
www.renesas.com

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

U
ser's M

anual

RI600V4
Real-Time Operating System

User's Manual: Coding
Target Device
RX Family

Rev.1.04 Sep 2013

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you
or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of
third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No
license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of
Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration,
modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The
recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.
“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual

equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-

crime systems; and safety equipment etc.
Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property
damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas
Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any
application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred
by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas
Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas
Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and
malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation
of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by
you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility
of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and
regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.
Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws
and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use
Renesas Electronics products or technology described in this document for any purpose relating to military applications or use
by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas
Electronics products or technology described in this document, you should comply with the applicable export control laws and
regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise
places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this
document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of
unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document
or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(2012.4)

How to Use This Manual

Readers This manual is intended for users who design and develop application system using RX

family.

Purpose This manual is intended for users to understand the functions of real-time OS “RI600V4”

manufactured by Renesas Electronics, described the organization listed below.

Organization This manual can be broadly divided into the following units.

CHAPTER 1 OVERVIEW

CHAPTER 2 SYSTEM BUILDING

CHAPTER 3 TASK MANAGEMENT FUNCTIONS

CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

CHAPTER 6 EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

CHAPTER 8 TIME MANAGEMENT FUNCTIONS

CHAPTER 9 SYSTEM STATE MANAGEMENT FUNCTIONS

CHAPTER 10 INTERRUPT MANAGEMENT FUNCTIONS

CHAPTER 11 SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS

CHAPTER 12 OBJECT RESET FUNCTIONS

CHAPTER 13 SYSTEM DOWN

CHAPTER 14 SCHEDULING FUNCTION

CHAPTER 16 SYSTEM INITIALIZATION

CHAPTER 17 DATA TYPES AND MACROS

CHAPTER 18 SERVICE CALLS

CHAPTER 19 SYSTEM CONFIGURATION FILE

CHAPTER 20 CONFIGURATOR cfg600

CHAPTER 21 TABLE GENARATION UTILITY mkritbl

APPENDIX A WINDOW REFERENCE

APPENDIX B FLOATING-POINT OPERATION FUNCTION

APPENDIX C DSP FUNCTION

APPENDIX D STACK SIZE ESTIMATION

How to Read This Manual It is assumed that the readers of this manual have general knowledge in the fields of

electrical engineering, logic circuits, microcomputers, C language, and assemblers.

To understand the hardware functions of the RX MCU

→ Refer to the User's Manual of each product.

Conventions Data significance: Higher digits on the left and lower digits on the right

Note: Footnote for item marked with Note in the text

Caution: Information requiring particular attention

Remark: Supplementary information

Numeric representation: Decimal ... XXXX

Hexadecimal ... 0xXXXX

Prefixes indicating power of 2 (address space and memory capacity):

K (kilo) 210- = 1024

M (mega) 220 = 10242

up4(data): A value in which data is rounded up to the multiple of 4.

down(data): A integer part of data.

Related Documents The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

Caution The related documents listed above are subject to change without

notice. Be sure to use the latest edition of each document when

designing.

All trademarks or registered trademarks in this document are the property of their respective owners.

Document Name Document No.

RI Series
Start R20UT0751E

Message R20UT0756E

RI600V4

Coding This document

Debug R20UT0775E

Analysis R20UT2185E

TABLE OF CONTENTS

CHAPTER 1 OVERVIEW . 12

1.1 Outline . 12

1.1.1 Real-time OS . 12

1.1.2 Multi-task OS . 12

CHAPTER 2 SYSTEM BUILDING . 13

2.1 Outline . 13

2.2 Coding Processing Programs . 14

2.3 Coding System Configuration File . 14

2.4 Coding User-Own Coding Module . 15

2.5 Creating Load Module . 16

2.6 Build Options . 21

2.6.1 Service call information files and "-ri600_preinit_mrc" compiler option 21

2.6.2 Compiler option for the boot processing file . 22

2.6.3 Kernel library . 23

2.6.4 Arrangement of section . 24

2.6.5 Initialized data section . 25

2.6.6 Options for Realtime OS Task Analyzer . 26

CHAPTER 3 TASK MANAGEMENT FUNCTIONS . 27

3.1 Outline . 27

3.2 Tasks . 27

3.2.1 Task state . 27

3.2.2 Task priority . 29

3.2.3 Basic form of tasks . 30

3.2.4 Internal processing of task . 31

3.2.5 Processor mode of task . 31

3.3 Create Task . 32

3.4 Activate Task . 32

3.4.1 Activate task with queuing . 32

3.4.2 Activate task without queuing . 33

3.5 Cancel Task Activation Requests . 34

3.6 Terminate Task . 35

3.6.1 Terminate invoking task . 35

3.6.2 Terminate Another task . 36

3.7 Change Task Priority . 37

3.8 Reference Task Priority . 38

3.9 Reference Task State . 39

3.9.1 Reference task state . 39

3.9.2 Reference task state (simplified version) . 40

CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS 41

4.1 Outline . 41

4.2 Put Task to Sleep . 41

4.2.1 Waiting forever . 41

4.2.2 With time-out . 42

4.3 Wake-up Task . 43

4.4 Cancel Task Wake-up Requests . 44

4.5 Forcibly Release Task from Waiting . 45

4.6 Suspend Task . 46

4.7 Resume Suspended Task . 47

4.7.1 Resume suspended task . 47

4.7.2 Forcibly resume suspended task . 48

4.8 Delay Task . 49

4.9 Differences Between Sleep with Time-out and Delay . 50

CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS 51

5.1 Outline . 51

5.2 Semaphores . 51

5.2.1 Create semaphore . 51

5.2.2 Acquire semaphore resource . 52

5.2.3 Release semaphore resource . 55

5.2.4 Reference semaphore state . 56

5.3 Eventflags . 57
5.3.1 Create eventflag . 57

5.3.2 Set eventflag . 58

5.3.3 Clear eventflag . 59

5.3.4 Check bit pattern . 60

5.3.5 Reference eventflag state . 65

5.4 Data Queues . 66
5.4.1 Create data queue . 66

5.4.2 Send to data queue . 67

5.4.3 Forced send to data queue . 72

5.4.4 Receive from data queue . 73

5.4.5 Reference data queue state . 78

5.5 Mailboxes . 79
5.5.1 Messages . 79

5.5.2 Create mailbox . 81

5.5.3 Send to mailbox . 81

5.5.4 Receive from mailbox . 82

5.5.5 Reference mailbox state . 85

CHAPTER 6 EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

86

6.1 Outline . 86

6.2 Mutexes . 86

6.2.1 Priority inversion problem . 87

6.2.2 Current priority and base priority . 87

6.2.3 Simplified priority ceiling protocol . 87

6.2.4 Differences from semaphores . 88

6.2.5 Create mutex . 88

6.2.6 Lock mutex . 89

6.2.7 Unlock mutex . 92

6.2.8 Reference mutex state . 93

6.3 Message Buffers . 94
6.3.1 Create message buffer . 94

6.3.2 Send to message buffer . 95

6.3.3 Receive from message buffer . 100

6.3.4 Reference message buffer state . 105

CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS 106

7.1 Outline . 106

7.2 Fixed-Sized Memory Pools . 107
7.2.1 Create fixed-sized memory pool . 107

7.2.2 Acquire fixed-sized memory block . 108

7.2.3 Release fixed-sized memory block . 113

7.2.4 Reference fixed-sized memory pool state . 114

7.3 Variable-Sized Memory Pools . 115
7.3.1 Create variable-sized memory pool . 115

7.3.2 Size of Variable-sized memory block. . 116

7.3.3 Acquire variable-sized memory block . 117

7.3.4 Release variable-sized memory block . 122

7.3.5 Reference variable-sized memory pool state . 123

CHAPTER 8 TIME MANAGEMENT FUNCTIONS . 124

8.1 Outline . 124

8.2 System Time . 124

8.2.1 Base clock timer interrupt . 124

8.2.2 Base clock interval . 124

8.3 Timer Operations . 125

8.4 Delay task . 125

8.5 Time-out . 125

8.6 Cyclic handlers . 126

8.6.1 Basic form of cyclic handlers . 126

8.6.2 Processing in cyclic handler . 127

8.6.3 Create cyclic handler . 127

8.6.4 Start cyclic handler operation . 128

8.6.5 Stop cyclic handler operation . 130

8.6.6 Reference cyclic handler state . 131

8.7 Alarm Handlers . 132

8.7.1 Basic form of alarm handler . 132

8.7.2 Processing in alarm handler . 133

8.7.3 Create alarm handler . 133

8.7.4 Start alarm handler operation . 134

8.7.5 Stop alarm handler operation . 135

8.7.6 Reference alarm handler state . 136

8.8 System Time . 137

8.8.1 Set system time . 137

8.8.2 Reference system time . 138

8.9 Initialize Base Clock Timer . 139

CHAPTER 9 SYSTEM STATE MANAGEMENT FUNCTIONS 140

9.1 Outline . 140

9.2 Rotate Task Precedence . 140

9.3 Reference Task ID in the RUNNING State . 142

9.4 Lock and Unlock the CPU . 143

9.5 Reference CPU Locked State . 145

9.6 Disable and Enable Dispatching . 146

9.7 Reference Dispatching State . 147

9.8 Reference Context Type . 148

9.9 Reference Dispatch Pending State . 149

CHAPTER 10 INTERRUPT MANAGEMENT FUNCTIONS 150

10.1 Interrupt Type . 150

10.2 Fast Interrupt of the RX-MCU . 150

10.3 CPU Exception . 150

10.4 Base Clock Timer Interrupt . 151

10.5 Multiple Interrupts . 151

10.6 Interrupt Handlers . 152

10.6.1 Basic form of interrupt handlers . 152

10.6.2 Register interrupt handler . 153

10.7 Maskable Interrupt Acknowledgement Status in Processing Programs 153

10.8 Prohibit Maskable Interrupts . 154

10.8.1 Move to the CPU locked state by using loc_cpu, iloc_cpu 154

10.8.2 Change PSW.IPL by using chg_ims, ichg_ims . 154

10.8.3 Change PSW.I and PSW.IPL directly (only for handlers) 154

CHAPTER 11 SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS 155

11.1 Outline . 155

11.2 Reference Version Information . 155

CHAPTER 12 OBJECT RESET FUNCTIONS . 156

12.1 Outline . 156

12.2 Reset Data Queue . 156

12.3 Reset Mailbox . 157

12.4 Reset Message Buffer . 158

12.5 Reset Fixed-sized Memory Pool . 159

12.6 Reset Variable-sized Memory Pool . 160

CHAPTER 13 SYSTEM DOWN . 161

13.1 Outline . 161

13.2 User-Own Coding Module . 161

13.2.1 System down routine (_RI_sys_dwn__) . 161

13.2.2 Parameters of system down routine . 162

CHAPTER 14 SCHEDULING FUNCTION . 164

14.1 Outline . 164

14.2 Processing Unit and Precedence . 164

14.3 Task Drive Method . 164

14.4 Task Scheduling Method . 165

14.4.1 Ready queue . 165

14.5 Task Scheduling Lock Function . 166

14.6 Idling . 167

14.7 Task Scheduling in Non-Tasks . 167

CHAPTER 15 REALTIME OS TASK ANALYZER . 168

15.1 Outline . 168

15.2 Trace Mode . 168

15.3 User-Own Coding Module for Software Trace Mode . 170

15.3.1 Taking in trace chart by software trace mode . 170

15.3.2 Taking in long-statistics by software trace mode . 173

15.4 Trace Buffer Size (Taking in Trace Chart by Software Trace Mode) 176

15.5 Error of Total Execution Time . 176

CHAPTER 16 SYSTEM INITIALIZATION . 177

16.1 Outline . 177

16.2 Boot Processing File (User-Own Coding Module) . 178

16.2.1 Boot processing function (PowerON_Reset_PC()) . 178

16.2.2 Include kernel_ram.h and kernel_rom.h . 179

16.2.3 Compiler option for boot processing file . 179

16.2.4 Example of the boot processing file . 180

16.3 Kernel Initialization Module (vsta_knl, ivsta_knl) . 183

16.4 Section Initialization Function (_INITSCT()) . 184

16.4.1 Section information file (User-Own Coding Module) . 184

16.5 Registers in Fixed Vector Table/Exception Vector table . 185

CHAPTER 17 DATA TYPES AND MACROS . 186

17.1 Data Types . 186

17.2 Macros . 188

17.2.1 Constant macros . 188

17.2.2 Function Macros . 191

CHAPTER 18 SERVICE CALLS . 192

18.1 Outline . 192

18.1.1 Method for calling service calls . 193

18.2 Explanation of Service Call . 194

18.2.1 Task management functions . 196

18.2.2 Task dependent synchronization functions . 215

18.2.3 Synchronization and communication functions (semaphores) 232

18.2.4 Synchronization and communication functions (eventflags) 242

18.2.5 Synchronization and communication functions (data queues) 253

18.2.6 Synchronization and communication functions (mailboxes) 270

18.2.7 Extended synchronization and communication functions (mutexes) 281

18.2.8 Extended synchronization and communication functions (message buffers) 291

18.2.9 Memory pool management functions (fixed-sized memory pools) 306

18.2.10 Memory pool management functions (variable-sized memory pools) 317

18.2.11 Time management functions . 329

18.2.12 System state management functions . 342

18.2.13 Interrupt management functions . 358

18.2.14 System configuration management functions . 362

18.2.15 Object reset functions . 365

CHAPTER 19 SYSTEM CONFIGURATION FILE . 371

19.1 Outline . 371

19.2 Default System Configuration File . 372

19.3 Configuration Information (static API) . 372

19.4 System Information (system) . 373
19.5 Note Concerning system.context . 376

19.5.1 Note concerning FPU and DSP . 376

19.5.2 Relationship with the compiler options "-fint_register", "-base" and "-pid" . . 378

19.6 Base Clock Interrupt Information (clock) . 379
19.7 Task Information (task[]) . 381
19.8 Semaphore Information (semaphore[]) . 384
19.9 Eventflag Information (flag[]) . 386
19.10 Data Queue Information (dataqueue[]) . 388
19.11 Mailbox Information (mailbox[]) . 390
19.12 Mutex Information (mutex[]) . 392
19.13 Message Buffer Information (message_buffer[]) . 393
19.14 Fixed-sized Memory Pool Information (memorypool[]) . 395
19.15 Variable-sized Memory Pool Information (variable_memorypool[]) 397
19.16 Cyclic Handler Information (cyclic_hand[]) . 399
19.17 Alarm Handler Information (alarm_handl[]) . 402
19.18 Relocatable Vector Information (interrupt_vector[]) . 404
19.19 Fixed Vector/Exception Vector Information (interrupt_fvector[]) 407
19.20 RAM Capacity Estimation . 410

19.20.1 BRI_RAM section . 411

19.20.2 BRI_HEAP section . 413

19.20.3 SURI_STACK section . 413

19.20.4 SI section . 413

19.21 Description Examples . 414

CHAPTER 20 CONFIGURATOR cfg600 . 416

20.1 Outline . 416

20.2 Start cfg600 . 417

20.2.1 Start cfg600 from command line . 417

20.2.2 Start cfg600 from CubeSuite+ . 417

CHAPTER 21 TABLE GENARATION UTILITY mkritbl . 418

21.1 Outline . 418

21.2 Start mkritbl . 419

21.2.1 Start mkritbl from command line . 419

21.2.2 Start mkritbl from CubeSuite+ . 419

21.3 Notes . 419

APPENDIX A WINDOW REFERENCE . 420

A.1 Description . 420

APPENDIX B FLOATING-POINT OPERATION FUNCTION 436

B.1 When Using Floating-point Arithmetic Instructions in Tasks . 436

B.2 When Using Floating-point Arithmetic Instructions in Handlers 436

APPENDIX C DSP FUNCTION . 437

C.1 When Using DSP Instructions in Tasks . 437

C.2 When Using DSP Instructions in Handlers . 437

APPENDIX D STACK SIZE ESTIMATION . 438

D.1 Types of Stack . 438

D.2 Call Walker . 438

D.3 User Stack Size Estimation . 439

D.4 System Stack Size Estimation . 440

RI600V4 CHAPTER 1 OVERVIEW

R20UT0711EJ0104 Rev.1.04 Page 12 of 447
Sep 20, 2013

CHAPTER 1 OVERVIEW

1.1 Outline

The RI600V4 is a built-in real-time, multi-task OS that provides a highly efficient real-time, multi-task environment to
increases the application range of processor control units.
The RI600V4 is a high-speed, compact OS capable of being stored in and run from the ROM of a target system.
The RI600V4 is based on the ITRON4.0 specification.

1.1.1 Real-time OS

Control equipment demands systems that can rapidly respond to events occurring both internal and external to the
equipment. Conventional systems have utilized simple interrupt handling as a means of satisfying this demand. As control
equipment has become more powerful, however, it has proved difficult for systems to satisfy these requirements by means
of simple interrupt handling alone.
In other words, the task of managing the order in which internal and external events are processed has become
increasingly difficult as systems have increased in complexity and programs have become larger.
Real-time OS has been designed to overcome this problem.
The main purpose of a real-time OS is to respond to internal and external events rapidly and execute programs in the
optimum order.

1.1.2 Multi-task OS

A “task” is the minimum unit in which a program can be executed by an OS. “Multi-task” is the name given to the mode of
operation in which a single processor processes multiple tasks concurrently.
Actually, the processor can handle no more than one program (instruction) at a time. But, by switching the processor’s
attention to individual tasks on a regular basis (at a certain timing) it appears that the tasks are being processed
simultaneously.
A multi-task OS enables the parallel processing of tasks by switching the tasks to be executed as determined by the
system.
One important purpose of a multi-task OS is to improve the throughput of the overall system through the parallel
processing of multiple tasks.

RI600V4 CHAPTER 2 SYSTEM BUILDING

R20UT0711EJ0104 Rev.1.04 Page 13 of 447
Sep 20, 2013

CHAPTER 2 SYSTEM BUILDING

This chapter describes how to build a system (load module) that uses the functions provided by the RI600V4.

2.1 Outline

System building consists in the creation of a load module using the files (kernel library, etc.) installed on the user
development environment (host machine) from the RI600V4's supply media.
Figure 2-1 shows the procedure of system building

Figure 2-1 Example of System Building

The RI600V4 provides a sample program with the files necessary for generating a load module.
The sample programs are stored in the following folder. The source files are stored in “appli” sub-folder.

<ri_sample> = <CubeSuite+_root>\SampleProjects\RX\device_name_RI600V4

- <CubeSuite+_root>

Indicates the installation folder of CubeSuite+.
The default folder is “C:\Program Files\Renesas Electronics\CubeSuite+\”.

Information Files

Processing Programs

Linker

C Compiler / Assembler

Object Files

Load Module

User-own
Coding Module

Library Files
　- Kernel Library
　- Standard Library
　- Runtime Library

Service call Information Files

Table File

SYSTEM CONFIGURATION
FILE

CONFIGURATOR
cfg600

TABLE GENARATION
UTILITY mkritbl

etc.

RI600V4 CHAPTER 2 SYSTEM BUILDING

R20UT0711EJ0104 Rev.1.04 Page 14 of 447
Sep 20, 2013

- SampleProjects

Indicates the sample project folder of CubeSuite+.

- RX

Indicates the sample project folder of RX MCU.

- device_nameRI600V4

Indicates the sample project folder of the RI600V4. The project file is stored in this folder.

device_name: Indicates the device name which the sample is provided.

2.2 Coding Processing Programs

Code the processing that should be implemented in the system.
In the RI600V4, the processing program is classified into the following four types, in accordance with the types and
purposes of the processing that should be implemented.

- Tasks
A task is processing program that is not executed unless it is explicitly manipulated via service calls provided by the
RI600V4, unlike other processing programs (interrupt handler, cyclic handler and alarm handler).

- Cyclic handlers
The cyclic handler is a routine started for every specified cycle time.
The RI600V4 handles the cyclic handler as a “non-task (module independent from tasks)”. Therefore, even if a task
with the highest priority in the system is being executed, the processing is suspended when a specified activation
cycle has come, and the control is passed to the cyclic handler.

- Alarm Handlers
The alarm handler is a routine started only once after the specified time.
The RI600V4 handles the alarm handler as a “non-task (module independent from tasks)”. Therefore, even if a task
with the highest priority in the system is being executed, the processing is suspended when a specified activation
cycle has come, and the control is passed to the cyclic handler.

- Interrupt Handlers
The interrupt handler is a routine started when an interrupt occurs.
The RI600V4 handles the interrupt handler as a “non-task (module independent from tasks)”. Therefore, even if a task
with the highest priority in the system is being executed, the processing is suspended when an interrupt occurs, and
the control is passed to the interrupt handler.

Note For details about the processing programs, refer to “CHAPTER 3 TASK MANAGEMENT FUNCTIONS”,
“CHAPTER 8 TIME MANAGEMENT FUNCTIONS”, “CHAPTER 10 INTERRUPT MANAGEMENT
FUNCTIONS”.

2.3 Coding System Configuration File

Code the SYSTEM CONFIGURATION FILE required for creating information files that contain data to be provided for the
RI600V4.

Note 1 For details about the system configuration file, refer to “CHAPTER 19 SYSTEM CONFIGURATION FILE”.

Note 2 When the Realtime OS Task analyzer is used in “Taking in trace chart by software trace mode” or “Taking in
long-statistics by software trace mode”, it is necessary to define the interrupt handler implemented in user-own
coding module to the system configuration file. For details, refer to “CHAPTER 15 REALTIME OS TASK
ANALYZER”.

RI600V4 CHAPTER 2 SYSTEM BUILDING

R20UT0711EJ0104 Rev.1.04 Page 15 of 447
Sep 20, 2013

2.4 Coding User-Own Coding Module

- SYSTEM DOWN

- System down routine (_RI_sys_dwn__)
The system down routine is called when the system down occurs.

- REALTIME OS TASK ANALYZER

- User-Own Coding Module for Software Trace Mode
When using the software trace mode, user-own coding module to get time-stamp must be implemented.

- SYSTEM INITIALIZATION

- Boot processing function (PowerON_Reset_PC())
The boot processing is defined in the reset vector, and dedicated to initialization processing that is extracted as a
user-own coding module to initialize the minimum required hardware for the RI600V4 to perform processing.
And the boot processing plays the role to take the ROM definition file and RAM definition file which are gener-
ated by the cfg600.

- Section information file (User-Own Coding Module)
Informations for uninitialized data sections and initialized data sections are defined in the section information file.

Note For details about the user-own coding module, refer to “CHAPTER 13 SYSTEM DOWN”, “CHAPTER 15
REALTIME OS TASK ANALYZER” and “CHAPTER 16 SYSTEM INITIALIZATION”.

RI600V4 CHAPTER 2 SYSTEM BUILDING

R20UT0711EJ0104 Rev.1.04 Page 16 of 447
Sep 20, 2013

2.5 Creating Load Module

Run a build on CubeSuite+ for files created in sections from “2.2 Coding Processing Programs” to “2.4 Coding User-Own
Coding Module”, and library files provided by the RI600V4 and C compiler package, to create a load module.

1) Create or load a project

Create a new project, or load an existing one.

Note See “RI Series Real-Time Operating System User's Manual: Start”, “CubeSuite+ Integrated Development
Environment User's Manual: Start” and the Release Notes of this product for details about creating a new
project or loading an existing one.

2) Set a build target project

When making settings for or running a build, set the active project.
If there is no subproject, the project is always active.

Note See “CubeSuite+ Integrated Development Environment User's Manual: RX Build” for details about setting
the active project.

3) Confirm the version

Select the Realtime OS node on the project tree to open the Property panel.
Confirm the version of RI600V4 to be used in the [Kernel version] property on the [RI600V4] tab.

Figure 2-2 Property Panel: [RI600V4] Tab

RI600V4 CHAPTER 2 SYSTEM BUILDING

R20UT0711EJ0104 Rev.1.04 Page 17 of 447
Sep 20, 2013

4) Set build target files

For the project, add or remove build target files and update the dependencies.

Note See “CubeSuite+ Integrated Development Environment User's Manual: RX Build” for details about adding
or removing build target files for the project and updating the dependencies.

The following lists the files required for creating a load module.

- Source files created in “2.2 Coding Processing Programs”

- Processing programs (tasks, cyclic handlers, alarm handlers, interrupt handlers)

- System configuration file created in “2.3 Coding System Configuration File”

- SYSTEM CONFIGURATION FILE

Note Specify “cfg” as the extension of the system configuration file name. If the extension is different, “cfg” is
automatically added (for example, if you designate “aaa.c” as a file name, the file is named as
“aaa.c.cfg”).

- Source files created in “2.4 Coding User-Own Coding Module”

- User-own coding module (system down routine, boot processing)

- Library files provided by the RI600V4

- Kernel library (refer to “2.6.3 Kernel library”)

- Library files provided by the C compiler package

- Standard library, runtime library, etc.

Note 1 If the system configuration file is added to the Project Tree panel, the Realtime OS generated files node is
appeared.
The following information files are appeared under the Realtime OS generated files node. However, these
files are not generated at this point in time.

- System information header file (kernel_id.h)

- Service call definition file (kernel_sysint.h)

- ROM definition file (kernel_rom.h)

- RAM definition file (kernel_ram.h)

- System definition file (ri600.inc)

- CMT timer definition file (ri_cmt.h)

- Table file (ritable.src)

RI600V4 CHAPTER 2 SYSTEM BUILDING

R20UT0711EJ0104 Rev.1.04 Page 18 of 447
Sep 20, 2013

Figure 2-3 Project Tree Panel

Note 2 When replacing the system configuration file, first remove the added system configuration file from the
project, then add another one again.

Note 3 Although it is possible to add more than one system configuration files to a project, only the first file added
is enabled. Note that if you remove the enabled file from the project, the remaining additional files will not
be enabled; you must therefore add them again.

RI600V4 CHAPTER 2 SYSTEM BUILDING

R20UT0711EJ0104 Rev.1.04 Page 19 of 447
Sep 20, 2013

5) Set the output of Realtime OS generation files

Select the system configuration file on the project tree to open the Property panel.
On the [System Configuration File Related Information] tab, set the output of realtime OS generation files, etc.

Figure 2-4 Property Panel: [System Configuration File Related Information] Tab

6) Specify the output of a load module file

Set the output of a load module file as the product of the build.

Note See “CubeSuite+ Integrated Development Environment User's Manual: RX Build” for details about
specifying the output of a load module file.

7) Set build options

Set the options for the compiler, assembler, linker, and the like.
Please be sure to refer to “2.6 Build Options”.

Note See “CubeSuite+ Integrated Development Environment User's Manual: RX Build” for details about setting
build options.

RI600V4 CHAPTER 2 SYSTEM BUILDING

R20UT0711EJ0104 Rev.1.04 Page 20 of 447
Sep 20, 2013

8) Run a build

Run a build to create a load module.

Note See “CubeSuite+ Integrated Development Environment User's Manual: RX Build” for details about running
a build.

Figure 2-5 Project Tree Panel (After Running Build)

9) Save the project

Save the setting information of the project to the project file.

Note See “CubeSuite+ Integrated Development Environment User's Manual: Start” for details about saving the
project.

RI600V4 CHAPTER 2 SYSTEM BUILDING

R20UT0711EJ0104 Rev.1.04 Page 21 of 447
Sep 20, 2013

2.6 Build Options

This section explains the build options that should be especially noted.

2.6.1 Service call information files and “-ri600_preinit_mrc” compiler option

The service call information file (mrc files) are generated to the same folder as object files at compilation of the source files
that includes kernel.h file.
The name of service calls used in the source files are outputted in the mrc files. It is necessary to input all files to the table
generation utility mkritbl. If there is a leaking in the input file, service call modules that application uses might not be linked.
In this case, the system down will occur when the service call is issued.
On the other hand, if the mrc files which are generated in the past and which is invalid in now are input to the mkritbl, the
service call modules that are not used in the application may be linked. In this case, there is no problem in the operation of
the RI600V4 but the module size uselessly grows.
Specify “-ri600_preinit_mrc” compiler option for the source file that includes kernel.h file even if this option is not specified,
there is no problem in the operation of the RI600V4 but the service call module that is not used in the application may be
linked.
When application libraries are used, the mrc files that is generated at compilation of the library source should be inputted
to the mkritbl. If this way is difficult for you, make mrc file where name of using service calls is described (see belows), and
input the mrc file to the mkritbl.
Note, the system down will occur when the service call that is not linked is called.

sta_tsk
snd_mbx
rcv_mbx
prcv_mbx

RI600V4 CHAPTER 2 SYSTEM BUILDING

R20UT0711EJ0104 Rev.1.04 Page 22 of 447
Sep 20, 2013

2.6.2 Compiler option for the boot processing file

It is necessary to set “-nostuff” option for the boot processing file (“resetprg.c” in the sample project) like a mention in
“16.2.3 Compiler option for boot processing file”. If not, the RI600V4 does not work correctly.
To set “-nostuff” option only for the boot processing file, please set any of the following in the [Individual Compile Options]
tab of [Property] panel for the boot processing file. To set “-nostuff” option for all, please set any of the following in the
[Compiler Options] tab of [Property] panel for [CC-RX (Build Tool)].

1) Set in the [Object] category
Like Figure 2-6, set “Yes” in [Allocates uninitialized variables to 4-byte boundary alignment sections], [Allocates
initialized variables to 4-byte boundary alignment sections] and [Allocates const qualified variables to 4-byte
boundary alignment sections].

Figure 2-6 [Object] category

2) Set in the [Others] category
Like Figure 2-7, add “-nostuff” to [Other additional options].

Figure 2-7 [Others] category

RI600V4 CHAPTER 2 SYSTEM BUILDING

R20UT0711EJ0104 Rev.1.04 Page 23 of 447
Sep 20, 2013

2.6.3 Kernel library

The kernel libraries are stored in the folders described in Table 2-1. Note, CubeSuite+ links the appropriate kernel library
automatically, you need not consider the kernel libraries.

Table 2-1 Kernel libraries

Note 1 <ri_root> indicates the installation folder of RI600V4.
The default folder is “C:\Program Files\Renesas Electronics\CubeSuite+\RI600V4”.

Note 2 The kernel described in item-2 of Table 2-1 is linked when compiler V2.01.00 or later is used. In the case of
others, the kernel library described in item-1 of Table 2-1 is linked.

Folder
Compiler version

corresponding to the
library

Corresponding CPU core File name Description

1 <ri_root>\library\rxv1 V1.02.01 or later RXv1 architecture
ri600lit.lib For little endian

ri600big.lib For big endian

2 <ri_root>\library\rxv2 V2.01.00 or later
RXv1 architecture and
RXv2 architecture

ri600lit.lib For little endian

ri600big.lib For big endian

RI600V4 CHAPTER 2 SYSTEM BUILDING

R20UT0711EJ0104 Rev.1.04 Page 24 of 447
Sep 20, 2013

2.6.4 Arrangement of section

Arrangement section is defined by using “-start” linker option. In CubeSuite+, it is set in [Section] category of [Link Options]
tab in [Property] panel for [CC-RX (Build Tool)].

1) RI600V4 sections
Table 2-2 shows RI600V4 sections.

Table 2-2 RI600V4 sections

Section name Attribute
Boundary
alignment

ROM/RAM Description

PRI_KERNEL CODE 1 ROM/RAM RI600V4 programs

CRI_ROM ROMDATA 4 ROM/RAM RI600V4 constant

FIX_INTERRUPT_VECTOR ROMDATA 4 ROM

Fixed vector table/Exception vector
table
Refer to
“ F I X _ I N T E R R U P T _ V E C TO R
section”

INTERRUPT_VECTOR ROMDATA 4 ROM/RAM Relocatable vector table (1KB)

BRI_RAM DATA 4 RAM
RI600V4 variable section
This section includes data queue
area.

DRI_ROM ROMDATA 4 ROM/RAM RI600V4’s initialized data. The size
is 4 bytes.

RRI_RAM DATA 4 RAM

BRI_TRCBUF DATA 4 RAM

This section is generated only when
“Taking in trace chart by software
trace mode” and “Kernel buffer” are
selected in [Task Analyzer] tab.
The size is specified in [Task
Analyzer] tab.

BRI_HEAP DATA 4 RAM

The section name assigned to mes-
sage buffer area, fixed-sized mem-
ory pool area and variable-sized
memory pool area can be specified
in the system configuration file.
When this is omitted, BRI_HEAP is
applied as the section name.

SI DATA 4 RAM System stack

SURI_STACK DATA 4 RAM

The section name assigned to the
user stack for tasks can be specified
in the system configuration file.
When this is omitted, SURI_STACK
is applied as the section name.

RI600V4 CHAPTER 2 SYSTEM BUILDING

R20UT0711EJ0104 Rev.1.04 Page 25 of 447
Sep 20, 2013

2) FIX_INTERRUPT_VECTOR section

The configurator cfg600 generates fixed vector table/exception vector table as FIX_INTERRUPT_VECTOR section
according to the contents of definitions of “interrupt_fvector[]” in the system configuration file.

- At the time of RXv1 architecture use
In the RXv1 architecture, fixed vector table is being fixed to address 0xFFFFFF80. It is necessary to arrange the
FIX_INTERRUPT_VECTOR section at address 0xFFFFFF80.
When the FIX_INTERRUPT_VECTOR section is not arranged to address 0xFFFFFF80, all “interrupt_fvector[]” in
the system configuration file are ignored. And the system-down function when an exception (except Reset)
assigned to fixed vector table is occurred does not operate normally. Please generate fixed vector table to
address 0xFFFFFF80 by the user side.

- At the time of RXv2 architecture use
In the RXv2 architecture, the name of fixed vector table is changed into exception vector table, and can set up the
start address by EXTB register. The initial value of EXTB register at the time of reset is 0xFFFFFF80, it is same
as fixed interrupt vector table in RXv1 architecture.
Usually, please arrange the FIX_INTERRUPT_VECTOR section to address 0xFFFFFF80.
When the FIX_INTERRUPT_VECTOR section is not arranged to address 0xFFFFFF80, “interrupt_fvector[31]”
(reset vector) in the system configuration file is ignored. Please generate the reset vector (address
0xFFFFFFFC) by the user side. And initialize EXTB register to the start address of FIX_INTERRUPT_VECTOR
section in Boot processing function (PowerON_Reset_PC()).

3) Attention concerning address 0
The following must not become address 0.

- Fixed-sized memory pool area

- Variable-sized memory pool area

- Message sent to a mailbox

2.6.5 Initialized data section

About sections described in DTBL of the Section information file (User-Own Coding Module), it is necessary to perform
setting to map sections placed on ROM to sections placed on RAM by using “-rom” linker option. Set [Link Options] tab of
[Property] panel for [CC-RX (Build Tool)] like Figure 2-8.

Figure 2-8 ROM to RAM mapped section

Note In sample projects provided by RI600V4, it is already set up that the “DRI_ROM” section of RI600V4 is
mapped to “RRI_RAM” section.

RI600V4 CHAPTER 2 SYSTEM BUILDING

R20UT0711EJ0104 Rev.1.04 Page 26 of 447
Sep 20, 2013

2.6.6 Options for Realtime OS Task Analyzer

According to a setup of [Task Analyzer] tab, the build-options shown in Table 2-3 are set up automatically. Note, this auto-
matic setting function is not being interlocked with corresponding property panel of a function. For this reason, don't
change the contents set up automatically in corresponding property panel of a function.

Table 2-3 The options set up automatically for Realtime OS Task Analyzer

Note 1 The “TRCMODE” is used by following files.

- ritable.src: This file is generated by the configurator cfg600.

- trcSW_cmt.src: User-own coding sample module for “Taking in trace chart by software trace mode”

- trcLONG_cmt.src: User-own coding sample module for “Taking in long-statistics by software trace
mode”

Note 2 The “TRCBUFSZ” and “TRCBUFMODE” are used by “ritable.src”.

Trace mode Assembler Options Linker Options

Taking in trace chart by
hardware trace mode

-define=TRCMODE=1 None

Taking in trace chart by soft-
ware trace mode, Kernel
buffer

-define=TRCMODE=2

-define=TRCBUFSZ=<Buffer size>

The following is also set up when “Stop
the trace taking in” is chosen as
“Operation after used up the buffers”.

-define=TRCBUFMODE=1

None

Taking in trace chart by soft-
ware trace mode, Another
buffer

-define=TRCMODE=2

The following is also set up when “Stop
the trace taking in” is chosen as
“Operation after used up the buffers”.

-define=TRCBUFMODE=1

-define=__RI_TRCBUF=<Buffer
address>

-define=__RI_TRCBUFSZ=<Buffer
size>

Taking in long-statistics by
software trace mode

-define=TRCMODE=3 None

Not tracing None None

RI600V4 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 27 of 447
Sep 20, 2013

CHAPTER 3 TASK MANAGEMENT FUNCTIONS

This chapter describes the task management functions performed by the RI600V4.

3.1 Outline

The task management functions provided by the RI600V4 include a function to reference task statuses such as priorities
and detailed task information, in addition to a function to manipulate task statuses such as generation, activation and
termination of tasks.

3.2 Tasks

A task is processing program that is not executed unless it is explicitly manipulated via service calls provided by the
RI600V4, unlike other processing programs (interrupt handler, cyclic handler and alarm handler), and is called from the
scheduler.

Note The execution environment information required for a task's execution is called “task context”. During task
execution switching, the task context of the task currently under execution by the RI600V4 is saved and the
task context of the next task to be executed is loaded.

3.2.1 Task state

Tasks enter various states according to the acquisition status for the OS resources required for task execution and the
occurrence/non-occurrence of various events. In this process, the current state of each task must be checked and
managed by the RI600V4.
The RI600V4 classifies task states into the following six types.

Figure 3-1 Task State

WAITING state

WAITING-SUSPENDED state

SUSPENDED state

DORMANT state

RUNNING stateREADY state

RI600V4 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 28 of 447
Sep 20, 2013

1) DORMANT state

State of a task that is not active, or the state entered by a task whose processing has ended.
A task in the DORMANT state, while being under management of the RI600V4, is not subject to RI600V4 scheduling.

2) READY state

State of a task for which the preparations required for processing execution have been completed, but since another
task with a higher priority level or a task with the same priority level is currently being processed, the task is waiting
to be given the CPU's use right.

3) RUNNING state

State of a task that has acquired the CPU use right and is currently being processed.
Only one task can be in the running state at one time in the entire system.

4) WAITING state

State in which processing execution has been suspended because conditions required for execution are not
satisfied.
Resumption of processing from the WAITING state starts from the point where the processing execution was
suspended. The value of information required for resumption (such as task context) immediately before suspension
is therefore restored.
In the RI600V4, the WAITING state is classified into the following 12 types according to their required conditions and
managed.

Table 3-1 WAITING State

5) SUSPENDED state

State in which processing execution has been suspended forcibly.
Resumption of processing from the SUSPENDED state starts from the point where the processing execution was
suspended. The value of information required for resumption (such as task context) immediately before suspension
is therefore restored.

6) WAITING-SUSPENDED state

State in which the WAITING and SUSPENDED states are combined.
A task enters the SUSPENDED state when the WAITING state is cancelled, or enters the WAITING state when the
SUSPENDED state is cancelled.

WAITING State Service Calls

Sleeping state slp_tsk or tslp_tsk.

Delayed state dly_tsk.

WAITING state for a semaphore resource wai_sem or twai_sem.

WAITING state for an eventflag wai_flg or twai_flg.

Sending WAITING state for a data queue snd_dtq or tsnd_dtq.

Receiving WAITING state for a data queue rcv_dtq or trcv_dtq.

Receiving WAITING state for a mailbox rcv_mbx or trcv_mbx.

WAITING state for a mutex loc_mtx or tloc_mtx.

Sending WAITING state for a message buffer snd_mbf or tsnd_mbf

Receiving WAITING state for a message buffer rcv_mbf or trcv_mbf

WAITING state for a fixed-sized memory block get_mpf or tget_mpf.

WAITING state for a variable-sized memory block get_mpl or tget_mpl.

RI600V4 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 29 of 447
Sep 20, 2013

3.2.2 Task priority

A priority level that determines the order in which that task will be processed in relation to the other tasks is assigned to
each task.
As a result, in the RI600V4, the task that has the highest priority level of all the tasks that have entered an executable state
(RUNNING state or READY state) is selected and given the CPU use right.
In the RI600V4, the following two types of priorities are used for management purposes.

- Current priority
The RI600V4 performs the following processing according to current priority.

- Task scheduling (Refer to “14.4 Task Scheduling Method”)

- Queuing tasks to a wait queue in the order of priority

Note The current priority immediately after it moves from the DORMANT state to the READY state is specified at
creating the task.

- Base priority
Unless mutex is used, the base priority is the same as the current priority. When using mutex, refer to “6.2.2 Current
priority and base priority”.

Note 1 In the RI600V4, a task having a smaller priority number is given a higher priority.

Note 2 The priority range that can be specified in a system can be defined by Maximum task priority (priority) in
System Information (system)) when creating a system configuration file.

RI600V4 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 30 of 447
Sep 20, 2013

3.2.3 Basic form of tasks

The following shows the basic form of tasks.

Note 1 The following information is passed to exinf.

Note 2 When the return instruction is issued in a task, the same processing as ext_tsk is performed.

Note 3 For details about the extended information, refer to “3.4 Activate Task”.

Note 4 The prototype for tasks are declared in the kernel_id.h which is generated by the cfg600.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 /* */

 ext_tsk (); /*Terminate invoking task*/
}

How to activate exinf

ON is specified for TA_ACT attribute (initial_start) in
Task Information (task[]) Extended information (exinf) defined in Task

Information (task[])
act_tsk or iact_tsk

sta_tsk or ista_tsk Start code (stacd) specified by sta_tsk or ista_tsk

RI600V4 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 31 of 447
Sep 20, 2013

3.2.4 Internal processing of task

In the RI600V4, original dispatch processing (task scheduling) is executed during task switching.
Therefore, note the following points when coding tasks.

- Stack
Tasks use user stacks that are defined in Task Information (task[]).

- Service call
Tasks can issue service calls whose “Useful range” is “Task”.

- PSW register when processing is started

Table 3-2 PSW Register When Task Processing is Started

- FPSW register when processing is started
When setting of Task context register (context) in System Information (system) includes “FPSW”, the FPSW when
processing is started is shown in Table 3-3. The FPSW when processing is undefined in other cases.

Table 3-3 FPSW Register When Task Processing is Started

3.2.5 Processor mode of task

The processor mode at the time of task execution is always user mode. It is impossible to execute a task in the supervisor
mode.
Processing to execute in the supervisor mode should be implemented as an interrupt handler for INT instruction.
For example, the WAIT instruction, that changes the CPU to the power saving mode, is privilege instruction. The WAIT
instruction should execute in the supervisor mode.
Note, INT #1 to #8 are reserved by the RI600V4, application cannot use INT #1 to #8.

Bit Value Note

I 1
All interrupts are acceptable.

IPL 0

PM 1 User mode

U 1 User stack

C, Z, S, O Undefined

Others 0

Compiler options
Value

-round -denormalize

nearest (default)
off (default) 0x00000100 (Only DN bit is 1.)

on 0

zero
off (default) 0x00000101 (Only DN bit and RM bit are 1.)

on 1 (Only RM bit is 1.)

RI600V4 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 32 of 447
Sep 20, 2013

3.3 Create Task

In the RI600V4, the method of creating a task is limited to “static creation”.
Tasks therefore cannot be created dynamically using a method such as issuing a service call from a processing program.
Static task creation means defining of tasks using static API “task[]” in the system configuration file.
For details about the static API “task[]”, refer to “19.7 Task Information (task[])”.

3.4 Activate Task

The RI600V4 provides two types of interfaces for task activation: queuing an activation request queuing and not queuing
an activation request.

3.4.1 Activate task with queuing

A task (queuing an activation request) is activated by issuing the following service call from the processing program.

- act_tsk, iact_tsk
These service calls move the task specified by parameter tskid from the DORMANT state to the READY state.
As a result, the target task is queued at the end on the ready queue corresponding to the initial priority and becomes
subject to scheduling by the RI600V4.
If the target task has been moved to a state other than the DORMANT state when this service call is issued, this
service call does not move the state but increments the activation request counter (by added 1 to the activation
request counter).
The following describes an example for coding these service calls.

Note 1 The activation request counter managed by the RI600V4 is configured in 8-bit widths. If the number of
activation requests exceeds the maximum count value 255 as a result of issuing this service call, the counter
manipulation processing is therefore not performed but “E_QOVR” is returned.

Note 2 Extended information specified in Task Information (task[]) is passed to the task activated by issuing these
service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/

 /* */

 act_tsk (tskid); /*Activate task (queues an activation request)*/

 /* */
}

RI600V4 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 33 of 447
Sep 20, 2013

3.4.2 Activate task without queuing

A task (not queuing an activation request) is activated by issuing the following service call from the processing program.

- sta_tsk, ista_tsk
These service calls move the task specified by parameter tskid from the DORMANT state to the READY state.
As a result, the target task is queued at the end on the ready queue corresponding to the initial priority and becomes
subject to scheduling by the RI600V4.
This service call does not perform queuing of activation requests. If the target task is in a state other than the
DORMANT state, the status manipulation processing for the target task is therefore not performed but “E_OBJ” is
returned.
Specify for parameter stacd the extended information transferred to the target task.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/
 VP_INT stacd = 123; /*Declares and initializes variable*/

 /* */

 sta_tsk (tskid, stacd); /*Activate task (does not queue an activation */
 /*request)*/

 /* */
}

RI600V4 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 34 of 447
Sep 20, 2013

3.5 Cancel Task Activation Requests

An activation request is cancelled by issuing the following service call from the processing program.

- can_act, ican_act
This service call cancels all of the activation requests queued to the task specified by parameter tskid (sets the
activation request counter to 0).
When this service call is terminated normally, the number of cancelled activation requests is returned.
The following describes an example for coding these service calls.

Note This service call does not perform status manipulation processing but performs the setting of activation
request counter. Therefore, the task does not move from a state such as the READY state to the DORMANT
state.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER_UINT ercd; /*Declares variable*/
 ID tskid = 8; /*Declares and initializes variable*/

 /* */

 ercd = can_act (tskid); /*Cancel task activation requests*/

 if (ercd >= 0) {
 /* */ /*Normal termination processing*/
 }

 /* */
}

RI600V4 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 35 of 447
Sep 20, 2013

3.6 Terminate Task

3.6.1 Terminate invoking task

The invoking task is terminated by issuing the following service call from the processing program.

- ext_tsk
This service call moves the invoking task from the RUNNING state to the DORMANT state.
As a result, the invoking task is unlinked from the ready queue and excluded from the RI600V4 scheduling subject.
If an activation request has been queued to the invoking task (the activation request counter > 0) when this service
call is issued, this service call moves the task from the RUNNING state to the DORMANT state, decrements the
wake-up request counter (by subtracting 1 from the activation request counter), and then moves the task from the
DORMANT state to the READY state.
The following describes an example for coding this service call.

Note 1 When the invoking task has locked mutexes, the locked state are released at the same time (processing
equivalent to unl_mtx).

Note 2 When the return instruction is issued in a task, the same processing as ext_tsk is performed.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 /* */

 ext_tsk (); /*Terminate invoking task*/
}

RI600V4 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 36 of 447
Sep 20, 2013

3.6.2 Terminate Another task

- ter_tsk
This service call forcibly moves the task specified by parameter tskid to the DORMANT state.
As a result, the target task is excluded from the RI600V4 scheduling subject.
If an activation request has been queued to the target task (the activation request counter > 0) when this service call
is issued, this service call moves the task to the DORMANT state, decrements the wake-up request counter (by
subtracting 1 from the activation request counter), and then moves the task from the DORMANT state to the READY
state.
The following describes an example for coding this service call.

Note When the target task has locked mutexes, the locked state are released at the same time (processing
equivalent to unl_mtx).

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/

 /* */

 ter_tsk (tskid); /*Terminate task*/

 /* */
}

RI600V4 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 37 of 447
Sep 20, 2013

3.7 Change Task Priority

The priority is changed by issuing the following service call from the processing program.

- chg_pri, ichg_pri
This service call changes the base priority of the task specified by parameter tskid to a value specified by parameter
tskpri.
The changed base priority is effective until the task terminates or this servie call is issued. When next the task is
activated, the base priority is the initial priority which is specified at the task creation.
This service call also changes the current priority of the target task to a value specified by parameter tskpri. However,
the current priority is not changed when the target task has locked mutexes.
If the target task has locked mutexes or is waiting for mutex to be locked and if tskpri is higher than the ceiling priority
of either of the mutexes, this service call returns “E_ILUSE”.
When the current priority is changed, the following state variations are generated.

1) When the target task is in the RUNNING or READY state.
This service call re-queues the task at the end of the ready queue corresponding to the priority specified by
parameter tskpri.

2) When the target task is queued to a wait queue of the object with TA_TPRI or TA_CEILING attribute.
This service call re-queues the task to the wait queue corresponding to the priority specified by parameter tskpri.
When two or more tasks of same current priority as this service call re-queues the target task at the end among
their tasks.

Example When three tasks (task A: priority level 10, task B: priority level 11, task C: priority level 12) are
queued to the semaphore wait queue in the order of priority, and the priority level of task B is
changed from 11 to 9, the wait order will be changed as follows.

The following describes an example for coding these service calls.

Note For current priority and base priority, refer to “6.2.2 Current priority and base priority”.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/
 PRI tskpri = 9; /*Declares and initializes variable*/

 /* */

 chg_pri (tskid, tskpri); /*Change task priority*/

 /* */
}

Task C
Semaphore

Task ATask B

chg_pri (Task B, 9);

Priority: 9 Priority: 10 Priority: 12

Task C
Semaphore

Task BTask A
Priority: 10 Priority: 11 Priority: 12

Task C
Priority: 12

RI600V4 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 38 of 447
Sep 20, 2013

3.8 Reference Task Priority

A task priority is referenced by issuing the following service call from the processing program.

- get_pri, iget_pri
Stores current priority of the task specified by parameter tskid in the area specified by parameter p_tskpri.
The following describes an example for coding these service calls.

Note For current priority and base priority, refer to “6.2.2 Current priority and base priority”.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/
 PRI p_tskpri; /*Declares variable*/

 /* */

 get_pri (tskid, &p_tskpri); /*Reference task priority*/

 /* */
}

RI600V4 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 39 of 447
Sep 20, 2013

3.9 Reference Task State

3.9.1 Reference task state

A task status is referenced by issuing the following service call from the processing program.

- ref_tsk, iref_tsk
Stores task state packet (current state, current priority, etc.) of the task specified by parameter tskid in the area
specified by parameter pk_rtsk.
The following describes an example for coding these service calls.

Note For details about the task state packet, refer to “[Task state packet: T_RTSK]”.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/
 T_RTSK pk_rtsk; /*Declares data structure*/
 STAT tskstat; /*Declares variable*/
 PRI tskpri; /*Declares variable*/
 PRI tskbpri; /*Declares variable*/
 STAT tskwait; /*Declares variable*/
 ID wobjid; /*Declares variable*/
 TMO lefttmo; /*Declares variable*/
 UINT actcnt; /*Declares variable*/
 UINT wupcnt; /*Declares variable*/
 UINT suscnt; /*Declares variable*/

 /* */

 ref_tsk (tskid, &pk_rtsk); /*Reference task state*/

 tskstat = pk_rtsk.tskstat; /*Reference current state*/
 tskpri = pk_rtsk.tskpri; /*Reference current priority*/
 tskbpri = pk_rtsk.tskbpri; /*Reference base priority*/
 tskwait = pk_rtsk.tskwait; /*Reference reason for waiting*/
 wobjid = pk_rtsk.wobjid; /*Reference object ID number for which the */
 /*task is waiting*/
 lefttmo = pk_rtsk.lefttmo; /*Reference remaining time until time-out*/
 actcnt = pk_rtsk.actcnt; /*Reference activation request count*/
 wupcnt = pk_rtsk.wupcnt; /*Reference wake-up request count*/
 suscnt = pk_rtsk.suscnt; /*Reference suspension count*/

 /* */
}

RI600V4 CHAPTER 3 TASK MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 40 of 447
Sep 20, 2013

3.9.2 Reference task state (simplified version)

A task status (simplified version) is referenced by issuing the following service call from the processing program.

- ref_tst, iref_tst
Stores task state packet (current state, reason for waiting) of the task specified by parameter tskid in the area
specified by parameter pk_rtst.
Used for referencing only the current state and reason for wait among task information.
Response becomes faster than using ref_tsk or iref_tsk because only a few information items are acquired.
The following describes an example for coding these service calls.

Note For details about the task state packet (simplified version), refer to “ [Task state packet (simplified version):
T_RTST]”.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/
 T_RTST pk_rtst; /*Declares data structure*/
 STAT tskstat; /*Declares variable*/
 STAT tskwait; /*Declares variable*/

 /* */

 ref_tst (tskid, &pk_rtst); /*Reference task state (simplified version)*/

 tskstat = pk_rtst.tskstat; /*Reference current state*/
 tskwait = pk_rtst.tskwait; /*Reference reason for waiting*/

 /* */
}

RI600V4 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 41 of 447
Sep 20, 2013

CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION
FUNCTIONS

This chapter describes the task dependent synchronization functions performed by the RI600V4.

4.1 Outline

The RI600V4 provides several task-dependent synchronization functions.

4.2 Put Task to Sleep

4.2.1 Waiting forever

A task is moved to the sleeping state (waiting forever) by issuing the following service call from the processing program.

- slp_tsk
This service call moves the invoking task from the RUNNING state to the WAITING state (sleeping state).
If a wake-up request has been queued to the target task (the wake-up request counter > 0) when this service call is
issued, this service call does not move the state but decrements the wake-up request counter (by subtracting 1 from
the wake-up request counter).
The sleeping state is cancelled in the following cases.

The following describes an example for coding this service call.

Sleeping State Cancel Operation Return Value

A wake-up request was issued as a result of issuing wup_tsk. E_OK

A wake-up request was issued as a result of issuing iwup_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/

 /* */
 ercd = slp_tsk (); /*Put task to sleep*/
 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }
 /* */
｝

RI600V4 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 42 of 447
Sep 20, 2013

4.2.2 With time-out

A task is moved to the sleeping state (with time-out) by issuing the following service call from the processing program.

- tslp_tsk
This service call moves the invoking task from the RUNNING state to the WAITING state with time-out(sleeping
state).
As a result, the invoking task is unlinked from the ready queue and excluded from the RI600V4 scheduling subject.
If a wake-up request has been queued to the target task (the wake-up request counter > 0) when this service call is
issued, this service call does not move the state but decrements the wake-up request counter (by subtracting 1 from
the wake-up request counter).
The sleeping state is cancelled in the following cases.

The following describes an example for coding this service call.

Note When TMO_FEVR is specified for wait time tmout, processing equivalent to slp_tsk will be executed.

Sleeping State Cancel Operation Return Value

A wake-up request was issued as a result of issuing wup_tsk. E_OK

A wake-up request was issued as a result of issuing iwup_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The time specified by tmout has elapsed. E_TMOUT

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /* */

 ercd = tslp_tsk (tmout); /*Put task to sleep*/

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Time-out processing*/
 }

 /* */
}

RI600V4 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 43 of 447
Sep 20, 2013

4.3 Wake-up Task

A task is woken up by issuing the following service call from the processing program.

- wup_tsk, iwup_tsk
These service calls cancel the WAITING state (sleeping state) of the task specified by parameter tskid.
As a result, the target task is moved from the sleeping state to the READY state, or from the WAITING-SUSPENDED
state to the SUSPENDED state.
If the target task is in a state other than the sleeping state when this service call is issued, this service call does not
move the state but increments the wake-up request counter (by added 1 to the wake-up request counter).
The following describes an example for coding these service calls.

Note The wake-up request counter managed by the RI600V4 is configured in 8-bit widths. If the number of wake-
up requests exceeds the maximum count value 255 as a result of issuing this service call, the counter
manipulation processing is therefore not performed but “E_QOVR” is returned.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/

 /* */

 wup_tsk (tskid); /*Wake-up task*/

 /* */
}

RI600V4 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 44 of 447
Sep 20, 2013

4.4 Cancel Task Wake-up Requests

A wake-up request is cancelled by issuing the following service call from the processing program.

- can_wup, ican_wup
These service calls cancel all of the wake-up requests queued to the task specified by parameter tskid (the wake-up
request counter is set to 0).
When this service call is terminated normally, the number of cancelled wake-up requests is returned.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER_UINT ercd; /*Declares variable*/
 ID tskid = 8; /*Declares and initializes variable*/

 /* */

 ercd = can_wup (tskid); /*Cancel task wake-up requests*/

 if (ercd >= 0) {
 /* */ /*Normal termination processing*/
 }

 /* */
}

RI600V4 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 45 of 447
Sep 20, 2013

4.5 Forcibly Release Task from Waiting

The WAITING state is forcibly cancelled by issuing the following service call from the processing program.

- rel_wai, irel_wai
These service calls forcibly cancel the WAITING state of the task specified by parameter tskid.
As a result, the target task unlinked from the wait queue and is moved from the WAITING state to the READY state, or
from the WAITING-SUSPENDED state to the SUSPENDED state.
“E_RLWAI” is returned from the service call that triggered the move to the WAITING state (slp_tsk, wai_sem, or the
like) to the task whose WAITING state is cancelled by this service call.
The following describes an example for coding these service calls.

Note 1 This service call does not perform queuing of forced cancellation requests. If the target task is in a state
other than the WAITING or WAITING-SUSPENDED state, “E_OBJ” is returned.

Note 2 The SUSPENDED state is not cancelled by these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/

 /* */

 rel_wai (tskid); /*Release task from waiting*/

 /* */
}

RI600V4 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 46 of 447
Sep 20, 2013

4.6 Suspend Task

A task is moved to the SUSPENDED state by issuing the following service call from the processing program.

- sus_tsk, isus_tsk
These service calls move the target task specified by parameter tskid from the RUNNING state to the SUSPENDED
state, from the READY state to the SUSPENDED state, or from the WAITING state to the WAITING-SUSPENDED
state.
If the target task has moved to the SUSPENDED or WAITING-SUSPENDED state when this service call is issued,
these service calls return E_QOVR.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/

 /* */

 sus_tsk (tskid); /*Suspend task*/

 /* */
}

RI600V4 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 47 of 447
Sep 20, 2013

4.7 Resume Suspended Task

4.7.1 Resume suspended task

The SUSPENDED state is cancelled by issuing the following service call from the processing program.

- rsm_tsk, irsm_tsk
These service calls move the target task specified by parameter tskid from the SUSPENDED state to the READY
state, or from the WAITING-SUSPENDED state to the WAITING state.
The following describes an example for coding these service calls.

Note 1 This service call does not perform queuing of cancellation requests. If the target task is in a state other than
the SUSPENDED or WAITING-SUSPENDED state, “E_OBJ” is returned.

Note 2 The RI600V4 does not support queuing of suspend request. The behavior of the frsm_tsk and ifrsm_tsk, that
can release from the SUSPENDED state even if suspend request has been queued, are same as rsm_tsk
and irsm_tsk.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/

 /* */

 rsm_tsk (tskid); /*Resume suspended task*/

 /* */
}

RI600V4 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 48 of 447
Sep 20, 2013

4.7.2 Forcibly resume suspended task

The SUSPENDED state is forcibly cancelled by issuing the following service calls from the processing program.

- frsm_tsk, ifrsm_tsk
These service calls move the target task specified by parameter tskid from the SUSPENDED state to the READY
state, or from the WAITING-SUSPENDED state to the WAITING state.
The following describes an example for coding these service calls.

Note 1 This service call does not perform queuing of cancellation requests. If the target task is in a state other than
the SUSPENDED or WAITING-SUSPENDED state, “E_OBJ” is therefore returned.

Note 2 The RI600V4 does not support queuing of suspend request. Therefore, the behavior of these service calls
are same as rsm_tsk and irsm_tsk.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID tskid = 8; /*Declares and initializes variable*/

 /* */

 frsm_tsk (tskid); /*Forcibly resume suspended task*/

 /* */
}

RI600V4 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 49 of 447
Sep 20, 2013

4.8 Delay Task

A task is moved to the delayed state by issuing the following service call from the processing program.

- dly_tsk
This service call moves the invoking task from the RUNNING state to the WAITING state (delayed state).
As a result, the invoking task is unlinked from the ready queue and excluded from the RI600V4 scheduling subject.
The delayed state is cancelled in the following cases.

The following describes an example for coding this service call.

Note When 0 is specified as dlytim, the delay time is up to next base clock interrupt generation.

Delayed State Cancel Operation Return Value

Delay time specified by parameter dlytim has elapsed. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 RELTIM dlytim = 3600; /*Declares and initializes variable*/

 /* */

 ercd = dly_tsk (dlytim); /*Delay task*/

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

RI600V4 CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 50 of 447
Sep 20, 2013

4.9 Differences Between Sleep with Time-out and Delay

There are differences between “Sleep with time-out (4.2.2 With time-out)” and “Delay (4.8 Delay Task)” as shown in Table
4-1.

Table 4-1 Differences Between “Sleep with time-out” and “Delay”

Sleep with time-out Delay

Service call that causes status change tslp_tsk dly_tsk

Return value when time has elapsed E_TMOUT E_OK

Operation when wup_tsk or iwup_tsk
is issued

Wake-up
Queues the wake-up request (time
elapse wait is not cancelled).

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 51 of 447
Sep 20, 2013

CHAPTER 5 SYNCHRONIZATION AND COMMUNICA-
TION FUNCTIONS

This chapter describes the synchronization and communication functions performed by the RI600V4.

5.1 Outline

The synchronization and communication functions of the RI600V4 consist of Semaphores, Eventflags, Data Queues, and
Mailboxes that are provided as means for realizing exclusive control, queuing, and communication among tasks.

5.2 Semaphores

In the RI600V4, non-negative number counting semaphores are provided as a means (exclusive control function) for
preventing contention for limited resources (hardware devices, library function, etc.) arising from the required conditions of
simultaneously running tasks.
The following shows a processing flow when using a semaphore.

Figure 5-1 Processing Flow (Semaphore)

5.2.1 Create semaphore

In the RI600V4, the method of creating a semaphore is limited to “static creation”.
Semaphores therefore cannot be created dynamically using a method such as issuing a service call from a processing
program.
Static semaphore creation means defining of semaphores using static API “semaphore[]” in the system configuration file.
For details about the static API “semaphore[]”, refer to “19.8 Semaphore Information (semaphore[])”.

