To our customers,

Old Company Name in Catalogs and Other Documents

On April 1!, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

8.

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

User’s Manual

RA78K3

Assembler Package

Operation

RA78K3
Ver. 5.00 or Later

Document No. U10967EJ2VOUMOO (2nd edition)
Date Published January 1998 N CP(K)

© NEC Corporation 1998
Printed in Japan

[MEMO]

MS-DOS is either a registered trademark or a trademark of Microsoft Corporation in the United States
and/or other countries.

PC/AT and PC DOS are trademarks of International Business Machines Corporation.

HP9000 Series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCStation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

RISC NEWS and NEWS-OS are trademarks of Sony Corporation.

The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or of others.

M7A 96.10

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

* Device availability

¢ Ordering information

Product release schedule

Availability of related technical literature

Development environment specifications (for example, specifications for third-party tools and

components, host computers, power plugs, AC supply voltages, and so forth)

Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California

Tel: 408-588-6000
800-366-9782

Fax: 408-588-6130
800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany

Tel: 0211-65 03 02

Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK

Tel: 01908-691-133

Fax: 01908-670-290

NEC Electronics ltaliana s.r.1.
Milano, Italy

Tel: 02-66 75 41

Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office

Eindhoven, The Netherlands

Tel: 040-2445845

Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France

Tel: 01-30-67 58 00

Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Spain Office

Madrid, Spain

Tel: 01-504-2787

Fax: 01-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office

Taeby, Sweden

Tel: 08-63 80 820

Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong

Tel: 2886-9318

Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch

Seoul, Korea

Tel: 02-528-0303

Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 253-8311

Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan

Tel: 02-719-2377

Fax; 02-719-5951

NEC do Brasil S.A.
Cumbica-Guarulhos-SP, Brasil
Tel: 011-6465-6810

Fax: 011-6465-6829

Joz.8

[MEMO]

INTRODUCTION

This manual is designed to facilitate correct understanding of the functions of each program in the RA78K3 Series
Assembler Package (hereinafter referred to as "the RA78K3") and of the correct methods of using the package, for
operators using the RA78K3 to develop software.

This manual does not cover the expressions of directives and source programs or language used in the RA78K3.
Therefore, before reading this manual, read the RA78K3 Assembler Package User's Manual - Language
(hereinafter referred to as "Language").

The contents of this manual are intended for use with Ver. 5.00 or later of the RA78K3.

[Target Users]
This manual is intended for users who understand the functions and instructions of the microcontrollers to be
developed.

[Target Devices]
The software of the following microcontrollers can be developed with this assembler.

Subseries Name Target Device
nPD78312 uPD78310"%"", 78312""", 78P312"""
HPD78312A uPD78310A, 78312A, 78P312A
uPD78322 1PD78320, 78322, 78P322, 78323, 78324, 78P324
pPD78328 pPD78327, 78328, 78P328
uPD78334 uPD78330, 78334, 78P334
uPD78352A UPD78350, 78350A, 78352A, 78P352
nPD78356 uPD78355, 78356, 78P356
uPD78366 HPD78365""2 78366 78P368""?
1PD78366A 1PD78361A, 78362A, 78P364A, 78363A, 78365A, 78366A, 78368A, 78P368A
1PD78372 1PD78372, 78P372

Notes 1. Discontinued product
2. Maintenance product

[Organization of Manual]
This manual consists of the following eleven chapters and appendixes:

Chapter 1 General
Outlines the role of the RA78K3 in microcontrolier software development and the features of the
RA78K3.

Chapter2 Product Overview and Method of installation
Explains the program file names and operating environment provided by the RA78K3.

Chapter 3 Executing the RA78K3
Explains the procedure for developing software, using a sample program.
The purpose of this chapter is to provide an opportunity for actual use of each program. Those who
wish to experience operating the RA78K3 should read this chapter.

Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10

Chapter 11

Appendixes

Assembler

Linker

Object Converter

Librarian

List Converter

Explain in detail the functions and methods of operation of each program.

These chapters are important for the actual operation of each program of the RA78K3.
Program Output List

Explains the formats of the lists output by each program.

Getting the most from the RA78K3

Introduces some measures for optimum utilization of the RA78K3.

Error Messages

Explains the error messages output by each program.

Introduce a list of program options, a list of sample programs, and a list of notices on using the
RA78K3.

The instruction sets are not detailed in this manual. For these instructions, refer to the user's manual of the
microcontroller for which software is being developed.

[How to Read this Masnual]

Those using an assembler for the first time are encouraged to read from Chapter 1, General of this manual.
Those who have a general understanding of assembler programs may skip this chapter.

Before using the RA78K3, read Chapter 3, Executing the RA78K3.

After you have become familiar with the operation of each program, you can proceed to utilize the lists in the
appendixes.

[Note]

In this manual, it is assumed that the PC-9800 series or IBM PC/AT™ or a compatible machine is used as the host
machine. When the HP9000 series 700™, SPARCstation™ family, or RISC NEWS™ is used, there are the following
differences depending on the host machine:

¢ The format of a file name differs.

* Extension .exe of the execution format is not suffixed with the EWS version of the HP9000 series 700.

* The extension .bat of a batch file is .sh with the EWS version of the HP series 700.

» The file name in uppercase letters is in lowercase letters with the EWS version of the HP9000 series 700.
* The execution examples and the method of setting the environments described in the manual differ.

[Legend]
The following symbols and abbreviations are used throughout this manual:

Symbol Meaning

Indicates that the same expression is repeated.

[1 1 ltem(s) in brackets can be omitted.
' . Characters enclosed in ' ' (quotation marks) will be listed as they appear.
<> : Characters enclosed in < > (parentheses) will be listed as they appear (mainly titles).

. . Characters enclosed in " " (double quotation marks) are titles of chapters,
paragraphs, sections, diagrams or tables to which the reader is asked to refer.
Indicates an important point, or characters that are to be input in a usage example.

() Indicates one blank space.

A indicates one or more blank or TAB.

\% Indicates zero or more blanks or TABs (i.e. blanks may be omitted).
/ Indicates a break between characters.

~ Indicates continuity.

[] . Indicates pressing of the Return key.

Note : Indicates a note in the text of this manual.

Caution : Indicates information that should be read and noted carefully.
Remark : Indicates supplementary information in the text of this manual.

[Related Documents]
The related documents indicated in this publication may include preliminary versions.
However, preliminary versions are not marked as such.

Document No.
Document Name
English Japanese
RA78K3 Language To be prepared U10810J
RA78K3 Operation This manual U10967J
RA78K3 Structured Assembler Preprocesser To be prepared U11136J
ECC Generator RA78K/IlI EEU-1362 EEU-752
CC78K Series C Compiler Language EEU-1284 EEU-655
CC78K Series C Compiler Operation EEU-1280 EEU-656
CC78K Series Library Source File - U12322J
ID78K3 Reference U10441E U10441J
IE-78310A-R Hardware EEU-1247 EEU-645
Software EEU-1248 EEU-637
IE-78327-R Hardware EEU-1358 EEU-718
Software EEU-1341 EEU-720
2 IE-78330-R Hardware EEU-1326 EEU-713
s Software EEU-1298° EEU-714
é IE-78350-R Hardware EEU-1366 EEU-754
8 Software EEU-1376 EEU-753
% IE-78350-R-EM1 EEU-1377 EEU-773
- IE-78355-R-EM1 EEU-1423 EEU-866
IE-78365-R-EM1 . EEU-1454 EEU-924
|E-78370-R-EM1 . EEU-1474 EEU-946
EP-78320GF-R EEU-1490 EEU-971
EP-78320L-R EEU-1497 EEU-970
EP-78320GJ-R EEU-1498 EEU-972
EP-78327CW-R EEU-1496 EEU-969
EP-78327GF-R EEU-1499 EEU-973
EP-78330GJ-R EEU-1478 EEU-958
EP-78330LQ-R EEU-1479 EEU-959
EP-78355GC-R EEU-1508 EEU-963
EP-78355GD-R EEU-1509 EEU-964
EP-78365GF-R EEU-1488 EEM-955
1PD78312A IEU-1265 IEM-5086
1PD78322 IEU-1248 IEU-619
©PD78328 1IEU-1268 IEU-693
4PD78334 IEU-1315 IEU-729
‘é 1PD78352A Hardware IEU-1327 IEU-781
§ 4PD78356 Hardware U10669E U10669J
pPD78356 Instruction U12117E U12117J
£PD78362A Hardware U10745E U10745J
uPD78366A Hardware U10205E U10205J
uPD78372 Hardware U10642E u10642J

10

CONTENTS

CHAPTER 1 GENERAL . EREReNaRRERSEAREEESRSESSSSRSSSSSRSRSRSSSRSSSSSsSssssssssssessmsrsssssses .19

1.1 Assembler Overview............... HeesrersssrEEEsssssEETESssserESSRssEEEEESRReRiESSareEESEsSSEEESERGREERSnse 20

1.1.1 Whatis an assembIer?... ...t e e 21

1.1.2 Whatis a relocatable assembler? ... cecrcceeverie st sae s 25

1.2 Overview of Features of the RA78K3cccccmiericcmmnrsimrmnncennnens - .27

1.2.1 Creating a source module file using an editor............cccecvivnininniin i, 28

1.2.2 Structured assembler PreproCeSSOr ...t et are b 29

T.2.83 ASSEMDIET ettt ettt e et e e s a e s e et et st e s e e e bt s ae s oot s nee s beeseneeseraenanenas 30

2 S IR T O O 31

1.2.5 ODJECE COMVEIOT....ccctieiei ettt e et e s et te e st e s st e e s e se st e e ne e s s eesane e e e eesetenneermneena 32

I T X1 o1 =T - o OO Y 33

= A I oo 1YY o =T S 34

P - T =101 e [=151=T - 1 (o] SO TSROSO 35

1.2.9 Integrated debUGQELt e 35

1.3 Reminders Before Program Development..........ccoicvinneiinnncncimcnnnsisnieneisieessennerisnens 36

1.3.1 Number of files that can be input t0 MKccccciiiiriiriii s 36

1.3.2 Limits of number of SyMbBOIS ... 36

1.3.3 Maximum performance characteristics of RA78K3.........ccocovviccnmiiniiiiiciiieereces 37

1.4 Features Of RATBKS ... i niscsisassensamssennenassassnsssssantsassssssassnsnsasssnsanansrans 39

CHAPTER 2 PRODUCT OVERVIEW AND METHOD OF INSTALLATION.......cccccommammrammrenens a1

2.1 Host Machine and Supply Medium.........ccccuemisemmsenmnismmnssmscessnssss s sesessane 42

2.2 Contents of Media... eraresreaseriasstesesrenaat e ra s aananens .. 43

2.2.1 For the PC-9800 series or IBM PC/AT and compatibles........c..cceivieeeeniieniiniiinnininccieene 43

2.2.2 Forthe HP9000 series 700, SPARCstation family, and RISC NEWS.........ccccciiininniiennn 44

2.3 Installation..... eesesresersseresssesssanansantraastasaanesnntan 45

2.3.1 For PC-9800 series or IBM PC/AT and compatibles.......c..cccveeiiiiimecreiiinnecieeernc e 45

2.3.2 For HP9000 series 700, SPARCstation family, RISC NEWS.........ccccoiimiinniinniinnins 45

2.4 File Organizationc..ccuseissscrresmsrrerensssenmmmsmnsssersssssssansansnasassansss resrrssesinsannaens 46

2.4.1 For the PC-9800series or IBM PC/AT and compatibles........ccccccvvireerrnirivceninnininiseieneeine 46

2.4.2 For the HP9000 series 700, SPARCstation family, and RISC NEWS........ccccoiiimiriiincenens 48

2.5 Environment Settingccccociimiicricciiscinnnnmienniscennnminnnene s 49

2.5.1 Environmental variable............cccecieereiiiiiiieiie ittt et e n s sns 49

CHAPTER 3 EXECUTING THE RAT78KS........cccccurimmmncmminissessanssssseasissessnnnisssassaressassansacnssassnnsenns 51
3.1 Before Executing the RA78K3 I 52

3.1.1 Verifying the contents of the disk ... 52

3.1.2 Sample programs....‘ ... 52

3.2 Procedure for Executing the RA78KSccoomrcnisnniinnnniniccicsnesssssenisesnsesmaensassanes 56

3.3 Summary of the RA78K3 Execution Procedure . 62

CHAPTER 4 ASSEMBLER............ccccervmmirriracnncsans ' . 65

4.1 Assembler Input and OUtpUL Files.......ccecirreecrrssrccrsesssssansesmsassesssasnssansassans 66

4.2 Functions of the Assembler eeesmeresssessasrssssssiesssssssiessassissassssesssssssessaseesss 68

4.3 Assembler Startup . S 69

4.3.1 Assembler STarUPcccoirr b e 69

11

4.3.2 Execution start and end messages

4.4 Assembler Options ...ttt e aas s aesaaa s s s s s s s ssn s e ne s nanees
4.41 Types of assembler OPtIONS........c.coci it
4.4.2 Order of precedence of assembler OptionS........c..cvvveiiviiiiieinninee e 75
4.4.3 Explanation of assembler OpHONS ... 76
CHAPTER 5 LINKER ... cccrcinscnnississississs s sn s sessnnssssss s sns s s e n s s e s st nmne e sanmnsinsssannnssanasnnnenas 117
5.1 Files Output by the LinKer ...ttt s s ensssn s e snaes 118
5.2 Functions of the LInKerc..cccovcininicmmiimmniinnemnssinssssesssssassinnsssssess s 119
5.3 Memory Spaces and MemoOry Areas........ccccceucemiemimirminissssesnentessonsssinssnstsnssinmsssssnsens 120
L T IR 11 0 1T o o = 121
541 DIrECHVE TllBS oo e e et e et st e s 122
5.4.2 MEMOIY AIrECLIVES....ccuiirieieeirie ettt s st et e e s mae s sman s e e e s ra e ea s sraanne e e enneas 124
5.4.3 Segment 10cation AIr€CHVES...c...cueiv it s 127
5.5 LINKer SEarUP ..cieeccceiccitinirccrrecisscnrsnsstsressms st rsssssmass e sastnnrsssasas sunsonnseanssanssasssssasennasssssnness 130
B5.5.1 LINKEE STARUD ..ttt et s e e ettt 130
5.5.2 Execution start and end MESSAQGES......cuuiiieiriercriirir e e 132
5.6 LinKer OPlIONScccciiscimiericcnniimiesmiisnianstiisnninssmsssisensasssnssssass nsms sessanesssms asanssssans e sssannsesans 134
5.6.1 Types Of INKer OPHONS..........ueiiiiiiie ettt ettt e s e e s e eenes 134
5.6.2 Order of precedence of INKer OptioNS.ooi i 136
5.6.3 Explanation of inKer Options.... ..o 138
CHAPTER 6 OBJECT CONVERTERcccoccmiensttierersnsssssmnessissssssnensssses s ssssnssss snsssmssssssssssensassssnnens 165
6.1 Object Converter Input and Output Files..........ccoccriicmiiicirnnnnncnnrsen, 166
6.2 Functions of the Object Converter............ceiimrrncrnicin st 168
6.3 Object Converter StartUpcccccimciriinnir s e a s nans 172
6.3.1 Object cONVErer STAMUDcciieiiee ettt 172
6.3.2 Execution start and end MeSSages........ccooiiiiiiiiiiiie e 175
6.4 Object Converter OPLtioNScciiiiveimmiiininnecne st sess s s aneaasass e st n s s e s s anas 177
6.4.1 Types of object converter OPONS.......cciiiiriiin e 177
6.4.2 Explanation of object converter OptioNnS.........cccccvvi it e 179
CHAPTER 7 LIBRARIAN..........iiistiiriniiaastnssssssr e rasisssnssiessansssassssssisassens st sassnanssnssssasassssssssanns 191
7.1 Files Input and Output by the Librarian........c. e 192
7.2 Functions of the Librarian..........c.ccimmnimseems e 194
7.3 Librarian STartupcccceererecmiieesmmrsssinnesssssns s e sss s srssssasssssssssenssssssneenassonnsasessransnsnassvan 196
7.3.1 Librarian Startup ... e 196
7.3.2 Execution start and end MESSAgES......cccuriieriiiciririr e s e 200
7.4 Librarian OPliONScocccirierscmminniicsiinnnmisssstisimimssesimsssssimsstemmsssssensiie s 202
7.4.1 Types of ibrarian OPtiONS.co.ovieiririeeie et e 202
7.4.2 Explanation of lIbrary OptionsS...........ccceiiieireiieie et 203
7.5 Subcommands EeeEerasENsSiesEENSIESEEeSRASEESRSEEESNREESAREERSANEERSSRENSSRLR N Ranniaasannarnsearan 208
7.5.1 Types Of SUDCOMMEANTS......ccciirmierieeiiiiaie ettt e e s ae e e ee e e e e e eene s e sareesneneeebene s 208
7.5.2 Explanation of SUDCOMMANGS........ccciiimmiciiiiiir ittt e s 209
CHAPTER 8 LIST CONVERTER......cscoiveciimnimciticcrrcsssssscnnnassassssinsssssssssssnmsssssssnnsnssessnens s nsansnsnsnas 223
8.1 List Converter Input and Output Filescceenmremrenmicnnree st 224
8.2 Functions of the List Converter.........ccoiimmmnmmmimssioemoemeroseema m————e. 226

12

8.3 List Converter StartUpc..vivivecemcenieecriniiesnensesirmsessssensiresssessssnsrsnsessasenssssssseresssessnnnssenase 229

8.3.1 List CONVEMET STAMUDceeiiiiii e ren e e e ebr e s mee s sennere e e rnesnnne 229

8.3.2 Execution start and end MESSAQGEScccuiriiirrriiieiiieetee ettt e e snea e 231

8.4 List Converter OPlioNScccuuviiicciincnmincmicniis s nsssses s i eaas s msssemsnsnee s 233

8.4.1 Types of list CONVEREr OPLIONScuiiiiiii ettt 233

8.4.2 Explanation of list converer OptioNS........ocei i e 234

CHAPTER 9 PROGRAM OUTPUT LIST.....ciioiirmienreminensssinsnssnsnsesssssnsssssnississssssnsssssnssesens 243

9.1 Lists Output by the Assembler.........c..occieriici e e e naeeens 245

9.1.1 Assemble list file hEAAETS.......cccviiiiiiie e e 245

9.1.2 ASSEMDIE lST ..evviieeri i s e e 247

913 SYMDBDO! LIS ..ttt bt e e 249

9.1.4 Cross-referenCe listoooiiiiiiiiie ettt 250

915 EITOF ST et 252

9.2 Lists Output by the LINKEr ... s s ses e 253

9.2.1 Link list file haders..... .o e 253

0.2.2 MAP LISt o et e 255

9.2.3 PUDIC SYMDOI IS ...cceiiiiiiiiiiiii ittt st e e e e 257

9.2.4 Local SYMDOI LIStoooriiiriiiiii e e 258

9.25 EITONIST e e 259

9.3 List Output by the Object Converter........cccccvcnimiiiercrinn e 260

O30T EITON NST et e s et 260

9.4 List Output by the Librarian.......... it rensens 260

9.4.1 Library data output liSt ... 261

9.5 Lists Output by the List Converter.........icciinnrcrn e 262

9.5.1 Absolute assembIe liSt........c..oei i 262

9.5.2 EITON ST e e e e e e 262

CHAPTER 10 GETTING THE MOST FROM THE RA78KS3.......covccviscmmminmnsinmnninisenssssnines 263

10.1 Improving Operating Efficiency (EXIT Status Function).........ccccccinnmmcricrsnnrrinniissnnnccenns 264

10.2 Preparing the Development Environment (Environmental Variables).............cc.ecesarnes 265

10.3 interrupting Program EXeCUtioN..........cocicicomincininmmniscinsemscanecsmsnses e ssassssesssscnnens 265

10.4 Making the Assemble List Easy 10 Readccccrvimmmerminrnicnmnnnnncenennnensessennans 266

10.5 Reducing Program Startup Time......ccccccrimciimnim s sssssssns e sess s sas essssnsasnas 267

10.5.1 Describing a control instruction in the source programcccoiiiiniiiiiiniieeeens 267

10.5.2 Creating parameter files and subcommand filesccccvvveinieincnineci e, 268

10.6 ODbJECt MOAUIE LIDIarycuvueeececeriuencsencnssasassessssessessssensssessssssssssssnsssssssaseessesensansesnsasnsass 269

CHAPTER 11 ERROR MESSAGES...... oot ciinnises s ssassss s sncsssansssasssne s susreassscsssceesnsrass 2M
11.1 Overview Of Error MeSSagesS.....cccrummmmnreamisnsermmsanuinisssssessessssmmsssssunnmasesssssesssnenssonsssssaanas 272

11.2 Assembler Error MeSSages......ccucciiuimrecmmmnmennsmnnssnsssmrssssssssnissassssssessssssssssesessssensssenanses 273

11.3 Linker Error MEeSSAQeS ..iuuuiiceiiversmirmmmsemsamssirermiemmsisnsnsssssessssssasssesassssssnmsssassesssessessssssnss 285

11.4 Object Converter Error MesSages........ccuuerieicmsnnnminemsmnssmisssismenssssssasesssi 293

11.5 Librarian Error MeSSages.........cccucmmremmiesrioscnissmssssmssenmssne s ssassssssessssassessssesassssssassnsanssnses 295

11.6 List Converter Error MesSages.......c.cuiiinnininissoesnmeinsn st s 299

13

APPENDIX A SAMPLE PROGRAMS.......c.ccinirinrnamc it messcsmnsesisensssessnsssssessasisessnssssssonsnean 301

A1 SOUICE LiStS ...t issss s s s sms e s s e n e s n s n s s annenneas 302
A.2 Execultion EXAamPIeccmriiinimnisiiiinissiinnemsniiasimssmssssnssssssssssssssssssasassssesesassasesos 304
A3 OULPUL LiSTS .ocuueeiiiiicsiimiiniisisacniisnrrcnernssssssas s rens s rssesssssmresssassssmeenssnessacsnssessnsnssnssssessansonnnsss 306
AB.T ASSEMDIE HISTS ..ot e st 306
AB.2 SYMDOL SIS, ..ottt ettt e ettt et r e s 310
A.B.8 Cross-reference SIS ..ot 311
F N V- o N {1 G SRR 312
AB5 PUDC SYMDOI IIST ...t e e et 313
A3.6 LoCal SYMDOL TIST ...ttt et e e e 313
A.3.7 Library data outpuL lIStcocciiiiiiece et 313
A.3.8 Absolute assembIe lIStScooiiiiiiiiie et e 314
APPENDIX B LIST OF CAUTIONS ON USEccooircccrcrnncsncsmrnsscsessssssssnnsssssssssssssssssnssessssnes 317
2 T 0 11 1T o -SSR 318
B.1.1 Handling device file.......ou e 318
B.1.2 Memory necessary for execution
(with PC-9800 Series, IBM PC/AT, and compatible maching).........cc.ceccvoveniiiiiririiinicennnns 318
B.1.3 Notes on list CONVEMEE ..ot 318
B.1.4 Notes 0n debug OPON. ..ottt e 318
B.1.5 NOtes 0N € COMPIIET ...ttt st re s 318
B.1.6 Notes 0n USING NEIWOIKcocoiiiiei ettt 318
B.1.7 Notes on ordefing ROM COUEcooiiiieiiiie et e 318
= J N IR Ty 1) - L o o T 319
B.2.1 Limitations of structured assembler...............cocoiieiricininccnrceier e 319
B.2.2 Limitations Of @SSEMDIETccoioiiieeee ettt enne e st be e 320
B.2.3 Limtations Of NKETcoiiiiiieie e ettt r et nee e e e 325
B.2.4 Limitations of ECC generator..........cc.eeiiriiiieiiiii et s 325
APPENDIX C USING SUPPLIED FILE (INTMS.DEF)......cccoeeeccrieeiietenssensssnsssmsnsssmsssssssssnmsnsanes 327
C.1 OVEBIVIEWciiiiieiiriiee e s ssmsnsstesee s s ceesesassassesnasasce rasnssemassansns sessensssranssmsnsmesnssstbnsnsnsnnin 328
C.2 Using Macro for Vector Table Setting.......ccccocviiiiiciccecccnrnncniss s sessnsasseins 328
C.3 Using Macro Service Control Word Area Allocating Macro
(except uPD78312 and 78312A SUDSENIES)cocurmrrrmsmirccrnrisremssnsssnssssssisssssssssssssmsssanns 331
C.4 Using Macro Service Channel Area Allocating Macro
(uPD78312 and 78312A SUDSEries ONIY)ccesiiimrimicssiricritess s e 334
C.5 Using Macro Service Channel Area Allocating Macro
(except uPD78312 and 78312A SUDSEIES)c.ccivrmemnrmrinirinsssrsensssenrisnsessssn s sasessessns 335
C.6 INClUAINg File.......coiiiiicriineiinieisisisin i sessmnresss s rems e ranessete s arsssassnasssssnssassarsssasesssnsanes 347
APPENDIX D NOTES ON USING DEVICE FILEiiriceerreceressmsssssssmseessmsssssscrsssnsssnecsss 349
D.1 DeVICE File.....ooiiercececeinisirescnssinns s sns e sasssanssccessasssserssseasasssanssssesassnnasans sassssnnesassamnssnaras 350
D.2 Correspondence between Target Devices and Device Filesc.ccevecrrrnmrseresssnnccnscnns 350
D.3 SFR Name and SFR Bit NamMe.cccoiciiiniiiercininicsinmnssesstnssssssenessssasssssssnesesscrssessssnsss 352
D.4 Default Link Directive Information............cccciemnicincminsnsccnnnin s s e nsas 353
D.5 Interrupt Request NAmMEccciiiiiiiiiceiicce e rscrscccnr s er s eeessmsessame s e sesnams s e snmnesssennens 355

14

APPENDIX E LIST OF OPTIONS.....oovciciitisniicsensanssnessenscsssasssrassssssssssssanssssnersssnsmessmsssesesensenses 359

E.1 List of Assembler OPpHONSc.oooiieicirescreir st se st ser s rsne s e s mesnssrmessmeannns 360
E.2 List of LINKer OptiONS ...t cs s s e rme e cns s s esae s neseme s smn e anesmnen 362
E. 3 List of Object Converter OptioNnsc..c.ccviimeccessiiessssensssensesesnsansssansssannesenssnssarsnsssensssnes 364
E. 4 List of Librarian Options ...t cesms s ss s s s see e s e sanesamas 365
E.5 List of List Converter Options.........c.cccvvimiicirminnmninmcimessa s nississsssstessressssseesssvessessans 366
APPENDIX F LIST OF SUBCOMMANDS..........ccoiimirtismimsinssisensseessssiesessessesscssssesmsnsmsmssassmsemnes 367

