
www.renesas.com

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

U
ser's M

anual

RI850V4 V2
Real-Time Operating System

User's Manual: Coding
Target Device
RH850 Family (RH850G3K)
RH850 Family (RH850G3M)
RH850 Family (RH850G3KH)
RH850 Family (RH850G3MH)

Rev.1.02 Jan 2016

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you
or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of
third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No
license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of
Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration,
modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The
recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.
“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual

equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-

crime systems; and safety equipment etc.
Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property
damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas
Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any
application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred
by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas
Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas
Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and
malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation
of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by
you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility
of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and
regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.
Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws
and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use
Renesas Electronics products or technology described in this document for any purpose relating to military applications or use
by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas
Electronics products or technology described in this document, you should comply with the applicable export control laws and
regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise
places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this
document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of
unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document
or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(2012.4)

How to Use This Manual

Readers This manual is intended for users who design and develop application systems using

RH850 family products.

Purpose This manual is intended for users to understand the functions of real-time OS

"RI850V4" manufactured by Renesas Electronics, described the organization listed

below.

Organization This manual can be broadly divided into the following units.

CHAPTER 1 OVERVIEW

CHAPTER 2 SYSTEM CONSTRUCTION

CHAPTER 3 TASK MANAGEMENT FUNCTIONS

CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

CHAPTER 6 EXTENDED SYNCHRONIZATION AND COMMUNICATION

FUNCTIONS

CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

CHAPTER 9 TIME MANAGEMENT FUNCTIONS

CHAPTER 10 INTERRUPT MANAGEMENT FUNCTIONS

CHAPTER 11 SERVICE CALL MANAGEMENT FUNCTIONS

CHAPTER 12 SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS

CHAPTER 13 SCHEDULER

CHAPTER 14 SYSTEM INITIALIZATION ROUTINE

CHAPTER 15 DATA TYPES AND MACROS

CHAPTER 16 SERVICE CALLS

CHAPTER 17 SYSTEM CONFIGURATION FILE

CHAPTER 18 CONFIGURATOR CF850V4

APPENDIX A WINDOW REFERENCE

APPENDIX B SIZE OF MEMORY

APPENDIX C SUPPORT FOR FLOATING-POINT OPERATION COPROCESSOR

How to Read This Manual It is assumed that the readers of this manual have general knowledge in the fields of

electrical engineering, logic circuits, microcontrollers, C language, and assemblers.

To understand the hardware functions of the RH850 family.

-> Refer to the User's Manual of each product.

Conventions Data significance: Higher digits on the left and lower digits on the right

Note: Footnote for item marked with Note in the text

Caution: Information requiring particular attention

Remark: Supplementary information

Numeric representation: Decimal ... XXXX

Hexadecimal ... 0xXXXX

Prefixes indicating power of 2 (address space and memory capacity):

K (kilo) 210 = 1024

M (mega) 220 = 10242

Related Documents The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

Caution The related documents listed above are subject to change without

notice. Be sure to use the latest edition of each document when

designing.

All trademarks or registered trademarks in this document are the property of their respective owners.

Document Name Document No.

RI Series Start R20UT0751E

Message R20UT0756E

RI850V4 V2 Coding This manual

Debug R20UT2890E

Analysis R20UT2891E

TABLE OF CONTENTS

CHAPTER 1 OVERVIEW ... 11

1.1 Outline ... 11
1.1.1 Real-Time OS ... 11
1.1.2 Multi-task OS ... 11
1.1.3 Support for RH850 multi-core devices ... 11

1.2 Execution Environment ... 12

CHAPTER 2 SYSTEM CONSTRUCTION ... 13

2.1 Outline ... 13
2.2 Cording System Configuration File ... 14
2.3 Coding Processing Programs ... 14
2.4 Coding User-Own Coding Module ... 15
2.5 Trace Information File ... 15
2.6 Creating Load Module ... 16
2.7 Option Settings for Build ... 20

CHAPTER 3 TASK MANAGEMENT FUNCTIONS ... 21

3.1 Outline ... 21
3.2 Tasks ... 21

3.2.1 Task state ... 21
3.2.2 Task priority ... 23
3.2.3 Basic form of tasks ... 24
3.2.4 Internal processing of task ... 25

3.3 Create Task ... 26
3.4 Activate Task ... 26

3.4.1 Queuing an activation request ... 26
3.4.2 Not queuing an activation request ... 27

3.5 Cancel Task Activation Requests ... 28
3.6 Terminate Task ... 29

3.6.1 Terminate invoking task ... 29
3.6.2 Terminate task ... 30

3.7 Change Task Priority ... 31
3.8 Reference Task Priority ... 32
3.9 Reference Task State ... 33

3.9.1 Reference task state ... 33
3.9.2 Reference task state (simplified version) ... 34

3.10 Memory Saving ... 35
3.10.1 Disable preempt ... 35

CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS ... 36

4.1 Outline ... 36
4.2 Put Task to Sleep ... 36

4.2.1 Waiting forever ... 36
4.2.2 With timeout ... 38

4.3 Wakeup Task ... 39
4.4 Cancel Task Wakeup Requests ... 40
4.5 Release Task from Waiting ... 41
4.6 Suspend Task ... 42
4.7 Resume Suspended Task ... 43

4.7.1 Resume suspended task ... 43
4.7.2 Forcibly resume suspended task ... 44

4.8 Delay Task ... 45
4.9 Differences Between Wakeup Wait with Timeout and Time Elapse Wait ... 46

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS ... 47

5.1 Outline ... 47
5.2 Semaphores ... 47

5.2.1 Create semaphore ... 47
5.2.2 Acquire semaphore resource ... 48
5.2.3 Release semaphore resource ... 51
5.2.4 Reference semaphore state ... 52

5.3 Eventflags ... 53
5.3.1 Create eventflag ... 53
5.3.2 Set eventflag ... 54
5.3.3 Clear eventflag ... 55
5.3.4 Wait for eventflag ... 56
5.3.5 Reference eventflag state ... 61

5.4 Data Queues ... 62
5.4.1 Create data queue ... 62
5.4.2 Send to data queue ... 63
5.4.3 Forced send to data queue ... 68
5.4.4 Receive from data queue ... 69
5.4.5 Reference data queue state ... 74

5.5 Mailboxes ... 75
5.5.1 Messages ... 75
5.5.2 Create mailbox ... 76
5.5.3 Send to mailbox ... 77
5.5.4 Receive from mailbox ... 78
5.5.5 Reference mailbox state ... 81

CHAPTER 6 EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS ...

82

6.1 Outline ... 82
6.2 Mutexes ... 82

6.2.1 Differences from semaphores ... 82
6.2.2 Create mutex ... 83
6.2.3 Lock mutex ... 84
6.2.4 Unlock mutex ... 87
6.2.5 Reference mutex state ... 88

CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS ... 89

7.1 Outline ... 89
7.2 User-Own Coding Module ... 89

7.2.1 Post-overflow processing ... 90
7.3 Fixed-Sized Memory Pools ... 91

7.3.1 Create fixed-sized memory pool ... 91
7.3.2 Acquire fixed-sized memory block ... 92
7.3.3 Release fixed-sized memory block ... 97
7.3.4 Reference fixed-sized memory pool state ... 98

7.4 Variable-Sized Memory Pools ... 99
7.4.1 Create variable-sized memory pool ... 99
7.4.2 Acquire variable-sized memory block ... 100
7.4.3 Release variable-sized memory block ... 105
7.4.4 Reference variable-sized memory pool state ... 106

CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS ... 107

8.1 Outline ... 107
8.2 Rotate Task Precedence ... 107
8.3 Forced Scheduler Activation ... 109
8.4 Reference Task ID in the RUNNING State ... 110
8.5 Lock the CPU ... 111
8.6 Unlock the CPU ... 113
8.7 Reference CPU State ... 115
8.8 Disable Dispatching ... 116
8.9 Enable Dispatching ... 118
8.10 Reference Dispatching State ... 120
8.11 Reference Contexts ... 121
8.12 Reference Dispatch Pending State ... 122

CHAPTER 9 TIME MANAGEMENT FUNCTIONS ... 123

9.1 Outline ... 123
9.2 System Time ... 123

9.2.1 Base clock timer interrupt ... 123
9.2.2 Base clock interval ... 124

9.3 Timer Operations ... 124
9.3.1 Delayed task wakeup ... 124
9.3.2 Timeout ... 124
9.3.3 Cyclic handlers ... 124
9.3.4 Create cyclic handler ... 125

9.4 Set System Time ... 126
9.5 Reference System Time ... 127
9.6 Start Cyclic Handler Operation ... 128
9.7 Stop Cyclic Handler Operation ... 130
9.8 Reference Cyclic Handler State ... 131

CHAPTER 10 INTERRUPT MANAGEMENT FUNCTIONS ... 132

10.1 Outline ... 132
10.2 User-Own Coding Module ... 132

10.2.1 Interrupt entry processing ... 132
10.3 Interrupt Handlers ... 134

10.3.1 Basic form of interrupt handlers ... 134
10.3.2 Internal processing of interrupt handler ... 134
10.3.3 Define interrupt handler ... 135

10.4 Base Clock Timer Interrupts ... 135
10.5 Multiple Interrupts ... 135

CHAPTER 11 SERVICE CALL MANAGEMENT FUNCTIONS ... 137

11.1 Outline ... 137
11.2 Extended Service Call Routines ... 137

11.2.1 Basic form extended service call routines ... 137
11.2.2 Internal processing of extended service call routine ... 138

11.3 Define Extended Service Call Routine ... 138
11.4 Invoke Extended Service Call Routine ... 139

CHAPTER 12 SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS ... 140

12.1 Outline ... 140
12.2 User-Own Coding Module ... 140

12.2.1 Initialization routine ... 140
12.2.2 Define initialization routine ... 141

CHAPTER 13 SCHEDULER ... 142

13.1 Outline ... 142
13.1.1 Drive Method ... 142
13.1.2 Scheduling Method ... 142
13.1.3 Ready queue ... 143
13.1.4 Scheduling Lock Function ... 143

13.2 User-Own Coding Module ... 145
13.2.1 Idle Routine ... 145
13.2.2 Define Idle Routine ... 146

13.3 Scheduling in Non-Tasks ... 146

CHAPTER 14 SYSTEM INITIALIZATION ROUTINE ... 147

14.1 Outline ... 147
14.2 User-Own Coding Module ... 148

14.2.1 Boot processing ... 148
14.2.2 System dependent information ... 150

14.3 Kernel Initialization Module ... 152

CHAPTER 15 DATA TYPES AND MACROS ... 153

15.1 Data Types ... 153
15.2 Packet Formats ... 155

15.2.1 Task state packet ... 155
15.2.2 Task state packet (simplified version) ... 157
15.2.3 Semaphore state packet ... 158
15.2.4 Eventflag state packet ... 159
15.2.5 Data queue state packet ... 160
15.2.6 Message packet ... 161
15.2.7 Mailbox state packet ... 162
15.2.8 Mutex state packet ... 163
15.2.9 Fixed-sized memory pool state packet ... 164
15.2.10 Variable-sized memory pool state packet ... 165
15.2.11 System time packet ... 166
15.2.12 Cyclic handler state packet ... 167

15.3 Data Macros ... 168
15.3.1 Current state ... 168
15.3.2 Processing program attributes ... 169
15.3.3 Management object attributes ... 169
15.3.4 Service call operating modes ... 170
15.3.5 Return value ... 170
15.3.6 Kernel configuration constants ... 171

15.4 Conditional Compile Macro ... 172

CHAPTER 16 SERVICE CALLS ... 173

16.1 Outline ... 173
16.1.1 Call service call ... 174

16.2 Explanation of Service Call ... 175
16.2.1 Task management functions ... 177
16.2.2 Task dependent synchronization functions ... 192
16.2.3 Synchronization and communication functions (semaphores) ... 205
16.2.4 Synchronization and communication functions (eventflags) ... 214
16.2.5 Synchronization and communication functions (data queues) ... 225
16.2.6 Synchronization and communication functions (mailboxes) ... 239
16.2.7 Extended synchronization and communication functions (mutexes) ... 249
16.2.8 Memory pool management functions (fixed-sized memory pools) ... 258
16.2.9 Memory pool management functions (variable-sized memory pools) ... 269
16.2.10 Time management functions ... 280
16.2.11 System state management functions ... 288
16.2.12 Service call management functions ... 301

CHAPTER 17 SYSTEM CONFIGURATION FILE ... 303

17.1 Outline ... 303
17.2 Configuration Information ... 305

17.2.1 Cautions ... 306
17.3 Declarative Information ... 307

17.3.1 Header file declaration ... 307
17.4 System Information ... 308

17.4.1 RI series information ... 308
17.4.2 Basic information ... 309

17.4.3 FPSR register information ... 311
17.4.4 Memory area information ... 312

17.5 Static API Information ... 313
17.5.1 Task information ... 313
17.5.2 Semaphore information ... 315
17.5.3 Eventflag information ... 316
17.5.4 Data queue information ... 317
17.5.5 Mailbox information ... 318
17.5.6 Mutex information ... 319
17.5.7 Fixed-sized memory pool information ... 320
17.5.8 Variable-sized memory pool information ... 321
17.5.9 Cyclic handler information ... 322
17.5.10 Interrupt handler information ... 324
17.5.11 Extended service call routine information ... 325
17.5.12 Initialization routine information ... 326
17.5.13 Idle routine information ... 327

17.6 Description Examples ... 328

CHAPTER 18 CONFIGURATOR CF850V4 ... 329

18.1 Outline ... 329
18.2 Activation Method ... 330

18.2.1 Activating from command line ... 330
18.2.2 Activating from CS+ ... 333
18.2.3 Command file ... 334
18.2.4 Command input examples ... 335

APPENDIX A WINDOW REFERENCE ... 336

A.1 Description ... 336

APPENDIX B SIZE OF MEMORY ... 353

B.1 Description ... 353
B.1.1 .kernel_system ... 353
B.1.2 .kernel_const ... 355
B.1.3 .kernel_data ... 356
B.1.4 .kernel_data_init ... 357
B.1.5 .kernel_const_trace.const ... 357
B.1.6 .kernel_data_trace.bss ... 358
B.1.7 .kernel_work ... 359
B.1.8 .sec_nam(user-definied area) ... 361

APPENDIX C SUPPORT FOR FLOATING-POINT OPERATION COPROCESSOR ... 362

RI850V4 V2 CHAPTER 1 OVERVIEW

R20UT2889EJ0102 Rev.1.02 Page 11 of 366
Jan 29, 2016

CHAPTER 1 OVERVIEW

1.1 Outline
The RI850V4 is a built-in real-time, multi-task OS that provides a highly efficient real-time, multi-task environment to

increases the application range of processor control units.
The RI850V4 is a high-speed, compact OS capable of being stored in and run from the ROM of a target system.
It can also be used in RH850 multi-core devices.

1.1.1 Real-Time OS

Control equipment demands systems that can rapidly respond to events occurring both internal and external to the
equipment. Conventional systems have utilized simple interrupt handling as a means of satisfying this demand. As control
equipment has become more powerful, however, it has proved difficult for systems to satisfy these requirements by means
of simple interrupt handling alone.

In other words, the task of managing the order in which internal and external events are processed has become
increasingly difficult as systems have increased in complexity and programs have become larger.

Real-time OS has been designed to overcome this problem.
The main purpose of a real-time OS is to respond to internal and external events rapidly and execute programs in the

optimum order.

1.1.2 Multi-task OS

A "task" is the minimum unit in which a program can be executed by an OS. "Multi-task" is the name given to the mode
of operation in which a single processor processes multiple tasks concurrently.

Actually, the processor can handle no more than one program (instruction) at a time. But, by switching the processor’s
attention to individual tasks on a regular basis (at a certain timing) it appears that the tasks are being processed
simultaneously.

A multi-task OS enables the parallel processing of tasks by switching the tasks to be executed as determined by the
system.

One important purpose of a multi-task OS is to improve the throughput of the overall system through the parallel
processing of multiple tasks.

1.1.3 Support for RH850 multi-core devices

The RI850V4 supports build processing for multi-core devices. The target processor element (PE) where the RI850V4 is
to be used can be specified and the RI850V4 can be used in multiple PEs at the same time.

The RI850V4 is a real-time OS for a single core, which is intended to operate in a single PE, and it does not provide
facilities for controlling the processing between PEs.

As a measure for implementing the control of the processing between PEs, a library specialized for multi-core devices
can be used. Renesas Electronics offers the "libipcx library for communication and exclusive control between processor
elements" (hereafter called libipcx), which is a sample library supporting the RH850 multi-core devices. Using the RI850V4
and libipcx together enables control of the processing between PEs.

RI850V4 V2 CHAPTER 1 OVERVIEW

R20UT2889EJ0102 Rev.1.02 Page 12 of 366
Jan 29, 2016

1.2 Execution Environment

The RI850V4 supports the RH850 family (G3K core and G3M core and G3KH core and G3MH core).
The following is a list of reserved OS resources that are exclusively used by the RI850V4 and cannot be modified from

processing programs.

Note Whether the exception handler vector address (EBASE) or the base address of the interrupt handler
table (INTBP) is reserved depends on the option settings for activation of the CONFIGURATOR
CF850V4. When -ebase= <Exception Base Address> is specified, the exception handler vector
address (EBASE) is handled as a reserved resource; when -intbp=<Interrupt Base Address> is
specified, the base address of the interrupt handler table (INTBP) is handled as a reserved resource.

Reserved OS Resources

General register (r2)

OS timer (OSTM): one channel

Interrupt priority mask (PMR)

UM bit in the program status word (PSW)

Interrupt configurations (INTCFG)

Exception handler vector address (EBASE)

Base address of the interrupt handler table (INTBP)

RI850V4 V2 CHAPTER 2 SYSTEM CONSTRUCTION

R20UT2889EJ0102 Rev.1.02 Page 13 of 366
Jan 29, 2016

CHAPTER 2 SYSTEM CONSTRUCTION

This chapter describes how to build a system (load module) that uses the functions provided by the RI850V4.

2.1 Outline
System building consists in the creation of a load module using the files (kernel library, etc.) installed on the user

development environment (host machine) from the RI850V4's supply media.
The following shows the procedure for organizing the system.

Figure 2-1 Example of System Construction

The RI850V4 provides a sample program with the files necessary for generating a load module.
For the location where the sample program is stored, see "RI Series Real-Time Operating System User's Manual:

Start".

Linker

Load Module

Object Files

C compiler / Assembler

Information Files

Programs

Configurator

System Configuration File

- System information table file
- System information header file
- Entry file Trace information file

User-own Coding

RI850V4

- Kernel Library

C Compiler

- Standard Library
- Math Library

- Task
- Cyclic Handler
- Interrupt Handler
- Extended Service Call Routines

- Boot process

- Interrupt entry process
- Initialize routine
- Idle routine

- System dependent information

- Post-overflow processing

etc.

RI850V4 V2 CHAPTER 2 SYSTEM CONSTRUCTION

R20UT2889EJ0102 Rev.1.02 Page 14 of 366
Jan 29, 2016

2.2 Cording System Configuration File

Code the SYSTEM CONFIGURATION FILE required for creating information files (system information table file, system
information header file, entry file) that contain data to be provided for the RI850V4.

Note For details about the system configuration file, refer to "CHAPTER 17 SYSTEM CONFIGURATION FILE".

2.3 Coding Processing Programs
Code the processing that should be implemented in the system.
In the RI850V4, the processing program is classified into the following seven types, in accordance with the types and

purposes of the processing that should be implemented.

- Tasks
A task is processing program that is not executed unless it is explicitly manipulated via service calls provided by the
RI850V4, unlike other processing programs (cyclic handler, interrupt handler, etc.).

- Cyclic handlers
The cyclic handler is a routine dedicated to cycle processing that is activated periodically at a constant interval
(activation cycle).
The RI850V4 handles the cyclic handler as a "non-task (module independent from tasks)".
Therefore, even if a task with the highest priority in the system is being executed, the processing is suspended when
a specified activation cycle has come, and the control is passed to the cyclic handler.

- Interrupt Handlers
The interrupt handler is a routine dedicated to interrupt servicing that is activated when an EI level maskable interrupt
occurs.
The RI850V4 handles the interrupt handler as a "non-task (module independent from tasks)".
Therefore, even if a task with the highest priority in the system is being executed, its processing is suspended when
an EI level maskable interrupt occurs, and control is passed to the interrupt handler.

- Extended Service Call Routines
This is a routine to which user-defined functions are registered in the RI850V4, and will never be executed unless it is
called explicitly, using service calls provided by the RI850V4.
The RI850V4 positions extended service call routines as extensions of the processing program that called the
extended service call routine.

Note For details about the processing programs, refer to "CHAPTER 3 TASK MANAGEMENT FUNCTIONS",
"CHAPTER 9 TIME MANAGEMENT FUNCTIONS", "CHAPTER 10 INTERRUPT MANAGEMENT
FUNCTIONS", "CHAPTER 11 SERVICE CALL MANAGEMENT FUNCTIONS".

RI850V4 V2 CHAPTER 2 SYSTEM CONSTRUCTION

R20UT2889EJ0102 Rev.1.02 Page 15 of 366
Jan 29, 2016

2.4 Coding User-Own Coding Module

To support various execution environments, the hardware-dependent processing and various information required for
the RI850V4 to execute processing are extracted as user-own coding modules.

This enhances portability for various execution environments and facilitates customization as well.
The user-own coding modules for the RI850V4 are classified into the following six types depending on the type of

hardware-dependent processing to be executed and the usage of the module.

- Post-overflow processing
A routine dedicated to post-processing (function name: _kernel_stk_overflow) that is extracted as a user-own coding
module to execute post-overflow processing and is called when a stack overflow occurs in the RI850V4 or a
processing program.
Acceptance of interrupts is disabled (the ID flag in the program status word (PSW) is set to 1) in the initial state after
activation.

- Interrupt entry processing
A routine dedicated to entry processing that is extracted as a user-own coding module to assign processing for
branching to the relevant processing (such as interrupt preprocessing), to the handler address to which the CPU
forcibly passes control when an interrupt occurs.
The interrupt entry processing for the EI level maskable interrupts defined in the Interrupt handler information in the
system configuration file is included in the entry file created by executing the configurator for the system configuration
file.
Therefore, coding of interrupt entry processing is necessary for other interrupts (such as a reset) that are not EI level
maskable interrupts.

- Initialization routine
A routine dedicated to initialization processing that is extracted as a user-own coding module to initialize the hardware
dependent on the user execution environment (such as the peripheral controller), and is called from the Kernel
Initialization Module.

- Idle Routine
A routine dedicated to idle processing that is extracted from the SCHEDULER as a user-own coding module to utilize
the standby function provided by the CPU (to achieve the low-power consumption system), and is called from the
scheduler when there no longer remains a task subject to scheduling by the RI850V4 (task in the RUNNING or
READY state) in the system.

- Boot processing
A routine dedicated to initialization processing that is extracted as a user-own coding module to initialize the minimum
required hardware for the RI850V4 to perform processing, and is called from Interrupt entry processing.

- System dependent information
The system-dependent information is a header file (file name: userown.h) including various information
required for the RI850V4 to execute processing, which is extracted as a user-own coding module.

Note For details about the user-own coding module, refer to “CHAPTER 7 MEMORY POOL MANAGEMENT
FUNCTIONS“, "CHAPTER 10 INTERRUPT MANAGEMENT FUNCTIONS", "CHAPTER 12 SYSTEM
CONFIGURATION MANAGEMENT FUNCTIONS", "CHAPTER 13 SCHEDULER", "CHAPTER 14 SYSTEM
INITIALIZATION ROUTINE".

2.5 Trace Information File
The trace information file (file name: trcinf.c) includes descriptions of the processing necessary for the trace mode

selected in the Property panel -> [Task Analyzer] tabbed page -> [Trace] category -> [Selection of trace mode].
The user does not need to modify the contents of this file.
Note that this file should be incorporated into the load module even when the trace facility is not used. Include this file as

a target of build processing even when using the GHS-version development environment.

RI850V4 V2 CHAPTER 2 SYSTEM CONSTRUCTION

R20UT2889EJ0102 Rev.1.02 Page 16 of 366
Jan 29, 2016

2.6 Creating Load Module

Run a build on CS+ for files created in sections from "2.2 Cording System Configuration File" to "2.4 Coding User-Own
Coding Module", the trace information file, and the library files provided by the RI850V4 and C compiler package, to create
a load module.

1) Create or load a project

Create a new project, or load an existing one.

Note See RI Series Real-time OS User's Manual: Start or CS+ Integrated Development Environment User’s
Manual: Start for details about creating a new project or loading an existing one.

2) Set a build target project

Specify a project as the target of build.

Note See CS+ Integrated Development Environment User’s Manual: RH850 Build for details about setting the
active project.

3) Set build target files

For the project, add or remove build target files and update the dependencies.

Note See CS+ Integrated Development Environment User’s Manual: RH850 Build for details about adding or
removing build target files for the project and updating the dependencies.

The following lists the files required for creating a load module.

- System configuration file created in "CHAPTER 2.2 Cording System Configuration File"

- SYSTEM CONFIGURATION FILE

Note Specify "cfg" as the extension of the system configuration file name. If the extension is different, "cfg" is
automatically added (for example, if you designate "aaa.c" as a file name, the file is named as
"aaa.c.cfg").

- C/assembly language source files created in "2.3 Coding Processing Programs"

- Processing programs (tasks, cyclic handlers, interrupt handlers, extended service call routines)

- C/assembly language source files created in "2.4 Coding User-Own Coding Module"

- User-own coding module (post-overflow processing, interrupt entry processing, initialization routine, idle
routine, boot processing, system dependent information)

- Trace information files provided by the RI850V4

- Library files provided by the RI850V4

- Kernel library

- Library files provided by the C compiler package

- Standard library, Math library, etc.

Note 1 If the system configuration file is added to the Project Tree panel, the Real-Time OS generated files node
is appeared.
The following information files are appeared under the Real-Time OS generated files node. However,
these files are not generated at this point in time.

- System information table file

- System information header file

- Entry file

RI850V4 V2 CHAPTER 2 SYSTEM CONSTRUCTION

R20UT2889EJ0102 Rev.1.02 Page 17 of 366
Jan 29, 2016

Figure 2-2 Project Tree Panel (After Adding sys.cfg)

Note 2 When replacing the system configuration file, first remove the added system configuration file from the
project, then add another one again.

Note 3 Although it is possible to add more than one system configuration files to a project, only the first file added
is enabled. Note that if you remove the enabled file from the project, the remaining additional files will not
be enabled; you must therefore add them again.

4) Specify the output of a load module file

Specify the type of load module file to be generated.

Note For details of the load module output settings, see "CS+ Integrated Development Environment User’s
Manual: CC-RH Build Tool Operation".

5) Set the output of information files

Select the system configuration file on the project tree to open the Property panel.
On the [System Configuration File Related Information] tab, set the output of information files (system information
table file, system information header file, and entry file).

RI850V4 V2 CHAPTER 2 SYSTEM CONSTRUCTION

R20UT2889EJ0102 Rev.1.02 Page 18 of 366
Jan 29, 2016

Figure 2-3 Property Panel: [System Configuration File Related Information] Tab

6) Set trace function

Use the task analyzer tool (a utility tool provided by the RI850V4) on the [Task Analyzer] tabbed page in the
Property panel to specify the information necessary to analyze the execution history (trace data) of the processing
program.

Figure 2-4 [Task Analyzer] Tab

7) Set build options

Set the options for the compiler, assembler, linker, and the like.

RI850V4 V2 CHAPTER 2 SYSTEM CONSTRUCTION

R20UT2889EJ0102 Rev.1.02 Page 19 of 366
Jan 29, 2016

When using the RI850V4, some options should always be specified. For details, see "15.4 Conditional Compile
Macro".

Note See CS+ Integrated Development Environment User’s Manual: RH850 Build for details about setting
build options.

8) Run a build

Run a build to create a load module.

Note See CS+ Integrated Development Environment User’s Manual: RH850 Build for details about running a
build.

Figure 2-5 Project Tree Panel (After Running Build)

9) Save the project

Save the setting information of the project to the project file.

Note See CS+ Integrated Development Environment User’s Manual: Project Operation for details about saving
the project.

RI850V4 V2 CHAPTER 2 SYSTEM CONSTRUCTION

R20UT2889EJ0102 Rev.1.02 Page 20 of 366
Jan 29, 2016

2.7 Option Settings for Build

When using the RI850V4, the following options should always be specified for user applications.
In addition, the options listed in "15.4 Conditional Compile Macro" should also be specified when using the header file

provided by the RI850V4.

- CC-RH version

- CCV850 version

Build Option Description

-Xreserve_r2 Reserves the r2 register.

-D__rel__
Definition of the compiler from Renesas Electronics.
Add two underscores before and after "rel".

-Xep=callee Specifies the handling of the EP register.

Build Option Description

-reserve_r2 Reserves the r2 register.

-D__ghs__
Definition of the compiler from Green Hills Software.
Add two underscores before and after "ghs".

RI850V4 V2 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 21 of 366
Jan 29, 2016

CHAPTER 3 TASK MANAGEMENT FUNCTIONS

This chapter describes the task management functions performed by the RI850V4.

3.1 Outline
The task management functions provided by the RI850V4 include a function to reference task statuses such as priorities

and detailed task information, in addition to a function to manipulate task statuses such as generation, activation and
termination of tasks.

3.2 Tasks
A task is processing program that is not executed unless it is explicitly manipulated via service calls provided by the

RI850V4, unlike other processing programs (cyclic handler and interrupt handler), and is called from the scheduler.
The RI850V4 manages the states in which each task may enter and tasks themselves, by using management objects

(task management blocks) corresponding to tasks one-to-one.

Note The execution environment information required for a task's execution is called "task context". During task
execution switching, the task context of the task currently under execution by the RI850V4 is saved and the
task context of the next task to be executed is loaded.

3.2.1 Task state

Tasks enter various states according to the acquisition status for the OS resources required for task execution and the
occurrence/non-occurrence of various events. In this process, the current state of each task must be checked and
managed by the RI850V4.

The RI850V4 classifies task states into the following six types.

Figure 3-1 Task State

WAITING state

WAITING-SUSPENDED state

SUSPENDED state

DORMANT state

RUNNING stateREADY state

RI850V4 V2 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 22 of 366
Jan 29, 2016

1) DORMANT state

State of a task that is not active, or the state entered by a task when processing has ended.
A task in the DORMANT state, while being under management of the RI850V4, is not subject to RI850V4 scheduling.

2) READY state

State of a task for which the preparations required for processing execution have been completed, but since another
task with a higher priority level or a task with the same priority level is currently being processed, the task is waiting
to be given the CPU's use right.

3) RUNNING state

State of a task that has acquired the CPU use right and is currently being processed.
Only one task can be in the running state at one time in the entire system.

4) WAITING state

State in which processing execution has been suspended because conditions required for execution are not
satisfied.
Resumption of processing from the WAITING state starts from the point where the processing execution was
suspended. The value of information required for resumption (such as task context) immediately before suspension
is therefore restored.
In the RI850V4, the WAITING state is classified into the following ten types according to their required conditions
and managed.

Table 3-1 WAITING State

5) SUSPENDED state

State in which processing execution has been suspended forcibly.
Resumption of processing from the SUSPENDED state starts from the point where the processing execution was
suspended. The value of information required for resumption (such as task context) immediately before suspension
is therefore restored.

WAITING State Description

Sleeping state
A task enters this state if the counter for the task (registering the
number of times the wakeup request has been issued) indicates 0x0
upon the issue of slp_tsk or tslp_tsk.

Delayed state A task enters this state upon the issue of a dly_tsk.

WAITING state for a semaphore
resource

A task enters this state if it cannot acquire a resource from the
relevant semaphore upon the issue of wai_sem or twai_sem.

WAITING state for an eventflag
A task enters this state if a relevant eventflag does not satisfy a
predetermined condition upon the issue of wai_flg or twai_flg.

Sending WAITING state for a
data queue

A task enters this state if cannot send a data to the relevant data
queue upon the issue of snd_dtq or tsnd_dtq.

Receiving WAITING state for a
data queue

A task enters this state if cannot receive a data from the relevant
data queue upon the issue of rcv_dtq or trcv_dtq.

Receiving WAITING state for a
mailbox

A task enters this state if cannot receive a message from the
relevant mailbox upon the issue of rcv_mbx or trcv_mbx.

WAITING state for a mutex
A task enters this state if cannot lock the relevant mutex upon the
issue of loc_mtx or tloc_mtx.

WAITING state for a fixed-sized
memory block

A task enters this state if it cannot acquire a fixed-sized memory
block from the relevant fixed-sized memory pool upon the issue of
get_mpf or tget_mpf.

WAITING state for a variable-
sized memory block

A task enters this state if it cannot acquire a variable-sized memory
block from the relevant variable-sized memory pool upon the issue
of get_mpl or tget_mpl.

RI850V4 V2 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 23 of 366
Jan 29, 2016

6) WAITING-SUSPENDED state

State in which the WAITING and SUSPENDED states are combined.
A task enters the SUSPENDED state when the WAITING state is cancelled, or enters the WAITING state when the
SUSPENDED state is cancelled.

3.2.2 Task priority

A priority level that determines the order in which that task will be processed in relation to the other tasks is assigned to
each task.

As a result, in the RI850V4, the task that has the highest priority level of all the tasks that have entered an executable
state (RUNNING state or READY state) is selected and given the CPU use right.

In the RI850V4, the following two types of priorities are used for management purposes.

- Initial priority
Priority set when a task is created.
Therefore, the priority level of a task (priority level referenced by the scheduler) immediately after it moves from the
DORMANT state to the READY state is the initial priority.

- Current priority
Priority referenced by the RI850V4 when it performs a manipulation (task scheduling, queuing tasks to a wait queue in
the order of priority, or priority level inheritance) when a task is activated.

Note 1 In the RI850V4, a task having a smaller priority number is given a higher priority.

Note 2 The priority range that can be specified in a system can be defined in Basic information (Maximum priority:
maxtpri) when creating a system configuration file.

RI850V4 V2 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 24 of 366
Jan 29, 2016

3.2.3 Basic form of tasks

When coding a task, use a void function with one VP_INT argument (any function name is fine).
The extended information specified with Task information, or the start code specified when sta_tsk or ista_tsk is issued,

is set for the exinf argument.
The following shows the basic form of tasks in C.

Note 1 If a task moves from the DORMANT state to the READY state by issuing sta_tsk or ista_tsk, the start code
specified when issuing sta_tsk or ista_tsk is set to the exinf argument.

Note 2 When the return instruction is issued in a task, the same processing as ext_tsk is performed.

Note 3 For details about the extended information, refer to "3.4 Activate Task".

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{

 ext_tsk (); /*Terminate invoking task*/
}

RI850V4 V2 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 25 of 366
Jan 29, 2016

3.2.4 Internal processing of task

In the RI850V4, original dispatch processing (task scheduling) is executed during task switching.
Therefore, note the following points when coding tasks.

- Coding method
Code tasks using C or assembly language.
When coding in C, they can be coded in the same manner as ordinary functions coded.
When coding in assembly language, code them according to the calling rules prescribed in the compiler used.

- Stack switching
When switching tasks, the RI850V4 performs switching to the task specified in Task information.

- Service call issue
Service calls that can be issued in tasks are limited to the service calls that can be issued from tasks.

Note For details on the valid issue range of each service call, refer to Table 16-1 to Table 16-12.

- Acceptance of EI level maskable interrupts
When a task is activated, the RI850V4 sets the interrupt acceptance status according to the settings in the Attribute:
tskatr (such as the description language and initial state after activation) by manipulating the PMn bits in the priority
mask register (PMR) and the ID bit in the program status word (PSW).

RI850V4 V2 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 26 of 366
Jan 29, 2016

3.3 Create Task

In the RI850V4, the method of creating a task is limited to "static creation".
Tasks therefore cannot be created dynamically using a method such as issuing a service call from a processing

program.
Static task creation means defining of tasks using static API "CRE_TSK" in the system configuration file.
For details about the static API "CRE_TSK", refer to "17.5.1 Task information".

3.4 Activate Task
The RI850V4 provides two types of interfaces for task activation: queuing an activation request queuing and not

queuing an activation request.
In the RI850V4, extended information specified in Task information during configuration and the value specified for the

second parameter stacd when service call sta_tsk or ista_tsk is issued are called "extended information".

3.4.1 Queuing an activation request

A task (queuing an activation request) is activated by issuing the following service call from the processing program.

- act_tsk, iact_tsk
These service calls move a task specified by parameter tskid from the DORMANT state to the READY state.
As a result, the target task is queued at the end on the ready queue corresponding to the initial priority and becomes
subject to scheduling by the RI850V4.
If the target task has been moved to a state other than the DORMANT state when this service call is issued, this
service call does not move the state but increments the activation request counter (by added 0x1 to the wakeup
request counter).
The following describes an example for coding this service call.

Note 1 The activation request counter managed by the RI850V4 is configured in 7-bit widths. If the number of
activation requests exceeds the maximum count value 127 as a result of issuing this service call, the counter
manipulation processing is therefore not performed but "E_QOVR" is returned.

Note 2 Extended information specified in Task information is passed to the task activated by issuing these service
calls.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System infromation header file definition*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/

 act_tsk (tskid); /*Activate task (queues an activation request)*/

}

RI850V4 V2 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 27 of 366
Jan 29, 2016

3.4.2 Not queuing an activation request

A task (not queuing an activation request) is activated by issuing the following service call from the processing program.

- sta_tsk, ista_tsk
These service calls move a task specified by parameter tskid from the DORMANT state to the READY state.
As a result, the target task is queued at the end on the ready queue corresponding to the initial priority and becomes
subject to scheduling by the RI850V4.
This service call does not perform queuing of activation requests. If the target task is in a state other than the
DORMANT state, the status manipulation processing for the target task is therefore not performed but "E_OBJ" is
returned.
Specify for parameter stacd the extended information transferred to the target task.
The following describes an example for coding this service call.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/
 VP_INT stacd = 123; /*Declares and initializes variable*/

 sta_tsk (tskid, stacd); /*Activate task (does not queue an activation */
 /*request)*/

}

RI850V4 V2 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 28 of 366
Jan 29, 2016

3.5 Cancel Task Activation Requests

An activation request is cancelled by issuing the following service call from the processing program.

- can_act, ican_act
This service call cancels all of the activation requests queued to the task specified by parameter tskid (sets the
activation request counter to 0x0).
When this service call is terminated normally, the number of cancelled activation requests is returned.
The following describes an example for coding this service call.

Note This service call does not perform status manipulation processing but performs the setting of activation
request counter. Therefore, the task does not move from a state such as the READY state to the DORMANT
state.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER_UINT ercd; /*Declares variable*/
 ID tskid = 8; /*Declares and initializes variable*/

 ercd = can_act (tskid); /*Cancel task activation requests*/

 if (ercd >= 0x0) {
 /*Normal termination processing*/

 }

}

RI850V4 V2 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 29 of 366
Jan 29, 2016

3.6 Terminate Task

3.6.1 Terminate invoking task

An invoking task is terminated by issuing the following service call from the processing program.

- ext_tsk
This service call moves an invoking task from the RUNNING state to the DORMANT state.
As a result, the invoking task is unlinked from the ready queue and excluded from the RI850V4 scheduling subject.
If an activation request has been queued to the invoking task (the activation request counter is not set to 0x0) when
this service call is issued, this service call moves the task from the RUNNING state to the DORMANT state,
decrements the wakeup request counter (by subtracting 0x1 from the wakeup request counter), and then moves the
task from the DORMANT state to the READY state.
The following describes an example for coding this service call.

Note 1 When moving a task from the RUNNING state to the DORMANT state, this service call initializes the
following information to values that are set during task creation.

- Priority (current priority)

- Wakeup request count

- Suspension count

- Interrupt status

If an invoking task has locked a mutex, the locked state is released at the same time (processing equivalent
to unl_mtx).

Note 2 When the return instruction is issued in a task, the same processing as ext_tsk is performed.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{

 ext_tsk (); /*Terminate invoking task*/
}

RI850V4 V2 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 30 of 366
Jan 29, 2016

3.6.2 Terminate task

Other tasks are forcibly terminated by issuing the following service call from the processing program.

- ter_tsk
This service call forcibly moves a task specified by parameter tskid to the DORMANT state.
As a result, the target task is excluded from the RI850V4 scheduling subject.
If an activation request has been queued to the target task (the activation request counter is not set to 0x0) when this
service call is issued, this service call moves the task to the DORMANT state, decrements the wakeup request
counter (by subtracting 0x1 from the wakeup request counter), and then moves the task from the DORMANT state to
the READY state.
The following describes an example for coding this service call.

Note When moving a task to the DORMANT state, this service call initializes the following information to values
that are set during task creation.

- Priority (current priority)

- Wakeup request count

- Suspension count

- Interrupt status

If the target task has locked a mutex, the locked state is released at the same time (processing equivalent to
unl_mtx).

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/

 ter_tsk (tskid); /*Terminate task*/

}

RI850V4 V2 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 31 of 366
Jan 29, 2016

3.7 Change Task Priority

The priority is changed by issuing the following service call from the processing program.

- chg_pri, ichg_pri
These service calls change the priority of the task specified by parameter tskid (current priority) to a value specified by
parameter tskpri.
If the target task is in the RUNNING or READY state after this service call is issued, this service call re-queues the
task at the end of the ready queue corresponding to the priority specified by parameter tskpri, following priority
change processing.
The following describes an example for coding this service call.

Note When the target task is queued to a wait queue in the order of priority, the wait order may change due to
issue of this service call.

Example When three tasks (task A: priority level 10, task B: priority level 11, task C: priority level 12) are
queued to the semaphore wait queue in the order of priority, and the priority level of task B is
changed from 11 to 9, the wait order will be changed as follows.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/
 PRI tskpri = 9; /*Declares and initializes variable*/

 chg_pri (tskid, tskpri); /*Change task priority*/

}

Task C
Semaphore

Task ATask B

chg_pri (Task B, 9);

Priority: 9 Priority: 10 Priority: 12

Task C
Semaphore

Task BTask A
Priority: 10 Priority: 11 Priority: 12

Task C
Priority: 12

RI850V4 V2 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 32 of 366
Jan 29, 2016

3.8 Reference Task Priority

A task priority is referenced by issuing the following service call from the processing program.

- get_pri, iget_pri
Stores current priority of the task specified by parameter tskid in the area specified by parameter p_tskpri.
The following describes an example for coding this service call.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/
 PRI p_tskpri; /*Declares variable*/

 get_pri (tskid, &p_tskpri); /*Reference task priority*/

}

RI850V4 V2 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 33 of 366
Jan 29, 2016

3.9 Reference Task State

3.9.1 Reference task state

A task status is referenced by issuing the following service call from the processing program.

- ref_tsk, iref_tsk
Stores task state packet (current state, current priority, etc.) of the task specified by parameter tskid in the area
specified by parameter pk_rtsk.
The following describes an example for coding this service call.

Note For details about the task state packet, refer to "15.2.1 Task state packet".

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/
 T_RTSK pk_rtsk; /*Declares data structure*/
 STAT tskstat; /*Declares variable*/
 PRI tskpri; /*Declares variable*/
 STAT tskwait; /*Declares variable*/
 ID wobjid; /*Declares variable*/
 TMO lefttmo; /*Declares variable*/
 UINT actcnt; /*Declares variable*/
 UINT wupcnt; /*Declares variable*/
 UINT suscnt; /*Declares variable*/
 ATR tskatr; /*Declares variable*/
 PRI itskpri; /*Declares variable*/

 ref_tsk (tskid, &pk_rtsk); /*Reference task state*/

 tskstat = pk_rtsk.tskstat; /*Reference current state*/
 tskpri = pk_rtsk.tskpri; /*Reference current priority*/
 tskwait = pk_rtsk.tskwait; /*Reference reason for waiting*/
 wobjid = pk_rtsk.wobjid; /*Reference object ID number for which the */
 /*task is waiting*/
 lefttmo = pk_rtsk.lefttmo; /*Reference remaining time until timeout*/
 actcnt = pk_rtsk.actcnt; /*Reference activation request count*/
 wupcnt = pk_rtsk.wupcnt; /*Reference wakeup request count*/
 suscnt = pk_rtsk.suscnt; /*Reference suspension count*/
 tskatr = pk_rtsk.tskatr; /*Reference attribute*/
 itskpri = pk_rtsk.itskpri; /*Reference initial priority*/

}

RI850V4 V2 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 34 of 366
Jan 29, 2016

3.9.2 Reference task state (simplified version)

A task status (simplified version) is referenced by issuing the following service call from the processing program.

- ref_tst, iref_tst
Stores task state packet (current state, reason for waiting) of the task specified by parameter tskid in the area
specified by parameter pk_rtst.
Used for referencing only the current state and reason for wait among task information.
Response becomes faster than using ref_tsk or iref_tsk because only a few information items are acquired.
The following describes an example for coding this service call.

Note For details about the task state packet (simplified version), refer to "15.2.2 Task state packet (simplified
version)".

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/
 T_RTST pk_rtst; /*Declares data structure*/
 STAT tskstat; /*Declares variable*/
 STAT tskwait; /*Declares variable*/

 ref_tst (tskid, &pk_rtst); /*Reference task state (simplified version)*/

 tskstat = pk_rtst.tskstat; /*Reference current state*/
 tskwait = pk_rtst.tskwait; /*Reference reason for waiting*/

}

RI850V4 V2 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 35 of 366
Jan 29, 2016

3.10 Memory Saving

The RI850V4 provides the method (Disable preempt) for reducing the task stack size required by tasks to perform
processing.

3.10.1 Disable preempt

In the RI850V4, preempt acknowledge status attribute TA_DISPREEMPT can be defined in Task information when
creating a system configuration file.

The task for which this attribute is defined performs the operation that continues processing by ignoring the scheduling
request issued from a non-task, so a management area of 24 to 44 bytes can be reduced per task.

RI850V4 V2 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 36 of 366
Jan 29, 2016

CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION
FUNCTIONS

This chapter describes the task dependent synchronization functions performed by the RI850V4.

4.1 Outline

The RI850V4 provides several task-dependent synchronization functions.

4.2 Put Task to Sleep

4.2.1 Waiting forever

A task is moved to the sleeping state (waiting forever) by issuing the following service call from the processing program.

- slp_tsk
As a result, the invoking task is unlinked from the ready queue and excluded from the RI850V4 scheduling subject.
If a wakeup request has been queued to the target task (the wakeup request counter is not set to 0x0) when this
service call is issued, this service call does not move the state but decrements the wakeup request counter (by
subtracting 0x1 from the wakeup request counter).
The sleeping state is cancelled in the following cases, and then moved to the READY state.

The following describes an example for coding this service call.

Sleeping State Cancel Operation Return Value

A wakeup request was issued as a result of issuing wup_tsk. E_OK

A wakeup request was issued as a result of issuing iwup_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

RI850V4 V2 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 37 of 366
Jan 29, 2016

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/

 ercd = slp_tsk (); /*Put task to sleep (waiting forever)*/

 if (ercd == E_OK) {
 /*Normal termination processing*/

 } else if (ercd == E_RLWAI) {
 /*Forced termination processing*/

 }

｝

RI850V4 V2 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 38 of 366
Jan 29, 2016

4.2.2 With timeout

A task is moved to the sleeping state (with timeout) by issuing the following service call from the processing program.

- tslp_tsk
This service call moves an invoking task from the RUNNING state to the WAITING state (sleeping state).
As a result, the invoking task is unlinked from the ready queue and excluded from the RI850V4 scheduling subject.
If a wakeup request has been queued to the target task (the wakeup request counter is not set to 0x0) when this
service call is issued, this service call does not move the state but decrements the wakeup request counter (by
subtracting 0x1 from the wakeup request counter).
The sleeping state is cancelled in the following cases, and then moved to the READY state.

The following describes an example for coding this service call.

Note When TMO_FEVR is specified for wait time tmout, processing equivalent to slp_tsk will be executed.

Sleeping State Cancel Operation Return Value

A wakeup request was issued as a result of issuing wup_tsk. E_OK

A wakeup request was issued as a result of issuing iwup_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 ercd = tslp_tsk (tmout); /*Put task to sleep (with timeout)*/

 if (ercd == E_OK) {
 /*Normal termination processing*/

 } else if (ercd == E_RLWAI) {
 /*Forced termination processing*/

 } else if (ercd == E_TMOUT) {
 /*Timeout processing*/

 }

}

RI850V4 V2 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 39 of 366
Jan 29, 2016

4.3 Wakeup Task

A task is woken up by issuing the following service call from the processing program.

- wup_tsk, iwup_tsk
These service calls cancel the WAITING state (sleeping state) of the task specified by parameter tskid.
As a result, the target task is moved from the sleeping state to the READY state, or from the WAITING-SUSPENDED
state to the SUSPENDED state.
If the target task is in a state other than the sleeping state when this service call is issued, this service call does not
move the state but increments the wakeup request counter (by added 0x1 to the wakeup request counter).
The following describes an example for coding this service call.

Note The wakeup request counter managed by the RI850V4 is configured in 7-bit widths. If the number of wakeup
requests exceeds the maximum count value 127 as a result of issuing this service call, the counter
manipulation processing is therefore not performed but "E_QOVR" is returned.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ID tskid = ID_TSK1; /*Declares and initializes variable*/

 wup_tsk (tskid); /*Wakeup task*/

}

RI850V4 V2 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 40 of 366
Jan 29, 2016

4.4 Cancel Task Wakeup Requests

A wakeup request is cancelled by issuing the following service call from the processing program.

- can_wup, ican_wup
These service calls cancel all of the wakeup requests queued to the task specified by parameter tskid (the wakeup
request counter is set to 0x0).
When this service call is terminated normally, the number of cancelled wakeup requests is returned.
The following describes an example for coding this service call.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER_UINT ercd; /*Declares variable*/
 ID tskid = ID_TSK1; /*Declares and initializes variable*/

 ercd = can_wup (tskid); /*Cancel task wakeup requests*/

 if (ercd >= 0x0) {
 /*Normal termination processing*/

 }

}

RI850V4 V2 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 41 of 366
Jan 29, 2016

4.5 Release Task from Waiting

The WAITING state is forcibly cancelled by issuing the following service call from the processing program.

- rel_wai, irel_wai
These service calls forcibly cancel the WAITING state of the task specified by parameter tskid.
As a result, the target task unlinked from the wait queue and is moved from the WAITING state to the READY state, or
from the WAITING-SUSPENDED state to the SUSPENDED state.
"E_RLWAI" is returned from the service call that triggered the move to the WAITING state (slp_tsk, wai_sem, or the
like) to the task whose WAITING state is cancelled by this service call.
The following describes an example for coding this service call.

Note 1 This service call does not perform queuing of forced cancellation requests. If the target task is in a state
other than the WAITING or WAITING-SUSPENDED state, "E_OBJ" is returned.

Note 2 The SUSPENDED state is not cancelled by these service calls.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ID tskid = ID_TSK1; /*Declares and initializes variable*/

 rel_wai (tskid); /*Release task from waiting*/

}

RI850V4 V2 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 42 of 366
Jan 29, 2016

4.6 Suspend Task

A task is moved to the SUSPENDED state by issuing the following service call from the processing program.

- sus_tsk, isus_tsk
These service calls add 0x1 to the suspend request counter for the task specified by parameter tskid, and then move
the target task from the RUNNING state to the SUSPENDED state, from the READY state to the SUSPENDED state,
or from the WAITING state to the WAITING-SUSPENDED state.
If the target task has moved to the SUSPENDED or WAITING-SUSPENDED state when this service call is issued, the
counter manipulation processing is not performed but only the suspend request counter increment processing is
executed.
The following describes an example for coding this service call.

Note The suspend request counter managed by the RI850V4 is configured in 7-bit widths. If the number of
suspend requests exceeds the maximum count value 127 as a result of issuing this service call, the counter
manipulation processing is therefore not performed but "E_QOVR" is returned.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ID tskid = ID_TSK1; /*Declares and initializes variable*/

 sus_tsk (tskid); /*Suspend task*/

}

RI850V4 V2 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 43 of 366
Jan 29, 2016

4.7 Resume Suspended Task

4.7.1 Resume suspended task

The SUSPENDED state is cancelled by issuing the following service call from the processing program.

- rsm_tsk, irsm_tsk
This service call subtracts 0x1 from the suspend request counter for the task specified by parameter tskid, and then
cancels the SUSPENDED state of the target task.
As a result, the target task is moved from the SUSPENDED state to the READY state, or from the WAITING-
SUSPENDED state to the WAITING state.
If a suspend request is queued (subtraction result is other than 0x0) when this service call is issued, the counter
manipulation processing is not performed but only the suspend request counter decrement processing is executed.
The following describes an example for coding this service call.

Note This service call does not perform queuing of cancellation requests. If the target task is in a state other than
the SUSPENDED or WAITING-SUSPENDED state, "E_OBJ" is therefore returned.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ID tskid = ID_TSK1; /*Declares and initializes variable*/

 rsm_tsk (tskid); /*Resume suspended task*/

}

RI850V4 V2 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 44 of 366
Jan 29, 2016

4.7.2 Forcibly resume suspended task

The SUSPENDED state is forcibly cancelled by issuing the following service calls from the processing program.

- frsm_tsk, ifrsm_tsk
These service calls cancel all of the suspend requests issued for the task specified by parameter tskid (by setting the
suspend request counter to 0x0). As a result, the target task moves from the SUSPENDED state to the READY state,
or from the WAITING-SUSPENDED state to the WAITING state.
The following describes an example for coding this service call.

Note This service call does not perform queuing of cancellation requests. If the target task is in a state other than
the SUSPENDED or WAITING-SUSPENDED state, "E_OBJ" is therefore returned.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ID tskid = ID_TSK1; /*Declares and initializes variable*/

 frsm_tsk (tskid); /*Forcibly resume suspended task*/

}

RI850V4 V2 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 45 of 366
Jan 29, 2016

4.8 Delay Task

A task is moved to the delayed state by issuing the following service call from the processing program.

- dly_tsk
This service call moves the invoking task from the RUNNING state to the WAITING state (delayed state).
As a result, the invoking task is unlinked from the ready queue and excluded from the RI850V4 scheduling subject.
The delayed state is cancelled in the following cases, and then moved to the READY state.

The following describes an example for coding this service call.