Task

Exclusive control period

Acquire semaphore resource

Release semaphore resource

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 52 of 447
Sep 20, 2013

5.2.2 Acquire semaphore resource

A resource is acquired (waiting forever, polling, or with time-out) by issuing the following service call from the processing
program.

- wai_sem (Wait)

- pol_sem, ipol_sem (Polling)

- twai_sem (Wait with time-out)

- wai_sem (Wait)
This service call acquires a resource from the semaphore specified by parameter semid (subtracts 1 from the
semaphore counter).
When no resources are acquired from the target semaphore when this service call is issued (no available resources
exist), this service call does not acquire resources but queues the invoking task to the target semaphore wait queue
and moves it from the RUNNING state to the WAITING state (resource acquisition wait state).
The WAITING state for a semaphore resource is cancelled in the following cases.

The following describes an example for coding this service call.

Note Invoking tasks are queued to the target semaphore wait queue in the order defined during configuration
(FIFO order or current priority order).

WAITING State for a Semaphore Resource Cancel Operation Return Value

The resource was released to the target semaphore as a result of issuing sig_sem. E_OK

The resource was released to the target semaphore as a result of issuing isig_sem. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID semid = 1; /*Declares and initializes variable*/

 /* */

 ercd = wai_sem (semid); /*Acquire semaphore resource*/

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/

 sig_sem (semid); /*Release semaphore resource*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 53 of 447
Sep 20, 2013

- pol_sem, ipol_sem (Polling)
These service calls acquire a resource from the semaphore specified by parameter semid (subtracts 1 from the
semaphore counter).
If a resource could not be acquired from the target semaphore (semaphore counter is set to 0) when these service
calls are issued, the counter manipulation processing is not performed but “E_TMOUT” is returned.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID semid = 1; /*Declares and initializes variable*/

 /* */

 ercd = pol_sem (semid); /*Acquire semaphore resource*/

 if (ercd == E_OK) {
 /* */ /*Polling success processing*/

 sig_sem (semid); /*Release semaphore resource*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Polling failure processing*/
 }

 /* */
}

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 54 of 447
Sep 20, 2013

- twai_sem (Wait with time-out)
This service call acquires a resource from the semaphore specified by parameter semid (subtracts 1 from the
semaphore counter).
If no resources are acquired from the target semaphore when service call is issued this (no available resources exist),
this service call does not acquire resources but queues the invoking task to the target semaphore wait queue and
moves it from the RUNNING state to the WAITING state with time-out (resource acquisition wait state).
The WAITING state for a semaphore resource is cancelled in the following cases.

The following describes an example for coding this service call.

Note 1 Invoking tasks are queued to the target semaphore wait queue in the order defined during configuration
(FIFO order or current priority order).

Note 2 TMO_FEVR is specified for wait time tmout, processing equivalent to wai_sem will be executed. When
TMO_POL is specified, processing equivalent to pol_sem will be executed.

WAITING State for a Semaphore Resource Cancel Operation Return Value

The resource was released to the target semaphore as a result of issuing sig_sem. E_OK

The resource was released to the target semaphore as a result of issuing isig_sem. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The time specified by tmout has elapsed. E_TMOUT

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID semid = 1; /*Declares and initializes variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /* */

 ercd = twai_sem (semid, tmout); /*Acquire semaphore resource*/

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/

 sig_sem (semid); /*Release semaphore resource*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Time-out processing*/
 }

 /* */
}

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 55 of 447
Sep 20, 2013

5.2.3 Release semaphore resource

A resource is released by issuing the following service call from the processing program.

- sig_sem, isig_sem
These service calls releases the resource to the semaphore specified by parameter semid (adds 1 to the semaphore
counter).
If a task is queued in the wait queue of the target semaphore when this service call is issued, the counter
manipulation processing is not performed but the resource is passed to the relevant task (first task of wait queue).
As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (WAITING state
for a semaphore resource) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.
The following describes an example for coding these service calls.

Note With the RI600V4, the maximum possible number of semaphore resources (maximum resource count) is
defined during configuration. If the number of resources exceeds the specified maximum resource count,
this service call therefore does not release the acquired resources (addition to the semaphore counter value)
but returns E_QOVR.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID semid = 1; /*Declares and initializes variable*/

 /* */

 ercd = wai_sem (semid); /*Acquire semaphore resource*/

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/

 sig_sem (semid); /*Release semaphore resource*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 56 of 447
Sep 20, 2013

5.2.4 Reference semaphore state

A semaphore status is referenced by issuing the following service call from the processing program.

- ref_sem, iref_sem
Stores semaphore state packet (ID number of the task at the head of the wait queue, current resource count, etc.) of
the semaphore specified by parameter semid in the area specified by parameter pk_rsem.
The following describes an example for coding these service calls.

Note For details about the semaphore state packet, refer to “[Semaphore state packet: T_RSEM]”.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID semid = 1; /*Declares and initializes variable*/
 T_RSEM pk_rsem; /*Declares variable*/
 ID wtskid; /*Declares variable*/
 UINT semcnt; /*Declares variable*/

 /* */

 ref_sem (semid, &pk_rsem); /*Reference semaphore state*/

 wtskid = pk_rsem.wtskid; /*Reference ID number of the task at the */
 /*head of the wait queue*/
 semcnt = pk_rsem.semcnt; /*Reference current resource count*/

 /* */
}

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 57 of 447
Sep 20, 2013

5.3 Eventflags

The RI600V4 provides 32-bit eventflags as a queuing function for tasks, such as keeping the tasks waiting for execution,
until the results of the execution of a given processing program are output.
The following shows a processing flow when using an eventflag.

Figure 5-2 Processing Flow (Eventflag)

5.3.1 Create eventflag

In the RI600V4, the method of creating an eventflag is limited to “static creation”.
Eventflags therefore cannot be created dynamically using a method such as issuing a service call from a processing
program.
Static event flag creation means defining of event flags using static API “flag[]” in the system configuration file.
For details about the static API “flag[]”, refer to “19.9 Eventflag Information (flag[])”.

Check bit pattern

Set eventflag

Task A
Priority: High

Task B
Priority: Low

Queuing period

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 58 of 447
Sep 20, 2013

5.3.2 Set eventflag

 A bit pattern is set by issuing the following service call from the processing program.

- set_flg, iset_flg
These service calls set the result of ORing the bit pattern of the eventflag specified by parameter flgid and the bit
pattern specified by parameter setptn as the bit pattern of the target eventflag.
After that, these service calls evaluate whether the wait condition of the tasks in the wait queue is satisfied. This
evaluation is done in order of the wait queue. If the wait condition is satisfied, the relevant task is unlinked from the
wait queue at the same time as bit pattern setting processing. As a result, the relevant task is moved from the
WAITING state (WAITING state for an eventflag) to the READY state, or from the WAITING-SUSPENDED state to the
SUSPENDED state. At this time, the bit pattern of the target event flag is cleared to 0 and this service call finishes
processing if the TA_CLR attribute is specified for the target eventflag.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID flgid = 1; /*Declares and initializes variable*/
 FLGPTN setptn = 0x00000001UL; /*Declares and initializes variable*/

 /* */

 set_flg (flgid, setptn); /*Set eventflag*/

 /* */
}

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 59 of 447
Sep 20, 2013

5.3.3 Clear eventflag

A bit pattern is cleared by issuing the following service call from the processing program.

- clr_flg, iclr_flg
This service call sets the result of ANDing the bit pattern set to the eventflag specified by parameter flgid and the bit
pattern specified by parameter clrptn as the bit pattern of the target eventflag.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID flgid = 1; /*Declares and initializes variable*/
 FLGPTN clrptn = 0xFFFFFFFEUL; /*Declares and initializes variable*/

 /* */

 clr_flg (flgid, clrptn); /*Clear eventflag*/

 /* */
}

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 60 of 447
Sep 20, 2013

5.3.4 Check bit pattern

A bit pattern is checked (waiting forever, polling, or with time-out) by issuing the following service call from the processing
program.

- wai_flg (Wait)

- pol_flg, ipol_flg (Polling)

- twai_flg (Wait with time-out)

- wai_flg (Wait)
This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the
required condition specified by parameter wfmode are set to the eventflag specified by parameter flgid.
If a bit pattern that satisfies the required condition has been set for the target eventflag, the bit pattern of the target
eventflag is stored in the area specified by parameter p_flgptn.
If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued, the
invoking task is queued to the target eventflag wait queue.
As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the
WAITING state (WAITING state for an eventflag).
The WAITING state for an eventflag is cancelled in the following cases.

The following shows the specification format of required condition wfmode.

- wfmode = TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

- wfmode = TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

The following describes an example for coding this service call.

WAITING State for an Eventflag Cancel Operation Return Value

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing set_flg.

E_OK

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing iset_flg.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 61 of 447
Sep 20, 2013

Note 1 With the RI600V4, whether to enable queuing of multiple tasks to the event flag wait queue is defined during
configuration. If this service call is issued for the event flag (TA_WSGL attribute) to which a wait task is
queued, therefore, “E_ILUSE” is returned regardless of whether the required condition is immediately satisfied.

TA_WSGL: Only one task is allowed to be in the WAITING state for the eventflag.
TA_WMUL: Multiple tasks are allowed to be in the WAITING state for the eventflag.

Note 2 Invoking tasks are queued to the target event flag (TA_WMUL attribute) wait queue in the order defined during
configuration (FIFO order or current priority order).
However, when the TA_CLR attribute is not specified, the wait queue is managed in the FIFO order even if the
priority order is specified. This behavior falls outside ITRON4.0 specification.

Note 3 The RI600V4 performs bit pattern clear processing (0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID flgid = 1; /*Declares and initializes variable*/
 FLGPTN waiptn = 14; /*Declares and initializes variable*/
 MODE wfmode = TWF_ANDW; /*Declares and initializes variable*/
 FLGPTN p_flgptn; /*Declares variable*/

 /* */

 /*Wait for eventflag*/
 ercd = wai_flg (flgid, waiptn, wfmode, &p_flgptn);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 62 of 447
Sep 20, 2013

- pol_flg, ipol_flg (Polling)
This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the
required condition specified by parameter wfmode are set to the eventflag specified by parameter flgid.
If the bit pattern that satisfies the required condition has been set to the target eventflag, the bit pattern of the target
eventflag is stored in the area specified by parameter p_flgptn.
If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued,
“E_TMOUT” is returned.
The following shows the specification format of required condition wfmode.

- wfmode = TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

- wfmode = TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

The following describes an example for coding these service calls.

Note 1 With the RI600V4, whether to enable queuing of multiple tasks to the event flag wait queue is defined during
configuration. If this service call is issued for the event flag (TA_WSGL attribute) to which a wait task is
queued, therefore, “E_ILUSE” is returned regardless of whether the required condition is immediately satisfied.

TA_WSGL: Only one task is allowed to be in the WAITING state for the eventflag.
TA_WMUL: Multiple tasks are allowed to be in the WAITING state for the eventflag.

Note 2 The RI600V4 performs bit pattern clear processing (0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID flgid = 1; /*Declares and initializes variable*/
 FLGPTN waiptn = 14; /*Declares and initializes variable*/
 MODE wfmode = TWF_ANDW; /*Declares and initializes variable*/
 FLGPTN p_flgptn; /*Declares variable*/

 /* */

 /*Wait for eventflag*/
 ercd = pol_flg (flgid, waiptn, wfmode, &p_flgptn);

 if (ercd == E_OK) {
 /* */ /*Polling success processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Polling failure processing*/
 }

 /* */
}

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 63 of 447
Sep 20, 2013

- twai_flg (Wait with time-out)
This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the
required condition specified by parameter wfmode are set to the eventflag specified by parameter flgid.
If a bit pattern that satisfies the required condition has been set for the target eventflag, the bit pattern of the target
eventflag is stored in the area specified by parameter p_flgptn.
If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued, the
invoking task is queued to the target eventflag wait queue.
As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the
WAITING state (WAITING state for an eventflag).
The WAITING state for an eventflag is cancelled in the following cases.

The following shows the specification format of required condition wfmode.

- wfmode = TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

- wfmode = TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

The following describes an example for coding this service call.

WAITING State for an Eventflag Cancel Operation Return Value

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing set_flg.

E_OK

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing iset_flg.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The time specified by tmout has elapsed. E_TMOUT

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID flgid = 1; /*Declares and initializes variable*/
 FLGPTN waiptn = 14; /*Declares and initializes variable*/
 MODE wfmode = TWF_ANDW; /*Declares and initializes variable*/
 FLGPTN p_flgptn; /*Declares variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /* */

 /*Wait for eventflag*/
 ercd = twai_flg (flgid, waiptn, wfmode, &p_flgptn, tmout);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Time-out processing*/
 }

 /* */
}

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 64 of 447
Sep 20, 2013

Note 1 With the RI600V4, whether to enable queuing of multiple tasks to the event flag wait queue is defined during
configuration. If this service call is issued for the event flag (TA_WSGL attribute) to which a wait task is
queued, therefore, “E_ILUSE” is returned regardless of whether the required condition is immediately satisfied.

TA_WSGL: Only one task is allowed to be in the WAITING state for the eventflag.
TA_WMUL: Multiple tasks are allowed to be in the WAITING state for the eventflag.

Note 2 Invoking tasks are queued to the target event flag (TA_WMUL attribute) wait queue in the order defined during
configuration (FIFO order or current priority order).
However, when the TA_CLR attribute is not specified, the wait queue is managed in the FIFO order even if the
priority order is specified. This behavior falls outside ITRON4.0 specification.

Note 3 The RI600V4 performs bit pattern clear processing (0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

Note 4 TMO_FEVR is specified for wait time tmout, processing equivalent to wai_flg will be executed. When
TMO_POL is specified, processing equivalent to pol_flg will be executed.

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 65 of 447
Sep 20, 2013

5.3.5 Reference eventflag state

An eventflag status is referenced by issuing the following service call from the processing program.

- ref_flg, iref_flg
Stores eventflag state packet (ID number of the task at the head of the wait queue, current bit pattern, etc.) of the
eventflag specified by parameter flgid in the area specified by parameter pk_rflg.
The following describes an example for coding these service calls.

Note For details about the eventflag state packet, refer to “[Eventflag state packet: T_RFLG]”.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID flgid = 1; /*Declares and initializes variable*/
 T_RFLG pk_rflg; /*Declares data structure*/
 ID wtskid; /*Declares variable*/
 FLGPTN flgptn; /*Declares variable*/

 /* */

 ref_flg (flgid, &pk_rflg); /*Reference eventflag state*/

 wtskid = pk_rflg.wtskid; /*Reference ID number of the task at the */
 /*head of the wait queue*/
 flgptn = pk_rflg.flgptn; /*Reference current bit pattern*/

 /* */
}

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 66 of 447
Sep 20, 2013

5.4 Data Queues

Multitask processing requires the inter-task communication function (data transfer function) that reports the processing
result of a task to another task. The RI600V4 therefore provides the data queues for transferring the prescribed size of
data.
The following shows a processing flow when using a data queue.

Figure 5-3 Processing Flow (Data Queue)

Note Data units of 4 bytes are transmitted or received at a time.

5.4.1 Create data queue

In the RI600V4, the method of creating data queue is limited to “static creation”.
Data queues therefore cannot be created dynamically using a method such as issuing a service call from a processing
program.
Static data queue creation means defining of data queues using static API “dataqueue[]” in the system configuration file.
For details about the static API “dataqueue[]”, refer to “19.10 Data Queue Information (dataqueue[])”.

Task A
Priority: High

Task B
Priority: Low

Reception wait period

Receive from data queue

Send to data queue

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 67 of 447
Sep 20, 2013

5.4.2 Send to data queue

A data is transmitted by issuing the following service call from the processing program.

- snd_dtq (Wait)

- psnd_dtq, ipsnd_dtq (Polling)

- tsnd_dtq (Wait with time-out)

- snd_dtq (Wait)
This service call processes as follows according to the situation of the data queue specified by the parameter dtqid.

- There is a task in the reception wait queue.
This service call transfers the data specified by parameter data to the task in the top of the reception wait
queue. As a result, the task is unlinked from the reception wait queue and moves from the WAITING state
(data reception wait state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED
state.

- There is no task neither in the reception wait queue and transmission wait queue and there is available space
in the data queue.
This service call stores the data specified by parameter data to the data queue.

- There is no task neither in the reception wait queue and transmission wait queue and there is no available
space in the data queue, or there is a task in the transmission wait queue.
This service call queues the invoking task to the transmission wait queue of the target data queue and moves it
from the RUNNING state to the WAITING state (data transmission wait state).
The sending WAITING state for a data queue is cancelled in the following cases.

The following describes an example for coding this service call.

Sending WAITING State for a Data Queue Cancel Operation Return Value

Available space was secured in the data queue area as a result of issuing rcv_dtq. E_OK

Available space was secured in the data queue area as a result of issuing prcv_dtq. E_OK

Available space was secured in the data queue area as a result of issuing iprcv_dtq. E_OK

Available space was secured in the data queue area as a result of issuing trcv_dtq. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The data queue is reset as a result of issuing vrst_dtq. EV_RST

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 68 of 447
Sep 20, 2013

Note 1 Data is written to the data queue area in the order of the data transmission request.

Note 2 Invoking tasks are queued to the transmission wait queue of the target data queue in the order defined
during configuration (FIFO order or current priority order).

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID dtqid = 1; /*Declares and initializes variable*/
 VP_INT data = 123; /*Declares and initializes variable*/

 /* */

 ercd = snd_dtq (dtqid, data); /*Send to data queue*/

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 69 of 447
Sep 20, 2013

- psnd_dtq, ipsnd_dtq (Polling)
These service calls process as follows according to the situation of the data queue specified by the parameter dtqid.

- There is a task in the reception wait queue.
These service calls transfer the data specified by parameter data to the task in the top of the reception wait
queue. As a result, the task is unlinked from the reception wait queue and moves from the WAITING state
(data reception wait state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED
state.

- There is no task neither in the reception wait queue and transmission wait queue and there is available space
in the data queue.
These service calls store the data specified by parameter data to the data queue.

- There is no task neither in the reception wait queue and transmission wait queue and there is no available
space in the data queue, or there is a task in the transmission wait queue.
These service calls return “E_TMOUT”.

The following describes an example for coding these service calls.

Note Data is written to the data queue area in the order of the data transmission request.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID dtqid = 1; /*Declares and initializes variable*/
 VP_INT data = 123; /*Declares and initializes variable*/

 /* */

 ercd = psnd_dtq (dtqid, data); /*Send to data queue*

 if (ercd == E_OK) {
 /* */ /*Polling success processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Polling failure processing*/
 }

 /* */
}

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 70 of 447
Sep 20, 2013

- tsnd_dtq (Wait with time-out)
This service call processes as follows according to the situation of the data queue specified by the parameter dtqid.

- There is a task in the reception wait queue.
This service call transfers the data specified by parameter data to the task in the top of the reception wait
queue. As a result, the task is unlinked from the reception wait queue and moves from the WAITING state
(data reception wait state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED
state.

- There is no task neither in the reception wait queue and transmission wait queue and there is available space
in the data queue.
This service call stores the data specified by parameter data to the data queue.

- There is no task neither in the reception wait queue and transmission wait queue and there is no available
space in the data queue, or there is a task in the transmission wait queue.
This service call queues the invoking task to the transmission wait queue of the target data queue and moves it
from the RUNNING state to the WAITING state with time (data transmission wait state).
The sending WAITING state for a data queue is cancelled in the following cases.

The following describes an example for coding this service call.

Sending WAITING State for a Data Queue Cancel Operation Return Value

Available space was secured in the data queue area as a result of issuing rcv_dtq. E_OK

Available space was secured in the data queue area as a result of issuing prcv_dtq. E_OK

Available space was secured in the data queue area as a result of issuing iprcv_dtq. E_OK

Available space was secured in the data queue area as a result of issuing trcv_dtq. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The data queue is reset as a result of issuing vrst_dtq. EV_RST

The time specified by tmout has elapsed. E_TMOUT

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID dtqid = 1; /*Declares and initializes variable*/
 VP_INT data = 123; /*Declares and initializes variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /* */

 /*Send to data queue*/
 ercd = tsnd_dtq (dtqid, data, tmout);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Time-out processing*/
 }

 /* */
}

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 71 of 447
Sep 20, 2013

Note 1 Data is written to the data queue area in the order of the data transmission request.

Note 2 Invoking tasks are queued to the transmission wait queue of the target data queue in the order defined
during configuration (FIFO order or current priority order).

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to snd_dtq will be executed. When
TMO_POL is specified, processing equivalent to psnd_dtq will be executed.

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 72 of 447
Sep 20, 2013

5.4.3 Forced send to data queue

Data is forcibly transmitted by issuing the following service call from the processing program.

- fsnd_dtq, ifsnd_dtq
This service call processes as follows according to the situation of the data queue specified by the parameter dtqid.

- There is a task in the reception wait queue.
This service call transfers the data specified by parameter data to the task in the top of the reception wait
queue. As a result, the task is unlinked from the reception wait queue and moves from the WAITING state
(data reception wait state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED
state.

- There is no task neither in the reception wait queue and transmission wait queue.
This service call stores the data specified by parameter data to the data queue.
If there is no available space in the data queue, this service call deletes the oldest data in the data queue
before storing the data specified by data to the data queue.

The following describes an example for coding these service calls.

Note Data is written to the data queue area in the order of the data transmission request.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID dtqid = 1; /*Declares and initializes variable*/
 VP_INT data = 123; /*Declares and initializes variable*/

 /* */

 fsnd_dtq (dtqid, data); /*Forced send to data queue*/

 /* */
}

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 73 of 447
Sep 20, 2013

5.4.4 Receive from data queue

A data is received (waiting forever, polling, or with time-out) by issuing the following service call from the processing
program.

- rcv_dtq (Wait)

- prcv_dtq, iprcv_dtq (Polling)

- trcv_dtq (Wait with time-out)

- rcv_dtq (Wait)
This service call processes as follows according to the situation of the data queue specified by the parameter dtqid.

- There is a data in the data queue.
This service call takes out the oldest data from the data queue and stores the data to the area specified by
p_data.
When there is a task in the transmission wait queue, this service call stores the data sent by the task in the top
of the transmission wait queue and moves it from the WAITING state (data transmission wait state) to the
READY state.

- There is no data in the data queue and there is a task in the transmission wait queue.
This service call stores the data specified by the task in the top of the transmission wait queue to the area
specified by p_data. As a result, the task is unlinked from the transmission wait queue and moves from the
WAITING state (data transmission wait state) to the READY state, or from the WAITING-SUSPENDED state to
the SUSPENDED state.
Note, this situation is caused only when the capacity of the data queue is 0.

- There is no data in the data queue and there is no task in the transmission wait queue.
This service call queues the invoking task to the reception wait queue of the target data queue and moves it
from the RUNNING state to the WAITING state (data reception wait state).
The receiving WAITING state for a data queue is cancelled in the following cases.

The following describes an example for coding this service call.

Receiving WAITING State for a Data Queue Cancel Operation Return Value

Data was sent to the data queue area as a result of issuing snd_dtq. E_OK

Data was sent to the data queue area as a result of issuing psnd_dtq. E_OK

Data was sent to the data queue area as a result of issuing ipsnd_dtq. E_OK

Data was sent to the data queue area as a result of issuing tsnd_dtq. E_OK

Data was sent to the data queue area as a result of issuing fsnd_dtq. E_OK

Data was sent to the data queue area as a result of issuing ifsnd_dtq. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 74 of 447
Sep 20, 2013

Note Invoking tasks are queued to the reception wait queue of the target data queue in the order of the data
reception request.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID dtqid = 1; /*Declares and initializes variable*/
 VP_INT p_data; /*Declares variable*/

 /* */

 /*Receive from data queue*/
 ercd = rcv_dtq (dtqid, &p_data);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 75 of 447
Sep 20, 2013

- prcv_dtq, iprcv_dtq (Polling)
These service calls process as follows according to the situation of the data queue specified by the parameter dtqid.

- There is a data in the data queue.
This service call takes out the oldest data from the data queue and stores the data to the area specified by
p_data.
When there is a task in the transmission wait queue, this service call stores the data sent by the task in the top
of the transmission wait queue and moves it from the WAITING state (data transmission wait state) to the
READY state.

- There is no data in the data queue and there is a task in the transmission wait queue.
These service calls store the data specified by the task in the top of the transmission wait queue to the area
specified by p_data. As a result, the task is unlinked from the transmission wait queue and moves from the
WAITING state (data transmission wait state) to the READY state, or from the WAITING-SUSPENDED state to
the SUSPENDED state.
Note, this situation is caused only when the capacity of the data queue is 0.

- There is no data in the data queue and there is no task in the transmission wait queue.
These service calls return “E_TMOUT”.

The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID dtqid = 1; /*Declares and initializes variable*/
 VP_INT p_data; /*Declares variable*/

 /* */

 /*Receive from data queue*/
 ercd = prcv_dtq (dtqid, &p_data);

 if (ercd == E_OK) {
 /* */ /*Polling success processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Polling failure processing*/
 }

 /* */
}

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 76 of 447
Sep 20, 2013

- trcv_dtq (Wait with time-out)
This service call processes as follows according to the situation of the data queue specified by the parameter dtqid.

- There is a data in the data queue.
This service call takes out the oldest data from the data queue and stores the data to the area specified by
p_data.
When there is a task in the transmission wait queue, this service call stores the data sent by the task in the top
of the transmission wait queue and moves it from the WAITING state (data transmission wait state) to the
READY state.

- There is no data in the data queue and there is a task in the transmission wait queue.
This service call stores the data specified by the task in the top of the transmission wait queue to the area
specified by p_data. As a result, the task is unlinked from the transmission wait queue and moves from the
WAITING state (data transmission wait state) to the READY state, or from the WAITING-SUSPENDED state to
the SUSPENDED state.
Note, this situation is caused only when the capacity of the data queue is 0.

- There is no data in the data queue and there is no task in the transmission wait queue.
This service call queues the invoking task to the reception wait queue of the target data queue and moves it
from the RUNNING state to the WAITING state with time (data reception wait state).
The receiving WAITING state for a data queue is cancelled in the following cases.

The following describes an example for coding this service call.

Receiving WAITING State for a Data Queue Cancel Operation Return Value

Data was sent to the data queue area as a result of issuing snd_dtq. E_OK

Data was sent to the data queue area as a result of issuing psnd_dtq. E_OK

Data was sent to the data queue area as a result of issuing ipsnd_dtq. E_OK

Data was sent to the data queue area as a result of issuing tsnd_dtq. E_OK

Data was sent to the data queue area as a result of issuing fsnd_dtq. E_OK

Data was sent to the data queue area as a result of issuing ifsnd_dtq. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The time specified by tmout has elapsed. E_TMOUT

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 77 of 447
Sep 20, 2013

Note 1 Invoking tasks are queued to the reception wait queue of the target data queue in the order of the data
reception request.

Note 2 TMO_FEVR is specified for wait time tmout, processing equivalent to rcv_dtq will be executed. When
TMO_POL is specified, processing equivalent to prcv_dtq will be executed.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID dtqid = 1; /*Declares and initializes variable*/
 VP_INT p_data; /*Declares variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /* */

 /*Receive from data queue*/
 ercd = trcv_dtq (dtqid, &p_data, tmout);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Time-out processing*/
 }

 /* */
}

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 78 of 447
Sep 20, 2013

5.4.5 Reference data queue state

A data queue status is referenced by issuing the following service call from the processing program.

- ref_dtq, iref_dtq
These service calls store the detailed information of the data queue (existence of waiting tasks, number of data
elements in the data queue, etc.) specified by parameter dtqid into the area specified by parameter pk_rdtq.
The following describes an example for coding these service calls.

Note For details about the data queue state packet, refer to “[Data queue state packet: T_RDTQ]”.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID dtqid = 1; /*Declares and initializes variable*/
 T_RDTQ pk_rdtq; /*Declares data structure*/
 ID stskid; /*Declares variable*/
 ID rtskid; /*Declares variable*/
 UINT sdtqcnt; /*Declares variable*/

 /* */

 ref_dtq (dtqid, &pk_rdtq); /*Reference data queue state*/

 stskid = pk_rdtq.stskid; /*Acquires existence of tasks waiting for */
 /*data transmission*/
 rtskid = pk_rdtq.rtskid; /*Acquires existence of tasks waiting for */
 /*data reception*/
 sdtqcnt = pk_rdtq.sdtqcnt; /*Reference the number of data elements in */
 /*data queue*/

 /* */
}

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 79 of 447
Sep 20, 2013

5.5 Mailboxes

Multitask processing requires the inter-task communication function (message transfer function) that reports the
processing result of a task to another task. The RI600V4 therefore provides the mailbox for transferring the start address
of a message written in the shared memory area.
The following shows a processing flow when using a mailbox.

Figure 5-4 Processing Flow (Mailbox)

5.5.1 Messages

The information exchanged among processing programs via the mailbox is called “messages”.
Messages can be transmitted to any processing program via the mailbox, but it should be noted that, in the case of the
synchronization and communication functions of the RI600V4, only the start address of the message is handed over to the
receiving processing program, but the message contents are not copied to a separate area.

- Message area
In the case of the RI600V4, it is recommended to use the memory area secured by issuing get_mpf and get_mpl for
messages.

Receive from mailbox

Send to mailbox

Reception wait period

Task A
Priority: High Priority: Low

Task B

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 80 of 447
Sep 20, 2013

- Basic form of messages
In the RI600V4, the message contents and length are prescribed as follows, according to the attributes of the mailbox
to be used.

- When using a mailbox with the TA_MFIFO attribute
The message must be started from the T_MSG structure. This area is used by the kernel. The use message
should be arranged following the T_MSG structure.
The length of the message is prescribed among the processing programs that exchange data using the mailbox.
The following shows the basic form of coding TA_MFIFO attribute messages.

[Message packet for TA_MFIFO attribute]

- When using a mailbox with the TA_MPRI attribute
The message must be started from the T_MSG_PRI structure. The T_MSG_PRI.msgque is used by the kernel.
The message priority should be set to T_MSG_PRI.msgpri.
The length of the message is prescribed among the processing programs that exchange data using the mailbox.
The following shows the basic form of coding TA_MPRI attribute messages.

[Message packet for TA_MPRI attribute]

Note 1 In the RI600V4, a message having a smaller priority number is given a higher priority.

Note 2 Values that can be specified as the message priority level are limited to the range defined by Maximum
message priority (max_pri) in Mailbox Information (mailbox[])) when the system configuration file is
created.

/* T_MSG structure, which is defined in the kernel.h*/
typedef struct {
 VP msghead; /*RI600V4 management area*/
} T_MSG;

/* Message structure defined by user*/
typedef struct {
 T_MSG t_msg; /*T_MSG structure*/
 B data[8]; /*User message*/
} USER_MSG;

/* T_MSG structure, which is defined in the kernel.h*/
typedef struct {
 VP msghead; /*RI600V4 management area*/
} T_MSG;

/* T_MSG_PRI structure, which is defined in the kernel.h*/
typedef struct {
 T_MSG msgque; /*Message header*/
 PRI msgpri; /*Message priority*/
} T_MSG_PRI;

/* Message structure defined by user*/
typedef struct {
 T_MSG_PRI t_msg; /*T_MSG_PRI structure*/
 B data[8]; /*User message*/
} USER_MSG;

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 81 of 447
Sep 20, 2013

5.5.2 Create mailbox

In the RI600V4, the method of creating a mailbox is limited to “static creation”.
Mailboxes therefore cannot be created dynamically using a method such as issuing a service call from a processing
program.
Static mailbox creation means defining of mailboxes using static API “mailbox[]” in the system configuration file.
For details about the static API “mailbox[]”, refer to “19.11 Mailbox Information (mailbox[])”.

5.5.3 Send to mailbox

A message is transmitted by issuing the following service call from the processing program.

- snd_mbx, isnd_mbx
This service call transmits the message specified by parameter pk_msg to the mailbox specified by parameter mbxid
(queues the message in the wait queue).
If a task is queued to the target mailbox wait queue when this service call is issued, the message is not queued but
handed over to the relevant task (first task of the wait queue).
As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (receiving
WAITING state for a mailbox) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED
state.
The following describes an example for coding these service calls.

Note 1 Messages are queued to the target mailbox in the order defined by queuing method during configuration
(FIFO order or message priority order).

Note 2 For details about the message packet T_MSG and T_MSG_PRI, refer to “5.5.1 Messages”.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID mbxid = 1; /*Declares and initializes variable*/
 T_MSG_PRI *pk_msg; /*Declares data structure*/

 /* */

 /* */ /*Secures memory area (for message)*/

 pk_msg = ... /* and set the pointer to pk_msg*/

 /* */ /*Creates message (contents)*/

 pk_msg->msgpri = 8; /*Initializes data structure*/

 /*Send to mailbox*/
 snd_mbx (mbxid, (T_MSG *) pk_msg);

 /* */
}

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 82 of 447
Sep 20, 2013

5.5.4 Receive from mailbox

A message is received (infinite wait, polling, or with time-out) by issuing the following service call from the processing
program.

- rcv_mbx (Wait)

- prcv_mbx, iprcv_mbx (Polling)

- trcv_mbx (Wait with time-out)

- rcv_mbx (Wait)
This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in
the area specified by parameter ppk_msg.
If no message could be received from the target mailbox (no messages were queued to the wait queue) when this
service call is issued, this service call does not receive messages but queues the invoking task to the target mailbox
wait queue and moves it from the RUNNING state to the WAITING state (message reception wait state).
The receiving WAITING state for a mailbox is cancelled in the following cases.

The following describes an example for coding this service call.

Note 1 Invoking tasks are queued to the target mailbox wait queue in the order defined during configuration (FIFO
order or current priority order).

Note 2 For details about the message packet T_MSG and T_MSG_PRI, refer to “5.5.1 Messages”.

Receiving WAITING State for a Mailbox Cancel Operation Return Value

A message was transmitted to the target mailbox as a result of issuing snd_mbx. E_OK

A message was transmitted to the target mailbox as a result of issuing isnd_mbx. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mbxid = 1; /*Declares and initializes variable*/
 T_MSG *ppk_msg; /*Declares data structure*/

 /* */

 /*Receive from mailbox*/
 ercd = rcv_mbx (mbxid, &ppk_msg);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 83 of 447
Sep 20, 2013

- prcv_mbx, iprcv_mbx (Polling)
This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in
the area specified by parameter ppk_msg.
If the message could not be received from the target mailbox (no messages were queued in the wait queue) when this
service call is issued, message reception processing is not executed but “E_TMOUT” is returned.
The following describes an example for coding these service calls.

Note For details about the message packet T_MSG and T_MSG_PRI, refer to “5.5.1 Messages”.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mbxid = 1; /*Declares and initializes variable*/
 T_MSG *ppk_msg; /*Declares data structure*/

 /* */

 /*Receive from mailbox*/
 ercd = prcv_mbx (mbxid, &ppk_msg);

 if (ercd == E_OK) {
 /* */ /*Polling success processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Polling failure processing*/
 }

 /* */
}

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 84 of 447
Sep 20, 2013

- trcv_mbx (Wait with time-out)
This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in
the area specified by parameter ppk_msg.
If no message could be received from the target mailbox (no messages were queued to the wait queue) when this
service call is issued, this service call does not receive messages but queues the invoking task to the target mailbox
wait queue and moves it from the RUNNING state to the WAITING state with time-out (message reception wait state).
The receiving WAITING state for a mailbox is cancelled in the following cases.

The following describes an example for coding this service call.

Note 1 Invoking tasks are queued to the target mailbox wait queue in the order defined during configuration (FIFO
order or current priority order).

Note 2 TMO_FEVR is specified for wait time tmout, processing equivalent to rcv_mbx will be executed. When
TMO_POL is specified, processing equivalent to prcv_mbx will be executed.

Note 3 For details about the message packet T_MSG and T_MSG_PRI, refer to “5.5.1 Messages”.

Receiving WAITING State for a Mailbox Cancel Operation Return Value

A message was transmitted to the target mailbox as a result of issuing snd_mbx. E_OK

A message was transmitted to the target mailbox as a result of issuing isnd_mbx. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The time specified by tmout has elapsed. E_TMOUT

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mbxid = 1; /*Declares and initializes variable*/
 T_MSG *ppk_msg; /*Declares data structure*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /* */

 /*Receive from mailbox*/
 ercd = trcv_mbx (mbxid, &ppk_msg, tmout);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Time-out processing*/
 }

 /* */
}

RI600V4 CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 85 of 447
Sep 20, 2013

5.5.5 Reference mailbox state

A mailbox status is referenced by issuing the following service call from the processing program.

- ref_mbx, iref_mbx
Stores mailbox state packet (ID number of the task at the head of the wait queue, start address of the message packet
at the head of the wait queue) of the mailbox specified by parameter mbxid in the area specified by parameter
pk_rmbx.
The following describes an example for coding these service calls.

Note For details about the mailbox state packet, refer to “[Mailbox state packet: T_RMBX]”.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID mbxid = 1; /*Declares and initializes variable*/
 T_RMBX pk_rmbx; /*Declares data structure*/
 ID wtskid; /*Declares variable*/
 T_MSG *pk_msg; /*Declares data structure*/

 /* */

 ref_mbx (mbxid, &pk_rmbx); /*Reference mailbox state*/

 wtskid = pk_rmbx.wtskid; /*Reference ID number of the task at the */
 /*head of the wait queue*/
 pk_msg = pk_rmbx.pk_msg; /*Reference start address of the message */
 /*packet at the head of the wait queue*/

 /* */
}

RI600V4

R20UT0711EJ0104 Rev.1.04 Page 86 of 447
Sep 20, 2013

CHAPTER 6 EXTENDED SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

CHAPTER 6 EXTENDED SYNCHRONIZATION AND
COMMUNICATION FUNCTIONS

This chapter describes the extended synchronization and communication functions performed by the RI600V4.

6.1 Outline

The extended synchronization and communication function of the RI600V4 provides Mutexes for implementing exclusive
control between tasks, and Message Buffers for transferring messages of he arbitrary size by copying the message.

6.2 Mutexes

Multitask processing requires the function to prevent contentions on using the limited number of resources (A/D converter,
coprocessor, files, or the like) simultaneously by tasks operating in parallel (exclusive control function). To resolve such
problems, the RI600V4 therefore provides “mutexes”.
The following shows a processing flow when using a mutex.
The mutexes provided in the RI600V4 supports the priority ceiling protocol.

Figure 6-1 Processing Flow (Mutex)

Task

Exclusive control period

Lock mutex

Unlock mutex

RI600V4

R20UT0711EJ0104 Rev.1.04 Page 87 of 447
Sep 20, 2013

CHAPTER 6 EXTENDED SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

6.2.1 Priority inversion problem

When a semaphore is used for exclusive control of a resource, a problem called priority inversion may arise. This refers to
the situation where a task that is not using a resource delays the execution of a task requesting the resource.
Figure 6-2 illustrates this problem. In this figure, tasks A and C are using the same resource, which task B does not use.
Task A attempts to acquire a semaphore so that it can use the resource but enters the WAITING state because task C is
already using the resource. Task B has a priority higher than task C and lower than task A. Thus, if task B is executed
before task C has released the semaphore, release of the semaphore is delayed by the execution of task B. This also
delays acquisition of the semaphore by task A. From the viewpoint of task A, a lower-priority task that is not even
competing for the resource gets priority over task A.
To avoid this problem, use a mutex instead of a semaphore.

Figure 6-2 Priority Inversion Problem

6.2.2 Current priority and base priority

A task has two priority levels: base priority and current priority. Tasks are scheduled according to current priority.
While a task does not have a mutex locked, its current priority is always the same as its base priority.
When a task locks a mutex, only its current priority is raised to the ceiling priority of the mutex.
When priority-changing service call chg_pri or ichg_pri is issued, both the base priority and current priority are changed if
the specified task does not have a mutex locked. When the specified task locks a mutex, only the base priority is changed.
When the specified task has a mutex locked or is waiting to lock a mutex, these service calls returns “E_ILUSE” if a priority
higher than the ceiling priority of the mutex is specified.
The current priority can be checked through service call get_pri or iget_pri. And both the current priority and base priority
can be referred by ref_tsk or iref_tsk.

6.2.3 Simplified priority ceiling protocol

Original behavior of the priority ceiling protocol is to make the current priority of the task to the highest ceiling priority of
mutexes which are locked by the task. This behavior is achieved by controlling the current priority of the task as follows.

- When a task locks a mutex, changes the current priority of the task to the highest ceiling priority of mutexes which
are locked by the task.

- When a task unlocks a mutex, changes the current priority of the task to the highest ceiling priority of mutexes
which continues to be locked by the task. When there is no mutex locked by the task after unlock, returns the
current priority of the task to the base priority.

However, the RI600V4 adopts simplified priority ceiling protocol because of reducing overhead. Therefore, the underlined
part is not processed.

P
rio

rit
y

Task A

Task B

Task C

H
ig

h
L

ow

Time

: The semaphore has been acquired in this period.

Acquire the
semaphore

Task A is executed
for some reason.

Failed to acquire the semaphore,
and enter to WAITING state

Time taken for task A to acquire the semaphore
depends on the execution time of task B. Acquire the

semaphore

Task B is executed
for some reason.

Release the
semaphore

Enter to WAITING state

RI600V4

R20UT0711EJ0104 Rev.1.04 Page 88 of 447
Sep 20, 2013

CHAPTER 6 EXTENDED SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

6.2.4 Differences from semaphores

The mutex operates similarly to semaphores (binary semaphore) whose the maximum resource count is 1, but they differ
in the following points.

- The current priority of the task which locks a mutex raises to the ceiling priority of the mutex until the task unlocks the
mutex. As a result, the priority inversion problem is evaded.

--> The current priority is not changed by using semaphore.

- A locked mutex can be unlocked (equivalent to returning of resources) only by the task that locked the mutex

--> Semaphores can return resources via any task and handler.

- Unlocking is automatically performed when a task that locked the mutex is terminated (ext_tsk or ter_tsk)

--> Semaphores do not return resources automatically, so they end with resources acquired.

- Semaphores can manage multiple resources (the maximum resource count can be assigned), but the maximum
number of resources assigned to a mutex is fixed to 1.

6.2.5 Create mutex

In the RI600V4, the method of creating a mutex is limited to “static creation”.
Mutexes therefore cannot be created dynamically using a method such as issuing a service call from a processing
program.
Static mutex creation means defining of mutexes using static API “mutex[]” in the system configuration file.
For details about the static API “mutex[]”, refer to “19.12 Mutex Information (mutex[])”.

RI600V4

R20UT0711EJ0104 Rev.1.04 Page 89 of 447
Sep 20, 2013

CHAPTER 6 EXTENDED SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

6.2.6 Lock mutex

Mutexes can be locked by issuing the following service call from the processing program.

- loc_mtx (Wait)

- ploc_mtx (Polling)

- tloc_mtx (Wait with time-out)

- loc_mtx (Wait)
This service call locks the mutex specified by parameter mtxid.
If the target mutex could not be locked (another task has been locked) when this service call is issued, this service call
queues the invoking task to the target mutex wait queue and moves it from the RUNNING state to the WAITING state
(mutex wait state).
The WAITING state for a mutex is cancelled in the following cases.

When the mutex is locked, this service call changes the current priority of the invoking task to the ceiling priority of the
target mutex. However, this service call does not change the current priority when the invoking task has locked other
mutexes and the ceiling priority of the target mutex is lower than or equal to the ceiling priority of the locked mutexes.
The following describes an example for coding this service call.

Note 1 Invoking tasks are queued to the target mutex wait queue in the priority order. Among tasks with the same
priority, they are queued in FIFO order.

Note 2 This service call returns “E_ILUSE” if this service call is re-issued for the mutex that has been locked by the
invoking task (multiple-locking of mutex).

WAITING State for a Mutex Cancel Operation Return Value

The locked state of the target mutex was cancelled as a result of issuing unl_mtx. E_OK

The locked state of the target mutex was cancelled as a result of issuing ext_tsk. E_OK

The locked state of the target mutex was cancelled as a result of issuing ter_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mtxid = 8; /*Declares and initializes variable*/

 /* */

 ercd = loc_mtx (mtxid); /*Lock mutex*/

 if (ercd == E_OK) {
 /* */ /*Locked state*/

 unl_mtx (mtxid); /*Unlock mutex*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

RI600V4

R20UT0711EJ0104 Rev.1.04 Page 90 of 447
Sep 20, 2013

CHAPTER 6 EXTENDED SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

- ploc_mtx (Polling)
This service call locks the mutex specified by parameter mtxid.
If the target mutex could not be locked (another task has been locked) when this service call is issued but
“E_TMOUT” is returned.
When the mutex is locked, this service call changes the current priority of the invoking task to the ceiling priority of the
target mutex. However, the this service call does not change the current priority when the invoking task has locked
other mutexes and the ceiling priority of the target mutex is lower than or equal to the ceiling priority of the locked
mutexes.
The following describes an example for coding this service call.

Note This service call returns “E_ILUSE” if this service call is re-issued for the mutex that has been locked by the
invoking task (multiple-locking of mutex).

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mtxid = 8; /*Declares and initializes variable*/

 /* */

 ercd = ploc_mtx (mtxid); /*Lock mutex*/

 if (ercd == E_OK) {
 /* */ /*Polling success processing*/

 unl_mtx (mtxid); /*Unlock mutex*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Polling failure processing*/
 }

 /* */
}

RI600V4

R20UT0711EJ0104 Rev.1.04 Page 91 of 447
Sep 20, 2013

CHAPTER 6 EXTENDED SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

- tloc_mtx (Wait with time-out)
This service call locks the mutex specified by parameter mtxid.
If the target mutex could not be locked (another task has been locked) when this service call is issued, this service call
queues the invoking task to the target mutex wait queue and moves it from the RUNNING state to the WAITING state
with time-out (mutex wait state).
The WAITING state for a mutex is cancelled in the following cases.

When the mutex is locked, this service call changes the current priority of the invoking task to the ceiling priority of the
target mutex. However, the this service call does not change the current priority when the invoking task has locked
other mutexes and the ceiling priority of the target mutex is lower than or equal to the ceiling priority of the locked
mutexes.
The following describes an example for coding this service call.

Note 1 Invoking tasks are queued to the target mutex wait queue in the priority order. Among tasks with the same
priority, they are queued in FIFO order.

Note 2 This service call returns “E_ILUSE” if this service call is re-issued for the mutex that has been locked by the
invoking task (multiple-locking of mutex).

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to loc_mtx will be executed. When
TMO_POL is specified, processing equivalent to ploc_mtx will be executed.

WAITING State for a Mutex Cancel Operation Return Value

The locked state of the target mutex was cancelled as a result of issuing unl_mtx. E_OK

The locked state of the target mutex was cancelled as a result of issuing ext_tsk. E_OK

The locked state of the target mutex was cancelled as a result of issuing ter_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The time specified by tmout has elapsed. E_TMOUT

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mtxid = 8; /*Declares and initializes variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /* */

 ercd = tloc_mtx (mtxid, tmout); /*Lock mutex*/

 if (ercd == E_OK) {
 /* */ /*Locked state*/

 unl_mtx (mtxid); /*Unlock mutex*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Time-out processing*/
 }

 /* */
}

RI600V4

R20UT0711EJ0104 Rev.1.04 Page 92 of 447
Sep 20, 2013

CHAPTER 6 EXTENDED SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

6.2.7 Unlock mutex

The mutex locked state can be cancelled by issuing the following service call from the processing program.

- unl_mtx
This service call unlocks the locked mutex specified by parameter mtxid.
If a task has been queued to the target mutex wait queue when this service call is issued, mutex lock processing is
performed by the task (the first task in the wait queue) immediately after mutex unlock processing.
As a result, the task is unlinked from the wait queue and moves from the WAITING state (mutex wait state) to the
READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state. And this service call changes the
current priority of the task to the ceiling priority of the target mutex. However, this service call does not change the
current priority when the task has locked other mutexes and the ceiling priority of the target mutex is lower than or
equal to the ceiling priority of the locked mutexes.
The following describes an example for coding this service call.

Note 1 A locked mutex can be unlocked only by the task that locked the mutex.
If this service call is issued for a mutex that was not locked by the invoking task, no processing is performed
but “E_ILUSE” is returned.

Note 2 When terminating a task, the mutexes which are locked by the terminated task are unlocked.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mtxid = 8; /*Declares and initializes variable*/

 /* */

 ercd = loc_mtx (mtxid); /*Lock mutex*/

 if (ercd == E_OK) {
 /* */ /*Locked state*/

 unl_mtx (mtxid); /*Unlock mutex*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

RI600V4

R20UT0711EJ0104 Rev.1.04 Page 93 of 447
Sep 20, 2013

CHAPTER 6 EXTENDED SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

6.2.8 Reference mutex state

A mutex status is referenced by issuing the following service call from the processing program.

- ref_mtx,
This service call stores the detailed information of the mutex specified by parameter mtxid (existence of locked
mutexes, waiting tasks, etc.) into the area specified by parameter pk_rmtx.
The following describes an example for coding this service call.

Note For details about the mutex state packet, refer to “[Mutex state packet: T_RMTX]”.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID mtxid = 1; /*Declares and initializes variable*/
 T_RMTX pk_rmtx; /*Declares data structure*/
 ID htskid; /*Declares variable*/
 ID wtskid; /*Declares variable*/

 /* */

 ref_mtx (mbxid, &pk_rmtx); /*Reference mutex state*/

 htskid = pk_rmtx.htskid; /*Acquires existence of locked mutexes*/
 wtskid = pk_rmtx.wtskid; /*Reference ID number of the task at the */
 /*head of the wait queue*/

 /* */
}

RI600V4

R20UT0711EJ0104 Rev.1.04 Page 94 of 447
Sep 20, 2013

CHAPTER 6 EXTENDED SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

6.3 Message Buffers

Multitask processing requires the inter-task communication function (message transfer function) that reports the
processing result of a task to another task. The RI600V4 therefore provides the message buffers for copying and
transferring the arbitrary size of message.
The following shows a processing flow when using a message buffer.

Figure 6-3 Processing Flow (Message buffer)

6.3.1 Create message buffer

In the RI600V4, the method of creating a message buffer is limited to “static creation”.
Message buffers therefore cannot be created dynamically using a method such as issuing a service call from a processing
program.
Static message buffer creation means defining of message buffers using static API “message_buffer[]” in the system
configuration file.
For details about the static API “message_buffer[]”, refer to “19.13 Message Buffer Information (message_buffer[])”.

Task A
Priority: High

Task B
Priority: Low

Reception wait period

Receive from message buffer

Send to message buffer

RI600V4

R20UT0711EJ0104 Rev.1.04 Page 95 of 447
Sep 20, 2013

CHAPTER 6 EXTENDED SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

6.3.2 Send to message buffer

A message is transmitted by issuing the following service call from the processing program.

- snd_mbf (Wait)

- psnd_mbf, ipsnd_mbf (Polling)

- tsnd_mbf (Wait with time-out)

- snd_mbf (Wait)
This service call processes as follows according to the situation of the message buffer specified by the parameter
mbfid.

- There is a task in the reception wait queue.
This service call transfers the message specified by parameter msg to the task in the top of the reception wait
queue. As a result, the task is unlinked from the reception wait queue and moves from the WAITING state
(message reception wait state) to the READY state, or from the WAITING-SUSPENDED state to the
SUSPENDED state.

- There is no task neither in the reception wait queue and transmission wait queue and there is available space
in the message buffer.
This service call stores the message specified by parameter msg to the message buffer. As a result, the size of
available space in the target message buffer decreases by the amount calculated by the following expression.

The amount of decrease = up4(msgsz) + VTSZ_MBFTBL

- There is no task neither in the reception wait queue and transmission wait queue and there is no available
space in the message buffer, or there is a task in the transmission wait queue.
This service call queues the invoking task to the transmission wait queue of the target message buffer and
moves it from the RUNNING state to the WAITING state (message transmission wait state).
The sending WAITING state for a message buffer is cancelled in the following cases.

The following describes an example for coding this service call.

Sending WAITING State for a Message Buffer Cancel Operation Return Value

Available space was secured in the message buffer area as a result of issuing rcv_mbf. E_OK

Available space was secured in the message buffer area as a result of issuing prcv_mbf. E_OK

Available space was secured in the message buffer area as a result of issuing trcv_mbf. E_OK

The task at the top of the transmission wait queue was forcedly released from waiting by fol-
lowing either.

- Forced release from waiting (accept rel_wai while waiting).

- Forced release from waiting (accept irel_wai while waiting).

- Forced release from waiting (accept ter_tsk while waiting).

- The time specified by tmout for tsnd_mbf has elapsed.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The message buffer is reset as a result of issuing vrst_mbf. EV_RST

RI600V4

R20UT0711EJ0104 Rev.1.04 Page 96 of 447
Sep 20, 2013

CHAPTER 6 EXTENDED SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

Note 1 Message is written to the message buffer area in the order of the message transmission request.

Note 2 Invoking tasks are queued to the transmission wait queue of the target message buffer in the FIFO order.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mbfid = 1; /*Declares and initializes variable*/
 B msg[] = {1,2,3}; /*Declares and initializes variable*/
 UINT msgsz = sizeof(msg); /*Declares and initializes variable*/

 /* */

 ercd = snd_mbf (mbfid, (VP)msg, msgsz); /*Send to message buffer*/

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

RI600V4

R20UT0711EJ0104 Rev.1.04 Page 97 of 447
Sep 20, 2013

CHAPTER 6 EXTENDED SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

- psnd_mbf, ipsnd_mbf (Polling)
This service call processes as follows according to the situation of the message buffer specified by the parameter
mbfid.

- There is a task in the reception wait queue.
This service call transfers the message specified by parameter msg to the task in the top of the reception wait
queue. As a result, the task is unlinked from the reception wait queue and moves from the WAITING state
(message reception wait state) to the READY state, or from the WAITING-SUSPENDED state to the
SUSPENDED state.

- There is no task neither in the reception wait queue and transmission wait queue and there is available space
in the message buffer.
This service call stores the message specified by parameter msg to the message buffer. As a result, the size of
available space in the target message buffer decreases by the amount calculated by the following expression.

The amount of decrease = up4(msgsz) + VTSZ_MBFTBL

- There is no task neither in the reception wait queue and transmission wait queue and there is no available
space in the message buffer, or there is a task in the transmission wait queue.
This service call returns “E_TMOUT”.

The following describes an example for coding these service calls.

Note Message is written to the message buffer area in the order of the message transmission request.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mbfid = 1; /*Declares and initializes variable*/
 B msg[] = {1,2,3}; /*Declares and initializes variable*/
 UINT msgsz = sizeof(msg); /*Declares and initializes variable*/

 /* */

 ercd = psnd_mbf (mbfid, (VP)msg, msgsz); /*Send to message buffer*/

 if (ercd == E_OK) {
 /* */ /*Polling success processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Polling failure processing*/
 }

 /* */
}

RI600V4

R20UT0711EJ0104 Rev.1.04 Page 98 of 447
Sep 20, 2013

CHAPTER 6 EXTENDED SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

- tsnd_mbf (Wait with time-out)
This service call processes as follows according to the situation of the message buffer specified by the parameter
mbfid.

- There is a task in the reception wait queue.
This service call transfers the message specified by parameter msg to the task in the top of the reception wait
queue. As a result, the task is unlinked from the reception wait queue and moves from the WAITING state
(message reception wait state) to the READY state, or from the WAITING-SUSPENDED state to the
SUSPENDED state.

- There is no task neither in the reception wait queue and transmission wait queue and there is available space
in the message buffer.
This service call stores the message specified by parameter msg to the message buffer. As a result, the size of
available space in the target message buffer decreases by the amount calculated by the following expression.

The amount of decrease = up4(msgsz) + VTSZ_MBFTBL

- There is no task neither in the reception wait queue and transmission wait queue and there is no available
space in the message buffer, or there is a task in the transmission wait queue.
This service call queues the invoking task to the transmission wait queue of the target message buffer and
moves it from the RUNNING state to the WAITING state with time (message transmission wait state).
The sending WAITING state for a message buffer is cancelled in the following cases.

The following describes an example for coding this service call.

Sending WAITING State for a Message Buffer Cancel Operation Return Value

Available space was secured in the message buffer area as a result of issuing rcv_mbf. E_OK

Available space was secured in the message buffer area as a result of issuing prcv_mbf. E_OK

Available space was secured in the message buffer area as a result of issuing trcv_mbf. E_OK

The task at the top of the transmission wait queue was forcedly released from waiting by fol-
lowing either.

- Forced release from waiting (accept rel_wai while waiting).

- Forced release from waiting (accept irel_wai while waiting).

- Forced release from waiting (accept ter_tsk while waiting).

- The time specified by tmout for tsnd_mbf has elapsed.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The message buffer is reset as a result of issuing vrst_mbf. EV_RST

The time specified by tmout has elapsed. E_TMOUT

RI600V4

R20UT0711EJ0104 Rev.1.04 Page 99 of 447
Sep 20, 2013

CHAPTER 6 EXTENDED SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

Note 1 Message is written to the message buffer area in the order of the message transmission request.

Note 2 Invoking tasks are queued to the transmission wait queue of the target message buffer in the FIFO order.

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to snd_mbf will be executed. When
TMO_POL is specified, processing equivalent to psnd_mbf will be executed.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mbfid = 1; /*Declares and initializes variable*/
 B msg[] = {1,2,3}; /*Declares and initializes variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /* */

 ercd = tsnd_mbf (mbfid, (VP)msg, msgsz, tmout); /*Send to message buffer*/

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Time-out processing*/
 }

 /* */
}

RI600V4

R20UT0711EJ0104 Rev.1.04 Page 100 of 447
Sep 20, 2013

CHAPTER 6 EXTENDED SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

6.3.3 Receive from message buffer

A message is received (waiting forever, polling, or with time-out) by issuing the following service call from the processing
program.

- rcv_mbf (Wait)

- prcv_mbf (Polling)

- trcv_mbf (Wait with time-out)

- rcv_mbf (Wait)
This service call processes as follows according to the situation of the message buffer specified by the parameter
mbfid.

- There is a message in the message buffer.
This service call takes out the oldest message from the message buffer and stores the message to the area
specified by msg and return the size of the message. As a result, the size of available space in the target mes-
sage buffer increases by the amount calculated by the following expression.

The amount of increase = up4(Return value) + VTSZ_MBFTBL

In addition, this service call repeats the following processing until task in the transmission wait queue is lost or
it becomes impossible to store the message in the message buffer.

- When there is a task in the transmission wait queue and there is available space in the message buffer
for the message specified by the task in the top of the transmission wait queue, the task is unlinked from
the transmission wait queue and moves from the WAITING state (message transmission wait state) to
the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state. As a result, the
size of available space in the target message buffer decreases by the amount calculated by the follow-
ing expression.

The amount of decrease =up4(The message size sent by the task) + VTSZ_MBFTBL

- There is no message in the message buffer and there is a task in the transmission wait queue.
This service call stores the message specified by the task in the top of the transmission wait queue to the area
pointed by the parameter msg. As a result, the task is unlinked from the transmission wait queue and moves
from the WAITING state (message transmission wait state) to the READY state, or from the WAITING-
SUSPENDED state to the SUSPENDED state.
Note, this situation is caused only when the size of the message buffer is 0.

- There is no message in the message buffer and there is no task in the transmission wait queue.
This service call queues the invoking task to the reception wait queue of the target message buffer and moves
it from the RUNNING state to the WAITING state (message reception wait state).
The receiving WAITING state for a message buffer is cancelled in the following cases.

The following describes an example for coding this service call.

Receiving WAITING State for a Message Buffer Cancel Operation Return Value

Message was sent to the message buffer area as a result of issuing snd_mbf. E_OK

Message was sent to the message buffer area as a result of issuing psnd_mbf. E_OK

Message was sent to the message buffer area as a result of issuing ipsnd_mbf. E_OK

Message was sent to the message buffer area as a result of issuing tsnd_mbf. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

RI600V4

R20UT0711EJ0104 Rev.1.04 Page 101 of 447
Sep 20, 2013

CHAPTER 6 EXTENDED SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

Note 1 The Maximum message size (max_msgsz) is defined during configuration. The size of the area pointed by
msg must be larger than or equal to the maximum message size.

Note 2 Invoking tasks are queued to the reception wait queue of the target message buffer in the order of the
message reception request.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mbfid = 1; /*Declares and initializes variable*/
 B msg[16]; /*Declares variable (maximum message size)*/

 /* */

 ercd = rcv_mbf (mbfid, (VP)msg); /*Receive from message buffer */

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

RI600V4

R20UT0711EJ0104 Rev.1.04 Page 102 of 447
Sep 20, 2013

CHAPTER 6 EXTENDED SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

- prcv_mbf (Polling)
This service call processes as follows according to the situation of the message buffer specified by the parameter
mbfid.

- There is a message in the message buffer.
This service call takes out the oldest message from the message buffer and stores the message to the area
specified by msg and return the size of the message. As a result, the size of available space in the target mes-
sage buffer increases by the amount calculated by the following expression.

The amount of increase = up4(Return value) + VTSZ_MBFTBL

In addition, this service call repeats the following processing until task in the transmission wait queue is lost or
it becomes impossible to store the message in the message buffer.

- When there is a task in the transmission wait queue and there is available space in the message buffer
for the message specified by the task in the top of the transmission wait queue, the task is unlinked from
the transmission wait queue and moves from the WAITING state (message transmission wait state) to
the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state. As a result, the
size of available space in the target message buffer decreases by the amount calculated by the follow-
ing expression.

The amount of decrease =up4(The message size sent by the task) + VTSZ_MBFTBL

- There is no message in the message buffer and there is a task in the transmission wait queue.
This service call stores the message specified by the task in the top of the transmission wait queue to the area
pointed by the parameter msg. As a result, the task is unlinked from the transmission wait queue and moves
from the WAITING state (message transmission wait state) to the READY state, or from the WAITING-
SUSPENDED state to the SUSPENDED state.
Note, this situation is caused only when the size of the message buffer is 0.

- There is no message in the message buffer and there is no task in the transmission wait queue.
This service call returns “E_TMOUT”.

The following describes an example for coding these service calls.

Note The Maximum message size (max_msgsz) is defined during configuration. The size of the area pointed by
msg must be larger than or equal to the maximum message size.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mbfid = 1; /*Declares and initializes variable*/
 B msg[16]; /*Declares variable (maximum message size)*/

 /* */

 ercd = prcv_mbf (mbfid, (VP)msg); /*Receive from message buffer */

 if (ercd == E_OK) {
 /* */ /*Polling success processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Polling failure processing*/
 }

 /* */
}

RI600V4

R20UT0711EJ0104 Rev.1.04 Page 103 of 447
Sep 20, 2013

CHAPTER 6 EXTENDED SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

- trcv_mbf (Wait with time-out)
This service call processes as follows according to the situation of the message buffer specified by the parameter
mbfid.

