Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

16

Renesas Starter Kit for H8/38099

User's Manual

Renesas 16-Bit Single-Chip Microcomputer H8 Family / H8/300H Super Low Power Series

Table of Contents

Chapter 1. Preface	1
Chapter 2. Purpose	2
Chapter 3. Power Supply	3
3.1. Requirements	3
3.2. Power – Up Behaviour	3
Chapter 4. Board Layout	4
4.1. Component Layout	4
4.2. Board Dimensions	5
Chapter 5. Block Diagram	6
Chapter 6. User Circuitry	7
6.1. Switches	7
6.2. LEDs	7
6.3. Potentiometer	7
6.4. Serial port	8
6.5. LCD Module	8
6.6. Option Links	9
6.7. Oscillator Sources	14
6.8. Reset Circuit	14
6.9. LCD Controller Interface	14
Chapter 7. Modes	15
7.1. Boot mode	15
7.2. User mode	15
Chapter 8. Programming Methods	16
Chapter 9. Headers	17
9.1. Microcontroller Headers	17
9.2. Application Headers	19
Chapter 10. Code Development	22
10.1. Overview	22
10.2. Compiler Restrictions	22
10.3. Mode Support	22
10.4. Breakpoint Support	22
10.5. Memory Map	23
Chapter 11. Component Placement	24
Chapter 12. Additional Information	25

Chapter 1. Preface

Cautions

This document may be, wholly or partially, subject to change without notice.

All rights reserved. Duplication of this document, either in whole or part is prohibited without the written permission of Renesas Solutions Corporation.

Trademarks

All brand or product names used in this manual are trademarks or registered trademarks of their respective companies or organisations.

Copyright

© Renesas Solutions Corp. 2007. All rights reserved.

© Renesas Technology Europe Ltd. 2007. All rights reserved.

© Renesas Technology Corp. 2007. All rights reserved.

Website:	http://www.eu.renesas.com	(Europe)
	http://www.renesas.com	(Global)

Glossary

ADC	Analog to Digital Converter	LCD	Liquid Crystal Display
CPU	Central Processing Unit	LED	Light Emitting Diode
DAC	Digital to Analog Converter	LSI	Large Scale Integration
E8a	E8a On-chip debugger module	MCU	Microcontroller
HEW	High-performance Embedded Workshop	PC	Program Counter
IRQ	Interrupt ReQuest		

Chapter 2. Purpose

This Renesas Starter Kit is an evaluation tool for Renesas microcontrollers.

Features include:

- Renesas Microcontroller Programming.
- User Code Debugging.
- User Circuitry such as Switches, LEDs and potentiometer(s).
- User or Example Application.
- Sample peripheral device initialisation code.

The Renesas Starter Kit board contains all the circuitry required for microcontroller operation.

NOTE: This manual describes the technical details of the Renesas Starter Kit for H8/38099 hardware. The Quick Start Guide and Tutorial Manual provide details of the software installation and debugging environment.

Chapter 3. Power Supply

3.1. Requirements

This Renesas Starter Kit operates from a 5V power supply.

A diode provides reverse polarity protection only if a current limiting power supply is used.

All Renesas Starter Kit boards are supplied with an E8a debugger. This product is able to power the Renesas Starter Kit board with up to 300mA. When the Renesas Starter Kit is connected to another system then that system should supply power to the Renesas Starter Kit.

All Renesas Starter Kit boards have an optional centre positive supply connector using a 2.1mm barrel power jack.

Warning

The Renesas Starter Kit is neither under nor over voltage protected. Use a centre positive supply for this board.

3.2. Power - Up Behaviour

When the Renesas Starter Kit is purchased the Renesas Starter Kit board has the 'Release' or stand alone code from the example tutorial code pre-programmed into the Renesas microcontroller. On powering up the board the user LEDs will start to flash. After 200 flashes, or after pressing a switch the LEDs will flash at a rate controlled by the potentiometer.

Chapter 4. Board Layout

4.1. Component Layout

The following diagram shows the top layer component layout of the board.

Figure 4-1: Board Layout

4.2. Board Dimensions

The following diagram gives the board dimensions and connector positions. All through hole connectors are on a common 0.1" grid for easy interfacing.