Delayed State Cancel Operation Return Value

Delay time specified by parameter dlytim has elapsed. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 RELTIM dlytim = 3600; /*Declares and initializes variable*/

 ercd = dly_tsk (dlytim); /*Delay task*/

 if (ercd == E_OK) {
 /*Normal termination processing*/

 } else if (ercd == E_RLWAI) {
 /*Forced termination processing*/

 }

}

RI850V4 V2 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 46 of 366
Jan 29, 2016

4.9 Differences Between Wakeup Wait with Timeout and Time Elapse
Wait

Wakeup waits with timeout and time elapse waits differ on the following points.

Table 4-1 Differences Between Wakeup Wait with Timeout and Time Elapse Wait

Wakeup Wait with Timeout Time Elapse Wait

Service call that causes status change tslp_tsk dly_tsk

Return value when timed out E_TMOUT E_OK

Operation when wup_tsk or iwup_tsk
is issued

Wakeup
Queues the wakeup request (time
elapse wait is not cancelled).

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 47 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

CHAPTER 5 SYNCHRONIZATION AND COMMUNICA-
TION FUNCTIONS

This chapter describes the synchronization and communication functions performed by the RI850V4.

5.1 Outline

The synchronization and communication functions of the RI850V4 consist of Semaphores, Eventflags, Data Queues,
and Mailboxes that are provided as means for realizing exclusive control, queuing, and communication among tasks.

5.2 Semaphores
In the RI850V4, non-negative number counting semaphores are provided as a means (exclusive control function) for

preventing contention for limited resources (hardware devices, library function, etc.) arising from the required conditions of
simultaneously running tasks.

The following shows a processing flow when using a semaphore.

Figure 5-1 Processing Flow (Semaphore)

5.2.1 Create semaphore

In the RI850V4, the method of creating a semaphore is limited to "static creation".
Semaphores therefore cannot be created dynamically using a method such as issuing a service call from a processing

program.
Static semaphore creation means defining of semaphores using static API "CRE_SEM" in the system configuration file.
For details about the static API "CRE_SEM", refer to "17.5.2 Semaphore information".

Task

Exclusive control period

Acquire semaphore resource

Release semaphore resource

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 48 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.2.2 Acquire semaphore resource

A resource is acquired (waiting forever, polling, or with timeout) by issuing the following service call from the processing
program.

- wai_sem
This service call acquires a resource from the semaphore specified by parameter semid (subtracts 0x1 from the
semaphore counter).
If no resources are acquired from the target semaphore when this service call is issued (no available resources exist),
this service call does not acquire resources but queues the invoking task to the target semaphore wait queue and
moves it from the RUNNING state to the WAITING state (resource acquisition wait state).
The WAITING state for a semaphore resource is cancelled in the following cases, and then moved to the READY
state.

The following describes an example for coding this service call.

Note Invoking tasks are queued to the target semaphore wait queue in the order defined during configuration
(FIFO order or priority order).

WAITING State for a Semaphore Resource Cancel Operation Return Value

The resource was returned to the target semaphore as a result of issuing sig_sem. E_OK

The resource was returned to the target semaphore as a result of issuing isig_sem. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID semid = ID_SEM1; /*Declares and initializes variable*/

 ercd = wai_sem (semid); /*Acquire semaphore resource (waiting forever)*/

 if (ercd == E_OK) {
 /*Normal termination processing*/

 } else if (ercd == E_RLWAI) {
 /*Forced termination processing*/

 }

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 49 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

- pol_sem, ipol_sem
This service call acquires a resource from the semaphore specified by parameter semid (subtracts 0x1 from the
semaphore counter).
If a resource could not be acquired from the target semaphore (semaphore counter is set to 0x0) when this service
call is issued, the counter manipulation processing is not performed but "E_TMOUT" is returned.
The following describes an example for coding this service call.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID semid = ID_SEM1; /*Declares and initializes variable*/

 ercd = pol_sem (semid); /*Acquire semaphore resource (polling)*/

 if (ercd == E_OK) {
 /*Polling success processing*/

 } else if (ercd == E_TMOUT) {
 /*Polling failure processing*/

 }

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 50 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

- twai_sem
This service call acquires a resource from the semaphore specified by parameter semid (subtracts 0x1 from the
semaphore counter).
If no resources are acquired from the target semaphore when service call is issued this (no available resources exist),
this service call does not acquire resources but queues the invoking task to the target semaphore wait queue and
moves it from the RUNNING state to the WAITING state with timeout (resource acquisition wait state).
The WAITING state for a semaphore resource is cancelled in the following cases, and then moved to the READY
state.

The following describes an example for coding this service call.

Note 1 Invoking tasks are queued to the target semaphore wait queue in the order defined during configuration
(FIFO order or priority order).

Note 2 TMO_FEVR is specified for wait time tmout, processing equivalent to wai_sem will be executed. When
TMO_POL is specified, processing equivalent to pol_sem /ipol_sem will be executed.

WAITING State for a Semaphore Resource Cancel Operation Return Value

The resource was returned to the target semaphore as a result of issuing sig_sem. E_OK

The resource was returned to the target semaphore as a result of issuing isig_sem. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID semid = ID_SEM1; /*Declares and initializes variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 ercd = twai_sem (semid, tmout); /*Acquire semaphore resource (with timeout)*/

 if (ercd == E_OK) {
 /*Normal termination processing*/

 } else if (ercd == E_RLWAI) {
 /*Forced termination processing*/

 } else if (ercd == E_TMOUT) {
 /*Timeout processing*/

 }

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 51 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.2.3 Release semaphore resource

A resource is returned by issuing the following service call from the processing program.

- sig_sem, isig_sem
These service calls return the resource to the semaphore specified by parameter semid (adds 0x1 to the semaphore
counter).
If a task is queued in the wait queue of the target semaphore when this service call is issued, the counter
manipulation processing is not performed but the resource is passed to the relevant task (first task of wait queue).
As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (WAITING state
for a semaphore resource) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.
The following describes an example for coding this service call.

Note With the RI850V4, the maximum possible number of semaphore resources (maximum resource count) is
defined during configuration. If the number of resources exceeds the specified maximum resource count,
this service call therefore does not return the acquired resources (addition to the semaphore counter value)
but returns E_QOVR.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ID semid = ID_SEM1; /*Declares and initializes variable*/

 sig_sem (semid); /*Release semaphore resource*/

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 52 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.2.4 Reference semaphore state

A semaphore status is referenced by issuing the following service call from the processing program.

- ref_sem, iref_sem
Stores semaphore state packet (ID number of the task at the head of the wait queue, current resource count, etc.) of
the semaphore specified by parameter semid in the area specified by parameter pk_rsem.
The following describes an example for coding this service call.

Note For details about the semaphore state packet, refer to "15.2.3 Semaphore state packet".

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ID semid = ID_SEM1; /*Declares and initializes variable*/
 T_RSEM pk_rsem; /*Declares data structure*/
 ID wtskid; /*Declares variable*/
 UINT semcnt; /*Declares variable*/
 ATR sematr; /*Declares variable*/
 UINT maxsem; /*Declares variable*/

 ref_sem (semid, &pk_rsem); /*Reference semaphore state*/

 wtskid = pk_rsem.wtskid; /*Reference ID number of the task at the */
 /*head of the wait queue*/
 semcnt = pk_rsem.semcnt; /*Reference current resource count*/
 sematr = pk_rsem.sematr; /*Reference attribute*/
 maxsem = pk_rsem.maxsem; /*Reference maximum resource count*/

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 53 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.3 Eventflags

The RI850V4 provides 32-bit eventflags as a queuing function for tasks, such as keeping the tasks waiting for
execution, until the results of the execution of a given processing program are output.

The following shows a processing flow when using an eventflag.

Figure 5-2 Processing Flow (Eventflag)

5.3.1 Create eventflag

In the RI850V4, the method of creating an eventflag is limited to "static creation".
Eventflags therefore cannot be created dynamically using a method such as issuing a service call from a processing

program.
Static event flag creation means defining of event flags using static API "CRE_FLG" in the system configuration file.
For details about the static API "CRE_FLG", refer to "17.5.3 Eventflag information".

Wait for eventflag

Set eventflag

Task A
Priority: High

Task B
Priority: Low

Queuing period

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 54 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.3.2 Set eventflag

 Bit pattern is set by issuing the following service call from the processing program.

- set_flg, iset_flg
These service calls set the result of logical OR operating the bit pattern of the eventflag specified by parameter flgid
and the bit pattern specified by parameter setptn as the bit pattern of the target eventflag.
If the required condition of the task queued to the target eventflag wait queue is satisfied when this service call is
issued, the relevant task is unlinked from the wait queue at the same time as bit pattern setting processing.
As a result, the relevant task is moved from the WAITING state (WAITING state for an eventflag) to the READY state,
or from the WAITING-SUSPENDED state to the SUSPENDED state.
The following describes an example for coding this service call.

Note 1 If the bit pattern set to the target eventflag is B'1100 and the bit pattern specified by parameter setptn is
B'1010 when this service call is issued, the bit pattern of the target eventflag is set to B'1110.

Note 2 When the TA_WMUL attribute is specified for the target eventflag, the range of tasks to be checked on
"whether issuing of this service call satisfies the required condition" differs depending on whether the
TA_CLR attribute is also specified.

- When TA_CLR is specified
Check begins from the task at the head of the wait queue and stops at the first task whose required
condition is satisfied.

- When TA_CLR is not specified
All tasks placed in the wait queue are checked.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ID flgid = ID_FLG1; /*Declares and initializes variable*/
 FLGPTN setptn = 10; /*Declares and initializes variable*/

 set_flg (flgid, setptn); /*Set eventflag*/

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 55 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.3.3 Clear eventflag

A bit pattern is cleared by issuing the following service call from the processing program.

- clr_flg, iclr_flg
This service call sets the result of logical AND operating the bit pattern set to the eventflag specified by parameter
flgid and the bit pattern specified by parameter clrptn as the bit pattern of the target eventflag.
The following describes an example for coding this service call.

Note If the bit pattern set to the target eventflag is B'1100 and the bit pattern specified by parameter clrptn is
B'1010 when this service call is issued, the bit pattern of the target eventflag is set to B'1110.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ID flgid = ID_FLG1; /*Declares and initializes variable*/
 FLGPTN clrptn = 10; /*Declares and initializes variable*/

 clr_flg (flgid, clrptn); /*Clear eventflag*/

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 56 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.3.4 Wait for eventflag

A bit pattern is checked (waiting forever, polling, or with timeout) by issuing the following service call from the
processing program.

- wai_flg
This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the
required condition specified by parameter wfmode are set to the eventflag specified by parameter flgid.
If a bit pattern that satisfies the required condition has been set for the target eventflag, the bit pattern of the target
eventflag is stored in the area specified by parameter p_flgptn.
If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued, the
invoking task is queued to the target eventflag wait queue.
As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the
WAITING state (WAITING state for an eventflag).
The WAITING state for an eventflag is cancelled in the following cases, and then moved to the READY state.

The following shows the specification format of required condition wfmode.

- wfmode = TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

- wfmode = TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

The following describes an example for coding this service call.

WAITING State for an Eventflag Cancel Operation Return Value

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing set_flg.

E_OK

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing iset_flg.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID flgid = ID_FLG1; /*Declares and initializes variable*/
 FLGPTN waiptn = 14; /*Declares and initializes variable*/
 MODE wfmode = TWF_ANDW; /*Declares and initializes variable*/
 FLGPTN p_flgptn; /*Declares variable*/

 /*Wait for eventflag (waiting forever)*/
 ercd = wai_flg (flgid, waiptn, wfmode, &p_flgptn);

 if (ercd == E_OK) {
 /*Normal termination processing*/

 } else if (ercd == E_RLWAI) {
 /*Forced termination processing*/

 }

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 57 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

Note 1 With the RI850V4, whether to enable queuing of multiple tasks to the event flag wait queue is defined during
configuration. If this service call is issued for the event flag (TW_WSGL attribute) to which a wait task is
queued, therefore, "E_ILUSE" is returned regardless of whether the required condition is immediately
satisfied.

TA_WSGL: Only one task is allowed to be in the WAITING state for the eventflag.
TA_WMUL: Multiple tasks are allowed to be in the WAITING state for the eventflag.

Note 2 Invoking tasks are queued to the target event flag (TA_WMUL attribute) wait queue in the order defined
during configuration (FIFO order or priority order).

Note 3 The RI850V4 performs bit pattern clear processing (0x0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

Note 4 If the WAITING state for an eventflag is forcibly released by issuing rel_wai or irel_wai, the contents of the
area specified by parameter p_flgptn will be undefined.

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 58 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

- pol_flg, ipol_flg
This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the
required condition specified by parameter wfmode are set to the eventflag specified by parameter flgid.
If the bit pattern that satisfies the required condition has been set to the target eventflag, the bit pattern of the target
eventflag is stored in the area specified by parameter p_flgptn.
If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued,
"E_TMOUT" is returned.
The following shows the specification format of required condition wfmode.

- wfmode = TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

- wfmode = TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

The following describes an example for coding this service call.

Note 1 With the RI850V4, whether to enable queuing of multiple tasks to the event flag wait queue is defined during
configuration. If this service call is issued for the event flag (TW_WSGL attribute) to which a wait task is
queued, therefore, "E_ILUSE" is returned regardless of whether the required condition is immediately
satisfied.

TA_WSGL: Only one task is allowed to be in the WAITING state for the eventflag.
TA_WMUL: Multiple tasks are allowed to be in the WAITING state for the eventflag.

Note 2 The RI850V4 performs bit pattern clear processing (0x0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

Note 3 If the bit pattern of the target event flag does not satisfy the required condition when this service call is
issued, the contents in the area specified by parameter p_flgptn become undefined.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID flgid = ID_FLG1; /*Declares and initializes variable*/
 FLGPTN waiptn = 14; /*Declares and initializes variable*/
 MODE wfmode = TWF_ANDW; /*Declares and initializes variable*/
 FLGPTN p_flgptn; /*Declares variable*/

 /*Wait for eventflag (polling)*/
 ercd = pol_flg (flgid, waiptn, wfmode, &p_flgptn);

 if (ercd == E_OK) {
 /*Polling success processing*/

 } else if (ercd == E_TMOUT) {
 /*Polling failure processing*/

 }

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 59 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

- twai_flg
This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the
required condition specified by parameter wfmode are set to the eventflag specified by parameter flgid.
If a bit pattern that satisfies the required condition has been set for the target eventflag, the bit pattern of the target
eventflag is stored in the area specified by parameter p_flgptn.
If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued, the
invoking task is queued to the target eventflag wait queue.
As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the
WAITING state (WAITING state for an eventflag).
The WAITING state for an eventflag is cancelled in the following cases, and then moved to the READY state.

The following shows the specification format of required condition wfmode.

- wfmode = TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

- wfmode = TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

The following describes an example for coding this service call.

WAITING State for an Eventflag Cancel Operation Return Value

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing set_flg.

E_OK

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing iset_flg.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 60 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

Note 1 With the RI850V4, whether to enable queuing of multiple tasks to the event flag wait queue is defined during
configuration. If this service call is issued for the event flag (TW_WSGL attribute) to which a wait task is
queued, therefore, "E_ILUSE" is returned regardless of whether the required condition is immediately
satisfied.

TA_WSGL: Only one task is allowed to be in the WAITING state for the eventflag.
TA_WMUL: Multiple tasks are allowed to be in the WAITING state for the eventflag.

Note 2 Invoking tasks are queued to the target event flag (TA_WMUL attribute) wait queue in the order defined
during configuration (FIFO order or priority order).

Note 3 The RI850V4 performs bit pattern clear processing (0x0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

Note 4 If the event flag wait state is cancelled because rel_wai or irel_wai was issued or the wait time elapsed, the
contents in the area specified by parameter p_flgptn become undefined.

Note 5 TMO_FEVR is specified for wait time tmout, processing equivalent to wai_flg will be executed. When
TMO_POL is specified, processing equivalent to pol_flg /ipol_flg will be executed.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID flgid = ID_FLG1; /*Declares and initializes variable*/
 FLGPTN waiptn = 14; /*Declares and initializes variable*/
 MODE wfmode = TWF_ANDW; /*Declares and initializes variable*/
 FLGPTN p_flgptn; /*Declares variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /*Wait for eventflag (with timeout)*/
 ercd = twai_flg (flgid, waiptn, wfmode, &p_flgptn, tmout);

 if (ercd == E_OK) {
 /*Normal termination processing*/

 } else if (ercd == E_RLWAI) {
 /*Forced termination processing*/

 } else if (ercd == E_TMOUT) {
 /*Timeout processing*/

 }

}

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 61 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.3.5 Reference eventflag state

An eventflag status is referenced by issuing the following service call from the processing program.

- ref_flg, iref_flg
Stores eventflag state packet (ID number of the task at the head of the wait queue, current bit pattern, etc.) of the
eventflag specified by parameter flgid in the area specified by parameter pk_rflg.
The following describes an example for coding this service call.

Note For details about the eventflag state packet, refer to "15.2.4 Eventflag state packet".

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ID flgid = ID_FLG1; /*Declares and initializes variable*/
 T_RFLG pk_rflg; /*Declares data structure*/
 ID wtskid; /*Declares variable*/
 FLGPTN flgptn; /*Declares variable*/
 ATR flgatr; /*Declares variable*/

 ref_flg (flgid, &pk_rflg); /*Reference eventflag state*/

 wtskid = pk_rflg.wtskid; /*Reference ID number of the task at the */
 /*head of the wait queue*/
 flgptn = pk_rflg.flgptn; /*Reference current bit pattern*/
 flgatr = pk_rflg.flgatr; /*Reference attribute*/

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 62 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.4 Data Queues

Multitask processing requires the inter-task communication function (data transfer function) that reports the processing
result of a task to another task. The RI850V4 therefore provides the data queues that have the data queue area in which
data read/write is enabled for transferring the prescribed size of data.

The following shows a processing flow when using a data queue.

Figure 5-3 Processing Flow (Data Queue)

Note Data units of 4 bytes are transmitted or received at a time.

5.4.1 Create data queue

In the RI850V4, the method of creating a data queue is limited to "static creation".
Data queues therefore cannot be created dynamically using a method such as issuing a service call from a processing

program.
Static data queue creation means defining of data queues using static API "CRE_DTQ" in the system configuration file.
For details about the static API "CRE_DTQ", refer to "17.5.4 Data queue information".

Task A
Priority: High

Task B
Priority: Low

Reception wait period

Receive from data queue

Send to data queue

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 63 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.4.2 Send to data queue

A data is transmitted by issuing the following service call from the processing program.

- snd_dtq
This service call writes data specified by parameter data to the data queue area of the data queue specified by
parameter dtqid.
If there is no available space for writing data in the data queue area of the target data queue when this service call is
issued, this service call does not write data but queues the invoking task to the transmission wait queue of the target
data queue and moves it from the RUNNING state to the WAITING state (data transmission wait state).
The sending WAITING state for a data queue is cancelled in the following cases, and then moved to the READY
state.

If a task has been queued to the reception wait queue of the target data queue when this service call is issued, this
service call does not write data but transfers the data to the task. As a result, the task is unlinked from the reception
wait queue and moves from the WAITING state (data reception wait state) to the READY state, or from the WAITING-
SUSPENDED state to the SUSPENDED state.
The following describes an example for coding this service call.

Sending WAITING State for a Data Queue Cancel Operation Return Value

Available space was secured in the data queue area of the target data queue as a result of
issuing rcv_dtq.

E_OK

Available space was secured in the data queue area of the target data queue as a result of
issuing prcv_dtq.

E_OK

Available space was secured in the data queue area of the target data queue as a result of
issuing iprcv_dtq.

E_OK

Available space was secured in the data queue area of the target data queue as a result of
issuing trcv_dtq.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID dtqid = ID_DTQ1; /*Declares and initializes variable*/
 VP_INT data = 123; /*Declares and initializes variable*/

 ercd = snd_dtq (dtqid, data); /*Send to data queue (waiting forever)*/

 if (ercd == E_OK) {
 /*Normal termination processing*/

 } else if (ercd == E_RLWAI) {
 /*Forced termination processing*/

 }

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 64 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

Note 1 Data is written to the data queue area of the target data queue in the order of the data transmission request.

Note 2 Invoking tasks are queued to the transmission wait queue of the target data queue in the order defined
during configuration (FIFO order or priority order).

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 65 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

- psnd_dtq, ipsnd_dtq
These service calls write data specified by parameter data to the data queue area of the data queue specified by
parameter dtqid.
If there is no available space for writing data in the data queue area of the target data queue when either of these
service calls is issued, data is not written but E_TMOUT is returned.
If a task has been queued to the reception wait queue of the target data queue when this service call is issued, this
service call does not write data but transfers the data to the task. As a result, the task is unlinked from the reception
wait queue and moves from the WAITING state (data reception wait state) to the READY state, or from the WAITING-
SUSPENDED state to the SUSPENDED state.
The following describes an example for coding this service call.

Note Data is written to the data queue area of the target data queue in the order of the data transmission request.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID dtqid = ID_DTQ1; /*Declares and initializes variable*/
 VP_INT data = 123; /*Declares and initializes variable*/

 /*Send to data queue (polling)*/
 ercd = psnd_dtq (dtqid, data);

 if (ercd == E_OK) {
 /*Polling success processing*/

 } else if (ercd == E_TMOUT) {
 /*Polling failure processing*/

 }

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 66 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

- tsnd_dtq
This service call writes data specified by parameter data to the data queue area of the data queue specified by
parameter dtqid.
If there is no available space for writing data in the data queue area of the target data queue when this service call is
issued, the service call does not write data but queues the invoking task to the transmission wait queue of the target
data queue and moves it from the RUNNING state to the WAITING state with time (data transmission wait state).
The sending WAITING state for a data queue is cancelled in the following cases, and then moved to the READY
state.

If a task has been queued to the reception wait queue of the target data queue when this service call is issued, this
service call does not write data but transfers the data to the task. As a result, the task is unlinked from the reception
wait queue and moves from the WAITING state (data reception wait state) to the READY state, or from the WAITING-
SUSPENDED state to the SUSPENDED state.
The following describes an example for coding this service call.

Sending WAITING State for a Data Queue Cancel Operation Return Value

An available space was secured in the data queue area of the target data queue as a result
of issuing rcv_dtq.

E_OK

An available space was secured in the data queue area of the target data queue as a result
of issuing prcv_dtq.

E_OK

An available space was secured in the data queue area of the target data queue as a result
of issuing iprcv_dtq.

E_OK

An available space was secured in the data queue area of the target data queue as a result
of issuing trcv_dtq.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 67 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

Note 1 Data is written to the data queue area of the target data queue in the order of the data transmission request.

Note 2 Invoking tasks are queued to the transmission wait queue of the target data queue in the order defined
during configuration (FIFO order or priority order).

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to snd_dtq will be executed. When
TMO_POL is specified, processing equivalent to psnd_dtq /ipsnd_dtq will be executed.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID dtqid = ID_DTQ1; /*Declares and initializes variable*/
 VP_INT data = 123; /*Declares and initializes variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /*Send to data queue (with timeout)*/
 ercd = tsnd_dtq (dtqid, data, tmout);

 if (ercd == E_OK) {
......... /*Normal termination processing*/
.........

 } else if (ercd == E_RLWAI) {
......... /*Forced termination processing*/
.........

 } else if (ercd == E_TMOUT) {
......... /*Timeout processing*/
.........

 }

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 68 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.4.3 Forced send to data queue

Data is forcibly transmitted by issuing the following service call from the processing program.

- fsnd_dtq, ifsnd_dtq
These service calls write data specified by parameter data to the data queue area of the data queue specified by
parameter dtqid.
If there is no available space for writing data in the data queue area of the target data queue when either of these
service calls is issued, the service call overwrites data to the area with the oldest data that was written.
If a task has been queued to the reception wait queue of the target data queue when this service call is issued, this
service call does not write data but transfers the data to the task. As a result, the task is unlinked from the reception
wait queue and moves from the WAITING state (data reception wait state) to the READY state, or from the WAITING-
SUSPENDED state to the SUSPENDED state.
The following describes an example for coding this service call.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ID dtqid = ID_DTQ1; /*Declares and initializes variable*/
 VP_INT data = 123; /*Declares and initializes variable*/

 fsnd_dtq (dtqid, data); /*Forced send to data queue*/

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 69 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.4.4 Receive from data queue

A data is received (waiting forever, polling, or with timeout) by issuing the following service call from the processing
program.

- rcv_dtq
This service call reads data in the data queue area of the data queue specified by parameter dtqid and stores it to the
area specified by parameter p_data.
If no data could be read from the data queue area of the target data queue (no data has been written to the data
queue area) when this service call is issued, the service call does not read data but queues the invoking task to the
reception wait queue of the target data queue and moves it from the RUNNING state to the WAITING state (data
reception wait state).
The receiving WAITING state for a data queue is cancelled in the following cases, and then moved to the READY
state.

The following describes an example for coding this service call.

Receiving WAITING State for a Data Queue Cancel Operation Return Value

Data was written to the data queue area of the target data queue as a result of issuing
snd_dtq.

E_OK

Data was written to the data queue area of the target data queue as a result of issuing
psnd_dtq.

E_OK

Data was written to the data queue area of the target data queue as a result of issuing
ipsnd_dtq.

E_OK

Data was written to the data queue area of the target data queue as a result of issuing
tsnd_dtq.

E_OK

Data was written to the data queue area of the target data queue as a result of issuing
fsnd_dtq.

E_OK

Data was written to the data queue area of the target data queue as a result of issuing
ifsnd_dtq.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID dtqid = ID_DTQ1; /*Declares and initializes variable*/
 VP_INT p_data; /*Declares variable*/

 /*Receive from data queue (waiting forever)*/
 ercd = rcv_dtq (dtqid, &p_data);

 if (ercd == E_OK) {
 /*Normal termination processing*/

 } else if (ercd == E_RLWAI) {
 /*Forced termination processing*/

 }

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 70 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

Note 1 Invoking tasks are queued to the reception wait queue of the target data queue in the order of the data
reception request.

Note 2 If the receiving WAITING state for a data queue is forcibly released by issuing rel_wai or irel_wai, the
contents of the area specified by parameter p_data will be undefined.

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 71 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

- prcv_dtq, iprcv_dtq
These service calls read data in the data queue area of the data queue specified by parameter dtqid and stores it to
the area specified by parameter p_data.
If no data could be read from the data queue area of the target data queue (no data has been written to the data
queue area) when either of these service calls is issued, the service call does not read data but E_TMOUT is
returned.
The following describes an example for coding this service call.

Note If no data could be read from the data queue area of the target data queue (no data has been written to the
data queue area) when either of these service calls is issued, the contents in the area specified by
parameter p_data become undefined.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID dtqid = ID_DTQ1; /*Declares and initializes variable*/
 VP_INT p_data; /*Declares variable*/

 /*Receive from data queue (polling)*/
 ercd = prcv_dtq (dtqid, &p_data);

 if (ercd == E_OK) {
......... /*Polling success processing*/
.........

 } else if (ercd == E_TMOUT) {
......... /*Polling failure processing*/
.........

 }

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 72 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

- trcv_dtq
This service call reads data in the data queue area of the data queue specified by parameter dtqid and stores it to the
area specified by parameter p_data.
If no data could be read from the data queue area of the target data queue (no data has been written to the data
queue area) when this service call is issued, the service call does not read data but queues the invoking task to the
reception wait queue of the target data queue and moves it from the RUNNING state to the WAITING state with time
out (data reception wait state).
The receiving WAITING state for a data queue is cancelled in the following cases, and then moved to the READY
state.

The following describes an example for coding this service call.

Receiving WAITING State for a Data Queue Cancel Operation Return Value

Data was written to the data queue area of the target data queue as a result of issuing
snd_dtq.

E_OK

Data was written to the data queue area of the target data queue as a result of issuing
psnd_dtq.

E_OK

Data was written to the data queue area of the target data queue as a result of issuing
ipsnd_dtq.

E_OK

Data was written to the data queue area of the target data queue as a result of issuing
tsnd_dtq.

E_OK

Data was written to the data queue area of the target data queue as a result of issuing
fsnd_dtq.

E_OK

Data was written to the data queue area of the target data queue as a result of issuing
ifsnd_dtq.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 73 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

Note 1 Invoking tasks are queued to the reception wait queue of the target data queue in the order of the data
reception request.

Note 2 If the data reception wait state is cancelled because rel_wai or irel_wai was issued or the wait time elapsed,
the contents in the area specified by parameter p_data become undefined.

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to rcv_dtq will be executed. When
TMO_POL is specified, processing equivalent to prcv_dtq /iprcv_dtq will be executed.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID dtqid = ID_DTQ1; /*Declares and initializes variable*/
 VP_INT p_data; /*Declares variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /*Receive from data queue (with timeout)*/
 ercd = trcv_dtq (dtqid, &p_data, tmout);

 if (ercd == E_OK) {
 /*Normal termination processing*/

 } else if (ercd == E_RLWAI) {
 /*Forced termination processing*/

 } else if (ercd == E_TMOUT) {
 /*Timeout processing*/

 }

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 74 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.4.5 Reference data queue state

A data queue status is referenced by issuing the following service call from the processing program.

- ref_dtq, iref_dtq
These service calls store the detailed information of the data queue (existence of waiting tasks, number of data
elements in the data queue, etc.) specified by parameter dtqid into the area specified by parameter pk_rdtq.
The following describes an example for coding this service call.

Note For details about the data queue state packet, refer to "15.2.5 Data queue state packet".

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ID dtqid = ID_DTQ1; /*Declares and initializes variable*/
 T_RDTQ pk_rdtq; /*Declares data structure*/
 ID stskid; /*Declares variable*/
 ID rtskid; /*Declares variable*/
 UINT sdtqcnt; /*Declares variable*/
 ATR dtqatr; /*Declares variable*/
 UINT dtqcnt; /*Declares variable*/

 ref_dtq (dtqid, &pk_rdtq); /*Reference data queue state*/

 stskid = pk_rdtq.stskid; /*Acquires existence of tasks waiting for */
 /*data transmission*/
 rtskid = pk_rdtq.rtskid; /*Acquires existence of tasks waiting for */
 /*data reception*/
 sdtqcnt = pk_rdtq.sdtqcnt; /*Reference the number of data elements in */
 /*data queue*/
 dtqatr = pk_rdtq.dtqatr; /*Reference attribute*/
 dtqcnt = pk_rdtq.dtqcnt; /*Reference data count*/

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 75 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.5 Mailboxes

The RI850V4 provides a mailbox, as a communication function between tasks, that hands over the execution result of a
given processing program to another processing program.

The following shows a processing flow when using a mailbox.

Figure 5-4 Processing Flow (Mailbox)

5.5.1 Messages

The information exchanged among processing programs via the mailbox is called "messages".
Messages can be transmitted to any processing program via the mailbox, but it should be noted that, in the case of the

synchronization and communication functions of the RI850V4, only the start address of the message is handed over to the
receiving processing program, but the message contents are not copied to a separate area.

- Securement of memory area
In the case of the RI850V4, it is recommended to use the memory area secured by issuing service calls such as
get_mpf and get_mpl for messages.

Note The RI850V4 uses the message start area as a link area during queuing to the wait queue for mailbox
messages. Therefore, if the memory area for messages is secured from other than the memory area
controlled by the RI850V4, it must be secured from 4-byte aligned addresses.

- Basic form of messages
In the RI850V4, the message contents and length are prescribed as follows, according to the attributes of the mailbox
to be used.

- When using a mailbox with the TA_MFIFO attribute
The contents and length past the first 4 bytes of a message (system reserved area msgnext) are not restricted in
particular in the RI850V4.
Therefore, the contents and length past the first 4 bytes are prescribed among the processing programs that
exchange data using the mailbox with the TA_MFIFO attribute.
The following shows the basic form of coding TA_MFIFO attribute messages in C.

[Message packet for TA_MFIFO attribute]

typedef struct t_msg {
 struct t_msg *msgnext; /*Reserved for future use*/
} T_MSG;

Receive from mailbox

Send to mailbox

Reception wait period

Task A
Priority: High Priority: Low

Task B

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 76 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

- When using a mailbox with the TA_MPRI attribute
The contents and length past the first 8 bytes of a message (system reserved area msgque, priority level msgpri)
are not restricted in particular in the RI850V4.
Therefore, the contents and length past the first 8 bytes are prescribed among the processing programs that
exchange data using the mailbox with the TA_MPRI attribute.
The following shows the basic form of coding TA_MPRI attribute messages in C.

[Message packet for TA_MPRI attribute]

Note 1 In the RI850V4, a message having a smaller priority number is given a higher priority.

Note 2 Values that can be specified as the message priority level are limited to the range defined in Mailbox
information (Maximum message priority: maxmpri) when the system configuration file is created.

Note 3 For details about the message packet, refer to "15.2.6 Message packet".

5.5.2 Create mailbox

In the RI850V4, the method of creating a mailbox is limited to "static creation".
Mailboxes therefore cannot be created dynamically using a method such as issuing a service call from a processing

program.
Static mailbox creation means defining of mailboxes using static API "CRE_MBX" in the system configuration file.
For details about the static API "CRE_MBX", refer to "17.5.5 Mailbox information".

typedef struct t_msg_pri {
 struct t_msg msgque; /*Reserved for future use*/
 PRI msgpri; /*Message priority*/
} T_MSG_PRI;

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 77 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.5.3 Send to mailbox

A message is transmitted by issuing the following service call from the processing program.

- snd_mbx, isnd_mbx
This service call transmits the message specified by parameter pk_msg to the mailbox specified by parameter mbxid
(queues the message in the wait queue).
If a task is queued to the target mailbox wait queue when this service call is issued, the message is not queued but
handed over to the relevant task (first task of the wait queue).
As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (receiving
WAITING state for a mailbox) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED
state.
The following describes an example for coding this service call.

Note 1 Messages are queued to the target mailbox wait queue in the order defined by queuing method during
configuration (FIFO order or priority order).

Note 2 With the RI850V4 mailbox, only the start address of the message is handed over to the receiving processing
program, but the message contents are not copied to a separate area. The message contents can therefore
be rewritten even after this service call is issued.

Note 3 For details about the message packet, refer to "15.2.6 Message packet".

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ID mbxid = ID_MBX1; /*Declares and initializes variable*/
 T_MSG_PRI *pk_msg; /*Declares data structure*/

 /*Secures memory area (for message)*/

 /*Creates message (contents)*/

 pk_msg->msgpri = 8; /*Initializes data structure*/

 /*Send to mailbox*/
 snd_mbx (mbxid, (T_MSG *) pk_msg);

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 78 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.5.4 Receive from mailbox

A message is received (infinite wait, polling, or with timeout) by issuing the following service call from the processing
program.

- rcv_mbx
This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in
the area specified by parameter ppk_msg.
If no message could be received from the target mailbox (no messages were queued to the wait queue) when this
service call is issued, this service call does not receive messages but queues the invoking task to the target mailbox
wait queue and moves it from the RUNNING state to the WAITING state (message reception wait state).
The receiving WAITING state for a mailbox is cancelled in the following cases, and then moved to the READY state.

The following describes an example for coding this service call.

Note 1 Invoking tasks are queued to the target mailbox wait queue in the order defined during configuration (FIFO
order or priority order).

Note 2 If the receiving WAITING state for a mailbox is forcibly released by issuing rel_wai or irel_wai, the contents
of the area specified by parameter ppk_msg will be undefined.

Note 3 For details about the message packet, refer to "15.2.6 Message packet".

Receiving WAITING State for a Mailbox Cancel Operation Return Value

A message was transmitted to the target mailbox as a result of issuing snd_mbx. E_OK

A message was transmitted to the target mailbox as a result of issuing isnd_mbx. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mbxid = ID_MBX1; /*Declares and initializes variable*/
 T_MSG *ppk_msg; /*Declares data structure*/

 /*Receive from mailbox*/
 ercd = rcv_mbx (mbxid, &ppk_msg);

 if (ercd == E_OK) {
 /*Normal termination processing*/

 } else if (ercd == E_RLWAI) {
 /*Forced termination processing*/

 }

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 79 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

- prcv_mbx, iprcv_mbx
This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in
the area specified by parameter ppk_msg.
If the message could not be received from the target mailbox (no messages were queued in the wait queue) when this
service call is issued, message reception processing is not executed but "E_TMOUT" is returned.
The following describes an example for coding this service call.

Note 1 If no message could be received from the target mailbox (no messages were queued to the wait queue)
when this service call is issued, the contents in the area specified by parameter ppk_msg become
undefined.

Note 2 For details about the message packet, refer to "15.2.6 Message packet".

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mbxid = ID_MBX1; /*Declares and initializes variable*/
 T_MSG *ppk_msg; /*Declares data structure*/

 /*Receive from mailbox (polling)*/
 ercd = prcv_mbx (mbxid, &ppk_msg);

 if (ercd == E_OK) {
......... /*Polling success processing*/
.........

 } else if (ercd == E_TMOUT) {
......... /*Polling failure processing*/
.........

 }

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 80 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

- trcv_mbx
This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in
the area specified by parameter ppk_msg.
If no message could be received from the target mailbox (no messages were queued to the wait queue) when this
service call is issued, this service call does not receive messages but queues the invoking task to the target mailbox
wait queue and moves it from the RUNNING state to the WAITING state with timeout (message reception wait state).
The receiving WAITING state for a mailbox is cancelled in the following cases, and then moved to the READY state.

The following describes an example for coding this service call.

Note 1 Invoking tasks are queued to the target mailbox wait queue in the order defined during configuration (FIFO
order or priority order).

Note 2 If the message reception wait state is cancelled because rel_wai or irel_wai was issued or the wait time
elapsed, the contents in the area specified by parameter ppk_msg become undefined.

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to rcv_mbx will be executed. When
TMO_POL is specified, processing equivalent to prcv_mbx /iprcv_mbx will be executed.

Note 4 For details about the message packet, refer to "15.2.6 Message packet".

Receiving WAITING State for a Mailbox Cancel Operation Return Value

A message was transmitted to the target mailbox as a result of issuing snd_mbx. E_OK

A message was transmitted to the target mailbox as a result of issuing isnd_mbx. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mbxid = ID_MAX1; /*Declares and initializes variable*/
 T_MSG *ppk_msg; /*Declares data structure*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /*Receive from mailbox (with timeout)*/
 ercd = trcv_mbx (mbxid, &ppk_msg, tmout);

 if (ercd == E_OK) {
 /*Normal termination processing*/

 } else if (ercd == E_RLWAI) {
 /*Forced termination processing*/

 } else if (ercd == E_TMOUT) {
 /*Timeout processing*/

 }

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 81 of 366
Jan 29, 2016

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

5.5.5 Reference mailbox state

A mailbox status is referenced by issuing the following service call from the processing program.

- ref_mbx, iref_mbx
Stores mailbox state packet (ID number of the task at the head of the wait queue, start address of the message packet
at the head of the wait queue) of the mailbox specified by parameter mbxid in the area specified by parameter
pk_rmbx.
The following describes an example for coding this service call.

Note For details about the mailbox state packet, refer to "15.2.7 Mailbox state packet".

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ID mbxid = ID_MBX1; /*Declares and initializes variable*/
 T_RMBX pk_rmbx; /*Declares data structure*/
 ID wtskid; /*Declares variable*/
 T_MSG *pk_msg; /*Declares data structure*/
 ATR mbxatr; /*Declares variable*/

 ref_mbx (mbxid, &pk_rmbx); /*Reference mailbox state*/

 wtskid = pk_rmbx.wtskid; /*Reference ID number of the task at the */
 /*head of the wait queue*/
 pk_msg = pk_rmbx.pk_msg; /*Reference start address of the message */
 /*packet at the head of the wait queue*/
 mbxatr = pk_rmbx.mbxatr; /*Reference attribute*/

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 82 of 366
Jan 29, 2016

CHAPTER 6 EXTENDED SYNCHRONIZATION AND
COMMUNICATION FUNCTIONS

CHAPTER 6 EXTENDED SYNCHRONIZATION AND
COMMUNICATION FUNCTIONS

This chapter describes the extended synchronization and communication functions performed by the RI850V4.

6.1 Outline

The RI850V4 provides Mutexes as the extended synchronization and communication function for implementing
exclusive control between tasks.

6.2 Mutexes
Multitask processing requires the function to prevent contentions on using the limited number of resources (A/D

converter, coprocessor, files, or the like) simultaneously by tasks operating in parallel (exclusive control function). To
resolve such problems, the RI850V4 therefore provides "mutexes".

The following shows a processing flow when using a mutex.
The mutexes provided in the RI850V4 do not support the priority inheritance protocol and priority ceiling protocol but

only support the FIFO order and priority order.

Figure 6-1 Processing Flow (Mutex)

6.2.1 Differences from semaphores

Since the mutexes of the RI850V4 do not support the priority inheritance protocol and priority ceiling protocol, so it
operates similarly to semaphores (binary semaphore) whose the maximum resource count is 1, but they differ in the
following points.

- A locked mutex can be unlocked (equivalent to returning of resources) only by the task that locked the mutex

--> Semaphores can return resources via any task and handler.

- Unlocking is automatically performed when a task that locked the mutex is terminated (ext_tsk or ter_tsk)

--> Semaphores do not return resources automatically, so they end with resources acquired.

- Semaphores can manage multiple resources (the maximum resource count can be assigned), but the maximum
number of resources assigned to a mutex is fixed to 1.

Task

Exclusive control period

Lock mutex

Unlock mutex

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 83 of 366
Jan 29, 2016

CHAPTER 6 EXTENDED SYNCHRONIZATION AND
COMMUNICATION FUNCTIONS

6.2.2 Create mutex

In the RI850V4, the method of creating a mutex is limited to "static creation".
Mutexes therefore cannot be created dynamically using a method such as issuing a service call from a processing

program.
Static mutex creation means defining of mutexes using static API "CRE_MTX" in the system configuration file.
For details about the static API "CRE_MTX", refer to "17.5.6 Mutex information".

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 84 of 366
Jan 29, 2016

CHAPTER 6 EXTENDED SYNCHRONIZATION AND
COMMUNICATION FUNCTIONS

6.2.3 Lock mutex

Mutexes can be locked by issuing the following service call from the processing program.

- loc_mtx
This service call locks the mutex specified by parameter mtxid.
If the target mutex could not be locked (another task has been locked) when this service call is issued, this service call
queues the invoking task to the target mutex wait queue and moves it from the RUNNING state to the WAITING state
(mutex wait state).
The WAITING state for a mutex is cancelled in the following cases, and then moved to the READY state.

The following describes an example for coding this service call.

Note 1 Invoking tasks are queued to the target mutex wait queue in the order defined during configuration (FIFO
order or priority order).

Note 2 In the RI850V4, E_ILUSE is returned if this service call is re-issued for the mutex that has been locked by
the invoking task (multiple-locking of mutex).

WAITING State for a Mutex Cancel Operation Return Value

The locked state of the target mutex was cancelled as a result of issuing unl_mtx. E_OK

The locked state of the target mutex was cancelled as a result of issuing ext_tsk. E_OK

The locked state of the target mutex was cancelled as a result of issuing ter_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mtxid = ID_MTX1; /*Declares and initializes variable*/

 ercd = loc_mtx (mtxid); /*Lock mutex (waiting forever)*/

 if (ercd == E_OK) {
 /*Locked state*/

 unl_mtx (mtxid); /*Unlock mutex*/
 } else if (ercd == E_RLWAI) {
 /*Forced termination processing*/

 }

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 85 of 366
Jan 29, 2016

CHAPTER 6 EXTENDED SYNCHRONIZATION AND
COMMUNICATION FUNCTIONS

- ploc_mtx
This service call locks the mutex specified by parameter mtxid.
If the target mutex could not be locked (another task has been locked) when this service call is issued but E_TMOUT
is returned.
The following describes an example for coding this service call.

Note In the RI850V4, E_ILUSE is returned if this service call is re-issued for the mutex that has been locked by
the invoking task (multiple-locking of mutex).

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mtxid = ID_MTX1; /*Declares and initializes variable*/

 ercd = ploc_mtx (mtxid); /*Lock mutex (polling)*/

 if (ercd == E_OK) {
 /*Polling success processing*/

 unl_mtx (mtxid); /*Unlock mutex*/
 } else if (ercd == E_TMOUT) {
 /*Polling failure processing*/

 }

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 86 of 366
Jan 29, 2016

CHAPTER 6 EXTENDED SYNCHRONIZATION AND
COMMUNICATION FUNCTIONS

- tloc_mtx
This service call locks the mutex specified by parameter mtxid.
If the target mutex could not be locked (another task has been locked) when this service call is issued, this service call
queues the invoking task to the target mutex wait queue and moves it from the RUNNING state to the WAITING state
with timeout (mutex wait state).
The WAITING state for a mutex is cancelled in the following cases, and then moved to the READY state.

The following describes an example for coding this service call.

Note 1 Invoking tasks are queued to the target mutex wait queue in the order defined during configuration (FIFO
order or priority order).

Note 2 In the RI850V4, E_ILUSE is returned if this service call is re-issued for the mutex that has been locked by
the invoking task (multiple-locking of mutex).

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to loc_mtx will be executed. When
TMO_POL is specified, processing equivalent to ploc_mtx will be executed.

WAITING State for a Mutex Cancel Operation Return Value

The locked state of the target mutex was cancelled as a result of issuing unl_mtx. E_OK

The locked state of the target mutex was cancelled as a result of issuing ext_tsk. E_OK

The locked state of the target mutex was cancelled as a result of issuing ter_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mtxid = ID_MTX1; /*Declares and initializes variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 ercd = tloc_mtx (mtxid, tmout); /*Lock mutex (with timeout)*/

 if (ercd == E_OK) {
 /*Locked state*/

 unl_mtx (mtxid); /*Unlock mutex*/
 } else if (ercd == E_RLWAI) {
 /*Forced termination processing*/

 } else if (ercd == E_TMOUT) {
 /*Timeout processing*/

 }

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 87 of 366
Jan 29, 2016

CHAPTER 6 EXTENDED SYNCHRONIZATION AND
COMMUNICATION FUNCTIONS

6.2.4 Unlock mutex

The mutex locked state can be cancelled by issuing the following service call from the processing program.

- unl_mtx
This service call unlocks the locked mutex specified by parameter mtxid.
If a task has been queued to the target mutex wait queue when this service call is issued, mutex lock processing is
performed by the task (the first task in the wait queue) immediately after mutex unlock processing.
As a result, the task is unlinked from the wait queue and moves from the WAITING state (mutex wait state) to the
READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.
The following describes an example for coding this service call.

Note A locked mutex can be unlocked only by the task that locked the mutex.
If this service call is issued for a mutex that was not locked by an invoking task, no processing is performed
but E_ILUSE is returned.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mtxid = ID_MTX1; /*Declares and initializes variable*/

 ercd = loc_mtx (mtxid); /*Lock mutex*/

 if (ercd == E_OK) {
 /*Locked state*/
]

 unl_mtx (mtxid); /*Unlock mutex*/
 } else if (ercd == E_RLWAI) {
 /*Forced termination processing*/

 }

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 88 of 366
Jan 29, 2016

CHAPTER 6 EXTENDED SYNCHRONIZATION AND
COMMUNICATION FUNCTIONS

6.2.5 Reference mutex state

A mutex status is referenced by issuing the following service call from the processing program.

- ref_mtx, iref_mtx
The service calls store the detailed information of the mutex specified by parameter mtxid (existence of locked
mutexes, waiting tasks, etc.) into the area specified by parameter pk_rmtx.
The following describes an example for coding this service call.

Note For details about the mutex state packet, refer to "15.2.8 Mutex state packet".

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ID mtxid = ID_MTX1; /*Declares and initializes variable*/
 T_RMTX pk_rmtx; /*Declares data structure*/
 ID htskid; /*Declares variable*/
 ID wtskid; /*Declares variable*/
 ATR mtxatr; /*Declares variable*/

 ref_mtx (mbxid, &pk_rmtx); /*Reference mutex state*/

 htskid = pk_rmtx.htskid; /*Acquires existence of locked mutexes*/
 wtskid = pk_rmtx.wtskid; /*Reference ID number of the task at the */
 /*head of the wait queue*/
 mtxatr = pk_rmtx.mtxatr; /*Reference attribute*/

}

RI850V4 V2 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 89 of 366
Jan 29, 2016

CHAPTER 7 MEMORY POOL MANAGEMENT FUNC-
TIONS

This chapter describes the memory pool management functions performed by the RI850V4.

7.1 Outline

The statically secured memory areas in the Kernel Initialization Module are subject to management by the memory pool
management functions of the RI850V4.

The RI850V4 provides a function to reference the memory area status, including the detailed information of fixed/
variable-size memory pools, as well as a function to dynamically manipulate the memory area, including acquisition/
release of fixed/variable-size memory blocks, by releasing a part of the memory area statically secured/initialized as
"Fixed-Sized Memory Pools", or "Variable-Sized Memory Pools".

Table 7-1 Memory Area

7.2 User-Own Coding Module
To support various execution environments, the hardware-dependent processing (Post-overflow processing) that is

required for the RI850V4 to execute processing is extracted as a user-own coding module.
This enhances portability to various execution environments and facilitates customization as well.

Note The RI850V4 checks stack overflows only when "TA_ON: Overflow is checked" is defined as "Whether to
check stack: stkchk" in the system configuration file.

セクション名 概要

.kernel_system Area where executable code of RI850V4 is allocated.

.kernel_const Area where static data of RI850V4 is allocated.

.kernel_data Area where dynamic data of RI850V4 is allocated.

.kernel_data_init Area where kernel initialization flag of RI850V4 is allocated.

.kernel_const_trace.const Area where static data of trace function is allocated.

.kernel_data_trace.bss Area where dynamic data of trace function is allocated.

.kernel_work
Area where system stack, task stack, data queue, fixed-sized memory pool and
variable-sized memory pool is allocated.

.sec_nam（user-defined area）
Area where task stack, data queue, fixed-sized memory pool and variable-sized
memory pool is allocated.

RI850V4 V2 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 90 of 366
Jan 29, 2016

7.2.1 Post-overflow processing

This is a routine dedicated to post-processing that is extracted as a user-own coding module to execute post-overflow
processing and is called when a stack overflow occurs in a processing program.

- Basic form of post-overflow processing
When coding the post-overflow processing, use a void function (function name: _kernel_stk_overflow)
with two INT-type arguments.
The "value of stack pointer sp when a stack overflow is detected" is set for the r6 argument, and the
"value of program counter pc when a stack overflow is detected" is set for the r7 argument.
The following shows the basic form of the post-overflow processing in assembly language.

- Internal processing of post-overflow processing
The overflow processing is a routine dedicated to post-processing that is extracted as a user-own coding module to
execute post-overflow processing and is called when a stack necessary for the RI850V4 and the processing program
has overflowed. Therefore, note the following points when coding post-overflow processing.

- Coding method
Code post-overflow processing using the C or assembly language.
When coding in C, it can be coded in the same manner as ordinary functions.
When coding in assembly language, code it according to the calling convention in the compiler used.

- Stack switching
The RI850V4 does not perform the processing related to stack switching when passing control to post-overflow
processing. Therefore, when using the stack for post-overflow processing, the code for stack setting (setting of
the stack pointer SP) should be written at the beginning of post-overflow processing.

- Service call issue
Issue of service calls is prohibited in post-overflow processing because correct operation cannot be guaranteed.

The following is a list of processes that should be executed in post-overflow processing.

- Post-processing that handles stack overflows

Note The processing (such as reset) that should be coded as post-overflow processing depends on the user
system.

#include <kernel.h> /*Standard header file definition*/

 .text
 .align 0x2
 .globl __kernel_stk_overflow

__kernel_stk_overflow :

.halt_loop :
 jbr .halt_loop

RI850V4 V2 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 91 of 366
Jan 29, 2016

7.3 Fixed-Sized Memory Pools

When a dynamic memory manipulation request is issued from a processing program in the RI850V4, the fixed-sized
memory pool is provided as a usable memory area.

Dynamic memory manipulation of the fixed-size memory pool is executed in fixed size memory block units.

7.3.1 Create fixed-sized memory pool

In the RI850V4, the method of creating a fixed-sized memory pool is limited to "static creation".
Fixed-sized memory pools therefore cannot be created dynamically using a method such as issuing a service call from

a processing program.
Static fixed-size memory pool creation means defining of fixed-size memory pools using static API "CRE_MPF" in the

system configuration file.
For details about the static API "CRE_MPF", refer to "17.5.7 Fixed-sized memory pool information".

RI850V4 V2 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 92 of 366
Jan 29, 2016

7.3.2 Acquire fixed-sized memory block

A fixed-sized memory block is acquired (waiting forever, polling, or with timeout) by issuing the following service call
from the processing program.

- get_mpf
This service call acquires the fixed-sized memory block from the fixed-sized memory pool specified by parameter
mpfid and stores the start address in the area specified by parameter p_blk.
If no fixed-size memory blocks could be acquired from the target fixed-size memory pool (no available fixed-size
memory blocks exist) when this service call is issued, this service call does not acquire the fixed-size memory block
but queues the invoking task to the target fixed-size memory pool wait queue and moves it from the RUNNING state
to the WAITING state (fixed-size memory block acquisition wait state).
The WAITING state for a fixed-sized memory block is cancelled in the following cases, and then moved to the READY
state.

The following describes an example for coding this service call.

Note 1 The RI850V4 does not perform memory clear processing when getting the acquired fixed-size memory
block. The contents of the got fixed-size memory block are therefore undefined.

WAITING State for a Fixed-sized Memory Block Cancel Operation Return Value

A fixed-sized memory block was returned to the target fixed-sized memory pool as a result of
issuing rel_mpf.

E_OK

A fixed-sized memory block was returned to the target fixed-sized memory pool as a result of
issuing irel_mpf.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mpfid = 1; /*Declares and initializes variable*/
 VP p_blk; /*Declares variable*/

 ercd = get_mpf (mpfid, &p_blk); /*Acquire fixed-sized memory block */
 /*(waiting forever)*/

 if (ercd == E_OK) {
 /*Normal termination processing*/

 rel_mpf (mpfid, p_blk); /*Release fixed-sized memory block*/
 } else if (ercd == E_RLWAI) {
 /*Forced termination processing*/

 }

}

RI850V4 V2 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 93 of 366
Jan 29, 2016

Note 2 Invoking tasks are queued to the target fixed-size memory pool wait queue in the order defined during
configuration (FIFO order or priority order).

