 2-6 Blocks in the Data Flash Memory

1FFFFH CF: Block 03FH
(2 Kbytes) 1F800H

1F7FFH CF: Block 03EH
(2 Kbytes) 1F000H

1EFFFH

|

01000H

00FFFH CF: Block 001H
(2 Kbytes) 00800H

007FFH CF: Block 000H
(2 Kbytes) 00000H

7FFFFH CF: Block 0FFH
(2 Kbytes) 7F800H

7F7FFH CF: Block 0FEH
(2 Kbytes) 7F000H

7EFFFH CF: Block 0FDH
(2 Kbytes) 7E800H

7E7FFH

|

01000H

00FFFH CF: Block 001H
(2 Kbytes) 00800H

007FFH CF: Block 000H
(2 Kbytes) 00000H

F4FFFH DF: Block 00FH
(1 Kbyte) F4C00H

F4BFFH DF: Block 00EH
(1 Kbyte) F4800H

F47FFH

|

F1800H
F17FFH DF: Block 001H

(1 Kbyte) F1400H
F13FFH DF: Block 000H

(1 Kbyte) F1000H

F2FFFH DF: Block 007H
(1 Kbyte) F2C00H

F2BFFH

|
 F1800H

F17FFH DF: Block 001H
(1 Kbyte) F1400H

F13FFH DF: Block 000H
(1 Kbyte) F1000H

EES RL78 Type 03 2. System Configuration

R20UT5477EJ0101 Rev.1.01 Page 23 of 114
May.30.25

2.5 Resources Used in EES RL78 Type 03

2.5.1 Sections Used in EES RL78 Type 03

Table 2-7 shows the sections used for EES and allocations of the sections.

Table 2-7 Sections Used in EES

Section Name Description Allocation
EES_CODE Program section of API functions for EES control ROM

EES_CNST Constant variables section for EES initialized variables. ROM

EES_VAR Variables section for EES control RAM

SMP_EES Program section of sample functions for EES control ROM

SMP_VAR Variables section of sample functions for EES control RAM

2.5.2 Software Resources

Table 2-8 shows software resources (Reference value).

Table 2-8 Software resourcesNote1,2 (Reference value)

Item
Size (byte)

CC-RL IAR
Stack 42 48

Code sizeNote3 4649 5221

Notes 1: These values are when using the compiler options described in “1.6 C Compiler Definitions”.
2: Does not include the stack and code size of the sample program.
3: Does not include code size of the RFD RL78 Type 03.

EES RL78 Type 03 3. EEPROM Emulation

R20UT5477EJ0101 Rev.1.01 Page 24 of 114
May.30.25

3. EEPROM Emulation

3.1 Specifications of EEPROM Emulation

By calling the EES functions provided by the EES RL78 Type 03 from a user-created program, use is
possible without the awareness of data flash memory operations.
For the EES RL78 Type 03, a one-byte identifier (data ID: 1 to 254) is assigned by the user for each data
item, and reading and writing using any unit from 1 to 255 bytes are possible on an assigned identifier basis.
(The EES can handle up to 254 identifiers.)
Also, EES blocks (virtual block) for storing data use more than three blocks of area (recommended) Note.
These blocks are called EES blocks. Data written by EEPROM emulation is divided into reference data and
user-specified data, and the reference data is written to the target blocks from the lower block address, while
the user data is written from the higher block address.

Note: At least two blocks are necessary for EEPROM emulation. When two blocks are specified, if a write

error occurs even once, only reading of normally written data is possible but writing is no longer
possible. After that, the two target blocks must be formatted when the EES is used to write data.
Written data is erased completely. Since a contingency (such as voltage drop) may occur in the system,
we recommend that you specify at least three blocks.

3.2 Outline of Functions

The EES provides basic read/write functions having the following features.

- The EES block size can be set to 1024 or 2048 bytes.
- Up to 254 data items settable.
- A data size of 1 to 255 bytes settable.
- Supporting the background operation (BGO).

- Memory consumption of data for EES management (Block header, Separator):
10 bytes per EES block

- Memory consumption of reference data:
3 bytes per EES block write data.

- Restoration by R_EES_ENUM_CMD_REFRESH when execution is stopped by a CPU reset while
R_EES_ENUM_CMD_WRITE or R_EES_ENUM_CMD_REFRESH is running.

- Block rotation (averaging data flash use frequency).

Table 3-1 shows the range of settings when the EES functions are used.

EES RL78 Type 03 3. EEPROM Emulation

R20UT5477EJ0101 Rev.1.01 Page 25 of 114
May.30.25

Table 3-1 Range of Settings when the EES Functions are Used

Item Range

EES block size 1024 or 2048 (bytes)

User data length 1 to 255

Amount of stored user data Note 1 1 to 254

Data ID range 1 to 254
(The numbers assigned are from 1 to 254 in the order of
registration, and the selection of settings is not possible.)

Number of EES blocks Note 2 3 to 255

Recommended user data size Note 1 The EES block size is set to 1024 bytes: 1014 / 2 (bytes) or less
The EES block size is set to 2048 bytes. 2038 / 2 (bytes) or less

Notes 1: The total size of user data must be within 1/2 of each block when all user data are written to an
EES block. Therefore, the range used for the number of stored user data items differs depending
on the size of the stored user data. It is also necessary to consider the size of the reference data
provided for each data item for management use when determining the total size. For details about
the number of stored user data items and total size, see “4.1 Number of Stored User Data Items
and Total User Data Size”.

2: EES blocks cannot be set more than maximum number of blocks of on-board data flash memory.

3.3 EES Pool

This chapter describes the EES architecture required for the user to rewrite data flash memory (the EES
pool) by using the EES.

3.3.1 EES Pool State

Each block has a state which indicates the current usage of the block. Table 3-2 shows States of the EES
Blocks.

Table 3-2 States of the EES Blocks

State Description

Active Only a single EES block is active at a time to store defined data. The active block
circulates in data flash blocks allocated in the EES pool.

Invalid No data is stored in invalid blocks. EES blocks are marked as invalid by the EES or
become invalid in the case of erasure blocks.

Excluded If functional operation failed and possibility of a data flash failure is clarified, the EES
excludes the relevant block and the block is no longer used for EEPROM emulation.

When no writable area is remaining in the active block (EES block 1 in the example) and data can no longer
be stored (failure in write command), a new active block is selected in a cyclic manner and the current valid
data set is copied to this new active block. This process is referred to as refresh. After the
R_EES_ENUM_CMD_REFRESH command is executed, the previous active block becomes invalid and only
a single active block exists. Excluded blocks (like block 7 in the example) are ignored during this process
and not considered as candidates for the selection of the next active block.
Figure 3-1 shows an example of pool states (EES block size is set to 1 Kbyte).

EES RL78 Type 03 3. EEPROM Emulation

R20UT5477EJ0101 Rev.1.01 Page 26 of 114
May.30.25

Figure 3-1 EES pool states example (The EES block size is set to 1 Kbyte)

The overall life cycle of a block in the EES pool is shown in Figure 3-2. During normal operation, the block
switches between active and invalid state. When an error occurs during an access to the EES block, the
error EES block is marked as excluded. This block will not enter the lifecycle again. However, the user can
try to restore the block by a format of the complete pool which also erases all existing data content.

Caution: An EES block is a virtual block. Therefore, if even one of the physical blocks of data flash memory
used in an EES block fails or otherwise becomes unusable, the EES block containing that block is
considered a “excluded block”.

Figure 3-2 Life cycle of an EES block

invalid
block

active
block

excluded
block

AI X

format

Physical
block

0

Physical
block

1

Physical
block

2

Physical
block

3

Physical
block

4

Physical
block

5

Physical
block

6

Physical
block

7

EES
block

0

Data flash memory

EES pool

EES
block

1

EES
block

2

EES
block

3

EES
block

4

A I XActive block Invalid block Excluded block

AI I I I

EES
block

5

EES
Block

6

EES
block

7

I I X

EES RL78 Type 03 3. EEPROM Emulation

R20UT5477EJ0101 Rev.1.01 Page 27 of 114
May.30.25

The EES pool has the four states shown below.
Table 3-3 States of the EES Pool

State Description
Pool operational This is the usual case during EES operation. All commands are available and can

be executed.
Pool full Free space for data write is insufficient in the active block in use. This state indicates

that a refresh needs to be executed.
Pool exhausted No continuously usable EES block is left. (At least two blocks that are not excluded

are necessary for EES operations.)
Pool inconsistent There is a mismatch in the pool state and the data structure in the EES block does

not match the user-set data structure. The EES block is in the undefined state (e.g.
no active block is present).

3.3.2 Structure of EES Block

The detailed block structure used by the EES is shown in. In general, an EES block is divided into three
utilized areas: the block header, the reference area, and the data area.

Figure 3-3 EES Block Structure(1 Kbyte)

Table 3-4 Configuration of Each EES Block
Name Description

Block header The block header contains all block status information needed for the block
management within the EES-pool. It has a fixed size of 8 bytes.

Reference area
The reference area contains reference data which are required for the management
of data. When data are written, this area expands in the direction of higher
addresses.

Data area The data area contains user data. When data are written, this area expands in the
direction of lower addresses.

Block header

Reference area

Separator (erased 2 bytes)

Erased area
(All bytes 0xFF)

Data area

0xF1000

0xF13FF

Toward the higher address

Toward the lower address

EES RL78 Type 03 3. EEPROM Emulation

R20UT5477EJ0101 Rev.1.01 Page 28 of 114
May.30.25

Relative byte
index within block

Between reference area and data area, there is an erased area. With each EES data update (i.e. the data is
written), this area is reduced successively. However, at least 2 bytes of space always remain between
reference area and data area for management and separation of these areas. This is indicated by the
separator in Figure 3-3.
The EES block header is detailed in section “3.3.3 EES Block Header”, while the structure of data stored in
the reference and data area are described in section “3.3.4 Structure of Stored Data”.

3.3.3 EES Block Header

The structure of the block header is depicted in Figure 3-4. It is composed of 8 bytes, three of which are
reserved for the system.

0x0000 A N

0x0001 B 0xFF - N

0x0002 B’ 0x00

0x0003 I 0x00

0x0004 X 0x00

0x0005 - Reserved

0x0006 - Reserved

0x0007 - Reserved

Figure 3-4 Structure of EES Block Header

The block status flags start at the beginning of the block and include the A flag, B flag, B’ flag, I flag, and X
flag, each of which is 1 byte, for a total of 5 bytes of data. The combination of flags indicates the EES block
status.
Figure 3-4 shows the placement status of flags, and Table 3-5 shows the combination status of flags.

EES RL78 Type 03 3. EEPROM Emulation

R20UT5477EJ0101 Rev.1.01 Page 29 of 114
May.30.25

Table 3-5 Overviews of Block Status Flags

3.3.4 Structure of Stored Data

The structure of stored data when user data is written to an EES block is shown in the figure below. A data is
composed of three parts: the start-of-record (SoR) field and the end-of-record (EoR and EoR’) field and the
data field. The EES descriptor table can be used to set data for use in the EES. Each data is referred to by
an identification number (ID) and can have a size between 1 and 255 bytes. (The exact specification of the
format of the EES descriptor can be found in section “4.2 Initial Values to be Set by User”.)

Each time data is written, stored data increase in the EES block and multiple units of stored data exist in the
EES block, but only the most recent stored data is referenced.
SoR, EoR and EoR' build up the so-called reference data which is required for the management of the data.
The reference data and user data values are stored in different sections of the active block, namely the
reference area and the data area, respectively. Figure 3-6 shows the overview of the entire structure of
stored data.

Block Status Flag
State Description

A Flag B Flag B’ Flag I Flag X Flag

0x01 0xFE 0x00 0xFF 0xFF

Active

Currently used block
After the R_EES_ENUM_CMD_REFRESH command is
executed, the A flag of a new active block is set to 0x02.

0x02 0xFD 0x00 0xFF 0xFF
Currently used block
After the R_EES_ENUM_CMD_REFRESH command is
executed, the A flag of a new active block is set to 0x03.

0x03 0xFC 0x00 0xFF 0xFF
Currently used block
After the R_EES_ENUM_CMD_REFRESH command is
executed, the A flag of a new active block is set to 0x01.

0x01 0xFE

0x01 –
0xFE

0xFF 0xFF

Active

Currently used block. However, new data cannot be
added because the writing for B' flag is not completed.
(Read is possible.)
After executing the R_EES_ENUM_CMD_REFRESH
command, the A flag of a new active block is set in the
order of 0x01, 0x02, 0x03, 0x01,….

0x02 0xFD 0xFF 0xFF

0x03 0xFC 0xFF 0xFF

-- 0xFF 0xFF 0xFF

Invalid Invalid block

--
other
than
0xFF

0xFF

-- --
other
than
0xFF

Excluded Excluded block

EES RL78 Type 03 3. EEPROM Emulation

R20UT5477EJ0101 Rev.1.01 Page 30 of 114
May.30.25

Figure 3-5 Structure of Stored Data

Table 3-6 Description of Each Field of Data Area

Data is written to the EES block in the order of SoR -> data field -> EoR -> EoR’. If the value of the EoR field
is not written correctly, the immediately previous data becomes valid.
Notes 1: The total size of the reference data consumed by each stored data is 3 bytes. This should be

considered when evaluating the free space in a block before writing the data through the
R_EES_GetSpace function.

2: No checksum is added to user data. If a checksum is needed, add it to user data and check
through the user program.

Name Description
SoR field
(Start of Record)

The 1 byte SoR field contains the ID of data. This field indicates the start of write
processing. Data IDs 0x00 and 0xFF are not used to avoid patterns of erased cells.

EoR field
(End of Record)

The 1 byte EoR field contains a 0xFF - data ID value.
This field indicates successful end of write processing. If writing does not end
normally due to a device reset or other reasons, the corresponding stored data is
ignored by the EES.

EoR’ field
(End of Record’)

The 1 byte EoR' field contains the completion of the write process to the EoR field.
This field is written to 0x00 after the EoR field has been written.
- When the value is between 0x01 - 0xFE, the stored data is valid, but the writing
has not been completed. Therefore, the block is treated as a block to which data
cannot be added.
- When the value is 0xFF, EES judges with the execution result of the writing for the
EoR field not having been a normal end.

Data field The data field contains the user data. The size of user data is 1 to 255 bytes. When
data of 2 bytes or more is stored, the smallest address of the data is allocated to the
smallest address of the data field (as shown in Figure 3-6).

 SoR ID

 EoR 0xFF - ID

EoR’ 0x00

0x0000

Data

Data size - 1

Reference data in EES block
reference area

Data field in EES block
data area

EES RL78 Type 03 3. EEPROM Emulation

R20UT5477EJ0101 Rev.1.01 Page 31 of 114
May.30.25

3.3.5 EES Block Overview

Figure 3-6 shows an example of an EES block that contains multiple units of stored data:
• Data ID 0x01 with size = 0x04
• Data ID 0x02 with size = 0x01
• Data ID 0x03 is defined but not written here.
• Data ID 0x04 with size = 0x02

The data have been written in the sequence ID 0x01 -> ID 0x04 -> ID 0x02.
In this example, the data with ID 0x03 has not been written yet.

