LENESANS

-
o
)
ﬁ-
7
<
Q
S
-
QL

RL78 Family
EEPROM Emulation Software
RL78 Type 03

User’s Manual

RENESAS Microcontrollers
RL78 / F22
RL78/ F25

All information contained in these materials, including products and product specifications, represents
information on the product at the time of publication and is subject to change by Renesas Electronics
Corp. without notice. Please review the latest information published by Renesas Electronics Corp.
through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

Renesas Electronics Rev.1.01 May 2025

www.renesas.com

EES RL78 Type 03

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of
these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or
other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home
electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims
any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is
inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not
limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products
are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury,
injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety
design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging
degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. ltis the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most up-to-date
Koto-ku, Tokyo 135-0061, Japan version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered trademarks
are the property of their respective owners.

© 2025 Renesas Electronics Corporation. All rights reserved.

R20UT5477EJ0101 Rev.1.01 S Page 2 of 114
May.30.25 RENES

https://www.renesas.com/
https://www.renesas.com/contact/

EES RL78 Type 03

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit
Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products
covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1.

Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must
be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate.
When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices
must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work
benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare
hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register
settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the
states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product
that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which
resetting is specified.

Input of signal during power-off state

Do not input signals or an /O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or /O pull-
up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow
the guideline for input signal during power-off state as described in your product documentation.

Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in
the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.
Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a
reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an
external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V. (Max.) and
Vi (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is
fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Vi1 (Min.).

Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these
addresses as the correct operation of the LSl is not guaranteed.

Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The
characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of
internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating
margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for

the given product.

R20UT5477EJ0101 Rev.1.01 S Page 3 of 114
May.30.25 RENES

EES RL78 Type 03

How to Use This Manual

+« Readers

This manual is intended for users who wish to understand the features of the RL78 microcontrollers
EEPROM Emulation and to use the EEPROM Emulation Software (EES) RL78 Type 03 in designing and
developing application systems.

o Purpose

This manual is intended to give users an understanding of the methods for using the EEPROM Emulation
Software (EES) RL78 Type 03 to reprogram the data flash memory in the RL78/F22, F25 microcontrollers
(i.e. write constant data by the application).

« Organization
This manual is separated into the following sections.
- Overview
- System Configuration
- EEPROM Emulation
- Using EEPROM Emulation
- User Interface
- Sample Programs
- Creating a Sample Project for EES RL78 Type 03

+« How to Read this Manual

It is assumed that the readers of this manual have general knowledge in the fields of electrical
engineering, logic circuits, microcontrollers, C language, and assemblers.

To understand the hardware functions of the RL78/F22, F25:
- Refer to the User's Manual of the target RL78/F22, F25 devices.

« Conventions
- Data significance: Higher digits on the left and lower digits on the right
- Active low representations: xxx (overscore over pin and signal name)
- Note: Footnote for item marked with Note in the text
- Caution: Information requiring particular attention
- Remark: Supplementary information
- Numeric representation:
Binary: xxxx or xxxxB
Decimal: xxxx
Hexadecimal: xxxxH or Oxxxxx
- Prefixes indicating power of 2 (address space and memory capacity):
K (kilo) 2"° = 1024
M (mega) 2°° = 1024°

R20UT5477EJ0101 Rev.1.01 S Page 4 of 114
May.30.25 RENES

EES RL78 Type 03

« Related Documents
The related documents indicated in this publication may include preliminary versions. However,
preliminary versions are not marked as such.

No Document Title Document Number
1 RL78/F22, F25 User's Manual Hardware RO1UH1061EJ
2 RL78 Family Renesas Flash Driver RL78 Type 03 R20UT5454EJ

User’'s Manual

3 E1/E20/E2 Emulator, E2 Emulator Lite Additional Document for R20UT1994EJ
User’s Manual (Notes on Connection of RL78)

R20UT5477EJ0101 Rev.1.01 R NS Page 5 of 114
May.30.25 ENES

EES RL78 Type 03

Table of Contents

1. OVEIVIEW ...t e ettt e e e e ettt e e e e e e e e e e e et bt eeeeeeeseeesssba e aeeeaeeeesssaaanaeaaens 10
1.1 (O 18 {11 [10
1.1.1 ULy 0T 1= U 10
LI ©7o] o1 (=Y 1) - J R 10
(IR T Y= 1 (- 11
1.4 Operating ENVIFONMENT ... ittt ettt et e e bt ab e e st e e eneeesnseesnneeeneeas 12
LT o1 -3 (o] g =10 1] o TSRS 13
1.6 C ComPIiler DEfINILIONSoeiiiiiee ettt e et e e et e e e e bt e e e e ebaeeeeeabeeeesenbaeeeenrees 16
2. System ConfIQUIAtIONuiiiiiiiei e e e e e e e e e 17
P2 B V1 (= 0 W @7 o]) e U = (o] o OSSPSR 17
D S B N o 11 (Yo (U4 < 17
2.2.1 oy S =] oYl QRO 17
222 [y SR oo IR 18
D T 1 LTS { (U To ([YR 19
2.3.1 Folder StrUCIUre ... 19
2.3.2 I Qo 1Y 20
2.4 RESOUICES OFf RLTBIF22, F25.....oeeeeeeeeeeeeeeeeeeeeeeeeeeeteeeeeeeeeeeeeeesaeesaeeeseessesssessssessssssesssnsssnsssssssesssnsssnsssnnnnnnnnne 21
241 [T g ol VN Y= T o TS SR 21
242 P [foTor=TiloT I il =1 (o o &= 22
25 Resources Used in EES RL78 TYPE 03 ...ttt ste ettt e st e stee et e e snaeesnseeeteeesneeenns 23
2.51 Sections Used in EES RL78 TYPE 03 ...ttt et 23
252 SOfWAIE RESOUICES......coeeeeeeeeeeeeeeeeeeeeeeee ettt eee et ee et e e eeeeeeeeeeeeeeeeseseeeeeseeesnesennennnes 23
3. EEPROM EMUIGLION. ...t e e e e e e e e e e e e e e eeaaa s 24
3.1 Specifications of EEPROM EMUIAION..........cccuiiiiiiiiiiic ettt et 24
T O V1 i [T a Y=Y] il Vg Vo1 1o] o I O 24
TR T s oo SRR 25
3.3.1 EES POOI State ... 25
3.3.2] (o (U SN =1 ST =1 (o o] 27
3.3.3] SR =] (o Tl (g F=T = To [PSSR 28
3.34 StruCtUre Of STOred Dataco it e e e e e e e e e as 29
3.3.5 EES BIOCK OVEIVIEBWceeeeieeitieeeeee ettt e ettt e e e e e ettt e e e e e e e et e e e e eeeeseanbaeeeeeeeeeeasanbaneeeeeeans 31
4. Using EEPROM EMUIALIONcoiiiiiiiiiiiie ettt e e 32
4.1 Number of Stored User Data Items and Total User Data Sizeccccoeeieiiiiiiiieieii e, 32
4.2 Initial Values t0 DE S DY USET ...ttt e et e e et e e e et e e e e enra e e e e nnees 33
T U 7= g [] (=Y o £= Tt TSR 36
5.1 Request Structure (st_ees_request_t) Settingscooo i 36
511 USEI WIHEE ACCESS.... .o 37
51.2 USEI REAA ACCESS ... 37
5.2 List of API Functions and R_EES_Execute function commands forthe EESccoccoeeiiiiiiiiee e 38
5.21 APILFUNGHONS fOr thE EES ...t e e et e e e e e e e e nanreeeeaeeeaan 38
5.2.2 Commands for R_ EES ExXecute FUNCHONccoiiiiiiiiie e 39
523 RFD control APl functions Tor EES ... 40
LT T] v (T I = 1111 (o] 0 R 41
LT S = 7T (o3 (o 1Yo o = o N 43
5.5 Command Operation FIOWChAI............cccuiiiiiiiii e e et e et e e et e e e enre e e e ennees 45
R20UT5477EJ0101 Rev.1.01 ;{ENESAS Page 6 of 114

May.30.25

EES RL78 Type 03

5.6 Data Type DEefiNIfIONS.......ccoiiiiiiii ittt e et e e st e e st e e et e e sbeeesnteeeteeesseeesnseeeteeenneeeans 46
5.6.1 == T Y/ o= PSPPSR 46
5.6.2 L€ (0] o= TN 2= T4 =1 o] =Y SRS 46
5.6.3 o T 4= = (] 1SR 48

5.7 Specifications Of APl FUNCHONSooiiiiiie ittt e e et e e et e e st e e e snraee e enrees 50
5.7.1 Specifications of APl Functions for EES RL78 Type 03........cccoiiiiiiiiie e 51
5.7.2 RFD control APl FUNCHONS fOF EES..........ooiiiiiiii et 59
5.7.3 Internal Functions forthe EESo e 61

6. SAMPIE PrOGramS ..ottt e e e e e e e e e e e e et e e e e e e e e e e aans 64

8.1 FIE SITUCIUIE ...ttt ettt e bt e s bt e sae e sae e s anesaeesaneeanenaneenneens 64
6.1.1 [0 0 =T] 1 Lo (1] PSS 64
6.1.2 1S o) PSS 65

6.2 Data TYpe DefiNItiONS.coo ittt e b et e e et e e s b e e e st e e ebe e e naeeena 65
6.2.1 = Yo o T I = 1 1= 3SR 65

6.3 Sample Program FUNCHONScooiiiiiie ettt ettt e et e e sbe e e st e e ebe e e saeeesaneeebeeesneeenas 66
6.3.1 Sample Program for Controlling the EEPROM Emulationccccooiiiieeiiiiie e 66

6.4 Specifications of Sample Program FUNCHONS...........c.cooiiiiiiiiiie ettt et e saeee e 72
6.4.1 Sample Program Functions for Controlling the EEPROM Emulationccccccveviieeiiieiiieecieeee 72

7. Creating a Sample Project for EES RL78 Type 03 ... 74

7.1 Creating a Project in the Case of Using @ CC-RL COMPIIEr........cociiiiiiiiiiiiiieee e 74
711 Example of Creating @ Sample ProjeCL.........cuuiiiiiiiie ettt 75
71.2 Example of Registration of Target Folders and Target Files..........ccccveiieiiiniiieceeeee e 78
7.1.3 =TT o I oo IS 1= 11T LRSS 80
714 DEbUQG TOOI SEEINGSeeeiieeiii bbbt b e e bt eans 87

7.2 Creating a Project in the Case of Using IAR COmPIlEr..........oo i 89
7.21 Example of Creating @ Sample Project...........oo e 90
7.2.2 Example of Registration of Target Folders and Target Files...........cccccoeiiviiieiiccie e 92
7.2.3 Integrated Development Environment (IDE) SEtiNgScoocvriiiiiniieiiin e 94
724 Linker Configuration File (LCf) SEtNGS......coouiiiiiieee e 96
7.2.5 ON-Chip DEBUG SEHINGS ... b 99

7.3 Configurations Modify Procedure for Changing DeVICeccoeiiiiiiiiiiiieiiie e 100
7.3.1 CC-RL Compiler Environment SettiNgScceeiiiiiiiiiiee e 102
7.3.2 IAR Compiler ENvironment SEtiNGScoooouiiiiiiie e 106

8. ReVISION HISIOIY ... e e e e e e e e e e e e e s 112

8.1 Major Modifications in thiS REVISION..........c.ciiiiiiiiiiiii e 112

R20UT5477EJ0101 Rev.1.01 RENESAS Page 7 of 114

May.30.25

EES RL78 Type 03

Abbreviations

Abbreviation Description
EES EEPROM Emulation Software

RFD Renesas Flash Driver

API Application Program Interface

Background Operation

BGO Instructions in the code flash memory can be executed during reprogramming of the
data flash memory.

Random Access Memory

RAM Randomly accessible volatile memory. It is memory for holding values that are to be
changed during program execution.

Read-Only Memory

ROM Non-volatile memory. It is memory whose contents cannot be changed. The code flash
memory may be called ROM.

R20UT5477EJ0101 Rev.1.01 S Page 8 of 114
May.30.25 RENES

EES RL78 Type 03

Terminology

Terminology Description
Code flash memory Flash memory for storing application code and constant data.
Note that this memory may be abbreviated as “CF” in this document.
Data flash memory Flash memory for storing data.
Note that this memory may be abbreviated as “DF” in this document.
Extra area Generic name of the configuration setting area, security setting area,

lock protection area, and boot swap setting area.

Flash memory sequencer The RL78 microcontroller has a dedicated circuit for controlling the flash
memory. This circuit is called the flash memory sequencer in this
document. The flash memory sequencer consists of the code/data flash
area sequencer, which reprograms the code flash area or data flash area,
and the extra area sequencer, which reprograms the extra area.

Flash memory control mode | The flash memory sequencer has the following modes, which indicate the
programming enabled or disabled state.

- Code flash memory programming mode
- Data flash memory programming mode
- Non-programmable mode

Code flash memory The code flash memory (and extra area) can be reprogrammed in this

programming mode mode.

Data flash memory The data flash memory can be reprogrammed in this mode.

programming mode

Non-programmable mode The flash memory (and extra area) cannot be reprogrammed in this
mode.

Self-programming A method of reprogramming the flash memory by executing a user
program instead of using an external flash memory programming tool.

RFD function A generic term for the functions offered by the RFD.

EES function A generic term for the functions offered by the EES.

RFD control functions for A generic term for the RFD control functions offered by the EES.

EES

EES Block An abbreviation of blocks that the EEPROM emulation software

accesses. In this user’s manual, EEPROM emulation blocks are hereafter
referred to as EES block.

R20UT5477EJ0101 Rev.1.01 S Page 9 of 114
May.30.25 RENES

EES RL78 Type 03 1. Overview

1. Overview

11 Outline

EEPROM emulation is a feature used to store data in the on-board flash memory in the same way as
EEPROM. In EEPROM emulation, EEPROM Emulation Software RL78 Type 03 operates the Renesas Flash
Driver (RFD) RL78 Type 03. And RFD writes and reads the data flash memory.

EEPROM Emulation Software RL78 Type 03 (hereafter called EES RL78 Type 03) is software for
reprogramming the data flash memory in the RL78/F22, F25.

For information on Renesas Flash Driver (RFD) RL78 Type 03, refer to the RL78 Family Renesas Flash
Driver RL78 Type 03 User's Manual.

111 Purpose

This manual is intended to give users an understanding of the methods for using the EEPROM Emulation
Software (EES) RL78 Type 03 to reprogram the data flash memory in the RL78/F22, F25 microcontrollers
(i.e. write constant data by the application).

1.2 Contents

The API function of EES RL78 Type 03 is called from the user program. And reprogramming of the data in
the EEPROM emulation block (EES block) placed into the data flash memory is possible.

The EES RL78 Type 03 package includes the following.

« This user's manual

« Source code files of EES RL78 Type 03 for controlling the data flash memory incorporated in the
RL78/F22, F25.

o Sample program for operating the EES RL78 Type 03.

R20UT5477EJ0101 Rev.1.01 NS Page 10 of 114
May.30.25 RENES

EES RL78 Type 03 1. Overview

1.3 Features

EES RL78 Type 03 calls API functions for RFD RL78 Type 03 to operate the flash memory sequencer. Each
API function of EES RL78 Type 03 consists of a single sub-function or two or more sub-functions, and the
necessary processing is implemented by combinations of individual sub-functions and user processing. Such
a configuration is adopted so as to flexibly handle processing dependent on the user application, such as,
timeout processing in which the timeout value varies with the conditions of user application program
execution.

Figure 1-1 shows the flash memory control by the user application using the API functions of EES RL78
Type 03.

EES RL78 Type 03 provides sample programs of the processing that is implemented by combinations of two
or more API functions and user programs. Refer to the sample programs when embedding EEPROM
emulation processing in the user application.

User program

User application
(EES RL78 Type 03 API functions are called.)

EES RL78 Type 03 API functions
(RFD RL78 Type 03 API functions are called.)

RFD RL78 Type 03 API functions
(Flash memory sequencer is controlled.)

Flash memory hardware

Flash memory sequencer
(Hardware for controlling the flash memory)

¥

Data flash memory

Figure 1-1 Data Flash Memory Control Using APl Functions of EES RL78 Type 03

R20UT5477EJ0101 Rev.1.01 NS Page 11 of 114
May.30.25 RENES

EES RL78 Type 03 1. Overview

1.4 Operating Environment

o Host Computer

The operation of EES RL78 Type 03 does not depend on the host computer but the appropriate
environment for the C compiler package, debugger and emulator must be prepared. (EES RL78 Type 03
was developed and tested on Windows10 Enterprise.)

o C Compiler Package
Table 1-1 shows the target C compiler packages for EES RL78 Type 03.

Table 1-1 The target C Compiler Packages for EES RL78 Type 03

Compiler IDE (Integrated Development Manufacturer Version
Environment)

CC-RL CS+ or e? studio Renesas Electronics V1.13 or later

IAR Embedded Workbench® for
Renesas RL78

Note. Integrated development environment and compiler must support the target device.

IAR IAR Systems® V5.10.3 or later

Emulator
Table 1-2 shows the emulator on which the operation of EES RL78 Type 03 was confirmed.

Table 1-2 Emulator on which EES RL78 Type 03 operation was confirmed

Emulator Manufacturer
E2 emulator Renesas Electronics
E2 emulator Lite Renesas Electronics

o Target MCU
RL78/F22
RL78/F25

« EEPROM Emulation Software (EES)
Table 1-3 shows the EEPROM Emulation Software (EES) supported by this manual.

Table 1-3 EEPROM Emulation Software (EES) Supported by this Manual

Package Manufacturer Version

EES RL78 Type 03 Renesas Electronics V1.00
Note. Use the version of RFD RL78 Type 03 listed in Table 1-4.

+ Renesas flash driver (RFD)
Table 1-4 shows the Renesas flash driver (RFD) used for EES RL78 Type 03.

Table 1-4 The Renesas flash driver (RFD) used for EES RL78 Type 03

Package Manufacturer Version
RFD RL78 Type 03 Renesas Electronics V1.00
R20UT5477EJ0101 Rev.1.01 RENESAS Page 12 of 114

May.30.25

EES RL78 Type 03 1. Overview

1.5 Points for Caution

EEPROM emulation is achieved by using a feature for manipulating the RL78/F22, F25 microcontroller data
flash memory. Therefore, it is necessary to note the following.

(1) All EES code and constants must be placed in the same 64 Kbytes flash block such that EES code and
constants do not extend across a 64-Kbyte boundary. (It dependent on each compiler.)

(2) The EES must be initialized by the R_EES_Init function before any EES function is executed.
(3) The data flash memory cannot be read during data flash memory operation by the EES.

(4) Iltis not allowed to call any RFD function during a command execution of the EES.

(5) Itis not allowed to call any RFD control functions for EES directly from other than the EES.

(6) Do not execute STOP mode or HALT mode processing while the EEPROM emulation is being used. If it
is necessary to execute STOP mode or HALT mode processing, be sure to execute all of the
processing up to and including the R_EES_Close function to finish EEPROM emulation.

(7) The watchdog timer does not stop during execution of the EES.
(8) Do not destroy the request structure (st_ees_request_t) during command execution.

(9) Initialize the argument (RAM) that is used by the EEPROM emulation software function. When not
initialized, a RAM parity error is detected and the RL78/F22, F25 microcontrollers might be reset. For a
RAM parity error, refer to “User’s Manual: Hardware” of a target device.

(10) All members of the request structure (st_ees_request_t) must be initialized once before a EES
command is executed. If any unused member exists in the request structure (st_ees request t), seta
desired value for the member. If any member is not initialized, the RL78/F22, F25 microcontrollers may
be reset due to a RAM parity error. For details, refer to “User's Manual: Hardware” of a target device.

(11) The EES does not support multitask execution. Do not execute the EES functions during interrupt

processing.

(12) After the R_EES_Close function have been executed, the requested command and ongoing command
stop and cannot be resumed. Before calling the R_EES_Close function, finish all ongoing commands.

(13) Do not operate the code flash memory by RFD RL78 Type 03 while the EEPROM emulation is
executed. Before the code flash memory is operated, be sure to execute a “R_EES_Close function”
necessary in order to finish the EEPROM emulation. When using EEPROM emulation after executing
the code flash memory operations using the RFD RL78 Type 03, it is necessary to start processing from
the initializing function (the R_EES_ Init function).

(14) Before starting the EEPROM emulation, be sure to start up the high-speed on-chip oscillator first. The
high-speed on-chip oscillator must also be activated when using the external clock.

R20UT5477EJ0101 Rev.1.01 NS Page 13 of 114
May.30.25 RENES

EES RL78 Type 03 1. Overview

(15) No checksum is added to user data. If a checksum is needed, add it to user data and check through the

user program.
(16) Do not operate the data flash control register (DFLCTL) during execution of the EES.

(17) To use the data flash memory for EEPROM emulation, it is necessary to execute the
R_EES_ENUM_CMD_FORMAT command upon first starting up to initialize the data flash memory and
make it usable as EES blocks.

(18) In order to use the EES, it is recommended to set at least 3 blocks in the EES block (virtual block).

(19) Do not destroy the EES blocks (virtual block) by the user program operating the data flash memory
using the RFD from other than the EES.

(20) EES descriptor is changed, the EEPROM emulation can no longer be executed. In that case, the EES
pool must be formatted by the R EES ENUM_CMD_FORMAT command in addition to initialization of
EES. When adding data, however, the EEPROM emulation can be continuously executed.

(21) About an operating frequency of RL78/F22, F25 microcontrollers and an operating frequency value set
by the initializing function (R_EES_Init), be aware of the following points:

- When using a frequency lower than 4 MHz as an operating frequency of RL78/F22, F25
microcontrollers, only 2 MHz and 3 MHz can be used (frequencies other than integer values like a
2.5 MHz cannot be used). Also, set an integer value 2, or 3 to the operating frequency value set by
the initializing function.

- When using a frequency of 4 MHz or higher N°*® as an operating frequency of RL78/F22, F25
microcontrollers, a certain frequency can be used as an operating frequency of RL78/F22, F25
microcontrollers.

- This operating frequency is not the frequency of the high-speed on-chip oscillator.

Note: For a maximum frequency, refer to “User’s Manual: Hardware” of a target device.

(22) The precautions in the case of debugging self-programming with an on-chip debugger
In the case which debugs self-programming with an on-chip debugger, because 128 bytes of area is
used from the top address of RAM when a debugger is executed, it is necessary to vacate this area.
Additionally, in case CS+ or e? studio is used as the development environment, the debugger settings
need to be configured to use flash self-programming
- Example settings for CS+:
On the project, select “Connect Settings” tab from “RL78 E2 [Lite] (Debug Tool)”, and set “Yes” to
“Flash” - “Using the flash self-programming”.
- Example settings for e? studio:
On the project, select “Property” - “Run/Debug Settings”, and edit the target “HardwareDebug” setting.
On the displayed screen, select “Debugger” tab - “Connection Settings” tab, and set “Yes” to “Flash” -
“Program uses flash self-programming”.

R20UT5477EJ0101 Rev.1.01 NS Page 14 of 114
May.30.25 RENES

EES RL78 Type 03 1. Overview

(23) The precautions in the case of executing the data copy from ROM to RAM, when using CC-RL compiler.
When using CC-RL compiler, the Sample_INITSCT_EES function is called from the main function of
main.c file. This function copies the data for EES RL78 Type 03 to RAM from ROM.

However, the following setting will be necessary if this processing is executed by the start-up routine in
the cstart.asm file which is a CC-RL compiler function.
(CC-RL compiler function: “Initialization of RAM area sections by using an initialization table [V1.12 or
later]”)

- Set “-ram_init_table_section” by linker.

-Set“ USE_RAM_INIT_TABLE” to the column which defines the macro of assemble options.
* For details, please refer to the user's manual of CC-RL compiler.
Because “copy processing from ROM to RAM” of a Sample_INITSCT_EES function duplicates in this
case, It is necessary to set same [Macro definition] as “Compiler Option”, and to cancel processing of a
Sample INITSCT_EES function.

-Set“ USE_RAM_INIT_TABLE” to the column which defines the macro of compiler options.

R20UT5477EJ0101 Rev.1.01 NS Page 15 of 114
May.30.25 RENES

EES RL78 Type 03 1. Overview

1.6 C Compiler Definitions

The definitions of the target compiler written in the header file (r_ees_compiler.h) for EES RL78 Type 03 are
shown below.

The definitions differ between compilers. The “r_ees_compiler.h” file is used to identify the current compiler
and the definitions for the target compiler are used.