- There is a message in the message buffer.
This service call takes out the oldest message from the message buffer and stores the message to the area
specified by msg and return the size of the message. As a result, the size of available space in the target mes-
sage buffer increases by the amount calculated by the following expression.

The amount of increase = up4(Return value) + VTSZ_MBFTBL

In addition, this service call repeats the following processing until task in the transmission wait queue is lost or
it becomes impossible to store the message in the message buffer.

- When there is a task in the transmission wait queue and there is available space in the message buffer
for the message specified by the task in the top of the transmission wait queue, the task is unlinked from
the transmission wait queue and moves from the WAITING state (message transmission wait state) to
the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state. As a result, the
size of available space in the target message buffer decreases by the amount calculated by the follow-
ing expression.

The amount of decrease =up4(The message size sent by the task) + VTSZ_MBFTBL

- There is no message in the message buffer and there is a task in the transmission wait queue.
This service call stores the message specified by the task in the top of the transmission wait queue to the area
pointed by the parameter msg. As a result, the task is unlinked from the transmission wait queue and moves
from the WAITING state (message transmission wait state) to the READY state, or from the WAITING-
SUSPENDED state to the SUSPENDED state.
Note, this situation is caused only when the size of the message buffer is 0.

- There is no message in the message buffer and there is no task in the transmission wait queue.
This service call queues the invoking task to the reception wait queue of the target message buffer and moves
it from the RUNNING state to the WAITING state with time (message reception wait state).
The receiving WAITING state for a message buffer is cancelled in the following cases.

The following describes an example for coding this service call.

Receiving WAITING State for a Message Buffer Cancel Operation Return Value

Message was sent to the message buffer area as a result of issuing snd_mbf. E_OK

Message was sent to the message buffer area as a result of issuing psnd_mbf. E_OK

Message was sent to the message buffer area as a result of issuing ipsnd_mbf. E_OK

Message was sent to the message buffer area as a result of issuing tsnd_mbf. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The time specified by tmout has elapsed. E_TMOUT

RI600V4

R20UT0711EJ0104 Rev.1.04 Page 104 of 447
Sep 20, 2013

CHAPTER 6 EXTENDED SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

Note 1 The Maximum message size (max_msgsz) is defined during configuration. The size of the area pointed by
msg must be larger than or equal to the maximum message size.

Note 2 Invoking tasks are queued to the reception wait queue of the target message buffer in the order of the
message reception request.

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to rcv_mbf will be executed. When
TMO_POL is specified, processing equivalent to prcv_mbf will be executed.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mbfid = 1; /*Declares and initializes variable*/
 B msg[16]; /*Declares variable (maximum message size)*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /* */

 ercd = trcv_mbf (mbfid, (VP)msg, tmout); /*Receive from message buffer */

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Time-out processing*/
 }

 /* */
}

RI600V4

R20UT0711EJ0104 Rev.1.04 Page 105 of 447
Sep 20, 2013

CHAPTER 6 EXTENDED SYNCHRONIZATION AND COMMUNICATION
FUNCTIONS

6.3.4 Reference message buffer state

A message buffer status is referenced by issuing the following service call from the processing program.

- ref_mbf, iref_mbf
These service calls store the detailed information of the message buffer (existence of waiting tasks, available buffer
size, etc.) specified by parameter mbfid into the area specified by parameter pk_rmbf.
The following describes an example for coding this service call.

Note For details about the message buffer state packet, refer to “[Message buffer state packet: T_RMBF]”.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID mbfid = 1; /*Declares and initializes variable*/
 T_RMBF pk_rmbf; /*Declares message structure*/
 ID stskid; /*Declares variable*/
 ID rtskid; /*Declares variable*/
 UINT smsgcnt; /*Declares variable*/
 SIZE fmbfsz; /*Declares variable*/

 /* */

 ref_mbf (mbfid, &pk_rmbf); /*Reference message buffer state*/

 stskid = pk_rmbf.stskid; /*Acquires existence of tasks waiting for */
 /*message transmission*/
 rtskid = pk_rmbf.rtskid; /*Acquires existence of tasks waiting for */
 /*message reception*/
 smsgcnt = pk_rmbf.smsgcnt; /*Acquires the number of message in */
 /*message buffer*/
 fmbfsz = pk_rmbf.fmbfsz; /*Acquires the available buffer size */

 /* */
}

RI600V4 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 106 of 447
Sep 20, 2013

CHAPTER 7 MEMORY POOL MANAGEMENT FUNC-
TIONS

This chapter describes the memory pool management functions performed by the RI600V4.

7.1 Outline

The RI600V4 provides “Fixed-Sized Memory Pools” and “Variable-Sized Memory Pools” as dynamic memory allocation
function.
In the fixed-sized memory pool, the size of memory that can use is fixation, but the over-head to acquire/release memory
is short.
On the other hand, in the variable-sized memory pool, memory of the arbitrary size can be used, but the over-head to
acquire/release memory is longer than the fixed-sized memory pool. And fragmentation of the memory pool area may
occur.

RI600V4 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 107 of 447
Sep 20, 2013

7.2 Fixed-Sized Memory Pools

When a dynamic memory manipulation request is issued from a processing program in the RI600V4, the fixed-sized
memory pool is provided as a usable memory area.
Dynamic memory manipulation of the fixed-size memory pool is executed in fixed size memory block units.

7.2.1 Create fixed-sized memory pool

In the RI600V4, the method of creating a fixed-sized memory pool is limited to “static creation”.
Fixed-sized memory pools therefore cannot be created dynamically using a method such as issuing a service call from a
processing program.
Static fixed-size memory pool creation means defining of fixed-size memory pools using static API “memorypool[]” in the
system configuration file.
For details about the static API “memorypool[]”, refer to “19.14 Fixed-sized Memory Pool Information (memorypool[])”.

RI600V4 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 108 of 447
Sep 20, 2013

7.2.2 Acquire fixed-sized memory block

A fixed-sized memory block is acquired (waiting forever, polling, or with time-out) by issuing the following service call from
the processing program.

- get_mpf (Wait)

- pget_mpf, ipget_mpf (Polling)

- tget_mpf (Wait with time-out)

The RI600V4 does not perform memory clear processing when a fixed-sized memory block is acquired. The contents of
the acquired fixed-size memory block are therefore undefined.

- get_mpf (Wait)
This service call acquires the fixed-sized memory block from the fixed-sized memory pool specified by parameter
mpfid and stores the start address in the area specified by parameter p_blk.
If no fixed-size memory blocks could be acquired from the target fixed-size memory pool (no available fixed-size
memory blocks exist) when this service call is issued, this service call does not acquire the fixed-size memory block
but queues the invoking task to the target fixed-size memory pool wait queue and moves it from the RUNNING state
to the WAITING state (fixed-size memory block acquisition wait state).
The WAITING state for a fixed-sized memory block is cancelled in the following cases.

The following describes an example for coding this service call.

WAITING State for a Fixed-sized Memory Block Cancel Operation Return Value

A fixed-sized memory block was returned to the target fixed-sized memory pool as a result of
issuing rel_mpf.

E_OK

A fixed-sized memory block was returned to the target fixed-sized memory pool as a result of
issuing irel_mpf.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The fixed-sized memory pool is reset as a result of issuing vrst_mpf. EV_RST

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mpfid = 1; /*Declares and initializes variable*/
 VP p_blk; /*Declares variable*/

 /* */

 ercd = get_mpf (mpfid, &p_blk); /*Acquire fixed-sized memory block */

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/

 rel_mpf (mpfid, p_blk); /*Release fixed-sized memory block*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

RI600V4 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 109 of 447
Sep 20, 2013

Note 1 Invoking tasks are queued to the target fixed-size memory pool wait queue in the order defined during
configuration (FIFO order or current priority order).

Note 2 The contents of the block are undefined.

Note 3 The boundary alignment for the memory blocks acquired is 1. If memory blocks need to be acquired with a
larger boundary alignment than that, observe the following:

- Set The size of the fixed-sized memory block (siz_block) in Fixed-sized Memory Pool Information
(memorypool[]) to multiple of the desired boundary alignment.

- Specify unique section name to the Section name assigned to the memory pool area (section) in Fixed-sized
Memory Pool Information (memorypool[]) and locate the section to the address of the desired boundary
alignment when linking.

RI600V4 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 110 of 447
Sep 20, 2013

- pget_mpf, ipget_mpf (Polling)
This service call acquires the fixed-sized memory block from the fixed-sized memory pool specified by parameter
mpfid and stores the start address in the area specified by parameter p_blk.
If a fixed-sized memory block could not be acquired from the target fixed-sized memory pool (no available fixed-sized
memory blocks exist) when this service call is issued, fixed-sized memory block acquisition processing is not
performed but “E_TMOUT” is returned.
The following describes an example for coding these service calls.

Note 1 The contents of the block are undefined.

Note 2 The boundary alignment for the memory blocks acquired is 1. If memory blocks need to be acquired with a
larger boundary alignment than that, observe the following:

- Set The size of the fixed-sized memory block (siz_block) in Fixed-sized Memory Pool Information
(memorypool[]) to multiple of the desired boundary alignment.

- Specify unique section name to the Section name assigned to the memory pool area (section) in Fixed-sized
Memory Pool Information (memorypool[]) and locate the section to the address of the desired boundary
alignment when linking.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mpfid = 1; /*Declares and initializes variable*/
 VP p_blk; /*Declares variable*/

 /* */

 /*Acquire fixed-sized memory block */
 ercd = pget_mpf (mpfid, &p_blk);

 if (ercd == E_OK) {
 /* */ /*Polling success processing*/

 rel_mpf (mpfid, p_blk); /*Release fixed-sized memory block*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Polling failure processing*/
 }

 /* */
}

RI600V4 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 111 of 447
Sep 20, 2013

- tget_mpf (Wait with time-out)
This service call acquires the fixed-sized memory block from the fixed-sized memory pool specified by parameter
mpfid and stores the start address in the area specified by parameter p_blk.
If no fixed-size memory blocks could be acquired from the target fixed-size memory pool (no available fixed-size
memory blocks exist) when this service call is issued, this service call does not acquire the fixed-size memory block
but queues the invoking task to the target fixed-size memory pool wait queue and moves it from the RUNNING state
to the WAITING state with time-out (fixed-size memory block acquisition wait state).
The WAITING state for a fixed-sized memory block is cancelled in the following cases.

The following describes an example for coding this service call.

Note 1 Invoking tasks are queued to the target fixed-size memory pool wait queue in the order defined during
configuration (FIFO order or current priority order).

Note 2 The contents of the block are undefined.

Note 3 The boundary alignment for the memory blocks acquired is 1. If memory blocks need to be acquired with a
larger boundary alignment than that, observe the following:

WAITING State for a Fixed-sized Memory Block Cancel Operation Return Value

A fixed-sized memory block was returned to the target fixed-sized memory pool as a result of
issuing rel_mpf.

E_OK

A fixed-sized memory block was returned to the target fixed-sized memory pool as a result of
issuing irel_mpf.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The fixed-sized memory pool is reset as a result of issuing vrst_mpf. EV_RST

The time specified by tmout has elapsed. E_TMOUT

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mpfid = 1; /*Declares and initializes variable*/
 VP p_blk; /*Declares variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /* */
 /*Acquire fixed-sized memory block*/
 ercd = tget_mpf (mpfid, &p_blk, tmout);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/

 rel_mpf (mpfid, p_blk); /*Release fixed-sized memory block*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Time-out processing*/
 }

 /* */
}

RI600V4 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 112 of 447
Sep 20, 2013

- Set The size of the fixed-sized memory block (siz_block) in Fixed-sized Memory Pool Information
(memorypool[]) to multiple of the desired boundary alignment.

- Specify unique section name to the Section name assigned to the memory pool area (section) in Fixed-sized
Memory Pool Information (memorypool[]) and locate the section to the address of the desired boundary
alignment when linking.

Note 4 TMO_FEVR is specified for wait time tmout, processing equivalent to get_mpf will be executed. When
TMO_POL is specified, processing equivalent to pget_mpf will be executed.

RI600V4 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 113 of 447
Sep 20, 2013

7.2.3 Release fixed-sized memory block

A fixed-sized memory block is returned by issuing the following service call from the processing program.

- rel_mpf, irel_mpf
This service call returns the fixed-sized memory block specified by parameter blk to the fixed-sized memory pool
specified by parameter mpfid.
If a task is queued to the target fixed-sized memory pool wait queue when this service call is issued, fixed-sized
memory block return processing is not performed but fixed-sized memory blocks are returned to the relevant task
(first task of wait queue).
As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (WAITING state
for a fixed-sized memory block) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED
state.
The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mpfid = 1; /*Declares and initializes variable*/
 VP blk; /*Declares variable*/

 /* */

 ercd = get_mpf (mpfid, &blk); /*Acquire fixed-sized memory block */
 /*(waiting forever)*/

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/

 rel_mpf (mpfid, blk); /*Release fixed-sized memory block*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

RI600V4 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 114 of 447
Sep 20, 2013

7.2.4 Reference fixed-sized memory pool state

A fixed-sized memory pool status is referenced by issuing the following service call from the processing program.

- ref_mpf, iref_mpf
Stores fixed-sized memory pool state packet (ID number of the task at the head of the wait queue, number of free
memory blocks, etc.) of the fixed-sized memory pool specified by parameter mpfid in the area specified by parameter
pk_rmpf.
The following describes an example for coding these service calls.

Note For details about the fixed-sized memory pool state packet, refer to “[Fixed-sized memory pool state packet:
T_RMPF]”.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID mpfid = 1; /*Declares and initializes variable*/
 T_RMPF pk_rmpf; /*Declares data structure*/
 ID wtskid; /*Declares variable*/
 UINT fblkcnt; /*Declares variable*/

 /* */

 ref_mpf (mpfid, &pk_rmpf); /*Reference fixed-sized memory pool state*/

 wtskid = pk_rmpf.wtskid; /*Reference ID number of the task at the */
 /*head of the wait queue*/
 fblkcnt = pk_rmpf.fblkcnt; /*Reference number of free memory blocks*/

 /* */
}

RI600V4 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 115 of 447
Sep 20, 2013

7.3 Variable-Sized Memory Pools

When a dynamic memory manipulation request is issued from a processing program in the RI600V4, the variable-sized
memory pool is provided as a usable memory area.
Dynamic memory manipulation for variable-size memory pools is performed in the units of the specified variable-size
memory block size.

7.3.1 Create variable-sized memory pool

In the RI600V4, the method of creating a variable-sized memory pool is limited to “static creation”.
Variable-sized memory pools therefore cannot be created dynamically using a method such as issuing a service call from
a processing program.
Static variable-size memory pool creation means defining of variable-size memory pools using static API
“variable_memorypool[]” in the system configuration file.
For details about the static API “variable_memorypool[]”, refer to “19.15 Variable-sized Memory Pool Information
(variable_memorypool[])”

RI600V4 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 116 of 447
Sep 20, 2013

7.3.2 Size of Variable-sized memory block

In the current implementation of the RI600V4, the size of the variable-sized memory block to be acquired is selected from
12 (in maximum) kinds of variations. This variations are selected from 24 kinds of inside decided beforehand according to
Upper limit of the variable-sized memory block (max_memsize) in Variable-sized Memory Pool Information
(variable_memorypool[]). Table 7-1 shows variation of memory block size. Note, this behavior may be changed in the
future version.

Table 7-1 Variation of memory block size

No,
Size of memory block

(Hexadecimal)
Example-1

max_memsize = 0x100
Example-1

max_memsize = 0x20000

1 12 (0xC) Used -

2 36 (0x24) Used -

3 84 (0x54) Used Used

4 180 (0xB4) Used Used

5 372 (0x174) - Used

6 756 (0x2F4) - Used

7 1524 (0x5F4) - Used

8 3060 (0xBF4) - Used

9 6132 (0x17F4) - Used

10 12276 (0x2FF4) - Used

11 24564 (0x5FF4) - Used

12 49140 (0xBFF4) - Used

13 98292 (0x17FF4) - Used

14 196596 (0x2FFF4) - Used

15 393204 (0x5FFF4) - -

16 786420 (0xBFFF4) - -

17 1572852 (0x17FFF4) - -

18 3145716 (0x2FFFF4) - -

19 6291444 (0x5FFFF4) - -

20 12582900 (0xBFFFF4) - -

21 25165812 (0x17FFFF4) - -

22 50331636 (0x2FFFFF4) - -

23 100663284 (0x5FFFFF4) - -

24 201326580 (0xBFFFFF4) - -

RI600V4 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 117 of 447
Sep 20, 2013

7.3.3 Acquire variable-sized memory block

A variable-sized memory block is acquired (waiting forever, polling, or with time-out) by issuing the following service call
from the processing program.

- get_mpl (Wait)

- pget_mpl, ipget_mpl (Polling)

- tget_mpl (Wait with time-out)

The RI600V4 does not perform memory clear processing when a variable-sized memory block is acquired. The contents
of the acquired variable-size memory block are therefore undefined.

- get_mpl (Wait)
This service call acquires a variable-size memory block of the size specified by parameter blksz from the variable-size
memory pool specified by parameter mplid, and stores its start address into the area specified by parameter p_blk.
If no variable-size memory blocks could be acquired from the target variable-size memory pool (no successive areas
equivalent to the requested size were available) when this service call is issued, this service call does not acquire
variable-size memory blocks but queues the invoking task to the target variable-size memory pool wait queue and
moves it from the RUNNING state to the WAITING state (variable-size memory block acquisition wait state).
The WAITING state for a variable-sized memory block is cancelled in the following cases.

The following describes an example for coding this service call.

WAITING State for a Variable-sized Memory Block Cancel Operation Return Value

The variable-size memory block that satisfies the requested size was returned to the target
variable-size memory pool as a result of issuing rel_mpl.

E_OK

The task at the top of the transmission wait queue was forcedly released from waiting by fol-
lowing either.

- Forced release from waiting (accept rel_wai while waiting).

- Forced release from waiting (accept irel_wai while waiting).

- Forced release from waiting (accept ter_tsk while waiting).

- The time specified by tmout for tget_mpl has elapsed.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The variable-sized memory pool is reset as a result of issuing vrst_mpl. EV_RST

RI600V4 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 118 of 447
Sep 20, 2013

Note 1 For the size of the memory block, refer to “7.3.2 Size of Variable-sized memory block”.

Note 2 Invoking tasks are queued to the target variable-size memory pool wait queue in the FIFO order.

Note 3 The contents of the block are undefined.

Note 4 The alignment number of memory blocks is 1. To enlarge the alignment number to 4, specify unique section to
Section name assigned to the memory pool area (mpl_section) in Variable-sized Memory Pool Information
(variable_memorypool[]) and locate the section to 4-bytes boundary address when linking.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mplid = 1; /*Declares and initializes variable*/
 UINT blksz = 256; /*Declares and initializes variable*/
 VP p_blk; /*Declares variable*/

 /* */
 /*Acquire variable-sized memory block */
 ercd = get_mpl (mplid, blksz, &p_blk);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/

 rel_mpl (mplid, p_blk); /*Release variable-sized memory block*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

RI600V4 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 119 of 447
Sep 20, 2013

- pget_mpl, ipget_mpl (Polling)
This service call acquires a variable-size memory block of the size specified by parameter blksz from the variable-size
memory pool specified by parameter mplid, and stores its start address into the area specified by parameter p_blk.
If no variable-size memory blocks could be acquired from the target variable-size memory pool (no successive areas
equivalent to the requested size were available) when this service call is issued, this service call does not acquire
variable-size memory block but returns “E_TMOUT”.
The following describes an example for coding these service calls.

Note 1 For the size of the memory block, refer to “7.3.2 Size of Variable-sized memory block”.

Note 2 The contents of the block are undefined.

Note 3 The alignment number of memory blocks is 1. To enlarge the alignment number to 4, specify unique section to
Section name assigned to the memory pool area (mpl_section) in Variable-sized Memory Pool Information
(variable_memorypool[]) and locate the section to 4-bytes boundary address when linking.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mplid = 1; /*Declares and initializes variable*/
 UINT blksz = 256; /*Declares and initializes variable*/
 VP p_blk; /*Declares variable*/

 /* */

 /*Acquire variable-sized memory block*/
 ercd = pget_mpl (mplid, blksz, &p_blk);

 if (ercd == E_OK) {
 /* */ /*Polling success processing*/

 rel_mpl (mplid, p_blk); /*Release variable-sized memory block*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Polling failure processing*/
 }

 /* */
}

RI600V4 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 120 of 447
Sep 20, 2013

- tget_mpl (Wait with time-out)
This service call acquires a variable-size memory block of the size specified by parameter blksz from the variable-size
memory pool specified by parameter mplid, and stores its start address into the area specified by parameter p_blk.
If no variable-size memory blocks could be acquired from the target variable-size memory pool (no successive areas
equivalent to the requested size were available) when this service call is issued, this service call does not acquire
variable-size memory blocks but queues the invoking task to the target variable-size memory pool wait queue and
moves it from the RUNNING state to the WAITING state with time-out (variable-size memory block acquisition wait
state).
The WAITING state for a variable-sized memory block is cancelled in the following cases.

The following describes an example for coding this service call.

WAITING State for a Variable-sized Memory Block Cancel Operation Return Value

The variable-size memory block that satisfies the requested size was returned to the target
variable-size memory pool as a result of issuing rel_mpl.

E_OK

The task at the top of the transmission wait queue was forcedly released from waiting by fol-
lowing either.

- Forced release from waiting (accept rel_wai while waiting).

- Forced release from waiting (accept irel_wai while waiting).

- Forced release from waiting (accept ter_tsk while waiting).

- The time specified by tmout for tget_mpl has elapsed.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The variable-sized memory pool is reset as a result of issuing vrst_mpl. EV_RST

The time specified by tmout has elapsed. E_TMOUT

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void
task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mplid = 1; /*Declares and initializes variable*/
 UINT blksz = 256; /*Declares and initializes variable*/
 VP p_blk; /*Declares variable*/
 TMO tmout = 3600; /*Declares and initializes variable*/

 /* */

 /*Acquire variable-sized memory block*/
 ercd = tget_mpl (mplid, blksz, &p_blk, tmout);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/

 rel_mpl (mplid, p_blk ; /*Release variable-sized memory block*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 } else if (ercd == E_TMOUT) {
 /* */ /*Time-out processing*/
 }

 /* */
}

RI600V4 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 121 of 447
Sep 20, 2013

Note 1 For the size of the memory block, refer to “7.3.2 Size of Variable-sized memory block”.

Note 2 Invoking tasks are queued to the target variable-size memory pool wait queue in the FIFO order.

Note 3 The contents of the block are undefined.

Note 4 The alignment number of memory blocks is 1. To enlarge the alignment number to 4, specify unique section to
Section name assigned to the memory pool area (mpl_section) in Variable-sized Memory Pool Information
(variable_memorypool[]) and locate the section to 4-bytes boundary address when linking.

Note 5 TMO_FEVR is specified for wait time tmout, processing equivalent to get_mpl will be executed. When
TMO_POL is specified, processing equivalent to pget_mpl will be executed.

RI600V4 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 122 of 447
Sep 20, 2013

7.3.4 Release variable-sized memory block

A variable-sized memory block is returned by issuing the following service call from the processing program.

- rel_mpl
This service call returns the variable-sized memory block specified by parameter blk to the variable-sized memory
pool specified by parameter mplid.
After returning the variable-size memory blocks, these service calls check the tasks queued to the target variable-size
memory pool wait queue from the top, and assigns the memory if the size of memory requested by the wait queue is
available. This operation continues until no tasks queued to the wait queue remain or no memory space is available.
As a result, the task that acquired the memory is unlinked from the queue and moved from the WAITING state
(variable-size memory block acquisition wait state) to the READY state, or from the WAITING-SUSPENDED state to
the SUSPENDED state.
The following describes an example for coding these service calls.

Note The RI600V4 do only simple error detection for blk. If blk is illegal and the error is not detected, the operation is
not guaranteed after that.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mplid = 1; /*Declares and initializes variable*/
 UINT blksz = 256; /*Declares and initializes variable*/
 VP blk; /*Declares variable*/

 /* */

 /*Acquire variable-sized memory block*/
 ercd = get_mpl (mplid, blksz, &blk);

 if (ercd == E_OK) {
 /* */ /*Normal termination processing*/

 rel_mpl (mplid, blk); /*Release variable-sized memory block*/
 } else if (ercd == E_RLWAI) {
 /* */ /*Forced termination processing*/
 }

 /* */
}

RI600V4 CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 123 of 447
Sep 20, 2013

7.3.5 Reference variable-sized memory pool state

A variable-sized memory pool status is referenced by issuing the following service call from the processing program.

- ref_mpl, iref_mpl
These service calls store the detailed information (ID number of the task at the head of the wait queue, total size of
free memory blocks, etc.) of the variable-size memory pool specified by parameter mplid into the area specified by
parameter pk_rmpl.
The following describes an example for coding these service calls.

Note For details about the variable-sized memory pool state packet, refer to “[Variable-sized memory pool state
packet: T_RMPL]”.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID mplid = 1; /*Declares and initializes variable*/
 T_RMPL pk_rmpl; /*Declares data structure*/
 ID wtskid; /*Declares variable*/
 SIZE fmplsz; /*Declares variable*/
 UINT fblksz; /*Declares variable*/

 /* */

 ref_mpl (mplid, &pk_rmpl); /*Reference variable-sized memory pool state*/

 wtskid = pk_rmpl.wtskid; /*Reference ID number of the task at the */
 /*head of the wait queue*/
 fmplsz = pk_rmpl.fmplsz; /*Reference total size of free memory blocks*/
 fblksz = pk_rmpl.fblksz; /*Reference maximum memory block size*/

 /* */
}

RI600V4 CHAPTER 8 TIME MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 124 of 447
Sep 20, 2013

CHAPTER 8 TIME MANAGEMENT FUNCTIONS

This chapter describes the time management functions performed by the RI600V4.

8.1 Outline

The RI600V4's time management function provides methods to implement time-related processing (Timer Operations:
Delay task, Time-out, Cyclic handlers, Alarm Handlers and System Time) by using base clock timer interrupts that occur at
constant intervals, as well as a function to manipulate and reference the system time.

8.2 System Time

The system time is a time used by the RI600V4 for performing time management (in millisecond).
After initialization to 0 by the Kernel Initialization Module (vsta_knl, ivsta_knl), the system time is updated based on the
base clock interval defined by Denominator of base clock interval time (tic_deno) and Denominator of base clock interval
time (tic_deno) in System Information (system) when creating a system configuration file.

8.2.1 Base clock timer interrupt

To realize the time management function, the RI600V4 uses interrupts that occur at constant intervals (base clock timer
interrupts).
When a base clock timer interrupt occurs, processing related to the RI600V4 time (system time update, task time-out/
delay, cyclic handler activation, alarm handler activation, etc.) is executed.
Basically, either of channel 0-3 of the compare match timer (CMT) implemented in the MCU is used for base clock time.
The channel number is specified by Selection of timer channel for base clock (timer)in Base Clock Interrupt Information
(clock). in the system configuration file.
The hardware initialization to generate base clock timer interrupt is implemented by “void __RI_init_cmt(void)” in
“ri_cmt.h”. The “ri_cmt.h” file is generated by the cfg600. The Boot processing function (PowerON_Reset_PC()) must call
_RI_init_cmt().

8.2.2 Base clock interval

In the RI600V4, service call parameters for time specification are specified in msec units.
It is desirable to set 1 msec for the occurrence interval of base clock timer interrupts, but it may be difficult depending on
the target system performance (processing capability, required time resolution, or the like).
In such a case, the occurrence interval of base clock timer interrupt can be specified by Denominator of base clock interval
time (tic_deno) and Denominator of base clock interval time (tic_deno) in System Information (system) when creating a
system configuration file.
By specifying the base clock interval, processing regards that the time equivalent to the base clock interval elapses during
a base clock timer interrupt.

RI600V4 CHAPTER 8 TIME MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 125 of 447
Sep 20, 2013

8.3 Timer Operations

The RI600V4's timer operation function provides Delay task, Time-out, Cyclic handlers, Alarm Handlers and System Time,
as the method for realizing time-dependent processing.

8.4 Delay task

Delayed task that makes the invoking task transit from the RUNNING state to the WAITING state during the interval until a
given length of time has elapsed, and makes that task move from the WAITING state to the READY state once the given
length of time has elapsed.
Delayed wake-up is implemented by issuing the following service call from the processing program.

dly_tsk

8.5 Time-out

Time-out is the operation that makes the target task move from the RUNNING state to the WAITING state during the
interval until a given length of time has elapsed if the required condition issued from a task is not immediately satisfied,
and makes that task move from the WAITING state to the READY state regardless of whether the required condition is
satisfied once the given length of time has elapsed.
A time-out is implemented by issuing the following service call from the processing program.

tslp_tsk, twai_sem, twai_flg, tsnd_dtq, trcv_dtq, trcv_mbx, tloc_mtx, tsnd_mbf, trcv_mbf, tget_mpf, tget_mpl

RI600V4 CHAPTER 8 TIME MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 126 of 447
Sep 20, 2013

8.6 Cyclic handlers

The cyclic handler is a routine dedicated to cycle processing that is activated periodically at a constant interval (activation
cycle).
The RI600V4 handles the cyclic handler as a “non-task (module independent from tasks)”. Therefore, even if a task with
the highest priority in the system is being executed, the processing is suspended when a specified activation cycle has
come, and the control is passed to the cyclic handler.

8.6.1 Basic form of cyclic handlers

The Extended information (exinf) in Cyclic Handler Information (cyclic_hand[]) is passed to the exinf.
The following shows the basic form of cyclic handlers.

Note The cfg600 outputs the prototype declaration for the handler function to kernel_id.h.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void cychdr (VP_INT exinf)
{
 /* */

 return; /*Terminate cyclic handler*/
}

RI600V4 CHAPTER 8 TIME MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 127 of 447
Sep 20, 2013

8.6.2 Processing in cyclic handler

- Stack
A cyclic handler uses the system stack.

- Service call
The RI600V4 handles the cyclic handler as a “non-task”.
The cyclic handler can issue service calls whose “Useful range” is “Non-task”.

Note If a service call (isig_sem, iset_flg, etc.) which causes dispatch processing (task scheduling processing) is
issued in order to quickly complete the processing in the cyclic handler during the interval until the
processing in the cyclic handler ends, the RI600V4 executes only processing such as queue manipulation,
counter manipulation, etc., and the actual dispatch processing is delayed until a return instruction is issued
by the cyclic handler, upon which the actual dispatch processing is performed in batch.

- PSW register when processing is started

Table 8-1 PSW Register When Cyclic Handler is Started

8.6.3 Create cyclic handler

In the RI600V4, the method of creating a cyclic handler is limited to “static creation”.
Cyclic handlers therefore cannot be created dynamically using a method such as issuing a service call from a processing
program.
Static cyclic handler creation means defining of cyclic handlers using static API “cyclic_hand[]” in the system configuration
file.
For details about the static API “cyclic_hand[]”, refer to “19.16 Cyclic Handler Information (cyclic_hand[])”.

Bit Value Note

I 1

IPL Base clock interrupt priority level (IPL)
Do not lower IPL more than the start of pro-
cessing.

PM 0 Supervisor mode

U 0 System stack

C, Z, S, O Undefined

Others 0

RI600V4 CHAPTER 8 TIME MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 128 of 447
Sep 20, 2013

8.6.4 Start cyclic handler operation

Moving to the operational state (STA state) is implemented by issuing the following service call from the processing
program.

- sta_cyc, ista_cyc
This service call moves the cyclic handler specified by parameter cycid from the non-operational state (STP state) to
operational state (STA state).
As a result, the target cyclic handler is handled as an activation target of the RI600V4.
The relative interval from when either of this service call is issued until the first activation request is issued varies
depending on whether the TA_PHS attribute (phsatr) is specified for the target cyclic handler during configuration.

- If the TA_PHS attribute is specified
The target cyclic handler activation timing is set based on the Activation phase (phs_counter) and Activation
cycle (interval_counter) defined during configuration.
If the target cyclic handler has already been started, however, no processing is performed even if this service call
is issued, but it is not handled as an error.
The following shows a cyclic handler activation timing image.

Figure 8-1 TA_PHS Attribute: Specified

- If the TA_PHS attribute is not specified
The target cyclic handler activation timing is set based on the activation phase (Activation cycle
(interval_counter)) when this service call is issued.
This setting is performed regardless of the operating status of the target cyclic handler.
The following shows a cyclic handler activation timing image.

Figure 8-2 TA_PHS Attribute: Not Specified

phs_counter interval_counter interval_counter interval_counter

Start Start Start Start

Stop cyclic handler operationStart cyclic handler operation

Generation processing completed (vsta_knl, ivsta_knl)

phs_counter interval_counter interval_counter interval_counter

interval_counter interval_counter

Start

interval_counter interval_counter

Start Start

Stop cyclic handler operationStart cyclic handler operation

Generation processing completed (vsta_knl, ivsta_knl)

RI600V4 CHAPTER 8 TIME MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 129 of 447
Sep 20, 2013

The following describes an example for coding these service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID cycid = 1; /*Declares and initializes variable*/

 /* */

 sta_cyc (cycid); /*Start cyclic handler operation*/

 /* */
}

RI600V4 CHAPTER 8 TIME MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 130 of 447
Sep 20, 2013

8.6.5 Stop cyclic handler operation

Moving to the non-operational state (STP state) is implemented by issuing the following service call from the processing
program.

- stp_cyc, istp_cyc
This service call moves the cyclic handler specified by parameter cycid from the operational state (STA state) to non-
operational state (STP state).
As a result, the target cyclic handler is excluded from activation targets of the RI600V4 until issuance of sta_cyc or
ista_cyc.
The following describes an example for coding these service calls.

Note This service call does not perform queuing of stop requests. If the target cyclic handler has been moved to the
non-operational state (STP state), therefore, no processing is performed but it is not handled as an error.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID cycid = 1; /*Declares and initializes variable*/

 /* */

 stp_cyc (cycid); /*Stop cyclic handler operation*/

 /* */
}

RI600V4 CHAPTER 8 TIME MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 131 of 447
Sep 20, 2013

8.6.6 Reference cyclic handler state

A cyclic handler status by issuing the following service call from the processing program.

- ref_cyc, iref_cyc
Stores cyclic handler state packet (current state, time until the next activation, etc.) of the cyclic handler specified by
parameter cycid in the area specified by parameter pk_rcyc.
The following describes an example for coding these service calls.

Note For details about the cyclic handler state packet, refer to “[Cyclic handler state packet: T_RCYC]”.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID cycid = 1; /*Declares and initializes variable*/
 T_RCYC pk_rcyc; /*Declares data structure*/
 STAT cycstat; /*Declares variable*/
 RELTIM lefttim; /*Declares variable*/

 /* */

 ref_cyc (cycid, &pk_rcyc); /*Reference cyclic handler state*/

 cycstat = pk_rcyc.cycstat; /*Reference current state*/
 lefttim = pk_rcyc.lefttim; /*Reference time left before the next */
 /*activation*/

 /* */
}

RI600V4 CHAPTER 8 TIME MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 132 of 447
Sep 20, 2013

8.7 Alarm Handlers

The alarm handler is a routine started when the specified time passes.
The RI600V4 handles the alarm handler as a “non-task (module independent from tasks)”. Therefore, even if a task with
the highest priority in the system is being executed, the processing is suspended when a specified time has elapsed, and
the control is passed to the alarm handler.

8.7.1 Basic form of alarm handler

The Extended information (exinf) in Alarm Handler Information (alarm_handl[]) is passed to the exinf.
The following shows the basic form of alarm handlers.

Note The cfg600 outputs the prototype declaration for the handler function to kernel_id.h.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void almhdr (VP_INT exinf)
{
 /* */

 return; /*Terminate alarm handler*/
}

RI600V4 CHAPTER 8 TIME MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 133 of 447
Sep 20, 2013

8.7.2 Processing in alarm handler

- Stack
A alarm handler uses the system stack.

- Service call
The RI600V4 handles the alarm handler as a “non-task”.
The alarm handler can issue service calls whose “Useful range” is “Non-task”.

Note If a service call (isig_sem, iset_flg, etc.) which causes dispatch processing (task scheduling processing) is
issued in order to quickly complete the processing in the alarm handler during the interval until the
processing in the alarm handler ends, the RI600V4 executes only processing such as queue manipulation,
counter manipulation, etc., and the actual dispatch processing is delayed until a return instruction is issued
by the alarm handler, upon which the actual dispatch processing is performed in batch.

- PSW register when processing is started

Table 8-2 PSW Register When Alarm Handler is Started)

8.7.3 Create alarm handler

In the RI600V4, the method of creating a alarm handler is limited to “static creation”.
Alarm handlers therefore cannot be created dynamically using a method such as issuing a service call from a processing
program.
Static alarm handler creation means defining of alarm handlers using static API “alarm_hand[]” in the system configuration
file.
For details about the static API “alarm_hand[]”, refer to “19.17 Alarm Handler Information (alarm_handl[])”.

Bit Value Note

I 1

IPL Base clock interrupt priority level (IPL)
Do not lower IPL more than the start of pro-
cessing.

PM 0 Supervisor mode

U 0 System stack

C, Z, S, O Undefined

Others 0

RI600V4 CHAPTER 8 TIME MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 134 of 447
Sep 20, 2013

8.7.4 Start alarm handler operation

Moving to the operational state (STA state) is implemented by issuing the following service call from the processing
program.

- sta_alm, ista_alm
This service call sets the activation time of the alarm handler specified by almid in almtim (msec), and moves the
alarm handler from the non-operational state (STP state) to operational state (STA state).
As a result, the target alarm handler is handled as an activation target of the RI600V4.
The following describes an example for coding these service calls.

Note 1 When 0 is specified for almtim, the alarm handler will start at the next base clock interruption.

Note 2 When the target alarm handler has already started (STA state), this service call sets the activation time of the
target alarm handler in almtim (msec) after canceling the activation time.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID almid = 1; /*Declares and initializes variable*/

 /* */

 sta_alm (almid); /*Start alarm handler operation*/

 /* */
}

RI600V4 CHAPTER 8 TIME MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 135 of 447
Sep 20, 2013

8.7.5 Stop alarm handler operation

Moving to the non-operational state (STP state) is implemented by issuing the following service call from the processing
program.

- stp_alm, istp_alm
This service call moves the alarm handler specified by parameter cycid from the operational state (STA state) to non-
operational state (STP state).
As a result, the target alarm handler is excluded from activation targets of the RI600V4 until issuance of sta_alm or
ista_alm.
The following describes an example for coding these service calls.

Note This service call does not perform queuing of stop requests. If the target alarm handler has been moved to the
non-operational state (STP state), therefore, no processing is performed but it is not handled as an error.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID almid = 1; /*Declares and initializes variable*/

 /* */

 stp_alm (almid); /*Stop alarm handler operation*/

 /* */
}

RI600V4 CHAPTER 8 TIME MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 136 of 447
Sep 20, 2013

8.7.6 Reference alarm handler state

A alarm handler status by issuing the following service call from the processing program.

- ref_alm, iref_alm
Stores alarm handler state packet (current state, time until the next activation, etc.) of the alarm handler specified by
parameter cycid in the area specified by parameter pk_rcyc.
The following describes an example for coding these service calls.

Note For details about the alarm handler state packet, refer to “[Alarm handler state packet: T_RALM]”.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ID almid = 1; /*Declares and initializes variable*/
 T_RALM pk_ralm; /*Declares data structure*/
 STAT almstat; /*Declares variable*/
 RELTIM lefttim; /*Declares variable*/

 /* */

 ref_alm (almid, &pk_ralm); /*Reference alarm handler state*/

 almstat = pk_ralm.almstat; /*Reference current state*/
 lefttim = pk_ralm.lefttim; /*Reference time left */

 /* */
}

RI600V4 CHAPTER 8 TIME MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 137 of 447
Sep 20, 2013

8.8 System Time

8.8.1 Set system time

The system time can be set by issuing the following service call from the processing program.
Note that even if the system time is changed, the actual time at which the time management requests made before that
(e.g., task time-outs, task delay by dly_tsk, cyclic handlers, and alarm handlers) are generated will not change.

- set_tim, iset_tim
These service calls change the system time (unit: msec) to the time specified by parameter p_systim.
The following describes an example for coding these service calls.

Note For details about the system time packet SYSTIM, refer to “[System time packet: SYSTIM]”.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 SYSTIM p_systim; /*Declares data structure*/

 p_systim.ltime = 3600; /*Initializes data structure*/
 p_systim.utime = 0; /*Initializes data structure*/

 /* */

 set_tim (&p_systim); /*Set system time*/

 /* */
}

RI600V4 CHAPTER 8 TIME MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 138 of 447
Sep 20, 2013

8.8.2 Reference system time

The system time can be referenced by issuing the following service call from the processing program.

- get_tim, iget_tim
These service calls store the system time (unit: msec) into the area specified by parameter p_systim.
The following describes an example for coding these service calls.

Note For details about the system time packet SYSTIM, refer to “[System time packet: SYSTIM]”.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 SYSTIM p_systim; /*Declares data structure*/
 UW ltime; /*Declares variable*/
 UH utime; /*Declares variable*/

 /* */

 get_tim (&p_systim); /*Reference System Time*/

 ltime = p_systim.ltime; /*Acquirer system time (lower 32 bits)*/
 utime = p_systim.utime; /*Acquirer system time (higher 16 bits)*/

 /* */
}

RI600V4 CHAPTER 8 TIME MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 139 of 447
Sep 20, 2013

8.9 Initialize Base Clock Timer

The cfg600 outputs the file “ri_cmt.h” which the base clock timer initialization function (void _RI_init_cmt(void)) is
described. The Boot processing function (PowerON_Reset_PC()) should call the base clock timer initialization function.

RI600V4 CHAPTER 9 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 140 of 447
Sep 20, 2013

CHAPTER 9 SYSTEM STATE MANAGEMENT FUNC-
TIONS

This chapter describes the system management functions performed by the RI600V4.

9.1 Outline

The RI600V4's system status management function provides functions for referencing the system status such as the
context type and CPU lock status, as well as functions for manipulating the system status such as ready queue rotation,
scheduler activation, or the like.
Note, refer to “CHAPTER 13 SYSTEM DOWN” for system down (vsys_dwn, ivsys_dwn) and refer to “CHAPTER 16
SYSTEM INITIALIZATION” for starting of the RI600V4 (vsta_knl, ivsta_knl).

9.2 Rotate Task Precedence

Task precedence is rotated by issuing the following service call from the processing program.

- rot_rdq, irot_rdq
This service call re-queues the first task of the ready queue corresponding to the priority specified by parameter tskpri
to the end of the queue to change the task execution order explicitly.
The following shows the status transition when this service call is used.

Figure 9-1 Rotate Task Precedence

Task A
RUNNING state

Task B
READY state

Task C
READY state

Ready queue

tskpri

tskpri + 1

tskpri - 1

1

Task B
RUNNING state

Task C
READY state

Task A
READY statetskpri

tskpri + 1

tskpri - 1

1

Ready queue

Rotate task precedence

TMAX_TPRI

TMAX_TPRI

RI600V4 CHAPTER 9 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 141 of 447
Sep 20, 2013

The following describes an example for coding these service calls.

Note 1 This service call does not perform queuing of rotation requests. If no task is queued to the ready queue
corresponding to the relevant priority, therefore, no processing is performed but it is not handled as an error.

Note 2 Round-robin scheduling can be implemented by issuing this service call via a cyclic handler in a constant
cycle.

Note 3 The ready queue is a hash table that uses priority as the key, and tasks that have entered an executable
state (READY state or RUNNING state) are queued in FIFO order.
Therefore, the scheduler realizes the RI600V4's scheduling system by executing task detection processing
from the highest priority level of the ready queue upon activation, and upon detection of queued tasks, giving
the CPU use right to the first task of the proper priority level.

Note 4 When TPRI_SELF is specified as tskpri, the base priority of the invoking task is applied as the target priority
of this service call.
As for a task which has locked mutexes, the current priority might be different from the base priority. In this
case, even if the task issues this servie call specifying TPRI_SELF as parameter tskpri, the ready queue of
the current priority that the invoking task belongs cannot be changed.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void cychdr (VP_INT exinf) /*Cyclic handler*/
{
 PRI tskpri = 8; /*Declares and initializes variable*/

 /* */

 irot_rdq (tskpri); /*Rotate task precedence*/

 /* */

 return; /*Terminate cyclic handler*/
}

RI600V4 CHAPTER 9 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 142 of 447
Sep 20, 2013

9.3 Reference Task ID in the RUNNING State

A RUNNING-state task is referenced by issuing the following service call from the processing program.

- get_tid, iget_tid
These service calls store the ID of a task in the RUNNING state in the area specified by parameter p_tskid.
The following describes an example for coding these service calls.

Note This service call stores TSK_NONE in the area specified by parameter p_tskid if no tasks that have entered
the RUNNING state exist.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void inthdr (void) /*Interrupt handler*/
{
 ID p_tskid; /*Declares variable*/

 /* */

 iget_tid (&p_tskid); /*Reference task ID in the RUNNING state*/

 /* */

 return; /*Terminate interrupt handler*/
}

RI600V4 CHAPTER 9 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 143 of 447
Sep 20, 2013

9.4 Lock and Unlock the CPU

In the CPU locked state, the task scheduling is prohibited, and kernel interrupts are masked. Therefore, exclusive pro-
cessing can be achieved for all processing programs except non-kernel interrupt handlers.
The following service calls moves to the CPU locked state.

- loc_cpu, iloc_cpu
These service calls transit the system to the CPU locked state.
The service calls that can be issued in the CPU locked state are limited to the one listed below.

The following service calls and ext_tsk release from the CPU locked state.

- unl_cpu, iunl_cpu
These service calls transit the system to the CPU unlocked state.

 The following shows a processing flow when using the CPU locked state.

Figure 9-2 Lock the CPU

The following describes an example for coding “lock the CPU” and “unlock the CPU”.

Service Call that can be issued Function

ext_tsk
Terminate invoking task. (This service call transit the system to the
CPU unlocked state.)

loc_cpu, iloc_cpu Lock the CPU.

unl_cpu, iunl_cpu Unlock the CPU.

sns_loc Reference CPU state.

sns_dsp Reference dispatching state.

sns_ctx Reference contexts.

sns_dpn Reference dispatch pending state.

vsys_dwn, ivsys_dwn System down

Task

return

Interrupt

Interrupt handler

Suppressed period

Lock the CPU

Unlock the CPU

RI600V4 CHAPTER 9 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 144 of 447
Sep 20, 2013

Note 1 The CPU locked state changed by issuing loc_cpu or iloc_cpu must be cancelled before the processing
program that issued this service call ends.

Note 2 The loc_cpu and iloc_cpu do not perform queuing of lock requests. If the system is in the CPU locked state,
therefore, no processing is performed but it is not handled as an error.

Note 3 The unl_cpu and iunl_cpu do not perform queuing of unlock requests. If the system is in the CPU unlocked
state, therefore, no processing is performed but it is not handled as an error

Note 4 The unl_cpu and iunl_cpu do not cancel the dispatching disabled state that was set by issuing dis_dsp.

Note 5 The base clock interrupt is masked during the CPU locked state. Therefore, time handled by the TIME
MANAGEMENT FUNCTIONS may be delayed if the period of the CPU locked state becomes long.

Note 6 For kernel interrupts, refer to “10.1 Interrupt Type”.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 /* */

 loc_cpu (); /*Lock the CPU*/

 /* */ /*CPU locked state*/

 unl_cpu (); /*Unlock the CPU*/

 /* */
}

RI600V4 CHAPTER 9 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 145 of 447
Sep 20, 2013

9.5 Reference CPU Locked State

It may be necessary to refer to current CPU locked state in functions that are called from two or more tasks and handlers.
In this case, sns_loc is useful.

- sns_loc
This service call examines whether the system is in the CPU locked state or not. This service call returns TRUE when
the system is in the CPU locked state, and return FALSE when the system is in the CPU unlocked state.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void CommonFunc (void);
void CommonFunc (void)
{
 BOOL ercd; /*Declares variable*/

 /* */

 ercd = sns_loc (); /*Reference CPU state*/

 if (ercd == TRUE) {
 /* */ /*CPU locked state*/
 } else if (ercd == FALSE) {
 /* */ /*CPU unlocked state*/
 }

 /* */
}

RI600V4 CHAPTER 9 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 146 of 447
Sep 20, 2013

9.6 Disable and Enable Dispatching

In the dispatching disabled state, the task scheduling is prohibited. Therefore, exclusive processing can be achieved for all
tasks.
The following service call moves to the dispatching disabled state. And also when PSW.IPL is changed to other than 0 by
using chg_ims, the system shifts to the dispatching disabled state.

- dis_dsp
This service call transits the system to the dispatching disabled state.

The dispatching disabled state is cancelled by the following service call, ext_tsk, and chg_ims that changes PSW.IPL to 0.

- ena_dsp
This service call transits the system to the dispatching enabled state.

The following shows a processing flow when using the dispatching disabled state.

Figure 9-3 Disable Dispatching

The following describes an example for coding this service call.

Note 1 The dispatching disabled state must be cancelled before the task that issued dis_dsp moves to the
DORMANT state.

Note 2 The dis_dsp does not perform queuing of lock requests. If the system is in the dispatching disabled state,
therefore, no processing is performed but it is not handled as an error.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 /* */

 dis_dsp (); /*Disable dispatching*/

 /* */ /*Dispatching disabled state*/

 ena_dsp (); /*Enable dispatching*/

 /* */
}

Release semaphore resource

Acquire semaphore resource

Disable dispatching

Enable dispatching

Task A
Priority: High

Task B
Priority: Low

Suppressed period

RI600V4 CHAPTER 9 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 147 of 447
Sep 20, 2013

Note 3 The ena_dsp does not perform queuing of unlock requests. If the system is in the dispatching enabled state,
therefore, no processing is performed but it is not handled as an error

Note 4 If a service call (such as wai_sem, wai_flg) that may move the status of the invoking task is issued while the
dispatching disabled state, that service call returns E_CTX regardless of whether the required condition is
immediately satisfied.

9.7 Reference Dispatching State

It may be necessary to refer to current dispatching disabled state in functions that are called from two or more tasks . In
this case, sns_dsp is useful.

- sns_dsp
This service call examines whether the system is in the dispatching disabled state or not. This service call returns
TRUE when the system is in the dispatching disabled state, and return FALSE when the system is in the dispatching
enabled state.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void CommonFunc (void);
void CommonFunc (void)
{
 BOOL ercd; /*Declares variable*/

 /* */

 ercd = sns_dsp (); /*Reference dispatching state*/

 if (ercd == TRUE) {
 /* */ /*Dispatching disabled state*/
 } else if (ercd == FALSE) {
 /* */ /*Dispatching enabled state*/
 }

 /* */
}

RI600V4 CHAPTER 9 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 148 of 447
Sep 20, 2013

9.8 Reference Context Type

It may be necessary to refer to current context type in functions that are called from two or more tasks and handlers. In this
case, sns_ctx is useful.

- sns_ctx
This service call examines the context type of the processing program that issues this service call. This service call
returns TRUE when the processing program is non-task context, and return FALSE when the processing program is
task context.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void CommonFunc (void);
void CommonFunc (void)
{
 BOOL ercd; /*Declares variable*/

 /* */

 ercd = sns_ctx (); /*Reference context type*/

 if (ercd == TRUE) {
 /* */ /*Non-task contexts*/
 } else if (ercd == FALSE) {
 /* */ /*Task contexts*/
 }

 /* */
}

RI600V4 CHAPTER 9 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 149 of 447
Sep 20, 2013

9.9 Reference Dispatch Pending State

The state to fill either the following is called dispatch pending state.

- Dispatching disabled state

- CPU locked state

- PSW.IPL > 0, such as handlers

It may be necessary to refer to current dispatch pending state in functions that are called from two or more tasks and han-
dlers. In this case, sns_dpn is useful.

- sns_dpn
This service call examines whether the system is in the dispatch pending state or not. This service call returns TRUE
when the system is in the dispatch pending state, and return FALSE when the system is not in the dispatch pending
state.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void CommonFunc (void);
void CommonFunc (void)
{
 BOOL ercd; /*Declares variable*/

 /* */

 ercd = sns_dpn (); /*Reference dispatch pending state*/

 if (ercd == TRUE) {
 /* */ /*Dispatch pending state*/
 } else if (ercd == FALSE) {
 /* */ /*Other state*/
 }

 /* */
}

RI600V4 CHAPTER 10 INTERRUPT MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 150 of 447
Sep 20, 2013

CHAPTER 10 INTERRUPT MANAGEMENT FUNCTIONS

This chapter describes the interrupt management functions performed by the RI600V4.

10.1 Interrupt Type

Interrupts are classified into kernel interrupt and non-kernel interrupt.

- Kernel interrupt
An interrupt whose interrupt priority level is lower than or equal to the kernel interrupt mask level is called the kernel
interrupt.
A kernel interrupt handler can issue service calls.
Note, however, that handling of kernel interrupts generated during kernel processing may be delayed until the inter-
rupts become acceptable.

- Non-kernel interrupt
An interrupt whose interrupt priority level is higher than the kernel interrupt mask level is called the non-kernel
interrupt. The non-maskable interrupt is classified into non-kernel interrupt.
A non-kernel interrupt handler must not issue service calls.
Non-kernel interrupts generated during service-call processing are immediately accepted whether or not kernel
processing is in progress.

Note The kernel interrupt mask level id defined by Kernel interrupt mask level (system_IPL) in System Information
(system).

10.2 Fast Interrupt of the RX-MCU

The RX-MCU supports the “fast interrupt” function. Only one interrupt source can be made the fast interrupt. The fast
interrupt is handled as the one that has interrupt priority level 15. To use the fast interrupt function, make sure there is only
one interrupt source that is assigned interrupt priority level 15.
For the fast interrupt function to be used in the RI600V4, it is necessary that the interrupt concerned be handled as an
non-kernel interrupt. In other words, the kernel interrupt mask level must be set to 14 or below.
And “os_int = NO;” and “pragma_switch = F;” are required for interrupt_vector[] definition.
And the FINTV register of the RX-MCU must be initialized to the start address of the handler in the Boot processing
function (PowerON_Reset_PC()).

10.3 CPU Exception

The following CPU exceptions are handled as non-kernel interrupt.

- Unconditional trap (INT, BRK instruction)
Note, INT #1 to #8 are reserved by the RI600V4.

- Undefined instruction exception

- Privileged instruction exception

- Floating-point exception

On the other hand, the access exception is handled as kernel interrupt.

RI600V4 CHAPTER 10 INTERRUPT MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 151 of 447
Sep 20, 2013

10.4 Base Clock Timer Interrupt

The TIME MANAGEMENT FUNCTIONS is realized by using base clock timer interrupts that occur at constant intervals.
When the base clock timer interrupt occurs, The RI600V4's time management interrupt handler is activated and executes
time-related processing (system time update, delayed wake-up/time-out of task, cyclic handler activation, etc.).

10.5 Multiple Interrupts

In the RI600V4, occurrence of an interrupt in an interrupt handler is called “multiple interrupts”.
It can be set whether each interrupt handler for relocatable vector permits multiple interrupts. For details, refer to “19.18
Relocatable Vector Information (interrupt_vector[])”.

RI600V4 CHAPTER 10 INTERRUPT MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 152 of 447
Sep 20, 2013

10.6 Interrupt Handlers

The interrupt handler is a routine dedicated to interrupt servicing that is activated when an interrupt occurs.
The RI600V4 handles the interrupt handler as a non-task (module independent from tasks). Therefore, even if a task with
the highest priority in the system is being executed, the processing is suspended when an interrupt occurs, and the control
is passed to the interrupt handler.

10.6.1 Basic form of interrupt handlers

The following shows the basic form of interrupt handlers.

Note The cfg600 outputs the prototype declaration and #pragma interrupt directive for the handler function to
kernel_id.h.

- Stack
A interrupt handler uses the system stack.

- Service call
The RI600V4 handles the interrupt handler as a “non-task”.
The kernel interrupt handler can issue service calls whose “Useful range” is “Non-task”.
No service call can be issued in non-kernel interrupt handler.

- If a service call (isig_sem, iset_flg, etc.) which causes dispatch processing (task scheduling processing) is issued in
order to quickly complete the processing in the interrupt handler during the interval until the processing in the interrupt
handler ends, the RI600V4 executes only processing such as queue manipulation, counter manipulation, etc., and the
actual dispatch processing is delayed until a return instruction is issued by the cyclic handler, upon which the actual
dispatch processing is performed in batch.

- PSW register when processing is started

Table 10-1 PSW Register When Interrupt Handler is Started

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void inthdr (void)
{
 /* */

 return; /*Terminate interrupt handler*/
}

Bit Value Note

I
- “pragma_switch = E”: 1

- Other cases: 0

IPL
- Interrupt: Interrupt priority level

- CPU exception: Same before exception

Do not lower IPL more than the start of pro-
cessing.

PM 0 Supervisor mode

U 0 System stack

C, Z, S, O Undefined

Others 0

RI600V4 CHAPTER 10 INTERRUPT MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 153 of 447
Sep 20, 2013

10.6.2 Register interrupt handler

The RI600V4 supports the static registration of interrupt handlers only. They cannot be registered dynamically by issuing a
service call from the processing program.
Static interrupt handler registration means defining of interrupt handlers using static API “interrupt_vector[]” (relocatable
vector) and “interrupt_fvector[]” (fixed vector/exception vector) in the system configuration file.
For details about the static API “interrupt_vector[]”, refer to “19.18 Relocatable Vector Information (interrupt_vector[])”,
and for details about the static API “interrupt_fvector[]”, refer to “19.19 Fixed Vector/Exception Vector Information
(interrupt_fvector[])”.

10.7 Maskable Interrupt Acknowledgement Status in Processing
Programs

The maskable interrupt acknowledgement status of RX-MCU depends on the values of PSW.I and PSW.IPL. See the
hardware manual for details.
The initial status is determined separately for each processing program. See Table 10-2 for details.

Table 10-2 Maskable Interrupt Acknowledgement Status upon Processing Program Startup

Processing Program PSW.I PSW.IPL

Task 1 0

Cyclic handler, Alarm handler 1 Base clock interrupt priority level (IPL)

Interrupt Handler
- “pragma_switch = E”: 1

- Other cases: 0

- Interrupt: Interrupt priority level

- CPU exception: Same before exception

RI600V4 CHAPTER 10 INTERRUPT MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 154 of 447
Sep 20, 2013

10.8 Prohibit Maskable Interrupts

There is the following as a method of prohibiting maskable interrupts.

- Move to the CPU locked state by using loc_cpu, iloc_cpu

- Change PSW.IPL by using chg_ims, ichg_ims

- Change PSW.I and PSW.IPL directly (only for handlers)

10.8.1 Move to the CPU locked state by using loc_cpu, iloc_cpu

In the CPU locked state, PSW.IPL is changed to the Kernel interrupt mask level (system_IPL). Therefore, only kernel inter-
rupts are prohibited in the CPU locked state.
Note, in the CPU locked state, service call issuance is restricted. For details, refer to “9.4 Lock and Unlock the CPU”.

10.8.2 Change PSW.IPL by using chg_ims, ichg_ims

The PSW.IPL can be changed to arbitrary value by using chg_ims, ichg_ims.
When a task changes PSW.IPL to other than 0 by using chg_ims, the system is moved to the dispatching disabled state.
When a task returns PSW.IPL to 0, the system returns to the dispatching enabled state.
Do not issue ena_dsp while a task changes PSW.IPL to other than 0 by using chg_ims. If issuing ena_dsp, the system
moves to the dispatching enabled state. If task dispatching occurs, PSW is changed for the dispatched task. Therefore
PSW.IPL may be lowered without intending it.
The handlers must not lower PSW.IPL more than it starts.

10.8.3 Change PSW.I and PSW.IPL directly (only for handlers)

The handlers can change PSW.I and PSW.IPL directly. This method is faster than ichg_ims.
The handlers must not lower PSW.IPL more than it starts.
Note, the compiler provides following intrinsic functions for operating PSW. See CubeSuite+ RX Build User's Manual for
details about intrinsic functions.

- set_ipl(): Change PSW.IPL

- get_ipl(): Refer to PSW.IPL

- set_psw(): Change PSW

- get_psw(): Refer to PSW

RI600V4 CHAPTER 11 SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 155 of 447
Sep 20, 2013

CHAPTER 11 SYSTEM CONFIGURATION MANAGE-
MENT FUNCTIONS

This chapter describes the system configuration management functions performed by the RI600V4.

11.1 Outline

The RI600V4's system configuration management function provides the function to reference the version information.

11.2 Reference Version Information

The version information can be referenced by issuing the following service call from the processing program.

- ref_ver, iref_ver
These service calls store the version information into the area specified by parameter pk_rver.
The following describes an example for coding these service calls.

Note For details about the version information packet T_RVER, refer to “[Version information packet: T_RVER]”.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 T_RVER pk_rver; /*Declares data structure*/
 UH maker; /*Declares variable*/
 UH prid; /*Declares variable*/

 /* */

 ref_ver (&pk_rver); /*Reference version information/

 maker = pk_rver.maker; /*Acquirer system time (lower 32 bits)*/
 prid = pk_rver.prid; /*Acquirer system time (higher 16 bits)*/

 /* */
}

RI600V4 CHAPTER 12 OBJECT RESET FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 156 of 447
Sep 20, 2013

CHAPTER 12 OBJECT RESET FUNCTIONS

This chapter describes the object reset functions performed by the RI600V4.

12.1 Outline

The object reset function returns Data Queues, Mailboxes, Message Buffers, Fixed-Sized Memory Pools and Variable-
Sized Memory Pools to the initial state. The object reset function falls outside ITRON4.0 specification.

12.2 Reset Data Queue

A data queue is reset by issuing the following service call from the processing program.

- vrst_dtq
This service call reset the data queue specified by parameter dtqid.
The data having been accumulated by the data queue area are annulled. The tasks to wait to send data to the target
data queue are released from the WAITING state, and EV_RST is returned as a return value for the tasks.
The following describes an example for coding this service call.