0x0000 A = 0x02
0x0001 B = 0xFD
0x0002 B’ = 0x00
0x0003 I = 0xFF
0x0004 X = 0xFF
0x0005 Reserved
0x0006 Reserved
0x0007 Reserved
0x0008 SoR → ID = 0x01

0x0009 EoR → ~ID = 0xFE

0x000A EoR’ = 0x00

0x000B SoR → ID = 0x04

0x000C EoR → ~ID = 0xFB

0x000D EoR’ = 0x00

0x000E SoR → ID = 0x02

0x000F EoR → ~ID = 0xFD

0x0010 EoR’ = 0x00
0x0011
0x0012 Separator (erased 2 bytes)

… Erased area

(All bytes 0xFF)

0x03F8
0x03F9 DATA(ID = 0x02)[0]

0x03FA DATA(ID = 0x04)[0]

0x03FB DATA(ID = 0x04)[1]

0x03FC DATA(ID = 0x01)[0]

0x03FD DATA(ID = 0x01)[1]

0x03FE DATA(ID = 0x01)[2]

0x03FF DATA(ID = 0x01)[3]

Figure 3-6 Example of an Active EES Block

Relative byte index
within block

Block header

Reference area

Data area

EES RL78 Type 03 4. Using EEPROM Emulation

R20UT5477EJ0101 Rev.1.01 Page 32 of 114
May.30.25

4. Using EEPROM Emulation

EEPROM emulation can store a maximum of 254 data items each consisting of 1 to 255 bytes in the flash
memory by using three or more blocks (recommended) of flash memory.

EEPROM emulation can be executed by incorporating the EES into a user-created program and executing
that program.

4.1 Number of Stored User Data Items and Total User Data Size

The total size of user data that can be used in the EEPROM emulation is limited. The size required for writing all user
data to an EES block must be within 1/2 of the block. Therefore, the number of stored data items that can be used
differs depending on the size of user data that is actually stored. The following shows how to calculate the size that
can be used when actually writing user data, as well as the total user data size.

[Maximum usable size of one block that can be used to write the user data]

Size required for EEPROM emulation block management: 8 bytes
Free space necessary as termination information (separator): 2 bytes

- EES Block size: 1024 bytes
Maximum usable size of one block = 1024 bytes - (8 bytes + 2 bytes) = 1014 bytes

- EES Block size: 2048 bytes
EES block size: 1024 bytes * 2 = 2048 bytes
Maximum usable size of one block = 2048 bytes - (8 bytes + 2 bytes) = 2038 bytes

[Calculating the size for writing each user data item] Note

Size of each written user data item = data size + reference data size (3 bytes)

Note: For details, see “3.3.4 Structure of Stored Data”.

[Calculating the basic total user data size]

Basic total size = (user data 1 + 3) + (user data 2 + 3) ... + (user data n + 3)

[Maximum size and recommended size]

Data must be held in one block. Therefore, the maximum size is the maximum usable size of one block but the
following relational expression should be met. To enable all data to be updated at least once, we recommend that
the data be within the half size of the maximum usable size of one block.

Maximum size: Assumed that the largest data can be updated once after all data have been written.
Recommended size: Assumed that all data can be updated once after all data have been written.

- EES Block size: 1024 bytes
Maximum size = the basic total user data size + maximum data size + 3 ≤ 1014
Recommended size = 1014 / 2 = 507 bytes or less

- EES Block size: 2048 bytes
Maximum size = the basic total user data size + maximum data size + 3 ≤ 2038
Recommended size = 2038 / 2 = 1019 bytes or less

EES RL78 Type 03 4. Using EEPROM Emulation

R20UT5477EJ0101 Rev.1.01 Page 33 of 114
May.30.25

4.2 Initial Values to be Set by User

As the initial values for the EES, be sure to set the items indicated below. In addition, before executing the EES, be
sure to execute the high-speed on-chip oscillator. The high-speed on-chip oscillator must also be activated when
using the external clock.

・Number of stored data items, and data size of the identifier (data ID)
< EEPROM emulation soft wear user include file (r_ees_descriptor.h) > Notes 2, 3

Notes 1: The number of data flash memory blocks that can be set for the EES block is 1u or 2u.

< EEPROM emulation software user data definition file (r_ees_user_types.h) > Notes 3

 #define R_EES_EXRFD_VALUE_U16_PHYSICAL_BLOCK_SIZE (1024u)
: (1) The size of one block of data flash memory

(Physical block size).
#define R_EES_EXRFD_VALUE_U08_PHYSICAL_BLOCKS_PER_VIRTUAL_BLOCK (1u)

: (2) The number of data flash memory blocks
(Number of physical blocks) to set in the EES
block (Per virtual block). Notes 1

#define R_EES_EXRFD_VALUE_U08_POOL_VIRTUAL_BLOCKS (4u)
: (3) EES pool size (Number of virtual blocks).

#define R_EES_VALUE_U08_VAR_NO (8u) : (4) Number of stored data items.

typedef uint8_t type_A[2];
typedef uint8_t type_B[3];
typedef uint8_t type_C[4];
typedef uint8_t type_D[5];
typedef uint8_t type_E[6];
typedef uint8_t type_F[10];
typedef uint8_t type_X[20];
typedef uint8_t type_Z[255];

: (5) Data size definition of each data identifier
 (data ID).

EES RL78 Type 03 4. Using EEPROM Emulation

R20UT5477EJ0101 Rev.1.01 Page 34 of 114
May.30.25

< EEPROM emulation software user program file (r_ees_descriptor.c)> Notes 3

Notes 2: The macros that are being used are parameters which are common to the whole EES, so any
changes should only be to numerical values.

3: After initializing the EEPROM emulation blocks (after executing the
R_EES_ENUM_CMD_FORMAT command), do not change the values. If the values are
changed, reinitialize the EES blocks (by executing the R_EES_ENUM_CMD_FORMAT
command).

(1) The size of one block of data flash memory (Physical block size).

Set the size of one block of data flash memory installed (mounted) in the target device.

(2) The number of data flash memory blocks (Number of physical blocks) to set in the EES block.
Sets the number of data flash memory blocks to use for the EES block.

(3) EES pool size. Note
The number of blocks in the data flash memory of the target device must be specified as the number of
blocks in the EES pool.
Note: Specify 3 (3 blocks) or a greater value (recommended).

(4) Number of stored data items

Specify the number of data items to be used in the EEPROM emulation. A value of 1 to 254 can be set.

(5) Data size definition of each data identifier (data ID).

Defines the data type name for the byte size of each user data. The EES descriptor table reflects the
byte size of each user data.

 __far const uint8_t g_ar_u08_ees_descriptor
[R_EES_VALUE_U08_VAR_NO + 2u] =
{
 (uint8_t)(R_EES_VALUE_U08_VAR_NO), /* variable count */ \
(uint8_t)(sizeof(type_A)), /* id=1 */ \

 (uint8_t)(sizeof(type_B)), /* id=2 */ \
 (uint8_t)(sizeof(type_C)), /* id=3 */ \
 (uint8_t)(sizeof(type_D)), /* id=4 */ \
 (uint8_t)(sizeof(type_E)), /* id=5 */ \
 (uint8_t)(sizeof(type_F)), /* id=6 */ \
 (uint8_t)(sizeof(type_X)), /* id=7 */ \
 (uint8_t)(sizeof(type_Z)), /* id=8 */ \
(uint8_t)(0x00), /* zero terminator */ \

};

: (6) Data size of each data identifier
(data ID).

EES RL78 Type 03 4. Using EEPROM Emulation

R20UT5477EJ0101 Rev.1.01 Page 35 of 114
May.30.25

(6) Data size of each data identifier (data ID)
A table to define the data size of each identifier is provided below. This is called an EES descriptor table.
Data to be written must be registered in the EES descriptor table in advance.

__far const uint8_t g_ar_u08_ees_descriptor [Number of stored data items + 2]

R_EES_VALUE_U08_VAR_NO

Byte size of data ID1

Byte size of data ID2

Byte size of data ID3

Byte size of data ID4

Byte size of data ID5

Byte size of data ID6

Byte size of data ID7

Byte size of data ID8

0x00

Figure 4-1 EES Descriptor Table (When there are eight different data items)

・R_EES_VALUE_U08_VAR_NO

User-specified number of data items used in the EES
・Byte size of data IDx

User-specified size of user data (in bytes)
・Termination area (0x00)

Specify 0 as the termination information.

EES RL78 Type 03 5. User Interface

R20UT5477EJ0101 Rev.1.01 Page 36 of 114
May.30.25

5. User Interface

5.1 Request Structure (st_ees_request_t) Settings

Basic operations such as reading from and writing to the data flash memory are performed by a single
function. The function transfers commands and data ID to the EES via the request structure
(st_ees_request_t). Furthermore, the EES state and error information are acquired via the request structure
(st_ees_request_t).

In subsequent sections, write access to the request structure (st_ees_request_t) from the user is called user
write access, and read access to it from the user is called user read access.

Figure 5-1 Request Structure (st_ees_request_t)

The request structure (st_ees_request_t) is defined in the r_ees_types.h file. It should not be changed by the
user.

[Definition of the request structure (st_ees_request_t)]

typedef struct st_ees_request
{
uint8_t __near * np_u08_address;
uint8_t u08_identifier;
e_ees_command_t e_command;
e_ees_ret_status_t e_status;

} st_ees_request_t;

EES

User Program

np_u08_address

u08_identifier

e_command

e_status

User read access

User write access

EES RL78 Type 03 5. User Interface

R20UT5477EJ0101 Rev.1.01 Page 37 of 114
May.30.25

Figure 5-2 Alignment of Variables of the Request Structure (st_ees_request_t)

5.1.1 User Write Access

(1) np_u08_address
Specifies a pointer to the start address of the data buffer used for R_EES_ENUM_CMD_WRITE command
and R_EES_ENUM_CMD_READ command execution.

Associated command (macro name) Setting
R_EES_ENUM_CMD_WRITE Pointer to the start address of the data buffer. Note 1
R_EES_ENUM_CMD_READ Pointer to the start address of the data buffer. Note 2

Notes 1: Buffer which contains data written by the user
 2: Buffer which contains data read from the data flash memory

(2) u08_identifier
Specify the data ID used for each command. For more information about how to do this, see the
description of the R_EES_Execute function in section “5.7 Specifications of API Functions”.

Associated command (macro name) Setting
R_EES_ENUM_CMD_WRITE ID of write data
R_EES_ENUM_CMD_READ ID of read data

(3) e_command
Commands to be set in the common executable function.

Associated command (macro name) Description
R_EES_ENUM_CMD_UNDEFINED Undefined command

(Initial value: It is used only for initialization.)
R_EES_ENUM_CMD_STARTUP Startup processing
R_EES_ENUM_CMD_WRITE Write processing
R_EES_ENUM_CMD_READ Read processing
R_EES_ENUM_CMD_REFRESH Refresh processing
R_EES_ENUM_CMD_FORMAT Format processing
R_EES_ENUM_CMD_SHUTDOWN Shutdown processing

5.1.2 User Read Access

- e_status
EES status and error information. For information about the status and errors which might occur during
execution of the functions, see the description of the R_EES_Execute function in section “5.7
Specifications of API Functions”

uint8_t __near * np_u08_address

uint8_t u08_identifier e_ees_command_t e_command

e_ees_ret_status_t e_status

 Bit 0 Bit 15

EES RL78 Type 03 5. User Interface

R20UT5477EJ0101 Rev.1.01 Page 38 of 114
May.30.25

5.2 List of API Functions and R_EES_Execute function commands for the EES

5.2.1 API Functions for the EES

Table 5-1 shows the API functions for EES RL78 Type 03.

Table 5-1 API Functions for EES RL78 Type 03

 API Name Overview

1 R_EES_Init Initializes internal data and variables and checks the descriptor
configuration.

2 R_EES_Open EEPROM emulation preparation processing.
This function makes the EEPROM emulation executable.

3 R_EES_Close EEPROM emulation end processing.
This function makes the EEPROM emulation un-executable.

4 R_EES_Execute EEPROM emulation execution function.
Each type of processing for performing EEPROM emulation
operations is specified for this function as an argument in the
command format, and the processing is executed.

5 R_EES_Handler Continuous EEPROM emulation execution processing.
This function is used to check for the completion of processing while
allowing processing of EEPROM emulation specified by the
R_EES_Execute function to continue.

6 R_EES_GetSpace Gets the free space of the active block.

EES RL78 Type 03 5. User Interface

R20UT5477EJ0101 Rev.1.01 Page 39 of 114
May.30.25

5.2.2 Commands for R_EES_Execute Function

Table 5-2 shows commands for R_EES_Execute.

Table 5-2 List of commands for R_EES_Execute

 Command Name Outline

1 R_EES_ENUM_CMD_STARTUP [Startup Processing]
This command checks the block status and sets the system to the
EEPROM emulation (data access) valid state (Full Access). If two active
blocks exist, the incorrect block is changed to an invalid block.
Be sure to execute this command before executing commands other
than the R_EES_ENUM_CMD_FORMAT command and make sure that
the command finishes normally.

2 R_EES_ ENUM_CMD_WRITE Note1 [Write Processing]
This command writes the specified data to the EES block.
* The following arguments must be specified prior to execution.
- np_u08_address: Specifies a pointer to the start address of the RAM
area where the write data is stored.
- u08_identifier: Specifies the data ID of the write data.

3 R_EES_ ENUM_CMD_READ Note1 [Read Processing]
Read the specified data from an EES block.
* The following arguments must be specified prior to execution.
- np_u08_address: Specifies a pointer to the start address of the RAM
area where the read data is stored.
- u08_identifier: Specifies the data ID of the read data.

4 R_EES_ ENUM_CMD_REFRESH
Note1,2

[Refresh Processing]
Copy the latest stored data from the active block (copy source EES
block) to the next block (copy destination EES block) in the EES pool
after the erase processing. This makes the copy destination block
active.

5 R_EES_ ENUM_CMD_FORMAT [Format Processing]
Initialize (erase) everything, including the data recorded in the whole
EES pool. Be sure to use this command before using EEPROM
emulation for the first time. Note that issuing this command is also
necessary to initialize all blocks if a malfunction occurs in an EES block
(such as an active block disappearing) or the values in the descriptor
table (those which are fixed values that cannot be changed) are
modified.
Because EEPROM emulation switches to the stopped state (opened)
regardless of the results after the processing finishes, execute the
R_EES_ENUM_CMD_STARTUP command to continue using EEPROM
emulation.

6 R_EES_ ENUM_CMD_SHUTDOWN
Note1

[Shutdown Processing]
Set the EEPROM emulation operation to the stopped state (opened).

Notes 1: Do not execute this command until the R_EES_ENUM_CMD_STARTUP command has finished
normally.

2: The erase processing is performed by executing the R_EES_ ENUM_CMD_REFRESH command.

EES RL78 Type 03 5. User Interface

R20UT5477EJ0101 Rev.1.01 Page 40 of 114
May.30.25

5.2.3 RFD control API functions for EES

Table 5-3 shows RFD control API functions for EES.
This function is used internally by EES. It does not need to be used directly by the user.

Table 5-3 List of RFD control API functions for EES

 API Name Overview

1 R_EES_EXRFD_Init Initializes RFD RL78 Type 03.

2 R_EES_EXRFD_Open Set the data flash control register (DFLCTL) to the state where
accessing the data flash memory is permitted (DFLEN = 1).

3 R_EES_EXRFD_Close Set the data flash control register (DFLCTL) to the state where
access to the data flash memory is inhibited (DFLEN = 0). All ongoing
EES processing stop.

4 R_EES_EXRFD_Erase Start erasing the EES block (one virtual block).
5 R_EES_EXRFD_Write Starts writing to the specified the data flash memory address (one

byte).

6 R_EES_EXRFD_BlankCheck Starts Blank check to the specified the data flash memory address.

7 R_EES_EXRFD_Read Reads the specified address in the data flash memory.

8 R_EES_EXRFD_Handler Continues processing of the RFD control function for EES that is
executing, and confirms termination.

EES RL78 Type 03 5. User Interface

R20UT5477EJ0101 Rev.1.01 Page 41 of 114
May.30.25

5.3 State Transitions

To use EEPROM emulation from a user-created program, it is necessary to initialize the EES and execute
functions that perform operations such as reading and writing on EES blocks. Figure 5-3 shows the overall
state transitions, and Figure 5-4 shows an operation flow for using basic features. When using EEPROM
emulation, incorporate EEPROM emulation into user-created programs by following this flow.

R_EES_Init()

closed

Power OFF

R_EES_Open()

opened

Format executing
busy

Startup executing
busy

R_EES_Execute
(FORMAT)

R_EES_Execute
(STARTUP)

Full Access

EEPROM command executing
busy

status: ERROR

Not powered

exhausted

EEPROM command executing
busy

Power ON

Figure 5-3 State Transitions Diagram

Note: Once the R_EES_ENUM_CMD_FORMAT command has started running, execute the
R_EES_Handler function to check for its completion.

EES RL78 Type 03 5. User Interface

R20UT5477EJ0101 Rev.1.01 Page 42 of 114
May.30.25

[Overview of state transitions diagram]
To use EES to manipulate the data flash memory, it is necessary to execute the provided functions in order
to advance the processing.

(1) Not powered
Status is Power Off.

(2) closed
This is the state in which the data to perform EEPROM emulation is initialized by executing the
R_EES_Init functions (no ongoing operation to the data flash memory).
Do not execute “operation of the code flash memory”, STOP mode or HALT mode while the
EEPROM emulation is executing. In the case where they are executed, execute R_EES_Close
function and change to a Closed state.

(3) opened
This state is switched to by executing R_EES_Open in the closed state and makes it possible to
perform operations on the data flash memory. Even if the R_EES_Close function is executed, do not
execute “operation of the code flash memory”, STOP mode, or HALT mode until a state change to
“closed”.

(4) started
This state is switched to by executing the R_EES_ENUM_CMD_STARTUP command in the opened
state and makes it possible to execute EEPROM emulation. Writes and reads that use EEPROM
emulation are performed in this state.

(5) exhausted
This state is made from the opened or started state when continuously usable EES blocks have
been exhausted during command execution. In this state, only R_EES_ENUM_CMD_READ, and
R_EES_ENUM_CMD_SHUTDOWN commands are executable.

(6) busy
This is the state used when executing a specified command. The state that is switched to differ
depending on which command is executed and how it terminates.

EES RL78 Type 03 5. User Interface

R20UT5477EJ0101 Rev.1.01 Page 43 of 114
May.30.25

5.4 Basic Flowchart

Figure 5-4 below shows the basic procedure to perform read and write operations for the data flash by using

the EES.

Figure 5-4 Basic Flowchart of EES
Notes 1: When using the EEPROM emulation for the first time, be sure to execute the

R_EES_ENUM_CMD_FORMAT command.

2: This flowchart omits error handling and R_EES_Handler processing after command execution.

Start

End

(2) R_EES_Open function

(8) R_EES_Close function

(3) R_EES_Execute function
R_EES_ENUM_CMD_STARTUP

(4) R_EES_Execute function
R_EES_ENUM_CMD_WRITE

(5) R_EES_Execute function
R_EES_ENUM_CMD_READ

(7) R_EES_Execute function
R_EES_ENUM_CMD_SHUTDOWN

(1) R_EES_Init function

(6) R_EES_Execute function
R_EES_ENUM_CMD_REFRESH

Yes

No

R_EES_ENUM_RET_ERR_POOL_FULL

EES RL78 Type 03 5. User Interface

R20UT5477EJ0101 Rev.1.01 Page 44 of 114
May.30.25

[Overview of basic operation flow]

(1) EES initialization processing (R_EES_Init)
Initialize the parameters used by the EES.

(2) EEPROM emulation preparation processing (R_EES_Open)
Set the data flash memory to a state (opened) for which control is enabled to execute EEPROM
emulation.

(3) EEPROM emulation execution start processing (R_EES_Execute: R_EES_ENUM_CMD_STARTUP

command)
Set the system to a state (Full Access) in which EEPROM emulation can be executed.

(4) EEPROM emulation data write processing (R_EES_Execute: R_EES_ENUM_CMD_WRITE command)
Write the specified data to an EES block.

(5) EEPROM emulation data read processing (R_EES_Execute: R_EES_ENUM_CMD_READ command)
Read the specified data from an EES block.

(6) EEPROM emulation refresh processing (R_EES_Execute: R_EES_ENUM_CMD_REFRESH command)
The latest stored data is copied from the active block (source block) to the next block (destination block)
in the EES pool after the erase processing. This makes the copy destination block active.

(7) EEPROM emulation execution stop processing (R_EES_Execute: R_EES_ENUM_CMD_SHUTDOWN

command)
Set the EEPROM emulation operation to the stopped state (opened).

(8) EEPROM emulation end processing (R_EES_Close)
Set the data flash memory to a state (closed) for which control is disabled to stop EEPROM emulation.

EES RL78 Type 03 5. User Interface

R20UT5477EJ0101 Rev.1.01 Page 45 of 114
May.30.25

5.5 Command Operation Flowchart

The figure below shows the basic procedure to perform read and write operations for data flash by using the

EES.

Figure 5-5 Command Operation Flowchart

(1) R_EES_Execute function

Perform operations for the data flash memory.

(2) Busy state check
Check e_status of the request structure (st_ees_request_t).
When e_status is R_EES_ENUM_RET_STS_BUSY, continue the data flash operation. If the value of
e_status is other than R_EES_ENUM_RET_STS_BUSY, check the final state.

(3) R_EES_Handler function
Control the EES while it is running. By repeating the execution of the R_EES_Handler function, continue
the data flash operation.

(4) Final state check
If the final state is R_EES_ENUM_RET_STS_OK, the operation ends normally. Otherwise, it will be
terminated with an error.

(1) R_EES_Execute function

Start

Error Normal end

Not busy

Busy

Normal end

Abnormal end
(4) Final state check

(2) Busy state check (3) R_EES_Handler function

EES RL78 Type 03 5. User Interface

R20UT5477EJ0101 Rev.1.01 Page 46 of 114
May.30.25

5.6 Data Type Definitions

5.6.1 Data Types

Table 5-4 shows the data type definitions in EES RL78 Type 03.

Table 5-4 Data Type Definitions in EES RL78 Type 03

Macro Value Type Description

int8_t signed char 1-byte signed integer

uint8_t unsigned char 1-byte unsigned integer

int16_t signed short 2-byte signed integer

uint16_t unsigned short 2-byte unsigned integer

int32_t signed long 4-byte signed integer

uint32_t unsigned long 4-byte unsigned integer

bool unsigned char Boolean value (false = 0, true = 1)
Remark: In the C language standard C 99 and later, these data types are defined in “stdint.h” and

“stdbool.h”.

5.6.2 Global Variables

The following shows the global variables used in EES RL78 Type 03.

(1) g_ar_u08_ees_descriptor[R_EES_VALUE_U08_VAR_NO + 2u]

Type/Name uint8_t g_ar_u08_ees_descriptor[]

Default value (uint8_t)(R_EES_VALUE_U08_VAR_NO), /* variable count */
 (uint8_t)(sizeof(type_A)), /* id=1 */
 (uint8_t)(sizeof(type_B)), /* id=2 */
 (uint8_t)(sizeof(type_C)), /* id=3 */
 (uint8_t)(sizeof(type_D)), /* id=4 */
 (uint8_t)(sizeof(type_E)), /* id=5 */
 (uint8_t)(sizeof(type_F)), /* id=6 */
 (uint8_t)(sizeof(type_X)), /* id=7 */
 (uint8_t)(sizeof(type_Z)), /* id=8 */
(uint8_t)(0x00u) /* zero terminator */

Description Stores the data size of each data identifier (Data ID).

Definition file r_ees_descriptor.c

EES RL78 Type 03 5. User Interface

R20UT5477EJ0101 Rev.1.01 Page 47 of 114
May.30.25

(2) g_st_ees_exrfd_descriptor

Type/Name st_ees_exrfd_descriptor_t g_st_ees_exrfd_descriptor

Default value (uint16_t) R_EES_EXRFD_VALUE_U16_PHYSICAL_BLOCK_SIZE
(uint8_t) R_EES_EXRFD_VALUE_U08_PHYSICAL_BLOCKS_PER_VIRTUAL_BLOCK
(uint8_t) R_EES_EXRFD_VALUE_U08_POOL_VIRTUAL_BLOCKS

Description Contains settings that configure the EES pool
・uint16_t u16_ees_physical_block_size;

The size of one block of data flash memory (Physical block size).
 Example: This value is fixed for RL78/F22, F25. (1024u)

・uint8_t u08_ees_physical_blocks_per_virtual_block;
The number of data flash memory blocks to set in the EES block (Number of physical
blocks).
 Example: When setting 1 Kbyte for EES block. Number of data flash memories. (1u)
Example: When setting 2 Kbytes for EES block. Number of data flash memories. (2u)

・uint8_t u08_ees_pool_virtual_blocks;
EES pool size (Number of virtual blocks）
 Example: Total EES blocks. (4u)

Definition file r_ees_descriptor.c

(3) g_ar_u16_ram_ref_table[R_EES_VALUE_U08_VAR_NO]

Type/Name uint16_t g_ar_u16_ram_ref_table[]

Default value -

Description Contains reference data for each data identifier (Data ID).

Definition file r_ees_descriptor.c

EES RL78 Type 03 5. User Interface

R20UT5477EJ0101 Rev.1.01 Page 48 of 114
May.30.25

5.6.3 Enumerations

• e_ees_command (enumerated-type variable name: e_ees_command_t)
EES executable command

Symbol Name Value Description

R_EES_ENUM_CMD_UNDEFINED 0x00 Undefined command (Initial value)

R_EES_ENUM_CMD_STARTUP 0x01 Startup processing

R_EES_ENUM_CMD_WRITE 0x02 Write processing

R_EES_ENUM_CMD_READ 0x03 Read processing

R_EES_ENUM_CMD_REFRESH 0x04 Refresh processing

R_EES_ENUM_CMD_FORMAT 0x06 Format processing

R_EES_ENUM_CMD_SHUTDOWN 0x07 Shutdown processing

• e_ees_ret_status (enumerated-type variable name: e_ees_ret_status_t)
• EES return values

Symbol Name Value Description

R_EES_ENUM_RET_STS_OK 0x00 Normal end

R_EES_ENUM_RET_STS_BUSY 0x01 Busy

R_EES_ENUM_RET_ERR_CONFIGURATION 0x82 EES configuration error

R_EES_ENUM_RET_ERR_INITIALIZATION 0x83 EES initialization error

R_EES_ENUM_RET_ERR_ACCESS_LOCKED 0x84 EEPROM emulation lock error

R_EES_ENUM_RET_ERR_PARAMETER 0x85 Parameter error

R_EES_ENUM_RET_ERR_WEAK 0x86 Weak error

R_EES_ENUM_RET_ERR_REJECTED 0x87 Reject error

R_EES_ENUM_RET_ERR_NO_INSTANCE 0x88 No instance

R_EES_ENUM_RET_ERR_POOL_FULL 0x89 Pool full error

R_EES_ENUM_RET_ERR_POOL_INCONSISTENT 0x8A EES block Inconsistency error

R_EES_ENUM_RET_ERR_POOL_EXHAUSTED 0x8B EES block exhaustion error

R_EES_ENUM_RET_ERR_INTERNAL 0x8C Internal error

R_EES_ENUM_RET_ERR_FLASH_SEQ 0x8D Flash sequencer error

EES RL78 Type 03 5. User Interface

R20UT5477EJ0101 Rev.1.01 Page 49 of 114
May.30.25

• e_ees_exrfd_ret_status (enumerated-type variable name: e_ees_exrfd_ret_status_t)
These enumeration types are used internally by EES. It does not need to be used directly by the user.
RFD control functions for EES return values

Symbol Name Value Description

R_EES_EXRFD_ENUM_RET_STS_OK 0x00 Normal end

R_EES_EXRFD_ENUM_RET_STS_BUSY 0x01 Busy

R_EES_EXRFD_ENUM_RET_ERR_CONFIGURATION 0x10 Configuration error

R_EES_EXRFD_ENUM_RET_ERR_INITIALIZATION 0x11 Initialization error

R_EES_EXRFD_ENUM_RET_ERR_REJECTED 0x12 Reject error

R_EES_EXRFD_ENUM_RET_ERR_PARAMETER 0x13 Parameter error

R_EES_EXRFD_ENUM_RET_ERR_INTERNAL 0x14 Internal error

R_EES_EXRFD_ENUM_RET_ERR_MODE_MISMATCHED 0x20 Mode mismatch error

R_EES_EXRFD_ENUM_RET_ERR_CFDF_SEQUENCER 0x21 Code/data flash area sequencer
error

R_EES_EXRFD_ENUM_RET_ERR_ERASE 0x22 Erase operation error

R_EES_EXRFD_ENUM_RET_ERR_BLANKCHECK 0x23 Blank check operation error

R_EES_EXRFD_ENUM_RET_ERR_WRITE 0x24 Write operation error

EES RL78 Type 03 5. User Interface

R20UT5477EJ0101 Rev.1.01 Page 50 of 114
May.30.25

5.7 Specifications of API Functions

This section describes the detailed specifications of the API functions of EEPROM Emulation Software (EES)
RL78 Type 03.

There are some prerequisites for using the API functions of EES RL78 Type 03 to reprogram the data flash
memory. If the prerequisites are not satisfied, execution of the API functions may result in indeterminate
operation.

Prerequisites:

• Execute the R_EES_Init function once before starting the use of EES functions.
• The high-speed on-chip oscillator must be active while self-programming is in progress. Execute API

functions of EES RL78 Type 03 only while the high-speed on-chip oscillator is active.
• To control the data flash memory, execute API functions of EES RL78 Type 03 while access to the data

flash memory is enabled. For the method of enabling access to the data flash memory, refer to “User’s
Manual: Hardware” of a target device.

The following shows the format for describing the specifications of API functions.

Description format:

Information:

Syntax Syntax for calling this function from a C-language program

Reentrancy Reentrant or Non-reentrant

Parameters
(IN)

Input parameters for this
function

Parameter [Value, range, meaning of the
parameter, etc.]

Parameters
(IN/OUT)

Input/output parameters for this
function

Parameter [Value, range, meaning of the
parameter, etc.]

Parameters
(OUT)

Output parameters for this
function

Parameter [Value, range, meaning of the
parameter, etc.]

Return Value Type of the return value from
this function
(Enumerated type, pointer type,
etc.)

Enumerator (constant value) of the return value:
Value
[Meaning of the constant: Detailed description]

 Enumerator (constant value) of the return value:
Value
[Meaning of the constant: Detailed description]

Description Overview of function

Preconditions Overview of preconditions

Remarks Special notes on this function

Details of Specifications:

The operation of this function is described.

Notes:

Conditions of usage or restrictions on this function are described.

EES RL78 Type 03 5. User Interface

R20UT5477EJ0101 Rev.1.01 Page 51 of 114
May.30.25

5.7.1 Specifications of API Functions for EES RL78 Type 03

This section describes the API functions used for EES RL78 Type 03.