« Definition of CC-RL compiler:
“ CCRL__"is defined.
#define COMPILER_CC (1)
« Definition of IAR compiler:
“ _IAR_SYSTEMS_ICC__ " is defined.
#define COMPILER_IAR (2)

< Descriptions in the r_ees_compiler.h file >

/* Compiler definition */
#define EES_COMPILER_CC (1)
#define EES_COMPILER_IAR (2)

#if defined (__ CCRL_)

#define EES_COMPILER EES_COMPILER_CC
#elif defined (__IAR_SYSTEMS_ICC_)

#define EES_COMPILER EES_COMPILER_IAR
#else

/* Unknown compiler error */

#error “Non-supported compiler.”
#endif

/* Compiler dependent definition */
#if (EES_COMPILER_CC == EES_COMPILER)

#define R_EES_FAR_FUNC __ far
#elif (EES_COMPILER_IAR == EES_COMPILER)

#define R_EES_FAR _FUNC __ far_func
#else

/* Unknown compiler error */
#error “Non-supported compiler.”
#endif

C Compiler Options
The contents of the C compiler option setup which normal operation can be checking are shown below.

- [CC-RL(CSH+)]
Major compile options:
-cpu=S3 -g -g_line -lang=c99
- [IAR(Embedded Workbench)]

Major compile options:
--core s3 --calling_convention v2 --code_model far --data_model near -e -Ol --no_cse --no_unroll
--no_inline --no_code_motion --no_tbaa --no_cross_call --no_scheduling --no_clustering --debug

R20UT5477EJ0101 Rev.1.01 NS Page 16 of 114
May.30.25 RENES

EES RL78 Type 03 2. System Configuration

2. System Configuration

21 System Configuration

The EES offers interface for accessing the data flash area (the EES pool) defined by the user. The API
functions provided by EES accesses the EES pool via the RFD control functions for EES, or RFD.

The arrows shown in the Figure 2-1 below indicate the flow of processing.

Code flash memory

User program

v 1

EES
Before using the EEPROM RFD control
T . RFD
Emulation, initialize the RFD. functions for EES
(R_EES_Initand R_EES_Open A A
functions) v v

Data flash memory
(EES pool)

Figure 2-1 System Configuration

2.2 EES Architecture

This chapter describes the EES architecture required for the user to rewrite data flash memory (the EES
pool) by using the EES.

2.21 EES Block

EES uses multiple blocks of the data flash memory as one virtual block. This area is called an EES block.
The size of a block of the data flash memory mounted in RL78/F22, F25 are 1 Kbyte. When EES block size
is set to a 2K-byte, two blocks of the data flash memory are gathered, and EES is handled as a 2K-byte's

virtual block.

Be sure to set the size of an EES block in consideration of the size and the total number of blocks of the data
flash memory mounted in the target device. Refer to “4.2 Initial Values to be Set by User” for the setting
method. The schematic diagram for the EES block 0 when 1 K-byte or 2 K-byte are set by EES block is
shown in “Figure 2-2 Schematic diagram of EES block 0”.

Maximum number of blocks that can be set in the EES block of a product equipped with 16 Kbytes of data
flash memory:

- When the EES block size is set to 1 K-byte , the maximum number of blocks is 16.

- When the EES block size is set to 2 K-byte , the maximum number of blocks is 8.

R20UT5477EJ0101 Rev.1.01 NS Page 17 of 114
May.30.25 RENES

EES RL78 Type 03 2. System Configuration

When using 2 Kbytes
Absolute path (1024 bytes x 2 blocks)
~
Data flash memory
Block 1
When using 1 Kbyte
Absolute path 0xF1400
>~ EES Block 0
Data flash memory Data flash memory
Block 0 EES Block 0 Block 0
0xF1000 0xF1000)

Figure 2-2 Schematic diagram of EES block 0

2222 EES Pool

The EES pool is a user-defined data flash area that is accessible by the EES. The user program can access
the data flash only by using this EES pool in the data flash via the RFD control functions for EES and the
EES. The EES pool size must be specified with the number of size in the data flash of the target device. For
the procedure to specify the number of blocks, see section 4.2 Initial Values to be Set by User.

Figure 2-3 shows an example of pool configuration for a device with 16 Kbytes data flash memory.
(Example using 8Kbytes of 16Kbytes of data flash memory for EES block)

Data flash memory

N
4 N
Physical| |Physical| |Physical| |Physical| |Physical| |Physical| |Physical| |Physical
block block block block block block block block
0 1 2 3 4 5 6 7
| |
| |
| EES pool I
EES EES EES EES EES EES EES EES
block block block block block block block block
0 1 2 3 4 5 6 7

Figure 2-3 EES pool configuration example (EES block size: 1 Kbyte)

R20UT5477EJ0101 Rev.1.01 NS Page 18 of 114
May.30.25 RENES

EES RL78 Type 03 2. System Configuration

2.3 File Structure

2.3.1 Folder Structure

Figure 2-4 shows the folder structure of EES RL78 Type 03.

EESRL7S&TO3 : : Folders of this product
include I EES RL78 Type 03
ces include files
sample
common
include
source
e i_l Sample programs
RL78_F25
EES
i | EESRL78 Type 03
ees program source files
EES RL78 Type 03
include I user-own files

Figure 2-4 Folder Structure of EES RL78 Type 03

Note: Figure 2-4 shows an example of using RL78/F25. Refer to “6.1.1 Folder Structure” for the sample
folder.

R20UT5477EJ0101 Rev.1.01 NS Page 19 of 114
May.30.25 xENES

EES RL78 Type 03

2. System Configuration

2.3.2 List of Files

2.3.2.1 List of Source Files

Table 2-1 shows the program source files in the “source\ees\” folder.

Table 2-1 Program Source Files in the “source\ees\” Folder

No.

Source File Name

Description

r_ees_api.c

This file contains the API functions for EEPROM

emulation control.

r_ees_exrfd_api.c

This file contains the API functions RFD control functions

for EES

r_ees_sub_api.c

This file contains API functions that are used as internal

functions for EEPROM emulation control.

Table 2-2 shows the program source file in the “userown\” folder.

Table 2-2 Program Source File in the “userown\” Folder

No.

Source File Name

Description

r_ees_descriptor.c

EES descriptor source file.

2.3.2.2 Header File List of Header Files

Table 2-3 shows the program header files in the “include\” folder.

Table 2-3 Program Header Files in the “include\” Folder

No.

Header File Name

Description

r_ees_api.h

This file defines the prototypes used in EEPROM control

functions.

r_ees_exrfd_api.h

This file defines the prototypes used in RFD control

functions for EES.

r_ees_sub_api.h

This file defines the prototypes for internal functions

used in EEPROM emulation control functions.

Table 2-4 shows the program header files in the “userown\include\” folder.

Table 2-4 Program Header Files in the “userown\include\” Folder

No. Header File Name Description

1 r_ees_descriptor.h EES descriptor header file.

2 r_ees_user_types.h This file defines the types of user data used in EES.
R20UT5477EJ0101 Rev.1.01 Page 20 of 114

May.30.25

LENESAS

EES RL78 Type 03

2. System Configuration

Table 2-5 shows the program header files in the “include\ees” folder.

Table 2-5 Program Header Files in the “include\ees” Folder

No.

Header File Name

Description

r_ees.h

Common header file.

r_ees_compiler.h

This file defines the compiler-dependent macros used in
EES RL78 Type 03.

r_ees_defines.h

This file describes the definitions that differ between
compilers used in EES RL78 Type 03.

r_ees_device.h

This file defines the hardware-specific macros used in
EES RL78 Type 03.

r_ees_memmap.h

This file defines macros to describe sections used in
EES RL78 Type 03.

r_ees_types.h

This file defines the types of variables used in EES RL78
Type 03.

r_typedefs.h

This file defines the types of data used in EES RL78
Type 03.

2.4

241

Resources of RL78/F22, F25

Memory Map

Table 2-6 shows the memory map (code flash memory [CF: 1 block = 2 Kbytes], data flash memory
[DF: 1 block = 1 Kbyte], and RAM) of the RL78/F22, F25.

Table 2-6 Memory Map (Code Flash Memory, Data Flash Memory and RAM)

Device

Code Flash Memory: CF

Data Flash Memory: DF

RAM

RL78/F22
R7F122FxG (x=7, B, G)

128 Kbytes
(00000H-1FFFFH)

8 Kbytes
(F1000H-F2FFFH)

12 Kbytes
(FCFOOH-FFEFFH)

RL78/F25
R7F125FxL (x=G, L, M, P)

512 Kbytes
(00000H-7FFFFH)

16 Kbytes
(F1000H-FAFFFH)

40 Kbytes
(F5FOOH-FFEFFH)

R20UT5477EJ0101

Rev.1.01

May.30.25

LENESAS

Page 21 of 114

EES RL78 Type 03

2. System Configuration

2.4.2

Allocation of Blocks

Figure 2-5 shows the allocation of blocks in the code flash memory (CF).

RL78/F22 (Code flash memory: 128 Kbytes)

1FFFFH
1F800H

CF: Block 03FH
(2 Kbytes)

1F7FFH
1F000H

CF: Block 03EH
(2 Kbytes)

1EFFFH

01000H

00FFFH
00800H

CF: Block 001H
(2 Kbytes)

007FFH
00000H

CF: Block 000H
(2 Kbytes)

Figure 2-5 Blocks in the Code Flash Memory

7FFFFH
7F800H
7F7FFH
7FO00H
TEFFFH
7E800H
TETFFH

01000H
OOFFFH
00800H
007FFH
00000H

Figure 2-6 shows the allocation of blocks in the data flash memory (DF).

RL78/F22 (Data flash memory: 8 Kbytes)

RL78/F25 (Code flash memory: 512 Kbytes)

CF: Block OFFH
(2 Kbytes)

CF: Block OFEH
(2 Kbytes)

CF: Block OFDH
(2 Kbytes)

CF: Block 001H
(2 Kbytes)

CF: Block 000H
(2 Kbytes)

RL78/F25 (Data flash memory: 16 Kbytes)

FAFFFH DF: Block 00FH
F4COOH (1 Kbyte)
FABFFH DF: Block 00EH
F4800H (1 Kbyte)
F2FFFH DF: Block 007H FA47FFH
F2CO0H (1 Kbyte)
F2BFFH
F1800H | F1800H
F17FFH DF: Block 001H F17FFH DF: Block 001H
F1400H (1 Kbyte) F1400H (1 Kbyte)
F13FFH DF: Block 000H F13FFH DF: Block 000H
F1000H (1 Kbyte) F1000H (1 Kbyte)
Figure 2-6 Blocks in the Data Flash Memory
R20UT5477EJ0101 Rev.1.01 Page 22 of 114

May.30.25

LENESAS

EES RL78 Type 03

2. System Configuration

2.5

2.51

Resources Used in EES RL78 Type 03

Sections Used in EES RL78 Type 03

Table 2-7 shows the sections used for EES and allocations of the sections.

Table 2-7 Sections Used in EES

Section Name Description Allocation
EES_CODE Program section of API functions for EES control ROM
EES _CNST Constant variables section for EES initialized variables. ROM
EES VAR Variables section for EES control RAM
SMP_EES Program section of sample functions for EES control ROM
SMP_VAR Variables section of sample functions for EES control RAM

252

Software Resources

Table 2-8 shows software resources (Reference value).

Table 2-8 Software resourcesN°t¢':2 (Reference value)

. Size (byte)
CC-RL IAR
Stack 42 48
Code sizeNete3 4649 5221

Notes

2: Does not include the stack and code size of the sample program.

3: Does not include code size of the RFD RL78 Type 03.

1: These values are when using the compiler options described in “1.6 C Compiler Definitions”.

R20UT5477EJ0101
May.30.25

Rev.1.01

LENESAS

Page 23 of 114

EES RL78 Type 03 3. EEPROM Emulation
3. EEPROM Emulation

3.1 Specifications of EEPROM Emulation

By calling the EES functions provided by the EES RL78 Type 03 from a user-created program, use is
possible without the awareness of data flash memory operations.

For the EES RL78 Type 03, a one-byte identifier (data ID: 1 to 254) is assigned by the user for each data
item, and reading and writing using any unit from 1 to 255 bytes are possible on an assigned identifier basis.
(The EES can handle up to 254 identifiers.)

Also, EES blocks (virtual block) for storing data use more than three blocks of area (recommended) N,
These blocks are called EES blocks. Data written by EEPROM emulation is divided into reference data and
user-specified data, and the reference data is written to the target blocks from the lower block address, while

the user data is written from the higher block address.

Note: At least two blocks are necessary for EEPROM emulation. When two blocks are specified, if a write
error occurs even once, only reading of normally written data is possible but writing is no longer
possible. After that, the two target blocks must be formatted when the EES is used to write data.
Written data is erased completely. Since a contingency (such as voltage drop) may occur in the system,

we recommend that you specify at least three blocks.

3.2 Outline of Functions

The EES provides basic read/write functions having the following features.

The EES block size can be set to 1024 or 2048 bytes.
- Up to 254 data items settable.

- A data size of 1 to 255 bytes settable.

- Supporting the background operation (BGO).

- Memory consumption of data for EES management (Block header, Separator):
10 bytes per EES block
- Memory consumption of reference data:
3 bytes per EES block write data.
- Restoration by R_EES_ENUM_CMD_REFRESH when execution is stopped by a CPU reset while
R_EES ENUM_CMD_WRITE or R_EES_ENUM_CMD_REFRESH is running.

- Block rotation (averaging data flash use frequency).

Table 3-1 shows the range of settings when the EES functions are used.

R20UT5477EJ0101 Rev.1.01 NS Page 24 of 114
May.30.25 RENES

EES RL78 Type 03 3. EEPROM Emulation

Table 3-1 Range of Settings when the EES Functions are Used

ltem Range
EES block size 1024 or 2048 (bytes)
User data length 1to 255
Amount of stored user data Nete ! 1 to 254
Data ID range 1 to 254

(The numbers assigned are from 1 to 254 in the order of
registration, and the selection of settings is not possible.)

Number of EES blocks Note 2 3 to 255

The EES block size is set to 1024 bytes: 1014 / 2 (bytes) or less

i Note 1
Recommended user data size The EES block size is set to 2048 bytes. 2038 / 2 (bytes) or less

Notes 1: The total size of user data must be within 1/2 of each block when all user data are written to an
EES block. Therefore, the range used for the number of stored user data items differs depending
on the size of the stored user data. It is also necessary to consider the size of the reference data
provided for each data item for management use when determining the total size. For details about
the number of stored user data items and total size, see “4.1 Number of Stored User Data Items
and Total User Data Size”.

2: EES blocks cannot be set more than maximum number of blocks of on-board data flash memory.

3.3 EES Pool

This chapter describes the EES architecture required for the user to rewrite data flash memory (the EES
pool) by using the EES.

3.31 EES Pool State

Each block has a state which indicates the current usage of the block. Table 3-2 shows States of the EES
Blocks.

Table 3-2 States of the EES Blocks

State Description

Active | Only a single EES block is active at a time to store defined data. The active block

circulates in data flash blocks allocated in the EES pool.

Invalid | No data is stored in invalid blocks. EES blocks are marked as invalid by the EES or
become invalid in the case of erasure blocks.

Excluded | If functional operation failed and possibility of a data flash failure is clarified, the EES

excludes the relevant block and the block is no longer used for EEPROM emulation.

When no writable area is remaining in the active block (EES block 1 in the example) and data can no longer
be stored (failure in write command), a new active block is selected in a cyclic manner and the current valid
data set is copied to this new active block. This process is referred to as refresh. After the
R_EES_ENUM_CMD_REFRESH command is executed, the previous active block becomes invalid and only
a single active block exists. Excluded blocks (like block 7 in the example) are ignored during this process
and not considered as candidates for the selection of the next active block.

Figure 3-1 shows an example of pool states (EES block size is set to 1 Kbyte).

R20UT5477EJ0101 Rev.1.01 NS Page 25 of 114
May.30.25 RENES

EES RL78 Type 03

3. EEPROM Emulation

Data flash memory
N
4 N
Physical| |Physical | |Physical| |Physical| |Physical| |Physical| |Physical| |Physical
block block block block block block block block
0 1 2 3 4 5 6 7
| |
| EES pool I
EES EES EES EES EES EES EES EES
block block block block block block Block block
0 1 2 3 4 5 6 7
()
T T TR OO
¢ <

@ Active block

@ Invalid block

@ Excluded block

Figure 3-1 EES pool states example (The EES block size is set to 1 Kbyte)

The overall life cycle of a block in the EES pool is shown in Figure 3-2. During normal operation, the block

switches between active and invalid state. When an error occurs during an access to the EES block, the

error EES block is marked as excluded. This block will not enter the lifecycle again. However, the user can

try to restore the block by a format of the complete pool which also erases all existing data content.

Caution: An EES block is a virtual block. Therefore, if even one of the physical blocks of data flash memory

used in an EES block fails or otherwise becomes unusable, the EES block containing that block is

considered a “excluded block”.

invalid

block —p»

active
block

excluded
block

Figure 3-2 Life cycle of an EES block

R20UT5477EJ0101 Rev.1.01
May.30.25

LENESAS

Page 26 of 114

EES RL78 Type 03

3. EEPROM Emulation

The EES pool has the four states shown below.

Table 3-3 States of the EES Pool

State

Description

Pool operational

This is the usual case during EES operation. All commands are available and can
be executed.

Pool full

Free space for data write is insufficient in the active block in use. This state indicates
that a refresh needs to be executed.

Pool exhausted

No continuously usable EES block is left. (At least two blocks that are not excluded
are necessary for EES operations.)

Pool inconsistent

There is a mismatch in the pool state and the data structure in the EES block does
not match the user-set data structure. The EES block is in the undefined state (e.g.
no active block is present).

3.3.2 Structure of EES Block

The detailed block structure used by the EES is shown in. In general, an EES block is divided into three
utilized areas: the block header, the reference area, and the data area.

0xF1000 Block header

Toward the higher address
Reference area

Separator (erased 2 bytes)

Erased area
(All bytes OxFF)

Data area Toward the lower address

OxF13FF

Figure 3-3 EES Block Structure(1 Kbyte)

Table 3-4 Configuration of Each EES Block

Name

Description

Block header

The block header contains all block status information needed for the block
management within the EES-pool. It has a fixed size of 8 bytes.

Reference area

The reference area contains reference data which are required for the management
of data. When data are written, this area expands in the direction of higher
addresses.

The data area contains user data. When data are written, this area expands in the

Data ar . .
ala area direction of lower addresses.
R20UT5477EJ0101 Rev.1.01 RENESAS Page 27 of 114

May.30.25

EES RL78 Type 03 3. EEPROM Emulation

Between reference area and data area, there is an erased area. With each EES data update (i.e. the data is
written), this area is reduced successively. However, at least 2 bytes of space always remain between
reference area and data area for management and separation of these areas. This is indicated by the
separator in Figure 3-3.

The EES block header is detailed in section “3.3.3 EES Block Header”, while the structure of data stored in

the reference and data area are described in section “3.3.4 Structure of Stored Data”.
3.33 EES Block Header

The structure of the block header is depicted in Figure 3-4. It is composed of 8 bytes, three of which are
reserved for the system.

Relative byte

index within block
0x0000 A N
0x0001 B OxFF - N
0x0002 B’ 0x00
0x0003 | 0x00
0x0004 X 0x00
0x0005 - Reserved
0x0006 - Reserved
0x0007 - Reserved

Figure 3-4 Structure of EES Block Header

The block status flags start at the beginning of the block and include the A flag, B flag, B’ flag, | flag, and X
flag, each of which is 1 byte, for a total of 5 bytes of data. The combination of flags indicates the EES block

status.
Figure 3-4 shows the placement status of flags, and Table 3-5 shows the combination status of flags.

R20UT5477EJ0101 Rev.1.01 NS Page 28 of 114
May.30.25 RENES

EES RL78 Type 03 3. EEPROM Emulation

Table 3-5 Overviews of Block Status Flags

Block Status Flag

- State Description
AFlag | B Flag B’ Flag | | Flag X Flag

Currently used block
0x01 OxFE 0x00 OXFF OXFF After the R_EES_ENUM_CMD_REFRESH command is
executed, the A flag of a new active block is set to 0x02.

Currently used block
0x02 OxFD 0x00 OxFF OxFF Active After the R_EES _ENUM_CMD_REFRESH command is
executed, the A flag of a new active block is set to 0x03.

Currently used block
0x03 0xFC 0x00 OxFF OxFF After the R_EES_ENUM_CMD_REFRESH command is
executed, the A flag of a new active block is set to 0x01.

Currently used block. However, new data cannot be
0x01 OxFE OxFF OxFF added because the writing for B' flag is not completed.
(Read is possible.)

0x01 — After executing the R_EES_ENUM_CMD_REFRESH
0x02 OxFD OXFE OxFF OxFF Active | command, the A flag of a new active block is set in the
order of 0x01, 0x02, 0x03, 0x01,....

0x03 OxFC OxFF OxFF

- OXFF | OXFF | OXFF

Invalid Invalid block
other
— than OxFF
OxFF
other
- - than Excluded | Excluded block
OxFF

3.34 Structure of Stored Data

The structure of stored data when user data is written to an EES block is shown in the figure below. A data is
composed of three parts: the start-of-record (SoR) field and the end-of-record (EoR and EoR’) field and the
data field. The EES descriptor table can be used to set data for use in the EES. Each data is referred to by
an identification number (ID) and can have a size between 1 and 255 bytes. (The exact specification of the

format of the EES descriptor can be found in section “4.2 Initial Values to be Set by User”.)

Each time data is written, stored data increase in the EES block and multiple units of stored data exist in the
EES block, but only the most recent stored data is referenced.

SoR, EoR and EoR' build up the so-called reference data which is required for the management of the data.
The reference data and user data values are stored in different sections of the active block, namely the
reference area and the data area, respectively. Figure 3-6 shows the overview of the entire structure of

stored data.

R20UT5477EJ0101 Rev.1.01 NS Page 29 of 114
May.30.25 RENES

EES RL78 Type 03 3. EEPROM Emulation

SoR ID
EoR OXFF - ID Reference data in EES block
reference area
EoR’ 0x00
0x0000 Data field in EES block
Data data area
Data size - 1

Figure 3-5 Structure of Stored Data

Table 3-6 Description of Each Field of Data Area

Name Description
SoR field The 1 byte SoR field contains the ID of data. This field indicates the start of write
(Start of Record) | hrcessing. Data IDs 0x00 and OxFF are not used to avoid patterns of erased cells.

EoR field The 1 byte EoR field contains a OxFF - data ID value.

(End of Record) | This field indicates successful end of write processing. If writing does not end
normally due to a device reset or other reasons, the corresponding stored data is
ignored by the EES.

EoR’ field The 1 byte EoR' field contains the completion of the write process to the EoR field.
(End of Record’) | This field is written to 0x00 after the EoR field has been written.

- When the value is between 0x01 - OxFE, the stored data is valid, but the writing
has not been completed. Therefore, the block is treated as a block to which data
cannot be added.

- When the value is OxFF, EES judges with the execution result of the writing for the
EoR field not having been a normal end.

Data field The data field contains the user data. The size of user data is 1 to 255 bytes. When

data of 2 bytes or more is stored, the smallest address of the data is allocated to the
smallest address of the data field (as shown in Figure 3-6).

Data is written to the EES block in the order of SoR -> data field -> EoR -> EoR’. If the value of the EoR field

is not written correctly, the immediately previous data becomes valid.

Notes 1: The total size of the reference data consumed by each stored data is 3 bytes. This should be
considered when evaluating the free space in a block before writing the data through the
R_EES_GetSpace function.

2: No checksum is added to user data. If a checksum is needed, add it to user data and check

through the user program.

R20UT5477EJ0101 Rev.1.01 NS Page 30 of 114
May.30.25 RENES

EES RL78 Type 03 3. EEPROM Emulation

3.3.5 EES Block Overview

Figure 3-6 shows an example of an EES block that contains multiple units of stored data:
» Data ID 0x01 with size = 0x04
» Data ID 0x02 with size = 0x01
+ Data ID 0x03 is defined but not written here.
+ Data ID 0x04 with size = 0x02

The data have been written in the sequence ID 0x01 -> ID 0x04 -> ID 0x02.
In this example, the data with ID 0x03 has not been written yet.

