
 
 

 

YRSPSH7267-0103 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Renesas Starter Kit Plus for 
SH7267 

 

USB Sample Code User's Manual 
 
 
 

 

RENESAS SINGLE-CHIP MICROCOMPUTER 

SuperH FAMILY 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Rev.1.00                                                                                Renesas Electronics Europe Ltd. 

Revision date: 13.May.2010                                                                             www.renesas.com 

http://www.renesas.com/


ii 

 

 

 

Disclaimer 

 
By using this Renesas Starter Kit Plus (RSP), the user accepts the following terms. The RSP is not guaranteed to be error free, and the 

entire risk as to the results and performance of the RSP is assumed by the User. The RSP is provided by Renesas on an “as is” basis 

without warranty of any kind whether express or implied, including but not limited to the implied warranties of satisfactory quality, fitness 

for a particular purpose, title and non-infringement of intellectual property rights with regard to the RSP. Renesas expressly disclaims all 

such warranties. Renesas or its affiliates shall in no event be liable for any loss of profit, loss of data, loss of contract, loss of 

business, damage to reputation or goodwill, any economic loss, any reprogramming or recall costs (whether the foregoing losses are 

direct or indirect) nor shall Renesas or its affiliates be  liable for any other direct or indirect special, incidental or consequential 

damages arising out of or in relation to the use of this RSP, even if Renesas or its affiliates have been advised of the possibility of such 

damages. 

 

 
Precautions 

 
This Renesas Starter Kit Plus is only intended for use in a laboratory environment under ambient temperature and humidity conditions. A 

safe separation distance should be used between this and sensitive equipment. Its use outside the laboratory, classroom, study 

area  or similar such area invalidates conformity with the protection requirements of the Electromagnetic Compatibility Directive and 

could lead to prosecution. 

 

The product generates, uses, and can radiate radio frequency energy and may cause harmful interference to radio communications. 

However, there is no guarantee that interference will not occur in a particular installation. If this equipment causes harmful interference 

to radio or television reception, which can be determined by turning the equipment off or on, you are encouraged to try to correct the 

interference by one or more of the following measures; 

z  Ensure attached cables do not lie across the equipment 
 

z  reorient the receiving antenna 
 

z  increase the distance between the equipment and the receiver 
 

z  connect the equipment into an outlet on a circuit different from that which the receiver is connected 
 

z  power down the equipment when not is use 
 

z consult the dealer or an experienced radio/TV technician for help NOTE: It is recommended that wherever possible shielded 

interface cables are used. 

 

The product is potentially susceptible to certain EMC phenomena. To mitigate against them it is recommended that the following 

measures be undertaken; 

z  The user is advised that mobile phones should not be used within 10m of the product when in use. 
 

z  The user is advised to take ESD precautions when handling the equipment. 

 
The Renesas Starter Kit Plus does not represent and ideal reference design for an end product and does not fulfil the regulatory 

standards for an end product. 



iii 

 

 

 

Table of Contents 
 

 
Chapter 1. Preface .................................................................................................................................................. 1 

 

Chapter 2. Introduction............................................................................................................................................ 2 
 

Chapter 3. Development Environment .................................................................................................................... 3 
 

3.1. RSP Configuration........................................................................................................................................ 3 
 

3.2. Sample Code Configuration ......................................................................................................................... 3 
 

3.3. Target Sample Code Options ....................................................................................................................... 3 
 

3.4. Host Application Software ............................................................................................................................ 3 
 

Chapter 4. USB Stack (Target)................................................................................................................................ 4 
 

4.1. Hardware Abstraction Layer ......................................................................................................................... 4 
 

4.2. USBCore ...................................................................................................................................................... 5 
 

4.3. Human Interface Device Class ..................................................................................................................... 7 
 

4.4. Communication Device Class ...................................................................................................................... 8 
 

4.5. Mass Storage Class ..................................................................................................................................... 9 
 

Chapter 5. Applications ......................................................................................................................................... 10 
 

5.1. Introduction to Applications ........................................................................................................................ 10 
 

5.2. Human Interface Device Application .......................................................................................................... 10 
 

5.3. Communications Device Class Application ................................................................................................ 12 
 

5.4. Mass Storage Class Demonstration ........................................................................................................... 15 
 

5.5. LibUSB ....................................................................................................................................................... 16 
 

Chapter 6. Additional Information.......................................................................................................................... 19 



1 

 

 

Chapter 1. Preface 
 

Cautions 
 

This document may be, wholly or partially, subject to change without notice. 
 