Note In this service call, the tasks to wait to receive data do not released from the WAITING state.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID dtqid = 1; /*Declares and initializes variable*/

 /* */

 ercd = vrst_dtq (dtqid); /*Reset data queue*/

 /* */
}

RI600V4 CHAPTER 12 OBJECT RESET FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 157 of 447
Sep 20, 2013

12.3 Reset Mailbox

A mailbox is reset by issuing the following service call from the processing program.

- vrst_mbx
This service call reset the mailbox specified by parameter mbxid.
The messages having been accumulated by the mailbox come off from the management of the RI600V4.
The following describes an example for coding this service call.

Note In this service call, the tasks to wait to receive message do not released from the WAITING state.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mbxid = 1; /*Declares and initializes variable*/

 /* */

 ercd = vrst_mbx (mbxid) ; /*Reset mailbox*/

 /* */
}

RI600V4 CHAPTER 12 OBJECT RESET FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 158 of 447
Sep 20, 2013

12.4 Reset Message Buffer

A message buffer is reset by issuing the following service call from the processing program.

- vrst_mbf
This service call reset the message buffer specified by parameter mbfid.
The messages having been accumulated by the message buffer area are annulled. The tasks to wait to send mes-
sage to the target message buffer are released from the WAITING state, and EV_RST is returned as a return value
for the tasks.
The following describes an example for coding this service call.

Note In this service call, the tasks to wait to receive message do not released from the WAITING state.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mbfid = 1; /*Declares and initializes variable*/

 /* */

 ercd = vrst_mbf (mbfid); /*Reset message buffer*/

 /* */
}

RI600V4 CHAPTER 12 OBJECT RESET FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 159 of 447
Sep 20, 2013

12.5 Reset Fixed-sized Memory Pool

A fixed-sized memory pool is reset by issuing the following service call from the processing program.

- vrst_mpf
This service call reset the fixed-sized memory pool specified by parameter mpfid.
The tasks to wait to get memory block from the target fixed-sized memory pool are released from the WAITING state,
and EV_RST is returned as a return value for the tasks.
All fixed-sized memory blocks that had already been acquired are returned to the target fixed-sized memory pool.
Therefore, do not access those fixed-sized memory blocks after issuing this service call.
The following describes an example for coding this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mpfid = 1; /*Declares and initializes variable*/

 /* */

 ercd = vrst_mpf (mpfid); /*Reset fixed-sized memory pool*/

 /* */
}

RI600V4 CHAPTER 12 OBJECT RESET FUNCTIONS

R20UT0711EJ0104 Rev.1.04 Page 160 of 447
Sep 20, 2013

12.6 Reset Variable-sized Memory Pool

A variable-sized memory pool is reset by issuing the following service call from the processing program.

- vrst_mpl
This service call reset the variable-sized memory pool specified by parameter mpfid. The tasks to wait to get memory
block from the target variable-sized memory pool are released from the WAITING state, and EV_RST is returned as a
return value for the tasks.
All variable-sized memory blocks that had already been acquired are returned to the target variable-sized memory
pool. Therefore, do not access those variable-sized memory blocks after issuing this service call.
The following describes an example for coding this service call.

Note All variable-sized memory blocks that had already been acquired are returned to the target variable-sized
memory pool. Therefore, do not access those variable-sized memory blocks after issuing this service call.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void task (VP_INT exinf)
{
 ER ercd; /*Declares variable*/
 ID mplid = 1; /*Declares and initializes variable*/

 /* */

 ercd = vrst_mpl (mplid); /*Reset variable-sized memory pool*/

 if (ercd == E_OK) {

 /* */
}

RI600V4 CHAPTER 13 SYSTEM DOWN

R20UT0711EJ0104 Rev.1.04 Page 161 of 447
Sep 20, 2013

CHAPTER 13 SYSTEM DOWN

This chapter describes the system down functions performed by the RI600V4.

13.1 Outline

When the event that cannot be recovered while the RI600V4 is operating occurs, the system down is caused and the sys-
tem down routine is invoked.

13.2 User-Own Coding Module

The system down routine must be implemented as user-own coding module.

Note The System down routine (_RI_sys_dwn__) which is provided by the RI600V4 as a sample file is implemented
in the boot processing file “resetprg.c”.

13.2.1 System down routine (_RI_sys_dwn__)

The following shows the basic form of the system down routine. The system down routine must not return.

Note The function name of the system down routine is “_RI_sys_dwn__”.

- Stack
The system down routine uses the system stack.

- Service call
The system down routine must not issue service calls.

#include "kernel.h" /*Standard header file definition*/
#include "kernel_id.h" /*Header file generated by cfg600*/

void _RI_sys_dwn__ (W type, VW inf1, VW inf2, VW inf3); /*Prototype declaration*/

void _RI_sys_dwn__ (W type, VW inf1, VW inf2, VW inf3)
{
 /* */

 while(1);
}

RI600V4 CHAPTER 13 SYSTEM DOWN

R20UT0711EJ0104 Rev.1.04 Page 162 of 447
Sep 20, 2013

- PSW register when processing is started

Table 13-1 PSW Register When System Down Routine is Started

13.2.2 Parameters of system down routine

- type == -1 (Error when a kernel interrupt handler ends)

Table 13-2 Parameters of System Down Routine (type == -1)

- type == -2 (Error in ext_tsk)

Table 13-3 Parameters of System Down Routine (type == -2)

- type == -3 (Unlinked service call issued)

Table 13-4 Parameters of System Down Routine (type == -3)

Note Refer to “2.6.1 Service call information files and "-ri600_preinit_mrc" compiler option”.

Bit Value Note

I 0

IPL
- type < 0 : Undefined

- type >= 0 : Same before system down
Do not lower IPL more than the start of processing.

PM 0 Supervisor mode

U 0 System stack

C, Z, S, O Undefined

Others 0

inf1 inf2 inf3 Description

E_CTX (-25)

2 Undefined
PSW.PM == 1 (user mode) when a kernel interrupt
handler ends.

3 Undefined
PSW.IPL > kernel interrupt mask level when a kernel
interrupt handler ends.

5 Undefined
The system is in the CPU locked state when a kernel
interrupt handler ends.

inf1 inf2 inf3 Description

E_CTX (-25)

1 Undefined The ext_tsk is called in the non-task context.

4 Undefined
PSW.IPL > kernel interrupt mask level when ext_tsk is
called.

inf1 inf2 inf3 Description

E_NOSPT (-9) Undefined Undefined Unlinked service call is issued.

RI600V4 CHAPTER 13 SYSTEM DOWN

R20UT0711EJ0104 Rev.1.04 Page 163 of 447
Sep 20, 2013

- type == -16 (Undefined relocatable vector interrupt)

Table 13-5 Parameters of System Down Routine (type == -16)

- type == -17 (Undefined fixed vector/exception vector interrupt)

Table 13-6 Parameters of System Down Routine (type == -17)

- type > 0 (Issuing vsys_dwn, ivsys_dwn from application))
0 and a negative type value is reserved by the RI600V4. When calling vsys_dwn, ivsys_dwn from application, use
positive type value.

Table 13-7 Parameters of System Down Routine (type > 0)

inf1 inf2 inf3

- “-U” option is not specified for cfg600
Undefined

- “-U” option is specified for cfg600
Vector number

PC, which is pushed to
the stack by CPU’s
interrupt operation

PSW, which is pushed
to the stack by CPU’s
interrupt operation

inf1 inf2 inf3

- “-U” option is not specified for cfg600
Undefined

- “-U” option is specified for cfg600
Vector number

PC, which is pushed to
the stack by CPU’s
interrupt operation

PSW, which is pushed
to the stack by CPU’s
interrupt operation

inf1 inf2 inf3

Value specified for vsys_dwn, ivsys_dwn

RI600V4 CHAPTER 14 SCHEDULING FUNCTION

R20UT0711EJ0104 Rev.1.04 Page 164 of 447
Sep 20, 2013

CHAPTER 14 SCHEDULING FUNCTION

This chapter describes the scheduler of the RI600V4.

14.1 Outline

The scheduling functions provided by the RI600V4 consist of functions manage/decide the order in which tasks are
executed by monitoring the transition states of dynamically changing tasks, so that the CPU use right is given to the
optimum task.

14.2 Processing Unit and Precedence

An application program is executed in the following processing units.

- Task

- Interrupt handler

- Cyclic handler

- Alarm handler

The various processing units are processed in the following order of precedence.

1) Interrupt handlers, cyclic handlers, alarm handlers

2) Scheduler

3) Tasks

The “scheduler” is the RI600V4’s processing that schedules running task and dispatches to the task.
Since interrupt handler, cyclic handlers and alarm handlers have higher precedence than the scheduler, no tasks are
executed while these handlers are executing. (Refer to “14.7 Task Scheduling in Non-Tasks”).
The precedence of an interrupt handler becomes higher when the interrupt level is higher.
The precedence of a cyclic handler and alarm handler is the same as the interrupt handler which interrupt level is same as
the base clock timer interrupt.
The order of precedence for tasks depends on the current priority of the tasks.

14.3 Task Drive Method

The RI600V4 employs the Event-driven system in which the scheduler is activated when an event (trigger) occurs.

- Event-driven system

Under the event-driven system of the RI600V4, the scheduler is activated upon occurrence of the events listed below
and dispatch processing (task scheduling processing) is executed.

- Issuance of service call that may cause task state transition

- Issuance of instruction for returning from non-task (cyclic handler, interrupt handler, etc.)

- Occurrence of base clock interrupt used when achieving TIME MANAGEMENT FUNCTIONS

RI600V4 CHAPTER 14 SCHEDULING FUNCTION

R20UT0711EJ0104 Rev.1.04 Page 165 of 447
Sep 20, 2013

14.4 Task Scheduling Method

As task scheduling methods, the RI600V4 employs the Priority level method, which uses the priority level defined for each
task, and the FCFS method, which uses the time elapsed from the point when a task becomes target to RI600V4
scheduling.

- Priority level method

A task with the highest current priority is selected from among all the tasks that have entered an executable state
(RUNNING state or READY state), and given the CPU use right.

- FCFS method

When two or more “task with the highest priority level” exist, the scheduling target task can not be decided only by the
Priority level method. In this case, the RI600V4 decides the scheduling target task by first come first served (FCFS)
method. Concretely, the task that enters to executable state (READY state) earliest among them, and given the CPU
use right.

14.4.1 Ready queue

The RI600V4 uses a “ready queue” to implement task scheduling.
The ready queue is a hash table that uses priority as the key, and tasks that have entered an executable state (READY
state or RUNNING state) are queued in FIFO order. Therefore, the scheduler realizes the RI600V4's scheduling method
(priority level or FCFS) by executing task detection processing from the highest priority level of the ready queue upon
activation, and upon detection of queued tasks, giving the CPU use right to the first task of the proper priority level.
The following shows the case where multiple tasks are queued to a ready queue.

Figure 14-1 Implementation of Scheduling Method (Priority Level Method or FCFS Method)

- Create ready queue
In the RI600V4, the method of creating a ready queue is limited to “static creation”.
Ready queues therefore cannot be created dynamically using a method such as issuing a service call from a
processing program.
Static ready queue creation means defining of Maximum task priority (priority) in System Information (system) in the
system configuration file.

Priority: High

Task A
RUNNING state

Task B
READY state

Task C
READY state

Ready queue

Priority: Low

tskpri

tskpri + 1

tskpri - 1

tskpri + n

tskpri + n + 1

tskpri + n - 1

1

maxtpri

RI600V4 CHAPTER 14 SCHEDULING FUNCTION

R20UT0711EJ0104 Rev.1.04 Page 166 of 447
Sep 20, 2013

14.5 Task Scheduling Lock Function

The RI600V4 provides the scheduling lock function for manipulating the scheduler status explicitly from the processing
program and disabling/enabling dispatch processing.
The following shows a processing flow when using the scheduling lock function.

Figure 14-2 Scheduling Lock Function

For details, refer to “9.4 Lock and Unlock the CPU” and “9.6 Disable and Enable Dispatching”.

Task A
Priority: High

Task B
Priority: Low

return

Interrupt

Interrupt handler

Delayed period

Lock the CPU

Unlock the CPU

Delayed period

Release semaphore resource

Disable dispatching

Enable dispatching

Acquire semaphore resource

RI600V4 CHAPTER 14 SCHEDULING FUNCTION

R20UT0711EJ0104 Rev.1.04 Page 167 of 447
Sep 20, 2013

14.6 Idling

When there is no RUNNING or READY task, the RI600V4 enters an endless loop and waits for interrupts.

14.7 Task Scheduling in Non-Tasks

If processing of non-tasks starts, any tasks will not be performed until non-task processing is completed, since the prece-
dence of non-task (interrupt handler, cyclic handler and alarm handler) is higher than task as shown in “14.2 Processing
Unit and Precedence”.
The following shows a example when a service call accompanying dispatch processing is issued in non-tasks. In this
example, when the interrupt handler issues iwup_tsk, the Task A whose priority is higher than the task B is released from
the WAITING state, but processing of the interrupt handler is continued at this time, without performing the task A yet.
When processing of the interrupt handler is completed, the scheduler is started, and as a result, the task A is performed.

Figure 14-3 Scheduling in Non-Tasks

Task A
Priority: High

Task B
Priority: Low

Delayed period

return

Interrupt

Notify a phenomenon
(iwup_tsk)

Wait for a phenomenon
(slp_tsk)

Non-task
(Interrupt handler)

(Released from
WAITING state)

RI600V4 CHAPTER 15 REALTIME OS TASK ANALYZER

R20UT0711EJ0104 Rev.1.04 Page 168 of 447
Sep 20, 2013

CHAPTER 15 REALTIME OS TASK ANALYZER

15.1 Outline

The following information is required when analyzing the system incorporating Realtime OS.

- The execution situation of processing programs

- The use situation of Realtime OS resources

- The CPU usage rate for every processing program

The tool for realizing the above is “Realtime OS Task Analyzer”. The Realtime OS Task Analyzer analyzes the information
outputted by Realtime OS and displays it graphically.

This chapter describes the procedure for using Realtime OS Task Analyzer. See “RI600V4 Real-Time Operating System
User's Manual: Analysis” for the functions and operation method of the Realtime OS Task Analyzer.

15.2 Trace Mode

There is the type of usage shown below in the Realtime OS Task Analyzer. The trace mode is selected in [Task Analyzer
] tab.

- Taking in trace chart by hardware trace mode
In this mode, the trace information is collected in the trace memory which emulator or simulator has.

- Taking in trace chart by software trace mode
In this mode, the trace information is collected in the trace buffer secured on the user memory area. The buffer size is
specified in [Task Analyzer] tab. Please refer to “15.4 Trace Buffer Size (Taking in Trace Chart by Software Trace
Mode)” for the estimate of the size of the trace buffer.
To use this mode, implementation of user-own coding module and setup of the system configuration file are required.
For details, refer to “15.3.1 Taking in trace chart by software trace mode”.

- Taking in long-statistics by software trace mode
In this mode, the trace information is collected in the RI600V4’s variable secured on the user memory area. The size
of this variable is roughly 2 K-bytes. For details, refer to “19.20.1 BRI_RAM section”.
To use this mode, implementation of user-own coding module and setup of the system configuration file are required.
For details, refer to “15.3.2 Taking in long-statistics by software trace mode”.

- Not tracing
The Realtime OS Task Analyzer can not be used.

The measurable maximum time and the time precision differ for every trace mode. The standard is shown to Figure 15-1.

RI600V4 CHAPTER 15 REALTIME OS TASK ANALYZER

R20UT0711EJ0104 Rev.1.04 Page 169 of 447
Sep 20, 2013

Figure 15-1 Measurable maximum time and the time precision

Note 1 In the “Taking in trace chart by hardware trace mode”, the measurable maximum time depends on the size of
the trace memory which the emulator or simulator has. And the time precision depends on the emulator or sim-
ulator specification.

Note 2 In the “Taking in trace chart by softwarre trace mode”, the measurable maximum time depends on the size of
the trace buffer. And refer to “15.3.1 Taking in trace chart by software trace mode” for the time precision.

Note 3 In the “Taking in long-statistics by software trace mode”, refer to “15.3.2 Taking in long-statistics by software
trace mode” for the measurable maximum time and the time precision.

When using the Realtime OS Task Analyzer, compared with the case where it is not used,it has the influence shown in
Table 15-1 on the target system. Note, the processing time in Table 15-1 is approximate value when the CPU clock is
100MHz.

Table 15-1 Influence on Target System

Reference to the function of each mode , Figure 15-1 and Table 15-1, please decide the trace mode to be used.

The trace mode is selected in [Task Analyzer] tab. Then by performing a build, the load module which contains the
Realtime OS module that corresponds the trace mode to be selected is generated.

Taking in trace chart by
hardware trace mode

Taking in trace chart by
software trace mode

Taking in long-statistics by
software trace mode

Service call processing
time

Worse for about 0.5 - 1.5

s (It depends on the num-
ber of tasks state change.)

Worse for about 1.5 - 5 s
(It depends on the number
of tasks state change.)

No degradation

Task-dispatching pro-
cessing time

Worse for about 0.2 s Worse for about 0.7 s Worse for about 0.6 s

Interrupt processing time Worse for about 0.5 s Worse for about 1 - 2 s Worse for about 1 - 2 s

Consumption of RAM No degradation Needs a buffer Roughly 2 K-bytes

Implementation of user-
own coding module and
setup of the system con-
figuration file

Not required Required Required

T
i
m
e

p
r
e
c
i
s
i
o
n

Measurable maximum time

0.1 ns

1μs

100 ns

10 ns

1 ns

1 hr 1 day

100μs

1 min0.1 ms 1 ms

10μs

10 ms 100 ms 1 s

Taking in trace chart by
software trace mode

Taking in trace chart by
hardware trace mode

Taking in long-statistics
by software trace mode




  

  

RI600V4 CHAPTER 15 REALTIME OS TASK ANALYZER

R20UT0711EJ0104 Rev.1.04 Page 170 of 447
Sep 20, 2013

15.3 User-Own Coding Module for Software Trace Mode

15.3.1 Taking in trace chart by software trace mode

In this mode, the RI600V4 gets time-stamp from user-own coding module. Usually, the hardware timer is used in order to
generate time-stamp. The bit width of the counter of the hardware timer has necessity of 16 bits or more. Note, CMT (Com-
pare Match Timer), which is built in RX family MCU as standard, satisfies this requirement.
This section describes the specification of function and variables to be implemented as user-own coding module. Since
each function does not follow ABI (Application Binary Interface) of the RX family C/C++ compiler, it needs to be implement-
ed by using assembly language. In this section, function and variable name are described in assembly language level.

Note The sample file provided by the RI600V4 is “trcSW_cmt.src”. This file uses CMT channel-1.

1) __RIUSR_trcSW_base_time (Time precision)

Define the unit of the time returned by __RIUSR_trcSW_read_cnt (Function to get time-stamp) as a constant for the
32 bit- unsigned integer. Usually, please set up the time of 1 count of hardware timer counter.
A typical setup in the case of using CMT is shown below.

Note Precision of time = __RIUSR_trcSW_base_time

PCLK
Dividing

rate
Time precision (see Note)

12.5 MHz

8 0.64 s

32 2.56 s

128 10.24 s

512 40.96 s

25 MHz

8 0.32 s

32 1.28 s

128 5.12 s

512 20.48 s

















RI600V4 CHAPTER 15 REALTIME OS TASK ANALYZER

R20UT0711EJ0104 Rev.1.04 Page 171 of 447
Sep 20, 2013

2) __RIUSR_trcSW_init_tmr (Initialization function)

3) __RIUSR_trcSW_read_cnt (Function to get time-stamp)

Description

This function initializes the hardware timer so that specification of
__RIUSR_trcSW_read_cnt (Function to get time-stamp) may be realized.
In the sample, this function initializes the CMT so that interruption may be gener-
ated, when the timer clock is counted 65536 times.
This function is called-back from vsta_knl service call.

Parameter None

Registers which do
not need to guarantee

R1, R2, R3, R4, R5, R6, R7, R14, R15

PSW when started
(Do not change)

PM = 0 (Supervisor mode)
I = 0 (Disable all interrupts)
U = 0 (System stack)

Available stack size Up to 8 bytes

Description

This function returns the elapsed time from the time of __RIUSR_trcSW_init_tmr
(Initialization function) was called. The value returned must be in the range of from
0 and 0x7FFFFFFF, in units of the __RIUSR_trcSW_base_time (Time precision).
In the sample, the lower 16 bits of the return value is CMT counter register, and the
upper 16 bits is the number of the timer interruption.
The return value must not be less than the previous return value.

Parameter R5 (Out) : Elapsed time

Registers which do
not need to guarantee

R3, R4

PSW when started
(Do not change)

PM = 0 (Supervisor mode)
I = 0 (Disable all interrupts)
U = 0 (System stack)

Available stack size Up to 8 bytes

RI600V4 CHAPTER 15 REALTIME OS TASK ANALYZER

R20UT0711EJ0104 Rev.1.04 Page 172 of 447
Sep 20, 2013

4) Interrupt handler (Arbitrary function name)

Description

In the sample, this interrupt occurs when the timer clock is counted 65536 times.
This handler must not call service calls.
This handler exits by RTE instruction.
And this interrupt handler should be defined as follows in the system configuration
file. Here, an example in case the vector number is 29 and function name is
__RIUSR_trcSW_interrupt (assembly language level) is shown.

 interrupt_vector[29] {
 entry_address = _RIUSR_trcSW_interrupt();
 os_int = NO;
 };

Parameter None

Registers which do
not need to guarantee

None

PSW when started
(Do not change)

PM = 0 (Supervisor mode)
I = 0 (Disable all interrupts)
U = 0 (System stack)

Available stack size Please take into consideration in “D.4 System Stack Size Estimation”.

RI600V4 CHAPTER 15 REALTIME OS TASK ANALYZER

R20UT0711EJ0104 Rev.1.04 Page 173 of 447
Sep 20, 2013

15.3.2 Taking in long-statistics by software trace mode

In this mode, the RI600V4 gets time-stamp from user-own coding module. Usually, the hardware timer is used in order to
generate time-stamp. The bit width of the counter of the hardware timer has necessity of 16 bits or more, and must be able
to generate an interrupt when the timer clock is counted 65536 times. Note, CMT (Compare Match Timer) standardly built
in RX family MCU is satisfying this requirement.
This section describes the specification of function and variables to be implemented as user-own coding module. Since
each function does not follow ABI (Application Binary Interface) of the RX family C/C++ compiler, it needs to be implement-
ed by using assembly language. In this section, function and variable name are described in assembly language level.

Note The sample file provided by the RI600V4 is “trcLONG_cmt.src”. This file uses CMT channel-1.

1) __RIUSR_trcLONG_base_time (TIme precision)

Define the unit of the time returned by __RIUSR_trcLONG_read_cnt (Function to get time-stamp) as a constant for
the 32 bit- unsigned integer.
Usually, please set up the time of 1 count of hardware timer counter.
A typical setup in the case of using CMT is shown below.

Note 1 Time precision of interrupt handler execution time = __RIUSR_trcLONG_base_time

Note 2 Measurable maximum time of interrupt handler execution time = __RIUSR_trcLONG_base_time * 65536

Note 3 Time precision of task execution time = __RIUSR_trcLONG_base_time * 8

Note 4 Measurable maximum time of task execution time = __RIUSR_trcLONG_base_time * 8 * 0xFFFFFFFF

2) __RIUSR_trcLONG_timer_lvl (Interrupt priority level)

Define the interrupt priority level of the using hardware timer as a constant for the 8 bit- unsigned integer.
The execution time of interrupt handlers with interrupt priority level more than or equal to this interrupt priority level
are not measured. The execution time of that interrupt handlers are appropriated for the execution time of the pro-
cessing program (tasks, another interrupt handlers, or kernel idling) which was executing when that interrupt oc-
curred.
The interrupt priority level of this timer recommends using the highest.

PCLK
Dividing

rate

Time precision of
interrupt handler
execution time
(see Note 1)

Measurable
maximum time of
interrupt handler

execution time (see
Note 2)

Time precision of
task execution

time (see Note 3)

Measurable
maximum time of task
execution time (see

Note 4)

12.5 MHz

8 0.64 s About 41 ms 5.12 s About 6 hr. 6 min.

32 2.56 s About 167 ms 20.48 s About 24 hr. 26 min.

128 10.24 s About 671 ms 81.92 s About 97 hr. 44 min.

256 40.96 s About 2684 ms 327.68 s About 390 hr. 56 min.

25 MHz

8 0.32 s About 20 ms 2.56 s About 3 hr. 3 min.

32 1.28 s About 83 ms 10.24 s About 12 hr. 13 min.

128 5.12 s About 335 ms 40.96 s About 48 hr. 52 min.

256 20.48 s About 1342 ms 163.84 s About 195 hr. 28 min.

 

 

 

 

 

 

 

 

RI600V4 CHAPTER 15 REALTIME OS TASK ANALYZER

R20UT0711EJ0104 Rev.1.04 Page 174 of 447
Sep 20, 2013

3) __RIUSR_trcLONG_init_tmr (Initialization function)

4) __RIUSR_trcLONG_read_cnt (Function to get time-stamp)

5) Interrupt handler (Arbitrary function name)

Description

This function initializes the hardware timer so that interruption which interrupt prior-
ity level is __RIUSR_trcLONG_timer_lvl (Interrupt priority level) may be generated,
when the timer clock is counted 65536 times.
This function is called-back from vsta_knl service call.

Parameter None

Registers which do
not need to guarantee

R1, R2, R3, R4, R5, R6, R7, R14, R15

PSW when started
(Do not change)

PM = 0 (Supervisor mode)
I = 0 (Disable all interrupts)
U = 0 (System stack)

Available stack size Up to 8 bytes

Description

This function returns the elapsed time from the previous interruption. The value
returned must be in the range of from 0 and 65535 in units of the
__RIUSR_trcLONG_base_time (TIme precision).
In the sample, this function returns the value of the CMT counter register.

Parameter R1 (Out) : Elapsed time

Registers which do
not need to guarantee

R4

PSW when started
(Do not change)

PM = 0 (Supervisor mode)
I = 0 (Disable all interrupts)
U = 0 (System stack)

Available stack size Up to 8 bytes

Description

This handler should call RI600V4's __RI_trcLONG_update_time function.
This handler must not call service calls.
This handler exits by RTE instruction.
And this interrupt handler should be defined as follows in the system configuration
file. Here, an example in case the vector number is 29 and function name is
__RIUSR_trcLONG_interrupt (assembly language level) is shown.

 interrupt_vector[29] {
 entry_address = _RIUSR_trcLONG_interrupt();
 os_int = NO;
 };

Parameter None

Registers which do
not need to guarantee

None

PSW when started
(Do not change)

PM = 0 (Supervisor mode)
I = 0 (Disable all interrupts)
U = 0 (System stack)

Available stack size Please take into consideration in “D.4 System Stack Size Estimation”.

RI600V4 CHAPTER 15 REALTIME OS TASK ANALYZER

R20UT0711EJ0104 Rev.1.04 Page 175 of 447
Sep 20, 2013

6) RI600V4's __RI_trcLONG_update_time function

This function is not user-own coding module, is implemented in the RI600V4. The following is a specification of this
function.

Description
This function updates the current time information managed by RI600V4.
This function should be called from the above interrupt handler.

Parameter None

Registers which are
not guaranteed

R1, R2

PSW when calling
PM = 0 (Supervisor mode)
I = 0 (Disable all interrupts)
U = 0 (System stack)

Stack size
0 bytes (It does not include 4 bytes which is used by BSR instruction for calling this
function.)

RI600V4 CHAPTER 15 REALTIME OS TASK ANALYZER

R20UT0711EJ0104 Rev.1.04 Page 176 of 447
Sep 20, 2013

15.4 Trace Buffer Size (Taking in Trace Chart by Software Trace Mode)

Table 15-2 shows the timing by which the trace buffer is consumed.

Table 15-2 Timing by which the trace buffer is consumed

Table 15-3 shows the standard of measurable time.

Table 15-3 The standard of time after used up the buffers

15.5 Error of Total Execution Time

Total execution time of tasks or interrupt handlers is calculated by adding the execution time of each time. Therefore, the
error of total execution time will also become large if the execution count increases.

Timing Size to consume

Immediately after service call 12 bytes

Just before returning to application from RI600V4 8 bytes

When a task dispatches 8 bytes

When the RI600V4 enters Idling 8 bytes

When an interrupt handler starts 8 bytes

When an interrupt handler ends 8 bytes

When a cyclic handler starts 8 bytes

When a cyclic handler ends 8 bytes

When an alarm handler starts 8 bytes

When an alarm handler ends 8 bytes

When a task status changes 8 bytes

Event generating
frequency

Buffer Size

1 KB 4 KB 16 KB 64 KB

5 s / Event About 0.6 ms About 2.4 ms About 9.6 ms About 38 ms

10 s / Event About 1.2 ms About 4.8 ms About 19 ms About 77ms

50 s / Event About 6 ms About 24 ms About 96 ms About 385ms

100 s / Event About 12 ms About 48 ms About 192 ms About 771 ms

500 s / Event About 60 ms About 240 ms About 963 ms About 3855 ms











RI600V4 CHAPTER 16 SYSTEM INITIALIZATION

R20UT0711EJ0104 Rev.1.04 Page 177 of 447
Sep 20, 2013

CHAPTER 16 SYSTEM INITIALIZATION

This chapter describes the system initialization routine performed by the RI600V4.

16.1 Outline

The following shows a processing flow from when a reset interrupt occurs until the control is passed to the task.

Figure 16-1 Processing Flow (System Initialization)

Reset interrupt

Boot processing function
(PowerON_Reset_PC())

Kernel Initialization Module
(vsta_knl, ivsta_knl)

SCHEDULING FUNCTION
Tasks

Reset vector

Scheduler

Section Initialization
Function (_INITSCT())

Initialize base clock timer
(_RI_init_cmt())

RI600V4 CHAPTER 16 SYSTEM INITIALIZATION

R20UT0711EJ0104 Rev.1.04 Page 178 of 447
Sep 20, 2013

16.2 Boot Processing File (User-Own Coding Module)

The following should be described in the boot processing file.

1) Boot processing function (PowerON_Reset_PC())

2) System down routine (_RI_sys_dwn__)
For details, refer to “13.2.1 System down routine (_RI_sys_dwn__)”.

3) Include kernel_ram.h and kernel_rom.h

Note The boot processing file which is provided by the RI600V4 as a sample file is “resetprg.c”. This file includes
System down routine (_RI_sys_dwn__).

16.2.1 Boot processing function (PowerON_Reset_PC())

The boot processing function is the program registered in the reset vector, and is executed in supervisor mode. Generally,
following processing are required in the boot processing function.

- Initialize the processor and hardwares
If using Fast Interrupt of the RX-MCU, initialize the FINTV register to the start address of the fast interrupt handler.

- Initialize C/C++ runtime environment (Initialize sections, etc.)

- Initialize base clock timer
Call “void _RI_init_cmt(void)” which is defined in the “ri_cmt.h” generated by the cfg600.
Refer to “8.9 Initialize Base Clock Timer”.

- Start the RI600V4 (call vsta_knl or ivsta_knl)

- Basic form of boot processing function
The boot processing function should be implemented as “void PowerON_Reset_PC(void)”. When the name of the
boot processing function is other, it is necessary to define the function name to “interrupt_fvector[31]” in the system
configuration file.

Note For the details of the details of the static API “interrupt_fvector[]”, refer to “19.19 Fixed Vector/Exception Vector
Information (interrupt_fvector[])”.

- The points of concern about the boot processing function

- Stack
Describe #pragma entry directive to be shown below. Thereby, the object code which sets the stack pointer (ISP) as
the system stack at the head of the boot processing function is generated.

- PSW register
Keep the status that all interrupts are prohibited and in the supervisor mode until calling the Kernel Initialization
Module (vsta_knl, ivsta_knl). This status is satisfied just behind CPU reset (PSW.I=0, PSW.PM=0). Generally, the
boot processing function should not change the PSW.

- EXTB register (RXv2 architecture)
Initialize EXTB register to the start address of FIX_INTERRUPT_VECTOR section if needed. Please refer to
“FIX_INTERRUPT_VECTOR section” in section 2.6.4.

- Service call
Since the boot processing function is executed before executing of Kernel Initialization Module (vsta_knl, ivsta_knl),
service calls except vsta_knl and ivsta_knl must not be called from the boot processing function.

#pragma entry PowerON_Reset_PC

RI600V4 CHAPTER 16 SYSTEM INITIALIZATION

R20UT0711EJ0104 Rev.1.04 Page 179 of 447
Sep 20, 2013

16.2.2 Include kernel_ram.h and kernel_rom.h

The boot processing file must include “kernel_ram.h” and “kernel_rom.h”, which are generated by the cfg600, in this order.

16.2.3 Compiler option for boot processing file

The following compiler options are required for the boot processing file.

- “-lang=c” or “-lang=c99”

- “-nostuff”

- Suitable “-isa” or “-cpu”

Note Compiler option “-isa” is supported by the compiler CC-RX V2.01 or later.

RI600V4 CHAPTER 16 SYSTEM INITIALIZATION

R20UT0711EJ0104 Rev.1.04 Page 180 of 447
Sep 20, 2013

16.2.4 Example of the boot processing file

#include <machine.h>
#include <_h_c_lib.h>
//#include <stddef.h> // Remove the comment when you use errno
//#include <stdlib.h> // Remove the comment when you use rand()
#include "typedefine.h" // Define Types
#include "kernel.h" // Provided by RI600V4
#include "kernel_id.h" // Generated by cfg600

#if (((_RI_CLOCK_TIMER) >=0) && ((_RI_CLOCK_TIMER) <= 3))
#include "ri_cmt.h" // Generated by cfg600
 // Do comment-out when clock.timer is either NOTIMER or OTHER.
#endif

#ifdef __cplusplus
extern "C" {
#endif
void PowerON_Reset_PC(void);
void main(void);
#ifdef __cplusplus
}
#endif

//#ifdef __cplusplus // Use SIM I/O
//extern "C" {
//#endif
//extern void _INIT_IOLIB(void);
//extern void _CLOSEALL(void);
//#ifdef __cplusplus
//}
//#endif

#define FPSW_init 0x00000000 // FPSW bit base pattern

//extern void srand(_UINT); // Remove the comment when you use rand()
//extern _SBYTE *_s1ptr; // Remove the comment when you use strtok()

//#ifdef __cplusplus // Use Hardware Setup
//extern "C" {
//#endif
//extern void HardwareSetup(void);

RI600V4 CHAPTER 16 SYSTEM INITIALIZATION

R20UT0711EJ0104 Rev.1.04 Page 181 of 447
Sep 20, 2013

//#ifdef __cplusplus
//}
//#endif

//#ifdef __cplusplus // Remove the comment when you use global class object
//extern "C" { // Sections C$INIT and C$END will be generated
//#endif
//extern void _CALL_INIT(void);
//extern void _CALL_END(void);
//#ifdef __cplusplus
//}
//#endif

#pragma section ResetPRG // output PowerON_Reset to PResetPRG section

///
// Boot processing
///
#pragma entry PowerON_Reset_PC

void PowerON_Reset_PC(void)
{

#ifdef __ROZ // Initialize FPSW
#define _ROUND 0x00000001 // Let FPSW RMbits=01 (round to zero)
#else
#define _ROUND 0x00000000 // Let FPSW RMbits=00 (round to nearest)
#endif
#ifdef __DOFF
#define _DENOM 0x00000100 // Let FPSW DNbit=1 (denormal as zero)
#else
#define _DENOM 0x00000000 // Let FPSW DNbit=0 (denormal as is)
#endif

// set_extb(__sectop("FIX_INTERRUPT_VECTOR"));// Initialize EXTB register
 // (only for RXv2 arch.)
 set_fpsw(FPSW_init | _ROUND | _DENOM);

 _INITSCT();

// _INIT_IOLIB(); // Use SIM I/O

// errno=0; // Remove the comment when you use errno
// srand((_UINT)1); // Remove the comment when you use rand()
// _s1ptr=NULL; // Remove the comment when you use strtok()

// HardwareSetup(); // Use Hardware Setup
 nop();

// set_fintv(<handler address>); // Initialize FINTV register

#if (((_RI_CLOCK_TIMER) >=0) && ((_RI_CLOCK_TIMER) <= 3))
 _RI_init_cmt(); // Initialize CMT for RI600V4
 // Do comment-out when clock.timer is either NOTIMER or OTHER.
#endif

// _CALL_INIT(); // Remove the comment when you use global class object

 vsta_knl(); // Start RI600V4
 // Never return from vsta_knl

RI600V4 CHAPTER 16 SYSTEM INITIALIZATION

R20UT0711EJ0104 Rev.1.04 Page 182 of 447
Sep 20, 2013

// _CLOSEALL(); // Use SIM I/O

// _CALL_END(); // Remove the comment when you use global class object

 brk();
}

///
// System down routine for RI600V4
///
#pragma section P PRI_KERNEL
#pragma section B BRI_RAM
struct SYSDWN_INF{
 W type;
 VW inf1;
 VW inf2;
 VW inf3;
};

volatile struct SYSDWN_INF _RI_sysdwn_inf;

void _RI_sys_dwn__(W type, VW inf1, VW inf2, VW inf3)
{
 // Now PSW.I=0 (all interrupts are masked.)
 _RI_sysdwn_inf.type = type;
 _RI_sysdwn_inf.inf1 = inf1;
 _RI_sysdwn_inf.inf2 = inf2;
 _RI_sysdwn_inf.inf3 = inf3;

 while(1)
 ;
}

///
// RI600V4 system data
///
#include "kernel_ram.h" // generated by cfg600
#include "kernel_rom.h" // generated by cfg600

RI600V4 CHAPTER 16 SYSTEM INITIALIZATION

R20UT0711EJ0104 Rev.1.04 Page 183 of 447
Sep 20, 2013

16.3 Kernel Initialization Module (vsta_knl, ivsta_knl)

The kernel initialization module is executed by calling vsta_knl, ivsta_knl. Generally, vsta_knl, ivsta_knl is called from the
Boot processing function (PowerON_Reset_PC()).
The following processing is executed in the kernel initialization module.

1) Initialize ISP register to the end address of SI section + 1

2) Initialize INTB register to the start address of the relocatable vector table (INTERRUPT_VECTOR section). The
relocatable vector table is generated by the cfg600.

3) Initialize the system time to 0.

4) Create various object which are defined in the system configuration file.

5) Pass control to scheduler

RI600V4 CHAPTER 16 SYSTEM INITIALIZATION

R20UT0711EJ0104 Rev.1.04 Page 184 of 447
Sep 20, 2013

16.4 Section Initialization Function (_INITSCT())

The section initialization function “_INITSCT()” called from Boot processing function (PowerON_Reset_PC()) is provided
by the compiler. The _INITSCT() clears the uninitialized data section to 0 and initializes the initialized data section in order
to the tables described in the Section information file (User-Own Coding Module).
The user needs to write the sections to be initialized to the tables for section initialization (DTBL and BTBL) in the section
information file. The section address operator is used to set the start and end addresses of the sections used by the
_INITSCT(). Section names in the section initialization tables are declared, using C$BSEC for uninitialized data areas, and
C$DSEC for initialized data areas.
Initialized sections written in DTBL must be mapped from ROM to RAM by using “-rom” linker option. For details, refer to
“2.6.5 Initialized data section”.

Note See “CubeSuite+ Integrated Development Environment User's Manual: RX Coding” for details of the
_INITSCT().

16.4.1 Section information file (User-Own Coding Module)

The section information file should be implemented as user-own coding module.
The example of the section information file is shown below.

Note The section information file which is provided by the RI600V4 as a sample file is “dbsct.c”.

#include "typedefine.h"

#pragma unpack

#pragma section C C$DSEC
extern const struct {
 _UBYTE *rom_s; /* Start address of the initialized data section in ROM */
 _UBYTE *rom_e; /* End address of the initialized data section in ROM */
 _UBYTE *ram_s; /* Start address of the initialized data section in RAM */
} _DTBL[] = {
 { __sectop("D"), __secend("D"), __sectop("R") },
 { __sectop("D_2"), __secend("D_2"), __sectop("R_2") },
 { __sectop("D_1"), __secend("D_1"), __sectop("R_1") },
 /* RI600V4 section */
 { __sectop("DRI_ROM"), __secend("DRI_ROM"), __sectop("RRI_RAM") }
};
#pragma section C C$BSEC
extern const struct {
 _UBYTE *b_s; /* Start address of non-initialized data section */
 _UBYTE *b_e; /* End address of non-initialized data section */
} _BTBL[] = {
 { __sectop("B"), __secend("B") },
 { __sectop("B_2"), __secend("B_2") },
 { __sectop("B_1"), __secend("B_1") }
};

#pragma section

/*
** CTBL prevents excessive output of L1100 messages when linking.
** Even if CTBL is deleted, the operation of the program does not change.
*/
_UBYTE * const _CTBL[] = {
 __sectop("C_1"), __sectop("C_2"), __sectop("C"),
 __sectop("W_1"), __sectop("W_2"), __sectop("W")
};

#pragma packoption

RI600V4 CHAPTER 16 SYSTEM INITIALIZATION

R20UT0711EJ0104 Rev.1.04 Page 185 of 447
Sep 20, 2013

16.5 Registers in Fixed Vector Table/Exception Vector table

For some MCUs, the endian select register, ID code protection on connection of the on-chip debugger, etc. are assigned in
the address from 0xFFFFFF80 to 0xFFFFFFBF in fixed vector table (RXv1 architecture) / exception vector table (RXv2
architecture). To set up such registers, describe “interrupt_fvector[]” in the system configuration file. For details, refer to
“19.19 Fixed Vector/Exception Vector Information (interrupt_fvector[])”.

RI600V4 CHAPTER 17 DATA TYPES AND MACROS

R20UT0711EJ0104 Rev.1.04 Page 186 of 447
Sep 20, 2013

CHAPTER 17 DATA TYPES AND MACROS

This chapter describes the data types and macros, which are used when issuing service calls provided by the RI600V4.

Note <ri_root> indicates the installation folder of RI600V4.
The default folder is “C:\Program Files\Renesas Electronics\CubeSuite+\RI600V4”.

17.1 Data Types

The Following lists the data types of parameters specified when issuing a service call.
Macro definition of the data type is performed by <ri_root>\in600\kernel.h, or <ri_root>\inc600\itron.h that is included by
kernel.h.

Table 17-1 Data Types

Macro Data Type Description

B signed char Signed 8-bit integer

H signed short Signed 16-bit integer

W signed long Signed 32-bit integer

D signed long long Signed 64-bit integer

UB unsigned char Unsigned 8-bit integer

UH unsigned short Unsigned 16-bit integer

UW unsigned long Unsigned 32-bit integer

UD unsigned long long Unsigned 64-bit integer

VB signed char 8-bit value with unknown data type

VH signed short 16-bit value with unknown data type

VW signed long 32-bit value with unknown data type

VD signed long long 64-bit value with unknown data type

VP void * Pointer to unknown data type

FP void (*) Processing unit start address (pointer to a function)

INT signed long Signed 32-bit integer

UINT unsigned long Unsigned 32-bit integer

BOOL signed long Boolean value (TRUE or FALSE)

ER signed long Error code

ID signed short Object ID

ATR unsigned short Object attribute

STAT unsigned short Object state

MODE unsigned short Service call operational mode

PRI signed short Priority for tasks or messages

SIZE unsigned long Memory area size (in bytes)

TMO signed long Time-out (in millisecond)

RELTIM unsigned long Relative time (in millisecond)

RI600V4 CHAPTER 17 DATA TYPES AND MACROS

R20UT0711EJ0104 Rev.1.04 Page 187 of 447
Sep 20, 2013

VP_INT signed long Pointer to unknown data type, or signed 32-bit integer

ER_UINT signed long Error code, or signed 32-bit integer

FLGPTN unsigned long Bit pattern of eventflag

IMASK unsigned short Interrupt mask level

Macro Data Type Description

RI600V4 CHAPTER 17 DATA TYPES AND MACROS

R20UT0711EJ0104 Rev.1.04 Page 188 of 447
Sep 20, 2013

17.2 Macros

This section explains the macros (for current state, processing program attributes, or the like) used when issuing a service
call provided by the RI600V4.

17.2.1 Constant macros

The following lists the constant macros.
The constant macros are defined by either of following header files.

- <ri_root>\inc600\kernel.h

- <ri_root>\inc600\itron.h, which s included by kernel.h

- System information header file kernel_id.h, which is generated by the cfg600.
The contents of this file is changed according to the system configuration file.

Table 17-2 Constant Macros

Classifica-
tion

Macro Definition Where Description

General

NULL 0 itron.h Null pointer

TRUE 1 itron.h True

FALSE 0 itron.h False

E_OK 0 itron.h Normal completion

Attribute

TA_NULL 0 itron.h Object attribute unspecified

TA_TFIFO 0x0000 kernel.h Task wait queue in FIFO order

TA_TPRI 0x0001 kernel.h

Task wait queue is managed in task
current priority order. Among tasks
with the same priority, they are
queued in FIFO order.

TA_MFIFO 0x0000 kernel.h Message queue in FIFO order

TA_MPRI 0x0002 kernel.h

Message queue is managed in mes-
sage priority order. Among messages
with the same priority, they are
queued in FIFO order.

TA_ACT 0x0002 kernel.h Task is activated after creation

TA_WSGL 0x0000 kernel.h
Do not allow multiple tasks to wait for
eventflag

TA_WMUL 0x0002 kernel.h
Allow multiple tasks to wait for
eventflag

TA_CLR 0x0004 kernel.h
Clear eventflag when freed from
WAITING state

TA_CEILING 0x0003 kernel.h Priority ceiling protocol

TA_STA 0x0002 kernel.h
Create cyclic hander in operational
state

TA_PHS 0x0004 kernel.h Save cyclic hander phase

Time-out
TMO_POL 0 itron.h Polling

TMO_FEVR -1 itron.h Waiting forever

RI600V4 CHAPTER 17 DATA TYPES AND MACROS

R20UT0711EJ0104 Rev.1.04 Page 189 of 447
Sep 20, 2013

Operation
mode

TWF_ANDW 0x0000 kernel.h Eventflag AND wait

TWF_ORW 0x0001 kernel.h Eventflag OR wait

Object
state

TTS_RUN 0x0001 kernel.h RUNNING state

TTS_RDY 0x0002 kernel.h READY state

TTS_WAI 0x0004 kernel.h WAITING state

TTS_SUS 0x0008 kernel.h SUSPENDED state

TTS_WAS 0x000C kernel.h WAITING-SUSPENDED state

TTS_DMT 0x0010 kernel.h DORMANT state

TTW_SLP 0x0001 kernel.h Sleeping state

TTW_DLY 0x0002 kernel.h Delayed state

TTW_SEM 0x0004 kernel.h
Waiting state for a semaphore
resource

TTW_FLG 0x0008 kernel.h Waiting state for an eventflag

TTW_SDTQ 0x0010 kernel.h
Sending waiting state for a data
queue

TTW_RDTQ 0x0020 kernel.h
Receiving waiting state for a data
queue

TTW_MBX 0x0040 kernel.h Receiving waiting state for a mailbox

TTW_MTX 0x0080 kernel.h Waiting state for a mutex

TTW_SMBF 0x0100 kernel.h
Sending waiting state for a message
buffer

TTW_RMBF 0x0200 kernel.h
Receiving waiting state for a
message buffer

TTW_MPF 0x2000 kernel.h
Waiting state for a fixed-sized
memory block

TTW_MPL 0x4000 kernel.h
Waiting state for a variable-sized
memory block

TCYC_STP 0x0000 kernel.h
Cyclic handler in non-operational
state

TCYC_STA 0x0001 kernel.h Cyclic handler in operational state

TALM_STP 0x0000 kernel.h
Alarm handler in non-operational
state

TALM_STA 0x0001 kernel.h Alarm handler in operational state

Others

TSK_SELF 0 kernel.h Specify invoking task

TSK_NONE 0 kernel.h No relevant task

TPRI_SELF 0 kernel.h Specify base priority of invoking task

TPRI_INI 0 kernel.h Specify initial priority

Classifica-
tion

Macro Definition Where Description

RI600V4 CHAPTER 17 DATA TYPES AND MACROS

R20UT0711EJ0104 Rev.1.04 Page 190 of 447
Sep 20, 2013

K e r n e l
configura-
tion

TMIN_TPRI 1 kernel.h Minimum task priority

TMAX_TPRI system.priority kernel_id.h Maximum task priority

TMIN_MPRI 1 kernel.h Minimum message priority

TMAX_MPRI system.message_pri kernel_id.h Maximum message priority

TKERNEL_MAKER 0x011B kernel.h Kernel maker code

TKERNEL_PRID 0x0003 kernel.h Identification number of the kernel

TKERNEL_SPVER 0x5403 kernel.h
Version number of the ITRON
specification

TKERNEL_PRVER 0x0130 kernel.h Version number of the kernel

TMAX_ACTCNT 255 kernel.h
Maximum number of queued task
activation requests

TMAX_WUPCNT 255 kernel.h
Maximum number of queued task
wake-up requests

TMAX_SUSCNT 1 kernel.h
Maximum number of nested task
suspension requests

TBIT_FLGPTN 32 kernel.h Number of bits in an eventflag

TIC_NUME system.tic_nume kernel_id.h Numerator of base clock interval

TIC_DENO system.tic_deno kernel_id.h Denominator of base clock interval

TMAX_MAXSEM 65535 kernel.h
Maximum value of the maximum
semaphore resource count

VTMAX_TSK Number of “task[]”s kernel_id.h Maximum task ID

VTMAX_SEM
Number of
“semaphore[]”s

kernel_id.h Maximum semaphore ID

VTMAX_FLG Number of “flag[]”s kernel_id.h Maximum eventflag ID

VTMAX_DTQ Number of “dataqueue[]”s kernel_id.h Maximum data queue ID

VTMAX_MBX Number of “mailbox[]”s kernel_id.h Maximum mailbox ID

VTMAX_MTX Number of “mutex[]”s kernel_id.h Maximum mutex ID

VTMAX_MBF
Number of
“message_buffer[]”s

kernel_id.h Maximum message buffer ID

VTMAX_MPF
Number of
“memorypool[]”s

kernel_id.h Maximum fixed-sized memory pool ID

VTMAX_MPL
Number of
“variable_memorypool[]”s

kernel_id.h
Maximum variable-sized memory
pool ID

VTMAX_CYH
Number of
“cyclic_hand[]”s

kernel_id.h Maximum cyclic handler ID

VTMAX_ALH
Number of
“alarm_hand[]”s

kernel_id.h Maximum alarm handler ID

VTSZ_MBFTBL 4 kernel.h
Size of message buffer's message
management table (in bytes)

VTMAX_AREASIZE 0x10000000 kernel.h
Maximum size of various areas (in
bytes)

VTKNL_LVL system.system_IPL kernel_id.h Kernel interrupt mask level

VTIM_LVL clock.IPL kernel_id.h Base clock interrupt level

Classifica-
tion

Macro Definition Where Description

RI600V4 CHAPTER 17 DATA TYPES AND MACROS

R20UT0711EJ0104 Rev.1.04 Page 191 of 447
Sep 20, 2013

17.2.2 Function Macros

The following lists the function macros.
The function macros are defined by <ri_root>\inc600\itron.h.

1) ER MERCD (ER ercd)
Return the main error code of ercd.

2) ER SERCD (ER ercd)
Return sub error code of ercd.

3) ER ERCD (ER mercd, ER sercd)
Return the error code from the main error code indicated by mercd and sub error code indicated by sercd.

Note In the error code returned from the RI600V4, all sub error code is -1, and all main error code is same as the
value described in Table 17-2.

Error code

E_NOSPT -9 itron.h Unsupported function

E_PAR -17 itron.h Parameter error

E_ID -18 itron.h Invalid ID number

E_CTX -25 itron.h Context error

E_ILUSE -28 itron.h Illegal use of service call

E_OBJ -41 itron.h Object state error

E_QOVR -43 itron.h Queuing overflow

E_RLWAI -49 itron.h Forced release from WAITING state

E_TMOUT -50 itron.h Polling failure of time-out

EV_RST -127 itron.h
Released from WAITING state by the
object reset

Classifica-
tion

Macro Definition Where Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 192 of 447
Sep 20, 2013

CHAPTER 18 SERVICE CALLS

This chapter describes the service calls supported by the RI600V4.

18.1 Outline

The service calls provided by the RI600V4 are service routines provided for indirectly manipulating the resources (tasks,
semaphores, etc.) managed by the RI600V4 from a processing program.
The service calls provided by the RI600V4 are listed below by management module.

- Task management functions

act_tsk iact_tsk can_act ican_act
sta_tsk ista_tsk ext_tsk ter_tsk
chg_pri ichg_pri get_pri iget_pri
ref_tsk iref_tsk ref_tst iref_tst

- Task dependent synchronization functions

slp_tsk tslp_tsk wup_tsk iwup_tsk
can_wup ican_wup rel_wai irel_wai
sus_tsk isus_tsk rsm_tsk irsm_tsk
frsm_tsk ifrsm_tsk dly_tsk

- Synchronization and communication functions (semaphores)

wai_sem pol_sem ipol_sem twai_sem
sig_sem isig_sem ref_sem iref_sem

- Synchronization and communication functions (eventflags)

set_flg iset_flg clr_flg iclr_flg
wai_flg pol_flg ipol_flg twai_flg
ref_flg iref_flg

- Synchronization and communication functions (data queues)

snd_dtq psnd_dtq ipsnd_dtq tsnd_dtq
fsnd_dtq ifsnd_dtq rcv_dtq prcv_dtq
iprcv_dtq trcv_dtq ref_dtq iref_dtq

- Synchronization and communication functions (mailboxes)

snd_mbx isnd_mbx rcv_mbx prcv_mbx
iprcv_mbx trcv_mbx ref_mbx iref_mbx

- Extended synchronization and communication functions (mutexes)

loc_mtx ploc_mtx tloc_mtx unl_mtx
ref_mtx

- Extended synchronization and communication functions (message buffers)

snd_mbf psnd_mbf ipsnd_mbf tsnd_mbf
rcv_mbf prcv_mbf trcv_mbf ref_mbf
iref_mbf

- Memory pool management functions (fixed-sized memory pools)

get_mpf pget_mpf ipget_mpf tget_mpf
rel_mpf irel_mpf ref_mpf iref_mpf

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 193 of 447
Sep 20, 2013

- Memory pool management functions (variable-sized memory pools)

get_mpl pget_mpl ipget_mpl tget_mpl
rel_mpl ref_mpl iref_mpl

- Time management functions

set_tim iset_tim get_tim iget_tim
sta_cyc ista_cyc stp_cyc istp_cyc
ref_cyc iref_cyc sta_alm ista_alm
stp_alm istp_alm ref_alm iref_alm

- System state management functions

rot_rdq irot_rdq get_tid iget_tid
loc_cpu iloc_cpu unl_cpu iunl_cpu
dis_dsp ena_dsp sns_ctx sns_loc
sns_dsp sns_dpn vsys_dwn ivsys_dwn
vsta_knl ivsta_knl

- Interrupt management functions

chg_ims ichg_ims get_ims iget_ims

- System configuration management functions

ref_ver iref_ver

- Object reset functions

vrst_dtq vrst_mbx vrst_mbf vrst_mpf
vrst_mpl

18.1.1 Method for calling service calls

The service calls can be calls by the same way as normal C-language function.

Note To call the service calls provided by the RI600V4 from a processing program, the header files listed below must
be coded (include processing).

kernel.h: Standard header file

kernel_id.h System information header file, which is generated by the cfg600

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 194 of 447
Sep 20, 2013

18.2 Explanation of Service Call

The following explains the service calls supported by the RI600V4, in the format shown below.

Outline

DescriptionParameterI/O

C format

Explanation

1)

2)

3)

4)

5)

6) Return value

Parameter(s)

DescriptionValueMacro

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 195 of 447
Sep 20, 2013

1) Name
Indicates the name of the service call.

2) Outline
Outlines the functions of the service call.

3) C format
Indicates the format to be used when describing a service call to be issued in C language.

4) Parameter(s)
Service call parameters are explained in the following format.

A) Parameter classification

 I: Parameter input to RI600V4.
O: Parameter output from RI600V4.

B) Parameter data type

C) Description of parameter

5) Explanation
Explains the function of a service call.

6) Return value
Indicates a service call's return value using a macro and value.

A) Macro of return value

B) Value of return value

C) Description of return value

I/O Parameter Description

A B C

Macro Value Description

A B C

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 196 of 447
Sep 20, 2013

18.2.1 Task management functions

The following shows the service calls provided by the RI600V4 as the task management functions.

Table 18-1 Task Management Functions

Service Call Function Useful Range

act_tsk Activate task (queues an activation request) Task

iact_tsk Activate task (queues an activation request) Non-task

can_act Cancel task activation requests Task

ican_act Cancel task activation requests Non-task

sta_tsk Activate task (does not queue an activation request) Task

ista_tsk Activate task (does not queue an activation request) Non-task

ext_tsk Terminate invoking task Task

ter_tsk Terminate task Task

chg_pri Change task priority Task

ichg_pri Change task priority Non-task

get_pri Reference task current priority Task

iget_pri Reference task current priority Non-task

ref_tsk Reference task state Task

iref_tsk Reference task state Non-task

ref_tst Reference task state (simplified version) Task

iref_tst Reference task state (simplified version) Non-task

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 197 of 447
Sep 20, 2013

act_tsk
iact_tsk

Outline

Activate task (queues an activation request).

C format

ER act_tsk (ID tskid);
ER iact_tsk (ID tskid);

Parameter(s)

Explanation

These service calls move the task specified by parameter tskid from the DORMANT state to the READY state.
As a result, the target task is queued at the end on the ready queue corresponding to the initial priority and becomes
subject to scheduling by the RI600V4.
At this time, the following processing is done.

Table 18-2 Processing Performed at Task Activation

If the target task has been moved to a state other than the DORMANT state when this service call is issued, this service
call does not move the state but increments the activation request counter (by added 1 to the activation request counter).

Note 1 The activation request counter managed by the RI600V4 is configured in 8-bit widths. If the number of
activation requests exceeds the maximum count value 255 as a result of issuing this service call, the counter
manipulation processing is therefore not performed but “E_QOVR” is returned.

Note 2 Extended information specified in Task Information (task[]) is passed to the task activated by issuing these
service calls.

I/O Parameter Description

I ID tskid;

ID number of the task.

TSK_SELF: Invoking task.
Value: ID number of the task.

No. Content of processing

1 Initializes the task's base priority and current priority.

2 Clears the number of queued walk-up requests.

3 Clears the number of nested suspension count

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 198 of 447
Sep 20, 2013

Return value

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- tskid < 0

- tskid > VTMAX_TSK

- When iact_tsk was issued from a non-task, TSK_SELF was specified for tskid.

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- The iact_tsk was issued from task.

- The act_tsk was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_QOVR -43
Queue overflow.

- Activation request count exceeded 255.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 199 of 447
Sep 20, 2013

can_act
ican_act

Outline

Cancel task activation requests.

C format

ER_UINT can_act (ID tskid);
ER_UINT ican_act (ID tskid);

Parameter(s)

Explanation

This service call cancels all of the activation requests queued to the task specified by parameter tskid (sets the activation
request counter to 0).
When this service call is terminated normally, the number of cancelled activation requests is returned.

Note This service call does not perform status manipulation processing but performs the setting of activation request
counter. Therefore, the task does not move from a state such as the READY state to the DORMANT state.

Return value

I/O Parameter Description

I ID tskid;

ID number of the task.

TSK_SELF: Invoking task.
Value: ID number of the task.

Macro Value Description

E_ID -18

Invalid ID number.

- tskid < 0

- tskid > VTMAX_TSK

- When the iact_tsk was issued from a non-task, TSK_SELF was specified for
tskid.

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Note When the ican_act is issued from task or the can_act is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 200 of 447
Sep 20, 2013

- 0

Normal completion.

- Activation request count is 0.

- Specified task is in the DORMANT state.

-
Positive
value

Normal completion (activation request count).

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 201 of 447
Sep 20, 2013

sta_tsk
ista_tsk

Outline

Activate task (does not queue an activation request).

C format

ER sta_tsk (ID tskid, VP_INT stacd);
ER ista_tsk (ID tskid, VP_INT stacd);

Parameter(s)

Explanation

These service calls move the task specified by parameter tskid from the DORMANT state to the READY state.
As a result, the target task is queued at the end on the ready queue corresponding to the initial priority and becomes
subject to scheduling by the RI600V4.
At this time, processing described in Table 18-2 is done.
These service calls do not perform queuing of activation requests. If the target task is in a state other than the DORMANT
state, the status manipulation processing for the target task is therefore not performed but “E_OBJ” is returned.
The stacd is passed to the target task.

Return value

I/O Parameter Description

I ID tskid; ID number of the task.

I VP_INT stacd; Start code of the task.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- tskid < 0

- tskid > VTMAX_TSK

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- The ista_tsk was issued from task.

- The sta_tsk was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 202 of 447
Sep 20, 2013

E_OBJ -41
Object state error

- Specified task is not in the DORMANT state.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 203 of 447
Sep 20, 2013

ext_tsk

Outline

Terminate invoking task.

C format

void ext_tsk (void);

Parameter(s)

None.

Explanation

This service call moves the invoking task from the RUNNING state to the DORMANT state.
As a result, the invoking task is unlinked from the ready queue and excluded from the RI600V4 scheduling subject.
At this time, the following processing is done.

Table 18-3 Processing Performed at Task Termination

The CPU locked state and dispatching disabled state is cancelled.
If an activation request has been queued to the invoking task (the activation request counter > 0) when this service call is
issued, this service call moves the task from the RUNNING state to the DORMANT state, decrements the activation
request counter (by subtracting 1 from the activation request counter), and then moves the task from the DORMANT state
to the READY state. At this time, processing described in Table 18-2 is done.
This service call does not return. In the following cases, this service call causes SYSTEM DOWN.

- This service call was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask level”

Note 1 When the return instruction is issued in the task entry function, the same processing as ext_tsk is performed.

Note 2 This service call does not have the function to automatically free the resources except the mutex hitherto
occupied by the task (e.g., semaphores and memory blocks). Make sure the task frees these resources before
it terminates

Return value

None.

No. Content of processing

1
Unlocks the mutexes which are locked by the terminated task. (processing equivalent to unl_mtx
will be executed)

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 204 of 447
Sep 20, 2013

ter_tsk

Outline

Terminate task.