15

LIST OF FIGURES

Figure No. Title Page

1-1. RA78K3 Assembler PACKAQEocoueuiiiietieeiccct st 20
1-2. FIOW Of ASSEMDBIET ...t e ae e ra b b s b e e e besaaesaessas s sanans 21
1-3. Development Process of Microcontroller-Applied Productsccecevcvcmininnsincninnscsinnee s 22
1-4. The Software Development PrOCESScccivuieriiiiieenirtrcee st ttereenee st e s s reeeses e se s e e e semesese e 23
1-5. The RA78KS ASSEMDIY PIOCESSooieiiieitiee e st eeeee et ear e e tese s e mee e e seneesesnne e samsesenssene 24
1-6. Reassembly for DEbUGGINGcccoeriirieeiet ettt et et e et e e sn e s s r e e e s e e e sn e meeneenne 26
1-7. Program Development Using EXiStiNg MOTUIEcvieceiieicieniieeeirteeterererereeeeecerecsneesee e e sec e erceneas 26
1-8. Procedure for Software Development Using the RA7BKS it 27
1-9. Creating @ SoUrce MOAUIE filccueieiieceieeciire et st s e e s ers s sane e e s st e s arr e sae e saressresenns 28
1-10. Function of the Structured Assembler PreproCessor..........ccooiiicircciciccceccn e 29
1-11. Function of the ASSEMDIET........cc.oo ittt e s 30
1-12. FUNCHONS OF the LINKEE ...ttt et e et st e st a e st sne e e e e s ne e et e smeennr s 31
1-13. Function of the ODJECE CONVEMEN......cc...eiiieeeee ettt e e e ettt e e s eeeeatas s e e e e saesenssanssesssnaesenssneannnne 32
1-14. Function of the LIbrarian..........co.ooie e e e 33
1-15. Function of the List CONVERET ...ttt e et e n s sn e s e esne s 34
1-16. Function of the integrated DebUGGeT.......co it crne st e et s e srae e s er e aa e smas e 35
3-1. Structure of the Sample Program..........c ettt 52
3-2. LTl =T ()= o PP 57
3-3. LINK DIFEOTIVE 2.ttt e e st e et s e e ma e d e s e s b e an s s rn s e raenen 58
4-1. Files Input and Output by the Assemblerco i 67
5-1. MEMOTY ArEa NAMES....c . eteereeeie i eercrteeeerert e s ste e e s ser e e ees s snaeeeseasnessesassesesasssesasmaassansrasanrsnsesassnens 125
6-1. Files Input and Output by the Object CoNVEMEr ... 167
7-1. Files Input and Qutput by the Libranian ... s 193
7-2. Procedure for Creating @ LIbrary File ... creen e sseeseseces s s e e s s et e 195
8-1. Files Input and Output by the List Converter ...t 225

16

LIST OF TABLES (1/2)

Table No. Title Page
1-1. Maximum Performance Characteristics of the ASSEMDIErcooeveveiemecece e 37
1-2. Maximum Performance Characteristics of LINKET........coureiieiecieee et 38
2-1. Delivery Medium and Recording Format of This Software Package............ccceeveueeierereevenvesiereseeeeeene 42
4-1. Assembler Input and OUIPUL FlESo.oieriie et e s e ae e et et s e ebeeas s enees 66
4-2. ASSEMBIET OPHONSovecveevereeeseseeceereesass e essses s ss st seeseeeseeeeeeseeseeseeeeeseeeeseseasesesseseeeesereneeesenessessensennes 73
4-3. Order of Precedence of ASSEmMbIEr OPHONS.......cccoviiviiiiiceceeceeeeee ettt eas e eaes 75
4-4. Characters That Can Be Described as TRIESccceveiieieeeeee e st 100
5-1. Files Output By the LINKETcuiuiieiiie ettt e st ss s b s s b as 118
5-2. TYPES OF DIFECHIVES ...t s et er e e v e e e e sae e ebeesasess e se e e eeasesanseabesnsssnsssnessreesnnnesssnseans 121
5-3. Segment Location According to Combination of Memory Area Name

Specification and Memory Space NAMEcccoveiiriiiirieciee ettt eeeenenes 128
5-4. LINKET OPHONS c.evttiieicitieeeeitesineses s st e s taeeneee et e eesaee s eeeseesaseeseseseasesanseesseassontssesnesansesennteensnsensnnesneenn 134
5-5. Order of Precedence of LINKer OPtiONS........ccuiiirirrirriiiire st ecisecee e eee e sae s s ss e e neeneenns 136
6-1. Object Converter Input and OULPUL FlES.........cii ittt ee e e sen s serr e s e 166
6-2. Output File Types for Extended SPACEcccoeiiriecrierteree s ettt eeeet s e e se et e e e eneeenes 168
6-3. 1O o] [=To 02y AT = £ T @ o (1o 1 O OO 178
7-1. Files Input and Output by the LIDrarian ..ottt ettt e 192
7-2. LiDrarian OPtioNSiiuc ettt et s e e ee s te st ee e e e etesae e s e ess e s aaeennsenbseneenanseneesabeeneesrnanee 202
7-3. SUBCOMIMANGSeeiireiiiireeeerte e e et s st et e e s s s et st s saeatasseasaessessessasaesssaneessirsaennnssnsensassestesnsesente 208
8-1. Assembler Input and OULPUL FlEScc.ciieciiii ittt e e s et st rens 224
8-2. LiSt CONVERETr OPONSiiiiiiiiiiiet it r e ee e e et s e s s be s bs s te e s s sseesnsesasersnensesssenen 233
11-1. Assembler Error MESSAGEScui ittt ccrirre et ree e s te et e s e re s s e st e ssmeesssesseesseestnesseessensasnraensons 273
T1-2. LINKEE EFTOr MESSAGEScuveeererercirert e e et aaet st st e sraessve s e e eraesenesseeesessneessessseesaeasbeenenenseesnsennserasonean 285
11-3. Object Converter Error MESSAJES.......uicevircerieieaiereererrtesesteseete e stes e saaesastesesssssestanesssesressesssessessenees 293
11-4. LIiDrarian ErTOr MESSAGEScuvuueururecreeeimessessessesssestsessassesssssssesssessessesssssesesmseesesesesesesesmssensensensesens 295
11-5. List Converter ErTOr MESSAgES......c.cerieriiecieiirieeeerresctesieesee s e ss e e steseesaeestseeasesssesnbssabesssssssesnnsssssssean 299
C-1. Interrupt Names, Macro Names, and Segment Names..........ccoccvevieneeereeeecieccseessreseese e e e esenans 329
c-2. Interrupt Names, Macro Names, and Abbreviated Interrupt Namescocuvveeceeeeeeeeeececccseeeeecennes 332
C-3. Channel Name, Macro Name, and Channel NUMDET............ccooiicviieeececeeccee et eeeneas 334
C-4. Macro Service Names and Macro NAMES.ccccciriiirierreere et see s s e evasbesanenaaens 335
D-1. Required Device Files (HPD78312 SUDSEIES).....ciiiiieriirreiee ettt et cee s stssaeessesebs e e e snenees 350
D-2. Required Device Files (HPD78312A SUDSEIES) «..cc.vviritirenireieceesieie et ceee e eses e srsesnesasssesnnesnans 350
D-3. Required Device Files (UPD78322 SUDSEIES).....c.uiiiiiiiieiiieieeeeceieceeccree e s essteesssesssre e e s s oeeeemeseansenane 351
D-4 Required Device Files (UPD78328 SUDSEIES)......ucieciiriieriiisceeereiiceeeeesesee e ssscestsessaeeee e e essstsaeeeenns 351

17

LIST OF TABLES (2/2)

Table No. Title Page

D-5. Required Device Files (uPD78334 SUDSEIES) ...ccccviiiiimiiiiiiiiiiiiieis it 351
D-6. Required Device Files (development tOOIS)oociv i 351
D-7. Default Link Directive Data (uPD78312 and 78312A SUDSEIES).......ccccoviriiiiiiiiiiiiciiii i 353
D-8. Default Link Directive Data (UPD78322 SUDSEIES)ccveiiieeeererieeeeete ettt eeecn e e 353
D-9. Default Link Directive Data (PD78328 SUDSEIES)ccccceiriiiririneeieenieetee e eenrcsr e sece s 354
D-10. Default Link Directive Data (UPD78334 SUDSEIES)cc.eiceeririiiiiieicii e 354
D-11. Interrupt Request Name (uPD78312 and 78312A SUDSEIES)......ccuieiiiiiierieiiie et 355
D-12. Interrupt Request Name (UPD78322 SUDSEMES) ..v..uvieieiiiieieiie et e 356
D-13. Interrupt Request Name (UPD78328 SUDSEFHES)cvvverreveerieeiieecece ittt e 356
D-14. Interrupt Request Name (UPD78334 SUDSEHES)ceeieiiiiiieieiiie ittt s e 357

18

CHAPTER 1 GENERAL

This chapter describes the role of the RA78K3 in microcontroller software development and the features of the
RA78K3.

19

CHAPTER 1 GENERAL

1.1 Assembler Overview

The RA78K3 Assembler Package is a generic term for a series of programs designed to translate source
programs coded in the assembly language for 78K/Ill series microcontrollers into machine language coding.

The RA78K3 contains seven programs: Structured Assembler Preprocessor, Assembler, Linker, Object
Converter, Librarian, List Converter and ECC Generator.

Figure 1-1. RA78K3 Assembler Package

Structured Assembler Preprocessor

Assembler

Linker

Object Converter

Librarian

List Converter

ECC Generator

20

CHAPTER 1 GENERAL

1.1.1 What is an assembler?

0

Assembly language and machine language

An assembly language is the most basic programming language for microcontrollers.

For a microcontroller to do its job, programs and data are required. These programs and data must be written
by people (i.e., programmers) and stored in the memory section of the microcontroller. Programs and data that
can be handled by a microcontroller are written in machine language, which consist of binary numbers.
However, programming in machine language, or in binary numbers, is difficult for humans and they may make
mistakes. Fortunately, methods exist whereby English abbreviations or mnemonics are used to represent the
meanings of the original machine language codes in a way that is easy for people to comprehend. A
programming language system that uses this symbolic coding is called an assembly language.

A microcontroller requires a program that translates the program developed in an assembly language into
collections of binary numbers the microcontroller can understand. This program is called an assembler.

Figure 1-2. Flow of Assembler

Program written in Program coded in sets
assembly language of binary

O] O i
(Source module file) (Assembler) (Object module file)

21

CHAPTER 1 GENERAL

(2) Development of microcontroller-related products and the role of RA78K3
Figure 1-3, "Development Process of Microcontroller-Applied Products,"” illustrates the position of assembly-
language programming in the (software) product development process.

Figure 1-3. Development Process of Microcontroller-Applied Products

‘ Product planning>

Hardware System design Software
development development

Logic design Software design

Program coding i
Manufacturing 9 coding In

assembly language

Position of
RA78K3

Inspection

NO

OK

YES

Debugging

NO

:F YES
System evaiuation

!

‘ Product marketinD

22

CHAPTER 1 GENERAL

A more detailed explanation of the software development process appears in Figure 1-4, “The Software

Development Process."

Figure 1-4. The Software Development Process

Software development

»
>

Creation of program
specifications

»
»

Creation of flowchart

Coding

* « « This uses the 78K/Ill assembler

Source module editin o i
9 * s+ An editor is used to create a source moduie file.

e« ¢ An object module file is created.

YES
Errors?
NO
Debugging « » « The operation of the software is checked using a hardware debugger
such as an in-circuit emulator.

.

NO

YES

System evaluation

23

CHAPTER 1 GENERAL

24

The RA78K3 is then applied to the assembly process.

Figure 1-5. The RA78K3 Assembly Process

C Assembly process)

»
»

From editing of the source
modaule...

Assembly

YES

Assembly errors?

NO

Linking

Conversion of Object

C ..to debugging)

« « « Qutput from the object module file

e « « Qutput of the load module file

* » » Qutput of HEX-format object module file

CHAPTER 1 GENERAL

1.1.2 What is a relocatable assembler?

The machine language translated from a source language by the assembler is stored in the memory of the
microcontroller before use. To do this, the location in memory where each machine language instruction is to be
stored must already be determined. Therefore, information is added to the machine language assembled by the
assembler, stating where in memory each machine language instruction is to be located.

Depending on the method of locating addresses to machine language instructions, assemblers can be broadly
divided into absolute assemblers and relocatable assemblers.

» Absolute assembler
An absolute assembler locates machine language instructions assembled from the assembly language to
absolute addresses.

* Relocatable assembler
In a relocatable assembler, the addresses determined for the machine language instructions assembled from
the assembly language are tentative. Absolute addresses are determined subsequently by a program called
the linker.

In the past, when a program was created with an absolute assembler, programmers had to, as a rule, cbmplete
programming at the same time. However, if all the components of a large program are created at the same time, the
program becomes complicated, making analysis and maintenance of the program troublesome. To avoid this, such
large programs are developed by dividing them into several subprograms, called modules, for each functional unit.
This programming technique is called modular programming.

A relocatable assembler is an assembler suitable for modular programming. The following advantages can be
derived from modular programming with a relocatable assembiler:

(1) Increase in development efficiency
It is difficult to write a large program all at the same time. In such cases, dividing the program into modules for
each function enables two or more programmers to develop subprograms in parallel to increase development
efficiency.
Furthermore, if any bugs are found in the program, it is not necessary to assemble the entire program just to
correct one part of the program, and only a module which must be corrected can be reassembled. This
shortens debugging time.

25

CHAPTER 1 GENERAL

Figure 1-6. Reassembly for Debugging

Program consisting of a Program consisting of two or
single modules more modules
AN
Module
Module
A Entire Module
ugs Bugs
are grogram r:luzt areg
found! e assembied | found!)
XXXX again. XXXX Only this
Module module must
be assembled
again.
Module
/

(2) Utilization of resources
Highly reliable, highly versatile modules which have been previously created can be utilized for creation of
another program. If you accumulate such high-versatility modules as software resources, you can save time
and labor in developing a new program.

Figure 1-7. Program Development Using Existing Module

Module A I | Module B l I Module C ! I Module D J
I New module I
ﬁ)l Module A |
r New module]
I Module D J€

New program

26

CHAPTER 1 GENERAL

1.2 Overview of Features of the RA78K3
The procedure for developing general programs appears in Figure 1-8, "Procedure for Software Development
Using the RA78K3." Program development essentially flows from the assembiler to the linker to the object converter.
The assembler, linker, object converter and other programs are generically referred to as the "RA78K3." the
assembler program is referred to as the "assembler.”

Figure 1-8. Procedure for Software Development Using the RA78K3

A C source module file

<

C compiler

H——ﬂ Include file
C compiler =& L

Assembler -= Object module
module file file
[0 1]

Startup
module file for
the C compiler

L

Assembler Librarian
Obie?-t module Librarian
ile file
Assemble /
RA78K3 list file .
Linker
Load module
file >
Y
List Object
converter converter
Absolute -’ HEX-format Symbol
assembile list file object table file
11U module fite
Yy
* Y Integrated
Debugger IE controiler RS-232-C v debugger
- - & Dedicated
In-circuit paraliel
emulator interface

27

CHAPTER 1 GENERAL

1.2.1 Creating a source module file using an editor

A single program can be divided into two or more modules according to function.

A single module can be used as a coding unit or an assembler input unit.

A module which is used as an input unit for the assembler is cailed a source module. After the coding of each
source module is finished, the source module is written to a file using an editor. The file created in this way is called
a source module file.

A source module file is used as an assembler input file.

Figure 1-9. Creating a Source Module file

Program . Source module

Source module

END

Source module ~

END > ~ END

Source module

END Writing to a file (editor)

Source module file

28

CHAPTER 1 GENERAL

1.2.2 Structured assembler preprocessor

The structured assembler preprocessor is a program whose purpose is to create structured programming using
assembly language instructions. The structured assembler preprocessor inputs source programs written in
structured assembly language to input the source program for the assembler.

For more information on the structured assembler preprocessor and structured assembly language, refer to the
separate "RA78K3 Series Structured Assembler Preprocessor User's Manual."

Figure 1-10. Function of the Structured Assembler Preprocessor

Note

- i

Device file

Structured
assembler
source file

Input
Input

Structured assembler
preprocessor

Output

Note The device files of the following subseries are optional.
e uPD78352A Subseries
« uPD78356 Subseries
¢ uPD78366 Subseries
* uPD78366A Subseries
¢ uPD78372 Subseries

29

CHAPTER 1 GENERAL

1.2.3 Assembler

The assembler is a program which inputs the source module file and converts the assembly language into a
collection of binary instructions (machine language). If the assembler discovers errors in the descriptions in the
source module, it outputs an assembly error. If no assembly errors are found, the assembler outputs an object
module file which specifies location data such as where in memory the machine language data and each machine
language should be stored. The assembly data is output as an assemble list file.

Figure 1-11. Function of the Assembler

Source module file

Note

Device file

Assembly language
is converted into
machine language

Assembly
errors?

Object module file Assembler

< Object module file
is generated

-

List file is
generated

!
{
1
|
1
1
I
|
i
|
I
]
I
i
J |
|
|
|
|
!
I
|
|
I
|
! |
i
|
) NO !
: |
I
! |
: 1
I
|
|
|
1
|
i
t
I
i
|
!
!
!
i
1
|
|

Assembile list file

Note The device files of the following subseries are optional.
e uPD78352A Subseries
s uPD78356 Subseries
e uPD78366 Subseries
e uPD78366A Subseries
e UPD78372 Subseries

30

CHAPTER 1 GENERAL

1.2.4 Linker

The linker inputs the multiple object module files output by the compiler and the assembler and links them to
output a single load module file (linking must be performed even if only one object module file is input).

The linker determines the location addresses for the relocatable segments in the input modules. This determines
the values for the relocatable symbols and external-reference symbols so that the correct values can be embedded
in the load module file.

Figure 1-12. Functions of the Linker

Object module files

5
coe Library file Directive file
[0_1]

i Input i B ‘E\‘
‘ [- H;|
g (I

Device file

Linker
Output
Load module Link map file
file

Note The device files of the following subseries are optional.
s uPD78352A Subseries
¢ uPD78356 Subseries
+ uPD78366 Subseries
¢ uPD78366A Subseries
« uPD78372 Subseries

31

CHAPTER 1 GENERAL

1.2.5 Object converter

The object converter inputs the load module file output by the linker and converts the file format. The resulting file
is output as a HEX-format object module file.
The object converter also outputs symbol data necessary for symbolic debugging as a symbol table file.

Figure 1-13. Function of the Object Converter

Load module file
(w]

2 21 4 NOte
Device file il
a
Input
Y
Object Converter
Output
T T i
HEX-format Symbol
object table file
module file

Note The device files of the following subseries are optional.
* uPD78352A Subseries
e uPD78356 Subseries
» uPD78366 Subseries
* uPD78366A Subseries
e uPD78372 Subseries

32

CHAPTER 1 GENERAL

1.2.6 Librarian

For convenience and ease of use, a general-purpose module with a clear interface may be stored in a library. By
creating a library, multiple object modules can be stored in a single file, making them easy to handie.

The linker incorporates a function which retrieves from the library file only the modules necessary. When muitiple
modules are registered in a single library file, the module files can be linked without the need to specify each
individual module file name.

The librarian is the program used to create and update the library file.

Figure 1-14. Function of the Librarian

Object module files output by the C compiler Object module files output by assembler

g 5 i 5

Note

Device file

) Input

List converter

Output

Library file

Note The device files of the following subseries are optional.
* uPD78352A Subseries
» uPD78356 Subseries
* uPD78366 Subseries
» uPD78366A Subseries
» uPD78372 Subseries

33

CHAPTER 1 GENERAL

1.2.7 List converter

The list converter inputs the object module files and assembile list file output by the assembler and the load
module file output by the linker, and outputs an absolute assemble list file.

Relocatable assemble list files have the disadvantage that addresses and relocatable values in the list may be
different from their actual values. An absolute assembie list file determines these values, making debugging and
program maintenance easier.

Figure 1-15. Function of the List Converter

Assembile list file Object module file Load module file

=] Im) m]

Note

Device file

= Input

List converter

Output

Absolute assemble list file

Note The device files of the following subseries are optional.
* uPD78352A Subseries
* uPD78356 Subseries
* uPD78366 Subseries
e uPD78366A Subseries
* uPD78372 Subseries

34

CHAPTER 1 GENERAL

1.2.8 ECC generator

The ECC generator is a tool for error correction code generation which is supplied with the RA78K3 only.
This tool generates and adds data to be written to the ECC ROM area of the uPD78P324, 78P334, 78P356, and

78P372.
For details, refer to the ECC Generator User's Manual (EEU-1362) separately available.

Remark ECC (Error Correcting Code)
Code to correct the data written to the internal PROM if the data includes an error.

1.2.9 Integrated debugger

The integrated debugger for the 78K/lliseries is a software tool which displays the data from source programs,
registers and memories in their respective windows and performs debugging.

The debugger downloads the load module file output by the linker to the in-circuit emulator (IE) of the target
system. It can also perform debugging at the source level by reading the source program file.

Figure 1-16. Function of the Integrated Debugger

Source program Load module file
[}
» Assembler * Object module file

» Structured assembler * Debugging
* C compiler information

Integrated Debugger

Dedicated parallel interface

In-circuit emulator

35

CHAPTER 1 GENERAL

1.3 Reminders Before Program Development
Before beginning to develop a program, keep the following points in mind.

1.3.1 Number of files that can be input to linker

The number of files that can be input to the linker is 128.

1.3.2 Limits of number of symbols

The number of executable symbols is as follows:

Number of Local Symbols l Number of PUBLIC Symbols

Assembler . 2700 symbols™™

Linker 2700 symbols x number of modules l About 3000 symbols

Note ' There is no limit depending on the type of a symbol. Undefined symbols are also counted in the number of
symbols. Note that the number of symbols shown in this table is the total number of symbols where one
symbol consists of eight characters.

If 2001 or more PUBLIC symbols are used, the execution speed slows down because a temporary file is
created on the floppy disk.

36

CHAPTER 1 GENERAL

1.3.3 Maximum performance characteristics of RA78K3

The maximum performance characteristics of the RA78K3 are listed below.
(1) Maximum Performance Characteristics of the Assembler

Table 1-1. Maximum Performance Characteristics of the Assembler

ltem Maximum Performance
Characteristics
Number of symbols for which cross-reference list can be output 8000 symbols
Size of macro body for 1 macro reference 32 Kbytes
Number of segments in 1 file 100
Sum of the number of macros that can be referenced, and number 250

of included files that can be specified, in 1 file

Sum of the number of macros that can be referenced, and number . 100

of included files that can be specified, in 1 included file

Relocation data """ 65535 items

Number of characters per line 218 characters "***

Symbol length with -NS option 8 characters
without -NS option 31 characters

Notes 1. "Relocation information” is the information to be passed to the linker if the assembler cannot resolve the
symbol value. For example, if an externally referenced symbol is referenced by the MOV instruction, up
to two piece of relocation information are created in the .rel file.

2. This does not include the carriage return and feed codes. If 219 characters or more are described on a
line, a warning message is output and any characters at or over 219 are ignored.

37

CHAPTER 1

GENERAL

2

38

Maximum Performance Characteristics of Linker

Table 1-2. Maximum Performance Characteristics of Linker

Item Maximum Performance
Characteristics
Number of input modules 128 modules
Number of input libraries (limit of linker) 10 libraries

CHAPTER 1 GENERAL

1.4 Features of RA78K3
The RA78KS3 has the following features:

(1) Macro function
When the same group of instructions must be described in a source program over and over again, a macro can
be defined by giving a single macro name to the group of instructions. By using this macro function, coding
efficiency and readability of the program can be increased.

(2) Optimize function of branch instructions
The RA78KS3 has a directive to automatically select a branch instruction (i.e., BR directive).
To create a program with high memory efficiency, a 2-byte branch instruction must be described according to
the branch destination range of the branch instruction. However, it is troublesome for the programmer to
describe a branch instruction by paying attention to the branch destination range for each branching.
By describing the BR directive, the assembler generates the appropriate branch instruction according to the
branch destination range. This is called the optimization function of branch instructions.

(3) Conditional assembly function
With this function, a part of a source program can be specified for assembly or non-assembly according to a
predetermined condition. If a debug statement is described in a source program, whether or not the debug
statement should be translated into machine language can be selected by setting a switch for conditional
assembly. When the debug statement is no longer required, the source program can be assembled without
major modifications to the program.

(4) Directive for general-purpose register selection
General-purpose registers can be represented by absolute names (RO, R1, RPO, etc.) or by function names (X,
A, AX, etc.). With the 78K/lIl Series, when you describe a function name in a source program, you must
always use a general-purpose register-select (RSS) directive. The RSS directive is provided to allow
description of a function name as a general register representation in a source program.

39

[MEMO]

40

CHAPTER 2 PRODUCT OVERVIEW AND METHOD OF INSTALLATION

This chapter gives an overview of the files provided by the RA78K3 and explains how to install the RA78K3.

41

CHAPTER 2 PRODUCT OVERVIEW AND METHOD OF INSTALL%

2.1 Host Machine and Supply Medium

Table 2-1. Delivery Medium and Recording Format of This Software Package

Host Machine Operating System Delivery Medium Recording Format

PC-9800 series Ms-pos™ 3.5"2HD FD MS-DOS

IBM PC/AT and PC DOS™ 3.5"2HC FD PC DOS

compatibles

HP3000 series 700 HP-UX™ DAT tar

SPARCstation family SunOs™ 1/4" CGMT tar

“sstoHcFD | @w

RISC NEWS NEWS-OS™ 3.5"2HC FD tar

Be sure to observe the following points in order to execute the programs of the RA78K3 correctly on a PC-9800
series, IBM PC/AT and compatible machine.

Cautions 1.

42

When a PC-9800 series is used as the host machine, each program of the RA78K3 runs
normally on MS-DOS of NEC's PC-9800 series.

NEC takes no responsibility for program execution on an MS-DOS version commercially
available.

Set FILES to 20 or more in the CONFIG.SYS.

The minimum memory size necessary for executing the assembler is 400 KB. This memory
size increases if macros are used, and assembly may not be performed with 400 KB only in
some cases. Therefore, allocate as large a vacant area of conventional memory as possible.

If the area of environmental variables runs short, specify the /E option, like SHELL =
C:\COMMAND.COM C:\/P /E:2048, to indrease the area of environmental variables.

CHAPTER 2 PRODUCT OVERVIEW AND METHOD OF INSTALL/

2.2 Contents of Media

2.2.1 For the PC-9800 series or IBM PC/AT and compatibles

The first supply medium stores the execution format of the assembler package and the second medium stores a

Note

device file™" in the following directory configuration.

[Outline of supply media]

First medium

\ Executable format of assembler package
Sample program

Second medium

\DF78310 Device file for uPD78312, 78312A Subseries

\DF78320 Device file for uPD78322, 78328 Subseries

\DF78330 Device file for uPD78334 Subseries

\device\78312 Interrupt and macro service area allocating macro definition file for yPD78312, 78312A
Subseries

\device\78322 Interrupt and macro service area allocating macro definition file for uPD78322 Subseries

\device\78328 Interrupt and macro service area allocating macro definition file for yPD78328 Subseries

\device\78334 Interrupt and macro service area allocating macro definition file for uPD78334 Subseries

Note The device files of the following subseries are optional.
* uPD78352A Subseries
* uPD78356 Subseries
* uPD78366 Subseries

uPD78366A Subseries

uPD78372 Subseries

43

CHAPTER 2 PRODUCT OVERVIEW AND METHOD OF INSTALLA

2.2.2 For the HP9000 series 700, SPARCstation family, and RISC NEWS

The supply media store the execution format of the assembler package and device file

configuration.

Note

44

Note

in the following directory

[Outline of supply media]

/

/df78310
/df78320
/df78330
/device/78312

/device/78322
/device/78328
/device/78334

Executable format of assembler package

Sample program

Device file for uyPD78312, 78312A Subseries

Device file for uPD78322, 78328 Subseries

Device file for uPD78334 Subseries

Interrupt and macro service area allocating macro definition file for uPD78312, 78312A
Subseries

Interrupt and macro service area allocating macro definition file for uPD78322 Subseries
interrupt and macro service area allocating macro definition file for uPD78328 Subseries
Interrupt and macro service area allocating macro definition file for uPD78334 Subseries

The device files of the following subseries are optional.