Relative byte index
within block
0x0000 A = 0x02
0x0001 B = OxFD
0x0002 B’ = 0x00
0x0003 | = OxFF — Block header
0x0004 X = OxFF
0x0005 Reserved
0x0006 Reserved
0x0007 Reserved B
0x0008 SoR — ID = 0x01
0x0009 EoR — ~ID = OxFE
0x000A EoR’ = 0x00
0x000B SoR — ID = 0x04
0x000C EoR — ~ID = OxFB — Reference area
0x000D EoR’ = 0x00
0x000E SoR — ID = 0x02
0x000F EoR — ~ID = 0xFD
0x0010 EoR’ = 0x00 B
giggg Separator (erased 2 bytes)
Erased area

(All bytes OxFF)
0x03F8
0x03F9 DATA(ID = 0x02)[0]
0x03FA DATA(ID = 0x04)[0]
0x03FB DATA(ID = 0x04)[1]
0x03FC DATA(ID = 0x01)[0] — Data area
0x03FD DATA(ID = 0x01)[1]
0x03FE DATA(ID = 0x01)[2]
0x03FF DATA(ID = 0x01)[3] B

Figure 3-6 Example of an Active EES Block

R20UT5477EJ0101 Rev.1.01 NS Page 31 of 114
May.30.25 RENES

EES RL78 Type 03 4. Using EEPROM Emulation
4. Using EEPROM Emulation

EEPROM emulation can store a maximum of 254 data items each consisting of 1 to 255 bytes in the flash
memory by using three or more blocks (recommended) of flash memory.

EEPROM emulation can be executed by incorporating the EES into a user-created program and executing
that program.

4.1 Number of Stored User Data Items and Total User Data Size

The total size of user data that can be used in the EEPROM emulation is limited. The size required for writing all user
data to an EES block must be within 1/2 of the block. Therefore, the number of stored data items that can be used
differs depending on the size of user data that is actually stored. The following shows how to calculate the size that
can be used when actually writing user data, as well as the total user data size.

[Maximum usable size of one block that can be used to write the user data]

Size required for EEPROM emulation block management: 8 bytes
Free space necessary as termination information (separator): 2 bytes

- EES Block size: 1024 bytes
Maximum usable size of one block = 1024 bytes - (8 bytes + 2 bytes) = 1014 bytes

- EES Block size: 2048 bytes
EES block size: 1024 bytes * 2 = 2048 bytes
Maximum usable size of one block = 2048 bytes - (8 bytes + 2 bytes) = 2038 bytes

[Calculating the size for writing each user data item] Not
Size of each written user data item = data size + reference data size (3 bytes)
Note: For details, see “3.3.4 Structure of Stored Data”.
[Calculating the basic total user data size]
Basic total size = (user data 1 + 3) + (user data 2 + 3) ... + (user data n + 3)
[Maximum size and recommended size]

Data must be held in one block. Therefore, the maximum size is the maximum usable size of one block but the
following relational expression should be met. To enable all data to be updated at least once, we recommend that
the data be within the half size of the maximum usable size of one block.

Maximum size: Assumed that the largest data can be updated once after all data have been written.
Recommended size: Assumed that all data can be updated once after all data have been written.

- EES Block size: 1024 bytes
Maximum size = the basic total user data size + maximum data size + 3 <1014
Recommended size = 1014 / 2 = 507 bytes or less

- EES Block size: 2048 bytes
Maximum size = the basic total user data size + maximum data size + 3 <2038
Recommended size = 2038 / 2 = 1019 bytes or less

R20UT5477EJ0101 Rev.1.01 NS Page 32 of 114
May.30.25 RENES

EES RL78 Type 03 4. Using EEPROM Emulation

4.2 Initial Values to be Set by User

As the initial values for the EES, be sure to set the items indicated below. In addition, before executing the EES, be
sure to execute the high-speed on-chip oscillator. The high-speed on-chip oscillator must also be activated when
using the external clock.

- Number of stored data items, and data size of the identifier (data ID)
< EEPROM emulation soft wear user include file (r_ees_descriptor.h) >Notes 2.3

#define R_EES_EXRFD_VALUE_U16_PHYSICAL_BLOCK_SIZE (1024u)
: (1) The size of one block of data flash memory
(Physical block size).
#define R_EES_EXRFD_VALUE_UO08_PHYSICAL_BLOCKS_PER_VIRTUAL_BLOCK (1u)
: (2) The number of data flash memory blocks
(Number of physical blocks) to set in the EES
block (Per virtual block). Notes 1
#define R_EES_EXRFD_VALUE_U08 POOL_VIRTUAL_BLOCKS (4u)
: (3) EES pool size (Number of virtual blocks).
#define R_EES VALUE _U08 VAR NO (8u) :(4) Number of stored data items.

Notes 1: The number of data flash memory blocks that can be set for the EES block is 1u or 2u.

< EEPROM emulation software user data definition file (r_ees_user_types.h) > Notes 3

typedef uint8_t type A[2]; : (5) Data size definition of each data identifier
typedef uint8_t type_ B[3]; (data ID).

typedef uint8_t type C[4];

typedef uint8 t type DI[5];

typedef uint8_t type E[6];

typedef uint8 t type F[10];

typedef uint8_t type X[20];

typedef uint8_t type Z[255];

R20UT5477EJ0101 Rev.1.01 NS Page 33 of 114
May.30.25 RENES

EES RL78 Type 03 4. Using EEPROM Emulation

(1)

()

(4)

(®)

< EEPROM emulation software user program file (r_ees_descriptor.c)> Notes 3

__far const uint8_t g_ar_u08_ees_descriptor : (6) Data size of each data identifier
[R_EES_VALUE_U08_VAR_NO + 2u] = (data ID).
{
(uint8_t)(R_EES_VALUE_U08 VAR _NO), /*variable count o\
(uint8_t)(sizeof(type_A)), /*id=1 A\
(uint8_t)(sizeof(type_B)), /*id=2 A\
(uint8_t)(sizeof(type_C)), /*id=3 1\
(uint8_t)(sizeof(type_D)), [* id=4 1\
(uint8_t)(sizeof(type_E)), /*id=5 A\
(uint8_t)(sizeof(type_F)), /* id=6 A\
(uint8_t)(sizeof(type_X)), [*id=7 o\
(uint8_t)(sizeof(type_2)), /*id=8 o\
(uint8_t)(0x00), [* zero terminator ¥/ '\
h

Notes 2: The macros that are being used are parameters which are common to the whole EES, so any
changes should only be to numerical values.
3: After initializing the EEPROM emulation blocks (after executing the
R_EES_ENUM_CMD_FORMAT command), do not change the values. If the values are
changed, reinitialize the EES blocks (by executing the R_EES_ENUM_CMD_FORMAT

command).

The size of one block of data flash memory (Physical block size).

Set the size of one block of data flash memory installed (mounted) in the target device.

The number of data flash memory blocks (Number of physical blocks) to set in the EES block.
Sets the number of data flash memory blocks to use for the EES block.

EES pool size. Note

The number of blocks in the data flash memory of the target device must be specified as the number of
blocks in the EES pool.

Note: Specify 3 (3 blocks) or a greater value (recommended).

Number of stored data items
Specify the number of data items to be used in the EEPROM emulation. A value of 1 to 254 can be set.

Data size definition of each data identifier (data ID).
Defines the data type name for the byte size of each user data. The EES descriptor table reflects the

byte size of each user data.

R20UT5477EJ0101 Rev.1.01 NS Page 34 of 114
May.30.25 RENES

EES RL78 Type 03

4. Using EEPROM Emulation

(6) Data size of each data identifier (data ID)

A table to define the data size of each identifier is provided below. This is called an EES descriptor table.

Data to be written must be registered in the EES descriptor table in advance.

__far const uint8_t g_ar_u08_ees_descriptor [Number of stored data items + 2]

R_EES_VALUE_U08_VAR_NO

Byte size of data ID1

Byte size of data ID2

Byte size of data ID3

Byte size of data ID4

Byte size of data ID5

Byte size of data ID6

Byte size of data ID7

Byte size of data ID8

0x00

Figure 4-1 EES Descriptor Table (When there are eight different data items)

- R_EES_VALUE_U08_VAR_NO

User-specified number of data items used in the EES

- Byte size of data IDx

User-specified size of user data (in bytes)

» Termination area (0x00)

Specify 0 as the termination information.

R20UT5477EJ0101
May.30.25

Rev.1.01

LENESAS

Page 35 of 114

EES RL78 Type 03 5. User Interface

5. User Interface

51 Request Structure (st_ees_request_t) Settings

Basic operations such as reading from and writing to the data flash memory are performed by a single
function. The function transfers commands and data ID to the EES via the request structure
(st_ees_request_t). Furthermore, the EES state and error information are acquired via the request structure
(st_ees_request_t).

In subsequent sections, write access to the request structure (st_ees_request_t) from the user is called user
write access, and read access to it from the user is called user read access.

User Program

np_u08 address

u08_identifier

e_command

e_status

——» User write access

"""" » User read access

Figure 5-1 Request Structure (st_ees_request_t)

The request structure (st_ees_request_t) is defined in the r_ees_types.h file. It should not be changed by the
user.

[Definition of the request structure (st_ees_request_t)]

typedef struct st_ees_request

{
uint8 t near* np_u08 address;
uint8_t u08_identifier;
e _ees_command_t e_command;
e_ees_ret_status_t e_status;

} st_ees _request t;

R20UT5477EJ0101 Rev.1.01 NS Page 36 of 114
May.30.25 RENES

EES RL78 Type 03 5. User Interface

uint8 t _ near* np_u08 address

uint8 t u08_identifier e ees command t e command

e _ees_ret status t e_status
Bit 0 Bit 15

Figure 5-2 Alignment of Variables of the Request Structure (st_ees_request_t)

511 User Write Access

(1) np_u08_address

Specifies a pointer to the start address of the data buffer used for R_ EES ENUM_CMD_WRITE command
and R_EES _ENUM_CMD_READ command execution.

Associated command (macro name) Setting
R_EES_ENUM_CMD_WRITE Pointer to the start address of the data buffer. Note !
R_EES_ENUM_CMD_READ Pointer to the start address of the data buffer. Not¢2

Notes 1: Buffer which contains data written by the user
2: Buffer which contains data read from the data flash memory

(2) u08_identifier
Specify the data ID used for each command. For more information about how to do this, see the
description of the R_EES Execute function in section “5.7 Specifications of API Functions”.

Associated command (macro name) Setting
R_EES_ENUM_CMD_WRITE ID of write data
R_EES_ENUM_CMD_READ ID of read data

(3) e_command

Commands to be set in the common executable function.

Associated command (macro name) Description
R _EES ENUM_CMD_UNDEFINED Undefined command
(Initial value: It is used only for initialization.)

R_EES_ENUM_CMD_STARTUP Startup processing
R_EES_ENUM_CMD_WRITE Write processing
R_EES_ENUM_CMD_READ Read processing
R_EES_ENUM_CMD_REFRESH Refresh processing
R_EES_ENUM_CMD_FORMAT Format processing

R _EES ENUM_CMD_SHUTDOWN Shutdown processing

51.2 User Read Access

- e_status
EES status and error information. For information about the status and errors which might occur during
execution of the functions, see the description of the R_EES_Execute function in section “5.7
Specifications of API Functions”

R20UT5477EJ0101 Rev.1.01 NS Page 37 of 114
May.30.25 RENES

EES RL78 Type 03 5. User Interface

5.2 List of APl Functions and R_EES_Execute function commands for the EES
5.21 API Functions for the EES
Table 5-1 shows the API functions for EES RL78 Type 03.

Table 5-1 API Functions for EES RL78 Type 03

API Name Overview
1 R_EES_lInit Initializes internal data and variables and checks the descriptor
configuration.
2 | R_EES_Open EEPROM emulation preparation processing.

This function makes the EEPROM emulation executable.

3 | R_EES_Close EEPROM emulation end processing.
This function makes the EEPROM emulation un-executable.

4 | R_EES_Execute EEPROM emulation execution function.

Each type of processing for performing EEPROM emulation
operations is specified for this function as an argument in the
command format, and the processing is executed.

5 | R_EES_Handler Continuous EEPROM emulation execution processing.

This function is used to check for the completion of processing while
allowing processing of EEPROM emulation specified by the
R_EES_ Execute function to continue.

6 R_EES_GetSpace Gets the free space of the active block.
R20UT5477EJ0101 Rev.1.01 RENESAS Page 38 of 114

May.30.25

EES RL78 Type 03 5. User Interface

5.2.2 Commands for R_EES_Execute Function
Table 5-2 shows commands for R_EES_Execute.

Table 5-2 List of commands for R_EES_Execute

Command Name Outline

1 R_EES_ENUM_CMD_STARTUP [Startup Processing]

This command checks the block status and sets the system to the
EEPROM emulation (data access) valid state (Full Access). If two active
blocks exist, the incorrect block is changed to an invalid block.

Be sure to execute this command before executing commands other
than the R_EES_ENUM_CMD_FORMAT command and make sure that
the command finishes normally.

2 R_EES_ ENUM_CMD_WRITE Notef [Write Processing]

This command writes the specified data to the EES block.

* The following arguments must be specified prior to execution.

- np_u08_address: Specifies a pointer to the start address of the RAM
area where the write data is stored.

- u08_identifier: Specifies the data ID of the write data.

3 R_EES ENUM_CMD_READ Note! [Read Processing]

Read the specified data from an EES block.

* The following arguments must be specified prior to execution.

- np_u08_address: Specifies a pointer to the start address of the RAM
area where the read data is stored.

- u08_identifier: Specifies the data ID of the read data.

4 R_EES_ENUM_CMD_REFRESH [Refresh Processing]

Note1,2 Copy the latest stored data from the active block (copy source EES
block) to the next block (copy destination EES block) in the EES pool

after the erase processing. This makes the copy destination block

active.
5 R_EES_ENUM_CMD_FORMAT [Format Processing]
Initialize (erase) everything, including the data recorded in the whole

EES pool. Be sure to use this command before using EEPROM
emulation for the first time. Note that issuing this command is also
necessary to initialize all blocks if a malfunction occurs in an EES block
(such as an active block disappearing) or the values in the descriptor
table (those which are fixed values that cannot be changed) are
modified.

Because EEPROM emulation switches to the stopped state (opened)
regardless of the results after the processing finishes, execute the
R_EES_ENUM_CMD_STARTUP command to continue using EEPROM

emulation.
6 R_EES_ENUM_CMD_SHUTDOWN | [Shutdown Processing]
Note1 Set the EEPROM emulation operation to the stopped state (opened).
Notes 1: Do not execute this command until the R_EES ENUM_CMD_STARTUP command has finished

normally.
2: The erase processing is performed by executing the R_EES_ ENUM_CMD_REFRESH command.

R20UT5477EJ0101 Rev.1.01 NS Page 39 of 114
May.30.25 RENES

EES RL78 Type 03

5. User Interface

5.2.3 RFD control API functions for EES

Table 5-3 shows RFD control API functions for EES.
This function is used internally by EES. It does not need to be used directly by the user.

Table 5-3 List of RFD control API functions for EES

API Name

Overview

1 | R_EES_EXRFD_Init

Initializes RFD RL78 Type 03.

2 | R_EES_EXRFD_Open

Set the data flash control register (DFLCTL) to the state where
accessing the data flash memory is permitted (DFLEN = 1).

3 | R_EES_EXRFD_Close

Set the data flash control register (DFLCTL) to the state where
access to the data flash memory is inhibited (DFLEN = 0). All ongoing
EES processing stop.

4 | R_EES_EXRFD_Erase

Start erasing the EES block (one virtual block).

5 | R_EES_EXRFD_Write

Starts writing to the specified the data flash memory address (one
byte).

6 | R_EES_EXRFD_BlankCheck

Starts Blank check to the specified the data flash memory address.

7 | R_EES_EXRFD_Read

Reads the specified address in the data flash memory.

8 | R_EES_EXRFD_Handler

Continues processing of the RFD control function for EES that is

executing, and confirms termination.

R20UT5477EJ0101 Rev.1.01
May.30.25

RENES nNS Page 40 of 114

EES RL78 Type 03 5. User Interface

5.3 State Transitions

To use EEPROM emulation from a user-created program, it is necessary to initialize the EES and execute
functions that perform operations such as reading and writing on EES blocks. Figure 5-3 shows the overall
state transitions, and Figure 5-4 shows an operation flow for using basic features. When using EEPROM

emulation, incorporate EEPROM emulation into user-created programs by following this flow.

Not powered

PowerON
R_| EES Init() Power OFF
R_EES Open R_EES_Close()

R_EES_Execute status: OK
(FORMAT) status: ERROR
R_EES_Execute

status: ERROR
(SHUTDOWN) Startup executing Format executing
busy busy
status: ERROR
POOL_EXHAUSTED
4 status:0OK R_EES_Execute R_EES_Execute
(STARTUP) (FORMAT)

status: OK R_EES_Execute
status: ERROR (READ)

R_EES_Execute
(STARTUP)

R_EES_Execute
(SHUTDOWN)

R_EES_Execute status: OK
(WRITE/ READ/ status: ERROR
REFRESH)

status: ERROR
POOL_EXHAUSTED

EEPROM command executing
busy

EEPROM command executing
busy

Figure 5-3 State Transitions Diagram

Note: Once the R_EES_ENUM_CMD_FORMAT command has started running, execute the
R_EES_Handler function to check for its completion.

R20UT5477EJ0101 Rev.1.01 RENESAS Page 41 of 114

May.30.25

EES RL78 Type 03 5. User Interface

[Overview of state transitions diagram]
To use EES to manipulate the data flash memory, it is necessary to execute the provided functions in order

to advance the processing.

(1) Not powered
Status is Power Off.

(2) closed
This is the state in which the data to perform EEPROM emulation is initialized by executing the
R_EES_Init functions (no ongoing operation to the data flash memory).
Do not execute “operation of the code flash memory”, STOP mode or HALT mode while the
EEPROM emulation is executing. In the case where they are executed, execute R_EES_Close

function and change to a Closed state.

(3) opened
This state is switched to by executing R_EES_Open in the closed state and makes it possible to
perform operations on the data flash memory. Even if the R_EES_Close function is executed, do not
execute “operation of the code flash memory”, STOP mode, or HALT mode until a state change to
“closed”.

(4) started
This state is switched to by executing the R_ EES ENUM_CMD_STARTUP command in the opened
state and makes it possible to execute EEPROM emulation. Writes and reads that use EEPROM

emulation are performed in this state.

(5) exhausted
This state is made from the opened or started state when continuously usable EES blocks have
been exhausted during command execution. In this state, only R_EES_ENUM_CMD_READ, and
R_EES_ENUM_CMD_SHUTDOWN commands are executable.

(6) busy
This is the state used when executing a specified command. The state that is switched to differ

depending on which command is executed and how it terminates.

R20UT5477EJ0101 Rev.1.01 NS Page 42 of 114
May.30.25 RENES

EES RL78 Type 03 5. User Interface

54 Basic Flowchart

Figure 5-4 below shows the basic procedure to perform read and write operations for the data flash by using

the EES.

(1) R_EES_Init function
(2) R_EES_Open function

v

(3) R_EES_Execute function
R_EES_ENUM_CMD_STARTUP

(4) R_EES_Execute function
R_EES_ENUM_CMD_WRITE

Yes

R _EES_ENUM_RET_ERR_POOL_FULL

v
(6) R_EES_Execute function

R_EES_ENUM_CMD_REFRESH

(5) R_EES_Execute function
R_EES_ENUM_CMD_READ

v

(7) R_EES_Execute function
R_EES_ENUM_CMD_SHUTDOWN

v

(8) R_EES_Close function

End

Figure 5-4 Basic Flowchart of EES
Notes 1: When using the EEPROM emulation for the first time, be sure to execute the

R _EES ENUM_CMD_FORMAT command.
2: This flowchart omits error handling and R_EES Handler processing after command execution.

R20UT5477EJ0101 Rev.1.01 RENESAS Page 43 of 114

May.30.25

EES RL78 Type 03 5. User Interface

[Overview of basic operation flow]
(1) EES initialization processing (R_EES_Init)
Initialize the parameters used by the EES.

(2) EEPROM emulation preparation processing (R_EES_Open)
Set the data flash memory to a state (opened) for which control is enabled to execute EEPROM

emulation.

(3) EEPROM emulation execution start processing (R_EES Execute: R EES ENUM_CMD_STARTUP

command)
Set the system to a state (Full Access) in which EEPROM emulation can be executed.

(4) EEPROM emulation data write processing (R_EES_Execute: R_EES _ENUM_CMD_WRITE command)
Write the specified data to an EES block.

(5) EEPROM emulation data read processing (R_EES Execute: R_EES ENUM_CMD_READ command)
Read the specified data from an EES block.

(6) EEPROM emulation refresh processing (R_EES_Execute: R_EES_ENUM_CMD_REFRESH command)
The latest stored data is copied from the active block (source block) to the next block (destination block)
in the EES pool after the erase processing. This makes the copy destination block active.

(7) EEPROM emulation execution stop processing (R_EES_Execute: R_EES_ENUM_CMD_SHUTDOWN

command)
Set the EEPROM emulation operation to the stopped state (opened).

(8) EEPROM emulation end processing (R_EES_Close)
Set the data flash memory to a state (closed) for which control is disabled to stop EEPROM emulation.

R20UT5477EJ0101 Rev.1.01 NS Page 44 of 114
May.30.25 RENES

EES RL78 Type 03 5. User Interface

5.5 Command Operation Flowchart

The figure below shows the basic procedure to perform read and write operations for data flash by using the

EES.
(Start)

A
(1) R_EES_Execute function

&
w

) 4

Busy

(3) R_EES_Handler function

(2) Busy state check

Not busy
Abnormal end
(4) Final state check
Normal end
\ 4

Normal end

Figure 5-5 Command Operation Flowchart

(1) R_EES_Execute function
Perform operations for the data flash memory.

(2) Busy state check
Check e_status of the request structure (st_ees_request t).
When e_status is R_EES_ ENUM_RET_STS_ BUSY, continue the data flash operation. If the value of
e_status is other than R_EES_ENUM_RET_STS BUSY, check the final state.

(3) R_EES_Handler function
Control the EES while it is running. By repeating the execution of the R_EES Handler function, continue

the data flash operation.

(4) Final state check
If the final state is R_EES_ENUM_RET_STS_OK, the operation ends normally. Otherwise, it will be

terminated with an error.

R20UT5477EJ0101 Rev.1.01 NS Page 45 of 114
May.30.25 RENES

EES RL78 Type 03

5. User Interface

5.6 Data Type Definitions

5.6.1 Data Types

Table 5-4 shows the data type definitions in EES RL78 Type 03.

Table 5-4 Data Type Definitions in EES RL78 Type 03

Macro Value Type Description
int8_t signed char 1-byte signed integer
uint8_t unsigned char 1-byte unsigned integer
int16_t signed short 2-byte signed integer
uint16_t unsigned short 2-byte unsigned integer
int32_t signed long 4-byte signed integer
uint32_t unsigned long 4-byte unsigned integer
bool unsigned char Boolean value (false = 0, true = 1)

Remark: In the C language standard C 99 and later, these data types are defined in “stdint.h” and
“stdbool.h”.

5.6.2 Global Variables

The following shows the global variables used in EES RL78 Type 03.

(1) g_ar_u08_ees_descriptorR_EES_VALUE_U08_VAR_NO + 2u]

Type/Name

uint8_t g_ar_u08_ees_descriptor(]

Default value

(uint8_t)(R_EES_VALUE_UO08_VAR_NO),
(uint8_t)(sizeof(type_A)),
(uint8_t)(sizeof(type_B)),

(uint8_t

(uint8_t

(uint8_t)(sizeof(type_X)),
(uint8_t)(sizeof(type_2Z)),

(uint8_t)(0x00u)

(

(

()
(sizeof(type_C)),
()
(sizeof(type_E)),
(

)

)

)

(uint8_t)(sizeof(type_D)),
))

(uint8_t)(sizeof(type_F)),
))
)

[*id=1*/
[*id=2"%/
[*id=3"%
[*id=4"%/
[*id=5%
[*id=6 */
[*id=7*/
/*id=8 */

/* zero terminator */

[* variable count */

Description

Stores the data size of each data identifier (Data ID).