All rights reserved. Duplication of this document, either in whole or part is prohibited without the written permission of Renesas 
Solutions Corporation. 

 

Trademarks 
 

All  brand or  product names  used in  this  manual are  trademarks or  registered trademarks of  their respective companies or 
organisations. 

 

Copyright 
 

© 2010 Renesas Electronics Europe Ltd. All rights reserved. 
 

© 2010 Renesas Electronics Corporation. All rights reserved. 
 

© 2010 Renesas Solutions Corporation. All rights reserved. 
 

Website: http://www.renesas.com/  

Glossary  

ADC Analog to Digital Converter USB Universal Serial Bus 

CPU Central Processing Unit RSP Renesas Starter Kit Plus 

LCD Liquid Crystal Display E10A “E10A for Starter Kits” debug module 

LED Light Emitting Diode   

http://www.eu.renesas.com/


2 

 

 

S
am

p
les 

C
lasses 

U
S

B
 S

ta
c
k

 

 
 
 
 

Chapter 2.Introduction 
 

The RSP USB sample code provides a basis for a developer to add USB device functionality to a system. It includes sample applications for 
the three most common USB Device classes * :- 

 

•   Human Interface Device (HID) 
 

•   Communication Device Class - Abstract Control Model (CDC-ACM) 
 

•   Mass Storage Class (MSC) 
 

In addition to the three defined USB classes a LibUSB sample is included.  LibUSB is an open source project with the aim of providing a library 
that a user application can utilise to access a USB device regardless of operating system. A sample using a Microsoft Windows XP host is 
provided. 

 

The embedded software is available as source written in ANSI C and does not require an operating system. 

The host applications software is also available as source written for MS Windows using VisualC++. 

This manual describes the USB sample code. The Quick Start Guide and Tutorial Manual provide details of the software installation and 
debugging environment. 

 
 
 

HID 

Demo 

CDC 

Demo 

MSC 

Demo 

LibUSB 

Demo 
 

 
 
 
 
 
 

HID             CDC            MSC 
 
 
 
 

 

USB Core Driver 
 

 

HAL 
 
 

 

USB Hardware 
 

 
Figure 1 - Embedded SW, including Layers of USB Stack 

 

 
 
 
 
 
 
 
 
 

*  See specific sections for details. Tested with a USB Host PC running MS Windows XP SP2.   HID and 
LibUSB samples both include a PC Application. 

http://libusb-win32.sourceforge.net/


3 

 

 

 
 
 
 

Chapter 3.Development Environment 
 

3.1. RSP Configuration 
 

Jumper JP1 must be removed for the USB samples to operate. 

 

3.2. Sample Code Configuration 
 

The Sample code is provided as a project generator with the RSP. To create the sample code project follow the instructions in the RSP Quick 
Start Guide. 

 

When created the sample code will contain the source for both the Target project and a Host project if applicable, including any configuration 
driver files. 

 

3.3. Target Sample Code Options 
 

When developing USB software it is useful to be able to get debug information out at runtime without stopping code from running such as 
when stepping in a debugger. All modules of the USB Stack software include debug messages that can be utilised in a system that supports 
printf. The sample applications all support printf and the output is viewable via the serial port of the RSP. To view the serial output the 
following settings are required: 

 

Baud: 57600. Data:   8 Bit. Parity: None. Stop Bits: 2. Flow: None. 
 

The level of debug message can be set using the #define DEBUG_LEVEL. This is described in the file usb_common.h in the USBStack 
directory. Note that a high level of debug messages can significantly slow down the system. 

