XLENESNS

-
»
1
s
<
Q
-
c
D

RX62G Group

Renesas Starter Kit Software Manual

RENESAS MCU
RX Family / RX600 Series

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corporation without notice. Please review the latest information published
by Renesas Electronics Corporation through various means, including the Renesas Technology
Corporation website (http://www.renesas.com).

Renesas Electronics
Www.renesas.com Rev.1.00 Sep 2012



General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the
description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the

manual.

%2 The input pins of CMOS products are generally in the high-impedance state. In operation with
unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
LSI, an associated shoot-through current flows internally, and malfunctions occur due to the
false recognition of the pin state as an input signal become possible. Unused pins should be
handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

%2 The states of internal circuits in the LSI are indeterminate and the states of register settings
and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of
pins are not guaranteed from the moment when power is supplied until the reset process is
completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset
function are not guaranteed from the moment when power is supplied until the power reaches
the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

%2 The reserved addresses are provided for the possible future expansion of functions. Do not
access these addresses; the correct operation of LS| is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become

stable. When switching the clock signal during program execution, wait until the target clock

signal has stabilized.

%, When the clock signal is generated with an external resonator (or from an external oscillator)
during a reset, ensure that the reset line is only released after full stabilization of the clock
signal. Moreover, when switching to a clock signal produced with an external resonator (or by
an external oscillator) while program execution is in progress, wait until the target clock signal
is stable.

5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that

the change will not lead to problems.

%2 The characteristics of MPU/MCU in the same group but having different part numbers may
differ because of the differences in internal memory capacity and layout pattern. When
changing to products of different part numbers, implement a system-evaluation test for each
of the products.




How to Use This Manual

1.Purpose and Target Readers

This manual is designed to provide the user with an understanding of the RSK hardware functionality, and electrical
characteristics. It is intended for users designing sample code on the RSK platform, using the many different
incorporated peripheral devices.

The manual comprises of an overview of the capabilities of the RSK product, but does not intend to be a guide to
embedded programming or hardware design. Further details regarding setting up the RSK and development
environment can found in the tutorial manual.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body
of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of
the manual for details.

The following documents apply to the RX62G Group. Make sure to refer to the latest versions of these documents.
The newest versions of the documents listed may be obtained from the Renesas Electronics Web site.

Document Type Description Document Title Document No.
User’s Manual Describes the technical details of the RSK hardware. RSKRX62G User's | R20UT2223EG
Manual
Software Manual Describes the functionality of the sample code, and | RSKRX62G R20UT2246EG
its interaction with the Renesas Peripheral Driver Li- | goftware Manual
brary (RPDL)
Tutorial Provides a guide to setting up RSK environment, | RSKRX62G Tutorial | R20UT2224EG
running sample code and debugging programs. Manual
Quick Start Guide Provides simple instructions to setup the RSK and | RSKRX62G Quick | R20UT2225EG
run the first sample, on a single A4 sheet. Start Guide
Schematics Full detail circuit schematics of the RSK. RSKRX62G Sche- | R20UT2222EG
matics
Hardware Manual Provides technical details of the RX62G micro- RSKRX62G Hard- RO1UHO0321EJ
controller. ware Manual




2. List of Abbreviations and Acronyms

Abbreviation

Full Form

ADC Analog to Digital Converter
CPU Central Processing Unit

CRC Cyclic Redundancy Check
DTC Data Transfer Controller

HEW High-performance Embedded Workshop
1C Inter-1C Connect

IWDT Independent Watchdog Timer
LIN Local Inter-connect Network
LVD Low Voltage Detection

MCU Microcontroller Unit

PC Personal Computer

PLL Phase Locked Loop

PWM Pulse Width Modulation

RSK Renesas Starter Kit

SCI Serial Communication Interface
SPI Serial Peripheral Interface
WDT Watch Dog Timer




Table of Contents

L. OVEIVIBW ...ttt bbbt bbbt bbbt e Rt e Rt e b e bbbt bbbt e s et e b et e b et e e bbb e n e e 8
0N T - 8
N ] QY T ] o] [ oL [T @ o] o= o SR PR 9
2.1 SAMPIE COUE SLIUCTUE......eitiitiiti ettt ettt stttk b e bt bttt e e et e beeb e e b e ebeeh e e seen b e ebeeb e e beebe e b e e seenbenbesbenbesbenbeane e 9
2.2 LISt OF SAMPIE COUE. ...ttt bbbt bt bt e bt et et e b e eb e e b e bt eb e e seenbesbenbenbesbeeneanes 10
K V1o g F=LIRST: 100 o] [T SRR OP R 11
T R V1 (o - PSPPSR PSP 1
311 D TS0t ] o] o oS 11
312 L@ 07T 11T o S SRSRS 12
3.1.3 SEOUENCE DIAGIAIM.....etiitieiiiie ettt ettt b e bt b e st e e et e be e bt b e e bt eb e e heemb e eeeeb e e beebeeb e e bt en b e e e nbesbesbenbesneaneas 12
3.14 L B I 4] (<o 1A o] OO SO TSPV USRS 13
T AN o] o] [T L1 o] PSSP 13
321 Dot ] o] ([0 o OO R USRS 13
4. Peripheral SAMPIES.........oo ittt b e e 14
4.1 ADCTLO_ONESNOL ....tiuiiiteiieiitee ettt b bt e ekt b bt £ bk £ b bt £ b bR £ bRt £ b b e b b £ bR e e bRt b b e nrenn 14
411 Dot ] o] {To] o USSP T TRURPR 14
4.1.2 (O] oL - 1T o F OO R PO UUTPTUPRURPRPRS 14
413 SEOAUENCE DIAGIAIM.....euiitiieiie ettt ettt b ettt et et et e bt bt ebeeb e eb e e s e e a b e eeeeb e e ke ebeeb e e aeen b et e benbesbesbeeneaneas 14
4.1.4 Lo BT I (=Yoo o PR 15
O N T3 O =T o= T 15
4.2.1 D TS0t ] o] o oSSR 15
4.2.2 L@ 0T 11T o SRS 15
4.2.3 LT [0t g ot I Vo - o RSP SRPRSS 16
4.2.4 U B I 1] (=0 1A o] ST URT TRV 16
4.3 ADCL2_ONESNOL .. .tiiiiitiiiiite ettt bbb bt £ bbb bt £ bk £ bR £ bR £ bRt £ b b £ b bt £ bR bbbt b bt benn 17
431 Dot ] o] ([0 o OO R USRS 17
4.3.2 (O] oL - 1T o F TR USRS 17
4.3.3 LT [0l g ot I Vo - o RSP SSRSS 17
4.3.4 Lo BT I (=Yoo o PR 18
O D T I T o= | 18
4.4.1 D TS0t ] o] o oSSR 18
4.4.2 L@ 0T 11T o PSSR 18
443 SEOUENCE DIAGIAIM.....euiitieiiiiie ittt ettt ettt b bt b e bt e e et e b s bt b e s b e eb e e heeabeeeeebenbeebeeb e e bt en b e e e besbesbenbesreaneas 19
4.4.4 (e B I 1] (=0 11T USRS TRURPR 19
A5 SPl bbb bbb £ bR £ AR bR £ E R e £ b e R £ eb R e bbb e £ bR et bRt b bt bt 20
451 Dot ] o] ([0 o OO R USRS 20
45.2 L@ 0T 11T o RSP SRRSS 20
45.3 LT [0l g ot I Vo - o S SRRSS 20
45.4 Lo BT I 1 (=Yoo o SR 21
4.6 LLIN IMIBSTE ... ettt ettt ettt h bt et e st ekt eeh e ke e be e b e e Re e e he e 4R e £ £H £ 2 b e 2 m b £ eh b e eh b e eb e e ek e e beenbeenneebeenheenis 21
4.6.1 D TS0t ] o] o oSSR 21
4.6.2 (O] oL - 1T o F TR USRS 21
4.6.3 SEOUENCE DIAGIAIM.....etiitiiieiiie ettt ettt bttt ettt et et e b bt eb e s b e eb e e Reeae e neeeb e e beebeeb e e bt en b e e e nbesbesbenbeaneaneas 22
4.6.4 L B I 1 (<o 1o SRR US T TRURPR 22
O B XY/ [ =T 4 - | ST 23
4.7.1 D TS0t ] o] o oSSR 23
4.7.2 L@ 0T 11T o RSP SRRSS 23
4.7.3 LT [0l g ot I Vo - o PSRRI 24

4.7.4 U B I 1] (=0 1A o] ST URT TRV 24



V4 o T=) o - | S 25

4.8.1 Dol ] o] {[o] o OO SS PR TRURPRR 25
4.8.2 L@ 0T 11T o S SRRS 25
4.8.3 LT [0l g ot I Vo - o RSP SRRSS 25
4.8.4 Lo BT I 1 (=Yoo o SR 26
4.9 oY= T 1 o OSSR OTR R 26
4.9.1 Dot ] o] ([0 o OSSPSR 26
4.9.2 (O] oL - 1T o F TR USRS 26
493 SEOUENCE DIAGIAIM.....etiitieiiiiie ittt ettt b ettt s et et e b b e b e e bt eb e e heeae e eeeeb e e besbe e b e e bt en b e e e nbesbesbenbeebeaneas 27
4.9.4 Lo I I 1 (=Yoo o PR 27
O I OO OSSR PR PEPPPRTRTRN 28
I R 1~ ] o] o SR 28
0T © o T-T -1 To] S 28
0T T =T [N =Y =T I T o[ 1y P 28
4.10.4  RPDL INEEQIALION ....eiiiiieeeite ettt sttt bbbt bt bt bt et e s et e eb e e b e eb e e b e e st e s b e e e b e nbesbesbeebeereenes 29
R | (O V1 =] o TP P PP VPP 29
4111 D cESot ] o] {To] o OSSPSR 29
4112 (O] oL - 1T o DSOS SOTPTUPRURPRPRIS 29
0 T - T [0 L=l a (ot I I T o | = o OO OO 30
o S o L I [ 41 (<To T [OOSR 30
1 (O T 1Y TS 31
2 R B 1~ ] o] o S 31
4122 11C SIAVE COMMANGS ...vvvireetiiteieeieete ettt sttt st s st et s bt s bt b e b e e b b e e s e bt e s e e bt e s e et b es e bt st en e ebenbenesbe s 31
O T © o 1-T - {[o] OO TSSOSOV 31
O A - o U= oot B T o - Ly OO 32
4025 RPDL INEEQIALION ...ttt sttt bbbt bbbt et e s et e eb e s b e eb e e bt e st e sb e e et e nbesbeebeebeereenes 33
N e 1 = OO RS PRSP 34
T R 1~ ] o] o SR 34
L 7 © o T-T o SR 34
T T =T [0 1= =T I T o 1y R 34
O O S o (o] B T I 01 (=10 LT OO TSSOSO PRUROR 35
o S 11111 G O Vo U £ OO R RUSR USRI 35
O S R B L1~ ] o] {0 [OOSR URUROR 35
O S © o 1= - [o] 4 OO TRV 35
4143 SEOUENCE DIAGIAM.....uiiiiiiiitiite ittt ettt bbbt s et e b et b e e bt bt b e e Rt em b et e eb e ebeeb e ek e e bt ese e e e b e nbesbesbesbeereenes 36
e A o {1 I {41 (=T 1T ) o S 36
T I 1141 G 0] 1o - S 37
T R B 1~ ] o] o] 37
7 © o T-T -1 To] 37
4153 SEOUENCE DIAGIAM...c.uiiuiiiiti ittt ettt sttt b et s e et et bt bt bt e b e e R e em b e b e eb e ebeeb e ek e e b e ene e e e b e nbesbesbeebesreenes 37
O Y S o (o] B T I 01 (=10 1T OO USROS 37
o T T 11T < o | SO R RUSP TP PRURPRO 38
0 R B 1~ ] o] o] IO USSR 38
T © o 1= T - [0 OO TSSOSO PP URUROR 38
e T =T [N 1= =T I T o 1y P 38
T S = (o B T I {41 (=T 1T ) o SR 38
O A T 11T 1Y oo [T TSSO RSP PEPRPRPRN 39
I R 1~ ] o] o 39
O Iy A © o 1= - [0 OSSOSO 39
4.07.3  SEOUENCE DIAGIAM...c.uiiuiiiiiti ittt ettt sttt b et s et e b e bt eb e ebe bt e b e e Reem b e e e eb e ebeebeeb e e bt ese e b e b e nbenbesbeebeereenes 39
Oy S o (o] B T I 01 (=10 LT OO USSR 39
T - T [ T - ST 41
O T R B 1~ ] o] o] [OOSR 41
L T © o T-T -1 To] S 41