Definition file

r_ees_descriptor.c

R20UT5477EJ0101 Rev.1.01

May.30.25

LENESAS

Page 46 of 114

EES RL78 Type 03

5. User Interface

(2) g_st_ees_exrfd_descriptor

Type/Name st_ees_exrfd_descriptor_t g_st_ees_exrfd_descriptor
Default value (uint16_t) R_EES_EXRFD_VALUE_U16_PHYSICAL_BLOCK_SIZE
(uint8_t) R_LEES_EXRFD_VALUE_UO08_PHYSICAL_BLOCKS_PER_VIRTUAL_BLOCK
(uint8_t) R_LEES_EXRFD_VALUE_UO08_POOL_VIRTUAL_BLOCKS
Description Contains settings that configure the EES pool
- uint16_t u16_ees_physical_block_size;
The size of one block of data flash memory (Physical block size).
Example: This value is fixed for RL78/F22, F25. (1024u)
- uint8_t u08_ees_physical_blocks_per_virtual_block;
The number of data flash memory blocks to set in the EES block (Number of physical
blocks).
Example: When setting 1 Kbyte for EES block. Number of data flash memories. (1u)
Example: When setting 2 Kbytes for EES block. Number of data flash memories. (2u)
= uint8_t u08_ees_pool_virtual_blocks;
EES pool size (Number of virtual blocks)
Example: Total EES blocks. (4u)
Definition file r_ees_descriptor.c

(3) g_ar u16_ram_ref table[R_EES VALUE U08 VAR NO]

Type/Name

uint16_t g_ar_u16_ram_ref_table[]

Default value

Description Contains reference data for each data identifier (Data ID).
Definition file r_ees_descriptor.c
R20UT5477EJ0101 Rev.1.01 RENESAS Page 47 of 114

May.30.25

EES RL78 Type 03 5. User Interface

5.6.3 Enumerations

« e_ees_command (enumerated-type variable name: e_ees_command_t)
EES executable command

Symbol Name Value Description
R_EES_ENUM_CMD_UNDEFINED 0x00 Undefined command (Initial value)
R _EES ENUM_CMD_STARTUP 0x01 Startup processing
R_EES ENUM_CMD_WRITE 0x02 Write processing
R_EES ENUM_CMD_READ 0x03 Read processing
R_EES _ENUM_CMD_REFRESH 0x04 Refresh processing
R_EES_ENUM_CMD_FORMAT 0x06 Format processing
R_EES_ENUM_CMD_SHUTDOWN 0x07 Shutdown processing

o e _ees_ret status (enumerated-type variable name: e_ees_ret_status_t)
o EES return values

Symbol Name Value Description
R_EES_ENUM_RET_STS_OK 0x00 Normal end
R_EES_ENUM_RET_STS_BUSY 0x01 Busy
R_EES_ENUM_RET_ERR_CONFIGURATION 0x82 EES configuration error
R_EES_ENUM_RET_ERR_INITIALIZATION 0x83 EES initialization error
R _EES ENUM_RET _ERR_ACCESS LOCKED 0x84 EEPROM emulation lock error
R_EES ENUM_RET_ERR_PARAMETER 0x85 Parameter error
R_EES_ENUM_RET_ERR_WEAK 0x86 Weak error
R_EES_ENUM_RET_ERR_REJECTED 0x87 Reject error
R_EES_ENUM_RET_ERR_NO_INSTANCE 0x88 No instance
R_EES_ENUM_RET_ERR_POOL_FULL 0x89 Pool full error
R_EES_ENUM_RET_ERR_POOL_INCONSISTENT 0x8A EES block Inconsistency error
R_EES_ENUM_RET_ERR_POOL_EXHAUSTED 0x8B EES block exhaustion error
R_EES_ENUM_RET_ERR_INTERNAL 0x8C Internal error
R_EES_ENUM_RET_ERR_FLASH_SEQ 0x8D Flash sequencer error

R20UT5477EJ0101 Rev.1.01 RENESAS Page 48 of 114

May.30.25

EES RL78 Type 03 5. User Interface

« e_ees_exrfd_ret status (enumerated-type variable name: e_ees_exrfd_ret_status_t)
These enumeration types are used internally by EES. It does not need to be used directly by the user.
RFD control functions for EES return values

Symbol Name Value Description
R_EES_EXRFD_ENUM_RET_STS_OK 0x00 Normal end
R_EES_EXRFD_ENUM_RET_STS_BUSY 0x01 Busy
R_EES_EXRFD_ENUM_RET_ERR_CONFIGURATION 0x10 Configuration error
R_EES_EXRFD_ENUM_RET_ERR_INITIALIZATION 0x11 Initialization error
R_EES_EXRFD_ENUM_RET_ERR_REJECTED 0x12 Reject error
R _EES EXRFD_ENUM_RET_ERR_PARAMETER 0x13 Parameter error
R_EES_EXRFD_ENUM_RET_ERR_INTERNAL 0x14 Internal error

R_EES_EXRFD_ENUM_RET_ERR_MODE_MISMATCHED | 0x20 | Mode mismatch error

Code/data flash area sequencer

R_EES_EXRFD_ENUM_RET_ERR_CFDF_SEQUENCER o2t | o0

R_EES_EXRFD_ENUM_RET_ERR_ERASE 0x22 Erase operation error

R_EES_EXRFD_ENUM_RET_ERR_BLANKCHECK 0x23 Blank check operation error

R_EES_EXRFD_ENUM_RET_ERR_WRITE 0x24 Write operation error
R20UT5477EJ0101 Rev.1.01 RENESAS Page 49 of 114

May.30.25

EES RL78 Type 03

5. User Interface

5.7

Specifications of APl Functions

This section describes the detailed specifications of the API functions of EEPROM Emulation Software (EES)

RL78 Type 03.

There are some prerequisites for using the API functions of EES RL78 Type 03 to reprogram the data flash
memory. If the prerequisites are not satisfied, execution of the API functions may result in indeterminate

operation.

Prerequisites:

« Execute the R_EES _Init function once before starting the use of EES functions.

« The high-speed on-chip oscillator must be active while self-programming is in progress. Execute API
functions of EES RL78 Type 03 only while the high-speed on-chip oscillator is active.

« To control the data flash memory, execute API functions of EES RL78 Type 03 while access to the data
flash memory is enabled. For the method of enabling access to the data flash memory, refer to “User’s
Manual: Hardware” of a target device.

The following shows the format for describing the specifications of API functions.

Description format:

Information:
Syntax Syntax for calling this function from a C-language program
Reentrancy Reentrant or Non-reentrant
Parameters Input parameters for this Parameter [Value, range, meaning of the
(IN) function parameter, etc.]
Parameters Input/output parameters for this Parameter [Value, range, meaning of the
(IN/OUT) function parameter, etc.]
Parameters Output parameters for this Parameter [Value, range, meaning of the
(OUT) function parameter, etc.]

Return Value

Type of the return value from
this function

(Enumerated type, pointer type,
etc.)

Enumerator (constant value) of the return value:
Value

[Meaning of the constant: Detailed description]

Enumerator (constant value) of the return value:
Value

[Meaning of the constant: Detailed description]

Description

Overview of function

Preconditions

Overview of preconditions

Remarks

Special notes on this function

Details of Specifications:

The operation of this function is described.

Notes:

Conditions of usage or restrictions on this function are described.

R20UT5477EJ0101
May.30.25

Rev.1.01

LENESAS

Page 50 of 114

EES RL78 Type 03 5. User Interface

5.71 Specifications of APl Functions for EES RL78 Type 03

This section describes the API functions used for EES RL78 Type 03.

5.7.1.1 R_EES_Init

Information:

Syntax R_EES_FAR_FUNC e_ees_ret_status_t R_EES_Init(uint8_ti_u08_cpu_frequency);

Reentrancy Non-reentrant

Parameters uint8_t CPU operating frequency [2 - 40 (MHz)]

(IN) i_u08_cpu_frequency

Parameters N/A

(IN/OUT)

Parameters N/A

(OUT)

Return Value | e ees ret status t R_RFD_ENUM_RET_STS_OK: 0x00
[Normal end]
R_EES_ENUM_RET_ERR_CONFIGURATION:
0x82
[EES configuration error]

Description Initializes internal data and variables and checks the descriptor configuration.

Preconditions Execute this function while the high-speed on-chip oscillator is active.

Remarks Execute this function once before starting the use of EES functions.

Details of Specifications:

Set the parameter (CPU operating frequency) to the R_EES EXRFD _Init function and execute it.

Notes:

When the configuration for executing the EEPROM emulation such as EES pool or EES block size is
abnormal, the return value will return a EES configuration error
(R_EES_ENUM_RET_ERR_CONFIGURATION).

The high-speed on-chip oscillator needs to be kept active while EEPROM emulation is in progress.
Execute this function while the high-speed on-chip oscillator is active.

* EES RL78 Type 03 does not activate or check the high-speed on-chip oscillator.

For the parameter (i_u08_cpu_frequency), specify the integer obtained by rounding up the fraction of the
CPU operating frequency that is actually used in the microcontroller.
(Example: When the CPU operates at 4.5 MHz, specify 5 in this initialization function.)

When the CPU operates at a frequency lower than 4 MHz, a value of 2 MHz, or 3 MHz can be used but a
non-integer value such as 2.5 MHz cannot be used.

The frequency specified in the parameter (i_u08_ cpu_frequency) should be the actual frequency at which
the CPU operates during flash memory reprogramming; it is not necessarily that the frequency of the
high-speed on-chip oscillator should be specified.

- If the specified frequency differs from the actual CPU operating frequency, the subsequent
operation is indeterminate. In this case, even if flash memory reprogramming is completed, the
written data value and data retention period may not be guaranteed.

* For the range of the CPU operating frequency, refer to “User’s Manual: Hardware” of a target
device.

R20UT5477EJ0101 Rev.1.01 NS Page 51 of 114
May.30.25 RENES

EES RL78 Type 03 5. User Interface

5.71.2 R_EES_Open

Information:

Syntax R_EES_FAR_FUNC e _ees_ret_status_t R_EES_Open(void);

Reentrancy Non-reentrant

Parameters N/A

(IN)

Parameters N/A

(IN/OUT)

Parameters N/A

(OUT)

Return Value e_ees_ret_status_t R_EES_ENUM_RET_STS_OK: 0x00
[Normal end]

R_EES_ENUM_RET_ERR_ REJECTED: 0x87

[Reject error]

Description EEPROM emulation preparation processing.

This function makes the EEPROM emulation executable.
Preconditions R_EES_Init function must have finished normally.
Remarks -

Details of Specifications:
o Execute the R_EES_EXRFD_Open function to make the data flash memory accessible.
Notes:

« When the R_EES _Init function is not executed and the internal variable has not been initialized, the
return value will return a reject error (R_EES_ENUM_RET_ERR_REJECTED).

R20UT5477EJ0101 Rev.1.01 NS Page 52 of 114
May.30.25 RENES

EES RL78 Type 03 5. User Interface

5.71.3 R_EES_Close

Information:
Syntax R_EES_FAR_FUNC e _ees_ret_status_t R_EES_Close(void);
Reentrancy Non-reentrant
Parameters N/A
(IN)
Parameters N/A
(IN/OUT)
Parameters N/A
(OUT)
e_ees_ret_status_t R_EES_ENUM_RET_STS_OK: 0x00
Return Value
[Normal end]

Description EEPROM emulation end processing.
This function makes the EEPROM emulation un-executable.

Preconditions -

Remarks -

Details of Specifications:
o Executes the R_EES EXRFD_Close function and finishes the EEPROM emulation.
Notes:

« If EEPROM emulation was executed, the R_EES ENUM_CMD_SHUTDOWN command must be used to
set EEPROM emulation to the stopped state (the open state).

R20UT5477EJ0101 Rev.1.01 NS Page 53 of 114
May.30.25 RENES

EES RL78 Type 03 5. User Interface

5.7.1.4 R_EES_Execute

Information:
Syntax R_EES_FAR_FUNC void R_EES_Execute(st_ees_request_t _ near *
ionp_st_ees_request);
Reentrancy Non-reentrant
Parameters N/A
(IN)
Parameters st_ees _request t __ near* Pointer to the request structure (st_ees_request_t)
(IN/OUT) ionp_st_ees_request
Parameters N/A
(OUT)
Return Value N/A

Description EEPROM emulation execution function.
Each type of processing for performing EEPROM emulation operations is specified for
this function as an argument in the command format, and the processing is executed.

Preconditions R_EES_Init and R_EES_Open function must have finished normally.

Remarks -

Details of Specifications:
« Starts processing of the command set in the Request structure.
Notes:

« The R_EES_Execute function starts command processing and then immediately returns the control to the
user program. The command processing is continued by executing the R_EES_Handler function.
Therefore, the R_EES _Handler function must be executed continuously until the command processing is
completed.

« Execute the repeat the R_EES Handler function while the e_status of the Request
structure(st_ees_request_t)is R_EES_ENUM_RET_STS_BUSY.

« ltis not allowed to call R_EES_Execute function in an interrupt service routine.

R20UT5477EJ0101 Rev.1.01 NS Page 54 of 114
May.30.25 RENES

EES RL78 Type 03

5. User Interface

Command Execution States (e_status) of R_EES_Execute and R_EES_Handler (1/2)

Corresponding

C dE tion Stat Cat D ipti
ommand Execution Status ategory escription Commands
R_EES_ENUM_RET_STS_ |Meaning |Normal end
OK
None
Cause All commands
Actionto |None
be taken
R_EES_ENUM_RET_STS_ |Meaning |A command is being executed.
BUSY Commands other than
None
Cause R_EES_ENUM_CMD_
Actionto | Keep calling the R_EES_Handler function until the status SHUTDOWN
be taken |changes.
R_EES_ENUM_RET_ERR _ | Meaning Initialization error
INITIALIZATION R_EES_Init, and R_EES_Open functions have not been
Cause -
finished normally. All commands
Actionto | Normally finish the R_EES_Init, and R_EES_Open
be taken |functions.
R_EES_ENUM_RET_ERR_ [Meaning |EEPROM emulation lock error Commands other than
ACCESS_LOCKED Cause EEPROM emulation cannot be executed. R_EES_ENUM_CMD_
STARTUP and
Action to Make sure that the R_EES_ENUM_CMD_STARTUP R EES ENUM CMD
be taken command has finished normally. F(_)RMA_T. B B
R_EES_ENUM_RET_ERR_ | Meaning |Parameter error
PARAMETER Cause An incorrect command parameter has been specified.
All commands
Action to .
Check the specified parameter.
be taken
R_EES_ENUM_RET_ERR_ Meanin The writing of an active block header or the last written
WEAK 9 stored data has not completed successfully.
Cause Write processing an active block header or stored data may |R_EES_ENUM_CMD_
have been interrupted. STARTUP
Actionto |Execute the R_EES_ENUM_CMD_REFRESH command.
be taken
R_EES_ENUM_RET_ERR_ |Meaning |Reject error
REJECTED Cause A different command is being executed.
All commands
Actionto | Call the R_EES_Handler function to terminate the
be taken ongoing command.
R20UT5477EJ0101 Rev.1.01 Page 55 of 114

May.30.25

LENESAS

EES RL78 Type 03

5. User Interface

Command Execution States (e_status) of R_EES_Execute and R_EES_Handler (2/2)

Corresponding

C dE tion Stat Cat D ipti
ommand Execution Status ategory escription Commands
R_EES_ENUM_RET_ERR | Meaning No-write-data error
NO_INSTANCE Cause The specified identifier data has not been written. R_EES_ENUM_CMD_
Action to | Write data to the identifier specified using the READ
be taken |R_EES_ENUM_CMD_WRITE command.
R_EES_ENUM_RET_ERR_ |Meaning |Pool full error
POOL_FULL Cause There is no area that can be used to write the data. R_EES_ENUM_CMD_
Actionto |Execute the R_EES_ENUM_CMD_REFRESH command | WRITE
be taken |and restart writing data.
R_EES_ENUM_RET_ERR_ |Meaning |EES block inconsistency error
POOL_INCONSISTENT)
Cause An EIiS chIockkhas the undefined state (such as there are R_EES_ENUM_CMD_
no active blocks). STARTUP
Actionto |Execute the R_EES_ENUM_CMD_FORMAT command to
be taken |initialize the EES blocks.
R_EES_ENUM_RET_ERR_ Meaning | EES block exhaustion error R_EES_ENUM_CMD _
POOL_EXHAUSTED STARTUP
Cause There are no more EES blocks that can be used to
continue. R _EES ENUM_CMD_
Stop EEPROM emulation. FORMAT
. . R_EES_ENUM_CMD
: You can try restoration by executing the - - - -
Action to REFRESH
R_EES_ENUM_CMD_FORMAT command (erasing all
be taken . . R_EES_ENUM_CMD_
existing data) or read existing data
WRITE
R_EES_ENUM_RET_ERR_ |Meaning [Internal error
INTERNAL Cause An unexpected error has occurred. Commands other than
R_EES_ENUM_CMD_
Actionto | The EES should be stopped. SHUTDOWN
be taken [Check the device state.
R_EES_ENUM_RET_ERR_ |Meaning |Flash area sequencer error
FLASH_SEQ EES failed to change flash memory mode or start flash
Cause
sequencer. Commands other than
The EES should be stopped. R_EES_ENUM_CMD_
Action to | Check whether flash memory operation using RFD RL78 SHUTDOWN
be taken | Type 03 is executed besides operation of an EEPROM

emulation.

R20UT5477EJ0101 Rev.1.01
May.30.25

LENESAS

Page 56 of 114

EES RL78 Type 03 5. User Interface

5.7.1.5 R_EES_Handler

Information:
Syntax R_EES_FAR_FUNC void R_EES_Handler(void);
Reentrancy Non-reentrant
Parameters N/A
(IN)
Parameters N/A
(IN/OUT)
Parameters N/A
(OUT)
Return Value N/A

Description Continuous EEPROM emulation execution processing.

This function is used to check for the completion of processing while allowing
processing of EEPROM emulation specified by the R_EES_Execute function to
continue.

Preconditions | R _EES Initand R_EES_Open function must have finished normally.

Remarks -

Details of Specifications:
« Continues processing the EEPROM emulation initiated by the R_EES_Execute function.
Notes:

« While “e_status” of the request structure (st_ees_request_t) is R_EES_ENUM_RET_STS_BUSY, execute
this function repeatedly.

o ltis not allowed to call R_EES_Handler() in an interrupt service routine.

« The command execution status of the R_EES Handler function is set for the “st_ees request t*
ionp_st_ees_request” used as an argument of the R_EES_Execute function. Therefore, when using the
R_EES_Handler function, do not free the “st_ees request_t * ionp_st _ees_request” variable.

R20UT5477EJ0101 Rev.1.01 NS Page 57 of 114
May.30.25 RENES

EES RL78 Type 03 5. User Interface

5.7.1.6 R_EES_GetSpace

Information:

Syntax R_EES_FAR_FUNC e_ees_ret_status_t R_EES_GetSpace(uint16_t _ near *
onp_u16_space);

Reentrancy Non-reentrant

Parameters N/A

(IN)

Parameters N/A

(IN/OUT)

Parameters uint16_t __ near* Pointer to variable that contains free space information

(OUT) onp_u16_space for the current active block.

Return Value e_ees_ret_status_t R_EES_ENUM_RET_STS_OK: 0x00

[Normal end]
R_EES_ENUM_RET_ERR_INITIALIZATION: 0x83
[EES initialization error]
R_EES_ENUM_RET_ERR_ACCESS_LOCKED: 0x84
[EEPROM emulation lock error]
R_EES ENUM_RET_ERR_REJECTED: 0x87
[Reject error]

Description Gets the free space of the active block.

Preconditions R_EES_Init and R_EES_Open function must have finished normally.
R_EES_Execute function and the R_EES_ENUM_CMD_STARTUP command must
be executed successfully before.

Remarks -

Details of Specifications:
« Calculate the free space of the active block.
Notes:

« When the R_EES_Init function is not executed and the internal variable has not been initialized, the
return value will return a EES initialization error (R_EES_ENUM_RET_ERR_INITIALIZATION).

e« Whenthe R_EES_ENUM_CMD_STARTUP command does not finish normally with the R_EES_Execute
function, the return value will return a EEPROM emulation lock error
(R_EES_ENUM_RET_ERR_ACCESS _LOCKED).

« When the R_EES_ Execute function is executing a EES command, the return value will return a Reject
error (R_EES_ENUM_RET_ERR_REJECTED).

« In case the EES pool is exhausted the returned space value will always be 0x0000.

« When the write operation of the “active block header” or “stored data written” may have been interrupted,
0x0000 is returned to the free space.

« When an error value is returned, the free space information is not collected.

R20UT5477EJ0101 Rev.1.01 NS Page 58 of 114
May.30.25 RENES

EES RL78 Type 03

5. User Interface

5.7.2 RFD control API Functions for EES

This section describes the RFD control API functions for EES. These functions are called from the EES
control function. Do not call it directly from a user program.

Information:
Syntax R_EES_FAR_FUNC e _ees_exrfd_ret_status_t R_EES_EXRFD_Init(
uint8_ti_u08_cpu_frequency);
Description Initializes RFD RL78 Type 03.
Information:
Syntax R_EES_FAR_FUNC e_ees_exrfd_ret_status_t R_EES_EXRFD_Open(void);
Description Set the data flash control register (DFLCTL) to the state where accessing the data
flash memory is permitted (DFLEN = 1).
Information:
Syntax R_EES _FAR_FUNC e_ees_exrfd_ret_status t R_EES_EXRFD_Close(void);
Description Set the data flash control register (DFLCTL) to the state where access to the data
flash memory is inhibited (DFLEN = 0). All ongoing EES processing stop.
Information:
Syntax R_EES_FAR_FUNC e _ees_exrfd_ret_status t R_EES_EXRFD_Erase(
uint8_t i_u08_virtual_block_number);
Description Start erasing the EES block (one virtual block).
Information:
Syntax R_EES_FAR_FUNC e_ees_exrfd_ret_status_ t R_EES_EXRFD_Write(
uint16_ti_u16_offset_addr,
uint8_t __ near * inp_u08_write_data,
uint16_ti_u16_size);
Description Starts writing to the specified the data flash memory address (one byte).
Information:
Syntax R_EES_FAR_FUNC e_ees_exrfd_ret_status_t R_EES_EXRFD_BlankCheck(
uint16_t i_u16_offset_addr,
uint16_ti_u16_size);
Description Starts Blank check to the specified the data flash memory address.

R20UT5477EJ0101 Rev.1.01

May.30.25

RENESAS Page 59 of 114

EES RL78 Type 03 5. User Interface

Information:

Syntax R_EES_FAR_FUNC e_ees_exrfd_ret_status_t R_EES_EXRFD_Read(
uint16_ti_u16_offset_addr,
uint8_t __ near * onp_u08_read_data,
uint16_ti_u16_size);

Description Reads the specified address in the data flash memory.

Information:
Syntax R_EES_FAR_FUNC e _ees_exrfd_ret_status_t R_EES_EXRFD_Handler(void);
Description Continues processing of the RFD control function for EES that is executing, and
confirms termination.
Information:

Syntax static R_EES_FAR_FUNC e_ees_exrfd_ret_status_t

r_ees_exrfd_get_seq_error_status(void);

Description Obtain the execution result from the flash memory sequencer.

Information:
Syntax static R_EES_FAR_FUNC e _ees_exrfd_ret_status_tr_ees_exrfd_finish_state(void);
Description Sets the RFD control functions for EES to the end status.

Information:

Syntax static R_EES_FAR_FUNC e _ees_exrfd ret status t

r_ees_exrfd_check_cmd_executable(void);

Description Check the status and flags of the RFD control functions for EES.

Information:

Syntax static R_EES_FAR_FUNC bool r_ees_exrfd_is_valid_byte_parameter(
uint16_ti_u16_offset_addr,
uint16_ti_u16_size);

Description Check the parameters used by the RFD Control functions for EES.

Information:

Syntax static R_EES_FAR_FUNC void r_ees_exrfd_clear_cmd_workarea(void);

Description Clears the data area used by the RFD control functions for EES.

R20UT5477EJ0101 Rev.1.01 RENESAS Page 60 of 114

May.30.25

EES RL78 Type 03

5. User Interface

5.7.3 Internal Functions for the EES

This section describes the functions used by the EES functions. These functions are internal functions called
from the EES functions. Do not call it directly from a user program.

Information:
Syntax R_EES_FAR_FUNC bool r_ees_is_valid_configuration(void);
Description Check the EES configuration and initialize the internal status.
Information:
Syntax R_EES_FAR_FUNC bool r_ees_is_valid_requester(
st_ees_request_t __ near * ionp_st_ees_request);
Description Check “request structure” and “EES status” and update internal status.
Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_startup_state_00(void); ~
R_EES_FAR_FUNC void r_ees_fsm_startup_state_09(void);
Description Updates the internal status for startup processing.
Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_write_state_00(void); ~
R_EES_FAR_FUNC void r_ees_fsm_write_state 04(void);
Description Updates the internal status for write processing.
Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_read_state_00(void); ~
R_EES_FAR_FUNC void r_ees_fsm_read_state_01(void);
Description Updates the internal status for read processing.
Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_refresh_state_00(void); ~
R_EES_FAR_FUNC void r_ees_fsm_refresh_state 17(void);
Description Updates the internal status for refresh processing.
Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_format_state_00(void); ~
R_EES_FAR_FUNC void r_ees_fsm_format_state_11(void);
Description Updates the internal status for format processing.
Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_shutdown_state_00(void);
Description Execute the shutdown processing of the EEPROM emulation.