 

3.4. Host Application Software 
 

To build the Microsoft Visual C++ Applications you will need to have the appropriate Windows Software Development Kit (SDK) and the 
Windows Driver Kit (WDK) installed.   These kits provide access to the library functions to access USB devices and are available directly 
from Microsoft. 

 

We have provided the links to the current locations however we cannot guarantee the suitability or accuracy of these links. Both must be 
installed to be able to build the application, we suggest installing the SDK first. 

 

Windows SDK 
Windows Driver Kit (WDK) 

http://www.microsoft.com/downloads/details.aspx?FamilyId=484269E2-3B89-47E3-8EB7-1F2BE6D7123A&displaylang=en
http://www.microsoft.com/whdc/Devtools/wdk/default.mspx


4 

 

 

 
 
 
 

Chapter 4.USB Stack (Target) 
 

The USB software is implemented in the form of a USB stack comprising of three layers. 
 

At the top of the stack are the USB Device Classes consisting of HID, CDC and MSC which are all described later. 
 

In the middle is a core layer (USBCore) that handles standard device requests. At the bottom is a hardware abstraction layer (HAL) that 
provides a hardware independent API for the upper layers. 

 

This modular design means this software can be still be used even if developing a proprietary USB interface. For example a proprietary 
module could be implemented by calling functions directly exposed by both the USBHAL API and USBCore API. 

 

4.1.Hardware Abstraction Layer 
 

The HAL is a hardware specific layer that provides a non-hardware specific API. The HAL supports the following transfer modes: 

Control (Setup, Data IN/OUT, Status) 

Bulk (IN and OUT) 

Interrupt (IN) 

 

Some HAL implementations may not be able to support all these modes but the SH7267 implementation does. 

Here is a list of the functions that make up the USBHAL API. 
 

Name Description 

USBHAL_Init Initialise  the  HAL.  Register  callback  functions.  If  using  the  USB  Core  layer  then  this  is  done 
automatically. 

USBHAL_Config_Get Get the current HAL configuration. 

USBHAL_Config_Set Set the current HAL configuration. 

USBHAL_Control_ACK Generate an ACK on the Control IN pipe. (Used following a setup packet) 

USBHAL_Control_IN Send data on the Control IN pipe. (Used following a setup packet) 

USBHAL_Control_OUT Receive data on the Control OUT pipe. (Used following a setup packet) 

USBHAL_Bulk_IN Send data on the Bulk IN pipe. 

USBHAL_Bulk_OUT Receive data on the Control OUT pipe. 

USBHAL_Interrupt_IN Send data on the Control IN pipe. 

USBHAL_Reset Reset this module. (Following an error). 

USBHAL_Control_Stall Stall the control pipe. (Used following a setup packet) 

USBHAL_Bulk_IN_Stall Stall the Bulk IN pipe. 

USBHAL_Bulk_OUT_Stall Stall the Bulk OUT pipe. 

USBHAL_Interrupt_IN_Stall Stall the Interrupt IN pipe. 

USBHALInterruptHandler The system must be setup so that this gets called when any USB Interrupt occurs. 

 

 
 

The HAL module consists of the following files:- 
 

usb_hal.c           - This file provides a hardware independent API to the USB peripheral. 

usb_hal.h.         - This file provides definition for low level driver. 

usb_common.h - This file provides definition common to upper and lower level USB driver. 



5 

 

 

 
 
 
 

The following files are used as helper files for HAL module. 
 

dataio.c    - This file consist of USB FIFO read write functions accessed by HAL module. 

global.c     - This file contains declarations of global variables and common functions. 

lib7267.c   - This file contains USB hardware related functions specific to microcontroller SH7267. 

libint.c       - This file contains USB interrupt handlers specific to SH7267 CPU. 

 

4.2.USBCore 
 

 
The USBCore layer handles standard USB requests common to all USB devices during the enumeration stage. This means that a developer 
can concentrate on any class or vendor specific implementation. The USBCore requires initialising with the descriptors specific to the device 
being implemented. It uses the USBHAL, which it initialises, to access the particular HW. 