C format

ER ter_tsk (ID tskid);

Parameter(s)

Explanation

This service call forcibly moves the task specified by parameter tskid to the DORMANT state.
As a result, the target task is excluded from the RI600V4 scheduling subject.
At this time, processing described in Table 18-3 is done.
If an activation request has been queued to the target task (the activation request counter > 0) when this service call is
issued, this service call moves the task to the DORMANT state, decrements the activation request counter (by subtracting
1 from the activation request counter), and then moves the task from the DORMANT state to the READY state. At this
time, processing described in Table 18-2 is done.

Note This service call does not have the function to automatically free the resources except the mutex hitherto
occupied by the task (e.g., semaphores and memory blocks). Make sure the task frees these resources before
it terminates

Return value

I/O Parameter Description

I ID tskid; ID number of the task.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- tskid < 0

- tskid > VTMAX_TSK

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_ILUSE -28
Illegal service call use.

- Specified task is the invoking task.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 205 of 447
Sep 20, 2013

E_OBJ -41
Object state error.

- Specified task is in the DORMANT state.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 206 of 447
Sep 20, 2013

chg_pri
ichg_pri

Outline

Change task priority.

C format

ER chg_pri (ID tskid, PRI tskpri);
ER ichg_pri (ID tskid, PRI tskpri);

Parameter(s)

Explanation

This service call changes the base priority of the task specified by parameter tskid to a value specified by parameter
tskpri.
The changed base priority is effective until the task terminates or this service call is issued. When next the task is acti-
vated, the base priority is the initial priority which is specified at the task creation.
This service call also changes the current priority of the target task to a value specified by parameter tskpri. However, the
current priority is not changed when the target task has locked mutexes.
If the target task has locked mutexes or is waiting for mutex to be locked and if tskpri is higher than the ceiling priority of
either of the mutexes, this service call returns “E_ILUSE”.
When the current priority is changed, the following state variations are generated.

1) When the target task is in the RUNNING or READY state.
This service call re-queues the task at the end of the ready queue corresponding to the priority specified by
parameter tskpri.

2) When the target task is queued to a wait queue of the object with TA_TPRI or TA_CEILING attribute.
This service call re-queues the task to the wait queue corresponding to the priority specified by parameter tskpri.
When two or more tasks of same current priority as tskpri, this service call re-queues the target task at the end
among their tasks.

Example When three tasks (task A: priority level 10, task B: priority level 11, task C: priority level 12) are
queued to the semaphore wait queue in the order of priority, and the priority level of task B is
changed from 11 to 9, the wait order will be changed as follows.

I/O Parameter Description

I ID tskid;

ID number of the task.

TSK_SELF: Invoking task.
Value: ID number of the task.

I PRI tskpri;

New base priority of the task.

TPRI_INI: Initial priority.
Value: New base priority of the task.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 207 of 447
Sep 20, 2013

Note For current priority and base priority, refer to “6.2.2 Current priority and base priority”.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- tskpri < 0

- tskpri > TMAX_TPRI

E_ID -18

Invalid ID number.

- tskid < 0

- tskid > VTMAX_TSK

- When ichg_pri was issued from a non-task, TSK_SELF was specified for tskid.

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- The ichg_pri was issued from task.

- The chg_pri was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_ILUSE -28

Illegal use of service call.

- tskpri < The ceiling priority of the mutex locked by the target task.

- tskpri < The ceiling priority of the mutex by which the target task waits for lock.

E_OBJ -41
Object state error.

- Specified task is in the DORMANT state.

Task C
Semaphore

Task ATask B

chg_pri (Task B, 9);

Priority: 9 Priority: 10 Priority: 12

Task C
Semaphore

Task BTask A
Priority: 10 Priority: 11 Priority: 12

Task C
Priority: 12

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 208 of 447
Sep 20, 2013

get_pri
iget_pri

Outline

Reference task current priority.

C format

ER get_pri (ID tskid, PRI *p_tskpri);
ER iget_pri (ID tskid, PRI *p_tskpri);

Parameter(s)

Explanation

This service call stores the current priority of the task specified by parameter tskid in the area specified by parameter
p_tskpri.

Note For current priority and base priority, refer to “6.2.2 Current priority and base priority”.

Return value

I/O Parameter Description

I ID tskid;

ID number of the task.

TSK_SELF: Invoking task.
Value: ID number of the task.

O PRI *p_tskpri; Pointer to the area returning the current priority of the task.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- tskid < 0

- tskid > VTMAX_TSK

- When this service call was issued from a non-task, TSK_SELF was specified
for tskid.

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Note When the iget_pri is issued from task or the get_pri is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 209 of 447
Sep 20, 2013

E_OBJ -41
Object state error.

- Specified task is in the DORMANT state.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 210 of 447
Sep 20, 2013

ref_tsk
iref_tsk

Outline

Reference task state.

C format

ER ref_tsk (ID tskid, T_RTSK *pk_rtsk);
ER iref_tsk (ID tskid, T_RTSK *pk_rtsk);

Parameter(s)

[Task state packet: T_RTSK]

Explanation

Stores task state packet (current state, current priority, etc.) of the task specified by parameter tskid in the area specified
by parameter pk_rtsk.

- tskstat
Stores the current state.

TTS_RUN: RUNNING state
TTS_RDY: READY state
TTS_WAI: WAITING state
TTS_SUS: SUSPENDED state
TTS_WAS: WAITING-SUSPENDED state
TTS_DMT: DORMANT state

I/O Parameter Description

I ID tskid;

ID number of the task.

TSK_SELF: Invoking task.
Value: ID number of the task.

O T_RTSK *pk_rtsk; Pointer to the packet returning the task state.

typedef struct t_rtsk {
 STAT tskstat; /*Current state*/
 PRI tskpri; /*Current priority*/
 PRI tskbpri; /*Base priority*/
 STAT tskwait; /*Reason for waiting*/
 ID wobjid; /*Object ID number for which the task is waiting*/
 TMO lefttmo; /*Remaining time until time-out*/
 UINT actcnt; /*Activation request count*/
 UINT wupcnt; /*Wake-up request count*/
 UINT suscnt; /*Suspension count*/
} T_RTSK;

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 211 of 447
Sep 20, 2013

- tskpri
Stores the current priority.
The tskpri is effective only when the tskstat is other than TTS_DMT.

- tskbpri
Stores the base priority.
The tskbpri is effective only when the tskstat is other than TTS_DMT.

- tskwait
Stores the reason for waiting.
The tskwait is effective only when the tskstat is TTS_WAI or TTS_WAS.

TTW_SLP: Sleeping state caused by slp_tsk or tslp_tsk
TTW_DLY: Delayed state caused by dly_tsk
TTW_SEM: WAITING state for a semaphore resource caused by wai_sem or twai_sem
TTW_FLG: WAITING state for an eventflag caused by wai_flg or twai_flg
TTW_SDTQ: Sending WAITING state for a data queue caused by snd_dtq or tsnd_dtq
TTW_RDTQ: Receiving WAITING state for a data queue caused by rcv_dtq or trcv_dtq
TTW_MBX: Receiving WAITING state for a mailbox caused by rcv_mbx or trcv_mbx
TTW_MTX: WAITING state for a mutex caused by loc_mtx or tloc_mtx
TTW_SMBF: Sending WAITING state for a message buffer caused by snd_mbf or tsnd_mbf
TTW_RMBF: Receiving WAITING state for a message buffer caused by rcv_mbf or trcv_mbf
TTW_MPF: WAITING state for a fixed-sized memory block caused by get_mpf or tget_mpf
TTW_MPL: WAITING state for a variable-sized memory block caused by get_mpl or tget_mpl

- wobjid
Stores the object (such as semaphore, eventflag, etc.) ID number for which the task waiting.
The wobjid is effective only when the tskwait is TTW_SEM or TTW_FLG or TTW_SDTQ or TTW_RDTQ or
TTW_MBX or TTW_MTX or TTW_SMBF or TTW_RMBF or TTW_MPF or TTW_MPL.

- lefttmo
Stores the remaining time until time-out (in millisecond).
The TMO_FEVR is stored for waiting forever.
 The lefttmo is effective only when the tskstat is TTS_WAI or TTS_WAS, and the tskwait is other than TTW_DLY.

Note The lefttmo is undefined when the tskwait is TTW_DLY.

- actcnt
Stores the activation request count.

- wupcnt
Stores the wake-up request count.
The wupcnt is effective only when the tskstat is other than TTS_DMT.

- suscnt
Stores the suspension count.
The suscnt is effective only when the tskstat is other than TTS_DMT.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 212 of 447
Sep 20, 2013

Return value

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- tskid < 0

- tskid > VTMAX_TSK

- When this service call was issued from a non-task, TSK_SELF was specified
for tskid.

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Note When the iref_tsk is issued from task or the ref_tsk is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 213 of 447
Sep 20, 2013

ref_tst
iref_tst

Outline

Reference task state (simplified version).

C format

ER ref_tst (ID tskid, T_RTST *pk_rtst);
ER iref_tst (ID tskid, T_RTST *pk_rtst);

Parameter(s)

[Task state packet (simplified version): T_RTST]

Explanation

Stores task state packet (current state, reason for waiting) of the task specified by parameter tskid in the area specified by
parameter pk_rtst.
Used for referencing only the current state and reason for wait among task information.
Response becomes faster than using ref_tsk or iref_tsk because only a few information items are acquired.

- tskstat
Stores the current state.

TTS_RUN: RUNNING state
TTS_RDY: READY state
TTS_WAI: WAITING state
TTS_SUS: SUSPENDED state
TTS_WAS: WAITING-SUSPENDED state
TTS_DMT: DORMANT state

- tskwait
Stores the reason for waiting.
The tskwait is effective only when the tskstat is TTS_WAI or TTS_WAS.

TTW_SLP: Sleeping state caused by slp_tsk or tslp_tsk
TTW_DLY: Delayed state caused by dly_tsk

I/O Parameter Description

I ID tskid;

ID number of the task.

TSK_SELF: Invoking task.
Value: ID number of the task.

O T_RTST *pk_rtst; Pointer to the packet returning the task state.

typedef struct t_rtst {
 STAT tskstat; /*Current state*/
 STAT tskwait; /*Reason for waiting*/
} T_RTST;

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 214 of 447
Sep 20, 2013

TTW_SEM: WAITING state for a semaphore resource caused by wai_sem or twai_sem
TTW_FLG: WAITING state for an eventflag caused by wai_flg or twai_flg
TTW_SDTQ: Sending WAITING state for a data queue caused by snd_dtq or tsnd_dtq
TTW_RDTQ: Receiving WAITING state for a data queue caused by rcv_dtq or trcv_dtq
TTW_MBX: Receiving WAITING state for a mailbox caused by rcv_mbx or trcv_mbx
TTW_MTX: WAITING state for a mutex caused by loc_mtx or tloc_mtx
TTW_SMBF: Sending WAITING state for a message buffer caused by snd_mbf or tsnd_mbf
TTW_RMBF: Receiving WAITING state for a message buffer caused by rcv_mbf or trcv_mbf
TTW_MPF: WAITING state for a fixed-sized memory block caused by get_mpf or tget_mpf
TTW_MPL: WAITING state for a variable-sized memory block caused by get_mpl or tget_mpl

Return value

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- tskid < 0

- tskid > VTMAX_TSK

- When this service call was issued from a non-task, TSK_SELF was specified
for tskid.

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Note When the iref_tst is issued from task or the ref_tst is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 215 of 447
Sep 20, 2013

18.2.2 Task dependent synchronization functions

The following shows the service calls provided by the RI600V4 as the task dependent synchronization functions.

Table 18-4 Task Dependent Synchronization Functions

Service Call Function Useful Range

slp_tsk Put task to sleep (waiting forever) Task

tslp_tsk Put task to sleep (with time-out) Task

wup_tsk Wake-up task Task

iwup_tsk Wake-up task Non-task

can_wup Cancel task wake-up requests Task

ican_wup Cancel task wake-up requests Non-task

rel_wai Release task from waiting Task

irel_wai Release task from waiting Non-task

sus_tsk Suspend task Task

isus_tsk Suspend task Non-task

rsm_tsk Resume suspended task Task

irsm_tsk Resume suspended task Non-task

frsm_tsk Forcibly resume suspended task Task

ifrsm_tsk Forcibly resume suspended task Non-task

dly_tsk Delay task Task

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 216 of 447
Sep 20, 2013

slp_tsk

Outline

Put task to sleep (waiting forever).

C format

ER slp_tsk (void);

Parameter(s)

None.

Explanation

As a result, the invoking task is unlinked from the ready queue and excluded from the RI600V4 scheduling subject.
If a wake-up request has been queued to the target task (the wake-up request counter > 0) when this service call is
issued, this service call does not move the state but decrements the wake-up request counter (by subtracting 1 from the
wake-up request counter).
The sleeping state is cancelled in the following cases.

Return value

Sleeping State Cancel Operation Return Value

A wake-up request was issued as a result of issuing wup_tsk. E_OK

A wake-up request was issued as a result of issuing iwup_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Macro Value Description

E_OK 0 Normal completion.

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 217 of 447
Sep 20, 2013

tslp_tsk

Outline

Put task to sleep (with time-out).

C format

ER tslp_tsk (TMO tmout);

Parameter(s)

Explanation

This service call moves the invoking task from the RUNNING state to the WAITING state (sleeping state).
As a result, the invoking task is unlinked from the ready queue and excluded from the RI600V4 scheduling subject.
If a wake-up request has been queued to the target task (the wake-up request counter > 0) when this service call is
issued, this service call does not move the state but decrements the wake-up request counter (by subtracting 1 from the
wake-up request counter).
The sleeping state is cancelled in the following cases.

Note When TMO_FEVR is specified for wait time tmout, processing equivalent to slp_tsk will be executed.

Return value

I/O Parameter Description

I TMO tmout;

Specified time-out (in millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified time-out.

Sleeping State Cancel Operation Return Value

A wake-up request was issued as a result of issuing wup_tsk. E_OK

A wake-up request was issued as a result of issuing iwup_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The time specified by tmout has elapsed. E_TMOUT

Macro Value Description

E_OK 0 Normal completion.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 218 of 447
Sep 20, 2013

E_PAR -17

Parameter error.

- tmout < -1

- tmout > (0x7FFFFFFF - TIC_NUME) / TIC_DENO

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50 Polling failure or specified time has elapsed.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 219 of 447
Sep 20, 2013

wup_tsk
iwup_tsk

Outline

Wake-up task.

C format

ER wup_tsk (ID tskid);
ER iwup_tsk (ID tskid);

Parameter(s)

Explanation

These service calls cancel the WAITING state (sleeping state) of the task specified by parameter tskid.
As a result, the target task is moved from the sleeping state to the READY state, or from the WAITING-SUSPENDED state
to the SUSPENDED state.
If the target task is in a state other than the sleeping state when this service call is issued, this service call does not move
the state but increments the wake-up request counter (by added 1 to the wake-up request counter).

Note The wake-up request counter managed by the RI600V4 is configured in 8-bit widths. If the number of wake-up
requests exceeds the maximum count value 255 as a result of issuing this service call, the counter
manipulation processing is therefore not performed but “E_QOVR” is returned.

Return value

I/O Parameter Description

I ID tskid;

ID number of the task.

TSK_SELF: Invoking task.
Value: ID number of the task.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- tskid < 0

- tskid > VTMAX_TSK

- When iwup_tsk was issued from a non-task, TSK_SELF was specified for
tskid.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 220 of 447
Sep 20, 2013

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- The iwup_tsk was issued from task.

- The wup_tsk was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_OBJ -41
Object state error.

- Specified task is in the DORMANT state.

E_QOVR -43
Queue overflow.

- Wake-up request count exceeded 255.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 221 of 447
Sep 20, 2013

can_wup
ican_wup

Outline

Cancel task wake-up requests.

C format

ER_UINT can_wup (ID tskid);
ER_UINT ican_wup (ID tskid);

Parameter(s)

Explanation

These service calls cancel all of the wake-up requests queued to the task specified by parameter tskid (the wake-up
request counter is set to 0), and return the number of cancelled wake-up requests.

Return value

I/O Parameter Description

I ID tskid;

ID number of the task.

TSK_SELF: Invoking task.
Value: ID number of the task.

Macro Value Description

E_ID -18

Invalid ID number.

- tskid < 0

- tskid > VTMAX_TSK

- When this service call was issued from a non-task, TSK_SELF was specified
for tskid.

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Note When the ican_wup is issued from task or the can_wup is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

E_OBJ -41
Object state error.

- Specified task is in the DORMANT state.

-
0 or

more
Normal completion (wake-up request count).

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 222 of 447
Sep 20, 2013

rel_wai
irel_wai

Outline

Release task from waiting.

C format

ER rel_wai (ID tskid);
ER irel_wai (ID tskid);

Parameter(s)

Explanation

These service calls forcibly cancel the WAITING state of the task specified by parameter tskid.
As a result, the target task unlinked from the wait queue and is moved from the WAITING state to the READY state, or
from the WAITING-SUSPENDED state to the SUSPENDED state.
“E_RLWAI” is returned from the service call that triggered the move to the WAITING state (slp_tsk, wai_sem, or the like) to
the task whose WAITING state is cancelled by this service call.

Note 1 These service calls do not perform queuing of forced cancelation requests. If the target task is neither in the
WAITING state nor WAITING-SUSPENDED state, “E_OBJ” is returned.

Note 2 The SUSPENDED state is not cancelled by these service calls.

Return value

I/O Parameter Description

I ID tskid; ID number of the task.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- tskid < 0

- tskid > VTMAX_TSK

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- The irel_wai was issued from task.

- The rel_wai was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 223 of 447
Sep 20, 2013

E_OBJ -41

Object state error.

- Specified task is neither in the WAITING state nor WAITING-SUSPENDED
state.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 224 of 447
Sep 20, 2013

sus_tsk
isus_tsk

Outline

Suspend task.

C format

ER sus_tsk (ID tskid);
ER isus_tsk (ID tskid);

Parameter(s)

Explanation

These service calls move the task specified by parameter tskid from the RUNNING state to the SUSPENDED state, from
the READY state to the SUSPENDED state, or from the WAITING state to the WAITING-SUSPENDED state.
If the target task has moved to the SUSPENDED or WAITING-SUSPENDED state when this service call is issued, these
service calls return “E_QOVR”.

Note In the RI600V4, the suspend request can not be nested.

Return value

I/O Parameter Description

I ID tskid;

ID number of the task.

TSK_SELF: Invoking task.
Value: ID number of the task.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- tskid < 0

- tskid > VTMAX_TSK

- When this service call was issued from a non-task, TSK_SELF was specified
for tskid.

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- The isus_tsk was issued from task.

- The sus_tsk was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

- The invoking task is specified in the dispatching disabled state.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 225 of 447
Sep 20, 2013

E_OBJ -41

Object state error.

- Specified task is in the DORMANT state.

- Specified task is in the RUNNING state when isus_tsk is issued in the dis-
patching disabled state.

E_QOVR -43

Queue overflow.

- Specified task is neither in the SUSPENDED state nor WAITING-
SUSPENDED state.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 226 of 447
Sep 20, 2013

rsm_tsk
irsm_tsk

Outline

Resume suspended task.

C format

ER rsm_tsk (ID tskid);
ER irsm_tsk (ID tskid);

Parameter(s)

Explanation

These service calls move the task specified by parameter tskid from the SUSPENDED state to the READY state, or from
the WAITING-SUSPENDED state to the WAITING state.

Note 1 These service calls do not perform queuing of forced cancelation requests. If the target task is neither in the
SUSPENDED state nor WAITING-SUSPENDED state, “E_OBJ” is returned.

Note 2 The RI600V4 does not support queuing of suspend request. The behavior of the frsm_tsk and ifrsm_tsk, that
can release from the SUSPENDED state even if suspend request has been queued, are same as rsm_tsk and
irsm_tsk.

Return value

I/O Parameter Description

I ID tskid; ID number of the task.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- tskid < 0

- tskid > VTMAX_TSK

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- The irsm_tsk was issued from task.

- The rsm_tsk was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 227 of 447
Sep 20, 2013

E_OBJ -41

Object state error.

- Specified task is neither in the SUSPENDED state nor WAITING-
SUSPENDED state.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 228 of 447
Sep 20, 2013

frsm_tsk
ifrsm_tsk

Outline

Forcibly resume suspended task.

C format

ER frsm_tsk (ID tskid);
ER ifrsm_tsk (ID tskid);

Parameter(s)

Explanation

These service calls cancel all of the suspend requests issued for the task specified by parameter tskid (by setting the
suspend request counter to 0). As a result, the target task moves from the SUSPENDED state to the READY state, or from
the WAITING-SUSPENDED state to the WAITING state.

Note 1 These service calls do not perform queuing of forced cancelation requests. If the target task is neither in the
SUSPENDED state nor WAITING-SUSPENDED state, “E_OBJ” is returned.

Note 2 The RI600V4 does not support queuing of suspend request. Therefore, the behavior of these service calls are
same as rsm_tsk and irsm_tsk.

Return value

I/O Parameter Description

I ID tskid; ID number of the task.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- tskid < 0

- tskid > VTMAX_TSK

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- The ifrsm_tsk was issued from task.

- The frsm_tsk was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 229 of 447
Sep 20, 2013

E_OBJ -41

Object state error.

- Specified task is neither in the SUSPENDED state nor WAITING-
SUSPENDED state.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 230 of 447
Sep 20, 2013

dly_tsk

Outline

Delay task.

C format

ER dly_tsk (RELTIM dlytim);

Parameter(s)

Explanation

This service call moves the invoking task from the RUNNING state to the WAITING state (delayed state).
As a result, the invoking task is unlinked from the ready queue and excluded from the RI600V4 scheduling subject.
The delayed state is cancelled in the following cases.

Note When 0 is specified as dlytim, the delay time is up to next base clock interrupt generation.

Return value

I/O Parameter Description

I RELTIM dlytim; Amount of time to delay the invoking task (in millisecond).

Delayed State Cancel Operation Return Value

Delay time specified by parameter dlytim has elapsed. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17
Parameter error.

- dlytim > (0x7FFFFFFF - TIC_NUME) / TIC_DENO

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 231 of 447
Sep 20, 2013

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 232 of 447
Sep 20, 2013

18.2.3 Synchronization and communication functions (semaphores)

The following shows the service calls provided by the RI600V4 as the synchronization and communication functions
(semaphores).

Table 18-5 Synchronization and Communication Functions (Semaphores)

Service Call Function Useful Range

wai_sem Acquire semaphore resource (waiting forever) Task

pol_sem Acquire semaphore resource (polling) Task

ipol_sem Acquire semaphore resource (polling) Non-task

twai_sem Acquire semaphore resource (with time-out) Task

sig_sem Release semaphore resource Task

isig_sem Release semaphore resource Non-task

ref_sem Reference semaphore state Task

iref_sem Reference semaphore state Non-task

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 233 of 447
Sep 20, 2013

wai_sem

Outline

Acquire semaphore resource (waiting forever).

C format

ER wai_sem (ID semid);

Parameter(s)

Explanation

This service call acquires a resource from the semaphore specified by parameter semid (subtracts 1 from the semaphore
counter).
If no resources are acquired from the target semaphore when this service call is issued (no available resources exist), this
service call does not acquire resources but queues the invoking task to the target semaphore wait queue and moves it
from the RUNNING state to the WAITING state (resource acquisition wait state).
The WAITING state for a semaphore resource is cancelled in the following cases.

Note Invoking tasks are queued to the target semaphore wait queue in the order defined during configuration (FIFO
order or current priority order).

Return value

I/O Parameter Description

I ID semid; ID number of the semaphore.

WAITING State for a Semaphore Resource Cancel Operation Return Value

The resource was released to the target semaphore as a result of issuing sig_sem. E_OK

The resource was released to the target semaphore as a result of issuing isig_sem. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- semid < 0

- semid > VTMAX_SEM

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 234 of 447
Sep 20, 2013

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 235 of 447
Sep 20, 2013

pol_sem
ipol_sem

Outline

Acquire semaphore resource (polling).

C format

ER pol_sem (ID semid);
ER isem_sem (ID semid);

Parameter(s)

Explanation

This service call acquires a resource from the semaphore specified by parameter semid (subtracts 1 from the semaphore
counter).
If a resource could not be acquired from the target semaphore (semaphore counter is set to 0) when this service call is
issued, the counter manipulation processing is not performed but “E_TMOUT” is returned.

Return value

I/O Parameter Description

I ID semid; ID number of the semaphore.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- semid < 0

- semid > VTMAX_SEM

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Note When the ipol_sem is issued from task or the pol_sem is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

E_TMOUT -50 Polling failure.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 236 of 447
Sep 20, 2013

twai_sem

Outline

Acquire semaphore resource (with time-out).

C format

ER twai_sem (ID semid, TMO tmout);

Parameter(s)

Explanation

This service call acquires a resource from the semaphore specified by parameter semid (subtracts 1 from the semaphore
counter).
If no resources are acquired from the target semaphore when service call is issued this (no available resources exist), this
service call does not acquire resources but queues the invoking task to the target semaphore wait queue and moves it
from the RUNNING state to the WAITING state with time-out (resource acquisition wait state).
The WAITING state for a semaphore resource is cancelled in the following cases.

Note 1 Invoking tasks are queued to the target semaphore wait queue in the order defined during configuration (FIFO
order or current priority order).

Note 2 TMO_FEVR is specified for wait time tmout, processing equivalent to wai_sem will be executed. When
TMO_POL is specified, processing equivalent to pol_sem will be executed.

I/O Parameter Description

I ID semid; ID number of the semaphore.

I TMO tmout;

Specified time-out (in millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified time-out.

WAITING State for a Semaphore Resource Cancel Operation Return Value

The resource was released to the target semaphore as a result of issuing sig_sem. E_OK

The resource was released to the target semaphore as a result of issuing isig_sem. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The time specified by tmout has elapsed. E_TMOUT

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 237 of 447
Sep 20, 2013

Return value

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- tmout < -1

- tmout > (0x7FFFFFFF - TIC_NUME) / TIC_DENO

E_ID -18

Invalid ID number.

- semid < 0

- semid > VTMAX_SEM

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50 Polling failure or specified time has elapsed.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 238 of 447
Sep 20, 2013

sig_sem
isig_sem

Outline

Release semaphore resource.

C format

ER sig_sem (ID semid);
ER isig_sem (ID semid);

Parameter(s)

Explanation

These service calls releases the resource to the semaphore specified by parameter semid (adds 1 to the semaphore
counter).
If a task is queued in the wait queue of the target semaphore when this service call is issued, the counter manipulation
processing is not performed but the resource is passed to the relevant task (first task of wait queue).
As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (WAITING state for a
semaphore resource) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

Note With the RI600V4, the maximum possible number of semaphore resources (Maximum resource count
(max_count)) is defined during configuration. If the number of resources exceeds the specified maximum
resource count, this service call therefore does not release the acquired resources (addition to the semaphore
counter value) but returns E_QOVR.

Return value

I/O Parameter Description

I ID semid; ID number of the semaphore.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- semid < 0

- semid > VTMAX_SEM

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- The isig_sem was issued from task.

- The sig_sem was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 239 of 447
Sep 20, 2013

E_QOVR -43
Queue overflow.

- Resource count exceeded the Maximum resource count (max_count).

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 240 of 447
Sep 20, 2013

ref_sem
iref_sem

Outline

Reference semaphore state.

C format

ER ref_sem (ID semid, T_RSEM *pk_rsem);
ER iref_sem (ID semid, T_RSEM *pk_rsem);

Parameter(s)

[Semaphore state packet: T_RSEM]

Explanation

Stores semaphore state packet (ID number of the task at the head of the wait queue, current resource count, etc.) of the
semaphore specified by parameter semid in the area specified by parameter pk_rsem.

- wtskid
Stores whether a task is queued to the semaphore wait queue.

TSK_NONE: No applicable task
Value: ID number of the task at the head of the wait queue

- semcnt
Stores the current resource count.

Return value

I/O Parameter Description

I ID semid; ID number of the semaphore.

O T_RSEM *pk_rsem; Pointer to the packet returning the semaphore state.

typedef struct t_rsem {
 ID wtskid; /*Existence of waiting task*/
 UINT semcnt; /*Current resource count*/

} T_RSEM;

Macro Value Description

E_OK 0 Normal completion.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 241 of 447
Sep 20, 2013

E_ID -18

Invalid ID number.

- semid < 0

- semid > VTMAX_SEM

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Note When the iref_sem is issued from task or the ref_sem is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 242 of 447
Sep 20, 2013

18.2.4 Synchronization and communication functions (eventflags)

The following shows the service calls provided by the RI600V4 as the synchronization and communication functions
(eventflags).

Table 18-6 Synchronization and Communication Functions (Eventflags)

Service Call Function Useful Range

set_flg Set eventflag Task

iset_flg Set eventflag Non-task

clr_flg Clear eventflag Task

iclr_flg Clear eventflag Non-task

wai_flg Wait for eventflag (waiting forever) Task

pol_flg Wait for eventflag (polling) Task

ipol_flg Wait for eventflag (polling) Non-task

twai_flg Wait for eventflag (with time-out) Task

ref_flg Reference eventflag state Task

iref_flg Reference eventflag state Non-task

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 243 of 447
Sep 20, 2013

set_flg
iset_flg

Outline

Set eventflag.

C format

ER set_flg (ID flgid, FLGPTN setptn);
ER iset_flg (ID flgid, FLGPTN setptn);

Parameter(s)

Explanation

These service calls set the result of ORing the bit pattern of the eventflag specified by parameter flgid and the bit pattern
specified by parameter setptn as the bit pattern of the target eventflag.
After that, these service calls evaluate whether the wait condition of the tasks in the wait queue is satisfied. This evalua-
tion is done in order of the wait queue. If the wait condition is satisfied, the relevant task is unlinked from the wait queue at
the same time as bit pattern setting processing. As a result, the relevant task is moved from the WAITING state (WAITING
state for an eventflag) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state. At this
time, the bit pattern of the target event flag is cleared to 0 and this service call finishes processing if the TA_CLR attribute
is specified for the target eventflag.

Return value

I/O Parameter Description

I ID flgid; ID number of the eventflag.

I FLGPTN setptn; Bit pattern to set.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- flgid < 0

- flgid > VTMAX_FLG

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- The iset_flg was issued from task.

- The set_flg was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 244 of 447
Sep 20, 2013

clr_flg
iclr_flg

Outline

Clear eventflag.

C format

ER clr_flg (ID flgid, FLGPTN clrptn);
ER iclr_flg (ID flgid, FLGPTN clrptn);

Parameter(s)

Explanation

This service call sets the result of ANDing the bit pattern set to the eventflag specified by parameter flgid and the bit
pattern specified by parameter clrptn as the bit pattern of the target eventflag.

Return value

I/O Parameter Description

I ID flgid; ID number of the eventflag.

I FLGPTN clrptn; Bit pattern to clear.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- flgid < 0

- flgid > VTMAX_FLG

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Note When the iclr_flg is issued from task or the clr_flg is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 245 of 447
Sep 20, 2013

wai_flg

Outline

Wait for eventflag (waiting forever).

C format

ER wai_flg (ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);

Parameter(s)

Explanation

This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the required
condition specified by parameter wfmode are set to the eventflag specified by parameter flgid.
If a bit pattern that satisfies the required condition has been set for the target eventflag, the bit pattern of the target
eventflag is stored in the area specified by parameter p_flgptn.
If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued, the invoking
task is queued to the target eventflag wait queue.
As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the WAITING
state (WAITING state for an eventflag).
The WAITING state for an eventflag is cancelled in the following cases.

The following shows the specification format of required condition wfmode.

- wfmode == TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

I/O Parameter Description

I ID flgid; ID number of the eventflag.

I FLGPTN waiptn; Wait bit pattern.

I MODE wfmode;

Wait mode.

TWF_ANDW: AND waiting condition.
TWF_ORW: OR waiting condition.

O FLGPTN *p_flgptn; Bit pattern causing a task to be released from waiting.

WAITING State for an Eventflag Cancel Operation Return Value

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing set_flg.

E_OK

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing iset_flg.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 246 of 447
Sep 20, 2013

- wfmode == TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

Note 1 With the RI600V4, whether to enable queuing of multiple tasks to the event flag wait queue is defined during
configuration. If this service call is issued for the event flag (TA_WSGL attribute) to which a wait task is
queued, therefore, “E_ILUSE” is returned regardless of whether the required condition is immediately satisfied.

TA_WSGL: Only one task is allowed to be in the WAITING state for the eventflag.
TA_WMUL: Multiple tasks are allowed to be in the WAITING state for the eventflag.

Note 2 Invoking tasks are queued to the target event flag (TA_WMUL attribute) wait queue in the order defined during
configuration (FIFO order or current priority order).
However, when the TA_CLR attribute is not specified, the wait queue is managed in the FIFO order even if the
priority order is specified. This behavior falls outside ITRON4.0 specification.

Note 3 The RI600V4 performs bit pattern clear processing (0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- waiptn == 0

- wfmode is invalid.

E_ID -18

Invalid ID number.

- flgid < 0

- flgid > VTMAX_FLG

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_ILUSE -28
Illegal use of service call.

- There is already a task waiting for an eventflag with the TA_WSGL attribute.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 247 of 447
Sep 20, 2013

pol_flg
ipol_flg

Outline

Wait for eventflag (polling).

C format

ER pol_flg (ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);
ER ipol_flg (ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);

Parameter(s)

Explanation

This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the required
condition specified by parameter wfmode are set to the eventflag specified by parameter flgid.
If the bit pattern that satisfies the required condition has been set to the target eventflag, the bit pattern of the target
eventflag is stored in the area specified by parameter p_flgptn.
If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued, “E_TMOUT”
is returned.
The following shows the specification format of required condition wfmode.

- wfmode == TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

- wfmode == TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

Note 1 With the RI600V4, whether to enable queuing of multiple tasks to the event flag wait queue is defined during
configuration. If this service call is issued for the event flag (TA_WSGL attribute) to which a wait task is
queued, therefore, “E_ILUSE” is returned regardless of whether the required condition is immediately satisfied.

TA_WSGL: Only one task is allowed to be in the WAITING state for the eventflag.
TA_WMUL: Multiple tasks are allowed to be in the WAITING state for the eventflag.

Note 2 The RI600V4 performs bit pattern clear processing (0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

I/O Parameter Description

I ID flgid; ID number of the eventflag.

I FLGPTN waiptn; Wait bit pattern.

I MODE wfmode;

Wait mode.

TWF_ANDW: AND waiting condition.
TWF_ORW: OR waiting condition.

O FLGPTN *p_flgptn; Bit pattern causing a task to be released from waiting.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 248 of 447
Sep 20, 2013

Return value

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- waiptn == 0

- wfmode is invalid.

E_ID -18

Invalid ID number.

- flgid < 0

- flgid > VTMAX_FLG

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Note When the ipol_flg is issued from task or the pol_flg is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.

E_ILUSE -28
Illegal use of service call.

- There is already a task waiting for an eventflag with the TA_WSGL attribute.

E_TMOUT -50 Polling failure

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 249 of 447
Sep 20, 2013

twai_flg

Outline

Wait for eventflag (with time-out).

C format

ER twai_flg (ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn, TMO tmout);

Parameter(s)

Explanation

This service call checks whether the bit pattern specified by parameter waiptn and the bit pattern that satisfies the required
condition specified by parameter wfmode are set to the eventflag specified by parameter flgid.
If a bit pattern that satisfies the required condition has been set for the target eventflag, the bit pattern of the target
eventflag is stored in the area specified by parameter p_flgptn.
If the bit pattern of the target eventflag does not satisfy the required condition when this service call is issued, the invoking
task is queued to the target eventflag wait queue.
As a result, the invoking task is unlinked from the ready queue and is moved from the RUNNING state to the WAITING
state (WAITING state for an eventflag).
The WAITING state for an eventflag is cancelled in the following cases.

I/O Parameter Description

I ID flgid; ID number of the eventflag.

I FLGPTN waiptn; Wait bit pattern.

I MODE wfmode;

Wait mode.

TWF_ANDW: AND waiting condition.
TWF_ORW: OR waiting condition.

O FLGPTN *p_flgptn; Bit pattern causing a task to be released from waiting.

I TMO tmout;

Specified time-out (in millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified time-out.

WAITING State for an Eventflag Cancel Operation Return Value

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing set_flg.

E_OK

A bit pattern that satisfies the required condition was set to the target eventflag as a result of
issuing iset_flg.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The time specified by tmout has elapsed. E_TMOUT

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 250 of 447
Sep 20, 2013

The following shows the specification format of required condition wfmode.

- wfmode == TWF_ANDW
Checks whether all of the bits to which 1 is set by parameter waiptn are set as the target eventflag.

- wfmode == TWF_ORW
Checks which bit, among bits to which 1 is set by parameter waiptn, is set as the target eventflag.

Note 1 With the RI600V4, whether to enable queuing of multiple tasks to the event flag wait queue is defined during
configuration. If this service call is issued for the event flag (TA_WSGL attribute) to which a wait task is
queued, therefore, “E_ILUSE” is returned regardless of whether the required condition is immediately satisfied.

TA_WSGL: Only one task is allowed to be in the WAITING state for the eventflag.
TA_WMUL: Multiple tasks are allowed to be in the WAITING state for the eventflag.

Note 2 Invoking tasks are queued to the target event flag (TA_WMUL attribute) wait queue in the order defined during
configuration (FIFO order or current priority order).
However, when the TA_CLR attribute is not specified, the wait queue is managed in the FIFO order even if the
priority order is specified. This behavior falls outside ITRON4.0 specification.

Note 3 The RI600V4 performs bit pattern clear processing (0 setting) when the required condition of the target
eventflag (TA_CLR attribute) is satisfied.

Note 4 TMO_FEVR is specified for wait time tmout, processing equivalent to wai_flg will be executed. When
TMO_POL is specified, processing equivalent to pol_flg will be executed.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- waiptn == 0

- wfmode is invalid.

- tmout < -1

- tmout > (0x7FFFFFFF - TIC_NUME) / TIC_DENO

E_ID -18

Invalid ID number.

- flgid < 0

- flgid > VTMAX_FLG

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_ILUSE -28
Illegal use of service call.

- There is already a task waiting for an eventflag with the TA_WSGL attribute.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50 Polling failure or specified time has elapsed.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 251 of 447
Sep 20, 2013

ref_flg
iref_flg

Outline

Reference eventflag state.

C format

ER ref_flg (ID flgid, T_RFLG *pk_rflg);
ER iref_flg (ID flgid, T_RFLG *pk_rflg);

Parameter(s)

[Eventflag state packet: T_RFLG]

Explanation

Stores eventflag state packet (ID number of the task at the head of the wait queue, current bit pattern, etc.) of the eventflag
specified by parameter flgid in the area specified by parameter pk_rflg.

- wtskid
Stores whether a task is queued to the event flag wait queue.

TSK_NONE: No applicable task
Value: ID number of the task at the head of the wait queue

- flgptn
Stores the current bit pattern.

Return value

I/O Parameter Description

I ID flgid; ID number of the eventflag.

O T_RFLG *pk_rflg; Pointer to the packet returning the eventflag state.

typedef struct t_rflg {
 ID wtskid; /*Existence of waiting task*/
 FLGPTN flgptn; /*Current bit pattern*/
} T_RFLG;

Macro Value Description

E_OK 0 Normal completion.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 252 of 447
Sep 20, 2013

E_ID -18

Invalid ID number.

- flgid < 0

- flgid > VTMAX_FLG

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Note When the iref_flg is issued from task or the ref_flg is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 253 of 447
Sep 20, 2013

18.2.5 Synchronization and communication functions (data queues)

The following shows the service calls provided by the RI600V4 as the synchronization and communication functions (data
queues).

Table 18-7 Synchronization and Communication Functions (Data Queues)

Service Call Function Useful Range

snd_dtq Send to data queue (waiting forever) Task

psnd_dtq Send to data queue (polling) Task

ipsnd_dtq Send to data queue (polling) Non-task

tsnd_dtq Send to data queue (with time-out) Task

fsnd_dtq Forced send to data queue Task

ifsnd_dtq Forced send to data queue Non-task

rcv_dtq Receive from data queue (waiting forever) Task

prcv_dtq Receive from data queue (polling) Task

iprcv_dtq Receive from data queue (polling) Non-task

trcv_dtq Receive from data queue (with time-out) Task

ref_dtq Reference data queue state Task

iref_dtq Reference data queue state Non-task

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 254 of 447
Sep 20, 2013

snd_dtq

Outline

Send to data queue (waiting forever).

C format

ER snd_dtq (ID dtqid, VP_INT data);

Parameter(s)

Explanation

This service call processes as follows according to the situation of the data queue specified by the parameter dtqid.

- There is a task in the reception wait queue.
This service call transfers the data specified by parameter data to the task in the top of the reception wait queue. As
a result, the task is unlinked from the reception wait queue and moves from the WAITING state (data reception wait
state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

- There is no task neither in the reception wait queue and transmission wait queue and there is available space in the
data queue.
This service call stores the data specified by parameter data to the data queue.

- There is no task neither in the reception wait queue and transmission wait queue and there is no available space in
the data queue, or there is a task in the transmission wait queue.
This service call queues the invoking task to the transmission wait queue of the target data queue and moves it from
the RUNNING state to the WAITING state (data transmission wait state).
The sending WAITING state for a data queue is cancelled in the following cases.

Note 1 Data is written to the data queue area in the order of the data transmission request.

I/O Parameter Description

I ID dtqid; ID number of the data queue.

I VP_INT data; Data element to be sent to the data queue.

Sending WAITING State for a Data Queue Cancel Operation Return Value

Available space was secured in the data queue area as a result of issuing rcv_dtq. E_OK

Available space was secured in the data queue area as a result of issuing prcv_dtq. E_OK

Available space was secured in the data queue area as a result of issuing iprcv_dtq. E_OK

Available space was secured in the data queue area as a result of issuing trcv_dtq. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The data queue is reset as a result of issuingissuing vrst_dtq. EV_RST

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 255 of 447
Sep 20, 2013

Note 2 Invoking tasks are queued to the transmission wait queue of the target data queue in the order defined
during configuration (FIFO order or current priority order).

Return value

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- dtqid < 0

- dtqid > VTMAX_DTQ

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

EV_RST -127 Released from WAITING state by the object reset (vrst_dtq)

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 256 of 447
Sep 20, 2013

psnd_dtq
ipsnd_dtq

Outline

Send to data queue (polling).

C format

ER psnd_dtq (ID dtqid, VP_INT data);
ER ipsnd_dtq (ID dtqid, VP_INT data);

Parameter(s)

Explanation

These service calls process as follows according to the situation of the data queue specified by the parameter dtqid.

- There is a task in the reception wait queue.
These service calls transfer the data specified by parameter data to the task in the top of the reception wait queue. As
a result, the task is unlinked from the reception wait queue and moves from the WAITING state (data reception wait
state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

- There is no task neither in the reception wait queue and transmission wait queue and there is available space in the
data queue.
These service calls store the data specified by parameter data to the data queue.

- There is no task neither in the reception wait queue and transmission wait queue and there is no available space in
the data queue, or there is a task in the transmission wait queue.
These service calls return “E_TMOUT”.

Note Data is written to the data queue area of the target data queue in the order of the data transmission request.

Return value

I/O Parameter Description

I ID dtqid; ID number of the data queue.

I VP_INT data; Data element to be sent to the data queue.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- dtqid < 0

- dtqid > VTMAX_DTQ

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 257 of 447
Sep 20, 2013

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- The ipsnd_dtq was issued from task.

- The psnd_dtq was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_TMOUT -50 Polling failure.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 258 of 447
Sep 20, 2013

tsnd_dtq

Outline

Send to data queue (with time-out).

C format

ER tsnd_dtq (ID dtqid, VP_INT data, TMO tmout);

Parameter(s)

Explanation

This service call processes as follows according to the situation of the data queue specified by the parameter dtqid.

- There is a task in the reception wait queue.
This service call transfers the data specified by parameter data to the task in the top of the reception wait queue. As
a result, the task is unlinked from the reception wait queue and moves from the WAITING state (data reception wait
state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

- There is no task neither in the reception wait queue and transmission wait queue and there is available space in the
data queue.
This service call stores the data specified by parameter data to the data queue.

- There is no task neither in the reception wait queue and transmission wait queue and there is no available space in
the data queue, or there is a task in the transmission wait queue.
This service call queues the invoking task to the transmission wait queue of the target data queue and moves it from
the RUNNING state to the WAITING state with time (data transmission wait state).
The sending WAITING state for a data queue is cancelled in the following cases.

I/O Parameter Description

I ID dtqid; ID number of the data queue.

I VP_INT data; Data element to be sent to the data queue.

I TMO tmout;

Specified time-out (in millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified time-out.

Sending WAITING State for a Data Queue Cancel Operation Return Value

Available space was secured in the data queue area as a result of issuing rcv_dtq. E_OK

Available space was secured in the data queue area as a result of issuing prcv_dtq. E_OK

Available space was secured in the data queue area as a result of issuing iprcv_dtq. E_OK

Available space was secured in the data queue area as a result of issuing trcv_dtq. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The data queue is reset as a result of issuing vrst_dtq. EV_RST

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 259 of 447
Sep 20, 2013

Note 1 Data is written to the data queue area of the target data queue in the order of the data transmission request.

Note 2 Invoking tasks are queued to the transmission wait queue of the target data queue in the order defined during
configuration (FIFO order or current priority order).

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to snd_dtq will be executed. When
TMO_POL is specified, processing equivalent to psnd_dtq will be executed.

Return value

The time specified by tmout has elapsed. E_TMOUT

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- tmout < -1

- tmout > (0x7FFFFFFF - TIC_NUME) / TIC_DENO

E_ID -18

Invalid ID number.

- dtqid < 0

- dtqid > VTMAX_DTQ

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50 Polling failure or specified time has elapsed.

EV_RST -127 Released from WAITING state by the object reset (vrst_dtq)

Sending WAITING State for a Data Queue Cancel Operation Return Value

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 260 of 447
Sep 20, 2013

fsnd_dtq
ifsnd_dtq

Outline

Forced send to data queue.

C format

ER fsnd_dtq (ID dtqid, VP_INT data);
ER ifsnd_dtq (ID dtqid, VP_INT data);

Parameter(s)

Explanation

These service calls process as follows according to the situation of the data queue specified by the parameter dtqid.

- There is a task in the reception wait queue.
This service call transfers the data specified by parameter data to the task in the top of the reception wait queue. As
a result, the task is unlinked from the reception wait queue and moves from the WAITING state (data reception wait
state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

- There is no task neither in the reception wait queue and transmission wait queue.
This service call stores the data specified by parameter data to the data queue.
If there is no available space in the data queue, this service call deletes the oldest data in the data queue before
storing the data specified by data to the data queue.

Return value

I/O Parameter Description

I ID dtqid; ID number of the data queue.

I VP_INT data; Data element to be sent to the data queue.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- dtqid < 0

- dtqid > VTMAX_DTQ

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 261 of 447
Sep 20, 2013

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- The ifsnd_dtq was issued from task.

- The fsnd_dtq was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_ILUSE -28
Illegal use of service call.

- The capacity of the data queue area is 0.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 262 of 447
Sep 20, 2013

rcv_dtq

Outline

Receive from data queue (waiting forever).

C format

ER rcv_dtq (ID dtqid, VP_INT *p_data);

Parameter(s)

Explanation

This service call processes as follows according to the situation of the data queue specified by the parameter dtqid.

- There is a data in the data queue.
This service call takes out the oldest data from the data queue and stores the data to the area specified by p_data.
When there is a task in the transmission wait queue, this service call stores the data sent by the task in the top of the
transmission wait queue and moves it from the WAITING state (data transmission wait state) to the READY state.

- There is no data in the data queue and there is a task in the transmission wait queue.
This service call stores the data specified by the task in the top of the transmission wait queue to the area specified by
p_data. As a result, the task is unlinked from the transmission wait queue and moves from the WAITING state (data
transmission wait state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.
Note, this situation is caused only when the capacity of the data queue is 0.

- There is no data in the data queue and there is no task in the transmission wait queue.
This service call queues the invoking task to the reception wait queue of the target data queue and moves it from the
RUNNING state to the WAITING state (data reception wait state).
The receiving WAITING state for a data queue is cancelled in the following cases.

I/O Parameter Description

I ID dtqid; ID number of the data queue.

O VP_INT *p_data; Data element received from the data queue.

Receiving WAITING State for a Data Queue Cancel Operation Return Value

Data was sent to the data queue area as a result of issuing snd_dtq. E_OK

Data was sent to the data queue area as a result of issuing psnd_dtq. E_OK

Data was sent to the data queue area as a result of issuing ipsnd_dtq. E_OK

Data was sent to the data queue area as a result of issuing tsnd_dtq. E_OK

Data was sent to the data queue area as a result of issuing fsnd_dtq. E_OK

Data was sent to the data queue area as a result of issuing ifsnd_dtq. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 263 of 447
Sep 20, 2013

Note Invoking tasks are queued to the reception wait queue of the target data queue in the order of the data
reception request.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- dtqid < 0

- dtqid > VTMAX_DTQ

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 264 of 447
Sep 20, 2013

prcv_dtq
iprcv_dtq

Outline

Receive from data queue (polling).

C format

ER prcv_dtq (ID dtqid, VP_INT *p_data);
ER iprcv_dtq (ID dtqid, VP_INT *p_data);

Parameter(s)

Explanation

These service calls process as follows according to the situation of the data queue specified by the parameter dtqid.

- There is a data in the data queue.
This service call takes out the oldest data from the data queue and stores the data to the area specified by p_data.
When there is a task in the transmission wait queue, this service call stores the data sent by the task in the top of the
transmission wait queue and moves it from the WAITING state (data transmission wait state) to the READY state.

- There is no data in the data queue and there is a task in the transmission wait queue.
These service calls store the data specified by the task in the top of the transmission wait queue to the area specified
by p_data. As a result, the task is unlinked from the transmission wait queue and moves from the WAITING state
(data transmission wait state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED
state.
Note, this situation is caused only when the capacity of the data queue is 0.

- There is no data in the data queue and there is no task in the transmission wait queue.
These service calls return “E_TMOUT”.

Return value

I/O Parameter Description

I ID dtqid; ID number of the data queue.

O VP_INT *p_data; Data element received from the data queue.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- dtqid < 0

- dtqid > VTMAX_DTQ

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 265 of 447
Sep 20, 2013

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- The iprcv_dtq was issued from task.

- The prcv_dtq was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_TMOUT -50 Polling failure.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 266 of 447
Sep 20, 2013

trcv_dtq

Outline

Receive from data queue (with time-out).

C format

ER trcv_dtq (ID dtqid, VP_INT *p_data, TMO tmout);

Parameter(s)

Explanation

This service call processes as follows according to the situation of the data queue specified by the parameter dtqid.

- There is a data in the data queue.
This service call takes out the oldest data from the data queue and stores the data to the area specified by p_data.
When there is a task in the transmission wait queue, this service call stores the data sent by the task in the top of the
transmission wait queue and moves it from the WAITING state (data transmission wait state) to the READY state.

- There is no data in the data queue and there is a task in the transmission wait queue.
This service call stores the data specified by the task in the top of the transmission wait queue to the area specified by
p_data. As a result, the task is unlinked from the transmission wait queue and moves from the WAITING state (data
transmission wait state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.
Note, this situation is caused only when the capacity of the data queue is 0.

- There is no data in the data queue and there is no task in the transmission wait queue.
This service call queues the invoking task to the reception wait queue of the target data queue and moves it from the
RUNNING state to the WAITING state with time (data reception wait state).
The receiving WAITING state for a data queue is cancelled in the following cases.

I/O Parameter Description

I ID dtqid; ID number of the data queue.

O VP_INT *p_data; Data element received from the data queue.

I TMO tmout;

Specified time-out (in millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified time-out.

Receiving WAITING State for a Data Queue Cancel Operation Return Value

Data was sent to the data queue area as a result of issuing snd_dtq. E_OK

Data was sent to the data queue area as a result of issuing psnd_dtq. E_OK

Data was sent to the data queue area as a result of issuing ipsnd_dtq. E_OK

Data was sent to the data queue area as a result of issuing tsnd_dtq. E_OK

Data was sent to the data queue area as a result of issuing fsnd_dtq. E_OK

Data was sent to the data queue area as a result of issuing ifsnd_dtq. E_OK

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 267 of 447
Sep 20, 2013

Note 1 Invoking tasks are queued to the reception wait queue of the target data queue in the order of the data
reception request.

Note 2 TMO_FEVR is specified for wait time tmout, processing equivalent to rcv_dtq will be executed. When
TMO_POL is specified, processing equivalent to prcv_dtq will be executed.

Return value

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The time specified by tmout has elapsed. E_TMOUT

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- tmout < -1

- tmout > (0x7FFFFFFF - TIC_NUME) / TIC_DENO

E_ID -18

Invalid ID number.

- dtqid < 0

- dtqid > VTMAX_DTQ

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50 Polling failure or specified time has elapsed.

Receiving WAITING State for a Data Queue Cancel Operation Return Value

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 268 of 447
Sep 20, 2013

ref_dtq
iref_dtq

Outline

Reference data queue state.

C format

ER ref_dtq (ID dtqid, T_RDTQ *pk_rdtq);
ER iref_dtq (ID dtqid, T_RDTQ *pk_rdtq);

Parameter(s)

[Data queue state packet: T_RDTQ]

Explanation

These service calls store the detailed information of the data queue (existence of waiting tasks, number of data elements
in the data queue, etc.) specified by parameter dtqid into the area specified by parameter pk_rdtq.

- stskid
Stores whether a task is queued to the transmission wait queue of the data queue.

TSK_NONE: No applicable task
Value: ID number of the task at the head of the transmission wait queue

- rtskid
Stores whether a task is queued to the reception wait queue of the data queue.

TSK_NONE: No applicable task
Value: ID number of the task at the head of the reception wait queue

- sdtqcnt
Stores the number of data elements in data queue.

I/O Parameter Description

I ID dtqid; ID number of the data queue.

O T_RDTQ *pk_rdtq; Pointer to the packet returning the data queue state.

typedef struct t_rdtq {
 ID stskid; /*Existence of tasks waiting for data transmission*/
 ID rtskid; /*Existence of tasks waiting for data reception*/
 UINT sdtqcnt; /*Number of data elements in data queue*/
} T_RDTQ;

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 269 of 447
Sep 20, 2013

Return value

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- dtqid < 0

- dtqid > VTMAX_DTQ

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Note When the iref_dtq is issued from task or the ref_dtq is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 270 of 447
Sep 20, 2013

18.2.6 Synchronization and communication functions (mailboxes)

The following shows the service calls provided by the RI600V4 as the synchronization and communication functions
(mailboxes).

Table 18-8 Synchronization and Communication Functions (Mailboxes)

Service Call Function Useful Range

snd_mbx Send to mailbox Task

isnd_mbx Send to mailbox Non-task

rcv_mbx Receive from mailbox (waiting forever) Task

prcv_mbx Receive from mailbox (polling) Task

iprcv_mbx Receive from mailbox (polling) Non-task

trcv_mbx Receive from mailbox (with time-out) Task

ref_mbx Reference mailbox state Task

iref_mbx Reference mailbox state Non-task

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 271 of 447
Sep 20, 2013

snd_mbx
isnd_mbx

Outline

Send to mailbox.

C format

ER snd_mbx (ID mbxid, T_MSG *pk_msg);
ER isnd_mbx (ID mbxid, T_MSG *pk_msg);

Parameter(s)

[Message packet T_MSG for TA_MFIFO attribute]

[Message packet for T_MSG_PRI for TA_MPRI attribute]

Explanation

This service call transmits the message specified by parameter pk_msg to the mailbox specified by parameter mbxid
(queues the message in the wait queue).
If a task is queued to the target mailbox wait queue when this service call is issued, the message is not queued but
handed over to the relevant task (first task of the wait queue).
As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (receiving WAITING
state for a mailbox) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

Note 1 Messages are queued to the target mailbox message queue in the order defined by queuing method during
configuration (FIFO order or message priority order).

Note 2 Do not modify transmitted message (the area indicated by pk_msg) until the message is received.

I/O Parameter Description

I ID mbxid; ID number of the mailbox.

I T_MSG *pk_msg; Start address of the message packet to be sent to the mailbox.

typedef struct {
 VP msghead; /*RI600V4 management area*/
} T_MSG;

typedef struct {
 T_MSG msgque; /*Message header*/
 PRI msgpri; /*Message priority*/
} T_MSG_PRI;

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 272 of 447
Sep 20, 2013

Return value

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- When the target mailbox has TA_MPRI attribute:

- msgpri < 0

- msgpri > TMAX_MPRI

E_ID -18

Invalid ID number.

- mbxid < 0

- mbxid > VTMAX_MBX

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- The isnd_mbx was issued from task.

- The snd_mbx was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 273 of 447
Sep 20, 2013

rcv_mbx

Outline

Receive from mailbox (waiting forever).

C format

ER rcv_mbx (ID mbxid, T_MSG **ppk_msg);

Parameter(s)

[Message packet T_MSG for TA_MFIFO attribute]

[Message packet T_MSG_PRI for TA_MPRI attribute]

Explanation

This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in the
area specified by parameter ppk_msg.
If no message could be received from the target mailbox (no messages were queued to the wait queue) when this service
call is issued, this service call does not receive messages but queues the invoking task to the target mailbox wait queue
and moves it from the RUNNING state to the WAITING state (message reception wait state).
The receiving WAITING state for a mailbox is cancelled in the following cases.

I/O Parameter Description

I ID mbxid; ID number of the mailbox.

O T_MSG **ppk_msg; Start address of the message packet received from the mailbox.

typedef struct {
 VP msghead; /*RI600V4 management area*/
} T_MSG;

typedef struct {
 T_MSG msgque; /*Message header*/
 PRI msgpri; /*Message priority*/
} T_MSG_PRI;

Receiving WAITING State for a Mailbox Cancel Operation Return Value

A message was transmitted to the target mailbox as a result of issuing snd_mbx. E_OK

A message was transmitted to the target mailbox as a result of issuing isnd_mbx. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 274 of 447
Sep 20, 2013

Note Invoking tasks are queued to the target mailbox wait queue in the order defined during configuration (FIFO
order or current priority order).

Return value

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mbxid < 0

- mbxid > VTMAX_MBX

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 275 of 447
Sep 20, 2013

prcv_mbx
iprcv_mbx

Outline

Receive from mailbox (polling).

C format

ER prcv_mbx (ID mbxid, T_MSG **ppk_msg);
ER iprcv_mbx (ID mbxid, T_MSG **ppk_msg);

Parameter(s)

[M[Message packet T_MSG for TA_MFIFO attribute]

[Message packet T_MSG_PRI for TA_MPRI attribute]

Explanation

This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in the
area specified by parameter ppk_msg.
If the message could not be received from the target mailbox (no messages were queued in the wait queue) when this
service call is issued, message reception processing is not executed but “E_TMOUT” is returned.

Return value

I/O Parameter Description

I ID mbxid; ID number of the mailbox.

O T_MSG **ppk_msg; Start address of the message packet received from the mailbox.

typedef struct {
 VP msghead; /*RI600V4 management area*/
} T_MSG;

typedef struct {
 T_MSG msgque; /*Message header*/
 PRI msgpri; /*Message priority*/
} T_MSG_PRI;

Macro Value Description

E_OK 0 Normal completion.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 276 of 447
Sep 20, 2013

E_ID -18

Invalid ID number.

- mbxid < 0

- mbxid > VTMAX_MBX

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Note When the iprcv_mbx is issued from task or the prcv_mbx is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

E_TMOUT -50 Polling failure.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 277 of 447
Sep 20, 2013

trcv_mbx

Outline

Receive from mailbox (with time-out).

C format

ER trcv_mbx (ID mbxid, T_MSG **ppk_msg, TMO tmout);

Parameter(s)

[Message packet: T_MSG]

[Message packet: T_MSG_PRI]

Explanation

This service call receives a message from the mailbox specified by parameter mbxid, and stores its start address in the
area specified by parameter ppk_msg.
If no message could be received from the target mailbox (no messages were queued to the wait queue) when this service
call is issued, this service call does not receive messages but queues the invoking task to the target mailbox wait queue
and moves it from the RUNNING state to the WAITING state with time-out (message reception wait state).
The receiving WAITING state for a mailbox is cancelled in the following cases.

I/O Parameter Description

I ID mbxid; ID number of the mailbox.

O T_MSG **ppk_msg; Start address of the message packet received from the mailbox.

I TMO tmout;

Specified time-out (in millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified time-out.

typedef struct t_msg {
 struct t_msg *msgnext; /*Reserved for future use*/
} T_MSG;

typedef struct t_msg_pri {
 struct t_msg msgque; /*Reserved for future use*/
 PRI msgpri; /*Message priority*/
} T_MSG_PRI;

Receiving WAITING State for a Mailbox Cancel Operation Return Value

A message was transmitted to the target mailbox as a result of issuing snd_mbx. E_OK

A message was transmitted to the target mailbox as a result of issuing isnd_mbx. E_OK

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 278 of 447
Sep 20, 2013

Note 1 Invoking tasks are queued to the target mailbox wait queue in the order defined during configuration (FIFO
order or current priority order).

Note 2 TMO_FEVR is specified for wait time tmout, processing equivalent to rcv_mbx will be executed. When
TMO_POL is specified, processing equivalent to prcv_mbx will be executed.

Return value

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The time specified by tmout has elapsed. E_TMOUT

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- tmout < -1

- tmout > (0x7FFFFFFF - TIC_NUME) / TIC_DENO

E_ID -18

Invalid ID number.

- mbxid < 0

- mbxid > VTMAX_MBX

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50 Polling failure or specified time has elapsed.

Receiving WAITING State for a Mailbox Cancel Operation Return Value

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 279 of 447
Sep 20, 2013

ref_mbx
iref_mbx

Outline

Reference mailbox state.

C format

ER ref_mbx (ID mbxid, T_RMBX *pk_rmbx);
ER iref_mbx (ID mbxid, T_RMBX *pk_rmbx);

Parameter(s)

[Mailbox state packet: T_RMBX]

Explanation

Stores mailbox state packet (ID number of the task at the head of the wait queue, start address of the message packet at
the head of the wait queue) of the mailbox specified by parameter mbxid in the area specified by parameter pk_rmbx.

- wtskid
Stores whether a task is queued to the mailbox wait queue.

TSK_NONE: No applicable task
Value: ID number of the task at the head of the wait queue

- pk_msg
Stores whether a message is queued to the mailbox wait queue.

NULL: No applicable message
Value: Start address of the message packet at the head of the wait queue

Return value

I/O Parameter Description

I ID mbxid; ID number of the mailbox.