R20UT5477EJ0101 Rev.1.01

May.30.25

LENESAS

Page 61 of 114

EES RL78 Type 03

5. User Interface

Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_exrfd_cmd_erase_state_00(void);
Description Start the erase processing.
Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_exrfd_cmd_bw_state_00(void);
Description Starts the blank check and write processing.
Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_exrfd_cmd_inner_blankcheck_state_00(void);
Description Start internal processing of the blank check.
Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_exrfd_cmd_write_state_00(void);
Description Start the write processing.
Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_exrfd_cmd_inner_write_state_00(void);
Description Start internal processing of the write.
Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_exrfd_cmd_read_state_00(void);
Description Start the read processing.
Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_exrfd_cmd_state_01(void);
Description Proceed with the internal processing of the executed RFD control functions for EES.
Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_exit_state(void);
Description Dummy processing.

R20UT5477EJ0101 Rev.1.01

May.30.25

RENESAS Page 62 of 114

EES RL78 Type 03 5. User Interface

Information:
Syntax static R_EES_FAR_FUNC uint8_t r_ees_calculate_next_a_flag(
uint8_ti_u08_a_flag_value);
Description Calculates the value of the A flag.
Information:
Syntax static R_EES_FAR_FUNC void r_ees_fsm_finish_command(void);
Description Terminates the execution command.
Information:
Syntax static R_EES_FAR_FUNC void r_ees_fsm_swap_acvive_block_info(void);
Description Swaps the active block information.
Information:
Syntax static R_EES_FAR_FUNC bool r_ees_fsm_exrfd_cmd_detect_fatal_error(
e _ees_exrfd_ret_status_ti_e_ees_exrfd_ret_value);
Description Check the results of the RFD control function for the EES for errors that make the EES
unsustainable.
Information:
Syntax static R_EES_FAR_FUNC e_ees_block_status_t
r_ees_fsm_get_ees_block_status(void);
Description Obtains the state of the EES block.
R20UT5477EJ0101 Rev.1.01 RENESAS Page 63 of 114

May.30.25

EES RL78 Type 03

6. Sample Programs

6. Sample Programs

This section describes the sample programs provided together with EES RL78 Type 03.

6.1 File Structure

6.1.1 Folder Structure

Figure 6-1 shows the structure of sample program folders.
Figure 6-1 shows an example of using RL78/F25. The installed “sample” folder contains a sample folder for

each device group (e.g. RL78_F25).

The “RL78_F25” folder is used when using RL78/F22 or RL78/F25.

EESRL7ET03

include

ees

=

sample
common
include
source
ees
RL78_F25
EES

ﬁ

source

ees

Userown

include

=
=

: : Folders of sample programs

EES RL78 Type 03
include files

Sample programs

EES RL78 Type 03
program source files

EES RL78 Type 03
user-own files

Figure 6-1 Structure of Sample Program Folders

R20UT5477EJ0101
May.30.25

Rev.1.01

RENESAS

Page 64 of 114

EES RL78 Type 03

6. Sample Programs

6.1.2 List of Files

6.1.2.1 List of Source Files

Table 6-1 shows the program source file in the “sample\common\source\ees\” folder.

Table 6-1 Program Source File in the “sample\common\source\ees\” Folder

No.

Source File Name

Description

1

sample_control_ees.c

This file contains the functions for controlling the
EEPROM emulation.

Table 6-2 shows the program source file of the main processing in the “sample\RL78 F25” folder.

“sample\RL78_ F25\EES\[compiler name]\source\” folder

Table 6-2 Program Source File of the Main Processing

No.

Source File Name

Description

main.c

Sample file of the main processing functions

6.1.2.2 List of Header Files

Table 6-3 shows the program header files in the “sample\common\include\” folder.

Table 6-3 Program Header Files in the “sample\commonl\include\” Folder

No.

Header File Name

Description

sample_control_ees.h

This file defines the prototype declarations of the sample
functions for controlling the EEPROM emulation.

sample_ees_defines.h

This file defines the macros of the sample functions for
controlling the EEPROM emulation.

sample_ees_memmap.h

This file defines the macros that describes the sections
used by the sample program that controls the EEPROM
emulation.

Table 6-4 shows the program header files in the “sample\RL78_F25\EES\[compiler name]\include\” folder.

Table 6-4 Program Header Files in the “sample\RL78_F25\EES\[compiler name]\include\” Folder

No.

Header File Name

Description

1

sample_config.h

This File defines parameters value.

6.2 Data Type Definitions

6.2.1 Macro Defines

- Frequency setting macro

CPU frequency used in the sample program.

Symbol Name Value Description
SAMPLE_VALUE_UO08_CPU_FREQUENCY 40u CPU frequency
R20UT5477EJ0101 Rev.1.01 RENESAS Page 65 of 114

May.30.25

EES RL78 Type 03 6. Sample Programs

6.3 Sample Program Functions
Table 6-5 shows the sample program functions.

Table 6-5 List of Sample Program Functions

API Function Name Outline
1 main Executes the main processing of the sample program for
controlling the EES.
2 Sample_EES_Control Write and read EES blocks according to the basic procedure for
using EES.

6.3.1 Sample Program for Controlling the EEPROM Emulation

The EES RL78 Type 03 rewrite control sample follows the basic operation procedure for using EES and
performs the rewrite and read processing of EES block.

Note: During EES command processing, the data in the data flash memory cannot be referenced.
Copy the data to be referenced within the function to RAM in advance, and reference them in
RAM.

Operating conditions (Example of a sample program for RL78/F25):

« CPU operating frequency: 40 MHz
(The high-speed on-chip oscillator clock (HOCO) is used for the main system clock.)

Figure 6-2 shows a flowchart of the main processing of the sample program for the EES.

6.3.1.1 main Function

Is HOCO activated?

Yes No

o Return value<-EES configuration error ‘

»

d

Sample_EES_Control

- Processing for controlling the EEPROM emulation

- Return value <- Value returned from the function

<
<

Figure 6-2 Flowchart of the Main Processing of the Sample Program for Controlling the EES

R20UT5477EJ0101 Rev.1.01 NS Page 66 of 114
May.30.25 RENES

EES RL78 Type 03 6. Sample Programs

6.3.1.2 Sample_EES_Control Function

« Figure 6-3 shows the pre-processing required to use the EES and the write and read processing flow.
« Initialize the EES.

Sample_EES_Control

e Initialize the return value(= STS_OK)
e Initialize the error flag(= false)

R_EES_Init

Yes No

‘ e Error flag <- true ‘

Error flag <> true ?
No Yes

R_EES_Open

Yes No

‘ e Error flag <- true ‘

- Initializes EES RL78 Type 03

- Open state of the EES

Figure 6-3 Flowchart of Sample Processing for Controlling EEPROM Emulation (1/5)

R20UT5477EJ0101 Rev.1.01 NS Page 67 of 114
May.30.25 RENES

EES RL78 Type 03 6. Sample Programs

« EEPROM emulation execution startup processing.

e Initialize the requester.

Error flag <> true ?

No Yes

»
»

e Set the STARTUP command. - Setthe R_EES_ENUM_CMD_STARTUP command

R_EES Execute

€
-]

¢ R_EES_Handler

No Yes
e Return value <- Processing result ‘ - The processing result is put into “|_e_ees_ret_value”.

Pool Inconsistent ?

- Is the error content
R _EES ENUM_RET _ERR POOL_INCONSISTENT ?

e Error flag <- true ‘ - Startup error
e Set the FORMAT command. ‘ - Setthe R_EES_ENUM_CMD_FORMAT command

R_EES Execute

l€
-]

¢ R_EES Handler

No Yes
e Return value <- Processing result ‘ - The processing result is put into “|_e_ees_ret_value”.
Yes No
e Error flag <- true ‘ - Format error

- Is the command R_EES_ENUM_CMD_FORMAT ?, and
Is the error flag false ?

Figure 6-4 Flowchart of Sample Processing for Controlling EEPROM Emulation (2/5)

R20UT5477EJ0101 Rev.1.01 NS Page 68 of 114
May.30.25 RENES

EES RL78 Type 03 6. Sample Programs

« EEPROM emulation data write processing.

Error flag <> true ?

No .| Yes

o Set the write data - Set the write data.

o Set the address for write data - Set the address pointer for the write data.

¢ Set the write data ID(= 1u)

¢ Set the write command - Setthe R_EES_ENUM_CMD_WRITE command.

R_EES_ Execute

<
|
« R_EES_Handler
No Yes
‘ ¢ Return value <- Processing result ‘ - The processing result is put into “|_e_ees_ret_value”.
Yes No
ool ful 5 - Is the error content
oot tult.error ¢ R_EES_ENUM_RET_ERR_POOL_FULL ?
No Yes

‘ e Error flag <- true ‘

| « Setthe REFRESH command. | - Set the R_EES_ENUM_CMD_REFRESH command.

R_EES_Execute

&

¢ R_EES_Handler

No Yes
‘ ¢ Return value <- Processing result ‘ - The processing result is put into “I_e_ees_ret_value”.

Yes | No

‘ e Error flag <- true ‘

- Is the command R_EES ENUM_CMD_REFRESH ?, and
Is the error flag false ?

Figure 6-5 Flowchart of Sample Processing for Controlling EEPROM Emulation (3/5)

R20UT5477EJ0101 Rev.1.01 NS Page 69 of 114
May.30.25 RENES

EES RL78 Type 03

6. Sample Programs

o EEPROM emulation data read processing.

Error flag <> true ?

No ‘ Yes

e Set the read data ID(=
e Set the read command

e Set the address for read data

1u)

R_EES_Execute

- Set the address pointer for the read data.

- Setthe R EES ENUM_CMD_READ command.

- Read the data with the specified ID.

No

Yes

‘ e Return value <- Processing result ‘

‘ Yes

‘ o Initialize the counter(— 0)

es

Counter value < Size

No

Read data match ?

‘ ¢ Increment the counter(+1).

]
R_EES_Handler

- The processing result is put into “|_e_ees_ret_value”.

- Verification check through reading by the CPU

- Compare the written data[counter] with the read
data[counter].

»
V|‘

e Error flag <- true

©

Figure 6-6 Flowchart of Sample Processing for Controlling EEPROM Emulation (4/5)

R20UT5477EJ0101 Rev.1.01
May.30.25

RENESAS Page 70 of 114

EES RL78 Type 03 6. Sample Programs

o EEPROM emulation shutdown processing.

— Error flag <> true ?

No Yes
| « Set the SHUTDOWN command. | - Set the R_EES_ENUM_CMD_SHUTDOWN command

R_EES_ Execute

No Yes

A

- Proceeds with incomplete command processing.
R_EES Handler

R_EES_Execute

»
"

- Execute the R_EES_ENUM_CMD_SHUTDOWN
command again.

‘ e Return value <- Processing result ‘ - The processing result is put into “|_e_ees_ret_value”.

No Yes

‘ e Error flag <- true ‘

l<
Error flag <> true ?
No Yes

R_EES_Close

No Yes

‘ e Error flag <- true ‘

- Closes the EEPROM emulation.

d
L]

Figure 6-7 Flowchart of Sample Processing for Controlling EEPROM Emulation (5/5)

Note: Error handling and user processing for normal completion are omitted.

R20UT5477EJ0101 Rev.1.01 NS Page 71 of 114
May.30.25 RENES

EES RL78 Type 03

6. Sample Programs

6.4 Specifications of Sample Program Functions

This section describes the specifications of the functions in the sample programs for EES RL78 Type 03.
The sample programs for EEPROM emulation are examples of basic processing. The functions in the
sample programs can be used as reference for developing an application program.

Please be sure to thoroughly check the operation of the developed application program.

6.4.1 Sample Program Functions for Controlling the EEPROM Emulation

6.4.1.1 main
Information:

Syntax int main(void);
Reentrancy Non-reentrant
Parameters N/A
(IN)
Parameters N/A
(IN/OUT)
Parameters N/A
(OUT)

Return Value

int

(e_ees_ret_status_t)

R_EES_ENUM_RET_STS_OK: 0x00
[Normal end]
R_EES _ENUM_RET_STS_BUSY: 0x01
[Busy]
R_EES ENUM_RET_ERR_CONFIGURATION: 0x82
[EES configuration error]
R_EES_ENUM_RET_ERR_INITIALIZATION: 0x83
[EES initialization error]
R_EES_ENUM_RET_ERR_ACCESS_LOCKED: 0x84
[EEPROM emulation lock error]
R_EES _ENUM_RET_ERR_PARAMETER: 0x85
[Parameter error]
R_EES_ENUM_RET_ERR_WEAK: 0x86
[Weak error]
R_EES_ENUM_RET_ERR_REJECTED: 0x87
[Reject error]
R_EES ENUM_RET_ERR_NO_INSTANCE: 0x88
[No instance]
R_EES _ENUM_RET_ERR_POOL_FULL: 0x89
[Pool full error]
R_EES_ENUM_RET_ERR_POOL_INCONSISTENT: 0x8A
[EES block Inconsistency error]
R_EES ENUM_RET_ERR_POOL_EXHAUSTED: 0x8B
[EES block exhaustion error]
R_EES _ENUM_RET_ERR_INTERNAL: 0x8C
[Internal error]

R_EES_ENUM_RET_ERR_FLASH_SEQ: 0x8D
[Flash sequencer error]

Description

Executes the main processing of the sample program for controlling the EES.

Preconditions

Remarks

R20UT5477EJ0101 Rev.1.01

May.30.25

LENESAS

Page 72 of 114

EES RL78 Type 03

6. Sample Programs

6.4.1.2 Sample_EES_Control

Information:
Syntax R_EES FAR_FUNC e_ees _ret_status t Sample_EES_Control();
Reentrancy Non-reentrant
Parameters N/A
(IN)
Parameters N/A
(IN/OUT)
Parameters N/A
(OUT)

Return Value

e_ees_ret_status_t

R_EES_ENUM_RET_STS_OK: 0x00
[Normal end]
R_EES_ENUM_RET_STS_BUSY: 0x01
[Busy]
R_EES_ENUM_RET_ERR_CONFIGURATION: 0x82
[EES configuration error]
R_EES_ENUM_RET_ERR_INITIALIZATION: 0x83
[EES initialization error]
R_EES_ENUM_RET_ERR_ACCESS_LOCKED: 0x84
[EEPROM emulation lock error]
R_EES_ENUM_RET_ERR_PARAMETER: 0x85
[Parameter error]
R_EES_ENUM_RET_ERR_WEAK: 0x86
[Weak error]
R_EES_ENUM_RET_ERR_REJECTED: 0x87
[Reject error]
R_EES_ENUM_RET_ERR_NO_INSTANCE: 0x88
[No instance]
R_EES_ENUM_RET_ERR_POOL_FULL: 0x89
[Pool full error]
R_EES_ENUM_RET_ERR_POOL_INCONSISTENT: 0x8A
[EES block Inconsistency error]
R_EES_ENUM_RET_ERR_POOL_EXHAUSTED: 0x8B
[EES block exhaustion error]
R_EES_ENUM_RET_ERR_INTERNAL: 0x8C
[Internal error]
R_EES_ENUM_RET_ERR_FLASH_SEQ: 0x8D
[Flash sequencer error]

Description

Write and read EES blocks according to the basic procedure for using EES.

Preconditions

Remarks

When the verification check of the read data results in an error, it is not reflected in the

return value.

R20UT5477EJ0101 Rev.1.01

May.30.25

RENESAS Page 73 of 114

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03
7. Creating a Sample Project for EES RL78 Type 03

EES RL78 Type 03 includes a sample program to control EEPROM emulation. The compilers which can be
used by EES RL78 Type 03 are a CC-RL compiler and an IAR compiler. Users can create a sample project
using the Integrated Development Environment (IDE) corresponding to each compiler.

The example of the sample program for RL78/F25 (R7F125FPL) is explained to this section. When using
other than RL78/F25 (R7F125FPL), section address settings must be changed by referring to the user's
manual for the target device.

If the RL78/F22 is used, the RL78/F25 sample program is available.

Notes 1: The target Integrated Development Environment (IDE) and the compiler are premised on
using the version for RL78/F22, F25. Be sure to use them, after confirming that RL78/F22,
F25 are target products.

2: EES RL78 Type 03 uses the RFD RL78 Type 03 to control the data flash memory. However,
it is not included in the EES RL78 Type 03 installer, RFD RL78 Type 03 must be installed
before registering to the project. It describes the RFD RL78 Type 03 files and sections
needed to register the project, however for more information on RFD RL78 Type 03, refer to
the RFD RL78 Type 03 User's Manual.

71 Creating a Project in the Case of Using a CC-RL Compiler

CS+ or e? studio can be used for a RENESAS CC-RL compiler as an IDE. EES RL78 Type 03 and RFD
RL78 Type 03 are registered and built in the project created by the IDE. An example of creating a sample
project in case each IDE is used is shown. Because to understand a CC-RL compiler and each IDE, it is
necessary to refer to the user's manual of each tool product.

R20UT5477EJ0101 Rev.1.01 NS Page 74 of 114
May.30.25 RENES

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

711 Example of Creating a Sample Project

(1) An example of creating a sample project which used CS+ (IDE)

+ The CS+ starts and from the [Project] menu, select [Create New Project...], the “Create Project” window

will open.

- Select the product of “RL78/F25 (ROM: 512 Kbytes)” - “R7F125FPL4xFB(100pin)” as [Using

microcontroller].
- Select “Application (CC-RL)” as [Kind of project].
- [Project name] is temporarily set to “EESRL78T03_PJ01”.
- When you click the [Create] button, the new project is created.

Create Project

Microcontroller: RL78

Using microcontroller:

;;} Search microcontroller) Update...
' ¥ R7F125FLL4xFB(AES)(64pin) A | | Product Name:R7F125FPL4xFB(AES)
¥ R7F125FML3xFB(AES)(80pin) Intemal ROM size[KBytes]-512

Intemal RAM size[Bytes]- 40960

Make the project folder

C:\Usersboococod Documents\CS_Plus_Project\EESRL78T03_PJOT\EESRL78T03_PJO01.mipj

[] Pass the file composition of an existing project to the new project

Copy composition files in the diverted project folder to a new project folder

To dialog with multi-core option I Cancel Help

v
Kind of project: Application{CC-RL)
Project name: EESRL78T03_PJO1
Place: C:\Wsersbooooood Documents'\CS_Plus_Project v Browse...

assed I 3 ¢ Browse...

R20UT5477EJ0101 Rev.1.01 NS
May.30.25 xENES

Page 75 of 114

EES RL78 Type 03

7. Creating a Sample Project for EES RL78 Type 03

(2) An example of creating a sample project which used e? studio (IDE)

» The e? studio starts and from the [File] menu, select [New] — [C/C++ Project], the “Templates for New

C/C++ Project” window will open.

B <2 studio - & studio
File | Edit Source Refactor Mavigate Search Project Renesas Views Run Window Help
| New Alt+5hift+N >| @ Makefile Project with Existing Code
Open File... |@ C/C++ Project
[, Open Projects from File System... ™ Project..
Close Ctrl+W Convert to a C/C++ Project (Adds C/C++ Mature)

- Select [Renesas CC-RL C/C++ Executable Project] displayed after selection in [Renesas RL78], and press

“next” button.

a New C/C++ Project O

Templates for New C/C++ Project

All LLVM for Renesas RL78 C/C++ Executable Project
CMake I A C/C++ Executable Project for Renesas RL78 using

Make LLVM for Renesas RL78 Toolchain.

Renesas Debug . .
|Renesas RL78 LLVM for Renesas RL78 C/C++ Library Project

FE=0 A G/C++ Libraty Project for Renesas RL78 using LLVIV
for Renesas RL78 Toolchain.

Renesas CC-RL C/C++ Executable Project
FEi A CG/C++ Executable Project for Renesas RL78 using the
CC-RL toolchain.

Renesas CC-RL C/C+ + Library Project
TSN A G/C++ Library Project for Renesas RL78 using the
CC-RL toolchain.

< Back || Finish Cancel

* Input “project name” on “New Renesas CC-RL Executable Project” window, and press “next” button.
[Project name] is temporarily set to “EESRL78T03_PJ01".

@ O
New Renesas CC-RL Executable Project —_—
New Renesas CC-RL Executable Project
Project name: | EESRL78TO3 P01 |
Use default location
D:¥work¥02-Project¥E2_Studio¥workspace¥EESRL78T03_PJO1 Browse...
Create Directory for Project
default
[]
[]
-
~
? < Back MNext > Finish Cancel
R20UT5477EJ0101 Rev.1.01 Page 76 of 114
KENESAS 9

May.30.25

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

- Select the [Target Device] of [Device Settings], and select “RL78 - F25” - “RL78 - F25 100pin” -
“‘R7F125FPL4xFB”.

- It is a premise that E2 Lite is selected as a debugging tool and on-chip debugging is executed. Put a check
mark to “Create Hardware Debug Configuration” by [Configurations]. And select “E2 Lite (RL78)”.

- When press the [Next] button, the “Select Coding Assistant settings” window will be displayed, so press
the [Finish] button.

a8 O X

New Renesas CC-RL Executable Project —

Select toolchain, device & debug settings

Toolchain Settings

Language: @®C OC++
Toolchain: Renesas CC-RL "2
Toolchain Version: v1.13.00 e
Manage Toolchains...
Device Settings Configurations
Target Board: |Cu5tom ~ | Create Hardware Debug Configuration
Download additional boards... [E2 Lite (RL78) v

Target Device:l R7F125FPL4xFB

[] Create Debug Configuration

Unlock Devijces...
RL78 Simulator e

Endian: |Little

Project Type: |Default] Create Release Configuration

':?\' < Back | Next = | | Finish | Cancel

Device Selection

You can filter devices by regular expression

Search Device

Device RAM ROM Pin RTOS Smart Co.. Periphera.. ™
RL78 - F23
RL78 - F24
~ RL78 - F25
RL78 - F25 48pin
RL78 - F25 64pin
RL78 - F25 80pin
~ RL78 - F25 100pin
R PL3XFE 40 KB 512 KB 100 X
40KB 512 KB 100 X
RL78 - FGIC
RL78 - G10
RL78 - G11
RL78 - G12
RL78 - G13
RL78 - G13A
RL78 - G14
RL78 - G15
RL78 - G16 v

X X

R20UT5477EJ0101 Rev.1.01 NS Page 77 of 114
May.30.25 xENES

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

71.2 Example of Registration of Target Folders and Target Files

Using EES RL78 Type 03, when execute EEPROM emulation the example which registers necessary files is
shown. Each folder of a “EESRL78T03” source program file is “include”, “source”, “userown”, and “sample”.
As other registration methods, after all the folders of “include”, “source”, “userown”, and “sample” are
registered, unnecessary files and folders can be removed using the function of “Remove from Project’(CS+)

or [Resource Configuration] — [Exclude from Build] (e? studio).

- _ﬁ EESRL78T03 FPJO1 (Project)” =" EESRL78T03_PJO1
...iE,ER?F125FPL4xFB (Microcontroller) | =il Includes
A, CC-RL (Build Tool) @ generate
-z RLT8 E2 Lite (Debug Tool) v @8 src
“ _\T ::Irlngram Analyzer (Analyze Tool) : = EESRL78T03
= W File R
ﬂu Build tool generated files & include
~ 11| EESRL72T03 (& sample
i ‘ include == S0Urce
1|l sample (= userown
- source (= RFDRL78T03
i userown |.€ EESRL78T03_PJ01.c
; RFDRL78T03 -] EESRL78T03_PJ01 HardwareDebug.launch
The registration tree screen of EES (CS+) The registration tree screen of EES (e? studio)

- Registration of the latest I/O header file (iodefine.h) outputted to target products by IDE
“iodefine.h” uses the I/O header file which CS+ or e? studio outputs for target products.

The folder to which an 1/O header file (iodefine.h) is outputted by IDE:

- CS+: [Project name] folder

- €2 studio: [Project name]/generate folder

- Exclusion of the file automatically added by the function of IDE
There are files added automatically in the created project. The same file as these exists also in the
“sample” folder of EES RL78 Type 03. Therefore, using the function of IDE, select those files from tree and
excludes from a project.

- CS+: Click the right mouse button for the file of tree. And exclude target files using “Remove from
Project” function. Target files are “hdwinit.asm and main.c” in [project name] folder.

- e? studio: Clicks the right mouse button for the file of tree. And on the [Settings] screen displayed by
the “property”, put a check mark to [Exclude resource from build] and exclude target files (target folder).
(Exclusion of a folder is also possible)

Target files are a hdwinit.asm in [project name]/generate folder and a [project name].c
(EESRL78T03_PJ01.c) in [project name]/src folder.