Note 3 If the fixed-size memory block acquisition wait state is cancelled because rel_wai or irel_wai was issued, the
contents in the area specified by parameter p_blk become undefined.

RI850V4 V2 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 94 of 366
Jan 29, 2016

- pget_mpf, ipget_mpf
This service call acquires the fixed-sized memory block from the fixed-sized memory pool specified by parameter
mpfid and stores the start address in the area specified by parameter p_blk.
If a fixed-sized memory block could not be acquired from the target fixed-sized memory pool (no available fixed-sized
memory blocks exist) when this service call is issued, fixed-sized memory block acquisition processing is not
performed but "E_TMOUT" is returned.
The following describes an example for coding this service call.

Note 1 The RI850V4 does not perform memory clear processing when getting the acquired fixed-size memory
block. The contents of the got fixed-size memory block are therefore undefined.

Note 2 If no fixed-size memory blocks could be acquired from the target fixed-size memory pool (no available fixed-
size memory blocks exist) when this service call is issued, the contents in the area specified by parameter
p_blk become undefined.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mpfid = 1; /*Declares and initializes variable*/
 VP p_blk; /*Declares variable*/

 /*Acquire fixed-sized memory block (polling)*/
 ercd = pget_mpf (mpfid, &p_blk);

 if (ercd == E_OK) {
 /*Polling success processing*/

 rel_mpf (mpfid, p_blk); /*Release fixed-sized memory block*/
 } else if (ercd == E_TMOUT) {
 /*Polling failure processing*/

 }

}

RI850V4 V2 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 95 of 366
Jan 29, 2016

- tget_mpf
This service call acquires the fixed-sized memory block from the fixed-sized memory pool specified by parameter
mpfid and stores the start address in the area specified by parameter p_blk.
If no fixed-size memory blocks could be acquired from the target fixed-size memory pool (no available fixed-size
memory blocks exist) when this service call is issued, this service call does not acquire the fixed-size memory block
but queues the invoking task to the target fixed-size memory pool wait queue and moves it from the RUNNING state
to the WAITING state with timeout (fixed-size memory block acquisition wait state).
The WAITING state for a fixed-sized memory block is cancelled in the following cases, and then moved to the READY
state.

The following describes an example for coding this service call.

Note 1 The RI850V4 does not perform memory clear processing when getting the acquired fixed-size memory
block. The contents of the got fixed-size memory block are therefore undefined.

WAITING State for a Fixed-sized Memory Block Cancel Operation Return Value

A fixed-sized memory block was returned to the target fixed-sized memory pool as a result of
issuing rel_mpf.

E_OK

A fixed-sized memory block was returned to the target fixed-sized memory pool as a result of
issuing irel_mpf.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mpfid = 1; /*Declares and initializes variable*/
 VP p_blk; /*Declares variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /*Acquire fixed-sized memory block*/
 /*(with timeout)*/
 ercd = tget_mpf (mpfid, &p_blk, tmout);

 if (ercd == E_OK) {
 /*Normal termination processing*/

 rel_mpf (mpfid, p_blk); /*Release fixed-sized memory block*/
 } else if (ercd == E_RLWAI) {
 /*Forced termination processing*/

 } else if (ercd == E_TMOUT) {
 /*Timeout processing*/

 }

}

RI850V4 V2 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 96 of 366
Jan 29, 2016

Note 2 Invoking tasks are queued to the target fixed-size memory pool wait queue in the order defined during
configuration (FIFO order or priority order).

Note 3 If the fixed-size memory block acquisition wait state is cancelled because rel_wai or irel_wai was issued or
the wait time elapsed, the contents in the area specified by parameter p_blk become undefined.

Note 4 TMO_FEVR is specified for wait time tmout, processing equivalent to get_mpf will be executed. When
TMO_POL is specified, processing equivalent to pget_mpf /ipget_mpf will be executed.

RI850V4 V2 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 97 of 366
Jan 29, 2016

7.3.3 Release fixed-sized memory block

A fixed-sized memory block is returned by issuing the following service call from the processing program.

- rel_mpf, irel_mpf
This service call returns the fixed-sized memory block specified by parameter blk to the fixed-sized memory pool
specified by parameter mpfid.
If a task is queued to the target fixed-sized memory pool wait queue when this service call is issued, fixed-sized
memory block return processing is not performed but fixed-sized memory blocks are returned to the relevant task
(first task of wait queue).
As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (WAITING state
for a fixed-sized memory block) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED
state.
The following describes an example for coding this service call.

Note 1 The RI850V4 does not perform memory clear processing when returning the acquired fixed-size memory
block. The contents of the returned fixed-size memory block are therefore undefined.

Note 2 When returning fixed-size memory blocks, be sure to issue either of these service calls for the acquired
fixed-size memory pools. If the service call is issued for another fixed-size memory pool, no error results but
the operation is not guaranteed after that.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mpfid = 1; /*Declares and initializes variable*/
 VP blk; /*Declares variable*/

 ercd = get_mpf (mpfid, &blk); /*Acquire fixed-sized memory block */
 /*(waiting forever)*/

 if (ercd == E_OK) {
 /*Normal termination processing*/

 rel_mpf (mpfid, blk); /*Release fixed-sized memory block*/
 } else if (ercd == E_RLWAI) {
 /*Forced termination processing*/

 }

}

RI850V4 V2 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 98 of 366
Jan 29, 2016

7.3.4 Reference fixed-sized memory pool state

A fixed-sized memory pool status is referenced by issuing the following service call from the processing program.

- ref_mpf, iref_mpf
Stores fixed-sized memory pool state packet (ID number of the task at the head of the wait queue, number of free
memory blocks, etc.) of the fixed-sized memory pool specified by parameter mpfid in the area specified by parameter
pk_rmpf.
The following describes an example for coding this service call.

Note For details about the fixed-sized memory pool state packet, refer to "15.2.9 Fixed-sized memory pool state
packet".

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ID mpfid = 1; /*Declares and initializes variable*/
 T_RMPF pk_rmpf; /*Declares data structure*/
 ID wtskid; /*Declares variable*/
 UINT fblkcnt; /*Declares variable*/
 ATR mpfatr; /*Declares variable*/

 ref_mpf (mpfid, &pk_rmpf); /*Reference fixed-sized memory pool state*/

 wtskid = pk_rmpf.wtskid; /*Reference ID number of the task at the */
 /*head of the wait queue*/
 fblkcnt = pk_rmpf.fblkcnt; /*Reference number of free memory blocks*/
 mpfatr = pk_rmpf.mpfatr; /*Reference attribute*/

}

RI850V4 V2 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 99 of 366
Jan 29, 2016

7.4 Variable-Sized Memory Pools

When a dynamic memory manipulation request is issued from a processing program in the RI850V4, the variable-sized
memory pool is provided as a usable memory area.

Dynamic memory manipulation for variable-size memory pools is performed in the units of the specified variable-size
memory block size.

7.4.1 Create variable-sized memory pool

In the RI850V4, the method of creating a variable-sized memory pool is limited to "static creation".
Variable-sized memory pools therefore cannot be created dynamically using a method such as issuing a service call

from a processing program.
Static variable-size memory pool creation means defining of variable-size memory pools using static API "CRE_MPL" in

the system configuration file.
For details about the static API "CRE_MPL", refer to "17.5.8 Variable-sized memory pool information".

RI850V4 V2 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 100 of 366
Jan 29, 2016

7.4.2 Acquire variable-sized memory block

A variable-sized memory block is acquired (waiting forever, polling, or with timeout) by issuing the following service call
from the processing program.

- get_mpl
This service call acquires a variable-size memory block of the size (+4 byte) specified by parameter blksz from the
variable-size memory pool specified by parameter mplid, and stores its start address into the area specified by
parameter p_blk.
If no variable-size memory blocks could be acquired from the target variable-size memory pool (no successive areas
equivalent to the requested size were available) when this service call is issued, this service call does not acquire
variable-size memory blocks but queues the invoking task to the target variable-size memory pool wait queue and
moves it from the RUNNING state to the WAITING state (variable-size memory block acquisition wait state).
The WAITING state for a variable-sized memory block is cancelled in the following cases, and then moved to the
READY state.

The following describes an example for coding this service call.

WAITING State for a Variable-sized Memory Block Cancel Operation Return Value

The variable-size memory block that satisfies the requested size was returned to the target
variable-size memory pool as a result of issuing rel_mpl.

E_OK

The variable-size memory block that satisfies the requested size was returned to the target
variable-size memory pool as a result of issuing irel_mpl.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mplid = ID_MPL1; /*Declares and initializes variable*/
 UINT blksz = 256; /*Declares and initializes variable*/
 VP p_blk; /*Declares variable*/

 /*Acquire variable-sized memory block */
 /*(waiting forever)*/
 ercd = get_mpl (mplid, blksz, &p_blk);

 if (ercd == E_OK) {
 /*Normal termination processing*/
]

 rel_mpl (mplid, p_blk); /*Release variable-sized memory block*/
 } else if (ercd == E_RLWAI) {
 /*Forced termination processing*/

 }

}

RI850V4 V2 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 101 of 366
Jan 29, 2016

Note 1 The RI850V4 acquires variable-size memory blocks in the unit of "integral multiple of 4". If a value other than
an integral multiple of 4 is specified for parameter blksz, it is rounded up to be an integral multiple of 4.

Note 2 The RI850V4 needs a 4-byte area (management block) to manage the acquired variable-sized memory
blocks. When this service call is issued, an area of "blksz + 4" bytes is allocated in the target variable-sized
memory pool.

Note 3 The RI850V4 does not perform memory clear processing when getting the acquired variable-size memory
block. The contents of the got variable-size memory block are therefore undefined.

Note 4 Invoking tasks are queued to the target variable-size memory pool wait queue in the order defined during
configuration (FIFO order or priority order).

Note 5 If the variable-size memory block acquisition wait state is cancelled because rel_wai or irel_wai was issued,
the contents in the area specified by parameter p_blk become undefined.

RI850V4 V2 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 102 of 366
Jan 29, 2016

- pget_mpl, ipget_mpl
This service call acquires a variable-size memory block of the size (+4 byte) specified by parameter blksz from the
variable-size memory pool specified by parameter mplid, and stores its start address into the area specified by
parameter p_blk.
If no variable-size memory blocks could be acquired from the target variable-size memory pool (no successive areas
equivalent to the requested size were available) when this service call is issued, this service call does not acquire
variable-size memory block but returns E_TMOUT.
The following describes an example for coding this service call.

Note 1 The RI850V4 acquires variable-size memory blocks in the unit of "integral multiple of 4". If a value other than
an integral multiple of 4 is specified for parameter blksz, it is rounded up to be an integral multiple of 4.

Note 2 The RI850V4 needs a 4-byte area (management block) to manage the acquired variable-sized memory
blocks. When this service call is issued, an area of "blksz + 4" bytes is allocated in the target variable-sized
memory pool.

Note 3 The RI850V4 does not perform memory clear processing when getting the acquired variable-size memory
block. The contents of the got variable-size memory block are therefore undefined.

Note 4 If no variable-size memory blocks could be acquired from the target variable-size memory pool (no
successive areas equivalent to the requested size were available) when this service call is issued, the
contents in the area specified by parameter p_blk become undefined.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/
r

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mplid = ID_MTX1; /*Declares and initializes variable*/
 UINT blksz = 256; /*Declares and initializes variable*/
 VP p_blk; /*Declares variable*/

 /*Acquire variable-sized memory block*/
 /*(polling)*/
 ercd = pget_mpl (mplid, blksz, &p_blk);

 if (ercd == E_OK) {
 /*Polling success processing*/

 rel_mpl (mplid, p_blk); /*Release variable-sized memory block*/
 } else if (ercd == E_TMOUT) {
 /*Polling failure processing*/

 }

}

RI850V4 V2 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 103 of 366
Jan 29, 2016

- tget_mpl
This service call acquires a variable-size memory block of the size (+4 byte) specified by parameter blksz from the
variable-size memory pool specified by parameter mplid, and stores its start address into the area specified by
parameter p_blk.
If no variable-size memory blocks could be acquired from the target variable-size memory pool (no successive areas
equivalent to the requested size were available) when this service call is issued, this service call does not acquire
variable-size memory blocks but queues the invoking task to the target variable-size memory pool wait queue and
moves it from the RUNNING state to the WAITING state with timeout (variable-size memory block acquisition wait
state).
The WAITING state for a variable-sized memory block is cancelled in the following cases, and then moved to the
READY state.

The following describes an example for coding this service call.

WAITING State for a Variable-sized Memory Block Cancel Operation Return Value

The variable-size memory block that satisfies the requested size was returned to the target
variable-size memory pool as a result of issuing rel_mpl.

E_OK

The variable-size memory block that satisfies the requested size was returned to the target
variable-size memory pool as a result of issuing irel_mpl.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

RI850V4 V2 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 104 of 366
Jan 29, 2016

Note 1 The RI850V4 acquires variable-size memory blocks in the unit of "integral multiple of 4". If a value other than
an integral multiple of 4 is specified for parameter blksz, it is rounded up to be an integral multiple of 4.

Note 2 The RI850V4 needs a 4-byte area (management block) to manage the acquired variable-sized memory
blocks. When this service call is issued, an area of "blksz + 4" bytes is allocated in the target variable-sized
memory pool.

Note 3 The RI850V4 does not perform memory clear processing when getting the acquired variable-size memory
block. The contents of the got variable-size memory block are therefore undefined.

Note 4 Invoking tasks are queued to the target variable-size memory pool wait queue in the order defined during
configuration (FIFO order or priority order).

Note 5 If the variable-size memory block acquisition wait state is cancelled because rel_wai or irel_wai was issued
or the wait time elapsed, the contents in the area specified by parameter p_blk become undefined.

Note 6 TMO_FEVR is specified for wait time tmout, processing equivalent to get_mpl will be executed. When
TMO_POL is specified, processing equivalent to pget_mpl /ipget_mpl will be executed.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void
task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mplid = ID_MPL1; /*Declares and initializes variable*/
 UINT blksz = 256; /*Declares and initializes variable*/
 VP p_blk; /*Declares variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /*Acquire variable-sized memory block*/
 /*(with timeout)*/

 ercd = tget_mpl (mplid, blksz, &p_blk, tmout);

 if (ercd == E_OK) {
......... /*Normal termination processing*/
.........

rel_mpl (mplid, p_blk ; /*Release variable-sized memory block*/
 } else if (ercd == E_RLWAI) {

......... /*Forced termination processing*/

.........
 } else if (ercd == E_TMOUT) {

......... /*Timeout processing*/

.........
 }

}

RI850V4 V2 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 105 of 366
Jan 29, 2016

7.4.3 Release variable-sized memory block

A variable-sized memory block is returned by issuing the following service call from the processing program.

- rel_mpl, irel_mpl
This service call returns the variable-sized memory block specified by parameter blk to the variable-sized memory
pool specified by parameter mplid.
After returning the variable-size memory blocks, these service calls check the tasks queued to the target variable-size
memory pool wait queue from the top, and assigns the memory if the size of memory requested by the wait queue is
available. This operation continues until no tasks queued to the wait queue remain or no memory space is available.
As a result, the task that acquired the memory is unlinked from the queue and moved from the WAITING state
(variable-size memory block acquisition wait state) to the READY state, or from the WAITING-SUSPENDED state to
the SUSPENDED state.
The following describes an example for coding this service call.

Note 1 The RI850V4 does not perform memory clear processing when returning the acquired variable-size memory
block. The contents of the returned variable-size memory block are therefore undefined.

Note 2 When returning variable-size memory blocks, be sure to issue either of these service calls for the acquired
variable-size memory pools. If the service call is issued for another variable-size memory pool, no error
results but the operation is not guaranteed after that.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mplid = ID_MPL1; /*Declares and initializes variable*/
 UINT blksz = 256; /*Declares and initializes variable*/
 VP blk; /*Declares variable*/

 /*Acquire variable-sized memory block*/
 ercd = get_mpl (mplid, blksz, &blk);

 if (ercd == E_OK) {
 /*Normal termination processing*/

 rel_mpl (mplid, blk); /*Release variable-sized memory block*/
 } else if (ercd == E_RLWAI) {
 /*Forced termination processing*/

 }

}

RI850V4 V2 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 106 of 366
Jan 29, 2016

7.4.4 Reference variable-sized memory pool state

A variable-sized memory pool status is referenced by issuing the following service call from the processing program.

- ref_mpl, iref_mpl
These service calls store the detailed information (ID number of the task at the head of the wait queue, total size of
free memory blocks, etc.) of the variable-size memory pool specified by parameter mplid into the area specified by
parameter pk_rmpl.
The following describes an example for coding this service call.

Note For details about the variable-sized memory pool state packet, refer to "15.2.10 Variable-sized memory pool
state packet".

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ID mplid = ID_MPL1; /*Declares and initializes variable*/
 T_RMPL pk_rmpl; /*Declares data structure*/
 ID wtskid; /*Declares variable*/
 SIZE fmplsz; /*Declares variable*/
 UINT fblksz; /*Declares variable*/
 ATR mplatr; /*Declares variable*/

 ref_mpl (mplid, &pk_rmpl); /*Reference variable-sized memory pool state*/

 wtskid = pk_rmpl.wtskid; /*Reference ID number of the task at the */
 /*head of the wait queue*/
 fmplsz = pk_rmpl.fmplsz; /*Reference total size of free memory blocks*/
 fblksz = pk_rmpl.fblksz; /*Reference maximum memory block size*/
 mplatr = pk_rmpl.mplatr; /*Reference attribute*/

}

RI850V4 V2 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 107 of 366
Jan 29, 2016

CHAPTER 8 SYSTEM STATE MANAGEMENT FUNC-
TIONS

This chapter describes the system management functions performed by the RI850V4.

8.1 Outline

The RI850V4's system status management function provides functions for referencing the system status such as the
context type and CPU lock status, as well as functions for manipulating the system status such as ready queue rotation,
scheduler activation, or the like.

8.2 Rotate Task Precedence

A ready queue is rotated by issuing the following service call from the processing program.

- rot_rdq, irot_rdq
This service call re-queues the first task of the ready queue corresponding to the priority specified by parameter tskpri
to the end of the queue to change the task execution order explicitly.
The following shows the status transition when this service call is used.

Figure 8-1 Rotate Task Precedence

Task A
RUNNING state

Task B
READY state

Task C
READY state

Ready queue

tskpri

tskpri + 1

tskpri - 1

1

maxtpri

Task B
RUNNING state

Task C
READY state

Task A
READY statetskpri

tskpri + 1

tskpri - 1

1

maxtpri

Ready queue

Rotate task precedence

RI850V4 V2 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 108 of 366
Jan 29, 2016

The following describes an example for coding this service call.

Note 1 This service call does not perform queuing of rotation requests. If no task is queued to the ready queue
corresponding to the relevant priority, therefore, no processing is performed but it is not handled as an error.

Note 2 Round-robin scheduling can be implemented by issuing this service call via a cyclic handler in a constant
cycle.

Note 3 The ready queue is a hash table that uses priority as the key, and tasks that have entered an executable
state (READY state or RUNNING state) are queued in FIFO order.
Therefore, the scheduler realizes the RI850V4's scheduling system (priority level method, FCFS method) by
executing task detection processing from the highest priority level of the ready queue upon activation, and
upon detection of queued tasks, giving the CPU use right to the first task of the proper priority level.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void cychdr (VP_INT exinf)
{
 PRI tskpri = 8; /*Declares and initializes variable*/

 irot_rdq (tskpri); /*Rotate task precedence*/

 return; /*Terminate cyclic handler*/
}

RI850V4 V2 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 109 of 366
Jan 29, 2016

8.3 Forced Scheduler Activation

The scheduler can be forcibly activated by issuing the following service call from the processing program.

- vsta_sch
This service call explicitly forces the RI850V4 scheduler to activate. If a scheduling request has been kept pending,
task switching may therefore occur.
The following describes an example for coding this service call.

Note The RI850V4 provides this service call as a function to activate a scheduler from a task for which preempt
acknowledge status (TA_DISPREEMPT) disable is defined during configuration.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{

 vsta_sch (); /*Forced scheduler*/

}

RI850V4 V2 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 110 of 366
Jan 29, 2016

8.4 Reference Task ID in the RUNNING State

A RUNNING-state task is referenced by issuing the following service call from the processing program.

- get_tid, iget_tid
These service calls store the ID of a task in the RUNNING state in the area specified by parameter p_tskid.
The following describes an example for coding this service call.

Note This service call stores TSK_NONE in the area specified by parameter p_tskid if no tasks that have entered
the RUNNING state exist (all tasks in the IDLE state).

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void inthdr (void)
{
 ID p_tskid; /*Declares variable*/

 iget_tid (&p_tskid); /*Reference task ID in the RUNNING state*/

 return; /*Terminate interrupt handler*/
}

RI850V4 V2 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 111 of 366
Jan 29, 2016

8.5 Lock the CPU

A task is moved to the CPU locked state by issuing the following service call from the processing program.

- loc_cpu, iloc_cpu
These service calls change the system status type to the CPU locked state.
As a result, EI level maskable interrupt acknowledgment processing is prohibited during the interval from this service
call is issued until unl_cpu or iunl_cpu is issued, and service call issue is also restricted.
The service calls that can be issued in the CPU locked state are limited to the one listed below.

If an EI level maskable interrupt is created during this period, the RI850V4 delays transition to the relevant interrupt
processing (interrupt handler) until either unl_cpu or iunl_cpu is issued.
The following shows a processing flow when using this service call.

Figure 8-2 Lock the CPU

Service Call Function

loc_cpu, iloc_cpu Lock the CPU.

unl_cpu, iunl_cpu Unlock the CPU.

sns_loc Reference CPU state.

sns_dsp Reference dispatching state.

sns_ctx Reference contexts.

sns_dpn Reference dispatch pending state.

Task

return

Interrupt

Interrupt handler

Suppressed period

Lock the CPU

Unlock the CPU

RI850V4 V2 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 112 of 366
Jan 29, 2016

The following describes an example for coding this service call.

Note 1 The CPU locked state changed by issuing this service call must be cancelled before the processing program
that issued this service call ends.

Note 2 This service call does not perform queuing of lock requests. If the system is in the CPU locked state,
therefore, no processing is performed but it is not handled as an error.

Note 3 This service call manipulates PMn bits in the priority mask register (PMR) to disable acceptance of EI level
maskable interrupts.
The PMn bits to be manipulated correspond to the interrupt priority range defined as the Maximum interrupt
priority: maxintpri during configuration.

Note 4 This service call does not manipulate the ID bit in the program status word (PSW).

Note 5 The RI850V4 realizes the TIME MANAGEMENT FUNCTIONS by using base clock timer interrupts that
occur at constant intervals. If acknowledgment of the relevant base clock timer interrupt is disabled by
issuing this service call, the TIME MANAGEMENT FUNCTIONS may no longer operate normally.

Note 6 If this service call or a service call other than sns_xxx is issued from when this service call is issued until
unl_cpu or iunl_cpu is issued, the RI850V4 returns E_CTX.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{

 loc_cpu (); /*Lock the CPU*/

 /*CPU locked state*/

 unl_cpu (); /*Unlock the CPU*/

}

RI850V4 V2 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 113 of 366
Jan 29, 2016

8.6 Unlock the CPU

The CPU locked state is cancelled by issuing the following service call from the processing program.

- unl_cpu, iunl_cpu
These service calls change the system status to the CPU unlocked state.
As a result, acknowledge processing of EI level maskable interrupts prohibited through issue of either loc_cpu or
iloc_cpu is enabled, and the restriction on service call issue is released.
If an EI level maskable interrupt is created during the interval from when either loc_cpu or iloc_cpu is issued until this
service call is issued, the RI850V4 delays transition to the relevant interrupt processing (interrupt handler) until this
service call is issued.
The following shows a processing flow when using this service call.

Figure 8-3 Unlock the CPU

The following describes an example for coding this service call.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{

 loc_cpu (); /*Lock the CPU*/

 /*CPU locked state*/

 unl_cpu (); /*Unlock the CPU*/

Task

return

Interrupt

Interrupt handler

Suppressed period

Lock the CPU

Unlock the CPU

RI850V4 V2 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 114 of 366
Jan 29, 2016

Note 1 This service call does not perform queuing of cancellation requests. If the system is in the CPU unlocked
state, therefore, no processing is performed but it is not handled as an error.

Note 2 This service call manipulates PMn bits in the priority mask register (PMR) to disable acceptance of EI level
maskable interrupts.
The PMn bits to be manipulated correspond to the interrupt priority range defined as the Maximum interrupt
priority: maxintpri during configuration.

Note 3 This service call does not cancel the dispatch disabled state that was set by issuing dis_dsp. If the system
status before the CPU locked state is entered was the dispatch disabled state, the system status becomes
the dispatch disabled state after this service call is issued.

Note 4 If a service call other than loc_cpu, iloc_cpu and sns_xxx is issued from when loc_cpu or iloc_cpu is issued
until this service call is issued, the RI850V4 returns E_CTX.

}

RI850V4 V2 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 115 of 366
Jan 29, 2016

8.7 Reference CPU State

The CPU locked state is referenced by issuing the following service call from the processing program.

- sns_loc
This service call acquires the system status type when this service call is issued (CPU locked state or CPU unlocked
state).
When this service call is terminated normally, the acquired system state type (TRUE: CPU locked state, FALSE: CPU
unlocked state) is returned.
The following describes an example for coding this service call.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 BOOL ercd; /*Declares variable*/

 ercd = sns_loc (); /*Reference CPU state*/

 if (ercd == TRUE) {
 /*CPU locked state*/

 } else if (ercd == FALSE) {
 /*CPU unlocked state*/

 }

}

RI850V4 V2 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 116 of 366
Jan 29, 2016

8.8 Disable Dispatching

A task is moved to the dispatch disabled state by issuing the following service call from the processing program.

- dis_dsp
This service call changes the system status to the dispatch disabled state.
As a result, dispatch processing (task scheduling) is disabled from when this service call is issued until ena_dsp is
issued.
If a service call (chg_pri, sig_sem, etc.) accompanying dispatch processing is issued during the interval from when
this service call is issued until ena_dsp is issued, the RI850V4 executes only processing such as queue manipulation,
counter manipulation, etc., and the actual dispatch processing is delayed until ena_dsp is issued, upon which the
actual dispatch processing is performed in batch.
The following shows a processing flow when using this service call.

Figure 8-4 Disable Dispatching

The following describes an example for coding this service call.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

#pragma rtos_task task /*#pragma directive definition*/

void task (VP_INT exinf)
{

 dis_dsp (); /*Disable dispatching*/

 /*Dispatching disabled state*/

 ena_dsp (); /*Enable dispatching*/

}

Release semaphore resource

Acquire semaphore resource

Disable Dispatching

Enable Dispatching

Task A
Priority: High

Task B
Priority: Low

Suppressed period

RI850V4 V2 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 117 of 366
Jan 29, 2016

Note 1 The dispatch disabled state changed by issuing this service call must be cancelled before the task that
issued this service call moves to the DORMANT state.

Note 2 This service call does not perform queuing of disable requests. If the system is in the dispatch disabled
state, therefore, no processing is performed but it is not handled as an error.

Note 3 If a service call (such as wai_sem, wai_flg) that may move the status of an invoking task is issued from when
this service call is issued until ena_dsp is issued, the RI850V4 returns E_CTX regardless of whether the
required condition is immediately satisfied.

RI850V4 V2 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 118 of 366
Jan 29, 2016

8.9 Enable Dispatching

The dispatch disabled state is cancelled by issuing the following service call from the processing program.

- ena_dsp
This service call changes the system status to the dispatch enabled state.
As a result, dispatch processing (task scheduling) that has been disabled by issuing dis_dsp is enabled.
If a service call (chg_pri, sig_sem, etc.) accompanying dispatch processing is issued during the interval from when
dis_dsp is issued until this service call is issued, the RI850V4 executes only processing such as queue manipulation,
counter manipulation, etc., and the actual dispatch processing is delayed until this service call is issued, upon which
the actual dispatch processing is performed in batch.
The following shows a processing flow when using this service call.

Figure 8-5 Enable Dispatching

The following describes an example for coding this service call.

Note 1 This service call does not perform queuing of enable requests. If the system is in the dispatch enabled state,
therefore, no processing is performed but it is not handled as an error.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{

 dis_dsp (); /*Disable dispatching*/

 /*Dispatching disabled state*/

 ena_dsp (); /*Enable dispatching*/

}

Release semaphore resource

Acquire semaphore resource

Disable Dispatching

Enable Dispatching

Task A
Priority: High

Task B
Priority: Low

Suppressed period

RI850V4 V2 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 119 of 366
Jan 29, 2016

Note 2 If a service call (such as wai_sem, wai_flg) that may move the status of an invoking task is issued from when
dis_dsp is issued until this service call is issued, the RI850V4 returns E_CTX regardless of whether the
required condition is immediately satisfied.

RI850V4 V2 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 120 of 366
Jan 29, 2016

8.10 Reference Dispatching State

The dispatch disabled state is referenced by issuing the following service call from the processing program.

- sns_dsp
This service call acquires the system status type when this service call is issued (dispatch disabled state or dispatch
enabled state).
When this service call is terminated normally, the acquired system state type (TRUE: dispatch disabled state, FALSE:
dispatch enabled state) is returned.
The following describes an example for coding this service call.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 BOOL ercd; /*Declares variable*/

 ercd = sns_dsp (); /*Reference dispatching state*/

 if (ercd == TRUE) {
 /*Dispatching disabled state*/

 } else if (ercd == FALSE) {
 /*Dispatching enabled state*/

 }

}

RI850V4 V2 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 121 of 366
Jan 29, 2016

8.11 Reference Contexts

The context type is referenced by issuing the following service call from the processing program.

- sns_ctx
This service call acquires the context type of the processing program that issued this service call (non-task context or
task context).
When this service call is terminated normally, the acquired context type (TRUE: non-task context, FALSE: task
context) is returned.
The following describes an example for coding this service call.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 BOOL ercd; /*Declares variable*/

 ercd = sns_ctx (); /*Reference contexts*/

 if (ercd == TRUE) {
 /*Non-task contexts*/

 } else if (ercd == FALSE) {
 /*Task contexts*/

 }

}

RI850V4 V2 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 122 of 366
Jan 29, 2016

8.12 Reference Dispatch Pending State

The dispatch pending state is referenced by issuing the following service call from the processing program.

- sns_dpn
This service call acquires the system status type when this service call is issued (whether in dispatch pending state or
not).
When this service call is terminated normally, the acquired system state type (TRUE: dispatch pending state, FALSE:
dispatch not-pending state) is returned.
The following describes an example for coding this service call.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 BOOL ercd; /*Declares variable*/

 ercd = sns_dpn (); /*Reference dispatch pending state*/

 if (ercd == TRUE) {
......... /*Dispatch pending state*/
.........

 } else if (ercd == FALSE) {
......... /*Other state*/
.........

 }

}

RI850V4 V2 CHAPTER 9 TIME MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 123 of 366
Jan 29, 2016

CHAPTER 9 TIME MANAGEMENT FUNCTIONS

This chapter describes the time management functions performed by the RI850V4.

9.1 Outline
The RI850V4's time management function provides methods to implement time-related processing (Timer Operations:

Delayed task wakeup, Timeout, Cyclic handlers) by using base clock timer interrupts that occur at constant intervals, as
well as a function to manipulate and reference the system time.

9.2 System Time
The system time is a time used by the RI850V4 for performing time management (unit: millisecond).
After initialization by the Kernel Initialization Module, the system time is updated based on the Base clock interval:

tim_base when an EI level maskable interrupt defined in the Base clock timer exception code: tim_intno in the system
configuration file occurs.

9.2.1 Base clock timer interrupt

To realize the time management function, the RI850V4 uses interrupts that occur at constant intervals (base clock timer
interrupts).

When a base clock timer interrupt occurs, processing related to the RI850V4 time (system time update, task timeout/
delay, cyclic handler activation, etc.) is executed.

A base clock timer interrupt is caused by an EI level maskable interrupt defined in the Base clock timer exception code:
tim_intno in the system configuration file.

For details about the basic information "CLK_INTNO", refer to "17.4.2 Basic information".
The RI850V4 does not initialize hardware to generate base clock timer interrupts, so it must be coded by the user.
Initialize the hardware used by Boot processing or Initialization routine and cancel the interrupt masking.
The following shows the necessary settings when using the OS timer as the base clock timer.

Note When passing control to the processing related to the base clock timer interrupt, the RI850V4 enables
acceptance of EI level maskable interrupts by manipulating the PMn bits in the priority mask register (PMR)
and the ID bit in the program status word (PSW), and issuing the eiret instruction (clearing the in-service
priority register (ISPR)).
Therefore, if an EI level maskable interrupt occurs within the base clock timer interrupt processing, the interrupt
is accepted.

Note Use the OS timer in the interval timer mode.

OS Timer Setting Registers Necessary Setting

OSTMn control register (OSTMnCTL) OSTMnCTL.OSTMnMD1 = 0

OSTMn compare register (OSTMnCMP) OSTMnCMP=(TIC_NUME*1000000) / KERNEL_USR_BASETIME

Timer interrupt priority Maximum interrupt priority: maxintpri or a lower value

RI850V4 V2 CHAPTER 9 TIME MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 124 of 366
Jan 29, 2016

9.2.2 Base clock interval

In the RI850V4, service call parameters for time specification are specified in milliseconds.
If is desirable to set 1 ms for the occurrence interval of base clock timer interrupts, but it may be difficult depending on

the target system performance (processing capability, required time resolution, or the like).
The interval between occurrences of base clock timer interrupts can be defined as the Base clock interval: tim_base in

the system configuration file.
By specifying the base clock cycle, processing regards that the time equivalent to the base clock cycle elapses during a

base clock timer interrupt.
An integer value larger than 1 can be specified for the base clock cycle. Floating-point values such as 2.5 cannot be

specified.

9.3 Timer Operations
The RI850V4's timer operation function provides Delayed task wakeup, Timeout and Cyclic handlers, as the method for

realizing time-dependent processing.

9.3.1 Delayed task wakeup

Delayed wakeup the operation that makes the invoking task transit from the RUNNING state to the WAITING state
during the interval until a given length of time has elapsed, and makes that task move from the WAITING state to the
READY state once the given length of time has elapsed.

Delayed wakeup is implemented by issuing the following service call from the processing program.

dly_tsk

9.3.2 Timeout

Timeout is the operation that makes the target task move from the RUNNING state to the WAITING state during the
interval until a given length of time has elapsed if the required condition issued from a task is not immediately satisfied,
and makes that task move from the WAITING state to the READY state regardless of whether the required condition is
satisfied once the given length of time has elapsed.

A timeout is implemented by issuing the following service call from the processing program.

tslp_tsk, twai_sem, twai_flg, tsnd_dtq, trcv_dtq, trcv_mbx, tloc_mtx, tget_mpf, tget_mpl

9.3.3 Cyclic handlers

The cyclic handler is a routine dedicated to cycle processing that is activated periodically at a constant interval
(activation cycle).
The RI850V4 handles the cyclic handler as a "non-task (module independent from tasks)". Therefore, even if a task with
the highest priority in the system is being executed, the processing is suspended when a specified activation cycle has
come, and the control is passed to the cyclic handler.

The RI850V4 manages the states in which each cyclic handler may enter and cyclic handlers themselves, by using
management objects (cyclic handler control blocks) corresponding to cyclic handlers one-to-one.

- Basic form of cyclic handlers
When coding a cyclic handler, use a void function with one VP_INT argument (any function name is fine).
The extended information specified with Cyclic handler information is set for the exinf argument.
The following shows the basic form of cyclic handlers in C.

RI850V4 V2 CHAPTER 9 TIME MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 125 of 366
Jan 29, 2016

- Coding method
Code cyclic handlers using C or assembly language.
When coding in C, they can be coded in the same manner as void type functions coded.
When coding in assembly language, code them according to the calling rules prescribed in the compiler used.

- Stack switching
The RI850V4 switches to the system stack specified in the Basic information when passing control to a cyclic handler,
and switches to the relevant stack when returning control from the cyclic handler to the processing program in which
a base clock timer interrupt occurred and caused activation of the cyclic handler. Therefore, coding regarding stack
switching is not required in a cyclic handler.

- Service call issue
The RI850V4 handles the cyclic handler as a "non-task".
Service calls that can be issued in cyclic handlers are limited to the service calls that can be issued from non-tasks.

Note 1 If a service call (isig_sem, iset_flg, etc.) accompanying dispatch processing (task scheduling processing) is
issued in order to quickly complete the processing in the cyclic handler during the interval until the
processing in the cyclic handler ends, the RI850V4 executes only processing such as queue manipulation,
counter manipulation, etc., and the actual dispatch processing is delayed until a return instruction is issued
by the cyclic handler, upon which the actual dispatch processing is performed in batch.

Note 2 For details on the valid issue range of each service call, refer to Table 16-1 to Table 16-12.

- Acceptance of EI level maskable interrupts
When passing control to a cyclic handler, the RI850V4 enables acceptance of EI level maskable interrupts by
manipulating the PMn bits in the priority mask register (PMR) and the ID bit in the program status word (PSW), and
issuing the eiret instruction (clearing the in-service priority register (ISPR)).
Therefore, if an EI level maskable interrupt occurs within a cyclic handler, the interrupt is accepted.

9.3.4 Create cyclic handler

In the RI850V4, the method of creating a cyclic handler is limited to "static creation".
Cyclic handlers therefore cannot be created dynamically using a method such as issuing a service call from a

processing program.
Static cyclic handler creation means defining of cyclic handlers using static API "CRE_CYC" in the system configuration

file.
For details about the static API "CRE_CYC", refer to "17.5.9 Cyclic handler information".

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void cychdr (VP_INT exinf)
{

 return; /*Terminate cyclic handler*/
}

RI850V4 V2 CHAPTER 9 TIME MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 126 of 366
Jan 29, 2016

9.4 Set System Time

The system time can be set by issuing the following service call from the processing program.

- set_tim, iset_tim
These service calls change the RI850V4 system time (unit: millisecond) to the time specified by parameter p_systim.
The following describes an example for coding this service call.

Note For details about the system time packet, refer to "15.2.11 System time packet".

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 SYSTIM p_systim; /*Declares data structure*/

 p_systim.ltime = 3600; /*Initializes data structure*/
 p_systim.utime = 0; /*Initializes data structure*/

 set_tim (&p_systim); /*Set system time*/

}

RI850V4 V2 CHAPTER 9 TIME MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 127 of 366
Jan 29, 2016

9.5 Reference System Time

The system time can be referenced by issuing the following service call from the processing program.

- get_tim, iget_tim
These service calls store the RI850V4 system time (unit: millisecond) into the area specified by parameter p_systim.
The following describes an example for coding this service call.

Note 1 The RI850V4 ignores the numeric values that cannot be expressed as the system time (values overflowed
from the 48-bit width).

Note 2 For details about the system time packet, refer to "15.2.11 System time packet".

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 SYSTIM p_systim; /*Declares data structure*/
 UW ltime; /*Declares variable*/
 UH utime; /*Declares variable*/

 get_tim (&p_systim); /*Reference System Time*/

 ltime = p_systim.ltime; /*Acquirer system time (lower 32 bits)*/
 utime = p_systim.utime; /*Acquirer system time (higher 16 bits)*/

}

RI850V4 V2 CHAPTER 9 TIME MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 128 of 366
Jan 29, 2016

9.6 Start Cyclic Handler Operation

Moving to the operational state (STA state) is implemented by issuing the following service call from the processing
program.

- sta_cyc, ista_cyc
This service call moves the cyclic handler specified by parameter cycid from the non-operational state (STP state) to
operational state (STA state).
As a result, the target cyclic handler is handled as an activation target of the RI850V4.
The relative interval from when either of this service call is issued until the first activation request is issued varies
depending on whether the TA_PHS attribute is specified for the target cyclic handler during configuration.

- If the TA_PHS attribute is specified
The target cyclic handler activation timing is set based on the activation phases (initial activation phase cycphs
and activation cycle cyctim) defined during configuration.
If the target cyclic handler has already been started, however, no processing is performed even if this service call
is issued, but it is not handled as an error.
The following shows a cyclic handler activation timing image.

Figure 9-1 TA_PHS Attribute: Specified

- If the TA_PHS attribute is not specified
The target cyclic handler activation timing is set based on the activation phase (activation cycle cyctim) when this
service call is issued.
This setting is performed regardless of the operating status of the target cyclic handler.
The following shows a cyclic handler activation timing image.

Figure 9-2 TA_PHS Attribute: Not Specified

The following describes an example for coding this service call.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)

cycphs cyctim cyctim cyctim

Generation processing completed

Start Start Start Start

Start cyclic handler operation Start cyclic handler operation

cycphs cyctim cyctim cyctim

Generation processing completed

cyctim cyctim

Start
cyctim cyctim

Start Start

Start cyclic handler operation Start cyclic handler operation

RI850V4 V2 CHAPTER 9 TIME MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 129 of 366
Jan 29, 2016

Note The extended information specified in the Cyclic handler information is passed to the cyclic handler activated
by issuing this service call.

{
 ID cycid = ID_CYC1; /*Declares and initializes variable*/

 sta_cyc (cycid); /*Start cyclic handler operation*/

}

RI850V4 V2 CHAPTER 9 TIME MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 130 of 366
Jan 29, 2016

9.7 Stop Cyclic Handler Operation

Moving to the non-operational state (STP state) is implemented by issuing the following service call from the processing
program.

- stp_cyc, istp_cyc
This service call moves the cyclic handler specified by parameter cycid from the operational state (STA state) to non-
operational state (STP state).
As a result, the target cyclic handler is excluded from activation targets of the RI850V4 until issue of sta_cyc or
ista_cyc.
The following describes an example for coding this service call.

Note This service call does not perform queuing of stop requests. If this service call has already been issued and
the target cyclic handler has been moved to the non-operational state (STP state), no processing is
performed but it is not handled as an error.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ID cycid = ID_CYC1; /*Declares and initializes variable*/

 stp_cyc (cycid); /*Stop cyclic handler operation*/

}

RI850V4 V2 CHAPTER 9 TIME MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 131 of 366
Jan 29, 2016

9.8 Reference Cyclic Handler State

A cyclic handler status by issuing the following service call from the processing program.

- ref_cyc, iref_cyc
Stores cyclic handler state packet (current state, time left before the next activation, etc.) of the cyclic handler
specified by parameter cycid in the area specified by parameter pk_rcyc.
The following describes an example for coding this service call.

Note For details about the cyclic handler state packet, refer to "15.2.12 Cyclic handler state packet".

#include <kernel.h> /*Standard header file definition*/

#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ID cycid = ID_CYC1; /*Declares and initializes variable*/
 T_RCYC pk_rcyc; /*Declares data structure*/
 STAT cycstat; /*Declares variable*/
 RELTIM lefttim; /*Declares variable*/
 ATR cycatr; /*Declares variable*/
 RELTIM cyctim; /*Declares variable*/
 RELTIM cycphs; /*Declares variable*/

 ref_cyc (cycid, &pk_rcyc); /*Reference cyclic handler state*/

 cycstat = pk_rcyc.cycstat; /*Reference current state*/
 lefttim = pk_rcyc.lefttim; /*Reference time left before the next */

 /*activation*/
 cycatr = pk_rcyc.cycatr; /*Reference attribute*/
 cyctim = pk_rcyc.cyctim; /*Reference activation cycle*/
 cycphs = pk_rcyc.cycphs; /*Reference activation phase*/

}

RI850V4 V2 CHAPTER 10 INTERRUPT MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 132 of 366
Jan 29, 2016

CHAPTER 10 INTERRUPT MANAGEMENT FUNCTIONS

This chapter describes the interrupt management functions performed by the RI850V4.

10.1 Outline
The RI850V4 provides as interrupt management functions related to the interrupt handlers activated when an EI level

maskable interrupt is occurred.

10.2 User-Own Coding Module

To support various execution environments, the RI850V4 extracts from the interrupt management functions the
hardware-dependent processing (Interrupt entry processing) that is required to execute processing, as a user-own coding
module. This enhances portability for various execution environments and facilitates customization as well.

10.2.1 Interrupt entry processing

Interrupt entry processing is a routine dedicated to entry processing that is extracted as a user-own coding module to
assign processing for branching to the relevant processing (such as interrupt preprocessing), to the handler address to
which the CPU forcibly passes control when an interrupt occurs.

The interrupt entry processing for the EI level maskable interrupts defined in the Interrupt handler information in the
system configuration file is included in the entry file created by executing the configurator for the system configuration file.
Therefore, coding of interrupt entry processing is necessary for other interrupts (such as a reset) that are not EI level
maskable interrupts.

- Basic form of interrupt entry processing
When coding an interrupt entry processing, the code should match the branch method selected in the Property panel
-> [System Configuration File Related Information] tabbed page -> [Entry File] category -> [Generate method].
The following shows the basic form of interrupt entry processing in assembly language, related to other interrupts
(such as EI level maskable interrupts not defined in the Interrupt handler information, reset, or FE level maskable
interrupts) that are not EI level maskable interrupts defined in the Interrupt handler information in the system
configuration file.
For interrupt types other than the EI level maskable interrupt, interrupt entry processing should always be coded in
the direct vector method.

[Direct vector method]

Note Set base_address to the same value as that specified in the Property panel -> [System Configuration File
Related Information] tabbed page _ [Entry File] category -> [Specify an exception handler vector address].
Set offset to the offset value corresponding to the priority of the target interrupt.

 .extern _inthdr -- External label declaration
 .org base_adress + offset -- Setting of branch destination address
 jr32 _inthdr -- Branch to interrupt processing

RI850V4 V2 CHAPTER 10 INTERRUPT MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 133 of 366
Jan 29, 2016

[Table reference method]

Note Set base_address to the same value as that specified in the Property panel -> [System Configuration File
Related Information] tabbed page _ [Entry File] category -> [Base address of the interrupt handler address
table].
Set offset to the offset value corresponding to the source of the target interrupt.

- Internal processing of interrupt entry processing
Interrupt entry processing is a routine dedicated to entry processing that is called without RI850V4 intervention when
an interrupt occurs. Therefore, note the following points when coding interrupt

- Coding method
Code it in assembly language according to the calling convention in the compiler used.

- Stack switching
There is no stack that requires switching before executing interrupt entry processing.
Therefore, coding regarding stack switching is not required in interrupt entry processing.

- Service call issue
To achieve faster response for processing (such as an Interrupt Handlers) corresponding to an interrupt that has
occurred, the issue of service calls is prohibited during interrupt entry processing.

The following is a list of processes that should be executed in interrupt entry processing.

- External label declaration

- Setting of branch destination address

- Branch to interrupt processing

 .extern _inthdr -- External label declaration
 .org base_adress + offset -- Setting of branch destination address
 dw !_inthdr -- Branch to interrupt processing

RI850V4 V2 CHAPTER 10 INTERRUPT MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 134 of 366
Jan 29, 2016

10.3 Interrupt Handlers

The interrupt handler is a routine dedicated to interrupt servicing that is activated when an EI level maskable interrupt
occurs.

The RI850V4 handles the interrupt handler as a non-task (module independent from tasks). Therefore, even if a task
with the highest priority in the system is being executed, the processing is suspended when an interrupt occurs, and the
control is passed to the interrupt handler.

The RI850V4 manages the states in which each interrupt handler may enter and interrupt handlers themselves, by
using management objects (interrupt handler control blocks) corresponding to interrupt handlers one-to-one.

The following shows a processing flow from when an interrupt occurs until the control is passed to the interrupt handler.

Figure 10-1 Processing Flow (Interrupt Handler)

10.3.1 Basic form of interrupt handlers

Code interrupt handlers by using the void type function that has no arguments.
The following shows the basic form of interrupt handlers in C.

10.3.2 Internal processing of interrupt handler

The RI850V4 executes "original pre-interrupt processing" when passing control from the processing program where an
EI level maskable interrupt occurred to the interrupt handler, as well as "original post-interrupt processing" when restoring
control from the interrupt handler to the processing program where the EI level maskable interrupt occurred. Therefore,
note the following points when coding interrupt handlers.

- Coding method
Code interrupt handlers using C or assembly language.
When coding in C, they can be coded in the same manner as ordinary functions coded.
When coding in assembly language, code them according to the calling rules prescribed in the compiler used.

- Stack switching
The RI850V4 switches to the system stack specified in Basic information when passing control to an interrupt handler,
and switches to the relevant stack when returning control to the processing program for which a base clock timer
interrupt occurred. Coding regarding stack switching is therefore not required in interrupt handler processing.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void inthdr (void)
{

 return; /*Terminate interrupt handler*/
}

Interrupt

Interrupt entry processing Interrupt HandlersInterrupt preprocessing

RI850V4 V2 CHAPTER 10 INTERRUPT MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 135 of 366
Jan 29, 2016

- Service call issue
The RI850V4 handles the interrupt handler as a "non-task".
Service calls that can be issued in interrupt handlers are limited to the service calls that can be issued from non-tasks.

Note 1 If a service call (isig_sem, iset_flg, etc.) accompanying dispatch processing (task scheduling processing) is
issued in order to quickly complete the processing in the interrupt handler during the interval until the
processing in the interrupt handler ends, the RI850V4 executes only processing such as queue
manipulation, counter manipulation, etc., and the actual dispatch processing is delayed until a return
instruction is issued by the interrupt handler, upon which the actual dispatch processing is performed in
batch.

Note 2 For details on the valid issue range of each service call, refer to Table 16-1 to Table 16-12.

- Acceptance of EI level maskable interrupts
When passing control to an interrupt handler, the RI850V4 disables acceptance of EI level maskable interrupts by
manipulating the PMn bits (set to enabled) in the priority mask register (PMR) and the ID bit (set to disabled) in the
program status word (PSW).

10.3.3 Define interrupt handler

The RI850V4 supports the static registration of interrupt handlers only. They cannot be registered dynamically by
issuing a service call from the processing program.

Static interrupt handler registration means defining of interrupt handlers using static API "DEF_INH" in the system
configuration file.

For details about the static API "DEF_INH", refer to "17.5.10 Interrupt handler information".

10.4 Base Clock Timer Interrupts
The RI850V4 realizes the TIME MANAGEMENT FUNCTIONS by using base clock timer interrupts that occur at

constant intervals.
If a base clock timer interrupt occurs, The RI850V4's time management interrupt handler is activated and executes time-

related processing (system time update, delayed wakeup/timeout of task, cyclic handler activation, etc.).

Note If acknowledgment of the relevant base clock timer interrupt is disabled by issuing loc_cpu, iloc_cpu or dis_int,
the TIME MANAGEMENT FUNCTIONS may no longer operate normally.

10.5 Multiple Interrupts
In the RI850V4, occurrence of an interrupt in an interrupt handler is called "multiple interrupts".
Execution of interrupt handler is started in the interrupt disabled state (the ID flag of the program status word PSW is set

to 1). To generate multiple interrupts, processing to cancel the interrupt disabled state (such as issuing of EI instruction)
must therefore be coded in the interrupt handler explicitly.

The following shows a processing flow when multiple interrupts occur.

RI850V4 V2 CHAPTER 10 INTERRUPT MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 136 of 366
Jan 29, 2016

Figure 10-2 Multiple Interrupts

Task Interrupt handler A

return

Interrupt handler B

return

Interrupt

Interrupt

Calling EI instruction

Calling DI instruction

RI850V4 V2 CHAPTER 11 SERVICE CALL MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 137 of 366
Jan 29, 2016

CHAPTER 11 SERVICE CALL MANAGEMENT FUNC-
TIONS

This chapter describes the service call management functions performed by the RI850V4.

11.1 Outline

The RI850V4's service call management function provides the function for manipulating the extended service call
routine status, such as registering and calling of extended service call routines.

11.2 Extended Service Call Routines
This is a routine to which user-defined functions are registered in the RI850V4, and will never be executed unless it is

called explicitly, using service calls provided by the RI850V4.
The RI850V4 positions extended service call routines as extensions of the processing program that called the extended

service call routine.
The RI850V4 manages interrupt handlers themselves, by using management objects (extended service call routine

control blocks) corresponding to extended service call routines one-to-one.

11.2.1 Basic form extended service call routines

Code extended service call routines by using the ER_UINT type argument that has three VP_INT type arguments.
Transferred data specified when a call request (cal_svc or ical_svc) is issued is set to arguments par1, par2, and par3.
The following shows the basic form of extended service call routines in C.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

ER_UINT svcrtn (VP_INT par1, VP_INT par2, VP_INT par3)
{

 return (ER_UINT ercd); /*Terminate extended service call routine*/
}

RI850V4 V2 CHAPTER 11 SERVICE CALL MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 138 of 366
Jan 29, 2016

11.2.2 Internal processing of extended service call routine

The RI850V4 executes the original extended service call routine pre-processing when passing control from the
processing program that issued a call request to an extended service call routine, as well as the original extended service
call routine post-processing when returning control from the extended service call routine to the processing program.

Therefore, note the following points when coding extended service call routines.

- Coding method
Code extended service call routines using C or assembly language.
When coding in C, they can be coded in the same manner as ordinary functions coded.
When coding in assembly language, code them according to the calling rules prescribed in the compiler used.

- Stack switching
The RI850V4 positions extended service call routines as extensions of the processing program that called the
extended service call routine. When passing control to an extended service call routine, stack switching processing is
therefore not performed.

- Service call issue
The RI850V4 positions extended service call routines as extensions of the processing program that called the
extended service call routine. Service calls that can be issued in extended service call routines depend on the type
(task or non-task) of the processing program that called the extended service call routine.

Note For details on the valid issue range of each service call, refer to Table 16-1 to Table 16-12.

- Acceptance of EI level maskable interrupts
The RI850V4 handles an extended service call routine as an extension of the processing program that called the
extended service call routine.
Therefore, when passing control to an extended service call routine, manipulation related to acceptance of EI level
maskable interrupts (manipulation of the PMn bits in the priority mask register (PMR) and the ID bit in the program
status word (PSW)) is not performed.

11.3 Define Extended Service Call Routine
The RI850V4 supports the static registration of extended service call routines only. They cannot be registered

dynamically by issuing a service call from the processing program.
Static extended service call routine registration means defining of extended service call routines using static API

"CRE_SVC" in the system configuration file.
For details about the static API "DEF_SVC", refer to "17.5.11 Extended service call routine information".