T T =T [N 1= oI I T o[ 1y PSR 42



T S = (o B T I [0 (=T 14T ) o S 42

e I 1 OO OSSR URIPPPRTRRN 43
I R B 1~ ] o] o] 43
L T © o T-T -1 To] SR 43
T T =T [N 1= =T I T o 1y P 43
4194 L B I 4] (<o 1A o] OO SO TSPV USRS 44

420 PWIM oottt sttt b ettt b e et h et R b e R e b e e R e b et e R e eRe e e R e eRe e e R e ebe e eEeebe e eEeebe e ete et e ereebe e erenrs 45
o 0I5 R B -1~ ] o] o] [OOSR USROS 45
O A © o 1= - {[o] OO TSSOSO 45
O TS =T [N 1= oI I T o 1y P 45
O S = (o B T I {41 (=T 1T ) o 45

O R OO PTSS U R S UR PSSP 46
O R B 1~ ] o] o] 3 S 46
N A © o T-T -1 To] 46
4.21.3  SEOUENCE DIAGIAM...c.uiiiiiiitiite ittt ettt st bbbttt s et e b et bt eb e bt e b e e Rt em b e e e ebeeb e ebe ekt e bt ese e e e b e nbenbenbeebesreenes 47
o S o (o] B T I 01 (=10 LT ] OO USSR 47

422 IWDT oottt ettt b e ettt bR bR bt Ee b e £ R e b e e e R e ebe e e Ee Rt eReeRe e eEeebe e eEeeRe e eEeebe e eteebe e ereebe e erears 48
A R B L1~ ] o] (o] o [OOSR 48
A © o T-T 1 To] oS 48
e T =T [ 1= Tt I I T o 1y P 48
S = (o B T I {41 (=T 1T ) o S 49

B AAITIONAL INTOIMATION . c..ceeieeeeeeeeeeeeeeeeeeeeeeeee ettt e et ettt et e e et e e e e e e e e e e e e e e e e e e e e e eeeeaeeeees 50



RENESAS

RSKRX62G R20UT2246EG0100

Rev.1.00
Sep 14, 2012
RENESAS STARTER KIT

1. Overview

1.1  Purpose

This RSK is an evaluation tool for Renesas microcontrollers. This manual explains the operation of the sample code
provided, and its interaction with the Renesas Peripheral Driver Library (RPDL). The Renesas Peripheral Driver
Library (hereinafter “this library” or RPDL) is based upon a unified APl (Application Programming Interface) for
the microcontrollers made by Renesas Electronics Corporation.

This manual is not intended to be a tutorial on using RPDL, or how RPDL works — it simply aims to explain to the
reader how the RPDL was used to create the sample code supplied with the RSK. For further information regarding
RPDL, visit the PDG (Peripheral Driver Group) section of the Renesas website:

http://www.renesas.com/pdg

Note:

This document explains by text and diagrams the functionality of the sample code and its interaction with the
Renesas Peripheral Driver Library (RPDL). The RPDL is preliminary and functionally tested to operate with the
RSKRX62G sample code only.

R20UT2246EG0100 Rev.1.00 ;{EN ESNS Page 8 of 54

Sep 14, 2012


http://www.renesas.com/pdg

RSKRX62G 2. RSK Sample Code Concept

2. RSK Sample Code Concept

2.1 Sample Code Structure

The basic structure of all RSK sample code is shown in Figure 2-1 below. The first two functions,
‘PowerOn_ResetPC’ and “‘HardwareSetup’, configure the MCU before the main program code executes.

Reset

[ PowerOn_ResetPC() j

A

HardwareSetup() Hardware setup consists of the
following functions:
ConfigureOperatingFrequency()

ConfigurePortPins()
EnablePeripheralModules()
j Configurelnterrupts()

[ main()

Final State

Figure 2-1: Sample Code Structure

The purpose of the functions included in the ‘HardwareSetup’ function are detailed in Table 2-1 below.

Function Name Purpose RPDL Functions Used

ConfigureOperatingFrequency | Initialises the main MCU, bus and R_CGC_Set
peripheral clocks; as well as any real-time
clocks and PLL settings.

ConfigurePortPins Configures the MCU port pins as inputs R_10_PORT_Set
or outputs, depending on the devices on | R |0 PORT Write
the RSK and the intended function of the - -
sample code. Also sets some pins to
suitable initial logic levels.

Table 2-1: Hardware Setup Functions

* RPDL functions can not be used to manually enable/disable MCU peripherals, as this is controlled with the
Create/Destroy functions for each RPDL group; therefore RPDL functions are not required in this section.
** The R_INTC_CreateExtinterrupt RPDL function is indirectly called by the function Configurelnterrupts.

R20UT2246EG0100 Rev.1.00 ;{EN ESNS Page 9 of 54

Sep 14, 2012



RSKRX62G 2. RSK Sample Code Concept

2.2 List of Sample Code

Table 2-2 below lists the sample code supplied with the RSKRX62G, and describes their function.

Sample Code Description

ADC10_Oneshot

Demonstrates usage of the 10bit ADC module, in one shot mode.

ADC10_Repeat

Demonstrates usage of the 10bit ADC module, in repeat mode.

ADC12_Oneshot

Demonstrates usage of the 12bit ADC module, in one shot mode.

ADC12_Repeat

Demonstrates usage of the 12hit ADC module, in repeat mode.

Application

Blank project, used for development. Includes device initialisation code.

Async_Serial

Demonstrates usage of the SCI module, in asynchronous mode.

CRC Demonstrates usage of the CRC module, by creating checksums of keyboard inputs.
CAN Demonstrate the CAN Bus API and it's available functionality.

DTC Demonstrates usage of the DTC module, by performing interrupt requested transfers.
IIC_Master Demonstrates usage of the [IC module in master mode.

IIC_Slave Demonstrates usage of the IIC module acting as a slave device.

IWDT Demonstrates usage of the IWDT by allowing the timer to underflow.

LIN_Master Demonstrates usage of the LIN module in master mode.

LVD Demonstrates usage of the LVD circuit to generate interrupts on low voltage detections.
Power_Down Demonstrates usage of the MCU power modes, by entering standby.

PWM Demonstrates usage of the GPT by outputting a PWM signal on a dedicated I/O pin
SPI Demonstrates usage of the SPI by performing transfers in a loopback mode.
Sync_Serial Demonstrates usage of the SCI module, in synchronous mode.

Timer_Capture

Demonstrates usage of the CMT module, in external capture mode.

Timer_Compare

Demonstrates usage of the CMT module, in compare-match timer mode.

Timer_Event Demonstrates usage of the MTU3 module by using an external clock.
Timer_Mode Demonstrates usage of the MTU3 module by outputting a 1KHz square wave.
Flash_Data Demonstrates usage of the FCU module, by writing to data flash memory.
Tutorial Demonstrates basic usage of the debugger, and RSK hardware.

Watchdog Demonstrates usage of the watchdog timer, by causing a WDT overflow interrupt.

Table 2-2: Sample Code List

R20UT2246EG0100 Rev.1.00
Sep 14, 2012

REN ESNS Page 10 of 54




RSKRX62G 3. Tutorial Samples

3. Tutorial Samples

3.1 Tutorial

The sample code in this section is basic tutorial code, used to demonstrate basic usage of the RSK and help the user
to begin writing their own basic sample code.

3.11 Description

The tutorial sample code demonstrates basic usage of the debugger and RSK hardware, and is common to all RSKs.
This sample is supplied programmed onto the MCU, and executes out of the box when power is applied.

The sample calls three main functions to demonstrate port pin control, interrupt usage and C variable initialisation.
These functions are shown in Figure 3-1 below.

main( )

[ FlashLED() j

[ TimerADC() j

[ Static_'Test( ) j

/

[ while(1) j

A

Figure 3-1: Tutorial Sample Flow

R20UT2246EG0100 Rev.1.00 ;{EN ESNS Page 11 of 54

Sep 14, 2012



RSKRX62G 3. Tutorial Samples

3.1.2  Operation

1. The tutorial code initialises the LCD module, and displays ‘Renesas’ on the first line of the LCD, and the
name of the MCU on the second line.

2. The tutorial code calls the Flash LED function, which creates a CMT interrupt to toggle the LEDs repeatedly
and waits in a loop until either a switch is pressed or the LEDs flash 200 times.

3. The tutorial then calls the TimerADC function which configures the ADC unit, and a timer unit to periodically
trigger an ADC conversion. The ADC unit is configured to call the function CB_ADConversion, after every
AD conversion completes.

4. When the timer unit period elapses, it triggers an AD conversion. Once the AD conversion completes, the
callback function CB_ADConversion is executed. The callback function fetches the ADC result, and uses it to
calculate a new timer period. The callback function also toggles the user LEDs.

5. After calling TimerADC and setting up the timer & ADC interrupts, the tutorial calls the Statics_Test function.

6. The Statics_Test function displays the string STATIC on the second line of the debug LCD, and replaces it
letter by letter with the constant string, TESTTEST. Once replacement is complete, the LCD reverts back to its
original display. The tutorial then waits in an infinite while loop.

3.1.3  Sequence Diagram

Figure 3- below shows the program execution flow of the tutorial sample.

»!
el
I

InitialiseLCD( )

<< The splash screen is
displayed on the debug
DisplayLCD() LCD >>

<
<

Y

<< Program waits in
FlashLED function intill the
FlashLED() LEDs flash 200 times, or a
switch is pressed >>

<
«

<
il << Initialise ADC and timer

T
1
| modules. The timer module |
. starts an A/D conversion at |
TimerADC() the end of every timer period, | .
which in turn triggers a << ADC callback function
callback function after a | fetches the result from the
L successful conversion >> ! | last conversion, and uses
T . << AD conversion completion triggers callback function >> g the result to calculate a new
| | | Ll timer period. The function
| | | | also toggles the LEDs. >>
| | | CB_ADConversion()
I I !
I I !
I I ! —l
I ( + i LOOP
| | << Display the static variable | T
| “STATIC" on the debug LCD | |
| Statics_Test() and replace with the string | |
| “TESTTEST" >> | |
I - ! I
| % | |
= I I ' |
| << Infinite while loop >> | | |
v | |
while(1) |
I ! I
I I I
< [ ' [
I I ! I
I I ! I
I I ! I
'
Figure 3-2: Tutorial Sequence Diagram
R20UT2246EG0100 Rev.1.00 Page 12 of 54
KENESAS g

Sep 14, 2012



RSKRX62G 3. Tutorial Samples

3.14 RPDL Integration
Table 3-1 below details the RPDL functions used in each sample code function shown in the sequence diagram.

Table 3-1: Tutorial Sample RPDL Integration

Function RPDL Function
FlashLED R_CMT_Create
R_CMT_Destroy
TimerADC R_CMT_Create
R_ADC_10_Create
CB_ADConversion R_ADC_10_Read
R_CMT_Control
CB_TimerADC R_ADC_10_Control
Statics_Test R_CMT_CreateOneShot

3.2 Application

3.2.1 Description

The application sample is intended as a starting platform for the user to write his’/her own code. The sample
includes all the necessary initialisation code and configuration settings from previous samples. The main( ) function
contains no sample code, and performs no additional functionality.