¢ uPD78352A Subseries

pPD78356 Subseries
1PD78366 Subseries
UPD78366A Subseries
pPD78372 Subseries

CHAPTER 2 PRODUCT OVERVIEW AND METHOD OF INSTALL/

2.3 Installation

2.3.1 For PC-9800 series or IBM PC/AT and compatibles

Change the directory from the current directory to the directory to which you wish to install the RA78K3.

Using the MS-DOS or PC DOS copy command, copy the execution format of the assembler and then the device
file for the device you wish to use.

The following is an example of the installation procedure when the RA78K3 assembler package and uPD78312,
78312A, Subseries device file are read from drive A: and installed to C:\ra78K3.

X>cd C :\ra78K3 Change the directory from the current directory to the directory to which you
' wish to install the RA78K3. (Example: C:\ra78K3)
C>copy A\™.* Copy file from the drive in which it is installed (Example: A: \).
C>xcopy/e A\ Copy file from the drive in which it is installed.
C>copy C:\ra78k3\df78310*.* Copy the device file from the subdirectory (C:\ra78k3\df78310) to the directory
storing the execution format of the assembler package (C:\ra78k3).

Caution Copy the device file (dxxx.78k) to the directory that stores the executable format of the assembler
package (ra78k3.exe, etc.).

2.3.2 For HP9000 series 700, SPARCstation family, RISC NEWS

Change the directory from the current directory to the directory to which you wish to install the RA78K3.

Use the tar command to copy the file for each directory structure. Next, move the device file to the current
directory.

The following is an example of the installation procedure when the RA78K3 assembler package is read from tape
device /dev/rct/c0 and installed to /ra78Ka3.

$cd/ra78K3 Change the directory from the current directory to the directory to which you wish to
install the RA78K4.

$tar -xfv /dev/rct/cO Copy the file from the device in which it is instalied.

$mv df*/*. Move the contents of df783+ subdirectory to the current directory.

Caution Copy the device file (dxxx.78k) to the directory that stores the executable format of the assembler
package (ra78k, etc.).

45

CHAPTER 2 PRODUCT OVERVIEW AND METHOD OF INSTALLA

2.4 File Organization

2.4.1 For the PC-9800ser

ies or IBM PC/AT and compatibles

The organization of files in the assembler package after installation is as follows.

A
ra78K3.exe
st78K3.exe
[k78K3.exe
0c78K3.exe
lcnv78K3.exe
Ib78K3.exe
eccgen.exe
ra78k3.hip
st78k3.hip
1k78k3.hlp
oc78k3.hip
lcnv78k3.hip
Ib78k3.hlp
eccgen.hlp
ra78k3.is1
ra78k3.is2
ra78k3.is3
ra78k3.is4
ra78k3.is5
78k3main.asm
78k3sub.asm
testl.s
test2.s
testinc.s
st.bat
d3xx.78k
\df78310\d31x.78k
\df78320\d32x.78k
\df78330\d33x.78k
\device\78312\intms.def
\device\78322\intms.def
\device\78328\intms.def
\device\78334\intms.def

Executable format of the assembler

Executable format of the structured assembler/preprocessor
Executable format of the linker

Executable format of the object converter
Executable format of the list converter

Executable format of the librarian

Executable format of the ECC generator

Help fite of the assembler

Help file of the structured assemblet/preprocessor
Help file of the linker

Help file of the object converter

Help file of the list converter

Help file of the librarian

Help file of the ECC generator

Table file of instruction set definitions used by the assembler

Note

Copy the device file™ to this directory.

Note The device file of the following subseries are optional.
e uPD78352A Subseries
* uPD78356 Subseries
» uPD78366 Subseries
» uPD78366A Subseries
» uPD78372 Subseries

46

CHAPTER 2 PRODUCT OVERVIEW AND METHOD OF INSTALL!/

Cautions 1. Copy the device file (dxxx.78k) to the directory that stores the executable format of the
assembler package (ra78k3.exe, etc.).

2. [If youintend to use the C compiler, it is recommended that you install the assembler package,
screen debugger, integrated debugger, system simulator, and device file in the directory in
which the C compiler package is installed in an executable format. If you do not intend to use
the C compiler, it is recommended that you install the screen debugger, integrated debugger,
system simulator, and device file in the directory in which the executable format of the
assembler package is installed.

47

CHAPTER 2 PRODUCT OVERVIEW AND METHOD OF INSTALL/

2.4.2 For the HP9000 series 700, SPARCstation family and RISC NEWS

The organization of files after installation is as follows.

A
ra78K3 Execution format of the assembler
st78K3 Execution format of the structured assembler/preprocessor
Ik78K3 Execution format of the linker
oc78K3 Execution format of the object converter
lenv78K3 Execution format of the list converter
Ib78K3 Execution format of the librarian
ra78k3.hlp Help file of the assembler
st78k3.hip Help file of the structured assembler/preprocessor
1k78k3.hlp Help file of the linker
oc78k.hip Help file of the object converter
lcnv78k3.hip Help file of the list converter
Ib78k3.hlp Help file of the librarian
ra78k3.is1
ra78k3.is2
ra78k3.is3 Table file of instruction set definitions used by the assembler
ra78k3.is4
ra78k3.is5
78k3main.asm
78k3sub.asm
testl.s
test2.s
testinc.s
st.sh
d3xx.78k Copy the device file"™ to this directory.
/di78310/d31x.78k
/df78320/d32x.78k
/df78330/d33x.78k
/device/78312/intms.def
/device/78322/intms.def
/device/78328/intms.def
/device/78334/intms.def

Note The device file of the following subseries are optional.
* 1PD78352A Subseries
* uPD78356 Subseries
* uPD78366 Subseries

1PD78366A Subseries

HPD78372 Subseries

Caution Copy the device file (dxxx.78k) to the directory that stores the executable format of the assembler
package (ra78k, etc.).

48

CHAPTER 2 PRODUCT OVERVIEW AND METHOD OF INSTAL!

2.5 Environment Setting

2.5.1 Environmental variable

Set the following environmental variables during work.

PATH: Specifies the directory that stores the executable format of the assembler.

TMP: Specifies the directory where a temporary file is to be created (this specification is valid only for the
PC-9800 series or IBM PC/AT and its compatible machines).

INC78K3: Specifies the directory from which the include file is to be searched.

LIB78K3: Specifies the directory from which a library is to be searched if the library is used.

[Example]
For the PC-9800 series, or IBM PC/AT and its compatible machines

PATH=%PATH%:C:\ra78k3
set TMP=C:\

set INC78K3=C:\myincs
set LIB78K3=C:\mylibs

For the HP9000 series 700, SPARCstation family, or RISC NEWS

Example of using csh
set path= ($path /ra78k3)
setenv INC78K3 /myincs
setenv LIB78K3 /mklibs
Example of using sh
PATH=$PATH:/ra78k3
INC78K3=/myincs
LIB78K3=/mylibs
export PATH INC78K3 LIB78K3

49

[MEMO]

50

CHAPTER 3 EXECUTING THE RA78K3

This chapter shows the procedure for executing the RA78K3. By actually executing each program of the RA78K3
according to the execution procedure explained in this chapter, you can become accustomed to the operation of the
RA78KS3.

All examples of operation from this chapter forward are based on use with the PC-9800 series (MS-DOS).

51

CHAPTER 3 EXECUTING THE RA78K3

3.1 Before Executing the RA78K3

3.1.1 Verifying the contents of the disk

Verify that the RA78K3 system disk contains all of the files introduced in 2.4, "File Organization."

3.1.2 Sample programs

Among the files stored on the system disk are [78K3MAIN.ASM] and [78K3SUB.ASM]. These files are a sample
program for use in verifying the operation of the assembler package.

In later assembler operation, these files will be input to the assembler as source program files.

The following is a simple explanation of the contents of the sample programs. These programs consist of
hexadecimal data converted to ASCil code. The program consists of two modules, a main routine and a subroutine.

The name of the main routine module is SAMPM, and it is stored in (78K3MAIN.ASM).

The name of the subroutine module is SAMPM, and it is stored in (78K3SUB.ASM).

Figure 3-1. Structure of the Sample Program

78K3MAIN.ASM 78K3SUB.ASM

(Main routine) (Subroutine)

NAME SAMPM

CALL - \ NAME SAMPS
END

END

52

CHAPTER 3 EXECUTING THE RA78K3

H78K3MAIN.ASM (Main routine)

S PROCESSOR(310)

NAME SAMPM

EEEETEES RS S LRSS RS RS EREE SRS EEEEEEEEEEEEE SRS EEEEES
!

. K *

’

;* HEX -> ASCII Conversion Program *

ok *

7

3 * main-routine *
* *

R EEEREEEEESEEESEEEEEEEEEEEREESEEEEEEEE TSI SR
’

PUBLIC MAIN, START
EXTRN CONVAH

DATA DSEG AT OFE20H
HDTSA: DS 1

STASC: DS 2

CODE CSEG AT OH

MAIN: DW START
CSEG
START: MOV RFM, #00

MOVW SP, #0FE8OCH
MOV MM, #00

MOV STBC, #08H
MOV HDTSA, #1AH
MOVG HL, #HDTSA ;set hex 2-code data in HL registor
CALL ICONVAH ;convert ASCII <- HEX
;output BC-register <- ASCII code
MOVW DE, #STASC ;set DE <- store ASCII code table
MOV A,B
MOV [DE+],A
MOV A,C
MOV [DE+]1,A
BR $$
END

53

CHAPTER 3 EXECUTING THE RA78K3

m78K3SUB.ASM (Subroutine)
S PROCESSOR (310)

NAME SAMPS

PR R S I i I S R I A I R R e R R S SR S I S
’

. % *
;* HEX -> ASCII Conversion Program *
,.* *
;% sub-routine *
;* *
;* input condition : (HL) <- hex 2 code *

* *

;¥ output condition : BC-register <-ASCII 2 code *
. K% *

PR O b R S I S R R S
’

PUBLIC CONVAH

CSEG
CONVAH: MOV A, #0
ROL4 [HL] ;hex upper code load
CALL ! SASC
MOV B,A ;store result

MOV A, #0

ROL4 [HL] ;hex lower code load
CALL ISASC

MOV C,A ;store result

RET

AR RS SRS R SRR EEEEEEEEEEEESEREEEIESERERERESESESESE]
’

;* subroutine convert ASCII code *
P F input Acc {lower 4bits) <- hex code *
i output Acc <- ASCII code *

;**************************************‘k**********

SASC: CMP A, #0AH ;check hex code > 9
BC $SASC1
ADD A,#07H ;bias (+7)
SASCl: ADD A, #30H ;bias (+30)
RET
END

54

CHAPTER 3 EXECUTING THE RA78K3

Remarks 1.

2.

This sample program is a reference program, prepared for the purpose of teaching you about
the functions and operation of the RA78K3. It cannot be used as an application program.
This sample program does not operate the default settings of the register set selection flag
(RSS) or the register bank selection flags (RBSO to RBS2). The settings for these items are
therefore as follows.

Register bank 0 (OFEFOH to OFEFFH)

RSS flag 0

55

CHAPTER 3 EXECUTING THE RA78K3

3.2 Procedure for Executing the RA78K3
This section introduces the basic procedure for executing the RA78K3.

(1) Assemble the sample program 78 K3MAIN.ASM.
Input the following on the command line.

C>ra78k3 78k3main.asm

The following message is output to the display.

78K/III Series Assembler Vx.xxX [XX XXX XX]
Copyright (C) NEC Corporation 1989,19xx

Passl Start
Pass2 Start

Target chip : UPDXXXXX
Device file : Vx.xx

Assembly complete, 0 error(s) and 0 warning(s) found.

(2) Check the contents of drive C.
The assembler outputs the object module file (78K3MAIN.REL) and the assembile list file (78KSMAIN.PRN).
If the option -E is specified during assembly, the assembler outputs an error list file (a list of the lines
containing assembly errors and the contents of their error messages).

(3) Assemble the sample program 78K3SUB.ASM. Input the following on the command line.
C>ra78k3 78k3sub.asm

The following message is output to the display.

78K/III Series Assembler VxX.XX [XX XXX XX)
Copyright (C) NEC Corporation 1989,19xx

Passl Start
Pass2 Start

Target chip : uPDXXXXX
Device file : Vx.xXX

Assembly complete, 0 error(s) and 0 warning(s) found.

56

CHAPTER 3 EXECUTING THE RA78K3

(4) Check the contents of drive C.
The assembler outputs the object module file (78K3SUB.REL) and the assemble list file (78K3SUB.PRN).
During assembly, if the option -E is specified, the assembler outputs an error list file.

(5) Create a directive file.
A directive file is a file which indicates the location of segments for the linker.
Create a directive file when you need to expand the default ROM/RAM area or define a new memory area.
You will also need to create a directive file when you wish to locate segments not defined as absolute
segments within a source module file to a specific address in memory.
During linking, use the -D option to enter the directive file to the linker.

Example 1. The default RAM area is expanded by a device without internal ROM (such as uPD78310A).
The following is described in the directive file.

MEMORY ROM: (000OH, OFOOOH)
MEMORY RAM: (OFO0OOH,1000H)

Figure 3-2. Link Directive 1

FFFFH FFFFH
FEOOH
FDFFH
FOOOH
EFFFH
~— —~ —~— —~
~— Treated as ROM ~— ~~- Treated as ROM ~—
0000H 0000H

57

CHAPTER 3 EXECUTING THE RA78K3

58

Example 2. In this example, the ROM/RAM area is expanded by a device with internal ROM such as

HPD78312A and segment CSEGH1 is located to address 2000H.
The following is described in the directive file.

MEMORY ROM: (OH,4000H)
MEMORY RAM: (OE000H,2000H)
MERGE CSEG1: AT (2000H)

Figure 3-3. Link Directive 2

FFFFH FFFH
FEOOH | .
FDFFH Tl
Tl EO0OH
DFFFH
o P F/ [
4000H
2000H 3FFFH
1FFFH
0000H 0000H

CHAPTER 3 EXECUTING THE RA78K3

(6) As the result of the assembly, the output object module files [78K3MAIN.REL] and [78K3SUB.REL] are

linked.
Enter 78K3.DR as the directive file.
Enter the following on the command line.

C>1k78K3 78k3main.rel 78k3sub.rel -d78k3.dr -078k3.Ink -p78k3.map
——This is not necessary if the directive file is not specified.

The following message is output to the display.

78K/III Series Linker VX.xx [XX XXX XX]
Copyright (C) NEC Corporation 1989, 19xx

Target chip : UuPDXXXxX
Device file : VX.xXX
Link complete, 0 error(s) and 0 warning(s) found.

(7) Check the contents of drive C.
The linker outputs the load module file (78K3.LNK) and the link list file (78K3.MAP).

If the option -E is specified during linking, the linker outputs an error iist file.

59

CHAPTER 3 EXECUTING THE RA78K3

(8) As the resuit of linking, the output load module file [78K3.LNK] is converted to a HEX-format file.

Enter the following on the command line.

C>0c78k3 78k3.Ink

The foliowing message is output on the display.

78K/III Series Object Converter Vx.Xx [XX XXX XX]
Copyright (C) NEC Corporation 1989,19xx

Target chip : uPDxXxXXXX
Device file : Vx.xX

Object Conversion Complete, 0 error(s) and 0 warning(s) found.

(9) Check the contents of drive C.
The object converter outputs the HEX-format object module file (78K3.HEX) and the symbol table file
(78K3.8YM).

(10) Create a library file as follows.
Register the object module file [78K3SUB.REL] output by the assembler as a library file.
Create the file (78k3.job) using an editor.
® Contents of 78k3.job
Create 78k3. 1lib
Add 78k3. lib 78k3sub. rel

exit

Enter the following on the command line.

C>1b78k3 < 78k3.job

The following message is output on the display.

78K/III Series Librarian Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation 1989, 19xx

*create 78k3.1lib

*add 78k3.1ib 78k3sub.rel

*exit

60

CHAPTER 3 EXECUTING THE RA78K3

(11) Check the contents of drive C.
The librarian outputs the library file (78K3.LIB).

(12) Create an absolute assembile list as follows.
To create the absolute assemble list 78K3MAIN.ASM, input [78K3MAIN.REL], [78K3MAIN.ASM] and

[78K3.LNK] to the list converter.
Enter the following on the command line.

C>lcnv78k3 78k3main -178k3.Ink

The following message is output on the display.

List Conversion Program for RA78K/III Vx.XX [XX XXX XX]
Copyright (C) NEC Corporation 1989, 19xx

Passl: start...
Pass2: start...
Conversion complete.

(13) Check the contents of drive C.
The list converter outputs the absolute assembile list file (78K3MAIN.P).

61

CHAPTER 3 EXECUTING THE RA78K3

3.3 Summary of the RA78K3 Execution Procedure
The following is a brief summary of section 3.2, "Procedure for Executing the RA78K3."

(1) Execution procedure 1

Source module file Source module file

Assembler Assembler

Object module file Object module file B

Assembie list file Assemble list file

Linker

Link list file Il Load module file

Object converter

Symbol table file HEX-format object module file

62

CHAPTER 3 EXECUTING THE RA78K3

(2) Execution procedure 2

" Source module file | Source module file

Assembler " Assembler

{m)

Object Assemble
module file list file

Assemble
list file

Object
module file

" Librarian

R

Linker

Link list file A Load module file

—

List converter

|| List converter I

Object converter
Absolute
assemble list
file ¥ Absolute
o assemble list
file
Symbol table file HEX-format object module file

63

64

[MEMO]

CHAPTER 4 ASSEMBLER

The assembler inputs source module files described in the assembly language for 78K/lll Series
microcontrollers and converts them into machine language coding.

The assembler also outputs list files such as assemble list files and error list files.

If assembly errors occur, an error message is output to the assembile list file and error list file to clarify the
cause of the error.

65

CHAPTER 4 ASSEMBLER

4.1 Assembler input and Output Files

The following table shows the input/output files of the assembler.

Table 4-1. Assembler Input and Output Files

assembly ends.

Type File Name Explanation Default File Type
Assembler source * These are source module files described in assembly
module files language for 78K/HI Series microcontrollers ASM
sThese files are created by the user.
Include files * These files are used for reference with assembler source
module files.
Input files " . .
+ These are files described in assembly language for 78K/l —
Series microcontrollers.
* These files are created by the user.
Parameter files * These files contain the parameters for the executed files.
.PRA
* These files are created by the user.
Object module files |e These are binary files including relocation data and symbol
data regarding machine language data and machine .REL
language location addresses.
Output files | Assemble list files * These are files containing assembly data such as PRN
assembile lists and cross-reference lists. ’
Error list files e These are files containing error data generated during ERA
assembly. ’
Input and Temporary files e These are files created automatically by the assembler for RAXXXXXX.$SN
. assembly purposes. Temporary files are deleted when
output files (n=11to 4)

66

CHAPTER 4 ASSEMBLER

Figure 4-1. Files Input and Output by the Assembler

include files Assembler source Parameter files
module files
a a =]
Temporary files
Assembler - —
O a m}
Assembile list Object module Error list files
files files

67

CHAPTER 4 ASSEMBLER

4.2 Functions of the Assembler

(1)

&)

®3)

(4)

(6)

68

The assembler reads source module files and converts them from assembly language files into machine
language files.

If errors occur, the assembler outputs an abort error. If it finds the described error in the source module, the
assembler outputs a "fatal error” or "warning error" message.

If an "abort error" or "fatal error" message is output, the object module file cannot be output normally.
However, even if a fatal error has occurred the object module file can be output in case of specifying option
-dJ.

The assembler performs assembly according to the assembler option specified at assembler startup. For a
detailed explanation of the assembler options, see 4.4, "Assembler Options.”

If assembly is completed correctly the assembler outputs an "Assembly Finished" message and returns
control to the operating system.

Maximum performance characteristics of the assembler package are as follows.

Item Limit
Symbol length -NS option specified 8 characters
-NS option not specified 31 characters
Number of characters per line 218 characters™™’
Number of segments ?2ASEGn™** 20
Other than ?ASEGn 80

Notes 1. This does not include carriage returns and feed codes. If 219 characters or more are
described on one line, a warning message is output and all characters after the 218th
character are ignored.

2. Absolute segments whose segment name is unspecified will be assigned the default
segment name '"?ASEGnR' (n=1 to 20, source description sequence).

CHAPTER 4 ASSEMBLER

4.3 Assembler Startup

4.3.1 Assembler startup

Two methods can be used to start up the assembler.
(1) Command-line startup

X>[path name] RA78KS3 [Aoption] --- Asource module file name [Aoption] - [A}
| | I | | |
(1) (2) 3 (4) ®) 4

) Current drive name
(2) Current directory name
) Command file name of the assembler
(4) Enter detailed instructions for the operation of the assembler.
When specifying two or more assembler options, separate the assembler options with a blank
space. For a detailed explanation of assembler options, see 4.4, "Assembler Options.”
(5) File name of source module to be assembled

Example C>ra78k3 78k3main.asm -e -np

69

CHAPTER 4 ASSEMBLER

&)

70

Startup from a parameter file

Use the parameter file when the data required to start up the assembler will not fit on the command line, or
when repeating the same assembler option for two or more assembly operations.
To start up the assembler from a parameter file, specify the parameter file option (-F) on the command line.

Start up the assembler from a parameter file as follows.

X>RA78K3 [Asource module file] A-F parameter file name
! I
(1) ()
(1) A file which includes the data required to start up the assembler
(2) Parameter file (the specified option)
Create the parameter file using an editor.

The rules for describing the contents of a parameter file are as follows.

[[[A] option [Aoption] - [A]A]] -

If the source module file name is omitted from the command line, only 1 source module file name can be
specified in the parameter file.

The source module file name can also be described after the option.

Describe in the parameter file all assembler options and output file names specified in the command line.
For a detailed explanation of parameter files, see 4.4.3, "Explanation of assembler options."

Example Create the parameter file (78K3MAIN.PRA) using an editor.
» Contents of 78K3BMAIN.PRA

; Parameterfile
78k3main.asm -osmple.rel
-psample.prn

» Use parameter file (78K3MAIN.PRA) to start up the assembler.

C>ra78k3 -f78k3main.pra

CHAPTER 4 ASSEMBLER

4.3.2 Execution start and end messages

(1) Execution start message
When the assembler is started up, an execution startup message appears on the display.

78K/II1 Series Assembler Vx.xx [XX XXX XX]

Copyright (C) NEC Corporation 1989,19xx

(2) Execution end message

If it detects no assembly errors resulting from the assembly, the assembler outputs the following message
to the display and returns control to the operating system.

Passl Start
Pass2 Start

Target chip : uPDxXXXX

Device file : Vx.xx
Assembly complete, 0 error(s) and 0 warning(s) found.

If it detects an assembly error resulting from the assembly, the assembler outputs the error number to the
display and returns control to the operating system.

Passl Start
78K3MAIN.ASM(15) : F201 Syntax error
Pass2 Start

78K3MAIN.ASM(15) : F201 Syntax error

Target chip : uPDxxxXxx

Device file : VX.xx

Assembly complete, 1 error{(s) and 0 warning(s) found.

71

CHAPTER 4 ASSEMBLER

72

If the assembler detects a fatal error during assembly which makes it unable to continue assembly
processing, the assembler outputs a message to the display, cancels assembly and returns control to the

operating system.
Example 1. A nonexistent source module file is specified.

C>ra78k3 sample.asm

78K/IIT Series Assembler Vx.xxX [XX XXX XX]
Copyright (C) NEC Corporation 1989, 19xx

AQ06 File not found 'SAMPLE.ASM'
Program aborted.

In the above example, a nonexistent source module file is specified. An error results and the assembler

aborts assembly.
Example 2. A nonexistent assembier option is specified.

C>ra78k3 78k3main.asm -b

78K/III Series Assembler VX.xX [XX XXX XX]

Copyright (C) NEC Corporation 1989, 19xx

AQ18 Option is not recognized '-b'

Program aborted.

In the above example, a nonexistent assembler option is specified. An error results and the assembler
aborts assembly.

When an etror message is displayed and assembly is aborted, look for the cause in chapter 11, "Error
Messages" and take action accordingly.

CHAPTER 4 ASSEMBLER

4.4 Assembler Options

4.4.1 Types of assembler options

The assembler options are detailed instructions for the operation of the assembler. Assembler options are
classified into 14 types.

Table 4-2. Assembler Options (1/2)

Number Classification Option Explanation
1 Specify device type -C Specifies the device type of the target device.
2 Specify object module file -0 Specifies the output of an object module file.
output -NO
3 Specify forced object -J Forces output of an object module file.
module file output -NJ
4 Specify debug data output -G Outputs debugging data to an object module file.
-NA
-GA
-NGA
5 Specify length of symbol -8 Extends length of a symbol name.
name -NS
6 Specify symbol name case -CA Ignores a distinction between upper case and lower case in

symbol names.

-NCA
7 Specify include file read path -1 Reads from the path specified in an include file.
8 Specify assembie list file -P Specifies output of an assemble list file.
output -NP
9 Specify assemble list file -KA Outputs an assemble list into an assembile list file.
data -NKA
-KS Outputs a symbol list into an assemble list file.
-NKS
-KX Outputs a cross-reference list into an assemble list file.
-NKX

73

CHAPTER 4 ASSEMBLER

Number Classification Option Explanation
10 Specify assembile list file LW Changes the number of characters that can be printed in 1 line in
format an assembile list file.
-LL Changes the number of lines that can be printed in 1 page in an
assemble list file.
-LH Outputs the character string specified in the header of an
assemble list file
-LT Changes the number of spaces in a tab.
-LF Inserts a line feed code at the end of an assembile list file.
-NLF
11 Specify error list file output -E Outputs an error list file.
-NE
12 Specify parameter file -F Inputs the input file name and assembler options from a specified
file.
13 Specify path for temporary file -T Creates a temporary file in a specified path.
creation
14 Specify help - Displays a help message on the display.

This table introduces the assembler options. When actually using the assembler options, refer to Appendix

E.1, “List of Assembler Options”.

74

CHAPTER 4 ASSEMBLER

4.4.2 Order of precedence of assembler options

The following table indicates which assembler option takes precedence when two assembler options are
specified at the same time.

Table 4-3. Order of Precedence of Assembler Options

-NO -NP -NKA -NKS -KX -NKX - Horizontal
J % % axis
-G X X
P A A A x
-KA X X
-KS x X X
-KX X x
-Lw X X
-LL X x
-LH X X
LT x x
-LF x x
T
Vertical
axis

[tems marked with an X] »
When the option in the horizontal axis is specified, the option shown in the vertical axis option is

unavailable.

Example C>ra78k3 78k3main.asm -no -lw80 -If

The options -LW and -LF are unavailable.
[items marked with a A}
When all three of the options in the horizontal axis are specified, the option shown in the vertical axis

option is unavailable.

Example C>ra78k3 78k3main.asm -p -nka -nks -nkx

The options -NKA, -NKS and -NKX are all specified at the same time, so option -P is unavailable.

When an option and its 'N' counterpart are specified at the same time (for example, both -O and -NO), only
the last of the 2 options is available.

Example C>ra78k3 78k3main.asm -0 -no

The option -NO is specified after -O, so option -O is unavailable and -NO is available.

Options not described in Table 4-3 have no particular effect on other options. However, when the help
option '--' is specified, all other options become unavailable.

75

CHAPTER 4 ASSEMBLER

4.4.3 Explanation of assembler options

This section contains detailed explanations of each assembler option.
(1) Specify device type (-C)

Description format: -C device type
Default value: Cannot be omitted

[Function]
Option -C specifies the device type of the target device.

[Application]
Be sure to use the -C option. The assembler performs assembly for the target device and generates an
object code for that device.