Figure 4-2 : Board Dimensions

Chapter 5. Block Diagram

Figure 5-1 is representative of the CPU board components and their connectivity.

Figure 5-1: Block Diagram

Figure 5-2 is representative of the connections required to the Renesas Starter Kit.

Figure 5-2 : Renesas Starter Kit Connections

Chapter 6. User Circuitry

6.1. Switches

There are four switches located on the board. The function of each switch and its connection are shown in Table 6-1.

Switch	Function	Microcontroller
RES	When pressed, the board microcontroller is reset.	RES Pin86
SW1*	Connects to an IRQ input for user controls.	IRQ0 Pin74
		(Port B, pin 0)
SW2*	Connects to an IRQ input for user controls.	IRQ1 Pin60
		(Port E, pin 3)
SW3*	Connects to an IQR input for user controls	IRQ3 Pin72
		(Port B, pin 2)
	Connects to an ADTRG input line for AD trigger controls.	ADTRG Pin65

Table 6-1: Switch Functions

*Refer to schematic for detailed connectivity information.

6.2. LEDs

There are five LEDs on the CPU board. The green 'POWER' LED lights when the board is powered. The four user LEDs are connected to an IO port and will light when their corresponding port pin is set low.

Table 6-2 below, shows the LED pin references and their corresponding microcontroller port pin connections.

LED Reference	Colour	Microcontroller Port Pin	Microcontroller Pin
(As shown on silkscreen)		function	Number
LED0	Green	Port 9.0	97
LED1	Orange	Port 9.1	98
LED2	Red	Port 9.2	99
LED3	Red	Port 9.3	100

6.3. Potentiometer

A single turn potentiometer is connected to AN4 (PB.4) of the microcontroller. This may be used to vary the input analog voltage value to this pin between AVCC and Ground.

6.4. Serial port

The microcontroller programming serial port 3_1 is connected to the RS232 transceiver. This serial port can optionally be connected to the RS232 transceiver as well by fitting option resistors. The connections to be fitted are listed in the Table 6-3.

Description	Function	Fit for RS232	Remove for RS232
TXD31	Programming Serial Port	R49, R55	R51, R53
RXD31	Programming Serial Port	R50, R56	R52, R54

Table 6-3: Serial Port settings

A Secondary serial port is connected to the application headers.

6.5. LCD Module

An LCD module is supplied to be connected to the connector 'LCD'. This should be fitted so that the LCD module lies over J3. Care should be taken to ensure the pins are inserted correctly into 'LCD'. The LCD module uses a 4 bit interface to reduce the pin allocation. No contrast control is provided; this is set by a resistor on the supplied display module. The module supplied with the Renesas Starter Kit only supports 5V operation.

Table 6-4 shows the pin allocation and signal names used on this connector.

	LCD				
Pin	Pin Circuit Net Name Device Pin Circuit Net Name			Device	
		Pin			Pin
1	Ground	-	2	LCD_VCC (5V Only)	-
3	No Connection	-	4	LCD_RS	81
5	R/W (Wired to Write only)	-	6	LCD_E	82
7	No Connection	-	8	No Connection	-
9	No Connection	-	10	No Connection	-
11	LCD_D4/IO_4	77	12	LCD_5/IO_5	78
13	LCD_D6/IO_6	79	14	LCD_7/IO_7	80

Table 6-4: LCD Module Connections

6.6. Option Links

Table 6-5 below describes the function of the option links associated with Power configuration. The default configuration is indicated by **BOLD** text.