RI850V4 V2 CHAPTER 11 SERVICE CALL MANAGEMENT FUNCTIONS

R20UT2889EJ0102 Rev.1.02 Page 139 of 366
Jan 29, 2016

11.4 Invoke Extended Service Call Routine

Extended service call routines can be called by issuing the following service call from the processing program.

- cal_svc, ical_svc
These service calls call the extended service call routine specified by parameter fncd.
The following describes an example for coding this service call.

Note Extended service call routines that can be called using this service call are the routines whose transferred
data total is less than four.

#include <kernel.h> /*Standard header file definition*/
#include <kernel_id.h> /*System information header file definition*/

void task (VP_INT exinf)
{
 ER_UINT ercd; /*Declares variable*/
 FN fncd = 1; /*Declares and initializes variable*/
 VP_INT par1 = 123; /*Declares and initializes variable*/
 VP_INT par2 = 456; /*Declares and initializes variable*/
 VP_INT par3 = 789; /*Declares and initializes variable*/

 /*Invoke extended service call routine*/
 ercd = cal_svc (fncd, par1, par2, par3);

 if (ercd != E_RSFN) {
......... /*Normal termination processing*/
.........

 }

}

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 140 of 366
Jan 29, 2016

CHAPTER 12 SYSTEM CONFIGURATION MANAGEMENT
FUNCTIONS

CHAPTER 12 SYSTEM CONFIGURATION MANAGE-
MENT FUNCTIONS

This chapter describes the system configuration management functions performed by the RI850V4.

12.1 Outline

The RI850V4 provides as system configuration management functions related to the initialization routine called from
Kernel Initialization Module.

12.2 User-Own Coding Module
To support various execution environments, the RI850V4 extracts from the system management functions the

hardware-dependent processing (Initialization routine) that is required to execute processing, as a user-own coding
module. This enhances portability for various execution environments and facilitates customization as well.

12.2.1 Initialization routine

The initialization routine is a routine dedicated to initialization processing that is extracted as a user-own coding module
to initialize the hardware dependent on the user execution environment (such as the peripheral controller), and is called
from the Kernel Initialization Module.

The RI850V4 manages the states in which each initialization routine may enter and initialization routines themselves, by
using management objects (initialization routine control blocks) corresponding to initialization routines one-to-one.

The following shows a processing flow from when a reset interrupt occurs until the control is passed to the task.

Figure 12-1 Processing Flow (Initialization Routine)

- Basic form of initialization routines
Code initialization routines by using the void type function that has one VP_INT type argument.

Reset

Boot processing

Kernel Initialization Module

Initialization routine

SCHEDULER Tasks

Interrupt entry processing

RI850V4 V2

R20UT2889EJ0102 Rev.1.02 Page 141 of 366
Jan 29, 2016

CHAPTER 12 SYSTEM CONFIGURATION MANAGEMENT
FUNCTIONS

Extended information specified in Initialization routine information is set to argument exinf.
The following shows the basic form of initialization routine in C.

- Internal processing of initialization routine
The RI850V4 executes the original initialization routine pre-processing when passing control from the Kernel
Initialization Module to an initialization routine, as well as the original initialization routine post-processing when
returning control from the initialization routine to the Kernel Initialization Module.
Therefore, note the following points when coding initialization routines.

- Coding method
Code initialization routines using C or assembly language.
When coding in C, they can be coded in the same manner as ordinary functions coded.
When coding in assembly language, code them according to the calling rules prescribed in the compiler used.

- Stack switching
The RI850V4 switches to the system stack specified in Basic information when passing control to an initialization
routine, and switches to the relevant stack when returning control to the Kernel Initialization Module. Coding
regarding stack switching is therefore not required in initialization routines.

- Service call issue
The RI850V4 prohibits issue of service calls in Initialization routines.

- Acceptance of EI level maskable interrupts
When passing control to the initialization routine, the RI850V4 disables acceptance of EI level maskable
interrupts by manipulating the PMn bits in the priority mask register (PMR) and the ID bit in the program status
word (PSW).
The PMn bits to be manipulated correspond to the interrupt priority range defined as the Maximum interrupt
priority: maxintpri during configuration.

Note As the RI850V4 initialization processing is not completed, acceptance is disabled for EI level maskable
interrupts corresponding to the Base clock timer exception code: tim_intno defined in the Basic
information and Exception code: inhno defined in the Interrupt handler information.

Note 1 When the RI850V4 initializes the hardware (OS timer) used for time management, appropriate settings
should be made so that base clock timer interrupts occur according to the Base clock interval: tim_base
defined in the Basic information in the system configuration file.

Note 2 Manipulate within this routine the RINT bit in the reset vector base address (RBASE) and the RINT bit in the
exception handler vector address (EBASE) to specify whether operation should be done in the reduced
mode, which is necessary when using an entry file in the direct vector method.

Note 3 Manipulate within this routine the MKn bits (or EIMKn bits) in the EI level interrupt mask register (IMRm) to
enable acceptance of EI level maskable interrupts.

12.2.2 Define initialization routine

The RI850V4 supports the static registration of initialization routines only. They cannot be registered dynamically by
issuing a service call from the processing program.

Static initialization routine registration means defining of initialization routines using static API "ATT_INI" in the system
configuration file.

For details about the static API "ATT_INI", refer to "17.5.12 Initialization routine information".

#include <kernel.h> /*Standard header file definition*/

void inirtn (VP_INT exinf)
{

 return; /*Terminate initialization routine*/
}

RI850V4 V2 CHAPTER 13 SCHEDULER

R20UT2889EJ0102 Rev.1.02 Page 142 of 366
Jan 29, 2016

CHAPTER 13 SCHEDULER

This chapter describes the scheduler of the RI850V4.

13.1 Outline
The scheduling functions provided by the RI850V4 consist of functions manage/decide the order in which tasks are

executed by monitoring the transition states of dynamically changing tasks, so that the CPU use right is given to the
optimum task.

13.1.1 Drive Method

The RI850V4 employs the Event-driven system in which the scheduler is activated when an event (trigger) occurs.

- Event-driven system

Under the event-driven system of the RI850V4, the scheduler is activated upon occurrence of the events listed below
and dispatch processing (task scheduling processing) is executed.

- Issue of service call that may cause task state transition

- Issue of instruction for returning from non-task (cyclic handler, interrupt handler, etc.)

- Occurrence of clock interrupt used when achieving TIME MANAGEMENT FUNCTIONS

- vsta_sch issue

13.1.2 Scheduling Method

As task scheduling methods, the RI850V4 employs the Priority level method, which uses the priority level defined for
each task, and the FCFS method, which uses the time elapsed from the point when a task becomes subject to RI850V4
scheduling.

- Priority level method

A task with the highest priority level is selected from among all the tasks that have entered an executable state
(RUNNING state or READY state), and given the CPU use right.

- FCFS method

The same priority level can be defined for multiple tasks in the RI850V4. Therefore, multiple tasks with the highest
priority level, which is used as the criterion for task selection under the Priority level method, may exist
simultaneously.
To remedy this, dispatch processing (task scheduling processing) is executed on a first come first served (FCFS)
basis, and the task for which the longest interval of time has elapsed since it entered an executable state (READY
state) is selected as the task to which the CPU use right is granted.

RI850V4 V2 CHAPTER 13 SCHEDULER

R20UT2889EJ0102 Rev.1.02 Page 143 of 366
Jan 29, 2016

13.1.3 Ready queue

The RI850V4 uses a "ready queue" to implement task scheduling.
The ready queue is a hash table that uses priority as the key, and tasks that have entered an executable state (READY

state or RUNNING state) are queued in FIFO order. Therefore, the scheduler realizes the RI850V4's scheduling method
(priority level or FCFS) by executing task detection processing from the highest priority level of the ready queue upon
activation, and upon detection of queued tasks, giving the CPU use right to the first task of the proper priority level.

The following shows the case where multiple tasks are queued to a ready queue.

Figure 13-1 Implementation of Scheduling Method (Priority Level Method or FCFS Method)

- Create ready queue
In the RI850V4, the method of creating a ready queue is limited to "static creation”.
Ready queues therefore cannot be created dynamically using a method such as issuing a service call from a
processing program.
Static ready queue creation means defining of maximum priority using static API "MAX_PRI" in the system
configuration file.
For details about the basic information "MAX_PRI", refer to "17.4.2 Basic information".

13.1.4 Scheduling Lock Function

The RI850V4 provides the scheduling lock function for manipulating the scheduler status explicitly from the processing
program and disabling/enabling dispatch processing.

The following shows a processing flow when using the scheduling lock function.

Priority: High

Task A
RUNNING state

Task B
READY state

Task C
READY state

Ready queue

Priority: Low

tskpri

tskpri + 1

tskpri - 1

tskpri + n

tskpri + n + 1

tskpri + n - 1

1

maxtpri

RI850V4 V2 CHAPTER 13 SCHEDULER

R20UT2889EJ0102 Rev.1.02 Page 144 of 366
Jan 29, 2016

Figure 13-2 Scheduling Lock Function

The scheduling lock function can be implemented by issuing the following service call from the processing program.

loc_cpu, iloc_cpu, unl_cpu, iunl_cpu, dis_dsp, ena_dsp

Task A
Priority: High

Task B
Priority: Low

return

Interrupt

Interrupt handler

Delayed period

Lock the CPU

Unlock the CPU

Delayed period

Release semaphore resource

Disable Dispatching

Enable Dispatching

Acquire semaphore resource

RI850V4 V2 CHAPTER 13 SCHEDULER

R20UT2889EJ0102 Rev.1.02 Page 145 of 366
Jan 29, 2016

13.2 User-Own Coding Module

To support various execution environments, the hardware-dependent processing (idle routine) that is required for the
RI850V4 to execute processing is extracted from the scheduling facility as a user-own coding module.

This enhances portability to various execution environments and facilitates customization as well.

13.2.1 Idle Routine

The idle routine is a routine dedicated to idle processing that is extracted as a user-own coding module to utilize the
standby function provided by the CPU (to achieve the low-power consumption system), and is called from the scheduler
when there no longer remains a task subject to scheduling by the RI850V4 (task in the RUNNING or READY state) in the
system.

The RI850V4 manages the states in which each idle routine may enter and idle routines themselves, by using
management objects (idle routine control blocks) corresponding to idle routines one-to-one.

- Basic form of idle routine

Code idle routines by using the void type function that has no arguments.
The following shows the basic form of idle routine in C.

- Internal processing of idle routine

The RI850V4 executes "original pre-processing" when passing control to the idle routine, as well as "original post-
processing" when regaining control from the idle routine.

Therefore, note the following points when coding idle routines.

- Coding method
Code idle routines using C or assembly language.
When coding in C, they can be coded in the same manner as ordinary functions coded.
When coding in assembly language, code them according to the calling rules prescribed in the compiler used.

- Stack switching
The RI850V4 switches to the system stack specified in Basic information when passing control to an idle routine.
Coding regarding stack switching is therefore not required in idle routines.

- Service call issue
The RI850V4 prohibits issue of service calls in idle routines.

- Acceptance of EI level maskable interrupts
When passing control to the idle routine, the RI850V4 enables acceptance of EI level maskable interrupts by
manipulating the PMn bits in the priority mask register (PMR) and the ID bit in the program status word (PSW).
The PMn bits to be manipulated correspond to the interrupt priority range defined as the Maximum interrupt
priority: maxintpri during configuration.

Note In most cases, control returns from the idle routine (moves to another processing program) if the wait
time has passed or an EI level maskable interrupt occurs, do not issue the DI instruction in the idle
routine.

#include <kernel.h> /*Standard header file definition*/

void idlrtn (void)
{
 /* */

 return; /*Terminate idle routine*/
}

RI850V4 V2 CHAPTER 13 SCHEDULER

R20UT2889EJ0102 Rev.1.02 Page 146 of 366
Jan 29, 2016

13.2.2 Define Idle Routine

The RI850V4 supports the static registration of idle routines only. They cannot be registered dynamically by issuing a
service call from the processing program.

Static idle routine registration means defining of idle routines using static API "VATT_IDL" in the system configuration
file.

For details about the static API "VATT_IDL", refer to "17.5.13 Idle routine information".

Note If Idle routine information is not defined, the default idle routine (function name: _kernel_default_idlrtn) is
registered during configuration.
The default idle routine issues the HALT instruction.

13.3 Scheduling in Non-Tasks
If a service call (isig_sem, iset_flg, etc.) accompanying dispatch processing (task scheduling processing) is issued in

order to quickly complete the processing in the non-task (cyclic handler, interrupt handler, etc.) during the interval until the
processing in the non-task ends, the RI850V4 executes only processing such as queue manipulation and the actual
dispatch processing is delayed until a return instruction is issued, upon which the actual dispatch processing is performed
in batch.

The following shows a processing flow when a service call accompanying dispatch processing is issued in a non-task.

Figure 13-3 Scheduling in Non-Tasks

Task A
Priority: High

Task B
Priority: Low

Delayed period

Non-task

return

Interrupt

Release semaphore resource

Acquire semaphore resource

RI850V4 V2 CHAPTER 14 SYSTEM INITIALIZATION ROUTINE

R20UT2889EJ0102 Rev.1.02 Page 147 of 366
Jan 29, 2016

CHAPTER 14 SYSTEM INITIALIZATION ROUTINE

This chapter describes the system initialization routine performed by the RI850V4.

14.1 Outline
The system initialization routine of the RI850V4 provides system initialization processing, which is required from the

reset interrupt output until control is passed to the task.
The following shows a processing flow from when a reset interrupt occurs until the control is passed to the task.

Figure 14-1 Processing Flow (System Initialization)

Reset interrupt

Boot processing

Kernel Initialization Module

Initialization routine

SCHEDULER Tasks

Interrupt entry processing

RI850V4 V2 CHAPTER 14 SYSTEM INITIALIZATION ROUTINE

R20UT2889EJ0102 Rev.1.02 Page 148 of 366
Jan 29, 2016

14.2 User-Own Coding Module

To support various execution environments, the RI850V4 extracts from the system initialization processing the
hardware-dependent processing (Boot processing) that is required to execute processing, as a user-own coding module.
This enhances portability for various execution environments and facilitates customization as well.

14.2.1 Boot processing

This is a routine dedicated to initialization processing that is extracted as a user-own coding module to initialize the
minimum required hardware for the RI850V4 to perform processing, and is called from Initialization routine.

- Basic form of boot processing
Code boot processing by using the void type function that has no arguments.
The following shows the basic form of boot processing in assembly.

- Internal processing of boot processing
Boot processing is a routine dedicated to initialization processing that is called from Initialization routine, without
RI850V4 intervention.
Therefore, note the following points when coding boot processing.

- Coding method
Code boot processing using C or assembly language.
When coding in C, they can be coded in the same manner as ordinary functions coded.
When coding in assembly language, code them according to the calling rules prescribed in the compiler used.

- Stack switching
Setting of stack pointer SP is not executed at the point when control is passed to boot processing.
To use a boot processing dedicated stack, setting of stack pointer SP must therefore be coded at the beginning
of the boot processing.

- Service call issue
Execution of the Kernel Initialization Module is not performed when boot processing is started. issue of service
calls is therefore prohibited during boot processing.

The following lists processing that should be executed in boot processing. 1) Initializing the interrupt

configuration register (INTCFG)

2) Setting of global pointer GP

3) Setting of element pointer EP

4) Setting stack pointer SP

5) Setting of text pointer TP (only when using the CCV850 compiler)

6) Initialization of “.kernel_data_init” “.kernel_work” “.kernel_data” section

 Sections placed in RAM with the ECC error detection/correction function enabled must be cleared to zero using
 the RAM access size immediately after booting.

 .public __boot

 .text .cseg text
 .align 0x2

__boot :

 mov #__kernel_start, r11 /*Jump to Kernel Initialization Module*/
 jarl [r11], lp

RI850V4 V2 CHAPTER 14 SYSTEM INITIALIZATION ROUTINE

R20UT2889EJ0102 Rev.1.02 Page 149 of 366
Jan 29, 2016

7) Setting of the interrupt priority (manipulation of EIC.EIPn)

8) Selection of the interrupt vector method (manipulation of EIC.EITB)

9) Initialization of memory areas for uninitialized data (such as the bss section)

10) Initialization of Internal unit of CPU (such as the OS timer) and peripheral controllers (For initialization of the OS
timer, see "9.2.1 Base clock timer interrupt".

11) Setting of the priority for the floating-point operation exception (only for the device incorporating the FPU)

12) Setting of the start address of the system information table in r6

13) Returning of control to the Kernel Initialization Module _kernel_start

Note 1 When initializing the interrupt configuration register (INTCFG), clear the ISPC bit to 0 to automatically update
the ISPR value.

Note 2 If global pointer GP is modified outside the boot processing, correct operation is not guaranteed afterwards.

Note 3 When modifying element pointer EP in a processing program (such as a task or a cyclic handler), compiler
option –Xep = callee must be specified (Property panel -> [Common Options] tabbed page -> [Register
Mode] category -> [ep-register treatment] must be set to "Treat as callee-save").

Note 4 Setting of stack pointer sp is required only when the dedicated boot processing stack is used.

Note 5 The following shows sample codes for initializing “.kernel_data_init” section.

- CC-RH compiler
Use the RAM section area initialization function _INITSCT_RH in the CC-RH compiler to simplify the initialization
code.

The following shows an example of assembly-language code for initializing “.kernel_data_init” section.

- CCV850 compiler
First, define “.kernel_data_init” section (where the kernel initialization flag is allocated) with the CLEAR section
attribute added in the link directive file so that the section is initialized in the boot processing.

The following shows a sample code in the link directive file.

.section ".INIT_BSEC.const", const

.align 0x4

.dw #__s.kernel_data_init, #__e.kernel_data_init

mov r0, r6

mov r0, r7

mov #__s.INIT_BSEC.const, r8

mov #__e.INIT_BSEC.const, r9

jarl __INITSCT_RH, lp

MEMORY {
ROM_MEMORY: ORIGIN = 0x00007000,LENGTH = 0x003f9000
RAM_MEMORY: ORIGIN = 0xfedf0000,LENGTH = 0x00010000

}

SECTIONS {

.kernel_data_init　CLEAR:>RAM_MEMORY

}

RI850V4 V2 CHAPTER 14 SYSTEM INITIALIZATION ROUTINE

R20UT2889EJ0102 Rev.1.02 Page 150 of 366
Jan 29, 2016

Withthis definition, the “.kernel_data_init” section information is included in the runtime clear tables
(__ghsbinfo_clear and __ghseinfo_clear) generated by the CCV850 compiler. The following shows a sample
code for initializing the section area included in the runtime clear tables.

Note 6 Manipulate within the Initialization routine the RINT bit in the reset vector base address (RBASE) and the
RINT bit in the exception handler vector address (EBASE) to specify whether operation should be done in
the reduced mode, which is necessary when using an entry file in the direct vector method.

Note 7 Manipulate within the Initialization routine the MKn bits (or EIMKn bits) in the EI level interrupt mask register
(IMRm) to enable acceptance of EI level maskable interrupts.

Note 8 Set the priority of the floating-point operation exception to a higher value than the maximum priority of
interrupts managed by the kernel.

14.2.2 System dependent information

System-dependent information is a header file (file name: userown.h) including various information that is required for
the RI850V4, which is extracted as a user-own coding module.

- Basic form of system-dependent information
When coding system-dependent information, use a specified file name (userown.h) and specified macro names
(KERNEL_USR_TMCNTREG and KERNEL_USR_BASETIME).

The following shows the basic form of system-dependent information in the C language.

The following is a list of information that should be defined as system-dependent information.

- Definition of the system information header file
Include the system information header file output as a result of execution of the configurator for the system configu-
ration file.

Note This information is necessary only when "Taking in long-statistics by software trace mode" is selected in
the Property panel -> [Task Analyzer] tabbed page -> [Trace] category -> [Selection of trace mode].

- Basic clock timer information
Define as macros the I/O address (register base address + 0x4) for the counter register (OSTMn) and the time (in
nanoseconds) for one count in the OS timer calculated according to the frequency of the OS timer operation.

/* initialize memory */
meminit(void){
 {
 void **b = (void **)__ghsbinfo_clear;
 void **e = (void **)__ghseinfo_clear;

 while (b < e){
 void *s, *n, *v;

 s = (sint8 *)(*b++);
 v = *b++;
 n = *b++;
 memset(s, (sint32)v, (uint32)n);
 }
 }
............

#include <kernel_id.h> /*System information header file definition*/

#define KERNEL_USR_TMCNTREG 0xffec0004 /*I/O address*/

#define KERNEL_USR_BASETIME 250 /*time for one count (4MHz -> 250ns)*/

RI850V4 V2 CHAPTER 14 SYSTEM INITIALIZATION ROUTINE

R20UT2889EJ0102 Rev.1.02 Page 151 of 366
Jan 29, 2016

Note This information is necessary only when "Taking in trace chart by software trace mode" or "Taking in long-
statistics by software trace mode" is selected in the Property panel -> [Task Analyzer] tabbed page ->
[Trace] category -> [Selection of trace mode].

RI850V4 V2 CHAPTER 14 SYSTEM INITIALIZATION ROUTINE

R20UT2889EJ0102 Rev.1.02 Page 152 of 366
Jan 29, 2016

14.3 Kernel Initialization Module

The kernel initialization module is a dedicated initialization processing routine provided for initializing the minimum
required software for the RI850V4 to perform processing, and is called from Boot processing.

The following processing is executed in the kernel initialization module.

- Initializing management objects
Initializes the objects defined in the system configuration file (such as tasks and semaphores).

- Initializing the system time
Initializes the system time (to 0), which is updated in units of the Base clock interval: tim_base when an EI level
maskable interrupt defined in the Base clock timer exception code: tim_intno occurs.

- Activating tasks
Moves the tasks whose Attribute: tskatr (such as coding language and initial activation state) is defined as TA_ACT
from the DORMANT state to the READY state.

- Starting cyclic handlers
Moves the cyclic handlers whose Attribute: cycatr (such as coding language and initial activation state) is defined as
TA_STA from the non-operational state (STP state) to the operational state (STA state).

- Calling initialization routines
Calls the initialization routines defined in the Initialization routine information in the order of definitions in the system
configuration file.

- Returning control to the scheduler
Selects the most suitable one of the tasks placed in the READY state and moves the task from the READY state to
the RUNNING state.

Note The kernel initialization module is included in the system initialization processing provided by the RI850V4. The
user is not required to code the kernel initialization module.

RI850V4 V2 CHAPTER 15 DATA TYPES AND MACROS

R20UT2889EJ0102 Rev.1.02 Page 153 of 366
Jan 29, 2016

CHAPTER 15 DATA TYPES AND MACROS

This chapter describes the data types, data structures and macros, which are used when issuing service calls provided
by the RI850V4.

The definition of the macro and data structures is performed by each header file stored in <ri_root>\include\os.

Note <ri_root> indicates the installation folder of RI850V4.
The default folder is “C:\Program Files\Renesas Electronics\CS+\CC\RI850V4RH.

15.1 Data Types
The Following lists the data types of parameters specified when issuing a service call.
Macro definition of the data type is performed by the header file <ri_root>\include\os\types.h, which is called from the

standard header file <ri_root>\include\kernel.h and the ITRON general definition header file <ri_root>\include\os\itron.h.

Table 15-1 Data Types

Macro Data Type Description

B signed char Signed 8-bit integer

H signed short Signed 16-bit integer

W signed long Signed 32-bit integer

UB unsigned char Unsigned 8-bit integer

UH unsigned short Unsigned 16-bit integer

UW unsigned long Unsigned 32-bit integer

VB signed char 8-bit value with unknown data type

VH signed short 16-bit value with unknown data type

VW signed long 32-bit value with unknown data type

VP void * Pointer to unknown data type

FP void (*) Processing unit start address (pointer to a function)

INT signed int Signed 32-bit integer

UINT unsigned int Unsigned 32-bit integer

BOOL signed long Boolean value (TRUE or FALSE)

FN signed short Function code

ER signed long Error code

ID signed short Object ID number

ATR unsigned short Object attribute

STAT unsigned short Object state

MODE unsigned short Service call operational mode

PRI signed short Priority

SIZE unsigned long Memory area size (in bytes)

TMO signed long Timeout (unit:millisecond)

RELTIM unsigned long Relative time (unit:millisecond)

VP_INT signed int Pointer to unknown data type, or signed 32-bit integer

RI850V4 V2 CHAPTER 15 DATA TYPES AND MACROS

R20UT2889EJ0102 Rev.1.02 Page 154 of 366
Jan 29, 2016

ER_BOOL signed long Error code, or boolean value (TRUE or FALSE)

ER_ID signed long Error code, or object ID number

ER_UINT signed int Error code, or signed 32-bit integer

FLGPTN unsigned int Bit pattern

INTNO unsigned short Exception code

Macro Data Type Description

RI850V4 V2 CHAPTER 15 DATA TYPES AND MACROS

R20UT2889EJ0102 Rev.1.02 Page 155 of 366
Jan 29, 2016

15.2 Packet Formats

This section explains the data structures (task state packet, semaphore state packet, or the like) used when issuing a
service call provided by the RI850V4.

Be sure not to refer from programs to the areas reserved for future use in each data structure.

15.2.1 Task state packet

The following shows task state packet T_RTSK used when issuing ref_tsk or iref_tsk.
Definition of task state packet T_RTSK is performed by the header file <ri_root>\include\os\packet.h, which is called

from the standard header file <ri_root>\include\kernel.h.

The following shows details on task state packet T_RTSK.

- tskstat
Stores the current state.

TTS_RUN: RUNNING state
TTS_RDY: READY state
TTS_WAI: WAITING state
TTS_SUS: SUSPENDED state
TTS_WAS: WAITING-SUSPENDED state
TTS_DMT: DORMANT state

- tskpri
Stores the current priority.

- tskbpri
System-reserved area.

- tskwait
Stores the reason for waiting.

TTW_SLP: Sleeping state
TTW_DLY: Delayed state
TTW_SEM: WAITING state for a semaphore resource
TTW_FLG: WAITING state for an eventflag
TTW_SDTQ: Sending WAITING state for a data queue
TTW_RDTQ: Receiving WAITING state for a data queue
TTW_MBX: Receiving WAITING state for a mailbox
TTW_MTX: WAITING state for a mutex
TTW_MPF: WAITING state for a fixed-sized memory block
TTW_MPL: WAITING state for a variable-sized memory block

typedef struct t_rtsk {
 STAT tskstat; /*Current state*/
 PRI tskpri; /*Current priority*/
 PRI tskbpri; /*Reserved for future use*/
 STAT tskwait; /*Reason for waiting*/
 ID wobjid; /*Object ID number for which the task waiting*/
 TMO lefttmo; /*Remaining time until timeout*/
 UINT actcnt; /*Activation request count*/
 UINT wupcnt; /*Wakeup request count*/
 UINT suscnt; /*Suspension count*/
 ATR tskatr; /*Attribute*/
 PRI itskpri; /*Initial priority*/
 ID memid; /*Reserved for future use*/

} T_RTSK;

RI850V4 V2 CHAPTER 15 DATA TYPES AND MACROS

R20UT2889EJ0102 Rev.1.02 Page 156 of 366
Jan 29, 2016

- wobjid
Stores the object ID number for which the task waiting.
When the task is not in the WAITING state, 0 is stored.

- lefttmo
Stores the remaining time until timeout (unit:millisecond).

- actcnt
Stores the activation request count.

- wupcnt
Stores the wakeup request count.

- suscnt
Stores the suspension count.

- tskatr
Stores the attribute (coding language, initial activation state, etc.).

Coding language (bit 0)
TA_HLNG: Start a task through a C language interface.
TA_ASM: Start a task through an assembly language interface.

Initial activation state (bit 1)
TA_ACT: Task is activated after the creation.

Initial preemption state (bit 14)
TA_DISPREEMPT: Preemption is disabled at task activation.

Initial interrupt state (bit 15)
TA_ENAINT: Acceptance of EI level maskable interrupts (from the Maximum interrupt priority: maxintpri to

the minimum interrupt priority) is enabled.
TA_DISINT: Acceptance of EI level maskable interrupts (from the Maximum interrupt priority: maxintpri to

the minimum interrupt priority) is disabled.

[Structure of tskatr]

- itskpri
Stores the initial priority.

- memid
System-reserved area.

011415

TA_DISPREEMPT

TA_ACT
TA_ENAINT
TA_DISINT : 1

TA_HLNG : 0
TA_ASM : 1

: 1

: 1

: 0

RI850V4 V2 CHAPTER 15 DATA TYPES AND MACROS

R20UT2889EJ0102 Rev.1.02 Page 157 of 366
Jan 29, 2016

15.2.2 Task state packet (simplified version)

The following shows task state packet (simplified version) T_RTST used when issuing ref_tst or iref_tst.
Definition of task state packet (simplified version) T_RTST is performed by the header file <ri_root>\include\os\packet.h,

which is called from the standard header file <ri_root>\include\kernel.h.

The following shows details on task state packet (simplified version) T_RTST.

- tskstat
Stores the current state.

TTS_RUN: RUNNING state
TTS_RDY: READY state
TTS_WAI: WAITING state
TTS_SUS: SUSPENDED state
TTS_WAS: WAITING-SUSPENDED state
TTS_DMT: DORMANT state

- tskwait
Stores the reason for waiting.

TTW_SLP: Sleeping state
TTW_DLY: Delayed state
TTW_SEM: WAITING state for a semaphore resource
TTW_FLG: WAITING state for an eventflag
TTW_SDTQ: Sending WAITING state for a data queue
TTW_RDTQ: Receiving WAITING state for a data queue
TTW_MBX: Receiving WAITING state for a mailbox
TTW_MTX: WAITING state for a mutex
TTW_MPF: WAITING state for a fixed-sized memory block
TTW_MPL: WAITING state for a variable-sized memory block

typedef struct t_rtst {
 STAT tskstat; /*Current state*/
 STAT tskwait; /*Reason for waiting*/

} T_RTST;

RI850V4 V2 CHAPTER 15 DATA TYPES AND MACROS

R20UT2889EJ0102 Rev.1.02 Page 158 of 366
Jan 29, 2016

15.2.3 Semaphore state packet

The following shows semaphore state packet T_RSEM used when issuing ref_sem or iref_sem.
Definition of semaphore state packet T_RSEM is performed by the header file <ri_root>\include\os\packet.h, which is

called from the standard header file <ri_root>\include\kernel.h.

The following shows details on semaphore state packet T_RSEM.

- wtskid
Stores whether a task is queued to the semaphore wait queue.

TSK_NONE: No applicable task
Value: ID number of the task at the head of the wait queue

- semcnt
Stores the current resource count.

- sematr
Stores the attribute (queuing method).

Task queuing method (bit 0)
TA_TFIFO: Task wait queue is in FIFO order.
TA_TPRI: Task wait queue is in task priority order.

[Structure of sematr]

- maxsem
Stores the maximum resource count.

typedef struct t_rsem {
 ID wtskid; /*Existence of waiting task*/
 UINT semcnt; /*Current resource count*/
 ATR sematr; /*Attribute*/
 UINT maxsem; /*Maximum resource count*/

} T_RSEM;

015

TA_TFIFO : 0
TA_TPRI : 1

RI850V4 V2 CHAPTER 15 DATA TYPES AND MACROS

R20UT2889EJ0102 Rev.1.02 Page 159 of 366
Jan 29, 2016

15.2.4 Eventflag state packet

The following shows eventflag state packet T_RFLG used when issuing ref_flg or iref_flg.
Definition of eventflag state packet T_RFLG is performed by the header file <ri_root>\include\os\packet.h, which is

called the from the standard header file <ri_root>\include\kernel.h.

The following shows details on eventflag state packet T_RFLG.

- wtskid
Stores whether a task is queued to the event flag wait queue.

TSK_NONE: No applicable task
Value: ID number of the task at the head of the wait queue

- flgptn
Stores the Current bit pattern.

- flgatr
Stores the attribute (queuing method, queuing count, etc.).

Task queuing method (bit 0)
TA_TFIFO: Task wait queue is in FIFO order.
TA_TPRI: Task wait queue is in task priority order.

Queuing count (bit 1)
TA_WSGL: Only one task is allowed to be in the WAITING state for the eventflag.
TA_WMUL: Multiple tasks are allowed to be in the WAITING state for the eventflag.

Bit pattern clear (bit 2)
TA_CLR: Bit pattern is cleared when a task is released from the WAITING state for eventflag.

[Structure of flgatr]

typedef struct t_rflg {
 ID wtskid; /*Existence of waiting task*/
 FLGPTN flgptn; /*Current bit pattern*/
 ATR flgatr; /*Attribute*/

} T_RFLG;

015

TA_TFIFO : 0
TA_TPRI : 1

TA_WSGL : 0
TA_WMUL : 1

TA_CLR : 1

12

RI850V4 V2 CHAPTER 15 DATA TYPES AND MACROS

R20UT2889EJ0102 Rev.1.02 Page 160 of 366
Jan 29, 2016

15.2.5 Data queue state packet

The following shows data queue state packet T_RDTQ used when issuing ref_dtq or iref_dtq.
Definition of data queue state packet T_RDTQ is performed by the header file <ri_root>\include\os\packet.h, which is

called from the standard header file <ri_root>\include\kernel.h.

The following shows details on data queue state packet T_RDTQ.

- stskid
Stores whether a task is queued to the transmission wait queue of the data queue.

TSK_NONE: No applicable task
Value: ID number of the task at the head of the wait queue

- rtskid
Stores whether a task is queued to the reception wait queue of the data queue.

TSK_NONE: No applicable task
Value: ID number of the task at the head of the wait queue

- sdtqcnt
Stores the number of data elements in data queue.

- dtqatr
Stores the attribute (queuing method).

Task queuing method (bit 0)
TA_TFIFO: Task wait queue is in FIFO order.
TA_TPRI: Task wait queue is in task priority order.

[Structure of dtqatr]

- dtqcnt
Stores the data count.

- memid
System-reserved area.

typedef struct t_rdtq {
 ID stskid; /*Existence of tasks waiting for data transmission*/
 ID rtskid; /*Existence of tasks waiting for data reception*/
 UINT sdtqcnt; /*number of data elements in the data queue*/
 ATR dtqatr; /*Attribute*/
 UINT dtqcnt; /*Data count*/
 ID memid; /*Reserved for future use*/
} T_RDTQ;

015

TA_TFIFO : 0
TA_TPRI : 1

RI850V4 V2 CHAPTER 15 DATA TYPES AND MACROS

R20UT2889EJ0102 Rev.1.02 Page 161 of 366
Jan 29, 2016

15.2.6 Message packet

The following shows message packet T_MSG/T_MSG_PRI used when issuing snd_mbx, isnd_mbx, rcv_mbx,
prcv_mbx, iprcv_mbx or trcv_mbx.

Definition of message packet T_MSG/T_MSG_PRI is performed by the header file <ri_root>\include\os\types.h, which is
called from the standard header file <ri_root>\include\kernel.h and the ITRON general definition header file
<ri_root>\include\itron.h.

[Message packet for TA_MFIFO attribute]

[Message packet for TA_MPRI attribute]

The following shows details on message packet T_RTSK/T_MSG_PRI.

- msgnext, msgque
System-reserved area.

- msgpri
Stores the message priority.

Note 1 In the RI850V4, a message having a smaller priority number is given a higher priority.

Note 2 Values that can be specified as the message priority level are limited to the range defined in Mailbox
information (Maximum message priority: maxmpri) when the system configuration file is created.

typedef struct t_msg {
 struct t_msg *msgnext; /*Reserved for future use*/

} T_MSG;

typedef struct t_msg_pri {
 struct t_msg msgque; /*Reserved for future use*/
 PRI msgpri; /*Message priority*/

} T_MSG_PRI;

RI850V4 V2 CHAPTER 15 DATA TYPES AND MACROS

R20UT2889EJ0102 Rev.1.02 Page 162 of 366
Jan 29, 2016

15.2.7 Mailbox state packet

The following shows mailbox state packet T_RMBX used when issuing ref_mbx or iref_mbx.
Definition of mailbox state packet T_RMBX is performed by the header file <ri_root>\include\os\packet.h, which is called

from the standard header file <ri_root>\include\kernel.h.

The following shows details on mailbox state packet T_RMBX.

- wtskid
Stores whether a task is queued to the mailbox wait queue.

TSK_NONE: No applicable task
Value: ID number of the task at the head of the wait queue

- pk_msg
Stores whether a message is queued to the mailbox wait queue.

NULL: No applicable message
Value: Start address of the message packet at the head of the wait queue

- mbxatr
Stores the attribute (queuing method).

Task queuing method (bit 0)
TA_TFIFO: Task wait queue is in FIFO order.
TA_TPRI: Task wait queue is in task priority order.

Message queuing method (bit 1)
TA_MFIFO: Message wait queue is in FIFO order.
TA_MPRI: Message wait queue is in message priority order.

[Structure of mbxatr]

typedef struct t_rmbx {
 ID wtskid; /*Existence of waiting task*/
 T_MSG *pk_msg; /*Existence of waiting message*/
 ATR mbxatr; /*Attribute*/

} T_RMBX;

TA_TFIFO

0115

TA_TPRI

TA_MFIFO
TA_MPRI

: 0
: 1

: 0
: 1

RI850V4 V2 CHAPTER 15 DATA TYPES AND MACROS

R20UT2889EJ0102 Rev.1.02 Page 163 of 366
Jan 29, 2016

15.2.8 Mutex state packet

The following shows mutex state packet T_RMTX used when issuing ref_mtx or iref_mtx.
Definition of mutex state packet T_RMTX is performed by the header file <ri_root>\include\os\packet.h, which is called

from the standard header file <ri_root>\include\kernel.h.

The following shows details on mutex state packet T_RMTX.

- htskid
Stores whether a task that is locking a mutex exists.

TSK_NONE: No applicable task
Value: ID number of the task locking the mutex

- wtskid
Stores whether a task is queued to the mutex wait queue.

TSK_NONE: No applicable task
Value: ID number of the task at the head of the wait queue

- mtxatr
Stores the attribute (queuing method).

Task queuing method (bit 0 to 1)
TA_TFIFO: Task wait queue is in FIFO order.
TA_TPRI: Task wait queue is in task priority order.

[Structure of mtxatr]

- ceilpri
System-reserved area.

typedef struct t_rmtx {
 ID htskid; /*Existence of locked mutex*/
 ID wtskid; /*Existence of waiting task*/
 ATR mtxatr; /*Attribute*/
 PRI ceilpri; /*Reserved for future use*/
} T_RMTX;

015

TA_TFIFO : 0
TA_TPRI : 1

RI850V4 V2 CHAPTER 15 DATA TYPES AND MACROS

R20UT2889EJ0102 Rev.1.02 Page 164 of 366
Jan 29, 2016

15.2.9 Fixed-sized memory pool state packet

The following shows fixed-sized memory pool state packet T_RMPF used when issuing ref_mpf or iref_mpf.
Definition of fixed-sized memory pool state packet T_RMPF is performed by the header file

<ri_root>\include\os\packet.h, which is called from the standard header file <ri_root>\include\kernel.h.

The following shows details on fixed-sized memory pool state packet T_RMPF.

- wtskid
Stores whether a task is queued to the fixed-size memory pool.

TSK_NONE: No applicable task
Value: ID number of the task at the head of the wait queue

- fblkcnt
Stores the number of free memory blocks.

- mpfatr
Stores the attribute (queuing method).

Task queuing method (bit 0)
TA_TFIFO: Task wait queue is in FIFO order.
TA_TPRI: Task wait queue is in task priority order.

[Structure of mpfatr]

- memid
System-reserved area.

typedef struct t_rmpf {
 ID wtskid; /*Existence of waiting task*/
 UINT fblkcnt; /*Number of free memory blocks*/
 ATR mpfatr; /*Attribute*/
 ID memid; /*Reserved for future use*/

} T_RMPF;

015

TA_TFIFO : 0
TA_TPRI : 1

RI850V4 V2 CHAPTER 15 DATA TYPES AND MACROS

R20UT2889EJ0102 Rev.1.02 Page 165 of 366
Jan 29, 2016

15.2.10 Variable-sized memory pool state packet

The following shows variable-sized memory pool state packet T_RMPL used when issuing ref_mpl or iref_mpl.
Definition of variable-sized memory pool state packet T_RMPL is performed by the header file

<ri_root>\include\os\packet.h, which is called from the standard header file <ri_root>\include\kernel.h.

The following shows details on variable-sized memory pool state packet T_RMPL.

- wtskid
Stores whether a task is queued to the variable-size memory pool wait queue.

TSK_NONE: No applicable task
Value: ID number of the task at the head of the wait queue

- fmplsz
Stores the total size of free memory blocks (in bytes).

- fblksz
Stores the maximum memory block size available (in bytes).

- mplatr
Stores the attribute (queuing method).

Task queuing method (bit 0)
TA_TFIFO: Task wait queue is in FIFO order.
TA_TPRI: Task wait queue is in task priority order.

[Structure of mplatr]

- memid
System-reserved area.

typedef struct t_rmpl {
 ID wtskid; /*Existence of waiting task*/
 SIZE fmplsz; /*Total size of free memory blocks*/
 UINT fblksz; /*Maximum memory block size available*/
 ATR mplatr; /*Attribute*/
 ID memid; /*Reserved for future use*/
} T_RMPL;

015

TA_TFIFO : 0
TA_TPRI : 1

RI850V4 V2 CHAPTER 15 DATA TYPES AND MACROS

R20UT2889EJ0102 Rev.1.02 Page 166 of 366
Jan 29, 2016

15.2.11 System time packet

The following shows system time packet SYSTIM used when issuing set_tim, iset_tim, get_tim or iget_tim.
Definition of system time packet SYSTIM is performed by the header file <ri_root>\include\os\packet.h, which is called

from the standard header file <ri_root>\include\kernel.h.

The following shows details on system time packet SYSTIM.

- ltime
Stores the system time (lower 32 bits).

- utime
Stores the system time (higher 16 bits).

typedef struct t_systim {
 UW ltime; /*System time (lower 32 bits)*/
 UH utime; /*System time (higher 16 bits)*/
} SYSTIM;

RI850V4 V2 CHAPTER 15 DATA TYPES AND MACROS

R20UT2889EJ0102 Rev.1.02 Page 167 of 366
Jan 29, 2016

15.2.12 Cyclic handler state packet

The following shows cyclic handler state packet T_RCYC used when issuing ref_cyc or iref_cyc.
Definition of cyclic handler state packet T_RCYC is performed by the header file <ri_root>\include\os\packet.h, which is

called from the standard header file <ri_root>\include\kernel.h.

The following shows details on cyclic handler state packet T_RCYC.

- cycstat
Store the current state.

TCYC_STP: Non-operational state
TCYC_STA: Operational state

- lefttim
Stores the time left before the next activation (unit:millisecond).

- cycatr
Stores the attribute (coding language, initial activation state, etc.).

Coding language (bit 0)
TA_HLNG: Start a cyclic handler through a C language interface.
TA_ASM: Start a cyclic handler through an assembly language interface.

Initial activation state (bit 1)
TA_STA: Cyclic handlers is in an operational state after the creation.

Existence of saved activation phases (bit 2)
TA_PHS: Cyclic handler is activated preserving the activation phase.

[Structure of cycatr]

- cyctim
Stores the activation cycle (unit:millisecond).

- cycphs
Stores the activation phase (unit:millisecond).
In the RI850V4, the initial activation phase means the relative interval from when generation of s cyclic handler is
completed until the first activation request is issued.

typedef struct t_rcyc {
 STAT cycstat; /*Current state*/
 RELTIM lefttim; /*Time left before the next activation*/
 ATR cycatr; /*Attribute*/
 RELTIM cyctim; /*Activation cycle*/
 RELTIM cycphs; /*Activation phase*/
} T_RCYC;

015 1

TA_STA

TA_PHS

: 1

: 1

2

TA_HLNG : 0
TA_ASM : 1

RI850V4 V2 CHAPTER 15 DATA TYPES AND MACROS

R20UT2889EJ0102 Rev.1.02 Page 168 of 366
Jan 29, 2016

15.3 Data Macros

This section explains the data macros (for current state, processing program attributes, or the like) used when issuing a
service call provided by the RI850V4.

15.3.1 Current state

The following lists the management object current states acquired by issuing service calls (ref_tsk, ref_sem, or the like).
Macro definition of the current state is performed by the header file <ri_root>\include\os\option.h, which is called from

standard the header file <ri_root>\include\kernel.h and the ITRON general definition header file <ri_root>\include\itron.h.

Table 15-2 Current State

Macro Value Description

TTS_RUN 0x01 RUNNING state

TTS_RDY 0x02 READY state

TTS_WAI 0x04 WAITING state

TTS_SUS 0x08 SUSPENDED state

TTS_WAS 0x0c WAITING-SUSPENDED state

TTS_DMT 0x10 DORMANT state

TCYC_STP 0x00 Non-operational state

TCYC_STA 0x01 Operational state

TTW_SLP 0x0001 Sleeping state

TTW_DLY 0x0002 Delayed state

TTW_SEM 0x0004 WAITING state for a semaphore resource

TTW_FLG 0x0008 WAITING state for an eventflag

TTW_SDTQ 0x0010 Sending WAITING state for a data queue

TTW_RDTQ 0x0020 Receiving WAITING state for a data queue

TTW_MBX 0x0040 Receiving WAITING state for a mailbox

TTW_MTX 0x0080 WAITING state for a mutex

TTW_MPF 0x2000 WAITING state for a fixed-sized memory pool

TTW_MPL 0x4000 WAITING state for a variable-sized memory pool

TSK_NONE 0 No applicable task

RI850V4 V2 CHAPTER 15 DATA TYPES AND MACROS

R20UT2889EJ0102 Rev.1.02 Page 169 of 366
Jan 29, 2016

15.3.2 Processing program attributes

The following lists the processing program attributes acquired by issuing service calls (ref_tsk, ref_cyc, or the like).
Macro definition of attributes is performed by the header file<ri_root>\include\os\option.h, which is called from the stan-

dard header file <ri_root>\include\kernel.h and the ITRON general definition header file <ri_root>\include\itron.h.

Table 15-3 Processing Program Attributes

15.3.3 Management object attributes

The following lists the management object attributes acquired by issuing service calls (ref_sem, ref_flg, or the like).
Macro definition of attributes is performed by the standard header file <ri_root>\include\kernel.h, which is called from the

header file<ri_root>\include\os\option.h and the ITRON general definition header file <ri_root>\include\itron.h.

Table 15-4 Management Object Attributes

Macro Value Description

TA_HLNG 0x0000 Start a processing unit through a C language interface.

TA_ASM 0x0001
Start a processing unit through an assembly language
interface.

TA_ACT 0x0002 Task is activated after the creation.

TA_DISPREEMPT 0x4000 Preemption is disabled at task activation.

TA_ENAINT 0x0000 All interrupts are enabled at task activation.

TA_DISINT 0x8000 All interrupts are disabled at task activation.

TA_STA 0x0002
Cyclic handlers is in an operational state after the cre-
ation.

TA_PHS 0x0004
Cyclic handler is activated preserving the activation
phase.

Macro Value Description

TA_TFIFO 0x0000 Task wait queue is in FIFO order.

TA_TPRI 0x0001 Task wait queue is in task priority order.

TA_WSGL 0x0000
Only one task is allowed to be in the WAITING state for
the eventflag.

TA_WMUL 0x0002
Multiple tasks are allowed to be in the WAITING state for
the eventflag.

TA_CLR 0x0004
Bit pattern is cleared when a task is released from the
WAITING state for eventflag.

TA_MFIFO 0x0000 Message wait queue is in FIFO order.

TA_MPRI 0x0002 Message wait queue is in message priority order.

RI850V4 V2 CHAPTER 15 DATA TYPES AND MACROS

R20UT2889EJ0102 Rev.1.02 Page 170 of 366
Jan 29, 2016

15.3.4 Service call operating modes

The following lists the service call operating modes used when issuing service calls (act_tsk, wup_tsk, or the like).
Macro definition of operating modes is performed by the header file<ri_root>\include\os\option.h, which is called from

the standard header file <ri_root>\include\kernel.h and the ITRON general definition header file <ri_root>\include\itron.h.

Table 15-5 Service Call Operating Modes

15.3.5 Return value

The following lists the values returned from service calls.
Macros for the return values are defined in the header file <ri_root>\include\os\error.h and option.h, which are called

from the standard header file <ri_root>\include\kernel.h and the common macro definition file for ITRON specifications
<ri_root>\include\itron.h.

Table 15-6 Return Value

Macro Value Description

TSK_SELF 0 Invoking task

TPRI_INI 0 Initial priority

TMO_FEVR -1 Waiting forever

TMO_POL 0 Polling

TWF_ANDW 0x00 AND waiting condition

TWF_ORW 0x01 OR waiting condition

TPRI_SELF 0 Current priority of the Invoking task

Macro Value Description

E_OK 0 Normal completion

E_NOSPT -9 Unsupported function

E_RSFN -10 Invalid function code

E_RSATR -11 Invalid attribute

E_PAR -17 Parameter error

E_ID -18 Invalid ID number

E_CTX -25 Context error.

E_ILUSE -28 Illegal service call use

E_NOMEM -33 Insufficient memory

E_OBJ -41 Object state error

E_NOEXS -42 Non-existent object

E_QOVR -43 Queue overflow

E_RLWAI -49 Forced release from the WAITING state

E_TMOUT -50 Polling failure or timeout

FALSE 0 False

TRUE 1 True

RI850V4 V2 CHAPTER 15 DATA TYPES AND MACROS

R20UT2889EJ0102 Rev.1.02 Page 171 of 366
Jan 29, 2016

15.3.6 Kernel configuration constants

The configuration constants are listed below.
The macro definitions of the configuration constants are made in the header file <ri_root>\include\os\component.h,

which is called from <ri_root>\include\itron.h. Note, however, that some numerical values with variable macro definitions
are defined in the system information header file, in accordance with the settings in the system configuration file.

Table 15-7 Priority Range

Table 15-8 Version Information

Table 15-9 Maximum Queuing Count

Table 15-10 Number of Bits in Bit Patterns

Table 15-11 Base Clock Interval

Macro Value Description

TMIN_TPRI 1 Minimum task priority

TMAX_TPRI variable Maximum task priority

TMIN_MPRI 1 Minimum message priority

TMAX_MPRI 0x7fff Maximum message priority

Macro Value Description

TKERNEL_MAKER 0x011b Kernel maker code

TKERNEL_PRID 0x0000 Identification number of kernel

TKERNEL_SPVER 0x5403 Version number of the ITRON Specification

TKERNEL_PRVER 0x01xx Version number of the kernel

Macro Value Description

TMAX_ACTCNT 127 Maximum task activation request count

TMAX_WUPCNT 127 Maximum task wakeup request count

TMAX_SUSCNT 127 Maximum suspension count

Macro Value Description

TBIT_FLGPTN 32 Number of bits in the an eventflag

Macro Value Description

TIC_NUME variable base clock interval numerator

TIC_DENO 1 base clock interval denominator

RI850V4 V2 CHAPTER 15 DATA TYPES AND MACROS

R20UT2889EJ0102 Rev.1.02 Page 172 of 366
Jan 29, 2016

15.4 Conditional Compile Macro

The header file of the RI850V4 is conditionally compiled by the following macros.
Define macros (such as the compiler activation option -D) according to the environment used when building the source

files that include the header file of the RI850V4.

Table 15-12 Conditional Compile Macros

Classification Macro Description

C compiler package

__rel__
CC-RH is used.
Add two underscores before and after "rel".

__ghs__
CCV850 is used.
Add two underscores before and after "ghs".

Coding language __asm__
The assembly language is used.
Add two underscores before and after "asm".

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 173 of 366
Jan 29, 2016

CHAPTER 16 SERVICE CALLS

This chapter describes the service calls supported by the RI850V4.

16.1 Outline
The service calls provided by the RI850V4 are service routines provided for indirectly manipulating the resources (tasks,

semaphores, etc.) managed by the RI850V4 from a processing program.
The service calls provided by the RI850V4 are listed below by management module.

- Task management functions

act_tsk, iact_tsk, can_act, ican_act, sta_tsk, ista_tsk, ext_tsk, ter_tsk, chg_pri, ichg_pri, get_pri, iget_pri, ref_tsk,
iref_tsk, ref_tst, iref_tst

- Task dependent synchronization functions

slp_tsk, tslp_tsk, wup_tsk, iwup_tsk, can_wup, ican_wup, rel_wai, irel_wai, sus_tsk, isus_tsk, rsm_tsk, irsm_tsk,
frsm_tsk, ifrsm_tsk, dly_tsk

- Synchronization and communication functions (semaphores)

wai_sem, pol_sem, ipol_sem, twai_sem, sig_sem, isig_sem, ref_sem, iref_sem

- Synchronization and communication functions (eventflags)

set_flg, iset_flg, clr_flg, iclr_flg, wai_flg, pol_flg, ipol_flg, twai_flg, ref_flg, iref_flg

- Synchronization and communication functions (data queues)

snd_dtq, psnd_dtq, ipsnd_dtq, tsnd_dtq, fsnd_dtq, ifsnd_dtq, rcv_dtq, prcv_dtq, iprcv_dtq, trcv_dtq, ref_dtq,
iref_dtq

- Synchronization and communication functions (mailboxes)

snd_mbx, isnd_mbx, rcv_mbx, prcv_mbx, iprcv_mbx, trcv_mbx, ref_mbx, iref_mbx

- Extended synchronization and communication functions (mutexes)

loc_mtx, ploc_mtx, tloc_mtx, unl_mtx, ref_mtx, iref_mtx

- Memory pool management functions (fixed-sized memory pools)

get_mpf, pget_mpf, ipget_mpf, tget_mpf, rel_mpf, irel_mpf, ref_mpf, iref_mpf

- Memory pool management functions (variable-sized memory pools)

get_mpl, pget_mpl, ipget_mpl, tget_mpl, rel_mpl, irel_mpl, ref_mpl, iref_mpl

- Time management functions

set_tim, iset_tim, get_tim, iget_tim, sta_cyc, ista_cyc, stp_cyc, istp_cyc, ref_cyc, iref_cyc

- System state management functions

rot_rdq, irot_rdq, vsta_sch, get_tid, iget_tid, loc_cpu, iloc_cpu, unl_cpu, iunl_cpu, sns_loc, dis_dsp, ena_dsp,
sns_dsp, sns_ctx, sns_dpn

- Service call management functions

cal_svc, ical_svc

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 174 of 366
Jan 29, 2016

16.1.1 Call service call

The method for calling service calls from processing programs coded either in C or assembly language is described
below.