 

 
The following Standard Requests are handled in USBHAL: 

 

•   Get_Status 

•   Clear_Feature 

•   Set_Feature 

•   Get_Descriptor 

•   Get_Configuration 

•   Set_Configuration 

•   Get_Interface 

•   Set_Interface 
 

 
The following Get_Status requests are handled: 

ƒ       Recipient Device 

ƒ       Recipient Interface 

ƒ       Recipient End point 
 

A Get_Status Standard request can be directed at the device, interface or endpoint. When directed to a device it returns flags indicating the 
status of remote wakeup and if the device is self powered. However if the same request is directed at the interface it always returns zero, or 
should it be directed at an endpoint will return the halt flag for the endpoint. 

 

Clear_Feature and Set_Feature requests can be used to set boolean features. These commands are implemented for only endpoint 
recipient. Only endpoint feature selector values may be used when the recipient is an endpoint. 

 

Get_Descriptor returns the specified descriptor if the descriptor exists. 

The Get_Desriptor command is handled for following descriptor types: 

ƒ       Device 

ƒ       Configuration 

ƒ       String 
 

o Language ID (Only a single language ID is supported and this is currently English) 
 

o Manufacturer 
 

o Product 
 

o Serial Number 

ƒ       Device Qualifier 

ƒ       Other Speed Configuration 
 

Get_Configuration request returns current device configuration value. A byte will be returned during the data stage indicating the devices 
status. A zero value means the device is not configured and a non-zero value indicates the device is configured. 

 

The Get_Interface request should return the selected alternate setting for the specified interface. 



6 

 

 

 
 
 
 

The Set_Interface request set the Alternative Interface setting. If USB devices have configurations with interfaces that have mutually 
exclusive settings, then Set_Interface request allows the host to select the desired alternate setting. This stack only supports a default setting 
for the specified interface, so a STALL will be returned in the Status stage of the request. 

 

 
The USBCDC API consists of a single function called ‘USBCORE_Init’. This initialises the USBCore and the HAL. In addition to passing 
device descriptors to this function it also requires call back functions for the following conditions: 

ƒ A Setup packet has been received that this layer can’t handle. This enables a higher layer to handle class or vender specific 
requests. 

ƒ       A Control Data Out has completed following a setup packet that is being handled by the layer above. 

ƒ       The USB cable has been connected or disconnected. 

ƒ       An unhandled error has occurred. 
 

 
The Core module consists of the following files:- 

usb_core.c 

usb_core.h. 

usb_common.h 



7 

 

 

 

 
 
 
 

4.3.Human Interface Device Class 
 

The HID class as the name suggests is commonly used for things like keyboards, mice and joysticks where a human’s action is causing the 
need for communication. However this does not need to be the case. The HID class is suitable for any device where the communication can 
be achieved by sending data in ‘reports‘ of a predefined size where the data transfer rate is not critical. 

 

The HID class has been supported by Microsoft Windows 98 onwards. Support is both at kernel level and user level. When a HID type device 
is plugged into a Windows PC it will be automatically recognised and Windows will load its own drivers for it, so there is no need to develop 
a custom Windows driver or even a Windows ‘inf’ file. 

 

This implementation of the HID class supports a single IN report and a single OUT report. Both Interrupt IN and Control IN (via Get_Report) 
transfers are supported for sending a report to the host. Reports from the host must use Control OUT (via Set_Report). 

 

Here are the functions that make up the USBHID API. 
 

Name Description 

USBHID_Init Initialise the HID module. Register a callback functions to be called when a report is received from the host. 
Provide the initial contents of a report to send to the host. Initialises the Core and HAL layers. 

USBHID_ReportIN Send a report to the host using Interrupt IN transfer. 

 

The HID module consists of the following files:- 

usb_hid.c 

usb_hid.h. 

usb_descriptors.c 

usb_descriptors.h 

usb_common.h 



8 

 

 

 
 
 
 
 

4.4.Communication Device Class 
 

The CDC ACM allows a host to see a device as a standard serial (COM) port. This is particularly useful when working with legacy applications 
that use serial communications.   Bulk IN and Bulk OUT transfers are used for all non-setup data. 

 

The CDC module utilises the USBCore layer for the processing of all standard requests. In addition it processes the following class requests. 
 