	Option Link Settings				
Reference	Function	Fitted	Alternative (Removed)	Related To	
R25	Power Source	Connects DC power input	Disconnects DC power input to		
		(PWR1) to the regulator input	the regulator input		
R26	Power Source	Connects CON_5V to the	Disconnects CON_5V from the		
		regulator input	regulator input		
R27	Power Source	Connects E8_VCC to the	Disconnects E8_VCC from the		
		regulator input	regulator input		
R28	Power Source	Connects LCD module power	Disconnects LCD module		
		to internal 5V	power from internal 5V		
R29	Power Source	Connects the regulator	Disconnects the regulator	J6	
		output to Board_VCC	output from Board_VCC		
R30	Power Source	Connects UC_VCC to	Disconnects UC_VCC from	J7	
		Board_VCC	Board_VCC		
R31	Power Source	Connects Board_VCC to	Disconnects Board_VCC from		
		CON_3V3	CON_3V3		
R32	User I/O Power Source	Connects Board_VCC supply	Disconnects Board_VCC from	J8	
		to SW1-3 and LED0-3	SW1-3 and LED0-3		

Table 6-5: Power Configuration Links

Table 6-6 below describes the function of the option links associated with Clock configuration. The default configuration is indicated by **BOLD** text.

Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related To	
R2	Main Clock Oscillator	Parallel resistor for main clock X1	Not fitted	R3, R4	
R3	Main Clock Oscillator	Connects main clock X1 to	Connects optional main clock X2 or	R2, R6, R11, R13	
		microcontroller	external clock to microcontroller		
R4	Main Clock Oscillator	Connects main clock X1 to	Connects optional main clock X2 or	R2, R7, R12, R13	
		microcontroller	external clock to microcontroller		
R5	Main Clock Oscillator	Parallel resistor for optional main	Not fitted	R6, R7	
		clock X2			
R6	Main Clock Oscillator	Connects optional main clock X2 to	Connects main clock X1 or	R3, R5, R11, R13	
		microcontroller	external clock to microcontroller		
R7	Main Clock Oscillator	Connects optional main clock X2 to	Connects main clock X1 or	R4, R5, R12, R13	
		microcontroller	external clock to microcontroller		
R11	Main Clock Oscillator	Connects external clock to	Connects main clock X1 or	R3, R6, R13	
		microcontroller	optional main clock X2 to		
			microcontroller		
R12	Main Clock Oscillator	Connects external clock to	Connects main clock X1 or	R4, R7, R13	
		microcontroller	optional main clock X2 to		
			microcontroller		
R13	Main Clock Oscillator	Selects On-chip oscillator	Connects X1, X2 or external	R3, R4, R6, R7,	
		* If R13 fits, remove R3, R4, R6,	clock to microcontroller	R11, R12, IRQAEC	
		R7, R11 and R12			
R8	Sub Clock Oscillator	Parallel resistor for sub clock X3	Not fitted	R9, R10	
R9	Sub Clock Oscillator	Connects sub clock X3 to	Connects external clock to	R8, R14, R16	
		microcontroller	microcontroller		
R10	Sub Clock Oscillator	Connects sub clock X3 to	Connects external clock to	R8, R15, R16	
		microcontroller	microcontroller		
R14	Sub Clock Oscillator	Connects external clock to	Connects sub clock X3 to	R9, R16	
		microcontroller	microcontroller		
R15	Sub Clock Oscillator	Connects external clock to	Connects sub clock X3 to	R10, R16	
		microcontroller	microcontroller		
R16	Sub Clock Oscillator	Disables sub clock input	Connects sub clock X3 or	R9, R10, R14, R15	
		* If R16 fits, remove R9, R10, R14	external clock to microcontroller		
		and R15			

Table 6-6: Clock Configuration Links

Table 6-7 below describes the function of the option links associated with Serial configuration. The default configuration is indicated by **BOLD** text.

	Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related To		
R46	RS232 Transceiver	Disables RS232 Serial	Enables RS232 Serial			
		Transceiver	Transceiver			
R47	Serial Port	Connects SCIbRX (RXD33) to	Disconnects SCIbRX from	J9, J13		
		'SERIAL' connector	'SERIAL' connector			
R48	Serial Port	Connects SCIbTX (TXD33) to	Disconnects SCIbTX from	J9, J12		
		'SERIAL' connector	'SERIAL' connector			
R49	Serial Port	Connects serial port signals	Disconnects serial port signals	R51, R53, R55, J10		
		to RS232 Transceiver	from RS232 Transceiver			
R50	Serial Port	Connects serial port signals	Disconnects serial port signals	R52, R54, R56, J11		
		to RS232 Transceiver	from RS232 Transceiver			
R51	Serial Port	Connects RS232TX to RS232	Disconnects RS232TX from	R49, R53, R55		
		Transceiver	RS232 Transceiver			
R52	Serial Port	Connects RS232RX to RS232	Disconnects RS323RX from	R50, R54, R56		
		Transceiver	RS232 Transceiver			
R53	Serial Port	Connects SCIaTX	Disconnects SCIaTX from	R49, R51, R55		
		(P3.2-TXD32) to RS232	RS232 Transceiver			
		Transceiver				
R54	Serial Port	Connects SCIaRX	Disconnects SCIaRX from	R50, R52, R56		
		(P3.1-RXD32) to RS232	RS232 Transceiver			
		Transceiver				
R55	Programming	Connects TMR0/PTTX	Disconnects TMR0/PTTX	R49, R51, R53		
	Serial Port	(P4.2-TXD31) to RS232	from RS232 Transceiver			
		Transceiver				
R56	Programming	Connects PTRX (P4.1-RXD31)	Disconnects PTRX from	R50, R52, R54		
	Serial Port	to RS232 Transceiver	RS232 Transceiver			

Table 6-7: Serial Configuration Links

Table 6-8 below describes the function of the option links associated with Analog configuration. The default configuration is indicated by **BOLD** text.

	Option Link Settings				
Reference	Function	Fitted	Alternative (Removed)	Related To	
R21	Analog Voltage Source	Connects AVCC to UC_VCC	Disconnects AVCC from	R22	
			UC_VCC		
R22	External Analog Voltage	Connects AVCC to external	Disconnects AVCC from	R21	
	Source	AVCC pin CON_AVCC	external AVCC pin		
			CON_AVCC		
R23	Ground Signals	Links analog ground to	Isolates analog ground from		
		digital ground	digital ground		
R24	AD_POT	Connects AD_POT to	Disconnects AD_POT from AN4		
		microcontroller's AN4 pin	pin		

Table 6-8: Analog Configuration Links

Table 6-9 below describes the function of the option links associated with microcontroller pin function select configuration. The default configuration is indicated by **BOLD** text.

	Option Link Settings								
Reference Function		Fitted	Alternative (Removed)	Related To					
R64	MCU Pin Function	Connects microcontroller pin 95	MUST be removed if R65	R65					
	Select	to IIC_SDA	fitted						
R65	MCU Pin Function	Connects microcontroller pin	Should be removed if R64 fitted	R64					
	Select	95 to SCIaRX							
R66	MCU Pin Function	Connects microcontroller pin 94	MUST be removed if R67	R67					
	Select	to IIC_SCL	fitted						
R67	MCU Pin Function	Connects microcontroller pin	Should be removed if R66 fitted	R66					
	Select	94 to SCIaTX							
R68	MCU Pin Function	Connects microcontroller pin 74	MUST be removed if R69	R69					
	Select	to AD0	fitted						
R69	MCU Pin Function	Connects microcontroller pin	Should be removed if R68 fitted	R68					
	Select	74 to IRQ0							
R70	MCU Pin Function	Connects microcontroller pin 72	MUST be removed if R71	R71					
	Select	to AD2	fitted						
R71	MCU Pin Function	Connects microcontroller pin	Should be removed if R70 fitted	R70					
	Select	72 to IRQ2							

Table 6-9: MCU Pin Function Select Configuration Links

Table 6-10 below describes the function of the option links associated with other options. The default configuration is indicated by **BOLD** text.