5.7.1.1 R_EES_Init

Information:

Syntax R_EES_FAR_FUNC e_ees_ret_status_t R_EES_Init(uint8_t i_u08_cpu_frequency);

Reentrancy Non-reentrant

Parameters
(IN)

uint8_t
i_u08_cpu_frequency

CPU operating frequency［2 - 40 (MHz)］

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value e_ees_ret_status_t R_RFD_ENUM_RET_STS_OK: 0x00
[Normal end]
R_EES_ENUM_RET_ERR_CONFIGURATION:
0x82
[EES configuration error]

Description Initializes internal data and variables and checks the descriptor configuration.

Preconditions Execute this function while the high-speed on-chip oscillator is active.

Remarks Execute this function once before starting the use of EES functions.

Details of Specifications:

• Set the parameter (CPU operating frequency) to the R_EES_EXRFD_Init function and execute it.

Notes:

• When the configuration for executing the EEPROM emulation such as EES pool or EES block size is
abnormal, the return value will return a EES configuration error
(R_EES_ENUM_RET_ERR_CONFIGURATION).

• The high-speed on-chip oscillator needs to be kept active while EEPROM emulation is in progress.
Execute this function while the high-speed on-chip oscillator is active.
* EES RL78 Type 03 does not activate or check the high-speed on-chip oscillator.

• For the parameter (i_u08_cpu_frequency), specify the integer obtained by rounding up the fraction of the
CPU operating frequency that is actually used in the microcontroller.
(Example: When the CPU operates at 4.5 MHz, specify 5 in this initialization function.)
When the CPU operates at a frequency lower than 4 MHz, a value of 2 MHz, or 3 MHz can be used but a
non-integer value such as 2.5 MHz cannot be used.
The frequency specified in the parameter (i_u08_cpu_frequency) should be the actual frequency at which
the CPU operates during flash memory reprogramming; it is not necessarily that the frequency of the
high-speed on-chip oscillator should be specified.

- If the specified frequency differs from the actual CPU operating frequency, the subsequent
operation is indeterminate. In this case, even if flash memory reprogramming is completed, the
written data value and data retention period may not be guaranteed.
* For the range of the CPU operating frequency, refer to “User’s Manual: Hardware” of a target
device.

EES RL78 Type 03 5. User Interface

R20UT5477EJ0101 Rev.1.01 Page 52 of 114
May.30.25

5.7.1.2 R_EES_Open

Information:

Syntax R_EES_FAR_FUNC e_ees_ret_status_t R_EES_Open(void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value e_ees_ret_status_t R_EES_ENUM_RET_STS_OK: 0x00
[Normal end]

R_EES_ENUM_RET_ERR_ REJECTED: 0x87
[Reject error]

Description EEPROM emulation preparation processing.
This function makes the EEPROM emulation executable.

Preconditions R_EES_Init function must have finished normally.

Remarks -

Details of Specifications:

• Execute the R_EES_EXRFD_Open function to make the data flash memory accessible.

Notes:

• When the R_EES_Init function is not executed and the internal variable has not been initialized, the
return value will return a reject error (R_EES_ENUM_RET_ERR_REJECTED).

EES RL78 Type 03 5. User Interface

R20UT5477EJ0101 Rev.1.01 Page 53 of 114
May.30.25

5.7.1.3 R_EES_Close

Information:

Syntax R_EES_FAR_FUNC e_ees_ret_status_t R_EES_Close(void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value
e_ees_ret_status_t R_EES_ENUM_RET_STS_OK: 0x00

 [Normal end]

Description EEPROM emulation end processing.
This function makes the EEPROM emulation un-executable.

Preconditions -

Remarks -

Details of Specifications:

• Executes the R_EES_EXRFD_Close function and finishes the EEPROM emulation.

Notes:

• If EEPROM emulation was executed, the R_EES_ENUM_CMD_SHUTDOWN command must be used to
set EEPROM emulation to the stopped state (the open state).

EES RL78 Type 03 5. User Interface

R20UT5477EJ0101 Rev.1.01 Page 54 of 114
May.30.25

5.7.1.4 R_EES_Execute

Information:

Syntax R_EES_FAR_FUNC void R_EES_Execute(st_ees_request_t __near *
 ionp_st_ees_request);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

st_ees_request_t __near *
ionp_st_ees_request

Pointer to the request structure (st_ees_request_t)

Parameters
(OUT)

N/A

Return Value N/A

Description EEPROM emulation execution function.
Each type of processing for performing EEPROM emulation operations is specified for
this function as an argument in the command format, and the processing is executed.

Preconditions R_EES_Init and R_EES_Open function must have finished normally.

Remarks -

Details of Specifications:

• Starts processing of the command set in the Request structure.

Notes:

• The R_EES_Execute function starts command processing and then immediately returns the control to the
user program. The command processing is continued by executing the R_EES_Handler function.
Therefore, the R_EES_Handler function must be executed continuously until the command processing is
completed.

• Execute the repeat the R_EES_Handler function while the e_status of the Request
structure(st_ees_request_t) is R_EES_ENUM_RET_STS_BUSY.

• It is not allowed to call R_EES_Execute function in an interrupt service routine.

EES RL78 Type 03 5. User Interface

R20UT5477EJ0101 Rev.1.01 Page 55 of 114
May.30.25

Command Execution States (e_status) of R_EES_Execute and R_EES_Handler (1/2)

Command Execution Status Category Description
Corresponding

Commands

R_EES_ENUM_RET_STS_
OK

Meaning Normal end

All commands Cause None

Action to
be taken

None

R_EES_ENUM_RET_STS_
BUSY

Meaning A command is being executed.
Commands other than
R_EES_ENUM_CMD_
SHUTDOWN

Cause None

Action to
be taken

Keep calling the R_EES_Handler function until the status
changes.

R_EES_ENUM_RET_ERR_
INITIALIZATION

Meaning Initialization error

All commands Cause
R_EES_Init, and R_EES_Open functions have not been
finished normally.

Action to
be taken

Normally finish the R_EES_Init, and R_EES_Open
functions.

R_EES_ENUM_RET_ERR_
ACCESS_LOCKED

Meaning EEPROM emulation lock error Commands other than
R_EES_ENUM_CMD_
STARTUP and
R_EES_ENUM_CMD_
FORMAT.

Cause EEPROM emulation cannot be executed.

Action to
be taken

Make sure that the R_EES_ENUM_CMD_STARTUP
command has finished normally.

R_EES_ENUM_RET_ERR_
PARAMETER

Meaning Parameter error

All commands Cause An incorrect command parameter has been specified.

Action to
be taken

Check the specified parameter.

R_EES_ENUM_RET_ERR_
WEAK

Meaning
The writing of an active block header or the last written
stored data has not completed successfully.

R_EES_ENUM_CMD_
STARTUP

Cause
Write processing an active block header or stored data may
have been interrupted.

Action to
be taken

Execute the R_EES_ENUM_CMD_REFRESH command.

R_EES_ENUM_RET_ERR_
REJECTED

Meaning Reject error

All commands
Cause A different command is being executed.

Action to
be taken

Call the R_EES_Handler function to terminate the
ongoing command.

EES RL78 Type 03 5. User Interface

R20UT5477EJ0101 Rev.1.01 Page 56 of 114
May.30.25

Command Execution States (e_status) of R_EES_Execute and R_EES_Handler (2/2)

Command Execution Status Category Description
Corresponding

Commands

R_EES_ENUM_RET_ERR_
NO_INSTANCE

Meaning No-write-data error

R_EES_ENUM_CMD_
READ

Cause The specified identifier data has not been written.

Action to
be taken

Write data to the identifier specified using the
R_EES_ENUM_CMD_WRITE command.

R_EES_ENUM_RET_ERR_
POOL_FULL

Meaning Pool full error

R_EES_ENUM_CMD_
WRITE

Cause There is no area that can be used to write the data.

Action to
be taken

Execute the R_EES_ENUM_CMD_REFRESH command
and restart writing data.

R_EES_ENUM_RET_ERR_
POOL_INCONSISTENT

Meaning EES block inconsistency error

R_EES_ENUM_CMD_
STARTUP

Cause
An EES block has the undefined state (such as there are
no active blocks).

Action to
be taken

Execute the R_EES_ENUM_CMD_FORMAT command to
initialize the EES blocks.

R_EES_ENUM_RET_ERR_
POOL_EXHAUSTED

Meaning EES block exhaustion error R_EES_ENUM_CMD_
STARTUP
R_EES_ENUM_CMD_
FORMAT
R_EES_ENUM_CMD_
REFRESH
R_EES_ENUM_CMD_
WRITE

Cause
There are no more EES blocks that can be used to
continue.

Action to
be taken

Stop EEPROM emulation.
You can try restoration by executing the
R_EES_ENUM_CMD_FORMAT command (erasing all
existing data) or read existing data

R_EES_ENUM_RET_ERR_
INTERNAL

Meaning Internal error
Commands other than
R_EES_ENUM_CMD_
SHUTDOWN

Cause An unexpected error has occurred.

Action to
be taken

The EES should be stopped.
Check the device state.

R_EES_ENUM_RET_ERR_
FLASH_SEQ

Meaning Flash area sequencer error

Commands other than
R_EES_ENUM_CMD_
SHUTDOWN

Cause
EES failed to change flash memory mode or start flash
sequencer.

Action to
be taken

The EES should be stopped.
Check whether flash memory operation using RFD RL78
Type 03 is executed besides operation of an EEPROM
emulation.

EES RL78 Type 03 5. User Interface

R20UT5477EJ0101 Rev.1.01 Page 57 of 114
May.30.25

5.7.1.5 R_EES_Handler

Information:

Syntax R_EES_FAR_FUNC void R_EES_Handler(void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value N/A

Description Continuous EEPROM emulation execution processing.
This function is used to check for the completion of processing while allowing
processing of EEPROM emulation specified by the R_EES_Execute function to
continue.

Preconditions R_EES_Init and R_EES_Open function must have finished normally.

Remarks -

Details of Specifications:

• Continues processing the EEPROM emulation initiated by the R_EES_Execute function.

Notes:

• While “e_status” of the request structure (st_ees_request_t) is R_EES_ENUM_RET_STS_BUSY, execute
this function repeatedly.

• It is not allowed to call R_EES_Handler() in an interrupt service routine.
• The command execution status of the R_EES_Handler function is set for the “st_ees_request_t *

ionp_st_ees_request” used as an argument of the R_EES_Execute function. Therefore, when using the
R_EES_Handler function, do not free the “st_ees_request_t * ionp_st_ees_request” variable.

EES RL78 Type 03 5. User Interface

R20UT5477EJ0101 Rev.1.01 Page 58 of 114
May.30.25

5.7.1.6 R_EES_GetSpace

Information:

Syntax R_EES_FAR_FUNC e_ees_ret_status_t R_EES_GetSpace(uint16_t __near *
onp_u16_space);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

uint16_t __near *
onp_u16_space

Pointer to variable that contains free space information
for the current active block.

Return Value e_ees_ret_status_t R_EES_ENUM_RET_STS_OK: 0x00
 [Normal end]
R_EES_ENUM_RET_ERR_INITIALIZATION: 0x83
[EES initialization error]

R_EES_ENUM_RET_ERR_ACCESS_LOCKED: 0x84
 [EEPROM emulation lock error]
R_EES_ENUM_RET_ERR_REJECTED: 0x87
 [Reject error]

Description Gets the free space of the active block.

Preconditions R_EES_Init and R_EES_Open function must have finished normally.
R_EES_Execute function and the R_EES_ENUM_CMD_STARTUP command must
be executed successfully before.

Remarks -

Details of Specifications:

• Calculate the free space of the active block.

Notes:

• When the R_EES_Init function is not executed and the internal variable has not been initialized, the
return value will return a EES initialization error (R_EES_ENUM_RET_ERR_INITIALIZATION).

• When the R_EES_ENUM_CMD_STARTUP command does not finish normally with the R_EES_Execute
function, the return value will return a EEPROM emulation lock error
(R_EES_ENUM_RET_ERR_ACCESS_LOCKED).

• When the R_EES_Execute function is executing a EES command, the return value will return a Reject
error (R_EES_ENUM_RET_ERR_REJECTED).

• In case the EES pool is exhausted the returned space value will always be 0x0000.
• When the write operation of the “active block header” or “stored data written” may have been interrupted,

0x0000 is returned to the free space.
• When an error value is returned, the free space information is not collected.

EES RL78 Type 03 5. User Interface

R20UT5477EJ0101 Rev.1.01 Page 59 of 114
May.30.25

5.7.2 RFD control API Functions for EES

This section describes the RFD control API functions for EES. These functions are called from the EES
control function. Do not call it directly from a user program.

Information:
Syntax R_EES_FAR_FUNC e_ees_exrfd_ret_status_t R_EES_EXRFD_Init(

 uint8_t i_u08_cpu_frequency);
Description Initializes RFD RL78 Type 03.

Information:
Syntax R_EES_FAR_FUNC e_ees_exrfd_ret_status_t R_EES_EXRFD_Open(void);

Description Set the data flash control register (DFLCTL) to the state where accessing the data
flash memory is permitted (DFLEN = 1).

Information:
Syntax R_EES_FAR_FUNC e_ees_exrfd_ret_status_t R_EES_EXRFD_Close(void);

Description Set the data flash control register (DFLCTL) to the state where access to the data
flash memory is inhibited (DFLEN = 0). All ongoing EES processing stop.

Information:
Syntax R_EES_FAR_FUNC e_ees_exrfd_ret_status_t R_EES_EXRFD_Erase(

 uint8_t i_u08_virtual_block_number);

Description Start erasing the EES block (one virtual block).

Information:
Syntax R_EES_FAR_FUNC e_ees_exrfd_ret_status_t R_EES_EXRFD_Write(

 uint16_t i_u16_offset_addr,
 uint8_t __near * inp_u08_write_data,
 uint16_t i_u16_size);

Description Starts writing to the specified the data flash memory address (one byte).

Information:

Syntax R_EES_FAR_FUNC e_ees_exrfd_ret_status_t R_EES_EXRFD_BlankCheck(
 uint16_t i_u16_offset_addr,
 uint16_t i_u16_size);

Description Starts Blank check to the specified the data flash memory address.

EES RL78 Type 03 5. User Interface

R20UT5477EJ0101 Rev.1.01 Page 60 of 114
May.30.25

Information:
Syntax R_EES_FAR_FUNC e_ees_exrfd_ret_status_t R_EES_EXRFD_Read(

 uint16_t i_u16_offset_addr,
 uint8_t __near * onp_u08_read_data,
 uint16_t i_u16_size);

Description Reads the specified address in the data flash memory.

Information:
Syntax R_EES_FAR_FUNC e_ees_exrfd_ret_status_t R_EES_EXRFD_Handler(void);

Description Continues processing of the RFD control function for EES that is executing, and
confirms termination.

Information:
Syntax static R_EES_FAR_FUNC e_ees_exrfd_ret_status_t

 r_ees_exrfd_get_seq_error_status(void);

Description Obtain the execution result from the flash memory sequencer.

Information:
Syntax static R_EES_FAR_FUNC e_ees_exrfd_ret_status_t r_ees_exrfd_finish_state(void);

Description Sets the RFD control functions for EES to the end status.

Information:
Syntax static R_EES_FAR_FUNC e_ees_exrfd_ret_status_t

 r_ees_exrfd_check_cmd_executable(void);

Description Check the status and flags of the RFD control functions for EES.

Information:
Syntax static R_EES_FAR_FUNC bool r_ees_exrfd_is_valid_byte_parameter(

 uint16_t i_u16_offset_addr,
 uint16_t i_u16_size);

Description Check the parameters used by the RFD Control functions for EES.

Information:
Syntax static R_EES_FAR_FUNC void r_ees_exrfd_clear_cmd_workarea(void);

Description Clears the data area used by the RFD control functions for EES.