For more information regarding the hardware initialisation performed before the main() function starts, refer back
to 8§2.

R20UT2246EG0100 Rev.1.00 ;{EN ESNS Page 13 of 54

Sep 14, 2012



RSKRX62G 4. Peripheral Samples

4. Peripheral Samples

The sample code in this section provides examples of initialisation and usage of some of the MCU’s peripheral
modules. The sample code also provides examples of how to debug MCU peripherals.

4.1 ADC10_OneShot

41.1 Description

This sample code demonstrates usage of the on-chip 10-bit analogue to digital converter (ADC), in one shot mode.
The sample configures the ADC to read from the potentiometer fitted to the RSK (RV1) when user switch ‘SW3’ is
pressed.

Note: The potentiometer is fitted to offer an easy method of supplying a variable analogue input to the microcontroller. It
does not necessarily reflect the accuracy of the controllers ADC. Refer the device hardware manual for further details.

4.1.2  Operation

=

The sample first initialises the debug LCD, and displays instructions on the screen.

2. The sample then calls the Init_ ADC100neshot function, which configures the ADC unit and the switch
callback function.

3. The sample then waits in an infinite while loop, and the rest of the sample’s functionality is completed through
interrupts.

4. When switch SW3 is pressed, the switch interrupt calls the callback function CB_ReadADC is excuted. This
function triggers an AD conversion, converts the result into a character string and then displays the string on
the debug LCD.

5. Repressing switch SW3 will trigger another conversion, with the result being displayed on the debug LCD.

4.1.3 Sequence Diagram

Figure 4-1 below shows the program execution flow of the ADC10_OneShot sample.

Main() LCD Potentiometer
I
=E << The splash screen is

| displayed on the debug
LCD >>

InitialiseLCD( )

<
<%

I
|
|
|
I DisplayLCD()
|
|
I
)

<
%

| << ADC unit is initialized
>>

Init_ADCOneshot

<
<%

I
A : << Switch SW3Iis pressed >> >
| | << AD conversion |
l l Kr\g§ered, and the result is
| | displayed on LCD >> CB_ReadADC()
| |
I | e
| Bl I 1
| << Infinite while loop >> | |
whilef I I
hile(1) | "
B [ I
L : : [Loor ]
| | |
Figure 4-1: ADC_OneShot Sequence Diagram
R20UT2246EG0100 Rev.1.00 ;{EN ESNS Page 14 of 54

Sep 14, 2012




RSKRX62G 4. Peripheral Samples

41.4 RPDL Integration

Table 4-1 below details the RPDL functions used in each sample code function shown in the sequence diagram.

Function RPDL Function
Init_ ADCOneshot R_ADC_10_Create
CB_ReadADC R_ADC_10_Control

R_ADC_10_Read
Table 4-1: ADC_OneShot Sample RPDL Integration

42  ADC10_Repeat

4.2.1 Description

This sample code demonstrates usage of the on-chip 10-bit analogue to digital converter (ADC), in repeat mode.
The sample configures the ADC to repeatedly take readings of the potentiometer voltage (RV1). The sample then
updates the conversion value displayed on the LCD, by periodic interrupts from the timer module.

Note: The potentiometer is fitted to offer an easy method of supplying a variable analogue input to the microcontroller.
It does not necessarily reflect the accuracy of the controllers ADC. Refer the device hardware manual for further
details.

4.2.2  Operation

Lo

The sample first initialises the debug LCD, and displays the name of the sample.

2. The sample then calls the Init ADC10Repeat function, which configures the ADC unit to operate in repeat
mode, and also configures a compare match timer to generate a periodic interrupt and call the callback
function, CB_CMTADC.

3. The sample then enters the infinite while loop, and waits until a CMT period interrupt occurs and calls the
callback function, CB_CMTADC.

4.  The callback function CB_CMTADC fetches the last AD conversion result from the ADC unit, converts it into

a character string and then displays on the debug LCD. The periodic interrupt is called every 250ms.

R20UT2246EG0100 Rev.1.00 ;{EN ESNS Page 15 of 54

Sep 14, 2012



RSKRX62G

4. Peripheral Samples

4.2.3

Sequence Diagram

Figure 4-2 below shows the program execution flow of the ADC10_Repeat sample.

4.2.4

Main() LCD CMT
I I I
| InitialiseLCD( ) | ) |
| >I <<The splash screen is |

displayed on the debug
| | LCD >> |
| DisplayLCD() |
| |
| << Configures the ADC unit, |
| and the periodic CMT ISR >> |
- { |
* | | |
| |
Init_ADCRepeat( ) | |
| |
| |
T | |
| | |
| | |
—— << CMT period interrupt >> I
Ll

while(1)

<< Infinite while loop >>

<< Fetches ADC result, and |
displays it on debug LCD >>
CB_CMTADC

LOOP

.

Figure 4-2: ADC_Repeat Sequence Diagram

RPDL Integration

Table 4-2 below details the RPDL functions used in each sample code function shown in the sequence diagram.

Function

RPDL Function

Init_ ADCRepeat

R_ADC_10_Create

R_ADC_10_Control

R_CMT_Create

CB_CMTADC

R_ADC_10_Read

Table 4-2: ADC10_Repeat Sample RPDL Integration

R20UT2246EG0100 Rev.1.00

Sep 14, 2012

Page 16 of 54

RENESAS



RSKRX62G 4. Peripheral Samples

4.3 ADC12_OneShot

4.3.1 Description

This sample code demonstrates usage of the on-chip 12-bit analogue to digital converter (ADC), in one shot mode.
The sample configures the ADC to read from the potentiometer fitted to the RSK (RV1) when user switch *‘SW3’ is
pressed.

Note: The potentiometer is fitted to offer an easy method of supplying a variable analogue input to the microcontroller. It
does not necessarily reflect the accuracy of the controllers ADC. Refer the device hardware manual for further details.

4.3.2  Operation

Lo

The sample first initialises the debug LCD, and displays instructions on the screen.

2. The sample then calls the Init_ ADC120neshot function, which configures the ADC unit and the switch
callback function.

3. The sample then waits in an infinite while loop, and the rest of the sample’s functionality is completed
through interrupts.

4. When switch SW3 is pressed, the switch interrupt calls the callback function CB_ReadADC is excuted.
This function triggers an AD conversion, converts the result into a character string and then displays the
string on the debug LCD.

5. Repressing switch SW3 will trigger another conversion, with the result being displayed on the debug LCD.

4.3.3 Sequence Diagram

Figure 4-1 below shows the program execution flow of the ADC12_OneShot sample.

Main() LCD Potentiometer
I I

Initialisel CD() =! << The splash screen is
* | displayed on the debug
LCD >>

DisplayLCD()

<
%

<
-~

| << ADC unit is initialized >>

Init_ADC120neshot

<
<%

i
A : << Switch SW3I|s pressed >> >
| | ~ <<ADconversion |
l l trigered, and the result is
| | displayed on LCD >> CB_ReadADC()
| |
I | -
| Bl I 1
| << Infinite while loop >> | |
while(1) | |
| |
B [ [
P : : [Loor |
| | |
Figure 4-3: ADC12_OneShot Sequence Diagram
R20UT2246EG0100 Rev.1.00 ;{EN ESNS Page 17 of 54

Sep 14, 2012




RSKRX62G 4. Peripheral Samples

4.3.4 RPDL Integration

Table 4-2 below details the RPDL functions used in each sample code function shown in the sequence diagram.

Function RPDL Function
Init_ ADC120neShot R_ADC_12_CreateUnit
CB_ReadADC R_ADC_12_Control
R_ADC_12_ Read

Table 4-3: ADC12_OneShot Sample RPDL Integration
4.4 ADC12_ Repeat

4.4.1 Description

This sample code demonstrates usage of the on-chip 12-bit analogue to digital converter (ADC), in repeat mode.
The sample configures the ADC to repeatedly take readings of the potentiometer voltage (RV1). The sample then
updates the conversion value displayed on the LCD, by periodic interrupts from the timer module.

Note: The potentiometer is fitted to offer an easy method of supplying a variable analogue input to the microcontroller.
It does not necessarily reflect the accuracy of the controllers ADC. Refer the device hardware manual for further
details.

4.4.2  Operation

=

The sample first initialises the debug LCD, and displays the name of the sample.

2. The sample then calls the Init. ADC12Repeat function, which configures the ADC unit to operate in repeat
mode, and also configures a compare match timer to generate a periodic interrupt and call the callback
function, CB_CMTADC.

3. The sample then enters the infinite while loop, and waits until a CMT period interrupt occurs and calls the
callback function, CB_CMTADC.

4. The callback function CB_CMTADC fetches the last AD conversion result from the ADC unit, converts it into

a character string and then displays on the debug LCD. The periodic interrupt is called every 250ms.

R20UT2246EG0100 Rev.1.00 ;{EN ESNS Page 18 of 54

Sep 14, 2012




RSKRX62G 4. Peripheral Samples

4.4.3  Sequence Diagram

Figure 4-2 below shows the program execution flow of the ADC12_Repeat sample.

Main() LCD Potentiometer

InitialiseLCD( )

A

<< The splash screen is
| displayed on the debug
LCD >>

T

|

|

|

| DisplayLCD()
|

| << Configures the ADC unit,

| and the periodic CMT ISR >>

|
1
|
|
Init_ADC12Repeat() |
|
|
|
|
|

<< CMT period interrupt >>

<

>

<< Fetches ADC result, and |
displays on debug LCD >>

<< Infinite while loop >>

CB_CMTADC

.

while(1)

LOOP

Figure 4-4: ADC12_Repeat Sequence Diagram

4.4.4 RPDL Integration

Table 4-2 below details the RPDL functions used in each sample code function shown in the sequence diagram.

Function RPDL Function
Init_ ADC12Repeat R_ADC_12_CreateUnit
R_ADC_12_Control
R_CMT_Create
CB_CMTADC R_ADC_12 Read
Table 4-4: ADC12_Repeat Sample RPDL Integration

R20UT2246EG0100 Rev.1.00 ;{EN ESNS Page 19 of 54

Sep 14, 2012



RSKRX62G 4. Peripheral Samples

4.5 SPI

45.1 Description

This sample code demonstrates usage of serial peripheral interface (SPI), configured in loopback mode. The SPI
module is setup to perform loop back communication between its internal transmitter and receiver pins.

45.2  Operation

The sample initialises the LCD module, and displays the sample name.

The sample then calls the Init_SPI function which configures the SPI channel in master mode with the number
of frame transfers set to 1. The loopback mode with direct data transfer, no bit manipulation is used. The
number of bits in a frame is set to 16.

7. An ADC channel is configured for single-shot mode to provide the transmit data. Callback function CB_Switch
is specified as the switch release callback function.

The sample then waits in an infite loop.

Switch presses causes an interrupt generation which calls the function CB_Switch. This function checks if the
switch pressed was SW3, and in the case of a SW3, a transfer is started.

10. The transmitted data is compared to the received data. Upon a successful transfer, the debug LCD is updated

with the received data. Should the transfer be unsuccessful, a message will be displayed notifying the user of a

transfer fail.

oo

8.
9.