	Option Link Settings								
Reference Function Fitted		Alternative (Removed)	Related To						
R1	LCD Panel	Connects V2 to V3	Disconnects V2 from V3						
R36	SW3 (IRQ)	Connects SW3 to IRQ3 input	Disconnects SW3 from IRQ3	R37					
		(microcontroller pin 72)	input						
R37	SW3 (ADTRG)	Connects SW3 to	Disconnects SW3 from	R36, R75, J15					
		microcontroller's TEST/ADTRG	TEST/ADTRG pin						
		pin							
R57	E8a	Enables E8a Connection	Do not connect an option						
			resister						
R72	IRQAEC	Connects external	Disconnects CON_IRQAEC	R73					
		CON_IRQAEC to	from IRQAEC pin						
		microcontroller's IRQAEC pin							
R73	IRQAEC	Connects on-board level	Disconnects on-board level	R72, R74, J14					
		selector to microcontroller's	selector from IRQAEC pin						
		IRQAEC pin							
R74	IRQAEC	Connects ground signal to	Disconnects ground signal from	R73, J14					
		microcontroller's IRQAEC pin	IRQAEC pin						
R75	TEST/ADTRG	Connects ground signal to	Disconnects ground signal from	R37, J15					
		microcontroller's	TEST/ADTRG pin						
		TEST/ADTRG pin							

Table 6-10: Other Option Links

6.7. Oscillator Sources

Crystal oscillators are fitted on the board and used to supply the main/sub clock input to the Renesas microcontroller.

	Component							
Main clock (X1)	Fitted	10 MHz (HC49/4H package)						
Main clock (X2)	Not fitted	User define						
Sub clock (X3)	Fitted	32.768 kHz (90SMX package)						

Table 6-11 details the oscillators that are fitted and alternative footprints provided on CPU board:

Table 6-11: Oscillator

6.8. Reset Circuit

Because the H8/38099 microcontroller has an on-chip power-on reset circuit, the CPU board includes a capacitor.

Please refer to the hardware manual for more information on the requirements of the reset circuit. Please check the reset requirements carefully to ensure the reset circuit on the user's board meets all the reset timing requirements.

6.9. LCD Controller Interface

This Renesas Starter Kit should be soldered on top of the LCD application board in JA1, JA2, JA5, JA6 and JA4 positions. These application headers are detailed in section 9.2 in this user manual.

For more details on LCD application board please refer to LCD application board user manual.

Chapter 7. Modes

This Renesas Starter Kit supports Boot mode and User mode.

Details of programming the FLASH memory is described in the H8/38099 Group Hardware Manual.

7.1. Boot mode

The Boot mode settings for this Renesas Starter Kit are shown in Table 7-1 below:

TEST	NMI	P3.6	LSI State after Reset End
Low	Low	High	Boot Mode

Table 7-1: Boot Mode pin settings

The software supplied with this Renesas Starter Kit supports Boot mode using an E8a and High-performance Embedded Workshop only. However, hardware exists to enter boot mode manually, do not connect the E8a in this case. Short-circuit 'J5' jumper, then the NMI pin is held low.

When neither the E8a is connected nor the board is placed in boot mode as above, the TEST pin is connected Ground, the NMI pin is pulled high by a 10k resistor, the P3.6 pin is pulled high a 4.7k resistor.

When an E8a is used the NMI pin and the P3.6 pin are controlled by the E8a.

7.2. User mode

Because the NMI pin is pulled high, this Renesas Starter Kit will always boot in User mode when the E8a is not connected and the 'J5' jumper is not fitted. Refer to H8/38099 Group Hardware Manual for details of User mode.

TEST	NMI	P3.6	LSI State after Reset End
Low	High	Х	User Mode

X: Don't care

Table 7-2: User Mode pin settings

Chapter 8. Programming Methods

The board is intended for use with High-performance Embedded Workshop and the supplied E8a debugger. Refer to H8/38099 Group Hardware Manual for details of programming the microcontroller without using these tools.

Chapter 9. Headers

9.1. Microcontroller Headers

Table 9-1 to Table 9-4 show the microcontroller pin headers and their corresponding microcontroller connections. The header pins connect directly to the microcontroller pins. * Marked pins are subject to option links.