EES RL78 Type 03 5. User Interface

R20UT5477EJ0101 Rev.1.01 Page 61 of 114
May.30.25

5.7.3 Internal Functions for the EES

This section describes the functions used by the EES functions. These functions are internal functions called
from the EES functions. Do not call it directly from a user program.

Information:
Syntax R_EES_FAR_FUNC bool r_ees_is_valid_configuration(void);

Description Check the EES configuration and initialize the internal status.

Information:
Syntax R_EES_FAR_FUNC bool r_ees_is_valid_requester(

 st_ees_request_t __near * ionp_st_ees_request);

Description Check “request structure” and “EES status” and update internal status.

Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_startup_state_00(void); ～

R_EES_FAR_FUNC void r_ees_fsm_startup_state_09(void);
Description Updates the internal status for startup processing.

Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_write_state_00(void); ～

R_EES_FAR_FUNC void r_ees_fsm_write_state_04(void);

Description Updates the internal status for write processing.

Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_read_state_00(void); ～

R_EES_FAR_FUNC void r_ees_fsm_read_state_01(void);

Description Updates the internal status for read processing.

Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_refresh_state_00(void); ～

R_EES_FAR_FUNC void r_ees_fsm_refresh_state_17(void);

Description Updates the internal status for refresh processing.

Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_format_state_00(void); ～

R_EES_FAR_FUNC void r_ees_fsm_format_state_11(void);

Description Updates the internal status for format processing.

Information:

Syntax R_EES_FAR_FUNC void r_ees_fsm_shutdown_state_00(void);

Description Execute the shutdown processing of the EEPROM emulation.

EES RL78 Type 03 5. User Interface

R20UT5477EJ0101 Rev.1.01 Page 62 of 114
May.30.25

Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_exrfd_cmd_erase_state_00(void);

Description Start the erase processing.

Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_exrfd_cmd_bw_state_00(void);

Description Starts the blank check and write processing.

Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_exrfd_cmd_inner_blankcheck_state_00(void);

Description Start internal processing of the blank check.

Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_exrfd_cmd_write_state_00(void);

Description Start the write processing.

Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_exrfd_cmd_inner_write_state_00(void);

Description Start internal processing of the write.

Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_exrfd_cmd_read_state_00(void);

Description Start the read processing.

Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_exrfd_cmd_state_01(void);

Description Proceed with the internal processing of the executed RFD control functions for EES.

Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_exit_state(void);

Description Dummy processing.

EES RL78 Type 03 5. User Interface

R20UT5477EJ0101 Rev.1.01 Page 63 of 114
May.30.25

Information:
Syntax static R_EES_FAR_FUNC uint8_t r_ees_calculate_next_a_flag(

 uint8_t i_u08_a_flag_value);

Description Calculates the value of the A flag.

Information:
Syntax static R_EES_FAR_FUNC void r_ees_fsm_finish_command(void);

Description Terminates the execution command.

Information:
Syntax static R_EES_FAR_FUNC void r_ees_fsm_swap_acvive_block_info(void);

Description Swaps the active block information.

Information:
Syntax static R_EES_FAR_FUNC bool r_ees_fsm_exrfd_cmd_detect_fatal_error(

 e_ees_exrfd_ret_status_t i_e_ees_exrfd_ret_value);

Description Check the results of the RFD control function for the EES for errors that make the EES
unsustainable.

Information:
Syntax static R_EES_FAR_FUNC e_ees_block_status_t

 r_ees_fsm_get_ees_block_status(void);

Description Obtains the state of the EES block.

EES RL78 Type 03 6. Sample Programs

R20UT5477EJ0101 Rev.1.01 Page 64 of 114
May.30.25

6. Sample Programs

This section describes the sample programs provided together with EES RL78 Type 03.

6.1 File Structure

6.1.1 Folder Structure

Figure 6-1 shows the structure of sample program folders.
Figure 6-1 shows an example of using RL78/F25. The installed “sample” folder contains a sample folder for
each device group (e.g. RL78_F25).
The “RL78_F25” folder is used when using RL78/F22 or RL78/F25.

Figure 6-1 Structure of Sample Program Folders

Sample programs

EES RL78 Type 03
include files

EES RL78 Type 03
program source files

EES RL78 Type 03
user-own files

: Folders of sample programs

EES RL78 Type 03 6. Sample Programs

R20UT5477EJ0101 Rev.1.01 Page 65 of 114
May.30.25

6.1.2 List of Files

6.1.2.1 List of Source Files

Table 6-1 shows the program source file in the “sample\common\source\ees\” folder.

Table 6-1 Program Source File in the “sample\common\source\ees\” Folder

No. Source File Name Description
1 sample_control_ees.c This file contains the functions for controlling the

EEPROM emulation.

Table 6-2 shows the program source file of the main processing in the “sample\RL78_F25” folder.

 “sample\RL78_F25\EES\[compiler name]\source\” folder

Table 6-2 Program Source File of the Main Processing

No. Source File Name Description

1 main.c Sample file of the main processing functions

6.1.2.2 List of Header Files

Table 6-3 shows the program header files in the “sample\common\include\” folder.

Table 6-3 Program Header Files in the “sample\common\include\” Folder

No. Header File Name Description

1 sample_control_ees.h This file defines the prototype declarations of the sample
functions for controlling the EEPROM emulation.

2 sample_ees_defines.h This file defines the macros of the sample functions for
controlling the EEPROM emulation.

3 sample_ees_memmap.h This file defines the macros that describes the sections
used by the sample program that controls the EEPROM
emulation.

Table 6-4 shows the program header files in the “sample\RL78_F25\EES\[compiler name]\include\” folder.

Table 6-4 Program Header Files in the “sample\RL78_F25\EES\[compiler name]\include\” Folder

No. Header File Name Description

1 sample_config.h This File defines parameters value.

6.2 Data Type Definitions

6.2.1 Macro Defines

- Frequency setting macro
CPU frequency used in the sample program.

Symbol Name Value Description

SAMPLE_VALUE_U08_CPU_FREQUENCY 40u CPU frequency

EES RL78 Type 03 6. Sample Programs

R20UT5477EJ0101 Rev.1.01 Page 66 of 114
May.30.25

6.3 Sample Program Functions

Table 6-5 shows the sample program functions.

Table 6-5 List of Sample Program Functions

 API Function Name Outline

1 main Executes the main processing of the sample program for
controlling the EES.

2 Sample_EES_Control Write and read EES blocks according to the basic procedure for
using EES.

6.3.1 Sample Program for Controlling the EEPROM Emulation

The EES RL78 Type 03 rewrite control sample follows the basic operation procedure for using EES and
performs the rewrite and read processing of EES block.

Note: During EES command processing, the data in the data flash memory cannot be referenced.
Copy the data to be referenced within the function to RAM in advance, and reference them in
RAM.

Operating conditions (Example of a sample program for RL78/F25):

• CPU operating frequency: 40 MHz
(The high-speed on-chip oscillator clock (HOCO) is used for the main system clock.)

Figure 6-2 shows a flowchart of the main processing of the sample program for the EES.

6.3.1.1 main Function

Figure 6-2 Flowchart of the Main Processing of the Sample Program for Controlling the EES

Is HOCO activated?

Yes No

• Return value<-EES configuration error

 - Processing for controlling the EEPROM emulation
 - Return value <- Value returned from the function

main

Sample_EES_Control

Return

EES RL78 Type 03 6. Sample Programs

R20UT5477EJ0101 Rev.1.01 Page 67 of 114
May.30.25

6.3.1.2 Sample_EES_Control Function

• Figure 6-3 shows the pre-processing required to use the EES and the write and read processing flow.
• Initialize the EES.

Figure 6-3 Flowchart of Sample Processing for Controlling EEPROM Emulation (1/5)

• Initialize the return value(= STS_OK)
• Initialize the error flag(= false)

 - Initializes EES RL78 Type 03

Normal end ?

Yes No
• Error flag <- true

Error flag <> true ?

No Yes
 - Open state of the EES

Normal end ?

Yes No

• Error flag <- true

Sample_EES_Control

R_EES_Init

R_EES_Open

1

EES RL78 Type 03 6. Sample Programs

R20UT5477EJ0101 Rev.1.01 Page 68 of 114
May.30.25

• EEPROM emulation execution startup processing.

Figure 6-4 Flowchart of Sample Processing for Controlling EEPROM Emulation (2/5)

• Initialize the requester.

Error flag <> true ?

No Yes

• Set the STARTUP command. - Set the R_EES_ENUM_CMD_STARTUP command

Busy ?

No Yes
• Return value <- Processing result - The processing result is put into “l_e_ees_ret_value”.

Normal end ?

Yes No

Pool Inconsistent ?
 - Is the error content

R_EES_ENUM_RET_ERR_POOL_INCONSISTENT ?
No Yes

• Error flag <- true - Startup error

• Set the FORMAT command. - Set the R_EES_ENUM_CMD_FORMAT command

Busy ?

No Yes
• Return value <- Processing result - The processing result is put into “l_e_ees_ret_value”.

Normal end ?

Yes No
• Error flag <- true - Format error

false ?

FORMAT ?
 - Is the command R_EES_ENUM_CMD_FORMAT ?, and

Is the error flag false ?

Yes No

1

R_EES_Execute

R_EES_Handler

R_EES_Execute

R_EES_Handler

2

EES RL78 Type 03 6. Sample Programs

R20UT5477EJ0101 Rev.1.01 Page 69 of 114
May.30.25

• EEPROM emulation data write processing.

Figure 6-5 Flowchart of Sample Processing for Controlling EEPROM Emulation (3/5)

Error flag <> true ?

No Yes

• Set the write data - Set the write data.

- Set the address pointer for the write data.

- Set the R_EES_ENUM_CMD_WRITE command.

• Set the address for write data
• Set the write data ID(= 1u)
• Set the write command

Busy ?

No Yes
• Return value <- Processing result - The processing result is put into “l_e_ees_ret_value”.

Normal end ?

Yes No

Pool full error ?
 - Is the error content

R_EES_ENUM_RET_ERR_POOL_FULL ?
No Yes

• Error flag <- true

• Set the REFRESH command. - Set the R_EES_ENUM_CMD_REFRESH command.

Busy ?

No Yes
• Return value <- Processing result - The processing result is put into “l_e_ees_ret_value”.

Normal end ?

Yes No
• Error flag <- true

false ?
REFRESH ?

 - Is the command R_EES_ENUM_CMD_REFRESH ?, and
Is the error flag false ?

Yes No

2

R_EES_Execute

R_EES_Handler

R_EES_Execute

R_EES_Handler

3

EES RL78 Type 03 6. Sample Programs

R20UT5477EJ0101 Rev.1.01 Page 70 of 114
May.30.25

• EEPROM emulation data read processing.

Figure 6-6 Flowchart of Sample Processing for Controlling EEPROM Emulation (4/5)

Error flag <> true ?

No Yes
• Set the address for read data
• Set the read data ID(= 1u)
• Set the read command

 - Set the address pointer for the read data.

- Set the R_EES_ENUM_CMD_READ command.

 - Read the data with the specified ID.

Busy ?

No Yes
• Return value <- Processing result - The processing result is put into “l_e_ees_ret_value”.

Normal end ?

No Yes

• Initialize the counter(= 0) - Verification check through reading by the CPU

Counter value < Size

Yes No

Read data match ?
 - Compare the written data[counter] with the read

data[counter].
Yes No

• Increment the counter(+1).

• Error flag <- true

3

R_EES_Handler

R_EES_Execute

4

EES RL78 Type 03 6. Sample Programs

R20UT5477EJ0101 Rev.1.01 Page 71 of 114
May.30.25

• EEPROM emulation shutdown processing.

Figure 6-7 Flowchart of Sample Processing for Controlling EEPROM Emulation (5/5)

Note: Error handling and user processing for normal completion are omitted.

Error flag <> true ?

No Yes

• Set the SHUTDOWN command. - Set the R_EES_ENUM_CMD_SHUTDOWN command

Reject error ?

No Yes
 - Proceeds with incomplete command processing.

 - Execute the R_EES_ENUM_CMD_SHUTDOWN

command again.

• Return value <- Processing result - The processing result is put into “l_e_ees_ret_value”.

Normal end ?

No Yes
• Error flag <- true

Error flag <> true ?

No Yes
 - Closes the EEPROM emulation.

Normal end ?

No Yes
• Error flag <- true

4

R_EES_Execute

R_EES_Close

Return

R_EES_Handler

R_EES_Execute

EES RL78 Type 03 6. Sample Programs

R20UT5477EJ0101 Rev.1.01 Page 72 of 114
May.30.25

6.4 Specifications of Sample Program Functions

This section describes the specifications of the functions in the sample programs for EES RL78 Type 03.
The sample programs for EEPROM emulation are examples of basic processing. The functions in the
sample programs can be used as reference for developing an application program.

Please be sure to thoroughly check the operation of the developed application program.

6.4.1 Sample Program Functions for Controlling the EEPROM Emulation

6.4.1.1 main

Information:
Syntax int main(void);

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value int

(e_ees_ret_status_t)

R_EES_ENUM_RET_STS_OK: 0x00
[Normal end]

R_EES_ENUM_RET_STS_BUSY: 0x01
[Busy]

R_EES_ENUM_RET_ERR_CONFIGURATION: 0x82
[EES configuration error]

R_EES_ENUM_RET_ERR_INITIALIZATION: 0x83
 [EES initialization error]
R_EES_ENUM_RET_ERR_ACCESS_LOCKED: 0x84
 [EEPROM emulation lock error]
R_EES_ENUM_RET_ERR_PARAMETER: 0x85
 [Parameter error]
R_EES_ENUM_RET_ERR_WEAK: 0x86
 [Weak error]
R_EES_ENUM_RET_ERR_REJECTED: 0x87
 [Reject error]
R_EES_ENUM_RET_ERR_NO_INSTANCE: 0x88
 [No instance]
R_EES_ENUM_RET_ERR_POOL_FULL: 0x89
 [Pool full error]
R_EES_ENUM_RET_ERR_POOL_INCONSISTENT: 0x8A
 [EES block Inconsistency error]
R_EES_ENUM_RET_ERR_POOL_EXHAUSTED: 0x8B
[EES block exhaustion error]

R_EES_ENUM_RET_ERR_INTERNAL: 0x8C
 [Internal error]
R_EES_ENUM_RET_ERR_FLASH_SEQ: 0x8D
 [Flash sequencer error]

Description Executes the main processing of the sample program for controlling the EES.

Preconditions -

Remarks -

EES RL78 Type 03 6. Sample Programs

R20UT5477EJ0101 Rev.1.01 Page 73 of 114
May.30.25

6.4.1.2 Sample_EES_Control

Information:

Syntax R_EES_FAR_FUNC e_ees_ret_status_t Sample_EES_Control();

Reentrancy Non-reentrant

Parameters
(IN)

N/A

Parameters
(IN/OUT)

N/A

Parameters
(OUT)

N/A

Return Value e_ees_ret_status_t R_EES_ENUM_RET_STS_OK: 0x00
[Normal end]

R_EES_ENUM_RET_STS_BUSY: 0x01
 [Busy]
R_EES_ENUM_RET_ERR_CONFIGURATION: 0x82
 [EES configuration error]
R_EES_ENUM_RET_ERR_INITIALIZATION: 0x83
 [EES initialization error]
R_EES_ENUM_RET_ERR_ACCESS_LOCKED: 0x84
 [EEPROM emulation lock error]
R_EES_ENUM_RET_ERR_PARAMETER: 0x85
 [Parameter error]
R_EES_ENUM_RET_ERR_WEAK: 0x86
 [Weak error]
R_EES_ENUM_RET_ERR_REJECTED: 0x87
 [Reject error]
R_EES_ENUM_RET_ERR_NO_INSTANCE: 0x88
 [No instance]
R_EES_ENUM_RET_ERR_POOL_FULL: 0x89
 [Pool full error]
R_EES_ENUM_RET_ERR_POOL_INCONSISTENT: 0x8A
 [EES block Inconsistency error]
R_EES_ENUM_RET_ERR_POOL_EXHAUSTED: 0x8B
[EES block exhaustion error]

R_EES_ENUM_RET_ERR_INTERNAL: 0x8C
 [Internal error]
R_EES_ENUM_RET_ERR_FLASH_SEQ: 0x8D
[Flash sequencer error]

Description Write and read EES blocks according to the basic procedure for using EES.