[Description]
For the correspondence between the -C option and model specification, refer to the following:

1) With uPD78312, 78312A, 78322, 78328, and 78334 Subseries
Refer to D.2, "Correspondence between Target Device and Device File".
2) With uPD78352A, 78356, 78366, 78366A, and 78372 Subseries
Refer to the separately available document on the device file (Notes on Using DF783xx Device File).

[Note]
Option -C cannot be omitted. However, if a control instruction with the same function is described at the
beginning of the source module, command-line specification can be omitted.

V$VPROCESSORV(Vdevice typeV)
V$VPCV(Vdevice typeV) ;Abbreviated form

For information on control instructions, read Chapter 4, "Control Instructions," in the language manual.

76

CHAPTER 4 ASSEMBLER

[Example]
Example 1. Specify the option -C on the command line as follows.

C>ra78k3 —310 78k3main.asm

78K/II1 Series Assembler Vx.xxX [XX XXX xX]
Copyright (C) NEC Corporation 1989, 19xx

Passl Start
Pass2 Start

Target chip : uPD78310
Device file : V1.00

Assembly complete, 0 error(s) and 0 warning(s)

Example 2. Specify in the source module and start the assembler.

$ PROCESSOR (310)
NAME SAMPM

AR R R RS EEEE S EESE LR E RS EEREEEEEEE SRS SRS EEESEE SRS

HEX -> ASCII Conversion Program

.o %
.k
.k
* main-routine
. %
.k

’
*
’
*
7
*
’
*
I
*
r
EE R EEE R E R RS R SRR RS RS EEEEEEEEEEEESEEEEERSEEESES]
Iz

PUBLIC MAIN, START
EXTRN CONVAH

Specifying the target device on the command line may be omitted.

C>ra78k3 78k3main.asm

78K/III Series Assembler Vx.xXX [XX XXX XX]
Copyright (C) NEC Corporation 1989, 19xx

Passl Start
Pass2 Start

Target chip : uPD78310
Device file : V1.00

Assembly complete, 0 error(s) and 0 warning(s)

found.

found.

77

CHAPTER 4 ASSEMBLER

78

Example 3. Specify different device in the source madule and on command line and start the
assembler.
S PROCESSOR(310)
NAME SAMPM

PR R R R R I I R I S I R I

HEX -> ASCII Conversion Program

* *
* *
- * *
* main-routine *
* *
* *

EIE I O S R S I S O i S I R I S I I O S

PUBLIC MAIN, START
EXTRN CONVAH

C>ra78k3 —320 78k3main.asm

78K/III Series Assembler Vx.xXx [XX XXX XX]
Copyright (C) NEC Corporation 1989,19xx

Passl Start
78K3MAIN.ASM(1) : W702 Duplicate PROCESSOR option and control
Pass2 Start
78K3MAIN.ASM(1l) : W702 Duplicate PROCESSOR option and control

Target chip : uPD78320
Device file : Vx.xX

Assembly complete, 0 error(s) and 1 warning(s) found.

The device specified on the command line takes precedence.

CHAPTER 4 ASSEMBLER

(2) Specify object module file output (-O/-NO)

Description format : -O [output-file-name}
: -NO
Default value : -O (input file name).REL

[Function]
1) Option -O specifies the output of an object module file. It also specifies the location to which it is
output and the file name.
2) Option -NO specifies that no object module file is output.

[Application]
Use the option -O to specify the location to which an object module file is output or to change its file
name.
Specify the option -NO when performing assembly only to output an assembile list file. This will shorten
assembly time.

[Description]
1) Even if the option -O is specified, if a fatal error occurs the object module file cannot be output.
2) If the drive name is omitted when the option -O is specified, the object module file will be output to
the current drive.
3) If the output file name is omitted when the option -O is specified, the output file name will be 'input

file name.REL'".
4) If both the options -O and -NO are specified at the same time, the option specified last takes

precedence.

79

CHAPTER 4 ASSEMBLER

80

[Example]

Example 1. Specify output of object module file (SAMPLE.REL).

C>ra78k3 78k3main.asm —osample.rel

78K/III Series Assembler Vx.xxX [XX XXX xX]

Copyright

Passl Start
Pass2 Start

(C) NEC Corporation 1989, 19xx

Target chip UPDXXXXX
Device file VX . XX
Assembly complete, 0 error(s) and

Example 2. Specify both options —NO and ~-O.

C>ra78k3 78k3main.asm —no -0

78K/III Series Assembler Vx.xx [xXxX xXxx xx]

Copyright

Passl Start
Pass2 Start

(C) NEC Corporation 1989,19xx

Target chip UPDXXXXX
Device file VX . XX
Assembly complete, 0 error(s) and

Option —NO is invalid, and option ~O is valid.

0 warning(s)

0 warning(s)

found.

found.

CHAPTER 4 ASSEMBLER

3

Specify forced object module file output (-J/-NJ)

Description format : -J
1 -NJ
Default value : -NJ

[Function]
1)} Option -J specifies that the object module file can be output even if a fatal error occurs.
2) Option -NJ makes option -J unavailable.

[Application]
Normally, when a fatal error occurs, the object module file cannot be output. When you wish to execute
the program with a notice that a fatal error has occurred, specify option -J to output the object module
file.

[Description]
1) When option -J is specified, the object module file will be output even if a fatal error occurs.
2) | both options -J and -NJ are specified at the same time, the option specified last takes
precedence.

[Example]]
Specify output of object module file even if a fatal error occurs.

C>ra78k3 78k3main.asm -j

78K/III Series Assembler VX.xXxX [XX XXX XX]
Copyright (C) NEC Corporation 1989, 19xx

Passl Start
Pass2 Start

Target chip : uPDxxxxX
Device file : VX.xX

Assembly complete, 0 error(s) and 0 warning(s) found.

81

CHAPTER 4 ASSEMBLER

(4) Specify debug data output (-G/-GA/-NG/-NGA)
This option controls the information created in the object depending on how debugging is to be performed.

Description format : -G

Default value 1 -G-GA

[Function]
1) Option -G specifies that debugging data (local symbol data) is to be added to an object module file.
2) Option -GA specifies that source debugging data is to be output to an object module file by the
assembly.
3) Option -NG makes option -G unavailable.
4) Option -NGA makes option -GA unavailable.

[Application]
1) Use option -G when performing symbolic debugging of data that includes local symbol data.
2) Use option -GA when performing debugging at the source level of the assembler. To perform
debugging at the source level, you will need the integrated debugger.

3) Use option -NG in the following 3 cases.
1. Symbolic debugging of global symbols only
2. Debugging without symbols
3. When only the object is required (evaluation using PROM, etc.)

[Description]
1) If option -G is omitted, the debugging data information is not output.
2) If both options -G and -NG are specified at the same time, the option specified last takes
precedence.
3) Option -GA takes precedence over other options regardless of the position in which it is specified.

82

CHAPTER 4 ASSEMBLER

[Note]
1) A control instruction with the same function as options —G, -GA, and -NG can be described at the
beginning of a source module.

V$VDEBUG

V$VDG ;Abbreviated form
V$VDEBUGA

V$VNODEBUG

V$VNODG ;Abbreviated form
V$VNODEBUGA

2) When performing debugging at the source level of the compiler or structured assembler, do not use

this option. The necessary control instruction is automatically output.

For information on control instructions, read Chapter 4, "Control Instructions," in the language manual.

[Example]
Specify addition of debug data to an object module file.

C>ra78k3 78k3main.asm -q

78K/II1I Series Assembler Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation 1989,19xx

Passl Start
Pass2 Start

Target chip : uPDxXxXxxx
Device file : Vx.xx

Assembly complete, 0 error(s) and 0 warning(s) found.

83

CHAPTER 4 ASSEMBLER

(5) Specify length of symbol name (-S/-NS)

Description format ; -S
: -NS
Default value ;=S

[Function]
1) Option -S specifies that the recognizable length of a symbol name is to be extended to a maximum
of 31 characters.
2) Option -NS makes option -S unavailable.

[Application]
If a symbol name is longer than 8 characters, the in-circuit emulator cannot load it to a symbol table.
This option is used to perform debugging using the source debugger (Integrated debugger:ID78K3)
using a symbol name longer than 8 characters.

[Description]
1) When the option -S is specified, the assembler can recognize symbol names of up to 31 characters.
It can also output symbol data to an object.
2) When the -NS option is omitted, the assembler can recognize symbol names of up to 31 characters.
3) If both options -S and -NS are specified at the same time, the option specified last takes
precedence.

[Note]
When not using a source debugger, specify option —-NS.

[Example]
Extend the recognizable length of a symbol name to 31 characters.

C>ra78k3 78k3main.asm -s

78K/III Series Assembler VX.XX [xx xxx XX]
Copyright (C) NEC Corporation 1989, 19xx

Passl Start
Pass2 Start

Target chip : uPDXXxXXX
Device file : Vx.xx

Assembly complete, 0 error(s) and 0 warning(s) found.

84

CHAPTER 4 ASSEMBLER

(6)

Specify symbol name case (-CA/-NCA)

Description format : -CA
: -NCA
Default value : -NCA

[Function]
1) Option -CA specifies that no distinction is made between uppercase and lowercase characters in a
symbol name.
2) Option -NCA specifies that a distinction is made between uppercase and lowercase characters in a
symbol name.

[Application]
Use option -CA when you need to ignore the distinction between upper case and lower case.

[Description}
1) When option -CA is specified, the assembler converts lowercase characters in a symbol name to
uppercase and outputs them to an object.
2) When the -NCA option is specified, the assembler outputs the symbol name to an object without
converting lowercase characters to uppercase.

[Note]
When not using a source debugger, specify option -CA.

[Example}
Specify that a distinction is made between uppercase and lowercase characters in a symbol name.

C>ra78k3 78k3main.asm -nca

78K/III Series Assembler VX.xx [xx xXxX xxX]
Copyright (C) NEC Corporation 1989,19xx

Passl Start
Pass2 Start

Target chip : uPDxXXXXX
Device file : Vx.xxX

Assembly complete, 0 error(s) and 0 warning(s) found.

85

CHAPTER 4 ASSEMBLER

@

86

Specify include file read path (-I)

Description format : -I path name [, path name] -- (two or more path names can be specified)
Default value : Path specified by the environmental variable (INC78K3)
: Path contained in the source file when no path is specified.

[Functioh]
Option -| specifies input of an include file specified by ' $include' in a source module from a specified
path.

[Application]
Use option -1 to retrieve an include file from a certain path.

[Description]

1) Two or more path names can be specified at once by separating them with ',

2) A space cannot be entered before or after the ','.

3) When two or more path names are specified following -I, or several -I options are specified, files
specified with '$include’ will be retrieved in the specified order. Thereafter, files will be retrieved in
the default order.

4) If anything other than a path name is specified after -1, or if the path name is omitted, an abort error
occurs.

5) If -lis used to specify 9 or more path names, an abort error occurs.

[Example]
Read an include file from SAMPLE in directory.

C>ra78k3 78k3main.asm -ib:\sample

78K/III Series Assembler Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation 1989, 19xx

Passl Start
Pass2 Start

Target chip : uPDxxxxx
Device file : Vx.xx

Assembly complete, 0 error(s) and 0 warning(s) found.

CHAPTER 4 ASSEMBLER

(8) Specify assemble list file output (-P/-NP)

Description format : -P [output-file-name]
: -NP
Default value : -P input file name.PRN

[Function]
1) Option -P specifies output of an assemble list file. It also specifies the destination and file name of
the output file.
2) Option -NP makes option -P unavailabie.

[Application]
1) Specify option -P to change the output destination or output file name of an assembile list file.
2) Specify option -NP when performing assembly only to output an object module file. This will
shorten assembly time.

[Description]

1) A file name can be specified as a disk-type file name or as a device-type file name. However, only
CON, PRN, NUL and AUX can be specified as device-type file names. If CLOCK is specified, an
abort error will occur.

2) If the output file name is omitted when option -P is specified, the assemble list file name becomes
'input file name.PRN'.

3) If the drive name is omitted when option -P is specified, the assemble list file will be output to the
current drive.

4) If both options -P and -NP are specified at the same time, the option specified last takes
precedence.

87

CHAPTER 4 ASSEMBLER

[Example]
Example 1. Create an assemble list file (SAMPLE.PRN).

C>ra78k3 78k3main.asm -psample.prn

78K/III Series Assembler Vx.xx [xXx xxXxX xx]
Copyright (C) NEC Corporation 1989,19xx

Passl Start
Pass2 Start

Target chip : UuPDxXxxxX
Device file : VX.xXX

Assembly complete, 0 error(s) and 0 warning(s) found.

Example 2. Output the assembile list file to printer.

C>ra78k3 78k3main.asm -pprn

78K/III Series Assembler Vx.xx [xX XXX XX]
Copyright {(C) NEC Corporation 1989, 19xx

Passl Start
Pass2 Start

Target chip : uPDxxXXxX
Device file : Vx.xX

Assembly complete, 0 error(s) and 0 warning(s) found.

CHAPTER 4 ASSEMBLER

(9) Specify assemble list file data (-KA/-NKA, -KS/-NKS, -KX/-NKX) '
(a) -KA/-NKA

Description format : -KA
: -NKA
Default value 1 -KA

[Function]
1) Option -KA outputs an assemble list into an assemble list file.
2) Option -NKA makes option -KA unavailable.

[Application]
Specify option -KA to output an assembile list.

[Description]
1) If both options -KA and -NKA are specified at the same time, the option specified last takes

precedence.
2) if options -NKA, -NKS and -NKX are all specified, the assemble list file cannot be output.

[Example]
Example 1. Output an assembly list file.

C>ra78k3 78k3main.asm —ka —lw80

78K/III Series Assembler Vx.xxX [Xx xxx xx]
Copyright (C) NEC Corporation 1989,19xx

Passl Start
Pass2 Start

Target chip : uPDxXXXxXX
Device file : Vx.xx

Assembly complete, 0 error(s) and 0 warning(s) found.

89

CHAPTER 4 ASSEMBLER

Example 2. Reference 78K3MAIN.PRN.

78K/III Series Assembler Vx.xx Date:xx XXX xxxx Page: 1

Command: 78k3main.asm -ka -1w80
Para-file:

In-file: 78K3MAIN,ASM

Obj-file: 78K3MAIN,REL

Prn-file: 78K3MAIN, PRN

Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT
1 1 $ PROCESSOR (310)
2 2
3 3 NAME SAMPM
4 4 ;****************************k********************
*
5 5 i*
*
6 6 ;* HEX -> ASCII Conversion Program
*
7 7 i*
*
8 8 i * main-routine
*
9 9 i*
*
10 10 I.**
*
11 11
12 12 PUBLIC MAIN, START
13 13 EXTRN CONVAH
14 14
15 15 -==~ DATA DSEG AT OFE20H
16 16 FE20 HDTSA: DS 1
17 17 FE21 STASC: DS 2
18 18
19 19 -—-- CODE CSEG AT OH
20 20 0000 ROOOO MAIN: DW START
21 21
22 22 ——-- CSEG
23 23 0000 2B4100 START: MOV RFM, #00
24 24 0003 OBFC80FE MOVW SP, #0FE80H

25 25 0007 2B4000 MoV MM, #00

CHAPTER 4 ASSEMBLER

(b) -KS/-NKS

Description format : -KS
: -NKS
Default value : -NKS

[Function]
1) Option -KS outputs an assemble list followed by a symbol list into an assemble list file.
2) Option -NKS makes option -KS unavailable.

[Application]
Specify option -KS to output a symbol list.

[Description]
1) If both options -KS and -NKS are specified at the same time, the option specified last takes
precedence.

2) If options -KS and -KX are specified at the same time, -KS is ignored.
3) If options -NKA, -NKS and -NKX are all specified, the assemble list file cannot be output.

[Example]

Example 1. Output a symbol list.

C>ra78k3 78k3main.asm —ks —lw80

78K/III Series Assembler Vx.xx [xXX xXxX xxX]
Copyright (C) NEC Corporation 1989, 19xx

Passl Start
Pass2 Start

Target chip : uPDxxxxx
Device file : Vx.xx

Assembly complete, 0 error(s) and 0 warning(s) found.

Example 2. Reference 78K3MAIN.PRN. (The assemble list is output, followed by the symbol list.)

78K/III Series Assembler VxX.XX Date:x xxx xxxx Page: 3
Symbol Table List
VALUE ATTR RTYP NAME

CSEG ?CSEG
CSEG CODE

-——-H EXT CONVAH
DSEG DATA

FE20H ADDR HDTSA
0H ADDR PUB MAIN
MOD SAMPM

OH ADDR PUB . START
FE21H ADDR STASC

Target chip : uPDXXXXX
Device file : VX.xX

Assembly complete, 0 error(s) and 0 warning(s) found. (0)

91

CHAPTER 4 ASSEMBLER

(€) -KX/-NKX

Description format : -KX
: -NKX
Default value : -NKX

[Function]
1) Option -KX outputs an assemble list followed by a cross-reference list into an assemble list file.
2) Option -NKX makes option -KX unavailable.

[Application]
Specify option -KX to output a cross-reference list when you wish to know where and to what degree
each symbol defined in a source module file is referenced in the source module, or when you wish to
know such information as which line of the assemble list a certain symbol is referenced on.

[Description]
1) If both options -KX and -NKX are specified at the same time, the option specified last takes
precedence.
2) If options -KS and -KX are specified at the same time, -KS is ignored.
3) If options -NKA, -NKS and -NKX are all specified, the assembile list file cannot be output.

[Note]
A control instruction with the same function as option -KX/-NKX can also be described at the beginning
of a source module.

V$VXREF

V$VXR ;Abbreviated form
VSVNOXREF

VSVNOXR ;Abbreviated form

For information on control instructions, read Chapter 4, "Control Instructions," in the language manual.

92

CHAPTER 4 ASSEMBLER

[Example]
Example 1. Output a cross-reference list.

A>ra78k3 78k3main.asm —kx —Iw80

78K/III Series Assembler Vx.xxX [XX XXX XX]
Copyright (C) NEC Corporation 1989, 19xx

Passl Start
Pass2 Start

Target chip : uPDXXXxXX
Device file : Vx.xx

Assembly complete, 0 error(s) and 0 warning(s) found.
Example 2. Reference 78K3MAIN.PRN.(The assemble list is output, followed by a cross-reference list.)

78K/III Series Assembler Vx.xX Date:x XXX XXXX Page: 3

Cross-Reference List

NAME . VALUE R ATTR RTYP SEGNAME XREFS

?CSEG CSEG ?CSEG 22#

CODE CSEG CODE 194

CONVAH ----H E EXT 13e 31

DATA DSEG DATA 15#

HDTSA FE20H ADDR DATA 16# 28 29
MAIN OH ADDR PUB CODE 12@ 204

SAMPM MOD 3#

START OH R ADDR PUB ?CSEG l2e 20 23#
STASC FE21H ADDR DATA 17# 33

Target chip : uPDxxXXx
Device file : Vx.xx

Assembly complete, 0 error(s) and 0 warning(s) found. (0)

93

CHAPTER 4 ASSEMBLER

(10) Specify assemble list file format (LW, -LL, -LH, -LT, -LF/-NLF)
(a) -LW

Description format : -LW [number-of-characters]
Default value 1 -LW132 (80 characters in the case of display output)

[Function]
Option -LW changes the number of characters that can be printed in 1 line in a list file.

[Application]
Specify option -LW to change the number of characters that can be printed in 1 line in any type of list file.

[Description]
1) The range of number of characters that can be specified with option -LW is shown below.

72 < number of characters printed on 1 line < 132

If a numerical value outside this range, or something other than a numerical value, is specifi, an
abort error occurs.

2) If the number of characters is omitted, 132 will be specified.
However, when an assemble list file is output to display, 80 will be specified.

3) The specified humber of characters does not include the carriage return and feed codes.

4) If option -NP is specified, option -LW is unavailable.

94

CHAPTER 4 ASSEMBLER

[Example]
Example 1. Omit the option —LW and output the assembile list to printer.

C>ra78k3 78k3main.asm -pprn

78K/III Series Assembler Vx.xx [Xx XXX XX]
Copyright (C) NEC Corporation 1989,19xx

Passl Start
Pass2 Start

Target chip : uPDxXXXXX

Device file : VX.xXx
Assembly complete, 0 error(s) and 0 warning(s) found.
This references the assemble list.

Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

1 1 $ PROCESSOR (310)

2 2

3 3 NAME SAMPM

4 4 I.******‘k**‘k**********‘k**************************

5 5 P *

6 6 ;* HEX -> ASCII Conversion Program *

7 7 P ¥ *

8 8 P main-routine *

9 9 i *
10 10 LR KK R KRR KK KK K KR K Rk R R R Kk Xk KR K KK Kk Kk K
11 11
12 12 PUBLIC MAIN, START
13 13 EXTRN CONVAH
14 14
15 15 ———- DATA DSEG AT OFE20H
16 16 FE20 ~ HDTSA: DS 1
17 17 FE21 STASC: DS 2
18 18
19 19 ———- CODE CSEG AT OH
20 20 0000 ROOOO MAIN: DwW START

95

CHAPTER 4 ASSEMBLER

Example 2. Specify 80 as the number of characters per line in an assembile list file.

C>ra78k3 78k3main.asm —lw80

78K/III Series Assembler Vx.xx [XX XXX xX]
Copyright (C) NEC Corporation 1989, 19xx

Passl Start
Pass2 Start

Target chip : uPDxXxXXXX
Device file : VxX.xXX

Assembly complete, 0 error(s) and 0 warning(s) found.
This references the assemble list.
Assemble list

ATLNO STNO ADRS OBJECT M I SOURCE STATEMENT

1 1 $ PROCESSOR (310)

2 2

3 3 NAME SAMPM

4 4 ;****1\'****************‘k*************************
*

5 5 P *
*

6 6 P * HEX -> ASCII Conversion Program
*

7 7 P ¥
*

8 8 P main-routine
*

9 9 i *
*

10 lo ;***
*

11 11

12 12 PUBLIC MAIN, START

13 13 EXTRN CONVAH

14 14

15 15 ———- DATA DSEG AT O0FE20H

ie 16 FE20 HDTSA: DS 1

17 17 FE21 STASC: DS 2

18 18

19 19 -—~- CODE CSEG AT 0H

20 20 0000 RrROOQOO MAIN: DW START

CHAPTER 4 ASSEMBLER

(b) -LL

Description format : -LL [number-of-lines]
Default value : -LL66 (No page breaks in the case of display output)

[Function]
Option -LL changes the number of lines that can be printed in 1 page in an assemble list file.

[Application]
Specify option -LL to change the number of lines that can be printed in 1 page in an assemble list file.

[Descrription]
1) The range of number of lines that can be specified with option -LL is shown below.

20 < number of lines printed on 1 page < 32767

If a numerical value outside this range, or something other than a numerical vaiue, is specified, an
abort error occurs.

2) If the number of lines is omitted, 66 will be specified.

3) If the number of lines specified is 0, no page breaks will be made.

4) If option -NP is specified, option -LL is unavailable.

[Example]
Example 1. Specify 20 as the number of lines per page in an assemble list file.

C>ra78k3 78k3main.asm -1120 —iw80

78K/III Series Assembler Vx.xx [XX XXX XX]
Copyright (C) NEC Corporation 1989, 19xx

Passl Start
Pass2 Start

Target chip : uPDXXXXX
Device file : VxX.xxX

Assembly complete, 0 error(s) and 0 warning(s) found.

97

CHAPTER 4 ASSEMBLER

Example 2. Reference 78K3BMAIN.PRN.

78K/III Series Assembler Vx.xxX

Command: 78k3main.asm —-1w80
Para-file:

In-file: 78K4MAIN.ASM
Obj-file: 78K3MAIN.REL
Prn-file: 78K3MAIN.PRN

Assemble list

Date:xx xxx XxXx Page: 1

78K/III Series Assembler Vx.xx

Date:xx xxx xxxxX Page: 2

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

A Ul W
A U1 bW

$

PROCESSOR(310)
NAME SAMPM

IEEEEE RS S EEEREEEESEREESESEEESEEESEEEEESIERESERSS
’

*

¥~e

*

78K/III Series Assembler VX.xXxX

7 7
8 8
9 9
10 10

98

*

%

7

7
*

* HEX -> ASCII Conversion Program
Date:xx xxx xxxx Page: 3
;* main-routine
*
R I I I P R I I I I S I 2 I R I R I b R

.
’

*
’

CHAPTER 4 ASSEMBLER

(c) -LH

Description format : -LH character string

Default value : None

[Function]
Option -LH specifies the character string printed in the title column of the header of an assemble list file.

[Application]
1) Specify option -LH to display a title that briefly explains the contents of an assembile list file.

2) By printing the title on each page, the contents of the assembie list file can be understood at a

glance.

[Description]

1)
2)

Up to 60 characters can be specified in the titte. The character string cannot include blank spaces.
If more than 61 characters are described, the first 60 characters will be recognized and no error
message will be output.

1 Japanese kaniji or hiragana character is counted as 2 characters.

If the maximum number of characters per line is 117 or less, the length of the effective character
string changes as follows.

Effective length = (Max. number of characters per line) - 58

If the length of the character string is not specified, an abort error will occur.

If option -NP is specified, option -LH is unavailable.

If the -LH option is omitted, the title column of the assemble list file will be blank.
The character set that can be described in the title column is as follows.

99

CHAPTER 4 ASSEMBLER

Table 4-4. Characters That Can Be Described as Titles

Character in Command Line In Parameter File
*P><| Can be described if enclosed in " . Can be described.
Interpreted in the same way as in the
command line even if enclosed in " ".
; Can be described if enclosed in " ". Cannot be described.
(Assumed to be a comment.)
Can be described. Cannot be described.

(Assumed to be a comment.)

" (double quotation mark)

Cannot be described as an effective
character.

Cannot be described as an effective
character.

00H

Cannot be described.

Cannot be described.
However, it is interpreted as the end of
the character string.

03H, 06H, 08H, ODH
OEH, 10H, 15H, 17H
18H, 1BH, 7FH

Can be described.

Cannot be described.

However, these will appear in the
assemble list file as '!' (A single ODH
will not be output to the list.)

01H, 02H, 04H, 05H
07H, 0BH, OCH, OFH
11H, 12H, 13H, 14H
16H, 19H, 1CH, 1DH
1EH, 1FH

Can be described.
However, these will appear in the
assembile list file as '!"

Can be described.
However, these will appear in the
assemble list file as V'

1AH Can be described. Cannot be described.
However, this will appear in the (end of file)
assemble list file as '

Alphabetic characters Uppercase and lowercase characters Uppercase and lowercase characters
are input as is. are input as is.

Other Can be described. Can be described.

Remark If an asterisk (*) on the startup line is not a target for World Card expansion, it can be described

even if it is not enclosed in " ".

100

CHAPTER 4 ASSEMBLER

[Note]
A control instruction with the same function as option -LH can also be described at the beginning of the

startup line.

V$VTITLEV(V'character string'V)
V$VTTV(V'character string'V) ;Abbreviated form

For information on control instructions, read Chapter 4, "Control Instructions,” in the language manual.

[Example]
Print the title in the header of an assemble list file.

C>ra78k3 78k3main.asm —-IhRA78K3 MAINROUTINE

78K/II1 Series Assembler Vx.xX [xx xxx xXX]
Copyright (C) NEC Corporation 1989, 19xx

Passl Start
Pass2 Start

Target chip : uPDXXXXX
Device file : VxX.xXx

Assembly complete, 0 error(s) and 0 warning(s) found.

101

CHAPTER 4 ASSEMBLER

This references 78K3MAIN.PRN.

78K/II1 Series Assembler Vx.xx RA78K3_MAINROUTINE Date:xx xxx xxxx Page: 1

L—— Title

Command: 78k3main.asm —-1hRA78K3_MAINROUTINE

Para-file:

In-file: 78K3MAIN.ASM
Obj-file: 78K3MAIN.REL
Prn-file: 78K3MAIN.PRN

Assemble list

ALNO STNOC ADRS OBJECT M I SOURCE STATEMENT

1 1 S PROCESSOR (310)

2 2

3 3 NAME SAMPM

4 4 I.**-k
5 5 ;* *
6 6 ;* HEX -> ASCII Conversion Program *
7 7 P *
8 8 ;¥ main-routine *
9 9 ;* *
10 10 KRR R KR K KK KK KR KKK R K KRR KRR KKK KR K KK KK K
11 11
12 12 PUBLIC MAIN, START
13 13 EXTRN CONVAH
14 14
15 15 ———— DATA DSEG AT OFE20H
16 16 FE20 HDTSA: DS 1

17 17 FE21 STASC: DS 2

102

CHAPTER 4 ASSEMBLER

(d) LT

Description format : -LT [number-of-characters]
Default value : -LT8

[Function]
Option -LT performs tabulation processing by specifying a number of characters for any type of list for
which to substitute and output a number of blank spaces for the HT (horizontal tabulation) code in a

source module.

[Application]
When specifying a small number of characters per line for any type of list using option -LW, specify
option -LT to insert a tab instead of a series of blank spaces, thus saving on the number of characters

used.

[Description]
1) The range of number of characters that can be specified with option -LT is shown below.

0 < number of characters that can be specified < 8

If a numerical value outside this range, or something other than a numerical value, is specified, an

abort error occurs.
2) If -LTO is specified, tabulation processing will not be performed, and a tabulation code will be

output.
3) If option -NP is specified, option -LT is unavailable.

103

CHAPTER 4 ASSEMBLER

[Examples]
Example 1. Omit option —LT.

C>ra78k3 78k3main.asm —iw80

78K/III Series Assembler Vx.XX [XX XXX XX]
Copyright (C) NEC Corporation 1989,19xx

Passl Start
Pass2 Start

Target chip : uPDxxxxx
Device file : Vx.xx

Assembly complete, 0 error(s) and 0 warning(s) found.

104

CHAPTER 4 ASSEMBLER

This references 78K3MAIN.PRN.
78K/III Series Assembler Vx.xx Date:Xx XXX XXXX Page: 1
Command: 78k3main.asm —-1w80
Para-file:
In-file: 78K3MAIN.ASM
Obj-file: 78K3MAIN.REL
Prn-file: 78K3MAIN.PRN

Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

1 1 $ PROCESSOR(310)
2 2
3 3 NAME SAMPM
4 4 (R R KK KRR KR A KK KR A KR KKK X KA KR AR KKK KKK KKK KK KKK A KK
*
5 5 P*
*
6 6 i* HEX -> ASCII Conversion Program
*
7 7 P
*
8 8 P * main-routine
*
9 9 P*
*
10 10 R L R e
*
11 11
12 12 PUBLIC MAIN, START
13 13 EXTRN CONVAH
14 14
15 15 -~~~ DATA DSEG AT OFE20H
16 16 FE20 HDTSA: DS 1
17 17 FE21 STASC: DS 2
18 18
19 19 ---—- CODE CSEG AT OH
20 20 0000 ROOOO MAIN: Dw START
21 21
22 22 —--- CSEG
23 23 0000 2B4100 START: MOV RFM, #00
24 24 0003 OBFC80FE Movw SP, #0FE80H
25 25 0007 2B4000 MOV MM, #00

26 26 000A 0944r708 MOV STBC, #08H

105

CHAPTER 4 ASSEMBLER

106

Example 2. 1 blank is specified using the HT code.

C>ra78k3 78k3main.asm —it1

78K/III Series Assembler Vx.xxX [XX XXX XX]
Copyright (C) NEC Corporation 1989, 19xx

Passl Start
Pass2 Start

Target chip : uPDXXXXX
Device file : Vx.xxX

Assembly complete, 0 error(s) and

0 warning(s)

found.

CHAPTER 4 ASSEMBLER

This references 78K3MAIN.PRN.
78K/I1I Series Assembler VX.xx Date:xx XXX XXXx Page: 1
Command: 78k3main.asm -1tl
Para-file:
In-file: 78K3MAIN.ASM
Obj-file: 78K3MAIN.REL
Prn-file: 78K3MAIN.PRN

Assemble list

AILNO STNO ADRS OBJECT M I SOURCE STATEMENT

1 1 $ PROCESSOR(310)

2 2

3 3 NAME SAMPM

4 4 ;**
5 5 i* *
6 6 ;* HEX -> ASCII Conversion Program *
7 7 P * *
8 8 Pad main-routine *
9 9 i* *
10 10 ;**********’k*************************************
11 11

12 12 PUBLIC MAIN, START

13 13 EXTRN CONVAH

14 14

15 15 ———— DATA DSEG AT OFE20H

16 16 FE20 HDTSA: DS 1

17 17 FE21 STASC: DS 2

18 18

19 19 —-=~~ CODE CSEG AT OH

20 20 0000 ROOOO MATIN: DW START

21 21

22 22 —-—- CSEG

23 23 0000 2B4100 START: MOV RFM, #00

24 24 0003 OBFC80FE MOVW SP, #0FE80H

25 25 0007 2B4000 MOV MM, #00

26 26 000A 0944F708 MOV STBC, #08H

27 27

28 28 000E 3a201a MOV HDTSA, #1AH

29 29 0011 6720FE MOVW HL, #HDTSA ;set hex 2-code data in HL register
30 30

31 31 0014 R280000 CALL !CONVAH ;jconvert ASCII <- HEX

Remark The number of blanks entered by the HT code is 1.

107

CHAPTER 4 ASSEMBLER

(e) ~LF/-NLF

Description format : -LF
: -NLF
Default value : -NLF

[Function]
1) Option -LF inserts a form feed (FF) code at the end of an assemble list file.
2) The -NLF option makes the -LF option unavailable.

[Application]
If you wish to add a page break after the contents of an assemble list file are printed, specify option -LF
o add a form feed code.

[Description]
1) If option -NP is specified, option -LF is unavailable.
2) |If both options -LF and -NLF are specified at the same time, the option specified last takes
precedence.

[Example]
Example Add a form feed code at the end of an assemble list file.

C>ra78k3 78k3main.asm -pprn -if

78K/III Series Assembler Vx.xXX [XX XXX XX]
Copyright (C) NEC Corporation 1989, 19xx

Passl Start
Pass2 Start

Target chip : uPDxxxxx
Device file : Vx.xx

Assembly complete, 0 error(s) and 0 warning(s) found.

108

CHAPTER 4 ASSEMBLER

(11) Specify error list file output (-E/-NE)

Description format : -E [output file name]

: -NE
Default value : -NE
[Function]
1) Option -E outputs an error list file, and specifies the output destination and output file name of the
error list file.

2) The -NE option makes the -E option unavailable.

[Application]
1) Specify option -E to save an error message into a file.
2) Specify option -E to change the output destination and output file name of the error list file.

[Description]

1) The error list file can be saved as a disk-type file or as a device-type file. However, if the device-
type file name CLOCK is specified, an abort error will occur.

2) When option -E is specified and the output file name is omitted, the error list file name will be 'input
file name.ERA".

3) When option -E is specified and the drive name is omitted, the error list file will be output to the
current directory.

4) If both options -E and -NE are specified at the same time, the option specified last takes
precedence.

109

CHAPTER 4 ASSEMBLER

[Example]
Example 1. Create an error list file (SAMPLE.ERA).

C>ra78k3 78k3main.asm -esample.era

78K/III Series Assembler Vx.xX [XX XXX XX]
Copyright (C) NEC Corporation 1989, 19xx

Passl Start
78K3MAIN.ASM(
78K3MAIN.ASM(
Pass2 Start

20) : F201 Syntax error

23)

78K3MAIN.ASM(12) : F404 Public symbol is undefined ‘dSTART’
20
23

F201 Syntax error

78K3MAIN.ASM(20) : F201 Syntax error
78K3MAIN.ASM(23) : F201 Syntax error

Target chip : uPDxxXXX
Device file : VX.xXX

Assembly complete, 3 error(s) and 0 warning(s) found.

This references the error list file (SAMPLE.ERA).

Passl Start
78K3MAIN.ASM (2
78K3MAIN.ASM (2
Pass2Z2 Start

0) : F201 Syntax error
3
78K3MAIN.ASM(12
0
3

) : F201 Syntax error

) : F404 Public symbol 1s undefined ‘dSTART’
) : F201 Syntax error
} : F201 Syntax error

78K3MAIN.ASM(2
78K3MAIN.ASM(2

110

CHAPTER 4 ASSEMBLER

(12) Specify parameter file (-F)

Description format : -F [file name]
Default value . This option and the input file name can only be entered on the startup line.

[Function]
Option -F inputs assembler options and the input file name from a specified file.

[Application]
1) Specify option -F when the data required to start up the assembler will not fit on the command line.
2) Specify option -F to repeatedly specify the same options each time assembly is performed and to
save those options to a parameter file.

[Description]

1) Only a disk-type file name can be specified as 'file name'. If a device-type file name is specified, an
abort error will occur.

2) If the file name is omitted, an abort error will occur.

3) Nesting of parameter files is not permitted. If option -F is specified within a parameter file, an abort
error will occur.

4) The number of characters that can be described within a parameter file is unlimited.

5) Separate options or file names with a blank space, a tab or [.].

6) Parameters and input file names within a parameter file will be expanded at the position specified
for the parameter file on the command line.

7) The expanded options specified last will take precedence.

8) All characters entered after ;' or '#' and before [J] or 'EOF' will be interpreted as comments.

9) If option -F is specified two or more times, an abort error will occur.

111

CHAPTER 4 ASSEMBLER

[Example]
Example Perform assembly using a parameter file.

» Contents of the parameter file (7BKSMAIN.PRA)

;parameter file
78k3main.asm -osample.rel -g
-psample.prn

* Enter the following on the command line.

C>ra78k3 -{78k3main.pra

78K/III Series Assembler Vx.xx [xx XXX xx]
Copyright (C) NEC Corporation 1989,19xx

Passl Start
Pass2 Start

Target chip : uPDXXXXX
Device file : Vx.xx

Assembly complete, 0 error(s) and 0 warning(s) found.

112

CHAPTER 4 ASSEMBLER

(13) Specify path for temporary file creation (-T)

Description format : -T Path
Defauit value : Creates a temporary file in the path specified by the environmental variable TMP.
When no path is specified, the temporary file is created in a current path.

[Function]
Option -T specifies a path in which a temporary file is created.

[Application]
Use option -T to specify the location for creation of a temporary file.

[Description]
1) Only a path can be specified as a path name.
2) The path name cannot be omitted.
3) Even if a previously created temporary file exists, if the file is not protected it will be overwritten.
4) As long as the required memory size is available, the temporary file will be expanded in memory. If
not enough memory is available, the contents of the temporary file will be written to a disk.
Such temporary files may be accessed later through the saved disk file.
5) Temporary files are deleted when assembly is finished. They are also deleted when assembly is
aborted by pressing (CTRL-C).
6) The path in which the temporary file is to be created is determined according to the following
sequence.
a. The path specified by option -T
b. The path specified by environmental variable TMP (when option -T is omitted)
¢. The current path (when TMP is not set)
When a. or b. is specified, if the temporary file cannot be created in the specified path an abort error
- occurs.

[Example]
Example Specify output of a temporary file to directory TMP.

C>ra78k3 78k3main.asm -ttmp

78K/III Series Assembler Vx.xXxX [xXX xxX xX]
Copyright (C) NEC Corporation 1989,19xx

Passl Start
Pass2 Start

Target chip : uPDXXXXX
Device file : Vx.xx

Assembly complete, 0 error(s) and 0 warning(s) found.

113

CHAPTER 4 ASSEMBLER

(14) Specify help (--)
Displays a help message on the display.

Description format : --
Default value : No display

[Function]
Option -- displays a help message.

[Application]
The help message is a list of explanations of the assemble options. Refer to these when executing the
assembler.

[Description]
1) When option -- is specified, all other options are unavailable.
2) To read the next part of the help message, press the return key.
To quit the help display, press any key other than the return key and then press the return key.

114

CHAPTER 4 ASSEMBLER

[Example]
When option -- is specified, a help message is output on the display.
C>ra78Ka3 --

78K/III Series Assembler Vx.xx [xX XXX XX]
Copyright (C) NEC Corporation 1989,19xx

usage : ra78k3 [option[...]] input-file [option([...]]
The option is as follows ([] means omissible).
-Ccx :Select target chip. (x = 310,312a etc.) *Must be specified.

-ol[file]/-no :Create the object module file [with the specified name] / Not.
-e[file]/-ne :Create the error list file [with the specified name] / Not.
-plfile]/-np :Create the print file [with the specified name] / Not.

-ka/-nka :Output the assemble list to print file / Not.

-ks/-nks :Output the symbol table list to print file / Not.

-kx/-nkx :Output the cross reference list to print file / Not.

-1lw[width] :Specify print file columns per line.

-11[length] :Specify print file lines per page.

-1f/-nlf :Add Form Feed at end of print file / Not.

-1lt[n) :Expand TAB character for print file(n=1 to 8)/ Not expand(n=0).
-lhstring :Print list header with the specified string.

-ca/-nca :Convert alphabet to capital for symbol / Not.

-g/-ng :Output debug information to object file / Not.

-j/-nj :Create object file if fatal error occurred / Not.
—-idirectory(,directory..] :Set include search path.

-tdirectory :Set temporary directory.

-ffile :Input option or source module file name from specified file.
-s/-ns :Expand symbol length up to 31 /or symbol length is 8.

-ga/-nga :Output assembler source debug information to object file / Not.

- :Show this message.
DEFAULT ASSIGNMENT:
-0 -ne -p -ka -nks -nkx -1lwl32 -1166 -nlf -1t8 -nca -g -nj -s -ga

115

[MEMO]

116

CHAPTER 5 LINKER

The linker inputs a number of object module files output by the 78K/Ill assembler, determines a location address
and outputs them as a single load module file.

The linker also outputs list files such as a link list file and an error list file.

If a link error occurs, an error message is output to an error list file to clarify the cause of the error. When an error
occurs, the load module file will not be output.

117

CHAPTER 5 LINKER

5.1 Files Output by the Linker
The following table shows the input/output files of the linker.

Table 5-1. Files Output by the Linker

Type File Name Explanation Defautt File Type
Input files | Object module files + These are binary files which contain relocation and
symbol data for machine language data and the
location addresses of machine language data. -REL
e These files are output by the assembler.
Library files e These are files in which two or more object module
files are included. LB
e These files are output by the flibrarian.
Directive files e These are files which contain link commands used
during linking. DR
e These files are created by the user.
Parameter files ¢ These files contain the parameters for program
execution. .PLK
e These files are created by the user.
Output files | Load module files e These are binary image files which contain all data
created as a result of linking. These files are input to .LNK
the object converter.
Link list files * These are list files which display the result of linking. .MAP
Error list files ¢ These files contain error data generated during ELK
linking.)
Input/ Temporary files e These files are automatically generated by the linker LKook, $8N
output files for use in linking. They are deleted when assembly
is complete. (=110 3)

118

CHAPTER 5 LINKER

5.2 Functions of the Linker
The functions of the linker are as follows.

(1) Joining of input segments
The linker determines and controls the location address of each segment.
The linker identifies identical segments and joins them into a single segment, even if they are in separate
object module files.

(2) Determination of input modules
When a library file is specified for input, the module to which an input object module file refers is retrieved from

the library and handled as an input module.

(3) Determination of location addresses for input segments
The linker determines location addresses for each segment of an input module. [f location attributes for a
segment are specified in the source module file, the segment is located according to those attributes. The
linker can also specify location attributes in the link directive file of the linker.

(4) Correction of object codes

When location addresses are buried in object codes, the linker corrects the object code according to the
location address determined in (3) above.

119

CHAPTER 5 LINKER

5.3 Memory Spaces and Memory Areas

A memory space is a space provided for defining memory areas. A memory area is an area defined in memory
for the allocation of segments.

Memory space: 64 KB each

Memory area: Each memory space is divided into several memory areas.
The memory area declares the memory addresses for the installed memory.
Segment allocation groups (external ROM, etc.)

Memory area name Default address Segments allocated by default
ROM Internal ROM: Until beginning of RAM if no ROM is CSEG
installed
RAM internal RAM DSEG, BSEG

Remark Use a directive file to change the default address of a memory area or to specify the location of
each segment described in a program.

120

CHAPTER 5 LINKER

5.4 Link Directives

A link directive (hereinafter referred to as a "directive") is a group of instructions used to perform various
directions during linking, such as file input, usable memory area and allocation of segments.

The role of the directive file is to:
(1) Declare addresses in the installed memory.
(2) Divide memory into two or more areas.

Example CALLT area
internal ROM
External ROM
SADDR
Internal RAM other than SADDR

(3) Segment allocation is specified by the linker.

The foliowing items are specified for each segment.
e Absolute address
¢ Specification of memory address only

Use an editor to create a directive file (a file which describes directives). When the linker is started up, specify
option -D to read the created file.

The linker reads the directives from the file and interprets them to perform linking.

Two types of directives can be used as follows.

Table 5-2. Types of Directives

No. Directive Type Explanation

1 Memory directive s Declares an address in installed memory

¢ Divides memory into two or more areas and specifies
a memory area

2 Segment location directive e Specifies location of a segment

121

CHAPTER 5 LINKER

5.4.1 Directive files

The formats for describing directives in a directive file are as follows.
A number of directives can be described in a single directive file.

0

)

122

1) Memory directives
MEMORY memory area name : (start address value, size) [/memory space name]
2) Segment allocation directives
MERGE segment name . [ATA(Astart addressA)]
[=memory area name specification] [/memory space name]

Reserved words
The following words are reserved words in a directive file.
MEMORY, MERGE, AT, SEQUENT, COMPLETE

Reserved words cannot be used in a directive file for other meanings (segment name, memory area name,
etc.).
Reserved words can be described in uppercase or lowercase characters, but not in a mixture of the two.

Example MEMORY
memory
Memory ; Cannot be used

Symbols

Uppercase and lowercase characters are distinguiéhed when describing segment names, memory area names
and memory space names.

Even if a segment name is described in lowercase characters in a source module file, it is possible to handle
all characters as uppercase characters by specifying option -CA (do not distinguish uppercase and lowercase
characters) during assembly. In this case, use uppercase characters to specify segment names in the
directive file.

CHAPTER 5 LINKER

@)

@

Numerical values
To describe a numerical constant for each item in a directive, describe the constant in decimal or hexadecimal
form.
The description method is the same as for source programs; add "H" at the end for hexadecimals. If A-F
appear at the beginning, place "0" first.

Example 23H, OFC80H

Comments

When a ;' or '#' is described in a directive file, all characters entered from that point to carriage return (LF) are
handled as a comment. If the directive file ends before a carriage return, everything before the end of the file
is handled as a comment.

Example The underiined portion is a comment.

:DIRECTIVE FILE FOR 78312
MEMORY MEM1: (1000H, 1000H) #SECOND MEMORY AREA

123

CHAPTER 5 LINKER

5.4.2 Memory directives

A memory directive is a directive which defines a memory area (name of an address in the installed memory).
The name of a defined memory area (the memory area name) is used to reference a segment location directive.
Up to 100 memory areas can be defined, including the default memory area.

[Syntax]
MEMORYA memory area nameV: V(Vstart address valueV, VsizeV) [/Vmemory space name]

(1) Memory area names

Specify a name for the defined memory area. Conditions for specification of memory area names are as

follows.

1)
2)
3)
4)

5)

124

The characters which can be used to describe a memory area name are A-Z, a-z, 0-9, _, ?, and @.
However, a memory area name cannot begin with 0-9.

Uppercase and lowercase characters are interpreted as separate characters.

Uppercase and lowercase characters can be mixed together.

Maximum length of a memory area name is 31 characters. |f 32 or more characters are described, an
error results.

Each memory area name must exist in only 1 location in the entire memory space. The same memory
area name cannot be used for a different memory area, even if they are in different memory spaces.

CHAPTER 5 LINKER

Figure 5-1. Memory Area Names

<Example of identical <Example of different memory
memory areas> areas>

Memory area
MEM1

Memory area Memory area

i ; x ROM ROM

Memory area
MEM1

REGULAR space REGULAR space EX1 space

(2) Start addresses

Specify the start address of the memory area to be defined.
e Describe a numerical value from OH to FFFFH.

(3) Size
Specify the size of the memory area to be defined. Specification conditions are as follows.

1) Describe a numerical value of 1 or higher.
2) If the size specification is changed to the default memory area size defined by the linker, limitations on

the definable range apply.

For the default memory area size defined for each device and the redefinable range for each device, see the
“Considerations on Use" for each device file.

1) With uPD78312, 78312A, 78322, 78328, and 78334 Subseries
Refer to D.4, "Default Link Directive information".
2) With uPD78352A, 78356, 78366, 78336A, and 78372 Subseries
Refer to the separately available document on the device file (Notes on Using DF783xx Device File).

125

CHAPTER 5 LINKER

(4) Memory space names
The following 16 memory space names are displayed for 16 memory spaces of 64 KB each.
REGULAR, EX1, EX2, EX3, EX4, EX5, EX6, EX7, EX8, EX9, EX10, EX11, EX12, EX13, EX14, EX15

Use memory space names to assign a memory area to a particular memory space. The following conditions
on specification of memory space names apply.

1) Memory space names must be entirely in uppercase characters.
2) When a memory space name is omitted, REGULAR is assumed to be specified.
3) If the memory space name is omitted after /' is described, an error occurs.

[Function]

1) Define a specified memory space for a memory area specified with a memory area name.

2) 1 memory area can be defined with 1 memory directive.

3) A memory directive can be described more than once. However, multiple definitions in the specified
order will result in an error.

4) The default memory area is effective as long as the same memory area is not redefined in a memory
directive. If the description of a memory directive is omitted, only the default memory area carried by
the linker for each device will be specified.

[Example]
1) Define the addresses OH to 1FFH in the default memory space (REGULAR) as ROMA.
MEMORY ROMA: (OH,200H)

2) Define an area as memory area RAMA.
MEMORY RAMA: (1F00H, 100H) /EX1

126

CHAPTER 5 LINKER

5.4.3 Segment location directives

A segment location directive is a directive which locates a specified segment in a specified area of memory or a

specific address.

[Syntax]
MERGEAsegment nameV:V [ATV(Vstart-addressV)] [V=Vmemory-area-name] [V/Vmemory-space-name}]

(1) Segment name

The segment name is the name of a segment included in an object module file input to the linker.

1) Only an input segment can be specified with a segment name.

2) If option -CA is not specified during assembly, the segment name must be specified in the same way as
in the source.

3) |f option -CA is specified during assembly, the segment name must be specified in uppercase
characters.

(2) Start address

The start address allocates a segment to the area specified by "start address.”
1) The reserved word AT must be described entirely in either uppercase or lowercase characters.
It cannot be described in a mixture of uppercase and lowercase characters.
2) The start address describes a numerical constant.

Start address — Segment is located in the
specified start address.

Segment

Cautions 1. When a segment is located in the specified start address, if it exceeds the memory area
range for the memory area in which it is located, an error will resulit.

2. A link directive cannot be used to specify a start address for a segment whose location

address is specified by the AT instruction of a segment directive or by an ORG directive.

127

CHAPTER 5 LINKER

(3) Memory space names
A memory space name specifies the memory area to which a segment is allocated.
1) Any of the following 16 names can be specified as a memory area name.
REGULAR, EX1, EX2, EX3, EX4, EX5, EX6, EX7, EX8, EX9, EX10, EX11, EX12, EX13, EX14, EX15
2) Memory space names must be entirely in uppercase characters.

3) When a memory space name is omitted, REGULAR is assumed to be specified.

Segment location destinations are determined as follows.

Table 5-3. Segment Location According to Combination of Memory Area Name Specification and Memory

Space Name
Memory area name Memory space Segment location destination
name
N/A N/A Default memory area in the REGULAR space
N/A Available A selected memory area in the specified memory space
Available N/A Specified memory area in the REGULAR space
Available Available Specified memory area in the specified memory space

This table focuses on defining the memory area to which the segment is located. When the actual location
address is determined, if [AT (start address)] is specified, the segment is allocated to a location beginning at
that address.

For example, if the memory space name 'EX1' is specified for a segment with the relocation characteristic
‘CSEG.FIXED', the segment will be located to fit witﬁin 800H to FFFH.

[Notes]
1) The location address of an input segment for which no segment location directive is specified will be

determined according to the relocation characteristics specified by a segment directive during
assembly.)

2) If no segment exists for which a segment name has been specified, an error will occur.
3) If more than one segment location directive is specified for the same segment, an error will occur.

128

CHAPTER 5 LINKER

[Example]

Allocate an address for a segment SEG1, which has the segment type and relocation characteristic 'CSEG
UNIT". In this example the declared memory area is as follows.

(1) When input segment SEG1 is allocated to 2000H in memory area ROM.
MERGE SEG1: AT (2000H)

(2) When input segment SEG1 is allocated to memory area MEM1.
MERGE SEG1: =MEMH1

(3) When input segment SEG1 is allocated to 2000H in memory area MEM1.
MERGE SEG1: AT (2000H)=MEM1 '

129

CHAPTER 5 LINKER

5.5 Linker Startup

5.5.1 Linker startup

The following 2 methods can be used to start up the linker.
(1) Startup from the command line

X>[path-name] 1k78k3 [Aoption]
I | | I
1 @ 3) 4
- Aobject-module-file-name-[Aoption]---[A}
| |
(5) (4)

(1) Current drive name
(2) Current directory name
(3) Linker command file name
(4) This contains detailed directions for the action of the linker.
If more than one linker option is specified, separate the options with a space.
(56) This contains detailed directions for the action of the linker.
A maximum of 128 items can be input in an input module.

Example C>lk78k3 78k3main.rel 78k3sub.rel -078k3.Ink -g

130

CHAPTER 5 LINKER

(2) Startup from a parameter file

Use the parameter file when the data required to start up the linker will not fit on the command line, or when
repeating the same linker option for two or more assembly operations.
To start up the linker from a parameter file, specify the parameter file specification option (-F) on the command

line.
Start up the linker from a parameter file as follows.

X>LK78k3 [Aobject-module-file] A-f parameter-file-name
| |
(1) @)

(1) Parameter file specification option
(2) A file which includes the data required to start up the linker

Remark An editor is used to create the parameter file.

The rules for describing the contents of a parameter file are as follows.

[[[A] option [Aoption] - [A]JA]] -

1) If the object module file name is omitted from the command line, specify the object module file name in

the parameter file.
2) The object module file name can also be described after the option.
3) Describe in the parameter file all linker options and output file names that should be specified in the

command line.

Example Create the parameter file (78K3.PLK) using an editor.
Contents of the parameter file 78K3.PLK:

;parameterfile
78k3main.rel 78k3sub.rel -078k3.1lnk -p78k3.map -e
-ta:\tmp -g

Use parameter file 78K3.PLK to start up the linker.

C>1k78k3 -f78k3.plk

131

CHAPTER 5 LINKER

5.5.2 Execution start and end messages

)

2

132

Execution start message

When the linker is started up, an execution startup message appears on the display.

78K/III Series Linker Vx.xXX [xx XXX xx]
Copyright (C) NEC Corporation 1989,19xx

Target chip : uPDXXXXX
Device file : Vx.xX

Execution end message

If it detects no link errors resulting from the link, the linker outputs the following message to the display and
returns control to the operating system.

Link complete, 0 error(s) and 0 warning(s) found.

If it detects a link error resulting from the link, the linker outputs the error number to the display and returns
control to the operating system.

Link complete, 2 error(s) and 0 warning(s) found.

If the linker detects a fatal error during linking which makes it unable to continue link processing, the linker
outputs a message to the display, cancels linking and returns control to the operating system.

Example 1. A nonexistent object module file is specified.

C>lk78k3 samp1.rel samp?2.rel

78K/III Series Linker Vx.XX [XxX XXX Xx]
Copyright (C) NEC Corporation 1989, 19xx

AQ06 File not found 'SAMP1.REL'
AQ006 File not found 'SAMP2.REL'
Program Aborted.

In the above example, a nonexistent object module file is specified. An error results and the linker aborts the
link.

CHAPTER 5 LINKER

Example 2. A nonexistent linker option is specified.

C>lk78k3 78k3main.rel 78k3sub.rel -z

78K/III Series Linker Vx.xxX [XX XXX XX]
Copyright (C) NEC Corporation 1989, 19%9xx

1

AQ018 Option is not recognized '-z
Program Aborted.

In the above example, a nonexistent linker option is specified. An error results and the linker aborts the link.

When an error message is displayed and link is aborted, look for the cause in chapter 11, "Error Messages" and

take action accordingly.

133

CHAPTER 5 LINKER

5.6 Linker Options

5.6.1 Types of linker options

The linker options are detailed instructions for the operation of the linker. Linker options are classified into 15
types.

Table 5-4. Linker Options (1/2)

Number Classification Option Explanation
1 Specify load module file output -0 Specifies the output of a load module file.
-NO
2 Specify forced load module file -d Forces output of a load module file.
output -NJ
3 Specify debug data output -G Outputs debugging data to a load module file.
-NG
4 Specify stack decision symbol -8 Automatically generates public symbols for stack
generation -NS decision.
5 Specify directive file -D Inputs the specified file as a directive file.
6 Specify link list file output -P Specifies output of a link list file.
-NP
7 Specify link list file data -KM Outputs a map list into a link list file.
-NKM
-KD Outputs a link directive file into a link list file.
-NKD
-KP Outputs a public symbol list into a link list file.
-NKP
-KL Outputs a local symbol list into a link list file.
-NKL
8 Specify link list file format -LL Changes the number of lines that can be printed in 1
page in a link list file.
-LF Inserts a line feed code at the end of a list file.
-NLF

134

CHAPTER 5 LINKER

Table 5-4. Linker Options (2/2)

Number Classification Option Explanation
9 Specify error list file output -E Outputs an error list file.
-NE
10 Specify library file -B {Inputs the specified file as a library file.
11 Specify library file read path -l Reads a library file from a specified path.
12 Specify parameter file -F Inputs file names and options from a specified file.
13 Specify path for temporary file -T Creates a temporary file in a specified path.
creation
14 Specify warning message output -W Specifies whether or not to output a warning message
to the console.
15 Specify help ‘ -- Displays a help message on the display.

This table is presented as a brief introduction to the linker options. When actually using the linker options, see
Appendix E.2, “List of Linker Options."

135

CHAPTER 5 LINKER

5.6.2 Order of precedence of linker options

The following table indicates which linker option takes precedence when two linker options are specified at the
same time. '

Table5-5. Order of Precedence of Linker Options

-NO -NG -NP -NKM -NKP -NKL - (ﬁorizontal

N » % axis
G x x

-P A A A X

KM X .

KD X x .

-KP X X X

KL X x X

AL X X

-LF X X
T

Vertical
axis

[Items marked with an X]
When the option in the horizontal axis is specified, the option shown in the vertical axis option is unavailable.

Example C>lk78k3 78k3main.rel 78k3sub.rel -np -km

The option -KF is unavailable.

[tems marked with a A]
When all three of the options in the horizontal axis are specified, the option shown in the vertical axis option
is unavailable.

Example C>]k78k3 78k3main.rel 78k3sub.rel -p -nkm -nkp -nkl

The options -NKM, -NKP and -NKL are all specified at the same time, so option -P is unavailable.

136

CHAPTER 5 LINKER

When an option and its 'N' counterpart are specified at the same time (for example, both -O and -NO), only the
last specified of the 2 options is available.

Example C>|k78k3 78k3main.rel 78k3sub.rel -0 -no

The option -NO is specified after -O, so option -O is unavailable and -NO is available.

Options not described in Table 5-5 have no particular effect on other options. However, when the help option --'
is specified, all other options become unavailable.

137

CHAPTER 5 LINKER

5.6.3 Explanation of linker options

This section contains detailed explanations of each linker option.

(1)

138

Specify load module file output (-O/-NO)

Description format : -O [output-file-name]

-NO

Default value : -Oinput file name.LNK

[Function]
1) Option -O specifies the output of a LOAD module file. It also specifies the location to which it is output

2)

and the file name.
Option -NO specifies that no LOAD module file is output.

[Application]

1)
2)

Use option -O to specify the location to which a load module file is output or to change its file name.
Specify option -NO when performing a link only to output a link list file. This will shorten link time.

[Description]

1)
2)
3)
4)

5)

The disk type file name and device type file name, NUL and AUX can be specified as output file names.
Even if option -O is specified, if a fatal error occurs the load module file cannot be output.

If ‘'output file name' is omitted when option -O is specified, the load module file 'input file name.LNK' will
be output to the current directory.

If only the path name is specified in 'output file name’, ‘input file name.LNK' will be output to the
specified path.

If both options -O and -NO are specified at the same time, the option specified last takes precedence.

CHAPTER 5 LINKER

[Example]
Example 1. Output a load module file 78K3.LNK.

C>lk78k3 78k3main.rel 78k3sub.rel —078k3.Ink

78K/III Series Linker VX.xXX [xXxX xxXX xXxX]
Copyright (C) NEC Corporation 1989, 19xx

Target chip : uPDXXXXX
Device file : Vx.xx

Link complete, 0 error (s) and 0 warning (s) found.

Example 2. Specify both options -NO and -Oo

C>1k78k3 78k3main.rel 78k3sub.rel —-no —o

78K/III Series Linker VxX.XX [XX XXX XX]
Copyright (C) NEC Corporation 1989,19xx

Target chip : uPDXXXXX
Device file : VxX.xx

Link complete, 0 error (s) and 0 warning (s) found.

Option -NO is invalid,and option -O is valid.

139

CHAPTER 5 LINKER

2

140

Specify forced load module file output (-J/-NJ)

Description format : -J
-NJ
Default value o -NJ

[Function]
1) Option -J specifies that the load module will be output even if a fatal error occurs.
2) Option -NJ makes option -J unavailable.

[Application]

Normally, when a fatal error occurs, the load module file cannot be output. When you wish to execute the
program with a notice that a fatal error has occurred, specify option -J to output the load module file.

[Description]

1) When option -J is specified, the load module will be output even if a fatal error occurs.

2) If both options -d and -NJ are specified at the same time, the option specified last takes precedence.
[Example]

Example Specify output of a load module file even if a fatal error occurs.

C>lk78k3 78k3main.rel 78k3sub.rel 78k3sub.rel-j

78K/I1I Series Linker Vx.xx [xx XXX xX]
Copyright (C) NEC Corporation 1989,19xx

Target chip : uPDXXXXX
Device file : Vx.xx

Link complete, 0 error (s) and 0 warning (s) found.

CHAPTER 5 LINKER

©)

Specify debug data output (-G/-NG)
Description format : -G
: -NG

Default value -G

[Function]

1) Option -G specifies that debugging data (local symbol data) is to be added to a load module file.

2) Option -NG makes option -G unavailable.

[Application]

Be sure to use option -G when performing symbolic debugging with a source debugger.

[Description]
1) If option -NO is specified, option -G is unavailable.
2) If option -G is omitted, debug data cannot be added.

3) If both options -G and -NG are specified at the same time, the option specified last takes precedence.
4) When option -NG is specified, the public symbol list and local symbol list cannot be output regardiess of

specification of -KP or -KL.

[Example]
Specify addition of debug data to a load moduie file.

C>Ik78k3 78k3main.rel 78k3sub.rel —q

78K/III Series Linker Vx.xXx [XX XXX xX]
Copyright (C) NEC Corporation 1989,19xx

Target chip : uPDXxxXxXX
Device file : VX.xXX

Link complete, 0 error (s) and 0 warning (s)

found.

141

CHAPTER 5 LINKER

4)

142

Specify generation of stack decision symbols (-S/-NS)

Description format : -S [Area name]

-NS

Default value : -NS

[Function}

1)
2)

Option -S generates the stack decision public symbols '_@STBEG' and '_@STEND".
Option -NS makes option -S unavailable.

[Application]
Specify option -S to reserve a stack area.

[Description]

1)

2)
3)

4)
5)

6)

An 'area name' is a name in which an area memory name defined by the user or an area memory name
defined by default is specified.

'Area names' distinguish between uppercase and lowercase characters.

The linker searches the memory area specified by option -S for the largest address in which no
segment is located. The linker then generates public symbol '_@STEND', which holds the lead address
of the largest address area as its value, and public symbol '_@STBEG', which holds the last address +1
as its value.

These symbols are handled as publicly declared NUMBER attribute symbols, and are registered at the
end of the linker's symbol table. When these symbols are output to a link list file, the module name
column is left blank.

If the largest open area is 10 bytes or smaller, a warning message is output.

If no free area exists, a warning message is output and both '_@STEND' and '_@STBEG!' hold the last
address +1 as their values.

If 'area name' is omitted, 'RAM' is specified.

If both options -S and -NS are specified at the same time, the option specified last takes precedence.

CHAPTER 5 LINKER

[Example]
Reserve the stack area in memory area RAM (however, the linker will assume that a segment of size 10H in
RAM and a segment of size 08H located in the saddr area are input).

C>Ik78k3 78k3main.rel 78k3sub.rel -s

78K/III Series Linker Vx.xx [xx xxx xX]
Copyright (C) NEC Corporation 1989, 19xx

Target chip : uPDxxXxXxX
Device file : Vx.xx

Link complete, 0 error (s) and 0 warning (s) found.
FEFFH
8H free
FEF8H
FEF7H
Memory area Segment size
RAM D8H
:::fg: This portion (FED10H to FE1FH) is the
largest free area. The following stack
10H free
FE10H symbols are generated:
FEOSH s i _ @ STEND = FE10H
egment size _ @ STBEG = FE20H
10H
FEOOH

143

CHAPTER 5 LINKER

(5) Specify directive file (-D)

Description format : -D file name
Default value : None
[Function]

Option -D specifies that a specified file is to be input as a directive file.

[Application]
When you wish to define a new memory area, redefine the default memory area, or locate a segment to a
specific address or memory area, you will need to create a directive file. Specify option -D to input this
directive file to the linker.

[Description]

1) Only disk-type file names can be specified as a 'file name'. If a device-type file name is specified, an
abort error will result.

2) If the file name is omitied, an abort error will result.

3) Nesting of directive files is not permitted.

4) The number of characters that can be described in a directive file is unlimited.

5) If option -D is specified more than once, or if more than one file name is specified, an abort error will
occur.

6) For a detailed explanation of directive files, see 5.4, "Link Directives."

[Example]
Example 1. Redefine the default memory area ROM/RAM.

¢ Contents of the directive file 78K3.DR:

MEMORY ROM: (0000H, 4000H)
MEMORY RAM: (0DOOOH, 2F00H)

o Perform link using 78K3.DR.

C>]k78k3 78k3main.rel 78k3sub.rel -d 78k3.dr

78K/III Series Linker Vx.XX [XX XXX XX]
Copyright (C) NEC Corporation 1989, 19xx

Target chip : uPDxxxxxX
Device file : Vx.xx

Link complete, 0 error (s) and 0 warning (s) found.

144

CHAPTER 5 LINKER

(6)

Specify link list file output (-P/-NP)

Description format : -P [output-file-name]

: -NP
Default value : -P input file name.MAP
[Function]
1) Option -P specifies output of a link list file. It also specifies the destination and file name of the output
file.

2) Option -NP makes option -P unavailable.

[Application]
1) Specify option -P to change the output destination or output file name of a link list file.
2) Specify option -NP when performing link only to output a load module file. This will shorten link time.

[Description]

1) A file name can be specified as a disk-type file name or as a device-type file name. However, only
CON, PRN, NUL and AUX can be specified as device-type file names. If CLOCK is specified, an abort
error will occur.

2) If the 'output file name' is omitted when option -P is specified, the link list file name in the current
directory becomes 'input file name.MAP".

3) [f only the 'output file name' is specified, 'input file name.MAP' is output to the specified path.

4) If both options -P and -NP are specified at the same time, the option specified last takes precedence.

[Example]
Example 1. Create a link list file (78k3.MAP).

C>1k78k3 78k3main.rel 78k3sub.rel -p78k3.map

78K/III Series Linker Vx.xx [xXX XxXx XX
Copyright (C) NEC Corporation 1989,19xx

Target chip : uPDxXXXXX
Device file : Vx.xx

Link complete, 0 error (s) and 0 warning (s) found.

Example 2. Output the link list file to printer.

C>Ik78k3 78k3main.rel 78k3sub.rel -pprn

78K/III Series Linker Vx.xXX [xx xxx xx]
Copyright (C) NEC Corporation 1989, 19xx

Target chip : uPDXXXXX
Device file : Vx.xx

Link complete, 0 error (s) and 0 warning (s) found.

145

CHAPTER 5 LINKER

(7) Specify link list file data (-KM/-NKM, -KD/-NKD, -KP/-NKP, -KL/-NKL)
(a) ~-KM/-NKM
Description format : -KM
-NKM
Default value i -KM
[Function]
1) Option -KM outputs a map list into a link list file.

2) Option -NKM makes option -KM unavailable.

[Application]
Specify option -KM to output a map list to a link list file.

[Description]

1) If both options -KM and -NKM are specified at the same time, the option specified last takes

precedence.

2) |If option -NKM is specified, the link directive file cannot be output to a link list file even if option -KD is

specified.

3) If options -NKM, -NKP and -NKL are all specified, the link list file cannot be output even if option -P is

specified.

[Example]
Output a map list into link list file 78K3.MAP.

C>1k78k3 78k3main.rel 78k3sub.rel -p78k3.map -km

78K/III Series Linker Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation 1989, 19xx

Target chip : uPDXXXXX
Device file : Vx.xx

Link complete, 0 error (s) and 0 warning (s)

146

found.

CHAPTER 5 LINKER

o This references 78K3.MAP.

78K/III Series Linker Vx.xx Date:xX XXX XXXX Page: 1

Command : 78k3main.rel 78k3sub.rel -p78k3.map -km
Para-file:

Out-file: 78K3MAIN.LNK

Map-file: 78K3.MAP

Direc-file:

Directive:

*** T,ink information ***
3 output segment (s)

3EH byte(s) real data

23 symbol (s) defined

***% Memory map ***

SPACE=REGULAR
MEMORY=ROM
BASE ADDRESS=0000H SIZE=FEOOH
OouUTPUT INPUT INPUT BASE SIZE
SEGMENT SEGMENT MODULE ADDRESS
CODE 0000H 0002H CSEG AT
CODE SAMPM 0000H 0002H
?CSEG 0002H 003CH CSEG
?CSEG SAMPM 0002H 0020H
?CSEG SAMPS 0022H 001CH)
* gap * 003EH FDC2H Map list
MEMORY=RAM
BASE ADDRESS=FEQ0H SIZE=0200H
OoUTPUT INPUT INPUT BASE SIZE
SEGMENT SEGMENT MODULE ADDRESS
* gap * FEOQH 0020H
DATA FE20H 0003H DSEG AT
DATA SAMPM FE20H 0003H
* gap * FE23H 00DDH
* gap (Not Free Area) * FFOOH 0100H

Target chip : uPDxxXxx
Device file : Vx.xx

147

CHAPTER 5 LINKER

(b) -KD/-NKD
Description format : -KD
-NKD
Default value : -KD
[Function]

1) Option -KD outputs a link directive file into a link list file.
2) Option -NKD makes option -KD unavailable.

[Application]
Specify option -KD to output a link directive file into a link list file.

[Description]
1) If both options -KD and -NKD are specified at the same time, the option specified last takes

precedence.

2) If option -NKM is specified, a link directive file cannot be output into a link list file even if option -KD is
specified.

3) If options -NKM, -NKP and -NKL are all specified, a link list file cannot be output even if option -P is
specified.

[Example]
Output a link directive file into a link list file (78K3.MAP).

C>Ik78k3 78k3main.rel 78k3sub.rel -d78k3.dr -p78k3.map -kd

78K/III Series Linker Vx.xXX [XX XXX XX]
Copyright (C) NEC Corporation 1989,19xx

Target chip : uPDXXXXX
Device file : VX.XX

Link complete, 0 error (s) and 0 warning (s) found.

148

CHAPTER 5 LINKER

e This references 78K3MAIN.PRN.

78K/III Series Linker Vx.xx Date:xx XXX XXXX Page: 1

Command : 78k3main.rel 78k3sub.rel -d78k3.dr -p78k3.map -kd
Para-file:

Out-file: 78K3MAIN.LNK

Map-file: 78K3.MAP

Direc-file:78K3.DR ¢« Directive file name
Directive: MEMORY ROM: (0000H, 4000H) :] ¢« Contents of directive file
MEMORY RAM: (0DOOOH, 2F00H)

#% T,ink information ***
3 output segment (s)

3EH byte(s) real data

23 symbol(s) defined

*** Memory map ***

SPACE=REGULAR

MEMORY=ROM
BASE ADDRESS=0000H SIZE=4000H
OUTPUT INPUT INPUT BASE SIZE
SEGMENT SEGMENT MODULE ADDRESS
CODE 0000H 0002H CSEG AT
CODE SAMPM 0000H 0002H
?CSEG 0002H 003CH CSEG
?CSEG SAMPM 0002H 0020H
?CSEG SAMPS 0022H 001CH
* gap * 003EH 3FC2H
MEMORY=RAM
BASE ADDRESS=D000H SIZE=2F00H
OouTPUT INPUT INPUT BASE SIZE
SEGMENT SEGMENT MODULE ADDRESS
* gap * 0000H 2E20H
DATA FE20H 0003H DSEG AT
DATA SAMPM FE20H 0003H
* gap * FE23H 000DH

Target chip : uPDxxxxx
Device file : VxX.xx

149

CHAPTER 5 LINKER

(c) -KP/-NKP
Description format : -KP
-NKP
Default value : -NKP
[Function}

1) Option -KP outputs a public symbol list into a link list file.
2} Option -NKP makes option -KP unavailable.

[Application]
Specify option -KP to output a public symbol list into a link list file.

[Description]
1) If both options -KP and -NKP are specified at the same time, the option specified last takes precedence.
2) If options -NKM, -NKP and -NKL are all specified, the link list file cannot be output even if option -P is
specified.
3) If options -NG is specified, the public symbol list cannot be output even if option -KP is specified.

[Example]
Example Output a public symbol list into a link list file (78K3.MAP).

C>Ik78k3 78k3main.rel 78k3sub.rel -p78k3.map

78K/III Series Linker Vx.xx [xxX xXxX xXx]
Copyright {(C) NEC Corporation 1989,19xx

Target chip : uPDxxxxx
Device file : Vx.xx

Link complete, 0 error (s) and 0 warning (s) found.

150

CHAPTER 5 LINKER

e This references 78K3.MAP.

78K/II1 Series Linker Vx.xx Date:xXxX XXX XXXX Page: 1

Command : 78k3main.rel 78k3sub.rel ~-g -p78k3.map -kp
Para-file:

Out-file: 78K3MAIN.LNK

Map-file: 78K3.MAP

Direc-file:

Directive:

*** T,ink information ***
3 output segment(s)

3EH byte(s) real data
23 symbol(s) defined

*** Memory map ***

SPACE=REGULAR

MEMORY=ROM
BASE ADDRESS=0000H SIZE=FEQQOH
OoUTPUT INPUT INPUT BASE SIZE
SEGMENT SEGMENT MODULE ADDRESS
CODE 0000H 0002H CSEG AT
CODE SAMPM 0000H 0002H
?CSEG 0002H 003CH CSEG
?CSEG SAMPM 0002H 0020H
?CSEG SAMPS 0022H 001CH
* gap * 003EH FDC2H
MEMORY=RAM
BASE ADDRESS=FE000H SIZE=0200H
OUTPUT INPUT INPUT BASE SIZE
SEGMENT SEGMENT MODULE ADDRESS
* gap * FEOOH 0020H
DATA FE20H 0003H DSEG AT
DATA SAMPM FE20H 0003H
* gap * . FE23H 00DDH
* gap (Not Free Area) * FEOOH 0100H
78K/III Series Linker Vx.xx Date:XX XXX XXXX Page: 2

% public symbol list *

MODULE ATTR VALUE NAME . .
. Public symbol list
SAMPM ADDR 0000H MAIN
SAMPM ADDR 0002H START
SAMPS ADDR 0022H CONVAH

Target chip : uPDXXXXX
Device file : Vx.xx

151

CHAPTER 5 LINKER

(d) -KL/-NKL

Description format : -KL
-NKL
Default value : -NKL

[Function]
1) Option -KL outputs a local symbol list into a link fist file.
2) Option -NKL makes option -KL unavailable.

[Application]
Specify option -KL to output a local symbol list into a link list file.

[Description]
1) If both options -KL and -NKL are specified at the same time, the option specified last takes precedence.
2) If options -NKM, -NKP and -NKL are all specified, the link list file cannot be output even if option -P is
specified.
3) If options -NG is specified, the local symbol list cannot be output even if option -KL is specified.

[Example]
Output a local symbol list into a link list file (78K3.MAP).

C>lk78k3 78k3main.rel 78k3sub.rel -g -p78k3.map -kl

78K/III Series Linker VX.xXxX [XX XXX XX]
Copyright (C) NEC Corporation 1989,19xx

Target chip : uPDXXXXX
Device file : Vx.xx

Link complete, 0 error (s) and 0 warning (s) found.

152

CHAPTER 5 LINKER

e This references 78K3.MAP.

78K/III Series Linker Vx.xXx Date:xx xxX XXXX Page: 1

Command : 78k3main.rel 78k3sub.rel -g -p78k3.map -kl
Para-file:

Out-file: 78K3MAIN.LNK

Map-file: 78K3.MAP

Direc-file:

Directive:

*** I ink information ***
3 output segment (s)

3EH byte(s) real data
23 symbol(s) defined

% Memory map *

SPACE=REGULAR

MEMORY=ROM
BASE ADDRESS=0000H SIZE=FEQOH
OQUTPUT INPUT INPUT BASE SIZE
SEGMENT SEGMENT MODULE ADDRESS
CODE 0000H 0002H CSEG AT
CODE SAMPM 0000H 0002H
?CSEG 0002H 003CH CSEG
?CSEG SAMPM 0002H 0020H
?CSEG SAMPS 0022H -001CH
* gap * 003EH FDC2H
MEMORY =RAM
BASE ADDRESS=FEQQOH SIZE=0200H
ouUTPUT INPUT INPUT BASE SIZE
SEGMENT SEGMENT MODULE ADDRESS
* gap * FEQOOH 0020H
DATA FE20H 0C003H DSEG AT
DATA SAMPM FE20H 0003H
* gap * FE23H 00DDH
* gap (Not Free Area) * FEOCH 0100H
78K/III Series Linker Vx.xX Date:xx XXX XxxxX Page: 2

*** Local symbol list ***

MODULE ATTR VALUE NAME

SAMPM MOD SAMPM

SAMPM DSEG DATA

SAMPM ADDR FE20H HDTSA Local symbol list
SAMPM ADDR FE21H STASC

SAMPM CSEG CODE

SAMPM CSEG ?CSEG

SAMPS MOD SAMPS

SAMPS CSEG ?CSEG

SAMPS ADDR 0035H SASC

SAMPS ADDR 003BH SASC1]

Target chip : uPDXXXXX
Device file : VxX.xX

153

CHAPTER 5 LINKER

(8) Specify link list format (-LL, -LF/-NLF)
(a) -LL

Description format : -LL [number of lines]
Default value : -LL66 (No page breaks in the case of display output)

[Function]
Option -LL changes the number of lines that can be printed in 1 page in a link list file.

[Application]
Specify option -LL to change the number of lines that can be printed in 1 page in a link list file.

[Description]
1) The range of number of lines that can be specified with option -LL is shown below.

20 < number of lines printed on 1 page < 32767

If a numerical value outside this range, or something other than a numerical value, is specified, an abort
error occurs.

2) If the number of lines is omitted, 66 will be specified.

3) If the number of lines specified is 0, no page breaks will be made.

4) If option -NP is specified, option -LL is unavailable.

[Example]
Specify 20 as the number of lines per page in a link list file.

C>lk78k3 78k3main.rel 78k3sub.rel -p78k3.map -l120

78K/III Series Linker Vx.xx [XX XXX XX]
Copyright (C) NEC Corporation 1989,19xx

Target chip : UuPDXXXXX
Device file : Vx.xx

Link complete, 0 error (s) and 0 warning (s) found.

154

CHAPTER 5 LINKER

¢ This references 78K3MAP.

78K/III Series Linker Vx.xx Date:xx xXX xxxX Page: 1

Command : 78k3main.rel 78k3sub.rel -p78k3.map -1120
Para-file:

Qut-file: 78K3MAIN.LNK

Map-file: 78K3.MAP

Direc-file:

Directive:

*** Link information ***

3 output segment(s)
3EH byte(s) real data

78K/III Series Linker Vx.xx Date:XxX XXX XxXXX Page: 2

23 symbol(s) defined

*** Memory map ***

SPACE=REGULAR

MEMORY=ROM
BASE ADDRESS=0000H SIZE=FEQOH
OUTPUT INPUT INPUT BASE SIZE
SEGMENT SEGMENT MODULE ADDRESS
78K/III Series Linker VX.xx Date:xxX XXX XXXX Page: 3
CODE 0000H 0002H CSEG AT
CODE SAMPM 0000H 0002H
?CSEG 0002H 003CH CSEG
?CSEG SAMPM 0002H 0020H
?CSEG SAMPS 0022H 001CH
* gap * 003EH FDC2H
MEMORY=ROM
BASE ADDRESS=FEOQOH SIZE=0200H
ouTPUT INPUT INPUT BASE SIZE
SEGMENT SEGMENT MODULE ADDRESS
* gap * FEOOH 0020H
78K/1I1II Series Linker Vx.xx Date:xXxX XXX XXXX Page: 4
DATA FE20H 0003H DSEG AT
DATA SAMPM FE20H 0003H
* gap * FE23H 00DDH
* gap (Not Free Area) * FEOOH 0100H

Target chip : uPDxXXXXX
Device file : Vx.xx

155

CHAPTER 5 LINKER

(b) -LF/-NLF

Description format : -LF
-NLF
Default value : -NLF

[Function]
1) Option -LF inserts a form feed (FF) code at the end of a link list file.
2) The option -NLF makes the option -LF unavailable.

[Description]
If you wish to add a page break after the contents of a link list file are printed, specify option -LF to add a

form feed code.
[Explanation]

1) |f option -NP is specified, option -LF is unavailable.
2) If both options -LF and -NLF are specified at the same time, the option specified last takes precedence.

[Example]
Add a form feed code at the end of a link list file.