	J1								
Pin	Pin Circuit Net Name Device Pin			Circuit Net Name	Device Pin				
1	SEG1	1	2	SEG2	2				
3	SEG3	3	4	SEG4	4				
5	SEG5	5	6	SEG6	6				
7	SEG7	7	8	SEG8	8				
9	SEG9	9	10	SEG10	10				
11	SEG11	11	12	SEG12	12				
13	SEG13	13	14	SEG14	14				
15	SEG15	15	16	SEG16	16				
17	SEG17	17	18	SEG18	18				
19	SEG19	19	20	SEG20	20				
21	SEG21	21	22	SEG22	22				
23	SEG23	23	24	SEG24	24				
25	SEG25	25	26	No Connection	-				

Table 9-1: J1

	J2								
Pin	Pin Circuit Net Name Device Pin		Pin	Circuit Net Name	Device Pin				
1	SEG26	26	2	SEG27	27				
3	SEG28	28	4	SEG29	29				
5	SEG30	30	6	SEG31	31				
7	SEG32	32	8	SEG33	33				
9	SEG34	34	10	SEG35	35				
11	SEG36	36	12	SEG37	37				
13	SEG38	38	14	SEG39	39				
15	SEG40	40	16	COM1	41				
17	COM2	42	18	COM3	43				
19	COM4	44	20	V1	45				
21	V2	46	22	V3	47				
23	No Connection	-	24	No Connection	-				
25	TRIGa	50	26	No Connection	-				

	Tab	le	9	-2:	J2
--	-----	----	---	-----	----

	J3								
Pin	Circuit Net Name	Device Pin	Pin	Circuit Net Name	Device Pin				
1	PTRX	51	2	TMR0/PTTX*	52				
3	TRIGb	53	4	SCIcCK	54				
5	SCIcRX	55	6	SCIcTX	56				
7	SCIbCK	57	8	SCIbRX	58				
9	SCIbTX	59	10	SW2/IRQ1	60				
11	IO_0	61	12	I0_1	62				
13	10_2	63	14	IO_3	64				
15	TEST/SW3/ADTRG*	65	16	AVSS	66				
17	AD7	67	18	AD6	68				
19	AD5	69	20	AD_POT/AD4*	70				
21	AD3	71	22	SW3/AD2/IRQ2*	72				
23	AD1	73	24	SW1/AD0/IRQ0*	74				
25	AVCC	75	26	No Connection	-				

Table 9-3: J3

	J4								
Pin	Circuit Net Name	Device Pin	Pin	Circuit Net Name	Device Pin				
1	IRQAEC*	76	2	LCD_D4/IO_4	77				
3	LCD_D5/IO_5	78	4	LCD_D6/IO_6	79				
5	LCD_D7/IO_7	80	6	LCD_RS	81				
7	LCD_E	82	8	E8B_NMI	83				
9	CON_X1	84	10	CON_X2	85				
11	RESn	86	12	CON_OSC1	87				
13	UC_VCC	88	14	CON_OSC2	89				
15	VSS (Ground)	90	16	E8_SCLK	91				
17	E8_TTX	92	18	E8_TRX	93				
19	SCIaTX/IIC_SCL*	94	20	SCIaRX/IIC_SDA*	95				
21	SCIaCK	96	22	LED0/TMR1*	97				
23	LED1	98	24	LED2	99				
25	LED3	100	26	No Connection	-				

Table 9-4: J4

9.2. Application Headers

	JA1									
Pin	Header	Name	Circuit Net	Device	Pin	Header	Name	Circuit Net	Device	
			Name	Pin				Name	Pin	
1	Regulated Su	pply 1	CON_5V	-	2	Regulated Sup	oply 1	Ground	-	
3	Regulated Su	pply 2	CON_3V3	-	4	Regulated Sup	oply 2	Ground	-	
5	Analog Supply	ý	CON_AVCC*	75	6	Analog Supply	1	AVSS	66	
7	Analog Refere	ence	NC	-	8	ADTRG		SW3/ADTRG*	65	
9	ADC0	10	AD0*	74	10	ADC1	11	AD1	73	
11	ADC2	12	AD2*	72	12	ADC3	13	AD3	71	
13	DAC0		NC	-	14	DAC1		NC	-	
15	IOPort0		IO_0	61	16	IOPort1		10_1	62	
17	IOPort2		IO_2	63	18	IOPort3		IO_3	64	
19	IOPort4		LCD_D4/IO_4	77	20	IOPort5		LCD_D5/IO_5	78	
21	IOPort8		LCD_D6/IO_6	79	22	IOPort7		LCD_D7/IO_7	80	
23	Open drain	IRQAEC	CON_IRQAEC*	76	24	I ² C Bus (3rd pin)		NC	-	
25	I ² C Bus		IIC_SDA*	95	26	I ² C Bus		IIC_SCL*	94	

Table 9-5 and Table 9-6 below show the standard application header connections. * Marked pins are subject to option links.