- C language
By calling using the same method as for normal C functions, service call parameters are handed over to the RI850V4
as arguments and the relevant processing is executed.

- Assembly language
When issuing a service call from a processing program coded in assembly language, set parameters and the return
address according to the calling rules prescribed in the C compiler used as the development environment and call the
function using the jarl instruction; the service call parameters are then transferred to the RI850V4 as arguments and
the relevant processing will be executed.

Note To call the service calls provided by the RI850V4 from a processing program, the header files listed below must
be coded (include processing).

kernel.h: Standard header file

kernel_id.h: System information header file

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 175 of 366
Jan 29, 2016

16.2 Explanation of Service Call

The following explains the service calls supported by the RI850V4, in the format shown below.

Outline

DescriptionParameterI/O

C format

Explanation

1)

2)

3)

4)

5)

6) Return value

Parameter(s)

DescriptionValueMacro

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 176 of 366
Jan 29, 2016

1) Name
Indicates the name of the service call.

2) Outline
Outlines the functions of the service call.

3) C format
Indicates the format to be used when describing a service call to be issued in C language.

4) Parameter(s)
Service call parameters are explained in the following format.

A) Parameter classification

 I: Parameter input to RI850V4.
O: Parameter output from RI850V4.

B) Parameter data type

C) Description of parameter

5) Explanation
Explains the function of a service call.

6) Return value
Indicates a service call's return value using a macro and value.

A) Macro of return value

B) Value of return value

C) Description of return value

I/O Parameter Description

A B C

Macro Value Description

A B C

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 177 of 366
Jan 29, 2016

16.2.1 Task management functions

The following shows the service calls provided by the RI850V4 as the task management functions.

Table 16-1 Task Management Functions

Service Call Function Origin of Service Call

act_tsk Activate task (queues an activation request)
Task, Non-task, Initialization rou-
tine

iact_tsk Activate task (queues an activation request)
Task, Non-task, Initialization rou-
tine

can_act Cancel task activation requests
Task, Non-task, Initialization rou-
tine

ican_act Cancel task activation requests
Task, Non-task, Initialization rou-
tine

sta_tsk Activate task (does not queue an activation request)
Task, Non-task, Initialization rou-
tine

ista_tsk Activate task (does not queue an activation request)
Task, Non-task, Initialization rou-
tine

ext_tsk Terminate invoking task Task

ter_tsk Terminate task Task, Initialization routine

chg_pri Change task priority
Task, Non-task, Initialization rou-
tine

ichg_pri Change task priority
Task, Non-task, Initialization rou-
tine

get_pri Reference task priority
Task, Non-task, Initialization rou-
tine

iget_pri Reference task priority
Task, Non-task, Initialization rou-
tine

ref_tsk Reference task state
Task, Non-task, Initialization rou-
tine

iref_tsk Reference task state
Task, Non-task, Initialization rou-
tine

ref_tst Reference task state (simplified version)
Task, Non-task, Initialization rou-
tine

iref_tst Reference task state (simplified version)
Task, Non-task, Initialization rou-
tine

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 178 of 366
Jan 29, 2016

act_tsk
iact_tsk

Outline

Activate task (queues an activation request).

C format

ER act_tsk (ID tskid);
ER iact_tsk (ID tskid);

Parameter(s)

Explanation

These service calls move a task specified by parameter tskid from the DORMANT state to the READY state.
As a result, the target task is queued at the end on the ready queue corresponding to the initial priority and becomes

subject to scheduling by the RI850V4.
If the target task has been moved to a state other than the DORMANT state when this service call is issued, this service

call does not move the state but increments the activation request counter (by added 0x1 to the wakeup request counter).

Note 1 The activation request counter managed by the RI850V4 is configured in 7-bit widths. If the number of
activation requests exceeds the maximum count value 127 as a result of issuing this service call, the counter
manipulation processing is therefore not performed but "E_QOVR" is returned.

Note 2 Extended information specified in Task information is passed to the task activated by issuing these service
calls.

Return value

I/O Parameter Description

I ID tskid;

ID number of the task to be activated.

TSK_SELF: Invoking task.
Value: ID number of the task to be activated.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

- When this service call was issued from a non-task, TSK_SELF was
specified tskid.

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 179 of 366
Jan 29, 2016

E_NOEXS -42
Non-existent object.

- Specified task is not registered.

E_QOVR -43
Queue overflow.

- Activation request count exceeded 127.

Macro Value Description

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 180 of 366
Jan 29, 2016

can_act
ican_act

Outline

Cancel task activation requests.

C format

ER_UINT can_act (ID tskid);
ER_UINT ican_act (ID tskid);

Parameter(s)

Explanation

This service call cancels all of the activation requests queued to the task specified by parameter tskid (sets the
activation request counter to 0x0).

When this service call is terminated normally, the number of cancelled activation requests is returned.

Note This service call does not perform status manipulation processing but performs the setting of activation request
counter. Therefore, the task does not move from a state such as the READY state to the DORMANT state.

Return value

I/O Parameter Description

I ID tskid;

ID number of the task for cancelling activation requests.

TSK_SELF: Invoking task.
Value: ID number of the task for cancelling activation requests.

Macro Value Description

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

- When this service call was issued from a non-task, TSK_SELF was specified
tskid.

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified task is not registered.

-
Positive

value
Normal completion (activation request count).

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 181 of 366
Jan 29, 2016

sta_tsk
ista_tsk

Outline

Activate task (does not queue an activation request).

C format

ER sta_tsk (ID tskid, VP_INT stacd);
ER ista_tsk (ID tskid, VP_INT stacd);

Parameter(s)

Explanation

These service calls move a task specified by parameter tskid from the DORMANT state to the READY state.
As a result, the target task is queued at the end on the ready queue corresponding to the initial priority and becomes

subject to scheduling by the RI850V4.
This service call does not perform queuing of activation requests. If the target task is in a state other than the

DORMANT state, the status manipulation processing for the target task is therefore not performed but "E_OBJ" is returned
Specify for parameter stacd the extended information transferred to the target task.

Return value

I/O Parameter Description

I ID tskid; ID number of the task to be activated.

I VP_INT stacd; Start code (extended information) of the task.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_OBJ -41
Object state error

- Specified task is not in the DORMANT state.

E_NOEXS -42
Non-existent object.

- Specified task is not registered.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 182 of 366
Jan 29, 2016

ext_tsk

Outline

Terminate invoking task.

C format

void ext_tsk (void);

Parameter(s)

None.

Explanation

This service call moves an invoking task from the RUNNING state to the DORMANT state.
As a result, the invoking task is unlinked from the ready queue and excluded from the RI850V4 scheduling subject.
If an activation request has been queued to the invoking task (the activation request counter is not set to 0x0) when this

service call is issued, this service call moves the task from the RUNNING state to the DORMANT state, decrements the
wakeup request counter (by subtracting 0x1 from the wakeup request counter), and then moves the task from the
DORMANT state to the READY state.

Note 1 When moving a task from the RUNNING state to the DORMANT state, this service call initializes the following
information to values that are set during task creation.

- Current priority

- Wakeup request count

- Suspension count

- interrupt state

If an invoking task has locked a mutex, the locked state is released at the same time (processing equivalent to
unl_mtx).

Note 2 When the return instruction is issued in a task, the same processing as ext_tsk is performed.

Return value

None.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 183 of 366
Jan 29, 2016

ter_tsk

Outline

Terminate task.

C format

ER ter_tsk (ID tskid);

Parameter(s)

Explanation

This service call forcibly moves a task specified by parameter tskid to the DORMANT state.
As a result, the target task is excluded from the RI850V4 scheduling subject.
If an activation request has been queued to the target task (the activation request counter is not set to 0x0) when this

service call is issued, this service call moves the task to the DORMANT state, decrements the wakeup request counter (by
subtracting 0x1 from the wakeup request counter), and then moves the task from the DORMANT state to the READY
state.

Note When moving a task to the DORMANT state, this service call initializes the following information to values that
are set during task creation.

- Current priority

- Wakeup request count

- Suspension count

- Interrupt state

If the target task has locked a mutex, the locked state is released at the same time (processing equivalent to
unl_mtx).

Return value

I/O Parameter Description

I ID tskid; ID number of the task to be terminated.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 184 of 366
Jan 29, 2016

E_ILUSE -28
Illegal service call use.

- Specified task is an invoking task.

E_OBJ -41
Object state error.

- Specified task is in the DORMANT state.

E_NOEXS -42
Non-existent object.

- Specified task is not registered.

Macro Value Description

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 185 of 366
Jan 29, 2016

chg_pri
ichg_pri

Outline

Change task priority.

C format

ER chg_pri (ID tskid, PRI tskpri);
ER ichg_pri (ID tskid, PRI tskpri);

Parameter(s)

Explanation

These service calls change the priority of the task specified by parameter tskid (current priority) to a value specified by
parameter tskpri.

If the target task is in the RUNNING or READY state after this service call is issued, this service call re-queues the task
at the end of the ready queue corresponding to the priority specified by parameter tskpri, following priority change
processing.

Note When the target task is queued to a wait queue in the order of priority, the wait order may change due to issue
of this service call.

Example When three tasks (task A: priority level 10, task B: priority level 11, task C: priority level 12) are
queued to the semaphore wait queue in the order of priority, and the priority level of task B is
changed from 11 to 9, the wait order will be changed as follows.

I/O Parameter Description

I ID tskid;

ID number of the task whose priority is to be changed.

TSK_SELF: Invoking task.
Value: ID number of the task whose priority is to be changed.

I PRI tskpri;

New base priority of the task.

TPRI_INI: Initial priority.
Value: New base priority.

Task C
Semaphore

Task ATask B

chg_pri (Task B, 9);

Priority: 9 Priority: 10 Priority: 12

Task C
Semaphore

Task BTask A
Priority: 10 Priority: 11 Priority: 12

Task C
Priority: 12

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 186 of 366
Jan 29, 2016

Return value

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- tskpri < 0x0

- tskpri > Maximum priority

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

- When this service call was issued from a non-task, TSK_SELF was specified
tskid.

E_CTX -25
Context error.

- This service call was issued int the CPU locked state.

E_OBJ -41
Object state error.

- Specified task is in the DORMANT state.

E_NOEXS -42
Non-existent object.

- Specified task is not registered.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 187 of 366
Jan 29, 2016

get_pri
iget_pri

Outline

Reference task priority.

C format

ER get_pri (ID tskid, PRI *p_tskpri);
ER iget_pri (ID tskid, PRI *p_tskpri);

Parameter(s)

Explanation

Stores current priority of the task specified by parameter tskid in the area specified by parameter p_tskpri.

Return value

I/O Parameter Description

I ID tskid;

ID number of the task to reference.

TSK_SELF: Invoking task.
Value: ID number of the task to reference.

O PRI *p_tskpri; Current priority of specified task.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

- When this service call was issued from a non-task, TSK_SELF was specified
tskid.

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_OBJ -41
Object state error.

- Specified task is in the DORMANT state.

E_NOEXS -42
Non-existent object.

- Specified task is not registered.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 188 of 366
Jan 29, 2016

ref_tsk
iref_tsk

Outline

Reference task state.

C format

ER ref_tsk (ID tskid, T_RTSK *pk_rtsk);
ER iref_tsk (ID tskid, T_RTSK *pk_rtsk);

Parameter(s)

[Task state packet: T_RTSK]

Explanation

Stores task state packet (current state, current priority, etc.) of the task specified by parameter tskid in the area specified
by parameter pk_rtsk.

Note For details about the task state packet, refer to "15.2.1 Task state packet".

I/O Parameter Description

I ID tskid;

ID number of the task to referenced.

TSK_SELF: Invoking task.
Value: ID number of the task to referenced.

O T_RTSK *pk_rtsk; Pointer to the packet returning the task state.

typedef struct t_rtsk {
 STAT tskstat; /*Current state*/
 PRI tskpri; /*Current priority*/
 PRI tskbpri; /*Reserved for future use*/
 STAT tskwait; /*Reason for waiting*/
 ID wobjid; /*Object ID number for which the task is waiting*/
 TMO lefttmo; /*Remaining time until timeout*/
 UINT actcnt; /*Activation request count*/
 UINT wupcnt; /*Wakeup request count*/
 UINT suscnt; /*Suspension count*/
 ATR tskatr; /*Attribute*/
 PRI itskpri; /*Initial priority*/
 ID memid; /*Reserved for future use*/
} T_RTSK;

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 189 of 366
Jan 29, 2016

Return value

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

- When this service call was issued from a non-task, TSK_SELF was specified
tskid.

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-Existent object.

- Specified task is not registered.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 190 of 366
Jan 29, 2016

ref_tst
iref_tst

Outline

Reference task state (simplified version).

C format

ER ref_tst (ID tskid, T_RTST *pk_rtst);
ER iref_tst (ID tskid, T_RTST *pk_rtst);

Parameter(s)

[Task state packet (simplified version): T_RTST]

Explanation

Stores task state packet (current state, reason for waiting) of the task specified by parameter tskid in the area specified
by parameter pk_rtst.

Used for referencing only the current state and reason for wait among task information.
Response becomes faster than using ref_tsk or iref_tsk because only a few information items are acquired.

Note For details about the task state packet (simplified version), refer to "15.2.2 Task state packet (simplified
version)".

Return value

I/O Parameter Description

I ID tskid;

ID number of the task to be referenced.

TSK_SELF: Invoking task.
Value: ID number of the task to be referenced.

O T_RTST *pk_rtst; Pointer to the packet returning the task state.

typedef struct t_rtst {
 STAT tskstat; /*Current state*/
 STAT tskwait; /*Reason for waiting*/
} T_RTST;

Macro Value Description

E_OK 0 Normal completion.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 191 of 366
Jan 29, 2016

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

- When this service call was issued from a non-task, TSK_SELF was specified
tskid.

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified task is not registered.

Macro Value Description

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 192 of 366
Jan 29, 2016

16.2.2 Task dependent synchronization functions

The following shows the service calls provided by the RI850V4 as the task dependent synchronization functions.

Table 16-2 Task Dependent Synchronization Functions

Service Call Function Origin of Service Call

slp_tsk Put task to sleep (waiting forever) Task

tslp_tsk Put task to sleep (with timeout) Task

wup_tsk Wakeup task
Task, Non-task, Initialization rou-
tine

iwup_tsk Wakeup task
Task, Non-task, Initialization rou-
tine

can_wup Cancel task wakeup requests
Task, Non-task, Initialization rou-
tine

ican_wup Cancel task wakeup requests
Task, Non-task, Initialization rou-
tine

rel_wai Release task from waiting
Task, Non-task, Initialization rou-
tine

irel_wai Release task from waiting
Task, Non-task, Initialization rou-
tine

sus_tsk Suspend task
Task, Non-task, Initialization rou-
tine

isus_tsk Suspend task
Task, Non-task, Initialization rou-
tine

rsm_tsk Resume suspended task
Task, Non-task, Initialization rou-
tine

irsm_tsk Resume suspended task
Task, Non-task, Initialization rou-
tine

frsm_tsk Forcibly resume suspended task
Task, Non-task, Initialization rou-
tine

ifrsm_tsk Forcibly resume suspended task
Task, Non-task, Initialization rou-
tine

dly_tsk Delay task Task

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 193 of 366
Jan 29, 2016

slp_tsk

Outline

Put task to sleep (waiting forever).

C format

ER slp_tsk (void);

Parameter(s)

None.

Explanation

As a result, the invoking task is unlinked from the ready queue and excluded from the RI850V4 scheduling subject.
If a wakeup request has been queued to the target task (the wakeup request counter is not set to 0x0) when this service

call is issued, this service call does not move the state but decrements the wakeup request counter (by subtracting 0x1
from the wakeup request counter).

The sleeping state is cancelled in the following cases, and then moved to the READY state.

Return value

Sleeping State Cancel Operation Return Value

A wakeup request was issued as a result of issuing wup_tsk. E_OK

A wakeup request was issued as a result of issuing iwup_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Macro Value Description

E_OK 0 Normal completion.

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 194 of 366
Jan 29, 2016

tslp_tsk

Outline

Put task to sleep (with timeout).

C format

ER tslp_tsk (TMO tmout);

Parameter(s)

Explanation

This service call moves an invoking task from the RUNNING state to the WAITING state (sleeping state).
As a result, the invoking task is unlinked from the ready queue and excluded from the RI850V4 scheduling subject.
If a wakeup request has been queued to the target task (the wakeup request counter is not set to 0x0) when this service

call is issued, this service call does not move the state but decrements the wakeup request counter (by subtracting 0x1
from the wakeup request counter).

The sleeping state is cancelled in the following cases, and then moved to the READY state.

Note When TMO_FEVR is specified for wait time tmout, processing equivalent to slp_tsk will be executed.

Return value

I/O Parameter Description

I TMO tmout;

Specified timeout (unit:millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified timeout.

Sleeping State Cancel Operation Return Value

A wakeup request was issued as a result of issuing wup_tsk. E_OK

A wakeup request was issued as a result of issuing iwup_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17
Parameter error.

- tmout < TMO_FEVR

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 195 of 366
Jan 29, 2016

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50
Timeout.

- Polling failure or timeout.

Macro Value Description

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 196 of 366
Jan 29, 2016

wup_tsk
iwup_tsk

Outline

Wakeup task.

C format

ER wup_tsk (ID tskid);
ER iwup_tsk (ID tskid);

Parameter(s)

Explanation

These service calls cancel the WAITING state (sleeping state) of the task specified by parameter tskid.
As a result, the target task is moved from the sleeping state to the READY state, or from the WAITING-SUSPENDED

state to the SUSPENDED state.
If the target task is in a state other than the sleeping state when this service call is issued, this service call does not

move the state but increments the wakeup request counter (by added 0x1 to the wakeup request counter).

Note The wakeup request counter managed by the RI850V4 is configured in 7-bit widths. If the number of wakeup
requests exceeds the maximum count value 127 as a result of issuing this service call, the counter
manipulation processing is therefore not performed but "E_QOVR" is returned.

Return value

I/O Parameter Description

I ID tskid;

ID number of the task to be woken up.

TSK_SELF: Invoking task.
Value: ID number of the task to be woken up.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

- When this service call was issued from a non-task, TSK_SELF was specified
tskid.

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_OBJ -41
Object state error.

- Specified task is in the DORMANT state.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 197 of 366
Jan 29, 2016

E_NOEXS -42
Non-existent object.

- Specified task is not registered.

E_QOVR -43
Queue overflow.

- Wakeup request count exceeded 127.

Macro Value Description

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 198 of 366
Jan 29, 2016

can_wup
ican_wup

Outline

Cancel task wakeup requests.

C format

ER_UINT can_wup (ID tskid);
ER_UINT ican_wup (ID tskid);

Parameter(s)

Explanation

These service calls cancel all of the wakeup requests queued to the task specified by parameter tskid (the wakeup
request counter is set to 0x0).

When this service call is terminated normally, the number of cancelled wakeup requests is returned.

Return value

I/O Parameter Description

I ID tskid;

ID number of the task for cancelling wakeup requests.

TSK_SELF: Invoking task.
Value: ID number of the task for cancelling wakeup requests.

Macro Value Description

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

- When this service call was issued from a non-task, TSK_SELF was specified
tskid.

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_OBJ -41
Object state error.

- Specified task is in the DORMANT state.

E_NOEXS -42
Non-existent object.

- Specified task is not registered.

other - Normal completion (wakeup request count).

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 199 of 366
Jan 29, 2016

rel_wai
irel_wai

Outline

Release task from waiting.

C format

ER rel_wai (ID tskid);
ER irel_wai (ID tskid);

Parameter(s)

Explanation

These service calls forcibly cancel the WAITING state of the task specified by parameter tskid.
As a result, the target task unlinked from the wait queue and is moved from the WAITING state to the READY state, or

from the WAITING-SUSPENDED state to the SUSPENDED state.
"E_RLWAI" is returned from the service call that triggered the move to the WAITING state (slp_tsk, wai_sem, or the like)

to the task whose WAITING state is cancelled by this service call.

Note 1 This service call does not perform queuing of forced cancellation requests. If the target task is in a state other
than the WAITING or WAITING-SUSPENDED state, "E_OBJ" is returned.

Note 2 The SUSPENDED state is not cancelled by these service calls.

Return value

I/O Parameter Description

I ID tskid; ID number of the task to be released from waiting.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_OBJ -41

Object state error.

- Specified task is neither in the WAITING state nor WAITING-SUSPENDED
state.

E_NOEXS -42
Non-existent object.

- Specified task is not registered.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 200 of 366
Jan 29, 2016

sus_tsk
isus_tsk

Outline

Suspend task.

C format

ER sus_tsk (ID tskid);
ER isus_tsk (ID tskid);

Parameter(s)

Explanation

These service calls add 0x1 to the suspend request counter for the task specified by parameter tskid, and then move the
target task from the RUNNING state to the SUSPENDED state, from the READY state to the SUSPENDED state, or from
the WAITING state to the WAITING-SUSPENDED state.

If the target task has moved to the SUSPENDED or WAITING-SUSPENDED state when this service call is issued, the
counter manipulation processing is not performed but only the suspend request counter increment processing is executed.

Note The suspend request counter managed by the RI850V4 is configured in 7-bit widths. If the number of suspend
requests exceeds the maximum count value 127 as a result of issuing this service call, the counter
manipulation processing is therefore not performed but "E_QOVR" is returned.

Return value

I/O Parameter Description

I ID tskid;

ID number of the task to be suspended.

TSK_SELF: Invoking task.
Value: ID number of the task to be suspended.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

- When this service call was issued from a non-task, TSK_SELF was specified
tskid.

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- When this service call was issued in the dispatching disabled state, invoking
task was specified tskid.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 201 of 366
Jan 29, 2016

E_OBJ -41
Object state error.

- Specified task is in the DORMANT state.

E_NOEXS -42
Non-existent object.

- Specified task is not registered.

E_QOVR -43
Queue overflow.

- Suspension count exceeded 127.

Macro Value Description

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 202 of 366
Jan 29, 2016

rsm_tsk
irsm_tsk

Outline

Resume suspended task.

C format

ER rsm_tsk (ID tskid);
ER irsm_tsk (ID tskid);

Parameter(s)

Explanation

This service call subtracts 0x1 from the suspend request counter for the task specified by parameter tskid, and then
cancels the SUSPENDED state of the target task.

As a result, the target task is moved from the SUSPENDED state to the READY state, or from the WAITING-
SUSPENDED state to the WAITING state.

If a suspend request is queued (subtraction result is other than 0x0) when this service call is issued, the counter
manipulation processing is not performed but only the suspend request counter decrement processing is executed.

Note This service call does not perform queuing of cancellation requests. If the target task is in a state other than the
SUSPENDED or WAITING-SUSPENDED state, "E_OBJ" is therefore returned.

Return value

I/O Parameter Description

I ID tskid; ID number of the task to be resumed.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_OBJ -41

Object state error.

- Specified task is neither in the SUSPENDED state nor WAITING-
SUSPENDED state.

E_NOEXS -42
Non-existent object.

- Specified task is not registered.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 203 of 366
Jan 29, 2016

frsm_tsk
ifrsm_tsk

Outline

Forcibly resume suspended task.

C format

ER frsm_tsk (ID tskid);
ER ifrsm_tsk (ID tskid);

Parameter(s)

Explanation

These service calls cancel all of the suspend requests issued for the task specified by parameter tskid (by setting the
suspend request counter to 0x0). As a result, the target task moves from the SUSPENDED state to the READY state, or
from the WAITING-SUSPENDED state to the WAITING state.

Note This service call does not perform queuing of cancellation requests. If the target task is in a state other than the
SUSPENDED or WAITING-SUSPENDED state, "E_OBJ" is therefore returned.

Return value

I/O Parameter Description

I ID tskid; ID number of the task to be resumed.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- tskid < 0x0

- tskid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_OBJ -41

Object state error.

- Specified task is neither in the SUSPENDED state nor WAITING-
SUSPENDED state.

E_NOEXS -42
Non-existent object.

- Specified task is not registered.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 204 of 366
Jan 29, 2016

dly_tsk

Outline

Delay task.

C format

ER dly_tsk (RELTIM dlytim);

Parameter(s)

Explanation

This service call moves the invoking task from the RUNNING state to the WAITING state (delayed state).
As a result, the invoking task is unlinked from the ready queue and excluded from the RI850V4 scheduling subject.
The delayed state is cancelled in the following cases, and then moved to the READY state.

Return value

I/O Parameter Description

I RELTIM dlytim; Amount of time to delay the invoking task (unit:millisecond).

Delayed State Cancel Operation Return Value

Delay time specified by parameter dlytim has elapsed. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Macro Value Description

E_OK 0 Normal completion.

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 205 of 366
Jan 29, 2016

16.2.3 Synchronization and communication functions (semaphores)

The following shows the service calls provided by the RI850V4 as the synchronization and communication functions
(semaphores).

Table 16-3 Synchronization and Communication Functions (Semaphores)

Service Call Function Origin of Service Call

wai_sem Acquire semaphore resource (waiting forever) Task

pol_sem Acquire semaphore resource (polling)
Task, Non-task, Initialization rou-
tine

ipol_sem Acquire semaphore resource (polling)
Task, Non-task, Initialization rou-
tine

twai_sem Acquire semaphore resource (with timeout) Task

sig_sem Release semaphore resource
Task, Non-task, Initialization rou-
tine

isig_sem Release semaphore resource
Task, Non-task, Initialization rou-
tine

ref_sem Reference semaphore state
Task, Non-task, Initialization rou-
tine

iref_sem Reference semaphore state
Task, Non-task, Initialization rou-
tine

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 206 of 366
Jan 29, 2016

wai_sem

Outline

Acquire semaphore resource (waiting forever).

C format

ER wai_sem (ID semid);

Parameter(s)

Explanation

This service call acquires a resource from the semaphore specified by parameter semid (subtracts 0x1 from the
semaphore counter).

If no resources are acquired from the target semaphore when this service call is issued (no available resources exist),
this service call does not acquire resources but queues the invoking task to the target semaphore wait queue and moves it
from the RUNNING state to the WAITING state (resource acquisition wait state).

The WAITING state for a semaphore resource is cancelled in the following cases, and then moved to the READY state.

Note Invoking tasks are queued to the target semaphore wait queue in the order defined during configuration (FIFO
order or priority order).

Return value

I/O Parameter Description

I ID semid; ID number of the semaphore from which resource is acquired.

WAITING State for a Semaphore Resource Cancel Operation Return Value

The resource was returned to the target semaphore as a result of issuing sig_sem. E_OK

The resource was returned to the target semaphore as a result of issuing isig_sem. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- semid < 0x0

- semid > Maximum ID number

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 207 of 366
Jan 29, 2016

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_NOEXS -42
Non-existent object.

- Specified semaphore is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

Macro Value Description

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 208 of 366
Jan 29, 2016

pol_sem
ipol_sem

Outline

Acquire semaphore resource (polling).

C format

ER pol_sem (ID semid);
ER isem_sem (ID semid);

Parameter(s)

Explanation

This service call acquires a resource from the semaphore specified by parameter semid (subtracts 0x1 from the
semaphore counter).

If a resource could not be acquired from the target semaphore (semaphore counter is set to 0x0) when this service call
is issued, the counter manipulation processing is not performed but "E_TMOUT" is returned.

Return value

I/O Parameter Description

I ID semid; ID number of the semaphore from which resource is acquired.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- semid < 0x0

- semid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified semaphore is not registered.

E_TMOUT -50
Polling failure.

- The resource counter of the target semaphore is 0x0.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 209 of 366
Jan 29, 2016

twai_sem

Outline

Acquire semaphore resource (with timeout).

C format

ER twai_sem (ID semid, TMO tmout);

Parameter(s)

Explanation

This service call acquires a resource from the semaphore specified by parameter semid (subtracts 0x1 from the
semaphore counter).

If no resources are acquired from the target semaphore when service call is issued this (no available resources exist),
this service call does not acquire resources but queues the invoking task to the target semaphore wait queue and moves it
from the RUNNING state to the WAITING state with timeout (resource acquisition wait state).

The WAITING state for a semaphore resource is cancelled in the following cases, and then moved to the READY state.

Note 1 Invoking tasks are queued to the target semaphore wait queue in the order defined during configuration (FIFO
order or priority order).

Note 2 TMO_FEVR is specified for wait time tmout, processing equivalent to wai_sem will be executed. When
TMO_POL is specified, processing equivalent to pol_sem /ipol_sem will be executed.

Return value

I/O Parameter Description

I ID semid; ID number of the semaphore from which resource is acquired.

I TMO tmout;

Specified timeout (unit:millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified timeout.

WAITING State for a Semaphore Resource Cancel Operation Return Value

The resource was returned to the target semaphore as a result of issuing sig_sem. E_OK

The resource was returned to the target semaphore as a result of issuing isig_sem. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

Macro Value Description

E_OK 0 Normal completion.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 210 of 366
Jan 29, 2016

E_PAR -17
Parameter error.

- tmout < TMO_FEVR

E_ID -18

Invalid ID number.

- semid < 0x0

- semid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_NOEXS -42
Non-existent object.

- Specified semaphore is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50
Timeout.

- Polling failure or timeout.

Macro Value Description

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 211 of 366
Jan 29, 2016

sig_sem
isig_sem

Outline

Release semaphore resource.

C format

ER sig_sem (ID semid);
ER isig_sem (ID semid);

Parameter(s)

Explanation

These service calls return the resource to the semaphore specified by parameter semid (adds 0x1 to the semaphore
counter).

If a task is queued in the wait queue of the target semaphore when this service call is issued, the counter manipulation
processing is not performed but the resource is passed to the relevant task (first task of wait queue).

As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (WAITING state for
a semaphore resource) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

Note With the RI850V4, the maximum possible number of semaphore resources (maximum resource count) is
defined during configuration. If the number of resources exceeds the specified maximum resource count, this
service call therefore does not return the acquired resources (addition to the semaphore counter value) but
returns E_QOVR.

Return value

I/O Parameter Description

I ID semid; ID number of the semaphore to which resource is released.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- semid < 0x0

- semid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified semaphore is not registered.

E_QOVR -43
Queue overflow.

- Resource count exceeded maximum resource count.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 212 of 366
Jan 29, 2016

ref_sem
iref_sem

Outline

Reference semaphore state.

C format

ER ref_sem (ID semid, T_RSEM *pk_rsem);
ER iref_sem (ID semid, T_RSEM *pk_rsem);

Parameter(s)

[Semaphore state packet: T_RSEM]

Explanation

Stores semaphore state packet (ID number of the task at the head of the wait queue, current resource count, etc.) of the
semaphore specified by parameter semid in the area specified by parameter pk_rsem.

Note For details about the semaphore state packet, refer to "15.2.3 Semaphore state packet".

Return value

I/O Parameter Description

I ID semid; ID number of the semaphore to be referenced.

O T_RSEM *pk_rsem; Pointer to the packet returning the semaphore state.

typedef struct t_rsem {
 ID wtskid; /*Existence of waiting task*/
 UINT semcnt; /*Current resource count*/
 ATR sematr; /*Attribute*/
 UINT maxsem; /*Maximum resource count*/
} T_RSEM;

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- semid < 0x0

- semid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 213 of 366
Jan 29, 2016

E_NOEXS -42
Non-existent object.

- Specified semaphore is not registered.

Macro Value Description

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 214 of 366
Jan 29, 2016

16.2.4 Synchronization and communication functions (eventflags)

The following shows the service calls provided by the RI850V4 as the synchronization and communication functions
(eventflags).

Table 16-4 Synchronization and Communication Functions (Eventflags)

Service Call Function Origin of Service Call

set_flg Set eventflag
Task, Non-task, Initialization rou-
tine

iset_flg Set eventflag
Task, Non-task, Initialization rou-
tine

clr_flg Clear eventflag
Task, Non-task, Initialization rou-
tine

iclr_flg Clear eventflag
Task, Non-task, Initialization rou-
tine

wai_flg Wait for eventflag (waiting forever) Task

pol_flg Wait for eventflag (polling)
Task, Non-task, Initialization rou-
tine

ipol_flg Wait for eventflag (polling)
Task, Non-task, Initialization rou-
tine

twai_flg Wait for eventflag (with timeout) Task

ref_flg Reference eventflag state
Task, Non-task, Initialization rou-
tine

iref_flg Reference eventflag state
Task, Non-task, Initialization rou-
tine

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 215 of 366
Jan 29, 2016

set_flg
iset_flg

Outline

Set eventflag.

C format

ER set_flg (ID flgid, FLGPTN setptn);
ER iset_flg (ID flgid, FLGPTN setptn);

Parameter(s)

Explanation

These service calls set the result of logical OR operating the bit pattern of the eventflag specified by parameter flgid and
the bit pattern specified by parameter setptn as the bit pattern of the target eventflag.

If the required condition of the task queued to the target eventflag wait queue is satisfied when this service call is issued,
the relevant task is unlinked from the wait queue at the same time as bit pattern setting processing.

As a result, the relevant task is moved from the WAITING state (WAITING state for an eventflag) to the READY state, or
from the WAITING-SUSPENDED state to the SUSPENDED state.

Note 1 If the bit pattern set to the target eventflag is B'1100 and the bit pattern specified by parameter setptn is B'1010
when this service call is issued, the bit pattern of the target eventflag is set to B'1110.

Note 2 When the TA_WMUL attribute is specified for the target eventflag, the range of tasks to be checked on
"whether issuing of this service call satisfies the required condition" differs depending on whether the TA_CLR
attribute is also specified.

- When TA_CLR is specified
Check begins from the task at the head of the wait queue and stops at the first task that meets the
requirements.

- When TA_CLR is not specified
All tasks placed in the wait queue are checked.

Return value

I/O Parameter Description

I ID flgid; ID number of the eventflag to be set.

I FLGPTN setptn; Bit pattern to set.

Macro Value Description

E_OK 0 Normal completion.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 216 of 366
Jan 29, 2016

E_ID -18

Invalid ID number.

- flgid < 0x0

- flgid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified eventflag is not registered.

Macro Value Description

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 217 of 366
Jan 29, 2016

clr_flg
iclr_flg

Outline

Clear eventflag.

C format

ER clr_flg (ID flgid, FLGPTN clrptn);
ER iclr_flg (ID flgid, FLGPTN clrptn);

Parameter(s)

Explanation

This service call sets the result of logical AND operating the bit pattern set to the eventflag specified by parameter flgid
and the bit pattern specified by parameter clrptn as the bit pattern of the target eventflag.

Note If the bit pattern set to the target eventflag is B'1100 and the bit pattern specified by parameter clrptn is B'1010
when this service call is issued, the bit pattern of the target eventflag is set to B'1000.

Return value

I/O Parameter Description

I ID flgid; ID number of the eventflag to be cleared.

I FLGPTN clrptn; Bit pattern to clear.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- flgid < 0x0

- flgid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified eventflag is not registered.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 218 of 366
Jan 29, 2016

wai_flg

Outline

Wait for eventflag (waiting forever).

C format

ER wai_flg (ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);

Parameter(s)

Explanation

This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the
required condition specified by parameter wfmode are set to the eventflag specified by parameter flgid.

If a bit pattern that satisfies the required condition has been set for the target eventflag, the bit pattern of the target
eventflag is stored in the area specified by parameter p_flgptn.

If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued, the
invoking task is queued to the target eventflag wait queue.

As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the WAITING
state (WAITING state for an eventflag).

The WAITING state for an eventflag is cancelled in the following cases, and then moved to the READY state.

The following shows the specification format of required condition wfmode.

- wfmode = TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

- wfmode = TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

I/O Parameter Description

I ID flgid; ID number of the eventflag to wait for.

I FLGPTN waiptn; Wait bit pattern.

I MODE wfmode;

Wait mode.

TWF_ANDW: AND waiting condition.
TWF_ORW: OR waiting condition.

O FLGPTN *p_flgptn; Bit pattern causing a task to be released from waiting.

WAITING State for an Eventflag Cancel Operation Return Value

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing set_flg.

E_OK

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing iset_flg.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 219 of 366
Jan 29, 2016

Note 1 With the RI850V4, whether to enable queuing of multiple tasks to the event flag wait queue is defined during
configuration. If this service call is issued for the event flag (TW_WSGL attribute) to which a wait task is
queued, therefore, "E_ILUSE" is returned regardless of whether the required condition is immediately satisfied.

TA_WSGL: Only one task is allowed to be in the WAITING state for the eventflag.
TA_WMUL: Multiple tasks are allowed to be in the WAITING state for the eventflag.

Note 2 Invoking tasks are queued to the target event flag (TA_WMUL attribute) wait queue in the order defined during
configuration (FIFO order or priority order).

Note 3 The RI850V4 performs bit pattern clear processing (0x0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

Note 4 If the WAITING state for an eventflag is forcibly released by issuing rel_wai or irel_wai, the contents of the area
specified by parameter p_flgptn will be undefined.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- waiptn = 0x0

- wfmode is invalid.

E_ID -18

Invalid ID number.

- flgid < 0x0

- flgid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_ILUSE -28
Illegal service call use.

- There is already a task waiting for an eventflag with the TA_WSGL attribute.

E_NOEXS -42
Non-existent object.

- Specified eventflag is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 220 of 366
Jan 29, 2016

pol_flg
ipol_flg

Outline

Wait for eventflag (polling).

C format

ER pol_flg (ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);
ER ipol_flg (ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);

Parameter(s)

Explanation

This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the
required condition specified by parameter wfmode are set to the eventflag specified by parameter flgid.

If the bit pattern that satisfies the required condition has been set to the target eventflag, the bit pattern of the target
eventflag is stored in the area specified by parameter p_flgptn.

If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued,
"E_TMOUT" is returned.

The following shows the specification format of required condition wfmode.

- wfmode = TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

- wfmode = TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

Note 1 With the RI850V4, whether to enable queuing of multiple tasks to the event flag wait queue is defined during
configuration. If this service call is issued for the event flag (TW_WSGL attribute) to which a wait task is
queued, therefore, "E_ILUSE" is returned regardless of whether the required condition is immediately satisfied.

TA_WSGL: Only one task is allowed to be in the WAITING state for the eventflag.
TA_WMUL: Multiple tasks are allowed to be in the WAITING state for the eventflag.

Note 2 The RI850V4 performs bit pattern clear processing (0x0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

Note 3 If the bit pattern of the target event flag does not satisfy the required condition when this service call is issued,
the contents in the area specified by parameter p_flgptn become undefined.

I/O Parameter Description

I ID flgid; ID number of the eventflag to wait for.

I FLGPTN waiptn; Wait bit pattern.

I MODE wfmode;

Wait mode.

TWF_ANDW: AND waiting condition.
TWF_ORW: OR waiting condition.

O FLGPTN *p_flgptn; Bit pattern causing a task to be released from waiting.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 221 of 366
Jan 29, 2016

Return value

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- waiptn = 0x0

- wfmode is invalid.

E_ID -18

Invalid ID number.

- flgid < 0x0

- flgid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_ILUSE -28
Illegal service call use.

- There is already a task waiting for an eventflag with the TA_WSGL attribute.

E_NOEXS -42
Non-existent object.

- Specified eventflag is not registered.

E_TMOUT -50
Polling failure.

- The bit pattern of the target eventflag does not satisfy the wait condition.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 222 of 366
Jan 29, 2016

twai_flg

Outline

Wait for eventflag (with timeout).

C format

ER twai_flg (ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn, TMO tmout);

Parameter(s)

Explanation

This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the
required condition specified by parameter wfmode are set to the eventflag specified by parameter flgid.

If a bit pattern that satisfies the required condition has been set for the target eventflag, the bit pattern of the target
eventflag is stored in the area specified by parameter p_flgptn.

If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued, the
invoking task is queued to the target eventflag wait queue.

As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the WAITING
state (WAITING state for an eventflag).

The WAITING state for an eventflag is cancelled in the following cases, and then moved to the READY state.

I/O Parameter Description

I ID flgid; ID number of the eventflag to wait for.

I FLGPTN waiptn; Wait bit pattern.

I MODE wfmode;

Wait mode.

TWF_ANDW: AND waiting condition.
TWF_ORW: OR waiting condition.

O FLGPTN *p_flgptn; Bit pattern causing a task to be released from waiting.

I TMO tmout;

Specified timeout (unit:millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified timeout.

WAITING State for an Eventflag Cancel Operation Return Value

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing set_flg.

E_OK

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing iset_flg.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 223 of 366
Jan 29, 2016

The following shows the specification format of required condition wfmode.

- wfmode = TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

- wfmode = TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

Note 1 With the RI850V4, whether to enable queuing of multiple tasks to the event flag wait queue is defined during
configuration. If this service call is issued for the event flag (TW_WSGL attribute) to which a wait task is
queued, therefore, "E_ILUSE" is returned regardless of whether the required condition is immediately satisfied.

TA_WSGL: Only one task is allowed to be in the WAITING state for the eventflag.
TA_WMUL: Multiple tasks are allowed to be in the WAITING state for the eventflag.

Note 2 Invoking tasks are queued to the target event flag (TA_WMUL attribute) wait queue in the order defined during
configuration (FIFO order or priority order).

Note 3 The RI850V4 performs bit pattern clear processing (0x0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

Note 4 If the event flag wait state is cancelled because rel_wai or irel_wai was issued or the wait time elapsed, the
contents in the area specified by parameter p_flgptn become undefined.

Note 5 TMO_FEVR is specified for wait time tmout, processing equivalent to wai_flg will be executed. When
TMO_POL is specified, processing equivalent to pol_flg /ipol_flg will be executed.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- waiptn = 0x0

- wfmode is invalid.

- tmout < TMO_FEVR

E_ID -18

Invalid ID number.

- flgid < 0x0

- flgid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_ILUSE -28
Illegal service call use.

- There is already a task waiting for an eventflag with the TA_WSGL attribute.

E_NOEXS -42
Non-existent object.

- Specified eventflag is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50
Timeout.

- Polling failure or timeout.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 224 of 366
Jan 29, 2016

ref_flg
iref_flg

Outline

Reference eventflag state.

C format

ER ref_flg (ID flgid, T_RFLG *pk_rflg);
ER iref_flg (ID flgid, T_RFLG *pk_rflg);

Parameter(s)

[Eventflag state packet: T_RFLG]

Explanation

Stores eventflag state packet (ID number of the task at the head of the wait queue, current bit pattern, etc.) of the event-
flag specified by parameter flgid in the area specified by parameter pk_rflg.

Note For details about the eventflag state packet, refer to "15.2.4 Eventflag state packet".

Return value

I/O Parameter Description

I ID flgid; ID number of the eventflag to be referenced.

O T_RFLG *pk_rflg; Pointer to the packet returning the eventflag state.

typedef struct t_rflg {
 ID wtskid; /*Existence of waiting task*/
 FLGPTN flgptn; /*Current bit pattern*/
 ATR flgatr; /*Attribute*/
} T_RFLG;

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- flgid < 0x0

- flgid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified eventflag is not registered.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 225 of 366
Jan 29, 2016

16.2.5 Synchronization and communication functions (data queues)

The following shows the service calls provided by the RI850V4 as the synchronization and communication functions
(data queues).

Table 16-5 Synchronization and Communication Functions (Data Queues)

Service Call Function Origin of Service Call

snd_dtq Send to data queue (waiting forever) Task

psnd_dtq Send to data queue (polling)
Task, Non-task, Initialization rou-
tine

ipsnd_dtq Send to data queue (polling)
Task, Non-task, Initialization rou-
tine

tsnd_dtq Send to data queue (with timeout) Task

fsnd_dtq Forced send to data queue
Task, Non-task, Initialization rou-
tine

ifsnd_dtq Forced send to data queue
Task, Non-task, Initialization rou-
tine

rcv_dtq Receive from data queue (waiting forever) Task

prcv_dtq Receive from data queue (polling)
Task, Non-task, Initialization rou-
tine

iprcv_dtq Receive from data queue (polling)
Task, Non-task, Initialization rou-
tine

trcv_dtq Receive from data queue (with timeout) Task

ref_dtq Reference data queue state
Task, Non-task, Initialization rou-
tine

iref_dtq Reference data queue state
Task, Non-task, Initialization rou-
tine

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 226 of 366
Jan 29, 2016

snd_dtq

Outline

Send to data queue (waiting forever).

C format

ER snd_dtq (ID dtqid, VP_INT data);

Parameter(s)

Explanation

This service call writes data specified by parameter data to the data queue area of the data queue specified by
parameter dtqid.

If there is no available space for writing data in the data queue area of the target data queue when this service call is
issued, this service call does not write data but queues the invoking task to the transmission wait queue of the target data
queue and moves it from the RUNNING state to the WAITING state (data transmission wait state).

The sending WAITING state for a data queue is cancelled in the following cases, and then moved to the READY state.

If a task has been queued to the reception wait queue of the target data queue when this service call is issued, this
service call does not write data but transfers the data to the task. As a result, the task is unlinked from the reception wait
queue and moves from the WAITING state (data reception wait state) to the READY state, or from the WAITING-
SUSPENDED state to the SUSPENDED state.

Note 1 Data is written to the data queue area of the target data queue in the order of the data transmission request.

Note 2 Invoking tasks are queued to the transmission wait queue of the target data queue in the order defined during
configuration (FIFO order or priority order).

I/O Parameter Description

I ID dtqid; ID number of the data queue to which the data element is sent.

I VP_INT data; Data element to be sent to the data queue.

Sending WAITING State for a Data Queue Cancel Operation Return Value

Available space was secured in the data queue area of the target data queue as a result of
issuing rcv_dtq.

E_OK

Available space was secured in the data queue area of the target data queue as a result of
issuing prcv_dtq.

E_OK

Available space was secured in the data queue area of the target data queue as a result of
issuing iprcv_dtq.

E_OK

Available space was secured in the data queue area of the target data queue as a result of
issuing trcv_dtq.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 227 of 366
Jan 29, 2016

Return value

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- dtqid < 0x0

- dtqid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_NOEXS -42
Non-existent object.

- Specified data queue is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 228 of 366
Jan 29, 2016

psnd_dtq
ipsnd_dtq

Outline

Send to data queue (polling).

C format

ER psnd_dtq (ID dtqid, VP_INT data);
ER ipsnd_dtq (ID dtqid, VP_INT data);

Parameter(s)

Explanation

These service calls write data specified by parameter data to the data queue area of the data queue specified by
parameter dtqid.

If there is no available space for writing data in the data queue area of the target data queue when either of these
service calls is issued, data is not written but E_TMOUT is returned.

If a task has been queued to the reception wait queue of the target data queue when this service call is issued, this
service call does not write data but transfers the data to the task. As a result, the task is unlinked from the reception wait
queue and moves from the WAITING state (data reception wait state) to the READY state, or from the WAITING-
SUSPENDED state to the SUSPENDED state.

Note Data is written to the data queue area of the target data queue in the order of the data transmission request.

Return value

I/O Parameter Description

I ID dtqid; ID number of the data queue to which the data element is sent.

I VP_INT data; Data element to be sent to the data queue.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- dtqid < 0x0

- dtqid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified data queue is not registered.

E_TMOUT -50
Polling failure.

- There is no space in the target data queue.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 229 of 366
Jan 29, 2016

tsnd_dtq

Outline

Send to data queue (with timeout).

C format

ER tsnd_dtq (ID dtqid, VP_INT data, TMO tmout);

Parameter(s)

Explanation

This service call writes data specified by parameter data to the data queue area of the data queue specified by
parameter dtqid.

If there is no available space for writing data in the data queue area of the target data queue when this service call is
issued, the service call does not write data but queues the invoking task to the transmission wait queue of the target data
queue and moves it from the RUNNING state to the WAITING state with time (data transmission wait state).

The sending WAITING state for a data queue is cancelled in the following cases, and then moved to the READY state.

If a task has been queued to the reception wait queue of the target data queue when this service call is issued, this
service call does not write data but transfers the data to the task. As a result, the task is unlinked from the reception wait
queue and moves from the WAITING state (data reception wait state) to the READY state, or from the WAITING-
SUSPENDED state to the SUSPENDED state.

I/O Parameter Description

I ID dtqid; ID number of the data queue to which the data element is sent.

I VP_INT data; Data element to be sent to the data queue.

I TMO tmout;

Specified timeout (unit:millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified timeout.

Sending WAITING State for a Data Queue Cancel Operation Return Value

An available space was secured in the data queue area of the target data queue as a result of
issuing rcv_dtq.

E_OK

An available space was secured in the data queue area of the target data queue as a result of
issuing prcv_dtq.

E_OK

An available space was secured in the data queue area of the target data queue as a result of
issuing iprcv_dtq.

E_OK

An available space was secured in the data queue area of the target data queue as a result of
issuing trcv_dtq.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 230 of 366
Jan 29, 2016

Note 1 Data is written to the data queue area of the target data queue in the order of the data transmission request.

Note 2 Invoking tasks are queued to the transmission wait queue of the target data queue in the order defined during
configuration (FIFO order or priority order).

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to snd_dtq will be executed. When
TMO_POL is specified, processing equivalent to psnd_dtq /ipsnd_dtq will be executed.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17
Parameter error.

- tmout < TMO_FEVR

E_ID -18

Invalid ID number.

- dtqid < 0x0

- dtqid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_NOEXS -42
Non-existent object.

- Specified data queue is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50
Timeout.

- Polling failure or timeout.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 231 of 366
Jan 29, 2016

fsnd_dtq
ifsnd_dtq

Outline

Forced send to data queue.

C format

ER fsnd_dtq (ID dtqid, VP_INT data);
ER ifsnd_dtq (ID dtqid, VP_INT data);

Parameter(s)

Explanation

These service calls write data specified by parameter data to the data queue area of the data queue specified by
parameter dtqid.

If there is no available space for writing data in the data queue area of the target data queue when either of these
service calls is issued, the service call overwrites data to the area with the oldest data that was written.

If a task has been queued to the reception wait queue of the target data queue when this service call is issued, this
service call does not write data but transfers the data to the task. As a result, the task is unlinked from the reception wait
queue and moves from the WAITING state (data reception wait state) to the READY state, or from the WAITING-
SUSPENDED state to the SUSPENDED state.

Return value

I/O Parameter Description

I ID dtqid; ID number of the data queue to which the data element is sent.

I VP_INT data; Data element to be sent to the data queue.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- dtqid < 0x0

- dtqid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_ILUSE -28
Illegal service call use.

- The capacity of the data queue area is 0.

E_NOEXS -42
Non-existent object.

- Specified data queue is not registered.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 232 of 366
Jan 29, 2016

rcv_dtq

Outline

Receive from data queue (waiting forever).

C format

ER rcv_dtq (ID dtqid, VP_INT *p_data);

Parameter(s)

Explanation

This service call reads data in the data queue area of the data queue specified by parameter dtqid and stores it to the
area specified by parameter p_data.

If no data could be read from the data queue area of the target data queue (no data has been written to the data queue
area) when this service call is issued, the service call does not read data but queues the invoking task to the reception wait
queue of the target data queue and moves it from the RUNNING state to the WAITING state (data reception wait state).

The receiving WAITING state for a data queue is cancelled in the following cases, and then moved to the READY state.

Note 1 Invoking tasks are queued to the reception wait queue of the target data queue in the order of the data
reception request.

Note 2 If the receiving

Note 3 for a data queue is forcibly released by issuing rel_wai or irel_wai, the contents of the area specified by
parameter p_data will be undefined.

I/O Parameter Description

I ID dtqid; ID number of the data queue from which a data element is received.

O VP_INT *p_data; Data element received from the data queue.

Receiving WAITING State for a Data Queue Cancel Operation Return Value

Data was written to the data queue area of the target data queue as a result of issuing snd_dtq. E_OK

Data was written to the data queue area of the target data queue as a result of issuing
psnd_dtq.

E_OK

Data was written to the data queue area of the target data queue as a result of issuing
ipsnd_dtq.

E_OK

Data was written to the data queue area of the target data queue as a result of issuing tsnd_dtq. E_OK

Data was written to the data queue area of the target data queue as a result of issuing fsnd_dtq. E_OK

Data was written to the data queue area of the target data queue as a result of issuing
ifsnd_dtq.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 233 of 366
Jan 29, 2016

Return value

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- dtqid < 0x0

- dtqid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_NOEXS -42
Non-existent object.

- Specified data queue is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 234 of 366
Jan 29, 2016

prcv_dtq
iprcv_dtq

Outline

Receive from data queue (polling).

C format

ER prcv_dtq (ID dtqid, VP_INT *p_data);
ER iprcv_dtq (ID dtqid, VP_INT *p_data);

Parameter(s)

Explanation(s)

These service calls read data in the data queue area of the data queue specified by parameter dtqid and stores it to the
area specified by parameter p_data.

If no data could be read from the data queue area of the target data queue (no data has been written to the data queue
area) when either of these service calls is issued, the service call does not read data but E_TMOUT is returned.

Note If no data could be read from the data queue area of the target data queue (no data has been written to the
data queue area) when either of these service calls is issued, the contents in the area specified by parameter
p_data become undefined.

Return value

I/O Parameter Description

I ID dtqid; ID number of the data queue from which a data element is received.

O VP_INT *p_data; Data element received from the data queue.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- dtqid < 0x0

- dtqid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified data queue is not registered.

E_TMOUT -50
Polling failure.

- No data exists in the target data queue.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 235 of 366
Jan 29, 2016

trcv_dtq

Outline

Receive from data queue (with timeout).

C format

ER trcv_dtq (ID dtqid, VP_INT *p_data, TMO tmout);

Parameter(s)

Explanation

This service call reads data in the data queue area of the data queue specified by parameter dtqid and stores it to the
area specified by parameter p_data.

If no data could be read from the data queue area of the target data queue (no data has been written to the data queue
area) when this service call is issued, the service call does not read data but queues the invoking task to the reception wait
queue of the target data queue and moves it from the RUNNING state to the WAITING state with time out (data reception
wait state).

The receiving WAITING state for a data queue is cancelled in the following cases, and then moved to the READY state.

I/O Parameter Description

I ID dtqid; ID number of the data queue from which a data element is received.

O VP_INT *p_data; Data element received from the data queue.

I TMO tmout;

Specified timeout (unit:millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified timeout.