C>k78k3 78k3main.rel 78k3sub.rel -p78k3.map -If

78K/III Series Linker Vx.xxX [XX XXX XxX]
Copyright (C) NEC Corporation 1989,19xx

Target chip : uPDXXXXX
Device file : Vx.xx

Link complete, 0 error (s) and 0 warning (s) found.

156

CHAPTER 5§ LINKER

(9) Specify error list file output (-E/-NE)

Description format : -E [file name]
: -NE
Default value : -NE

[Function]
1) Specify option -E to specify the output destination and file name of an error list file.
2) Option -NE makes option -E unavailable.

[Application]
Specify option -E to change the output destination and output file name of the error list file.

[Explanation]

1) The file name of the error list file can be specified as a disk-type file name or as a device-type file name.
However, if the device-type file name CLOCK is specified, an abort error will occur.

2) When option -E is specified and the output file name is omitted, the error list file name will be 'input file
name.ELK'.

3) When option -E is specified and the drive name is omitted, the error list file will be output to the current
drive.

4) |f both options -E and -NE are specified at the same time, the option specified last takes precedence.

[Example of use]
Example Create an error list file (78K3.ELK).

C>1k78k3 78k3main.rel 78k3sub.rel -d78k3.elk

78K/I1I Series Linker Vx.xx [XX XXX XX]
Copyright (C) NEC Corporation 1989, 19xx

SAMP.DR (3) : F102 Directive syntax error
Program Aborted.

e An error has occurred in the contents of the directive file. 78K3.ELK is referenced.

SAMP.DR(3) : F102 Directive syntax error

157

CHAPTER 5 LINKER

(10) Specify library file (-B)

Description format : -B file name
Default value : None
[Function]

Option -B specifies a file to be input as a library file.

[Application]
The linker retrieves the module referenced by the input module from a library file and joins only that module
to the input module.
The purpose of a library file is to register two or more modules in a single file.
By creating library files that can be used in common with many programs, file management and operation
become easier and more efficient. Specify option -B to input a library file to the linker.

[Explanation]

1) Only a disk-type file name can be specified as the file name.

2) The file name cannot be omitted.

3) If a file name which includes a path name is specified, a library file will be input from that path. If no
library file exists in the specified path, an error occurs.

4) If a file name which does not include a path name is specified, a library file will be input from a path
specified by option -| or from the default search path.

5) If option -B is specified two or more times, a library file will be input in a specified sequence. Upto 10 -
B options may be specified.

6) For a detailed explanation of the method of creating library files, read Chapter 7, "Librarian.”

[Example]
Input a library file (78K3.LIB).
(78K3SUB.REL is registered in the library file).

C>lk78k3 78k3main.rel -b78k3.lib

78K/III Series Linker Vx.xx [Xx XXX xx]
Copyright (C) NEC Corporation 1989,19xx

Target chip : uPDXXXXX
Device file : Vx.xxX

Link complete, 0 error (s) and 0 warning (s) found.

158

CHAPTER 5 LINKER

(11) Specify library file read path (-I)

Description format : -1 path name [, path name] - (two or more path names can be specified)
Default value : Path specified by environmental variable 'LIB78K3'
Current path, if no path is specified

[Function]
Option -| specifies input of a library file from a specified path.

[Application]
Use option -| to retrieve a library file from a certain path.

[Description]
1) Option -l is only available when a library file name is specified by option -B without including a path
name.
2) Two or more specifications of -1 are possible. Two or more paths can be specified by separating them
with . A blank space cannot be inserted before or after the ',".
3) Up to 10 path names can be specified per link. When two or more path names are specified, the linker
searches for library files in the specified order.
4) Even if no library file exists in the specified path, an error will not result.
5) If the path name is omitted, an abort error occurs.
6) If alibrary file is specified by option -B without including a path name, the linker will search the following
paths.
1. Path specified by option -
2. Path specified by environmental variable 'LIB78K3".
3. The current path

If a library file with the specified name is not found in any of these paths, an error will occur.

[Example]
Search for a library file file from path LIB.

C>1k78k3 78k3main.rel 78k3sub.rel -b78k3.lib -i\lib

78K/III Series Linker VxX.xXX [XX XXX XX]
Copyright (C) NEC Corporation 1989,19xx

Target chip : uPDxxXxXxXX
Device file : Vx.xx

Link complete, 0 error (s) and 0 warning (s) found.

159

CHAPTER 5 LINKER

(12) Specify parameter file (-F)

Description format : -F [file name}
Default value 1 This option and the input file name can only be entered on the startup line.

[Function]
Option -F specifies input of linker options and the input filte name from a specified file.

[Application]
1) Specify option -F when the data required to start up the linker will not fit on the command line.
2) When you wish to repeatedly specify the same options each time assembly is performed, describe
those options in a parameter file and specify option -F.

[Description]

1) Only a disk-type file name can be specified as 'file name'. If a device-type file name is specified, an
abort error will occur.

2) If the file name is omitted, an abort error will occur.

3) Nesting of parameter files is not permitted. If option -F is specified within a parameter file, an abort error
will occur.

4) The number of characters that can be described within a parameter file is unlimited.

5) Separate options or file names with a blank space, a tab or [].

6) Options and input file names described in a parameter file will be expanded at the position specified for
the parameter file on the command line.

7) The expanded options specified last will take precedence.

8) All characters entered after ;' and before [.1] or 'EOF' will be interpreted as comments.

9) If option -F is specified two or more times, an abort error will occur.

[Example]
Perform link using a parameter file.

» Set the contents of the parameter file (78K3.PLK) as follows.

; Parameter file
78k3main.rel 78k3sub.rel -078k3.1lnk -p78k3.map -e
-ta:\tmp -g

« Enter the following on the command line.

C>lk78k3 -f78k3main.plk

78K/III Series Linker Vx.xXX [XX XXX XX]
Copyright (C) NEC Corporation 1989,19xx

Target chip : uPDXXXXX
Device file : Vx.xXx

Link complete, 0 error (s) and 0 warning (s) found.

160

CHAPTER 5 LINKER

(13) Specify path for temporary file creation (-T)

Description format : -T path name
Default value . Creates a temporary file in the path specified by the environmental variable TMP.
When no path is specified, the temporary file is created in a current path.

[Function]
Option -T specifies a path in which a temporary file is created.

[Application]
Use option -T to specify the location for creation of a temporary file.

[Description]

1) Only a path can be specified as a path name.

2) The path name cannot be omitted.

3) Evenif a previously created temporary file exists, if the file is not protected it will be overwritten.

4) As long as the required memory size is available, the temporary file will be expanded in memory. If not
enough memory is available, the contents of the temporary file will be written to a disk. Such temporary
files may be accessed later through the saved disk file.

5) Temporary files are deleted when assembly is finished. They are also deieted when assembly is
aborted by pressing (CTRL-C).

6) The path in which the temporary file is to be created is determined according to the following sequence.

1. The path specified by option -T
2. The path specified by environmental variable TMP (when option -T is omitted)
3. The current path (when TMP is not set)

When a. or b. is specified, if the temporary file cannot be created in the specified path an abort error
occurs.

[Example]
Specify output of a temporary file to directory TMP".

C>lk78k3 78k3main.rel 78k3sub.rel -t\tmp

78K/III Series Linker Vx.XX [XX XXX xX]
Copyright (C) NEC Corporation 1989,19xx

Target chip : uPDXXXXX
Device file : Vx.xx

Link complete, 0 error (s) and 0 warning (s) found.

161

CHAPTER 5 LINKER

(14) Specify warning message output (-W)

Description format : -W [level]
Default value : Outputs an ordinary error message

[Function]
Option -W specifies whether or not a warning message is output to the console.

[Application]
Specify the level at which a warning message will be output

[Description]
1) Only levels 0, 1 and 2 can be specified.
2) The following output levels are available:
0 - No warning message is output.
1 - Normal warning message is output.
2 - Detailed warning message is output.

For a detailed explanation conditions under which warnings are output, see Table 11-2, "Linker Error

Messages."

[Example of use]
Example Specify level 2 in option -W.

C>lk78k3 sample.rel -w2

78K/I1I Series Linker V.xx [XX XXX XX]
Copyright (C) NEC Corporation 1989, 19xx

***ERROR W420 File ‘SAMPLE.REL’ already has had error (s) / warning (s} by 'RA78K’

Target chip : uPDxxxxX
Device file : Vx.xXx

Assembly complete, 0 error (s) and 0 warning (s) found.

162

CHAPTER 5 LINKER

(15) Specify help (--)

Description format : -
Default value ¢ No display

[Function]
Option -- displays a help message on the display.

[Application]
The help message is a list of explanations of the linker options. Refer to these when executing the linker.

[Description]
When option -- is specified, all other options are unavailabie.

163

CHAPTER 5 LINKER

164

[Example]
When option -- is specified, a help message is output on the display.

C>[k78k3 --

78K/III Series Linker VX.xx [xx XXX xX]
Copyright (C) NEC Corporation 1989, 19xx

usage : 1k78k3 Joption[...]] input-file[...] [option[...11]

The option is as follows ([] means omissible).

-ffile :Input option or input-file name from specified file.
-dfile :Read directive file from specified file.

-bfile :Read library file from specified file.
-idirectory[,directory..] :Set library file search path.

-o[filel/-no :Create load module file [with specified name] / Not.
-plfilel/-np :Create link map file [with specified name] / Not.
~elfile]/-ne :Create error list file [with specified name] / Not.
-tdirectory :Set temporary directory.

-km/-nkm :0Output map list to link map file / Not.

-kd/-nkd :Output directive file image to link map file / Not.
-kp/-nkp :Output public symbol list to link map file / Not.
~-kl/-nkl :Output local symbol list to link map file / Not.
-1ll[page length] :Specify link map file lines per page.

-1£/-nlf :Add Form Feed at end of the link map file / Not.
-s[memory areal/-ns :Create stack symbol [in specified memory areal] / Not.
-g/-ng :Output symbol information to load module file / Not.
-j/-nj :Create load module file if fatal error occurred / Not.
-w :Change warning level (n=0 to 2).

-— :Show this message.
DEFAULT ASSIGNMENT: -o -p -ne -km -kd -nkp -nkl
-1166 -nlf -ns -g -nj -wil

directive file usage:

MEMORY memory-area-name: (origin-value, size) [/memory-space-name]

MERGE segment-name: [location-type-definition] [merge-type-definition]
[=memory-area-name] [/memory-space-name]

example: MEMORY ROM : (0OH,4000H)
MEMORY RAMA : (OH,100H)/EX1
MERGE CSEGl : =ROM

MERGE DSEG1l : AT(80H)COMPLETE=RAMA/EX1l

CHAPTER 6 OBJECT CONVERTER

The object converter inputs the load module file output by the RA78K3 linker (all reference address data must be
determined at this point). It then converts this data into hexadecimal format and outputs it as an object module file.

The object converter also outputs the symbol data required for symbolic debugging as a symbol table file.

When an object converter error occurs, an error message appears on the display to clarify the cause of the error.

165

CHAPTER 6 OBJECT CONVERTER

6.1 Object Converter Input and Output Files

Files input and output by the object converter are as shown below.

Table 6-1. Object Converter Input and Output Files

Type

File Name

Explanation

Default File Type

Input files

Load module files

These are binary image files of the object codes
output as a result of linking.

These files are output by the linker.

.LNK

Parameter files

These files contain the parameters for the executed
programs.

These files are created by the user.

.POC

Output files

HEX format object
module files

These are files created by converting load module
files into Intel standard HEX-format object format.

These files are used during mask ROM
development and PROM program use.

These are files to be loaded to the

in-circuit emulator.

HEX

Symbol table files

These files contain the symbol data inciuded in
each module of an input file.

.SYM

Error list files

These files contain error data from the object
conversion.

.EOC

166

CHAPTER 6 OBJECT CONVERTER

Figure 6-1. Files Input and Output by the Object Converter

Load module file

]

Parameter file

< T

Object converter

O [m]]
Symbol table file HEX format object Error list file
module file

167

CHAPTER 6 OBJECT CONVERTER

6.2 Functions of the Object Converter
(1) How the Object Converter Handles Extended Space

When a code is output to segments located in extended memory space, the object converter generates a
separate HEX-format object module file for each space.

The object converter also generates a symbol table file for each space in extended space when symbols
having ADDRESS or BIT attributes are defined for segments located in extended space. All symbols having
NUMBER attributes are output to symbol table file generated for normal space.

Table 6-2 shows the file types of the HEX-format object module files and symbol table files generated for
extended space.

Table 6-2. Output File Types for Extended Space

File Normal Space Extended Space
REGULAR EX1 EX2 EX3 EX4 cee EX13 EX14 EX15
HEX .HEX H1 H2 .H3 .H4 Rk .H13 H14 .H15
Symbol .SYM .81 .52 .83 .54 e 513 .514 515

(2) HEX-format object module files
The HEX-format object module file output by the object converter can be input to a HEX loader such as a
PROM programmer or a debugger.
The following is a HEX-format object module file of a sample program.
:10000000B900059F2813002431B900059F2813006B
:0C001000242156AF018302A807A8305637

:00000001FF

Lines 1 and 2 are the record of the object code, and the last line is the last record.

168

CHAPTER 6 OBJECT CONVERTER

[HEX-format object module file format]

: 0C 0010 00 242156AF018302A807A83056 37

I

Mm@ G @) (6)

M)

@)

©)

(4)

(®)

Record mark

Indicates beginning of record.

Code number (2 digits)

Number of bytes in the code stored in the record. A maximum of 16 bytes can be stored.

The last record is indicated by 00H.

Location address (4 digits)

The start address of the code displayed in the record is shown.

The last record is indicated by 0000H.

Record type (2 digits)

O00H indicates a data record, and 01H indicates the last record.

Code (Max. 32 digits)

The object code is shown one byte at a time, with the upper 4 bits and lower 4 bits separated. A
maximum of 16 bytes can be expressed in the code.

This field does not exist in the last record.

Check sum (2 digits)

A value is input subtracting in order from 0 which counts down the data from the code number to the
code.

169

CHAPTER 6 OBJECT CONVERTER

(3) Symbol table file

The symbol table file output by the object converter is input to a debugger.
The following is the symbol table file of the sample program.

#04

;FF PUBLIC
010000CONVAH
;FF SAMPS
<010013SAsC
010019sASC1L

170

CHAPTER 6 OBJECT CONVERTER

[Symbol Table File Formats]

Start of symbol table
Start of public

symbol

Note 2 —»

Start of local symbot

Repeated in units of
object module files.

Symbol table end
mark

Notes 1. This field is fixed to 4 characters.

04 CR I LF
FF Blank PUBLIC CR | LF
spaces
Symbol Symbol Public symbol name CR | LF
attributes value
FF Blank Moduie name 1 CR | LF
spaces
Symbol Symbol Local symbol name CR | LF
attributes value
Symbol Symbol Local symbol name CR | LF
attributes value
FF Blank Module name 2 CR | LF
spaces
* L] . . L]
CR LF T
Note 1

2. The symbol attributes take the following values.

Public symbols

Local symbois for

each module

Value Symbol Attribute
00 Constant defined by the EQU directive
01 Label within a code segment
02 Label within a data segment
03 Bit symboi
FF Module name

171

CHAPTER 6 OBJECT CONVERTER

6.3 Object Converter Startup

6.3.1 Object converter startup

The following two methods can be used to start up the object converter.

(1) Startup from the command line

X>[path-name] oc78k3 [Aoption]---Aload-module-file-name [Aoption]--[A]
I | | | I |
1) (2) 3) “4) (6) 4)

(1) Current drive name

(2) Current directory name

(3) Obiject converter command file name

(4) This contains detailed directions for the action of the object converter.
(5) File name of the load module to be converted

Example C>0c78k3 78k3.Ink -osamie.hex

Caution If more than one object converter option is specified, separate the options with a space. For
a detailed explanation of object converter options, see 6.4, "Object Converter Options."

172

CHAPTER 6 OBJECT CONVERTER

(2) Startup from a parameter file
Use the parameter file when the data required to start up the object converter will not fit on the command line,
or when the same object converter option is specified repeatedly each time object conversion is performed.
To start up the object converter from a parameter file, specify the specify parameter file option (-F) on the
command line.

Start up the object converter from a parameter file as follows.

X>0c78k3 [Aload-module-file] A-f parameter-file-name
| [
(M)

1) Specify parameter file option
2) A file which includes the data required to start up the object converter

Remark An editor is used to create the parameter file.

The rules for describing the contents of a parameter file are as follows.

[[[A] option [Aoption] - [A] A]] -

Remarks 1. If the load module file name is omitted from the command line, only one load module file
name can be specified in the parameter file.
2. The load module file name can also be described after the option.
3. Describe in the parameter file all object converter options and output file names that should
be specified in the command line.

173

CHAPTER 6 OBJECT CONVERTER

Example Create the parameter file (78K3.POC) using an editor.
* Contents of 78K3.POC
;parameter file
78k3.1nk -osample.hex
-ssample.sym -x

* Use parameter file 78K3.POC to start up the object converter.

C>0c78k3 -f78k3.poc

174

CHAPTER 6 OBJECT CONVERTER

6.3.2 Execution start and end messages

(1) Execution start message
When the object converter is started up, an execution startup message appears on the display.

78K/III Series Object Converter Vx.xx [xXxX xxx xX]

Copyright (C) NEC Corporation 1989, 19xx

Target chip : uPDxxxxx

Device file : Vx.xx
(2) Execution end message

If it detects no object conversion errors resulting from the object conversion, the object converter outputs the
following message to the display and returns control to the operating system.

Object Conversion Complete, 0 error(s) and 0 warning(s) found.

If it detects an object conversion errors resulting from the object conversion, the object converter outputs the
error number to the display and returns control to the operating system.

Object Conversion Complete, 3 error(s) and 0 warning(s) found.
If the object converter detects a fatal error during object conversion which makes it unable to continue link
processing, the object converter outputs a message to the display, cancels object conversion and returns
control to the operating system.

Example 1. A nonexistent load module file name is specified.

C>0c78k3 sample.Ink

78K/III Series Object Converter Vx.xx [xx xxx xx]

Copyright (C) NEC Corporation 1989,19xx

AQ06 File not found 'SAMPLE.LNK'

Program aborted.

In the above example, a nonexistent load module file is specified. An error results and the object converter
aborts the object conversion.

175

CHAPTER 6 OBJECT CONVERTER

Example 2. A nonexistent object converter option is specified.

C>0c78k3 78k3.Ink -a

78K/III Series Object Converter Vx.xx [xx XXX XX]

Copyright (C) NEC Corporation 1989,19xx

AQ18 Option is not recognized '-a'

Program aborted.

In the above example, a nonexistent object converter option is specified. An error results and the object

converter aborts the object conversion.
When an error message is displayed and object convertsion is aborted, look for the cause in Chapter 11, "Error

Messages" and take action accordingly.

176

CHAPTER 6 OBJECT CONVERTER

6.4 Object Converter Options

6.4.1 Types of object converter options

The object converter options are detailed instructions for the operation of the object converter. Object converter
options are classified into 7 types. '
The classifications of the object converter options and explanations of each type are shown below.

177

CHAPTER 6 OBJECT CONVERTER

Table 6-3. Object Converter Options

Number Classification Option Explanation
1 Specify HEX format object module -0 Specifies the output of a HEX format object module file.
file output -NO

2 Specify symbol table file output -S Specifies output of a symbol table file.
-NS

3 Specify sort by object address order -R Sorts HEX format objects in the order of their addresses.
-NR

4 Specify object complement -U Outputs a specified complement value as an object code for

an address area to which no HEX format object is output.

5 Specify error list file output -E Qutputs an error list file.

-NE
6 Specify parameter file -F Inputs an input file name and options from a specified file.
7 Specify help - Displays a help message on the display.

Remark This table is presented as a brief introduction to the object converter options. When actually using
the object converter options, see Appendix E.3, "List of Object Converter Options."

178

CHAPTER 6 OBJECT CONVERTER

6.4.2 Explanation of object converter options

This section contains detailed explanations of each object converter option.
(1) Specify HEX format object module file output (-O/-NO)

Description format : -O [output file name]
: -NO
Default value : -0 input file name.HEX
(The file type for extended space is .H1 to .H15")

[Function]
1) Option -O specifies the output of a HEX format object module file. Option -O also specifies the output
destination and output file name.
2) Option -NO specifies that no HEX format object module file is output.

[Application]
1) Specify the option -O to change the output destination and output file name of the HEX format object
module file.
2) Specify option -NO when performing an object conversion only to output a symbol table file. This will
shorten object conversion time.

[Description]

1) Specify a disk type file name for the "output file name.’
If a device-type file name is specified, an abort error will result.

2) If the 'output file name' is omitted when option -O is specified, the HEX format object module file ‘input
file name.HEX' will be output to the current directory.

3) If only the path name is specified in ‘output file name’, 'input file name.HEX' will be output to the
specified path.

4) If both options -O and -NO are specified at the same time, the option specified last takes precedence.

179

CHAPTER 6 OBJECT CONVERTER

When a code is output to a segment located in extended space, the object converter generates a separate
HEX format object module file for each space.
The file types of HEX format object module files generated for extended space are as follows.

File Normal Extended Space
Space
REGULAR EX1 EX2 EX3 EX4 EX5 EX13 EX14 EX15
HEX .HEX H1 H2 H3 .H4 .H5 H13 H14 H15
[Example]

Example 1. Output a HEX format object module file (SAMPLE.HEX).

C>0c78k3 78k3.Ink -osample.hex

78K/III Series Object Converter Vx.xx [xx xxx xx]

Copyright (C) NEC Corporation 1989,19xx

Target chip : uPDxxxxx

Device file : Vx.xx

Object Conversion Complete, 0 error(s) and 0 warning(s) found.

Example 2. Specify both options -NO and O.

C>0c78k3 78k3.Ink —no -0

78K/III Series Object Converter VX.XxX [XX XXX XX]
Copyright (C) NEC Corporation 1989,19xx

Target chip : uPDXXXXX

Device file : Vx.xx

Object Conversion Complete, 0 error(s) and 0 warning(s) found.

Option — NO is invalid, and option =0 is valid.

180

CHAPTER 6 OBJECT CONVERTER

@)

Specify symbol table file output (-S/-NS)

Description format : -S [output file name]
: -NS
Default value : -S input file name.SYM
(The file type for extended space is .S1 to .S15".)

[Function]
1) Option -S specifies the output of a symbol table file. Option -S also specifies the output destination and
output file name.
2) Option -NS specifies that no symbol table file is output.

[Application]
1) Specify option -S to change the output destination and output file name of the symbol table file.
2) Specify option -NS when performing an object conversion only to output a HEX format object module
file. This will shorten object conversion time.

[Description]

1) Specify a disk type file name for the 'output file name. '
If a device-type file name is specified, an abort error will result.

2) If the 'output file name' is omitted when option -S is specified, the symbol table file 'input file name.SYM'
will be output to the current directory.

3) If only the path name is specified in 'output file name', 'input file name.SYM' will be output to the
specified path. '

4) |f both options -S and -NS are specified at the same time, the option specified last takes precedence.

181

CHAPTER 6 OBJECT CONVERTER

When a symbol having an ADDRESS or BIT attribute is defined for a segment located in extended space, the
object converter generates a separate symbot table file for each space.

All symbols which have NUMBER attribute are output to a symbol table file in normal space.

The file types of symbol table files generated for extended space are as follows.

File Normal Extended Space
Space
REGULAR EX1 EX2 EX3 EX4 EX5 3 EX13 EX14 EX15
HEX HEX .51 .82 .83 .54 .85 = .813 .S14 815

[Example of use]
Example 1. Output a symbol table file (SAMPLE.SYM).

C>0c78k3 78k3.Ink -ssample.sym

78K/III Series Object. Converter Vx.xXxX [xx xXX XX]

Copyright (C) NEC Corporation 1989, 19xx

Target chip : UPDXXXXx

Device file : Vx.xx
Object Conversion Complete, 0 error(s) and 0 warning{s) found.
Example 2. Specify both options —NS and -S.

C>0c78k3 78k3.Ink -ns -s

78K/III Series Object Converter VX.xxX [XX XXX XX]

Copyright (C) NEC Corporation 1989, 19xx

Target chip : uPDxXXXX

Device file : Vx.xx

Object Conversion Complete, 0 error(s) and 0 warning(s) found.

Option - NS is invalid, and option -S is valid.

182

CHAPTER 6 OBJECT CONVERTER

(3) Specify sort by object address order (-R/-NR)

Description format : -R
: -NR
Default value : -NR

[Function]
1) Option -R outputs sorting of HEX format objects in order of address.
2) Option -NR outputs HEX format objects in the order in which they were stored in the load module file.

[Application]
Specify option -R when you need to sort HEX format objects in order of address.

[Description]
1) If both options -R and -NR are specified at the same time, the option specified last takes precedence.
2) If option -NO is specified, option -R/-NR becomes unavailable.

[Note]
When ordering a ROM code, be sure to specify option -R and sort the HEX-format objects in address
sequence.

[Example]
Sort HEX format objects in order of address.

A>0c78k3 78k3.Ink -r

78K/II1 Series Object Converter Vx.xx [xX xxX xX]

Copyright (C) NEC Corporation 1989,19xx

Target chip : uPDXXXXX

Device file : Vx.xx

Object Conversion Complete, 0 error(s) and 0 warning(s) found.

183

CHAPTER 6 OBJECT CONVERTER

@

184

Specify object complement (-U)

Description format : -U complement value [, [start] , size]
Default value : None

[Function]
Option -U outputs a specified complement value as an object code for an address area to which no HEX

format object has been output.

[Application]
Address areas to which no HEX format object has been output may become written with unnecessary code.
When such addresses are accessed by the program for any reason, their action may be unpredictable. By
specifying option -U, code can be written in advance to address areas to which no HEX format object has
been output.

[Description]

1)

3)

The range of values that can be specified as complement values is as follows.
OH < complement value < OFFH

Complement values can be specified in decimal or hexadecimal numbers. If a value outside the range
or a value other than a numerical value is specified, an abort error occurs.

"Start" specifies the start address area for complement to be performed.

The range of values that can be specified for start is as follows.

OH < start < OFFOOH

Start can be specified in decimal or hexadecimal numbers. If a value outside the range or a value other
than a numerical value is specified, an abort error occurs. |f start is omitted, 0 is assumed to be
specified.

"Size" specifies the size of the address area for complement to be performed. The range of values that
can be specified for size is as follows.

OH < size < OFFOOH

Size can be specified in decimal or hexadecimal numbers. [f a value outside the range or a value other
than a numerical value is specified, an abort error occurs. When start has been specified, size cannot
be omitted.

CHAPTER 6 OBJECT CONVERTER

4} If both start and size are omitted, the object converter performs the following processing.
(a) If the target device for assembly contains internal ROM, the object converter interprets start and
size to have the value specified in internal ROM.
(b) |f the target device for assembly does not contain internal ROM, the object converter interprets an
error and aborts execution.
5) If option -U is specified two or more times, the item specified last takes precedence.
6) Specification formats for start and size in option -U and their interpretation are as follows.
(a) -U Complement value
If the target device for assembly contains internal ROM, the internal ROM range
If the target device for assembly does not contain internal ROM, abort error
(b) -U Complement value, size
From address 0 to the size address
(c) -U Complement value, stan, size
From start address to size address

[Note]

When ordering a ROM code, be sure to specify the option -U and make sure that the no vacant area exists
in the internal ROM area.

185

CHAPTER 6 OBJECT CONVERTER

[Example]
Complement an address area to which a HEX format object has not been output with code.
in the following example, it is supposed that a HEX format object module file exists. in this case, code
cannot be written to the address area 003EH-OFFFH.