R20UT5477EJ0101 Rev.1.01 NS Page 78 of 114
May.30.25 RENES

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

(1) Registration the EES RL78 Type 03 target folders and target files.
The folders (“include”, “source”, “userown”, “sample”) and source program files which are included in EES

RL78 Type 03 to register are shown below.

in the “include” folder in the “userown” folder
&-LL include B E USEroWN
EI{E ees El [E include
b r_eesh i "J r_ees_descriptor.h
['J r_ees_compiler.h o "J r_ees_user_types.h
"J r_ees_defines.h | r_ees_descriptor.c

"J r_ees_device.h
0| r_ees_memmap.h

IJ r_ees_types.h
llJ r_type_defs.h = [ﬂ sample
u r_ees_api.h [E y

u r_ees_exrfd_api.h e =] Fﬁmmun
=] r_ees_sub_api.h P | sample_control_ees.h
M| sample_ees_defines.h

in the “sample” folder

include

in the “source” folder | sample_ses_memmap.h

EI ”] source
E source E EES
=~ [E ees _ - ﬂ sample_control_ees.c
'-_'_:J r_Ees_apl.c =8 [E RL78_F25
'-_'_:J r_ees_exrfd_api.c & [E EES
: ‘_:J r_ees_sub_api.c ECCF{L
E include

llJ sample_config.h
- L sample_initsct_ees.h
B{.E SOUrCE
L& hdwinit.c
tﬂ main.c

‘ﬂ sample_initsct_ees.c

(2) Registration the RFD RL78 Type 03 target folders and target files.
The folders (“include”, “source”, “userown”) and source program files which are included in RFD RL78

Type 03 to register are shown below.

in the “include” folder in the “source” folder
B[_E include EI [E source
2L rfd El il commen

UIJ r_rfd.h ‘fJ r_rfd_common_api.c
iuJ r_rfd_compiler.h A ‘fJ r_rfd_common_centrol_api.c
- "J r_rfd_device.h B [Edataﬂash
"J r_rfd_memmap.h . ‘fJ r_rfd_data_flash_api.c
i'J r_rfd_types.h
-] r_typedefs.h in the “userown” folder
.'J r_rfd_common_api.h
"J r_rfd_cemmon_centrol_apih
.'J r_rfd_commaon_userown.h
.0 r_rfd_data_flash_api.h

B[E USErown
- ‘_’J r_rfd_common_userown.c

R20UT5477EJ0101 Rev.1.01 NS Page 79 of 114
May.30.25 RENES

EES RL78 Type 03

7. Creating a Sample Project for EES RL78 Type 03

71.3 Build Tool Settings

Set IDE setting necessary in order to build EES RL78 Type 03 using a CC-RL compiler.

CS+: Click the right mouse button for the “CC-RL(Build

setting of the build tool in the displayed window.

tool)” in a tree, and select “Property”. And set each

e? studio: Click the right mouse button for the project (‘EESRL78T03_PJ01”) in a tree, and select

“Properties”. And set each setting of the build

7.1.3.1 Include Path Settings

- Setting of the include path on CS+ inputs path in “Co
- Input the include directory path in the “Path Edit” wi
Options(for Compile)] - [Additional include paths].

(1) EES RL78 Type 03 include path

tool in the displayed window.

mmon Options” tab.

ndow displayed by selection of [Frequently Used

EESRL78T03\include

EESRL78TO03\include\ees
EESRL78T03\userown\include
EESRL78T03\sample\common\include
EESRL78T03\sample\RL78 F25\EES\CCRL\include

Path Edit

Path({One path per one line): [

EESRL78T03¥include
EESRL78T03¥include¥ees
EESRL7ET0userown¥include
EESRL73T03¥¥sample¥common¥include

H

(2) RFD RL78 Type 03 include path

EESRL72T03¥sample¥RL78_F25¥EES¥CCRL¥include
RFDRL73TO¥include

RFDRL78T03\include
RFDRL78T03\include\rfd

RFDRL78TO¥include¥rd

Browse...

- Setting of the include path on e? studio inputs path in

] Permit non-existent path

[Include subfolders automatically

“Properties” window.

- Input the include directory path in the window displayed by selection of “C/C++ Build” [Settings] -

“Compiler” [Source].

(1) EES RL78 Type 03 include path

${ProjDirPath}/generate
${ProjDirPath}/src/EESRL78T03/include
${ProjDirPath}/src/EESRL78T03/include/ees
${ProjDirPath}/src/EESRL78T03/userown/include

${ProjDirPath}/src/EESRL78T03/sample/common/include

& Properties for EESRL78T03_PJ01
, see
(2) RFD RL78 Type 03 include path — e
Builders & Tool Settings | Todichain| Device | #* Build Steps| " Build Artifact | i Binary Parsers| @ Error Parse
. . v ¢/ Build & Common Include file directories (-1)
${ProjDirPath}/src/RFDRL78T03/include B e T
» ™ Sourcd !
[. 050 $(ProjDirPath)/src/EESRLT8TO3/include
${PI'OJ Di rPath }/S rC/RF D RL78TO3/| nCI Ude/l‘fd (& Language ${ProjDirPath}/src/EESRL78TO3/include/ees
g 5 Object §{ProjDirPath)/src/EESRL78TO3/userown/include
tack Analysis = ization ${ProjDirPath}/src/EESRL78T03/sample/common/include
Tool Chain Editor (% Output Code ${ProjDirPath)/src/EESRLTBTO3/sample/RLT8_F25/EES/CCRL/include
C/C++ General) Miscellancous ${ProjDirPath)/src/RFDRL7BT03/include
Project Natures 1 MISRA C Rule Check || $(ProiDirPathy/src/RFDRL78T03/include/rfd
Project References 5 User
Renesas QF -
R20UT5477EJ0101 Rev.1.01 Page 80 of 114
RENESAS 9

May.30.25

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

7.1.3.2 Device ltem Settings

- Setting of the device Items on CS+ inputs in the “Link Options” tab.
- Setting the [Device] items
Select “Yes (-OCDBG)” in [Set enable/disable on-chip debug by link option].
Note: The example of a setting on condition of on-chip debugging execution.
Input the “A5” into [Option byte values for OCD]. [Example of permission of operation for on-chip
debugging] [The example for RL78/F25]

Select “Yes (-SECURITY_OPT_BYTE)” in [Set security option byte].
Input the “FE” into [Security option byte value]. [Example of enables read of on-chip debug and flash
serial programming security ID.] [The example for RL78/F25]
Note: Be sure to confirm the contents of “On-Chip Debug Option Byte” and “Security Option
Byte” in “Option Byte” chapter on the user's manual of a target device. And describe the
set value used with user application.

Select “Yes(Specify address range)(-OCDBG_MONITOR=<Address range>)”" in [Set debug monitor
area). Set “7TFE00-7FFFF” to [Range of debug monitor areal].

Note: The user needs to input the range of the area which the debugger uses with reference to
description of the user's manual for a target device. And please refer to “Memory Spaces
Allocated for Use by the Monitor Program for Debugging” in “Allocation of Memory
Spaces to User Resources” on the user's manual.

Select “Yes(-USER_OPT_BYTE)” in [Set user option byte].
Set “6E6BES” to [User option byte value]. (WDT stop, LVD reset mode, 40MHz [The example for
RL78/F25])
Note: Be sure to confirm the contents of “User Option Byte” in “Option Byte” chapter on the
user's manual of a target device. And describe the set value used with user application.

A, CC-RL Property
Library
v Dewvice
Set enable/disable on-chip debug by link option Yes(-OCDBG)
Option byte values for OCD A5
Set security option byte Yes(-SECURITY_OPT_BYTE)
Security option byte value FE
Set debug monitor area Yes(Specify address range){(-DEBUG_MONITOR=<Address range>)
Range of debug monitor area JFEDO-7FFFF
Set user option byte Yes(-USER_OPT_BYTE)
User option byte value GEGBES
Control allocation to trace RAM area No
Control allocation to hot plug-in RAM area No
List
\ Common Options ’f Compile Options ” AssembleOptions) Link Options ~ Hex Output Options ; Standard Library Ge
R20UT5477EJ0101 Rev.1.01 RENESAS Page 81 of 114

May.30.25

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

- Setting of the device Items on e? studio inputs in the “Properties” window.
- Select “C/C++ Build” [Settings] - “Linker” [Device]. And set device items on the displayed screen.

Put a check mark to [Secure memory area of OCD monitor(-debug_monitor)] in the screen.
Note: The example of a setting on condition of on-chip debugging execution.

Set “7TFE00-7FFFF” to [Memory area(-debug_monitor=<start address>-<end address>)]. [The example
for RL78/F25]

Note: The user needs to input the range of the area which the debugger uses with reference to
description of the user's manual for a target device. And please refer to “Memory Spaces
Allocated for Use by the Monitor Program for Debugging” in “Allocation of Memory
Spaces to User Resources” on the user's manual.

Put a check mark to [Set user option byte(-user_opt_byte)].
Set “6E6BES8” to [User option byte value(-user_opt_byte=<value>)]. (WDT stop, LVD reset mode, 40MHz
[The example for RL78/F25])
Note: Be sure to confirm the contents of “User Option Byte” in “Option Byte” chapter on the
user's manual of a target device. And describe the set value used with user application.

Put a check mark to [Set enable/disable on-chip debug by link option(-ocdbg)].

Note: The example of a setting on condition of on-chip debugging execution.
Input the “A5” into [On-chip debug control value(-ocdbg=<value>)]. [Example of permission of operation
for on-chip debugging]

Put a check mark to [Set security option byte (-security_opt_byte)].
Input the “FE” into [Security option byte value (-security_opt_byte=<value>]. [Example of enables read of
on-chip debug and flash serial programming security ID.] [The example for RL78/F25]
Note: Be sure to confirm the contents of “On-Chip Debug Option Byte” and “Security Option
Byte” in “Option Byte” chapter on the user's manual of a target device. And describe the
set value used with user application.

Q Properties for EESRL78T03_PJO1

Settings
Resaurce
Builders
v C/C++ Build Configuration: HardwareDebug [Active | v M

Build Variables
Environment -
% Tool Settings Toolchain Device Build Steps Build Artifact |a Binary Parsers @3 Error Parsers

Settings

SMS Assembler Security |D value (-security_id) ‘D

Stack Analysis

Tool Chain Editor
C/C++ General
Project Natures
Project References
Refactoring History
Renesas QF
Run/Debug Settings

o
) Common
) Compiler
) Assembler
w 183 Linker
(2 Input
¢ List

(# Optimization
B3 Carti

(=2 Miscellaneous
(= User

& Converter

Serial Programming Security |D value (-flash_security_id) ‘FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

[] Reserve working memory for RRM/DMM function (-rrm)

Secure memory area of OCD monitor (-debug_monitor)

Memory area (-debug_monitor=<start address>-<end address>) |?FE00—?FFFF

Set user option byte (-user_opt_byte)

User option byte value (-user_opt_byte=<value=) ‘BEBBES
Set enable/disable on-chip debug by link option (-ocdbg)

On-chip debug control value (-ocdbg=<value>) ‘AS

Set security option byte (-security_opt_byte)

Security option byte value (-security_opt_byte=<value>) ‘FE
RAM area without section (-self/-ocdtr/-ocdhpi) None

Output a warning message when a section is allocated to the RAM area (-selfw/-ocdtrw/-ocdhpiw)
[check specifications of device (-check_device)
[] Suppress checking section allocation that crosses (64KB-1) boundary (-check_64k_only)
[] Do not check memory allocation of sections (-no_check_section_layout)

Address range of memory type (-cpu)

R20UT5477EJ0101
May.30.25

Rev.1.01

LENESAS

Page 82 of 114

EES RL78 Type 03

7. Creating a Sample Project for EES RL78 Type 03

7.1.3.3 Section Item Settings

- Setting of the section ltems on CS+ inputs in the “Link Options” tab.

- Setting the [Section] items

Set “No” to [Layout sections automatically]. And sections come to be displayed on [Section start address].
” button of the right-hand side which sections are displaying, and a “Section settings”
screen is displayed.

Press the “ |,.,

Dewice

List

w Section

Output Code

Varniables Hunchons information

Verify
Message

Layout sections automatically
Section start address

Section that outputs external defined symbols to the file
ROM to RAM mapped section

No

«const text. RLIB._SLIB. textf_constf__dat{..]
Section that outputs extemal defined symbols to the file
ROM to RAM mapped section[£]

- Setting of the section Items on e? studio inputs in the “Properties” window.

- Select “C/C++ Build” [Settings] - “Linker” [Section]. And set section items on the displayed screen.

Remove a check mark to [Layout sections automatically(-auto_section_layout)]. Press the “|,,.|” button
of the right-hand side which sections are displaying, and a “Section viewer” screen is displayed.

type filter text

Resource
Builders
w C/C++ Build
Build Variables
Environment

Logging

Stack Analysis

Tool Chain Editor
C/C++ General
Project Natures
Project References
Renesas QF
Run/Debug Settings

e Properties for EESRL78T03_PJO1
Settings

Configuration: |HardwareDebug [Active]

i3 Tool Settings | Toolchain| Device A Build Steps

3 Common
3 Compiler
3 Assembler

<
BEED

3 Linker
;‘L’ Input

33 Advanced
List
Optimization

<

~ | Manage Configurations...

Build Artifact E’ Binary Parsers| €3 Error Parsers

Specify execution start address (-entry)

Execution start address (-entry=<symbol>) _start

Target the area located before the execution start symbol for optimization (-ALLOW_OPTIMIZE_ENTRY_BLOCK)

Dl_ayout sections automatically (-auto_section_layout)

Allocate sections per each module with automatic section layout (-split_section)

Sections (-start) ‘ccnst,‘text,‘data,‘sdataj.RLIBJ.SLIB,‘textﬁ.consthRFD,DATA,nJRFD,CM| E

No

i‘é Miscellaneous
i‘é User
®2 Library Generator
% Converter

R20UT5477EJ0101
May.30.25

Rev.1.01 RENESAS

Page 83 of 114

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

- Section setting operation for CS+ and e? studio

Set “0x05000” to a top address.
Add the sections defined by “#pragma section” in EES RL78 Type 03 to the program area (code flash

memory) and the RAM area. Refer to “Table 2-7 Sections Used in EES” for the details of each section.

Note: In this description, it is a premise to select a medium model as Memory Model of Compile

Options. (It is the same as the “auto select” in R7F125FPL)
Refer to the user's manual of CC-RL for the section name of each program when a “small

model” is selected.

R20UT5477EJ0101 Rev.1.01 RENESAS Page 84 of 114

May.30.25

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

(1) The addition of the sections for EEPROM emulation

= The addition of the sections for EEPROM emulation on CS+

Add sections necessary for code flash memory reprogramming on a “Section Settings” screen. It also
includes a section for the RFD RL78 Type 03.

Add to the program area: RFD_DATA_n, RFD_CMN_f, RFD_DF_f, EES_CODE_f, SMP_EES _f,
EES_CNST f
Add to the RAM area: RFD_DATA_nR, EES_VAR_n, SMP_VAR n

Section Settings x

Address Section Additional

(x05000 const sections
text RFD_DATA n
RLIB Mew Cveray...
SLIB RFD_CMN_f
-‘““sﬁ RFD_DF_f
data EES CODE_f
sdata
RFD_DATA_n SMP_EES_f
RFD_CMN EES CNST f
RFD_DF_f
EES_CODE_f
SMP_EES § RFD_DATA nR
EES_CNST f

0xF5FOD dataR EES VAR n
lbss |
RFD_DATA_nR SMP_VAR n
EES_VAR_n
SMP_VAR_n

OcFFE20 sdataR Impart...

_ sbss Export...
Cancel Help

Be sure to return [Layout sections automatically] to “Yes”, after pressing the “OK” button.

List
Variables/functions information
v Section
Layout sections automatically Yes{-AUTO_SECTION_LAYOUT) I
HLautomatically allocate sections per module No
Section start address .const, text. RLIB,.SLIB. textf. const . data,.sdata, RFD_DAT
Section that cutputs external defined symbols to the file Section that outputs extemal defined symbols to the file[0]
ROM to RAM mapped section ROM to RAM mapped section[Z]
Verify
Press the right-hand side “|...| ” button by [ROM to RAM mapped section], display the “Text Edit” screen,
and add the section for copying to RAM from ROM.
Text Edit ROM to RAM mapped
Text: section (-rom)
.data=.dataR
data=dataR T
sdata=sdataR |

RFD_DATA_n=RFD_DATA_nR .sdata=.sdataR

RFD_DATA n=RFD_DATA_nR

R20UT5477EJ0101 Rev.1.01 NS Page 85 of 114
May.30.25 RENES

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

« The addition of the sections for EEPROM emulation on e2 studio

Add sections necessary for EEPROM emulation on a “Section Viewer". It also includes a section for the
RFD RL78 Type 03.

Add to the program area: RFD_DATA n, RFD_CMN_f, RFD_DF _f, EES CODE_f, SMP_EES f,

EES _CNST f
Add to the RAM area: RFD_DATA nR, EES_VAR n, SMP_VAR n
L X Additional
Section Viewer sections
Address Section Name RFD_DATA_n
0x00005000 const
text RFD_CMN f
data
ot RFD_DF f
RLIB EES_CODE f
SLIB
textf f SM P_EES_f
const e EES_CNST f
RFD_DATA_n New Overlay — —
RFD_CMM_f / Remove Section
oo Move Up RFD_DATA nR
EES_CODE_f _ |
SMP_EES.f Move Down EES VAR n
EES CNST f Import... — il
OXO00FSFO0 dataR Expert.. SMP_VAR_n
bss
RFD_DATA rR /
EES_VAR_n
SMP_VAR_n
Ox000FFE20 sdataR
sbss

Be sure to put a check mark to [Layout sections automatically (-auto_section_layout)], after pressing the

“OK” button.
Resource B -
Build ®3 Common Specify execution start address (-entry)
uilders
] &3 Compil : : -
v C/C++ Build :\; A‘::;::b‘irer Execution start address (-entry= <symbol>) _start
Build Varnables % Link Target the area located before the execution start symbol for optimization (-ALLOW _C
- w &2 Linker
Environment v (B Input ayout sections automatically (-auto_section_layout)
Logging - 5 Advanced [[] Allocate sections per each module with automatic section layout (-split_section)
Settings L
) 3 List Sections (-start) const, text,data,sdata, R

Stack An?IySI% 5 Optimization
Tool Chain Editor T - No

C/C++ General %; De _|on

i 22 Device

Select “C/C++ Build” [Settings] - “Linker” [Output], display the “ROM to RAM mapped section (-rom)”
screen, and add the section for copying to RAM from ROM.

ROM to RAM mapped section (-rom)

.data=.dataR
sdata=.sdataR

RFD_DATA_n=RFD_DATA_nR

ROM to RAM mapped
section (-rom)

.data=.dataR

.sdata=.sdataR

RFD_DATA n=RFD_DATA_nR

R20UT5477EJ0101
May.30.25

Rev.1.01

RENESAS

Page 86 of 114

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

7.1.4 Debug Tool Settings

This section describes the contents of connection setting on a target board necessary in order to execute on-
chip debugging. As a debugging tool, it is a premise that E2 Lite is selected. Refer to the user's manual for
each IDE for the details of other debugging tool setting.

On CS+, right-click a mouse by “RL78 simulator (Debug Tool)” [initial setting] of a tree. And select the “RL78
E2 Lite” by “Using Debug Tool” displayed there. And a “RL78 E2 Lite Property” screen is displayed, and
select each tab, and perform debugging tool setting.

On e? studio, right-click a mouse in the target project of a tree. Selection of [Debug As] - [Debug
Configurations...] will display the “Debug Configurations” screen. On the tree of a screen, select the target
project (‘EESRL78T03_PJ01 HardwareDebug”) of [Renesas GDB Hardware Debugging]. And the displayed
“Debugger” tab performs debugging tool setting.

Note: The power is already supplied to the target board, or when power supply capacity is
insufficient, the emulator including E2 Lite may be unable to supply power to a target
board. Be sure to refer to “the user's manual and Additional Document for User's Manual
(Notes on Connection of RL78)” for the emulator for target devices, and use an emulator.

7.1.4.1 Setting of Connection with Target Board

= On CS+, set up the connection with target board(via E2 Lite) with “Connect Settings” tab.
- [Connection with Target Board] item

In order to let power supply(Supply voltage: 3.3V) from E2 Lite to a target board, it is necessary to set
“Yes” to [Power target from the emulator (MAX 200mA)].

@ EESRL78T03_PJO1 - CS+ for CC - [Project Tree]
I7LE BEE TRV JOSHNR) ELEE® FIOJO Y-Lm 9142w ALFE)
@Baoobe BB X Bl 0o %S R Z AT N IONCEC R XN R
[EBY Project Tree Ll | 75 Property
7403 @
= =-_f; EESRL78T02 PJO1 (Project)” ;
g = R7F125FPLAxFB(AES) (Microcontroller) Clock
- 4 CC-RL {Build Tool Connection with Emul
- RL?B E2 Lite (ngug Tool) ~ Connection with Target Board
" Program Analyzer (Analyze Tool) E’Dwer target frorr. the emulator.(MAX 200mA) ‘I‘es
- File Supply voltage [V]
- jl ~ Flash
Security ID 00000000000000000000000000000000
Serial Programming Security ID FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Permit flash programming Yes
Permit rewrite the serial programming secunty ID No
Initialize unused space during flash programming No
Erase flash ROM when starting No
|l Internal ROWRAM
"‘. Connect Settings l Debug Tool Settings aj Download File Settings ‘/ Hook Transaction Settings ,'f

R20UT5477EJ0101 Rev.1.01 NS Page 87 of 114
May.30.25 RENES

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

- On e? studio, set up the connection with target board(via E2 Lite) with “Connection Settings” tab.

- [Connection with Target Board] item

In order to let power supply(Supply Voltage: 3.3V) from E2 Lite to a target board, it is necessary to set

“Yes” to [Power Target From The Emulator (MAX 200mA)].

Name: |EE5RL?8T03,PJU1 HardwareDebug
|_', Mairl_lb Startup | [l Common| &~ Source

Debug hardware: E2 Lite (RL78) ~ | Target Device: |R7F125FPL

GDB SettingDebug Tool Settings

v Clock
Main Clock Frequency[MHz] Using Internal Clock
Sub Clock Frequency[kHz] Using Internal Clock
Monitar Clock System

~ Connection with Target Board I
Emulator (Auto)
Low voltage OCD board No
Power Target From The Emulator (MAX 200mA) Yes
Supply Voltage[V] 33
Hot Plug No

v Flash
Current Security 1D (HEX) 00000000000000000000000000000000
Current Serial Programming Security ID (HEX) FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Permit rewrite the serial programming security ID No
Permit Flash Programming Yes
Use Wide Voltage Mode Yes
Erase Flash ROM When Starting Yes

R20UT5477EJ0101 Rev.1.01 xENESAS Page 88 of 114

May.30.25

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

7.2 Creating a Project in the Case of Using IAR Compiler

IAR Embedded Workbench can be used for an IAR compiler as an IDE. EES RL78 Type 03 and RFD RL78
Type 03 are registered and built in the project created by the IDE. An example of creating a sample project in
case each IDE is used is shown. Because to understand an IAR compiler and each IDE, it is necessary to
refer to the user's manual of each tool product.

IAR Systems, IAR Embedded Workbench, C-SPY, IAR, and the logotype of IAR Systems are
trademarks or registered trademarks owned by IAR Systems AB.

R20UT5477EJ0101 Rev.1.01 NS Page 89 of 114
May.30.25 RENES

EES RL78 Type 03

7. Creating a Sample Project for EES RL78 Type 03

7.2.1

(1) An example of creating a sample project which used IAR Embedded Workbench (IDE)

Example of Creating a Sample Project

* The IAR Embedded Workbench starts and from the [Project] menu, select [Create New Project...], the

“Create New Project” window will open.
- Select the “C” as [project templates].

- When you click the [OK] button, the “Save As” window will open.

- Create “EESRL78T03_PJ01” folder temporarily, and move into a folder.
- The Project File name is temporarily set to “EESRL78T03_PJ01”.

Create New Project

pad

Tool chain: RLV3

Froject templates:

------ 2y Empty project

e
b B Cot
:

-7 DLib

------ 2y Extemnally built executable

Description;

Createsz a C project.

Cancel

° Save As
4+ <« |AR_Project ‘ v O Search EESRL78T03_PIO1
Organize * New folder =
Name Date modified Type

File name:| EESRL78T03_PJO1

Save as type: Project Files (“.ewp)

A Hide Folders

No items match your search.

Cancel

R20UT5477EJ0101 Rev.1.01
May.30.25

RENESAS

Page 90 of 114

EES RL78 Type 03

7. Creating a Sample Project for EES RL78 Type 03

(2) Selection of a target device
- On IAR Embedded Workbench, I click the right mouse button of the project (“EESRL78T03_PJO1 -

Debug”) in a tree. When an “Options” is selected, the “Options for node [Project name]” window is

displayed.
|Workspace * I X | mainc x
|Debug V|
Files] int nain{ void }
E @EESRL78T03 PJ01 — Debug Optiens... | t return 0:
main.c Make 1
B Qutput Compile
Rebuild All
Clean

EESRL78T03_PJO1

C-5TAT Static Analysis
Stop Build
Add

Remove

Rename...
Version Control System

Open Containing Folder...
File Properties...