GET_LINE_CODING 
 

SET_LINE_CODING (As required by MS HyperTerminal) 

SET_CONTROL_LINE_STATE 

The CDC class is supported by MS Windows so there is no need to develop a custom Windows kernel driver. However a custom ‘inf’ file is 
required, the sample CDC application includes such a file. When a CDC ACM device is plugged into a Windows PC an additional (virtual) 
COM port will become available that applications can use just like a standard COM port. 

 

Here are the functions that make up the USBCDC API. 
 

Name Description 

USBCDC_Init Initialise the CDC module. This also initialises the Core and HAL layers. 

USBCDC_IsConnected Returns the connected status of the device. 

USBCDC_WriteString A blocking function that sends a string to the host. 

USBCDC_PutChar A blocking function that sends a character to the host. 

USBCDC_GetChar A blocking function that gets a character from the host. 

USBCDC_Write A blocking function that sends a supplied data buffer to the host. 

USBCDC_Write_Async Starts an asynchronous write of a data buffer to the host. A call back is used to signal when the operation 
has completed. 

USBCDC_Read A blocking function that reads from the host into a supplied data buffer. 

USBCDC_Read_Async Starts an asynchronous read from the host into a data buffer. A call back is used to signal when the 
operation has completed. 

USBCDC_Cancel Cancel any asynchronous operations that are pending. 

 
The CDC module consists of the following files:- 

usb_cdc.c 

usb_cdc.h. 

usb_descriptors.c 

usb_descriptors.h 

usb_common.h 



9 

 

 

 
 
 
 
 

4.5.Mass Storage Class 
 

The MSC class has become a very popular way for devices, such as cameras and USB Pens, to share data with PCs. The reason for the 
success is that when the device is plugged in to a host PC it appears to the PC as just another drive and therefore users can use familiar 
applications such as Windows Explorer to access the data.   From Windows 2000 onwards the MSC class has been supported with no need 
for custom drivers or ‘inf’ files. 

 

Bulk IN and Bulk OUT transfers are used for all non-setup data. 
 

The MSC module utilises the USBCore layer for the processing of all standard requests. In addition it processes the following class requests. 
 

BULK_ONLY_MASS_STORAGE_RESET 

GET_MAX_LUN 

In addition to supporting the standard USB protocol a MSC device must support a set of SCSI commands. All SCSI commands are sent 
packaged up in a Command Block Wrapper (CBW) within a Bulk OUT transfer. A data stage may follow in either direction and then to 
complete the SCSI command the device sends a status response in the form of a Command Status Wrapper (CSW). The following SCSI 
commands are supported: 

 

INQUIRY 

READ_CAPACITY10 

READ10 
 

REQUEST_SENSE 

TEST_UNIT_READY 

WRITE10 

VERIFY10 
 

PREVENT_ALLOW_MEDIUM_REMOVAL (Optional) 

MODE_SENSE6 (Optional, Limited support) 

The USBMSC API consists of a single function called ‘USBMSC_Init’. This initialises the MSC module and also the USBCore and HAL 
layers. 

 

This implementation of the MSC class directly accesses a simple RAM Disk block driver that uses 24KB of the RSP’s RAM (i.e. There is no 
separation between MSC class and MSC application). Hence when using a different memory this will need to be changed to access that 
rather than the sample RAM Disk. 

 

The MSC module consists of the following files:- 

usb_msc.c 

usb_msc.h. 

usb_msc_scsi.c 

usb_msc_scsi.h 

ram_disk.c 

ram_disk.h 

usb_descriptors.c 

usb_descriptors.h 

usb_common.h 



10 

 

 

 
 
 
 

Chapter 5.Applications 
 

5.1.Introduction to Applications 
 

The following sections introduce the sample applications that can be used to demonstrate each of the USB solutions. The HID and LibUSB 
projects require specially written host applications that are supplied as both executables and as source. The CDC and MSC projects make 
use of standard Windows applications. 

 

All the applications require that the RSP has been programmed with the appropriate sample code for the application. Details of how to 
program the RSP have been provided as part of the tutorial with the product. To obtain a digital copy of the manual please visit the Renesas 
web site at  www.renesas.com/renesas_starter_kits and select your RSP from the list. 

 

5.2.Human Interface Device Application 
 

The HID host sample application is written for a Windows host PC and is called RSP_HID. 
 

The pre-built executable has been provided with the project generator.   Navigate to the release directory under the project and run 
RSP_HID.exe. The following window will be displayed: 

 

 

 
 

Figure 2 - HID host PC application 
 

 
Program the RSP with the HID application and run the code. Connect a USB cable between the PC and the RSP. The first time the device is 
connected to specific USB port windows will detect the new device and automatically load the intrinsic HID class driver. 

 

When Windows has completed the enumeration process you need to make a connection from the application to the target. Click the 
“Connect” button and you will be asked to confirm the VID and PID of the device you wish to connect with. If you have not altered the firmware 
on the RSP to use your own VID and PID then the defaults will be correct. When a connection is successfully made information about the 
device will be displayed and the rest of the buttons will be enabled. 

 

The “Toggle LED” button enables a LED on the RSP to be toggled on and off. 
 

The “Read ADC” button will command the RSP to read its ADC and return the value back to the host where it will be displayed. 
 

The “Set LCD” button allows the text of the LCD on the RSP to be changed. 
 

To demonstrate that the RSP can also instigate communications you can press a switch on the RSP and this will be indicated back to the host 
resulting in a message being displayed on the dialog. 

 

This demonstrates that Input and Output HID reports are being sent successfully between the RSP and the PC. The format of the reports is 
as follows: 

http://www.renesas.com/renesas_starter_kits


11 

 

 

 
 
 
 

Input Report: 

Byte 1 

Bit 0 = LED status. 
 

Bit 1 = ADC value valid indicator. 

Bit 2 = Switch pressed indicator. 

Byte 2-5 = 32 bit, little endian ADC Value. 
 

 
Output Report: 

Byte 1 

Bit 0 = LED toggle request. 
 

Bit 1 = ADC read request. 

Bit 2 = LCD set request. 

Byte 2-17 = 16 ASCII Characters for LCD. 
 

 
An input report is sent whenever a switch on the RSP is pressed or when the host requests a report. 

An output report is sent whenever a user clicks on one of the dialog buttons. 

The HID application functionality specific to USB consists of the following files:- 
 

Target: 

usb_hid_app.c 

usb_hid_app.h 

Host Application: 
 

\Host\RSP_HID\... 



12 

 

 

 
 

 
 

 

 

5.3.Communications Device Class Application 
 

The CDC sample application demonstrates communication with a Windows PC using a standard terminal program. Windows provides a 

suitable application called HyperTerminal. Any other serial terminal program will be able to be used if available. 

 

Program the RSP with the CDC application and run the code as described in the RSP tutorial manual. Connect a USB cable between the 

host PC and the RSP. The first time the device is connected, to a specific USB port, Windows will detect the new device and run the “Found 

New Hardware Wizard”: 

 

 
 

Windows will present the following dialog where you should 
 

select “No, not this time”. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the following dialog select “Install from a list or specific location 
 

(Advanced)” to allow you to select the correct ‘inf’ file. 



13 

 

 

 
 

 
 

 
 

 
Either type or browse to the location of the CDC project you have 

generated and built. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Press next to install the CDC support. 

 
During the installation process a warning may be displayed as 

 

shown. Please choose “Continue Anyway” to install the driver. 

 
Please review the Microsoft website for details of the Windows 

 

Logo Testing programme. 
 
 
 
 
 
 
 
 
 

 
Windows will then complete the installation of the CDC USB 

 

driver. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

An additional COM port will become available to Window Applications. To be able to see the port that has been allocated you can open the 

Windows Device Manager window. To do this, go to the start menu and select run. In the dialog displayed type “devmgmt.msc”. This will 

open the device manager. Expand the group of serial ports and the installed ports will be listed. When the Serial Terminal program 

connects to this COM port * , it will receive a repeating message from the RSP saying: 

 

“Renesas USB CDC Sample, Press Switch SW5.” 
 
 

* Note that the configuration settings for such things as baud rate and parity are irrelevant for this virtual COM port. 



14 

 

 

 
Pressing SW5 on the RSP will stop this repeating message and will bring up the main menu as shown below. 

 
To demonstrate two-way communication press SW9 to put the RSP into echo mode. In this mode anything typed on the Terminal will be 

read by the RSP and then echoed back to the terminal. Pressing SW13 cancels this echo mode. 

 

 
 

 
Figure 3 - Serial communication dialog 

 
The CDC application functionality specific to USB consists of the following files:- 

Target: 

usb_cdc_app.c 

usb_cdc_app.h 

Host: 

 
\Host\Driver\ CDC_Demo.inf 



15 

 

 

 

 

5.4.Mass Storage Class Demonstration 
 

The MSC sample demonstrates how a host can view a MSC device as an external drive. There is no additional application for this as the 
 

MSC support is inherent in Windows XP. 

 
Start the MSC sample application running on the RSP then connect the RSP to a Windows PC via a USB cable. 

NOTE: Before disconnecting the USB cable the Windows “Safely Remove Hardware” tool should be used. 

Using Windows Explorer, or similar, look to find the new drive that Windows will have mounted. This drive is viewing the contents of the 

sample RAM Disk on the RSP. It has been formatted with a FAT file system and given a volume name of “RENESAS”. The available space 

for data is 4KB. It includes one example file called Renesas.txt which can be opened edited and saved. As you would expect from a normal 

drive you can also copy files to it, although remember that this is a RAM Disk that will loose its contents when power is removed from the 

RSP. 

 

 
 

Figure 4 - Windows Explorer showing new Disk Drive mapping 

 
There is an option in file ‘ram_disk.c’ that will prevent the RAM disk from initialising itself with a file system. To select this comment out the 

 

#define of FORMAT_WITH_FAT_Example. In this case Windows will report that the drive is not formatted and give the user the option of 

formatting it. 



16 

5.5.LibUSB 

 

 

 

The LibUSB sample application is functionally similar to the previous HID application. The difference is that this sample includes software 

for a Windows host PC called RSP_LibUSB. The intention of this open source library is to provide a platform independent operating system 

interface allowing a device to be used on multiple operating systems with a common code base. 

 

The target RSP code is not dependant upon any external library code however it is written to support the LibUSB functionality. 

 
To use the supplied host SW you will need to first download LibUSB-Win32 which is a port of the LibUSB code for Windows 32 bit 

environments. This can be obtained from the LibUSB32 web site: 

 

http://sourceforge.net/apps/trac/libusb-win32/wiki 

 
Follow the instructions for “Device Driver Installation” (not for the “Filter Driver Installation.”), this will lead you to download a file 

 

“libusb-win32-device-bin-x.x.x.x.tar.gz”. Once unzipped you will have the files you require – there is no installer to run. 
 

A sample inf file is provided in the LIBUSB sample project you have generated in the host/driver folder. Take a copy of this folder and copy 

it to the downloaded LibUSB folder “libusb-win32-device-bin-x.x.x.x\bin”. 

 

Program the RSP with the LibUSB sample code as described in the RSP tutorial manual. Then run the code. Connect a USB cable 

between the host PC and the RSP. The first time the device is connected to a specific USB port Windows will detect the new device and 

ask for the appropriate driver. Using the same procedure as described for the CDC project browse to the downloaded LibUSB folder where 

you have just copied the example inf file (libusb-win32-device-bin-x.x.x.x\bin). The LibUSB driver should now install. 

 

Host SW: 
 

This is supplied as a pre-built executable which is located in the release directory under the project and called RSP_LibUSB.exe. 

Alternatively you can build the supplied sorce code. To do this you will need the LibUSB files you downloaded - usb.h, LibUSB.lib and 

LibUSB0.dll. Update the MS Visual C++ Project settings to point to these files as required. 

 

Run the RSP_LibUSB.exe and the following Window will be displayed: 

http://sourceforge.net/apps/trac/libusb-win32/wiki


17 

 

 

 

 

 
 

Figure 5 - LibUSB application window 

 
Note: This is a screen shot after a connection has been made and the ‘Set LCD’ button and then the ‘Read ADC’ button have been used. 

 

 
 
 

Program the RSP with the LibUSB sample code as described in the RSP tutorial manual. Then run the code. Connect a USB cable 

between the host PC and the RSP. The first time the device is connected to a specific USB port Windows will detect the new device and 

ask for the appropriate driver. This has been provided in a subdirectory of the sample code. Following the same process as described in 

the Communications Device Class Application above navigate to the LibUSB driver as described and install it. 

 
 
 

It should now be possible to make a connection from the application. Click the “Connect” button and you will be asked to confirm the VID 

and PID of the device you wish to connect with. If you’ve not altered the firmware on the RSP to use your own VID and PID then the defaults 

will be correct. When a connection is successfully made information about the device will be displayed and the rest of the buttons will be 

enabled. 

 

1.    The “Toggle LED” button enables a LED on the RSP to be toggled on and off. 

 
2. The “Read ADC” button will command the RSP to read its ADC and return the value back to the host where it will be 

displayed. 

 

3.    The “Set LCD” button allows the text of the LCD on the RSP to be changed. 



18 

 

 

 
To demonstrate that the RSP can also instigate communications you can press a switch on the RSP and this will be indicated back to the 

host resulting in a message being displayed on the dialog. 

 

This demonstrates that data can be sent successfully between the RSP and the PC. A fixed sized format of data has been chosen for all 

messages, one for OUT and one for IN: 

 

IN Message: (RSP to PC) 

Byte 1 

Bit 0 = LED status. 

 
Bit 1 = ADC value valid indicator. 

Bit 2 = Switch pressed indicator. 

Byte 2-5 = 32 bit, little endian ADC Value. 

OUT Message: (PC to RSP) 

Byte 1 

 
Bit 0 = LED toggle request. 

Bit 1 = ADC read request. 

Bit 2 = LCD set request. 

Byte 2-17 = 16 ASCII Characters for LCD. 

 
An IN message is sent whenever a switch on the RSP is pressed, an Interrupt IN transfer is used for this. An IN message is also sent in 

response to certain OUT messages, a BULK IN transfer is used for this. 

 

An OUT message is sent whenever a user clicks on one of the dialog buttons, a BULK OUT transfer is used for this. 

The LibUSB application consists of the following files:- 

Target: libusb_app.c 

libusb_app.h 

usbdescriptors.c 

Host: 

 
\Host\RSP_LibUSB\... 



19 

 

 

 

Chapter 6.Additional Information 
 

 
For details on how to use High-performance Embedded Workshop (HEW), refer to the HEW manual available on the CD or installed in the 

 

Manual Navigator. 

 
For information about the SH7267 series microcontrollers refer to the SH7266/7267 Group Hardware Manual 

 
For information about the SH7267 assembly language, refer to the SH-2A, SH2A-FPU Software Manual 

 
For information about the E10A Emulator, please refer to the E10A Emulator User’s Manual 

 
Further information available for this product can be found on the Renesas website at: 

 
http://www.renesas.com/renesas_starter_kits 

 

General information on Renesas Microcontrollers can be found on the following website. 

Global:   http://www.renesas.com/ 

http://www.renesas.com/renesas_starter_kits
http://www.renesas.com/


 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Renesas Starter Kit Plus for SH7267 

USB Sample Code User's Manual 

 
Publication Date    Rev.1.00   13.May.2010 

 

Published by:        Renesas Electronics Europe Ltd. 
 

Dukes Meadow, Millboard Road, Bourne End Buckinghamshire 
 

SL8 5FH, United Kingdom 
 

©2010 Renesas Electronics Europe and Renesas Solutions Corp., All Rights Reserved. 



 

 

 
 

 
 
 
 
 

Renesas Starter Kit Plus for SH7267 
USB Sample Code User's Manual 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Renesas Electronics Europe Ltd. 
 

Dukes Meadow, Millboard Road, Bourne End Buckinghamshire SL8 5FH, United Kingdom 


