

R-IN32 Series User’s Manual
(μNet3/BSD edition)

U
serʼs M

anual

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com)

Document number: R18UZ0064EJ0100
Issue date: Sep 5, 2016
 Renesas Electronics
www.renesas.com

・R-IN32M3-EC
・R-IN32M3-CL
・R-IN32M4-CL2

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the

operation of semiconductor products and application examples. You are fully responsible for the incorporation of these
circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for
any losses incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas
Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever
for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property
rights of third parties by or arising from the use of Renesas Electronics products or technical information described in
this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other
intellectual property rights of Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or
in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such
alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High
Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade,
as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio

and visual equipment; home electronic appliances; machine tools; personal electronic equipment;
and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster
systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a
direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may
cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality
grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas
Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable
for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for
which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas
Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage
range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no
liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified
ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products
have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to
implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire
in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including
but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or
any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please
evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all
applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation,
the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your
noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use
Renesas Electronics products or technology described in this document for any purpose relating to military applications
or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the
Renesas Electronics products or technology described in this document, you should comply with the applicable export
control laws and regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or
otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set
forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as
a result of unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of
Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its

majority-owned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Instructions for the use of product
In this section, the precautions are described for over whole of CMOS device.
Please refer to this manual about individual precaution.
When there is a mention unlike the text of this manual, a mention of the text takes first priority.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in

the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, associated shoot-through
current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal
become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.
- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are

undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins are not
guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not
guaranteed from the moment when power is supplied until the power reaches the level at which resetting has
been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.
- The reserved addresses are provided for the possible future expansion of functions. Do not access these

addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When
switching the clock signal during program execution, wait until the target clock signal has stabilized.
- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset,

ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a
clock signal produced with an external resonator (or by an external oscillator) while program execution is in
progress, wait until the target clock signal is stable.

・ARM, AMBA, ARM Cortex, Thumb, ARM Cortex-M3 and Cortex-M4F are a trademark or a registered trademark of
ARM Limited in EU and other countries.

・Ethernet is a registered trademark of Fuji Zerox Limited.
・IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.
・EtherCAT is a registered trademark of Beckhoff Automation GmbH, Germany.
・CC-Link and CC-Link IE Field are a registered trademark of CC-Link Partner Association (CLPA).
・Additionally all product names and service names in this document are a trademark or a registered trademark which

belongs to the respective owners.

How to Use This Manual

1. Purpose and Target Readers
This manual is intended for users who wish to understand the functions of an Ethernet communication LSI
"R-IN32M4-CL2" for designing application of it. It is assumed that the reader of this manual has general knowledge in
the fields of electrical engineering, logic circuits, and microcontrollers.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur
within the body of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to
the text of the manual for details.
The mark “<R>” means the updated point in this revision. The mark “<R>” let users search for the updated
point in this document.

Literature Literature may be preliminary versions. Note, however, that the following descriptions do not indicate

"Preliminary". Some documents on cores were created when they were planned or still under
development. So, they may be directed to specific customers. Last four digits of document number
(described as ****) indicate version information of each document. Please download the latest
document from our web site and refer to it.

The document related to R-IN32 Series

Document Name Document Number

R-IN32M3 Series Datasheet R18DS0008EJ****
R-IN32M3-EC User’s Manual R18UZ0003EJ****
R-IN32M3-CL User’s Manual R18UZ0005EJ****
R-IN32M3 Series User’s Manual (Peripheral function) R18UZ0007EJ****
R-IN32M3 Series Programming Manual (OS edition) R18UZ0011EJ****
R-IN32M3 Series Programming Manual (Driver edition) R18UZ0009EJ****
R-IN32M4-CL2 User’s Manual R18UZ0032EJ****
R-IN32M4-CL2 User’s Manual (Peripheral Modules) R18UZ0034EJ****
R-IN32M4-CL2 User’s Manual (Gigabit Ethernet PHY edition) R18UZ0044EJ****
R-IN32M4-CL2 Programming Manual (Driver edition) R18UZ0036EJ****
R-IN32M4-CL2 Programming Manual (OS edition) R18UZ0040EJ****
R-IN32 Series User’s Manual (μNet3/BSD edition) R18UZ0064EJ****

2. Notation of Numbers and Symbols

Weight in data notation: Left is high-order column, right is low-order column
Active low notation:
 xxxZ (capital letter Z after pin name or signal name)
 or xxx_N (capital letter _N after pin name or signal name)
 or xxnx (pin name or signal name contains small letter n)
Note:
 Explanation of (Note) in the text
Caution:
 Item deserving extra attention
Remark:
 Supplementary explanation to the text
Numeric notation:
 Binary … xxxx , xxxxB or n’bxxxx (n bits)
 Decimal … xxxx
 Hexadecimal … xxxxH or n’hxxxx (n bits)

Prefixes representing powers of 2 (address space, memory capacity):
 K (kilo)… 210 = 1024
 M (mega)… 220 = 10242
 G (giga)… 230 = 10243
Data Type:
 Word … 32 bits
 Halfword … 16 bits
 Byte … 8 bits

 Contents-1

Contents

1. Introduction .. 1

2. Specification .. 2

2.1 Position in the POSIX Specification ... 2
2.2 Differences from the μNet3 .. 2
2.3 Compatibility of Symbol Name .. 2

3. Module Structure ... 3

3.1 Module Structure .. 3
3.2 Header Structure ... 4
3.3 Source Files .. 5

4. Supported API ... 6

4.1 Supported API Functions .. 6
4.2 Detail for Individual API Functions ... 7

4.2.1 socket (Create an Endpoint for Communication) ... 7
4.2.2 bind (Assign a Name to a Socket) .. 8
4.2.3 listen (Waits for a Connection on a Socket) .. 9
4.2.4 accept (Accept a Connection on a Socket) .. 10
4.2.5 connect (Make a Connection on a Socket) ... 11
4.2.6 send (Transmit a Message to a Socket) .. 12
4.2.7 sendto (Transmit a Message to a Socket) ... 13
4.2.8 recv (Receive a Message from a Socket) ... 14
4.2.9 recvfrom (Receive a Message from a Socket).. 15
4.2.10 shutdown (Cause Parts of a Full-Duplex Connection on the Socket to be Shut Down)........................... 16
4.2.11 close (Close a Socket) .. 17
4.2.12 select (Synchronous I/O Multiplexing) .. 18
4.2.13 getsockname (Retrieve the Name of a Socket) .. 19
4.2.14 getpeername (Retrieves the Name of the Peer Connected to a Socket) ... 20
4.2.15 getsockopt (Retrieves Options Associate with a Socket) ... 21
4.2.16 setsockopt (Manipulate Options Associated with a Socket) .. 22
4.2.17 ioctl (Control Hardware Devices (Sockets)) .. 23
4.2.18 inet_addr (IP Address Handling Routine) ... 24
4.2.19 inet_aton (IP Address Handling Routine) .. 25
4.2.20 inet_ntoa (IP Address Handling Routine) .. 26

 Contents-2

4.2.21 if_nametoindex (Map a Network Interface Name to its Corresponding Index) 27
4.2.22 if_indextoname (Map a Network Interface Name to its Corresponding Index) 28
4.2.23 rresvport (Acquire a Socket with a Port Bound to It) .. 29
4.2.24 getifaddrs (Retrieve Interface Addresses) .. 30
4.2.25 freeifaddrs (Free List of Interface Information)... 31

5. Socket Options .. 32

5.1 List of Options .. 32

6. Capabilities .. 33

6.1 Non-Blocking Mode ... 33
6.2 Loopback .. 34
6.3 Error Processing .. 34
6.4 List of errno .. 35

7. Implementing BSD Application .. 37

7.1 Source Code .. 37
7.2 Include Path .. 37
7.3 Configuration .. 38
7.4 Defining Resources ... 39
7.5 Kernel Objects .. 40
7.6 Initialization .. 40

8. Appendix .. 41

8.1 Supported Compilers .. 41
8.2 Sample Application... 41
8.3 Restrictions on Compilers ... 41

 Contents-3

List of Figures

Figure 3.1 μNet3/BSD Module Structure ... 3
Figure 3.2 μNet3/BSD Source Files ... 5
Figure 7.1 μNet3 Library .. 37
Figure 7.2 "Include" Paths for μNet3 ... 37

 Contents-4

List of Tables

Table 3.1 List of Header Files ... 4
Table 4.1 List of API Functions .. 6
Table 5.1 List of Options .. 32
Table 6.1 Non-Blocking APIs ... 33

 R18UZ0064EJ0100

R-IN32 Series User’s Manual (μNet3/BSD edition) Sep 5, 2016

R18UZ0064EJ0100 Page 1 of 41
Sep 5, 2016

1. Introduction
The μNet3/BSD socket API provides a BSD interface for running BSD applications on the μNet3 TCP/IP stack. The
stack and API allow seamless operation of socket applications from the Linux or BSD environments.

This document describes how to use the μNet3/BSD API and restrictions related to the product.

R-IN32 Series User’s Manual (μNet3/BSD edition) 2. Specification

R18UZ0064EJ0100 Page 2 of 41
Sep 5, 2016

2. Specification

2.1 Position in the POSIX Specification

The μNet3/BSD socket API is equivalent to 4.4 BSD-Lite. See Section 5, Socket Options for the APIs supported in this
document. Using the μNet3/BSD API allows applications to use both BSD-based socket APIs and μNet3-based APIs.

2.2 Differences from the μNet3

The μNet3/BSD API provides the following functionality for existing μNet3 in addition to a POSIX-compliant socket
API.

• Multiple calls of socket API functions
• A select() function
• Loopback address
• Multicast grouping by sockets
• Listen queue of TCP sockets
• Socket errors

2.3 Compatibility of Symbol Name

The API functions, structures, and macros provided in the μNet3/BSD API are given the unique prefix “unet3_” to avoid
conflicts between symbols in the compiler environment.

The POSIX standard symbol names used in applications are replaced by those ones with the prefix unique to μNet3/BSD
by including sys/socket.h. This allows the operation of applications using BSD sockets under μNet3/BSD without
changing the files of source code.

In this document, the symbols are indicated in the POSIX standard notation for readability.

R-IN32 Series User’s Manual (μNet3/BSD edition) 3. Module Structure

R18UZ0064EJ0100 Page 3 of 41
Sep 5, 2016

3. Module Structure

3.1 Module Structure

Figure 3.1 shows the module blocks composing the μNet3/BSD.

BSD socket application

BSD socket API

BSD Wrapper task Callback function

uNet3
extended API

Constantly
executed without

being blocked

TCP/IP timer task uNet3 API

snd_rdy(), rcv_rdy(),
multicasting by

socket, etc.

Task

Function

Markers

Inter-task
communications

BSD socket
management information

Socket
management
information

Data

Figure 3.1 μNet3/BSD Module Structure

R-IN32 Series User’s Manual (μNet3/BSD edition) 3. Module Structure

R18UZ0064EJ0100 Page 4 of 41
Sep 5, 2016

3.2 Header Structure

In the μNet3/BSD API, the POSIX-compliant header files are regarded as dummy files. These files include the open
header file unet3_socket.h., an original file for μNet3/BSD. Table 3.1 lists the header files provided for the μNet3/BSD
API.

Table 3.1 List of Header Files

Header File Name Major Application

POSIX-Compliant Header Files (for Sockets)
arpa/inet.h Define the values for handling IP addresses
netinet/in.h The address families AF_INET and AF_INET6 which include IP addresses and TCP/UDP port

numbers. It is widely used on the internet.
netinet/ip.h Define the IP-level options and IP packets.
netinet/tcp.h Define the TCP-level options and TCP packets.
sys/socket.h This contains declarations of the core functions for the BSD sockets and their data structures.
net/if.h Interface related definitions
POSIX-Compliant Header Files (for Systems)
sys/errno.h Definitions of error codes
sys/ioctl.h ioctl related definitions
sys/select.h Definitions of functions including select and fd_set
sys/time.h Definitions of functions including timeval type
sys/times.h Definitions of functions including timeval type
sys/unistd.h Standard header related to the UNIX standard
μNet3/BSD Original Header Files
unet3_cfg.h User-configuration definitions
unet3_socket.h Open header file which defines the socket APIs
unet3_sys.h Header file which defines types and macros specific to the BSD platform.

The header files to be included for system integration of BSD applications are collected in this
file.

unet3_wrap.h For internal control
bsd_param.h For internal control

R-IN32 Series User’s Manual (μNet3/BSD edition) 3. Module Structure

R18UZ0064EJ0100 Page 5 of 41
Sep 5, 2016

3.3 Source Files

Source files used in the μNet3/BSD API are shown below.

When used in an application, *.c programs under the bsd folder should be incorporated.

Network

bsd
unet3_lodev.c /* Virtual loopback device */
unet3_option.c /* Socket option functions */
unet3_socket.c /* BSD socket API */
unet3_wrap.c /* uNet3/Wrapper task */

unet3_posix /* Header for controlling uNet3/BSD */
bsd_param.h
unet3_cfg.h
unet3_socket.h
unet3_sys.h
unet3_wrap.h

arpa /* POSIX header (dummy) */
inet.h

net
if.h

netinet
in.h
ip.h
tcp.h

sys
errno.h
ioctl.h
select.h
socket.h
time.h
times.h
unistd.h

Figure 3.2 μNet3/BSD Source Files

R-IN32 Series User’s Manual (μNet3/BSD edition) 4. Supported API

R18UZ0064EJ0100 Page 6 of 41
Sep 5, 2016

4. Supported API

4.1 Supported API Functions

Table 4.1 lists the API functions provided by the μNet3/BSD.

Table 4.1 List of API Functions

API Function Description Header for Inclusion

unet3_bsd_init Initialize the μNet3/BSD “sys/socket.h”
get_errno Get the errnos for individual tasks “sys/errno.h”
socket Create an endpoint for communication “sys/socket.h”
bind Assign a name to a socket “sys/socket.h”
listen Waits for a connection on a socket “sys/socket.h”
accept Accept a connection on a socket “sys/socket.h”
connect Make a connection on a socket “sys/socket.h”
send Transmit a message to a socket “sys/socket.h”
sendto Transmit a message to a socket “sys/socket.h”
recv Receive a message from a socket “sys/socket.h”
recvfrom Receive a message from a socket “sys/socket.h”
shutdown Cause parts of a full-duplex connection on the socket to be shut down “sys/socket.h”
close Close a file descriptor (socket) “sys/ unistd.h”
select Synchronous I/O multiplexing “sys/ select.h”
getsockname Retrieve the name of a socket “sys/socket.h”
getpeername Retrieve the name of the peer connected to a socket “sys/socket.h”
getsockopt Retrieve options associated with a socket “sys/socket.h”
setsockopt Manipulate options associated with a socket “sys/socket.h”
ioctl Control hardware devices (sockets) “sys/ioctl.h”
inet_addr Internet address handling routine “arpa/inet.h”
inet_aton Internet address handling routine “arpa/inet.h”
inet_ntoa Internet address handling routine “arpa/inet.h”
if_nametoindex Map a network interface name to its corresponding index “net/if.h”
if_indextoname Map a network interface name to its corresponding index “net/if.h”
rresvport Acquire a socket to which a port is bound “sys/unistd.h”
getifaddrs Retrieve the address of the interface “sys/types.h”
freeifaddrs Free the address of the interface “sys/types.h”

R-IN32 Series User’s Manual (μNet3/BSD edition) 4. Supported API

R18UZ0064EJ0100 Page 7 of 41
Sep 5, 2016

4.2 Detail for Individual API Functions

4.2.1 socket (Create an Endpoint for Communication)

Format
 #include “sys/socket.h”

 int socket(int domain, int type, int protocol);

Parameters
 int domain Domain
 int type Communication type
 int protocol Protocol
Returned value
 int Created socket FD. This function returns –1 on occurrence of an error.
errno
 ENOMEM The number of sockets that can be created has been exceeded.
 Message buffer has been completely used up.
 EINVAL An invalid parameter was specified.

• Allowed domains are AF_INET and AF_INET6 only.

• Allowed communication types are SOCK_STREAM and SOCK_DGRAM only.

• Set any value for the protocol as it is not used in this function.

• The number of sockets that can be created at the same time (the sum of TCP and UDP) is the value defined by
#define CFG_NET_SOC_MAX.

• The number of TCP sockets that can be created at the same time is the value defined by
#define CFG_NET_TCP_MAX.

• Unlike in the POSIX specification, setting 0 as the local port of a socket is not allowed. A socket is assigned a
temporary local port number immediately after it is created.

R-IN32 Series User’s Manual (μNet3/BSD edition) 4. Supported API

R18UZ0064EJ0100 Page 8 of 41
Sep 5, 2016

4.2.2 bind (Assign a Name to a Socket)

Format
 #include “sys/socket.h”

 int bind(int sockfd, const struct sockaddr *addr, unsigned int addrlen);

Parameters
 int sockfd File descriptor of the socket
 const struct sockaddr * addr Local address
 unsigned int addrlen Local address length
Returned value
 int Result of processing. This function returns 0 on success and –1 if an error occurred.
errno
 EINVAL An invalid parameter was specified.
 ENOMEM Message buffer has been completely used up.
 EBADF Invalid socket FD for binding
 EAFNOSUPPORT Unsupported address family
 EADDRINUSE Address already in use
 EADDRNOTAVAIL Cannot assign requested address.

• Local address should be set with the type struct sockaddr_in.

• The only allowed addresses as the IP address (IPv4) for the local address are the one set for the device or
INADDR_ANY(unspecified).

• If the user sets PORT_ANY(0) as the port number of the local address, a port number is assigned by the protocol stack.

• The only allowed local address length is sizeof(struct sockaddr_in) (= 16).

• Set any value for the “sin_len”, a member of the type struct sockaddr_in, as it is not used in this function.

• To start reception, including listening for incoming connections from TCP (listen()) and receiving UDP packets
(recv(), recvfrom()), the user needs to specify the target socket and execute the bind() function in advance.

• Binding to the well-known port numbers (1 to 1023) is also allowed.

R-IN32 Series User’s Manual (μNet3/BSD edition) 4. Supported API

R18UZ0064EJ0100 Page 9 of 41
Sep 5, 2016

4.2.3 listen (Waits for a Connection on a Socket)

Format
 #include “sys/socket.h”

 int listen(int sockfd, int backlog);

Parameters
 int sockfd File descriptor of the socket
 int backlog Backlog
Returned value
 int Result of processing. This function returns 0 on success and –1 if an error occurred.
errno
 EINVAL An invalid parameter was specified.
 ENOMEM Message buffer has been completely used up.
 EBADF Invalid socket FD for listening to
 EPROTONOSUPPORT Unsupported protocol (non-TCP socket)

• This function makes the TCP socket listen for an incoming connection.

• Allowed file descriptors are those ones for TCP sockets.

• The maximum number of back logs is defined by #define CFG_NET_TCP_MAX –1.

R-IN32 Series User’s Manual (μNet3/BSD edition) 4. Supported API

R18UZ0064EJ0100 Page 10 of 41
Sep 5, 2016

4.2.4 accept (Accept a Connection on a Socket)

Format
 #include “sys/socket.h”

 int accept(int sockfd, struct sockaddr *addr, unsigned int *addrlen);

Parameters
 int sockfd File descriptor of the socket
 struct sockaddr * addr Remote address (output)
 unsigned int * addrlen Remote address length (output)
Returned value
 int The connected socket FD. This function returns –1 if an error occurred.
errno
 EINVAL An invalid parameter was specified.
 ENOMEM Message buffer has been completely used up.
 EBADF The program is not listening to the specified socket.
 EAGAIN No connections have been made (in asynchronous network).
 ETIMEDOUT Connection attempt timed out (when a timeout is set).

• Allowed file descriptors are those ones for TCP sockets for which the listen() function succeeded.

• The remote address is set with the type struct sockaddr_in*.

• If no connections were established, this function blocks further processing until an attempt of connection from a
remote party.

R-IN32 Series User’s Manual (μNet3/BSD edition) 4. Supported API

R18UZ0064EJ0100 Page 11 of 41
Sep 5, 2016

4.2.5 connect (Make a Connection on a Socket)

Format
 #include “sys/socket.h”

 int connect(int sockfd, const struct sockaddr *addr, unsigned int addrlen);

Parameters
 int sockfd File descriptor of the socket
 const struct sockaddr * addr Remote address
 unsigned int addrlen Remote address length
Returned value
 int Result of processing. This function returns 0 on success and –1 if an error occurred.
errno
 EINVAL An invalid parameter was specified.
 ENOMEM Message buffer has been completely used up.
 EBADF An invalid socket FD to connect
 ECONNREFUSED Connection refused by server
 EAFNOSUPPORT Unsupported address family
 EISCONN The socket is already connected.
 Listening to the socket is currently in progress.
 EALREADY A connection request is already in progress.
 EAGAIN A connection request is in progress (in asynchronous network).
 ETIMEDOUT Connection attempt timed out (when a timeout is set).

• The function connect() operates and behaves differently depending on the protocol of the specified socket FD and the
type of transfer.

• When connecting to a TCP socket, the μNet3/BSD API transmits the SYN signal to the address of the remote target
and attempts connection to it. This only applies to TCP sockets other than those which are currently connected or for
which waiting for a connection is in progress.

• In transmission through a UDP socket, the address of the remote target is regarded as the destination of transmission. If
an address different from that of the remote target is set in the sendto() function, the given address is regarded as that
of the destination for transmission.

• Setting AF_UNSPEC in the sa_family member of the remote address clears the setting mentioned above.

• The μNet3/BSD API differs from the POSIX specification in that it does not apply filtering of remote addresses in
reception through UDP sockets.

• The μNet3/BSD API differs from the POSIX specification in that it cannot reissue a connection request for a TCP
socket whose input and output are driven asynchronously, once a connection has been established by the connect()
function. For example, if the ability to write to the target TCP socket has been ensured by select() after EAGAIN was
returned in response to connect(), the session with the socket has been established, so the transmission and reception of
data are possible.

R-IN32 Series User’s Manual (μNet3/BSD edition) 4. Supported API

R18UZ0064EJ0100 Page 12 of 41
Sep 5, 2016

4.2.6 send (Transmit a Message to a Socket)

Format
 #include “sys/socket.h”

 int send(int sockfd, const void *buf, unsigned int len, int flags);

Parameters
 int sockfd File descriptor of the socket
 const void * buf Source address of the data for transmission
 unsigned int len Length of the data for transmission
 int flags Flag
Returned value
 int Number of bytes of the transmitted data. This function returns –1 if an error occurred.
errno
 EINVAL An invalid parameter was specified.
 ENOMEM Message buffer has been completely used up.
 The size of the network buffer does not match the value set in len.
 EBADF An invalid socket FD for sending
 EDESTADDRREQ Destination address is not specified (UDP socket).
 ENOTCONN The socket is not connected (TCP socket).
 EAGAIN Transmission is in progress (in asynchronous network).
 ETIMEDOUT Connection attempt timed out (when a timeout is set).

• Valid values for the length of the data for transmission are between 1 and 65535.

• Set any value for the flag as it is not used in this function.

• Unlike in the POSIX specification, transmission of 0-byte UDP packet is not allowed.

R-IN32 Series User’s Manual (μNet3/BSD edition) 4. Supported API

R18UZ0064EJ0100 Page 13 of 41
Sep 5, 2016

4.2.7 sendto (Transmit a Message to a Socket)

Format
 #include “sys/socket.h”

int sendto(int sockfd, const void *buf, unsigned int len, int flags, const struct sockaddr
*dest_addr, unsigned int addrlen);

Parameters
 int sockfd File descriptor of the socket
 const void * buf Source address of the data for transmission
 unsigned int len Length of the data for transmission
 int flags Flag
 const struct sockaddr * dest_addr Address of the destination for transmission
 unsigned int addrlen Size of the address of the destination
Returned value
 int Number of the bytes of the transmitted data. This function returns –1 if an error

occurred.
errno
 EINVAL An invalid parameter was specified.
 ENOMEM Message buffer has been completely used up.
 The size of the network buffer does not match the value set in len.
 EBADF An invalid socket FD for the sendto operation
 EDESTADDRREQ Destination address is not specified (UDP socket).
 ENOTCONN The socket is not connected (TCP socket).
 EAGAIN Transmission is in progress (in asynchronous network).
 ETIMEDOUT Connection attempt timed out (when a timeout is set).

• Valid values for the length of the data for transmission are between 1 and 65535.

• Set any value for the flag as it is not used in this function.

• The parameters for the address of the destination for transmission and the size of the address of the destination are not
used when connecting to TCP sockets.

• Unlike in the POSIX specification, transmission of 0-byte UDP packet is not allowed.

R-IN32 Series User’s Manual (μNet3/BSD edition) 4. Supported API

R18UZ0064EJ0100 Page 14 of 41
Sep 5, 2016

4.2.8 recv (Receive a Message from a Socket)

Format
 #include “sys/socket.h”

 int recv(int sockfd, void *buf, unsigned int len, int flags);

Parameters
 int sockfd File descriptor of the socket
 void * buf Address of the reception buffer
 unsigned int len Length of the reception buffer
 int flags Flag
Returned value
 int Number of the bytes of the received data including 0 byte. This function returns –1 if an error

occurred.
errno
 EINVAL An invalid parameter was specified.
 ENOMEM Message buffer has been completely used up.
 The size of the network buffer does not match the value set in len.
 EBADF An invalid socket FD for the recv operation
 ENOTCONN The socket is not connected (TCP socket).
 EAGAIN No packet has been received (in asynchronous network).
 ETIMEDOUT Connection attempt timed out (when a timeout is set).

• Set any value for the flag as it is not used in this function.

• Valid values for the length of the reception data are between 1 and 65535.

• If no packets are received, this function blocks further processing until packet reception.

• This function returns an error if connection with a remote party has not been established.

• This function returns 0 if the TCP socket is disconnected from the remote party.

R-IN32 Series User’s Manual (μNet3/BSD edition) 4. Supported API

R18UZ0064EJ0100 Page 15 of 41
Sep 5, 2016

4.2.9 recvfrom (Receive a Message from a Socket)

Format
 #include “sys/socket.h”

int recvfrom(int sockfd, void *buf, unsigned int len, int flags, struct sockaddr *src_addr,
unsigned int *addrlen);

Parameters
 int sockfd File descriptor of the socket
 void * buf Reception buffer address
 unsigned int len Reception buffer length
 int flags Flag
 struct sockaddr * src_addr Source address of the data for transmission
 unsigned int * addrlen Size of the source address
Returned value
 int Number of the bytes of the received data including 0 byte. This function returns –1 if an

error occurred.
errno
 EINVAL An invalid parameter was specified.
 ENOMEM Message buffer has been completely used up.
 The size of the network buffer does not match the value set in len.
 EBADF An invalid socket FD for the recvfrom operation
 ENOTCONN The socket is not connected (TCP socket).
 EAGAIN No packet has been received (in asynchronous network).
 ETIMEDOUT Connection attempt timed out (when a timeout is set).

• Set any value for the flag as it is not used in this function.

• Valid values for the length of the reception data are between 1 and 65535.

• If no packets are received, this function blocks further processing until packet reception.

• This function returns an error if connection with a remote party has not been established.

• This function returns 0 if the TCP socket is disconnected from the remote party.

• The parameters for the source address of the data for transmission and the size of the source address are not used when
connecting to TCP sockets.

R-IN32 Series User’s Manual (μNet3/BSD edition) 4. Supported API

R18UZ0064EJ0100 Page 16 of 41
Sep 5, 2016

4.2.10 shutdown (Cause Parts of a Full-Duplex Connection on the Socket to be Shut
Down)

Format
 #include “sys/socket.h”

 int shutdown(int sockfd, int how);

Parameters
 int sockfd File descriptor of the socket
 int how Type of shutdown
Returned value
 int Result of processing. This function returns 0 on success and –1 if an error occurred.
errno
 EINVAL An invalid parameter was specified.
 ENOMEM Message buffer has been completely used up.
 EBADF An invalid socket FD to shutdown
 EPIPE The socket is not connected (TCP socket).

• The only allowed types of shutdown are SHUT_WR and SHUT_RDWR.

R-IN32 Series User’s Manual (μNet3/BSD edition) 4. Supported API

R18UZ0064EJ0100 Page 17 of 41
Sep 5, 2016

4.2.11 close (Close a Socket)

Format
 #include “sys/unistd.h”

 int close(int fd);

Parameters
 int fd File descriptor of the socket
Returned value
 int Result of processing. This function returns 0 on success and –1 if an error occurred.
errno
 EINVAL An invalid parameter was specified.
 ENOMEM Message buffer has been completely used up.
 EBADF An invalid socket FD to close

• If a TCP session is active when this function is called, the socket will be closed after the session has been cut off.

• Once the socket with the given FD is closed, it cannot be used again until a new connection is established.

R-IN32 Series User’s Manual (μNet3/BSD edition) 4. Supported API

R18UZ0064EJ0100 Page 18 of 41
Sep 5, 2016

4.2.12 select (Synchronous I/O Multiplexing)

Format
 #include “sys/select.h”

int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval
*timeout);

Parameters
 int nfds An integer one greater than the highest file descriptor in readfds

and writefds. When adding file descriptors to either of the sets,
increment this value by one.

 fd_set * readfds A set of file descriptors to be checked for readability
 fd_set * writefds A set of file descriptors to be checked for writability
 fd_set * exceptfds A set of file descriptors to be checked for exceptional conditions

(not supported)
 struct timeval * timeout Time until expiration of the monitoring period
Returned value
 int The total number of file descriptors to be checked for readability or writability. This function

returns 0 on timeout and –1 if an error occurred.
errno
 EINVAL An invalid parameter was specified.
 ENOMEM Message buffer has been completely used up.
 EBADF The socket with the specified FD does not support select().

• The argument exceptfds is not used in this function.

• The μNet3/BSD API differs from the POSIX specification in that, when this function is executed for a file descriptor
immediately after it has been created, the function allows writing if it is an UDP socket (reading is not possible if no
packet has been received) and reading if it is a TCP socket (writing is not possible).

R-IN32 Series User’s Manual (μNet3/BSD edition) 4. Supported API

R18UZ0064EJ0100 Page 19 of 41
Sep 5, 2016

4.2.13 getsockname (Retrieve the Name of a Socket)

Format
 #include “sys/socket.h”

 int getsockname(int sockfd, struct sockaddr *addr, unsigned int *addrlen);

Parameters
 int sockfd File descriptor of the socket
 struct sockaddr * addr Pointer to the buffer where the socket address is stored
 unsigned int * addrlen Size of the buffer where the socket address is stored
Returned value
 int Result of processing. This function returns 0 on success and –1 if an error occurred.
errno
 EINVAL An invalid parameter was specified.
 ENOMEM Message buffer has been completely used up.
 EBADF An invalid socket FD for the getsockname operation

• The value in *addrlen should be the size of sockaddr_in (16 bytes or more).

• The address is bound to a socket when the following API functions are called.
bind()
connect()
accept()
send/sendto()
recv/recvfrom()

If a function from the above list fails, the value of the address associated with the socket will be undefined.

R-IN32 Series User’s Manual (μNet3/BSD edition) 4. Supported API

R18UZ0064EJ0100 Page 20 of 41
Sep 5, 2016

4.2.14 getpeername (Retrieves the Name of the Peer Connected to a Socket)

Format
 #include “sys/socket.h”

 int getpeername(int sockfd, struct sockaddr *addr, unsigned int *addrlen);

Parameters
 int sockfd File descriptor of the socket
 struct sockaddr * addr Pointer to the buffer where the remote address is stored
 unsigned int * addrlen Size of the buffer where the remote address is stored
Returned value
 int Result of processing. This function returns 0 on success and –1 if an error occurred.
errno
 EINVAL An invalid parameter was specified.
 ENOMEM Message buffer has been completely used up.
 EBADF An invalid socket FD for the getpeername operation
 ENOTCONN Destination address required

• The value in *addrlen should be the size of sockaddr_in (16 bytes or more).

• For a TCP connection, this function only allows retrieval of the address of the remote party to which the TCP socket is
connected.

• For a UDP connection, this function only allows retrieval of the address of a remote party with an address previously
specified in a connect or sendto function, or of a socket which has received packets.

R-IN32 Series User’s Manual (μNet3/BSD edition) 4. Supported API

R18UZ0064EJ0100 Page 21 of 41
Sep 5, 2016

4.2.15 getsockopt (Retrieves Options Associate with a Socket)

Format
 #include “sys/socket.h”

 int getsockopt(int sockfd, int level, int optname, void *optval, unsigned int *optlen);

Parameters
 int sockfd File descriptor of the socket
 int level The level of the option
 int optname Option name
 void * optval A pointer to the buffer where the value of the option is

to be stored
 unsigned int * optlen The size of the buffer pointed to by optval
Returned value
 int Result of processing. This function returns 0 on success and –1 if an error occurred.
errno
 EINVAL An invalid parameter was specified.
 ENOMEM Message buffer has been completely used up.
 EBADF An invalid socket FD for the getsockopt operation
 EPROTONOSUPPORT The option is not supported.

• Allowed option levels are SOL_SOCKET, IPPROTO_IP and IPPROTO_TCP. Allowed option levels are
SOL_SOCKET, IPPROTO_IP and IPPROTO_TCP.

• The available option names at each option level are listed in the Section 5.1, List of Options.

R-IN32 Series User’s Manual (μNet3/BSD edition) 4. Supported API

R18UZ0064EJ0100 Page 22 of 41
Sep 5, 2016

4.2.16 setsockopt (Manipulate Options Associated with a Socket)

Format
 #include “sys/socket.h”

 int setsockopt(int sockfd, int level, int optname, const void *optval, unsigned int optlen);

Parameters
 int sockfd File descriptor of the socket
 int level The level of the option
 int optname Option name
 const void * optval The buffer in which the values of the requested options

are to be returned
 unsigned int optlen Size of the buffer pointed to by optival
Returned value
 int Result of processing. This function returns 0 on success and –1 if an error occurred.
errno
 EINVAL An invalid parameter was specified.
 ENOMEM Message buffer has been completely used up.
 EBADF An invalid socket FD for the setsockopt operation
 EPROTONOSUPPORT The option is not supported.

• Allowed option levels are SOL_SOCKET, IPPROTO_IP and IPPROTO_TCP.

• The available option names at each option level are listed in the Section 5.1, List of Options.

R-IN32 Series User’s Manual (μNet3/BSD edition) 4. Supported API

R18UZ0064EJ0100 Page 23 of 41
Sep 5, 2016

4.2.17 ioctl (Control Hardware Devices (Sockets))

Format
 #include “sys/ioctl.h”

 int ioctl(int d, int request, ...);

Parameters
 int d File descriptor of the socket
 int request Request
 ... Parameter for the request
Returned value
 int Result of processing. This function returns 0 on success and –1 if an error occurred.
errno
 EINVAL An invalid parameter was specified.
 ENOMEM Message buffer has been completely used up.
 EFAULT The parameter for the request is not usable.

• The only allowed request is FIONBIO (non-blocking mode).

• The parameters for requests for the non-blocking mode are 1 (set) and 0 (clear).

• See Section 6.1, Non-Blocking Mode for details on non-blocking mode.

R-IN32 Series User’s Manual (μNet3/BSD edition) 4. Supported API

R18UZ0064EJ0100 Page 24 of 41
Sep 5, 2016

4.2.18 inet_addr (IP Address Handling Routine)

Format
 #include “arpa/inet.h”

 unsigned int inet_addr(const char *cp);

Parameters
 const char * cp The IP address in dot-notation
Returned value
 unsigned int The IP address converted into binary data in network byte order
errno
 Not specified

• The function returns 0 if conversion failed.

R-IN32 Series User’s Manual (μNet3/BSD edition) 4. Supported API

R18UZ0064EJ0100 Page 25 of 41
Sep 5, 2016

4.2.19 inet_aton (IP Address Handling Routine)

Format
 #include “arpa/inet.h”

 int inet_aton(const char *cp, struct in_addr *inp);

Parameters
 const char * cp The IP address in dot-notation
 struct in_addr * inp Pointer to the buffer where the post-conversion binary value of the

IP address is stored in network byte order
Returned value
 int Result of processing. This function returns 0 on success and –1 if an error occurred.
errno
 Not specified

• The function returns 0 if conversion failed.

R-IN32 Series User’s Manual (μNet3/BSD edition) 4. Supported API

R18UZ0064EJ0100 Page 26 of 41
Sep 5, 2016

4.2.20 inet_ntoa (IP Address Handling Routine)

Format
 #include “arpa/inet.h”

 char *inet_ntoa(struct in_addr in);

Parameters
 struct in_addr in IP address as binary data in network byte order
Returned value
 char * The IP address converted into dot-notation
errno
 Not specified

• The string is returned in a statically allocated buffer in the area for the IP address converted into dot-notation, and will
be overwritten by subsequent calls.

R-IN32 Series User’s Manual (μNet3/BSD edition) 4. Supported API

R18UZ0064EJ0100 Page 27 of 41
Sep 5, 2016

4.2.21 if_nametoindex (Map a Network Interface Name to its Corresponding Index)

Format
 #include “net/if.h”

 unsigned int if_nametoindex(const char *ifname)

Parameters
 const char * ifname Interface name
Returned value
 unsigned int The index of the interface. This function returns 0 if an error occurred.
errno
 ENXIO An interface with the given name does not exist.

• The setting for the name of the interface is based on the device name in μNet3 (gNET_DEV[index-1].name[8]).

R-IN32 Series User’s Manual (μNet3/BSD edition) 4. Supported API

R18UZ0064EJ0100 Page 28 of 41
Sep 5, 2016

4.2.22 if_indextoname (Map a Network Interface Name to its Corresponding Index)

Format
 #include “net/if.h”

 char *if_indextoname(unsigned int ifindex, char *ifname)

Parameters
 unsigned int ifindex Interface index
 char * ifname Pointer to the buffer where the interface name is stored
Returned value
 char * Result of processing. This function returns ifname on success and null if an error occurred.
errno
 ENXIO No index found for the interface.

• The setting of the interface is based on the device name in μNet3 (gNET_DEV[index-1].name[8]).

R-IN32 Series User’s Manual (μNet3/BSD edition) 4. Supported API

R18UZ0064EJ0100 Page 29 of 41
Sep 5, 2016

4.2.23 rresvport (Acquire a Socket with a Port Bound to It)

Format
 #include “sys/unistd.h”

 int rresvport(int *port)

Parameters
 int * port Pointer to the buffer where the port number is stored
Returned value
 int A socket file descriptor bound to a port. This function returns –1 if no socket is present.
errno
 Not specified

R-IN32 Series User’s Manual (μNet3/BSD edition) 4. Supported API

R18UZ0064EJ0100 Page 30 of 41
Sep 5, 2016

4.2.24 getifaddrs (Retrieve Interface Addresses)

Format
 #include “sys/types.h”

 int getifaddrs(struct ifaddrs **ifap)

Parameters
 struct ifaddrs** ifap The address of the first item in the list of network interfaces
Returned value
 int Result of processing. This function returns 0 on success and –1 if an error occurred.
errno
 ENOMEM Failure to acquire the area where the information about the interfaces is stored

• This function acquires the information about the interfaces for the devices (CFG_DEV_MAX) set in the application.

• On success, this function stores the following values in the argument ifap.
(*ifap)->ifa_next : a pointer to the next structure in the list, or null if this is the last item in the list
(*ifap)->name : a pointer to the interface name
(*ifap)-> ifa_flags : the device number
(*ifap)-> ifa_addr : a pointer to the sockaddr structure which contains the IP address of the interface
(*ifap)-> ifa_netmask : a pointer to the sockaddr structure which contains the subnet mask
(*ifap)->ifa_ifu and (*ifap)->ifa_data : not used in this function

• The data returned by getifaddrs() is dynamically allocated and should be freed by using freeifaddrs() after the function
succeeds.

R-IN32 Series User’s Manual (μNet3/BSD edition) 4. Supported API

R18UZ0064EJ0100 Page 31 of 41
Sep 5, 2016

4.2.25 freeifaddrs (Free List of Interface Information)

Format
 #include “sys/unistd.h”

 void freeifaddrs(struct ifaddrs *ifa)

Parameters
 struct ifaddrs* ifap The address of the first item in the list of network interfaces
Returned value
 void
errno
 Not specified

• This function frees the list of interface information acquired by getifaddrs().

R-IN32 Series User’s Manual (μNet3/BSD edition) 5. Socket Options

R18UZ0064EJ0100 Page 32 of 41
Sep 5, 2016

5. Socket Options

5.1 List of Options

Table 5.1, List of Options is the options acquired or set by using the functions setsockopt() and getsockopt(). If a value
other than those listed below is specified, the function returns –1.
In the list, “GET” represents operations to which getsockopt() is applicable and “SET” represents operations to which
setsockopt() is applicable.

Table 5.1 List of Options

Option Name Type Description

SOL_SOCKET Level
SO_ACCEPTCONN int Retrieve the state of a TCP socket, whether it is in listening mode or not.

Only GET is applicable.
SO_BROADCAST int Configure a socket for receiving UDP broadcast data. Both GET and SET

are applicable.
SO_DOMAIN int Acquire the socket domain. Only GET is applicable.
SO_ERROR int Acquire a socket error. Only GET is applicable.
SO_KEEPALIVE int Enable sending of keepalive packets by the TCP socket. Only SET is

applicable.
SO_RCVBUF int Make settings for the reception buffer. This is the number of bytes in

reception windows for TCP and the number of received packets (queue
size) for the UDP. Both GET and SET are applicable.

SO_RCVBUFFORCE int Same as SO_RCVBUF
SO_RCVTIMEO timeval Specify the timeout value for a receiving socket. Both GET and SET are

applicable.
SO_SNDTIMEO timeval Specifies the timeout value for a sending socket. Both GET and SET are

applicable.
SO_TYPE int Retrieves the socket type. Only GET is applicable.
IPPROTO_IP Level
IP_ADD_MEMBERSHIP ip_mreqn Joins the multicast groups specified, applicable to UDP sockets only.

Only SET is applicable.
IP_DROP_MEMBERSHIP ip_mreqn Drops membership of a multicast group. Only SET is applicable.
IP_MTU int Retrieve the path MTU. Only GET is applicable.
IP_MULTICAST_TTL int Set the TTL (time-to-live) for transmitted multicast packets. Both GET and

SET are applicable.
IP_TOS int Set the TOS (type of service) for transmitted IP packets. Both GET and

SET are applicable.
IP_TTL int Set the TTL for transmitted IP packets. Both GET and SET are

applicable.
IPPROTO_TCP Level
TCP_KEEPCNT int Specifies the number of keepalive probes for TCP sockets. Only SET is

applicable.
TCP_KEEPIDLE int Specifies the interval of inactivity that causes the TCP to generate a

keepalive transmission for an application that requests them. Only SET is
applicable.

TCP_KEEPINTVL int Specifies the interval between keepalive probes for TCP sockets.
Only SET is applicable.

TCP_MAXSEG int Specifies the MSS (maximum segment size) value for TCP packets.
Both GET and SET are applicable.

R-IN32 Series User’s Manual (μNet3/BSD edition) 6. Capabilities

R18UZ0064EJ0100 Page 33 of 41
Sep 5, 2016

6. Capabilities

6.1 Non-Blocking Mode

The ioctl() function sets the API call for a socket in non-blocking mode (or blocking mode). All API functions are set to
blocking mode as the initial value. There are some cases where an API in non-blocking mode sets EAGAIN as errno and
returns –1. The APIs which operated in non-blocking mode and the conditions for returning EAGAIN as errno, and the
expected behaviors of the application are listed in Table 6.1, Non-Blocking APIs.

Note that setting the timeout option for a socket is not effective for the APIs which behave in non-blocking mode.
Furthermore, in μNet3/BSD, even if an API function is set to non-blocking mode, it may need to wait for the task to
wake up after being called due to the specification for inter-task transfer.

Table 6.1 Non-Blocking APIs

API Condition Application Behavior

connect If the target is a TCP socket, the
returned value is always –1, and the
error code otherwise is EAGAIN.

Even after –1 is returned, the TCP socket keeps sending
SYN packets for the specified time while waiting for SYN and
ACK packets from the remote party. The socket is monitored
by the select function with the parameter writefds, for
readiness for writing on reception of SYN and ACK. Once the
socket becomes ready for writing, further execution of the
connect function is not needed.

accept If there is no connection attempted to
the listen socket, the returned value is
–1 and the error code is EAGAIN.

The socket is monitored by the select function with the
parameter readfds, for readiness for reading on reception of
SYN. Once the socket becomes ready for reading, the accept
function is executed again.

send
sendto

When the send buffer is full in the
transfer with the TCP sockets and
when a transmission is in progress in
the transfer with the UDP sockets, the
error code is EAGAIN.

EAGAIN for the functions send and sendto means that
packet transmission failed (and will not be transmitted again)
due to conditions of sockets.

recv
recvfrom

When no packet has been received, the
error code is EAGAIN.

The socket is monitored by the select function with the
parameter readfds, for readiness for reading on reception of
packets from the remote party. Once the socket becomes
ready for reading, the recv function is executed again.

R-IN32 Series User’s Manual (μNet3/BSD edition) 6. Capabilities

R18UZ0064EJ0100 Page 34 of 41
Sep 5, 2016

6.2 Loopback

When local loopback addresses (127.0.0.1 to 127.255.255.254) are specified as destination for transmission, the
transmitted packets are conveyed to the network interface of the local device.

In μNet3/BSD, the loopback addresses are not assigned to any specific device interface and are not regarded as send-only
addresses. Therefore, they cannot be used in the bind() operation.

6.3 Error Processing

The symbol errno is the only global variable used in the μNet3/BSD API. Its value is updated on the occurrence of errors
during the execution of API functions. When the user executes API functions from multiple tasks, we recommend
acquiring the last errno by using get_errno(), to maintain consistency between errno values and the errors.

Format
 #include “sys/errno.h”

 int get_errno(void)

Parameters
 void
Returned value
 int The errno of the last error to have occurred during the API function calls by a given task
errno
 Not specified

• The errno for each task will be stored in the global variable UW tsk_errno[], provided in the application. The array
should have the same number of elements as the maximum number of tasks.

R-IN32 Series User’s Manual (μNet3/BSD edition) 6. Capabilities

R18UZ0064EJ0100 Page 35 of 41
Sep 5, 2016

6.4 List of errno

The values defined for errno may vary according to the compiler.

[Definition pattern 1]

Applicable compilers:
• RealView Developer Suite from ARM
• Embedded Workbench (EWARM) from IAR
• Code Composer Studio from TI
• GNU C Compiler from GNU

errno Value Description

ENXIO 6 No interface found
EBADF 9 Invalid socket file descriptor
ENOMEM 12 Not enough memory
EFAULT 14 Error in a parameter
ENODEV 19 Critical (or unknown) error in the system
EINVAL 22 Invalid parameter value
EPIPE 32 Invalid socket object
EAGAIN 35 Connection is blocked.
EALREADY 37 The operation is already in progress.
EDESTADDRREQ 39 Destination address required
EPROTONOSUPPORT 43 Function not supported
EAFNOSUPPORT 47 Address family not supported by protocol
EADDRINUSE 48 Address already in use
EADDRNOTAVAIL 49 Cannot assign requested address
EISCONN 56 The socket is already connected.
ENOTCONN 57 The socket is not connected.
ETIMEDOUT 60 Connection attempt timed out
ECONNREFUSED 61 Connection is refused by server.

R-IN32 Series User’s Manual (μNet3/BSD edition) 6. Capabilities

R18UZ0064EJ0100 Page 36 of 41
Sep 5, 2016

[Definition pattern 2]

Applicable compiler:
• CubeSuite+ * from Renesas Electronics

errno Value Description

ENXIO * No interface found
EBADF * Invalid socket file descriptor
ENOMEM * Not enough memory
EFAULT * Error in a parameter
ENODEV * Critical (or unknown) error in the system
EINVAL * Invalid parameter value
EPIPE * Invalid socket object
EAGAIN * Connection is blocked.
EALREADY 0x1025 The operation is already in progress.
EDESTADDRREQ 0x1027 Destination address required
EPROTONOSUPPORT 0x102B Function not supported
EAFNOSUPPORT 0x102F Address family not supported by protocol
EADDRINUSE 0x1030 Address already in use
EADDRNOTAVAIL 0x1031 Cannot assign requested address
EISCONN 0x1038 The socket is already connected.
ENOTCONN 0x1039 The socket is not connected.
ETIMEDOUT * Connection attempt timed out
ECONNREFUSED 0x103D Connection is refused by server.

• Restrictions

– Do not use the name “errno” as the name of a variable where error codes are stored.
The name “errno” is used as the variable defining errors in the CubeSuite+ standard library. With the μNet3/BSD
API, use unet_errno instead.

– Part of the values defined for errno are the same as those used in the compiler (as indicated with * in the above list).
If the same name is defined for an errno value in the μNet3/BSD API and the CubeSuite+, the one in the compiler
is used.

R-IN32 Series User’s Manual (μNet3/BSD edition) 7. Implementing BSD Application

R18UZ0064EJ0100 Page 37 of 41
Sep 5, 2016

7. Implementing BSD Application

7.1 Source Code

An application which uses the μNet3/BSD API must be combined in projects with four files of source code from the
Network/bsd/ folder (see Section 3.3, Source Files).

Also, link the version of μNet3/BSD which is prepared for BSD (uNet3BSDxxxx.lib) as the library.

Network

lib
uNet3cortexal.lib /* Ordinary library for μNet3*/
uNet3BSDcortexal.lib /*μNet3 library for BSD */

Figure 7.1 μNet3 Library

7.2 Include Path

An application which uses the μNet3/BSD API requires additional settings for “include” paths. The header file is found
in the Network/bsd/unet3_posix folder with the POSIX-compatible files.

Network

bsd

unet3_posix /*Include base folder for μNet3/BSD*/
:
:

inc /* Include base folder for μNet3/*/

Figure 7.2 "Include" Paths for μNet3

R-IN32 Series User’s Manual (μNet3/BSD edition) 7. Implementing BSD Application

R18UZ0064EJ0100 Page 38 of 41
Sep 5, 2016

7.3 Configuration

In the μNet3/BSD API, the maximum number of sockets to be used in an application and tasks to be executed should be
defined in the below macro in unet3_cfg.h in advance.

Maximum number of sockets

#define BSD_SOCKET_MAX

The maximum number of sockets, regardless of the protocol, shows the number of sockets that an application can
create at the same time (including backlog from listening). This macro definition is used for defining the number of
entries in the management table for BSD sockets and fd_set type settings, which will be described later. This value
must be same as the maximum number of the sockets used by μNet3 (CFG_NET_SOC_MAX).

Number of application tasks

#define NUM_OF_TASK_ERRNO

The number of application tasks shows the number of tasks that can be created in the kernel. This macro definition is
used for the number of entries in the management table for error codes, which will be described later. Set the number
of tasks that can be created, regardless of whether you are using μNet3/BSD.

R-IN32 Series User’s Manual (μNet3/BSD edition) 7. Implementing BSD Application

R18UZ0064EJ0100 Page 39 of 41
Sep 5, 2016

7.4 Defining Resources

Applications which use the μNet3/BSD API should provide resources required for operating the program, which are, the
tables for managing information of the μNet3/BSD as listed below.

BSD socket management table

T_UNET3_BSD_SOC gNET_BSD_SOC[BSD_SOCKET_MAX];

This table defines a global variable as the number of elements BSD_SOCKET_MAX in the T_UNET3_BSD_SOC
array.

Error number management table

UW tsk_errno[NUM_OF_TASK_ERRNO];

This table defines a global variable as the number of elements NUM_OF_TASK_ERRNO in the array of UW.

R-IN32 Series User’s Manual (μNet3/BSD edition) 7. Implementing BSD Application

R18UZ0064EJ0100 Page 40 of 41
Sep 5, 2016

7.5 Kernel Objects

The Kernel objects used in the μNet3/BSD are shown below.

Resource Name Usage ID

Task BSD wrapper task ID TSK_BSD_API
Loopback device task ID_LO_IF_TSK

Mailbox Communication between BSD wrapper tasks ID MBX_BSD_REQ
Communication between loopback device tasks ID_LO_IF_MBX

Memory pool Message buffer ID MPF_BSD_MSG

7.6 Initialization

When an application uses the socket API functions of the μNet3/BSD API, the module must be initialized in advance by
calling the unet3_bsd_init() function. This operation should be performed after successful initialization of μNet3 and the
device driver.

Format
 #include “sys/socket.h”

 ER unet3_bsd_init(void)

Parameters
 void
Returned value
 ER Result of processing. This function returns E_OK on success and the error code if an error

occurred.
Error code
 E_SYS Initialization of the kernel object failed

R-IN32 Series User’s Manual (μNet3/BSD edition) 8. Appendix

R18UZ0064EJ0100 Page 41 of 41
Sep 5, 2016

8. Appendix

8.1 Supported Compilers

The μNet3/BSD guarantees operation in the following compilers.

• RealView Developer Suite from ARM
• Embedded Workbench (EWARM) from IAR
• Code Composer Studio from TI
• GNU C Compiler from GNU
• CubeSuite+ from Renesas Electronics

Note: Restrictions are given depending on the compiler.

8.2 Sample Application

Sample applications using the μNet3/BSD API are included in the Sample folder. These sample programs are also
available in the POSIX environment (Linux).

• API Console (sample_sockcmd.c)
The user can run the API functions through the command prompt (with a UART connection) by input of the socket
API function and required parameters. For details, refer to the Readme_command.txt.

8.3 Restrictions on Compilers

Restrictions are given to some compilers when they are used with μNet3/BSD.

• CubeSuite+ from Renesas Electronics
– Do not use the name “errno” as the name of a variable where error codes are stored.

The name “errno” is used as the variable defining errors in the CubeSuite+ standard library. With the μNet3/BSD
API, use unet_errno instead.

R-IN32 Series User’s Manual (μNet3/BSD edition) REVISION HISTORY

 C-1

REVISION HISTORY R-IN32 Series User’s Manual (μNet3/BSD edition)

Rev. Date Description
Page Summary

1.00 Sep 5, 2016 - First edition issued

R-IN32 Series User’s Manual (μNet3/BSD edition) REVISION HISTORY

 C-2

[MEMO]

R-IN32 Series User’s Manual
(μNet3/BSD edition)

 Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2013 Renesas Electronics Corporation. All rights reserved

	1. Introduction
	2. Specification
	2.1 Position in the POSIX Specification
	2.2 Differences from the μNet3
	2.3 Compatibility of Symbol Name

	3. Module Structure
	3.1 Module Structure
	3.2 Header Structure
	3.3 Source Files

	4. Supported API
	4.1 Supported API Functions
	4.2 Detail for Individual API Functions
	4.2.1 socket (Create an Endpoint for Communication)
	4.2.2 bind (Assign a Name to a Socket)
	4.2.3 listen (Waits for a Connection on a Socket)
	4.2.4 accept (Accept a Connection on a Socket)
	4.2.5 connect (Make a Connection on a Socket)
	4.2.6 send (Transmit a Message to a Socket)
	4.2.7 sendto (Transmit a Message to a Socket)
	4.2.8 recv (Receive a Message from a Socket)
	4.2.9 recvfrom (Receive a Message from a Socket)
	4.2.10 shutdown (Cause Parts of a Full-Duplex Connection on the Socket to be Shut Down)
	4.2.11 close (Close a Socket)
	4.2.12 select (Synchronous I/O Multiplexing)
	4.2.13 getsockname (Retrieve the Name of a Socket)
	4.2.14 getpeername (Retrieves the Name of the Peer Connected to a Socket)
	4.2.15 getsockopt (Retrieves Options Associate with a Socket)
	4.2.16 setsockopt (Manipulate Options Associated with a Socket)
	4.2.17 ioctl (Control Hardware Devices (Sockets))
	4.2.18 inet_addr (IP Address Handling Routine)
	4.2.19 inet_aton (IP Address Handling Routine)
	4.2.20 inet_ntoa (IP Address Handling Routine)
	4.2.21 if_nametoindex (Map a Network Interface Name to its Corresponding Index)
	4.2.22 if_indextoname (Map a Network Interface Name to its Corresponding Index)
	4.2.23 rresvport (Acquire a Socket with a Port Bound to It)
	4.2.24 getifaddrs (Retrieve Interface Addresses)
	4.2.25 freeifaddrs (Free List of Interface Information)

	5. Socket Options
	5.1 List of Options

	6. Capabilities
	6.1 Non-Blocking Mode
	6.2 Loopback
	6.3 Error Processing
	6.4 List of errno

	7. Implementing BSD Application
	7.1 Source Code
	7.2 Include Path
	7.3 Configuration
	7.4 Defining Resources
	7.5 Kernel Objects
	7.6 Initialization

	8. Appendix
	8.1 Supported Compilers
	8.2 Sample Application
	8.3 Restrictions on Compilers