Preconditions -

Remarks When the verification check of the read data results in an error, it is not reflected in the
return value.

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 74 of 114
May.30.25

7. Creating a Sample Project for EES RL78 Type 03

EES RL78 Type 03 includes a sample program to control EEPROM emulation. The compilers which can be
used by EES RL78 Type 03 are a CC-RL compiler and an IAR compiler. Users can create a sample project
using the Integrated Development Environment (IDE) corresponding to each compiler.

The example of the sample program for RL78/F25 (R7F125FPL) is explained to this section. When using
other than RL78/F25 (R7F125FPL), section address settings must be changed by referring to the user's
manual for the target device.

If the RL78/F22 is used, the RL78/F25 sample program is available.

Notes 1: The target Integrated Development Environment (IDE) and the compiler are premised on
using the version for RL78/F22, F25. Be sure to use them, after confirming that RL78/F22,
F25 are target products.

 2: EES RL78 Type 03 uses the RFD RL78 Type 03 to control the data flash memory. However,
it is not included in the EES RL78 Type 03 installer, RFD RL78 Type 03 must be installed
before registering to the project. It describes the RFD RL78 Type 03 files and sections
needed to register the project, however for more information on RFD RL78 Type 03, refer to
the RFD RL78 Type 03 User's Manual.

7.1 Creating a Project in the Case of Using a CC-RL Compiler

CS+ or e2 studio can be used for a RENESAS CC-RL compiler as an IDE. EES RL78 Type 03 and RFD
RL78 Type 03 are registered and built in the project created by the IDE. An example of creating a sample
project in case each IDE is used is shown. Because to understand a CC-RL compiler and each IDE, it is
necessary to refer to the user's manual of each tool product.

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 75 of 114
May.30.25

7.1.1 Example of Creating a Sample Project

(1) An example of creating a sample project which used CS+ (IDE)
・The CS+ starts and from the [Project] menu, select [Create New Project...], the “Create Project” window

will open.
- Select the product of “RL78/F25 (ROM: 512 Kbytes)” - “R7F125FPL4xFB(100pin)” as [Using
microcontroller].

- Select “Application (CC-RL)” as [Kind of project].
- [Project name] is temporarily set to “EESRL78T03_PJ01”.
- When you click the [Create] button, the new project is created.

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 76 of 114
May.30.25

(2) An example of creating a sample project which used e2 studio (IDE)
・The e2 studio starts and from the [File] menu, select [New] – [C/C++ Project], the “Templates for New

C/C++ Project” window will open.

・Select [Renesas CC-RL C/C++ Executable Project] displayed after selection in [Renesas RL78], and press
“next” button.

・Input “project name” on “New Renesas CC-RL Executable Project” window, and press “next” button.

[Project name] is temporarily set to “EESRL78T03_PJ01”.

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 77 of 114
May.30.25

・Select the [Target Device] of [Device Settings], and select “RL78 - F25” - “RL78 - F25 100pin” -
“R7F125FPL4xFB”.

・It is a premise that E2 Lite is selected as a debugging tool and on-chip debugging is executed. Put a check
mark to “Create Hardware Debug Configuration” by [Configurations]. And select “E2 Lite (RL78)”.

・When press the [Next] button, the “Select Coding Assistant settings” window will be displayed, so press
the [Finish] button.

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 78 of 114
May.30.25

7.1.2 Example of Registration of Target Folders and Target Files

Using EES RL78 Type 03, when execute EEPROM emulation the example which registers necessary files is
shown. Each folder of a “EESRL78T03” source program file is “include”, “source”, “userown”, and “sample”.
As other registration methods, after all the folders of “include”, “source”, “userown”, and “sample” are
registered, unnecessary files and folders can be removed using the function of “Remove from Project”(CS+)
or [Resource Configuration] – [Exclude from Build] (e2 studio).

The registration tree screen of EES (CS+) The registration tree screen of EES (e2 studio)

・Registration of the latest I/O header file (iodefine.h) outputted to target products by IDE
“iodefine.h” uses the I/O header file which CS+ or e2 studio outputs for target products.

The folder to which an I/O header file (iodefine.h) is outputted by IDE:

- CS+: [Project name] folder
- e2 studio: [Project name]/generate folder

・Exclusion of the file automatically added by the function of IDE
There are files added automatically in the created project. The same file as these exists also in the
“sample” folder of EES RL78 Type 03. Therefore, using the function of IDE, select those files from tree and
excludes from a project.

- CS+: Click the right mouse button for the file of tree. And exclude target files using “Remove from
Project” function. Target files are “hdwinit.asm and main.c” in [project name] folder.

- e2 studio: Clicks the right mouse button for the file of tree. And on the [Settings] screen displayed by
the “property”, put a check mark to [Exclude resource from build] and exclude target files (target folder).
(Exclusion of a folder is also possible)
Target files are a hdwinit.asm in [project name]/generate folder and a [project name].c
(EESRL78T03_PJ01.c) in [project name]/src folder.

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 79 of 114
May.30.25

(1) Registration the EES RL78 Type 03 target folders and target files.
The folders (“include”, “source”, “userown”, “sample”) and source program files which are included in EES
RL78 Type 03 to register are shown below.

in the “include” folder in the “userown” folder

in the “sample” folder

in the “source” folder

(2) Registration the RFD RL78 Type 03 target folders and target files.

The folders (“include”, “source”, “userown”) and source program files which are included in RFD RL78
Type 03 to register are shown below.

in the “include” folder in the “source” folder

 in the “userown” folder

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 80 of 114
May.30.25

7.1.3 Build Tool Settings

Set IDE setting necessary in order to build EES RL78 Type 03 using a CC-RL compiler.
CS+: Click the right mouse button for the “CC-RL(Build tool)” in a tree, and select “Property”. And set each

setting of the build tool in the displayed window.
e2 studio: Click the right mouse button for the project (“EESRL78T03_PJ01”) in a tree, and select

“Properties”. And set each setting of the build tool in the displayed window.

7.1.3.1 Include Path Settings

・Setting of the include path on CS+ inputs path in “Common Options” tab.
- Input the include directory path in the “Path Edit” window displayed by selection of [Frequently Used
Options(for Compile)] - [Additional include paths].

(1) EES RL78 Type 03 include path
EESRL78T03\include
EESRL78T03\include\ees
EESRL78T03\userown\include
EESRL78T03\sample\common\include
EESRL78T03\sample\RL78_F25\EES\CCRL\include

(2) RFD RL78 Type 03 include path
RFDRL78T03\include
RFDRL78T03\include\rfd
.

・Setting of the include path on e2 studio inputs path in “Properties” window.
- Input the include directory path in the window displayed by selection of “C/C++ Build” [Settings] -
“Compiler” [Source].

(1) EES RL78 Type 03 include path

(2) RFD RL78 Type 03 include path

${ProjDirPath}/generate
${ProjDirPath}/src/EESRL78T03/include
${ProjDirPath}/src/EESRL78T03/include/ees
${ProjDirPath}/src/EESRL78T03/userown/include
${ProjDirPath}/src/EESRL78T03/sample/common/include

${ProjDirPath}/src/RFDRL78T03/include
${ProjDirPath}/src/RFDRL78T03/include/rfd

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 81 of 114
May.30.25

7.1.3.2 Device Item Settings

・Setting of the device Items on CS+ inputs in the “Link Options” tab.
- Setting the [Device] items
Select “Yes (-OCDBG)” in [Set enable/disable on-chip debug by link option].
Note: The example of a setting on condition of on-chip debugging execution.

Input the “A5” into [Option byte values for OCD]. [Example of permission of operation for on-chip
debugging] [The example for RL78/F25]

Select “Yes (-SECURITY_OPT_BYTE)” in [Set security option byte].
Input the “FE” into [Security option byte value]. [Example of enables read of on-chip debug and flash
serial programming security ID.] [The example for RL78/F25]
Note: Be sure to confirm the contents of “On-Chip Debug Option Byte” and “Security Option

Byte” in “Option Byte” chapter on the user's manual of a target device. And describe the
set value used with user application.

Select “Yes(Specify address range)(-OCDBG_MONITOR=<Address range>)” in [Set debug monitor
area]. Set “7FE00-7FFFF” to [Range of debug monitor area].
Note: The user needs to input the range of the area which the debugger uses with reference to

description of the user's manual for a target device. And please refer to “Memory Spaces
Allocated for Use by the Monitor Program for Debugging” in “Allocation of Memory
Spaces to User Resources” on the user's manual.

Select “Yes(-USER_OPT_BYTE)” in [Set user option byte].
Set “6E6BE8” to [User option byte value]. (WDT stop, LVD reset mode, 40MHz [The example for
RL78/F25])
Note: Be sure to confirm the contents of “User Option Byte” in “Option Byte” chapter on the

user's manual of a target device. And describe the set value used with user application.

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 82 of 114
May.30.25

・Setting of the device Items on e2 studio inputs in the “Properties” window.
- Select “C/C++ Build” [Settings] - “Linker” [Device]. And set device items on the displayed screen.
Put a check mark to [Secure memory area of OCD monitor(-debug_monitor)] in the screen.
Note: The example of a setting on condition of on-chip debugging execution.

Set “7FE00-7FFFF” to [Memory area(-debug_monitor=<start address>-<end address>)]. [The example
for RL78/F25]
Note: The user needs to input the range of the area which the debugger uses with reference to

description of the user's manual for a target device. And please refer to “Memory Spaces
Allocated for Use by the Monitor Program for Debugging” in “Allocation of Memory
Spaces to User Resources” on the user's manual.

Put a check mark to [Set user option byte(-user_opt_byte)].
Set “6E6BE8” to [User option byte value(-user_opt_byte=<value>)]. (WDT stop, LVD reset mode, 40MHz
[The example for RL78/F25])
Note: Be sure to confirm the contents of “User Option Byte” in “Option Byte” chapter on the

user's manual of a target device. And describe the set value used with user application.

Put a check mark to [Set enable/disable on-chip debug by link option(-ocdbg)].
Note: The example of a setting on condition of on-chip debugging execution.

Input the “A5” into [On-chip debug control value(-ocdbg=<value>)]. [Example of permission of operation
for on-chip debugging]

Put a check mark to [Set security option byte (-security_opt_byte)].
Input the “FE” into [Security option byte value (-security_opt_byte=<value>]. [Example of enables read of
on-chip debug and flash serial programming security ID.] [The example for RL78/F25]
Note: Be sure to confirm the contents of “On-Chip Debug Option Byte” and “Security Option

Byte” in “Option Byte” chapter on the user's manual of a target device. And describe the
set value used with user application.

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 83 of 114
May.30.25

7.1.3.3 Section Item Settings

・Setting of the section Items on CS+ inputs in the “Link Options” tab.
- Setting the [Section] items
Set “No” to [Layout sections automatically]. And sections come to be displayed on [Section start address].
Press the “ ” button of the right-hand side which sections are displaying, and a “Section settings”
screen is displayed.

・Setting of the section Items on e2 studio inputs in the “Properties” window.
- Select “C/C++ Build” [Settings] - “Linker” [Section]. And set section items on the displayed screen.
Remove a check mark to [Layout sections automatically(-auto_section_layout)]. Press the “ ” button
of the right-hand side which sections are displaying, and a “Section viewer” screen is displayed.

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 84 of 114
May.30.25

・Section setting operation for CS+ and e2 studio
Set “0x05000” to a top address.
Add the sections defined by “#pragma section” in EES RL78 Type 03 to the program area (code flash
memory) and the RAM area. Refer to “Table 2-7 Sections Used in EES” for the details of each section.

Note: In this description, it is a premise to select a medium model as Memory Model of Compile
Options. (It is the same as the “auto select” in R7F125FPL)
Refer to the user's manual of CC-RL for the section name of each program when a “small
model” is selected.

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 85 of 114
May.30.25

(1) The addition of the sections for EEPROM emulation
・The addition of the sections for EEPROM emulation on CS+

Add sections necessary for code flash memory reprogramming on a “Section Settings” screen. It also
includes a section for the RFD RL78 Type 03.

Add to the program area: RFD_DATA_n, RFD_CMN_f, RFD_DF_f, EES_CODE_f, SMP_EES_f,
EES_CNST_f

Add to the RAM area: RFD_DATA_nR, EES_VAR_n, SMP_VAR_n

Be sure to return [Layout sections automatically] to “Yes”, after pressing the “OK” button.

Press the right-hand side “ ” button by [ROM to RAM mapped section], display the “Text Edit” screen,
and add the section for copying to RAM from ROM.

Additional
sections

RFD_DATA_n

RFD_CMN_f

RFD_DF_f

EES_CODE_f

SMP_EES_f

EES_CNST_f

RFD_DATA_nR

EES_VAR_n

SMP_VAR_n

ROM to RAM mapped
 section (-rom)

.data=.dataR

.sdata=.sdataR

RFD_DATA_n=RFD_DATA_nR

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 86 of 114
May.30.25

・The addition of the sections for EEPROM emulation on e2 studio
Add sections necessary for EEPROM emulation on a “Section Viewer”. It also includes a section for the
RFD RL78 Type 03.

Add to the program area: RFD_DATA_n, RFD_CMN_f, RFD_DF_f, EES_CODE_f, SMP_EES_f,
EES_CNST_f

Add to the RAM area: RFD_DATA_nR, EES_VAR_n, SMP_VAR_n

Be sure to put a check mark to [Layout sections automatically (-auto_section_layout)], after pressing the
“OK” button.

Select “C/C++ Build” [Settings] - “Linker” [Output], display the “ROM to RAM mapped section (-rom)”
screen, and add the section for copying to RAM from ROM.

Additional
sections

RFD_DATA_n

RFD_CMN_f

RFD_DF_f

EES_CODE_f

SMP_EES_f

EES_CNST_f

RFD_DATA_nR

EES_VAR_n

SMP_VAR_n

ROM to RAM mapped
 section (-rom)

.data=.dataR

.sdata=.sdataR

RFD_DATA_n=RFD_DATA_nR

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 87 of 114
May.30.25

7.1.4 Debug Tool Settings

This section describes the contents of connection setting on a target board necessary in order to execute on-
chip debugging. As a debugging tool, it is a premise that E2 Lite is selected. Refer to the user's manual for
each IDE for the details of other debugging tool setting.

On CS+, right-click a mouse by “RL78 simulator (Debug Tool)” [initial setting] of a tree. And select the “RL78
E2 Lite” by “Using Debug Tool” displayed there. And a “RL78 E2 Lite Property” screen is displayed, and
select each tab, and perform debugging tool setting.

On e2 studio, right-click a mouse in the target project of a tree. Selection of [Debug As] - [Debug
Configurations…] will display the “Debug Configurations” screen. On the tree of a screen, select the target
project (“EESRL78T03_PJ01 HardwareDebug”) of [Renesas GDB Hardware Debugging]. And the displayed
“Debugger” tab performs debugging tool setting.