O T_RMBX *pk_rmbx; Pointer to the packet returning the mailbox state.

typedef struct t_rmbx {
 ID wtskid; /*Existence of waiting task*/
 T_MSG *pk_msg; /*Existence of waiting message*/
} T_RMBX;

Macro Value Description

E_OK 0 Normal completion.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 280 of 447
Sep 20, 2013

E_ID -18

Invalid ID number.

- mbxid < 0

- mbxid > VTMAX_MBX

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Note When the iref_mbx is issued from task or the ref_mbx is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 281 of 447
Sep 20, 2013

18.2.7 Extended synchronization and communication functions (mutexes)

The following shows the service calls provided by the RI600V4 as the extended synchronization and communication
functions (mutexes).

Table 18-9 Extended Synchronization and Communication Functions (Mutexes)

Service Call Function Useful Range

loc_mtx Lock mutex (waiting forever) Task

ploc_mtx Lock mutex (polling) Task

tloc_mtx Lock mutex (with time-out) Task

unl_mtx Unlock mutex Task

ref_mtx Reference mutex state Task

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 282 of 447
Sep 20, 2013

loc_mtx

Outline

Lock mutex (waiting forever).

C format

ER loc_mtx (ID mtxid);

Parameter(s)

Explanation

This service call locks the mutex specified by parameter mtxid.
If the target mutex could not be locked (another task has been locked) when this service call is issued, this service call
queues the invoking task to the target mutex wait queue and moves it from the RUNNING state to the WAITING state
(mutex wait state).
The WAITING state for a mutex is cancelled in the following cases.

When the mutex is locked, this service call changes the current priority of the invoking task to the ceiling priority of the
target mutex. However, this service call does not change the current priority when the invoking task has locked other
mutexes and the ceiling priority of the target mutex is lower than or equal to the ceiling priority of the locked mutexes.

Note 1 Invoking tasks are queued to the target mutex wait queue in the priority order. Among tasks with the same pri-
ority, they are queued in FIFO order.

Note 2 This service call returns “E_ILUSE” if this service call is re-issued for the mutex that has been locked by the
invoking task (multiple-locking of mutex).

I/O Parameter Description

I ID mtxid; ID number of the mutex.

WAITING State for a Mutex Cancel Operation Return Value

The locked state of the target mutex was cancelled as a result of issuing unl_mtx. E_OK

The locked state of the target mutex was cancelled as a result of issuing ext_tsk. E_OK

The locked state of the target mutex was cancelled as a result of issuing ter_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 283 of 447
Sep 20, 2013

Return value

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

InvalidID number.

- mtxid < 0

- mtxid > VTMAX_MTX

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_ILUSE -28

Illegal use of service call.

- The invoking task has already locked the target mutex.

- Ceiling priority violation (the base priority of the invoking task < the ceiling pri-
ority of the target mutex)

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 284 of 447
Sep 20, 2013

ploc_mtx

Outline

Lock mutex (polling).

C format

ER ploc_mtx (ID mtxid);

Parameter(s)

Explanation

This service call locks the mutex specified by parameter mtxid.
If the target mutex could not be locked (another task has been locked) when this service call is issued but “E_TMOUT” is
returned.
When the mutex is locked, this service call changes the current priority of the invoking task to the ceiling priority of the
target mutex. However, this service call does not change the current priority when the invoking task has locked other
mutexes and the ceiling priority of the target mutex is lower than or equal to the ceiling priority of the locked mutexes.

Note This service call returns “E_ILUSE” if this service call is re-issued for the mutex that has been locked by the
invoking task (multiple-locking of mutex).

Return value

I/O Parameter Description

I ID mtxid; ID number of the mutex.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mtxid < 0

- mtxid > VTMAX_MTX

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_ILUSE -28

Illegal use of service call.

- The invoking task has already locked the target mutex.

- Ceiling priority violation (the base priority of the invoking task < the ceiling pri-
ority of the target mutex)

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 285 of 447
Sep 20, 2013

E_TMOUT -50 Polling failure.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 286 of 447
Sep 20, 2013

tloc_mtx

Outline

Lock mutex (with time-out).

C format

ER tloc_mtx (ID mtxid, TMO tmout);

Parameter(s)

Explanation

This service call locks the mutex specified by parameter mtxid.
If the target mutex could not be locked (another task has been locked) when this service call is issued, this service call
queues the invoking task to the target mutex wait queue and moves it from the RUNNING state to the WAITING state with
time-out (mutex wait state).
The WAITING state for a mutex is cancelled in the following cases.

When the mutex is locked, this service call changes the current priority of the invoking task to the ceiling priority of the
target mutex. However, this service call does not change the current priority when the invoking task has locked other
mutexes and the ceiling priority of the target mutex is lower than or equal to the ceiling priority of the locked mutexes.

Note 1 Invoking tasks are queued to the target mutex wait queue in the priority order. Among tasks with the same pri-
ority, they are queued in FIFO order.

Note 2 This service call returns “E_ILUSE” if this service call is re-issued for the mutex that has been locked by the
invoking task (multiple-locking of mutex).

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to loc_mtx will be executed. When
TMO_POL is specified, processing equivalent to ploc_mtx will be executed.

I/O Parameter Description

I ID mtxid; ID number of the mutex.

I TMO tmout;

Specified time-out (in millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified time-out.

WAITING State for a Mutex Cancel Operation Return Value

The locked state of the target mutex was cancelled as a result of issuing unl_mtx. E_OK

The locked state of the target mutex was cancelled as a result of issuing ext_tsk. E_OK

The locked state of the target mutex was cancelled as a result of issuing ter_tsk. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The time specified by tmout has elapsed. E_TMOUT

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 287 of 447
Sep 20, 2013

Return value

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- tmout < -1

- tmout > (0x7FFFFFFF - TIC_NUME) / TIC_DENO

E_ID -18

Invalid ID number.

- mtxid < 0

- mtxid > VTMAX_MTX

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_ILUSE -28

Illegal use of service call.

- The invoking task has already locked the target mutex.

- Ceiling priority violation (the base priority of the invoking task < the ceiling pri-
ority of the target mutex)

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50 Polling failure or specified time has elapsed.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 288 of 447
Sep 20, 2013

unl_mtx

Outline

Unlock mutex.

C format

ER unl_mtx (ID mtxid);

Parameter(s)

Explanation

This service call unlocks the locked mutex specified by parameter mtxid.
If a task has been queued to the target mutex wait queue when this service call is issued, mutex lock processing is
performed by the task (the first task in the wait queue) immediately after mutex unlock processing.
As a result, the task is unlinked from the wait queue and moves from the WAITING state (mutex wait state) to the READY
state, or from the WAITING-SUSPENDED state to the SUSPENDED state. And this service call changes the current
priority of the task to the ceiling priority of the target mutex. However, this service call does not change the current priority
when the task has locked other mutexes and the ceiling priority of the target mutex is lower than or equal to the ceiling
priority of the locked mutexes.

Note 1 A locked mutex can be unlocked only by the task that locked the mutex.
If this service call is issued for a mutex that was not locked by the invoking task, “E_ILUSE” is returned.

Note 2 When a task terminates, mutexes locked by the task are unlocked.

Return value

I/O Parameter Description

I ID mtxid; ID number of the mutex.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mtxid < 0

- mtxid > VTMAX_MTX

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_ILUSE -28
Illegal use of service call.

- The invoking task have not locked the target mutex.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 289 of 447
Sep 20, 2013

ref_mtx

Outline

Reference mutex state.

C format

ER ref_mtx (ID mtxid, T_RMTX *pk_rmtx);

Parameter(s)

[Mutex state packet: T_RMTX]

Explanation

This service call stores the detailed information of the mutex specified by parameter mtxid (existence of locked mutexes,
waiting tasks, etc.) into the area specified by parameter pk_rmtx.

- htskid
Stores whether a task that is locking a mutex exists.

TSK_NONE: No applicable task
Value: ID number of the task locking the mutex

- wtskid
Stores whether a task is queued to the mutex wait queue.

TSK_NONE: No applicable task
Value: ID number of the task at the head of the wait queue

Return value

I/O Parameter Description

I ID mtxid; ID number of the mutex.

O T_RMTX *pk_rmtx; Pointer to the packet returning the mutex state.

typedef struct t_rmtx {
 ID htskid; /*Existence of locked mutex*/
 ID wtskid; /*Existence of waiting task*/
} T_RMTX;

Macro Value Description

E_OK 0 Normal completion.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 290 of 447
Sep 20, 2013

E_ID -18

Invalid ID number.

- mtxid < 0

- mtxid > VTMAX_MTX

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 291 of 447
Sep 20, 2013

18.2.8 Extended synchronization and communication functions (message buffers)

The following shows the service calls provided by the RI600V4 as the extended synchronization and communication
functions (message buffers).

Table 18-10 Extended Synchronization and Communication Functions (Message Buffers)

Service Call Function Useful Range

snd_mbf Send to message buffer (waiting forever) Task

psnd_mbf Send to message buffer (polling) Task

ipsnd_mbf Send to message buffer (polling) Non-task

tsnd_mbf Send to message buffer (with time-out) Task

rcv_mbf Receive from message buffer (waiting forever) Task

prcv_mbf Receive from message buffer (polling) Task

trcv_mbf Receive from message buffer (with time-out) Task

ref_mbf Reference message buffer state Task

iref_mbf Reference message buffer state Non-task

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 292 of 447
Sep 20, 2013

snd_mbf

Outline

Send to message buffer (waiting forever).

C format

ER tsnd_mbf (ID mbfid, VP msg, UINT msgsz);

Parameter(s)

Explanation

This service call processes as follows according to the situation of the message buffer specified by the parameter mbfid.

- There is a task in the reception wait queue.
This service call transfers the message specified by parameter msg to the task in the top of the reception wait queue.
As a result, the task is unlinked from the reception wait queue and moves from the WAITING state (message
reception wait state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

- There is no task neither in the reception wait queue and transmission wait queue and there is available space in the
message buffer.
This service call stores the message specified by parameter msg to the message buffer. As a result, the size of
available space in the target message buffer decreases by the amount calculated by the following expression.

The amount of decrease = up4(msgsz) + VTSZ_MBFTBL

- There is no task neither in the reception wait queue and transmission wait queue and there is no available space in
the message buffer, or there is a task in the transmission wait queue.
This service call queues the invoking task to the transmission wait queue of the target message buffer and moves it
from the RUNNING state to the WAITING state (message transmission wait state).
The sending WAITING state for a message buffer is cancelled in the following cases.

I/O Parameter Description

I ID mbfid; ID number of the message buffer.

I VP msg; Pointer to the message to be sent.

I UINT msgsz; Message size to be sent (in bytes).

Sending WAITING State for a Message Buffer Cancel Operation Return Value

Available space was secured in the message buffer area as a result of issuing rcv_mbf. E_OK

Available space was secured in the message buffer area as a result of issuing prcv_mbf. E_OK

Available space was secured in the message buffer area as a result of issuing trcv_mbf. E_OK

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 293 of 447
Sep 20, 2013

Note 1 Message is written to the message buffer area in the order of the message transmission request.

Note 2 Invoking tasks are queued to the transmission wait queue of the target message buffer in the FIFO order.

Return value

The task at the top of the transmission wait queue was forcedly released from waiting by fol-
lowing either.

- Forced release from waiting (accept rel_wai while waiting).

- Forced release from waiting (accept irel_wai while waiting).

- Forced release from waiting (accept ter_tsk while waiting).

- The time specified by tmout for tsnd_mbf has elapsed.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The message buffer is reset as a result of issuing vrst_mbf. EV_RST

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- msgsz == 0

- msgsz > Maximum message size (max_msgsz)

E_ID -18

Invalid ID number.

- mbfid < 0

- mbfid > VTMAX_MBF

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

EV_RST -127 Released from WAITING state by the object reset (vrst_mbf)

Sending WAITING State for a Message Buffer Cancel Operation Return Value

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 294 of 447
Sep 20, 2013

psnd_mbf
ipsnd_mbf

Outline

Send to message buffer (polling).

C format

ER psnd_mbf (ID mbfid, VP msg, UINT msgsz);
ER ipsnd_mbf (ID mbfid, VP msg, UINT msgsz);

Parameter(s)

Explanation

These service calls process as follows according to the situation of the message buffer specified by the parameter mbfid.

- There is a task in the reception wait queue.
This service call transfers the message specified by parameter msg to the task in the top of the reception wait queue.
As a result, the task is unlinked from the reception wait queue and moves from the WAITING state (message
reception wait state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

- There is no task neither in the reception wait queue and transmission wait queue and there is available space in the
message buffer.
This service call stores the message specified by parameter msg to the message buffer. As a result, the size of
available space in the target message buffer decreases by the amount calculated by the following expression.

The amount of decrease = up4(msgsz) + VTSZ_MBFTBL

- There is no task neither in the reception wait queue and transmission wait queue and there is no available space in
the message buffer, or there is a task in the transmission wait queue.
These service calls return “E_TMOUT”.

Note Message is written to the message buffer area in the order of the message transmission request.

Return value

I/O Parameter Description

I ID mbfid; ID number of the message buffer.

I VP msg; Pointer to the message to be sent.

I UINT msgsz; Message size to be sent (in bytes).

Macro Value Description

E_OK 0 Normal completion.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 295 of 447
Sep 20, 2013

E_PAR -17

Parameter error.

- msgsz == 0

- msgsz > Maximum message size (max_msgsz)

E_ID -18

Invalid ID number.

- mbfid < 0

- mbfid > VTMAX_MBF

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- The ipsnd_mbf was issued from task.

- The psnd_mbf was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_TMOUT -50 Polling failure.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 296 of 447
Sep 20, 2013

tsnd_mbf

Outline

Send to message buffer (with time-out).

C format

ER tsnd_mbf (ID mbfid, VP msg, UINT msgsz, TMO tmout);

Parameter(s)

Explanation

This service call processes as follows according to the situation of the message buffer specified by the parameter mbfid.

- There is a task in the reception wait queue.
This service call transfers the message specified by parameter msg to the task in the top of the reception wait queue.
As a result, the task is unlinked from the reception wait queue and moves from the WAITING state (message
reception wait state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

- There is no task neither in the reception wait queue and transmission wait queue and there is available space in the
message buffer.
This service call stores the message specified by parameter msg to the message buffer. As a result, the size of
available space in the target message buffer decreases by the amount calculated by the following expression.

The amount of decrease = up4(msgsz) + VTSZ_MBFTBL

- There is no task neither in the reception wait queue and transmission wait queue and there is no available space in
the message buffer, or there is a task in the transmission wait queue.
This service call queues the invoking task to the transmission wait queue of the target message buffer and moves it
from the RUNNING state to the WAITING state with time (message transmission wait state).
The sending WAITING state for a message buffer is cancelled in the following cases.

I/O Parameter Description

I ID mbfid; ID number of the message buffer.

I VP msg; Pointer to the message to be sent.

I UINT msgsz; Message size to be sent (in bytes).

I TMO tmout;

Specified time-out (in millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified time-out.

Sending WAITING State for a Message Buffer Cancel Operation Return Value

Available space was secured in the message buffer area as a result of issuing rcv_mbf. E_OK

Available space was secured in the message buffer area as a result of issuing prcv_mbf. E_OK

Available space was secured in the message buffer area as a result of issuing trcv_mbf. E_OK

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 297 of 447
Sep 20, 2013

Note 1 Message is written to the message buffer area in the order of the message transmission request.

Note 2 Invoking tasks are queued to the transmission wait queue of the target message buffer in the FIFO order.

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to snd_mbf will be executed. When
TMO_POL is specified, processing equivalent to psnd_mbf will be executed.

Return value

The task at the top of the transmission wait queue was forcedly released from waiting by fol-
lowing either.

- Forced release from waiting (accept rel_wai while waiting).

- Forced release from waiting (accept irel_wai while waiting).

- Forced release from waiting (accept ter_tsk while waiting).

- The time specified by tmout for tsnd_mbf has elapsed.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The message buffer is reset as a result of issuing vrst_mbf. EV_RST

The time specified by tmout has elapsed. E_TMOUT

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- msgsz == 0

- msgsz > Maximum message size (max_msgsz)

- tmout < -1

- tmout > (0x7FFFFFFF - TIC_NUME) / TIC_DENO

E_ID -18

Invalid ID number.

- mbfid < 0

- mbfid > VTMAX_MBF

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50 Polling failure or specified time has elapsed.

EV_RST -127 Released from WAITING state by the object reset (vrst_mbf)

Sending WAITING State for a Message Buffer Cancel Operation Return Value

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 298 of 447
Sep 20, 2013

rcv_mbf

Outline

Receive from message buffer (waiting forever).

C format

ER_UINT rcv_mbf (ID mbfid, VP msg);

Parameter(s)

Explanation

This service call processes as follows according to the situation of the message buffer specified by the parameter mbfid.

- There is a message in the message buffer.
This service call takes out the oldest message from the message buffer and stores the message to the area specified
by msg and return the size of the message. As a result, the size of available space in the target message buffer
increases by the amount calculated by the following expression.

The amount of increase = up4(Return value) + VTSZ_MBFTBL

In addition, this service call repeats the following processing until task in the transmission wait queue is lost or it
becomes impossible to store the message in the message buffer.

- When there is a task in the transmission wait queue and there is available space in the message buffer for the
message specified by the task in the top of the transmission wait queue, the task is unlinked from the transmis-
sion wait queue and moves from the WAITING state (message transmission wait state) to the READY state, or
from the WAITING-SUSPENDED state to the SUSPENDED state. As a result, the size of available space in the
target message buffer decreases by the amount calculated by the following expression.

The amount of decrease =up4(The message size sent by the task) + VTSZ_MBFTBL

- There is no message in the message buffer and there is a task in the transmission wait queue.
This service call stores the message specified by the task in the top of the transmission wait queue to the area
pointed by the parameter msg. As a result, the task is unlinked from the transmission wait queue and moves from the
WAITING state (message transmission wait state) to the READY state, or from the WAITING-SUSPENDED state to
the SUSPENDED state.
Note, this situation is caused only when the size of the message buffer is 0.

- There is no message in the message buffer and there is no task in the transmission wait queue.
This service call queues the invoking task to the reception wait queue of the target message buffer and moves it from
the RUNNING state to the WAITING state (message reception wait state).
The receiving WAITING state for a message buffer is cancelled in the following cases.

I/O Parameter Description

I ID mbfid; ID number of the message buffer.

O VP msg; Pointer to store the message.

Receiving WAITING State for a Message Buffer Cancel Operation Return Value

Message was sent to the message buffer area as a result of issuing snd_mbf. E_OK

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 299 of 447
Sep 20, 2013

Note 1 The Maximum message size (max_msgsz) is defined during configuration. The size of the area pointed by
msg must be larger than or equal to the maximum message size.

Note 2 Invoking tasks are queued to the reception wait queue of the target message buffer in the order of the
message reception request.

Return value

Message was sent to the message buffer area as a result of issuing psnd_mbf. E_OK

Message was sent to the message buffer area as a result of issuing ipsnd_mbf. E_OK

Message was sent to the message buffer area as a result of issuing tsnd_mbf. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

Macro Value Description

E_ID -18

Invalid ID number.

- mbfid < 0

- mbfid > VTMAX_MBF

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

-
Positive
value

Normal completion (the size of the received message).

Receiving WAITING State for a Message Buffer Cancel Operation Return Value

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 300 of 447
Sep 20, 2013

prcv_mbf

Outline

Receive from message buffer (polling).

C format

ER_UINT prcv_mbf (ID mbfid, VP msg);

Parameter(s)

Explanation

- There is a message in the message buffer.
This service call takes out the oldest message from the message buffer and stores the message to the area specified
by msg and return the size of the message. As a result, the size of available space in the target message buffer
increases by the amount calculated by the following expression.

The amount of increase = up4(Return value) + VTSZ_MBFTBL

In addition, this service call repeats the following processing until task in the transmission wait queue is lost or it
becomes impossible to store the message in the message buffer.

- When there is a task in the transmission wait queue and there is available space in the message buffer for the
message specified by the task in the top of the transmission wait queue, the task is unlinked from the transmis-
sion wait queue and moves from the WAITING state (message transmission wait state) to the READY state, or
from the WAITING-SUSPENDED state to the SUSPENDED state. As a result, the size of available space in the
target message buffer decreases by the amount calculated by the following expression.

The amount of decrease =up4(The message size sent by the task) + VTSZ_MBFTBL

- There is no message in the message buffer and there is a task in the transmission wait queue.
This service call stores the message specified by the task in the top of the transmission wait queue to the area
pointed by the parameter msg. As a result, the task is unlinked from the transmission wait queue and moves from the
WAITING state (message transmission wait state) to the READY state, or from the WAITING-SUSPENDED state to
the SUSPENDED state.
Note, this situation is caused only when the size of the message buffer is 0.

- There is no message in the message buffer and there is no task in the transmission wait queue.
This service call returns “E_TMOUT”.

Note The Maximum message size (max_msgsz) is defined during configuration. The size of the area pointed by
msg must be larger than or equal to the maximum message size.

I/O Parameter Description

I ID mbfid; ID number of the message buffer.

O VP msg; Pointer to store the message.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 301 of 447
Sep 20, 2013

Return value

Macro Value Description

E_ID -18

Invalid ID number.

- mbfid < 0

- mbfid > VTMAX_MBF

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_TMOUT -50 Polling failure.

-
Positive
value

Normal completion (the size of the received message).

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 302 of 447
Sep 20, 2013

trcv_mbf

Outline

Receive from message buffer (with time-out).

C format

ER_UINT trcv_mbf (ID mbfid, VP msg, TMO tmout);

Parameter(s)

Explanation

This service call processes as follows according to the situation of the message buffer specified by the parameter mbfid.

- There is a message in the message buffer.
This service call takes out the oldest message from the message buffer and stores the message to the area specified
by msg and return the size of the message. As a result, the size of available space in the target message buffer
increases by the amount calculated by the following expression.

The amount of increase = up4(Return value) + VTSZ_MBFTBL

In addition, this service call repeats the following processing until task in the transmission wait queue is lost or it
becomes impossible to store the message in the message buffer.

- When there is a task in the transmission wait queue and there is available space in the message buffer for the
message specified by the task in the top of the transmission wait queue, the task is unlinked from the transmis-
sion wait queue and moves from the WAITING state (message transmission wait state) to the READY state, or
from the WAITING-SUSPENDED state to the SUSPENDED state. As a result, the size of available space in the
target message buffer decreases by the amount calculated by the following expression.

The amount of decrease =up4(The message size sent by the task) + VTSZ_MBFTBL

- There is no message in the message buffer and there is a task in the transmission wait queue.
This service call stores the message specified by the task in the top of the transmission wait queue to the area
pointed by the parameter msg. As a result, the task is unlinked from the transmission wait queue and moves from the
WAITING state (message transmission wait state) to the READY state, or from the WAITING-SUSPENDED state to
the SUSPENDED state.
Note, this situation is caused only when the size of the message buffer is 0.

- There is no message in the message buffer and there is no task in the transmission wait queue.
This service call queues the invoking task to the reception wait queue of the target message buffer and moves it from
the RUNNING state to the WAITING state with time (message reception wait state).
The receiving WAITING state for a message buffer is cancelled in the following cases.

I/O Parameter Description

I ID mbfid; ID number of the message buffer.

O VP msg; Pointer to store the message.

I TMO tmout;

Specified time-out (in millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified time-out.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 303 of 447
Sep 20, 2013

Note 1 The Maximum message size (max_msgsz) is defined during configuration. The size of the area pointed by
msg must be larger than or equal to the maximum message size.

Note 2 Invoking tasks are queued to the reception wait queue of the target message buffer in the order of the
message reception request.

Note 3 TMO_FEVR is specified for wait time tmout, processing equivalent to rcv_mbf will be executed. When
TMO_POL is specified, processing equivalent to prcv_mbf will be executed.

Return value

Receiving WAITING State for a Message Buffer Cancel Operation Return Value

Message was sent to the message buffer area as a result of issuing snd_mbf. E_OK

Message was sent to the message buffer area as a result of issuing psnd_mbf. E_OK

Message was sent to the message buffer area as a result of issuing ipsnd_mbf. E_OK

Message was sent to the message buffer area as a result of issuing tsnd_mbf. E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The time specified by tmout has elapsed. E_TMOUT

Macro Value Description

E_PAR -17

Parameter error.

- tmout < -1

- tmout > (0x7FFFFFFF - TIC_NUME) / TIC_DENO

E_ID -18

Invalid ID number.

- mbfid < 0

- mbfid > VTMAX_MBF

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50 Polling failure or specified time has elapsed.

-
Positive
value

Normal completion (the size of the received message).

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 304 of 447
Sep 20, 2013

ref_mbf
iref_mbf

Outline

Reference message buffer state.

C format

ER ref_mbf (ID mbfid, T_RMBF *pk_rmbf);
ER iref_mbf (ID mbfid, T_RMBF *pk_rmbf);

Parameter(s)

[Message buffer state packet: T_RMBF]

Explanation

These service calls store the detailed information of the message buffer (existence of waiting tasks, number of data
elements in the message buffer, etc.) specified by parameter mbfid into the area specified by parameter pk_rmbf.

- stskid
Stores whether a task is queued to the transmission wait queue of the message buffer.

TSK_NONE: No applicable task
Value: ID number of the task at the head of the transmission wait queue

- rtskid
Stores whether a task is queued to the reception wait queue of the message buffer.

TSK_NONE: No applicable task
Value: ID number of the task at the head of the reception wait queue

- smsgcnt
Stores the number of message elements in message buffer.

- fmbfsz
Stores available size of the message buffer (in bytes).

I/O Parameter Description

I ID mbfid; ID number of the message.

O T_RMBF *pk_rmbf; Pointer to the packet returning the message buffer state.

typedef struct t_rmbf {
 ID stskid; /*Existence of tasks waiting for message transmission*/
 ID rtskid; /*Existence of tasks waiting for message reception*/
 UINT smsgcnt; /*Number of message elements in message buffer*/
 SIZE fmbfsz; /*Available buffer size*/
} T_RMBF;

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 305 of 447
Sep 20, 2013

Return value

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mbfid < 0

- mbfid > VTMAX_MBF

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Note When the iref_mbf is issued from task or the ref_mbf is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 306 of 447
Sep 20, 2013

18.2.9 Memory pool management functions (fixed-sized memory pools)

The following shows the service calls provided by the RI600V4 as the memory pool management functions (fixed-sized
memory pools).

Table 18-11 Memory Pool Management Functions (Fixed-Sized Memory Pools)

Service Call Function Useful Range

get_mpf Acquire fixed-sized memory block (waiting forever) Task

pget_mpf Acquire fixed-sized memory block (polling) Task

ipget_mpf Acquire fixed-sized memory block (polling) Non-task

tget_mpf Acquire fixed-sized memory block (with time-out) Task

rel_mpf Release fixed-sized memory block Task

irel_mpf Release fixed-sized memory block Non-task

ref_mpf Reference fixed-sized memory pool state Task

iref_mpf Reference fixed-sized memory pool state Non-task

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 307 of 447
Sep 20, 2013

get_mpf

Outline

Acquire fixed-sized memory block (waiting forever).

C format

ER get_mpf (ID mpfid, VP *p_blk);

Parameter(s)

Explanation

This service call acquires the fixed-sized memory block from the fixed-sized memory pool specified by parameter mpfid
and stores the start address in the area specified by parameter p_blk.
If no fixed-size memory blocks could be acquired from the target fixed-size memory pool (no available fixed-size memory
blocks exist) when this service call is issued, this service call does not acquire the fixed-size memory block but queues the
invoking task to the target fixed-size memory pool wait queue and moves it from the RUNNING state to the WAITING state
(fixed-size memory block acquisition wait state).
The WAITING state for a fixed-sized memory block is cancelled in the following cases.

Note 1 Invoking tasks are queued to the target fixed-size memory pool wait queue in the order defined during
configuration (FIFO order or current priority order).

Note 2 The contents of the block are undefined.

Note 3 The boundary alignment for the memory blocks acquired is 1. If memory blocks need to be acquired with a
larger boundary alignment than that, observe the following:

- Set The size of the fixed-sized memory block (siz_block) in Fixed-sized Memory Pool Information
(memorypool[]) to multiple of the desired boundary alignment.

- Specify unique section name to the Section name assigned to the memory pool area (section) in Fixed-sized
Memory Pool Information (memorypool[]) and locate the section to the address of the desired boundary
alignment when linking.

I/O Parameter Description

I ID mpfid; ID number of the fixed-sized memory pool.

O VP *p_blk; Start address of the acquired memory block.

WAITING State for a Fixed-sized Memory Block Cancel Operation Return Value

A fixed-sized memory block was returned to the target fixed-sized memory pool as a result of
issuing rel_mpf.

E_OK

A fixed-sized memory block was returned to the target fixed-sized memory pool as a result of
issuing irel_mpf.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The fixed-sized memory pool is reset as a result of issuing vrst_mpf. EV_RST

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 308 of 447
Sep 20, 2013

Return value

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mpfid < 0

- mpfid > VTMAX_MPF

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

EV_RST -127 Released from WAITING state by the object reset (vrst_mpf)

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 309 of 447
Sep 20, 2013

pget_mpf
ipget_mpf

Outline

Acquire fixed-sized memory block (polling).

C format

ER pget_mpf (ID mpfid, VP *p_blk);
ER ipget_mpf (ID mpfid, VP *p_blk);

Parameter(s)

Explanation

This service call acquires the fixed-sized memory block from the fixed-sized memory pool specified by parameter mpfid
and stores the start address in the area specified by parameter p_blk.
If a fixed-sized memory block could not be acquired from the target fixed-sized memory pool (no available fixed-sized
memory blocks exist) when this service call is issued, fixed-sized memory block acquisition processing is not performed
but “E_TMOUT” is returned.

Note 1 The contents of the block are undefined.

Note 2 The boundary alignment for the memory blocks acquired is 1. If memory blocks need to be acquired with a
larger boundary alignment than that, observe the following:

- Set The size of the fixed-sized memory block (siz_block) in Fixed-sized Memory Pool Information
(memorypool[]) to multiple of the desired boundary alignment.

- Specify unique section name to the Section name assigned to the memory pool area (section) in Fixed-sized
Memory Pool Information (memorypool[]) and locate the section to the address of the desired boundary
alignment when linking.

Return value

I/O Parameter Description

I ID mpfid; ID number of the fixed-sized memory pool.

O VP *p_blk; Start address of the acquired memory block.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mpfid < 0

- mpfid > VTMAX_MPF

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 310 of 447
Sep 20, 2013

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Note When the ipget_mpf is issued from task or the pget_mpf is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

E_TMOUT -50 Polling failure.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 311 of 447
Sep 20, 2013

tget_mpf

Outline

Acquire fixed-sized memory block (with time-out).

C format

ER tget_mpf (ID mpfid, VP *p_blk, TMO tmout);

Parameter(s)

Explanation

This service call acquires the fixed-sized memory block from the fixed-sized memory pool specified by parameter mpfid
and stores the start address in the area specified by parameter p_blk.
If no fixed-size memory blocks could be acquired from the target fixed-size memory pool (no available fixed-size memory
blocks exist) when this service call is issued, this service call does not acquire the fixed-size memory block but queues the
invoking task to the target fixed-size memory pool wait queue and moves it from the RUNNING state to the WAITING state
with time-out (fixed-size memory block acquisition wait state).
The WAITING state for a fixed-sized memory block is cancelled in the following cases.

Note 1 Invoking tasks are queued to the target fixed-size memory pool wait queue in the order defined during
configuration (FIFO order or current priority order).

Note 2 The contents of the block are undefined.

Note 3 The boundary alignment for the memory blocks acquired is 1. If memory blocks need to be acquired with a
larger boundary alignment than that, observe the following:

I/O Parameter Description

I ID mpfid; ID number of the fixed-sized memory pool.

O VP *p_blk; Start address of the acquired memory block.

I TMO tmout;

Specified time-out (in millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified time-out.

WAITING State for a Fixed-sized Memory Block Cancel Operation Return Value

A fixed-sized memory block was returned to the target fixed-sized memory pool as a result of
issuing rel_mpf.

E_OK

A fixed-sized memory block was returned to the target fixed-sized memory pool as a result of
issuing irel_mpf.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The fixed-sized memory pool is reset as a result of issuing vrst_mpf. EV_RST

The time specified by tmout has elapsed. E_TMOUT

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 312 of 447
Sep 20, 2013

- Set The size of the fixed-sized memory block (siz_block) in Fixed-sized Memory Pool Information
(memorypool[]) to multiple of the desired boundary alignment.

- Specify unique section name to the Section name assigned to the memory pool area (section) in Fixed-sized
Memory Pool Information (memorypool[]) and locate the section to the address of the desired boundary
alignment when linking.

Note 4 TMO_FEVR is specified for wait time tmout, processing equivalent to get_mpf will be executed. When
TMO_POL is specified, processing equivalent to pget_mpf will be executed.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- tmout < -1

- tmout > (0x7FFFFFFF - TIC_NUME) / TIC_DENO

E_ID -18

Invalid ID number.

- mpfid < 0

- mpfid > VTMAX_MPF

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50 Polling failure or specified time has elapsed.

EV_RST -127 Released from WAITING state by the object reset (vrst_mpf)

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 313 of 447
Sep 20, 2013

rel_mpf
irel_mpf

Outline

Release fixed-sized memory block.

C format

ER rel_mpf (ID mpfid, VP blk);
ER irel_mpf (ID mpfid, VP blk);

Parameter(s)

Explanation

This service call returns the fixed-sized memory block specified by parameter blk to the fixed-sized memory pool specified
by parameter mpfid.
If a task is queued to the target fixed-sized memory pool wait queue when this service call is issued, fixed-sized memory
block return processing is not performed but fixed-sized memory blocks are returned to the relevant task (first task of wait
queue).
As a result, the relevant task is unlinked from the wait queue and is moved from the WAITING state (WAITING state for a
fixed-sized memory block) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED state.

Return value

I/O Parameter Description

I ID mpfid; ID number of the fixed-sized memory pool.

I VP blk; Start address of the memory block to be released.

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17
Parameter error.

- blk is illegal.

E_ID -18

Invalid ID number.

- mpfid < 0

- mpfid > VTMAX_MPF

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 314 of 447
Sep 20, 2013

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- The irel_mpf was issued from task.

- The rel_mpf was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 315 of 447
Sep 20, 2013

ref_mpf
iref_mpf

Outline

Reference fixed-sized memory pool state.

C format

ER ref_mpf (ID mpfid, T_RMPF *pk_rmpf);
ER iref_mpf (ID mpfid, T_RMPF *pk_rmpf);

Parameter(s)

[Fixed-sized memory pool state packet: T_RMPF]

Explanation

Stores fixed-sized memory pool state packet (ID number of the task at the head of the wait queue, number of free memory
blocks, etc.) of the fixed-sized memory pool specified by parameter mpfid in the area specified by parameter pk_rmpf.

- wtskid
Stores whether a task is queued to the fixed-size memory pool.

TSK_NONE: No applicable task
Value: ID number of the task at the head of the wait queue

- fblkcnt
Stores the number of free memory blocks.

Return value

I/O Parameter Description

I ID mpfid; ID number of the fixed-sized memory pool.

O T_RMPF *pk_rmpf; Pointer to the packet returning the fixed-sized memory pool state.

typedef struct t_rmpf {
 ID wtskid; /*Existence of waiting task*/
 UINT fblkcnt; /*Number of free memory blocks*/
} T_RMPF;

Macro Value Description

E_OK 0 Normal completion.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 316 of 447
Sep 20, 2013

E_ID -18

Invalid ID number.

- mpfid < 0

- mpfid > VTMAX_MPF

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Note When the iref_mpf is issued from task or the ref_mpf is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 317 of 447
Sep 20, 2013

18.2.10 Memory pool management functions (variable-sized memory pools)

The following shows the service calls provided by the RI600V4 as the memory pool management functions (variable-sized
memory pools).

Table 18-12 Memory Pool Management Functions (Variable-Sized Memory Pools)

Service Call Function Useful Range

get_mpl Acquire variable-sized memory block (waiting forever) Task

pget_mpl Acquire variable-sized memory block (polling) Task

ipget_mpl Acquire variable-sized memory block (polling) Non-task

tget_mpl Acquire variable-sized memory block (with time-out) Task

rel_mpl Release variable-sized memory block Task

ref_mpl Reference variable-sized memory pool state Task

iref_mpl Reference variable-sized memory pool state Non-task

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 318 of 447
Sep 20, 2013

get_mpl

Outline

Acquire variable-sized memory block (waiting forever).

C format

ER get_mpl (ID mplid, UINT blksz, VP *p_blk);

Parameter(s)

Explanation

This service call acquires a variable-size memory block of the size specified by parameter blksz from the variable-size
memory pool specified by parameter mplid, and stores its start address into the area specified by parameter p_blk.
If no variable-size memory blocks could be acquired from the target variable-size memory pool (no successive areas
equivalent to the requested size were available) when this service call is issued, this service call does not acquire variable-
size memory blocks but queues the invoking task to the target variable-size memory pool wait queue and moves it from
the RUNNING state to the WAITING state (variable-size memory block acquisition wait state).
The WAITING state for a variable-sized memory block is cancelled in the following cases.

Note 1 For the size of the memory block, refer to “7.3.2 Size of Variable-sized memory block.”.

Note 2 Invoking tasks are queued to the target variable-size memory pool wait queue in the FIFO order.

Note 3 The contents of the block are undefined.

I/O Parameter Description

I ID mplid; ID number of the variable-sized memory pool.

I UINT blksz; Memory block size to be acquired (in bytes).

O VP *p_blk; Start address of the acquired memory block.

WAITING State for a Variable-sized Memory Block Cancel Operation Return Value

The variable-size memory block that satisfies the requested size was returned to the target
variable-size memory pool as a result of issuing rel_mpl.

E_OK

The task at the top of the transmission wait queue was forcedly released from waiting by follow-
ing either.

- Forced release from waiting (accept rel_wai while waiting).

- Forced release from waiting (accept irel_wai while waiting).

- Forced release from waiting (accept ter_tsk while waiting).

- The time specified by tmout for tget_mpl has elapsed.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The variable-sized memory pool is reset as a result of issuing vrst_mpl. EV_RST

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 319 of 447
Sep 20, 2013

Note 4 The alignment number of memory blocks is 1. To enlarge the alignment number to 4, specify unique section to
Section name assigned to the memory pool area (mpl_section) in Variable-sized Memory Pool Information
(variable_memorypool[]) and locate the section to 4-bytes boundary address when linking.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 320 of 447
Sep 20, 2013

Return value

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- blksz == 0

- blksz exceeds the maximum size that can be acquired.

E_ID -18

Invalid ID number.

- mplid < 0

- mplid > VTMAX_MPL

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

EV_RST -127 Released from WAITING state by the object reset (vrst_mpl)

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 321 of 447
Sep 20, 2013

pget_mpl
ipget_mpl

Outline

Acquire variable-sized memory block (polling).

C format

ER pget_mpl (ID mplid, UINT blksz, VP *p_blk);
ER ipget_mpl (ID mplid, UINT blksz, VP *p_blk);

Parameter(s)

Explanation

This service call acquires a variable-size memory block of the size specified by parameter blksz from the variable-size
memory pool specified by parameter mplid, and stores its start address into the area specified by parameter p_blk.
If no variable-size memory blocks could be acquired from the target variable-size memory pool (no successive areas
equivalent to the requested size were available) when this service call is issued, this service call does not acquire variable-
size memory block but returns “E_TMOUT”.

Note 1 For the size of the memory block, refer to “7.3.2 Size of Variable-sized memory block.”.

Note 2 The contents of the block are undefined.

Note 3 The alignment number of memory blocks is 1. To enlarge the alignment number to 4, specify unique section to
Section name assigned to the memory pool area (mpl_section) in Variable-sized Memory Pool Information
(variable_memorypool[]) and locate the section to 4-bytes boundary address when linking.

Return value

I/O Parameter Description

I ID mplid; ID number of the variable-sized memory pool.

I UINT blksz; Memory block size to be acquired (in bytes).

O VP *p_blk; Start address of the acquired memory block.

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- blksz == 0

- blksz exceeds the maximum size that can be acquired.

E_ID -18

Invalid ID number.

- mplid < 0

- mplid > VTMAX_MPL

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 322 of 447
Sep 20, 2013

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Note When the ipget_mpl is issued from task or the pget_mpl is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

E_TMOUT -50 Polling failure.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 323 of 447
Sep 20, 2013

tget_mpl

Outline

Acquire variable-sized memory block (with time-out).

C format

ER tget_mpl (ID mplid, UINT blksz, VP *p_blk, TMO tmout);

Parameter(s)

Explanation

This service call acquires a variable-size memory block of the size specified by parameter blksz from the variable-size
memory pool specified by parameter mplid, and stores its start address into the area specified by parameter p_blk.
If no variable-size memory blocks could be acquired from the target variable-size memory pool (no successive areas
equivalent to the requested size were available) when this service call is issued, this service call does not acquire variable-
size memory blocks but queues the invoking task to the target variable-size memory pool wait queue and moves it from
the RUNNING state to the WAITING state with time-out (variable-size memory block acquisition wait state).
The WAITING state for a variable-sized memory block is cancelled in the following cases.

I/O Parameter Description

I ID mplid; ID number of the variable-sized memory pool.

I UINT blksz; Memory block size to be acquired (in bytes).

O VP *p_blk; Start address of the acquired memory block.

I TMO tmout;

Specified time-out (in millisecond).

TMO_FEVR: Waiting forever.
TMO_POL: Polling.
Value: Specified time-out.

WAITING State for a Variable-sized Memory Block Cancel Operation Return Value

The variable-size memory block that satisfies the requested size was returned to the target
variable-size memory pool as a result of issuing rel_mpl.

E_OK

The task at the top of the transmission wait queue was forcedly released from waiting by follow-
ing either.

- Forced release from waiting (accept rel_wai while waiting).

- Forced release from waiting (accept irel_wai while waiting).

- Forced release from waiting (accept ter_tsk while waiting).

- The time specified by tmout for tget_mpl has elapsed.

E_OK

Forced release from waiting (accept rel_wai while waiting). E_RLWAI

Forced release from waiting (accept irel_wai while waiting). E_RLWAI

The variable-sized memory pool is reset as a result of issuing vrst_mpl. EV_RST

The time specified by tmout has elapsed. E_TMOUT

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 324 of 447
Sep 20, 2013

Note 1 For the size of the memory block, refer to “7.3.2 Size of Variable-sized memory block.”.

Note 2 Invoking tasks are queued to the target variable-size memory pool wait queue in the FIFO order.

Note 3 The contents of the block are undefined.

Note 4 The alignment number of memory blocks is 1. To enlarge the alignment number to 4, specify unique section to
Section name assigned to the memory pool area (mpl_section) in Variable-sized Memory Pool Information
(variable_memorypool[]) and locate the section to 4-bytes boundary address when linking.

Note 5 TMO_FEVR is specified for wait time tmout, processing equivalent to get_mpl will be executed. When
TMO_POL is specified, processing equivalent to pget_mpl will be executed.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17

Parameter error.

- blksz == 0

- blksz exceeds the maximum size that can be acquired.

- tmout < -1

- tmout > (0x7FFFFFFF - TIC_NUME) / TIC_DENO

E_ID -18

Invalid ID number.

- mplid < 0

- mplid > VTMAX_MPL

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the dispatching disabled state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

E_RLWAI -49
Forced release from the WAITING state.

- Accept rel_wai/irel_wai while waiting.

E_TMOUT -50 Polling failure or specified time has elapsed.

EV_RST -127 Released from WAITING state by the object reset (vrst_mpl)

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 325 of 447
Sep 20, 2013

rel_mpl

Outline

Release variable-sized memory block.

C format

ER rel_mpl (ID mplid, VP blk);

Parameter(s)

Explanation

This service call returns the variable-sized memory block specified by parameter blk to the variable-sized memory pool
specified by parameter mplid.
After returning the variable-size memory blocks, these service calls check the tasks queued to the target variable-size
memory pool wait queue from the top, and assigns the memory if the size of memory requested by the wait queue is
available. This operation continues until no tasks queued to the wait queue remain or no memory space is available. As a
result, the task that acquired the memory is unlinked from the queue and moved from the WAITING state (variable-size
memory block acquisition wait state) to the READY state, or from the WAITING-SUSPENDED state to the SUSPENDED
state.

Note The RI600V4 do only simple error detection for blk. If blk is illegal and the error is not detected, the operation is
not guaranteed after that.

Return value

I/O Parameter Description

I ID mplid; ID number of the variable-sized memory pool.

I VP blk; Start address of memory block to be released.

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17
Parameter error.

- blk is illegal.

E_ID -18

Invalid ID number.

- mplid < 0

- mplid > VTMAX_MPL

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 326 of 447
Sep 20, 2013

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 327 of 447
Sep 20, 2013

ref_mpl
iref_mpl

Outline

Reference variable-sized memory pool state.

C format

ER ref_mpl (ID mplid, T_RMPL *pk_rmpl);
ER iref_mpl (ID mplid, T_RMPL *pk_rmpl);

Parameter(s)

[Variable-sized memory pool state packet: T_RMPL]

Explanation

These service calls store the detailed information (ID number of the task at the head of the wait queue, total size of free
memory blocks, etc.) of the variable-size memory pool specified by parameter mplid into the area specified by parameter
pk_rmpl.

- wtskid
Stores whether a task is queued to the variable-size memory pool wait queue.

TSK_NONE: No applicable task
Value: ID number of the task at the head of the wait queue

- fmplsz
Stores the total size of free memory blocks (in bytes).

- fblksz
Stores the maximum memory block size available (in bytes).

I/O Parameter Description

I ID mplid; ID number of the variable-sized memory pool.

O T_RMPL *pk_rmpl; Pointer to the packet returning the variable-sized memory pool state.

typedef struct t_rmpl {
 ID wtskid; /*Existence of waiting task*/
 SIZE fmplsz; /*Total size of free memory blocks*/
 UINT fblksz; /*Maximum memory block size available*/
} T_RMPL;

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 328 of 447
Sep 20, 2013

Return value

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mplid < 0

- mplid > VTMAX_MPL

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Note When the iref_mpl is issued from task or the ref_mpl is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 329 of 447
Sep 20, 2013

18.2.11 Time management functions

The following shows the service calls provided by the RI600V4 as the time management functions.

Table 18-13 Time Management Functions

Service Call Function Useful Range

set_tim Set system time Task

iset_tim Set system time Non-task

get_tim Reference system time Task

iget_tim Reference system time Non-task

sta_cyc Start cyclic handler operation Task

ista_cyc Start cyclic handler operation Non-task

stp_cyc Stop cyclic handler operation Task

istp_cyc Stop cyclic handler operation Non-task

ref_cyc Reference cyclic handler state Task

iref_cyc Reference cyclic handler state Non-task

sta_alm Start alarm handler operation Task

ista_alm Start alarm handler operation Non-task

stp_alm Stop alarm handler operation Task

istp_alm Stop alarm handler operation Non-task

ref_alm Reference alarm handler state Task

iref_alm Reference alarm handler state Non-task

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 330 of 447
Sep 20, 2013

set_tim
iset_tim

Outline

Set system time.

C format

ER set_tim (SYSTIM *p_systim);
ER iset_tim (SYSTIM *p_systim);

Parameter(s)

[System time packet: SYSTIM]

Explanation

These service calls change the RI600V4 system time (unit: msec) to the time specified by parameter p_systim.

Note Even if the system time is changed, the actual time at which the time management requests made before that
(e.g., task time-outs, task delay by dly_tsk, cyclic handlers, and alarm handlers) are generated will not change.

Return value

I/O Parameter Description

I SYSTIM *p_systim; Time to set as system time.

typedef struct systim {
 UH utime; /*System time (higher 16 bits)*/
 UW ltime; /*System time (lower 32 bits)*/
} SYSTIM;

Macro Value Description

E_OK 0 Normal completion.

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Note When the iset_tim is issued from task or the set_tim is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 331 of 447
Sep 20, 2013

get_tim
iget_tim

Outline

Reference system time.

C format

ER get_tim (SYSTIM *p_systim);
ER iget_tim (SYSTIM *p_systim);

Parameter(s)

[System time packet: SYSTIM]

Explanation

These service calls store the RI600V4 system time (unit: msec) into the area specified by parameter p_systim.

Return value

I/O Parameter Description

O SYSTIM *p_systim; Current system time.

typedef struct systim {
 UH utime; /*System time (higher 16 bits)*/
 UW ltime; /*System time (lower 32 bits)*/
} SYSTIM;

Macro Value Description

E_OK 0 Normal completion.

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Note When the iget_tim is issued from task or the get_tim is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 332 of 447
Sep 20, 2013

sta_cyc
ista_cyc

Outline

Start cyclic handler operation.

C format

ER sta_cyc (ID cycid);
ER ista_cyc (ID cycid);

Parameter(s)

Explanation

This service call moves the cyclic handler specified by parameter cycid from the non-operational state (STP state) to
operational state (STA state).
As a result, the target cyclic handler is handled as an activation target of the RI600V4.
The relative interval from when either of this service call is issued until the first activation request is issued varies
depending on whether the TA_PHS attribute (phsatr) is specified for the target cyclic handler during configuration. For
details, refer to “8.6.4 Start cyclic handler operation”.

- When the TA_PHS attribute is specified
The target cyclic handler activation timing is set up according to Activation phase (phs_counter) and Activation cycle
(interval_counter).
If the target cyclic handler has already been started, however, no processing is performed even if this service call is
issued, but it is not handled as an error.

- When the TA_PHS attribute is not specified
The target cyclic handler activation timing is set up according to Activation cycle (interval_counter)) on the basis of the
call time of this service call.
This setting is performed regardless of the operating status of the target cyclic handler.

Return value

I/O Parameter Description

I ID cycid; ID number of the cyclic handler.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- cycid < 0

- cycid > VTMAX_CYH

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 333 of 447
Sep 20, 2013

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Note When the ista_cyc is issued from task or the sta_cyc is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 334 of 447
Sep 20, 2013

stp_cyc
istp_cyc

Outline

Stop cyclic handler operation.

C format

ER stp_cyc (ID cycid);
ER istp_cyc (ID cycid);

Parameter(s)

Explanation

This service call moves the cyclic handler specified by parameter cycid from the operational state (STA state) to non-
operational state (STP state).
As a result, the target cyclic handler is excluded from activation targets of the RI600V4 until issuance of sta_cyc or
ista_cyc.

Note This service call does not perform queuing of stop requests. If the target cyclic handler has been moved to the
non-operational state (STP state), therefore, no processing is performed but it is not handled as an error.

Return value

I/O Parameter Description

I ID cycid; ID number of the cyclic handler.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- cycid < 0

- cycid > VTMAX_CYH

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Note When the istp_cyc is issued from task or the stp_cyc is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 335 of 447
Sep 20, 2013

ref_cyc
iref_cyc

Outline

Reference cyclic handler state.

C format

ER ref_cyc (ID cycid, T_RCYC *pk_rcyc);
ER iref_cyc (ID cycid, T_RCYC *pk_rcyc);

Parameter(s)

[Cyclic handler state packet: T_RCYC]

Explanation

Stores cyclic handler state packet (current state, time until the next activation, etc.) of the cyclic handler specified by
parameter cycid in the area specified by parameter pk_rcyc.

- cycstat
Store the current state.

TCYC_STP: Non-operational state
TCYC_STA: Operational state

- lefttim
Stores the time until the next activation (in millisecond). When the target cyclic handler is in the non-operational state,
lefttim is undefined.

Return value

I/O Parameter Description

I ID cycid; ID number of the cyclic handler.

O T_RCYC *pk_rcyc; Pointer to the packet returning the cyclic handler state.

typedef struct t_rcyc {
 STAT cycstat; /*Current state*/
 RELTIM lefttim; /*Time left before the next activation*/
} T_RCYC;

Macro Value Description

E_OK 0 Normal completion.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 336 of 447
Sep 20, 2013

E_ID -18

Invalid ID number.

- cycid < 0

- cycid > VTMAX_CYH

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Note When the iref_cyc is issued from task or the ref_cyc is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 337 of 447
Sep 20, 2013

sta_alm
ista_alm

Outline

Start alarm handler operation.

C format

ER sta_alm (ID almid, RELTIM almtim);
ER ista_alm (ID almid, RELTIM almtim);

Parameter(s)

Explanation

This service call sets to start the alarm handler specified by parameter almid in almtim msec and moves the target alarm
handler from the non-operational state (STP state) to operational state (STA state).
As a result, the target alarm handler is handled as an activation target of the RI600V4.

Note 1 When 0 is specified for almtim, the alarm handler will start at next base clock interrupt.

Note 2 This service call sets the activation time even if the target alarm handler has already been in the operational
state. The previous activation time becomes invalid.

Return value

I/O Parameter Description

I ID almid; ID number of the alarm handler.

I RELTIM almtim; Activation time (unit: msec)

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17
Parameter error.

- almtim > (0x7FFFFFFF - TIC_NUME) / TIC_DENO

E_ID -18

Invalid ID number.

- almid < 0

- almid > VTMAX_ALH

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 338 of 447
Sep 20, 2013

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Note When the ista_alm is issued from task or the sta_alm is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 339 of 447
Sep 20, 2013

stp_alm
istp_alm

Outline

Stop alarm handler operation.

C format

ER stp_alm (ID almid);
ER istp_alm (ID almid);

Parameter(s)

Explanation

This service call moves the alarm handler specified by parameter almid from the operational state (STA state) to non-
operational state (STP state).
As a result, the target alarm handler is excluded from activation targets of the RI600V4 until issuance of sta_alm or
ista_alm.

Note This service call does not perform queuing of stop requests. If the target alarm handler has been moved to the
non-operational state (STP state), therefore, no processing is performed but it is not handled as an error.

Return value

I/O Parameter Description

I ID almid; ID number of the alarm handler.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- almid < 0

- almid > VTMAX_ALH

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Note When the istp_alm is issued from task or the stp_alm is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 340 of 447
Sep 20, 2013

ref_alm
iref_alm

Outline

Reference alarm handler state.

C format

ER ref_alm (ID almid, T_RALM *pk_ralm);
ER iref_alm (ID almid, T_RALM *pk_ralm);

Parameter(s)

[Alarm handler state packet: T_RALM]

Explanation

Stores alarm handler state packet (current state, time until the next activation, etc.) of the alarm handler specified by
parameter almid in the area specified by parameter pk_ralm.

- almstat
Store the current state.

TALM_STP: Non-operational state
TALM_STA: Operational state

- lefttim
Stores the time until the next activation (in millisecond). When the target alarm handler is in the non-operational state,
lefttim is undefined.

Return value

I/O Parameter Description

I ID almid; ID number of the alarm handler.

O T_RALM *pk_ralm; Pointer to the packet returning the alarm handler state.

typedef struct t_ralm {
 STAT almstat; /*Current state*/
 RELTIM lefttim; /*Time left before the next activation*/
} T_RALM;

Macro Value Description

E_OK 0 Normal completion.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 341 of 447
Sep 20, 2013

E_ID -18

Invalid ID number.

- almid < 0

- almid > VTMAX_ALH

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Note When the iref_alm is issued from task or the ref_alm is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 342 of 447
Sep 20, 2013

18.2.12 System state management functions

The following shows the service calls provided by the RI600V4 as the system state management functions.

Table 18-14 System State Management Functions

Service Call Function Useful Range

rot_rdq Rotate task precedence Task

irot_rdq Rotate task precedence Non-task

get_tid Reference task ID in the RUNNING state Task

iget_tid Reference task ID in the RUNNING state Non-task

loc_cpu Lock the CPU Task

iloc_cpu Lock the CPU Non-task

unl_cpu Unlock the CPU Task

iunl_cpu Unlock the CPU Non-task

dis_dsp Disable dispatching Task

ena_dsp Enable dispatching Task

sns_ctx Reference contexts Task, Non-task

sns_loc Reference CPU locked state Task, Non-task

sns_dsp Reference dispatching disabled state Task, Non-task

sns_dpn Reference dispatch pending state Task, Non-task

vsys_dwn System down Task, Non-task

ivsys_dwn System down Task, Non-task

vsta_knl Start RI600V4 Task, Non-task

ivsta_knl Start RI600V4 Task, Non-task

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 343 of 447
Sep 20, 2013

rot_rdq
irot_rdq

Outline

Rotate task precedence.

C format

ER rot_rdq (PRI tskpri);
ER irot_rdq (PRI tskpri);

Parameter(s)

Explanation

This service call re-queues the first task of the ready queue corresponding to the priority specified by parameter tskpri to
the end of the queue to change the task execution order explicitly.

Note 1 This service call does not perform queuing of rotation requests. If no task is queued to the ready queue
corresponding to the relevant priority, therefore, no processing is performed but it is not handled as an error.

Note 2 Round-robin scheduling can be implemented by issuing this service call via a cyclic handler in a constant
cycle.

Note 3 The ready queue is a hash table that uses priority as the key, and tasks that have entered an executable state
(READY state or RUNNING state) are queued in FIFO order.
Therefore, the scheduler realizes the RI600V4's scheduling system by executing task detection processing
from the highest priority level of the ready queue upon activation, and upon detection of queued tasks, giving
the CPU use right to the first task of the proper priority level.

Note 4 As for a task which has locked mutexes, the current priority might be different from the base priority. In this
case, even if the task issues this servie call specifying TPRI_SELF for parameter tskpri, the ready queue of the
current priority that the invoking task belongs cannot be changed.

Note 5 For current priority and base priority, refer to “6.2.2 Current priority and base priority”.

Return value

I/O Parameter Description

I PRI tskpri;

Priority of the tasks.

TPRI_SELF: Current priority of the invoking task.
Value: Priority of the tasks.

Macro Value Description

E_OK 0 Normal completion.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 344 of 447
Sep 20, 2013

E_PAR -17

Parameter error.

- tskpri < 0

- tskpri > TMAX_TPRI

- When this service call was issued from a non-task, TPRI_SELF was specified
tskpri.

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- The irot_rdq was issued from task.

- The rot_rdq was issued from non-task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Macro Value Description

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 345 of 447
Sep 20, 2013

get_tid
iget_tid

Outline

Reference task ID in the RUNNING state.

C format

ER get_tid (ID *p_tskid);
ER iget_tid (ID *p_tskid);

Parameter(s)

Explanation

These service calls store the ID of a task in the RUNNING state in the area specified by parameter p_tskid.
This service call stores TSK_NONE in the area specified by parameter p_tskid if no tasks that have entered the RUNNING
state exist.

Return value

I/O Parameter Description

O ID *p_tskid; Pointer to the area returning the task ID number.

Macro Value Description

E_OK 0 Normal completion.

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Note When the iget_tid is issued from task or the get_tid is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 346 of 447
Sep 20, 2013

loc_cpu
iloc_cpu

Outline

Lock the CPU.

C format

ER loc_cpu (void);
ER iloc_cpu (void);

Parameter(s)

None.

Explanation

These service calls transit the system to the CPU locked state.
In the CPU locked state, the task scheduling is prohibited, and kernel interrupts are masked. Therefore, exclusive pro-
cessing can be achieved for all processing programs except non-kernel interrupt handlers.
The service calls that can be issued in the CPU locked state are limited to the one listed below.

The unl_cpu，iunl_cpu and ext_tsk releases from the CPU locked state,

Note 1 The CPU locked state changed by issuing these service calls must be cancelled before the processing
program that issued this service call ends.

Note 2 These service calls do not perform queuing of lock requests. If the system is in the CPU locked state,
therefore, no processing is performed but it is not handled as an error.

Note 3 The RI600V4 realizes the TIME MANAGEMENT FUNCTIONS by using base clock timer interrupts that occurs
at constant intervals. If acknowledgment of the relevant base clock timer interrupt is disabled by issuing this
service call, the TIME MANAGEMENT FUNCTIONS may no longer operate normally.

Note 4 For kernel interrupts, refer to “10.1 Interrupt Type”.

Note 5 The loc_cpu returns E_ILUSE error while interrupt mask has changed to other than 0 by chg_ims.

Service Call that can be issued Function

ext_tsk
Terminate invoking task. (This service call transit the system to the
CPU unlocked state.)

loc_cpu, iloc_cpu Lock the CPU.

unl_cpu, iunl_cpu Unlock the CPU.

sns_loc Reference CPU state.

sns_dsp Reference dispatching state.

sns_ctx Reference contexts.

sns_dpn Reference dispatch pending state.

vsys_dwn, ivsys_dwn System down

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 347 of 447
Sep 20, 2013

Return value

Macro Value Description

E_OK 0 Normal completion.

E_CTX -25

Context error.
- This service call was issued in the status “PSW.IPL > kernel interrupt mask

level”.

Note When the iloc_cpu is issued from task or the loc_cpu is issued from non-
task, the context error is not detected and normal operation of the system is
not guaranteed.

E_ILUSE -28

Illegal use of service call.

- This service call is issued in the status that the invoking task changes the
PSW.IPL to other than 0 by using chg_ims.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 348 of 447
Sep 20, 2013

unl_cpu
iunl_cpu

Outline

Unlock the CPU.

C format

ER unl_cpu (void);
ER iunl_cpu (void);

Parameter(s)

None.

Explanation

These service calls transit the system to the CPU unlocked state.

Note 1 These service calls do not perform queuing of cancellation requests. If the system is in the CPU unlocked
state, therefore, no processing is performed but it is not handled as an error.

Note 2 These service calls do not cancel the dispatching disabled state that was set by issuing dis_dsp.

Note 3 The CPU locked state is also cancelled by ext_tsk.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_CTX -25

Context error.

- The ilunl_cpu was issued from task.

- The unl_cpu was issued from task.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 349 of 447
Sep 20, 2013

dis_dsp

Outline

Disable dispatching.

C format

ER dis_dsp (void);

Parameter(s)

None.

Explanation

This service call transits the system to the dispatching disabled state.
In the dispatching disabled state, the task scheduling is prohibited. Therefore, exclusive processing can be achieved for all
tasks.
The operation that transit the system to the dispatching disabled state is as follows.

- dis_dsp

- chg_ims that changes PSW.IPL to other than 0.

The operation that transit the system to the dispatching enabled state is as follows.

- ena_dsp

- ext_tsk

- chg_ims that changes PSW.IPL to 0.

Note 1 The dispatching disabled state changed by issuing this service call must be cancelled before the task that
issued this service call moves to the DORMANT state.

Note 2 This service call does not perform queuing of disable requests. If the system is in the dispatching disabled
state, therefore, no processing is performed but it is not handled as an error.