Set as Active

- Input setting in the [General Options] - [Target] tab of “Options for node [Project name]” window.
- Press “ |, | " button of [Device]. And select “RL78 - F25” - “RL78 - R7F125FPL”". Select “Far” as [Code
model] and select “Near” as [Data model].

May.30.25

RENESAS

Options for node "EESRL78T03_PJO1" X
Category:
|| General Options ‘
Static Analysis
C/C++ Compiler
Assembler Library Options 1 Library Options 2 Stack/Heap
Target
Output Converter J (S RL78 core 1 - Unspecified
Custom Buid Device RL78 core 52 - Unspecified
Build Actions o
Linker I RL78 - RTE125FPL I The | RL78 core S3 - Unspecified
RL78 - D1A
Debugger
RL78 - Dxx &
COM Port Code model
RL78 - F12
E1l
E2 I Far I RL78 - F13
E20 T RL78 - F14
U Use far runtime library calls
E2 Lite / E2 On-board LRl
EZ-CUBE Data model RL78 - F1A
- RL78 - F1E
EZ-CUBE2 | Near . |
Simulator RL78 - F23
TK . RL78 - F24
Near con{ RL78 - R7F125FGL RL78 - F25 ’
HQverid gi7g. p7Fi2seL RL78 - FGIC
Mirror Rt RL78 - R7F125FML RL78 - FGxx
RL78 - RTF125FPL I‘ RL7S - Fxx
RL78 - G10
RL78 - G11
RL78 - G12
RL78 - G13
[RL78 - G13A
RL78 - G14
R20UT5477EJ0101 Rev.1.01 Page 91 of 114

EES RL78 Type 03

7. Creating a Sample Project for EES RL78 Type 03

7.2.2 Example of Registration of Target Folders and Target Files

This describes an example of file registration required to execute EEPROM emulation.

Instead of registering a folder by IAR Embedded Workbench, select [Add Group] of the [Project] menu, and
add a group. The example into which | add the group of the same structure as the folder for EES RL78 Type

03 and RFD RL78 Type 03, and files are registered is shown.
The following example shows (1) EES RL78 Type 03 and (2) RFD RL78 Type 03 groups added:

B @EESRL7S8TO3 PJO1 —
- B EESRL7ETOS
& M include

L Wees

& B sarmple

-CI:II"I"II"I"II:II"I
| |— M include
| l—El B source
| L mlees
Lo ERL7EF25
L= sEES
Lo d R
I— B include

L— & source

1 B zource

L — mlces

L2 W uzerown

L — 8 include

B RFDRL7ETOS
[] Cutput

= WEESRL78TO03_PJO1 — _.

B EESRL7ETOD
-] Bl RFORL7ETOR
21 B include
L— mlirid
& M source
|— B common
L B dataflazh
— -LJSEI’DWI"I
-Output

(1) EES RL78 Type 03

(2) RFD RL78 Type 03

- Exclusion of the file automatically added by the function of IDE.
There are files added automatically in the created project. The same file as these exists also in the
“sample” folder of EES RL78 Type 03. Therefore, using the function of IDE, select those files from tree and

excludes from a

project.

- IAR Embedded Workbench: Clicks the right mouse button for the file of tree. And exclude the target

“main.c” file by

“Remove” function.

R20UT5477EJ0101
May.30.25

Rev.1.01

RENESAS

Page 92 of 114

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

(1) Registration of the EES RL78 Type 03 files.

The groups (“include”, “source”, “userown”, “sample”) and source program files which are included in EES

RL78 Type 03 to register are shown below.

in the “include” group in the “sample” group
—=1 M include —=1 Wl sarmple
-1 Wl ees = B comman
— klressh I—E_l M include
— [r_ees_cormpiler b | b B sample_contral sesh
— |kl r_ees definesh | |— zample_ees_defines h
— |l r_ees_device h | L [l zample_ees_mermmap h
— [l r_ees memmaph L3 & source
— |l r_ees_types.h |—E| B ces
— |l r_type_defs h sample_control_ees.c
— [klr_eesapih] ERL7AF2E
— B r_ees_exrfd_apih Lo mEE=
— klr_ees_sub apih Lo msR
. I—El B include
in the “source” group | L [sample_canfie b
—E1 B zource I—EJ Bl source
l—El B ees low_levelinit.c
r_ees apic Frain.c
r_ees exrfd apic option_byte.c
r_ees_sub_apic L— B sample_linker file.icf

in the “userown” group

l—El B uzerown
|—E| M include
| |— [kl r ees descriptor b
| L bl r ees uzer typesh
r ees descriptor.c

(2) Registration of the RFD RL78 Type 03 files

The groups (“include”, “source”, and “userown”) and source program files which are included in RFD
RL78 Type 03 to register are shown below.

in the “include” group in the “source” group
=1 B include £ B source
e B rid l—EI Bl common
}— Llr rfdh | [r rfd_common_apic
}— k] r rfd_compiler b | [£) ¥ _rfd_commaon_contral_apic
F— B r_rid device h L& ml dataflash
}— r_rfd_merimap b v rfd_data_flash_apic

}— r_rid_tvpesh
L k] r_typedefs h
— k] r_rfd_common_apih
Il r_rfd_commaon_contral_apih s B userown
— Il r_rfd_common_userown b

—] r_rfd_data_flazh_apih

in the “userown” group

r_rfd_common_userawn.c

R20UT5477EJ0101 Rev.1.01 NS Page 93 of 114
May.30.25 RENES

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

7.2.3 Integrated Development Environment (IDE) Settings

Set IDE setting necessary in order to build EEPROM emulation using an IAR compiler.
IAR Embedded Workbench: Click the right mouse button for the project (‘EESRL78T03_PJ01”) in a tree, and

select “Options”. And set each setting of the “Category” in the displayed window.
7.2.3.1 Include Path Settings

- Setting of the include path on IAR Embedded Workbench selects “C/C++ Compiler” of “Category”, and
inputs path in “Preprocessor” tab.
- Input the Include directory path in the “Edit Include Directories” window displayed by selection of
[Additional include directories: (one per line)].

COM Port

Options for node "EESRL7aT03_PJo1" *
Category: Factory Settings
] Muiti-file Compilation
Static Analysis Discard Unused Publics
‘ CfC++ Compiler

Assembler Language 1 ‘Language 2 Optimizations Output List
Output Converter h Diagnostics Encedings Extra Options
Custom Build X X X

Build Actions [lgnore standard include directories

Linker Additional include directories: (one per ling)

Debugger C¥lUsers¥oconod¥Documents¥IAR_Project¥EESRLTETO3_PJOI¥EESRLY A D

C¥lUsers¥ocono¥Documents¥IAR_Project¥EESRLTETO3_PJOT¥EESRLY

Ei C¥lUsers¥oconc¥Documents¥IAR_Project¥EESRLTETO3_PJOT¥EESRLY
E2 C¥Usersfoconod¥Documents¥IAR_Project¥EESRLTETO3_PJOTXEESRLY
20 C¥lUsersfoconod¥Documents¥IAR_Project¥EESRLTETO3_PJOIXEESRLY W

E2 Lite /E2 On-board
EZ-CUBE

Preinclude file:

EZ-CUBE2
Simulator Defined symbols: (one per line)
T* [Preprocessor output to file
Preserve Lomments
Generate #line directives
Cancel
Edit Include Directories >

Include directon

C:h U sers s hDocuments AR _ProjecthEESRLYETO3_PIMASEESRLZAT 03uinclude

A sers ot D ocumentzh AR _Project \EESRLYET 03_PIDISEESRELYET 03\include! ees

U zers s Documentzs AR _ProjecthEESRLYETO3_PJIDSEESRLAAT 03w zarmplecommontinciude

C:hUsers s D ocuments s AR _ProjecthEESRLYETO3_PJOTSEESRLYAT 03hsampletRLYE_FZ5A\EES ARNncude
A sers ot D ocument s AR _Project \EESRLYETO3_RJOTEESRLYET 03 wzeromntinciude

C:hUsers s Documents 4R _Projecth\EESRLYETO3_PJOTWRFDRLYET 03%inchude

CA M zersammest D ocumentzh AR _Project\EESRLYET03_PI0TRFDRLYET 03\nclude'yfd

< Click to add:

Cacel

R20UT5477EJ0101 Rev.1.01
May.30.25

RENESAS Page 94 of 114

EES RL78 Type 03

7. Creating a Sample Project for EES RL78 Type 03

- The example of directory path setting.
It is the example when the project directory is placed in “C:\Users\xxxxxx\Documents\IAR_Project\”.

(1) EES RL78 Type 03 include directories
C:\Users\xxxxxx\Documents\IAR_Project\EESRL78T03_PJO1\EESRL78T03\include
C:\Users\xxxxxx\Documents\IAR_Project\EESRL78T03_PJO1\EESRL78T03\include\ees
C:\Users\xxxxxx\Documents\IAR_Project\EESRL78T03_PJO1\EESRL78T03\sample\common\include
C:\Users\xxxxxx\Documents\IAR_Project\EESRL78T03_PJO1\EESRL78T03\sample\RL78_F25\EES\IAR\include
C:\Users\xxxxxx\Documents\IAR_Project\EESRL78T03_PJO1\EESRL78T03\userown\include

(2) RFD RL78 Type 03 include directories
C:\Users\xxxxxx\Documents\IAR_ProjecttEESRL78T03_PJ01\RFDRL78T03\include
C:\Users\xxxxxx\Documents\IAR_Projec\EESRL78T03_PJO1\RFDRL78T03\include\rfd

Note: About the path setting of include directories.
When the project is copied in the case appointed by the absolute path, the setup is needed
again. It is possible to appoint a relative path ($PROJ_DIRS) so that it can be used, even if

it copies the project.

Refer to each reference manual of IAR Embedded Workbench about how to appoint the

relative path.

7.2.3.2 Debugger Settings

- Select “E2 Lite/E2 On-Board” from [Driver] of [Debugger] — [Setup] tab on the assumption that on-chip

debugging is implemented.

Categony:

Options for node "EESRL7ET03_PJo1"

General Options

Static Analysis
CfC++ Compiler
Assembler
Output Converter
Custom Build
Build Actions
Linker

IE Debugger

COM Port

El

E2

E20

EZ-CUBE
EZ-CUBEZ
IECLBE
Simulator
TK

E2 Lite / E2 On-board

Setup Images Extra Options Plugins

Driver. Bun to:

Factory Settings

[|E2Lite / E2 On-board ~| |main

Setup macros

[Use macro file:

Device description file

[Override default:

$TOOLKIT_DIR$¥config¥debugger¥ior7i125fpl.ddf

Cancel
Note: Refer to each reference manual of IAR Embedded Workbench about the other items to be
set.
R20UT5477EJ0101 Rev.1.01 Page 95 of 114

May.30.25

LENESAS

EES RL78 Type 03

7. Creating a Sample Project for EES RL78 Type 03

7.24

Linker Configuration File (.icf) Settings

On IAR Embedded Workbench, Linker configuration file (*. icf) describes link setting executed by building.

Select “Options” by the click right mouse button of project with tree. Select [Linker] by “Category” in the

displayed window and put a check mark to “Override default” of the [Config] tab. Select Linker configuration

file (*. icf) in the “Open” window of “| | ” button. Select the “sample_linker_file.icf” file prepared for EES

RL78 Type 03.

- sample_linker_file.icf (\sample\RL78_F25\EES\IAR\source\)

Categony:

General Options

Static Analysis
C/C++ Compiler
Assembler
Output Cornverter
Custom Build
Build Actions

Options for node "EESRLTETOZ_Plo1"

Debugger
COM Port

Factom Settings

Zdefine Checksum

Cenfig

Encodings Extra Options
Advanced Output List

Diagnostics

Library Input Optimizations

Linker configuration file
Qverride default
| TETOZ¥sample¥RLTE_F25¥EES¥IAR¥source¥sample_linker_file.icf

@ Open
€ - -1

Organize « MNew folder

CCRL

AR
include
project

source

<« EES » IAR » source

~

w

Search source pel

v O

MName

Im sample_linker_fileicf I

File name: | sample_linker_file.icf

v| Icf Files (*.icf) v

Cancel

Note: Refer to each reference manual of IAR Embedded Workbench about the descriptive
content of Linker configuration file, and the details of the description method.

R20UT5477EJ0101
May.30.25

Rev.1.01

RENESAS

Page 96 of 114

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

7.2.4.1 Section Settings

The outline of the section added to Linker configuration file (*. icf) currently prepared by EES RL78 Type 03

explained.

Note: Refer to each reference manual of IAR Embedded Workbench about the section setting
method and the detail of functions for Linker configuration file.

(1) The addition of the sections for EES RL78 Type 03.
Add the initial value of each section of EES_CODE, SMP_EES, and EES_CNST to ROM area
(ROM_far).

- The additional section of the ROM _far area:
EES_CODE, SMP_EES, EES CNST

- The additional section of RAM_near area:
EES_VAR, SMP_VAR

(2) The addition of the sections for RFD RL78 Type 03.
Add the initial value of each section of RFD_DATA, RFD_CMN, and RFD_DF to ROM area (ROM_far). It
is necessary to copy RFD_DATA to the section of RAM area (RAM_near).

- The additional section of the ROM_far area (The program and the data for copying to RAM area to be
placed in ROM area):
RFD_DATA_init, RFD_CMN, RFD_DF
- The additional section of RAM_near area (Data copied from ROM area):
RFD_DATA

R20UT5477EJ0101 Rev.1.01 NS Page 97 of 114
May.30.25 RENES

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

7.2.4.2 Option Bytes Settings

The Option bytes definition of RL78 is described in Linker configuration file (*. icf) of IAR Embedded
Workbench attachment or the “sample_linker_file.icf” file prepared for EES RL78 Type 03. The Option Bytes
value for EES RL78 Type 03 is described by the “option_byte.c” file.

Note: Refer to each reference manual of IAR Embedded Workbench about the option bytes
setting method for Linker configuration file.

The example of an Option Bytes definition of Linker configuration file for EES RL78 Type 03 (*. icf).

define block OPT_BYTE with size =5 {R_OPT_BYTE,
ro section .option_byte,
ro section OPTBYTE };

I
place at address mem:0x000CO { block OPT_BYTE };

The example of description of the Option Bytes value in the “option_byte.c” file.

#pragma location = "OPTBYTE”
root const unsigned char option_bytes[5] = |
0x6E, * 01

10 *

operation stopped

in HALT/STOP mode

++—— Watchdog timer
overflow time is
2716 / fIL =
3799.18 ms

- Watchdog timer

operation disabled
H———— 100% window open
period
—————————— Interval interrupt
is not used

[
I+—— Watchdog timer
|

* X W W W K N K N N N W

L]
N R R I I

¥

0x68,

¥

¥
—

— LVD reset mode *
e Control of clock monitor operation is enabled #
OxES8,

* % W W

| +++++— 40 MHz =)
———————— Selects P130 as a general port pin (output only) =
10100101 =
1] 1] =
+=|——++— 0CD: enables on-chip debugging function =*
I Enables flash serial programming operation. *
0xFE # Enables read of on—chip debug and flash serial programming security ID *

0xAb,

R

- Description of user option byte value [The example for RL78/F25]:

The value of User option byte (000COH-000C2H) in “option_byte.c” file is “OX6E6BES8”.
(WDT Stop, LVD reset mode, 40MHz)

The value of on-chip debug option byte (000C3H/040C3H) in “option_byte.c” file is “OxA5”.
(The example of enable on-chip debug operation)

The value of security option byte (000C4H/040C4H) in “option_byte.c” file is “OXFE”.
(The example of enables read of on-chip debug and flash serial programming security ID.)

Note: Be sure to confirm the contents of “User option byte”, “On-chip Debug Option Byte” and
“Security Option Byte” in “Option Bytes” chapter on the user's manual of a target device.
And describe the set value used with user application.

R20UT5477EJ0101 Rev.1.01 NS Page 98 of 114
May.30.25 RENES

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

7.2.5 On-chip Debug Settings

After executing building of a target project, connect E2 Lite, select [Download and Debug] from [Project]
menu, and start debugging.

7.2.5.1 Example of How to deal with Connection Errors

Explain the common examples of how to deal with an error which happened by connection in on-chip run

debug. This is the case when an ID code mismatch or power failure occurs.

Note: In cases where a target cannot be connected by other causes, please confirm each
reference manual from [Help] of IAR Embedded Workbench.

When selecting [Download and Debug] and starting debugging, an “E2 Lite hardware setting” screen may be
displayed. The cause may be ID code mismatch or power setting error.

- In the case of the ID code mismatch:

“Cannot verify the ID code.” etc. may be displayed as a message. In this case, put a check mark to
“Erase flash before next ID check” of the [ID code] in an “E2 Lite HardwareSetup” window, and continue.
And the flash memory is erased and debugger may be connected.

- In the case of power setting error:

Initial setting of “Power supply” is “Target”. When supplying power supply from E2 Lite, select “3V” by
the pull down menu for “Power supply”.

Caution: Be sure not to set “3V”(supply power from E2 Lite), when the power is supplied to the

target.
E2lite Hardware Setup (RTF125FPL) X
Flash
Security ID

| 00000000000000000000000000000000 |

Serial Programming Security 1D
|FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF |

| O Erase flash befare next ID check |

O Enable serial programming secunty 1D rewrite

Time: unit

O Fill unuzed space with 0<FF when writing flazh

Uze flazh zelf programming nees v
Main clock Sub clock Monitor clock

Clock board Clock board ® System

Default

& Ewternal & External O User

System Syztem Fail-safe break

MHone w | MHz |N0ne | kHz Wiew setup

Flash programming Target power off Low-voltage Power supply
& Permit 2 Permit 2 0On

_ [2v |
Mot Permit

& Mot Permit & Off
Fin mask Peripheral break Target h

WwAIT OTARGET RESET

O A [timer] Connect

TOOLO ~
Ml OINTERMAL RESET O B [zerial etc.] Mat Connect

Memary map

Start address: Length: Type:

0x0 Internal ROM v Add
000000 - Ox7FFFF Intermal ROM 512 Kbytes

0+FBFO0 - OFFEFF Internal RakM 40960 bytes

Remove
Remave &l

R20UT5477EJ0101 Rev.1.01 NS Page 99 of 114
May.30.25 RENES

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

7.3 Configurations Modify Procedure for Changing Device

When using a device other than RL78/F25 (R7F125FPL), the address settings in the section and some of
the sample programs must be modified. This section describes the where to modify and procedure to modify.

To modify the setting values, refer to MCU List for RL78/F22, F25 shown below and change the setting
values according to the device you are using. An example of referencing the MCU List for RL78/F22, F25
and an example of where to modify is shown below.

- MCU List for RL78/F22, F25

Code Flash memory User RAM Data Flash memory
MCU Grou i i Target MCU name
S| E= Star/End Address £ Star/End Address <72 StaryEnd Address -
(bytes) (bytes) (bytes)
RL78/F22 128K Ox00000 - Ox1FFFF 12K OxFCFOO0 - OxFFEFF 8K 01000 - OxF2FFF R7F122FxG(x=17, B, G)
RL78/F25 | 512K | 0x000DO - OXTFFFF 40K | OXFSFOO - OXFFEFF 16K | 0xF1000 - DXFAFFF R7F125FxL(x =G, L, M, P)
[R-1] [R-2] [R-3] [R-4] [R-5] [R-6] [R-7] [R-8]
MCU Group | pamstart | RoMEnd | ROMEnd | Data Flash . Target MCU name
Address Address 1 Address 2 | End Address OCD_ROM] Trace RAM | Hot plug-in | END_BLOCK
RL78/F22 0xFCF00 0x0FFFF Ox1FFFF OxF2FFF 0x1FEDD 0xFD300 OxFDS00 64 R7F122FxG(x=7, B, G)
RL78/F25 0xF5F00 0x0FFFF Ox7FFFF OxF4FFF 0x7FEDD OxFE300 OxF6500 256 R7F125Fd(x= G, L. M, P)

- Example of reference of the MCU List for RL78/F22, F25

For example, when modifying the setting value indicated by [R-1] (the start address of RAM) as shown in
the following figure. Here, refer to the setting value of the start address [R-1] (RAM Start Address) of RAM
shown in the MCU List for RL78/F22, F25 and set the value of RL78/F22 (R7F122FGG).

Example of where to modify the start address of RAM: RL78/F25 (R7F125FPL RAM: 40 Kbytes)
RFU_U® TA

RFD_GMN_{

RFD_DF f

EES_CODE f

SMP_EES

EES GNST

[R-1] — [[oxFefon | [datsR

bzs

Example of setting the start address value of RAM when using RL78/F22 (R7F122FGG RAM: 12 Kbytes)
FFU_OBTARR

RFD_GMM_f

RFD_DF {

EES CODE f

SMP_EES f

EES GHST f

0xFCFO0 | dataR

bss

R20UT5477EJ0101 Rev.1.01 NS Page 100 of 114
May.30.25 RENES

EES RL78 Type 03

7. Creating a Sample Project for EES RL78 Type 03

The value to be set in [R-1] refers to the MCU List for RL78/F22, F25 and sets the start address value of

RAM of the target device.

In the column “Target MCU name” of the MCU List for RL78/F22, F25, search for the row for R7F122FxG.
Next, find the cell in the [R-1] column that intersects the row of R7F122FxG.

Since “OxFCF00” applies, the setting value of [R-1] is RL78/F22 (R7F122FxG) value “OxFCFO00”.

[R-1] [R-2] [R-3] [R-4] [R-5] [R-6] [R-7] [R-8]
MCU Group || paMStart | ROMEnd | ROMEnd | DataFlash . Target MCU name
o b a1 s | e aions | 0cD_ROM | Trace_RaM | Hotplugn END_BLOCK
rL78/F22 || oxrcroo | oorerr | oxiFrre | oxe2rre | oxaFeoo | oxepz00 | oxeDsoo 64 |RIF122FxG(x=7, B, G)
RL78/F25 | OxFSF00 | OXOFFFF | OX7FFFF | OxFAFFF | Ox7FEQD | 0xFG300 | OxFG500 256 |R7TF125FAL(x=G, L, M, P)

- Example of where to modify

Points that need to be modified from the RL78/F25 (R7F125FPL) settings are listed from “7.3.1 CC-RL
Compiler Environment Settings”. Points that need to be modified are indicated with “[R-x] —”.

Refer to the MCU List for RL78/F22, F25 to find the appropriate [R-x] setting for the device.

Enter the searched value in [R-x]. (x=1, 2, 3...)

- Example of modification the section setting [CS+: CC-RL compiler]:

Setting for RL78/F25(RAM: 40 Kbytes)

Example: R7F125FPL

Setting for RL78/F22(RAM: 12 Kbytes)
Example: R7F122FGG

Section Settings > Section Settings *
Address Section Address Section
005000 const 003000 const
text text
.RLIB New Qveray... .RLIB MNew Qverlay...
SLIB SLIB
textf tetf
.constf constf
data data
sdata sdata
RFD_DATA n RFD_DATA_n
RFD_CMN_f RFD_CMMN_f
RFD_DF_f RFD_DF_f
EES_CODE f EES_CODE_f
SMP_EES f SMP_EES f
EES_CNST_f EES_CNST_f
[R-1] — I 0xF5F00 I Thataf? dataR
bss bss
RFD_DATA_nR RFD_DATA_nR
EES_VAR_n EES_VAR_n
SMP_VAR_n SMP_VAR_n
OFFE20 sdataR Import... (WFFE20 sdataR mpott..
I - Evport.. I - Expot..
Cancel Help Cancel Help
R20UT5477EJ0101 Rev.1.01 RENESAS Page 101 of 114

May.30.25

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

7.31 CC-RL Compiler Environment Settings

Points of modifies and examples of modifies when using the CC-RL compiler environments (CS+ and
e? studio) are described.

7.3.1.1 Section Settings

Modify the start address of the RAM area in the section settings.

This example shows the change from RL78/F25 (R7F125FPL) to RL78/F22 (R7F122FGG).

Since the RAM size is changed from 40 Kbytes to 12 Kbytes, modify the start address of RAM from

“OxF5F00” to “OxFCF00".

Note: For the start address of the RAM for each product, refer to “R-1" column in the MCU List for RL78/F22,
F25.