Note: The power is already supplied to the target board, or when power supply capacity is
insufficient, the emulator including E2 Lite may be unable to supply power to a target
board. Be sure to refer to “the user's manual and Additional Document for User's Manual
(Notes on Connection of RL78)” for the emulator for target devices, and use an emulator.

7.1.4.1 Setting of Connection with Target Board

・On CS+, set up the connection with target board(via E2 Lite) with “Connect Settings” tab.
- [Connection with Target Board] item
In order to let power supply(Supply voltage: 3.3V) from E2 Lite to a target board, it is necessary to set
“Yes” to [Power target from the emulator (MAX 200mA)].

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 88 of 114
May.30.25

・On e2 studio, set up the connection with target board(via E2 Lite) with “Connection Settings” tab.
- [Connection with Target Board] item
In order to let power supply(Supply Voltage: 3.3V) from E2 Lite to a target board, it is necessary to set
“Yes” to [Power Target From The Emulator (MAX 200mA)].

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 89 of 114
May.30.25

7.2 Creating a Project in the Case of Using IAR Compiler

IAR Embedded Workbench can be used for an IAR compiler as an IDE. EES RL78 Type 03 and RFD RL78
Type 03 are registered and built in the project created by the IDE. An example of creating a sample project in
case each IDE is used is shown. Because to understand an IAR compiler and each IDE, it is necessary to
refer to the user's manual of each tool product.

IAR Systems, IAR Embedded Workbench, C-SPY, IAR, and the logotype of IAR Systems are
trademarks or registered trademarks owned by IAR Systems AB.

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 90 of 114
May.30.25

7.2.1 Example of Creating a Sample Project

(1) An example of creating a sample project which used IAR Embedded Workbench (IDE)
・The IAR Embedded Workbench starts and from the [Project] menu, select [Create New Project...], the

“Create New Project” window will open.
- Select the “C” as [project templates].
- When you click the [OK] button, the “Save As” window will open.

- Create “EESRL78T03_PJ01” folder temporarily, and move into a folder.
- The Project File name is temporarily set to “EESRL78T03_PJ01”.

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 91 of 114
May.30.25

(2) Selection of a target device
・On IAR Embedded Workbench, I click the right mouse button of the project (“EESRL78T03_PJ01 -

Debug”) in a tree. When an “Options” is selected, the “Options for node [Project name]” window is
displayed.

- Input setting in the [General Options] - [Target] tab of “Options for node [Project name]” window.
- Press “ ” button of [Device]. And select “RL78 - F25” - “RL78 - R7F125FPL”. Select “Far” as [Code
model] and select “Near” as [Data model].

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 92 of 114
May.30.25

7.2.2 Example of Registration of Target Folders and Target Files

This describes an example of file registration required to execute EEPROM emulation.

Instead of registering a folder by IAR Embedded Workbench, select [Add Group] of the [Project] menu, and
add a group. The example into which I add the group of the same structure as the folder for EES RL78 Type
03 and RFD RL78 Type 03, and files are registered is shown.
The following example shows (1) EES RL78 Type 03 and (2) RFD RL78 Type 03 groups added:

(1) EES RL78 Type 03 (2) RFD RL78 Type 03

・Exclusion of the file automatically added by the function of IDE.
There are files added automatically in the created project. The same file as these exists also in the
“sample” folder of EES RL78 Type 03. Therefore, using the function of IDE, select those files from tree and
excludes from a project.
- IAR Embedded Workbench: Clicks the right mouse button for the file of tree. And exclude the target
“main.c” file by “Remove” function.

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 93 of 114
May.30.25

(1) Registration of the EES RL78 Type 03 files.
The groups (“include”, “source”, “userown”, “sample”) and source program files which are included in EES
RL78 Type 03 to register are shown below.

in the “include” group in the “sample” group

in the “source” group

in the “userown” group

(2) Registration of the RFD RL78 Type 03 files
The groups (“include”, “source”, and “userown”) and source program files which are included in RFD
RL78 Type 03 to register are shown below.

in the “include” group in the “source” group

in the “userown” group

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 94 of 114
May.30.25

7.2.3 Integrated Development Environment (IDE) Settings

Set IDE setting necessary in order to build EEPROM emulation using an IAR compiler.
IAR Embedded Workbench: Click the right mouse button for the project (“EESRL78T03_PJ01”) in a tree, and
select “Options”. And set each setting of the “Category” in the displayed window.

7.2.3.1 Include Path Settings

・Setting of the include path on IAR Embedded Workbench selects “C/C++ Compiler” of “Category”, and
inputs path in “Preprocessor” tab.
- Input the Include directory path in the “Edit Include Directories” window displayed by selection of
[Additional include directories: (one per line)].

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 95 of 114
May.30.25

- The example of directory path setting.
It is the example when the project directory is placed in “C:\Users\xxxxxx\Documents\IAR_Project\”.

(1) EES RL78 Type 03 include directories
C:\Users\xxxxxx\Documents\IAR_Project\EESRL78T03_PJ01\EESRL78T03\include

C:\Users\xxxxxx\Documents\IAR_Project\EESRL78T03_PJ01\EESRL78T03\include\ees

C:\Users\xxxxxx\Documents\IAR_Project\EESRL78T03_PJ01\EESRL78T03\sample\common\include

C:\Users\xxxxxx\Documents\IAR_Project\EESRL78T03_PJ01\EESRL78T03\sample\RL78_F25\EES\IAR\include

C:\Users\xxxxxx\Documents\IAR_Project\EESRL78T03_PJ01\EESRL78T03\userown\include

(2) RFD RL78 Type 03 include directories
C:\Users\xxxxxx\Documents\IAR_Project\EESRL78T03_PJ01\RFDRL78T03\include

C:\Users\xxxxxx\Documents\IAR_Project\EESRL78T03_PJ01\RFDRL78T03\include\rfd

Note: About the path setting of include directories.

When the project is copied in the case appointed by the absolute path, the setup is needed
again. It is possible to appoint a relative path ($PROJ_DIR$) so that it can be used, even if
it copies the project.
Refer to each reference manual of IAR Embedded Workbench about how to appoint the
relative path.

7.2.3.2 Debugger Settings

・Select “E2 Lite/E2 On-Board” from [Driver] of [Debugger] – [Setup] tab on the assumption that on-chip
debugging is implemented.

Note: Refer to each reference manual of IAR Embedded Workbench about the other items to be
set.

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 96 of 114
May.30.25

7.2.4 Linker Configuration File (.icf) Settings

On IAR Embedded Workbench, Linker configuration file (*. icf) describes link setting executed by building.
Select “Options” by the click right mouse button of project with tree. Select [Linker] by “Category” in the
displayed window and put a check mark to “Override default” of the [Config] tab. Select Linker configuration
file (*. icf) in the “Open” window of “ ” button. Select the “sample_linker_file.icf” file prepared for EES
RL78 Type 03.

- sample_linker_file.icf (\sample\RL78_F25\EES\IAR\source\)

Note: Refer to each reference manual of IAR Embedded Workbench about the descriptive
content of Linker configuration file, and the details of the description method.

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 97 of 114
May.30.25

7.2.4.1 Section Settings

The outline of the section added to Linker configuration file (*. icf) currently prepared by EES RL78 Type 03
explained.

Note: Refer to each reference manual of IAR Embedded Workbench about the section setting
method and the detail of functions for Linker configuration file.

(1) The addition of the sections for EES RL78 Type 03.
Add the initial value of each section of EES_CODE, SMP_EES, and EES_CNST to ROM area
(ROM_far).

- The additional section of the ROM_far area:
EES_CODE, SMP_EES, EES_CNST

- The additional section of RAM_near area:
EES_VAR, SMP_VAR

(2) The addition of the sections for RFD RL78 Type 03.
Add the initial value of each section of RFD_DATA, RFD_CMN, and RFD_DF to ROM area (ROM_far). It
is necessary to copy RFD_DATA to the section of RAM area (RAM_near).

- The additional section of the ROM_far area (The program and the data for copying to RAM area to be
placed in ROM area):
RFD_DATA_init, RFD_CMN, RFD_DF

- The additional section of RAM_near area (Data copied from ROM area):
RFD_DATA

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 98 of 114
May.30.25

7.2.4.2 Option Bytes Settings

The Option bytes definition of RL78 is described in Linker configuration file (*. icf) of IAR Embedded
Workbench attachment or the “sample_linker_file.icf” file prepared for EES RL78 Type 03. The Option Bytes
value for EES RL78 Type 03 is described by the “option_byte.c” file.

Note: Refer to each reference manual of IAR Embedded Workbench about the option bytes
setting method for Linker configuration file.

The example of an Option Bytes definition of Linker configuration file for EES RL78 Type 03 (*. icf).

The example of description of the Option Bytes value in the “option_byte.c” file.

- Description of user option byte value [The example for RL78/F25]:

The value of User option byte (000C0H-000C2H) in “option_byte.c” file is “0x6E6BE8”.
(WDT Stop, LVD reset mode, 40MHz)

The value of on-chip debug option byte (000C3H/040C3H) in “option_byte.c” file is “0xA5”.
(The example of enable on-chip debug operation)

The value of security option byte (000C4H/040C4H) in “option_byte.c” file is “0xFE”.
(The example of enables read of on-chip debug and flash serial programming security ID.)

Note: Be sure to confirm the contents of “User option byte”, “On-chip Debug Option Byte” and
“Security Option Byte” in “Option Bytes” chapter on the user's manual of a target device.
And describe the set value used with user application.

define block OPT_BYTE with size = 5 { R_OPT_BYTE,
 ro section .option_byte,
 ro section OPTBYTE };

 |
place at address mem:0x000C0 { block OPT_BYTE };

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 99 of 114
May.30.25

7.2.5 On-chip Debug Settings

After executing building of a target project, connect E2 Lite, select [Download and Debug] from [Project]
menu, and start debugging.

7.2.5.1 Example of How to deal with Connection Errors

Explain the common examples of how to deal with an error which happened by connection in on-chip run
debug. This is the case when an ID code mismatch or power failure occurs.

Note: In cases where a target cannot be connected by other causes, please confirm each
reference manual from [Help] of IAR Embedded Workbench.

When selecting [Download and Debug] and starting debugging, an “E2 Lite hardware setting” screen may be
displayed. The cause may be ID code mismatch or power setting error.

- In the case of the ID code mismatch:
“Cannot verify the ID code.” etc. may be displayed as a message. In this case, put a check mark to
“Erase flash before next ID check” of the [ID code] in an “E2 Lite HardwareSetup” window, and continue.
And the flash memory is erased and debugger may be connected.

- In the case of power setting error:
Initial setting of “Power supply” is “Target”. When supplying power supply from E2 Lite, select “3V” by
the pull down menu for “Power supply”.

Caution: Be sure not to set “3V”(supply power from E2 Lite), when the power is supplied to the
target.

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 100 of 114
May.30.25

7.3 Configurations Modify Procedure for Changing Device

When using a device other than RL78/F25 (R7F125FPL), the address settings in the section and some of
the sample programs must be modified. This section describes the where to modify and procedure to modify.

To modify the setting values, refer to MCU List for RL78/F22, F25 shown below and change the setting
values according to the device you are using. An example of referencing the MCU List for RL78/F22, F25
and an example of where to modify is shown below.

- MCU List for RL78/F22, F25

- Example of reference of the MCU List for RL78/F22, F25

For example, when modifying the setting value indicated by [R-1] (the start address of RAM) as shown in
the following figure. Here, refer to the setting value of the start address [R-1] (RAM Start Address) of RAM
shown in the MCU List for RL78/F22, F25 and set the value of RL78/F22 (R7F122FGG).

Example of where to modify the start address of RAM: RL78/F25 (R7F125FPL RAM: 40 Kbytes)

Example of setting the start address value of RAM when using RL78/F22 (R7F122FGG RAM: 12 Kbytes)

[R-1] →

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 101 of 114
May.30.25

The value to be set in [R-1] refers to the MCU List for RL78/F22, F25 and sets the start address value of
RAM of the target device.
In the column “Target MCU name” of the MCU List for RL78/F22, F25, search for the row for R7F122FxG.
Next, find the cell in the [R-1] column that intersects the row of R7F122FxG.

Since “0xFCF00” applies, the setting value of [R-1] is RL78/F22 (R7F122FxG) value “0xFCF00”.

- Example of where to modify

Points that need to be modified from the RL78/F25 (R7F125FPL) settings are listed from “7.3.1 CC-RL
Compiler Environment Settings”. Points that need to be modified are indicated with “[R-x] →”.
Refer to the MCU List for RL78/F22, F25 to find the appropriate [R-x] setting for the device.
Enter the searched value in [R-x]. (x = 1, 2, 3…)

- Example of modification the section setting [CS+: CC-RL compiler]:

Setting for RL78/F25(RAM: 40 Kbytes) Setting for RL78/F22(RAM: 12 Kbytes)
Example: R7F125FPL Example: R7F122FGG

[R-1] →

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 102 of 114
May.30.25

7.3.1 CC-RL Compiler Environment Settings

Points of modifies and examples of modifies when using the CC-RL compiler environments (CS+ and
e2 studio) are described.

7.3.1.1 Section Settings

Modify the start address of the RAM area in the section settings.
This example shows the change from RL78/F25 (R7F125FPL) to RL78/F22 (R7F122FGG).
Since the RAM size is changed from 40 Kbytes to 12 Kbytes, modify the start address of RAM from
“0xF5F00” to “0xFCF00”.
Note: For the start address of the RAM for each product, refer to “R-1” column in the MCU List for RL78/F22,

F25.

- Example of modifying section settings (start address of RAM) in CS+:

Setting for RL78/F25(RAM: 40 Kbytes) Setting for RL78/F22(RAM: 12 Kbytes)
Example: R7F125FPL Example: R7F122FGG

[R-1] →

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 103 of 114
May.30.25

- Example of modifying section settings (start address of RAM) in e2 studio:

Setting for RL78/F25(RAM: 40 Kbytes) Setting for RL78/F22(RAM: 12 Kbytes)
Example: R7F125FPL Example: R7F122FGG

[R-1] →

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 104 of 114
May.30.25

7.3.1.2 Debug Settings

When using the RL78/F22, the debug monitor area has a different range when using the debugger.

- The start of the “Debug monitor area” address sets the address obtained by subtracting “511 bytes
(0x1FF)” from the end address of the ROM area. If the end address is “0x7FFFF”, set it to “0x7FE00”.

This example shows the modify from RL78/F25 (R7F125FPL) to RL78/F22 (R7F122FGG).
- Set the debug monitor area range to “0x1FE00 - 0x1FFFF” for the RL78/F22 (R7F122FGG).

Note: For the start of the “Debug monitor area” address for each product, refer to “R-5” column in the MCU
List for RL78/F22, F25.

- To set the debug monitor area in CS+, select the [Device] on the “Link Options” tab.
Setting for RL78/F25 (ROM: 512 Kbytes) Example: R7F125FPL

Setting for RL78/F22 (ROM: 128 Kbytes) Example: R7F122FGG

← [R-5]

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 105 of 114
May.30.25

- To set the debug monitor area in e2 studio, select the [Device] in the “Linker”.

Setting for RL78/F25 (ROM: 512 Kbytes) Example: R7F125FPL

Setting for RL78/F22 (ROM: 128 Kbytes) Example: R7F122FGG

← [R-5]

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 106 of 114
May.30.25

7.3.2 IAR Compiler Environment Settings

Points of modifies and examples of modifies when using the IAR compiler environment (Embedded
Workbench) is described.