Note 3 If a service call (such as wai_sem, wai_flg) that may move the status of the invoking task is issued while the
dispatching disabled state, that service call returns E_CTX regardless of whether the required condition is
immediately satisfied.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 350 of 447
Sep 20, 2013

Return value

Macro Value Description

E_OK 0 Normal completion.

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 351 of 447
Sep 20, 2013

ena_dsp

Outline

Enable dispatching.

C format

ER ena_dsp (void);

Parameter(s)

None.

Explanation

This service call transits the system to the dispatching enabled state.
The operation that changes in the dispatching disabled state is as follows.

- dis_dsp

- chg_ims that changes PSW.IPL to other than 0.

The operation that changes in the dispatching enabled state is as follows.

- ena_dsp

- ext_tsk

- chg_ims that changes PSW.IPL to 0.

Note 1 This service call does not perform queuing of enable requests. If the system is in the dispatch enabled state,
therefore, no processing is performed but it is not handled as an error.

Note 2 If a service call (such as wai_sem, wai_flg) that may move the status of the invoking task is issued from when
dis_dsp is issued until this service call is issued, the RI600V4 returns E_CTX regardless of whether the
required condition is immediately satisfied.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 352 of 447
Sep 20, 2013

sns_ctx

Outline

Reference contexts.

C format

BOOL sns_ctx (void);

Parameter(s)

None.

Explanation

This service call examines the context type of the processing program that issues this service call. This service call returns
TRUE when the processing program is non-task context, and return FALSE when the processing program is task context.

Return value

Macro Value Description

TRUE 1 Normal completion (non-task context).

FALSE 0 Normal completion (task context).

E_CTX -25

Context error.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 353 of 447
Sep 20, 2013

sns_loc

Outline

Reference CPU locked state.

C format

BOOL sns_loc (void);

Parameter(s)

None.

Explanation

This service call examines whether the system is in the CPU locked state or not. This service call returns TRUE when the
system is in the CPU locked state, and return FALSE when the system is in the CPU unlocked state.

Return value

Macro Value Description

TRUE 1 Normal completion (CPU locked state).

FALSE 0 Normal completion (CPU unlocked state).

E_CTX -25

Context error.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 354 of 447
Sep 20, 2013

sns_dsp

Outline

Reference dispatching disabled state.

C format

BOOL sns_dsp (void);

Parameter(s)

None.

Explanation

This service call examines whether the system is in the dispatching disabled state or not. This service call returns TRUE
when the system is in the dispatching disabled state, and return FALSE when the system is in the dispatching enabled
state.

Return value

Macro Value Description

TRUE 1 Normal completion (dispatching disabled state).

FALSE 0 Normal completion (dispatching enabled state).

E_CTX -25

Context error.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 355 of 447
Sep 20, 2013

sns_dpn

Outline

Reference dispatch pending state.

C format

BOOL sns_dpn (void);

Parameter(s)

None.

Explanation

This service call examines whether the system is in the dispatch pending state or not. This service call returns TRUE when
the system is in the dispatch pending state, and return FALSE when the system is not in the dispatch pending state.
The state to fill either the following is called dispatch pending state.

- Dispatching disabled state

- CPU locked state

- PSW.IPL > 0, such as handlers

Return value

Macro Value Description

TRUE 1 Normal completion. (dispatch pending state)

FALSE 0 Normal completion. (any other states)

E_CTX -25

Context error.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 356 of 447
Sep 20, 2013

vsys_dwn
ivsys_dwn

Outline

System down.

C format

void vsys_dwn(W type, VW inf1, VW inf2, VW inf3);
void vsys_dwn(W type, VW inf1, VW inf2, VW inf3);

Parameter(s)

Explanation

These service calls pass the control to the System down routine (_RI_sys_dwn__).
Specify the value (from 1 to 0x7FFFFFFF) typed to the occurring error for type. Note the value of 0 or less is reserved by
the RI600V4.
These service calls never return.
For details of the parameter specification, refer to “13.2.2 Parameters of system down routine”.
These service calls are the function outside the range of ITRON4.0 specifications.

Note The system down routine is also called when abnormality is detected in the RI600V4.

Return value

None.

I/O Parameter Description

I W type; Error type.

I VW inf1; System down information 1

I VW inf2; System down information 2

I VW inf3; System down information 3

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 357 of 447
Sep 20, 2013

vsta_knl
ivsta_knl

Outline

Start RI600V4.

C format

void vsta_knl(void);
void vsta_knl(void);

Parameter(s)

None.

Explanation

These service start the RI600V4.
These service calls never return.
When these service call is issued, it is necessary to fill the following.

- All interrupts can not be accepted. (For example, PSW.I == 0)

- The CPU is in the supervisor mode (PSW.PM == 0).

The outline of processing of these service calls is shown as follows.

1) Initialize ISP register to the end address of SI section + 1

2) Initialize INTB register to the start address of the relocatable vector table (INTERRUPT_VECTOR section). The
relocatable vector table is generated by the cfg600.

3) Initialize the system time to 0.

4) Create various object which are defined in the system configuration file.

5) Pass control to scheduler

These service calls are the function outside the range of ITRON4.0 specifications.

Return value

None.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 358 of 447
Sep 20, 2013

18.2.13 Interrupt management functions

The following shows the service calls provided by the RI600V4 as the interrupt management functions.

Table 18-15 Interrupt Management Functions

Service Call Function Useful Range

chg_ims Change interrupt mask Task

ichg_ims Change interrupt mask Non-task

get_ims Reference interrupt mask Task

iget_ims Reference interrupt mask Non-task

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 359 of 447
Sep 20, 2013

chg_ims
ichg_ims

Outline

Change interrupt mask.

C format

ER chg_ims (IMASK imask);
ER ichg_ims (IMASK imask);

Parameter(s)

Explanation

These service calls change PSW.IPL to the value specified by imask. Ranges of the value that can be specified for imask
are from 0 to 15.
In the chg_ims, the system shifts to the dispatching disabled state when other than 0 is specified for imask, (it is equivalent
to dis_dsp.) and shifts to the dispatching enabled state when 0 is specified for imask (it is equivalent to ena_dsp.).
On the other hand, the ichg_ims does not change the dispatching disabled / enabled state.
The service calls that can be issued while PSW.IPL is larger than the Kernel interrupt mask level (system_IPL) are limited
to the one listed below.

Note 1 In the non-task, the interrupt mask must not lower PSW.IPL more than it starts.

Note 2 The dispatching disabled state changed by issuing the chg_ims must be cancelled before the task that issued
this service call moves to the DORMANT state.

Note 3 If a service call (such as wai_sem, wai_flg) that may move the status of the invoking task is issued while the
dispatching disabled state, that service call returns E_CTX regardless of whether the required condition is
immediately satisfied.

Note 4 The RI600V4 realizes the TIME MANAGEMENT FUNCTIONS by using base clock timer interrupts that occurs
at constant intervals. If acknowledgment of the relevant base clock timer interrupt is disabled by issuing this
service call, the TIME MANAGEMENT FUNCTIONS may no longer operate normally.

Note 5 Do not issue ena_dsp while a task changes PSW.IPL to other than 0 by using chg_ims. If issuing ena_dsp, the
system moves to the dispatching enabled state. If task dispatching occurs, PSW is changed for the dispatched
task. Therefore PSW.IPL may be lowered without intending it

I/O Parameter Description

I IMASK imask; Interrupt mask desired.

Service Call that can be issued Function

chg_ims, ichg_ims Change interrupt mask.

get_ims, iget_ims Reference interrupt mask

vsys_dwn, ivsys_dwn System down

vsta_knl, ivsta_knl Start RI600V4.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 360 of 447
Sep 20, 2013

Return value

Macro Value Description

E_OK 0 Normal completion.

E_PAR -17
Parameter error.

- imask > 15

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- The ichg_ims was issued from task.

- The chg_ims was issued from non-task.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 361 of 447
Sep 20, 2013

get_ims
iget_ims

Outline

Reference interrupt mask.

C format

ER get_ims (IMASK *p_imask);
ER iget_ims (IMASK *p_imask);

Parameter(s)

Explanation

These service calls store PSW.IPL into the area specified by parameter p_imask.

Note 1 These service call do not detect the context error.

Note 2 The following intrinsic functions provided by compiler are higher-speed than this service call. See “CubeSuite+
Integrated Development Environment User's Manual: RX Coding” for details about intrinsic functions.

- get_ipl() : Refers to the interrupt priority level.

- get_psw() : Refers to PSW value.

Return value

I/O Parameter Description

O IMASK *p_imask; Pointer to the area returning the interrupt mask.

Macro Value Description

E_OK 0 Normal completion.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 362 of 447
Sep 20, 2013

18.2.14 System configuration management functions

The following shows the service calls provided by the RI600V4 as the system configuration management functions.

Table 18-16 System Configuration Management Functions

Service Call Function Useful Range

ref_ver Reference version information Task

iref_ver Reference version information Non-task

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 363 of 447
Sep 20, 2013

ref_ver
iref_ver

Outline

Reference version information.

C format

ER ref_ver (T_RVER *pk_rver);
ER iref_ver (T_RVER *pk_rver;

Parameter(s)

[Version information packet: T_RVER]

Explanation

These service calls store the RI600V4 version information into the area specified by parameter pk_rver.

- maker
The maker represents the manufacturer who created this kernel. In the RI600V4, 0x011B, which is the maker code
assigned for Renesas Electronics Corporation, is returned for maker.
Note, the value defined in the kernel configuration macro TKERNEL_MAKER is same as maker.

- prid
The prid represents the number that identifies the kernel and VLSI. In the RI600V4, 0x0003 is returned for prid.
Note, the value defined in the kernel configuration macro TKERNEL_PRID is same as prid.

- spver
The spver represents the specification to which this kernel conforms. In the RI600V4, 0x5403 is returned for spver.
Note, the value defined in the kernel configuration macro TKERNEL_SPVER is same as spver.

- prver
The prver represents the version number of this kernel.
For example, 0x0123 is returned for prver when the kernel version is “V1.02.03”.
Note, the value defined in the kernel configuration macro TKERNEL_PRVER is same as prver.

I/O Parameter Description

O T_RVER *pk_rver; Pointer to the packet returning the version information.

typedef struct t_rver {
 UH maker; /*Kernel maker code*/
 UH prid; /*Identification number of the kernel*/
 UH spver; /*Version number of the ITRON specification*/
 UH prver; /*Version number of the kernel*/
 UH prno[4]; /*Management information of the kernel*/
} T_RVER;

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 364 of 447
Sep 20, 2013

- prno
The prno represents product management information and product number, etc. In the RI600V4, 0x0000 is returned
for all prnos.

Return value

Macro Value Description

E_OK 0 Normal completion.

E_CTX -25

Context error.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

Note When the iref_ver is issued from task or the ref_ver is issued from non-task,
the context error is not detected and normal operation of the system is not
guaranteed.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 365 of 447
Sep 20, 2013

18.2.15 Object reset functions

The following shows the service calls provided by the RI600V4 as the object reset functions.

Table 18-17 Object Reset Functions

Service Call Function Useful Range

vrst_dtq Reset data queue Task

vrst_mbx Reset mailbox Task

vrst_mbf Reset message buffer Task

vrst_mpf Reset fixed-sized memory pool Task

vrst_mpl Reset variable-sized memory pool Task

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 366 of 447
Sep 20, 2013

vrst_dtq

Outline

Reset data queue.

C format

ER vrst_dtq (ID dtqid);

Parameter(s)

Explanation

This service call reset the data queue specified by parameter dtqid.
The data having been accumulated by the data queue area are annulled. The tasks to wait to send data to the target data
queue are released from the WAITING state, and EV_RST is returned as a return value for the tasks.

Note 1 In this service call, the tasks to wait to receive data do not released from the WAITING state.

Note 2 This service call is the function outside ITRON4.0 specification.

Return value

I/O Parameter Description

I ID dtqid; ID number of the data queue.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- dtqid < 0

- dtqid > VTMAX_DTQ

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 367 of 447
Sep 20, 2013

vrst_mbx

Outline

Reset mailbox.

C format

ER vrst_mbx (ID mbxid);

Parameter(s)

Explanation

This service call reset the mailbox specified by parameter mbxid.
The messages having been accumulated by the mailbox come off from the management of the RI600V4.

Note 1 In this service call, the tasks to wait to receive message do not released from the WAITING state.

Note 2 This service call is the function outside ITRON4.0 specification.

Return value

I/O Parameter Description

I ID mbxid; ID number of the mailbox.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mbxid < 0

- mbxid > VTMAX_MBX

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 368 of 447
Sep 20, 2013

vrst_mbf

Outline

Reset message buffer.

C format

ER vrst_mbf (ID mbfid);

Parameter(s)

Explanation

This service call reset the message buffer specified by parameter mbfid.
The messages having been accumulated by the message buffer area are annulled. The tasks to wait to send message to
the target message buffer are released from the WAITING state, and EV_RST is returned as a return value for the tasks.

Note 1 In this service call, the tasks to wait to receive message do not released from the WAITING state.

Note 2 This service call is the function outside ITRON4.0 specification.

Return value

I/O Parameter Description

I ID mbfid; ID number of the message buffer.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mbfid < 0

- mbfid > VTMAX_MBF

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 369 of 447
Sep 20, 2013

vrst_mpf

Outline

Reset fixed-sized memory pool.

C format

ER vrst_mpf (ID mpfid);

Parameter(s)

Explanation

This service call reset the fixed-sized memory pool specified by parameter mpfid.
The tasks to wait to get memory block from the target fixed-sized memory pool are released from the WAITING state, and
EV_RST is returned as a return value for the tasks.

Note 1 All fixed-sized memory blocks that had already been acquired are returned to the target fixed-sized memory
pool. Therefore, do not access those fixed-sized memory blocks after issuing this service call.

Note 2 This service call is the function outside ITRON4.0 specification.

Return value

I/O Parameter Description

I ID mpfid; ID number of the fixed-sized memory pool.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mpfid < 0

- mpfid > VTMAX_MPF

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

RI600V4 CHAPTER 18 SERVICE CALLS

R20UT0711EJ0104 Rev.1.04 Page 370 of 447
Sep 20, 2013

vrst_mpl

Outline

Reset variable-sized memory pool.

C format

ER vrst_mpl (ID mplid);

Parameter(s)

Explanation

This service call reset the variable-sized memory pool specified by parameter mplid.
The tasks to wait to get memory block from the target variable-sized memory pool are released from the WAITING state,
and EV_RST is returned as a return value for the tasks.

Note 1 All variable-sized memory blocks that had already been acquired are returned to the target variable-sized
memory pool. Therefore, do not access those variable-sized memory blocks after issuing this service call.

Note 2 This service call is the function outside ITRON4.0 specification.

Return value

I/O Parameter Description

I ID mplid; ID number of the variable-sized memory pool.

Macro Value Description

E_OK 0 Normal completion.

E_ID -18

Invalid ID number.

- mplid < 0

- mplid > VTMAX_MPL

E_CTX -25

Context error.

- This service call was issued from a non-task.

- This service call was issued in the CPU locked state.

- This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 371 of 447
Sep 20, 2013

CHAPTER 19 SYSTEM CONFIGURATION FILE

This chapter explains the coding method of the system configuration file required to output information files that contain
data to be provided for the RI600V4.

19.1 Outline

The following shows the notation method of system configuration files.

- Comment
Parts from two successive slashes (//) to the line end are regarded as comments.

- Numeric
A numeric value can be written in one of the following formats. Note, do not specify the value exceeding
0xFFFFFFFF.

Hexadecimal: Add “0x” or “0X” at the beginning of a numeric value or add “h” or “H” at the end. In the latter format,
be sure to add “0” at the beginning when the value begins with an alphabetic letter from A to F or a
to f. Note that the configurator does not distinguish between uppercase and lowercase letters for
alphabetic letters (A to F or a to f) used in numeric value representation.

Decimal: Simply write an integer value as is usually done (23, for example). Note that a decimal value must
not begin with “0”.

Octal: Add “0” at the beginning of a numeric value or add “O” or “o” at the end.
Binary: Add “B” or “b” at the end of a numeric value. Note that a binary value must not begin with “0”.

- Operator
The following operator can be used for numeric value.

Table 19-1 Operator

- Symbol
A symbol is a string of numeric characters, uppercase alphabetic letters, lowercase alphabetic letters, and under-
scores (_). It must not begin with a numeric character.

- Function name
A function name consists of numeric characters, uppercase alphabetic letters, lowercase alphabetic letters,
underscores (_), and dollar signs ($). It must not begin with a numeric character and must end with “()”.
To specify module name written by assembly language, name the module starting in '_', and specify the name that
excludes '_' for function name.

- Frequency
The frequency is indicated by a character string that consist of numerals and . (period), and ends with “MHz”. The
numerical values are significant up to six decimal places. Also note that the frequency can be entered using

Operator Precedence Direction of Computation

() High Left to right

- (unary minus) Right to left

* / % Left to right

+ - (binary minus) Low Left to right

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 372 of 447
Sep 20, 2013

19.2 Default System Configuration File

For most definition items, if the user omits settings, the settings in the default system configuration file are used. The
default system configuration file is stored in the folder indicated by environment variable “LIB600”. Be sure not to edit this
file.

19.3 Configuration Information (static API)

The configuration information that is described in a system configuration file is shown as follows.

- System Information (system)

- Base Clock Interrupt Information (clock)

- Task Information (task[])

- Semaphore Information (semaphore[])

- Eventflag Information (flag[])

- Data Queue Information (dataqueue[])

- Mailbox Information (mailbox[])

- Mutex Information (mutex[])

- Message Buffer Information (message_buffer[])

- Fixed-sized Memory Pool Information (memorypool[])

- Variable-sized Memory Pool Information (variable_memorypool[])

- Cyclic Handler Information (cyclic_hand[])

- Alarm Handler Information (alarm_handl[])

- Relocatable Vector Information (interrupt_vector[])

- Fixed Vector/Exception Vector Information (interrupt_fvector[])

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 373 of 447
Sep 20, 2013

19.4 System Information (system)

Here, information on the system whole is defined.
Only one “system” can be defined. And the “system” can not be omitted.

Format

Parentheses < >show the user input part.

1) System stack size (stack_size)

- Description
Define the total stack size used in service call processing and interrupt processing.

- Definition format
Numeric value

- Definition range
More than 8, and multiple of 4.

- When omitting
The set value in the default system configuration file (factory setting: 0x800) applied.

2) Maximum task priority (priority)

- Description
Define the maximum task priority.

- Definition format
Numeric value

- Definition range
1 - 255

- When omitting
The set value in the default system configuration file (factory setting: 32) applied.

- TMAX_TPRI
The cfg600 outputs the macro TMAX_TPRI which defines this setting to the system information header file
“kernel_id.h”.

3) Kernel interrupt mask level (system_IPL)

- Description
Define the interrupt mask level when the kernel's critical section is executed (PSW register's IPL value).
Interrupts with higher priority levels than that are handled as “non-kernel interrupts”.
For details of “non-kernel interrupts” and “kernel interrupts”, refer to “10.1 Interrupt Type”.

- Definition format
Numeric value

- Definition range
1 - 15

- When omitting
The set value in the default system configuration file (factory setting: 7) applied.

system {
 stack_size = <1. System stack size (stack_size)>;
 priority = <2. Maximum task priority (priority)>;
 system_IPL = <3. Kernel interrupt mask level (system_IPL)>;
 message_pri = <4. Maximum message priority (message_pri)>;
 tic_deno = <5. Denominator of base clock interval time (tic_deno)>;
 tic_nume = <6. Numerator of base clock interval time (tic_nume)>;
 context = <7. Task context register (context)>;
};

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 374 of 447
Sep 20, 2013

- VTKNL_LVL
The cfg600 outputs the macro VTKNL_LVL which defines this setting to the system information header file
“kernel_id.h”.

4) Maximum message priority (message_pri)

- Description
Define the maximum message priority used in the mailbox function. Note that if the mailbox function is not used,
this definition item has no effect.

- Definition format
Numeric value

- Definition range
1 - 255

- When omitting
The set value in the default system configuration file (factory setting: 255) applied.

- TMAX_MPRI
The cfg600 outputs the macro TMAX_MPRI which defines this setting to the system information header file
“kernel_id.h”.

5) Denominator of base clock interval time (tic_deno)

- Description
The base clock interval time is calculated by the following expression. Either tic_deno or tic_nume should be 1.

The base clock interval time (in millisecond) = tic_nume / tic_deno

- Definition format
Numeric value

- Definition range
1 - 100

- When omitting
The set value in the default system configuration file (factory setting: 1) applied.

- TIC_DENO
The cfg600 outputs the macro TIC_DENO which defines this setting to the system information header file
“kernel_id.h”.

6) Numerator of base clock interval time (tic_nume)

- Description
See above.

- Definition format
Numeric value

- Definition range
1 - 65535

- When omitting
The set value in the default system configuration file (factory setting: 1) applied.

- TIC_NUME
The cfg600 outputs the macro TIC_NUME which defines this setting to the system information header file
“kernel_id.h”.

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 375 of 447
Sep 20, 2013

7) Task context register (context)

- Description
Define the register set used by tasks. The settings made here apply to all tasks.

- Definition format
Symbol

- Definition range
Select one from item of “Setting” in Table 19-2.

Table 19-2 system.context

Note Compiler option “-isa” is supported by the compiler CC-RX V2.01 or later.

- When omitting
The set value in the default system configuration file (factory setting: NO) applied.

- Note
Be sure to refer to “19.5 Note Concerning system.context”.

Setting

CPU FPU DSP

PSW, PC, R0 - R7, R14,
R15

R8 - R13 FPSW Accumulator a

a. When compiler option “-isa=rxv2” is specified, the “Accumulator” means ACC0 register and ACC1 reg-
ister. In the case of others, the “Accumulator” means ACC0 register (in RXv2 architecture) or ACC reg-
ister (in RXV1 architecture).

NO Guaranteed Guaranteed Not guaranteed Not guaranteed

FPSW Guaranteed Guaranteed Guaranteed Not guaranteed

ACC Guaranteed Guaranteed Not guaranteed Guaranteed

FPSW,ACC Guaranteed Guaranteed Guaranteed Guaranteed

MIN Guaranteed Not guaranteed Not guaranteed Not guaranteed

MIN,FPSW Guaranteed Not guaranteed Guaranteed Not guaranteed

MIN,ACC Guaranteed Not guaranteed Not guaranteed Guaranteed

MON,FPSW,ACC Guaranteed Not guaranteed Guaranteed Guaranteed

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 376 of 447
Sep 20, 2013

19.5 Note Concerning system.context

This sections explains note concerning system.context.

19.5.1 Note concerning FPU and DSP

The setting for system.context differs depending on how FPU and DSP are handled.
The recommendation setting of system.context is indicated from now on. If other than recommended setting is specified,
the RI600V4 performance may be slightly deteriorated, compared to the recommended settings case.

1) When using MCU that incorporates FPU and DSP (accumulator)
Corresponding MCUs: RX600 series, etc.

2) When using MCU that does not incorporate FPU, but incorporates DSP (accumulator)
Corresponding MCUs: RX200 series, etc.

3) When using MCU that incorporates FPU, but does not incorporate DSP (accumulator)
Corresponding MCUs: MCUs that corresponds to this doesn't exist at the time of making of this manual.

4) When using MCU that incorporate neither FPU nor DSP (accumulator)
Corresponding MCUs: MCUs that corresponds to this doesn't exist at the time of making of this manual.

Note The compiler outputs floating-point arithmetic instructions only when the “-fpu” option is specified. If the “-
chkfpu” option is specified in the assembler, the floating-point arithmetic instructions written in a program are
detected as warning.
In no case does the compiler output the DSP function instructions. If the “-chkdsp” option is specified in the
assembler, the DSP function instructions written in a program are detected as warning.

1) When using MCU that incorporates FPU and DSP (accumulator)

Table 19-3 When using MCU that incorporates FPU and DSP (accumulator)

Usage condition of instruction in tasks

Recommendation setting of system.contextFloating point
arithmetic

instructions

DSP function
instructions

YES

YES “FPSW” and “ACC” included settings essential

NO
“FPSW” included setting essential and “ACC” excluded setting rec-
ommended

NO
YES

“ACC” included setting essential and “FPSW” excluded setting rec-
ommended

NO “FPSW” and “ACC” excluded settings recommended

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 377 of 447
Sep 20, 2013

2) When using MCU that does not incorporate FPU, but incorporates DSP (accumulator)

Table 19-4 When using MCU that does not incorporate FPU, but incorporates DSP (accumulator)

3) When using MCU that incorporates FPU, but does not incorporate DSP (accumulator)

Table 19-5 When using MCU that incorporates FPU, but does not incorporate DSP (accumulator)

Usage condition of instruction in tasks

Recommendation setting of system.contextFloating point
arithmetic

instructions

DSP function
instructions

YES
YES

Since the MCU does not incorporate FPU, floating-point arithmetic
instructions cannot be used. NO

NO

YES “FPSW” excluded and “ACC” included settings essential

NO
“FPSW” excluded setting essential and “ACC” excluded settings rec-
ommended

Usage condition of instruction in tasks

Recommendation setting of system.contextFloating point
arithmetic

instructions

DSP function
instructions

YES
YES

Since the MCU does not incorporate DSP, DSP function instructions
cannot be used.

NO “FPSW” included and “ACC” excluded settings essential

NO

YES
Since the MCU does not incorporate DSP, DSP function instructions
cannot be used.

NO
“ACC” excluded setting essential and “FPSW” excluded settings rec-
ommended

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 378 of 447
Sep 20, 2013

4) When using MCU that incorporate neither FPU nor DSP (accumulator)

Table 19-6 When using MCU that incorporate neither FPU nor DSP (accumulator)

19.5.2 Relationship with the compiler options “-fint_register”, “-base” and “-pid”

In system.context, by selecting one of choices “MIN,” “MIN, ACC”, “MIN, FPSW,” or “MIN, ACC, FPSW,” it is possible to
configure the registers so that R8- R13 registers will not be saved as task context. This results in an increased processing
speed.
Note, however, that such a setting of system.context is permitted in only the case where all of R8 - R13 registers are spec-
ified to be used by the compiler options “-fint_register”, “-base” and “-pid”.
If, in any other case, the above setting is made for system.context, the kernel will not operate normally.

- Good example:

1) -fint_register=4 -base=rom=R8 -base=ram=R9

2) -fint_register=3 -base=rom=R8 -base=ram=R9 -base=0x80000=R10

- Bad example:

3) No “-fint_register”, “-base” and “-pid” options

4) -fint_register=4

5) -base=rom=R8 -base=ram=R9

6) -fint_register=3 -base=rom=R8 -base=ram=R9

Usage condition of instruction in tasks

Recommendation setting of system.contextFloating point
arithmetic

instructions

DSP function
instructions

YES
YES

Since the MCU incorporate neither FPU nor DSP, floating-point arith-
metic instructions and DSP function instructions cannot be used.

NO

NO
YES

NO “FPSW” and “ACC” excluded settings essential

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 379 of 447
Sep 20, 2013

19.6 Base Clock Interrupt Information (clock)

Here, information on the base clock interrupt is defined. The cfg600 outputs the file “ri_cmt.h” where the base clock timer
initialization function (void _RI_init_cmt(void)) is described.
Only one “clock” can be defined.

Format

Parentheses < >show the user input part.

1) Selection of timer channel for base clock (timer)

- Description
Define the timer channel for the base clock.

- Definition format
Symbol

- Definition range
Select one from Table 19-7.

Table 19-7 clock.timer

Note 1 The CMT (Compare Match Timer) is the timer that is mounted on RX MCU typically.

Note 2 Do not select “CMT2” and “CMT3” when CMT channel 2 and channel 3 are not mounted with RX MCU
to use, and when relocatable vector assigned to CMT channel 2 and channel 3 is different from Table
19-7 with RX MCU to use.
For example, RX111 does not support CMT channel 2 and channel 3. And in RX64M, relocatable vector
assigned to CMT channel 2 and channel 3 is not 30 and 31.

- When omitting
The set value in the default system configuration file (factory setting: “CMT0”) applied.

clock {
 timer = <1. Selection of timer channel for base clock (timer)>;
 template = <2. Template file (template)>;
 timer_clock = <3. CMT frequency (timer_clock)>;
 IPL = <4. Base clock interrupt priority level (IPL)>;
};

Setting Description

CMT0 Use CMT channel 0 assigned to relocatable vector 28.

CMT1 Use CMT channel 1 assigned to relocatable vector 29.

CMT2 Use CMT channel 2 assigned to relocatable vector 30.

CMT3 Use CMT channel 3 assigned to relocatable vector 31.

OTHER
Use a timer other than the above. In this case, the user needs to create a timer initialize
routine.

NOTIMER Do not use the base clock interrupt.

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 380 of 447
Sep 20, 2013

2) Template file (template)

- Description
Specify template file where hardware information and initialization function of CMT is described.
This definition is ignored when either “NOTIMER” or “OTHER” is specified for timer.
The template files are provided by the RI600V4. The template files may be added in the future version.
Refer to the release notes for MCUs supported by each template file.
Either CMT1, CMT2 or CMT3 might be unsupported according to template file. When the unsupported CMT
channel is specified for timer, the cfg600 does not detect error but the error is detected at compilation of the file
which includes “ri_cmt.h”.

- Definition format
Symbol

- Definition range
-

- When omitting
The set value in the default system configuration file (factory setting: “rx610.tpl”) applied.

3) CMT frequency (timer_clock)

- Description
Define frequency of the clock supplied to CMT. Please specify the frequency of PCLK (peripheral clock).

- Definition format
Frequency

- Definition range
-

- When omitting
The set value in the default system configuration file (factory setting: “25MHz”) applied.

4) Base clock interrupt priority level (IPL)

- Description
Define the interrupt priority level of the base clock interrupt.

- Definition format
Numeric value

- Definition range
From 1 to Kernel interrupt mask level (system_IPL) in System Information (system)

- When omitting
The set value in the default system configuration file (factory setting: 4) applied.

- VTIM_LVL
The cfg600 outputs the macro VTIM_LVL which defines this setting to the system information header file
“kernel_id.h”.

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 381 of 447
Sep 20, 2013

19.7 Task Information (task[])

Here, each task is defined.

Format

Parentheses < >show the user input part.

1) ID number

- Description
Define the task ID number.

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The cfg600 assigns the ID number automatically.

- Note
The ID numbers must be assigned without an omission beginning with 1. Therefore, when specifying an ID
number, be sure that the specified value is equal to or less than the number of objects defined.

2) ID name (name)

- Description
Define the ID name. The specified ID name is output to the system information header file (kernel_id.h) in the
form of the following.

#define <ID name> <ID number>

- Definition format
Symbol

- Definition range
-

- When omitting
Cannot be omitted.

3) Task entry address (entry_addreess)

- Description
Define the starting function of the task.

- Definition format
Symbol

- Definition range
-

task[<1. ID number>] {
 name = <2. ID name (name)>;
 entry_address = <3. Task entry address (entry_addreess)>;
 stack_size = <4. User stack size (stack_size)>;
 stack_section = <5. Section name assigned to the stack area (stack_section)>;
 priority = <6. Task initial priority (priority)>;
 initial_start = <7. TA_ACT attribute (initial_start)>;
 exinf = <8. Extended information (exinf)>;
};

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 382 of 447
Sep 20, 2013

- When omitting
Cannot be omitted.

4) User stack size (stack_size)

- Description
Define the user stack size.

- Definition format
Numeric value

- Definition range
More than the following values.

Table 19-8 Lower Bound Value of User Stack Size

Note Compiler option “-isa” is supported by the compiler CC-RX V2.01 or later.

- When omitting
The set value in the default system configuration file (factory setting: 256) applied.

5) Section name assigned to the stack area (stack_section)

- Description
Define the section name to be assigned to the user stack area.
The cfg600 generates the user stack area with the size specified by stack_size to the section specified by
stack_section. The section attribute is “DATA”, and the alignment number is 4.
When linking, be sure to locate this section in the RAM area. Note, this section must not be located to address 0.

- Definition format
Symbol

- Definition range
-

- When omitting
The set value in the default system configuration file (factory setting: “SURI_STACK”) applied.

Setting of system.context Compiler option “-isa” Lower bound value

NO - 68

FPSW - 72

ACC
“-isa=rxv2” 92

“-isa=rxv1” or not specify “-isa” 76

FPSW,ACC
“-isa=rxv2” 96

“-isa=rxv1” or not specify “-isa” 80

MIN - 44

MIN,FPSW - 48

MIN,ACC
“-isa=rxv2” 68

“-isa=rxv1” or not specify “-isa” 52

MON,FPSW,ACC
“-isa=rxv2” 72

“-isa=rxv1” or not specify “-isa” 56

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 383 of 447
Sep 20, 2013

6) Task initial priority (priority)

- Description
Define the task initial priority.

- Definition format
Numeric value

- Definition range
From 1 to Maximum task priority (priority) in System Information (system)

- When omitting
The set value in the default system configuration file (factory setting: 1) applied.

7) TA_ACT attribute (initial_start)

- Description
Define the initial state of the task.

- Definition format
Symbol

- Definition range
Select either of the following:

ON: Specify the TA_ACT attribute. (The initial state is READY state.)

OFF: Not Specify the TA_ACT attribute. (The initial state is DORMANGT state.)

- When omitting
The set value in the default system configuration file (factory setting: “OFF”) applied.

8) Extended information (exinf)

- Description
Define the extended information of the task.

- Definition format
Numeric value

- Definition range
From 0 to 0xFFFFFFFF

- When omitting
The set value in the default system configuration file (factory setting: 0) applied.

- Note
When the task is activated by the TA_ACT attribute, act_tsk or iact_tsk, the extended information is passed to the
task.

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 384 of 447
Sep 20, 2013

19.8 Semaphore Information (semaphore[])

Here, each semaphore is defined.

Format

Parentheses < >show the user input part.

1) ID number

- Description
Define the semaphore ID number.

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The cfg600 assigns the ID number automatically.

- Note
The ID numbers must be assigned without an omission beginning with 1. Therefore, when specifying an ID
number, be sure that the specified value is equal to or less than the number of objects defined.

2) ID name (name)

- Description
Define the ID name. The specified ID name is output to the system information header file (kernel_id.h) in the
form of the following.

#define <ID name> <ID number>

- Definition format
Symbol

- Definition range
-

- When omitting
Cannot be omitted.

3) Maximum resource count (max_count)

- Description
Define the maximum resource count

- Definition format
Numeric value

- Definition range
From 1 to 65535

- When omitting
The set value in the default system configuration file (factory setting: 1) applied.

semaphore[<1. ID number>] {
 name = <2. ID name (name)>;
 max_count = <3. Maximum resource count (max_count)>;
 initial_count = <4. Initial resource count (initial_count)>;
 wait_queue = <5. Wait queue attribute (wait_queue)>;
};

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 385 of 447
Sep 20, 2013

4) Initial resource count (initial_count)

- Description
Define the initial resource count.

- Definition format
Numeric value

- Definition range
From 0 to max_count

- When omitting
The set value in the default system configuration file (factory setting: 1) applied.

5) Wait queue attribute (wait_queue)

- Description
Define the wait queue attribute.

- Definition format
Symbol

- Definition range
Select either of the following:

TA_TFIFO: FIFO order

TA_TPRI: Task priority order
Among tasks with the same priority, they are queued in FIFO order.

- When omitting
The set value in the default system configuration file (factory setting: “TA_TFIFO”) applied.

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 386 of 447
Sep 20, 2013

19.9 Eventflag Information (flag[])

Here, each semaphore is defined.

Format

Parentheses < >show the user input part.

1) ID number

- Description
Define the eventflag ID number.

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The cfg600 assigns the ID number automatically.

- Note
The ID numbers must be assigned without an omission beginning with 1. Therefore, when specifying an ID
number, be sure that the specified value is equal to or less than the number of objects defined.

2) ID name (name)

- Description
Define the ID name. The specified ID name is output to the system information header file (kernel_id.h) in the
form of the following.

#define <ID name> <ID number>

- Definition format
Symbol

- Definition range
-

- When omitting
Cannot be omitted.

3) Initial bit pattern (initial_pattern)

- Description
Define the initial bit pattern

- Definition format
Numeric value

- Definition range
From 0 to 0xFFFFFFFF

- When omitting
The set value in the default system configuration file (factory setting: 0) applied.

flag[<1. ID number>] {
 name = <2. ID name (name)>;
 initial_pattern = <3. Initial bit pattern (initial_pattern)>;
 wait_multi = <4. Multiple wait permission attribute (wait_multi)>;
 clear_attribute = <5. Clear attribute (clear_attribute)>;
 wait_queue = <6. Wait queue attribute (wait_queue)>;
};

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 387 of 447
Sep 20, 2013

4) Multiple wait permission attribute (wait_multi)

- Description
Define the attribute regarding whether multiple tasks are permitted to wait for the eventflag.

- Definition format
Symbol

- Definition range
Select either of the following:

TA_WSGL: Not permit multiple tasks to wait for the eventflag.

TA_WMUL: Permit multiple tasks to wait for the eventflag.

- When omitting
The set value in the default system configuration file (factory setting: “TA_WSGL”) applied.

5) Clear attribute (clear_attribute)

- Description
Define the clear attribute (TA_CLR).

- Definition format
Symbol

- Definition range
Select either of the following:

NO: Not specify the TA_CLR attribute.

YES: Specify the TA_CLR attribute.

- When omitting
The set value in the default system configuration file (factory setting: “NO”) applied.

6) Wait queue attribute (wait_queue)

- Description
Define the wait queue attribute.

- Definition format
Symbol

- Definition range
Select either of the following: However, when the TA_CLR attribute is not specified, the wait queue is managed in
the FIFO order even if TA_TPRI is specified for wait_queue. This behavior falls outside ITRON4.0 specification.

TA_TFIFO: FIFO order

TA_TPRI: Task priority order
Among tasks with the same priority, they are queued in FIFO order.

- When omitting
The set value in the default system configuration file (factory setting: “TA_TFIFO”) applied.

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 388 of 447
Sep 20, 2013

19.10 Data Queue Information (dataqueue[])

Here, each data queue is defined.

Format

Parentheses < >show the user input part.

1) ID number

- Description
Define the data queue ID number.

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The cfg600 assigns the ID number automatically.

- Note
The ID numbers must be assigned without an omission beginning with 1. Therefore, when specifying an ID
number, be sure that the specified value is equal to or less than the number of objects defined.

2) ID name (name)

- Description
Define the ID name. The specified ID name is output to the system information header file (kernel_id.h) in the
form of the following.

#define <ID name> <ID number>

- Definition format
Symbol

- Definition range
-

- When omitting
Cannot be omitted.

3) Data count (buffer_size)

- Description
Define the number of data that the data queue can be stored.

- Definition format
Numeric value

- Definition range
From 0 to 65535

- When omitting
The set value in the default system configuration file (factory setting: 0) applied.

dataqueue[<1. ID number>] {
 name = <2. ID name (name)>;
 buffer_size = <3. Data count (buffer_size)>;
 wait_queue = <4. Wait queue attribute (wait_queue)>;
};

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 389 of 447
Sep 20, 2013

4) Wait queue attribute (wait_queue)

- Description
Define the wait queue attribute for sending.
Note, task wait queue for receiving is managed in FIFO order.

- Definition format
Symbol

- Definition range
Select either of the following:

TA_TFIFO: FIFO order

TA_TPRI: Task current priority order
Among tasks with the same current priority, they are queued in FIFO order.

- When omitting
The set value in the default system configuration file (factory setting: “TA_TFIFO”) applied.

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 390 of 447
Sep 20, 2013

19.11 Mailbox Information (mailbox[])

Here, each mailbox is defined.

Format

Parentheses < >show the user input part.

1) ID number

- Description
Define the mailbox ID number.

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The cfg600 assigns the ID number automatically.

- Note
The ID numbers must be assigned without an omission beginning with 1. Therefore, when specifying an ID
number, be sure that the specified value is equal to or less than the number of objects defined.

2) ID name (name)

- Description
Define the ID name. The specified ID name is output to the system information header file (kernel_id.h) in the
form of the following.

#define <ID name> <ID number>

- Definition format
Symbol

- Definition range
-

- When omitting
Cannot be omitted.

3) Wait queue attribute (wait_queue)

- Description
Define the wait queue attribute.

- Definition format
Symbol

- Definition range
Select either of the following:

TA_TFIFO: FIFO order

TA_TPRI: Task priority order
Among tasks with the same priority, they are queued in FIFO order.

mailbox[<1. ID number>] {
 name = <2. ID name (name)>;
 wait_queue = <3. Wait queue attribute (wait_queue)>;
 message_queue = <4. Message queue attribute (message_queue)>;
 max_pri = <5. Maximum message priority (max_pri)>;
};

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 391 of 447
Sep 20, 2013

- When omitting
The set value in the default system configuration file (factory setting: “TA_TFIFO”) applied.

4) Message queue attribute (message_queue)

- Description
Define the message queue attribute.

- Definition format
Symbol

- Definition range
Select either of the following:

TA_MFIFO: The order of the message transmission request.

TA_MPRI: Message priority order

- When omitting
The set value in the default system configuration file (factory setting: “TA_MFIFO”) applied.

5) Maximum message priority (max_pri)

- Description
When TA_MPRI is specified for message_queue, the message priority from 1 to max_pri can be used.
When TA_MFIFO is specified for message_queue, this item is only disregarded.

- Definition format
Numeric value

- Definition range
From 1 to Maximum message priority (message_pri) in System Information (system)

- When omitting
The set value in the default system configuration file (factory setting: 1) applied.

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 392 of 447
Sep 20, 2013

19.12 Mutex Information (mutex[])

Here, each mutex is defined.

Format

Parentheses < >show the user input part.

1) ID number

- Description
Define the mutex ID number.

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The cfg600 assigns the ID number automatically.

- Note
The ID numbers must be assigned without an omission beginning with 1. Therefore, when specifying an ID
number, be sure that the specified value is equal to or less than the number of objects defined.

2) ID name (name)

- Description
Define the ID name. The specified ID name is output to the system information header file (kernel_id.h) in the
form of the following.

#define <ID name> <ID number>

- Definition format
Symbol

- Definition range
-

- When omitting
Cannot be omitted.

3) Ceiling priority (ceilpri)

- Description
The RI600V4 adopts Simplified priority ceiling protocol. The ceiling priority should be defined in ceilpri.

- Definition format
Numeric value

- Definition range
From 1 to Maximum task priority (priority) in System Information (system)

- When omitting
The set value in the default system configuration file (factory setting: 1) applied.

mutex[<1. ID number>] {
 name = <2. ID name (name)>;
 ceilpri = <3. Ceiling priority (ceilpri)>;
};

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 393 of 447
Sep 20, 2013

19.13 Message Buffer Information (message_buffer[])

Here, each message buffer is defined.

Format

Parentheses < >show the user input part.

1) ID number

- Description
Define the message buffer ID number.

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The cfg600 assigns the ID number automatically.

- Note
The ID numbers must be assigned without an omission beginning with 1. Therefore, when specifying an ID
number, be sure that the specified value is equal to or less than the number of objects defined.

2) ID name (name)

- Description
Define the ID name. The specified ID name is output to the system information header file (kernel_id.h) in the
form of the following.

#define <ID name> <ID number>

- Definition format
Symbol

- Definition range
-

- When omitting
Cannot be omitted.

3) Buffer size (mbf_size)

- Description
Define the size of the message buffer in bytes.

- Definition format
Numeric value

- Definition range
0, or multiple of 4 in the range from 8 to 65532

- When omitting
The set value in the default system configuration file (factory setting: 0) applied.

message_buffer[<1. ID number>] {
 name = <2. ID name (name)>;
 mbf_size = <3. Buffer size (mbf_size)>;
 mbf_section = <4. Section name assigned to the message buffer area (mbf_section)>;
 max_msgsz = <5. Maximum message size (max_msgsz)>
};

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 394 of 447
Sep 20, 2013

4) Section name assigned to the message buffer area (mbf_section)

- Description
Define the section name to be assigned to the message buffer area.
When mbf_size > 0, the cfg600 generates the message buffer area with the size specified by buffer_size to the
section specified by mbf_section. The section attribute is “DATA”, and the alignment number is 4.
When linking, be sure to locate this section in the RAM area. Note, this section must not be located to address 0.

- Definition format
Symbol

- Definition range
-

- When omitting
The set value in the default system configuration file (factory setting: “BRI_HEAP”) applied.

5) Maximum message size (max_msgsz)

- Description
Define the maximum message size of the message buffer in bytes.
When mbf_size > 0, max_msgsz must be less than or equal to “mbf_size - 4”.

- Definition format
Numeric value

- Definition range
From 1 to 65528

- When omitting
The set value in the default system configuration file (factory setting: 4) applied.

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 395 of 447
Sep 20, 2013

19.14 Fixed-sized Memory Pool Information (memorypool[])

Here, each fixed-sized memory pool is defined.

Format

Parentheses < >show the user input part.

1) ID number

- Description
Define the fixed-sized memory pool ID number.

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The cfg600 assigns the ID number automatically.

- Note
The ID numbers must be assigned without an omission beginning with 1. Therefore, when specifying an ID
number, be sure that the specified value is equal to or less than the number of objects defined.

2) ID name (name)

- Description
Define the ID name. The specified ID name is output to the system information header file (kernel_id.h) in the
form of the following.

#define <ID name> <ID number>

- Definition format
Symbol

- Definition range
-

- When omitting
Cannot be omitted.

3) The size of the fixed-sized memory block (siz_block)

- Description
Define the size of the fixed-sized memory block in bytes.

- Definition format
Numeric value

- Definition range
From 1 to 65535

- When omitting
The set value in the default system configuration file (factory setting: 256) applied.

memorypool[<1. ID number>] {
 name = <2. ID name (name)>;
 siz_block = <3. The size of the fixed-sized memory block (siz_block)>;
 num_block = <4. The number of the fixed-sized memory block (num_block)>;
 section = <5. Section name assigned to the memory pool area (section)>
 wait_queue = <6. Wait queue attribute (wait_queue)>;
};

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 396 of 447
Sep 20, 2013

4) The number of the fixed-sized memory block (num_block)

- Description
Define the number of the fixed-sized memory block.

- Definition format
Numeric value

- Definition range
From 1 to 65535

- When omitting
The set value in the default system configuration file (factory setting: 1) applied.

5) Section name assigned to the memory pool area (section)

- Description
Define the section name to be assigned to the fixed-sized memory pool area.
The cfg600 generates the fixed-sized memory pool area with the size calculated by “siz_block * num_block” to
the section specified by section. The section attribute is “DATA”, and the alignment number is 4.
When linking, be sure to locate this section in the RAM area. Note, this section must not be located to address 0.

- Definition format
Symbol

- Definition range
-

- When omitting
The set value in the default system configuration file (factory setting: “BRI_HEAP”) applied.

6) Wait queue attribute (wait_queue)

- Description
Define the wait queue attribute.

- Definition format
Symbol

- Definition range
Select either of the following:

TA_TFIFO: FIFO order

TA_TPRI: Task priority order
Among tasks with the same priority, they are queued in FIFO order.

- When omitting
The set value in the default system configuration file (factory setting: “TA_TFIFO”) applied.

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 397 of 447
Sep 20, 2013

19.15 Variable-sized Memory Pool Information (variable_memorypool[])

Here, each variable-sized memory pool is defined.

Format

Parentheses < >show the user input part.

1) ID number

- Description
Define the variable-sized memory pool ID number.

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The cfg600 assigns the ID number automatically.

- Note
The ID numbers must be assigned without an omission beginning with 1. Therefore, when specifying an ID
number, be sure that the specified value is equal to or less than the number of objects defined.

2) ID name (name)

- Description
Define the ID name. The specified ID name is output to the system information header file (kernel_id.h) in the
form of the following.

#define <ID name> <ID number>

- Definition format
Symbol

- Definition range
-

- When omitting
Cannot be omitted.

3) The size of the variable-sized memory pool (heap_size)

- Description
Define the size of the variable-sized memory pool area in bytes.

- Definition format
Numeric value

- Definition range
From 24 to 0x10000000

- When omitting
The set value in the default system configuration file (factory setting: 1024) applied.

variable_memorypool[<1. ID number>] {
 name = <2. ID name (name)>;
 heap_size = <3. The size of the variable-sized memory pool (heap_size)>;
 num_block = <4. Upper limit of the variable-sized memory block (max_memsize)>;
 section = <5. Section name assigned to the memory pool area (mpl_section)>
};

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 398 of 447
Sep 20, 2013

4) Upper limit of the variable-sized memory block (max_memsize)

- Description
Define the upper limit of an acquirable memory block size in bytes.

- Definition format
Numeric value

- Definition range
From 1 to 0xBFFFFF4

- When omitting
The set value in the default system configuration file (factory setting: 36) applied.

- Note
Refer to “7.3.2 Size of Variable-sized memory block.” for the size of the variable-sized memory blocks.

5) Section name assigned to the memory pool area (mpl_section)

- Description
Define the section name to be assigned to the variable-sized memory pool area.
The cfg600 generates the variable-sized memory pool area with the size specified by heap_size to the section
specified by mpl_section. The section attribute is “DATA”, and the alignment number is 4.
When linking, be sure to locate this section in the RAM area. Note, this section must not be located to address 0.

- Definition format
Symbol

- Definition range
-

- When omitting
The set value in the default system configuration file (factory setting: “BRI_HEAP”) applied.

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 399 of 447
Sep 20, 2013

19.16 Cyclic Handler Information (cyclic_hand[])

Here, each cyclic handler is defined.

Format

Parentheses < >show the user input part.

1) ID number

- Description
Define the cyclic handler ID number.

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The cfg600 assigns the ID number automatically.

- Note
The ID numbers must be assigned without an omission beginning with 1. Therefore, when specifying an ID
number, be sure that the specified value is equal to or less than the number of objects defined.

2) ID name (name)

- Description
Define the ID name. The specified ID name is output to the system information header file (kernel_id.h) in the
form of the following.

#define <ID name> <ID number>

- Definition format
Symbol

- Definition range
-

- When omitting
Cannot be omitted.

3) Cyclic handler entry address (entry_address)

- Description
Define the starting function of the cyclic handler.

- Definition format
Symbol

- Definition range
-

cyclic_hand[<1. ID number>] {
 name = <2. ID name (name)>;
 entry_address = <3. Cyclic handler entry address (entry_address)>;
 interval_counter = <4. Activation cycle (interval_counter)>;
 start = <5. Initial state (start)>;
 phs_counter = <6. Activation phase (phs_counter)>;
 phsatr = <7. TA_PHS attribute (phsatr)>;
 exinf = <8. Extended information (exinf)>;
};

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 400 of 447
Sep 20, 2013

- When omitting
Cannot be omitted.

4) Activation cycle (interval_counter)

- Description
Define the activation cycle in millisecond.

- Definition format
Numeric value

- Definition range
From 1 to (0x7FFFFFFF - system.tic_nume) / system.tic_deno

- When omitting
The set value in the default system configuration file (factory setting: 1) applied.

5) Initial state (start)

- Description
Define the initial state of the cyclic handler.

- Definition format
Symbol

- Definition range
Select either of the following:

OFF: Non operational stat (The TA_STA attribute is not specified.)

ON: Operational state (The TA_STA attribute is specified.)

- When omitting
The set value in the default system configuration file (factory setting: “OFF”) applied.

6) Activation phase (phs_counter)

- Description
Define the activation phase in millisecond

- Definition format
Numeric value

- Definition range
From 0 to interval_counter

- When omitting
The set value in the default system configuration file (factory setting: 0) applied.

7) TA_PHS attribute (phsatr)

- Description
Define the attribute concerning the activation phase.

- Definition format
Symbol

- Definition range
Select either of the following:

OFF: Not preserve the activation phase. (The TA_PHS attribute is not specified.)

ON: Preserve the activation phase. (The TA_PHS attribute is specified.)

- When omitting
The set value in the default system configuration file (factory setting: “OFF”) applied.

8) Extended information (exinf)

- Description
Define the extended information of the cyclic handler.

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 401 of 447
Sep 20, 2013

- Definition format
Numeric value

- Definition range
From 0 to 0xFFFFFFFF

- When omitting
The set value in the default system configuration file (factory setting: 0) applied.

- Note
The extended information is passed to the cyclic handler.

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 402 of 447
Sep 20, 2013

19.17 Alarm Handler Information (alarm_handl[])

Here, each alarm handler is defined.

Format

Parentheses < >show the user input part.

1) ID number

- Description
Define the alarm handler ID number.

- Definition format
Numeric value

- Definition range
From 1 to 255

- When omitting
The cfg600 assigns the ID number automatically.

- Note
The ID numbers must be assigned without an omission beginning with 1. Therefore, when specifying an ID
number, be sure that the specified value is equal to or less than the number of objects defined.

2) ID name (name)

- Description
Define the ID name. The specified ID name is output to the system information header file (kernel_id.h) in the
form of the following.

#define <ID name> <ID number>

- Definition format
Symbol

- Definition range
-

- When omitting
Cannot be omitted.

3) Alarm handler entry address (entry_address)

- Description
Define the starting function of the alarm handler.

- Definition format
Symbol

- Definition range
-

- When omitting
Cannot be omitted.

alarm_hand[<1. ID number>] {
 name = <2. ID name (name)>;
 entry_address = <3. Alarm handler entry address (entry_address)>;
 exinf = <4. Extended information (exinf)>;
};

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 403 of 447
Sep 20, 2013

4) Extended information (exinf)

- Description
Define the extended information of the alarm handler.

- Definition format
Numeric value

- Definition range
From 0 to 0xFFFFFFFF

- When omitting
The set value in the default system configuration file (factory setting: 0) applied.

- Note
The extended information is passed to the alarm handler.

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 404 of 447
Sep 20, 2013

19.18 Relocatable Vector Information (interrupt_vector[])

Here, each interrupt handler for relocatable vector of the RX MCU is defined.
If any interrupt occurs whose vector number is not defined here, the system goes down.
Note, the cfg600 does not generate code to initialize the interrupt control registers, the causes of interrupts, etc. for the
interrupts defined here. These initialization need to be implemented in the application.

Note Since the vector number from 1 to 8 are reserved by the RI600V4, do not define these vectors. And do not
define the vectors which are reserved by the MCU specification.

Format

Parentheses < >show the user input part.

1) Vector number

- Description
Define the vector number.

- Definition format
Numeric value

- Definition range
From 0 to 255

- When omitting
Cannot be omitted.

2) Interrupt handler entry address (entry_addreess)

- Description
Define the starting function of the interrupt handler.

- Definition format
Symbol

- Definition range
-

- When omitting
Cannot be omitted.

3) Kernel interrupt specification (os_int)

- Description
Interrupts whose interrupt priority level is lower than or equal to the Kernel interrupt mask level (system_IPL)
must be defined as the kernel interrupt, and the other interrupts must be defined as the non-kernel interrupt.
Note, when the Kernel interrupt mask level (system_IPL) is 15, all interrupts for relocatable vector must be
defined as the kernel interrupt.

- Definition format
Symbol

- Definition range
Select either of the following:

YES: Kernel interrupt

NO: Non-kernel interrupt

interrupt_vector[<1. Vector number>] {
 entry_address = <2. Interrupt handler entry address (entry_addreess)>;
 os_int = <3. Kernel interrupt specification (os_int)>;
 pragma_switch = <4. Switch passed to pragma directive (pragma_switch)>;
};

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 405 of 447
Sep 20, 2013

- When omitting
Cannot be omitted.

4) Switch passed to pragma directive (pragma_switch)

- Description
The cfg600 outputs “#pragma interrupt” directive to handle the function specified by entry_address as a interrupt
function to the system information header file kernel_id.h.
The switches passed to this pragma directive should be specified for pragma_switch.

- Definition format
Symbol

- Definition range
The following can be specified. To specify multiple choices, separate each with a comma. However, “ACC” and
“NOACC” cannot be specified at the same time.

E: The “enable” switch that permits a multiple interrupt is passed.

F: The “fint” switch that specifies a fast interrupt is passed. Note, a fast interrupt must be handled
as non-kernel interrupt (os_int = NO).

S: The “save” switch that limits the number of registers used in the interrupt handler is passed.

ACC: The “acc” switch that guarantees the ACC register in the interrupt handler is passed.

NOACC: The “no_acc” switch that does not guarantee the ACC register in the interrupt handler is
passed

- When omitting
No switches are passed.

Note 1 Refer to Table 19-9 for the guarantee of the ACC register.

Table 19-9 Guarantee of the ACC Register

Note 2 When either “CMT0”, “CMT1”, “CMT2” or “CMT3” is defined as Selection of timer channel for base clock
(timer), it is treated that “interrupt_vector[]” is implicitly defined by the following specification.

- Vector number

- CMT0 : 28

- CMT1 : 29

- CMT2 : 30

- CMT3 : 31

- entry_address : The entry address of the base clock interrupt processing routine in the RI600V4

- os_int : YES

Setting of pragma_switch
“-save_acc” compiler option

Not specified Specified

Neither “ACC” nor “NOACC” is
not specified.

Neither “acc” nor “no_acc” switch
is not passed.
The ACC register is not guaran-
teed.

Neither “acc” nor “no_acc” switch
is not passed.
The ACC register is guaranteed.

“ACC” is specified.
The “acc” switch is passed.
The ACC register is guaranteed.

“NOACC” is specified.
The “no_acc” switch is passed.
The ACC register is not guaranteed.

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 406 of 447
Sep 20, 2013

- pragma_switch : E,ACC

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 407 of 447
Sep 20, 2013

19.19 Fixed Vector/Exception Vector Information (interrupt_fvector[])

Here, fixed vector table of the RXv1 architecture (address from 0xFFFFFF80 to 0xFFFFFFFF) / exception vector table of
RXv2 architecture is defined.
Not only interrupt handler address but also the endian select register, etc., are included in fixed vector table/exception vec-
tor table.
All interrupt in fixed vector/exception vector is non-kernel interrupt.
In the RI600V4, the vector number is allocated according to the vector address as shown in Table 19-10. Table 19-10 also
shows the setting of the vector to which the definition is omitted.
Note, the content of fixed vector table/exception vector table is different in each MCU. For details, refer to the hardware
manual of the MCU used.
Note, the cfg600 does not generate code to initialize the interrupt control registers, the causes of interrupts, etc. for the
interrupts defined here. These initialization need to be implemented in the application.

Table 19-10 Fixed Vector Table/Exception Vector table

Vector

address a
Vector
number

Example of factor
(different in each MCU)

When omitting

0xFFFFFF80 0 Endian select register

The following are set according to “-
endian” compiler option.

- “-endian=little”
0xFFFFFFFF

- “-endian=big”
0xFFFFFFF8

0xFFFFFF84 1 (Reserved area)

0xFFFFFFFF

0xFFFFFF88 2 Option function select register 1

0xFFFFFF8C 3 Option function select register 0

0xFFFFFF90 4 (Reserved area)

0xFFFFFF94 5 (Reserved area)

0xFFFFFF98 6 (Reserved area)

0xFFFFFF9C 7 ROM code protection (flash memory)

0xFFFFFFA0 8

ID code protection on connection of the
on-chip debugger (flash memory)

0xFFFFFFA4 9

0xFFFFFFA8 10

0xFFFFFFAC 11

0xFFFFFFB0 12 (Reserved area)

0xFFFFFFB4 13 (Reserved area)

0xFFFFFFB8 14 (Reserved area)

0xFFFFFFBC 15 (Reserved area)

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 408 of 447
Sep 20, 2013

Format

Parentheses < >show the user input part.

1) Vector number

- Description
Define the vector number.

- Definition format
Numeric value

- Definition range
From 0 to 31

- When omitting
Cannot be omitted.

0xFFFFFFC0 16 (Reserved area)

System down

0xFFFFFFC4 17 (Reserved area)

0xFFFFFFC8 18 (Reserved area)

0xFFFFFFCC 19 (Reserved area)

0xFFFFFFD0 20 Privileged instruction exception

0xFFFFFFD4 21 Access exception

0xFFFFFFD8 22 (Reserved area)

0xFFFFFFDC 23 Undefined instruction exception

0xFFFFFFE0 24 (Reserved area)

0xFFFFFFE4 25 Floating-point exception

0xFFFFFFE8 26 (Reserved area)

0xFFFFFFEC 27 (Reserved area)

0xFFFFFFF0 28 (Reserved area)

0xFFFFFFF4 29 (Reserved area)

0xFFFFFFF8 30 Non-maskable interrupt

0xFFFFFFFC 31 Reset PowerON_Reset_PC()

a. The vector address in Table 19-10 is the address of fixed vector table in RXv1 architecture.
The address of exception vector table in RXv2 architecture is decided by EXTB register. The initial value of
EXTB register at the time of reset is same as fixed vector table in RXv1 architecture. Refer to
“FIX_INTERRUPT_VECTOR section” in section 2.6.4.

interrupt_fvector[<1. Vector number>] {
 entry_address = <2. Interrupt handler entry address (entry_addreess)>;
 pragma_switch = <3. Switch passed to pragma directive (pragma_switch)>;
};

Vector

address a
Vector
number

Example of factor
(different in each MCU)

When omitting

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 409 of 447
Sep 20, 2013

2) Interrupt handler entry address (entry_addreess)

- Description
Define the starting function of the interrupt handler or the set value to fixed vector/exception vector.

- Definition format
Symbol or numeric value

- Definition range
From 0 to 0xFFFFFFFF when a numeric value is specified.

- When omitting
Cannot be omitted.

3) Switch passed to pragma directive (pragma_switch)

- Description
The cfg600 outputs “#pragma interrupt” directive to handle the function specified by entry_address as a interrupt
function to the system information header file kernel_id.h.
The switches passed to this pragma directive should be specified for pragma_switch.

- Definition format
Symbol

- Definition range
The following can be specified. To specify multiple choices, separate each with a comma. However, “ACC” and
“NOACC” cannot be specified at the same time.

S: The “save” switch that limits the number of registers used in the interrupt handler is passed.

ACC: The “acc” switch that guarantees the ACC register in the interrupt handler is passed.

NOACC: The “no_acc” switch that does not guarantee the ACC register in the interrupt handler is
passed

- When omitting
No switches are passed.

- Note
Refer to Table 19-9 for the guarantee of the ACC register.

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 410 of 447
Sep 20, 2013

19.20 RAM Capacity Estimation

Memory areas used and managed by the RI600V4 are broadly classified into six types of sections. Subsequent para-
graphs explain BRI_RAM, BURI_HEAP, SURI_STACK and SI section.

- BRI_RAM section: The RI600V4’s management data and data queue area.

- BRI_HEAP section: Default section for message buffer area, fixed-sized memory pool area and variable-sized mem-
ory pool area.