Table 9-5: JA1 Standard Generic Header

				JA2			
Pin	Header Name	Circuit Net	Device	Pin	Header Name	Circuit Net	Device
		Name	Pin			Name	Pin
1	Reset	RESn	86	2	External Clock Input	CON_OSC1	87
3	Interrupt	E8B_NMI	83	4	Regulated Supply 1	Ground	-
5	WDT overflow	NC	-	6	Serial Port	SCIaTX*	94
7	Interrupt	IRQ0*	74	8	Serial Port	SCIaRX*	95
9	Interrupt	SW2/IRQ1	60	10	Serial Port	SCIaCK	96
11	Motor up/down	NC	-	12	Serial Port Handshake	NC	-
13	Motor control	NC	-	14	Motor control	NC	-
15	Motor control	NC	-	16	Motor control	NC	-
17	Motor control	NC	-	18	Motor control	NC	-
19	Timer Output	TMR0/PTTX*	52	20	Timer Output	LED0/TMR1*	97
21	Timer Input	TRIGa	50	22	Timer Input	TRIGb	53
23	Interrupt	IRQ2*	72	24	Tristate Control	NC	-
25	SPARE	NC	-	26	SPARE	NC	-

Table 9-6: JA2 Standard Generic Header

Table 9-7 below show the LCD application header connections. The LCD application board need to be mounted on Renesas Starter Kit for H8/38099 board in order to make use of the LCD panel. The following header (i.e. header JA4) will be connected to JA4B header on LCD application board.

JA4							
Pin	Header Name	Circuit Net	Device	Pin	Header Name	Circuit Net	Device
		Name	Pin			Name	Pin
1	VO	NC	-	2	V1	V1	45
3	V2	V2	46	4	V3	V3	47
5	Ground	Ground	-	6	Ground	Ground	-
7	COM1	COM1	41	8	COM2	COM2	42
9	COM3	COM3	43	10	COM4	COM4	44
11	SEG1	SEG1	1	12	SEG2	SEG2	2
13	SEG3	SEG3	3	14	SEG4	SEG4	4
15	SEG5	SEG5	5	16	SEG6	SEG6	6
17	SEG7	SEG7	7	18	SEG8	SEG8	8
19	SEG9	SEG9	9	20	SEG10	SEG10	10
21	SEG11	SEG11	11	22	SEG12	SEG12	12
23	SEG13	SEG13	13	24	SEG14	SEG14	14
25	SEG15	SEG15	15	26	SEG16	SEG16	16
27	SEG17	SEG17	17	28	SEG18	SEG18	18
29	SEG19	SEG19	19	30	SEG20	SEG20	20
31	SEG21	SEG21	21	32	SEG22	SEG22	22
33	SEG23	SEG23	23	34	SEG24	SEG24	24
35	SEG25	SEG25	25	36	SEG26	SEG26	26
37	SEG27	SEG27	27	38	SEG28	SEG28	28
39	SEG29	SEG29	29	40	SEG30	SEG30	30
41	SEG31	SEG31	31	42	SEG32	SEG32	32
43	SEG32	SEG33	33	44	SEG34	SEG34	34
45	SEG35	SEG35	35	46	SEG36	SEG36	36
47	SEG37	SEG37	37	48	SEG38	SEG38	38
49	SEG39	SEG39	39	50	SEG40	SEG40	40

	JA5								
Pin	in Header Name		Circuit Net Device Pin Header Name				er Name	Circuit Net	Device
			Name	Pin				Name	Pin
1	ADC4	14	AD_POT/AD4*	70	2	ADC5	15	AD5	69
3	ADC6	16	AD6	68	4	ADC7	17	AD7	67
5	CAN		NC	-	6	CAN		NC	-
7	CAN		NC	-	8	CAN		NC	-
9	Reserved		NC	-	10	Reserved		NC	-
11	Reserved		NC	-	12	Reserved		NC	-
13	Reserved		NC	-	14	Reserved		NC	-
15	Reserved		NC	-	16	Reserved		NC	-
17	Reserved		NC	-	18	Reserved		NC	-
19	Reserved		NC	-	20	Reserved		NC	-
21	Reserved		NC	-	22	Reserved		NC	-
23	Reserved		NC	-	24	Reserved		NC	-

Table 9-8 and Table 9-9 below show the optional application header connections. * Marked pins are subject to option links.