45.3  Sequence Diagram

Figure 4-5 below shows the program execution flow of the SPI sample.
Main() LCD Switch SPI

T
InitialiseLCD( ) )
Ll

<< Displays instructions
| onto the debug LCD >>

DisplayLCD( )

<< Initialise the SPI for loopback
test >>

>
«

<l
-«

|
|
| |
|
Init_SPI() | << Compares transmits
| and receives the data and
| displays dat on the
P | debug LCD if they match,
T | otherwise a ‘fail’
| | message is displayed >>
¢ {
i = |
|
: < CB_SPI()
I 7
| g
I S <
I 5 I
| 2 |
<< Infinite while loop >> | |
| |
| |
while(1) | I . o
| I >
: CB_Switch() :
<< SW3 switch release generates an | << Transmits and |
interrupt >> | receives the data >> |
»
t > |
| T |
| | | |
| | | |
| | | |
| | | |
Figure 4-5: SPI Sequence Diagram
R20UT2246EG0100 Rev.1.00 ‘. zEN ESNS Page 20 of 54

Sep 14, 2012



RSKRX62G 4. Peripheral Samples

45.4 RPDL Integration

Table 4-5 below details the RPDL functions used in each sample code function shown in the sequence diagram.

Function RPDL Function

Init_SPI R_SPI_Create

R_SPI_Control
R_SPI_Command
R_ADC_Create

CB_Switch R_ADC_Control

R_ADC_Read
R_SPI_Transfer

4.6

Table 4-5: SP1 Sample RPDL Integration

LIN Master

46.1 Description

This sample code demonstrates usage of Local Interconnect Network (LIN), configured in master or loopback
mode, depending on user selection. The LIN module is setup to perform loopback communication between its
internal transmitter and receiver pins.

w

4.6.2  Operation

The sample initialises the LCD module, and displays either “LIN_Mstr” or “LIN LOOP” on the first line of the
debug LCD, depending on the selected operation mode, and “Push SW3” on the second line.

The sample then calls the Init_ LIN function which configures the LIN channel in master mode with the
interrupt callback function CB_ReadStatus. In master mode only one switch callback function is configured,
CB_FrameTransmit. Two switch callback functions are configured for the loopback mode. Switch callback
function CB_Self Test is called on switch press detections to configure the LIN module in self-test mode and
configure an ADC channel for single mode operations. Switch callback function LIN_Self_Test is called on
switch release detections to start an A/D conversion, read it and display the value on the debug LCD.

The sample then waits in an infinite loop.

In master mode, switch presses causes an interrupt generation which calls the function CB_FrameTransmit.
This function checks if the switch pressed was SW3, and in the case of a SWa3 press, a transfer is started. The
status of the transfer is verified to determine whether it was successful or not. If successful, the received data is
displayed on the debug LCD otherwise a fail message is displayed. In loopback mode, SW3 presses configures
the LIN module in self-test mode and sets up the ADC for single shot mode operations. Releasing the switch
starts an A/D conversion and reads the result before converting the 16-bit result to an 8b-byte ASCII string. The
bytes are bitwise inverted and loaded into the LIN data buffers. The data is shifted out of the data buffers
through the TX pin and shifted back in from the RX pin which is connected to the TX pin.

The transmitted data is compared to the received data. Upon a successful transfer where the sent data and
received data match, the debug LCD is updated with the received data. Should the transfer be unsuccessful, a
message will be displayed notifying the user of a transfer fail.

R20UT2246EG0100 Rev.1.00 ;{EN ESNS Page 21 of 54

Sep 14, 2012



RSKRX62G 4. Peripheral Samples
4.6.3 Sequence Diagram
Figure 4-6 below shows the program execution flow of the SPI sample.
Main() LCD Switch LIN
T T ] T
I InitialiseL.CD( ) o ! 1 :
i ! << Displays instructions [ |
[ | onto the debug LCD >> : 1
: DisplayLCD() | :
| ! |
1 [ 1
| 1 |
I —<¢ [ I
| | | |
1 << Initialise the LIN module >> 1 I |
| | |
Init_LIN() : : << The LIN module is configured to :
[} ] execute the CB_ReadStatus on an |
: ] occurrences of an event. >> :
—<¢ | : | g
1 | | I
] 1 | 1
< !
|
1 CB_FrameTransmit( ) CB_ReadStatus()
<< SW3 switch release generates an :
interrupt >> H <<If the transfer
| g complete flag is set to
1 1 false, data is displayed
hileQ) : : << Transmits the frame header and : oth;]rm:: :‘heebsgblzj(;DLCD
while(1) __ | s i s checks the LIN status for errors. If no ; w i1
Infinite while loop : : errors found, atran‘;fer complete flag : displays “Rx Fail" >>
| ‘| is set to false. >> |
T Ll |
| I |
- 1 1 1
| [} | |
I 1 | I
I [} I I
| | | |
Figure 4-6: LIN Master Sequence Diagram
4.6.4 RPDL Integration

Table 4-6 below details the RPDL functions used in each sample code function shown in the sequence diagram.

Function

RPDL Function

Init_LIN

R_I0_PORT_Write

R_IO_PORT_Set

R_LIN_Create

R_CMT_CreateOneShot

CB_FrameTransmit

R_CMT_CreateOneShot

R_LIN_Transfer

R_LIN_Read

R_LIN_GetStatus

LIN_Self Test R_ADC_10_Control
R_ADC_10_Read
R_LIN_Transfer
R_LIN_Read

CB_Self_Test R_LIN_Control

R_ADC_10_Create

Table 4-6: LIN Master Sample RPDL Integration

R20UT2246EG0100 Rev.1.00
Sep 14, 2012

RENESAS

Page 22 of 54



RSKRX62G 4. Peripheral Samples

4.7 Async_Serial

4.7.1 Description

This sample code demonstrates usage of serial communications interface (SCI), configured in asynchronous mode.
The SCI module is setup to communicate to a PC running a terminal emulator program, via an RS-232 cable.

4.7.2  Operation

1. Before the sample begins, the user should connect the RSK to a PC via an RS-232 cable and start the terminal

program (refer to the instructions in the sample code comments).

The sample initialises the LCD module, and displays *Async’ on the first line and “Serial” on the second.

The sample configures the SCI channel and a CMT channel with the function Init_Async, and transmits

instructions to the terminal display. The program then returns to an infinite while(1) — the rest of the sample’s

functionality is achieved through interrupts.

The CMT channel generates a periodic interrupt every 100ms, and calls the callback function CB_CMTTimer.

The function CB_CMTTimer fetches the SCI channel status, and calls the function Transmit_Async if the

channel is clear. If the channel is busy, the function returns to the while(1) loop.

6. The Transmit_Async function checks the global flag gSCI_Flag, and transmits an incrementing ASCII number
(loops back to 0 after 9) to the terminal display if gSCI_Flag is true. If the flag is false, the function returns
without writing to the terminal.

w N

oa &

R20UT2246EG0100 Rev.1.00 ;{EN ESNS Page 23 of 54

Sep 14, 2012



RSKRX62G

4. Peripheral Samples

4.7.3  Sequence Diagram

Figure 4-7 below shows the program execution flow of the Async_Serial sample.

Figure 4-7: Async_Serial Sequence Diagram

Main() LCD CMT Scl
T T t T
| InitialiseLCD() oy << Displays instructions | |
i > onto the debug LCD >> | |
| | : |
: DisplayLCD() | :
[ ' [
I < ! |
[ D | |
L |
| << Initialises the SCI unit in | | |
asynchronous mode, and | |
Init_Async() also configures a CMT timer | | |
for 100ms interval interrupts | | |
>> | | |
—- I ' |
| | | ]
— 1 A | << CMT callback function |
<< CMT Timer interrupt generated >> | gets the SCI channel status, |
| and calls Transmit_Async
| | |
if the channel is clear >>
[ | I
| CB_CMTTimer() |
| |
| |
| ¢ |
-
| | »|
| i
I | << Function checks the gSCI |
| Flag variable, and transmits
| | incrementing ASCII numbers Transmit_Async()
—~ | | if the value is true >>
g I
9] |
= | | —
z < f + t
| | | LOOP
I
! << SCl data receive interrupt generated >> | I
| » |
| it
| | << Receive function checks |
| the received character, and
| | sets the gSCI_Flag variable CB_SCIReceive( )
| | to false if its 'z’ >>
| |
| ' —-
< f + {
| | |
1 I | I
[ [ ' [
| | ' |
' ' I '
4.7.4 RPDL Integration

Table 4-7 below details the RPDL functions used in each sample code function shown in the sequence diagram.

Function RPDL Function
Init_Async R_SCI_Create
R_SCI_Receive
R_SCI_Send
R_CMT_Create
CB_CMTTimer R_SCI_GetStatus

Transmit_Async

R_SCI_Send

CB_SCIReceive

R_SCI_Receive

Table 4-7: Async_Serial Sample RPDL Integration

R20UT2246EG0100 Rev.1.00
Sep 14, 2012

RENESAS

Page 24 of 54



RSKRX62G 4. Peripheral Samples

4.8 Sync_Serial

4.8.1 Description

This sample code demonstrates usage of serial communications interface (SCI), configured in synchronous mode.
The SCI module is setup to perform loop back communication between two SCI channels, using a 3-wire interface.

4.8.2  Operation

The sample initialises the LCD module, and displays the sample name.

The sample then calls the Init_Sync function which clears the reserved SCI data buffers.

The sample then calls the function SCI2toSCI0Transfer_Sync, which configures the SCI channels and then

transfers a data string from channel 2 to channel 0. The callback function CB_SCIOReceive is called when

the data is received, and it checks the data received is correct.

4. The sample then calls the function SCI0toSCI2Transfer_Sync, which transfer data from channel 0 to
channel 2. The callback function CB_SCI2Receive is called when the data has been received.

5. The function CB_SCI2Receive checks if both transfers were successful, and displays “Success” on the
debug LCD. If any of the transfers failed, the function reports “Failure” on the LCD.

6. The sample then enters an infinite while loop.

wn e

4.8.3 Sequence Diagram

Figure 4-8 below shows the program execution flow of the Sync_Serial sample.

Main() LCD sCI2 SCI0

T
InitialiseLCD() iy
1 << Displays instructions
| onto the debug LCD >>

DisplayLCD()

<< Initialise the UART module for
synchronous, duplex operation >> ¢

Init_Sync()

<
L}

\

|

<< SCIO receive interrupt >>

\

<< Transmits test string from SCI

<< SCI0 receive callback function |
channel 2 to channel 0 >>

checks data is valid >>
CB_SCIOReceive()

Sync()

SCI2toSCl0Transfer

<l
-«

1
i

A ]

\/

<< SCI2 receive callback function | % <<f:’[r);nssg:t§ht:§;zltr(i)ng
checks if both transfers were EA to channel 2 >>

succesful, and displays either CB_SCI2Receive() :\o/

‘Success’ or ‘Failure’ on the debug 5%

LCD accordingly. >> g \
o
- S
— |7

<< Infinite while loop >>

- | 1
I ! !
while(1) ! |
! I
! I
- ' |
I ! I
I I I
I I I

Figure 4-8: Sync_Serial Sequence Diagram
R20UT2246EG0100 Rev.1.00 ‘. zEN ESNS Page 25 of 54

Sep 14, 2012



RSKRX62G 4. Peripheral Samples

4.8.4 RPDL Integration

Table 4-8 below details the RPDL functions used in each sample code function shown in the sequence diagram.

Function RPDL Function

SCIOtoSCI2Transfer_Sync R_SCI_Create

R_SCI_Receive
R_SCI_Send
SCI2toSCI0Transfer_Sync R_SCI_Create

R_SCI_Receive

R_SCI_Send
Table 4-8: Sync_Serial Sample RPDL Integration

4.9 Power_Down

49.1 Description

In this sample, the LPC (Low Power Consumption) registers are configured to enter the MCU into standby mode
by pressing a switch, and wake again from an interrupt.

4.9.2  Operation

1. The sample initialises the LCD module, and displays ‘Pwr Mode’ (Power Mode) on the first line of the LCD,

and the current power mode, ‘Active’ on the second line.

The sample then calls the function Init_PowerDown which configures the standby registers.