Receiving WAITING State for a Data Queue Cancel Operation Return Value

Data was written to the data queue area of the target data queue as a result of issuing snd_dtq. E_OK

Data was written to the data queue area of the target data queue as a result of issuing
psnd_dtq.

E_OK

Data was written to the data queue area of the target data queue as a result of issuing
ipsnd_dtq.

E_OK

Data was written to the data queue area of the target data queue as a result of issuing tsnd_dtq. E_OK

Data was written to the data queue area of the target data queue as a result of issuing fsnd_dtq. E_OK

Data was written to the data queue area of the target data queue as a result of issuing
ifsnd_dtq.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 236 of 366
Jan 29, 2016

Note 1 Invoking tasks are queued to the reception wait queue of the target data queue in the order of the data
reception request.

Note 2 If the data reception wait state is cancelled because rel_wai or irel_wai was issued or the wait time elapsed,
the contents in the area specified by parameter p_data become undefined.

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to rcv_dtq will be executed. When
TMO_POL is specified, processing equivalent to prcv_dtq /iprcv_dtq will be executed.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17
Parameter error.

- tmout < TMO_FEVR

E_ID -18

Invalid ID number.

- dtqid < 0x0

- dtqid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_NOEXS -42
Non-existent object.

- Specified data queue is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50
Timeout.

- Polling failure or timeout.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 237 of 366
Jan 29, 2016

ref_dtq
iref_dtq

Outline

Reference data queue state.

C format

ER ref_dtq (ID dtqid, T_RDTQ *pk_rdtq);
ER iref_dtq (ID dtqid, T_RDTQ *pk_rdtq);

Parameter(s)

[Data queue state packet: T_RDTQ]

Explanation

These service calls store the detailed information of the data queue (existence of waiting tasks, number of data
elements in the data queue, etc.) specified by parameter dtqid into the area specified by parameter pk_rdtq.

Note For details about the data queue state packet, refer to "15.2.5 Data queue state packet".

Return value

I/O Parameter Description

I ID dtqid; ID number of the data queue to be referenced.

O T_RDTQ *pk_rdtq; Pointer to the packet returning the data queue state.

typedef struct t_rdtq {
 ID stskid; /*Existence of tasks waiting for data transmission*/
 ID rtskid; /*Existence of tasks waiting for data reception*/
 UINT sdtqcnt; /*Number of data elements in data queue*/
 ATR dtqatr; /*Attribute*/
 UINT dtqcnt; /*Data count*/
 ID memid; /*Reserved for future use*/
} T_RDTQ;

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- dtqid < 0x0

- dtqid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 238 of 366
Jan 29, 2016

E_NOEXS -42
Non-existent object.

- Specified data queue is not registered.

Macro Value Description

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 239 of 366
Jan 29, 2016

16.2.6 Synchronization and communication functions (mailboxes)

The following shows the service calls provided by the RI850V4 as the synchronization and communication functions
(mailboxes).

Table 16-6 Synchronization and Communication Functions (Mailboxes)

Service Call Function Origin of Service Call

snd_mbx Send to mailbox
Task, Non-task, Initialization rou-
tine

isnd_mbx Send to mailbox
Task, Non-task, Initialization rou-
tine

rcv_mbx Receive from mailbox (waiting forever) Task

prcv_mbx Receive from mailbox (polling)
Task, Non-task, Initialization rou-
tine

iprcv_mbx Receive from mailbox (polling)
Task, Non-task, Initialization rou-
tine

trcv_mbx Receive from mailbox (with timeout) Task

ref_mbx Reference mailbox state
Task, Non-task, Initialization rou-
tine

iref_mbx Reference mailbox state
Task, Non-task, Initialization rou-
tine

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 240 of 366
Jan 29, 2016

snd_mbx
isnd_mbx

Outline

Send to mailbox.

C format

ER snd_mbx (ID mbxid, T_MSG *pk_msg);
ER isnd_mbx (ID mbxid, T_MSG *pk_msg);

Parameter(s)

[Message packet: T_MSG]

[Message packet: T_MSG_PRI]

Explanation

This service call transmits the message specified by parameter pk_msg to the mailbox specified by parameter mbxid
(queues the message in the wait queue).

If a task is queued to the target mailbox wait queue when this service call is issued, the message is not queued but
handed over to the relevant task (first task of the wait queue).

As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (receiving WAITING
state for a mailbox) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

Note 1 Messages are queued to the target mailbox wait queue in the order defined by queuing method during
configuration (FIFO order or priority order).

Note 2 With the RI850V4 mailbox, only the start address of the message is handed over to the receiving processing
program, but the message contents are not copied to a separate area. The message contents can therefore be
rewritten even after this service call is issued.

Note 3 For details about the message packet, refer to "15.2.6 Message packet".

I/O Parameter Description

I ID mbxid; ID number of the mailbox to which the message is sent.

I T_MSG *pk_msg; Start address of the message packet to be sent to the mailbox.

typedef struct t_msg {
 struct t_msg *msgnext; /*Reserved for future use*/
} T_MSG;

typedef struct t_msg_pri {
 struct t_msg msgque; /*Reserved for future use*/
 PRI msgpri; /*Message priority*/
} T_MSG_PRI;

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 241 of 366
Jan 29, 2016

Return value

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- msgpri < 0x0

- msgpri > Maximum message priority

E_ID -18

Invalid ID number.

- mbxid < 0x0

- mbxid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified mailbox is not registered.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 242 of 366
Jan 29, 2016

rcv_mbx

Outline

Receive from mailbox (waiting forever).

C format

ER rcv_mbx (ID mbxid, T_MSG **ppk_msg);

Parameter(s)

[Message packet: T_MSG]

[Message packet: T_MSG_PRI]

Explanation

This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in the
area specified by parameter ppk_msg.

If no message could be received from the target mailbox (no messages were queued to the wait queue) when this
service call is issued, this service call does not receive messages but queues the invoking task to the target mailbox wait
queue and moves it from the RUNNING state to the WAITING state (message reception wait state).

The receiving WAITING state for a mailbox is cancelled in the following cases, and then moved to the READY state.

Note 1 Invoking tasks are queued to the target mailbox wait queue in the order defined during configuration (FIFO
order or priority order).

I/O Parameter Description

I ID mbxid; ID number of the mailbox from which a message is received.

O T_MSG **ppk_msg; Start address of the message packet received from the mailbox.

typedef struct t_msg {
 struct t_msg *msgnext; /*Reserved for future use*/
} T_MSG;

typedef struct t_msg_pri {
 struct t_msg msgque; /*Reserved for future use*/
 PRI msgpri; /*Message priority*/
} T_MSG_PRI;

Receiving WAITING State for a Mailbox Cancel Operation Return Value

A message was transmitted to the target mailbox as a result of issuing snd_mbx. E_OK

A message was transmitted to the target mailbox as a result of issuing isnd_mbx. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 243 of 366
Jan 29, 2016

Note 2 If the receiving WAITING state for a mailbox is forcibly released by issuing rel_wai or irel_wai, the contents of
the area specified by parameter ppk_msg will be undefined.

Note 3 For details about the message packet, refer to "15.2.6 Message packet".

Return value

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mbxid < 0x0

- mbxid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_NOEXS -42
Non-existent object.

- Specified mailbox is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 244 of 366
Jan 29, 2016

prcv_mbx
iprcv_mbx

Outline

Receive from mailbox (polling).

C format

ER prcv_mbx (ID mbxid, T_MSG **ppk_msg);
ER iprcv_mbx (ID mbxid, T_MSG **ppk_msg);

Parameter(s)

[Message packet: T_MSG]

[Message packet: T_MSG_PRI]

Explanation

This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in the
area specified by parameter ppk_msg.

If the message could not be received from the target mailbox (no messages were queued in the wait queue) when this
service call is issued, message reception processing is not executed but "E_TMOUT" is returned.

Note 1 If no message could be received from the target mailbox (no messages were queued to the wait queue) when
this service call is issued, the contents in the area specified by parameter ppk_msg become undefined.

Note 2 For details about the message packet, refer to "15.2.6 Message packet".

Return value

I/O Parameter Description

I ID mbxid; ID number of the mailbox from which a message is received.

O T_MSG **ppk_msg; Start address of the message packet received from the mailbox.

typedef struct t_msg {
 struct t_msg *msgnext; /*Reserved for future use*/
} T_MSG;

typedef struct t_msg_pri {
 struct t_msg msgque; /*Reserved for future use*/
 PRI msgpri; /*Message priority*/
} T_MSG_PRI;

Macro Value Description

E_OK 0 Normal completion.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 245 of 366
Jan 29, 2016

E_ID -18

Invalid ID number.

- mbxid < 0x0

- mbxid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified mailbox is not registered.

E_TMOUT -50
Polling failure.

- No message exists in the target mailbox.

Macro Value Description

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 246 of 366
Jan 29, 2016

trcv_mbx

Outline

Receive from mailbox (with timeout).

C format

ER trcv_mbx (ID mbxid, T_MSG **ppk_msg, TMO tmout);

Parameter(s)

[Message packet: T_MSG]

[Message packet: T_MSG_PRI]

Explanation

This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in the
area specified by parameter ppk_msg.

If no message could be received from the target mailbox (no messages were queued to the wait queue) when this
service call is issued, this service call does not receive messages but queues the invoking task to the target mailbox wait
queue and moves it from the RUNNING state to the WAITING state with timeout (message reception wait state).

The receiving WAITING state for a mailbox is cancelled in the following cases, and then moved to the READY state.

I/O Parameter Description

I ID mbxid; ID number of the mailbox from which a message is received.

O T_MSG **ppk_msg; Start address of the message packet received from the mailbox.

I TMO tmout;

Specified timeout (unit:millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified timeout.

typedef struct t_msg {
 struct t_msg *msgnext; /*Reserved for future use*/
} T_MSG;

typedef struct t_msg_pri {
 struct t_msg msgque; /*Reserved for future use*/
 PRI msgpri; /*Message priority*/
} T_MSG_PRI;

Receiving WAITING State for a Mailbox Cancel Operation Return Value

A message was transmitted to the target mailbox as a result of issuing snd_mbx. E_OK

A message was transmitted to the target mailbox as a result of issuing isnd_mbx. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 247 of 366
Jan 29, 2016

Note 1 Invoking tasks are queued to the target mailbox wait queue in the order defined during configuration (FIFO
order or priority order).

Note 2 If the message reception wait state is cancelled because rel_wai or irel_wai was issued or the wait time
elapsed, the contents in the area specified by parameter ppk_msg become undefined.

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to rcv_mbx will be executed. When
TMO_POL is specified, processing equivalent to prcv_mbx /iprcv_mbx will be executed.

Note 4 For details about the message packet, refer to "15.2.6 Message packet".

Return value

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17
Parameter error.

- tmout < TMO_FEVR

E_ID -18

Invalid ID number.

- mbxid < 0x0

- mbxid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_NOEXS -42
Non-existent object.

- Specified mailbox is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50
Timeout.

- Polling failure or timeout.

Receiving WAITING State for a Mailbox Cancel Operation Return Value

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 248 of 366
Jan 29, 2016

ref_mbx
iref_mbx

Outline

Reference mailbox state.

C format

ER ref_mbx (ID mbxid, T_RMBX *pk_rmbx);
ER iref_mbx (ID mbxid, T_RMBX *pk_rmbx);

Parameter(s)

[Mailbox state packet: T_RMBX]

Explanation

Stores mailbox state packet (ID number of the task at the head of the wait queue, start address of the message packet
at the head of the wait queue) of the mailbox specified by parameter mbxid in the area specified by parameter pk_rmbx.

Note For details about the mailbox state packet, refer to "15.2.7 Mailbox state packet".

Return value

I/O Parameter Description

I ID mbxid; ID number of the mailbox to be referenced.

O T_RMBX *pk_rmbx; Pointer to the packet returning the mailbox state.

typedef struct t_rmbx {
 ID wtskid; /*Existence of waiting task*/
 T_MSG *pk_msg; /*Existence of waiting message*/
 ATR mbxatr; /*Attribute*/
} T_RMBX;

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mbxid < 0x0

- mbxid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified mailbox is not registered.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 249 of 366
Jan 29, 2016

16.2.7 Extended synchronization and communication functions (mutexes)

The following shows the service calls provided by the RI850V4 as the extended synchronization and communication
functions (mutexes).

Table 16-7 Extended Synchronization and Communication Functions (Mutexes)

Service Call Function Origin of Service Call

loc_mtx Lock mutex (waiting forever) Task

ploc_mtx Lock mutex (polling) Task

tloc_mtx Lock mutex (with timeout) Task

unl_mtx Unlock mutex Task

ref_mtx Reference mutex state
Task, Non-task, Initialization rou-
tine

iref_mtx Reference mutex state
Task, Non-task, Initialization rou-
tine

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 250 of 366
Jan 29, 2016

loc_mtx

Outline

Lock mutex (waiting forever).

C format

ER loc_mtx (ID mtxid);

Parameter(s)

Explanation

This service call locks the mutex specified by parameter mtxid.
If the target mutex could not be locked (another task has been locked) when this service call is issued, this service call

queues the invoking task to the target mutex wait queue and moves it from the RUNNING state to the WAITING state
(mutex wait state).

The WAITING state for a mutex is cancelled in the following cases, and then moved to the READY state.

Note 1 Invoking tasks are queued to the target mutex wait queue in the order defined during configuration (FIFO order
or priority order).

Note 2 In the RI850V4, E_ILUSE is returned if this service call is re-issued for the mutex that has been locked by the
invoking task (multiple-locking of mutex).

Return value

I/O Parameter Description

I ID mtxid; ID number of the mutex to be locked.

WAITING State for a Mutex Cancel Operation Return Value

The locked state of the target mutex was cancelled as a result of issuing unl_mtx. E_OK

The locked state of the target mutex was cancelled as a result of issuing ext_tsk. E_OK

The locked state of the target mutex was cancelled as a result of issuing ter_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mtxid < 0x0

- mtxid > Maximum ID number

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 251 of 366
Jan 29, 2016

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_ILUSE -28
Illegal service call use.

- Multiple locking of a mutex.

E_NOEXS -42
Non-existent object.

- Specified mutex is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

Macro Value Description

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 252 of 366
Jan 29, 2016

ploc_mtx

Outline

Lock mutex (polling).

C format

ER ploc_mtx (ID mtxid);

Parameter(s)

Explanation

This service call locks the mutex specified by parameter mtxid.
If the target mutex could not be locked (another task has been locked) when this service call is issued but E_TMOUT is

returned.

Note In the RI850V4, E_ILUSE is returned if this service call is re-issued for the mutex that has been locked by the
invoking task (multiple-locking of mutex).

Return value

I/O Parameter Description

I ID mtxid; ID number of the mutex to be locked.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mtxid < 0x0

- mtxid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

E_ILUSE -28
Illegal service call use.

- Multiple locking of a mutex.

E_NOEXS -42
Non-existent object.

- Specified mutex is not registered.

E_TMOUT -50
Polling failure.

- The target mutex has been locked by another task.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 253 of 366
Jan 29, 2016

tloc_mtx

Outline

Lock mutex (with timeout).

C format

ER tloc_mtx (ID mtxid, TMO tmout);

Parameter(s)

Explanation

This service call locks the mutex specified by parameter mtxid.
If the target mutex could not be locked (another task has been locked) when this service call is issued, this service call

queues the invoking task to the target mutex wait queue and moves it from the RUNNING state to the WAITING state with
timeout (mutex wait state).

The WAITING state for a mutex is cancelled in the following cases, and then moved to the READY state.

Note 1 Invoking tasks are queued to the target mutex wait queue in the order defined during configuration (FIFO order
or priority order).

Note 2 In the RI850V4, E_ILUSE is returned if this service call is re-issued for the mutex that has been locked by the
invoking task (multiple-locking of mutex).

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to loc_mtx will be executed. When
TMO_POL is specified, processing equivalent to ploc_mtx will be executed.

I/O Parameter Description

I ID mtxid; ID number of the mutex to be locked.

I TMO tmout;

Specified timeout (unit:millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified timeout.

WAITING State for a Mutex Cancel Operation Return Value

The locked state of the target mutex was cancelled as a result of issuing unl_mtx. E_OK

The locked state of the target mutex was cancelled as a result of issuing ext_tsk. E_OK

The locked state of the target mutex was cancelled as a result of issuing ter_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 254 of 366
Jan 29, 2016

Return value

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17
Parameter error.

- tmout < TMO_FEVR

E_ID -18

Invalid ID number.

- mtxid < 0x0

- mtxid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_ILUSE -28
Illegal service call use.

- Multiple locking of a mutex.

E_NOEXS -42
Non-existent object.

- Specified mutex is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50
Timeout.

- Polling failure or timeout.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 255 of 366
Jan 29, 2016

unl_mtx

Outline

Unlock mutex.

C format

ER unl_mtx (ID mtxid);

Parameter(s)

Explanation

This service call unlocks the locked mutex specified by parameter mtxid.
If a task has been queued to the target mutex wait queue when this service call is issued, mutex lock processing is

performed by the task (the first task in the wait queue) immediately after mutex unlock processing.
As a result, the task is unlinked from the wait queue and moves from the WAITING state (mutex wait state) to the

READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

Note A locked mutex can be unlocked only by the task that locked the mutex.
If this service call is issued for a mutex that was not locked by an invoking task, no processing is performed but
E_ILUSE is returned.

Return value

I/O Parameter Description

I ID mtxid; ID number of the mutex to be unlocked.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mtxid < 0x0

- mtxid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

E_ILUSE -28

Illegal service call use.

- Multiple unlocking of a mutex.

- The invoking task does not have the specified mutex locked.

E_NOEXS -42
Non-existent object.

- Specified mutex is not registered.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 256 of 366
Jan 29, 2016

ref_mtx
iref_mtx

Outline

Reference mutex state.

C format

ER ref_mtx (ID mtxid, T_RMTX *pk_rmtx);
ER iref_mtx (ID mtxid, T_RMTX *pk_rmtx);

Parameter(s)

[Mutex state packet: T_RMTX]

Explanation

The service calls store the detailed information of the mutex specified by parameter mtxid (existence of locked mutexes,
waiting tasks, etc.) into the area specified by parameter pk_rmtx.

Note For details about the mutex state packet, refer to "15.2.8 Mutex state packet".

Return value

I/O Parameter Description

I ID mtxid; ID number of the mutex to be referenced.

O T_RMTX *pk_rmtx; Pointer to the packet returning the mutex state.

typedef struct t_rmtx {
 ID htskid; /*Existence of locked mutex*/
 ID wtskid; /*Existence of waiting task*/
 ATR mtxatr; /*Attribute*/
 PRI ceilpri; /*Reserved for future use*/
} T_RMTX;

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mtxid < 0x0

- mtxid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 257 of 366
Jan 29, 2016

E_NOEXS -42
Non-existent object.

- Specified mutex is not registered.

Macro Value Description

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 258 of 366
Jan 29, 2016

16.2.8 Memory pool management functions (fixed-sized memory pools)

The following shows the service calls provided by the RI850V4 as the memory pool management functions (fixed-sized
memory pools).

Table 16-8 Memory Pool Management Functions (Fixed-Sized Memory Pools)

Service Call Function Origin of Service Call

get_mpf Acquire fixed-sized memory block (waiting forever) Task

pget_mpf Acquire fixed-sized memory block (polling)
Task, Non-task, Initialization rou-
tine

ipget_mpf Acquire fixed-sized memory block (polling)
Task, Non-task, Initialization rou-
tine

tget_mpf Acquire fixed-sized memory block (with timeout) Task

rel_mpf Release fixed-sized memory block
Task, Non-task, Initialization rou-
tine

irel_mpf Release fixed-sized memory block
Task, Non-task, Initialization rou-
tine

ref_mpf Reference fixed-sized memory pool state
Task, Non-task, Initialization rou-
tine

iref_mpf Reference fixed-sized memory pool state
Task, Non-task, Initialization rou-
tine

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 259 of 366
Jan 29, 2016

get_mpf

Outline

Acquire fixed-sized memory block (waiting forever).

C format

ER get_mpf (ID mpfid, VP *p_blk);

Parameter(s)

Explanation

This service call acquires the fixed-sized memory block from the fixed-sized memory pool specified by parameter mpfid
and stores the start address in the area specified by parameter p_blk.

If no fixed-size memory blocks could be acquired from the target fixed-size memory pool (no available fixed-size
memory blocks exist) when this service call is issued, this service call does not acquire the fixed-size memory block but
queues the invoking task to the target fixed-size memory pool wait queue and moves it from the RUNNING state to the
WAITING state (fixed-size memory block acquisition wait state).

The WAITING state for a fixed-sized memory block is cancelled in the following cases, and then moved to the READY
state.

Note 1 The RI850V4 does not perform memory clear processing when acquiring a fixed-sized memory block. The
contents of the acquired fixed-sized memory block are therefore undefined.

Note 2 Invoking tasks are queued to the target fixed-size memory pool wait queue in the order defined during
configuration (FIFO order or priority order).

Note 3 If the fixed-size memory block acquisition wait state is cancelled because rel_wai or irel_wai was issued, the
contents in the area specified by parameter p_blk become undefined.

Return value

I/O Parameter Description

I ID mpfid;
ID number of the fixed-sized memory pool from which a memory block
is acquired.

O VP *p_blk; Start address of the acquired memory block.

WAITING State for a Fixed-sized Memory Block Cancel Operation Return Value

A fixed-sized memory block was returned to the target fixed-sized memory pool as a result of
issuing rel_mpf.

E_OK

A fixed-sized memory block was returned to the target fixed-sized memory pool as a result of
issuing irel_mpf.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 260 of 366
Jan 29, 2016

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mpfid < 0x0

- mpfid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_NOEXS -42
Non-existent object.

- Specified fixed-sized memory pool is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 261 of 366
Jan 29, 2016

pget_mpf
ipget_mpf

Outline

Acquire fixed-sized memory block (polling).

C format

ER pget_mpf (ID mpfid, VP *p_blk);
ER ipget_mpf (ID mpfid, VP *p_blk);

Parameter(s)

Explanation

This service call acquires the fixed-sized memory block from the fixed-sized memory pool specified by parameter mpfid
and stores the start address in the area specified by parameter p_blk.

If a fixed-sized memory block could not be acquired from the target fixed-sized memory pool (no available fixed-sized
memory blocks exist) when this service call is issued, fixed-sized memory block acquisition processing is not performed
but "E_TMOUT" is returned.

Note 1 The RI850V4 does not perform memory clear processing when acquiring a fixed-sized memory block. The
contents of the acquired fixed-sized memory block are therefore undefined.

Note 2 If no fixed-size memory blocks could be acquired from the target fixed-size memory pool (no available fixed-
size memory blocks exist) when this service call is issued, the contents in the area specified by parameter
p_blk become undefined.

Return value

I/O Parameter Description

I ID mpfid;
ID number of the fixed-sized memory pool from which a memory block
is acquired.

O VP *p_blk; Start address of the acquired memory block.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mpfid < 0x0

- mpfid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified fixed-sized memory pool is not registered.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 262 of 366
Jan 29, 2016

E_TMOUT -50
Polling failure.

- There is no free memory block in the target fixed-sized memory pool.

Macro Value Description

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 263 of 366
Jan 29, 2016

tget_mpf

Outline

Acquire fixed-sized memory block (with timeout).

C format

ER tget_mpf (ID mpfid, VP *p_blk, TMO tmout);

Parameter(s)

Explanation

This service call acquires the fixed-sized memory block from the fixed-sized memory pool specified by parameter mpfid
and stores the start address in the area specified by parameter p_blk.

If no fixed-size memory blocks could be acquired from the target fixed-size memory pool (no available fixed-size
memory blocks exist) when this service call is issued, this service call does not acquire the fixed-size memory block but
queues the invoking task to the target fixed-size memory pool wait queue and moves it from the RUNNING state to the
WAITING state with timeout (fixed-size memory block acquisition wait state).

The WAITING state for a fixed-sized memory block is cancelled in the following cases, and then moved to the READY
state.

Note 1 The RI850V4 does not perform memory clear processing when acquiring a fixed-sized memory block. The
contents of the acquired fixed-sized memory block are therefore undefined.

Note 2 If no fixed-sized memory blocks can be acquired from the target fixed-sized memory pool (no available fixed-
sized memory blocks exist) when this service call is issued, the contents in the area specified by parameter
p_blk become undefined.

I/O Parameter Description

I ID mpfid;
ID number of the fixed-sized memory pool from which a memory block
is acquired.

O VP *p_blk; Start address of the acquired memory block.

I TMO tmout;

Specified timeout (unit:millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified timeout.

WAITING State for a Fixed-sized Memory Block Cancel Operation Return Value

A fixed-sized memory block was returned to the target fixed-sized memory pool as a result of
issuing rel_mpf.

E_OK

A fixed-sized memory block was returned to the target fixed-sized memory pool as a result of
issuing irel_mpf.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 264 of 366
Jan 29, 2016

Note 3 If the fixed-size memory block acquisition wait state is cancelled because rel_wai or irel_wai was issued or the
wait time elapsed, the contents in the area specified by parameter p_blk become undefined.

Note 4 TMO_FEVR is specified for wait time tmout, processing equivalent to get_mpf will be executed. When
TMO_POL is specified, processing equivalent to pget_mpf /ipget_mpf will be executed.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17
Parameter error.

- tmout < TMO_FEVR

E_ID -18

Invalid ID number.

- mpfid < 0x0

- mpfid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_NOEXS -42
Non-existent object.

- Specified fixed-sized memory pool is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50
Timeout.

- Polling failure or timeout.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 265 of 366
Jan 29, 2016

rel_mpf
irel_mpf

Outline

Release fixed-sized memory block.

C format

ER rel_mpf (ID mpfid, VP blk);
ER irel_mpf (ID mpfid, VP blk);

Parameter(s)

Explanation

This service call returns the fixed-sized memory block specified by parameter blk to the fixed-sized memory pool
specified by parameter mpfid.

If a task is queued to the target fixed-sized memory pool wait queue when this service call is issued, fixed-sized memory
block return processing is not performed but fixed-sized memory blocks are returned to the relevant task (first task of wait
queue).

As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (WAITING state for
a fixed-sized memory block) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

Note 1 The RI850V4 does not perform memory clear processing when returning the acquired fixed-size memory
block. The contents of the returned fixed-size memory block are therefore undefined.

Note 2 When returning fixed-size memory blocks, be sure to issue either of these service calls for the acquired fixed-
size memory pools. If the service call is issued for another fixed-size memory pool, no error results but the
operation is not guaranteed after that.

Return value

I/O Parameter Description

I ID mpfid;
ID number of the fixed-sized memory pool to which the memory block is
released.

I VP blk; Start address of the memory block to be released.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mpfid < 0x0

- mpfid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 266 of 366
Jan 29, 2016

E_NOEXS -42
Non-existent object.

- Specified fixed-sized memory pool is not registered.

Macro Value Description

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 267 of 366
Jan 29, 2016

ref_mpf
iref_mpf

Outline

Reference fixed-sized memory pool state.

C format

ER ref_mpf (ID mpfid, T_RMPF *pk_rmpf);
ER iref_mpf (ID mpfid, T_RMPF *pk_rmpf);

Parameter(s)

[Fixed-sized memory pool state packet: T_RMPF]

Explanation

Stores fixed-sized memory pool state packet (ID number of the task at the head of the wait queue, number of free mem-
ory blocks, etc.) of the fixed-sized memory pool specified by parameter mpfid in the area specified by parameter pk_rmpf.

Note For details about the fixed-sized memory pool state packet, refer to "15.2.9 Fixed-sized memory pool state
packet".

Return value

I/O Parameter Description

I ID mpfid; ID number of the fixed-sized memory pool to be referenced.

O T_RMPF *pk_rmpf; Pointer to the packet returning the fixed-sized memory pool state.

typedef struct t_rmpf {
 ID wtskid; /*Existence of waiting task*/
 UINT fblkcnt; /*Number of free memory blocks*/
 ATR mpfatr; /*Attribute*/
 ID memid; /*Reserved for future use*/
} T_RMPF;

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mpfid < 0x0

- mpfid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 268 of 366
Jan 29, 2016

E_NOEXS -42
Non-existent object.

- Specified fixed-sized memory pool is not registered.

Macro Value Description

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 269 of 366
Jan 29, 2016

16.2.9 Memory pool management functions (variable-sized memory pools)

The following shows the service calls provided by the RI850V4 as the memory pool management functions (variable-
sized memory pools).

Table 16-9 Memory Pool Management Functions (Variable-Sized Memory Pools)

Service Call Function Origin of Service Call

get_mpl Acquire variable-sized memory block (waiting forever) Task

pget_mpl Acquire variable-sized memory block (polling)
Task, Non-task, Initialization rou-
tine

ipget_mpl Acquire variable-sized memory block (polling)
Task, Non-task, Initialization rou-
tine

tget_mpl Acquire variable-sized memory block (with timeout) Task

rel_mpl Release variable-sized memory block
Task, Non-task, Initialization rou-
tine

irel_mpl Release variable-sized memory block
Task, Non-task, Initialization rou-
tine

ref_mpl Reference variable-sized memory pool state
Task, Non-task, Initialization rou-
tine

iref_mpl Reference variable-sized memory pool state
Task, Non-task, Initialization rou-
tine

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 270 of 366
Jan 29, 2016

get_mpl

Outline

Acquire variable-sized memory block (waiting forever).

C format

ER get_mpl (ID mplid, UINT blksz, VP *p_blk);

Parameter(s)

Explanation

This service call acquires a variable-size memory block of the size specified by parameter blksz from the variable-size
memory pool specified by parameter mplid, and stores its start address into the area specified by parameter p_blk.

If no variable-size memory blocks could be acquired from the target variable-size memory pool (no successive areas
equivalent to the requested size were available) when this service call is issued, this service call does not acquire variable-
size memory blocks but queues the invoking task to the target variable-size memory pool wait queue and moves it from
the RUNNING state to the WAITING state (variable-size memory block acquisition wait state).

The WAITING state for a variable-sized memory block is cancelled in the following cases, and then moved to the
READY state

Note 1 The RI850V4 acquires variable-size memory blocks in the unit of "integral multiple of 4". If a value other than
an integral multiple of 4 is specified for parameter blksz, it is rounded up to be an integral multiple of 4.

Note 2 Invoking tasks are queued to the target variable-size memory pool wait queue in the order defined during
configuration (FIFO order or priority order).

Note 3 If the variable-size memory block acquisition wait state is cancelled because rel_wai or irel_wai was issued,
the contents in the area specified by parameter p_blk become undefined.

I/O Parameter Description

I ID mplid;
ID number of the variable-sized memory pool from which a memory
block is acquired.

I UINT blksz; Memory block size to be acquired (in bytes).

O VP *p_blk; Start address of the acquired memory block.

WAITING State for a Variable-sized Memory Block Cancel Operation Return Value

The variable-size memory block that satisfies the requested size was returned to the target
variable-size memory pool as a result of issuing rel_mpl.

E_OK

The variable-size memory block that satisfies the requested size was returned to the target
variable-size memory pool as a result of issuing irel_mpl.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 271 of 366
Jan 29, 2016

Return value

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- blksz = 0x0

- blksz > 0x7fffffff

E_ID -18

Invalid ID number.

- mplid < 0x0

- mplid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_NOEXS -42
Non-existent object.

- Specified variable-sized memory pool is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 272 of 366
Jan 29, 2016

pget_mpl
ipget_mpl

Outline

Acquire variable-sized memory block (polling).

C format

ER pget_mpl (ID mplid, UINT blksz, VP *p_blk);
ER ipget_mpl (ID mplid, UINT blksz, VP *p_blk);

Parameter(s)

Explanation

This service call acquires a variable-size memory block of the size specified by parameter blksz from the variable-size
memory pool specified by parameter mplid, and stores its start address into the area specified by parameter p_blk.

If no variable-size memory blocks could be acquired from the target variable-size memory pool (no successive areas
equivalent to the requested size were available) when this service call is issued, this service call does not acquire variable-
size memory block but returns E_TMOUT.

Note 1 The RI850V4 acquires variable-size memory blocks in the unit of "integral multiple of 4". If a value other than
an integral multiple of 4 is specified for parameter blksz, it is rounded up to be an integral multiple of 4.

Note 2 If no variable-size memory blocks could be acquired from the target variable-size memory pool (no successive
areas equivalent to the requested size were available) when this service call is issued, the contents in the area
specified by parameter p_blk become undefined.

Return value

I/O Parameter Description

I ID mplid;
ID number of the variable-sized memory pool from which a memory
block is acquired.

I UINT blksz; Memory block size to be acquired (in bytes).

O VP *p_blk; Start address of the acquired memory block.

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- blksz = 0x0

- blksz > 0x7fffffff

E_ID -18

Invalid ID number.

- mplid < 0x0

- mplid > Maximum ID number

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 273 of 366
Jan 29, 2016

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified variable-sized memory pool is not registered.

E_TMOUT -50

Polling failure.

- No successive areas equivalent to the requested size were available in the
target variable-size memory pool.

Macro Value Description

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 274 of 366
Jan 29, 2016

tget_mpl

Outline

Acquire variable-sized memory block (with timeout).

C format

ER tget_mpl (ID mplid, UINT blksz, VP *p_blk, TMO tmout);

Parameter(s)

Explanation

This service call acquires a variable-size memory block of the size specified by parameter blksz from the variable-size
memory pool specified by parameter mplid, and stores its start address into the area specified by parameter p_blk.

If no variable-size memory blocks could be acquired from the target variable-size memory pool (no successive areas
equivalent to the requested size were available) when this service call is issued, this service call does not acquire variable-
size memory blocks but queues the invoking task to the target variable-size memory pool wait queue and moves it from
the RUNNING state to the WAITING state with timeout (variable-size memory block acquisition wait state).

The WAITING state for a variable-sized memory block is cancelled in the following cases, and then moved to the
READY state.

Note 1 The RI850V4 acquires variable-size memory blocks in the unit of "integral multiple of 4". If a value other than
an integral multiple of 4 is specified for parameter blksz, it is rounded up to be an integral multiple of 4.

Note 2 Invoking tasks are queued to the target variable-size memory pool wait queue in the order defined during
configuration (FIFO order or priority order).

I/O Parameter Description

I ID mplid;
ID number of the variable-sized memory pool from which a memory
block is acquired.

I UINT blksz; Memory block size to be acquired (in bytes).

O VP *p_blk; Start address of the acquired memory block.

I TMO tmout;

Specified timeout (unit:millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified timeout.

WAITING State for a Variable-sized Memory Block Cancel Operation Return Value

The variable-size memory block that satisfies the requested size was returned to the target
variable-size memory pool as a result of issuing rel_mpl.

E_OK

The variable-size memory block that satisfies the requested size was returned to the target
variable-size memory pool as a result of issuing irel_mpl.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Polling failure or timeout. E_TMOUT

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 275 of 366
Jan 29, 2016

Note 3 If the variable-size memory block acquisition wait state is cancelled because rel_wai or irel_wai was issued or
the wait time elapsed, the contents in the area specified by parameter p_blk become undefined.

Note 4 TMO_FEVR is specified for wait time tmout, processing equivalent to get_mpl will be executed. When
TMO_POL is specified, processing equivalent to pget_mpl /ipget_mpl will be executed.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- blksz = 0x0

- blksz > 0x7fffffff

- tmout < TMO_FEVR

E_ID -18

Invalid ID number.

- mplid < 0x0

- mplid > Maximum ID number

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

E_NOEXS -42
Non-existent object.

- Specified variable-sized memory pool is not registered.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50
Timeout.

- Polling failure or timeout.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 276 of 366
Jan 29, 2016

rel_mpl
irel_mpl

Outline

Release variable-sized memory block.

C format

ER rel_mpl (ID mplid, VP blk);
ER irel_mpl (ID mplid, VP blk);

Parameter(s)

Explanation

This service call returns the variable-sized memory block specified by parameter blk to the variable-sized memory pool
specified by parameter mplid.

After returning the variable-size memory blocks, these service calls check the tasks queued to the target variable-size
memory pool wait queue from the top, and assigns the memory if the size of memory requested by the wait queue is
available. This operation continues until no tasks queued to the wait queue remain or no memory space is available. As a
result, the task that acquired the memory is unlinked from the queue and moved from the WAITING state (variable-size
memory block acquisition wait state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED
state.

Note 1 The RI850V4 does not perform memory clear processing when returning the acquired variable-size memory
block. The contents of the returned variable-size memory block are therefore undefined.

Note 2 When returning variable-size memory blocks, be sure to issue either of these service calls for the acquired
variable-size memory pools. If the service call is issued for another variable-size memory pool, no error results
but the operation is not guaranteed after that.

Return value

I/O Parameter Description

I ID mplid;
ID number of the variable-sized memory pool to which the memory
block is released.

I VP blk; Start address of memory block to be released.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mplid < 0x0

- mplid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 277 of 366
Jan 29, 2016

E_NOEXS -42
Non-existent object.

- Specified variable-sized memory pool is not registered.

Macro Value Description

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 278 of 366
Jan 29, 2016

ref_mpl
iref_mpl

Outline

Reference variable-sized memory pool state.

C format

ER ref_mpl (ID mplid, T_RMPL *pk_rmpl);
ER iref_mpl (ID mplid, T_RMPL *pk_rmpl);

Parameter(s)

[Variable-sized memory pool state packet: T_RMPL]

Explanation

These service calls store the detailed information (ID number of the task at the head of the wait queue, total size of free
memory blocks, etc.) of the variable-size memory pool specified by parameter mplid into the area specified by parameter
pk_rmpl.

Note For details about the variable-sized memory pool state packet, refer to "15.2.10 Variable-sized memory pool
state packet".

Return value

I/O Parameter Description

I ID mplid; ID number of the variable-sized memory pool to be referenced.

O T_RMPL *pk_rmpl; Pointer to the packet returning the variable-sized memory pool state.

typedef struct t_rmpl {
 ID wtskid; /*Existence of waiting task*/
 SIZE fmplsz; /*Total size of free memory blocks*/
 UINT fblksz; /*Maximum memory block size available*/
 ATR mplatr; /*Attribute*/
 ID memid; /*Reserved for future use*/
} T_RMPL;

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mplid < 0x0

- mplid > Maximum ID number

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 279 of 366
Jan 29, 2016

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified variable-sized memory pool is not registered.

Macro Value Description

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 280 of 366
Jan 29, 2016

16.2.10 Time management functions

The following shows the service calls provided by the RI850V4 as the time management functions.

Table 16-10 Time Management Functions

Service Call Function Origin of Service Call

set_tim Set system time
Task, Non-task, Initialization rou-
tine

iset_tim Set system time
Task, Non-task, Initialization rou-
tine

get_tim Reference system time
Task, Non-task, Initialization rou-
tine

iget_tim Reference system time
Task, Non-task, Initialization rou-
tine

sta_cyc Start cyclic handler operation
Task, Non-task, Initialization rou-
tine

ista_cyc Start cyclic handler operation
Task, Non-task, Initialization rou-
tine

stp_cyc Stop cyclic handler operation
Task, Non-task, Initialization rou-
tine

istp_cyc Stop cyclic handler operation
Task, Non-task, Initialization rou-
tine

ref_cyc Reference cyclic handler state
Task, Non-task, Initialization rou-
tine

iref_cyc Reference cyclic handler state
Task, Non-task, Initialization rou-
tine

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 281 of 366
Jan 29, 2016

set_tim
iset_tim

Outline

Set system time.

C format

ER set_tim (SYSTIM *p_systim);
ER iset_tim (SYSTIM *p_systim);

Parameter(s)

[System time packet: SYSTIM]

Explanation

These service calls change the RI850V4 system time (unit: millisecond) to the time specified by parameter p_systim.

Note For details about the system time packet, refer to "15.2.11 System time packet".

Return value

I/O Parameter Description

I SYSTIM *p_systim; Time to set as system time.

typedef struct t_systim {
 UW ltime; /*System time (lower 32 bits)*/
 UH utime; /*System time (higher 16 bits)*/
} SYSTIM;

Macro Value Description

E_OK 0 Normal completion.

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 282 of 366
Jan 29, 2016

get_tim
iget_tim

Outline

Reference system time.

C format

ER get_tim (SYSTIM *p_systim);
ER iget_tim (SYSTIM *p_systim);

Parameter(s)

[System time packet: SYSTIM]

Explanation

These service calls store the RI850V4 system time (unit: millisecond) into the area specified by parameter p_systim.

Note 1 The RI850V4 ignores the numeric values that cannot be expressed as the system time (values overflowed
from the 48-bit width).

Note 2 For details about the system time packet, refer to "15.2.11 System time packet".

Return value

I/O Parameter Description

O SYSTIM *p_systim; Current system time.

typedef struct t_systim {
 UW ltime; /*System time (lower 32 bits)*/
 UH utime; /*System time (higher 16 bits)*/
} SYSTIM;

Macro Value Description

E_OK 0 Normal completion.

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 283 of 366
Jan 29, 2016

sta_cyc
ista_cyc

Outline

Start cyclic handler operation.

C format

ER sta_cyc (ID cycid);
ER ista_cyc (ID cycid);

Parameter(s)

Explanation

This service call moves the cyclic handler specified by parameter cycid from the non-operational state (STP state) to
operational state (STA state).

As a result, the target cyclic handler is handled as an activation target of the RI850V4.
The relative interval from when either of this service call is issued until the first activation request is issued varies

depending on whether the TA_PHS attribute is specified for the target cyclic handler during configuration.

- If the TA_PHS attribute is specified
The target cyclic handler activation timing is set based on the activation phases (initial activation phase cycphs and
activation cycle cyctim) defined during configuration.
If the target cyclic handler has already been started, however, no processing is performed even if this service call is
issued, but it is not handled as an error.

- If the TA_PHS attribute is not specified
The target cyclic handler activation timing is set based on the activation phase (activation cycle cyctim) when this
service call is issued.
This setting is performed regardless of the operating status of the target cyclic handler.

Return value

I/O Parameter Description

I ID cycid; ID number of the cyclic handler operation to be started.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- cycid < 0x0

- cycid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 284 of 366
Jan 29, 2016

E_NOEXS -42
Non-existent object.

- Specified cyclic handler is not registered.

Macro Value Description

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 285 of 366
Jan 29, 2016

stp_cyc
istp_cyc

Outline

Stop cyclic handler operation.

C format

ER stp_cyc (ID cycid);
ER istp_cyc (ID cycid);

Parameter(s)

Explanation

This service call moves the cyclic handler specified by parameter cycid from the operational state (STA state) to non-
operational state (STP state).

As a result, the target cyclic handler is excluded from activation targets of the RI850V4 until issue of sta_cyc or ista_cyc.

Note This service call does not perform queuing of stop requests. If the target cyclic handler has been moved to the
non-operational state (STP state), therefore, no processing is performed but it is not handled as an error.

Return value

I/O Parameter Description

I ID cycid; ID number of the cyclic handler operation to be stopped.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- cycid < 0x0

- cycid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

E_NOEXS -42
Non-existent object.

- Specified cyclic handler is not registered.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 286 of 366
Jan 29, 2016

ref_cyc
iref_cyc

Outline

Reference cyclic handler state.

C format

ER ref_cyc (ID cycid, T_RCYC *pk_rcyc);
ER iref_cyc (ID cycid, T_RCYC *pk_rcyc);

Parameter(s)

[Cyclic handler state packet: T_RCYC]

Explanation

Stores cyclic handler state packet (current state, time left before the next activation, etc.) of the cyclic handler specified
by parameter cycid in the area specified by parameter pk_rcyc.

Note For details about the cyclic handler state packet, refer to "15.2.12 Cyclic handler state packet".

Return value

I/O Parameter Description

I ID cycid; ID number of the cyclic handler to be referenced.

O T_RCYC *pk_rcyc; Pointer to the packet returning the cyclic handler state.

typedef struct t_rcyc {
 STAT cycstat; /*Current state*/
 RELTIM lefttim; /*Time left before the next activation*/
 ATR cycatr; /*Attribute*/
 RELTIM cyctim; /*Activation cycle*/
 RELTIM cycphs; /*Activation phase*/
} T_RCYC;

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- cycid < 0x0

- cycid > Maximum ID number

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 287 of 366
Jan 29, 2016

E_NOEXS -42
Non-existent object.

- Specified cyclic handler is not registered.

Macro Value Description

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 288 of 366
Jan 29, 2016

16.2.11 System state management functions

The following shows the service calls provided by the RI850V4 as the system state management functions.

Table 16-11 System State Management Functions

Service Call Function Origin of Service Call

rot_rdq Rotate task precedence
Task, Non-task, Initialization rou-
tine

irot_rdq Rotate task precedence
Task, Non-task, Initialization rou-
tine

vsta_sch Forced scheduler activation Task

get_tid Reference task ID in the RUNNING state
Task, Non-task, Initialization rou-
tine

iget_tid Reference task ID in the RUNNING state
Task, Non-task, Initialization rou-
tine

loc_cpu Lock the CPU Task, Non-task

iloc_cpu Lock the CPU Task, Non-task

unl_cpu Unlock the CPU Task, Non-task

iunl_cpu Unlock the CPU Task, Non-task

sns_loc Reference CPU state
Task, Non-task, Initialization rou-
tine

dis_dsp Disable dispatching Task

ena_dsp Enable dispatching Task

sns_dsp Reference dispatching state
Task, Non-task, Initialization rou-
tine

sns_ctx Reference contexts
Task, Non-task, Initialization rou-
tine

sns_dpn Reference dispatching pending state
Task, Non-task, Initialization rou-
tine

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 289 of 366
Jan 29, 2016

rot_rdq
irot_rdq

Outline

Rotate task precedence.

C format

ER rot_rdq (PRI tskpri);
ER irot_rdq (PRI tskpri);

Parameter(s)

Explanation

This service call re-queues the first task of the ready queue corresponding to the priority specified by parameter tskpri to
the end of the queue to change the task execution order explicitly.

Note 1 This service call does not perform queuing of rotation requests. If no task is queued to the ready queue
corresponding to the relevant priority, therefore, no processing is performed but it is not handled as an error.

Note 2 Round-robin scheduling can be implemented by issuing this service call via a cyclic handler in a constant
cycle.

Note 3 The ready queue is a hash table that uses priority as the key, and tasks that have entered an executable state
(READY state or RUNNING state) are queued in FIFO order.
Therefore, the scheduler realizes the RI850V4's scheduling system by executing task detection processing
from the highest priority level of the ready queue upon activation, and upon detection of queued tasks, giving
the CPU use right to the first task of the proper priority level.

Return value

I/O Parameter Description

I PRI tskpri;

Priority of the tasks whose precedence is rotated.

TPRI_SELF: Current priority of the invoking task.
Value: Priority of the tasks whose precedence is rotated.

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- tskpri < 0x0

- tskpri > Maximum priority

- When this service call was issued from a non-task, TPRI_SELF was specified
tskpri.

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 290 of 366
Jan 29, 2016

vsta_sch

Outline

Forced scheduler activation.

C format

ER vsta_sch (void);

Parameter(s)

None.

Explanation

This service call explicitly forces the RI850V4 scheduler to activate. If a scheduling request has been kept pending, task
switching may therefore occur.

Note The RI850V4 provides this service call as a function to activate a scheduler from a task for which preempt
acknowledge status disable is defined during configuration.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 291 of 366
Jan 29, 2016

get_tid
iget_tid

Outline

Reference task ID in the RUNNING state.

C format

ER get_tid (ID *p_tskid);
ER iget_tid (ID *p_tskid);

Parameter(s)

Explanation

These service calls store the ID of a task in the RUNNING state in the area specified by parameter p_tskid.

Note This service call stores TSK_NONE in the area specified by parameter p_tskid if no tasks that have entered the
RUNNING state exist (all tasks in the IDLE state).

Return value

I/O Parameter Description

O ID *p_tskid; ID number of the task in the RUNNING state.

Macro Value Description

E_OK 0 Normal completion.

E_CTX -25
Context error.

- This service call was issued in the CPU locked state.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 292 of 366
Jan 29, 2016

loc_cpu
iloc_cpu

Outline

Lock the CPU.

C format

ER loc_cpu (void);
ER iloc_cpu (void);

Parameter(s)

None.

Explanation

These service calls change the system status type to the CPU locked state.
As a result, "EI level maskable interrupt acceptance" and "service call issue (except for some service calls)" are

prohibited during the interval from when this service call is issued until unl_cpu or iunl_cpu is issued.

If an EI level maskable interrupt is created during this period, the RI850V4 delays transition to the relevant interrupt
processing (interrupt handler) until either unl_cpu or iunl_cpu is issued.

Note 1 The CPU locked state changed by issuing this service call must be cancelled before the processing program
that issued this service call ends.

Note 2 This service call does not perform queuing of lock requests. If the system is in the CPU locked state, therefore,
no processing is performed but it is not handled as an error.

Note 3 This service call manipulates PMn bits in the priority mask register (PMR) to disable acceptance of EI level
maskable interrupts.
The PMn bits to be manipulated correspond to the interrupt priority range defined as the Maximum interrupt
priority: maxintpri during configuration.
This service call does not manipulate the ID bit in the program status word (PSW).

Note 4 The RI850V4 realizes the TIME MANAGEMENT FUNCTIONS by using base clock timer interrupts that occur
at constant intervals. If acknowledgment of the relevant base clock timer interrupt is disabled by issuing this
service call, the TIME MANAGEMENT FUNCTIONS may no longer operate normally.

Note 5 If this service call or a service call other than sns_xxx is issued from when this service call is issued until
unl_cpu or iunl_cpu is issued, the RI850V4 returns E_CTX.

Service Call Function

loc_cpu, iloc_cpu Lock the CPU.

unl_cpu, iunl_cpu Unlock the CPU.

sns_loc Reference CPU state.

sns_dsp Reference dispatching state.

sns_ctx Reference contexts.

sns_dpn Reference dispatch pending state.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 293 of 366
Jan 29, 2016

Return value

Macro Value Description

E_OK 0 Normal completion.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 294 of 366
Jan 29, 2016

unl_cpu
iunl_cpu

Outline

Unlock the CPU.

C format

ER unl_cpu (void);
ER iunl_cpu (void);

Parameter(s)

None.

Explanation

These service calls change the system status from the CPU locked state to the CPU unlocked state.
As a result, "EI level maskable interrupt acceptance" and "service call issue" restricted (prohibited) through issue of

loc_cpu or iloc_cpu are enabled.
If an EI level maskable interrupt is created during the interval from when either loc_cpu or iloc_cpu is issued until this

service call is issued, the RI850V4 delays transition to the relevant interrupt processing (interrupt handler) until this service
call is issued.

Note 1 This service call does not perform queuing of cancellation requests. If the system is in the CPU unlocked state,
therefore, no processing is performed but it is not handled as an error.

Note 2 This service call manipulates PMn bits in the priority mask register (PMR) to disable acceptance of EI level
maskable interrupts.
The PMn bits to be manipulated correspond to the interrupt priority range defined as the Maximum interrupt
priority: maxintpri during configuration.
This service call does not manipulate the ID bit in the program status word (PSW).

Note 3 This service call does not cancel the dispatch disabled state that was set by issuing dis_dsp. If the system
status before the CPU locked state is entered was the dispatch disabled state, the system status becomes the
dispatch disabled state after this service call is issued.

Note 4 If a service call other than loc_cpu, iloc_cpu and sns_xxx is issued from when loc_cpu or iloc_cpu is issued
until this service call is issued, the RI850V4 returns E_CTX.

Return value

Macro Value Description

E_OK 0 Normal completion.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 295 of 366
Jan 29, 2016

sns_loc

Outline

Reference CPU state.

C format

BOOL sns_loc (void);

Parameter(s)

None.

Explanation

This service call acquires the system status type when this service call is issued (CPU locked state or CPU unlocked
state).

When this service call is terminated normally, the acquired system state type (TRUE: CPU locked state, FALSE: CPU
unlocked state) is returned.

Return value

Macro Value Description

TRUE 1 Normal completion (CPU locked state).

FALSE 0 Normal completion (CPU unlocked state).

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 296 of 366
Jan 29, 2016

dis_dsp

Outline

Disable dispatching.

C format

ER dis_dsp (void);

Parameter(s)

None.

Explanation

This service call changes the system status to the dispatch disabled state.
As a result, dispatch processing (task scheduling) is disabled from when this service call is issued until ena_dsp is

issued.
If a service call (chg_pri, sig_sem, etc.) accompanying dispatch processing is issued during the interval from when this

service call is issued until ena_dsp is issued, the RI850V4 executes only processing such as queue manipulation, counter
manipulation, etc., and the actual dispatch processing is delayed until ena_dsp is issued, upon which the actual dispatch
processing is performed in batch.

Note 1 The dispatch disabled state changed by issuing this service call must be cancelled before the task that issued
this service call moves to the DORMANT state.

Note 2 This service call does not perform queuing of disable requests. If the system is in the dispatch disabled state,
therefore, no processing is performed but it is not handled as an error.

Note 3 If a service call (such as wai_sem, wai_flg) that may move the status of an invoking task is issued from when
this service call is issued until ena_dsp is issued, the RI850V4 returns E_CTX regardless of whether the
required condition is immediately satisfied.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 297 of 366
Jan 29, 2016

ena_dsp

Outline

Enable dispatching.

C format

ER ena_dsp (void);

Parameter(s)

None.

Explanation

This service call changes the system status to the dispatch enabled state.
As a result, dispatch processing (task scheduling) that has been disabled by issuing dis_dsp is enabled.
If a service call (chg_pri, sig_sem, etc.) accompanying dispatch processing is issued during the interval from when

dis_dsp is issued until this service call is issued, the RI850V4 executes only processing such as queue manipulation,
counter manipulation, etc., and the actual dispatch processing is delayed until this service call is issued, upon which the
actual dispatch processing is performed in batch.

Note 1 This service call does not perform queuing of enable requests. If the system is in the dispatch enabled state,
therefore, no processing is performed but it is not handled as an error.

Note 2 If a service call (such as wai_sem, wai_flg) that may move the status of an invoking task is issued from when
dis_dsp is issued until this service call is issued, the RI850V4 returns E_CTX regardless of whether the
required condition is immediately satisfied.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 298 of 366
Jan 29, 2016

sns_dsp

Outline

Reference dispatching state.

C format

BOOL sns_dsp (void);

Parameter(s)

None.

Explanation

This service call acquires the system status type when this service call is issued (dispatch disabled state or dispatch
enabled state).

When this service call is terminated normally, the acquired system state type (TRUE: dispatch disabled state, FALSE:
dispatch enabled state) is returned.

Return value

Macro Value Description

TRUE 1 Normal completion (dispatching disabled state).

FALSE 0 Normal completion (dispatching enabled state).

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 299 of 366
Jan 29, 2016

sns_ctx

Outline

Reference contexts.

C format

BOOL sns_ctx (void);

Parameter(s)

None.

Explanation

This service call acquires the context type of the processing program that issued this service call (non-task context or
task context).

When this service call is terminated normally, the acquired context type (TRUE: non-task context, FALSE: task context)
is returned.

Return value

Macro Value Description

TRUE 1 Normal completion (non-task contexts).

FALSE 0 Normal completion (task contexts).

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 300 of 366
Jan 29, 2016

sns_dpn

Outline

Reference dispatch pending state.

C format

BOOL sns_dpn (void);

Parameter(s)

None.

Explanation

This service call acquires the system status type when this service call is issued (whether in dispatch pending state or
not).

When this service call is terminated normally, the acquired system state type (TRUE: dispatch pending state, FALSE:
dispatch not-pending state) is returned.

Return value

Macro Value Description

TRUE 1 Normal completion. (dispatch pending state)

FALSE 0 Normal completion. (any other states)

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 301 of 366
Jan 29, 2016

16.2.12 Service call management functions

The following shows the service calls provided by the RI850V4 as the service call management functions.

Table 16-12 Service Call Management Functions

Service Call Function Origin of Service Call

cal_svc Invoke extended service call routine
Task, Non-task, Initialization rou-
tine

ical_svc Invoke extended service call routine
Task, Non-task, Initialization rou-
tine

RI850V4 V2 CHAPTER 16 SERVICE CALLS

R20UT2889EJ0102 Rev.1.02 Page 302 of 366
Jan 29, 2016

cal_svc
ical_svc

Outline

Invoke extended service call routine.

C format

ER_UINT cal_svc (FN fncd, VP_INT par1, VP_INT par2, VP_INT par3);
ER_UINT ical_svc (FN fncd, VP_INT par1, VP_INT par2, VP_INT par3);

Parameter(s)

Explanation

These service calls call the extended service call routine specified by parameter fncd.

Note Extended service call routines that can be called using this service call are the routines whose transferred data
total is less than four.

Return value

I/O Parameter Description

I FN fncd; Function code of the extended service call routine to be invoked.

I VP_INT par1; The first parameter of the extended service call routine.

I VP_INT par2; The second parameter of the extended service call routine.

I VP_INT par3; The third parameter of the extended service call routine.

Macro Value Description

E_RSFN -10

Invalid function code.

- fncd ≦ 0x0

- fncd ＞ 0xff

- Specified extended service call routine is not registered.

- - Normal completion (the extended service call routine's return value).

RI850V4 V2 CHAPTER 17 SYSTEM CONFIGURATION FILE

R20UT2889EJ0102 Rev.1.02 Page 303 of 366
Jan 29, 2016

CHAPTER 17 SYSTEM CONFIGURATION FILE

This chapter explains the coding method of the system configuration file required to output information files (system
information table file, system information header file and entry file) that contain data to be provided for the RI850V4.

17.1 Outline
The following shows the notation method of system configuration files.

- Character code
Create the system configuration file using ASCII code.
The CF850V4 distinguishes lower cases "a to z" and upper cases "A to Z".

Note For Japanese language coding, Shit-JIS codes can be used only for comments.

- Comment
In a system configuration file, parts between /* and */ and parts from two successive slashes (//) to the line end are
regarded as comments.

- Numeric
In a system configuration file, words starting with a numeric value (0 to 9) are regarded as numeric values.
The CFV850V4 distinguishes numeric values as follows.

Octal: Words starting with 0
Decimal: Words starting with a value other than 0
Hexadecimal: Words starting with 0x or 0X

Note Unless specified otherwise, the range of values that can be specified as numeric values are limited from 0x0
to 0xffffffff.

- Symbol name
In a system configuration file, words starting with an alphabetic character, "a to z, A to Z", or underscore "_" are
regarded as symbol names.
Describing a symbol name in the format "symbol name + offset" is also possible, but the offset must be a constant
expression.
The following shows examples of describing symbol names.
The CF850V4 distinguishes between symbol names and other names based on the context in the system
configuration file.

[Correct]
 func + 0x80000 // func name
 symbol + 0x90 * 80 // symbol name
 symbol + BASE // data macro

[Incorrect]
 (func + 0x8000) // The start character is illegal.
 0x8000 + func // The start character is illegal.
 BASE + func // Data macro BASE is handled as a symbol name.
 func * 0x8000 // It is not the format of offset.

Note Up to 4,095 characters can be specified for symbol names, including offset and spaces.

- Name
In a system configuration file, words starting with an alphabetic character, "a to z, A to Z", or underscore "_" are
regarded as names.
The CF850V4 distinguishes between symbol names and other names based on the context in the system
configuration file.

Note Up to 255 characters can be specified for names.

RI850V4 V2 CHAPTER 17 SYSTEM CONFIGURATION FILE

R20UT2889EJ0102 Rev.1.02 Page 304 of 366
Jan 29, 2016

- Preprocessing directives
The following preprocessing directives can be coded in a system configuration file.

#define, #elif, #else, #endif, #if, #ifdef, #ifndef, #include, #undef

- Keywords
The words shown below are reserved by the CFV850V4 as keywords.
Using these words for any other purpose specified is therefore prohibited.

ATT_INI, CLK_INTNO, CPU_TYPE, CRE_CYC, CRE_DTQ, CRE_FLG, CRE_MBX, CRE_MPF, CRE_MPL,
CRE_MTX, CRE_SEM, CRE_TSK, DEF_EXC, DEF_FPSR, DEF_INH, DEF_SVC, DEF_TEX, DEF_TIM,
INCLUDE, INT_STK, MAX_CYC, MAX_DTQ, MAX_FLG, MAX_INT, MAX_INTPRI, MAX_MBX, MAX_MPF,
MAX_MPL, MAX_MTX, MAX_PRI, MAX_SEM, MAX_SVC, MAX_TSK, MEM_AREA, NULL, SERVICECALL,
RI_SERIES, SIZE_AUTO, STK_CHK, SYS_STK, TA_ACT, TA_ASM, TA_CLR, TA_DISINT, TA_DISPREEMPT,
TA_ENAINT, TA_HLNG, TA_MFIFO, TA_MPRI, TA_OFF, TA_ON, TA_PHS, TA_RSTR, TA_STA, TA_TFIFO,
TA_TPRI, TA_WMUL, TA_WSGL, TBIT_FLGPTN, TBIT_TEXPTN, TIC_DENO, TIC_NUME, TKERNEL_MAKER,
TKERNEL_PRID, TKERNEL_PRVER, TKERNEL_SPVER, TMAX_ACTCNT, TMAX_MPRI, TMAX_SEMCNT,
TMAX_SUSCNT, TMAX_TPRI, TMAX_WUPCNT, TMIN_MPRI, TMIN_TPRI, TSZ_DTQ, TSZ_MBF, TSZ_MPF,
TSZ_MPL, TSZ_MPRIHD, VATT_IDL, VDEF_RTN, G3K, G3M, G3KH, G3MH

Note In addition to the above words, service call names (such as act_tsk or slp_tsk), words starting with _kernel_,
and the section names shown in Table B-1 to be used by the RI850V4 are reserved as keywords in the
CF850V4.

RI850V4 V2 CHAPTER 17 SYSTEM CONFIGURATION FILE

R20UT2889EJ0102 Rev.1.02 Page 305 of 366
Jan 29, 2016

17.2 Configuration Information

The configuration information that is described in a system configuration file is divided into the following three main
types.

- Declarative Information
Data related to a header file (header file name) in which data macro entities used in the system configuration file are
defined.

- Header file declaration

- System Information
Data related to OS resources (such as real-time OS name, processor type) required for the RI850V4 to operate.

- RI series information

- Basic information

- FPSR register information

- Memory area information

- Static API Information
Data related to management objects (such as task and task exception handling routine) used in the system.

- Task information

- Semaphore information

- Eventflag information

- Data queue information

- Mailbox information

- Mutex information

- Fixed-sized memory pool information

- Variable-sized memory pool information

- Cyclic handler information

- Interrupt handler information

- Extended service call routine information

- Initialization routine information

- Idle routine information

RI850V4 V2 CHAPTER 17 SYSTEM CONFIGURATION FILE

R20UT2889EJ0102 Rev.1.02 Page 306 of 366
Jan 29, 2016

17.2.1 Cautions

In the system configuration file, describe the system configuration information (Declarative Information, System
Information, Static API Information) in the following order.

1) Declarative Information description

2) System Information description

3) Static API Information description

The information items in the System Information group (such as RI series information or Basic information) and those in
the Static API Information group (such as Task information or Semaphore information) can be coded in any order within
each respective group.

The following illustrates how the system configuration file is described.

Figure 17-1 System Configuration File Description Format

-- Declarative Information (Header file declaration) description
/* */

-- System Information (RI series information, etc.) description
/* */

-- Static API Information (Task information, etc.) description
/* */

RI850V4 V2 CHAPTER 17 SYSTEM CONFIGURATION FILE

R20UT2889EJ0102 Rev.1.02 Page 307 of 366
Jan 29, 2016

17.3 Declarative Information

The following describes the format that must be observed when describing the declarative information in the system
configuration file.

The GOTHIC-FONT characters in following descriptions are the reserved words, and italic face characters are the
portion that the user must write the relevant numeric value, symbol name, or keyword.

17.3.1 Header file declaration

The header file declaration defines File name: h_file.
The number of definable header file declaration items is not restricted.
The following shows the header file declaration format.

The items constituting the header file declaration are as follows.

1) File name: h_file

Reflects the header file declaration specified in h_file into the system information header file output by the
CF850V4.
As a result, macro definitions in filename can be referenced from a file in which the system information header file
output by the CF850V4 is included.

Note If <sample.h> is specified in h_file, the header file definition (include processing) is output as:

#include <sample.h>

If \"sample.h\" is specified in h_file, the header file definition (include processing) is output as:

#include "sample.h"

to the system information header file.

INCLUDE ("h_file");

RI850V4 V2 CHAPTER 17 SYSTEM CONFIGURATION FILE

R20UT2889EJ0102 Rev.1.02 Page 308 of 366
Jan 29, 2016

17.4 System Information

The following describes the format that must be observed when describing the system information in the system
configuration file.

The GOTHIC-FONT characters in following descriptions are the reserved words, and italic face characters are the
portion that the user must write the relevant numeric value, symbol name, or keyword.

Items enclosed by square brackets "[]" can be omitted.

17.4.1 RI series information

The RI series information defines Real-time OS name: rtos_name, Version number: rtos_ver.
Only one information item can be defined as RI series information.
The following shows the RI series information format.

The items constituting the RI series information are as follows.

1) Real-time OS name: rtos_name

Specifies the real-time OS name.
The keyword that can be specified for rtos_name is the RI850V4.

2) Version number: rtos_ver

Specifies the version number for the RI850V4.
In RI_SERIES, values specifiable for rtos_ver is the “V2xy”(as version number).

Note If the version number of RI850V4 is "V2.01.23", rtos_ver should be set to "V201".

RI_SERIES (rtos_name, rtos_ver);

RI850V4 V2 CHAPTER 17 SYSTEM CONFIGURATION FILE

R20UT2889EJ0102 Rev.1.02 Page 309 of 366
Jan 29, 2016

17.4.2 Basic information

The basic information defines CPU type: cpu, Base clock interval: tim_base, Base clock timer exception code:
tim_intno, System stack size: sys_stksz, Whether to check stack: stkchk, Maximum priority: maxtpri, Maximum interrupt
priority: maxintpri, Maximum number of interrupt handlers: maxint; Maximum value of exception code: maxintno.

Only one information item can be defined as basic information.
The following shows the basic information format.

The items constituting the basic information are as follows.

1) CPU type: cpu

Specifies the type for a CPU.
If you are using the CS +, don’t need to specify this specified item.
The keyword that can be specified for chip_type is G3K or G3M or G3KH or G3MH.

G3K: G3K core
G3M: G3M core
G3KH: G3KH core
G3MH: G3MH core

If omitted The CPU type should be the device type specified in the -cpu option. When the PE number is specified
in the -peid option, the CPU type corresponding to the PE number should be specified. When the -cpu
option setting is omitted, the CPU type should be G3K.

2) Base clock interval: tim_base

Specifies the base clock interval (unit:millisecond) of the timer to be used.
A value from 0x1 to 0xffff can be specified for tim_base.

If omitted "0x1ms" is specified as the base clock cycle of the RI850V4.

Note The base clock cycle means the occurrence interval of base clock timer interrupt tim_intno, which is
required for implementing the TIME MANAGEMENT FUNCTIONS provided by the RI850V4. To
initialize hardware used by the RI850V4 for time management (such as timers and controllers), the
setting must therefore be made so as to generate base clock timer interrupts at the interval defined with
tim_base.

3) Base clock timer exception code: tim_intno

Specifies the exception code for the base clock timer interrupt that is necessary to implement the time management
facility provided by the RI850V4.
The value that can be specified for tim_into is an interrupt source name specified in the device file or a value from
0x1000 to the maximum exception code maxintno.

Note When an interrupt source name is specified for tim_intno, -cpu Δ name must be specified for the
CF850V4 activation option.

4) System stack size: sys_stksz

Specifies the system stack size (in bytes).
A value from 0x0 to 0x7ffffffc (aligned to a 4-byte boundary) can be specified for sys_stksz.

Note 1 For expressions to calculate the system stack size, refer to "1） System stack".

Note 2 The memory area for system stack is secured from the ".kernel_work section".

Note 3 The stack size that is actually secured is calculated as the specified stack size plus "20 + 80 (size of
context area of interrupt handler)".

[CPU_TYPE (chip_type);]
[DEF_TIM (tim_base);]
CLK_INTNO (tim_intno);
SYS_STK (sys_stksz);
[STK_CHK (stkchk);]
[MAX_PRI (maxtpri);]
[MAX_INTPRI (maxintpri);]
MAX_INT (maxint [, maxintno]);

RI850V4 V2 CHAPTER 17 SYSTEM CONFIGURATION FILE

R20UT2889EJ0102 Rev.1.02 Page 310 of 366
Jan 29, 2016

5) Whether to check stack: stkchk

Specifies whether to check the stack overflows before the RI850V4 starts processing.
The keyword that can be specified for flg is TA_ON or TA_OFF.

TA_ON: Overflow is checked
TA_OFF: Overflow is not checked

Note Overflow is not checked by default.

6) Maximum priority: maxtpri

Specifies the maximum priority of the task.
A value from 0x1 to 0x20 can be specified for maxtpri.

If omitted "0x20" is specified as the maximum task priority.

7) Maximum interrupt priority: maxintpri

Specifies the maximum priority for EI level maskable interrupts to be managed by the RI850V4.
The following values can be specified for maxintpri.
When the CPU type of the target device is G3K: A value from INTPRI0 to INTPRI7.
When the CPU type of the target device is G3M or G3KH or G3MH: A value from INTPRI0 to INTPRI15.

Note 1 When INTPRI3 is specified, the RI850V4 manages interrupts within the range from priority INTPRI3 to
the minimum interrupt priority.
The minimum interrupt priority is determined as follows. When the CPU type of the target device is G3K:
IINTPRI7 is the minimum interrupt priority.
When the CPU type of the target device is G3M or G3KH or G3MH: INTPRI15 is the minimum interrupt
priority.

Note 2 When the interrupt handlers for the EI level maskable interrupts are called in the reduced mode (the
RINT bit in the reset vector base address (RBASE) or the exception handler vector address (EBASE) is
set to 1), the maximum interrupt priority should be set to INTPRI0.

If omitted The maximum interrupt priority is set to INTPRI0.

8) Maximum number of interrupt handlers: maxint; Maximum value of exception code: maxintno

A value from 0x0 to 0x200 can be specified for maxint, and a value from 0x1000 to 0x11ff can be specified for
maxintno.

Note 1 Specify for maxint “the total number of interrupt handlers defined in the Interrupt handler information”.

Note 2 When -cpu_name is specified as the CF850V4 activation option, the maxintno setting becomes invalid
and the maximum exception code specified in the device file is used.

RI850V4 V2 CHAPTER 17 SYSTEM CONFIGURATION FILE

R20UT2889EJ0102 Rev.1.02 Page 311 of 366
Jan 29, 2016

17.4.3 FPSR register information

The FPSR register information defines the following item.

1) FPSR register information: fpsr

The initial FPSR register value specified in this item is loaded in the FPSR register at the initial activation of a
processing program (such as a task, a cyclic handler, or an interrupt handler).

The following shows the FPSR register information format.

The item constituting the FPSR register information is shown below.

1) Initial FPSR register value: fpsr
Specifies the initial value to be loaded in the FPSR at initial activation of a processing program.
A value from 0x0 to 0xffffffff can be specified for fpsr.
Note that operation is not guaranteed if a value outside the range allowed by hardware is specified. See the
hardware manual for the specific values.

If omitted The initial FPSR register value is "0x00020000".

Note 1 This item setting is only valid for a PE incorporating an FPU. If this item is specified for a PE that does not
have an FPU, an error will occur.

Note 2 When using floating-point operation in the imprecise exception mode in a user routine, issue the syncp
and synce instructions for synchronization to complete the floating-point operation before terminating the
user routine processing by issuing a service call such as ext_tsk.

[DEF_FPSR (fpsr);]

RI850V4 V2 CHAPTER 17 SYSTEM CONFIGURATION FILE

R20UT2889EJ0102 Rev.1.02 Page 312 of 366
Jan 29, 2016

17.4.4 Memory area information

The memory area information defines Memory area name:sec_nam, Memory area size:memsz for a memory area.
The number of the definition as the memory area information is one, it’s one per a section.
The following shows the memory area information format.

The items constituting the memory area information are as follows.

1) Memory area name:sec_nam

Specifies the name of the memory area used for management objects.
Only the section-name (defined in link directive file) .sec_nam from which a dot is excluded can be specified for
sec_nam.

2) Memory area size:memsz

Specifies the size of the memory area used for management objects (unit: bytes).
Only 4-byte boundary values from 0x0 to 0x7ffffffc, or "SIZE_AUTO" can be specified for memsz.

SIZE_AUTO: Total size of management objects defined in Basic information, Task information, etc.

Note For expressions to calculate the memory area size, refer to "APPENDIX B　SIZE OF MEMORY".

Note When information regarding “.kernel_work” section has not been defined, the CF850V4 assumes that the
following information is specified.
　

MEM_AREA (sec_nam, memsz);

MEM_AREA (kernel_work, SIZE_AUTO);

RI850V4 V2 CHAPTER 17 SYSTEM CONFIGURATION FILE

R20UT2889EJ0102 Rev.1.02 Page 313 of 366
Jan 29, 2016

17.5 Static API Information

The following describes the format that must be observed when describing the static API information in the system
configuration file.

The GOTHIC-FONT characters in following descriptions are the reserved words, and italic face characters are the
portion that the user must write the relevant numeric value, symbol name, or keyword.

Items enclosed by square brackets "[]" can be omitted.

17.5.1 Task information

The task information defines ID number: tskid, Attribute: tskatr, Extended information: exinf, Start address: task, Initial
priority: itskpri, Task stack size: stksz, memory area name: sec_nam, Reserved for future use: stk for a task.

The number of items that can be defined as task information is limited to one for each ID number.
The following shows the task information format.
 sec_nam

The items constituting the task information are as follows.

1) ID number: tskid

Specifies the ID number for a task.
A value from 0x1 to 0xff, or a name, can be specified for tskid.

Note When a name is specified, the CF850V4 automatically assigns an ID number.
The CF850V4 outputs the relationship between a name and an ID number to the system information
header file in the following format:

#define tskid value

2) Attribute: tskatr

Specifies the attribute for a task.
The keyword that can be specified for tskatr is TA_HLNG, TA_ASM, TA_ACT, TA_DISPREEMPT, TA_ENAINT and
TA_DISINT.

[Coding language]
TA_HLNG: Start a task through a C language interface.
TA_ASM: Start a task through an assembly language interface.

[Initial activation state]
TA_ACT: Task is activated after the creation.

[Initial preemption state]
TA_DISPREEMPT: Preemption is disabled at task activation.

[Initial interrupt state]
TA_ENAINT: Acceptance of EI level maskable interrupts (from the Maximum interrupt priority: maxintpri

to the minimum interrupt priority) is enabled.
TA_DISINT: Acceptance of EI level maskable interrupts (from the Maximum interrupt priority: maxintpri

to the minimum interrupt priority) is disabled.

Note 1 If specification of TA_ACT is omitted, the DORMANT state is specified as the initial activation state.

Note 2 If specification of TA_DISPREEMPT is omitted, preempt acceptance is enabled.

Note 3 If specifications of TA_ENAINT and TA_DISINT are omitted, EI level maskable interrupts (from the Maxi-
mum interrupt priority: maxintpri to the minimum interrupt priority) are enabled in the initial state.

3) Extended information: exinf

Specifies the extended information for a task.
A value from 0x0 to 0xffffffff, or a symbol name, can be specified for exinf.

Note The target task can be manipulated by handling the extended information as if it were a function
parameter.

CRE_TSK (tskid, { tskatr, exinf, task, itskpri, stksz[:sec_nam], stk });

RI850V4 V2 CHAPTER 17 SYSTEM CONFIGURATION FILE

R20UT2889EJ0102 Rev.1.02 Page 314 of 366
Jan 29, 2016

4) Start address: task

Specifies the start address for a task.
A value from 0x0 to 0xfffffffe (aligned to a 2-byte boundary), or a symbol name, can be specified for task.

Note When a task is coded as follows, the symbol name specified for task should be func_task.

5) Initial priority: itskpri

Specifies the initial priority for a task.
A value from “0x1 to Maximum priority: maxtpri defined in the Basic information” can be specified for itskpri.

6) Task stack size: stksz, memory area name: sec_nam

Specifies the task stack size (unit: bytes) and the name of the memory area secured for the task stack.
Only 4-byte boundary values from 0x0 to 0x7ffffffc can be specified for stksz, and only memory area name
sec_nam defined in Memory area information" can be specified for sec_nam.

Note 1 If specification of sec_nam is omitted, the task stack is allocated to “.kernel_work” section.

Note 2 The stack size that is actually secured is calculated as the specified stack size plus "ctxsz (size of context
area of interrupt handler)". See 2） Task stack for details about ctxsz.

7) Reserved for future use: stk

System-reserved area.
Values that can be specified for stk are limited to NULL characters.

#include <kernel.h>
#include <kernel_id.h>

void
func_task (VP_INT exinf)
{

 ext_tsk ();
}

RI850V4 V2 CHAPTER 17 SYSTEM CONFIGURATION FILE

R20UT2889EJ0102 Rev.1.02 Page 315 of 366
Jan 29, 2016

17.5.2 Semaphore information

The semaphore information defines ID number: semid, Attribute: sematr, Initial resource count: isemcnt, Maximum
resource count: maxsem for a semaphore.

The number of items that can be defined as semaphore information is limited to one for each ID number.
The following shows the semaphore information format.

The items constituting the semaphore information are as follows.

1) ID number: semid

Specifies the ID number for a semaphore.
A value from 0x1 to 0xff, or a name, can be specified for semid.

Note When a name is specified, the CF850V4 automatically assigns an ID number.
The CF850V4 outputs the relationship between a name and an ID number to the system information
header file in the following format:

#define semid value

2) Attribute: sematr

Specifies the task queuing method for a semaphore.
The keyword that can be specified for sematr is TA_TFIFO or TA_TPRI.

TA_TFIFO: Task wait queue is in FIFO order.
TA_TPRI: Task wait queue is in task priority order.

3) Initial resource count: isemcnt

Specifies the initial resource count for a semaphore.
A value from “0x0 to Maximum resource count: maxsem” can be specified for isemcnt.

4) Maximum resource count: maxsem

Specifies the maximum resource count for a semaphore.
A value from 0x1 to 0xffff can be specified for maxsem.

CRE_SEM (semid, { sematr, isemcnt, maxsem });

RI850V4 V2 CHAPTER 17 SYSTEM CONFIGURATION FILE

R20UT2889EJ0102 Rev.1.02 Page 316 of 366
Jan 29, 2016

17.5.3 Eventflag information

The eventflag information defines ID number: flgid, Attribute: flgatr, Initial bit pattern: iflgptn for an eventflag.
The number of items that can be defined as eventflag information is limited to one for each ID number.
The following shows the eventflag information format.

The items constituting the eventflag information are as follows.

1) ID number: flgid

Specifies the ID number for an eventflag.
A value from 0x1 to 0xff, or a name, can be specified for flgid.

Note When a name is specified, the CF850V4 automatically assigns an ID number.
The CF850V4 outputs the relationship between a name and an ID number to the system information
header file in the following format:

#define flgid value

2) Attribute: flgatr

Specifies the attribute for an eventflag.
The keyword that can be specified for flgatr is TA_TFIFO, TA_TPRI, TA_WSGL, TA_WMUL and TA_CLR.

[Task queuing method]
TA_TFIFO: Task wait queue is in FIFO order.
TA_TPRI: Task wait queue is in task priority order.

[Queuing count]
TA_WSGL: Only one task is allowed to be in the WAITING state for the eventflag.
TA_WMUL: Multiple tasks are allowed to be in the WAITING state for the eventflag.

[Bit pattern clear]
TA_CLR: Bit pattern is cleared when a task is released from the WAITING state for eventflag.

Note 1 If specification of TA_TFIFO and TA_TPRI is omitted, tasks are queued in the order of bit pattern checking.

Note 2 If specification of TA_CLR is omitted, "not clear bit patterns if the required condition is satisfied" is set.

3) Initial bit pattern: iflgptn

Specifies the initial bit pattern for an eventflag.
A value from 0x0 to 0xffffffff can be specifies for iflgptn.

CRE_FLG (flgid, { flgatr, iflgptn });

RI850V4 V2 CHAPTER 17 SYSTEM CONFIGURATION FILE

R20UT2889EJ0102 Rev.1.02 Page 317 of 366
Jan 29, 2016

17.5.4 Data queue information

The data queue information defines ID number: dtqid, Attribute: dtqatr, Data count: dtqcnt, memory area name:
sec_nam, Reserved for future use: dtq for a data queue.

The number of items that can be defined as data queue information is limited to one for each ID number.
The following shows the data queue information format.

The items constituting the data queue information are as follows.

1) ID number: dtqid

Specifies the ID number for a data queue.
A value from 0x1 to 0xff, or a name, can be specified for dtqid.

Note When a name is specified, the CF850V4 automatically assigns an ID number.
The CF850V4 outputs the relationship between a name and an ID number to the system information
header file in the following format:

#define dtqid value

2) Attribute: dtqatr

Specifies the task queuing method for a data queue.
The keyword that can be specified for dtqatr is TA_TFIFO or TA_TPRI.

TA_TFIFO: Task wait queue is in FIFO order.
TA_TPRI: Task wait queue is in task priority order.

3) Data count: dtqcnt, memory area name: sec_nam

Specifies the maximum number of data units that can be queued to the data queue area of a data queue, and the
name of the memory area secured for the data queue area.
Only values from 0x0 to 0xff can be specified for dtqcnt, and only memory area name sec_nam defined in Memory
area information" can be specified for sec_nam.

Note If specification of sec_nam is omitted, the data queue is allocated to “.kernel_work” section.

4) Reserved for future use: dtq

System-reserved area.
Values that can be specified for dtq are limited to NULL characters.

CRE_DTQ (dtqid, { dtqatr, dtqcnt[:sec_nam], dtq });

RI850V4 V2 CHAPTER 17 SYSTEM CONFIGURATION FILE

R20UT2889EJ0102 Rev.1.02 Page 318 of 366
Jan 29, 2016

17.5.5 Mailbox information

The mailbox information defines ID number: mbxid, Attribute: mbxatr, Maximum message priority: maxmpri, Reserved
for future use: mprihd for a mailbox.

The number of items that can be defined as mailbox information is limited to one for each ID number.
The following shows the mailbox information format.

The items constituting the mailbox information are as follows.

1) ID number: mbxid

Specifies the ID number for a mailbox.
A value from 0x1 to 0xff, or a name, can be specified for mbxid.

Note When a name is specified, the CF850V4 automatically assigns an ID number.
The CF850V4 outputs the relationship between a name and an ID number to the system information
header file in the following format:

#define mbxid value

2) Attribute: mbxatr

Specifies the attribute for a mailbox.
The keyword that can be specified for mbxatr is TA_TFIFO, TA_TPRI, TA_MFIFO and TA_MPRI.

[Task queuing method]
TA_TFIFO: Task wait queue is in FIFO order.
TA_TPRI: Task wait queue is in task priority order.

[Message queuing method]
TA_MFIFO: Message wait queue is in FIFO order.
TA_MPRI: Message wait queue is in message priority order.

3) Maximum message priority: maxmpri

Specifies the maximum message priority for a mailbox.
A value from 0x1 to 0x7fff can be specified for maxmpri.

Note maxmpri is valid only when TA_MPRI is specified for mqueue.
It is invalid when TA_MFIFO is specified for mqueue.

4) Reserved for future use: mprihd

System-reserved area.
Values that can be specified for mprihd are limited to NULL characters.

CRE_MBX (mbxid, { mbxatr, maxmpri, mprihd });

RI850V4 V2 CHAPTER 17 SYSTEM CONFIGURATION FILE

R20UT2889EJ0102 Rev.1.02 Page 319 of 366
Jan 29, 2016

17.5.6 Mutex information

The mutex information defines ID number: mtxid, Attribute: mtxatr, Reserved for future use: ceilpri for a mutex.
The number of items that can be defined as mutex information is limited to one for each ID number.
The following shows the mutex information format.

The items constituting the mutex information are as follows.

1) ID number: mtxid

Specifies the ID number for a mutex.
A value from 0x1 to 0xff, or a name, can be specified for mtxid.

Note When a name is specified, the CF850V4 automatically assigns an ID number.
The CF850V4 outputs the relationship between a name and an ID number to the system information
header file in the following format:

#define mtxid value

2) Attribute: mtxatr

Specifies the task queuing method for a mutex.
The keyword that can be specified for mtxatr is TA_TFIFO or TA_TPRI.

TA_TFIFO: Task wait queue is in FIFO order.
TA_TPRI: Task wait queue is in task priority order.

3) Reserved for future use: ceilpri

System-reserved area.
Only values from "0x1 to maximum task priority maxtpri defined in Basic information" can be specified for ceilpri.

CRE_MTX (mtxid, { mtxatr, ceilpri });

RI850V4 V2 CHAPTER 17 SYSTEM CONFIGURATION FILE

R20UT2889EJ0102 Rev.1.02 Page 320 of 366
Jan 29, 2016

17.5.7 Fixed-sized memory pool information

The fixed-sized memory pool information defines ID number: mpfid, Attribute: mpfatr, Block count: blkcnt, Basic block
size: blksz, memory area name: sec_nam, Reserved for future use: mpf for a fixed-sized memory pool.

The number of items that can be defined as fixed-sized memory pool information is limited to one for each ID number.
The following shows the fixed-sized memory pool information format.

The items constituting the fixed-sized memory pool information are as follows.

1) ID number: mpfid

Specifies the ID number for a fixed-sized memory pool.
A value from 0x1 to 0xff, or a name, can be specified for mpfid.

Note When a name is specified, the CF850V4 automatically assigns an ID number.
The CF850V4 outputs the relationship between a name and an ID number to the system information
header file in the following format:

#define mpfid value

2) Attribute: mpfatr

Specifies the task queuing method for a fixed-sized memory pool.
The keyword that can be specified for mpfatr is TA_TFIFO or TA_TPRI.

TA_TFIFO: Task wait queue is in FIFO order.
TA_TPRI: Task wait queue is in task priority order.

3) Block count: blkcnt

Specifies the block count for a fixed-sized memory pool.
A value from 0x1 to 0x7fff can be specified for blkcnt.

4) Basic block size: blksz, memory area name: sec_nam

Specifies the size per block (unit: bytes) and the name of the memory area secured for the fixed-size memory pool.
Only 4-byte boundary values from 0x1 to 0x7ffffffc can be specified for blksz, and only memory area name
sec_area defined in Memory area information" can be specified for sec_nam.

Note If specification of sec_nam is omitted, the fixed-sized memory pool is allocated to “.kernel_work” section.

5) Reserved for future use: mpf

System-reserved area.
Values that can be specified for mpl are limited to NULL characters.

CRE_MPF (mpfid, { mpfatr, blkcnt, blksz[:sec_nam], mpf });

RI850V4 V2 CHAPTER 17 SYSTEM CONFIGURATION FILE

R20UT2889EJ0102 Rev.1.02 Page 321 of 366
Jan 29, 2016

17.5.8 Variable-sized memory pool information

The variable-sized memory pool information defines ID number: mplid, Attribute: mplatr, Pool size: mplsz, memory area
name: sec_nam, Reserved for future use: mpl for a variable-sized memory pool.

The number of items that can be defined as variable-sized memory pool information is limited to one for each ID
number.

The following shows the variable-sized memory pool information format.

The items constituting the variable-sized memory pool information are as follows.

1) ID number: mplid

Specifies the ID number for a variable-sized memory pool.
A value from 0x1 to 0xff, or a name, can be specified for mplid.

Note When a name is specified, the CF850V4 automatically assigns an ID number.
The CF850V4 outputs the relationship between a name and an ID number to the system information
header file in the following format:

#define mplid value

2) Attribute: mplatr

Specifies the task queuing method for a variable-sized memory pool.
The keyword that can be specified for mplatr is TA_TFIFO or TA_TPRI.

TA_TFIFO: Task wait queue is in FIFO order.
TA_TPRI: Task wait queue is in task priority order.

3) Pool size: mplsz, memory area name: sec_nam

Specifies the variable-size memory pool size (unit: bytes) and the name of the memory area secured for the
variable-size memory pool.
Only 4-byte boundary values from 0x1 to 0x7ffffffc can be specified for mplsz, and only memory area name
sec_area defined in Memory area information" can be specified for sec_nam.

Note If specification of sec_nam is omitted, the variable-sized memory pool is allocated to “.kernel_work” sec-
tion.

4) Reserved for future use: mpl

System-reserved area.
Values that can be specified for mpl are limited to NULL characters.

CRE_MPL (mplid, { mplatr, mplsz[:sec_nam], mpl });

RI850V4 V2 CHAPTER 17 SYSTEM CONFIGURATION FILE

R20UT2889EJ0102 Rev.1.02 Page 322 of 366
Jan 29, 2016

17.5.9 Cyclic handler information

The cyclic handler information defines ID number: cycid, Attribute: cycatr, Extended information: exinf, Start address:
cychdr, Activation cycle: cyctim, Activation phase: cycphs for a cyclic handler.

The number of items that can be defined as cycic handler information is limited to one for each ID number.
The following shows the cyclic handler information format.

The items constituting the cyclic handler information are as follows.

1) ID number: cycid

Specifies the ID number for a cyclic handler.
A value from 0x1 to 0xff, or a name, can be specified for cycid.

Note When a name is specified, the CF850V4 automatically assigns an ID number.
The CF850V4 outputs the relationship between a name and an ID number to the system information
header file in the following format:

#define cycid value

2) Attribute: cycatr

Specifies the attribute for a cyclic handler.
The keywords that can be specified for cycatr are TA_HLNG, TA_ASM, TA_STA and TA_PHS.

[Coding language]
TA_HLNG: Start a cyclic handler through a C language interface.
TA_ASM: Start a cyclic handler through an assembly language interface.

[Initial activation state]
TA_STA: Cyclic handlers is in an operational state after the creation.

[Activation phase]
TA_PHS: Cyclic handler is activated preserving the activation phase.

Note 1 If specification of TA_STA is omitted, the initial activation state is set to "non-operational state".

Note 2 If specification of TA_PHS is omitted, no activation phase items are saved.

3) Extended information: exinf

Specifies the extended information for a cyclic handler.
A value from 0x0 to 0xffffffff, or a symbol name, can be specified for exinf.

Note The target cyclic handler can be manipulated by handling the extended information as if it were a function
parameter.

4) Start address: cychdr

Specifies the start address for a cyclic handler.
A value from 0x0 to 0xfffffffe (aligned to a 2-byte boundary), or a symbol name, can be specified for cychdr.

Note When a cyclic handler is coded as follows, the symbol name specified for cychdr should be func_cyc.

CRE_CYC (cycid, { cycatr, exinf, cychdr, cyctim, cycphs });

#include <kernel.h>
#include <kernel_id.h>

RI850V4 V2 CHAPTER 17 SYSTEM CONFIGURATION FILE

R20UT2889EJ0102 Rev.1.02 Page 323 of 366
Jan 29, 2016

5) Activation cycle: cyctim

Specifies the activation cycle (unit:millisecond) for a cyclic handler.
A value from 0x1 to 0x7fffffff (aligned to “clkcyc” multiple values) can be specified for cyctim.

Note If a value other than an integral multiple of the base clock cycle defined in Basic information is specified for
cyctim, the CF850V4 assumes that an integral multiple is specified and performs processing.

6) Activation phase: cycphs

Specifies the activation phase (unit:millisecond) for a cyclic handler.
A value from 0x1 to 0x7fffffff (aligned to “clkcyc” multiple values) can be specified for cycphs.

Note 1 In the RI850V4, the initial activation phase means the relative interval from when generation of s cyclic
handler is completed until the first activation request is issued.

Note 2 If a value other than an integral multiple of the base clock cycle defined in Basic information is specified for
cycphs, the CF850V4 assumes that an integral multiple is specified and performs processing.

void
func_cyc (VP_INT exinf)
{

 return;
}

RI850V4 V2 CHAPTER 17 SYSTEM CONFIGURATION FILE

R20UT2889EJ0102 Rev.1.02 Page 324 of 366
Jan 29, 2016

17.5.10 Interrupt handler information

The interrupt handler information defines Exception code: inhno, Attribute: inhatr, Start address: inthdr for an interrupt
handler information.

The number of items that can be defined as interrupt handler information is limited to one for each exception code.
The following shows the interrupt handler information format.

The items constituting the interrupt handler information are as follows.

1) Exception code: inhno

Specifies the exception code for an EI level maskable interrupt for which an interrupt handler is to be registered.
The value that can be specified for inhno is an interrupt source name specified in the device file or a value from
0x1000 to the maximum exception code specified in the Basic information.

Note When an interrupt source name is specified for inhno, -cpu_name must be specified for the CF850V4
activation option.

2) Attribute: inhatr

Specifies the language used to describe an interrupt handler.
The keyword that can be specified for inhatr is TA_HLNG or TA_ASM.

TA_HLNG: Start an interrupt handler through a C language interface.
TA_ASM: Start an interrupt handler through an assembly language interface.

3) Start address: inthdr

Specifies the start address for an interrupt handler.
A value from 0x0 to 0xfffffffe (aligned to a 2-byte boundary), or a symbol name, can be specified for inthdr.

Note When an interrupt handler is coded as follows, the symbol name specified for inthdr should be func_int.

DEF_INH (inhno, { inhatr, inthdr });

#include <kernel.h>
#include <kernel_id.h>

void
func_int (void)
{

 return;
}

RI850V4 V2 CHAPTER 17 SYSTEM CONFIGURATION FILE

R20UT2889EJ0102 Rev.1.02 Page 325 of 366
Jan 29, 2016

17.5.11 Extended service call routine information

The extended service call routine information defines Function code: fncd, Attribute: svcatr, Start address: svcrtn for an
extended service call routine.

The number of items that can be defined as extended service call routine information is limited to one for each function
code.

The following shows the extended service call routine information format.

The items constituting the extended service call routine information are as follows.

1) Function code: fncd

Specifies the function code for an extended service call routine.
A value from 0x1 to 0xff can be specified for fncd.

2) Attribute: svcatr

Specifies the language used to describe an extended service call routine.
The keyword that can be specified for svcatr is TA_HLNG or TA_ASM.

TA_HLNG: Start an extended service call routine through a C language interface.
TA_ASM: Start an extended service call routine through an assembly language interface.

3) Start address: svcrtn

Specifies the start address for an extended service call routine.
A value from 0x0 to 0xfffffffe (aligned to a 2-byte boundary), or a symbol name, can be specified for svcrtn.

Note When an extended service call routine handler is coded as follows, the symbol name specified for svcrtn
should be func_svc.

DEF_SVC (fncd, { svcatr, svcrtn });

#include <kernel.h>
#include <kernel_id.h>

ER_UINT
func_svc (VP_INT par1, VP_INT par2, VP_INT par3)
{
 ER_UINT ercd;

 return (ercd);
}

RI850V4 V2 CHAPTER 17 SYSTEM CONFIGURATION FILE

R20UT2889EJ0102 Rev.1.02 Page 326 of 366
Jan 29, 2016

17.5.12 Initialization routine information

The initialization routine information defines Attribute: iniatr, Extended information: exinf, Start address: inirtn for an
initialization routine.

The number of initialization routine information items that can be specified is defined as being within the range of 0 to
254.

The following shows the idle initialization routine information format.

The items constituting the initialization routine information are as follows.

1) Attribute: iniatr

Specifies the language used to describe an initialization routine.
The keyword that can be specified for iniatr is TA_HLNG or TA_ASM.

TA_HLNG: Start an initialization routine through a C language interface.
TA_ASM: Start an initialization routine through an assembly language interface.

2) Extended information: exinf

Specifies the extended information for an initialization routine.
A value from 0x0 to 0xffffffff, or a symbol name, can be specified for exinf.

Note The target initialization routine can be manipulated by handling the extended information as if it were a
function parameter.

3) Start address: inirtn

Specifies the start address for an initialization routine.
A value from 0x0 to 0xfffffffe (aligned to a 2-byte boundary), or a symbol name, can be specified for inirtn.

Note When an initialization routine handler is coded as follows, the symbol name specified for inirtn should be
func_ini.

ATT_INI ({ initatr, exinf, inirtn });

#include <kernel.h>

void
func_ini (VP_INT exinf)
{

 return;
}

RI850V4 V2 CHAPTER 17 SYSTEM CONFIGURATION FILE

R20UT2889EJ0102 Rev.1.02 Page 327 of 366
Jan 29, 2016

17.5.13 Idle routine information

The idle routine information defines Attribute: idlatr, Start address: idlrtn for an idle routine.
The number of idle routine information items that can be specified is defined as being within the range of 0 to 1.
The following shows the idle routine information format.

The items constituting the idle routine information are as follows.

1) Attribute: idlatr

Specifies the language used to describe an idle routine.
The keyword that can be specified for idlatr is TA_HLNG or TA_ASM.

TA_HLNG: Start an idle routine through a C language interface.
TA_ASM: Start an idle routine through an assembly language interface.

2) Start address: idlrtn

Specifies the start address for an idle routine.
A value from 0x0 to 0xfffffffe (aligned to a 2-byte boundary), or a symbol name, can be specified for idlrtn.

Note When an extended service call idle handler is coded as follows, the symbol name specified for idlrtn
should be func_idl.

VATT_IDL ({ idlatr, idlrtn });

#include <kernel.h>

void
func_idl (void)
{

 return;
}

RI850V4 V2 CHAPTER 17 SYSTEM CONFIGURATION FILE

R20UT2889EJ0102 Rev.1.02 Page 328 of 366
Jan 29, 2016

17.6 Description Examples

The following describes an example for coding the system configuration file.

Figure 17-2 Example of System Configuration File

Note The RI850V4 provides sample source files for the system configuration file.

-- Declarative Information description
INCLUDE (" \"kernel.h\" ");

-- System Information description
RI_SERIES (RI850V4, V201);

CPU_TYPE (G3M);
DEF_TIM (1);
CLK_INTNO (0x104c);
SYS_STK (0x800);
STK_CHK (TA_ON);
MAX_PRI (0x12);
MAX_INTPRI (INTPRI5);
MAX_INT (10, 0x1119);
DEF_FPSR (0x00020000);

MEM_AREA (kernel_work, SIZE_AUTO);

-- Static API Information description
CRE_TSK (ID_TASK1, { TA_HLNG | TA_ACT | TA_ENAINT, 0, task1, 1, 0x100, NULL });
CRE_TSK (ID_TASK2, { TA_HLNG | TA_ENAINT, 0, task2, 3, 0x50, NULL });
CRE_TSK (ID_TASK3, { TA_HLNG | TA_ENAINT, 0, task3, 3, 0x50, NULL });
CRE_TSK (ID_TASK4, { TA_HLNG | TA_ENAINT, 0, task4, 7, 0x50, NULL });
CRE_TSK (ID_TASK5, { TA_HLNG | TA_ENAINT, 0, task5, 5, 0x50, NULL });

CRE_SEM (ID_SEM1, { TA_TFIFO, 0x1, 0x1 });

CRE_FLG (ID_FLG1, { TA_TFIFO | TA_WMUL | TA_CLR, 0x0 });

CRE_DTQ (ID_DTQ1, { TA_TFIFO, 0x40, NULL });

CRE_MBX (ID_MBX1, { TA_TFIFO | TA_MFIFO, 0x10, NULL });

CRE_MTX (ID_MTX1, { TA_TFIFO, 0x10 });

CRE_MPF (ID_MPF1, { TA_TFIFO, 0x4, 0x10, NULL });

CRE_MPL (ID_MPL1, { TA_TFIFO, 0x50, NULL });

CRE_CYC (ID_CYC1, { TA_HLNG | TA_STA, 0x0, cychdr1, 1000, 5 });

DEF_INH (0x1000, { TA_HLNG, inthdr1 });
DEF_INH (0x1001, { TA_HLNG, inthdr2 });

DEF_SVC (1, { TA_HLNG, svcrtn1 });

ATT_INI ({ TA_HLNG, 0x0, inirtn });

VATT_IDL ({ TA_HLNG, idlrtn });

RI850V4 V2 CHAPTER 18 CONFIGURATOR CF850V4

R20UT2889EJ0102 Rev.1.02 Page 329 of 366
Jan 29, 2016

CHAPTER 18 CONFIGURATOR CF850V4

This chapter explains configurator CF850V4, which is provided by the RI850V4 as a utility tool useful for system
construction.

18.1 Outline
To build systems (load module) that use functions provided by the RI850V4, the information storing data to be provided

for the RI850V4 is required.
Since information files are basically enumerations of data, it is possible to describe them with various editors.
Information files, however, do not excel in descriptiveness and readability; therefore substantial time and effort are

required when they are described.
To solve this problem, the RI850V4 provides a utility tool (configurator "CF850V4") that converts a system configuration

file which excels in descriptiveness and readability into information files.
The CF850V4 reads the system configuration file as an input file, and then outputs information files.
The information files output from the CF850V4 are explained below.

- System information table file
An information file that contains data related to OS resources (base clock interval, maximum priority, management
object, or the like) required by the RI850V4 to operate.

- System information header file
An information file that contains the correspondence between object names (task names, semaphore names, or the
like) described in the system configuration file and IDs.

- Entry file
A routine (Interrupt entry processing) dedicated to entry processing that holds processing to branch to the relevant
processing (such as interrupt preprocessing "_kernel_int_entry") for the handler address to which the CPU forcibly
passes control when an EI level maskable interrupt occurs.

RI850V4 V2 CHAPTER 18 CONFIGURATOR CF850V4

R20UT2889EJ0102 Rev.1.02 Page 330 of 366
Jan 29, 2016

18.2 Activation Method

18.2.1 Activating from command line

The following is how to activate the CF850V4 from the command line.
Note that, in the examples below, "C>" indicates the command prompt, "D" indicates pressing of the space key, and

"<Enter>" indicates pressing of the enter key.
The activation options enclosed in "[]" can be omitted.

The details of each activation option are explained below:

- @<command_file>
Specifies the command file name to be input.

If omitted The activation options specified on the command line is valid.

Note 1 Specify the command file name <command file> within 255 characters including the path name.

Note 2 When the command file name (including the path) includes a space, surround <command file> by double-
quotation marks (").

Note 3 For details about the command file, refer to "18.2.3 Command file".

- -peid=<id>
Specifies the target PE number for which the application with RI850V4 is allocated.

If omitted The CF850V4 performs processing with the assumption that -peid=1 is specified.

Note 1 When the -cpu option is omitted, the CF850V4 ignores this activation option setting and outputs an
information file for a single-core configuration.

Note 2 A value from 1 to the maximum PE number in the target device can be specified for <id>.

- -cpu Δ <name>
Specifies the device specification name for the target device (the character string of the device file name excluding
the first character "d" and extension ".dvf").

If omitted When the CC-RH compiler is used, -ne must be specified as the CF850V4 activation option.

Note 1 When the device file name is dr7f701007.dvf, the character string specified for <name> should be
r7f701007.

Note 2 When -peid=<id> is specified, information regarding the specified PE number is read from the device file.

- -devpath=<path>
Retrieves the device file corresponding to the target device specified with -cpu Δ <name> from the path folder.

If omitted The device file is retrieved for the current folder.

Note 1 Specify the search path <path> within 255 characters.

Note 2 When the search path includes a space, surround <path> by double-quotation marks (").

- -i Δ <SIT file>
Specify the output file name (system information table file name) while the CF850V4 is activated.

If omitted The CF850V4 assumes that the following activation option is specified, and performs processing.

REL Compiler (CC-RH) is used :-i Δ sit.s
Green Hills Compiler (CCV850) is used :-i Δ sit.850

C> cf850v4.exe Δ [@<command file>] Δ [-peid=<id>] Δ [-cpu Δ <name>] Δ [-devpath=<path>] Δ [-i Δ <SIT file>] Δ
[-e Δ <Entry file>] Δ [-d Δ <Header file>] Δ [-ni] Δ [-ne] Δ [-nd] Δ [-t Δ <TOOL name>] Δ [-T Δ <Compiler path>]
Δ [-I Δ <Include path>] Δ [-np] Δ [-intbp=<Interrupt Base Address>] Δ [-ebase=<Exception Base Address>] Δ
[-V] Δ [-help] Δ <CF file> [Enter]

RI850V4 V2 CHAPTER 18 CONFIGURATOR CF850V4

R20UT2889EJ0102 Rev.1.02 Page 331 of 366
Jan 29, 2016

Note 1 Specify the output file name <SIT file> within 255 characters including the path name.

Note 2 When the output file name includes a space, surround <SIT file> by double-quotation marks (").

Note 3 If this activation option is specified together with -ni, the CF850V4 handles -ni as the valid option.

- -e Δ <Entry file>
Specify the output file name (entry file name) while the CF850V4 is activated.

If omitted The CF850V4 assumes that the following activation option is specified, and performs processing.

REL Compiler (CC-RH) is used :-e Δ entry.s
Green Hills Compiler (CCV850) is used :-e Δ entry.850

Note 1 Specify the output file name <Entry file> within 255 characters including the path name.

Note 2 When the output file name includes a space, surround <Entry file> by double-quotation marks (").

Note 3 If this activation option is specified together with -ne, the CF850V4 handles -ne as the valid option.

- -d Δ <Header file>
Specify the output file name (system information header file name) while the CF850V4 is activated.

If omitted If omitted The CF850V4 assumes that -d Δ kernel_id.h is specified and performs processing.

Note 1 Specify the output file name <Header file> within 255 characters including the path name.

Note 2 When the output file name includes a space, surround <Header file> by double-quotation marks (").

Note 3 If this activation option is specified together with -nd, the CF850V4 handles -nd as the valid option.

- -ni
Disables output of the system information table file.

If omitted The system information table file is output.

Note If this activation option is specified together with -i Δ <SIT file>, the CF850V4 handles this activation option
as the valid option.

- -ne
Disables output of the entry file.

If omitted The entry file is output.

Note If this activation option is specified together with -e Δ <Entry file>, the CF850V4 handles this activation
option as the valid option.

- -nd
Disables output of the system information header file.

If omitted If omitted The CF850V4 assumes that -d Δ kernel_id is specified and performs processing.

Note If this activation option is specified together with -d Δ <Header file>, the CF850V4 handles this activation
option as the valid option.

- -t Δ <TOOL name>
Specifies the type of the C compiler package used.
Only REL and GHS can be specified for tool as the keyword.

If omitted The CF850V4 assumes that -t Δ REL is specified and performs processing.

- -T Δ <Compiler path>
Specifies the command search <Compiler path> folder for the C preprocessor of the C compiler package specified by
-t Δ <TOOL name>.

If omitted The CF850V4 searches commands from a folder specified by environment variable (such as PATH).

Note 1 Specify the command search path name <Compiler path> within 255 characters.

Note 2 When the search path includes a space, surround <Compiler path> by double-quotation marks (").

RI850V4 V2 CHAPTER 18 CONFIGURATOR CF850V4

R20UT2889EJ0102 Rev.1.02 Page 332 of 366
Jan 29, 2016

- -I Δ <Include path>
Specifies the command search <Include path> folder for <Header file> specified by Header file declaration.

If omitted The CF850V4 starts searching from a folder where the input file specified by <CF file> is stored, the
current folder, default search target folder of the C compiler package specified by -t Δ <TOOL name> in
that order.

Note 1 Specify the command search path name <Include path> within 255 characters.

Note 2 When the search path includes a space, surround <Include path> by double-quotation marks (").

- -np
Disables C preprocessor activation when the CF850V4 finished the analysis for syntax included in the system
configuration file.

If omitted The CF850V4 activates the C preprocessor of the C compiler package specified by -t Δ <TOOL name>.

- -intbp=<Interrupt Base Address>
Specifies the base address of the interrupt handler address table, which is necessary when the entry file is output with
the table reference method.

If omitted If both this activation option and -ebase=<Exception Base Address> are omitted, the CF850V4 performs
processing with the assumption that the direct vector method based on the reset vector address is
selected as [Generate method] for the entry file.
The reset vector address is set to the default value defined in the device file that is specified in -cpu Δ
<name>. If the reset vector address value cannot be obtained from the device file, an error will occur.

Note 1 A value from 0x200 to 0xfffff800 can be specified as the base address <Interrupt Base Address>.

Note 2 If this activation option is specified together with -ebase=<Exception Base Address>, the CF850V4
handles this activation option as the valid option.

- -ebase=<Exception Base Address>
Specifies the exception handler vector address, which is necessary when the entry file is output with the direct vector
method.

If omitted If both this activation option and -intbp=<Interrupt Base Address> are omitted, the CF850V4 performs
processing with the assumption that the direct vector method based on the reset vector address is
selected as [Generate method] for the entry file.
The reset vector address is set to the default value defined in the device file that is specified in -cpu Δ
<name>. If the reset vector address value cannot be obtained from the device file, an error will occur.

Note 1 A value from 0x200 to 0xfffffe00 can be specified as the vector address <Exception Base Address>.

Note 2 If this activation option is specified together with -intbp=<Interrupt Base Address>, the CF850V4 handles -
intbp=<Interrupt Base Address> as the valid option.

- -V
Outputs version information for the CF850V4 to the standard output.

Note If this activation option is specified, the CF850V4 handles other activation options as invalid options and
suppresses outputting of information files.

- -help
Outputs the usage of the activation options for the CF850V4 to the standard output.

Note If this activation option is specified, the CF850V4 handles other activation options as invalid options and
suppresses outputting of information files.

- <CF file>
Specifies the system configuration file name to be input.

Note 1 Specify the input file name <CF file> within 255 characters including the path name.

Note 2 When the input file name includes a space, surround <CF file> by double-quotation marks (").

Note 3 This input file name can be omitted only when -V or -help is specified.

RI850V4 V2 CHAPTER 18 CONFIGURATOR CF850V4

R20UT2889EJ0102 Rev.1.02 Page 333 of 366
Jan 29, 2016

18.2.2 Activating from CS+

This is started when CS+ performs a build, in accordance with the setting on the Property panel, on the [System
Configuration File Related Information] tab.

RI850V4 V2 CHAPTER 18 CONFIGURATOR CF850V4

R20UT2889EJ0102 Rev.1.02 Page 334 of 366
Jan 29, 2016

18.2.3 Command file

The CF850V4 performs command file support from the objectives that eliminate specified probable activation option
character count restrictions in the command lines.

Description formats of the command file are described below.

1) Character code
Create a command file using ASCII code.

Note Shift-JIS and EUC-JP codes can be used only for comments.

2) Comment
A line beginning with # is handled as a comment.

3) Delimiter
A space, a tab, or a new-line character is handled as a delimiter.

4) Maximum number of lines
Up to 50 lines can be coded in a command file.

5) Maximum number of characters
Up to 16,384 characters per line can be coded in a command file.

An example of a command file is shown below.
In this example, the following activation options are included.

Target processor name: r7f701z03
Device file search folder: C:\CS+\CC\Device\RH850\Devicefile
System information table file name: sit.s
Entry file name: entry.s
System information header file name: kernel_id.h
C compiler package type: REL
Command search path for C compiler package: C:\CS+\CC\CC-RH\V1.00.00\bin
Header file declaration search folder: C:\tmp\inc850, and C:\Program Files\Sample\include
Vector address: 0x200
System configuration file name: sys.cfg

Figure 18-1 Example of Command File Description

Command File
-cpu rf701z03
-devpath=C:\CS+\CC\Device\RH850\Devicefile
-i sit.s
-e entry.s
-d kernel_id.h
-t REL
-T C:\CS+\CC\CC-RH\V1.00.00\bin
-I C:\tmp\inc850
-I “C:\Program Files\Sample\include“
-ebase=0x200
sys.cfg

RI850V4 V2 CHAPTER 18 CONFIGURATOR CF850V4

R20UT2889EJ0102 Rev.1.02 Page 335 of 366
Jan 29, 2016

18.2.4 Command input examples

The following shows CF850V4 command input examples.
In these examples, "C>" indicates the command prompt, "Δ" indicates the space key input, and "<Enter>" indicates the

ENTER key input.

1) System configuration file sys.cfg is loaded from the current folder, the device file corresponding to the device
specification name r7f701z03 is loaded from the C:\CS+\CC\Device\RH850\Devicefile folder as an input file, and
system information table file sit.s, entry file entry.s for the direct vector method (vector address: 0x200), and system
information header file kernel_id.h are then output. Command search processing for the preprocessor of the C
compiler package from Renesas Electronics is done in the following order, and the relevant preprocessor is
activated when the CF850V4 has finished the analysis for the syntax of the system configuration file.

1. C:\CS+\CC\CC-RH\V1.00.00\bin

2. Folders defined by environment variables (such as PATH)

File search processing for the header files specified in the header file information is performed in the following
order.

1. C:\tmp\inc850

2. C:\Program Files\Sample\include

2) CF850V4 version information is output to the standard output.

3) Information related to the CF850V4 activation option (type, usage, or the like) is output to the standard output.

C> cf850v4 Δ -cpu Δ rf701z03 Δ -devpath=C:\CS+\CC\Device\RH850\Devicefile Δ -i Δ sit.s Δ -e Δ entry.s Δ
-d Δ kernel_id.h Δ -t Δ REL Δ -T Δ C:\CS+\CC\CC-RH\V1.00.00\bin Δ -I Δ C:\tmp\inc850 Δ -I Δ
"C:\Program Files\Sample\include" Δ -ebase=0x200 Δ sys.cfg［Enter］

C> cf850v4 Δ -V [Enter]

C> cf850v4 Δ -help [Enter]

RI850V4 V2 APPENDIX A WINDOW REFERENCE

R20UT2889EJ0102 Rev.1.02 Page 336 of 366
Jan 29, 2016

APPENDIX A WINDOW REFERENCE

This appendix explains the window/panels that are used when the activation option for the CF850V4 is specified from
the integrated development environment platform CS+.

A.1 Description
The following shows the list of window/panels.

Table A-1 List of Window/Panels

Window/Panel Name Function Description

Main window
This is the first window to be opened when CS+ is launched.
This window is used to manipulate the CS+ components (such as the
build tool and resource information tool).

Project Tree panel
This panel is used to display the project components (such as the
microcontroller and build tool) in tree view.

Property panel
This panel is used to display information regarding the node selected on
the Project Tree panel and change the settings of the information.

RI850V4 V2 APPENDIX A WINDOW REFERENCE

R20UT2889EJ0102 Rev.1.02 Page 337 of 366
Jan 29, 2016

Main window

Outline

This is the first window to be opened when CS+ is launched. This window is used to manipulate the CS+ components
(such as the build tool and resource information tool).

This window can be opened as follows:

- Select Windows [start] -> [All programs] -> [Renesas Electronics CS+] -> [CS+ for CC (RL78, RX, RH850)]

Display image

RI850V4 V2 APPENDIX A WINDOW REFERENCE

R20UT2889EJ0102 Rev.1.02 Page 338 of 366
Jan 29, 2016

Explanation of each area

1) Menu bar

This area contains the following group of menus.

- [View] menu

2) Toolbar

Displays the buttons relate to Realtime OS.
Buttons on the toolbar can be customized in the User Setting dialog box. You can also create a new toolbar in the
same dialog box.

- Realtime OS toolbar

3) Panel display area

The following panels are displayed in this area.

- Project Tree panel

- Property panel

- Output panel

See the each panel section for details of the contents of the display.

Note See CS+ Integrated Development Environment User’s Manual: Build for details about the Output panel.

Realtime OS
The [View] menu shows the cascading menu to start the tools of Real-
Time OS.

Resource Information
Opens the Realtime OS Resource Information panel.
Note that this menu is disabled when the debug tool is not connected.

Performance Analyzer This menu is always disabled.

Task Analyzer 1
Opens the Realtime OS Task Analyzer 1 panel.
Note that this menu is disabled when the debug tool is not connected.

Task Analyzer 2
Opens the Realtime OS Task Analyzer 2 panel.
Note that this menu is disabled when the debug tool is not connected.

Opens the Realtime OS Resource Information panel.
Note that this button is disabled when the debug tool is not connected.

Opens the Realtime OS Task Analyzer 1 panel.
Note that this menu is disabled when the debug tool is not connected.

Opens the Realtime OS Task Analyzer 2 panel.
Note that this menu is disabled when the debug tool is not connected.

RI850V4 V2 APPENDIX A WINDOW REFERENCE

R20UT2889EJ0102 Rev.1.02 Page 339 of 366
Jan 29, 2016

Project Tree panel

Outline

This panel is used to display the project components (such as the microcontroller and build tool) in tree view.

This panel can be opened as follows:

- Select [View] menu -> [Project Tree]

Display image

RI850V4 V2 APPENDIX A WINDOW REFERENCE

R20UT2889EJ0102 Rev.1.02 Page 340 of 366
Jan 29, 2016

Explanation of each area

1) Project tree area

Project components are displayed in tree view with the following given node.

Node Description

RI850V4 (Realtime OS)
(referred to as “Realtime OS node”)

Realtime OS to be used.

xxx.cfg System configuration file.

Realtime OS generated files
(referred to as “Realtime OS generated files
node”)

The following information files appear directly below the
node created when a system configuration file is added.

- System information table file (.s)

- System information header file (.h)

- Entry file (.s)

This node and files displayed under this node cannot be
deleted directly.
This node and files displayed under this node will no longer
appear if you remove the system configuration file from the
project.

Realtime OS related file
(referred to as “Realtime OS related files
node”)

The following information file appears directly below the
node.

- Trace information file (trcinf.c)

This node and the file displayed under this node cannot be
deleted.

RI850V4 V2 APPENDIX A WINDOW REFERENCE

R20UT2889EJ0102 Rev.1.02 Page 341 of 366
Jan 29, 2016

Property panel

Outline

This panel is used to display information regarding the node selected on the Project Tree panel and change
the settings of the information.

This panel can be opened as follows:

- On the Project Tree panel, select a component such as the Realtime OS node or the system configuration file, and
then select the [View] menu -> Property] or select [Property] from the context menu.

Note When the Property panel is already open, selecting a component such as the Realtime OS node or the
system configuration file on the Project Tree panel displays the detailed information regarding the selected
component.

Display image

Explanation of each area

1) Selected node area

Display the name of the selected node on the Project Tree panel.
When multiple nodes are selected, this area is blank.

2) Detailed information display/change area

In this area, the detailed information on the Realtime OS node, system configuration file, or the like that is selected
on the Project Tree panel is displayed by every category in the list. And the settings of the information can be
changed directly.
Mark indicates that all the items in the category are expanded. Mark indicates that all the items are collapsed.
You can expand/collapse the items by clicking these marks or double clicking the category name.
See the section on each tab for the details of the display/setting in the category and its contents.

3) Property description area

Display the brief description of the categories and their contents selected in the detailed information display/change
area.

RI850V4 V2 APPENDIX A WINDOW REFERENCE

R20UT2889EJ0102 Rev.1.02 Page 342 of 366
Jan 29, 2016

4) Tab selection area

Categories for the display of the detailed information are changed by selecting a tab.
In this panel, the following tabs are contained (see the section on each tab for the details of the display/setting on
the tab).

- When the Realtime OS node is selected on the Project Tree panel

- [RI850V4] tab

- When the system configuration file is selected on the Project Tree panel

- [System Configuration File Related Information] tab

- [File Information] tab

- When the Realtime OS generated files node is selected on the Project Tree panel

- [Category Information] tab

- When the system information table file or entry file is selected on the Project Tree panel

- [Build Settings] tab

- [Individual Assemble Options] tab

- [File Information] tab

- When the system information header file is selected on the Project Tree panel

- [File Information] tab

- When the trace information file is selected on the Project Tree panel

- [Build Settings] tab

- [Individual Assemble Options] tab

- [File Information] tab

Note1 See "CS+ Integrated Development Environment User’s Manual: CC-RH Build Tool Operation" for details
about the [File Information], [Category Information], [Build Settings], [Individual Assemble Options], and
[Individual Compile Options] tabbed pages.

Note2 When multiple components are selected on the Project Tree panel, only the tab that is common to all the
components is displayed. If the value of the property is modified, that is taken effect to the selected
components all of which are common to all.

RI850V4 V2 APPENDIX A WINDOW REFERENCE

R20UT2889EJ0102 Rev.1.02 Page 343 of 366
Jan 29, 2016

[RI850V4] tab

Outline

This tab shows the detailed information on RI850V4 to be used categorized by the following.

- Version Information

This tab can be opened as follows:

- On the Project Tree panel, select a component such as the Realtime OS node or the system configuration file, and
then select the [View] menu -> Property] or select [Property] from the context menu.

Note When the Property panel is already open, selecting a component such as the Realtime OS node or the
system configuration file on the Project Tree panel displays the detailed information regarding the selected
component.

Display image

Explanation of each area

1) [Version Information]

The detailed information on the version of the RI850V4 are displayed.

Kernel version

Display the version of RI850V4 to be used.

Default The latest version of the installed RI850V4 package

How to change Changes not allowed

Install folder

Display the folder in which RI850V4 to be used is installed with the absolute path.

Default The folder in which RI850V4 to be used is installed

How to change Changes not allowed

RI850V4 V2 APPENDIX A WINDOW REFERENCE

R20UT2889EJ0102 Rev.1.02 Page 344 of 366
Jan 29, 2016

Register mode

Display the register mode set in the project.
Display the same value as the value of the [Select register mode] property of the
build tool.

Default The register mode selected in the property of the build tool

How to change Changes not allowed

RI850V4 V2 APPENDIX A WINDOW REFERENCE

R20UT2889EJ0102 Rev.1.02 Page 345 of 366
Jan 29, 2016

[Task Analyzer] tab

Outline

This page is used to display and change the settings of various information required when using the task analyzer tool,
which is a utility tool provided by the RI850V4, to analyze the history (trace data) of processing program execution.

This tab can be opened as follows:

- On the Project Tree panel, select a component such as the Realtime OS node or the system configuration file, and
then select the [View] menu -> Property] or select [Property] from the context menu.

Note When the Property panel is already open, selecting a component such as the Realtime OS node or the
system configuration file on the Project Tree panel displays the detailed information regarding the selected
component.

Display image

Explanation of each area

1) [Trace] category

Displays and changes the settings of various information required when using the utility tool "task analyzer tool" to
analyze the history (trace data) of processing program execution.

RI850V4 V2 APPENDIX A WINDOW REFERENCE

R20UT2889EJ0102 Rev.1.02 Page 346 of 366
Jan 29, 2016

Selection of trace mode

Select the type of information to be acquired as trace data and the location where
trace data is to be stored.

Default Not tracing

How to change Select from the drop-down list

Restriction

Not tracing Does not use the task analyzer tool.

Taking in
trace chart
by hardware
trace mode

Acquires information in a trace chart (such as
the execution transition state of the processing
program and the state of Realtime OS
resource usage) and CPU usage status as
trace data.
The trace buffer is allocated in the trace
memory prepared by the debug tool.

Taking in
trace chart
by software
trace mode

Acquires information in a trace chart (such as
the execution transition state of the processing
program and the state of Realtime OS
resource usage) and CPU usage status as
trace data.
The trace buffer is allocated in the area
selected in [Select the buffer].

Taking in
l o n g -
statistics by
s o f t w a r e
trace mode

Acquires the CPU usage status as trace data.
The trace buffer is allocated in the prespecified
section “.kernel_data_trace.bss”.

Operation after used up
the buffers

Select the operation after using up the trace buffer.
This item is displayed only when "Taking in trace chart by software trace mode" is
selected in [Selection of trace mode].

Default Continue to execution while the buffers overwriting

How to change Select from the drop-down list.

Restriction

Continue to
e x e c u t i o n
while the
b u f f e r s
overwriting

Overwrites the oldest trace data written to the
buffer.

Stop the
trace taking
in

Stops writing to the trace buffer.

Buffer size

Specify the size of the trace buffer (bytes).
This item is displayed only when "Taking in trace chart by software trace mode" is
selected in [Selection of trace mode].

Default 0x100

How to change Enter directly in the text box.

Restriction 0x10 - 0xfffffffc

RI850V4 V2 APPENDIX A WINDOW REFERENCE

R20UT2889EJ0102 Rev.1.02 Page 347 of 366
Jan 29, 2016

Select the buffer

Select the location to store trace data.
This item is displayed only when "Taking in trace chart by software trace mode" is
selected in [Selection of trace mode].

Default Kernel buffer

How to change Select from the drop-down list.

Restriction

K e r n e l
buffer

Allocates the trace buffer in the prespecified
section “.kernel_data_trace.bss”.

A n o t h e r
buffer

Allocates the trace buffer at the address
specified in [Buffer address].

Buffer address

Specify the start address of the area to be allocated as the trace buffer.
This item is displayed only when "Another buffer" is selected in [Select the
buffer].

Default 0x100

How to change Enter directly in the text box.

Restriction 0x10 - 0xfffffff0

RI850V4 V2 APPENDIX A WINDOW REFERENCE

R20UT2889EJ0102 Rev.1.02 Page 348 of 366
Jan 29, 2016

[System Configuration File Related Information] tab

Outline

This tab shows the detailed information on the using system configuration file categorized by the following and the
configuration can be changed.

- System information table file

- System information header file

- Entry file

This tab can be opened as follows:

- On the Project Tree panel, select a component such as the Realtime OS node or the system configuration file, and
then select the [View] menu -> Property] or select [Property] from the context menu.

Note When the Property panel is already open, selecting a component such as the Realtime OS node or the
system configuration file on the Project Tree panel displays the detailed information regarding the selected
component.

Display image

RI850V4 V2 APPENDIX A WINDOW REFERENCE

R20UT2889EJ0102 Rev.1.02 Page 349 of 366
Jan 29, 2016

Explanation of each area

1) [System Information Table File]

The detailed information on the system information table file are displayed and the configuration can be changed.

Generate a file

Select whether to generate a system information table file and whether to update
the file when the system configuration file is changed.

Default Yes(It updates the file when the .cfg file is changed)(-i)

How to change Select from the drop-down list.

Restriction

Yes(It updates the file
when the .cfg file is
changed)(-i)

Generates a new system information
table file and displays it on the project
tree.
If the system configuration file is
changed when there is already a
system information table file, then the
system information table file is
updated.

Yes(It does not
update the file when
the .cfg file is
changed)(-ni)

Does not update the system
information table file when the system
configuration file is changed.
An error occurs during build if this
item is selected when the system
information table file does not exist.

No(It does not
register the file to the
project)(-ni)

Does not generate a system
information table file and does not
display it on the project tree.
If this item is selected when there is
already a system information table
file, then the file itself is not deleted.

Output folder

Specify the folder for outputting the system information table file.
If a relative path is specified, the reference point of the path is the project folder.
If an absolute path is specified, the reference point of the path is the project folder
(unless the drives are different).
The following macro name is available as an embedded macro.
%BuildModeName%: Replaces with the build mode name.
If this field is left blank, macro name "%BuildModeName%" will be displayed.
This property is not displayed when [No(It does not register the file that is added
to the project)(-ni)] in the [Generate a file] property is selected.

Default %BuildModeName%

How to change
Directly enter to the text box or edit by the Browse For Folder
dialog box which appears when clicking the [...] button.

Restriction Up to 247 characters

File name

Specify the system information table file name.
If the file name is changed, the name of the file displayed on the project tree.
Use the extension ".s". If the extension is different or omitted, ".s" is automatically
added.
You cannot specify the same file name as the value of the [File name] property in
the [Entry File] category.
This property is not displayed when [No(It does not register the file that is added
to the project)(-ni)] in the [Generate a file] property is selected.

Default sit.s

How to change Directly enter to the text box.

Restriction Up to 259 characters

RI850V4 V2 APPENDIX A WINDOW REFERENCE

R20UT2889EJ0102 Rev.1.02 Page 350 of 366
Jan 29, 2016

2) [System Information Header File]

The detailed information on the system information header file are displayed and the configuration can be changed.

Generate a file

Select whether to generate a system information header file and whether to
update the file when the system configuration file is changed.

Default Yes(It updates the file when the .cfg file is changed)(-d)

How to change Select from the drop-down list.

Restriction

Yes(It updates the file
when the .cfg file is
changed)(-d)

Generates a system information
header file and displays it on the
project tree.
If the system configuration file is
changed when there is already a
system information header file, then
the system information header file is
updated.

Yes(It does not
update the file when
the .cfg file is
changed)(-nd)

Does not update the system
information header file when the
system configuration file is changed.
An error occurs during build if this
item is selected when the system
information header file does not exist.

No(It does not
register the file to the
project)(-nd)

Does not generate a system
information header file and does not
display it on the project tree.
If this item is selected when there is
already a system information header
file, then the file itself is not deleted.

Output folder

Specify the folder for outputting the system information header file.
If a relative path is specified, the reference point of the path is the project folder.
If an absolute path is specified, the reference point of the path is the project folder
(unless the drives are different).
The following macro name is available as an embedded macro.
%BuildModeName%: Replaces with the build mode name.
If this field is left blank, macro name "%BuildModeName%" will be displayed.
This property is not displayed when [No(It does not register the file that is added
to the project)(-nd)] in the [Generate a file] property is selected.

Default %BuildModeName%

How to change
Directly enter to the text box or edit by the Browse For Folder
dialog box which appears when clicking the [...] button.

Restriction Up to 247 characters

File name

Specify the system information header file name.
If the file name is changed, the name of the file displayed on the project tree.
Use the extension ".h". If the extension is different or omitted, ".h" is automatically
added.
This property is not displayed when [No(It does not register the file that is added
to the project)(-nd)] in the [Generate a file] property is selected.

Default kernel_id.h

How to change Directly enter to the text box.

Restriction Up to 259 characters

RI850V4 V2 APPENDIX A WINDOW REFERENCE

R20UT2889EJ0102 Rev.1.02 Page 351 of 366
Jan 29, 2016

3) [Entry File]

The detailed information on the entry file are displayed and the configuration can be changed.

Generate a file

Select whether to generate an entry file and whether to update the file when the
system configuration file is changed.

Default Yes(It updates the file when the .cfg file is changed)(-e)

How to change Select from the drop-down list.

Restriction

Yes(It updates the file
when the .cfg file is
changed)(-e)

Generates an entry file and displays it
on the project tree.
If the system configuration file is
changed when there is already an
entry file, then the entry file is
updated.

Yes(It does not
update the file when
the .cfg file is
changed)(-ne)

Does not update the entry file when
the system configuration file is
changed.
An error occurs during build if this
item is selected when the entry file
does not exist.

No(It does not
register the file to the
project)(-ne)

Does not generate an entry file and
does not display it on the project tree.
If this item is selected when there is
already an entry file, then the file itself
is not deleted.

Output folder

Specify the folder for outputting the entry file.
If a relative path is specified, the reference point of the path is the project folder.
If an absolute path is specified, the reference point of the path is the project folder
(unless the drives are different).
The following macro name is available as an embedded macro.
%BuildModeName%: Replaces with the build mode name.
If this field is left blank, macro name "%BuildModeName%" will be displayed.
This property is not displayed when [No(It does not register the file that is added
to the project)(-ne)] in the [Generate a file] property is selected.

Default %BuildModeName%

How to change
Directly enter to the text box or edit by the Browse For Folder
dialog box which appears when clicking the [...] button.

Restriction Up to 247 characters

File name

Specify the entry file.
If the file name is changed, the name of the file displayed on the project tree.
Use the extension ".s". If the extension is different or omitted, ".s" is automatically
added.
You cannot specify the same file name as the value of the [File name] property in
the [System Information Table File] category.
This property is not displayed when [No(It does not register the file that is added
to the project)(-ne)] in the [Generate a file] property is selected.

Default entry.s

How to change Directly enter to the text box.

Restriction Up to 259 characters

RI850V4 V2 APPENDIX A WINDOW REFERENCE

R20UT2889EJ0102 Rev.1.02 Page 352 of 366
Jan 29, 2016

4) [Configurator Start Setting] category]

The activation option for the CF850V4 configurator can be specified.

Note [Configurator Start Setting] should be specified for each project that uses the RI850V4 and multiple PE
numbers cannot be specified as the user option at the same time.
Therefore, only a single PE should be handled in each project that uses the RI850V4.

Generate method

Select the branch method when a base clock timer interrupt defined in the Basic
information or an EI level maskable interrupt defined in the Interrupt handler
information occurs.

Default Direct vector

How to change Select from the drop-down list.

Restriction

T a b l e
reference (-
intbp)

Generates an entry file for the table reference
method.

Direct vector
Generates an entry file for the direct
vector method.

Base address of the
interrupt handler address
table

Specifies the base address of the interrupt handler address table.
This item is not displayed when "Direct vector" is selected in [Generate method].

Default 0x0

How to change Enter directly in the text box.

Restriction 0x0 - 0xffffffff

Specify the exception
handler vector address

Select whether to specify the exception handler vector address.

Default No

How to change Select from the drop-down list.

Restriction

Yes (-
ebase)

Specifies the exception handler vector
address.

No
Does not specify the exception handler vector
address.

Exception handler vector
address

Specify the exception handler vector address.
This item is not displayed when "No" is selected in [Specify the exception handler
vector address].

Default 0x0

How to change Enter directly in the text box.

Restriction 0x0 - 0xffffffff

User options

Specify the desired user option to be passed to CF850V4.

Default -

How to change Enter directly in the text box.

Restriction -peid= value
Specifies a PE number. For details of value
setting, see "18.2.1　Activating from
command line”.

RI850V4 V2 APPENDIX B SIZE OF MEMORY

R20UT2889EJ0102 Rev.1.02 Page 353 of 366
Jan 29, 2016

APPENDIX B SIZE OF MEMORY

This appendix explains the size of the memory area.

B.1 Description

The memory areas used and managed by the RI850V4 are divided into eight sections by use.

Table B-1 Memory Area

B.1.1 .kernel_system

The size of “.kernel_system” section depends on the trace mode and the kernel library used.
There are four types of kernel library as follows.

- CC-RH version, not supporting the FPU

- CC-RH version, supporting the FPU

- CCV850 version, not supporting the FPU

- CCV850 version, supporting the FPU

The type of the trace mode is selected in the Property panel -> [Task Analyzer] tab -> [Trace] category -> [Selection of
trace mode].

1) CC-RH version, not supporting the FPU

2) CC-RH version, supporting the FPU

Section Name Outline

.kernel_system Area where executable code of RI850V4 is allocated.

.kernel_const Area where static data of RI850V4 is allocated.

.kernel_data Area where dynamic data of RI850V4 is allocated.

.kernel_data_init Area where kernel initialization flag of RI850V4 is allocated.

.kernel_const_trace.const Area where static data of trace function is allocated.

.kernel_data_trace.bss Area where dynamic data of trace function is allocated.

.kernel_work
Area where system stack, task stack, data queue, fixed-sized memory pool and
variable-sized memory pool is allocated.

.sec_nam（user-defined area）
Area where task stack, data queue, fixed-sized memory pool or variable-sized
memory pool is allocated.

Type of the Trace Mode Size of the Memory Area

Not tracing 20.0K Bytes

Taking in trace chart by hardware trace mode 20.3K Bytes

Taking in trace chart by software trace mode 20.8K Bytes

Taking in long-statistics by software trace mode 20.7K Bytes

RI850V4 V2 APPENDIX B SIZE OF MEMORY

R20UT2889EJ0102 Rev.1.02 Page 354 of 366
Jan 29, 2016

3) CCV850 version, not supporting the FPU

4) CCV850 version, supporting the FPU

Note The above values are maximum, when using all service calls provided by RI850V4. The value fluctuate
corresponding to the type of service calls using.

Type of the Trace Mode Size of the Memory Area

Not tracing 20.3K Bytes

Taking in trace chart by hardware trace mode 20.6K Bytes

Taking in trace chart by software trace mode 21.1K Bytes

Taking in long-statistics by software trace mode 20.9K Bytes

Type of the Trace Mode Size of the Memory Area

Not tracing 20.0K Bytes

Taking in trace chart by hardware trace mode 20.3K Bytes

Taking in trace chart by software trace mode 20.8K Bytes

Taking in long-statistics by software trace mode 20.6K Bytes

Type of the Trace Mode Size of the Memory Area

Not tracing 20.2K Bytes

Taking in trace chart by hardware trace mode 20.5K Bytes

Taking in trace chart by software trace mode 21.0K Bytes

Taking in long-statistics by software trace mode 20.9K Bytes

RI850V4 V2 APPENDIX B SIZE OF MEMORY

R20UT2889EJ0102 Rev.1.02 Page 355 of 366
Jan 29, 2016

B.1.2 .kernel_const

The size of “.kernel_const” section depends on the number of information items defined (such as Memory area
information and Task information) and the details of the definitions.

The following shows an expression required for estimation “.kernel_const” section size.
In the expression, "align4 (x)" means the result of aligning the value "x" to a 4-byte boundary.

Note The keyword in the expression means as follows.

KERNEL_CONST =
 224
 + 8 * MEM_AREA_num
 + 24 * CRE_TSK_num
 + 8 * CRE_SEM_num
 + 8 * CRE_FLG_num
 + 8 * CRE_DTQ_num
 + 4 * CRE_MBX_num

 + align4（2 * CRE_MTX_num）
 + 12 * CRE_MPF_num
 + 12 * CRE_MPL_num
 + 20 * CRE_CYC_num
 + 8 * DEF_INH_num
 + 8 * DEF_SVC_num
 + 12 * ATT_INI_num
 + 8 * VATT_IDL_num

 + align4（maxint）

 + align4（TA_ACT_num）

 + align4（TA_STA_num）

Keywords Meaning

MEM_AREA_num The number of the definition of the Memory area information.

CRE_TSK_num The number of the definition of the Task information.

CRE_SEM_num The number of the definition of the Semaphore information.

CRE_FLG_num The number of the definition of the Eventflag information.

CRE_DTQ_num The number of the definition of the Data queue information.

CRE_MBX_num The number of the definition of the Mailbox information.

CRE_MTX_num The number of the definition of the Mutex information.

CRE_MPF_num The number of the definition of the Fixed-sized memory pool information.

CRE_MPL_num The number of the definition of the Variable-sized memory pool information.

CRE_CYC_num The number of the definition of the Cyclic handler information.

DEF_INH_num The number of the definition of the Interrupt handler information.

DEF_SVC_num The number of the definition of the Extended service call routine information.

ATT_INI_num The number of the definition of the Initialization routine information.

VATT_IDL_num The number of the definition of the Idle routine information.

maxint
The value defined in the Maximum number of interrupt handlers: maxint;
Maximum value of exception code: maxintno.

TA_ACT_num
The number of the definition of “TA_ACT“ to initial activation state of Attribute:
tskatr.

TA_STA_num
The number of the definition of “TA_STA“ to initial activation state of Attribute:
cycatr

RI850V4 V2 APPENDIX B SIZE OF MEMORY

R20UT2889EJ0102 Rev.1.02 Page 356 of 366
Jan 29, 2016

B.1.3 .kernel_data

The size of “.kernel_data” section depends on the number of information items defined (such as Task information and
Semaphore information) and the details of the definitions.

The following shows an expression required for estimation “.kernel_data” section size.
In the expression, "align4 (x)" means the result of aligning the value "x" to a 4-byte boundary.

Note The keyword in the expression means as follows.

KERNEL_DATA =
 68
 + 32 * CRE_TSK_num
 + 8 * CRE_SEM_num
 + 8 * CRE_FLG_num
 + 8 * CRE_DTQ_num
 + 12 * CRE_MBX_num
 + 8 * CRE_MTX_num
 + 8 * CRE_MPF_num
 + 8 * CRE_MPL_num
 + 8 * CRE_CYC_num

 + align4（maxtpri）

Keywords Meaning

CRE_TSK_num The number of the definition of the Task information.

CRE_SEM_num The number of the definition of the Semaphore information.

CRE_FLG_num The number of the definition of the Eventflag information.

CRE_DTQ_num The number of the definition of the Data queue information.

CRE_MBX_num The number of the definition of the Mailbox information.

CRE_MTX_num The number of the definition of the Mutex information.

CRE_MPF_num The number of the definition of the Fixed-sized memory pool information.

CRE_MPL_num The number of the definition of the Variable-sized memory pool information.

CRE_CYC_num The number of the definition of the Cyclic handler information.

maxtpri The value of the definition in the Maximum priority: maxtpri.

RI850V4 V2 APPENDIX B SIZE OF MEMORY

R20UT2889EJ0102 Rev.1.02 Page 357 of 366
Jan 29, 2016

B.1.4 .kernel_data_init

The size of “.kernel_data_init” section is 4 bytes.

B.1.5 .kernel_const_trace.const

The size of “.kernel_const_trace.const” section depends on the trace mode; that is, the mode selected in the Property
panel -> [Task Analyzer] tab -> [Trace] category -> [Selection of trace mode].

In the following table, "align4 (x)" means the result of aligning the value "x" to a 4-byte boundary.

Type of Trace Mode Size of the Memory Area

Not tracing align4 (5) Bytes

Taking in trace chart by hardware trace mode align4 (61) Bytes

Taking in trace chart by software trace mode align4 (74) Bytes

Taking in long-statistics by software trace mode align4 (70) Bytes

RI850V4 V2 APPENDIX B SIZE OF MEMORY

R20UT2889EJ0102 Rev.1.02 Page 358 of 366
Jan 29, 2016

B.1.6 .kernel_data_trace.bss

The size of “.kernel_data_trace.bss” section depends on the trace mode. The type of trace mode is selected in the
”Property panel -> [Task Analyzer] tab -> [Trace] category -> [Selection of trace mode]”.

1) Not tracing
The size of “.kernel_data_trace.bss” section is 0 bytes.

2) Taking in trace chart by hardware trace mode
The size of “.kernel_data_trace.bss” section is 4 bytes.

3) Taking in trace chart by software trace mode
The size of “.kernel_data_trace.bss” section depends on the definition in the Property panel -> [Task Analyzer] tab
-> [Trace] category -> [Buffer size].
The following shows an expression required for estimating “.kernel_data_trace.bss” section size.
In the expression, "align4 (x)" means the result of aligning the value "x" to a 4-byte boundary.

Note The keyword in the expression means as follows.

4) Taking in long-statistics by software trace mode
The size of “.kernel_data_trace.bss” section depends on the number of task information items defined and the
details of the basic information definitions.
The following shows an expression required for estimation “.kernel_data_trace.bss” section size.
In the expression, "align4 (x)" means the result of aligning the value "x" to a 4-byte boundary.

Note The keyword in the expression means as follows.

KERNEL_DATA_TRACE.BSS =
 24

 + align4（TRC_BUF_size）

Keywords Meaning

TRC_BUF_size
The number of the definition of the Property panel -> [Task Analyzer] tab ->
[Trace] category -> [Buffer size].

KERNEL_DATA_TRACE.BSS =
 24
 + 8 * CRE_TSK_num

 + align4（10 * （intlvl - maxintpri））
 + 8 * maxint

Keywords Meaning

CRE_TSK_num The number of the definition of the Task information.

intlvl The value of interrupt level provided in the target CPU.

maxintpri The value of the definition in the Maximum interrupt priority: maxintpri

maxint
The value of the definition in the Maximum number of interrupt handlers: maxint;
Maximum value of exception code: maxintno.

RI850V4 V2 APPENDIX B SIZE OF MEMORY

R20UT2889EJ0102 Rev.1.02 Page 359 of 366
Jan 29, 2016

B.1.7 .kernel_work

The size of “.kernel_work“ section depends on the information such as Basic information and Task information and so
on.

The following shows an expression required for estimating “.kernel_work” section size.
In the expression, "align4 (x)" means the result of aligning the value "x" to a 4-byte boundary.

Note The keyword in the expression means as follows.

1) System stack

The size of the system stack depends on the details of the Task information and the process of task.
The following shows an expression required for estimation the system stack size required by the RI850V4.
In the following expression, "max(a, b, c)" means the result of selecting the largest value from "a", "b", and "c" (for
example, max(1, 2, 3) is 3).

Note The keyword in the expression means as follows.

KERNEL_WORK =
 116
 + SYSSTK
 + TSKSTK_total
 + DTQ_total
 + MPF_total
 + MPL_total

Keywords Meaning

SYSSTK The value calculated by “System stack”.

TSKSTK_total Total amount of the stack size that specified in “Task stack” for each task.

DTQ_total
Total amount of the memory size that specified in “Data queue” for each data
queue.

MPF_total
Total amount of the memory size that specified in “Fixed-sized memory pool” for
each fixed-sized memory pool.

MPL_total
Total amount of the memory size that specified in “Variable-sized memory pool”
for each variable-sized memory pool.

SYSSTK =

 max（align4（INT） + align4（CYC）, align4（INI）, align4（IDL））

Keywords Meaning

INT
The stack size of the interrupt handler using. If the interrupt handler processes
are nested, considers the nest counts. If the interrupt handler is undefined, the
stack size of the interrupt handler is nothing.

CYC
The stack size of the cyclic handler using. If multiple cyclic handlers are existed,
the maximum value among them. If the cyclic handler is undefined, the stack size
of the cyclic handler is nothing.

INI
The stack size of the initialization routine using. If multiple initialization routines
are existed, the maximum value among them. If the initialization routine is
undefined, the stack size of the initialization routine is nothing.

IDL
The stack size of the idle routine using. If the idle routine is undefined, the stack
size of the idle routine is nothing.

RI850V4 V2 APPENDIX B SIZE OF MEMORY

R20UT2889EJ0102 Rev.1.02 Page 360 of 366
Jan 29, 2016

2) Task stack

The size of the task stack depends on the details of Task information definitions and processing to be done in the
tasks.
The following shows an expression required for estimating the task stack size required by each task defined in the
Task information.

Note The keyword in the expression means as follows.

Table B-2 Value of ctxsz

3) Data queue

The size of the data queues depends on the details of Data queue information definitions.
The following shows an expression required for estimating the data queue size by each data queue defined in the
Data queue information.

Note The keyword in the expression means as follows.

4) Fixed-sized memory pool

The size of the fixed-sized memory pools depends on the details of Fixed-sized memory pool information
definitions.
The following shows an expression required for estimating the fixed-sized memory pool size required by each fixed-
sized memory pool defined in the Fixed-sized memory pool information.
In the expression, "align4 (x)" means the result of aligning the value "x" to a 4-byte boundary.

TSKSTK =
 ctxsz
 + stksz

Keywords Meaning

ctxsz

This value is determined as shown in Table B-2 according to the target C compiler
type and device type specified in the activation options for the CONFIGURATOR
CF850V4 (see "18.2.1 Activating from command line" for details of activation
options) and the preempt acceptance state specified in the Attribute: tskatr (such
as coding language and initial activation state).

stksz
The value corresponding to task processing (defined the value of the Task stack
size: stksz, memory area name: sec_nam).

Section Name FPU Enable Preempt Disable Preempt

CC-RH version
not supporting the FPU 132 88

supporting the FPU 136 92

CCV850 version
not supporting the FPU 128 84

supporting the FPU 132 88

DTQ =
 4 * dtqcnt

Keywords Meaning

dtqcnt
The value of the definition in the Data count: dtqcnt, memory area name:
sec_nam.

RI850V4 V2 APPENDIX B SIZE OF MEMORY

R20UT2889EJ0102 Rev.1.02 Page 361 of 366
Jan 29, 2016

Note The keyword in the expression means as follows.

5) Variable-sized memory pool

The size of the variable-sized memory pools depends on the details of Variable-sized memory pool information
definitions.
The following shows an expression required for estimating the variable-sized memory pool size required by each
variable-sized memory pool defined in the Variable-sized memory pool information.
In the expression, "align4 (x)" means the result of aligning the value "x" to a 4-byte boundary.

Note The keyword in the expression means as follows.

B.1.8 .sec_nam(user-definied area)

The size of “.sec_nam (user-defined area)” depends on the details of information definitions (such as Task information
and Data queue information).

Note This section is necessary when the task stack or data queue area is defined to be allocated outside
“.kernel_work” section in the Task information or Data queue information.
Estimate the memory size for this section with reference to the descriptions in "B.1.7 .kernel_work".

MPF =

 align4（blksz） * blkcnt

Keywords Meaning

blksz
The value of the definition in the Basic block size: blksz, memory area name:
sec_nam.

blkcnt The value of the definition in the Block count: blkcnt.

MPF =

 align4（blksz） * blkcnt

Keywords Meaning

mplsz The value of the definition in the Pool size: mplsz, memory area name: sec_nam.

RI850V4 V2 APPENDIX C SUPPORT FOR FLOATING-POINT OPERATION

R20UT2889EJ0102 Rev.1.02 Page 362 of 366
Jan 29, 2016

APPENDIX C SUPPORT FOR FLOATING-POINT
OPERATION COPROCESSOR

The RI850V4 supports the floating-point operation coprocessor of the RH850.
The RI850V4 manipulates the floating-point configuration/status register (FPSR) for floating-point operation. The user

can change the floating-point operation settings from processing programs as needed by changing this register value.
The value of FPSR is essentially specified independently for each processing program and is not inherited between

processing programs.
However, the RI850V4 does not manipulate FPSR when an extended service call routine starts or ends. For this

reason, an extended service call routine inherits the FPSR value from the previous processing executed before the
extended service call routine, and the value changed in a processing program is retained after the program ends.

See table Table C-1 for the register value when each processing program is initially activated.

Table C-1 Register Values at Activation of Each Processing Program

Note 1 If a task is suspended and then resumed, the FPSR is restored to the value before the suspension.

Note 2 "User setting" for FPSR in the above table is the value specified as the FPSR register information in the
system configuration file.

Processing Program Initial FPSR Value

Task User setting

Cyclic handler User setting

Interrupt handler User setting

Extended service call routine Inherits the value before activation.

Idle routine User setting

Revision Record

Rev. Date
Description

Page Summary

1.01 Sep 30, 2015 - First Edition issued

1.02 Jan 29, 2016 2

Cover
Added Target devices in Cover below.

RH850 Family (RH850G3KH)
RH850 Family (RH850G3MH)

12

1.2 Execution Environment
Changed sentence in Reserved OS Resources below.

The RI850V4 supports the RH850 family (G3K core and G3M core).
->
The RI850V4 supports the RH850 family (G3K core and G3M core
and G3KH core and G3MH core).

309

1) CPU type: cpu
Added keywords that can be specified chip_type below.

G3KH, G3MH

310

7) Maximum interrupt priority: maxintpri
Changed sentence in maxintpri below.

When the CPU type of the target device is G3M: A value from
INTPRI0 to INTPRI15.
->
When the CPU type of the target device is G3M or G3KH or G3MH: A
value from INTPRI0 to INTPRI15.

310

7) Maximum interrupt priority: maxintpri
Changed sentence in Note 1 below.

When the CPU type of the target device is G3M: INTPRI15 is the
minimum interrupt priority.
->
When the CPU type of the target device is G3M or G3KH or G3MH:
INTPRI15 is the minimum interrupt priority.

RI850V4 V2 User's Manual:
Coding

Publication Date: Rev.1.01 Sep 30, 2015
Rev.1.02 Jan 29, 2016

Published by: Renesas Electronics Corporation

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

California Eastern Laboratories, Inc.
4590 Patrick Henry Drive, Santa Clara, California 95054-1817, U.S.A.
Tel: +1-408-919-2500, Fax: +1-408-988-0279
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2016 Renesas Electronics Corporation. All rights reserved.
Colophon 4.0

RI850V4 V2

R20UT2889EJ0102

	How to Use This Manual
	CHAPTER 1 OVERVIEW
	1.1 Outline
	1.1.1 Real-Time OS
	1.1.2 Multi-task OS
	1.1.3 Support for RH850 multi-core devices

	1.2 Execution Environment

	CHAPTER 2 SYSTEM CONSTRUCTION
	2.1 Outline
	2.2 Cording System Configuration File
	2.3 Coding Processing Programs
	2.4 Coding User-Own Coding Module
	2.5 Trace Information File
	2.6 Creating Load Module
	2.7 Option Settings for Build

	CHAPTER 3 TASK MANAGEMENT FUNCTIONS
	3.1 Outline
	3.2 Tasks
	3.2.1 Task state
	3.2.2 Task priority
	3.2.3 Basic form of tasks
	3.2.4 Internal processing of task

	3.3 Create Task
	3.4 Activate Task
	3.4.1 Queuing an activation request
	3.4.2 Not queuing an activation request

	3.5 Cancel Task Activation Requests
	3.6 Terminate Task
	3.6.1 Terminate invoking task
	3.6.2 Terminate task

	3.7 Change Task Priority
	3.8 Reference Task Priority
	3.9 Reference Task State
	3.9.1 Reference task state
	3.9.2 Reference task state (simplified version)

	3.10 Memory Saving
	3.10.1 Disable preempt

	CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS
	4.1 Outline
	4.2 Put Task to Sleep
	4.2.1 Waiting forever
	4.2.2 With timeout

	4.3 Wakeup Task
	4.4 Cancel Task Wakeup Requests
	4.5 Release Task from Waiting
	4.6 Suspend Task
	4.7 Resume Suspended Task
	4.7.1 Resume suspended task
	4.7.2 Forcibly resume suspended task

	4.8 Delay Task
	4.9 Differences Between Wakeup Wait with Timeout and Time Elapse Wait

	CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS
	5.1 Outline
	5.2 Semaphores
	5.2.1 Create semaphore
	5.2.2 Acquire semaphore resource
	5.2.3 Release semaphore resource
	5.2.4 Reference semaphore state

	5.3 Eventflags
	5.3.1 Create eventflag
	5.3.2 Set eventflag
	5.3.3 Clear eventflag
	5.3.4 Wait for eventflag
	5.3.5 Reference eventflag state

	5.4 Data Queues
	5.4.1 Create data queue
	5.4.2 Send to data queue
	5.4.3 Forced send to data queue
	5.4.4 Receive from data queue
	5.4.5 Reference data queue state

	5.5 Mailboxes
	5.5.1 Messages
	5.5.2 Create mailbox
	5.5.3 Send to mailbox
	5.5.4 Receive from mailbox
	5.5.5 Reference mailbox state

	CHAPTER 6 EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS
	6.1 Outline
	6.2 Mutexes
	6.2.1 Differences from semaphores
	6.2.2 Create mutex
	6.2.3 Lock mutex
	6.2.4 Unlock mutex
	6.2.5 Reference mutex state

	CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS
	7.1 Outline
	7.2 User-Own Coding Module
	7.2.1 Post-overflow processing

	7.3 Fixed-Sized Memory Pools
	7.3.1 Create fixed-sized memory pool
	7.3.2 Acquire fixed-sized memory block
	7.3.3 Release fixed-sized memory block
	7.3.4 Reference fixed-sized memory pool state

	7.4 Variable-Sized Memory Pools
	7.4.1 Create variable-sized memory pool
	7.4.2 Acquire variable-sized memory block
	7.4.3 Release variable-sized memory block
	7.4.4 Reference variable-sized memory pool state

	CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS
	8.1 Outline
	8.2 Rotate Task Precedence
	8.3 Forced Scheduler Activation
	8.4 Reference Task ID in the RUNNING State
	8.5 Lock the CPU
	8.6 Unlock the CPU
	8.7 Reference CPU State
	8.8 Disable Dispatching
	8.9 Enable Dispatching
	8.10 Reference Dispatching State
	8.11 Reference Contexts
	8.12 Reference Dispatch Pending State

	CHAPTER 9 TIME MANAGEMENT FUNCTIONS
	9.1 Outline
	9.2 System Time
	9.2.1 Base clock timer interrupt
	9.2.2 Base clock interval

	9.3 Timer Operations
	9.3.1 Delayed task wakeup
	9.3.2 Timeout
	9.3.3 Cyclic handlers
	9.3.4 Create cyclic handler

	9.4 Set System Time
	9.5 Reference System Time
	9.6 Start Cyclic Handler Operation
	9.7 Stop Cyclic Handler Operation
	9.8 Reference Cyclic Handler State

	CHAPTER 10 INTERRUPT MANAGEMENT FUNCTIONS
	10.1 Outline
	10.2 User-Own Coding Module
	10.2.1 Interrupt entry processing

	10.3 Interrupt Handlers
	10.3.1 Basic form of interrupt handlers
	10.3.2 Internal processing of interrupt handler
	10.3.3 Define interrupt handler

	10.4 Base Clock Timer Interrupts
	10.5 Multiple Interrupts

	CHAPTER 11 SERVICE CALL MANAGEMENT FUNCTIONS
	11.1 Outline
	11.2 Extended Service Call Routines
	11.2.1 Basic form extended service call routines
	11.2.2 Internal processing of extended service call routine

	11.3 Define Extended Service Call Routine
	11.4 Invoke Extended Service Call Routine

	CHAPTER 12 SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS
	12.1 Outline
	12.2 User-Own Coding Module
	12.2.1 Initialization routine
	12.2.2 Define initialization routine

	CHAPTER 13 SCHEDULER
	13.1 Outline
	13.1.1 Drive Method
	13.1.2 Scheduling Method
	13.1.3 Ready queue
	13.1.4 Scheduling Lock Function

	13.2 User-Own Coding Module
	13.2.1 Idle Routine
	13.2.2 Define Idle Routine

	13.3 Scheduling in Non-Tasks

	CHAPTER 14 SYSTEM INITIALIZATION ROUTINE
	14.1 Outline
	14.2 User-Own Coding Module
	14.2.1 Boot processing
	14.2.2 System dependent information

	14.3 Kernel Initialization Module

	CHAPTER 15 DATA TYPES AND MACROS
	15.1 Data Types
	15.2 Packet Formats
	15.2.1 Task state packet
	15.2.2 Task state packet (simplified version)
	15.2.3 Semaphore state packet
	15.2.4 Eventflag state packet
	15.2.5 Data queue state packet
	15.2.6 Message packet
	15.2.7 Mailbox state packet
	15.2.8 Mutex state packet
	15.2.9 Fixed-sized memory pool state packet
	15.2.10 Variable-sized memory pool state packet
	15.2.11 System time packet
	15.2.12 Cyclic handler state packet

	15.3 Data Macros
	15.3.1 Current state
	15.3.2 Processing program attributes
	15.3.3 Management object attributes
	15.3.4 Service call operating modes
	15.3.5 Return value
	15.3.6 Kernel configuration constants

	15.4 Conditional Compile Macro

	CHAPTER 16 SERVICE CALLS
	16.1 Outline
	16.1.1 Call service call

	16.2 Explanation of Service Call
	16.2.1 Task management functions
	act_tsk
	iact_tsk
	can_act
	ican_act
	sta_tsk
	ista_tsk
	ext_tsk
	ter_tsk
	chg_pri
	ichg_pri
	get_pri
	iget_pri
	ref_tsk
	iref_tsk
	ref_tst
	iref_tst

	16.2.2 Task dependent synchronization functions
	slp_tsk
	tslp_tsk
	wup_tsk
	iwup_tsk
	can_wup
	ican_wup
	rel_wai
	irel_wai
	sus_tsk
	isus_tsk
	rsm_tsk
	irsm_tsk
	frsm_tsk
	ifrsm_tsk
	dly_tsk

	16.2.3 Synchronization and communication functions (semaphores)
	wai_sem
	pol_sem
	ipol_sem
	twai_sem
	sig_sem
	isig_sem
	ref_sem
	iref_sem

	16.2.4 Synchronization and communication functions (eventflags)
	set_flg
	iset_flg
	clr_flg
	iclr_flg
	wai_flg
	pol_flg
	ipol_flg
	twai_flg
	ref_flg
	iref_flg

	16.2.5 Synchronization and communication functions (data queues)
	snd_dtq
	psnd_dtq
	ipsnd_dtq
	tsnd_dtq
	fsnd_dtq
	ifsnd_dtq
	rcv_dtq
	prcv_dtq
	iprcv_dtq
	trcv_dtq
	ref_dtq
	iref_dtq

	16.2.6 Synchronization and communication functions (mailboxes)
	snd_mbx
	isnd_mbx
	rcv_mbx
	prcv_mbx
	iprcv_mbx
	trcv_mbx
	ref_mbx
	iref_mbx

	16.2.7 Extended synchronization and communication functions (mutexes)
	loc_mtx
	ploc_mtx
	tloc_mtx
	unl_mtx
	ref_mtx
	iref_mtx

	16.2.8 Memory pool management functions (fixed-sized memory pools)
	get_mpf
	pget_mpf
	ipget_mpf
	tget_mpf
	rel_mpf
	irel_mpf
	ref_mpf
	iref_mpf

	16.2.9 Memory pool management functions (variable-sized memory pools)
	get_mpl
	pget_mpl
	ipget_mpl
	tget_mpl
	rel_mpl
	irel_mpl
	ref_mpl
	iref_mpl

	16.2.10 Time management functions
	set_tim
	iset_tim
	get_tim
	iget_tim
	sta_cyc
	ista_cyc
	stp_cyc
	istp_cyc
	ref_cyc
	iref_cyc

	16.2.11 System state management functions
	rot_rdq
	irot_rdq
	vsta_sch
	get_tid
	iget_tid
	loc_cpu
	iloc_cpu
	unl_cpu
	iunl_cpu
	sns_loc
	dis_dsp
	ena_dsp
	sns_dsp
	sns_ctx
	sns_dpn

	16.2.12 Service call management functions
	cal_svc
	ical_svc

	CHAPTER 17 SYSTEM CONFIGURATION FILE
	17.1 Outline
	17.2 Configuration Information
	17.2.1 Cautions

	17.3 Declarative Information
	17.3.1 Header file declaration

	17.4 System Information
	17.4.1 RI series information
	17.4.2 Basic information
	17.4.3 FPSR register information
	17.4.4 Memory area information

	17.5 Static API Information
	17.5.1 Task information
	17.5.2 Semaphore information
	17.5.3 Eventflag information
	17.5.4 Data queue information
	17.5.5 Mailbox information
	17.5.6 Mutex information
	17.5.7 Fixed-sized memory pool information
	17.5.8 Variable-sized memory pool information
	17.5.9 Cyclic handler information
	17.5.10 Interrupt handler information
	17.5.11 Extended service call routine information
	17.5.12 Initialization routine information
	17.5.13 Idle routine information

	17.6 Description Examples

	CHAPTER 18 CONFIGURATOR CF850V4
	18.1 Outline
	18.2 Activation Method
	18.2.1 Activating from command line
	18.2.2 Activating from CS+
	18.2.3 Command file
	18.2.4 Command input examples

	APPENDIX A WINDOW REFERENCE
	A.1 Description
	Main window
	Project Tree panel
	Property panel
	[RI850V4] tab
	[Task Analyzer] tab
	[System Configuration File Related Information] tab

	APPENDIX B SIZE OF MEMORY
	B.1 Description
	B.1.1 .kernel_system
	B.1.2 .kernel_const
	B.1.3 .kernel_data
	B.1.4 .kernel_data_init
	B.1.5 .kernel_const_trace.const
	B.1.6 .kernel_data_trace.bss
	B.1.7 .kernel_work
	B.1.8 .sec_nam(user-definied area)

	APPENDIX C SUPPORT FOR FLOATING-POINT OPERATION COPROCESSOR
	Revision Record