Table 9-8: JA5 Optional Generic Header

	JA6								
Pin	Header Name		Circuit Net	Device	Pin	Heade	er Name	Circuit Net	Device
			Name	Pin				Name	Pin
1	DMA		NC	-	2	DMA		NC	-
3	DMA		NC	- 4 Standby (Open drain)		en drain)	NC	-	
5	Host Serial	SCIdTX	RS232TX*	-	6	Host Serial	SCIdRX	RS232RX*	-
7	Serial Port		SCIbRX	58	8	Serial Port		SCIbTX	59
9	Serial Port	Synchronous	SCIcTX	56	10	Serial Port		SCIbCK	57
11	Serial Port	Synchronous	SCIcCK	54	12	Serial Port	Synchronous	SCIcRX	55
13	Reserved		NC	-	14	Reserved		NC	-
15	Reserved		NC	-	16	Reserved		NC	-
17	Reserved		NC	-	18	Reserved		NC	-
19	Reserved		NC	-	20	Reserved		NC	-
21	Reserved		NC	-	22	Reserved		NC	-
23	Reserved		NC	-	24	Reserved		NC	-

Table 9-9: JA6 Optional Generic Header

Chapter 10.Code Development

10.1. Overview

Note: For all code debugging using Renesas software tools, the Renesas Starter Kit board must be connected to a Host Computer USB port via an E8a. An E8a is supplied with the Renesas Starter Kit product.

10.2. Compiler Restrictions

The compiler supplied with this Renesas Starter Kit is fully functional for a period of 60 days from first use. After the first 60 days of use have expired, the compiler will default to a maximum of 64k code and data. To use the compiler with programs greater than this size you will need to purchase the full tools from your distributor.

Warning: The protection software for the compiler will detect changes to the system clock. Changes to the system clock back in time may cause the trial period to expire prematurely.

10.3. Mode Support

High-performance Embedded Workspace connects to the Microcontroller and programs it via the E8a. Mode support is handled transparently to the user.

10.4. Breakpoint Support

High-performance Embedded Workshop supports breakpoints on the user code, both in RAM and ROM.

Double clicking in the breakpoint column in the code sets the breakpoint. Breakpoints will remain unless they are double clicked to remove them.

10.5. Memory Map

Figure 10-1 : Memory Map

Chapter 11. Component Placement

Figure 11-1 : Component Placement

Chapter 12. Additional Information

For details on how to use High-performance Embedded Workshop, refer to the High-performance Embedded Workshop manual available on the CD or from the web site.

For information about the H8/38099 group microcontrollers, refer to the H8/38099 Group Hardware Manual.

For information about the H8/38099 assembly language, refer to the H8/300H Series Software Manual. Online technical support and information is available at:

http://www.renesas.com/renesas_starter_kits

Technical Contact Details

- America: techsupport.rta@renesas.com
- Europe: tools.support.eu@renesas.com
- Japan: <u>csc@renesas.com</u>

General information on Renesas Microcontrollers can be found on the Renesas website at:

http://www.renesas.com/.

Renesas Starter Kit for H8/38099						
User's Manual						
Publication Date	Rev.1.00 Jul.20,2007					
Published by:	Renesas Solutions Corp.					
	4-1-6, Miyahara, Yodogawa-ku, Osaka City, 532-0003, Japan					

©2007 Renesas Solutions Corp., Renesas Technology Europe Ltd. and Renesas Technology Corp.,

All Rights Reserved.

Renesas Starter Kit for H8/38099 User's Manual

Renesas Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan