RENESAS Manual

RAA489220 Battery Front End Sample Code

This software manual provides a detailed description and application guidelines for using the RAA489220 sample
code. It includes API functions and application examples to speed up the design of high voltage battery
management systems that consist of multiple (stacked) battery manager ICs.

Contents
1. INtrodUCtion e e a e 2
1.1 Assumptions and Advisory Notes e 2
2. RAA489220 Battery Front End Overview it iaananens 3
2.0 Features ... 3
2.2 Applications 3
2.3 RAA489220 Sample Code Structure e 4
3. RAA489220 Application Programming Interface Implementation 5
3.1 Control and Configuration Structures 5
3.2 Register Bank 13
3.3 Private (Static) Functions 15
3.4 APlImplementation 16
3.4.1 RORAA489220 INit 16
3.4.2 R_RAA489220 Deinit oot e 16
343 R RAA489220 SetUpt i 17
344 R _RAA489220 Reset 17
3.45 R_RAA489220 ModeSet 18
346 R _RAA489220 ModeRead it 19
3.4.7 R_RAA489220 CommTestot e 19
3.4.8 R _RAA489220 SelfDiagvuii i e e 19
3.4.9 R _RAA489220 MemCheck e e 20
3.4.10 R_RAA489220 VPackGet e 20
3.4.11 R_RAA489220 IPackGet e 21
3.4.12 R_RAA489220 VCellsGet 22
3.4.13 R_RAA489220 TemMPS . ..ttt ittt e 23
3.4.14 R_RAA489220 AllGEto 24
3.4.15 R_RAA489220_SysScanGetttt 26
3.4.16 R_RAA489220 FaultsAllRead e 27
3.4.17 R_RAA489220 FaultsCheck e e 28
3.4.18 R _RAA489220 FaultsAllClear e e 28
3.4.19 R_RAA489220 CellBalanceCtrl e e 29
3.4.20 R_RAA489220 IsCellBalanCingt 29
3.4.21 R_RAA489220 ContScanCtrl e 29
3.4.22 R_RAA489220 WatchdogCtrl 30
3.4.23 R_RAA489220 FETSCHrl e e 30
3.4.24 R _RAA489220 HVGPIOCH e e e e 31
3.4.25 R_RAA489220 RegisterRead i 32
3.4.26 R _RAA489220 RegisterWrite i e 33
R16UZ0058EU0100 Rev.1.00 RENESAS Page 1

Oct 17, 2022 © 2022 Renesas Electronics

RAAA489220 Battery Front End Sample Code Manual

3.5 Configuration e 33
3.5.1 MCU Hardware Abstraction Layer 33
3.5.2 Battery Front End e 33
3.5.3 Battery Abstraction Layer 34
3.54 Demo Application 35
3.6 EXamPIEs . . . 35
4. Demo Application i i e e 38
Revision History i i i ittt a it ettt e n e a e enns 43
1. Introduction

The RAA489220 sample code provides robust and easy access to the resources and functionality of the Battery
Front End (BFE) device. The code includes a specialized-to-the-device control code (Battery Abstraction Layer
(BAL)), a demo battery management application, and a user interface: these components are portable and
suitable for integration into multitasking software projects.

The sample software package has the following features:

1.

Easy access to RAA489220 resources and advanced features
Custom configurations

Simplified status and error monitoring

Integrated fault diagnostics and processing

Full compatibility with Renesas Advanced (RA) Family 32-bit MCUs
Application Programming Interface (API) for easy integration

1 Assumptions and Advisory Notes

It is assumed that you possess basic understanding of microcontrollers, embedded systems hardware, battery
management systems, and Li-based battery cells.

It is assumed that you have prior experience working with Integrated Development Environments (IDEs) such

as e2studio, Flexible Software Package (FSP), and terminal emulation programs such as Tera Term.

Renesas recommends reviewing the Industrial Battery Front End API Software Manual to get familiar with the

Battery Abstraction Layer and the interface concepts.

Before proceeding, Renesas recommends reviewing the EK-RA4W1 Manual, the RAA489220 Datasheet, and
the RAA489220 Evaluation Kit Manual to get acquainted with the MCU and BFE features.

R16UZ0058EU0100 Rev.1.00 RENESAS Page 2
Oct 17, 2022

RAAA489220 Battery Front End Sample Code Manual

2.

2.1

Features

RAA489220 Battery Front End Overview

RAA489220 is a 10 cell Li-ion battery management front end IC that have the following features:

2.2

High hot plug rating: 44V
Autonomous protection functions

Qualified for industrial temperature range: -40°C to +85°C

Monitors and manages 10 Li-lon cells

Built-in low side FET drivers

Supports wide range of current sense resistors

Monitors two external temperature inputs

High-voltage GPIO for fuse blow

Cell voltage measurement accuracy: £10mV

12-bit voltage, current, and temperature measurements

I2C interface with optional CRC for higher reliability

Integrated self-test features
This manual and the sample code are used for the case when the external MCU is present and RAA489220 is not
operating autonomously. The MCU contains the sample code and it controls the Battery Front End. Figure 1

shows a typical application.

LOAD

Power tools

e

:Qeé 1
g Veack
el

VREG

Reg
Map

12C

Battery
Fault
State

Machine

Sweep
Speed

Fault
Filter

Counter

RAA489220
10 Cell
Protector

Window
Comparator
Temperature

Window
Comparator
VCell

Analog
MUX

Intemal
Temp
Oscillator
RESET

Power FETS
7 7

Window
Comparator
Current

M—ﬂé?

LCFET

E LDFET

R

Applications

= Handheld electronics

= Battery protector

et

Figure 1. Typical Application of RAA489220

R16UZ0058EU0100 Rev.1.00
Oct 17, 2022

RENESAS

Page 3

RAAA489220 Battery Front End Sample Code Manual

23

RAA489220 Sample Code Structure

The RAA48220 sample code contains the following software components:

= Battery Front End Application Programming Interface (BFE API)

= RAA4489220 implementation of the BFE API

= Demo application with finite-sate machine, cell balancing algorithm, and command line user interface

= Configuration file for Renesas Flexible Software Package that is used to generate the peripheral drivers

(Hardware Abstraction Layer (HAL)) for the MCU used for running the sample code

Table 1 shows the sample code directory structure. Besides the main interface, implementation, and application
files there are additional containing macros and dedicated functions.

Table 1. Directory Structure of the Sample Code

r_raa489220.c

Actual code for the interface
implementation

r_raa489220.h

Definitions, structures, enumerations
and declarations of the API functions

Directory Filename Description Module
api Modules APls
inc
ra fsp instances Definition of module instances
src r*.c APIs’ implementations
ra_gen | — Instantiation of HAL modules and HAL (Generated by FSP)
- main.c that calls the entry point
ra_cfg fsp_cfg r_* cfg.h Configuration options files
hal_entry.c Ent.ry point that calls the application
main
bal datah Expoﬂed global variables of the
- interface
BFE instance and definitions of the
bal_data.c .
major structures
. Common macros for the Battery
common_utils.h .
Abstraction Layer
r bms._cfg.h Battt_ery Mgnagement System (BMS) Applications Layer
configuration macros
Definitions, structures, enumerations
r_bms.h and declarations of functions for the
src BMS
r_bms.c BMS application code
r_usb_pcdc_descriptor.c | USB driver descriptors
usb_pcdc.h USB driver definitions
r_bfe_api.h Battery Abstraction Layer (BAL) API
r_bfe_cfg.h BAL configuration macros
r_bfe_common.h Common macros for the BAL
bfe Battery Abstraction Layer

The BFE instance and its structures define the contract and features common to most of the BFEs. The BFE
instance for RAA489220 contains the actual code implementation of BFE functionalities. Figure 2 shows the main

R16UZ0058EU0100 Rev.1.00
Oct 17, 2022

RENESAS

Page 4

RAAA489220 Battery Front End Sample Code Manual

software components, structures, and files of the BFE interface and instance implementation. Both configuration

and control structures are extended to fit the device specifics.

RAA489220 BFE Instance Implementation

(r_bfe_api.h)

[Void Definitions J

[Interface Enumerations]

(BFE Instance 1

L st_bfe_api st_bfe_cfg st_bfe_ctrl J

- 4 y,
implement *p_extend
______________________ *_-.____-._________________\
|’ 4 “p_extend ~ ¥))
| [g_bfe_raa489220_api] R_RAA489220_Init [st_raa489220_ext_ctd] u_raa489220_vcells_meas |
| R_RAA489220_Setup u_raa489220_temps_meas |
R_RAA489220_Reset (u_raa489220_all_meas

| \ 4 R_RAA489220_VPackGet >k st_raa489220_ext_cfg] e_raa489220_meas_select |
] points to R_RAA489220_FaultsAllRead e raa489220 ov_hyst |
| R_RAA489220_FETsCltrl st_raa489220_gpio_ctr |
! R_RAA489220_**** —declares—{ Public API declaration J st_raa489220_faults |
| BFE Registers Image)
1| g_read89220 registers is a »(st raa489220_registers | [Registers typedefs dedlarations:) | |
" § structs and unions |
] \ r_bfe_raa489220.c) \ r_bfe_raa489220.h)]
| |
\)

Figure 2. Main Software Components of BFE Instance Implementation

3. RAA489220 Application Programming Interface Implementation

3.1 Control and Configuration Structures

The control and configuration functions used as parameters for the API functions and holding the BFE settings,
state flags, registers, and more are extended to cover the device specifics. The extended structures and the
relevant enumerations can be found in file bfe/r_raa489220.h. Table 2 shows the content of the extended control
structure. It contains information about the I2C slave address of the BFE communication interface and the
behavior of the built-in voltage regulator during Low Power Mode. It also points to the timings structure (Table 3).
IMPORTANT: Ensure that reset has completed before communicating further with the BFE or that the
measurement is not taking too much time. The timings are fixed and their values are assigned in the initialization
API function.

Table 2. Members of the RAA489220 Extended Control Structure

typedef struct st_raa489220 ext_ctrl

Member Type Description
i2c_slave_address uint16_t Battery Front End 12C communication slave address
weak_regulator bool Weak regulator state flag

timings st_raa489220 timings_t Structure holding the BFE timings

R16UZ0058EU0100 Rev.1.00
Oct 17, 2022

RENESAS Page 5

RAAA489220 Battery Front End Sample Code Manual

Table 3. Members of the RAA489220 Timings Structure

typedef struct st_raa489220_ext_ctrl
Member Type Description
reset_wait_time_ms uint32_t Reset processing time [us]
reset_therm2_hold_time_ms uint32_t Hold time for THERM2 pin to trigger a reset [ms]
busy_bit_timeout_us uint32_t Busy bit read timeout during measurement [us]

Table 4 shows the content of the extended configuration structure. lts members correspond to all fixed settings of
the BFE. The extended configuration structure stores constant variables directly related to the hardware, that is,
shunt resistance, over/undervoltage lockout threshold (Li-lon chemistry), short-circuit delay time (load current
profile), alert signal MCU input pin (routing between the master BFE and the MCU), and others. The limits are
entered as real values (Voltages, Amperes). Some of the variables have types that are defined as enumerations.
Therefore, you can select from a list of options facilitating the device configuration. Be aware that the initialization
function is checking some of the members of the extended configuration structure for correct values and if a
mismatch is detected, an error code is returned. For more information about the available options and their effect
over the BFE performance, refer to the RAA489220 Datasheet.

Table 4. Members of the RAA489220 Extended Configuration Structure

typedef struct st_raa489220_ext_cfg

Member Type Description
r_shunt_charge_mohm const float Shunt resistance for charge current [mohm]
r_shunt_discharge_mohm const float Shunt resistance for discharge current [mohm]
thold_overvolt_lockout_v const float Cell overvoltage lockout threshold [V] (range: 3.0 - 4.5V,

step: 100mV)

thold overvolt v const float Cell overvoltage threshold [V] (range: 3.23 - 4.5V, step:
- - 10mV)

thold undervolt v const float Cell undervoltage threshold [V] (range: 1.5 - 3.0V, step:
- - 100mV)

thold undervolt lockout v const float Cell undervoltage lockout threshold [V] (range: 1.5 - 3.0V,
- - - step: 100mV)

thold_delta_cell_overvolt v const float Delta cell overvoltage threshold [V] (range: 0.5 - 2.0V,

step: 100mV)

hyst_overovitage

const e_raa489220_ov_hyst_t

Cell overvoltage hysteresis

hyst_undervitage

const e_raa489220 uv_hyst t

Cell undervoltage hysteresis

thold_charge_over_temp

const e_raa489220_cot_th_t

Over-temperature threshold when charging

thold_charge_under_temp

const e_raa489220 cut_th_t

Under-temperature threshold when charging

thold_discharge_over_temp

const e_raa489220 dot_th_t

Over-temperature threshold when discharging

thold_discharge_under_temp

const e_raa489220 dut_th_t

Under-temperature threshold when discharging

thold_charge_overcurrent_a

const float

Charge overcurrent threshold [A]

thold_discharge_overcurrent_a

const float

Discharge overcurrent threshold [A]

delay_ch_d_oc const e_raa489220_oc_delay t Discharge/Charge overcurrent delay
thold_sc const e_raa489220_sc_th_t Short-circuit threshold
delay_sc const e_raa489220_sc_delay_t Short-circuit delay

ieoc_threshold

const e_raa489220 ieoc_th_t

End of charge current threshold

R16UZ0058EU0100 Rev.1.00
Oct 17, 2022

RENESAS

Page 6

RAAA489220 Battery Front End Sample Code Manual

Table 4. Members of the RAA489220 Extended Configuration Structure (Cont.)

typedef struct st_raa489220 ext_cfg

Member

Type

Description

discharge_overcurrent_disable

const bool

Disable discharge overcurrent protection

comm_timeout

const e_raa489220 comm_tout_t

Communication timeout

self_test_enable const bool Include self-testing in single scan sequence
open_wire_test_enable const bool Include open wire test in the self-test loop
fuse_blow_enable const bool Enable fuse blow on the BFE

alert_pin_cfg const e_raa489220_alert_cfg_t Select control source for the ALERT pin
scan_dela const Auto scan interval under normal conditions

- Y e_raa489220 scan_delay_t
fault_delay const e_raa489220 fault_delay t | Auto scan interval when fault condition is detected

Ip_mode_settings

const
e_st raa489220 Ip_mode_t

Low Power Mode Settings when transition from Auto
scan

pin_alert

const bsp_io_port_pin_t

ALERT pin

pin_reset

const bsp_io_port_pin_t

THERM2 pin

Table 5 shows the options for hyst_overovltage constant variable, which are listed in the RAA489220 Vcell
Overvoltage Hysteresis Enumeration. The selected constant is used in the overvoltage comparison during cell

voltage measurement.

Table 5. RAA489220 Vcell Overvoltage Hysteresis Enumeration

typedef enum e_raa489220_ov_hyst

Constant Value Description
BFE_CELL_OV_HYST_25MV 0x00 Vcell OV hysteresis 25mV
BFE_CELL_OV_HYST_50MV 0x01 Vcell OV hysteresis 50mV
BFE_CELL_OV_HYST_100MV 0x02 Vcell OV hysteresis 100mV
BFE_CELL_OV_HYST_200MV 0x03 Vcell OV hysteresis 200mV
BFE_CELL_OV_HYST_250MV 0x04 Vcell OV hysteresis 250mV
BFE_CELL_OV_HYST_300MV 0x05 Vcell OV hysteresis 300mV
BFE_CELL_OV_HYST_350MV 0x06 Vcell OV hysteresis 350mV
BFE_CELL_OV_HYST_400MV 0x07 Vcell OV hysteresis 400mV

R16UZ0058EU0100 Rev.1.00
Oct 17, 2022

RENESAS

Page 7

RAAA489220 Battery Front End Sample Code Manual

Table 6 shows the options for hyst_undervltage constant variable which are listed in the RAA489220 Vcell
Undervoltage Hysteresis Enumeration. The selected constant is used in the undervoltage comparison during cell

voltage measurement.

Table 6. RAA489220 Vcell Undervoltage Hysteresis Enumeration

typedef enum e_raa489220_ov_hyst

Constant Value Description

BFE_CELL_UV_HYST_100MV 0x00 Vcell UV hysteresis 100mV
BFE_CELL_UV_HYST_200MV 0x01 Vcell UV hysteresis 200mV
BFE_CELL_UV_HYST_300MV 0x02 Vcell UV hysteresis 300mV
BFE_CELL_UV_HYST_400MV 0x03 Vcell UV hysteresis 400mV
BFE_CELL_UV_HYST_500MV 0x04 Vcell UV hysteresis 500mV
BFE_CELL_UV_HYST_600MV 0x05 Vcell UV hysteresis 600mV
BFE_CELL_UV_HYST_700MV 0x06 Veell UV hysteresis 700mV
BFE_CELL_UV_HYST_800MV 0x07 Veell UV hysteresis 800mV

Table 7 shows the options for thold_charge_over_temp constant variable, which are listed in the RAA489220
Charge Over-Temperature Threshold Enumeration. The selected constant is used in the external over-
temperature comparison during temperature measurement.

Table 7. RAA489220 Charge Over-Temperature Threshold Enumeration

typedef enum e_raa489220_cot_th

Constant Value Description
BFE_COT_THLD_0_678V 0x00 Charge over-temperature threshold 0.678V
BFE_COT_THLD_0_590V 0x01 Charge over-temperature threshold 0.590V
BFE_COT_THLD_0_518V 0x02 Charge over-temperature threshold 0.518V
BFE_COT_THLD_0_450V 0x03 Charge over-temperature threshold 0.450V
BFE_COT_THLD_0_390V 0x04 Charge over-temperature threshold 0.390V
BFE_COT_THLD_0_338V 0x05 Charge over-temperature threshold 0.338V
BFE_COT_THLD_0_294V 0x06 Charge over-temperature threshold 0.294V
BFE_COT_THLD_0_258V 0x07 Charge over-temperature threshold 0.258V

R16UZ0058EU0100 Rev.1.00

Oct 17, 2022

RENESAS Page 8

RAAA489220 Battery Front End Sample Code Manual

Table 8 shows the options for thold_charge_under_temp constant variable, which are listed in the RAA489220

Charge Under-Temperature Threshold Enumeration. The selected constant is used in the external under-

temperature comparison during temperature measurement.

Table 8. RAA489220 Charge Under-Temperature Threshold Enumeration

typedef enum e_raa489220_cut_th

Constant Value Description
BFE_CUT_THLD_1_622V 0x00 Charge under-temperature threshold 1.622V
BFE_CUT_THLD_1_526V 0x01 Charge under-temperature threshold 1.526V
BFE_CUT_THLD_1_422V 0x02 Charge under-temperature threshold 1.422V
BFE_CUT_THLD_1_314V 0x03 Charge under-temperature threshold 1.314V
BFE_CUT_THLD_1_198V 0x04 Charge under-temperature threshold 1.198V
BFE_CUT_THLD_1_086V 0x05 Charge under-temperature threshold 1.086V
BFE_CUT_THLD_0_974V 0x06 Charge under-temperature threshold 0.974V
BFE_CUT_THLD_0_866V 0x07 Charge under-temperature threshold 0.866V

Table 9 shows the options for thold_discharge_over_temp constant variable, which are listed in the RAA489220

Discharge Over-Temperature Threshold Enumeration. The selected constant is used in the external over-

temperature comparison during temperature measurement.

Table 9. RAA489220 Discharge Over-Temperature Threshold Enumeration

typedef enum e_raa489220_dot_th

Constant Value Description
BFE_DOT_THLD_0_222V 0x00 Discharge over-temperature threshold 0.222V
BFE_DOT_THLD_0_194V 0x01 Discharge over-temperature threshold 0.194V
BFE_DOT_THLD_0_170V 0x02 Discharge over-temperature threshold 0.170V
BFE_DOT_THLD_0_150V 0x03 Discharge over-temperature threshold 0.150V
BFE_DOT_THLD_0_130V 0x04 Discharge over-temperature threshold 0.130V
BFE_DOT_THLD_0_114V 0x05 Discharge over-temperature threshold 0.114V
BFE_DOT_THLD_0_098V 0x06 Discharge over-temperature threshold 0.098V
BFE_DOT_THLD_0_086V 0x07 Discharge over-temperature threshold 0.086V

R16UZ0058EU0100 Rev.1.00

Oct 17, 2022

RENESAS

Page 9

RAAA489220 Battery Front End Sample Code Manual

Table 10 shows the options for thold_discharge under_temp constant variable, which are listed in the
RAA489220 Discharge Under-Temperature Threshold Enumeration. The selected constant is used in the external
under-temperature comparison during temperature measurement.

Table 10. RAA489220 Discharge Under-Temperature Threshold Enumeration

typedef enum e_raa489220_dut_th

Constant Value Description
BFE_DUT_THLD_1_622V 0x00 Discharge under-temperature threshold 1.622V
BFE_DUT_THLD_1_526V 0x01 Discharge under-temperature threshold 1.526V
BFE_DUT_THLD_1_422V 0x02 Discharge under-temperature threshold 1.422V
BFE_DUT_THLD_1_314V 0x03 Discharge under-temperature threshold 1.314V
BFE_DUT_THLD_1_198V 0x04 Discharge under-temperature threshold 1.198V
BFE_DUT_THLD_1_086V 0x05 Discharge under-temperature threshold 1.086V
BFE_DUT_THLD_0 974V 0x06 Discharge under-temperature threshold 0.974V
BFE_DUT_THLD_0_866V 0x07 Discharge under-temperature threshold 0.866V

Table 11 shows the options for delay_ch_d_oc constant variable, which are listed in the RAA489220
Charge/Discharge Overcurrent Delay Enumeration. The selected constant is determining the delay source for
overcurrent delay interval.

Table 11. RAA489220 Charge/Discharge Overcurrent Delay Enumeration

typedef enum e_raa489220_oc_delay

Constant Description

BFE_OC_USE_SCAN_DELAY Use Scan Delay for Charge/Discharge Overcurrent detection.

BFE_OC_USE_FAULT_DELAY Use Fault Delay for Charge/Discharge Overcurrent detection.

Table 12 shows the options for thold_sc constant variable, which are listed in the RAA489220 Short-circuit
Threshold Enumeration. The selected constant is determining the threshold voltage (respectively current) for
short-circuit detection with analog comparator.

Table 12. RAA489220 Short-Circuit Threshold Enumeration

typedef enum e_raa489220_sc_th

Constant Value Description
BFE_SC_THLD_12_5MV 0x00 Short circuit threshold 12.5mV
BFE_SC_THLD_25MV 0x01 Short circuit threshold 25mV
BFE_SC_THLD_50MV 0x02 Short circuit threshold 50mV
BFE_SC_THLD_100MV 0x03 Short circuit threshold 100mV
BFE_SC_THLD_200MV 0x04 Short circuit threshold 200mV
R16UZ0058EU0100 Rev.1.00 RENESAS Page 10

Oct 17, 2022

RAAA489220 Battery Front End Sample Code Manual

Table 13 shows the options for delay_sc constant variable, which are listed in the RAA489220 Short-Circuit Delay
Enumeration. The selected constant is determining the delay during short-circuit detection with analog

comparator.
Table 13. RAA489220 Short-circuit Delay Enumeration
typedef enum e_raa489220_sc_delay
Constant Value Description

BFE_SC_DELAY_OFF 0x00 No short circuit delay
BFE_SC_DELAY_0_1MS 0x01 Short circuit delay 0.1ms
BFE_SC_DELAY_1MS 0x02 Short circuit delay 1ms
BFE_SC_DELAY_10MS 0x03 Short circuit delay 10ms

Table 14 shows the options for ieoc_threshold constant variable, which are listed in the RAA489220 End of
Charge Current Threshold Enumeration. The selected constant is determining the threshold voltage (respectively
current) threshold for end of charge detection.

Table 14. RAA489220 End of Charge Current Threshold Enumeration

typedef enum e_raa489220_ieoc_th
Constant Value Description
BFE_IEOC_THLD_0_65MV 0x00 IEOC threshold 0.65mV
BFE_IEOC_THLD_0_70MV 0x01 IEOC threshold 0.70mV
BFE_IEOC_THLD_1MV 0x02 IEOC threshold 1mV
BFE_IEOC_THLD_3MV 0x03 IEOC threshold 3mV

Table 15 shows the options for comm_timeout constant variable, which are listed in the RAA489220
Communication Timeout Enumeration. The selected constant is determining the timeout after which the BFE
detects communication fault and goes to Low Power or Ship Mode.

Table 15. RAA489220 Communication Timeout Enumeration

typedef enum e_raa489220_comm_tout
Constant Value Description
BFE_COMM_TO_OFF 0x00 Communication timeout is disabled
BFE_COMM_TO_0_1S 0x01 Communication timeout is 100ms
BFE_COMM_TO_1S 0x02 Communication timeout is 1s
BFE_COMM_TO_5S 0x03 Communication timeout is 5s

R16UZ0058EU0100 Rev.1.00
Oct 17, 2022

RENESAS Page 11

RAAA489220 Battery Front End Sample Code Manual

Table 16 shows the options for e_raa489220 alert_cfg_t constant variable, which are listed in the RAA489220
ALERT Pin Internal Connection Configuration Enumeration. The selected constant is determining how the pin is
connected to the internal logic and the event that asserts it.

Table 16. RAA489220 ALERT Pin Internal Connection Configuration Enumeration

typedef enum e_raa489220_alert_cfg

Constant Value Description
BFE_ALRT_NORMAL 0x00 Use normal ALERT pin functionality
BFE_ALRT_BUSY_CONNECT 0x01 Connect Busy Mask bit to the ALERT pin
BFE_ALRT_V_I_EOC_CONNECT 0x02 Connect the status of the VEOC and IEOC bits to the ALERT pin
BFE_ALRT_CH_LD_PRES_CONNECT | 0x03 Connect the status of the CH PRESI and LD PRESI bits to the ALERT pin

Table 17 shows the options for scan_delay constant variable, which are listed in the RAA489220 Scan Delay
Enumeration. The selected constant is determining the time interval length between system scans in Auto Scan
Mode under nominal operating conditions.

Table 17. RAA489220 Scan Delay Enumeration

typedef enum e_raa489220_scan_delay
Constant Value Description
BFE_SCAN_DELAY_0S 0x00 Scan Delay 0Os
BFE_SCAN_DELAY 0 1S 0x01 Scan Delay 100ms
BFE_SCAN_DELAY_0_5S 0x02 Scan Delay 500ms
BFE_SCAN_DELAY_1S 0x03 Scan Delay 1s

Table 18 shows the options for fault_delay constant variable, which are listed in the RAA489220 Fault Delay
Enumeration. The selected constant is determining the time interval between the system scans in Auto Scan
Mode after a fault is detected (before going to Low Power/Ship Mode).

Table 18. RAA489220 Fault Delay Enumeration

typedef enum e_raa489220_fault_delay
Constant Value Description
BFE_FAULT_DELAY_OFF 0x00 No fault delay
BFE_FAULT_DELAY_0_1S 0x01 Fault Delay 100ms
BFE_FAULT_DELAY_1S 0x02 Fault Delay 1s
BFE_FAULT DELAY_ 5S 0x03 Fault Delay 5s
R16UZ0058EU0100 Rev.1.00 RENESAS Page 12

Oct 17, 2022

RAAA489220 Battery Front End Sample Code Manual

Table 19 shows the options for Ip_mode_settings constant variable, which are listed in the RAA489220 Low
Power Mode Settings Enumeration. The selected constant is determining the behavior of the internal voltage
regulator resulting in transition to Low Power or Ship Mode under certain conditions. For more information, refer to
the RAA489220 Datasheet.

Table 19. RAA489220 Low Power Mode Settings Enumeration

typedef enum e_st_raa489220_Ip_mode

Constant Value Description
BFE_SHIP_MODE 0x00 Lowest power; Weak regulators; Register values are not retained.
BFE_LP_MODE_STRONG_REG 0x11 Strong regulators; Register values are retained.

3.2 Register Bank

The register bank holds all BFE registers in its fields. Each member is a nested structure with a predefined data
type (Table 20). It contains the register address itself, the register type which has fixed values, the default register
value loaded after reset, and the last read register value. Table 21 shows the register type options. The
information is used by the middleware communication driver to assemble the data packet and manage the 12C
communication, but the information is also used to check if the correct default values are loaded on start-up or
after reset.

Table 20. Members of the RAA489220 Register Container Structure

typedef struct st_raa489220_register
Member Type Description
address const e_raa489220 reg_addr_t Register address
type const e_raa489220 reg_type_t Register type
def_value const uint16_t Register default value
value uint16_t Register value

Table 21. RAA489220 Register Type Enumeration

typedef enum e_raa489220_reg_type
Constant Description
READ_ONLY Read only register
READ_WRITE Read/Write register
COMMAND Command

To set a target register to the communication drivers, you need to use the register bank member as a function
parameter. To return the obtained register value into the register bank, you must use the pointer to the nested
structure value member, that is:

bfe i2c register read(p_ctrl,
g raad489220 registers.system config 1,
&g _raad89220 registers.system config l.value);

R16UZ0058EU0100 Rev.1.00 RENESAS Page 13
Oct 17, 2022

RAAA489220 Battery Front End Sample Code Manual

You can find the full register bank declaration in bfe/r_raa489220.h and definition in bfe/r_raad489220.c. The
following code demonstrates a part of it:

/* RAA489220 registers' bank */
st raad89220 registers t g raad489220 registers =
{
.pack _voltage = {.address = BFE_PACK VOLTAGE, .type = READ ONLY,
.value = 0x00, .def value = BFE PACK VOLTAGE DEF},

.cell max voltage = {.address = BFE CELL MAX VOLTAGE, .type = READ ONLY,
.value = 0x00, .def value = BFE CELL MAX VOLTAGE DEF},

.cell min voltage = {.address = BFE CELL MIN VOLTAGE, .type = READ ONLY,
.value = 0x00, .def value = BFE CELL MIN VOLTAGE DEF},

.thermistor 1 = {.address = BFE THERMISTOR 1, .type = READ ONLY,
.value = 0x00, .def value = BFE THERMISTOR 1 DEF},
.system config 1 = {.address = BFE_SYSTEM CONFIG 1, .type = READ WRITE,

.value = 0x00, .def value = BFE SYSTEM CONFIG 1 DEF},

.measure select = {.address = BFE MEASURE SELECT, .type = READ WRITE,
.value = 0x00, .def value = BFE MEASURE SELECT DEF},

.system config 2 = {.address = BFE SYSTEM CONFIG 2, .type = READ WRITE,
.value = 0x00, .def value = BFE SYSTEM CONFIG 2 DEF},

.system config 3 = {.address = BFE SYSTEM CONFIG 3, .type = READ WRITE,
.value = 0x00, .def value = BFE SYSTEM CONFIG 3 DEF},

.0V_eoc = {.address = BFE OV_AND EOC, .type = READ WRITE,
.value = 0x00, .def value = BFE OV _AND EOC DEF},
.cmnd_fault stat = {.address = BFE_FAULT AND STATUS, .type = COMMAND,

.value = 0x00, .def value = BFE FAULT AND STATUS DEF},

.cmnd measurements = {.address = BFE READ MEASUREMENTS, .type = COMMAND,
.value = 0x00, .def value = BFE READ MEASUREMENTS DEF},

.cmnd i pack = {.address = BFE I PACK, .type = COMMAND,
.value = 0x00, .def value = BFE I PACK DEF},

R16UZ0058EU0100 Rev.1.00 RENESAS Page 14
Oct 17, 2022

RAAA489220 Battery Front End Sample Code Manual

3.3 Private (Static) Functions

Table 22 shows the declaration and description of the private functions used in API functions in the source code.
They operate on different levels in the BAL from data conversion to handling the communication with the BFE,
change of state, or certain diagnostic. For more details, refer to the examples in the next sections and the

comments in the source code in bfe/r_raa489220.c.

Table 22. Static Functions Defined in the Source Code

Function

Description

static e_bfe_err_t bfe_reset_hard (st_bfe_ctrl_t * const p_ctrl);

Pulls up THERMZ pin for more than 500ms to reset
the BFE.

static e_bfe_err_t bfe_reset_soft (st_bfe_ctrl_t * const p_ctrl);

Sets the Soft Reset Bit to reset all register values to
the factory settings, including data registers.

static e_bfe_err_t bfe_i2c_register_write (st_bfe_ctrl_t * const p_ctrl,
st_raa489220 register_t tar_reg, uint16_t data);

Writes data in a BFE register.

static e_bfe_err_t bfe_i2c_register_read (st_bfe_ctrl_t * const p_ctrl,
st_raad489220_register_t tar_reg, uint16_t * const p_data);

Read data from a BFE register.

static e_bfe_err_t bfe_i2c_block_read (st_bfe_ctrl_t * const p_ctrl,
st_raa489220_register_t consttar_reg, uint16_t * const p_data);

Reads data from multiple BFE registers.

static fsp_err_t bfe_i2c_event_validate (void);

Validates that the 12C transfer has completed or was
aborted.

static e_bfe_err_t bfe_crc8_calculate (uint8_t * const p_data_buffer,
uint32_t length, uint32_t * const p_crc_result);

Calculates CRC8 checksum.

static e_bfe_err_t bfe_meas_complete_wait (st_bfe_ctrl_t * const p_ctrl,
const e_st raa489220 meas_select_t selection);

Waits in a loop until the measurement has
completed.

static float bfe_adc_to_vpack (uint16_t value);

Converts ADC value to pack voltage.

static float bfe_adc_to_ipack (uint16_t value, float r_shunt_mohm);

Converts ADC value to pack current.

static float bfe_adc_to_vcell (uint16_t value);

Converts ADC value to cell voltage.

static float bfe_adc_to_vtherm (uint16_t value);

Converts ADC value to thermistor voltage.

static float bfe_adc_to_vregpin (uint16_t value);

Converts ADC value to 3.3V and 2.5V regulator
voltage.

static float bfe_adc_to_vbg2ref (uint16_t value);

Converts ADC value to secondary Band Gap
reference voltage.

R16UZ0058EU0100 Rev.1.00 KENESAS
Oct 17, 2022

Page 15

RAAA489220 Battery Front End Sample Code Manual

3.4

API Implementation

The group of functions named in accordance with the convention R_<BFE>_<API_function> implement the
functionalities that can be accessed by applications over the API structure. This section describes their
implementations and interactions with the BFE device.

3.41 R_RAA489220 Init
e_bfe_err_t R_RAA489220_Init (st_bfe_ctrl_t * const p_bfe_ctrl, st_bfe_cfg_t const * const p_bfe_cfg)
s This function initializes the BFE by enabling and configuring the necessary peripheral modules of the MCU. It
Description i e
modifies the p_ctrl->is_initialized, p_ctrl->is_low_power and p_ctrl->is_cont_scanning flags in p_ctrl.
= Checks function parameters.
= Calculates BFE timings.
= Initializes a CRC peripheral module.
Operation = Initializes a 12C interface peripheral module to connect to the BFE device.

= Initializes the ISR peripheral modules
* Resets the BFE.
= Reads BFE die revision, manufacturing ID and device ID.

Precondition

Perform a MCU peripheral communication module setup according to the requirements stated in the BFE
datasheet.

Warnings This function does not check the communication module settings.
p_bfe_ctrl Pointer to the BFE control structure

Parameters
p_bfe_cfg Pointer to the BFE configuration structure
BFE_SUCCESS No error was returned
BFE_ERR_INVALID_POINTER Input argument has invalid pointer
BFE_ERR_COMM_UNSUP_INTERFACE | The selected communication interface is unsupported

5::;‘;: BFE_ERR_UNSUPPORTED_MODE The selected configuration setting is unsupported
BFE_ERR_FSP Error in the FSP layer
BMS_ERR_... Inherit from bfe_reset_hard()
BMS_ERR_... Inherit from bfe_i2c_register_read()

3.4.2 R_RAA489220_Deinit

e_bfe_err_t R_RAA489220_Deinit (st_bfe_ctrl_t * const p_bfe_ctrl);

This function deinitializes the BFE. It disables the used peripheral modules of the MCU. It modifies the Boolean

Description)
variables p_ctrl->is_initialized and p_ctrl->is_low_power.
= Checks function parameters.
. = Deinitializes the 12C peripheral module.
Operation

= Deinitializes the CRC peripheral module.
= Deinitializes the IRQ peripheral module.

Precondition

The BFE interface should have already been initialized.

Warnings -

Parameters p_bfe_ctrl Pointer to the BFE control structure
BFE_SUCCESS No error was returned

Return ; _ ;

Values BFE_ERR_INVALID_POINTER Input argument has invalid pointer

BFE_ERR_FSP Error in the FSP layer

R16UZ0058EU0100 Rev.1.00

Oct 17, 2022

RENESAS Page 16

RAAA489220 Battery Front End Sample Code Manual

3.4.3

R_RAA489220_ Setup

e_bfe_err_t R_RAA489220_Setup (st_bfe_ctrl_t * const p_bfe_ctrl, st_bfe_cfg_t const * const p_bfe_cfg);

Description

This function configures the BFE by writing into all device setup registers. It extracts the necessary data from the
control p_ctrl and configuration p_cfg structures.

Operation

= Checks function parameters.
= Unlocks registers write.

= Verifies if values are correctly written.
= Locks registers write.

= Sends a multiple register write command to set System Config 1, System Config 2, System Config 3, OV and
EOC Thresholds, DVcellOV UV Thresholds, SCC OT/UT Thresholds and Current Threshold Registers.

Precondition

The BFE interface should have already been initialized.

Warnings -
p_bfe_ctrl Pointer to the BFE control structure
Parameters
p_bfe cfg Pointer to the BFE configuration structure
BFE_SUCCESS No error was returned
BFE_ERR_INVALID_POINTER Input argument has invalid pointer
BFE_ERR_DEVICE_NOT_INITIALIZED The BFE interface is not initialized
Saelt:;'s‘ BFE_ERR_INVALID_CONF An invalid configuration parameter was detected.
BFE_ERR_WRITE_VERIFY Register write verification error
BMS_ERR_... Inherit from bfe_i2c_register_write().
BMS_ERR_... Inherit from bfe_i2c_register_read().
3.44 R_RAA489220 Reset

e_bfe_err_t R_RAA489220_Reset (st_bfe_ctrl_t * const p_bfe_ctrl, e_bfe_reset_type_t type);

This function resets the BFE. Several predefined reset options can be set with the type input parameter. It

reset type.

Description modifies the p_ctrl->is_low_power and p_ctrl->is_cont_scanning flags in p_ctrl.
= Checks function parameters.
Operation = Resets the digital part of the device (soft reset) or both digital and analog parts (hard) according to the selected

Precondition

The BFE interface should have already been initialized.

BFE_ERR_INVALID_ARGUMENT

Warnings You should reconfigure the BFE after reset by calling R_RAA489220_ Setup()!
p_bfe_ctrl Pointer to the BFE control structure
Parameters
type Hard or soft reset type selector
BFE_SUCCESS No error was returned
BFE_ERR_INVALID_POINTER Input argument has invalid pointer
Return BFE_ERR_DEVICE_NOT_INITIALIZED The BFE interface is not initialized
Values

Invalid reset type was selected

BMS_ERR ...

Inherit from bfe_reset_soft()

BMS_ERR_...

Inherit from bfe_reset_hard()

R16UZ0058EU0100 Rev.1.00

Oct 17, 2022

RENESAS

Page 17

RAAA489220 Battery Front End Sample Code Manual

The values for the function parameter type are defined as constants in the BFE Reset Types Enumeration in file
bfe/r_bfe_api.h. Table 23 lists the supported reset options by the BFE.

Table 23. BFE Reset Types Enumeration

typedef enum e_bfe_reset_type

Constant

Description

BFE_RESET_TYPE_SOFT

Reset only the digital part.

BFE_RESET_TYPE_HARD

Reset both the digital and analog parts.

3.45 R_RAA489220_ModeSet

e_bfe_err_t R_RAA489220_ModeSet (st_bfe_ctrl_t * const p_bfe_ctrl, e_bfe_mode_t mode);

This function forces the BFE to enter sleep mode or wakes it up. Mode or state is selected with the mode input
parameter from a predefined list of modes. It modifies the p_ctrl->is_low_power, p_ctrl->is_cont_scanning

Description and p_ext_ctrl->weak_regulator flags in p_ctrl.
Be aware that when put in Reset State, the BFE makes a transition to /dle Mode afterwards.
. = Checks input parameters.
Operation

= Changes bits into Device Setup Registers 1, 2, and 3 so that the BFE enters the desired mode.

Precondition | The BFE interface should have already been initialized.

Warnings After reset you must rewrite all configuration registers by calling R_RAA489220_Setup!
p_bfe_ctrl Pointer to the BFE control structure
Parameters
mode Mode selection
BFE_SUCCESS No error was returned.
BFE_ERR_INVALID_POINTER Input argument has invalid pointer
BFE_ERR_UNSUPPORTED_MODE Invalid mode was selected
Return BFE_ERR_DEVICE_NOT_INITIALIZED The BFE interface is not initialized
Values BFE_ERR_INVALID_ARGUMENT Invalid mode was selected
BMS_ERR_... Inherit from bfe_i2c_register_read()
BMS_ERR_... Inherit from bfe_i2c_register_write()
BMS_ERR_... Inherit from bfe_reset_soft()

The values for the function parameter mode are defined as constants in the BFE States and Modes Enumeration
in file bfe/r_bfe_api.h. Table 24 shows the supported modes by the sample code.

Table 24. BFE States and Modes Enumeration

typedef enum e_bfe_mode

Constant

Description

BFE_STATE_RESET

Initial state when all circuits and oscillators are off.

BFE_MODE_IDLE

The device is ready waiting for a task to be executed.

BFE_MODE_AUTOSCAN

Periodic execution of measurements.

BFE_MODE_LOW_POWER_MODE

The BFE is currently in low power mode.

BFE_MODE_SHIP

Lowest power consumption suitable for long-term storage.

R16UZ0058EU0100 Rev.1.00
Oct 17, 2022

RENESAS Page 18

RAAA489220 Battery Front End Sample Code Manual

3.4.6 R_RAA489220_ModeRead

e_bfe_err_t R_RAA489220 ModeRead (st_bfe_ctrl_t * const p_bfe_ctrl, e_bfe_mode_t * const p_mode);

Description

This function reads the current BFE mode. The pointer p_mode points to a variable where the result can be
found.

Operation

Checks function parameters.
Compare control structure parameters to obtain the current mode.

Precondition

The BFE interface should have already been initialized.

Warnings -

p_bfe_ctrl Pointer to the BFE control structure
Parameters

p_mode Pointer to the obtained mode.
Return BFE_SUCCESS No error was returned.
Values BFE_ERR_INVALID_POINTER Input argument has invalid pointer.

Table 24 shows the expected modes returned as a result.

3.4.7 R_RAAA489220_CommTest

e_bfe_err_t R_RAA489220_CommTest (st_bfe_ctrl_t * const p_bfe_ctrl);

Description This function tests the communication between the MCU and the BFE.
= Checks function parameters.
Operation = Reads Device ID Register to test communication.

= Compares the acquired Device ID with the one from p_ctrl structure.

Precondition

The BFE interface should have already been initialized.

Warnings -

Parameters p_bfe_ctrl Pointer to the BFE control structure
BFE_SUCCESS No error was returned.
BFE_ERR_INVALID_POINTER Input argument has invalid pointer.

5:::;2 BFE_ERR_DEVICE_NOT_INITIALIZED | The BFE interface is not initialized.

BFE_ERR_COMM_FAULT Communication fault was found.

BFE_ERR_... Inherit from bfe_i2c_register_read().

3.4.8 R_RAA489220_SelfDiag

e_bfe_err_t R_RAA489220_SelfDiag (st_bfe_ctrl_t * const p_bfe_ctrl, e_bfe_diag_option_t option);

This function runs a self-diagnostic test for the BFE. The only supported option is ‘BFE_FULL_TEST".

Description L. . . . i
If the BFE is in Auto Scan Mode and a fault is detected is_cont_scanning and is_low_power flags are updated.
= Checks function parameters.
= Triggers a Single System Scan that includes regulators test, cells and temperature inputs open-wire test,
Operation oscillator test and other (Please, refer to the RAA489220 datasheet).

= Waits for the scan to complete.
= Reads the Fault Register to check for any asserted flags.

Precondition

The BFE interface should have already been initialized.

R16UZ0058EU0100 Rev.1.00 RENESAS Page 19

Oct 17, 2022

RAAA489220 Battery Front End Sample Code Manual

Always check the p_ctrl->is_fault_detected flag after calling this function. Be aware that open wire test behavior

Warnings depends on the p_ext_cfg->open_wire_test_enable setting.
p_bfe_ctrl Pointer to the BFE control structure
Parameters
option Selected option for the self-diagnostic
BFE_SUCCESS No error was returned.
BFE_ERR_INVALID_POINTER Input argument has invalid pointer.
Return BFE_ERR_DEVICE_NOT_INITIALIZED The BFE interface is not initialized.
Values BFE_ERR_INVALID_ARGUMENT Invalid option was selected.
BFE_ERR_... Inherit from bfe_i2c_register_write().
BFE_ERR_... Inherit from bfe_meas_complete_wait().
3.4.9 R_RAA489220_MemCheck

e_bfe_err_t R_RAA489220_MemCheck (st_bfe_ctrl_t * const p_bfe_ctrl, e_bfe_mem_check_option_t option);

This function checks if the default configuration registers values are loaded correctly. The only supported option

Description |\ BEE CHECK DEF VALS.
= Checks function parameters.
Operation = Reads the current configuration registers values.

= Compares the obtained values with the expected defaults.

Precondition

The BFE interface should have already been initialized.

Warnings -
p_bfe_ctrl Pointer to the BFE control structure
Parameters
option Selected option for the memory test
BFE_SUCCESS No error was returned.
BFE_ERR_INVALID_POINTER Input argument has invalid pointer.
5:::;2 BFE_ERR_DEVICE_NOT_INITIALIZED | The BFE interface is not initialized.

BFE_ERR_INVALID_ARGUMENT

Invalid option was selected.

BFE_ERR ...

Inherit from bfe_i2c_register_read ().

3.410 R_RAA489220_VPackGet

e_bfe_err_t R_RAA489220_VPackGet (st_bfe_ctrl_t * const p_bfe_ctrl, float * const p_value, bool trigger);

This function acquires the battery pack voltage with the BFE. The returned data is converted into voltage. The

Description pointer p_value points to a variable where the measured voltage can be found. You must always select to trigger
a measurement as the function does not support reading of prior measured values.
= Checks function parameters.
= Select a measurement type.

Operation = Trigger a measurement.

= Wait for the Busy bit to clear.
= Read and convert the ADC value.

Precondition

The BFE interface should have already been initialized.

Warnings

Always set trigger input parameter to be true. Be aware that the measured values are not compared for faults in
the BFE internally.

R16UZ0058EU0100 Rev.1.00

Oct 17, 2022

RENESAS Page 20

RAAA489220 Battery Front End Sample Code Manual

p_bfe_ctrl Pointer to the BFE control structure

Parameters p_value Pointer to the acquired data.
trigger Triggered a measurement or only read data for the last one.
BFE_SUCCESS No error was returned.
BFE_ERR_INVALID_POINTER Input argument has invalid pointer.
BFE_ERR_DEVICE_NOT_INITIALIZED The BFE interface is not initialized.

5:::;: BFE_ERR_INVALID ARGUMENT Invalid option was selected.

BFE_ERR_... Inherit from bfe_i2c_register_write().
BFE_ERR_... Inherit from bfe_i2c_register_read().
BFE_ERR_... Inherit from bfe_meas_complete_wait().

3.411 R_RAA489220_IPackGet

e_bfe_err_t R_RAA489220_IPackGet (st_bfe_ctrl_t * const p_bfe_ctrl, st_bfe_i_pack_meas_t * const p_values, bool

trigger);

This function acquires the battery pack current with the BFE. The returned data is converted into current. The
pointer p_values points to a structure where the measured currents can be found. The function measures both

Description charge and discharge currents. You must always select to trigger a measurement as the function does not
support reading of prior measured values.
= Checks function parameters.
= Select a measurement type.

Operation = Trigger a measurement.

= Wait for the Busy bit to clear.
» Read and convert the ADC value.

Precondition

The BFE interface should have already been initialized.

Always set trigger input parameter to be true. Be aware that the measured values are not compared for faults in

Warnings the BFE internally.
p_bfe_ctrl Pointer to the BFE control structure

Parameters p_values Pointer to the acquired data structure.
trigger Triggered a measurement or only read data for the last one.
BFE_SUCCESS No error was returned.
BFE_ERR_INVALID_POINTER Input argument has invalid pointer.
BFE_ERR_DEVICE_NOT_INITIALIZED The BFE interface is not initialized.

s:lt::s' BFE_ERR_INVALID_ARGUMENT Invalid option was selected.

BFE_ERR_... Inherit from bfe_i2c_register_write().
BFE_ERR_... Inherit from bfe_i2c_register_read().
BFE_ERR ... Inherit from bfe_meas_complete_wait().

R16UZ0058EU0100 Rev.1.00

Oct 17, 2022

RENESAS

Page 21

RAAA489220 Battery Front End Sample Code Manual

The void pointer p_values points to the structure where this API function returns the measured values. The
structure is defined in the file bfe/r_bfe_api.h and has the following content:

/** BFE battery pack current measurement structure */
typedef struct st bfe i pack meas

{
float
float

i charge;
i discharge;

} st bfe 1 pack meas t;

3.412 R_RAA489220_ VCelisGet

///< Charge current
///< Discharge current

[A]

e_bfe_err_t R_RAA489220_VCellsGet (st_bfe_ctrl_t * const p_bfe_ctrl, bfe_vcell_meas_t * const p_values, bool trigger);

This function acquires the voltages of all cells and the battery pack voltage. The returned data is converted into

Description voltage. The pointer p_values points to a union where the measured cell voltages can be found. You must always
select to trigger a measurement as the function does not support reading of prior measured values.
= Checks function parameters.
= Select a measurement type.

Operation = Trigger a measurement.

= Wait for the Busy bit to clear.
= Read and convert the ADC value.

Precondition

The BFE interface should have already been initialized.

Always set trigger input parameter to be true. Be aware that the measured values are not compared for faults in

Warnings the BFE internally.
p_bfe_ctrl Pointer to the BFE control structure

Parameters p_values Pointer to the acquired data.
trigger Triggered a measurement or only read data for the last one.
BFE_SUCCESS No error was returned.
BFE_ERR_INVALID_POINTER Input argument has invalid pointer.
BFE_ERR_DEVICE_NOT_INITIALIZED The BFE interface is not initialized.

5:::;: BFE_ERR_INVALID_ ARGUMENT Invalid option was selected.

BFE_ERR_... Inherit from bfe_i2c_register_write().
BFE_ERR ... Inherit from bfe_i2c_register_read().
BFE_ERR_... Inherit from bfe_meas_complete_wait().

R16UZ0058EU0100 Rev.1.00

Oct 17, 2022

RENESAS

Page 22

RAAA489220 Battery Front End Sample Code Manual

The void pointer p_values points to the union where this API function returns the measured values. The union type
is redefined in the file bfe/r_raa489220.h and has the following content:

/** RAA489220 measured cells voltages data structure */
typedef union u raad489220 vcells meas

{

float vector[1l1l];

struct

{
float v _cell 1; ///< Cell 1 voltage [V]
float v _cell 2; ///< Cell 2 voltage [V]
float v_cell 3; ///< Cell 3 voltage [V]
float v_cell 4; ///< Cell 4 voltage [V]
float v_cell 5; ///< Cell 5 voltage [V]
float v _cell 6; ///< Cell 6 voltage [V]
float v cell 7; ///< Cell 7 voltage [V]
float v _cell 8; ///< Cell 8 voltage [V]
float v_cell 9; ///< Cell 9 voltage [V]
float v_cell 10; ///< Cell 10 voltage [V]
float v_pack; ///< Pack voltage [V]

} measurements;

} u raa489220 vcells meas t;

3.413 R_RAA489220 Temps

e_bfe_err_t R_RAA489220_Temps (st_bfe_ctrl_t * const p_bfe_ctrl, bfe_temp_meas_t * const p_values, bool trigger);

Description

This function acquires the external temperature voltage. The returned data is converted into voltage. The pointer
p_values points to a union where the measured voltages can be found. You must always select to trigger a
measurement as the function does not support reading of prior measured values.

Operation

= Checks function parameters.

= Enable VTEMP pin voltage.

= Select a measurement type.

= Trigger a measurement.

= Wait for the Busy bit to clear.

* Read and convert the ADC value.
= Disable VTEMP pin voltage.

Precondition

The BFE interface should have already been initialized.

Always set trigger input parameter to be true, Be aware that the measured values are not compared for faults in

Warnings the BFE internally.
p_bfe_ctrl Pointer to the BFE control structure
Parameters p_values Pointer to the acquired data.
trigger Triggered a measurement or only read data for the last one.
R16UZ0058EU0100 Rev.1.00 RENESAS Page 23

Oct 17, 2022

RAAA489220 Battery Front End Sample Code Manual

BFE_SUCCESS No error was returned.
BFE_ERR_INVALID_POINTER Input argument has invalid pointer.
BFE_ERR_DEVICE_NOT_INITIALIZED The BFE interface is not initialized.
Return BFE_ERR_INVALID ARGUMENT Invalid option was selected.
Values
BFE_ERR_... Inherit from bfe_i2c_register_write().
BFE_ERR_... Inherit from bfe_i2c_register_read().
BFE_ERR_... Inherit from bfe_meas_complete_wait().

The void pointer p_values points to the union where this API function returns the measured values. The union type
is redefined in the file bfe/r_raa489220.h and has the following content:

/** RAA489220 measured temperatures data structure */
typedef union u raad489220 temps meas
{

float vector([3];

struct

{
float v_therm 1; ///< Thermistor 1 voltage [V]
float v_therm 2; ///< Thermistor 2 voltage [V]
float v_temp; ///< VTEMP pin voltage [V]

} measurements;
} u raad489220 temps meas t;

3.414 R_RAA489220_AliGet

e_bfe_err_t R_RAA489220_AlIGet (st_bfe_ctrl_t * const p_bfe_ctrl, bfe_all_meas_t * const p_values, bool trigger);

This function acquires the voltages of all cells, the battery pack voltage, charge and discharge currents, external
temperatures and regulator voltage. The returned data is converted into voltages and currents. The pointer

Description p_values points to a union where the measured values can be found. You must always select to trigger a
measurement as the function does not support reading of prior measured values.
= Checks function parameters.
= Select a measurement type.

Operation = Trigger a measurement.

= Wait for the Busy bit to clear.
= Read and convert the ADC value.

Precondition | The BFE interface should have already been initialized.

Always set trigger input parameter to be true. Be aware that the measured values are not compared for faults in

Warnings the BFE internally.
p_bfe_ctrl Pointer to the BFE control structure
Parameters p_values Pointer to the acquired data.
trigger Triggered a measurement or only read data for the last one.
R16UZ0058EU0100 Rev.1.00 RENESAS Page 24

Oct 17, 2022

RAAA489220 Battery Front End Sample Code Manual

Return
Values

BFE_SUCCESS

No error was returned.

BFE_ERR_INVALID_POINTER

Input argument has invalid pointer.

BFE_ERR_DEVICE_NOT_INITIALIZED

The BFE interface is not initialized.

BFE_ERR_INVALID_ARGUMENT

Invalid option was selected.

BFE_ERR ... Inherit from bfe_i2c_register_write().
BFE_ERR ... Inherit from bfe_i2c_register_read().
BFE_ERR ... Inherit from bfe_meas_complete_wait().

The void pointer ‘p_values’ points to the union where this API function returns the measured values. The union’s

type is redefined in the file bfe/r_raa489220.h and has the following content:

/** RAA489220 measure all data structure */

typedef union u raa489220 all meas

{

float vector[19];

struct

{

float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float

v_cell 1;///<
v cell 2;///<
v _cell 3;///<
v_cell 4;///<
v _cell 5;///<
v_cell 6;///<
v_cell 7;///<
v _cell 8;///<
v_cell 9;///<

v_cell 10;///< Cell 10 voltage

Cell
Cell
Cell
Cell
Cell
Cell
Cell
Cell
Cell

W O 31 o U b» W N -

voltage
voltage
voltage
voltage
voltage
voltage
voltage
voltage
voltage

v_pack;///< Pack voltage [V]

v_pin v3p3;///< Pin V3P3 voltage
v_pin v2p5;///< Pin V2P5 voltage
v_ref bg2;///< Second Band Gap reference voltage
v_temp;///< VTEMP pin voltage
v_therm 1;///< Thermistor 1 voltage
v_therm 2;///< Thermistor 2 voltage
i discharge;///< Discharge current

i charge;///< Charge current
} measurements;
} u raa489220 all meas t;

<< < << <<

[
[
[
[
[
[
[
[V
[

]
]
]
]
]
]
]
]
]

<

(V]

[A]

(V]

R16UZ0058EU0100 Rev.1.00
Oct 17, 2022

RENESAS

Page 25

RAAA489220 Battery Front End Sample Code Manual

3.415 R_RAA489220_SysScanGet

e_bfe_err_t R_RAA489220_SysScanGet(st_bfe_ctrl_t * const p_bfe_ctrl, bfe_other_meas_t * const p_values, bool trigger);

This function runs a single system scan and reads the acquired values for pack voltage, min and max cell voltage,
charge and discharge current and temperatures. The returned data is converted into voltages and currents. The

= Wait for the Busy bit to clear.
= Read and convert the ADC value.

Description pointer p_values points to a union where the measured values can be found. You can select whether to trigger a
measurement and read the obtained values or only read the last obtained values.
= Checks function parameters.
= Select a measurement type.

Operation = Trigger a measurement.

Precondition

The BFE interface should have already been initialized.

Warnings Be aware that the measured values are not compared for faults in the BFE internally.
p_bfe_ctrl Pointer to the BFE control structure

Parameters p_values Pointer to the acquired data.
trigger Triggered a measurement or only read data for the last one.
BFE_SUCCESS No error was returned
BFE_ERR_INVALID_POINTER Input argument has invalid pointer.
BFE_ERR_DEVICE_NOT_INITIALIZED The BFE interface is not initialized.

5:::;: BFE_ERR_INVALID_ARGUMENT Invalid option was selected.

BFE_ERR_... Inherit from bfe_i2c_register_write().
BFE_ERR ... Inherit from bfe_i2c_register_read().
BFE_ERR_... Inherit from bfe_meas_complete_wait().

The void pointer ‘p_values’ points to the union where this API function returns the measured values. The union’s
type is redefined in the file ‘bfe/r_raa489220.h’ and has the following content:

/** RAA489220 single system scan data structure */

typedef union u raa489220 sys scan meas

{

float vector[7];

struct

{

float v _pack;
float v_cell max;

float v_cell min;
float v_therm 1;
float v_therm 2;
float i discharge;
float i charge;

} measurements;

} u raad489220 sys scan _meas_t;

///< Pack voltage [V]

///< Maximum cell voltage
///< Minimum cell voltage
///< Thermistor 1 voltage
///< Thermistor 2 voltage
///< Discharge current [A]
///< Charge current [A]

SE=S

R16UZ0058EU0100 Rev.1.00

Oct 17, 2022

RENESAS Page 26

RAAA489220 Battery Front End Sample Code Manual

3.416 R_RAAA489220_FaultsAllRead

e_bfe_err_t R_RAA489220_FaultsAllRead (st_bfe_ctrl_t * const p_bfe_ctrl, bfe_faults_t * const p_faults);

This function reads the Fault Register. The pointer p_faults points to a structure where the fault data can be

= Copies fault bits to faults data structure.

Description found. It modifies the p_ctrl->is_low_power flags in p_ctrl.
= Checks function parameters.
Operation » Reads Fault Register.

Precondition

The BFE interface should have already been initialized.

BFE_ERR_DEVICE_NOT_INITIALIZED

Warnings -
p_bfe_ctrl Pointer to the BFE control structure
Parameters
p_faults Pointer to faults data structure.
BFE_SUCCESS No error was returned
Return BFE_ERR_INVALID_POINTER Input argument has invalid pointer.
Values

The BFE interface is not initialized.

BFE_ERR ...

Inherit from bfe_i2c_register_read().

The void pointer ‘p_ faults’ points to the structure where this API function returns the fault data. The structure’s
type is redefined in the file ‘bfe/r_raa489220.h’. A non-zero member of the structure (‘true’ for Boolean types)
indicates that an error is detected. It has the following content:

/** RAA489220 fault data structure */
typedef struct st raad489220 faults

{

bool flt charge over current;///< Charge Overcurrent Fault
bool flt discharge over current;///< Discharge Overcurrent Fault
bool flt short circuit; ///< Short-Circuit Fault
bool flt under temeprature; ///< Under-Temperature Fault
bool flt over temeprature; ///< Over-Temperature Fault
bool flt undervoltage; ///< Undervoltage Fault
bool flt overvoltage; ///< Overvoltage Fault
bool flt delta cell ov; ///< Delta Cell Voltage Fault
bool flt comm timeout; ///< Communication Time Out
bool flt self test; ///< Self Test Fault
bool flt lock out; ///< Lockout (voltage) Fault
bool flt vtemp; ///< Open-wire on temperature pins
bool flt internal over temp; ///< Internal Over Temperature Fault
bool flt open wire; ///< Open-Wire Fault
bool flt regulator; ///< Under/over voltage conditions at the
///< V3P3 and V2P5 pins
} st raa489220 faults t;
R16UZ0058EU0100 Rev.1.00 RENESAS Page 27

Oct 17, 2022

RAAA489220 Battery Front End Sample Code Manual

3.417 R_RAAA489220_FaultsCheck

e_bfe_err_t R_RAA489220_ FaultsCheck (st_bfe_ctrl_t * const p_bfe_ctrl);

This function checks ALERT pin and reads the Fault Register. When a fault is detected the is_fault_detected flag

Check Fault Register for set flags.

Description is set in p_ctrl. If the BFE is in auto scan mode and a fault is detected is_cont_scanning and is_low_power
flags are updated.
Checks function parameters.

Operation Checks the ALERT pin for assertion if its normal functionality is used.

Precondition

The BFE interface should have already been initialized.

BFE_ERR_DEVICE_NOT_INITIALIZED

Warnings Always check the p_ctrl->is_fault_detected flag after calling this function!

Parameters p_bfe_ctrl Pointer to the BFE control structure
BFE_SUCCESS No error was returned.

Return BFE_ERR_INVALID_POINTER Input argument has invalid pointer.

Values

The BFE interface is not initialized.

BFE_ERR ...

Inherit from bfe_i2c_register_read().

3.418 R_RAA489220_FaultsAllClear

e_bfe_err_t R_RAA489220_FaultsAllClear (st_bfe_ctrl_t * const p_bfe_ctrl, bool * const p_success);

This function attempts to clear all faults in the BFE. The pointer p_success points to a variable where the result of

» Reads Fault Register to verify fault clear.

Description clearing faults can be found.
= Checks function parameters.
Operation = Sets Clear All Faults bit in System Config 1 Register.

Precondition

The BFE interface should have already been initialized.

Warnings Always check the boolean variable pointed by p_success after calling this function.
p_bfe_ctrl Pointer to the BFE control structure

Parameters
p_success Pointer to boolean faults clear status variable.
BFE_SUCCESS No error was returned.
BFE_ERR_INVALID_POINTER Input argument has invalid pointer.

s:lt:;z BFE_ERR_DEVICE_NOT INITIALIZED | The BFE interface is not initialized.

BFE_ERR_WRITE_VERIFY

Register write verification error.

BMS_ERR ...

Inherit from bfe_spi_msg_send_resp_get().

R16UZ0058EU0100 Rev.1.00
Oct 17, 2022

RENESAS

Page 28

RAAA489220 Battery Front End Sample Code Manual

3.419 R_RAAA489220_CeliBalanceCtrl

e_bfe_err_t R_RAA489220_CellBalanceCtrl (st_bfe_ctrl_t * const p_bfe_ctrl, bfe_cb_cfg_t * const p_bal_cfg,

e_bfe_process_ctrl_t ctrl_option);

Description

This function is unsupported by the current APl implementation.

Operation

Precondition

Warnings This function is not supported by the current APl implementation!
p_bfe_ctrl Pointer to the BFE control structure
Parameters p_bal_cfg Pointer to the balancing configuration structure.
ctrl_option Specify action to enable or inhibit cell balancing.
Return
Values BFE_ERR_UNSUPPORTED_FEATURE This feature is not supported by the current APl implementation.

3.4.20 R_RAAA489220_IsCellBalancing

e_bfe_err_t R_RAA489220_IsCellBalancing (st_bfe_ctrl_t * const p_bfe_ctrl);

Description

This function is unsupported by the current APl implementation.

Operation

Precondition

Warnings This function is not supported by the current APl implementation!

Parameters p_bfe_ctrl Pointer to the BFE control structure

Return
Values BFE_ERR_UNSUPPORTED_FEATURE This feature is not supported by the current APl implementation.

3.4.21 R_RAA489220_ContScanCtrl

e_bfe_err_t R_RAA489220_ContScanCtrl (st_bfe_ctrl_t * const p_bfe_ctrl, bfe_scan_cont_cfg_t * const p_scan_cfg,

e_bfe_process_ctrl_t ctrl_option);

Description

This function is unsupported by the current APl implementation.

Operation

Precondition

Warnings This function is not supported by the current APl implementation!
p_bfe_ctrl Pointer to the BFE control structure
Parameters p_scan_cfg Pointer to the continuous scan configuration structure.
ctrl_option Specify action to enable or inhibit continuous scan.
Return
Values BFE_ERR_UNSUPPORTED_FEATURE This feature is not supported by the current APl implementation.

R16UZ0058EU0100 Rev.1.00

Oct 17, 2022

RENESAS Page 29

RAAA489220 Battery Front End Sample Code Manual

3.4.22 R_RAA489220_WatchdogCtrl

e_bfe_err_t R_RAA489220_WatchdogCtrl (st_bfe_ctrl_t * const p_bfe_ctrl, bfe_watchdog_ctrl_t * const
p_control_options);

Description

This function is unsupported by the current APl implementation.

Operation

Precondition

Warnings This function is not supported by the current APl implementation!
p_bfe_ctrl Pointer to the BFE control structure
Parameters
Return
Values BFE_ERR_UNSUPPORTED_FEATURE This feature is not supported by the current APl implementation.

3.4.23 R_RAAA489220_FETsCtrl

e_bfe_err_t R_RAA489220_FETsCtrl (st_bfe_ctrl_t * const p_bfe_ctrl, uint8_t group_num, e_bfe_fet_state_t c_fet_state,
e_bfe_fet_state_t d_fet_state);

This function controls the power FETs. The FET driver output state is set with the parameters c_fet_state and

Description d_fet_state. You can control more than one pair of charge and discharge FETs by using the parameter
group_num.
= Checks function parameters.
= Reads System Config 1 Register.

Operation = Changes LCFET and LDFET bits according to input parameters.

= Writes back to System Config 1 Register.

= Reads System Config 1 Register to verify status of the FETs control bits.

Precondition

The BFE interface should have already been initialized.

Warnings Call the function only when the device is in Idle Mode!
p_bfe_ctrl Pointer to the BFE control structure
group_num Select FET group to control.

Parameters
c_fet_state Specify state of the charge FET control pin.
d_fet_state Specify state of the discharge FET control pin.
BFE_ERR_UNSUPPORTED_FEATURE This function is not supported by the current API.
BFE_SUCCESS No error was returned.
BFE_ERR_INVALID_POINTER Input argument has invalid pointer.
BFE_ERR_DEVICE_NOT_INITIALIZED The BFE interface is not initialized.

\R;:It:;: BFE_ERR_INVALID_ARGUMENT The selected FET state was not correct.

BFE_ERR_FET_CONTROL

The FET state was not changed according to input parameters.

BFE_ERR_INVALID_OPERATION

The FETs cannot be controlled manually only in /dle Mode.

BMS_ERR_...

Inherit from bfe_i2c_register_read().

BMS_ERR_...

Inherit from bfe_i2c_register_write().

The states are fixed. Table 25 shows the available options for parameter c_fet_state controlling the charge FET,
and Table 26 shows the available options for parameter d_fet_state controlling the discharge FET.

R16UZ0058EU0100 Rev.1.00

Oct 17, 2022

RENESAS

Page 30

RAAA489220 Battery Front End Sample Code Manual

Table 25. BFE Discharge FET State Options Enumeration

typedef enum e_bfe_dfet_state

Constant

Description

BFE_DFET_ON

The discharge FET is conducting.

BFE_DFET_OFF

The discharge FET is not conducting.

Table 26. BFE Charge FET State Options Enumeration

typedef enum e_bfe_cfet_state

Constant

Description

BFE_CFET_ON

The charge FET is conducting.

BFE_CFET_OFF

The charge FET is not conducting.

3.4.24 R_RAA489220_HVGPIOCtrl

e_bfe_err_t R_RAA489220_HVGPIOCtri(st_bfe_ctrl_t * const p_bfe_ctrl, bfe_gpio_ctrl_t * const p_control_options);

This function controls the HVGPIO used for Fuse blow and battery pack disabling. The void pointer p_ options

Description points to the GPIO parameters.
= Checks function parameters.
= Reads System Config 1 Register.
Operation = Changes HVGPIO_ASSERT bit according to input parameters.

= Writes back to System Config 1 Register.
» Reads System Config 1 Register to verify status of the HYGPIO control bit.

Precondition

The BFE interface should have already been initialized.

Warnings -
p_bfe_ctrl Pointer to the BFE control structure
Parameters
ctrl_option Pointer to GPIO pins control structure.
BFE_SUCCESS No error was returned.
BFE_ERR_INVALID_POINTER Input argument has invalid pointer.
Return BFE_ERR_DEVICE_NOT_INITIALIZED The BFE interface is not initialized.
Values BFE_ERR_INVALID_ARGUMENT The selected FET state was not correct.
BMS_ERR ... Inherit from bfe_i2c_register_read().

BMS_ERR_...

Inherit from bfe_i2c_register_write().

The output level for the HVGPIOs is controlled by the void function parameter p_control_options. It points to a
control structure that is redefined in file bfe/r_raa489220.h. Table 27 shows the content of that structure having
only one member, and Table 28 shows the fixed options listed in RAA489220 HVGPIO Output State Options

Enumeration.
Table 27. Members of the RAA489220 HVGPIO Control Structure
typedef struct st_raa489220_ gpio_ctrl
Member Type Description

hvgpio_state

e_raa489220_hvgpio_states_t HVGPIO output state

R16UZ0058EU0100 Rev.1.00

Oct 17, 2022

RENESAS Page 31

RAAA489220 Battery Front End Sample Code Manual

Table 28. RAA489220 HVGPIO Output State Options Enumeration

Constant Description
BFE_HVGPIO_LOW High-voltage output is asserted to Vss pin
BFE_HVGPIO_HIGH_Z High-voltage output is in high-impedance state

3.4.25 R_RAA489220 RegisterRead

e_bfe_err_t R_RAA489220_RegisterRead (st_bfe_ctrl_t * const p_ctrl, bfe_register_t * const p_register);

This function reads a register in the BFE. The pointer p_register points to a structure that contains the register

Description . o
Pt address, value and other device specific parameters.

= Checks function parameters.

Operation
= Sends a read command.

Precondition | The BFE interface should have already been initialized.

Warnings -
p_bfe_ctrl Pointer to the BFE control structure
Parameters
p_register Pointer to register address and data container.
BFE_SUCCESS No error was returned.
Return BFE_ERR_INVALID_POINTER Input argument has invalid pointer.
Values BFE_ERR_DEVICE_NOT_INITIALIZED The BFE interface is not initialized.
BMS_ERR_... Inherit from bfe_i2c_register_read().

The void type API function parameter p_register provides path to the target register and data. It is redefined as a
RAA489220 Quick Register Access Structure in file bfe/r_raa489220.h. Table 29 shows the content the structure.
The register address is assigned with a member of the register bank that is described in section Register Bank.
The read data are available after calling the function in the third member of the structure data.

Table 29. Members of the RAA489220 Quick Register Access Structure

typedef struct st_raa489220_quick_reg

Member Type Description
p_targer_register st_raa489220_register_t Pointer to register address data container.
data uint16_t Register data field.
R16UZ0058EU0100 Rev.1.00 RENESAS Page 32

Oct 17, 2022

RAAA489220 Battery Front End Sample Code Manual

3.4.26 R_RAAA489220_RegisterWrite

e_bfe_err_t R_RAA489220_RegisterWrite (st_bfe_ctrl_t * const p_ctrl, bfe_register_t * const p_register);

This function writes in a register of the BFE. The pointer p_register points to a structure that contains the register

Description address, value and other device specific parameters.

= Checks function parameters.

Operation)
= Sends a write command.

Precondition | The BFE interface should have already been initialized.

Warnings -
p_bfe_ctrl Pointer to the BFE control structure
Parameters
p_register Pointer to register address and data container.
BFE_SUCCESS No error was returned
Return BFE_ERR_INVALID_POINTER Input argument has invalid pointer.
Values BFE_ERR_DEVICE_NOT_INITIALIZED | The BFE interface is not initialized.
BMS_ERR_... Inherit from bfe_i2c_register_write().

3.5 Configuration

3.5.1 MCU Hardware Abstraction Layer

The Hardware Abstraction Layer drivers used for the peripherals of the selected MCU from Renesas RA Family
are generated in e2studio using Flexible Software Package (FSP). They can be modified in file configuration.xml.
It is not necessary to change anything in the FSP configuration as long as you are using the same MCU and
evaluation board as described in the RAA489220 Sample Code Quick Start Guide.

3.5.2 Battery Front End

The BFE settings are entered in the configuration structures, defined in bal_data.c. The members of g _bfe0 cfg
and its extension g_bfe0_ext_cfg are constant variables that are initialized with the desired settings during
definition and cannot be further modified in the code. In the comment sections of the type definitions of those
structures in src/bfe/r_bfe_api.h and src/bfe/r_bfe_raa489220.h you can find instructions about what values can
be assigned to the members. Be aware that some of the variable types are enumerations with fixed constants.
The following code demonstrates only part of the definition and initialization of the structures:

/* Extended configuration structure */
const st raa489220 ext cfg t g bfel ext cfg =
{
.r shunt charge mohm = 1000.0f,// Set charge current shunt resistance in
// mohms!
.r_shunt discharge mohm = 100.0f,// Set discharge current shunt resistance
// in mohms'!

.thold overvolt lockout v = 4.30f,// Set the overvoltage lockout threshold
// in Volts! (3.0-4.5V, 100mV)

.thold overvolt v = 4.25f, // Set the overvoltage threshold in
// Volts! (3.23-4.5V, 10mV)
.thold undervolt v = 2.70f, // Set the undervoltage threshold in
// Volts! (1.5-3.0V, 100mV)
.thold undervolt lockout v = 2.00f, // Set the undervoltage lockout threshold

// in Volts! (1.5-3.0V, 100mV)
.thold delta cell overvolt v = 0.5f,// Set the delta cell overvoltage

R16UZ0058EU0100 Rev.1.00 RENESAS Page 33
Oct 17, 2022

RAAA489220 Battery Front End Sample Code Manual

// threshold in Volts! (0.5-2.0V, 100mV)

.hyst overovltage = BFE CELL OV _HYST 100MV, // Set the cell overvoltage
// hysteresis!
.hyst undervltage = BFE CELL UV_HYST 300MV, // Set the cell undervoltage

// hysteresis!

.thold charge over temp = BFE COT THLD 0 294V, // Set the charge over-
// temperature threshold!
.thold charge under temp = BFE CUT THLD 1 198V, // Set the charge under-

// temperature threshold!

.thold discharge over temp = BFE DOT THLD 0 150V, // Set the discharge over-
// temperature threshold!

.thold discharge under temp = BFE DUT THLD 1 622V, // Set the discharge under-
// temperature threshold!

.pin_alert = BSP_IO PORT 01 PIN 05, // Set MCU pin connected to the
// ALERT pin of the BFE
.pin reset = BSP IO PORT 00 PIN 14, // Set MCU pin connected to the

// THERM2 pin of the BFE
}i

/* Configuration structure */
const st bfe cfg t g bfel0 cfg =
{

.p_cells select = &g bfe0O cells cfg, // Do not modify!!!
.p_temps select = &g bfel ext temps cfg, // Do not modify!!!
.peripheral type = BFE COMMUNICATION INTERFACE I2C, // Do not modify!!!
.driver cfg = BFE DRIVER LOW SIDE, // Do not modify!!!
.fet cfg = BFE FET CONFIG PARALLEL, // Select FETs configuration!
.p_extend = &g bfel ext cfg, // Do not modify!!!

}s

3.5.3 Battery Abstraction Layer

The Battery Abstraction Layer is configured in bfe/r_bfe_cfg.h. The file contains pre-processor macros

(Table 30). They are used for enabling/disabling parts of the code (that is, verify write into register, check input
parameters). You can find the available options for the values in the description section inside the table but also in
the comment sections of the source code. Be aware that all macro values are Boolean (0 or 1).

Table 30. BFE Software Library Configuration Settings

. Default _
Option (Macro name) Value Description

BFE_I2C_CRC_USE 1 gii;:ﬁzikffcommumcamn:0-Don0hme/1-Use
BFE CFG PARAM CHECKING EN 1 Functions check input parameters: 0 - Disable/ 1 - Enable

- - - - (Recommended).
BFE CFG REG WRITE VERIFY EN 1 Register verification after write command: 0 - Disable/ 1 - Enable

- - - - - (Recommended).

R16UZ0058EU0100 Rev.1.00 RENESAS Page 34

Oct 17, 2022

RAAA489220 Battery Front End Sample Code Manual

3.54 Demo Application

The demo application is configured in r_bms_cfg.h. The file contains pre-processor macros (Table 31). They are
used for inserting constants inside the source code like main loop time interval, number of loops before running
device tests and data visualization period during auto scan. You can find the available options for the values in the
description section inside the table but also in the comment sections of the source code. The macro values are
whole numbers (unsigned).

Table 31. BFE Demo Project Configuration Settings

Option Default Description
BMS_FAULT_CHECK 10U (loops) Faults check interval: After how many loops the BFE is tested for faults?
BMS_SELF DIAG 50U (Ioops) Self-diagnostic interval: After how many loops a complete BFE self-

diagnostic test is accomplished?

Display data interval: After how many loops the measured data is

BMS_AUTO_SCAN 50U (loops) displayed in Auto Scan Mode?

TIME_PERIOD_MS_PERIODIC 100U (100 ms) The main loop time interval.

3.6 Examples

This section demonstrates the API functions but also the communication drivers. You can use either the API
functions from file bfe/r_bfe_api.h or their implementation from file bfe/r_raa489220.h. In the second case when
keeping the application but changing the BFE, you have to replace all the functions rather than just reconnect the
interface. For more examples refer to the sample code (files r_bms.c and bfe/r_raa489220.c).

= Initialization, setup and testing the BFE

/* Initialize the Battery Front End. */
bfe err = R RAA489220 Init (&g bfelO ctrl, &g bfel cfg);

/* Check for error return */
if ((bfe err != BFE SUCCESS) || (g bfe0 ctrl.is fault detected == true)
{

bfe faults handler();

/* Check 1f registry defaults are correctly loaded. */
bfe err = R RAA489220 MemCheck (&g bfel ctrl, BFE CHECK DEF VALS);

/* Check for error return */
if (bfe err != BFE SUCCESS)

{
bfe faults handler();

/* Configure the Battery Front End. */
bfe err = R RAA489220 Setup (&g bfelO ctrl, &g bfel cfqg);

/* Check for error return */
if (bfe err != BFE SUCCESS)
{

bfe faults handler();

/* Run self diagnostic. */

R16UZ0058EU0100 Rev.1.00 RENESAS Page 35
Oct 17, 2022

RAAA489220 Battery Front End Sample Code Manual

bfe err = R RAA489220 SelfDiag (&g _bfel0 ctrl, BFE FULL TEST);

/* Check for error return */
if ((bfe err != BFE SUCCESS) || (g bfe0 ctrl.is fault detected == true)

{
bfe faults handler();

= Measuring cell voltages, temperatures, battery voltages and current (It is assumed that the BFE is already
initialized and configured)

e bfe err t bfe err = BFE SUCCESS; // Error code
static u raa489220 all meas t s meas data all = {0};

/* Clean the data structure. */
memset (&s_meas data all, 0, sizeof (s _meas data all));

/* Measure all voltages. */
bfe err = R RAA489220 AllGet (&g bfel0 ctrl, & s meas data all, true);

/* Check for error return */
if (bfe err != BFE SUCCESS)
{

bfe faults handler();

= Enabling the CFET and DFET
e bfe err t bfe err = BFE SUCCESS; // Error code

bfe err = R RAA489220 FETsCtrl (&g bfe0 ctrl, 1, BFE CFET ON, BFE DFET ON);

/* Check for error return */
if (bfe err != BFE SUCCESS)
{

bfe faults handler () ;

= Turning ON Auto Scan
e bfe err t bfe err = BFE SUCCESS; // Error code

bfe err = R RAA489220 ModeSet (&g bfel ctrl, BFE MODE AUTOSCAN) ;

/* Check for error return */
if(bfe_err = BFE_SUCCESS)

{
bfe faults handler () ;

= Accessing Single Register
e bfe err t bfe err = BFE SUCCESS; // Error code

R16UZ0058EU0100 Rev.1.00 RENESAS Page 36
Oct 17, 2022

RAAA489220 Battery Front End Sample Code Manual

st raa489220 quick reg t s reg container =

{

.p_targer register = &g raa489220 registers.measure select;
.data = 0x0080;
}i

bfe err = R RAA489220 RegisterWrite (&g bfe0 ctrl, &s reg container);

/* Check for error return */
if(bfeierr I= BFE SUCCESS)

{
bfe faults handler () ;

= Using the communication drivers to write and then read a register
e bfe err t bfe err = BFE SUCCESS; // Error status

u raad89220 configl reg t system config 1 = {0};
/* Set System Configure 1 Register */

system config 1l.value b.LCFET EN 0; // Ensure Charge FET is off
system config 1l.value b.LDFET EN 0; // Ensure Discharge FET is off

bfe err = bfe i2c register write(p ctrl,

g raad489220 registers.system config 1,

system config 1l.value);
BFE_ERROR RETURN (BFE SUCCESS == bfe err, bfe err); // Check for errors.

bfe err = bfe i2c register read(p_ctrl,

g raad489220 registers.system config 1,

&g _raad89220 registers.system config l.value);
BFE ERROR_RETURN (BFE _SUCCESS == bfe err, bfe err); // Check for errors.

= Using the communication driver to read multiple registers
e bfe err t bfe err = BFE SUCCESS; // Error status

static uintl6_t s data buffer[BFE MAX READ DATA LGTH] = {0};

/* Read measured data. */
bfe err = bfe i2c block read(p ctrl,
g raa489220 registers.cmnd measurements,
&s_data buffer[0]);
BFE_ERROR RETURN (BFE SUCCESS == bfe err, bfe err); // Check for errors.

CAUTION: Be aware that bfe_i2c_register_write(), bfe_i2c_register_read(), and bfe_i2c_block_read() are not
global functions. You can use them for custom code development. If you want to work directly with registers or
commands, consider the R_RAA489220_ RegisterRead() or R_RAA489220_RegisterWrite() API functions.

R16UZ0058EU0100 Rev.1.00 RENESAS Page 37
Oct 17, 2022

RAAA489220 Battery Front End Sample Code Manual

4. Demo Application

The sample code contains a demo application which demonstrates the use and operation of the Battery
Abstraction Layer with API. Its source code can be found in file r_bms.c. There is a finite state machine,
controlled by a simple user interface. Figure 3 shows the state machine flow diagram. It generalizes the relations
between states and modes as well as the conditions for transition between them. A state executes its function and
moves to the next state or mode, while mode can remain static or loop inside until a transition flag is set. Fault
State can be entered from any other if a BFE fault is detected or any error code different than BFE_SUCCESS is
retuned. The transitions are managed by a command line user’s interface. You can send simple commands by
inputting numbers from 1 to 5 to select options from a list. Data are returned and visualized back. When a
transition command is received a respective transition flag is set. It can be set in any place of the code. However,
the transition flags are processed on a single place in the code where the transition logic actually changes the
state or mode of the state machine. The idea behind is to provide prioritization of transitions (that is entering Fault
State has higher priority overrides other states when multiple transition flags are set). For more information about
the user interface and running the demo, refer to the RAA489220 Sample Code Quick Start Guide.

Be aware that the demo application has limited capabilities and the sample code is not a system solution that can
directly manage a battery rather than demonstrate the interface and provide easy access to BFE resources.

Initialization State

Faults are Cleared
Press 3 A A 4 Press 1
< >
Auto Scan Idle Scan
Mode N Mode < State
Ll -
Enter r'y
Ent Fault is
Press 4 nter Detected
A A 4 A 4
Low Power Fault
Mode State
A A A
Faultis Detected Faultis Detected

Figure 3. Sample Code State Machine Flow Diagram

After power on reset the first entered state is Initialization State. Figure 4 shows the flow. The MCU initializes the
BFE interface (initialize I2C, IRQs and CRC peripherals, reset the BFE, and read device ID). The reset command
ensures that the current condition of the BFE is known in case only the MCU has been reset. Then, a memory
check is accomplished to compare the register values with the expected values and verify that the registers are
loaded correctly. After that a full BFE setup is run followed by communication test and full self-diagnostic that
includes all tests in a single system scan. The containing code is executed once, followed by a transition to

Idle Mode.

R16UZ0058EU0100 Rev.1.00 RENESAS Page 38
Oct 17, 2022

RAAA489220 Battery Front End Sample Code Manual

< Initialization State)

A 4

Initialize BFE Interface
R_RAA489220 Init();

A 4

Check Register Defaults
R_RAA489220_MemCheck();

A 4

Setup BFE Interface
R_RAA489220_Setup();

A 4

Test Communication
R_RAA489220 CommTest();

A 4

Run Self-Diganostic
R_RAA489220_SelfDiag();

A 4

Go to Idle Mode

Figure 4. Initialization State Flowchart

In Idle Mode the demo application loops, waiting for user input from the command line interface (Figure 5). There
are software counters that track the number of loops and approximately the duration of this mode. Every 50 loops
the MCU runs a full self-test. In this mode, the charge and discharge FETs can be manually controlled. Their state
is toggled after receiving a user command and remains unchanged if Scan State is entered.

Figure 6 shows the Scan State flow. All voltages, currents and temperatures are measured by calling the

RAA489220 AliGet() API function, which is sending a sequence of measure and read commands followed by
transition back to /dle Mode.

R16UZ0058EU0100 Rev.1.00 RENESAS Page 39
Oct 17, 2022

RAAA489220 Battery Front End Sample Code Manual

< Idle Mode)

> Are Power FETs ON?

Toggle Power FETs? >
Yes No
No iYes
A 4
Turn OFF Power FETs Turn ON Power FETs
R_RAA489220 FETsCtrl(); R_RAA489220 FETsCtrl();

|A
«

A

Run BFE Self-Diagnostic Test
R_RAA489220_SelDiag();

Self-Diagnostic
Timer has Expired?

A

Figure 5. Idle Mode Flowchart

< Scan State)

4

Measure All Input Values
R_RAA489220_AlIGet();

A 4

Go to Idle Mode

Figure 6. Scan State Flowchart

In Autoscan Mode, the RAA489220 functionality having the same name is enabled starting system scans and
controlling the FETSs by itself. Figure 7 shows the mode loop. There are two software counters used in this mode.
Every 10 loops the MCU checks for any faults registered by the BFE; as well, every 10 loops, the measured
voltages, currents, and temperatures are displayed in the user interface. On every loop, the MCU is waiting for the

user command to disable auto scanning and return to /dle Mode.

R16UZ0058EU0100 Rev.1.00 RENESAS Page 40

Oct 17, 2022

RAAA489220 Battery Front End Sample Code Manual

< Autoscan Mode >

A

Send BFE to Autoscan Mode
R_RAA489204 _ModeSet();

BFE is in Autoscan Mode?

Fault Check
Timer has Expired?

Check for Faults
R_RAA489220_ FaultsCheck();

Return to Idle Command?

Yes

Send BFE to Idle Mode
R_RAA489204_ModeSet();

Read Measurements
R_RAA489220_SysScanGet();

Display Measurements

A Timer has Expired?

Yes

Go to Idle Mode

Figure 7. Autoscan Mode Flowchart

The demo application provides an option for entering sleep mode and waking up the BFE. When Sleep Mode is
active, the BFE enters sleep mode immediately and waits for user input to wake up and make a transition to /dle
Mode (Figure 8). The Autoscan and Low Power Modes demonstrate the use of the API function

R_RAA489220_ ModeSet();.

R16UZ0058EU0100 Rev.1.00 RENESAS Page 41
Oct 17, 2022

RAAA489220 Battery Front End Sample Code Manual

(Low Power Mode >

<
Lt bl
4

Send BFE to Low Power Mode
R_RAA489204 ModeSet();

BFE is in Low Power
Mode?

Wake-up BFE Command?
No

Send BFE to Idle Mode
R_RAA489204_ModeSet();

A 4

Go to Idle Mode

Figure 8. Low Power Mode Flowchart

The following conditions can force the state machine to enter Fault State in the next loop:

= An error code different than BFE_SUCCESS was returned by any API function, indicating incorrect behavior of
the Battery Abstraction Layer, the Battery Front End or a communication problem.

= The g_bfe0_ctrl.is_fault_detected flag was set after calling an API function that affects it, indicating that the
ALERT pin was asserted or the Fault Register is non-zero.

= An error code different than FSP_SUCCESS was returned by any API function from the Hardware Abstraction
Layer of the MCU, indicating an error in the Flexible Software Package.

= The BMS algorithm has encountered an error.

Figure 9 shows the state flow. If there is a fault in the BFEs, all Fault Status Register is read. The information is
returned by the API function R_RAA489220 FaultsAllRead() into a data structure and visualized in the user
interface. The BFE faults can be cleared in two ways: by setting the Clear All Faults flag in System Config 1
Register or by resetting the BFE. The fault management procedures can be found in the source code in file
r_bms.c. If the fault is not able to be cleared (or the errors are not resolved), the state machine halts and waits for
user interaction.

R16UZ0058EU0100 Rev.1.00 RENESAS Page 42
Oct 17, 2022

RAAA489220 Battery Front End Sample Code Manual

C Fault State >

»
Ll
Y}

Is the Fault Clearable? Halt Operation

Clear the Fault?

Send Clear Cmnd/ Reset BFE

A

Go to Idle Mode

Figure 9. Fault State Flowchart

5. Revision History

Revision Date Description
1.00 Oct 17,2022 | Initial release.
R16UZ0058EU0100 Rev.1.00 RENESAS Page 43

Oct 17, 2022

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (‘RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only for
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
Www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

(Rev.1.0 Mar 2020)

Contact Information

For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit:

www.renesas.com/contact/

https://www.renesas.com
https://www.renesas.com/contact/
https://www.renesas.com/contact/

	Contents
	1. Introduction
	1.1 Assumptions and Advisory Notes

	2. RAA489220 Battery Front End Overview
	2.1 Features
	2.2 Applications
	2.3 RAA489220 Sample Code Structure

	3. RAA489220 Application Programming Interface Implementation
	3.1 Control and Configuration Structures
	3.2 Register Bank
	3.3 Private (Static) Functions
	3.4 API Implementation
	3.4.1 R_RAA489220_Init
	3.4.2 R_RAA489220_Deinit
	3.4.3 R_RAA489220_Setup
	3.4.4 R_RAA489220_Reset
	3.4.5 R_RAA489220_ModeSet
	3.4.6 R_RAA489220_ModeRead
	3.4.7 R_RAA489220_CommTest
	3.4.8 R_RAA489220_SelfDiag
	3.4.9 R_RAA489220_MemCheck
	3.4.10 R_RAA489220_VPackGet
	3.4.11 R_RAA489220_IPackGet
	3.4.12 R_RAA489220_ VCellsGet
	3.4.13 R_RAA489220_Temps
	3.4.14 R_RAA489220_AllGet
	3.4.15 R_RAA489220_SysScanGet
	3.4.16 R_RAA489220_FaultsAllRead
	3.4.17 R_RAA489220_FaultsCheck
	3.4.18 R_RAA489220_FaultsAllClear
	3.4.19 R_RAA489220_CellBalanceCtrl
	3.4.20 R_RAA489220_IsCellBalancing
	3.4.21 R_RAA489220_ContScanCtrl
	3.4.22 R_RAA489220_WatchdogCtrl
	3.4.23 R_RAA489220_FETsCtrl
	3.4.24 R_RAA489220_HVGPIOCtrl
	3.4.25 R_RAA489220_RegisterRead
	3.4.26 R_RAA489220_RegisterWrite

	3.5 Configuration
	3.5.1 MCU Hardware Abstraction Layer
	3.5.2 Battery Front End
	3.5.3 Battery Abstraction Layer
	3.5.4 Demo Application

	3.6 Examples

	4. Demo Application
	5. Revision History