3. The sample then calls the Flash_LEDs function, which uses a CMT one-shot timer to create a delay to flash all

the user LEDs. The function waits in a while loop, polling the switch flag variable, gSwitchFlag.

When a user presses switch SW1, Flash_LEDs calls the function Standby PowerDown.

The function Standby_PowerDown sets the second line of the LCD to ‘Standby’, and turns off the user LEDs

and prepares the MCU for entering standby by polling the variable gSwitchStandbyReady, and waits until it is

true. If a user is still holding down one of the switches, the function lights LED3 to indicate it is waiting to

enter standby. When all switches are released, all LEDs are turned off and the MCU enters standby mode.

6. Pressing any of the switches will wake the MCU from standby. The second line of the LCD changes to
‘Active’ and the LEDs are switched on.

no

o s

R20UT2246EG0100 Rev.1.00 ;{EN ESNS Page 26 of 54

Sep 14, 2012



RSKRX62G 4. Peripheral Samples

49.3 Sequence Diagram

Figure 4-9 below shows the program execution flow of the Power_Down sample.

Main() LCD Standby

I
InitialiseLCD( ) »,
|

<< Current power mode is

I I
| |
: | displayed on LCD >> :
| DisplayLCD() |
| |
| |
| |
- { |
<< Configures the MCU * | | |
standby registers >> | |
Init_PowerDown( ) | |
| |
| |
T | |
1 ! I
<< Flashes the user LEDs, | |
and polls switch SW1 >> I I
~ | |
7 | |
8 << Switch SW1 press detected >> | << Waits for all switches to
= I >I release, turns off LEDs then
3 enters standby mode >>
8 ! |
| Standby_PowerDown()
|
|
' J
| |

<< <<<<<<<<<< MCU Enters Standby Mode >>>>>>>>>555>>>>>>>>

<< MCU returns to the
Flash_LEDs function after
waking from standby >>

<< Interrupt wakes MCU from standby >>

| << Program ends in an
infinite while loop >>
while(1)

Figure 4-9: Power_Down Sequence Diagram

49.4 RPDL Integration

Table 4-9 below details the RPDL functions used in each sample code function shown in the sequence diagram.

Function RPDL Function
Init_PowerDown R_LPC_Create
Flash_LEDs R_CMT_CreateOneShot

R_IO_PORT_Modify
R_IO_PORT_Write
Standby_PowerMode R_10_PORT_Write
R_LPC_Control
Table 4-9: Power_Down Sample RPDL Integration

R20UT2246EG0100 Rev.1.00 ;{EN ESNS Page 27 of 54

Sep 14, 2012



RSKRX62G 4. Peripheral Samples

410 LVD

4.10.1 Description

In this sample, the LVD (Low Voltage Detection) circuit is configured to generate an interrupt when the power
supply equals or falls below the detection level.

4.10.2 Operation

1. The sample calls the function Init_LVD which configures the LVD1 circuit to generate an interrupt each time
the power supply falls below the set detection level.

2. The LVD interrupt is non-maskable and handled differently from maskable interrupts. The LVD interrupt is
configured as an NMI with falling edge detection along with the callback function CB_LVD1. CB_LVD1
turns off LEDO-LED2 and turns on LED3 each time it is called. A periodic timer, with callback function
CB_CMTimer is also configured to generate periodic interrupts every 500ms, used to synchronise the
toggling of LEDs.

3. The sample then enters an infinite while loop which is interrupted on every low voltage detection and CMT
period timeouts.

4.10.3 Sequence Diagram

Figure 4-10 below shows the program execution flow of the Low Voltage Detection sample.

I B - R

InitialiseLCD()

| | LvVD

-

», << Current power mode is
| displayed on LCD >>

DisplayLCD()

<
-

<
¢

] << Configures the LVD
Init_Lvp() Circuit I's non-maskable
interrupt and configures a
CMT timer for updating
the LCD >>

<
-

<<low voltage detected >>

\

A

S - - -

<< Switch SW1 press detected >> << Turns off LEDO-LED2

and turns on LED3 >>

Y

CB_CMTimer CB_LVDL
infinite while loop >> <<*Toggles user LEDs
LEDO-LED3". If toggling
the gLEDsync_flg will be
set, LEDO-LED2 are set to
LED3's state. >>

while(1)

< <
% <%

A A

Figure 4-10: LVD Sequence Diagram

R20UT2246EG0100 Rev.1.00 ;{EN ESNS Page 28 of 54

Sep 14, 2012



RSKRX62G 4. Peripheral Samples

4.10.4 RPDL Integration

Table 4-10 below details the RPDL functions used in each sample code function shown in the sequence diagram.

Function RPDL Function
Init_LVD R_LVD_Control
R_INTC_CreateExtinterrupt

R_CMT_Create
CB_CMTimer R_I0_PORT_Modify
CB_LVD1 R_CMT_Control
R_IO_PORT_Write

Table 4-10: Low Voltage Detection Sample RPDL Integration

4.11 lIC_Master

4.11.1 Description
This sample demonstrates usage of the IIC unit in master mode, by performing read and write operations to an

EEPROM memory device. The sample is configured to work with following Renesas devices:
HN58X245121, 1Mbit EEPROM, 1MHz

4.11.2 Operation

Lo

The sample initialises the LCD module, and displays the sample name on the screen.

2. The sample then enters the main 1IC master sequence loop, where it first calls the Init EEPROM_Master

function which configures the 11C unit to operate in master mode.

The master sequence then waits in an infinite while loop, polling the user switches.

When switch is pressed, the switch callback function executes, and identifies which switch has been pressed.

When switch SW2 is pressed, an EEPROM write operation is executed using the Write. EEPROM_Master

function. The write operation writes the string “XXRenesas IIC 7, where XX is replaced with an ASCII data

identifier, which increments with every write operation.

6. The write operation always starts from the EEPROM’s first memory address and after every successful write,
displays the data identifier of the written string on the debug LCD. If the write operation fails, the debug LCD
displays “Error W.”

7. When switch SW3 is pressed, an EEPROM read operation is executed using the Read_EEPROM_Master
function. The read operation starts from zero and increments to the next 16byte location after every successful
read.

8. If the read data matches the expected data string, “XXRenesas IIC ”, the data identifier (XX) is displayed on
the debug LCD to indicate a successful read operation. If the read operation fails, the debug LCD displays
“Error R.”.

9. LEDL1 remains lit whilst I1C acitivity is in progress — during a successful transfer, the light should blink. If the

light remains on constantly, the I1C bus has locked up. Restart both the master and slave devices to free the

bus again.

Sl

R20UT2246EG0100 Rev.1.00 ;{EN ESNS Page 29 of 54

Sep 14, 2012



RSKRX62G

4. Peripheral Samples

4.11.3 Sequence Diagram

Figure 4-11 below shows the program execution flow of the I1C_Master sample.

Write_ EERPOM_Master( )

Read_EERPOM_Master( )

<< A data string is written to
an EEPROM memory
starting from address 0
when switch SW2 is pressed
>>

<< The contents of an
EEPROM memory location is
read, and checked against
the output data string >>

LOOP

Main() LCD I°C Bus
T . T T
| InitialiseLCD() »l << Instructions are display- |
| | ed on the debug LCD >> |
| | |
| DisplayLCD() |
| |
| |
| , |
I i |

— i <<The I’C unitis configured | |
—>‘; for master mode >> | |
| | |
Init_EEPROM_Master() : :
| |
i | |
- |—
z : ! A
S | |
E << Switch 2 press interrupt >> |
HI T >|
[
g ! |
3 |
E
o
5 |
%}
5 |
7]
3 |
= | | |
- .
<< Switch 3 press interrupt >> |
t Ll
|
| I
|
|
|
| |
l
| |
| |
— ! I
| << Infinite while loop >> | |
| ! |
while(1) | |
| |
| |
| |
| |
| |
| |

Figure 4-11: 1IC_Master Sequence Diagram

4.11.4 RPDL Integration

Table 4-11 below details the RPDL functions used in each sample code function shown in the sequence diagram.

Function

RPDL Function

Init_ EEPROM_Master

R_IIC_Create

Write_ EEPROM_Master

R_IIC_MasterSend

R_CMT_CreateOneShot

Read_EEPROM_Master

R_IIC_MasterSend

R_IIC_MasterReceive

R_CMT_CreateOneShot

Table 4-11: 11C_Master Sample RPDL Integration

R20UT2246EG0100 Rev.1.00
Sep 14, 2012

RENESAS

Page 30 of 54




RSKRX62G 4. Peripheral Samples

4.12 1IC_Slave

4.12.1 Description

This sample demonstrates usage of the 1IC unit in slave mode, by performing simulating a 2k byte EEPROM
memory device.

4.12.2 1IC Slave Commands

(1) Write Operation

To write to the simulated EEPROM, the master should send a start condition followed by the EEPROM device
address (default address: 0xAO0), and wait for an ACK (acknowledgement) signal from the slave.

The master should proceed by sending the 8bit EEPROM memory address (valid from 0x0000 to 0x0800) and then
wait for an ACK response from the slave.

The master should then proceed to transmit the write data in bytes, with an ACK response after each data byte. The
maximum number of byte writes the slave can support in a single write operation is 16.

Once the final byte has been sent, the master should send a stop signal to end the transaction.

The simulated EEPROM’s internal address pointer will auto increment with each byte written.

DEVICE MEMORY WRITE DATA WRITE DATA WRITE DATA
><START>< ADDRESS W ADDRESS N-2 N-1 N >< STop ><

(2) Read Operation

The read operation will always start from the current internal simulated EEPROM memory pointer, and auto
increment to the next byte until the address reaches the maximum value or a stop condition is detected.

To read from an arbitrary memory location, the master should first send a dummy write to the required EEPROM
memory address. The dummy write should consist of a start condition, device address and a memory address.

To read from the current internal memory location, the master should send a start condition followed by the
EEPROM device address.

The EEPROM slave should then reply with an ACK signal, and send the data located at the current memory
location and auto increment the internal pointer to the next byte location.

In order to read another byte, the master should send an ACK signal. The master should repeat this until the
required number of bytes has been read, and should end the operation with a stop condition.

The read operation can be used to read data from the entire address range (0x0000 to 0x0800), and will stop only
when a stop condition is detected or the last memory address is reached.

DEVICE MEMORY DEVICE READ DATA READ DATA
>< START >< ADDRESS W ADDRESS START>< ADDRESS R N-1 N >< STOP ><
| |

DUMMY WRITE

4.12.3 Operation

Lo

The sample initialises the LCD module, and displays the sample name on the screen.

2. The sample then initialises the 1IC unit to operate in slave mode, and prepares the simulated EEPROM
memory area.

3. The sample then calls the BusMonitor_ EEPROM _Slave function, which polls the 11C unit and waits until data
is received from a master device on the I1C bus.

4.  When data is received from a master device via the 1IC bus, the function BusReply EEPROM is called. This
function determines whether the master sent a valid read or write request.

5. If a valid write request is detected, the BusReply EEPROM function calls the Write_ EEPROM_Slave

function, which writes the received data to the simulated EEPROM. The internal pointer is set to the address

received from the master, and is auto incremented with each byte write.

6. If avalid read request is detected, the BusReply_EEPROM function calls the Read_ EEPROM _Slave function
which sends contents of the simulated EEPROM memory to the master device until either the end of the
simulated memory is reached or a valid stop condition is detected.

R20UT2246EG0100 Rev.1.00 ;{EN ESNS Page 31 of 54

Sep 14, 2012




RSKRX62G 4. Peripheral Samples

7. The program then returns to the bus reply function, which reports the read/write operation’s success or failure
to the debug LCD. If an invalid request is sent from the master, the function reports a error on the debug LCD.

8. The program then returns back to the BusMonitor EEPROM_Slave function, where it waits for another
master command over the I1C bus.

4.12.4 Sequence Diagram

Figure 4-12 below shows the program execution flow of the 11C_Slave sample.

Main() LCD 1°C Bus

I
InitialiseLCD() », << Instructions are display-
|

ed on the debug LCD >>

I
L
|
|
| DisplayLCD()
|
|
|

<< The I?C unit is configured

>: for slave mode >>

Init_EEPROM_Slave()

B

| << Infinite while loop >>

while(1)

J

<
A —>' << The bus monitor function
L polls the I2C unit, and waits
| . until an 12C command is
BusMonitor_EEPROM_Slave() detected. >>
=3 |
2 I
&
H : << Read requested >> << Write data from 12C master
8I | »I is stored in simulated
5 [~ ] <<Thebus reply function | EEPROM memory >>
> determines what the |
& c master is requesting, and | Write_EERPOM_Slave()
% g calls either the read or |
@ § write function. >> |
UJ\ I << Write requested >: << Contents of simulated
2 | EEPROM memory is sent to
& | 1 the I2C master until a stop
2 | | condition is received >>
o << The program returns to
the bus reply function, | Read_EERPOM_Slave()
and updates the debug |
LCD with the operation |
success/failure >> |
-t t
1 |
l—————
: |
|
| LOOP
T
|
|
|
|
|
|
|
|
|

Figure 4-12: 11C_Slave Sequence Diagram

R20UT2246EG0100 Rev.1.00 ;{EN ESNS Page 32 of 54

Sep 14, 2012



RSKRX62G 4. Peripheral Samples

4.12.5 RPDL Integration

Table 4-12 below details the RPDL functions used in each sample code function shown in the sequence diagram.

Function RPDL Function
Init_ EEPROM_Slave R_IIC_Create
Read_EEPROM_Slave R_IIC_SlaveSend

BusMonitor_EEPROM_Slave R_IIC_SlaveMonitor
Table 4-12: 11C_Slave Sample RPDL Integration

R20UT2246EG0100 Rev.1.00 ;{EN ESNS Page 33 of 54

Sep 14, 2012



RSKRX62G 4. Peripheral Samples

413 CRC

4.13.1 Description

This sample demonstrates the CRC unit, by echoing typed characters from the SCI terminal with a corresponding
checksum.

w N

4.13.2 Operation

Before starting this sample, the user should connect the RSK to the PC via an RS232 serial cable and run a
suitable terminal program (see instructions in sample code comments).

The sample displays “CRC”, “Calc” on the first and second lines of the debug LCD.

The sample then calls the function Init CRC, which configures the CRC unit to produce 16bit ANSI
checksums, and the SCI unit for asynchronous operation to the PC terminal.

The function also configures an interrupt to be generated when data is received from the terminal, and displays
instructions in the terminal window.

The sample then enters an infinite while loop, and the rest of the samples functionality is performed in
interrupts.

When the user presses a key in the terminal, the SCI interrupt executes the callback function CB_SCIReceive.
This function takes the received character and calls the function Calculate_ CRC to generate a checksum.

The sample returns from the Calculate CRC function to the callback function and writes a string containing
the received character and its checksum to the terminal.

The sample then returns to the infinite while loop and waits until a key is entered into the terminal again.

4.13.3 Sequence Diagram

Figure 4-13 below shows the program execution flow of the CRC sample.

Main() LCD scl CRC

InitialiseLCD( ) »:
|

<< Display instructions on
| the debug LCD >>

I
L
|
|
| DisplayLCD()
|
|
|

|_V__________________

T
|
|
|
|
|
|
, |
|-t | |
* | | |
| |
Init_CRC() I I
<< Initialise the CRC and the | |
SCI modules. Instructions | |
T - are sent to the terminal >> | '
L A '
<< SCl data receive interrupt generated >> << SCl receive callback func |
| -tion generates CRC checksum |
of the received character and
| displays it on the terminal >> |
| |
| z |
<< Infinite while loop >> | 2 >|
a | 3 << Function generates CRC |
2 & checksum from input value >>
§ | O Calculate_CRC()
| 9
| s}
(8}
|
| | J
| — |
< f 1 I LOOP
| T T
| | | |
| | | |
1 1 1 1
Figure 4-13: CRC Sequence Diagram
R20UT2246EG0100 Rev.1.00 ‘. zEN ESNS Page 34 of 54

Sep 14, 2012



RSKRX62G 4. Peripheral Samples

4.13.4 RPDL Integration

Table 4-13 below details the RPDL functions used in each sample code function shown in the sequence diagram.

Function RPDL Function
Init_CRC R_CRC_Create
R_SCI_Create
R_SCI_Receive
R_SCI_Send
CB_SCIReceive R_SCI_GetStatus
R_SCI_Send
R_SCI_Receive
Calculate_CRC R_CRC_Write
R_CRC_Read
Table 4-13: CRC Sample RPDL Integration

4.14 Timer_Capture

4.14.1 Description

This sample configures the timer to run whilst the switch SW1 is held down. Once SW1 is released, the period of
time in which the switch was held down is displayed on the debug LCD, in milliseconds.

In order to ensure a clean switch on/off transition, the MCU is insensitive to switch changes for 10ms after each edge
change is detected. This time period is to prevent switch ‘bounce’ from incorrectly triggering switch interrupts. This
means the minimum switch press time will always be greater than 20ms. The sample is for demo purposes only, and
does not represent the timer accuracy of the MCU.

4.14.2 Operation

1. The sample initialises the LCD module, and displays “Capture” on the first line and “Push SW1” on the
second.

2. The sample then configures a CMT timer to generate interrupts every millisecond. The CMT timer is stopped
and the count value is reset to 0. Switch press and release callback functions are also set.

3. The sample then enters the main while loop, and the rest of the functionality is performed at interrupt level.

4. When the user presses down switch SW1, an interrupt is generated which calls the function CB_SwitchPress,
which resets the count variable usCapture_value and starts the CMT timer.

5. Whilst the user still has SW1 held down, the callback function CB_TimerClockTick will execute every
millisecond by CMT timer interrupt. The function increments the variable usCapture_value with each
execution.

6. When the user releases SW1, an interrupt is generated which calls the callback function CB_SwitchRelease.
The function stops the CMT timer. It then calls the function Update_TimerCapture which checks if the
usCapture_value is less than 10 seconds. The value is converted to a string and displayed if it is less than 10
seconds otherwise a message is displayed indicating that the value was greater than 10 seconds.

R20UT2246EG0100 Rev.1.00 ;{EN ESNS Page 35 of 54

Sep 14, 2012



RSKRX62G

4. Peripheral Samples

4.14.3 Sequence Diagram

Figure 4-14 below shows the program execution flow of the Timer_Capture sample.

Main() LCD Swi CMT
| | T T
| InitialiseLCD( ) >| | |
| | << Displays instructions | |
| | onto the debug LCD >> | |
| DisplayLCD() : :
: << Configures the CMT timer | |
| to generate an interrupt | |
every millisecond >> X | |
!< | | |
| | | |
Init_TimerCapture( ) | | |
| | |
| | |
. | | |
I I | |
{} ] << Switch press interrupt generated >> >: << Count value reset and |
CMT timer enabled as switch |
n=n : | is pressed >> |
<< Update_TimerCapture() I . |
function sits in a while(1) CB_SwitchPress() I
loop, and updates the count |
value on the debug LCD >> | J |
| |
- ' l |
| | 1
! ! /] !
<< 1ms Timer interrupt generated >> | |
I 1 >
I | << Callback function incre- |
I | ments th_e count value every ] ]
— | millisecond >> CB_TimerClockTick()
g [
: | | J
E | |
- ! I I
| | | LOOP
| | T
| | |
1 | |
<< Switch release interrupt generated >> | |
i >
Hi==iR | << CMT ti i I |
"MT timer is stopped once | I
| switch is released. Callback
| function converts count value CB_SwitchRelease() |
| to a character string, and |
| displays it on the LCD. >> |
| |
- t |
T I |
| |
| |

Figure 4-14: Timer_Capture Sequence Diagram

4.14.4 RPDL Integration

Table 4-14 below details the RPDL functions used in each sample code function shown in the sequence diagram.

Function RPDL Function
Init_TimerCapture R_CMT_Create
R_CMT_Control
CB_SwitchPress R_CMT_Control
CB_SwitchRelease R_CMT_Control

Table 4-14: Timer_Capture Sample RPDL Integration

R20UT2246EG0100 Rev.1.00
Sep 14, 2012

RENESAS

Page

36 of 54



RSKRX62G 4. Peripheral Samples

4.15 Timer Compare

4.15.1 Description

This sample configures the CMT timer to run, and execute a callback function every time a compare match
interrupt occurs. The callback function toggles the state of the user LEDs, making them blink.

4.15.2 Operation

The sample initialises the LCD module, and displays “Timer” on the first line and “Compare” on the second.
The sample then configures a CMT timer to generate interrupts every 100ms.

The sample then enters the main while loop, and is interrupted every 100ms when the CMT timer interrupt
calls the CB_CompareMatch callback function.

4. The CB_CompareMatch callback function toggles the state of the user LEDs, making them blink.

wn e

4.15.3 Sequence Diagram

Figure 4-15 below shows the program execution flow of the Timer_Compare sample.

Main() LCD CMT

InitialiseLCD( ) |
| << Displays instructions
| onto the debug LCD >>

DisplayLCD()

<< Configures the CMT timer
to generate an interrupt

every 100ms >>

Init_CompareMatchTimer( )

1

<< Callback function toggles
the state of the user LEDs >>

CB_CompareMatch()

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>

while(1)

Figure 4-15: Timer_Compare Sequence Diagram

4.15.4 RPDL Integration

Table 4-15 below details the RPDL functions used in each sample code function shown in the sequence diagram.

Function RPDL Function

Init_CompareMatchTimer R_10_PORT_Set

R_CMT_Create

CB_CompareMatch R_10_PORT_Modify

Table 4-15: Timer_Compare Sample RPDL Integration

R20UT2246EG0100 Rev.1.00 ;{EN ESNS Page 37 of 54

Sep 14, 2012



RSKRX62G

4. Peripheral Samples

416 Timer

Event

4.16.1 Description

This sample configures MTU3 timer 2, to be clocked from negative pulses from SW2 switch actions. The CMT is
also configured to update the MTU3 timer’s counter display value every 100ms, through the callback function
CB_CMT_UpdateLCD.

4.16.2 Operation

1. The sample initialises the LCD module, and displays “TR Event” on the first line and “Push SW2” on the

second.

2. The sample then configures MTU3 unit’s timer 2 to be clocked from switch SW2's falling edge signals and
a CMT timer is configured to generate interrupts every 100ms for updating the debug LCD with the count.

3. The sample then enters the main while loop, and is interrupted every 100ms when the CMT timer interrupt
calls the CB_CompareMatch callback function.

4. When called, the CB_CompareMatch callback function stops the timer’s counting, reads the count value,
converts the integer value to a string then displays it on the debug LCD before exiting the function.

4.16.3 Sequence Diagram

Figure 4-16 below shows the program execution flow of the Timer_Compare sample.

Main()

InitialiseLCD()

.

CMT

MTU_3

I
>| << Displays instructions
| | onto the debug LCD >>
DisplayLCD()

Init_TimerEvent()

<< Configures MTU3 unit’s timer 2
to count upwards on each SW2
witch press and confiures the CMT
timer to generate an interrupt every
100ms >>

<< CMT interrupt generated >>

while(1)

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
-

<< Callback function stops the
timer’s counting, reads the count
value and updates it on the debug

LCD. Re-starts the timer's count

,J

before exiting the function >>
ol

_CMT_UpdateL.CD(

<< Update count >>

-

<< SW2 switch press >>

Figure 4-16: Timer_Event Sequence Diagram

4.16.4 RPDL Integration

Table 4-16 below details the RPDL functions used in each sample code function shown in the sequence diagram.

R20UT2246EG0100
Sep 14, 2012

Rev.1.00

RENESAS

Page 38 of 54



RSKRX62G 4. Peripheral Samples

Function RPDL Function

Init_CompareMatchTimer R_MTU3_Set

R_MTUS3_Create

R_CMT_Create

CB_CMT_UpdateLCD R_MTU3_ControlChannel

R_MTU3_ReadChannel

Table 4-16: Timer_Event Sample RPDL Integration

417 Timer Mode

4.17.1 Description

This sample configures MTU3 unit’s timer 2 to run, and toggle the timer output pin every time a compare match
occurs. No interrupts are used since the timer is configured to automatically change state on each compare match
occurrences.

4.17.2 Operation

1. The sample initialises the LCD module, and displays “1KHz” on the first line and “J2-pin13” on the
second.

2. The sample then configures MTU3 unit’s timer 2 to output a 1 KHz periodic square wave. The timer
toggles a specific output pin, MTIOC2A on every compare match.

3. The sample then enters an infinite while loop.

4.17.3 Sequence Diagram

Figure 4-17 below shows the program execution flow of the Timer_Mode sample.

T
InitialiseLCD( ) |
el

<< Displays instructions
| onto the debug LCD >>

DisplayLCD( )

J

Main() LCD MTU3
I
|
|
|
|
:
|
i

|
|
| |
Init_TimerMode( ) |
<< Configures the MTU3's |

time 2 to generate a 1KHz |

square wave with a 50% duty |

cycle and toggle the timer |
output pin >>

<< MTU3 compare match >>

>

<< Qutput pin is
automatically toggled for
each compare match
occurence >>

while(1)

| |
| |
| |
| |
| |
- : '
| |
| |
| |
| |
' |

Figure 4-17: Timer_Mode Sequence Diagram

4.17.4 RPDL Integration

R20UT2246EG0100 Rev.1.00 ;{EN ESNS Page 39 of 54

Sep 14, 2012



RSKRX62G 4. Peripheral Samples

Table 4-17 below details the RPDL functions used in each sample code function shown in the sequence diagram.

Function RPDL Function

Init_TimerMode R_MTUS3_Set

R_MTU3_ControlChannel

Table 4-17: Timer_Mode Sample RPDL Integration

R20UT2246EG0100 Rev.1.00 ;{EN ESNS Page 40 of 54

Sep 14, 2012



RSKRX62G 4. Peripheral Samples

4.18 Flash_Data

4.18.1 Description

This sample demonstrates usage of the data flash memory, by writing the results of an ADC conversions to an
incrementing data flash address every time a switch is pressed.

4.18.2 Operation

1. The sample initialises the LCD module, displays instructions on the screen and calls the function
Init_FlashData.

2. The function Init_FlashData then configures the FCU unit and the data flash memory area followed by the
initialisation of the 10-bit ADC. A function call to erase to erase the flash memory is called before the sample
proceeds. The sample also configures the ADC unit, and switch interrupts.

3. The sample then waits in an infinite while loop for a user to press a switch.

4. When a user presses switch SW1, the sample triggers an ADC conversion and then writes the value into flash
memory. The flash data and address it was written to is displayed on the debug LCD.

5. When the user presses switch SW1 again, the sample writes the updated ADC value to the next free memory
location and displays the data and address on the debug LCD.

6. When the user presses switch SW3, the contents of the data flash block are erased, and the flash writes start
from the beginning of the data flash block again.

7. To perform a new write (from the start of the data flash block), press SW1.

R20UT2246EG0100 Rev.1.00 ;{EN ESNS Page 41 of 54

Sep 14, 2012



RSKRX62G 4. Peripheral Samples

4.18.3 Sequence Diagram

Figure 4-18 below shows the program execution flow of the Flash_Data sample.

Main() LCD Switch Flash

<< Instructions are display-
ed on the debug LCD >>

T
|
|
|
| DisplayLCD()
|
[
|

»
Ll

<< Switch SW1 Triggers an Interrupt >>
T

<< Program enters an

T
| |
| |
| |
| |
| |
| |

-¢ | |
|l i
L | 1 I I
4 g | | |
| | | |
| | |
InitADC_FlashData( ) : : :
- I I I
k] - | << The initialisation function, | |
[a) - i i

= | Init_FlashData, calls InitADC | |
& | _FlashData and Erase_ | |

o, | DataFlash to prepare the
£ | ADC and flash memory >> | |
= Erase_FlashData() | | |
| | |
| | |

<
. | | |
| | |
— | |
| |
1

|
]

" " |-
infinite while loop, and is << Switch callback function Ll

interrupted by the pressing
of switches SW1 & SW3 >>

takes an ADC reading and << Write_FlashData function |

writes the contents of

0

|
|
| =l
| writes it as a string to the £
LCD and calls the function = gFlashWriteBuffer to flash Write_FlashData( )
| Write_FlashData >> (% memory, to an incrementing
| o' address location >>
| © <
| - ]
[ [
N i i [
T | | |
z ’ . | |
H << Switch SW3 Triggers an Interrupt >> -
. ! |
[ |
| -
| << Switch callback function L |
| calls the Erase_FlashData —_ << Erase_FlashData function |
| function, and displays that %’ erases all of the data flash
| the flash has been erased = memory blocks, and resets Erase_FlashData( )
| on the debug LCD >> % the write address location >>
|
o)
I ° <l
| <l Il
I -
< t
|
|
|

T
|
|
1

Figure 4-18: Flash_Data Sequence Diagram

4.18.4 RPDL Integration

Table 4-18 below details the RPDL functions used in each sample code function shown in the sequence diagram.

Function RPDL Function
InitADC_FlashData R_ADC_10_Create
CB_Switch R_ADC_10_Control

R_ADC_10_Read

Table 4-18: Timer_Compare Sample RPDL Integration

The sample makes extensive use of the Renesas RX600 Flash API, details of which can be found in the Simple Flash
API for RX600 Application Note (RO1ANO544EU-0200).

R20UT2246EG0100 Rev.1.00 ;{EN ESNS Page 42 of 54

Sep 14, 2012




RSKRX62G 4. Peripheral Samples

419 DTC

4.19.1 Description

This sample demonstrates usage of the DTC unit, by perform a DTC transfer of an ADC result to an incrementing
location in an array when a switch is pressed.

4.19.2 Operation

Lo

The sample initialises the LCD module, and displays instructions on the screen.

2. The sample calls the Init_DTC function, which configures the DTC unit and also configures an ADC unit
which triggers the DTC transfer after a successful conversion. The DTC transfer is configured to transfer the
contents of the ADC result register to incrementing locations in the global array, gDTC_Destination.

3. The sample then enters an infinite while loop, with the rest of the sample’s functionality completed in
interrupts.

4, When the switch SW3 is pressed, the callback function CB_Switch is executed. The callback function

checks the number of remaining transfers, and triggers an AD conversion. If there are no more remaining

transfers, the function clears the contents of the gDestination array and reconfigures the DTC transfer to start
from the beginning.

4.19.3 Sequence Diagram

Figure 4-19 below shows the program execution flow of the DTC sample.

Main() LCD DTC

InitialiseLCD( ) »! << Instructions are display-

1 ed on the debug LCD >>

T
|
|
|
| DisplayLCD()
|
|
|

<< Configures the DTC unit
for anormal transfer >>

i
|
|
Init_DTC() :
|
|

. .

<< Switch press interrupt >>

<< Switch callback function
triggers an AD conversion,

- that then triggers a DTC

| transfer >>

|__

<< Infinite while loop >> |

CB_Switch

.

while(1)

- | Loop
| [
! !
Figure 4-19: DTC Sequence Diagram
R20UT2246EG0100 Rev.1.00 REN ESNS Page 43 of 54

Sep 14, 2012



RSKRX62G 4. Peripheral Samples

4.19.4 RPDL Integration

Table 4-19 below details the RPDL functions used in each sample code function shown in the sequence diagram.

Function RPDL Function
Init_ DTC R_DTC_Set
R_DTC_Create
R_ADC_10_Create
R_DTC_Control
CB_Switch R_DTC_GetStatus
R_DTC_Control
R_INTC_Write
R_ADC_10_Control
Table 4-19: DTC Sample RPDL Integration

R20UT2246EG0100 Rev.1.00 ;{EN ESNS Page 44 of 54

Sep 14, 2012



RSKRX62G 4. Peripheral Samples

420 PWM

4.20.1 Description

This sample demonstrates usage of the general purpose timer (GPT) channels by outputting a varying duty cycle
from 10% to 90% of the duty period. The output is observed on a dedicated timer 1/0O pin, MTIOC2A.

4.20.2 Operation

Lo

The sample initialises the LCD module, and displays instructions on the screen.

2. The sample then calls the Init PWM function which configures the GPT channel 0’s timer to output a pwm
signal with a varying duty from 10% to 90%. Two compare registers, GTCCRA and GTCCRB, to respectively
set the increasing duty and reset the duty to 10% once it has reached 90%. This is done using interrupts.

3. Pressing SW1 stops the duty from varying and the duty percentage is displayed on the debug LCD.

4.20.3 Sequence Diagram

Figure 4-20 below shows the program execution flow of the PWM sample.

before restarting the timer count.
Sets flag to indicate stopping of
| duty cycle variation >>

<< SW1 switch press interrupt >>

<< Infinite while loop >>

CB_Switch()

A

\

<< GPT compare match interrupt >>

Main() LCD SWITCH GPT
T o T T T
1 InitialiseL CD() >: << Instructions are display- ! !
: ed on the debug LCD >> : :
| | | I
] DisplayLCD() | ]
| | |
| | |
| I I
1 — < 1 1
¢ — i ] 1
s << Initialise the GPT | | ]

| module’s channel 0 >> 1 1 1

Init I I I
_GPT() \ \ |

| | ]

g ! ! << Switch callback function used |

i )l : : for capturing the timer count value :
e | and displaying it on the debug LCD \
.y ) ]

el 1

|

I

|

|

|

|

I

|

|

1

while(1)

<< GPT callback function
executed on GTCCRA and |
GTCCRB compare match CB_GPT_A()
detections. Checks to see if an - -
instrcution to update the duty
cycle was set >>

A

A

Figure 4-20: PWM Sequence Diagram

4.20.4 RPDL Integration

Table 4-20 below details the RPDL functions used in each sample code function shown in the sequence diagram.

R20UT2246EG0100 Rev.1.00 ;{EN ESNS Page 45 of 54

Sep 14, 2012



RSKRX62G 4. Peripheral Samples

Function RPDL Function

Init_PWM R_GPT Set

R_GPT_Create

R_GPT_ControlChannel

CB_GPT_A R_GPT_ReadChannel

R_GPT_ControlChannel

CB_Switch R_GPT_ControlChannel

Table 4-20: PWM Sample RPDL Integration

421 WDT

4.21.1 Description

This sample demonstrates usage of the watch timer unit, by creating a timer overflow interrupt and a periodic CMT
interrupt used to reset the timer. The period of the CMT interrupt is varied with the potentiometer, allowing it to be
reduced until the WDT overflow interrupt occurs.

4.21.2 Operation

1. The sample initialises the LCD module, and displays instructions on the screen.

2. The sample then calls the Init. WDT function which configures the WDT and ADC unit, as well as the CMT to
create a periodic interrupt. Watchdog timer overflow period is set to ~700ms, and is set to execute the callback
function CB_WDTOverflow when the WDT overflows.

3. The sample then enters an infinite while loop. When the timer period elapses the callback function,
CB_CMTPeriod, is executed.

4. The function CB_CMTPeriod resets the WDT count, toggles the user LEDs, and triggers an AD conversion.
The function also updates the timer period with value set in the global variable gCMT _Period.

5. The callback function CB_ADConversion is executed when the AD conversion is complete. The function
fetches the ADC result and uses it to calculate a new timer period which is stored in gCMT_Period.

6. When the timer period duration is greater than 700ms, the watchdog timer overflows generating an overflow
interrupt.

7. The WDT overflow interrupt executes the function, CB_WDTOverflow, which sets the user LEDs to static ON
and displays “Watchdog Overflow” on the debug LCD. The function then waits in an infinite while loop.

R20UT2246EG0100 Rev.1.00 REN ESNS Page 46 of 54

Sep 14, 2012



RSKRX62G

4. Peripheral Samples

4.21.3 Sequence Diagram

Figure 4-21 below shows the program execution flow of the WDT sample.

CB_WDTOverflow()

<< WDT overflow interrupt >>
|
h

<< WDT overflow interrupt breaks
infinite while loop, and executes

CB_WDTOverflow. The function

sets the LEDs static, and waits in
another infinite while loop. >>

Figure 4-21: WDT Sequence Diagram

4.21.4 RPDL Integration

Main() LCD CMT ADC
T InitialiseL.CD ! T !
| nitialisel CD() »I << Instructions are display- | |
| | ed on the debug LCD >> | |
| | | |
| DisplayLCD() | |
| | |
| | |
| , | |
- i | |
: | << Initialise the CMT, ADC | | |

and WDT units >> | | |
Init_WDT() | | |
| | |
B | | |
[ | | |
I << Periodic ti er t t > I I
] eriodic timer interrupt >> I
— — > .
<< Infinite while loop >> << Periodic timer callback |
function resets the WDT, |
toggles the user LEDs, CB_CMTPeriod() |
triggers an AD conversion and |
updates the timer period. >> |
< |
-
- |
% << AD conversion interrupt >> |
= i >I
H << AD conversion callback |
fetches ADC result, calculates
anew timer period and stores CB_ADConversion()
itin a global variable >>
[

Table 4-21 below details the RPDL functions used in each sample code function shown in the sequence diagram.

Function

RPDL Function

Init. WDT

R_ADC_10_Create

R_WDT_Create

R_CMT_Create

CB_CMTPeriod

R_WDT_Control

R_I0_PORT_Modify

R_ADC_10_Control

R_CMT_Control

CB_ADConversion

R_ADC_10_Read

CB_WDTOverflow

R_I0_PORT Write

Table 4-21: WDT Sample RPDL Integration

R20UT2246EG0100 Rev.1.00
Sep 14, 2012

RENESAS

Page 47 of 54



RSKRX62G 4. Peripheral Samples

422 IWDT

4.22.1 Description
This sample demonstrates usage of the independent watchdog timer unit, by creating a timer underflow interrupt

and a periodic CMT interrupt used to refresh the timer. The period of the CMT interrupt varies with the
potentiometer, allowing it to be reduced until the IWDT underflow interrupt occurs.

4.22.2 Operation

Lo

The sample initialises the LCD module, and displays instructions on the screen.

2. The sample then calls the Init_IWDT function which checks to see if the last reset was due to the IWDT
underflowing and halts the program if this is the case. Otherwise, it configures the IWDT and ADC unit, as
well as the CMT to create a periodic interrupt. Watchdog timer underflow period is set to ~130ms, and it resets
the microcontroller when the IWDT underflows.

3. The sample then enters an infinite while loop. When the timer period elapses the callback function,
CB_CMTPeriod, is executed and updated with the ADC value multiplied by a factor.

4. The function CB_CMTPeriod refreshes the IWDT count, toggles the user LEDs, and triggers an AD
conversion. The function also updates the timer period with value set in the global variable gCMT_Period.

5. The callback function CB_ADConversion is executed when the AD conversion is complete. The function
fetches the ADC result and uses it to calculate a new timer period which is stored in gCMT _Period.

6. When the timer period duration is greater than ~130ms, the watchdog timer underflows generating a device
reset.

7. The IWDT resets the device, turning all LEDs to static ON and displays “Watchdog Underflow” on the debug

LCD. The function then waits in an infinite while loop.

4.22.3 Sequence Diagram

Figure 4-22 below shows the program execution flow of the IWDT sample.

Main() LCD CMT ADC

<< Instructions are display-
ed on the debug LCD >>

T
InitialiseLCD() |
VI

DisplayLCD()

<l
|

Yy ]

I

<< IWDT underflow interrupt >>
I

T
|
|
|
|
|
|
|
|
| |
| |
<< Checks if the last reset | I
Init_IWDT( was caused by an IWDT | |
) underflow. The program is | |
halted if this is true. | |
Initialise the CMT, ADC and | |
— - WDT units >> | |
1 I |
— << Periodic timer interrupt >> :
T
<< Infinite while loop >> | << Periodic timer callback | |
| function refreshes the IWDT, |
| toggles the user LEDs, CB_CMTPeriod() |
| triggers an AD conversion and |
| updates the timer period. >> |
| g |
| T |
=< T — 1 I
=4 | << AD conversion interrupt >> 1 o |
z ] ] 1
B | 1 << AD conversion callback |
| | fetches ADC result, calculates
] 1 anew timer period and stores CB_ADConversion()
| | itin a global variable >>
| |
| I ¢
gt 1 1
| 1
| |
| 1
| I
| |
| I
|

|
Figure 4-22: IWDT Sequence Diagram
R20UT2246EG0100 Rev.1.00 REN ESNS Page 48 of 54

Sep 14, 2012




RSKRX62G 4. Peripheral Samples

4.22.4 RPDL Integration

Table 4-22 below details the RPDL functions used in each sample code function shown in the sequence diagram.

Function RPDL Function
Init_IWDT R_ADC_10_Create
R_IWDT_Set
R_INTC_CreateExtinterrupt
R_CMT_Create
CB_CMTPeriod R_WDT_Control
R_IO_PORT_Modify
R_ADC_10_Control
R_CMT_Control
CB_ADConversion R_ADC_10_Read

Table 4-22: IWDT Sample RPDL Integration

R20UT2246EG0100 Rev.1.00 ;{EN ESNS Page 49 of 54

Sep 14, 2012



RSKRX62G 5. Additional Information

5. Additional Information

Technical Support

For details on how to use High-performance Embedded Workshop (HEW), refer to the HEW manual available on
the CD or from the web site.

For information about the RX62G series microcontrollers refer to the RX62G Group hardware manual.

For information about the RX62G assembly language, refer to the RX600 Series Software Manual.

Technical Contact Details
Please refer to the contact details listed in section 7 of the “quick start guide”

General information on Renesas Microcontrollers can be found on the Renesas website at;
http://www.renesas.com/

Trademarks
All brand or product names used in this manual are trademarks or registered trademarks of their respective com-
panies or organisations.

Copyright

This document may be, wholly or partially, subject to change without notice. All rights reserved. Duplication of this
document, either in whole or part is prohibited without the written permission of Renesas Electronics Europe
Limited.

© 2012 Renesas Electronics Europe Limited. All rights reserved.
© 2012 Renesas Electronics Corporation. All rights reserved.
© 2012 Renesas Solutions Corp. All rights reserved.

R20UT2246EG0100 Rev.1.00 ;{EN ESNS Page 50 of 54

Sep 14, 2012


http://www.renesas.com/

REVISION HISTORY

RSKRX62G Software Manual

Rev.

Date

Description

Page

Summary

1.00

Sep 14, 2012

¥4

First Edition issued




Renesas Starter Kit Software Manual

Publication Date: Rev.1.00 Sep 14, 2012

Published by: Renesas Electronics Corporation




LENESANS

SALES OFFICES Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.

2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.

Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited

1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada

Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany

Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.

7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 204, 205, AZIA Center, N0.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.

13F, No. 363, Fu Shing North Road, Taipei, Taiwan

Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.

11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2012 Renesas Electronics Corporation. All rights reserved.
Colophon 1.3




RX62G Group

RENESAS

Renesas Electronics Corporation R20UT2246EG0100



	1.  Overview
	1.1 Purpose

	2.  RSK Sample Code Concept
	2.1 Sample Code Structure
	2.2  List of Sample Code

	3.    Tutorial Samples
	3.1 Tutorial
	3.1.1 Description
	3.1.2 Operation
	3.1.3 Sequence Diagram
	3.1.4 RPDL Integration

	3.2 Application
	3.2.1 Description


	4.  Peripheral Samples
	4.1 ADC10_OneShot
	4.1.1 Description
	4.1.2 Operation
	4.1.3 Sequence Diagram
	4.1.4 RPDL Integration

	4.2 ADC10_Repeat
	4.2.1 Description
	4.2.2 Operation
	4.2.3 Sequence Diagram
	4.2.4 RPDL Integration

	4.3 ADC12_OneShot
	4.3.1 Description
	4.3.2 Operation
	4.3.3 Sequence Diagram
	4.3.4 RPDL Integration

	4.4 ADC12_Repeat
	4.4.1 Description
	4.4.2 Operation
	4.4.3 Sequence Diagram
	4.4.4 RPDL Integration

	4.5 SPI
	4.5.1 Description
	4.5.2 Operation
	4.5.3 Sequence Diagram
	4.5.4 RPDL Integration

	4.6 LIN Master
	4.6.1 Description
	4.6.2 Operation
	4.6.3 Sequence Diagram
	4.6.4 RPDL Integration

	4.7 Async_Serial
	4.7.1 Description
	4.7.2 Operation
	4.7.3 Sequence Diagram
	4.7.4 RPDL Integration

	4.8 Sync_Serial
	4.8.1 Description
	4.8.2 Operation
	4.8.3 Sequence Diagram
	4.8.4 RPDL Integration

	4.9 Power_Down
	4.9.1 Description
	4.9.2 Operation
	4.9.3 Sequence Diagram
	4.9.4 RPDL Integration

	4.10 LVD
	4.10.1 Description
	4.10.2 Operation
	4.10.3 Sequence Diagram
	4.10.4 RPDL Integration

	4.11 IIC_Master
	4.11.1 Description
	4.11.2 Operation
	4.11.3 Sequence Diagram
	4.11.4 RPDL Integration

	4.12 IIC_Slave
	4.12.1 Description
	4.12.2 IIC Slave Commands
	4.12.3 Operation
	4.12.4 Sequence Diagram
	4.12.5 RPDL Integration

	4.13 CRC
	4.13.1 Description
	4.13.2 Operation
	4.13.3 Sequence Diagram
	4.13.4 RPDL Integration

	4.14 Timer_Capture
	4.14.1 Description
	4.14.2 Operation
	4.14.3 Sequence Diagram
	4.14.4 RPDL Integration

	4.15 Timer Compare
	4.15.1 Description
	4.15.2 Operation
	4.15.3 Sequence Diagram
	4.15.4 RPDL Integration

	4.16 Timer Event
	4.16.1 Description
	4.16.2 Operation
	4.16.3 Sequence Diagram
	4.16.4 RPDL Integration

	4.17 Timer Mode
	4.17.1 Description
	4.17.2 Operation
	4.17.3 Sequence Diagram
	4.17.4 RPDL Integration

	4.18 Flash_Data
	4.18.1 Description
	4.18.2 Operation
	4.18.3 Sequence Diagram
	4.18.4 RPDL Integration

	4.19 DTC
	4.19.1 Description
	4.19.2 Operation
	4.19.3 Sequence Diagram
	4.19.4 RPDL Integration

	4.20 PWM
	4.20.1 Description
	4.20.2 Operation
	4.20.3 Sequence Diagram
	4.20.4 RPDL Integration

	4.21 WDT
	4.21.1 Description
	4.21.2 Operation
	4.21.3 Sequence Diagram
	4.21.4 RPDL Integration

	4.22 IWDT
	4.22.1 Description
	4.22.2 Operation
	4.22.3 Sequence Diagram
	4.22.4 RPDL Integration


	5.    Additional Information