- SURI_STACK section: Default section for user stack area

- SI section: System stack area

- RRI_RAM section: The RI600V4’s management data. The size is 4 bytes.

- BRI_TRCBUF section: This section is generated only when “Taking in trace chart by software trace mode” and
“Kernel buffer” are selected in [Task Analyzer] tab. The size is specified in [Task Analyzer] tab.

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 411 of 447
Sep 20, 2013

19.20.1 BRI_RAM section

The RI600V4’s management data is located in the BRI_RAM section.
The Table 19-11 shows the size calculation method for the BRI_RAM section (unit: bytes). In addition, actual size may
become larger than the value computed by Table 19-11 for boundary adjustment.

Table 19-11 BRI_RAM Section Size Calculation Method

Object Name Size Calculation Method (in bytes)

System control block
36 + 4 * down(TMAX_TPRI - 1) / 32 + 1) + TMAX_TPRI +
VTMAX_SEM + 2 * VTMAX_DTQ + VTMAX_FLG + VTMAX_MBX +
VTMAX_MTX + 2 * VTMAX_MBF + VTMAX_MPF + VTMAX_MPL

Task control block 24 * VTMAX_TSK

Semaphore control block
4 * VTMAX_SEM + down (VTMAX_SEM / 8 + 1)
However, when VTMAX_SEM is 0, the size of the semaphore control
block is 0.

Eventflag control block
8 * VTMAX_FLG + 2 * down (VTMAX_FLG / 8 + 1)
However, when VTMAX_FLG is 0, the size of the eventflag control
block is 0.

Data queue control block
6 * VTMAX_DTQ + down (VTMAX_DTQ / 8 + 1) + DTQ_ALLSIZE
However, when VTMAX_DTQ is 0, the size of the data queue control
block is 0.

Mailbox control block
8 * VTMAX_MBX + 2 * down (VTMAX_MBX / 8 + 1)
However, when VTMAX_MBX is 0, the size of the mailbox control
block is 0.

Mutex control block
VTMAX_MTX + down (VTMAX_MTX / 8 + 1)
However, when VTMAX_MTX is 0, the size of the mutex control
block is 0.

Message buffer control block 16 * VTMAX_MBF

Fixed-sized memory pool control block

8 * VTMAX_MPF + 2 * down (VTMAX_MPF / 8 + 1)
+ Σ(down(memorypool[].num_block / 8 + 1))
However, when VTMAX_MPF is 0, the size of the fixed-sized mem-
ory pool control block is 0.

Variable-sized memory pool control block 208 * VTMAX_MPL

Cyclic handler control block 8 * VTMAX_CYH

Alarm handler control block 8 * VTMAX_ALH

“Taking in trace chart by hardware trace
mode” is selected in [Task Analyzer] tab

4

“Taking in trace chart by software trace
mode” is selected in [Task Analyzer] tab

28

“Taking in long-statistics by software trace
mode” is selected in [Task Analyzer] tab 1592 + 8 × (VTMAX_TSK + 1)

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 412 of 447
Sep 20, 2013

Note Each keyword in the size calculation methods has the following meaning.

TMAX_TPRI: The set value of Maximum task priority (priority) in System Information (system).
The cfg600 outputs the macro of this name to the system information header file
kernel_id.h.

VTMAX_TSK: The number of Task Information (task[]).
The cfg600 outputs the macro of this name to the system information header file
kernel_id.h.

VTMAX_SEM: The number of Semaphore Information (semaphore[]).
The cfg600 outputs the macro of this name to the system information header file
kernel_id.h.

VTMAX_FLG: The number of Eventflag Information (flag[]).
The cfg600 outputs the macro of this name to the system information header file
kernel_id.h.

VTMAX_DTQ: The number of Data Queue Information (dataqueue[]).
The cfg600 outputs the macro of this name to the system information header file
kernel_id.h.

DTQ_ALLSIZE: Total of size of data queue area. Concretely, it is calculated by the following expressions.
 Σdataqueue[].buffer_size * 4
Note, DTQ_ALLSIZE is 4 when this calculation result is 0.

VTMAX_MBX: The number of Mailbox Information (mailbox[]).
The cfg600 outputs the macro of this name to the system information header file
kernel_id.h.

VTMAX_MTX: The number of Mutex Information (mutex[]).
The cfg600 outputs the macro of this name to the system information header file
kernel_id.h.

VTMAX_MBF: The number of Message Buffer Information (message_buffer[]).
The cfg600 outputs the macro of this name to the system information header file
kernel_id.h.

VTMAX_MPF: The number of Fixed-sized Memory Pool Information (memorypool[]).
The cfg600 outputs the macro of this name to the system information header file
kernel_id.h.

VTMAX_MPL: The number of Variable-sized Memory Pool Information (variable_memorypool[]).
The cfg600 outputs the macro of this name to the system information header file
kernel_id.h.

VTMAX_CYH: The number of Cyclic Handler Information (cyclic_hand[]).
The cfg600 outputs the macro of this name to the system information header file
kernel_id.h.

VTMAX_ALH: The number of Alarm Handler Information (alarm_handl[]).
The cfg600 outputs the macro of this name to the system information header file
kernel_id.h.

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 413 of 447
Sep 20, 2013

19.20.2 BRI_HEAP section

The message buffer area, fixed-sized memory pool area and variable-sized memory pool area are located in the
BRI_HEAP section. Note, when a message buffer, fixed-sized memory pool and variable-sized memory pool are defined,
the area can be located into the user-specific section.
The size of the BRI_HEAP section is calculated by the total of following.

- Total size of message buffer area
This is calculated about the definition of Message Buffer Information (message_buffer[]) that omits to specify
“mbf_section” by the following expressions.

Σmessage_buffer[].mbf_size

- Total size of fixed-sized memory pool area
This is calculated about the definition of Fixed-sized Memory Pool Information (memorypool[]) that omits to specify
“section” by the following expressions.

Σ(memorypool[].siz_block * memorypool[].num_block)

- Total size of variable-sized memory pool area
This is calculated about the definition of Variable-sized Memory Pool Information (variable_memorypool[]) that omits
to specify “mpl_section” by the following expressions.

Σvariable_memorypool[].heap_size

19.20.3 SURI_STACK section

The user stack area is located in the SURI_STACK section. Note, when a task is defined, the user stack area can be
located into the user-specific section.
The size of the SURI_STACK section is calculated about the definition of Task Information (task[]) that omits to specify
“stack_section” by the following expressions.

Σtask[].stack_size

Note For estimation of stack size, refer to “APPENDIX D STACK SIZE ESTIMATION”.

19.20.4 SI section

The system stack area is located in the SI section.
The system stack size is the same as a set value for System stack size (stack_size) in System Information (system).

Note For estimation of stack size, refer to “APPENDIX D STACK SIZE ESTIMATION”.

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 414 of 447
Sep 20, 2013

19.21 Description Examples

The following describes an example for coding the system configuration file.

// System Definition
system{
 stack_size = 1024;
 priority = 10;
 system_IPL = 4;
 message_pri = 1;
 tic_deno = 1;
 tic_nume = 1;
 context = FPSW,ACC;
};

//System Clock Definition
clock{
 template = rx610.tpl; // Please modify when you use other than RX610
 timer = CMT0; // Please modify for your H/W environment
 timer_clock = 25MHz; // Please modify for your H/W environment
 IPL = 3; // Please modify for your H/W environment
};

//Task Definition
task[]{
 name = ID_TASK1;
 entry_address = task1();
 initial_start = ON;
 stack_size = 512;
 priority = 1;
// stack_section = STK1;
 exinf = 1;
};

task[]{
 name = ID_TASK2;
 entry_address = task2();
 initial_start = ON;
 stack_size = 512;
 priority = 2;
// stack_section = STK2;
 exinf = 2;
};

// Semaphore Definition
semaphore[]{
 name = ID_SEM1;
 max_count = 1;
 initial_count = 1;
 wait_queue = TA_TPRI;
};

// Cyclic Handler Definition
cyclic_hand[] {
 name = ID_CYC1;
 entry_address = cyh1();
 interval_counter = 100;
 start = ON;
 phsatr = OFF;
 phs_counter = 100;
 exinf = 1;
};

RI600V4 CHAPTER 19 SYSTEM CONFIGURATION FILE

R20UT0711EJ0104 Rev.1.04 Page 415 of 447
Sep 20, 2013

Note The RI600V4 provides sample source files for the system configuration file.

// Alarm Handler (dummy) Definition
alarm_hand[] {
 name = ID_ALM1;
 entry_address = alh1();
 exinf = 1;
};

// Interrupt Handler for "Taking in trace chart by software trace mode"
// Please remove the commnets when "Taking in trace chart by software trace mode"
// is selected.

// interrupt_vector[29]{ // CMT CH1
// os_int = NO;
// entry_address = _RIUSR_trcSW_interrupt(); // in trcSW_cmt.src
// };

// Interrupt Handler for "Taking in long-statistics by software trace mode"
// Please remove the commnets when "Taking in long-statistics by software trace
// mode" is selected.
// interrupt_vector[29]{ // CMT CH1
// os_int = NO;
// entry_address = _RIUSR_trcLONG_interrupt(); // in trcLONG_cmt.src
// };

// Interrupt Handler (dummy) Definition
interrupt_vector[64]{
 os_int = YES;
 entry_address = inh64();
 pragma_switch = E;
};

RI600V4 CHAPTER 20 CONFIGURATOR cfg600

R20UT0711EJ0104 Rev.1.04 Page 416 of 447
Sep 20, 2013

CHAPTER 20 CONFIGURATOR cfg600

This chapter explains configurator cfg600.

20.1 Outline

To build systems (load module) that use functions provided by the RI600V4, the information storing data to be provided for
the RI600V4 is required.
Since information files are basically enumerations of data, it is possible to describe them with various editors.
Information files, however, do not excel in descriptiveness and readability; therefore substantial time and effort are
required when they are described.
To solve this problem, the RI600V4 provides a utility tool (configurator “cfg600”) that converts a system configuration file
which excels in descriptiveness and readability into information files.
The cfg600 reads the system configuration file as a input file, and then outputs information files.
The information files output from the cfg600 are explained below.

- System information header file (kernel_id.h)
An information file that contains the correspondence between object names (task names, semaphore names, or the
like) described in the system configuration file and IDs.

- Service call definition file (kernel_sysint.h)
The declaration for issuing service calls by using INT instruction is described in this file. This file is included by ker-
nel.h.

- ROM definition file (kernel_rom.h), RAM definition file (kernel_ram.h)
These files contain the RI600V4 management data. These files must be included only by the boot processing source
file. For details, refer to “16.2.1 Boot processing function (PowerON_Reset_PC())”.

- System definition file (ri600.inc)
The system definition file is included by the table file (ritable.src) which is generated by the mktitbl.

- Vector table template file (vector.tpl)
The vector table template file is input to the mkritbl.

- CMT timer definition file (ri_cmt.h)
When either of CMT0, CMT1, CMT or CMT3 is specified for Selection of timer channel for base clock (timer) for in
Base Clock Interrupt Information (clock), the Template file (template) is retrieved from the folder indicated by the envi-
ronment variable “LIB600”, and the retrieved file is output after it is renamed to “ri_cmt.h”. The CMT timer definition
file must be included only by the boot processing source file. For details, refer to “16.2.1 Boot processing function
(PowerON_Reset_PC())”.

RI600V4 CHAPTER 20 CONFIGURATOR cfg600

R20UT0711EJ0104 Rev.1.04 Page 417 of 447
Sep 20, 2013

20.2 Start cfg600

20.2.1 Start cfg600 from command line

It is necessary to set the environment variable “LIB600” to “<ri_root>\lib600” beforehand.
The following is how to activate the cfg600 from the command line.
Note that, in the examples below, “C>” indicates the command prompt, “” indicates pressing of the space key, and
“<Enter>” indicates pressing of the enter key.
The options enclosed in “[]” can be omitted.

The output files are generated to the current folder.

The details of each option are explained below:

- -U
When an undefined interrupt occurs, the system down is caused. When -U option is specified, the vector number will
be transferred to the system down routine (refer to “CHAPTER 13 SYSTEM DOWN”). This is useful for debugging.
However, the kernel code size increases by about 1.5 KB.

- -v
Show a description of the command option and details of its version.

- -V
Show the creation status of files generated by the cfg600.

- file
Specifies the system configuration file name to be input. If the filename extension is omitted, the extension “.cfg” is
assumed.

Note <ri_root> indicates the installation folder of RI600V4.
The default folder is “C:\Program Files\Renesas Electronics\CubeSuite+\RI600V4”.

20.2.2 Start cfg600 from CubeSuite+

This is started when CubeSuite+ performs a build, in accordance with the setting on the Property panel, on the [System
Configuration File Related Information] tab.

C> cfg600.exe  [-U] [-v] [-V]  file <Enter>

RI600V4 CHAPTER 21 TABLE GENARATION UTILITY mkritbl

R20UT0711EJ0104 Rev.1.04 Page 418 of 447
Sep 20, 2013

CHAPTER 21 TABLE GENARATION UTILITY mkritbl

This chapter explains the table generation utility mkritbl.

21.1 Outline

The utility mkritbl is a command line tool that after collecting service call information used in the application, generates
service call tables and interrupt vector tables.
When compiling applications, the service call information files (.mrc) that contains the service call information to be used
are generated. The mkribl reads the service call information files, and generates the service call table to be linked only the
service calls used in the system.
Furthermore, the mkritbl generates an interrupt vector table based on the vector table template files generated by the
cfg600 and the service call information files.

Figure 21-1 Outline of mkritbl

Standard header file

System configuration
file (.cfg)

Configurator cfg600

Vector table
template file

System
definition file

(vector.tpl) (ri600.inc)

C Compiler

Application

Object files

Service call
information files (.mrc)

Table generation utility mkritbl

Table file (ritable.src)

Assembler

ritable.obj

Library files

System information
header file

(kernel_id.h)

Linker

- Kernel library
- Standard library
- Runtime library

Load module

(kernel.h)

Service call
definition file

(kernel_sysint.h)

The short dashed arrow represents
“include”, and solid arrow represents
“input/output file”.

RI600V4 CHAPTER 21 TABLE GENARATION UTILITY mkritbl

R20UT0711EJ0104 Rev.1.04 Page 419 of 447
Sep 20, 2013

21.2 Start mkritbl

21.2.1 Start mkritbl from command line

It is necessary to set the environment variable “LIB600” to “<ri_root>\lib600” beforehand.
The following is how to activate the mkritbl from the command line.
Note that, in the examples below, “C>” indicates the command prompt, “” indicates pressing of the space key, and
“<Enter>” indicates pressing of the enter key.
The options enclosed in “[]” can be omitted.

The output files are generated to the current folder.

The details of each option are explained below:

- path
Specifies the service call information file or the path to the folder where the service call information files are retrieved.
Note, when a folder path is specified, the sub folder is not retrieved.
 The mkritbl makes the current folder a retrieval path regardless of this specification.

Note <ri_root> indicates the installation folder of RI600V4.
The default folder is “C:\Program Files\Renesas Electronics\CubeSuite+\RI600V4”.

21.2.2 Start mkritbl from CubeSuite+

This is started when CubeSuite+ performs a build, in accordance with the setting on the Property panel, on the [System
Configuration File Related Information] tab.

21.3 Notes

Refer to “2.6.1 Service call information files and “-ri600_preinit_mrc” compiler option”.

C> mkritbl.exe  [path] <Enter>

RI600V4 APPENDIX A WINDOW REFERENCE

R20UT0711EJ0104 Rev.1.04 Page 420 of 447
Sep 20, 2013

APPENDIX A WINDOW REFERENCE

This appendix explains the window/panels that are used when the activation option for the configurator cfg600 and the
table generation utility mkritbl is specified from the integrated development environment CubeSuite+.

A.1 Description

The following shows the list of window/panels.

Table A-1 List of Window/Panels

Window/Panel Name Function Description

Main window This is the first window to be open when CubeSuite+ is launched.

Project Tree panel This panel is used to display the project components in tree view.

Property panel
This panel is used to display the detailed information on the Realtime OS
node, system configuration file, or the like that is selected on the Project
Tree panel and change the settings of the information.

RI600V4 APPENDIX A WINDOW REFERENCE

R20UT0711EJ0104 Rev.1.04 Page 421 of 447
Sep 20, 2013

Main window

Outline

This is the first window to be open when CubeSuite+ is launched.
This window is used to control the user program execution and open panels for the build process.

This window can be opened as follows:

- Select Windows [start] -> [All programs] -> [Renesas Electronics CubeSuite+] -> [CubeSuite+]

Display image

RI600V4 APPENDIX A WINDOW REFERENCE

R20UT0711EJ0104 Rev.1.04 Page 422 of 447
Sep 20, 2013

Explanation of each area

1) Menu bar

Displays the menus relate to realtime OS.
Contents of each menu can be customized in the User Setting dialog box.

- [View]

2) Toolbar

Displays the buttons relate to realtime OS.
Buttons on the toolbar can be customized in the User Setting dialog box. You can also create a new toolbar in the
same dialog box.

- Realtime OS toolbar

- Realtime OS Task Analyzer toolbar

3) Panel display area

The following panels are displayed in this area.

- Project Tree panel

- Property panel

- Output panel

See the each panel section for details of the contents of the display.

Note See “CubeSuite+ Integrated Development Environment User's Manual: RX Build” for details about the
Output panel.

Realtime OS
The [View] menu shows the cascading menu to start the tools of realtime
OS.

Resource Information
Opens the Realtime OS Resource Information panel.
Note that this menu is disabled when the debug tool is not connected.

Task Analyzer 1
Opens the Realtime OS Task Analyzer 1 panel.
Note that this menu is disabled when the debug tool is not connected.

Task Analyzer 2
Opens the Realtime OS Task Analyzer 2 panel
Note that this menu is disabled when the debug tool is not connected.

Opens the Realtime OS Resource Information panel.
Note that this button is disabled when the debug tool is not connected.

Opens the Realtime OS Task Analyzer 1 panel
Note that this button is disabled when the debug tool is not connected.

Opens the Realtime OS Task Analyzer 2 panel
Note that this button is disabled when the debug tool is not connected.

RI600V4 APPENDIX A WINDOW REFERENCE

R20UT0711EJ0104 Rev.1.04 Page 423 of 447
Sep 20, 2013

Project Tree panel

Outline

This panel is used to display the project components such as Realtime OS node, system configuration file, etc. in tree
view.

This panel can be opened as follows:

- From the [View] menu, select [Project Tree].

Display image

RI600V4 APPENDIX A WINDOW REFERENCE

R20UT0711EJ0104 Rev.1.04 Page 424 of 447
Sep 20, 2013

Explanation of each area

1) Project tree area

Project components are displayed in tree view with the following given node.

Context menu

1) When the Realtime OS node or Realtime OS generated files node is selected

2) When the system configuration file or an information file is selected

Node Description

RI600V4 (Realtime OS)
(referred to as “Realtime OS node”)

Realtime OS to be used.

xxx.cfg System configuration file.

Realtime OS generated files
(referred to as “Realtime OS generated files
node”)

The following information files appear directly below the
node created when a system configuration file is added.

- System information header file (kernel_id.h)

- Service call definition file (kernel_sysint.h

- ROM definition file (kernel_rom.h)

- RAM definition file (kernel_ram.h)

- System definition file (ri600.inc)

- vector table template file (vector.tpl)

- CMT timer definition file (ri_cmt.h)

This node and files displayed under this node cannot be
deleted directly.
This node and files displayed under this node will no longer
appear if you remove the system configuration file from the
project.

Property Displays the selected node's property on the Property panel.

Assemble

Assembles the selected assembler source file.
Note that this menu is only displayed when a system information table file or
an entry file is selected.
Note that this menu is disabled when the build tool is in operation.

Open
Opens the selected file with the application corresponds to the file extension.
Note that this menu is disabled when multiple files are selected.

Open with Internal Editor...
Opens the selected file with the Editor panel.
Note that this menu is disabled when multiple files are selected.

Open with Selected
Application...

Opens the Open with Program dialog box to open the selected file with the
designated application.
Note that this menu is disabled when multiple files are selected.

Open Folder with Explorer Opens the folder that contains the selected file with Explorer.

Add Shows the cascading menu to add files and category nodes to the project.

RI600V4 APPENDIX A WINDOW REFERENCE

R20UT0711EJ0104 Rev.1.04 Page 425 of 447
Sep 20, 2013

Add File... Opens the Add Existing File dialog box to add the selected file to the project.

Add New File...
Opens the Add File dialog box to create a file with the selected file type and
add to the project.

Add New Category

Adds a new category node at the same level as the selected file. You can
rename the category.
This menu is disabled while the build tool is running, and if categories are
nested 20 levels.

Remove from Project
Removes the selected file from the project.
The file itself is not deleted from the file system.
Note that this menu is disabled when the build tool is in operation.

Copy
Copies the selected file to the clipboard.
When the file name is in editing, the characters of the selection are copied to
the clipboard.

Paste This menu is always disabled.

Rename
You can rename the selected file.
The actual file is also renamed.

Property Displays the selected file's property on the Property panel.

RI600V4 APPENDIX A WINDOW REFERENCE

R20UT0711EJ0104 Rev.1.04 Page 426 of 447
Sep 20, 2013

Property panel

Outline

This panel is used to display the detailed information on the Realtime OS node, system configuration file, or the like that is
selected on the Project Tree panel by every category and change the settings of the information.

This panel can be opened as follows:

- On the Project Tree panel, select the Realtime OS node, system configuration file, or the like, and then select the
[View] menu -> [Property] or the [Property] from the context menu.

Note When either one of the Realtime OS node, system configuration file, or the like on the Project Tree panel
while the Property panel is opened, the detailed information of the selected node is displayed.

Display image

Explanation of each area

1) Selected node area

Display the name of the selected node on the Project Tree panel.
When multiple nodes are selected, this area is blank.

2) Detailed information display/change area

In this area, the detailed information on the Realtime OS node, system configuration file, or the like that is selected
on the Project Tree panel is displayed by every category in the list. And the settings of the information can be
changed directly.
Mark indicates that all the items in the category are expanded. Mark indicates that all the items are collapsed.
You can expand/collapse the items by clicking these marks or double clicking the category name.
See the section on each tab for the details of the display/setting in the category and its contents.

3) Property description area

Display the brief description of the categories and their contents selected in the detailed information display/change
area.

RI600V4 APPENDIX A WINDOW REFERENCE

R20UT0711EJ0104 Rev.1.04 Page 427 of 447
Sep 20, 2013

4) Tab selection area

Categories for the display of the detailed information are changed by selecting a tab.
In this panel, the following tabs are contained (see the section on each tab for the details of the display/setting on
the tab).

- When the Realtime OS node is selected on the Project Tree panel

- [RI600V4] tab

- When the system configuration file is selected on the Project Tree panel

- [System Configuration File Related Information] tab

- [File Information] tab

- When the Realtime OS generated files node is selected on the Project Tree panel

- [Category Information] tab

- When the system information table file or entry file is selected on the Project Tree panel

- [Build Settings] tab

- [Individual Assemble Options] tab

- [File Information] tab

- When the system information header file is selected on the Project Tree panel

- [File Information] tab

Note1 See “CubeSuite+ Integrated Development Environment User's Manual: RX Build” for details about the
[File Information] tab, [Category Information] tab, [Build Settings] tab, and [Individual Assemble Options]
tab.

Note2 When multiple components are selected on the Project Tree panel, only the tab that is common to all the
components is displayed. If the value of the property is modified, that is taken effect to the selected
components all of which are common to all.

[Edit] menu (only available for the Project Tree panel)

Context menu

Undo Cancels the previous edit operation of the value of the property.

Cut
While editing the value of the property, cuts the selected characters and copies
them to the clip board.

Copy Copies the selected characters of the property to the clip board.

Paste While editing the value of the property, inserts the contents of the clip board.

Delete While editing the value of the property, deletes the selected character string.

Select All
While editing the value of the property, selects all the characters of the selected
property.

Undo Cancels the previous edit operation of the value of the property.

Cut
While editing the value of the property, cuts the selected characters and copies
them to the clip board.

Copy Copies the selected characters of the property to the clip board.

RI600V4 APPENDIX A WINDOW REFERENCE

R20UT0711EJ0104 Rev.1.04 Page 428 of 447
Sep 20, 2013

Paste While editing the value of the property, inserts the contents of the clip board.

Delete While editing the value of the property, deletes the selected character string.

Select All
While editing the value of the property, selects all the characters of the selected
property.

Reset to Default

Restores the configuration of the selected item to the default configuration of
the project.
For the [Individual Assemble Options] tab, restores to the configuration of the
general option.

Reset All to Default

Restores all the configuration of the current tab to the default configuration of
the project.
For the [Individual Assemble Options] tab, restores to the configuration of the
general option.

RI600V4 APPENDIX A WINDOW REFERENCE

R20UT0711EJ0104 Rev.1.04 Page 429 of 447
Sep 20, 2013

[RI600V4] tab

Outline

This tab shows the detailed information on RI600V4 to be used categorized by the following.

- Version Information

Display image

Explanation of each area

1) [Version Information]

The detailed information on the version of the RI600V4 are displayed.

Kernel version

Display the version of RI600V4 to be used.

Default The version of the installed RI600V4

How to change Changes not allowed

Install folder

Display the folder in which RI600V4 to be used is installed with the absolute path.

Default The folder in which RI600V4 to be used is installed

How to change Changes not allowed

Endian

Display the endian set in the project.
Display the same value as the value of the [Select endian] property of the build
tool.

Default The endian in the property of the build tool

How to change Changes not allowed

RI600V4 APPENDIX A WINDOW REFERENCE

R20UT0711EJ0104 Rev.1.04 Page 430 of 447
Sep 20, 2013

[Task Analyzer] tab

Outline

This tab sets up REALTIME OS TASK ANALYZER.

- Version Information

Display image

Explanation of each area

1) [Trace]

Sets up the trace mode of REALTIME OS TASK ANALYZER. According to this setup, the build-options shown in
“2.6.6 Options for Realtime OS Task Analyzer” are set up automatically. Note, this automatic setting function is not
being interlocked with corresponding property panel of a function. For this reason, don't change the contents set up
automatically in corresponding property panel of a function.

RI600V4 APPENDIX A WINDOW REFERENCE

R20UT0711EJ0104 Rev.1.04 Page 431 of 447
Sep 20, 2013

Selection of
trace mode

Select trace mode of Realtime OS Task Analyzer

Default Taking in trace chart by hardware trace mode

How to change Select from the drop-down list.

Restriction

Not tracing Can not use Realtime OS Task Analyzer

Taking in trace
chart by hardware
trace mode

The trace information is collected in the trace
memory which emulator or simulator has.

Taking in trace
chart by software
trace mode

The trace information is collected in the trace buffer
secured on the user memory area.
To use this mode, implementation of user-own cod-
ing module and setup of the system configuration file
are required. For details, refer to chapter 15.3.1.

Taking in long-
statistics by
software trace
mode

The trace information is collected in the RI600V4’s
variable secured on the user memory area.
To use this mode, implementation of user-own cod-
ing module and setup of the system configuration file
are required. For details, refer to chapter 15.3.2.

Operation after
used up the
buffers

Select the operation after user up the trace buffer.
This item is displayed only when “Taking in trace chart by software trace mode” is selected.

Default Continue to exection while the buffers overwriting

How to change Select from the drop-down list.

Restriction

Continue to
exection while the
buffers overwriting

It is overwritten sequentially from old information.

Stop the trace
taking in

The RI600V4 stops tracing.

Buffer size

Specify the size of the trace buffer (in bytes). Please refer to “15.4 Trace Buffer Size (Taking
in Trace Chart by Software Trace Mode)” for the estimate of the size of the trace buffer.
This item is displayed only when “Taking in trace chart by software trace mode” is selected.

Default 0x100

How to change Directly enter to the text box. Only a hexadecimal number can be entered.

Restriction From 0x10 to 0x0FFFFFFF

Select the
buffer

Select the buffer.
This item is displayed only when “Taking in trace chart by software trace mode” is selected.

Default Kernel buffer

How to change Select from the drop-down list.

Restriction

Kernel buffer
The trace buffer with the specified size is generated
in the BRI_TRCBUF section when building.

Another buffer
The buffer address is specified by the following
clause.

Buffer address

Specify the start address of the “Another buffer” by immediate value.
Area with “Buffer size” (bytes) from “Buffer address” is used as the trace buffer. Please be
careful not to overlap with other program or data area.
This item is displayed only when “Another buffer” is selected.

Default 0x0

How to change Directly enter to the text box. Only a hexadecimal number can be entered

Restriction
From 0x0 to 0xFFFFFFFF, and “Buffer address” + “Buffer size” must not
exceeds 0xFFFFFFFF.

RI600V4 APPENDIX A WINDOW REFERENCE

R20UT0711EJ0104 Rev.1.04 Page 432 of 447
Sep 20, 2013

[System Configuration File Related Information] tab

Outline

This tab shows the detailed information on the using system configuration file categorized by the following and the
configuration can be changed.

- Realtime OS Generation Files

- Configurator Start Setting

- Service Call Information File

Display image

RI600V4 APPENDIX A WINDOW REFERENCE

R20UT0711EJ0104 Rev.1.04 Page 433 of 447
Sep 20, 2013

Explanation of each area

1) [Realtime OS Generation Files]

The detailed information on the RI600V4 generation files are displayed and the configuration can be changed.

Generate files

Select whether to generate realtime OS generation files and whether to update
the realtime OS generation files when the system configuration file is changed.

Default Yes(It updates the file when the .cfg file is changed)

How to change Select from the drop-down list.

Restriction

Yes(It updates the file
when the .cfg file is
changed)

Generates new realtime OS genera-
tion files and displays them on the
project tree.
If the system configuration file is
changed when there are already real-
time OS generation files, then real-
time OS generation files are updated.

No(It does not
register the file to the
project)

Does not generate realtime OS gen-
eration files and does not display
them on the project tree.
If this item is selected when there are
already realtime OS generation files,
then the files themselves are not
deleted.

Output folder

Display the folder for outputting realtime OS generation files.

Default %BuildModeName%

How to change Changes not allowed

Service Call Definition File
Name

Display the name of the service call definition file that the cfg600 outputs.

Default kernel_sysint.h

How to change Changes not allowed

System Information
Header File Name

Display the name of the system information header file that the cfg600 outputs.

Default kernel_id.h

How to change Changes not allowed

ROM Definition FIle
Name

Display the name of the ROM definition file that the cfg600 outputs.

Default kernel_rom.h

How to change Changes not allowed

RAM Definition FIle
Name

Display the name of the RAM definition file that the cfg600 outputs.

Default kernel_ram.h

How to change Changes not allowed

System Definition FIle
Name

Display the name of the system definition file that the cfg600 outputs.

Default ri600.inc

How to change Changes not allowed

CMT Timer Definition File
Name

Display the name of the CMT timer definition file which is generated by the
cfg600.

Default ri_cmt.h

How to change Changes not allowed

RI600V4 APPENDIX A WINDOW REFERENCE

R20UT0711EJ0104 Rev.1.04 Page 434 of 447
Sep 20, 2013

2) [Configurator Start Setting]

The start option of the configurator cfg600 can be specified.

Table File Name

Display the name of the table file that the mkritbl outputs..

Default ritable.src

How to change Changes not allowed

When undefined interrupt
is generated, the
interruption vector number
is passed to system down
routine.

When an undefined interrupt occurs, the system down is caused. When -U option
is specified, the vector number will be transferred to the system down routine
(refer to “CAHPTER 13　SYSTEM DOWN”). This is useful for debugging.
However, the kernel code size increases by about 1.5 KB.

Default Yes(-U)

How to change Select from the drop-down list.

Restriction

Yes(-U)

When undefined interrupt is
generated, the interruption vector
number is passed to system down
routine.

No

When undefined interrupt is
generated, the interruption vector
number is not passed to system down
routine.

The making situation of
the file that the
configurator generates is
displayed.

Select whether to display the creation status of files generated by the cfg600.

Default Yes(-U)

How to change Select from the drop-down list.

Restriction

Yes(-U)
Display the creation status of files
generated by the cfg600.

No
Do not display the creation status of
files generated by the cfg600.

User options.

Input the command line option directly.

Default -

How to change Directly enter to the text box.

Restriction Up to 259 characters

RI600V4 APPENDIX A WINDOW REFERENCE

R20UT0711EJ0104 Rev.1.04 Page 435 of 447
Sep 20, 2013

3) [Service Call Information File]

Specify the path where the table generation utility mkritbl retrieves the service call information files.

Note 1 Refer to “2.6.1 Service call information files and "-ri600_preinit_mrc" compiler option” for the service call
information file.

Note 2 When using the “optimization for accesses to external variables” compiler option, the CubeSuite+ generates
the folder to store object files and service call information files for 1st build, and specifies this folder path for
[Service Call Information File] tacit.

Note 3 The service call information files are generated to the same folder as object files at compilation. Please
change this item appropriately when you do the operation to which the output folder of object files is
changed.

The path that contains the
service call information
file.

Specifies the service call information file (.mrc) or the path to the folder where the
service call information files are retrieved.
Note, when a folder path is specified, the sub folder is not retrieved.
When relative path is specified, the project folder is the base folder.
When absolute path is specified, the specified path is converted into the relative
path which is based from the project folder. However, if the drive of the specified
path is different from the drive of the project folder, this conversion is not done.
Note, the project folder is passed to the mkritbl regardless this setting.
The following place holder can be specified.
 %BuildModeName% : Convert to the build mode name.

How to change
Edit by the Path Edit dialog box which appears when clicking
the [...] button.

Restriction
Up to 259 characters
Note, when extension is not specified or the specified exten-
sion is not “.mrc”, the specified path is interpreted as folder.

RI600V4 APPENDIX B FLOATING-POINT OPERATION FUNCTION

R20UT0711EJ0104 Rev.1.04 Page 436 of 447
Sep 20, 2013

APPENDIX B FLOATING-POINT OPERATION
FUNCTION

It is only when the “-fpu” option is specified that the compiler outputs floating-point arithmetic instructions.
If the “-chkfpu” option is specified in the assembler, the floating-point arithmetic instructions written in a program are
detected as warning.

B.1 When Using Floating-point Arithmetic Instructions in Tasks

Make settings that include “FPSW” for Task context register (context) in System Information (system). As a result, the
FPSW register is managed independently in each task.
The initial FPSW of task is initialized by the value according to compiler options to be used. For details, refer to “3.2.4
Internal processing of task”.

B.2 When Using Floating-point Arithmetic Instructions in Handlers

It is necessary that the handler explicitly guarantee the FPSW register.
The initial FPSW value of handlers is undefined.
To guarantee and initialize the FPSW register, write a program as follows.

#include <machine.h> // To use the intrinsic function get_fpsw() and set_fpsw(),
 // include machine.h.
#include "kernel.h"
#include "kernel_id.h"
void handler（void）
{
 unsigned long old_fpsw; // Declare variable for saving the FPSW register
 old_fpsw = get_fpsw（）; // Save the FPSW register
 set_fpsw（0x00000100）; // Initialize the FPSW register if necessary
 /* Floating-point arithmetic operation */
 set_fpsw（old_fpsw）; // Restore the FPSW register
}

RI600V4 APPENDIX C DSP FUNCTION

R20UT0711EJ0104 Rev.1.04 Page 437 of 447
Sep 20, 2013

APPENDIX C DSP FUNCTION

When a MCU which support the DSP function is used, it is necessary to note the treatment of the ACC register
(accumulator). Concretely, please note it as follows when you use the following DSP instructions which update ACC regis-
ter.

- RXv1/RXv2 architecture common instruction
MACHI, MACLO, MULHI, MULLO, RACW, MVTACHI, MVTACLO

- RXv2 architecture instructions
EMACA, EMSBA, EMULA, MACLH, MSBHI, MSBLH, MSBLO, MULLH, MVTACGU, RACL,RDACL, RDACW

In no case does the compiler generate these instructions.
Note also that if the “-chkdsp” option is specified in the assembler, the DSP function instructions written in a program are
detected as warning.

C.1 When Using DSP Instructions in Tasks

Make settings that include “ACC” for Task context register (context) in System Information (system). As a result, the ACC
register is managed independently in each task.

C.2 When Using DSP Instructions in Handlers

If the application contains any tasks or interrupt handlers that use the above-mentioned DSP instructions, it is necessary
that all of the interrupt handlers guarantee the ACC register. There are the following two method.

1) Use “-save_acc” compiler option

2) Specify “ACC” for “pragma_switch” in all interrupt handler definition (Relocatable Vector Information
(interrupt_vector[]) and Fixed Vector/Exception Vector Information (interrupt_fvector[])).

RI600V4 APPENDIX D STACK SIZE ESTIMATION

R20UT0711EJ0104 Rev.1.04 Page 438 of 447
Sep 20, 2013

APPENDIX D STACK SIZE ESTIMATION

If a stack overflows, the behavior of the system becomes irregular. Therefore, a stack must not overflow referring to this
chapter.

D.1 Types of Stack

There are two types of stacks: the user stack and system stack. The method for calculating stack sizes differs between the
user stack and system stack.

- User stack
The stack used by tasks is called “User stack”. When a task is created by Task Information (task[]), the size and the
name of the section where the stack is allocated are specified.

- System stack
 The system stack is used by handlers and the kernel. The system has only one system stack. The size is specified by
System stack size (stack_size) in System Information (system). The section name of the system stack is “SI”.

D.2 Call Walker

The CubeSuite+ package includes “Call Walker” which is a utility tool to calculate stack size.
The Call Walker can display stack size used by each function tree.

RI600V4 APPENDIX D STACK SIZE ESTIMATION

R20UT0711EJ0104 Rev.1.04 Page 439 of 447
Sep 20, 2013

D.3 User Stack Size Estimation

The quantity consumed of user stack for each task is calculated by the following expressions.

Quantity consumed of user stack = treesz + ctxsz

- treesz
Size consumed by function tree that makes the task entry function starting point. (the size displayed by Call Walker).

- ctxsz
Size for task context registers. This size is different according to the setting of Task context register (context) in
System Information (system). Refer to Table D-1.

Table D-1 Size of Task Context Register

Note Compiler option “-isa” is supported by the compiler CC-RX V2.01 or later.

Setting of system.context Compiler option “-isa” Size of Task Contest Register

NO - 68

FPSW - 72

ACC
“-isa=rxv2” 92

“-isa=rxv1” or not specify “-isa” 76

FPSW,ACC
“-isa=rxv2” 96

“-isa=rxv1” or not specify “-isa” 80

MIN - 44

MIN,FPSW - 48

MIN,ACC
“-isa=rxv2” 68

“-isa=rxv1” or not specify “-isa” 52

MON,FPSW,ACC
“-isa=rxv2” 72

“-isa=rxv1” or not specify “-isa” 56

RI600V4 APPENDIX D STACK SIZE ESTIMATION

R20UT0711EJ0104 Rev.1.04 Page 440 of 447
Sep 20, 2013

D.4 System Stack Size Estimation

The system stack is most consumed when an interrupt occurs during service call processing followed by the occurrence of
multiple interrupts. The quantity consumed of system stack is calculated by the following expressions.

 Quantity consumed of system stack = svcsz

 15
+ Σinthdrsz k

 k = 1

+ sysdwnsz

- svcsz
The maximum size among the service calls to be used in the all processing program. The value svcsz depends on the
RI600V4 version. For details, refer to release notes.

- inthdrsz
Size consumed by function tree that makes the interrupt handler entry function starting point. (the size displayed by
Call Walker).
The “k” means interrupt priority level. If there are multiple interrupts in the same priority level, the inthdrsz k should

select the maximum size among the handlers.
The size used by the base clock interrupt handler (the interrupt priority level is specified by Base clock interrupt
priority level (IPL) in Base Clock Interrupt Information (clock)) is the maximum value in the following Please refer to
the release notes for clocksz1, clocksz2 and clocksz3.
Don't have to add the size used by the base clock interrupt handler when base clock timer is not used (clock.timer =
NOTIMER).

- clocksz1 + cycsz

- clocksz2 + almsz

- clocksz3

- cycsz
Size consumed by function tree that makes the cyclic handler entry function starting point. (the size
displayed by Call Walker).
If there are multiple cyclic handlers, the cycsz should select the maximum size among the handlers.

- almsz
Size consumed by function tree that makes the alarm handler entry function starting point. the size displayed
by Call Walker).
If there are multiple alarm handlers, the cycsz should select the maximum size among the handlers.

- sysdwnsz
Size consumed by function tree that makes the system down routine entry function starting point. (the size displayed
by Call Walker) + 40. When the system down routine has never been executed, sysdwnsz is assumed to be 0.

Revision Record

Rev. Date
Description

Page Summary

1.00 Oct 01, 2011 - First Edition issued

1.01 Apr 01, 2012
-

“Priority”, “current priority” and “base priority” have been improved so that
they may be used properly clearly.

15 “Section information file” has been added to section 2.4.

22 Expression of section 2.6.2 has been improved.

29 Expression of section 3.2.2 has been improved.

32

The “Note 2” has been corrected as follows,

- “7-bit width” -> “8-bit width”

- “the maximum count value 127” -> “the maximum count value 255”

73, 75, 76,
262, 264,

266

The following description has been added to “There is a data in the data
queue.”
When there is a task in the transmission wait queue, this service call stores
the data sent by the task in the top of the transmission wait queue and
moves it from the WAITING state (data transmission wait state) to the
READY state.

93

The following description has been added.
And this service call changes the current priority of the task to the ceiling
priority of the target mutex. However, this service call does not change the
current priority when the task has locked other mutexes and the ceiling
priority of the target mutex is lower than or equal to the ceiling priority of the
locked mutexes.

95, 98,
293, 297

The description for the case “The task at the top of the transmission wait
queue was forcedly released.” has been added to the table for “Sending
WAITING State for a Message Buffer Cancel Operation”.

113, 313 The Note has been deleted.

117, 120,
318, 323

The description for the case “The task at the top of the transmission wait
queue was forcedly released.” has been added to the table for WAITING
State for a Variable-sized Memory Block Cancel Operation.

- The composition of CHAPTER 8 has been improved.

128 Expression of section 8.6.4 has been improved.

139 “8.9　Initialize Base Clock Timer” has been added.

145 Expression of section 9.5 has been improved.

147 Expression of section 9.7 has been improved.

148 Expression of section 9.8 has been improved.

149 Expression of section 9.9 has been improved.

162 The description of “IPL” in Table 13-1. has been detailed more.

162
Explanation of “type == -1” has been corrected by “Error when a kernel inter-
rupt handler ends” from “Error when a interrupt handler ends”.

167 Expression of section 14.7 has been improved.

- The composition of CHAPTER 16 has been improved.

184 “16.4　Section Initialization Function (_INITSCT())” has been added.

185 “16.5　Registers in Fixed Vector Table/Exception Vector table” has been
added.

186
Data type of INT, UINT, VP_INT, ER_UINT and FLGPTN in Table 17-1 have
been corrected.by “singed long” or “unsigned long” from “signed int” or
“unsigned int”.

188 Expression for TA_TPRI and TA_MPRI in Table 17-2 have been improved.

224
The following description has been added for “E_CTX error”.
 - The invoking task is specified in the dispatching disabled state.

230
The following description has been added for “E_CTX error”.
 - This service call was issued in the status “PSW.IPL > kernel interrupt mask
level”.

283, 284,
287

The conditional expression of “Ceiling priority violation” of E_ILUSE error
has been corrected.

284, 287

The following description has been added to “Explanation”.
When the mutex is locked, this service call changes the current priority of
the invoking task to the ceiling priority of the target mutex. However, this
service call does not change the current priority when the invoking task has
locked other mutexes and the ceiling priority of the target mutex is lower
than or equal to the ceiling priority of the locked mutexes.

288

The following description has been added to “Explanation”.
And this service call changes the current priority of the task to the ceiling
priority of the target mutex. However, this service call does not change the
current priority when the task has locked other mutexes and the ceiling
priority of the target mutex is lower than or equal to the ceiling priority of the
locked mutexes.

290 Conditions of E_CTX error have been corrected.

301
The following description has been deleted for “E_CTX error”.
 - This service call was issued in the dispatching disabled state.

330, 331 An order of members in SYSTIM structure has been corrected.

337 The “E_PAR” error has been added to sta_alm and ista_alm.

346 The “Note 5” has been added.

363
The prid returned by ref_ver and iref_ver has been corrected by “0x0003”
from “0x0004”.

384
The definition range of “max_count” has been corrected as follows.
 From 0 to 65535

394
The following description has been deleted in “5) Maximum message size
(max_msgsz)”.
The specified value is rounded up to the multiple of four.

397
The following description for “The size of the variable-sized memory pool
(heap_size)” in section 19.15 has been deleted.

405 The note 2 has been added.

411
The following description has been added in section 19.20.1.

“In addition, actual size may become larger than the value computed by
Table 19-11 for boundary adjustment.”

Rev. Date
Description

Page Summary

411

The following coefficients in Table 19-11 have been corrected.
- Data queue control block

The coefficient “8” of the head of the formula has been corrected by “6”.

- Variable-sized memory pool control block
The coefficient “36” of the head of the formula has been corrected by
“208”.

412
The following description has been added for DTQ_ALLSIZE.

“Note, DTQ_ALLSIZE is 4 when this calculation result is 0.”

1.02 Sep 1, 2012
(RI600V4
V1.02.00)

15
The description about user-own coding module for the Realtime OS task
Analyzer has been added.

24 The DRI_ROM and RRI_RAM sections have been added to Table 2-3.

26 “2.6.6 Options for Realtime OS Task Analyzer” has been added.

168 “CHAPTER 15　REALTIME OS TASK ANALYZER” has been added.

190
With revision to V1.02.00, the definition value of TKERNEL_PRVER has
been changed into 0x0120.

410 The RRI_RAM and BRI_TRCBUF sections have been added.

411

- “28” of the beginning of the formula of the “System control block” has
been changed into “36.”

- The item corresponding to the Realtime OS Task Analyzer has been
added.

422
The description of menu and toolbar corresponding to the Realtime OS Task
Analyzer have been added.

430 “[Task Analyzer] tab” has been added.

1.03 May 15, 2013
(RI600V4
V1.02.02)

14 “Note 2” has been added to “2.3 Coding System Configuration File”

22
Explanation of “2.6.2 Compiler option for the boot processing file” was
detailed.

25 ”2.6.5 Initialized data section” has been added.

31,436
The specification of FPSW register when task processing is started has
been changed.

168,431
A setup of the system configuration file has been added as a required matter
when software trace mode is used.

184
Expression of section “16.4 Section Initialization Function (_INITSCT())”
has been improved.

Rev. Date
Description

Page Summary

1.04 Sep 20, 2013
(RI600V4
V1.03.00)

23
With support of RXv2 architecture, the composition of kernel libraries have
been changed.

25, 178,
185, 407,

etc.

With support of RXv2 architecture, the explanation about
FIX_INTERRUPT_VECTOR section and EXTB register have been added or
changed. Moreover, “fixed vector” has been replaced by “fixed vector/excep-
tion vector”.

179
With support of RXv2 architecture, the explanation about compiler option
“-isa” and “-cpu” have been added.

183, 357 The explanation about starting of RI600V4 has been improved.

190
With revision to V1.03.00, the definition value of TKERNEL_PRVER has
been changed into 0x0130.

375 With support of RXv2 architecture, Table 19-2 has been changed.

379 The explanation of Table 19-7 has been improved.

382 With support of RXv2 architecture, Table 19-8 has been changed.

437
The RXv2 instructions have been added to DSP instructions which update
ACC register.

437
The description “All interrupt handlers explicitly guarantee the ACC register”
has been deleted.

439 With support of RXv2 architecture, Table D-1 has been changed.

Rev. Date
Description

Page Summary

RI600V4 Real-Time Operating System
User's Manual: Coding

Publication Date: Rev.1.00 Oct 01, 2011
Rev.1.04 Sep 20, 2013

Published by: Renesas Electronics Corporation

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2013 Renesas Electronics Corporation. All rights reserved.©

Colophon 1.3

RI600V4

R20UT0711EJ0104

	Cover

	How to Use This Manual
	TABLE OF CONTENTS
	CHAPTER 1 OVERVIEW
	1.1 Outline
	1.1.1 Real-time OS
	1.1.2 Multi-task OS

	CHAPTER 2 SYSTEM BUILDING
	2.1 Outline
	2.2 Coding Processing Programs
	2.3 Coding System Configuration File
	2.4 Coding User-Own Coding Module
	2.5 Creating Load Module
	2.6 Build Options
	2.6.1 Service call information files and “-ri600_preinit_mrc” compiler option
	2.6.2 Compiler option for the boot processing file
	2.6.3 Kernel library
	2.6.4 Arrangement of section
	2.6.5 Initialized data section
	2.6.6 Options for Realtime OS Task Analyzer

	CHAPTER 3 TASK MANAGEMENT FUNCTIONS
	3.1 Outline
	3.2 Tasks
	3.2.1 Task state
	3.2.2 Task priority
	3.2.3 Basic form of tasks
	3.2.4 Internal processing of task
	3.2.5 Processor mode of task

	3.3 Create Task
	3.4 Activate Task
	3.4.1 Activate task with queuing
	3.4.2 Activate task without queuing

	3.5 Cancel Task Activation Requests
	3.6 Terminate Task
	3.6.1 Terminate invoking task
	3.6.2 Terminate Another task

	3.7 Change Task Priority
	3.8 Reference Task Priority
	3.9 Reference Task State
	3.9.1 Reference task state
	3.9.2 Reference task state (simplified version)

	CHAPTER 4 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS
	4.1 Outline
	4.2 Put Task to Sleep
	4.2.1 Waiting forever
	4.2.2 With time-out

	4.3 Wake-up Task
	4.4 Cancel Task Wake-up Requests
	4.5 Forcibly Release Task from Waiting
	4.6 Suspend Task
	4.7 Resume Suspended Task
	4.7.1 Resume suspended task
	4.7.2 Forcibly resume suspended task

	4.8 Delay Task
	4.9 Differences Between Sleep with Time-out and Delay

	CHAPTER 5 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS
	5.1 Outline
	5.2 Semaphores
	5.2.1 Create semaphore
	5.2.2 Acquire semaphore resource
	5.2.3 Release semaphore resource
	5.2.4 Reference semaphore state

	5.3 Eventflags
	5.3.1 Create eventflag
	5.3.2 Set eventflag
	5.3.3 Clear eventflag
	5.3.4 Check bit pattern
	5.3.5 Reference eventflag state

	5.4 Data Queues
	5.4.1 Create data queue
	5.4.2 Send to data queue
	5.4.3 Forced send to data queue
	5.4.4 Receive from data queue
	5.4.5 Reference data queue state

	5.5 Mailboxes
	5.5.1 Messages
	5.5.2 Create mailbox
	5.5.3 Send to mailbox
	5.5.4 Receive from mailbox
	5.5.5 Reference mailbox state

	CHAPTER 6 EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS
	6.1 Outline
	6.2 Mutexes
	6.2.1 Priority inversion problem
	6.2.2 Current priority and base priority
	6.2.3 Simplified priority ceiling protocol
	6.2.4 Differences from semaphores
	6.2.5 Create mutex
	6.2.6 Lock mutex
	6.2.7 Unlock mutex
	6.2.8 Reference mutex state

	6.3 Message Buffers
	6.3.1 Create message buffer
	6.3.2 Send to message buffer
	6.3.3 Receive from message buffer
	6.3.4 Reference message buffer state

	CHAPTER 7 MEMORY POOL MANAGEMENT FUNCTIONS
	7.1 Outline
	7.2 Fixed-Sized Memory Pools
	7.2.1 Create fixed-sized memory pool
	7.2.2 Acquire fixed-sized memory block
	7.2.3 Release fixed-sized memory block
	7.2.4 Reference fixed-sized memory pool state

	7.3 Variable-Sized Memory Pools
	7.3.1 Create variable-sized memory pool
	7.3.2 Size of Variable-sized memory block
	7.3.3 Acquire variable-sized memory block
	7.3.4 Release variable-sized memory block
	7.3.5 Reference variable-sized memory pool state

	CHAPTER 8 TIME MANAGEMENT FUNCTIONS
	8.1 Outline
	8.2 System Time
	8.2.1 Base clock timer interrupt
	8.2.2 Base clock interval

	8.3 Timer Operations
	8.4 Delay task
	8.5 Time-out
	8.6 Cyclic handlers
	8.6.1 Basic form of cyclic handlers
	8.6.2 Processing in cyclic handler
	8.6.3 Create cyclic handler
	8.6.4 Start cyclic handler operation
	8.6.5 Stop cyclic handler operation
	8.6.6 Reference cyclic handler state

	8.7 Alarm Handlers
	8.7.1 Basic form of alarm handler
	8.7.2 Processing in alarm handler
	8.7.3 Create alarm handler
	8.7.4 Start alarm handler operation
	8.7.5 Stop alarm handler operation
	8.7.6 Reference alarm handler state

	8.8 System Time
	8.8.1 Set system time
	8.8.2 Reference system time

	8.9 Initialize Base Clock Timer

	CHAPTER 9 SYSTEM STATE MANAGEMENT FUNCTIONS
	9.1 Outline
	9.2 Rotate Task Precedence
	9.3 Reference Task ID in the RUNNING State
	9.4 Lock and Unlock the CPU
	9.5 Reference CPU Locked State
	9.6 Disable and Enable Dispatching
	9.7 Reference Dispatching State
	9.8 Reference Context Type
	9.9 Reference Dispatch Pending State

	CHAPTER 10 INTERRUPT MANAGEMENT FUNCTIONS
	10.1 Interrupt Type
	10.2 Fast Interrupt of the RX-MCU
	10.3 CPU Exception
	10.4 Base Clock Timer Interrupt
	10.5 Multiple Interrupts
	10.6 Interrupt Handlers
	10.6.1 Basic form of interrupt handlers
	10.6.2 Register interrupt handler

	10.7 Maskable Interrupt Acknowledgement Status in Processing Programs
	10.8 Prohibit Maskable Interrupts
	10.8.1 Move to the CPU locked state by using loc_cpu, iloc_cpu
	10.8.2 Change PSW.IPL by using chg_ims, ichg_ims
	10.8.3 Change PSW.I and PSW.IPL directly (only for handlers)

	CHAPTER 11 SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS
	11.1 Outline
	11.2 Reference Version Information

	CHAPTER 12 OBJECT RESET FUNCTIONS
	12.1 Outline
	12.2 Reset Data Queue
	12.3 Reset Mailbox
	12.4 Reset Message Buffer
	12.5 Reset Fixed-sized Memory Pool
	12.6 Reset Variable-sized Memory Pool

	CHAPTER 13 SYSTEM DOWN
	13.1 Outline
	13.2 User-Own Coding Module
	13.2.1 System down routine (_RI_sys_dwn__)
	13.2.2 Parameters of system down routine

	CHAPTER 14 SCHEDULING FUNCTION
	14.1 Outline
	14.2 Processing Unit and Precedence
	14.3 Task Drive Method
	14.4 Task Scheduling Method
	14.4.1 Ready queue

	14.5 Task Scheduling Lock Function
	14.6 Idling
	14.7 Task Scheduling in Non-Tasks

	CHAPTER 15 REALTIME OS TASK ANALYZER
	15.1 Outline
	15.2 Trace Mode
	15.3 User-Own Coding Module for Software Trace Mode
	15.3.1 Taking in trace chart by software trace mode
	15.3.2 Taking in long-statistics by software trace mode

	15.4 Trace Buffer Size (Taking in Trace Chart by Software Trace Mode)
	15.5 Error of Total Execution Time

	CHAPTER 16 SYSTEM INITIALIZATION
	16.1 Outline
	16.2 Boot Processing File (User-Own Coding Module)
	16.2.1 Boot processing function (PowerON_Reset_PC())
	16.2.2 Include kernel_ram.h and kernel_rom.h
	16.2.3 Compiler option for boot processing file
	16.2.4 Example of the boot processing file

	16.3 Kernel Initialization Module (vsta_knl, ivsta_knl)
	16.4 Section Initialization Function (_INITSCT())
	16.4.1 Section information file (User-Own Coding Module)

	16.5 Registers in Fixed Vector Table/Exception Vector table

	CHAPTER 17 DATA TYPES AND MACROS
	17.1 Data Types
	17.2 Macros
	17.2.1 Constant macros
	17.2.2 Function Macros

	CHAPTER 18 SERVICE CALLS
	18.1 Outline
	18.1.1 Method for calling service calls

	18.2 Explanation of Service Call
	18.2.1 Task management functions
	act_tsk
	iact_tsk
	can_act
	ican_act
	sta_tsk
	ista_tsk
	ext_tsk
	ter_tsk
	chg_pri
	ichg_pri
	get_pri
	iget_pri
	ref_tsk
	iref_tsk
	ref_tst
	iref_tst

	18.2.2 Task dependent synchronization functions
	slp_tsk
	tslp_tsk
	wup_tsk
	iwup_tsk
	can_wup
	ican_wup
	rel_wai
	irel_wai
	sus_tsk
	isus_tsk
	rsm_tsk
	irsm_tsk
	frsm_tsk
	ifrsm_tsk
	dly_tsk

	18.2.3 Synchronization and communication functions (semaphores)
	wai_sem
	pol_sem
	ipol_sem
	twai_sem
	sig_sem
	isig_sem
	ref_sem
	iref_sem

	18.2.4 Synchronization and communication functions (eventflags)
	set_flg
	iset_flg
	clr_flg
	iclr_flg
	wai_flg
	pol_flg
	ipol_flg
	twai_flg
	ref_flg
	iref_flg

	18.2.5 Synchronization and communication functions (data queues)
	snd_dtq
	psnd_dtq
	ipsnd_dtq
	tsnd_dtq
	fsnd_dtq
	ifsnd_dtq
	rcv_dtq
	prcv_dtq
	iprcv_dtq
	trcv_dtq
	ref_dtq
	iref_dtq

	18.2.6 Synchronization and communication functions (mailboxes)
	snd_mbx
	isnd_mbx
	rcv_mbx
	prcv_mbx
	iprcv_mbx
	trcv_mbx
	ref_mbx
	iref_mbx

	18.2.7 Extended synchronization and communication functions (mutexes)
	loc_mtx
	ploc_mtx
	tloc_mtx
	unl_mtx
	ref_mtx

	18.2.8 Extended synchronization and communication functions (message buffers)
	snd_mbf
	psnd_mbf
	ipsnd_mbf
	tsnd_mbf
	rcv_mbf
	prcv_mbf
	trcv_mbf
	ref_mbf
	iref_mbf

	18.2.9 Memory pool management functions (fixed-sized memory pools)
	get_mpf
	pget_mpf
	ipget_mpf
	tget_mpf
	rel_mpf
	irel_mpf
	ref_mpf
	iref_mpf

	18.2.10 Memory pool management functions (variable-sized memory pools)
	get_mpl
	pget_mpl
	ipget_mpl
	tget_mpl
	rel_mpl
	ref_mpl
	iref_mpl

	18.2.11 Time management functions
	set_tim
	iset_tim
	get_tim
	iget_tim
	sta_cyc
	ista_cyc
	stp_cyc
	istp_cyc
	ref_cyc
	iref_cyc
	sta_alm
	ista_alm
	stp_alm
	istp_alm
	ref_alm
	iref_alm

	18.2.12 System state management functions
	rot_rdq
	irot_rdq
	get_tid
	iget_tid
	loc_cpu
	iloc_cpu
	unl_cpu
	iunl_cpu
	dis_dsp
	ena_dsp
	sns_ctx
	sns_loc
	sns_dsp
	sns_dpn
	vsys_dwn
	ivsys_dwn
	vsta_knl
	ivsta_knl

	18.2.13 Interrupt management functions
	chg_ims
	ichg_ims
	get_ims
	iget_ims

	18.2.14 System configuration management functions
	ref_ver
	iref_ver

	18.2.15 Object reset functions
	vrst_dtq
	vrst_mbx
	vrst_mbf
	vrst_mpf
	vrst_mpl

	CHAPTER 19 SYSTEM CONFIGURATION FILE
	19.1 Outline
	19.2 Default System Configuration File
	19.3 Configuration Information (static API)
	19.4 System Information (system)
	19.5 Note Concerning system.context
	19.5.1 Note concerning FPU and DSP
	19.5.2 Relationship with the compiler options “-fint_register”, “-base” and “-pid”

	19.6 Base Clock Interrupt Information (clock)
	19.7 Task Information (task[])
	19.8 Semaphore Information (semaphore[])
	19.9 Eventflag Information (flag[])
	19.10 Data Queue Information (dataqueue[])
	19.11 Mailbox Information (mailbox[])
	19.12 Mutex Information (mutex[])
	19.13 Message Buffer Information (message_buffer[])
	19.14 Fixed-sized Memory Pool Information (memorypool[])
	19.15 Variable-sized Memory Pool Information (variable_memorypool[])
	19.16 Cyclic Handler Information (cyclic_hand[])
	19.17 Alarm Handler Information (alarm_handl[])
	19.18 Relocatable Vector Information (interrupt_vector[])
	19.19 Fixed Vector/Exception Vector Information (interrupt_fvector[])
	19.20 RAM Capacity Estimation
	19.20.1 BRI_RAM section
	19.20.2 BRI_HEAP section
	19.20.3 SURI_STACK section
	19.20.4 SI section

	19.21 Description Examples

	CHAPTER 20 CONFIGURATOR cfg600
	20.1 Outline
	20.2 Start cfg600
	20.2.1 Start cfg600 from command line
	20.2.2 Start cfg600 from CubeSuite+

	CHAPTER 21 TABLE GENARATION UTILITY mkritbl
	21.1 Outline
	21.2 Start mkritbl
	21.2.1 Start mkritbl from command line
	21.2.2 Start mkritbl from CubeSuite+

	21.3 Notes

	APPENDIX A WINDOW REFERENCE
	A.1 Description
	Main window
	Project Tree panel
	Property panel
	[RI600V4] tab
	[Task Analyzer] tab
	[System Configuration File Related Information] tab

	APPENDIX B FLOATING-POINT OPERATION FUNCTION
	B.1 When Using Floating-point Arithmetic Instructions in Tasks
	B.2 When Using Floating-point Arithmetic Instructions in Handlers

	APPENDIX C DSP FUNCTION
	C.1 When Using DSP Instructions in Tasks
	C.2 When Using DSP Instructions in Handlers

	APPENDIX D STACK SIZE ESTIMATION
	D.1 Types of Stack
	D.2 Call Walker
	D.3 User Stack Size Estimation
	D.4 System Stack Size Estimation

	Revision Record