- Example of modifying section settings (start address of RAM) in CS+:

Setting for RL78/F25(RAM: 40 Kbytes) Setting for RL78/F22(RAM: 12 Kbytes)
Example: R7F125FPL Example: R7TF122FGG
Section Settings X Section Settings x
Address Section Address Section
(05000 const (03000 .const
fent text
RLIB Mew Overay... _RLIB New QOveray...
SLIB SLIB
tendf textf
.constf .constf
data .data
sdata .sdata
RFD_DATA n RFD_DATA_n
RFD_CMN_f RFD_CMMN_f
RFD_DF _f RFD_DF_f
EES_CODE_f EES_CODE_f
SMP_EES_f SMP_EES.f
EES_CNST_f EES_CNST f
o — [
bss bas
RFD_DATA_nR RFD_DATA_nR
EES_VAR_n EES_WAR_n
SMP_VAR_n SMP_VAR_n
(<FFE20 sdataR Impot.. 0<FFE20 sdataR fmport..
_ sbss Export... _ shss Export...
Cancel Help Cancel Help
R20UT5477EJ0101 Rev.1.01 xENESAS Page 102 of 114

May.30.25

[R1] —

EES RL78 Type 03

7. Creating a Sample Project for EES RL78 Type 03

- Example of modifying section settings (start address of RAM) in e? studio:

Setting for RL78/F25(RAM: 40 Kbytes)
Example: R7F125FPL

Example: R7F122FGG

Setting for RL78/F22(RAM: 12 Kbytes)

(K ¥ n X
Section Viewer Section Viewer

Address Section Name Address Section Name

0x00005000 .const 0x00003000 const
fext text
.data data
sdata sdata
.RLIB RLIB
.SLIB SLIB
textf textf
.constf Add Section constf Add Section
RFD_DATA_n New Overlay RFD_DATA_n New Overlay
RFD_CMN_f i RFD_CMM_f .

Remove Section Remove Section
RFD_DF_f RFD_DF_f
EES_CODE f WErE LE EES_CODE._f Move Up
SMP_EES_f Move Down SMP_EES_f Move Down
EES_CNST_f Import... EES_CNST_f Import..
[0x000F5F00 I .dataR. [0x000FCFOO I dataR
Export... Export...

bss bss
RFD_DATA_nR. RFD_DATA_nR
EES_VAR_n EES_VAR_n
SMP_VAR_n SMP_VAR_n

0x000FFE20 sdataR Ox000FFE20 sdataR
sbss sbss

R20UT5477EJ0101 Rev.1.01 RENESAS Page 103 of 114

May.30.25

EES RL78 Type 03

7. Creating a Sample Project for EES RL78 Type 03

7.3.1.2 Debug Settings

When using the RL78/F22, the debug monitor area has a different range when using the debugger.

- The start of the “Debug monitor area” address sets the address obtained by subtracting “511 bytes
(Ox1FF)” from the end address of the ROM area. If the end address is “Ox7FFFF”, set it to “Ox7FEQ0”.

This example shows the modify from RL78/F25 (R7F125FPL) to RL78/F22 (R7TF122FGG).

- Set the debug monitor area range to “Ox1FEQO - Ox1FFFF” for the RL78/F22 (R7F122FGG).

Note: For the start of the “Debug monitor area” address for each product, refer to “R-5” column in the MCU

List for RL78/F22, F25.

- To set the debug monitor area in CS+, select the [Device] on the “Link Options” tab.

Setting for RL78/F25 (ROM: 512 Kbytes) Example: R7F125FPL

Ay CC-RL Property
Library
v Device
Set enable/disable on-chip debug by link option
Option byte values for OCD
Set security option byte
Security option byte value
Set debug monitor area
Range of debug monitor area
Set user option byte
User option byte value
Control allocation to trace RAM area
Cantrol allocation to hot plug-in RAM area

Device

Yes(OCDBG)

[=] A5
Yes(-SECURITY_OPT_BYTE)
[=] FE

Yes ify address range){(-DEBUG_MONITOR=<Address range:)

7FEDO-7FFFF <~ [R-5]
esUSER_OPT_BYTE)

[F=] GEGBES

Mo

Mo

\ Common Options ,f Compile Options ,f AssembleOptions ,h Link Options / Hex Output Options ,f Standard Library

Setting for RL78/F22 (ROM: 128 Kbytes) Example: R7TF122FGG

4 CC-RL Property
Library
v Device
Set enable/disable on-chip debug by link option
Option byte values for OCD
Set security option byte
Security option byte value
Set debug monitor area
Range of debug monitor area
Set user option byte
|Uzer option byte value
Caontrol allocation to trace RAM area
Cantrol allocation to hot plug-in RAM area

Device

Yes(OCDBG)

[=] A5
Yes(-SECURITY_OPT_BYTE)
[=] FE

es{Specify address range){-DEBUG_MONITOR=<Address range>)

Yes-USER_OFT_BYTE)
[F5] GEGBES

Mo

Mo

\ Common Options ,f Compile Options ,f AssembleOptions ,h Link Options / Hex Output Options ,f Standard Library

R20UT5477EJ0101 Rev.1.01
May.30.25

RENESAS

Page 104 of 114

EES RL78 Type 03

7. Creating a Sample Project for EES RL78 Type 03

- To set the debug monitor area in e? studio, select the [Device] in the “Linker”.

Setting for RL78/F25 (ROM: 512 Kbytes) Example: R7F125FPL

> Resource
Builders
v C/C++ Build
Build Varniables
Environment
Logging
Settings
Stack Analysis
Tool Chain Editor
» C/C++ General
Project Natures
Project References
Refactoring History
Renesas QE
Run/Debug Settings

% Tool Settings Toolchain| Device

4 Build Steps‘ Build Artifact| ._|_|g Binary Parsers| @ Error Parsers|

» ¥ Common

> 3 Compiler

> &3 Assembler

v I® Linker

é-’. Input

(33 List

(2 Optimization
(52 Section

Lf?' Device

(5 output

(2 Miscellaneous

v

®
(22 User

» &3 Library Generator

> &3 Converter

Security ID value (-security_id) | 0

Serial Programming Security 1D value {-flash_security_id) |FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

[J Reserve working memory for RRM/DMM function (-rrm)
Start address area (-rrm=<value>}

Secure memory area of OCD monitor (-debug_monitor)

| = [R-5]

Memory area (-debug_monitor=<start address>-<end address>) I 7FEQO-7FFFF

Set user option byte (-user_opt_byte)

User option byte value (-user opt byte=<value=>) | 6EGBES
Set enable/disable on-chip debug by link option (-ocdbg)

On-chip debug control value (-ocdbg= <value=) |A5

Set security option byte (-security_opt_byte)

Secunity option byte value (-security_opt_byte=<value>) | FE
RAM area without section (-self/-ocdtr/-ocdhpi) None

Output a warning message when a section is allocated to the RAM area (-selfw/-ocdtrw/-ocdhpiw)
|:| Check specifications of device (-check_device)
[[] Suppress checking section allocation that crosses (64KB-1) boundary (-check_64k_only)
[] Do not check memory allocation of sections (-no_check_section_layout)

Address range of memory type (-cpu)

Setting for RL78/F22 (ROM: 128 Kbytes) Example: R7F122FGG

> Resource
Builders
v C/C++ Build
Build Variables
Environment
Logging
Settings
Stack Analysis
Tool Chain Editor
» C/C++ General
Project Natures
Project References
Refactoring History
Renesas QE
Run/Debug Settings

2 Tool Settings Toolchain| Device

4 Build Steps| Build Artifact| laxh Binary Parsers| @ Error Parsers|

> 3 Common
> B3 Compiler
> B3 Assembler
v % Linker
> éﬁ Input
3 List
(% Optimization
\,‘Eﬁ Section
(2 Device
> (3 Output
‘,‘Eﬁ Miscellaneous
(55 User
» & Library Generator
> &3 Converter

Security ID value (-security_id) | 0

Serial Programming Security ID value (-flash_security_id) |FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

|:| Reserve working memaory for RRM/DMM function (-rrm)
Start address area (-rrm=<value >}

Secure memory area of OCD monitor (-debug_monitor)

Memory area (-debug_monitor=<start address>-<end address>) I| 1FEQO-1FFFF I

Set user option byte (-user_opt_byte)

User option byte value (-user_opt_byte=<value>) | G6EGBES
Set enable/disable on-chip debug by link option (-ocdbg)

On-chip debug control value (-ocdbg=<value>) |A5

Set security option byte (-security_opt_byte)

Security option byte value (-security_opt_byte=<value>) | FE
RAM area without section (-self/-ocdtr/-ocdhpi) None

Output a warning message when a section is allocated to the RAM area (-selfw/-ocdtrw/-ocdhpiw)
[] Check specifications of device (-check_device)
O Suppress checking section allocation that crosses (64KB-1) boundary (-check_64k_only)

|:| Do not check memory allocation of sections (-no_check_section_layout)

Address range of memory type (-cpu)

R20UT5477EJ0101

May.30.25

Rev.1.01

;{ENESAS Page 105 of 114

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

7.3.2 IAR Compiler Environment Settings

Points of modifies and examples of modifies when using the IAR compiler environment (Embedded
Workbench) is described.

7.3.2.1 Setting Up Header Files for Target Device

The “main.c” and “low_level_init.c” provided with EES RL78 Type 03 includes the header files for the target
device “RL78/F25: R7F125FPL”. When using other RL78/F25 products or RL78/F22 products, the included

header file must be changed to the header file for the device used.
This section describes when RL78/F22 (R7F122FGG) is used.

Target files name: main.c, low_level_init.c

- For RL78/F25 (R7F125FPL):
< main.c >
#include “ior7f125fpl.h”
<low_level_init.c >
#include “ior7f125fpl.h”
#include “ior7f125fpl_ext.h”

- Example for RL78/F22 (R7F122FGG):
< main.c >
#include “ior7f122fgg.h”
< low_level_init.c >
#include “ior7f122fgg.h”
#include “ior7f122fgg_ext.h”

Note: For the device type name of the product, refer to “Target MCU name” column in the MCU List for
RL78/F22, F25.

7.3.2.2 Linker Configuration File Settings

In the sample program provided by EES RL78 Type 03, The sections (ROM, RAM, and Data flash range) for
RL78/F25 (R7F125FPL) are set.

When using other RL78/F25 products or RL78/F22 products, modify the contents of the sample linker file
“sample_linker _file.icf’ provided for the RL78/F25 of EES RL78 Type 03 because the section settings are
different. The modifications are shown in red text below, so refer to the MCU List for RL78/F22, F25 and
change the setting values for the target device.

Target file name: sample_linker_file.icf

This example shows the modify from RL78/F25 (R7F125FPL) to RL78/F22 (R7F122FGG).
- Modify the ROM area to the range of 128 Kbytes [0x00000 - Ox1FFFF]
- Modify the start address to “OxFCF00” because the RAM area is 8 Kbytes [0xOFCF00 - OXOFFEFF]
- Modify the end address to “OxF2FFF” because the data flash area is 8 Kbytes [0xOF1000 - 0xOF2FFF]

R20UT5477EJ0101 Rev.1.01 NS Page 106 of 114
May.30.25 RENES

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

(1) Section Settings
- Modifies to the size of ROM, RAM, and Data Flash

Setting for RL78/F25 (ROM: 512 Kbytes, RAM: 40 Kbytes, Data Flash: 16 Kbytes) Example: R7F125FPL

define region ROM_near = mem:[from 0x00132 to [OxOFFFF]|; « [R-2]
define region ROM_far = mem:[from 0x00132 to] | mem:[from 0x10000 to]
| mem:[from 0x20000 to] | mem:[from 0x30000 to
| mem:[from 0x40000 to] | mem:[from 0x50000 to
| mem:[from 0x60000 to [0x6FFFF]] | mem:[from 0x70000 to [0x7FFFF]; < [R-2], [R-3] Note 1
define region ROM_huge = mem:[from 0x00132 to [Ox7FFFF]|; <« [R-2] or [R-3] Note 2
define region SADDR = mem:[from OxFFE20 to OxFFEDFT;
define region RAM_near = mem:[from to OXFFE1F]; < [R-1]
define region RAM_far = mem:[from to OXFFE1F];, <« [R-1]
define region RAM_huge = mem:[from to OXFFE1F], <« [R-1]
define region VECTOR = mem:[from 0x00000 to 0x0007F];
define region CALLT = mem:[from 0x00080 to 0xO00BF];
define region EEPROM = mem:[from OxF1000 to]; «— [R-4]

Notes 1 When the ROM size is larger than 64 Kbytes, the description must change as the ROM size
increases. For details of the description.

2 Sets the value [R-3] when there is an address value in [R-3]on the list. In the case of “-”, set the
value of [R-2].

Setting for RL78/F22 (ROM: 128 Kbytes, RAM: 12 Kbytes, Data Flash: 8 Kbytes) Example: R7TF122FGG

define region ROM_near = mem:[from 0x00132 to OXOFFFF];

define region ROM_far = mem:[from 0x00132 to OxOFFFF] | mem:[from 0x10000 to Ox1FFFF];
define region ROM_huge = mem:[from 0x00132 to Ox1FFFF];

define region SADDR = mem:[from OxFFE20 to OxFFEDF];

define region RAM_near = mem:[from OxFCF0O0 to OXFFE1F];

define region RAM_far = mem:[from OxFCFOO0 to OXxFFE1FT];

define region RAM_huge = mem:[from OxFCF0O0 to OxFFE1F];

define region VECTOR = mem:[from 0x00000 to 0x0007F];

define region CALLT = mem:[from 0x00080 to 0x000BF];

define region EEPROM = mem:[from 0xF1000 to OxF2FFF];

R20UT5477EJ0101 Rev.1.01 NS Page 107 of 114
May.30.25 RENES

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

(2) Debug Settings

- The first address of the debug monitor area is set by subtracting “511 bytes (Ox1FF)” from the end address
of the ROM area. If the end address is “Ox7FFFF”, set to “Ox7FEOQQ”.

- The first address of the TraceRAM area is set by adding “1 Kbyte (0x400)” to the first address of the RAM
area. If the first address is “OxF5F00”, set to “OxF6300”.

- The first address of the hot plug-in RAM area is set by adding “0x600” to the first address of the RAM area.
If the first address is “OxF5F00”, set to “OxF6500”.

- When debugging self-programming with an on-chip debugger, 128 bytes of area is used from the start
address of RAM. Therefore, it is necessary to set the start address of a RAM area, and the address adding
“127 bytes (0x7F) ”. If the start address is “OxF5F00”, set “OxF5F00” and “OxF5F7F”.

As an example, modifying from RL78/F25 (R7F125FPL) to RL78/F22 (R7F122FGG) is shown.

- Set the debug monitor area range to [from 0x1FEQOQ size 0x0200].
- Set the TraceRAM area range to [from O0xFD300 size 0x0200].

- Set the hot plug-in RAM area range to [from 0xFD500 size 0x0030].
- Set the area range required to debug the self-programming to [from 0xFCFO0O to OxFCF7F].

R20UT5477EJ0101 Rev.1.01 NS Page 108 of 114
May.30.25 RENES

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

Modifies to the TraceRAM area, debug monitor area, and hot plug-in RAM area when using the
debugger.

Setting for RL78/F25 (ROM: 512 Kbytes, RAM: 40 Kbytes) Example: R7F125FPL

if (isdefinedsymbol(__RESERVE_OCD_ROM))
{
if (__RESERVE_OCD_ROM == 1)
{
reserve region “OCD ROM area” = mem:[from [0x7FEQQ| size 0x0200]; < [R-5]
}
}
I
[Omitted]

I
if (isdefinedsymbol(_ RESERVE_OCD_TRACE_RAM))

{
if (__RESERVE_OCD_TRACE_RAM == 1)
{
reserve region “OCD Trace RAM” = mem:[from |[0xF6300] size 0x0200]; <— [R-6]
}
}
I
[Omitted]

I
if (isdefinedsymbol(_ RESERVE_HOTPLUGIN_RAM))

{
if (__RESERVE_HOTPLUGIN_RAM == 1)

{
reserve region “Hot Plugin RAM” = mem:[from [0xF6500] size 0x0030]; « [R-7]
}
}
I
[Omitted]

I
if (isdefinedsymbol(_ RESERVE_FLASH_SELF_PROGRAMMING_RAM))

{
if (__RESERVE_FLASH_SELF_PROGRAMMING_RAM == 1)

{
reserve region “RESERVED_FLASH_SELF_PROGRAMMING_RAM” = mem:[from [0xF5F00| to [0OxF5F7F]];

} T [R-1]

$

R20UT5477EJ0101 Rev.1.01 NS Page 109 of 114
May.30.25 RENES

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

Setting for RL78/F22 (ROM: 128 Kbytes, RAM: 12 Kbytes) Example: R7F122FGG

if (isdefinedsymbol(__RESERVE_OCD_ROM))
{
if (__RESERVE_OCD_ROM == 1)
{
reserve region “OCD ROM area” = mem:[from 0x1FEO0O size 0x0200];
}
}
I
[Omitted]
I
if (isdefinedsymbol(_ RESERVE_OCD_TRACE_RAM))
{
if (__RESERVE_OCD_TRACE_RAM == 1)
{
reserve region “OCD Trace RAM” = mem:[from 0xFD300 size 0x0200];
}
}
I
[Omitted]
I
if (isdefinedsymbol(_ RESERVE_HOTPLUGIN_RAM))

{
if (__RESERVE_HOTPLUGIN_RAM == 1)

{
reserve region “Hot Plugin RAM” = mem:[from 0xFD500 size 0x0030];
}
}
I
[Omitted]

I
if (isdefinedsymbol(_ RESERVE_FLASH_SELF_PROGRAMMING_RAM))

{
if (_ RESERVE_FLASH_SELF_PROGRAMMING_RAM == 1)

{
reserve region “RESERVED_FLASH_SELF_PROGRAMMING_RAM” = mem:[from 0xFCF0O to OxFCF7F];
}
}

R20UT5477EJ0101 Rev.1.01 NS Page 110 of 114
May.30.25 RENES

EES RL78 Type 03 7. Creating a Sample Project for EES RL78 Type 03

(3) RAM Start Address Settings

Sets the starting address of RAM area.

“sample_linker_file.icf’ is set to use a RAM size of 40 Kbytes on RL78/F25 (R7F125FPL). Therefore, it is
necessary to modify the setting when using a RAM size other than 40 Kbytes.

This section describes an example of modifying the settings when using RL78/F22 (R7F122FGG) with a
RAM size of 12 Kbytes.

To use RL78/F22 (R7F122FGG) with a RAM size of 12 Kbytes, modify the value of the RAM start address
setting register (RAMSAR) from “0x5F” to “OxCF” in “cstart.asm” stored in the “sample” folder.

For more information about the RAM Start Address Setting Register (RAMSAR), refer to the hardware
manual of the target RL78.

Setting for RL78/F25(RAM: 40 Kbytes) Example: R7F125FPL

define exported symbol _RAMSAR_ADDR = 0xF0076;
if (lisdefinedsymbol(__ RAMSAR_VAL))

{
define exported symbol RAMSAR_VAL = [0x5F];

}

else

{
define exported symbol _RAMSAR_VAL = _ RAMSAR_VAL;

\ 4

keep symbol __setup_ramsar;
Setting for RL78/F22(RAM: 12 Kbytes) Example: R7TF122FGG

define exported symbol _RAMSAR_ADDR = 0xF0076;
if (lisdefinedsymbol(__ RAMSAR_VAL))

{
define exported symbol _RAMSAR_VAL = 0xCF;

}

else

{
define exported symbol _RAMSAR_VAL = RAMSAR_VAL;

}

keep symbol __setup_ramsar;

R20UT5477EJ0101 Rev.1.01 NS Page 111 of 114
May.30.25 RENES

EES RL78 Type 03

8. Revision History

8. Revision History

8.1 Major Modifications in this Revision

Description
Rev. Date
Page Summary
1.00 Aug.05.24 - Newly created.
1.01 May.30.25 - Add support of RL78/F22.
R20UT5477EJ0101 Rev.1.01 RENESAS Page 112 of 114

May.30.25

EEPROM Emulation Software RL78 Type 03 User's Manual

Publication Date: Rev.1.01 May. 30. 25

Published by: Renesas Electronics Corporation

EEPROM Emulation Software
RL78 Type 03

LENESANS

Renesas Electronics Corporation R01UT5477EJ0101

	Cover
	Notice
	General Precautions in the Handling of Microprocessing Unit and Microcontroller UnitProducts
	How to Use This Manual
	Table of Contents
	Abbreviations
	Terminology
	1. Overview
	1.1 Outline
	1.1.1 Purpose

	1.2 Contents
	1.3 Features
	1.4 Operating Environment
	1.5 Points for Caution
	1.6 C Compiler Definitions

	2. System Configuration
	2.1 System Configuration
	2.2 EES Architecture
	2.2.1 EES Block
	2.2.2 EES Pool

	2.3 File Structure
	2.3.1 Folder Structure
	2.3.2 List of Files
	2.3.2.1 List of Source Files
	2.3.2.2 Header File List of Header Files

	2.4 Resources of RL78/F22, F25
	2.4.1 Memory Map
	2.4.2 Allocation of Blocks

	2.5 Resources Used in EES RL78 Type 03
	2.5.1 Sections Used in EES RL78 Type 03
	2.5.2 Software Resources

	3. EEPROM Emulation
	3.1 Specifications of EEPROM Emulation
	3.2 Outline of Functions
	3.3 EES Pool
	3.3.1 EES Pool State
	3.3.2 Structure of EES Block
	3.3.3 EES Block Header
	3.3.4 Structure of Stored Data
	3.3.5 EES Block Overview

	4. Using EEPROM Emulation
	4.1 Number of Stored User Data Items and Total User Data Size
	4.2 Initial Values to be Set by User

	5. User Interface
	5.1 Request Structure (st_ees_request_t) Settings
	5.1.1 User Write Access
	5.1.2 User Read Access

	5.2 List of API Functions and R_EES_Execute function commands for the EES
	5.2.1 API Functions for the EES
	5.2.2 Commands for R_EES_Execute Function
	5.2.3 RFD control API functions for EES

	5.3 State Transitions
	5.4 Basic Flowchart
	5.5 Command Operation Flowchart
	5.6 Data Type Definitions
	5.6.1 Data Types
	5.6.2 Global Variables
	5.6.3 Enumerations

	5.7 Specifications of API Functions
	5.7.1 Specifications of API Functions for EES RL78 Type 03
	5.7.1.1 R_EES_Init
	5.7.1.2 R_EES_Open
	5.7.1.3 R_EES_Close
	5.7.1.4 R_EES_Execute
	5.7.1.5 R_EES_Handler
	5.7.1.6 R_EES_GetSpace

	5.7.2 RFD control API Functions for EES
	5.7.3 Internal Functions for the EES

	6. Sample Programs
	6.1 File Structure
	6.1.1 Folder Structure
	6.1.2 List of Files
	6.1.2.1 List of Source Files
	6.1.2.2 List of Header Files

	6.2 Data Type Definitions
	6.2.1 Macro Defines

	6.3 Sample Program Functions
	6.3.1 Sample Program for Controlling the EEPROM Emulation
	6.3.1.1 main Function
	6.3.1.2 Sample_EES_Control Function

	6.4 Specifications of Sample Program Functions
	6.4.1 Sample Program Functions for Controlling the EEPROM Emulation
	6.4.1.1 main
	6.4.1.2 Sample_EES_Control

	7. Creating a Sample Project for EES RL78 Type 03
	7.1 Creating a Project in the Case of Using a CC-RL Compiler
	7.1.1 Example of Creating a Sample Project
	7.1.2 Example of Registration of Target Folders and Target Files
	7.1.3 Build Tool Settings
	7.1.3.1 Include Path Settings
	7.1.3.2 Device Item Settings
	7.1.3.3 Section Item Settings

	7.1.4 Debug Tool Settings
	7.1.4.1 Setting of Connection with Target Board

	7.2 Creating a Project in the Case of Using IAR Compiler
	7.2.1 Example of Creating a Sample Project
	7.2.2 Example of Registration of Target Folders and Target Files
	7.2.3 Integrated Development Environment (IDE) Settings
	7.2.3.1 Include Path Settings
	7.2.3.2 Debugger Settings

	7.2.4 Linker Configuration File (.icf) Settings
	7.2.4.1 Section Settings
	7.2.4.2 Option Bytes Settings

	7.2.5 On-chip Debug Settings
	7.2.5.1 Example of How to deal with Connection Errors

	7.3 Configurations Modify Procedure for Changing Device
	7.3.1 CC-RL Compiler Environment Settings
	7.3.1.1 Section Settings
	7.3.1.2 Debug Settings

	7.3.2 IAR Compiler Environment Settings
	7.3.2.1 Setting Up Header Files for Target Device
	7.3.2.2 Linker Configuration File Settings

	8. Revision History
	8.1 Major Modifications in this Revision

	Colophon
	Back Cover