7.3.2.1 Setting Up Header Files for Target Device

The “main.c” and “low_level_init.c” provided with EES RL78 Type 03 includes the header files for the target
device “RL78/F25: R7F125FPL”. When using other RL78/F25 products or RL78/F22 products, the included
header file must be changed to the header file for the device used.
This section describes when RL78/F22 (R7F122FGG) is used.

Target files name: main.c, low_level_init.c

- For RL78/F25 (R7F125FPL):
< main.c >

#include “ior7f125fpl.h”
< low_level_init.c >

#include “ior7f125fpl.h”
#include “ior7f125fpl_ext.h”

- Example for RL78/F22 (R7F122FGG):

< main.c >
#include “ior7f122fgg.h”

< low_level_init.c >
#include “ior7f122fgg.h”
#include “ior7f122fgg_ext.h”

Note: For the device type name of the product, refer to “Target MCU name” column in the MCU List for
RL78/F22, F25.

7.3.2.2 Linker Configuration File Settings

In the sample program provided by EES RL78 Type 03, The sections (ROM, RAM, and Data flash range) for
RL78/F25 (R7F125FPL) are set.

When using other RL78/F25 products or RL78/F22 products, modify the contents of the sample linker file
“sample_linker_file.icf” provided for the RL78/F25 of EES RL78 Type 03 because the section settings are
different. The modifications are shown in red text below, so refer to the MCU List for RL78/F22, F25 and
change the setting values for the target device.

Target file name: sample_linker_file.icf

This example shows the modify from RL78/F25 (R7F125FPL) to RL78/F22 (R7F122FGG).
- Modify the ROM area to the range of 128 Kbytes [0x00000 - 0x1FFFF]
- Modify the start address to “0xFCF00” because the RAM area is 8 Kbytes [0x0FCF00 - 0x0FFEFF]
- Modify the end address to “0xF2FFF” because the data flash area is 8 Kbytes [0x0F1000 - 0x0F2FFF]

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 107 of 114
May.30.25

(1) Section Settings

- Modifies to the size of ROM, RAM, and Data Flash

Setting for RL78/F25 (ROM: 512 Kbytes, RAM: 40 Kbytes, Data Flash: 16 Kbytes) Example: R7F125FPL

Notes 1 When the ROM size is larger than 64 Kbytes, the description must change as the ROM size

increases. For details of the description.

2 Sets the value [R-3] when there is an address value in [R-3]on the list. In the case of “-”, set the
value of [R-2].

Setting for RL78/F22 (ROM: 128 Kbytes, RAM: 12 Kbytes, Data Flash: 8 Kbytes) Example: R7F122FGG

define region ROM_near = mem:[from 0x00132 to 0x0FFFF];

define region ROM_far = mem:[from 0x00132 to 0x0FFFF] | mem:[from 0x10000 to 0x1FFFF]

 | mem:[from 0x20000 to 0x2FFFF] | mem:[from 0x30000 to 0x3FFFF]

 | mem:[from 0x40000 to 0x4FFFF] | mem:[from 0x50000 to 0x5FFFF]

 | mem:[from 0x60000 to 0x6FFFF] | mem:[from 0x70000 to 0x7FFFF];

define region ROM_huge = mem:[from 0x00132 to 0x7FFFF];

define region SADDR = mem:[from 0xFFE20 to 0xFFEDF];

define region RAM_near = mem:[from 0xF5F00 to 0xFFE1F];

define region RAM_far = mem:[from 0xF5F00 to 0xFFE1F];

define region RAM_huge = mem:[from 0xF5F00 to 0xFFE1F];

define region VECTOR = mem:[from 0x00000 to 0x0007F];

define region CALLT = mem:[from 0x00080 to 0x000BF];

define region EEPROM = mem:[from 0xF1000 to 0xF4FFF];

define region ROM_near = mem:[from 0x00132 to 0x0FFFF];

define region ROM_far = mem:[from 0x00132 to 0x0FFFF] | mem:[from 0x10000 to 0x1FFFF];

define region ROM_huge = mem:[from 0x00132 to 0x1FFFF];

define region SADDR = mem:[from 0xFFE20 to 0xFFEDF];

define region RAM_near = mem:[from 0xFCF00 to 0xFFE1F];

define region RAM_far = mem:[from 0xFCF00 to 0xFFE1F];

define region RAM_huge = mem:[from 0xFCF00 to 0xFFE1F];

define region VECTOR = mem:[from 0x00000 to 0x0007F];

define region CALLT = mem:[from 0x00080 to 0x000BF];

define region EEPROM = mem:[from 0xF1000 to 0xF2FFF];

← [R-2], [R-3] Note 1

← [R-2] or [R-3] Note 2

← [R-1]

← [R-1]

← [R-1]

← [R-4]

← [R-2]

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 108 of 114
May.30.25

(2) Debug Settings

- The first address of the debug monitor area is set by subtracting “511 bytes (0x1FF)” from the end address
of the ROM area. If the end address is “0x7FFFF”, set to “0x7FE00”.

- The first address of the TraceRAM area is set by adding “1 Kbyte (0x400)” to the first address of the RAM
area. If the first address is “0xF5F00”, set to “0xF6300”.

- The first address of the hot plug-in RAM area is set by adding “0x600” to the first address of the RAM area.
If the first address is “0xF5F00”, set to “0xF6500”.

- When debugging self-programming with an on-chip debugger, 128 bytes of area is used from the start
address of RAM. Therefore, it is necessary to set the start address of a RAM area, and the address adding
“127 bytes (0x7F) ”. If the start address is “0xF5F00”, set “0xF5F00” and “0xF5F7F”.

As an example, modifying from RL78/F25 (R7F125FPL) to RL78/F22 (R7F122FGG) is shown.

- Set the debug monitor area range to [from 0x1FE00 size 0x0200].
- Set the TraceRAM area range to [from 0xFD300 size 0x0200].
- Set the hot plug-in RAM area range to [from 0xFD500 size 0x0030].
- Set the area range required to debug the self-programming to [from 0xFCF00 to 0xFCF7F].

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 109 of 114
May.30.25

Modifies to the TraceRAM area, debug monitor area, and hot plug-in RAM area when using the
debugger.

 Setting for RL78/F25 (ROM: 512 Kbytes, RAM: 40 Kbytes) Example: R7F125FPL

if (isdefinedsymbol(__RESERVE_OCD_ROM))
{

if (__RESERVE_OCD_ROM == 1)
{
reserve region “OCD ROM area” = mem:[from 0x7FE00 size 0x0200];
}

}
 |
[Omitted]
 |
if (isdefinedsymbol(__RESERVE_OCD_TRACE_RAM))
{

if (__RESERVE_OCD_TRACE_RAM == 1)
{
reserve region “OCD Trace RAM” = mem:[from 0xF6300 size 0x0200];
}

}
 |
[Omitted]
 |
if (isdefinedsymbol(__RESERVE_HOTPLUGIN_RAM))
{
 if (__RESERVE_HOTPLUGIN_RAM == 1)
 {
 reserve region “Hot Plugin RAM” = mem:[from 0xF6500 size 0x0030];
 }
}
 |
[Omitted]
 |
if (isdefinedsymbol(__RESERVE_FLASH_SELF_PROGRAMMING_RAM))
{
 if (__RESERVE_FLASH_SELF_PROGRAMMING_RAM == 1)
 {
 reserve region “RESERVED_FLASH_SELF_PROGRAMMING_RAM” = mem:[from 0xF5F00 to 0xF5F7F];
 }
}

← [R-6]

← [R-5]

← [R-7]

↑ [R-1]

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 110 of 114
May.30.25

 Setting for RL78/F22 (ROM: 128 Kbytes, RAM: 12 Kbytes) Example: R7F122FGG

if (isdefinedsymbol(__RESERVE_OCD_ROM))
{

if (__RESERVE_OCD_ROM == 1)
{
reserve region “OCD ROM area” = mem:[from 0x1FE00 size 0x0200];
}

}
 |
[Omitted]
 |
if (isdefinedsymbol(__RESERVE_OCD_TRACE_RAM))
{

if (__RESERVE_OCD_TRACE_RAM == 1)
{
reserve region “OCD Trace RAM” = mem:[from 0xFD300 size 0x0200];
}

}
 |
[Omitted]
 |
if (isdefinedsymbol(__RESERVE_HOTPLUGIN_RAM))
{
 if (__RESERVE_HOTPLUGIN_RAM == 1)
 {
 reserve region “Hot Plugin RAM” = mem:[from 0xFD500 size 0x0030];
 }
}
 |
[Omitted]
 |
if (isdefinedsymbol(__RESERVE_FLASH_SELF_PROGRAMMING_RAM))
{
 if (__RESERVE_FLASH_SELF_PROGRAMMING_RAM == 1)
 {
 reserve region “RESERVED_FLASH_SELF_PROGRAMMING_RAM” = mem:[from 0xFCF00 to 0xFCF7F];
 }
}

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 Page 111 of 114
May.30.25

(3) RAM Start Address Settings

Sets the starting address of RAM area.

“sample_linker_file.icf” is set to use a RAM size of 40 Kbytes on RL78/F25 (R7F125FPL). Therefore, it is
necessary to modify the setting when using a RAM size other than 40 Kbytes.

This section describes an example of modifying the settings when using RL78/F22 (R7F122FGG) with a
RAM size of 12 Kbytes.
To use RL78/F22 (R7F122FGG) with a RAM size of 12 Kbytes, modify the value of the RAM start address
setting register (RAMSAR) from “0x5F” to “0xCF” in “cstart.asm” stored in the “sample” folder.
For more information about the RAM Start Address Setting Register (RAMSAR), refer to the hardware
manual of the target RL78.

Setting for RL78/F25(RAM: 40 Kbytes) Example: R7F125FPL

Setting for RL78/F22(RAM: 12 Kbytes) Example: R7F122FGG

define exported symbol _RAMSAR_ADDR = 0xF0076;
if (!isdefinedsymbol(__RAMSAR_VAL))
{
 define exported symbol _RAMSAR_VAL = 0x5F;
}
else
{
 define exported symbol _RAMSAR_VAL = __RAMSAR_VAL;
}
keep symbol __setup_ramsar;

define exported symbol _RAMSAR_ADDR = 0xF0076;
if (!isdefinedsymbol(__RAMSAR_VAL))
{
 define exported symbol _RAMSAR_VAL = 0xCF;
}
else
{
 define exported symbol _RAMSAR_VAL = __RAMSAR_VAL;
}
keep symbol __setup_ramsar;

EES RL78 Type 03 8. Revision History

R20UT5477EJ0101 Rev.1.01 Page 112 of 114
May.30.25

8. Revision History

8.1 Major Modifications in this Revision

Rev. Date
Description

Page Summary

1.00 Aug.05.24 - Newly created.

1.01 May.30.25 - Add support of RL78/F22.

EEPROM Emulation Software RL78 Type 03 User's Manual

Publication Date: Rev.1.01 May. 30. 25

Published by: Renesas Electronics Corporation

EEPROM Emulation Software
RL78 Type 03

R01UT5477EJ0101

	Cover
	Notice
	General Precautions in the Handling of Microprocessing Unit and Microcontroller UnitProducts
	How to Use This Manual
	Table of Contents
	Abbreviations
	Terminology
	1. Overview
	1.1 Outline
	1.1.1 Purpose

	1.2 Contents
	1.3 Features
	1.4 Operating Environment
	1.5 Points for Caution
	1.6 C Compiler Definitions

	2. System Configuration
	2.1 System Configuration
	2.2 EES Architecture
	2.2.1 EES Block
	2.2.2 EES Pool

	2.3 File Structure
	2.3.1 Folder Structure
	2.3.2 List of Files
	2.3.2.1 List of Source Files
	2.3.2.2 Header File List of Header Files

	2.4 Resources of RL78/F22, F25
	2.4.1 Memory Map
	2.4.2 Allocation of Blocks

	2.5 Resources Used in EES RL78 Type 03
	2.5.1 Sections Used in EES RL78 Type 03
	2.5.2 Software Resources

	3. EEPROM Emulation
	3.1 Specifications of EEPROM Emulation
	3.2 Outline of Functions
	3.3 EES Pool
	3.3.1 EES Pool State
	3.3.2 Structure of EES Block
	3.3.3 EES Block Header
	3.3.4 Structure of Stored Data
	3.3.5 EES Block Overview

	4. Using EEPROM Emulation
	4.1 Number of Stored User Data Items and Total User Data Size
	4.2 Initial Values to be Set by User

	5. User Interface
	5.1 Request Structure (st_ees_request_t) Settings
	5.1.1 User Write Access
	5.1.2 User Read Access

	5.2 List of API Functions and R_EES_Execute function commands for the EES
	5.2.1 API Functions for the EES
	5.2.2 Commands for R_EES_Execute Function
	5.2.3 RFD control API functions for EES

	5.3 State Transitions
	5.4 Basic Flowchart
	5.5 Command Operation Flowchart
	5.6 Data Type Definitions
	5.6.1 Data Types
	5.6.2 Global Variables
	5.6.3 Enumerations

	5.7 Specifications of API Functions
	5.7.1 Specifications of API Functions for EES RL78 Type 03
	5.7.1.1 R_EES_Init
	5.7.1.2 R_EES_Open
	5.7.1.3 R_EES_Close
	5.7.1.4 R_EES_Execute
	5.7.1.5 R_EES_Handler
	5.7.1.6 R_EES_GetSpace

	5.7.2 RFD control API Functions for EES
	5.7.3 Internal Functions for the EES

	6. Sample Programs
	6.1 File Structure
	6.1.1 Folder Structure
	6.1.2 List of Files
	6.1.2.1 List of Source Files
	6.1.2.2 List of Header Files

	6.2 Data Type Definitions
	6.2.1 Macro Defines

	6.3 Sample Program Functions
	6.3.1 Sample Program for Controlling the EEPROM Emulation
	6.3.1.1 main Function
	6.3.1.2 Sample_EES_Control Function

	6.4 Specifications of Sample Program Functions
	6.4.1 Sample Program Functions for Controlling the EEPROM Emulation
	6.4.1.1 main
	6.4.1.2 Sample_EES_Control

	7. Creating a Sample Project for EES RL78 Type 03
	7.1 Creating a Project in the Case of Using a CC-RL Compiler
	7.1.1 Example of Creating a Sample Project
	7.1.2 Example of Registration of Target Folders and Target Files
	7.1.3 Build Tool Settings
	7.1.3.1 Include Path Settings
	7.1.3.2 Device Item Settings
	7.1.3.3 Section Item Settings

	7.1.4 Debug Tool Settings
	7.1.4.1 Setting of Connection with Target Board

	7.2 Creating a Project in the Case of Using IAR Compiler
	7.2.1 Example of Creating a Sample Project
	7.2.2 Example of Registration of Target Folders and Target Files
	7.2.3 Integrated Development Environment (IDE) Settings
	7.2.3.1 Include Path Settings
	7.2.3.2 Debugger Settings

	7.2.4 Linker Configuration File (.icf) Settings
	7.2.4.1 Section Settings
	7.2.4.2 Option Bytes Settings

	7.2.5 On-chip Debug Settings
	7.2.5.1 Example of How to deal with Connection Errors

	7.3 Configurations Modify Procedure for Changing Device
	7.3.1 CC-RL Compiler Environment Settings
	7.3.1.1 Section Settings
	7.3.1.2 Debug Settings

	7.3.2 IAR Compiler Environment Settings
	7.3.2.1 Setting Up Header Files for Target Device
	7.3.2.2 Linker Configuration File Settings

	8. Revision History
	8.1 Major Modifications in this Revision

	Colophon
	Back Cover