:020000000200FC
:100002002B41000BFCB80FE2B40000944F7083A20EC
:100012001A6720FE2822006521FED350D25014FELA
:10002200B900059F2835002431B900059F28350005
:0C003200242156AF0A8302A807A830560C

:01000003B5DOD0026A3
:1010100024A5F622RB667
L]
L]
L]
:00000001FF
00000H
00002H
(1
0003EH
Code is
complemented to
this area
01000H

()

00H is complemented to the address area 003EH-OFFFH.

C>0c78k3 78k3.ink -u00h, 003eh, 0Offth

78K/III Series Object Converter Vx.xx [XX XXX xx]
Copyright (C) NEC Corporation 1989, 19xx

Target chip : uPDxXXXX

Device file : Vx.xx

Object Conversion Complete, 0 error(s) and 0 warning(s) found.

186

CHAPTER 6 OBJECT CONVERTER

(5) Specify error list file output (-E/-NE)

Description format : -E [output file name]
: -NE
Default value : -NE

[Function]
1) Option -E specifies the output of an error list file. Option -E also specifies the output destination and
output file name.
2) Option -NE makes option -E unavailable.

[Application]
Specify option -E to change the output destination and output file name of the error list file.

[Explanation]

1) The file name of the error list file can be specified as a disk-type file name or as a device-type file name.
However, if the device-type file name CLOCK is specified, an abort error will occur.

2) When option -E is specified and the output file name is omitted, the error list file name will be ‘input file
name.EOC'.

3) When option -E is specified and the drive name is omitted, the error list file will be output to the current
drive.

4) If both options -E and -NE are specified at the same time, the option specified last takes precedence.

[Example]
Create an error list file (78K3.EOC).

C>0c78k3 78k3.Ink -e78k3.eoc

78K/III Series Object Converter VX.XX [XX XXX XX
Copyright (C) NEC Corporation 1989, 19xx

Target chip : uPDxxXXxx

Device file : Vx.xx

F100 Undefined symbol : CONVAH

Object Conversion Complete, 1 error(s) and 0 warning(s) found.

* This references 78K3.EOC

F100 Underfined symbol : CONVAH

187

CHAPTER 6 OBJECT CONVERTER

(6)

188

Specify parameter file (-F)

Description format : -F file name
Default value : Options and input file names can only be specified from the startup command line.

. [Function}

Option -F specifies input of options and input file names from a specified file.

[Application]

1)

2)

Specify option -F when the data required to start up the object converter will not fit on the command
line. ,

Specify option -F to repeatedly specify the same options each time object conversion is performed and
to save those options to a parameter file.

[Explanation]

1)

2)
3)

4)
5)
6)

7)
8)

9).

Only a disk-type file name can be specified as file name'. If a device-type file name is specified, an
abort error will occur. ‘

If the file name is omitted, an abort error will occur.

Nesting of parameter files is not permitted. If option -F is specified within a parameter file, an abort error
will oceur.

The number of characters that can be described within a parameter file is unlimited.

Separate options or input file names with a blank space, a tab or [.1].

Options and input file names described in a parameter file will be expanded at the position specified for
the parameter file on the command line.

The expanded options specified last will take precedence.

All characters entered after ;' or '#' and before [1] or 'EOF' will be interpreted as comments.

If option -F is specified two or more times, an abort error will occur.

CHAPTER 6 OBJECT CONVERTER

[Example]
Perform object conversion using a parameter file.

* Set the contents of parameter file 78K3.POC as follows.
;parameter file

78k3.1nk -osample.hex

-ssample.sym -r

» Enter the following on the command line.

C>0c78k3 -f78k3.poc

78K/III Series Object Converter Vx.xXX [XxX xxx XX]

Copyright (C) NEC Corporation 1989, 19xx

Target chip : uPDXXXXX

Device file : Vx.xx

Object Conversion Complete, 0 error(s) and 0 warning(s) found.

189

CHAPTER 6 OBJECT CONVERTER

(7) Specify help (-~)

Description format : --
Default value : No display

[Function]
Option -- displays a help message on the display.

[Application]
The help message is a list of explanations of the object converter options. Refer to these when executing

the object converter.

[Description]
When option -- is specified, all other options are unavailable.

[Example]
When option -- is specified, a help message is output on the display.

C>0c78k3 --

78K/III1 Series Object Converter Vx.xXx [XX XXX XX]

Copyright (C) NEC Corporation 1989, 19xx

usage : oc78k3 [option[...]] input-file [option[...1]

The option is as follows ([] means omissible).

-ffile :Input option or input-file name from specified file.
-o[filel/-no :Create HEX module file [with specified name] / Not.
-s[filel/-ns :Create symbol table file [with specified name] / Not.
-ef[filel/-ne :Create the error list file [with the specified name] / Not.
-r/-nr :Sort HEX object by address / Not.

-uvaluel, [start],size] :Fill up HEX object with specified value.
-— :Show this message.
DEFAULT ASSIGNMENT: -0 -s -nr

190

CHAPTER 7 LIBRARIAN

The librarian edits RA78K3 object module files and library files in units of 1 module.
The librarian also outputs a list file.
If a librarian error occurs, an error message is output to the display indicating the cause of the error.

191

CHAPTER 7 LIBRARIAN

7.1 Files Input and Output by the Librarian

The files input and output by the librarian are as follows.

192

Table 7-1. Files Input and Output by the Librarian

Type File Name Explanation Default File Type
Input files Subcommand files These files contain the execute program
command and the parameters. None
These files are created by the user.
Output files | List files These files are the result of output of library LeT
data.)
Object module files These are object module files output by the REL
assembler or compiler.)
Library files These files input the library files output by the LB
Input/ output librarian and update the contents. '
files Temporary files These files are automatically generated by
the librarian when forming a library. They are Lbxxxxxx.$y
deleted when execution of the librarian is y=1106

complete.

CHAPTER 7 LIBRARIAN

Figure 7-1. Files Input and Output by the Librarian

Object module files output by Subcommand
compiler or assembiler files

[
AN

Librarian "

/ Temporary files

Library files List files

(s}

193

CHAPTER 7 LIBRARIAN

7.2 Functions of the Librarian

(1)

()

@)

Formation of a library of modules

The assembiler and linker create 1 file for every module they output.

This means that if a large number of modules are created, the number of files also grows. The RA78K3
therefore includes a function for collecting a number of object modules in a single file. This function is called
module library formation, and a file which is organized as a library is called a library file.

A library file can be input to the linker. By creating a library file consisting of modules common to many
programs, users can make file management and operation efficient and easy when performing modular
programming.

Editing of library files

The librarian incorporates the following editing functions for library files.
1) Addition of modules to library files
2) Deletion of modules from library files
3) Replacement of modules in library files
4) Retrieval of modules from library files
(For detailed explanations of these functions, see 7.5, "Subcommands.")

Output of library file data

The librarian incorporates functions for the editing and output of the following items of data stored in library
files.

1) Module names

2) Created programs

3) Date of registration

4) Date of update

5) PUBLIC symbol data

Caution The librarian performs functions 2) and 3) listed above using subcommands. The librarian

194

determines each subcommand in order while performing processing. For an explanation of
the operation of subcommands, see 7.5, "Subcommands."

CHAPTER 7 LIBRARIAN

@)

Procedure for creating a library file

The general procedure for creating library files is as follows.

Figure 7-2. Procedure for Creating a Library File

(o)

P

Creation of library file

-

Registration of object module
file

Update or retrieval of object
module file

(o)

CREATE subcommand

ADD subcommand

ADD subcommand
DELETE subcommand
REPLACE subcommand
PICK subcommand

LIST subcommand

195

CHAPTER 7 LIBRARIAN

7.3 Librarian Startup

7.3.1 Librarian startup

The following two methods can be used to start up the librarian.
(1) Startup from the command line

X>[path-name] Ib78k3 [Aoption}---
I | | |
M @) 3) 4
(1) Current drive name
(2) Current directory name
(3) Librarian command file name

{4) This contains detailed directions for the action of the librarian

Example C>|b78k3 -1120 -lw80

Caution If more than one librarian option is specified, separate the options with a space. For a
detailed explanation of librarian options, see 7.4, "Librarian Options."

Example Startup message
When the librarian is started up, the following startup message appears on the display.
78K/III Series Librarian Vx.xx [xXX xXxx xx]
Copyright (C) NEC Corporation 1989, 19xx
After an asterisk (*), specify a librarian subcommand.
*create 78k3.1ib

*add 78k3.1ib 78k3main.rel 78k3sub.rel

*exit

196

CHAPTER 7 LIBRARIAN

)

When input of subcommands is finished, processing of each subcommand begins. When processing of one
subcommand is complete, ™' appears again on the screen and the librarian waits for the next subcommand to
be entered. The librarian repeats this operation until the EXIT subcommand is entered.

* Specify subcommand

* Specify subcommand

* Specify EXIT subcommand

Exit-librarian

Up to 128 characters can be specified in 1 line.
If all the required operand data will not fit on 1 line, use '& to continue specification on the next line.
Specification can be continued up to 15 lines.

Startup from a subcommand file

A subcommand file is a file in which librarian subcommands are stored.

If a subcommand file is not specified when the librarian is started up, multiple subcommands must be specified
after the ™' appears. By creating a subcommand file, these multiple subcommand files can all be processed at
once.

A subcommand file can also be used when the same subcommand is specified repeatedly each time library
formation is performed.

When using a subcommand file, describe '<' before the file name.

197

CHAPTER 7 LIBRARIAN

Start up the librarian from a subcommand file as follows.

X>Ib78k3A <subcommand file name [Aoption]---
| |
1))

(1) Be sure to add this when specifying a subcommand file
(2) File in which subcommands are stored

(a) Use an editor to create the subcommand file.
(b) The rules for describing the content of a subcommand file are as follows.

Subcommand name operand data
Subcommand name operand data
EXIT

(c) When repeating one subcommand, describe ‘&' at the end of each line to indicate continuation.

(d) Everything described from a semicolon (';') to the end of the line will be assumed to be a comment,
and will not be interpreted by the librarian command.

(e) If the last subcommand in a subcommand file is not the EXIT subcommand, the librarian will
automatically interpret an EXIT subcommand.

(f) The librarian reads subcommands from the subcommand file and processes them. The librarian
quits after it completes processing of all subcommands in the subcommand file.

198

CHAPTER 7 LIBRARIAN

Example Create the subcommand file (78K3.SLB) using an editor.

* Contents of 78K4.SLB

;library creation command
create 78k3.1ib

add 78k3.1lib 78k3main.rel &
78k3sub.rel

exit

¢ Use subcommand file 78K3.SLB to start up the librarian.

C>1b78k3 <78k3.slb

199

CHAPTER 7 LIBRARIAN

7.3.2 Execution start and end messages

(1) Execution start message

When the librarian is started up, an execution startup message appears on the display.

78K/III Series Librarian Vx.xxX [XX XXX XX]

Copyright (C) NEC Corporation 1989, 19xx

(2) Execution end message

The librarian does not output an execution end message. When the user enters the EXIT subcommand after
all processing is complete, the librarian returns control to the operating system.

*create 78k3.1ib
*add 78k3.1lib 78k3main.rel 78k3sub.rel

*exit

if the librarian detects a fatal error which makes it unable to continue librarian processing, the librarian outputs
a message to the display and returns control to the operating system.

Example 1. If ‘<’ is not specified at the beginning of the library file.

C>Ib78k3 78k3.slb

78K/III Series Librarian Vx.XX [XX XXX XX]
Copyright (C) NEC Corporation 1989, 19xx

A003 Unrecognized string ‘78k3.slb’

Usage: LB78K3 [options]

In this example, an error occurs because ‘<’ is not specified at the beginning of the library file, and execution of
the librarian is aborted.
Example 2. A nonexistent librarian option is specified.
C>b78k3 -a
78K/I11 Series Librarian Vx.xx [xxX xxx XX]
Copyright (C) NEC Corporation 1989, 19xx
A0l18 Option is not recognized '-a'

Usage: LB78K3 [options]

In the above example, a nonexistent librarian option is specified. An error results and the librarian aborts
librarian execution.

200

CHAPTER 7 LIBRARIAN

When an error message is displayed and library formation is aborted, look for the cause in Chapter 11, "Error
Messages" and take action accordingly. -

201

CHAPTER 7 LIBRARIAN

7.4 Librarian Options

7.4.1 Types of librarian options

The librarian options are used to specify the format of list files and the file creation path for temporary files.
Librarian options are classified into 3 types.

Table 7-2. Librarian Options

Number Classification Option Explanation

1 LW Changes the number of characters that can be
printed in 1 line in a list file.

Specify list file format -LL Changes the number of lines that can be printed in
1 page in a list file.

-LF Inserts a line feed code at the end of a list file.
-NLF
2 Specify path for temporary file -T Creates a temporary file in a specified path.
creation
3 Specify help - Displays a help message on the display.

Remark This table is presented as a brief introduction to the librarian options. When actually using the
librarian options, see Appendix E.4, "List of Librarian Options."

202

CHAPTER 7 LIBRARIAN

7.4.2 Explanation of library options

The following is a detailed explanation of the library options.
(1) Specify list file format (LW, -LL, -LF/-NLF)
(a) -LW

Description format : -LW [number of characters]
Default value . -LW132 (80 characters in the case of display output)

[Function]
Option -LW changes the number of characters that can be printed in 1 line in a list file.

[Application]
Specify option -LW to change the number of characters that can be printed in 1 line in a list file.

[Description]
1) The range of number of characters that can be specified with option -LW is shown below.
(In the case of display output, this number is 80)

72 < number of characters printed on 1 line < 132

If a numerical value outside this range, or something other than a numerical value, is specified, an abort
©rror OCCurs.

2) If the number of characters is omitted, 132 will be specified. If the list file is output to the display, 80 is
specified.

3) The specified number of characters does not include the carriage return and feed codes.

4) If the LIST subcommand is not specified, option -LW is ignored.

5) If option -LW is specified 2 or more times, the last specified item will take precedence.

[Example]
Specify 80 as the number of characters per line in a list file.

C>1b78k3 -lw80
78K/1II Series Librarian Vx.xx [xx xxx xX]
Copyright (C) NEC Corporation 1989, 19xx

*create 78k3.l1lib 78k3sub.rel <—Subcommand
*1list 78k3.1lib «—Subcommand

203

CHAPTER 7 LIBRARIAN

(b) -LL

Description format: -LL [number of lines]
Default value : -LL66 (No page breaks in the case of display output)

[Function]
Option -LL specifies the number of lines that can be printed in 1 page in a list file.

[Application]
Specify option -LL to change the number of lines that can be printed in 1 page in a list file.

[Description]
1) The range of number of lines that can be specified with option -LL is shown below.

20 < number of lines printed on 1 page < 32767

If a numerical value outside this range, or something other than a numerical value, is specified, an abort
error occurs.

2) If the number of lines is omitted, 66 will be specified.

) If the number of lines specified is 0, no page breaks will be made.

) If the LIST subcommand is not specified, option -LL is ignored.

} If option -LL is specified 2 or more times, the last specified item will take precedence.

a H W

[Example]
Specify 20 as the number of lines per page in a list file.

C>1b78k3 -1120
78K/III Series Librarian Vx.XX [XX XXX XX]
Copyright (C) NEC Corporation 1989,19xx

*create 78k3.lib 78k3sub.rel «—Subcommand
*list 78k3.1lib «Subcommand

204

CHAPTER 7 LIBRARIAN

(c) -LF/-NLF

Description format: -LF
1 -NLF
Default value : -NLF

[Function]
1) Option -LF inserts a form feed (FF) code at the end of a list file.

2) The -NLF option makes the -LF option unavailable.

[Application]

If you wish to add a page break after the contents of a list file are printed, specify option -LF to add a form

feed code.

[Description]
1) If the LIST subcommand is not specified, option -LF is ignored.

2) If both options -LF and -NLF are specified at the same time, the option specified last takes precedence.

[Example]
Example Add a form feed code to a list file.

C>Ib78k3 —If

78K/III Series Librarian Vx.xx [xx xxx xx]

Copyright (C) NEC Corporation 1989, 19xx
*create 78k3.1lib 78k3sub.rel «Subcommand
*1list 78k3.1lib «Subcommand

205

CHAPTER 7 LIBRARIAN

@)

206

Specify path for temporary file creation (-T)

Description format : -T path name
Default value : Created in the path specified by the environmental variable TMP.

If no path is specified, the temporary file is created in the current path.

[Function]
Option -T creates a temporary file in a specified path.

[Application]
Use option -T to specify the location for creation of a temporary file.

[Description]

1)
2)
3)
4)

5)

6)

Only a path can be specified as a path name.

The path name cannot be omitted.

Even if a previously created temporary file exists, if the file is not protected it will be overwritten.

As long as the required memory size is available, the temporary file will be expanded in memory. If not
enough memory is available, the contents of the temporary file being created will be written to disk.
Such temporary files may be accessed later through the saved disk file.

Temporary files are deleted when library formation is finished. They are also deleted when library
formation is aborted by pressing (CTRL-C}).

The path in which the temporary file is to be created is determined according to the following order.

1. The path specified by option -T
2. The path specified by environmental variable TMP (when option -T is omitted)
3. The current path (when TMP is not set)

When 1. or 2. is specified, if the temporary file cannot be created in the specified path an abort error
occurs.

[Example]
Specify output of a temporary file to directory TMP.

C>Ib78k3 -f\tmy

78K/III Series Librarian Vx.xXx [XX XXX XX]
Copyright (C) NEC Corporation 1989,19xx

CHAPTER 7 LIBRARIAN

(3) Specify help (--)

Description format : -
Default value . No display

[Function]
Option -- displays a help message on the display.

[Application]
The help message is a list of explanations of the subcommands. Refer to these when executing the

librarian.

[Description]
When option -- is specified, all other options are unavailable.

[Example]
When option -- is specified, a help message is output on the display.

C>1b78k3 --

78K/III Series Librarian Vx.xX [XX XXX XX]
Copyright (C) NEC Corporation 1989, 19xx

Usage : subcommand[option] masterLBF[option] transaction{ option]

transaction :== OMFname

LBFname [(modulenamef, ...1)]
<create > : create masﬁerLBF[transaction]
<delete > : delete masterLBF (modulenamel,...])
<pick > : pick masterLBF (modulename(,...])

<list > : list[option] masterLBF|[(modulenamel,...])

option : -p = output public symbol

-np no output public symbol
-o filename = gpecify output file name
<help > : help

I

|

|

|

I

I

|

I

| <add > : add masterLBF transaction
|

I

|

I

I

I

I

I

| <exit > @ exit
I

|
I
|
I
I
|
I
I
|
I
<replace> : replace masterLBF transaction]
I
|
|
|
I
|
|
|

207

CHAPTER 7 LIBRARIAN

7.5 Subcommands

7.5.1 Types of subcommands

The subcommands provide detailed directions for the operation of the librarian. Subcommands are classified into

eight types.
Table 7-3. Subcommands
No. Subcommand Name | Abbrev. Explanation
1 CREATE C Creates a new library file.
2 ADD A Adds a module to a library file.
3 DELETE D Deletes a module from a library file.
4 REPLACE R Replaces module in a library file with other moduies.
5 PICK P Retrieves a module from a library file.
3] LIST L Outputs data on modules in a library file.
7 HELP H Displays a help message on the display.
8 EXIT E Exits librarian.

Remark For a detailed explanation of the subcommands, read Appendix F, "List of Subcommands."

208

CHAPTER 7 LIBRARIAN

7.5.2 Explanation of subcommands

The following is a detailed explanation of the function and operation of each subcommand.
* General format of command files

*Subcommand [Aoption] Alibrary-file-name [Aoption] transaction [Aoption]

l !
M)

(1) The library file name specified immediately before can be replaced with ".".
(2) Transaction = Aobject-module-file-name Alibrary-file-name [V(Vmodule-name [V,---])]

209

CHAPTER 7 LIBRARIAN

(1) CREATE

Description format : CREATEAlibrary file name [Atransaction]
Abbreviated format: C

[Function]}
The CREATE subcommand creates a new library file.

[Description]

1) The size of the created library file becomes 0.

2) When a transaction is specified, a module is registered at the same time as the library file is created.

3) Library file name: If a file with the same name already exists, it will be overwritten.

4) Transaction: An object module file carrying the same public symbol as the public symbol in the library
file cannot be registered.
A module with the same name as a module in the library file cannot be registered.

5) [f an error occurs, processing is interrupted and the library file cannot be created.

[Example]
Example 1. Create a new library file (78K3.LIB)

*create 78k3.lib

<Before file creation>

<After file creation>

78K3.LIB

210

CHAPTER 7 LIBRARIAN

Example 2. Register modules M1 and M2 at the same time as a library file is created.

*create 78k3.lib m1.rel m2.rel

<Before file creation>

<After file creation>
78K3.LIB

211

CHAPTER 7 LIBRARIAN

(2) ADD

Description format : ADDAlibrary file name Atransaction
Abbreviated format: A

[Function]
The ADD subcommand adds a module to a library file.

[Description]
1) A module can be added to a library file even if no modules are currently stored in the library.
2) If a module with the same name as the module to be added already exists in the library file, an error
occurs.
3) If the module to be added carries the same public symbol as the public symbol in the library file, an
error occurs.

[Example]
Example 1. Add ,modules (M1 and M2) to a library file (78K3.LIB)

*add 78K3.lib m1.rel m2.rel

<Before addition>
78K3.LIB

<After addition>
78K3.LIB

212

CHAPTER 7 LIBRARIAN

Example 2. Add a module (M3) to a library file (78K3.LIB).

*add 78k3.lib m3.rel

<Before addition>
78K3.LIB

it

<After addition>
78K3.LIB

[w]
[we]

213

CHAPTER 7 LIBRARIAN

(3) DELETE

Description format : DELETEAlibrary file name V(Vmodule name [V,---]V)
Abbreviated format: D

[Function]
The DELETE subcommand deletes a module from a library file.

[Description]
1) If the specified module does not exist in the library file, an error occurs.

2) If an error occurs, processing is interrupted and the condition of the library file will not be changed.

[Example]
Delete modules (M1, M3) from a library file (78K3.LIB).

*delete 78k3.lib m1.rel m3.rel

<Before deletion>
78K3.LIB

<After deletion>
78K3.LIB

[we]

214

CHAPTER 7 LIBRARIAN

4

REPLACE

Description format : REPLACEAlIibrary file nameAtransaction
Abbreviated format: R

[Function]
The REPLACE subcommand replaces module in a library file with the module in other object module files.

[Description]
1) If no module in the library file has the same name as the replacement module, an error will result.
2) If a public symbol contained in the replacement module is the same as a public symbol in the library file,
an error will occur.
3) The file name of the replacement object module must be the same as the file name used in registration.
4) If an error occurs, processing is interrupted and the condition of the library file will not be changed.

215

CHAPTER 7 LIBRARIAN

[Example]
Replace a module (M2} in a library file (78K3.LIB).

*replace 78k3.lib m2.rel

<Before replacement>
78K3.LIB

M1

il

<After replacement>
78K3.LIB

[w]
[w]

Because the new module (M2) is registered after the module (M2) in the library file is deleted, M2 is last in
order in the library file.

216

CHAPTER 7 LIBRARIAN

®)

PICK

Description format : PICKAlibrary file name V(Vmodule-name [V,-]V)
Abbreviated format: P

[Function]
The PICK subcommand retrieves a specified module from an existing library file.

[Description]
1) The retrieved module becomes an object module file with the file name under which it was registered in
the library file.
2) [f the specified module name does not exist in the library file, an error will result.
3) If an error occurs, processing is interrupted. However, if an error occurs when two or more modules are
specified, the modules retrieved before the module which caused the error become available and are
saved onto disk.

217

CHAPTER 7 LIBRARIAN

[Example]
Example Retrieve a module (M2) from a library file (78K3.LIB).

*pick 78k3.lib m2.rel

<Before retrieval>
78K3.LIB

[w]

[w]

<After retrieval>
78K3.LIB

[w]

218

CHAPTER 7 LIBRARIAN

(6)

LIST
Description format: LIST [Aoption] Alibrary-file-name [V(Vmodule-name [V,:--]V)

» Option : -PUBLIC/-NOPUBLIC
: - O Vfilename

Abbreviated format: L

[Function]
The LIST subcommand outputs data on modules in a library file.

[Description]
1) Multiple options may be specified.
2) -O:
A device-type file name can be specified as the output file name.
If the output file name is omitted, an error occurs.
If the file type is omitted, the librarian assumes that 'input file name.LST' is entered.
3) -PUBLIC/-NOPUBLIC:
This option can be selected by specifying only the underlined characters.
-PUBLIC specifies output of public symbol data.
-NOPUBLIC makes -PUBLIC unavailable.
If -PUBLIC and -NOPUBLIC are specified at the same time, the last specified option takes precedence.

219

CHAPTER 7 LIBRARIAN

[Example]
Output a module data in a library file (78K3.LIB) to a list file (78K3.LST). Specify option -P so that public
symbot data will be output.

*list -p -078k3.Ist 78k3.lib

o List file (78K3.LST) is referenced.

78K/III Series librarian Vx.xx DATE : XX XXX XX PAGE 1
LIB-FILE NAME : 78K3.LIB (xxX xxXx XX)
0001 78K3MAIN.REL (xx XXX XX)
MAIN START
NUMBER OF PUBLIC SYMBOLS : 2
0002 78K3SUB.REL (XX XXX XX)
CONVAH
NUMBER OF PUBLIC SYMBOLS : 1

220

CHAPTER 7 LIBRARIAN

(7) HELP

Description format : HELP
Abbreviated format: H

[Function]
The HELP command displays a help message on the display.

[Description]
The help message is a list of the subcommands and explanations for each. Specify the HELP command or
option -- to refer to this message during librarian execution.

[Example]
Specify the HELP command to output the HELP message.

*help

Usage : subcommand[option] masterLBF[option] transaction[option]

transaction :== OMFname

LBFname [(modulename([, ...])]

<create > : create masterLBF[transaction]

<add > : add masterLBF transaction

<replace> : replace masterLBF transaction
<pick > : pick masterLBF (modulenamel,...])
<list > : list[option] masterLBF[(modulenamel[,...])
option : -p = output public symbol
-np = no output public symbol

~o filename = specify output file name

A

<help : help

exit

\

<exit

|
I
|
l
I
I
!
|
|
[<delete > : delete masterLBF (modulenamel,...])
|
I
|
I
l
|
|
|
l

221

CHAPTER 7 LIBRARIAN

(8) EXIT

Description format : EXIT
Abbreviated format: E

[Function]
The EXIT subcommand exits the librarian.

[Description]
Use this subcommand to exit the librarian.

[Example]
Exit the librarian.

=exit

222

CHAPTER 8 LIST CONVERTER

The list converter inputs assemble list files and object module files output by the assembler and load module files
output by the linker.

The list converter then embeds actual addresses in the relocatable addresses and symbols in the input file and
outputs an absolute assembly list. This eliminates the troublesome task of looking at an assemble list while referring
to a link map.

223

CHAPTER 8 LIST CONVERTER

8.1 List Converter Input and Output Files

Files input and output by the list converter are as shown below.

224

Table 8-1. Assembler Input and Output Files

Type File Name Explanation Default Fite Type
' Object module files These are binary files including relocation data
and symbol data regarding machine language REL
data and machine language location addresses.
Assemble list files These are files containing assembly data such PRN
as assemble lists and cross-reference lists. ’
Input files . .) . .
P Load module files These are binary image files which contain LNK
object code as a result of linking.)
Parameter files These files contain the parameters for the
executed program. PLV
These files are created by the user.
Absolute assembie This is a list file which embeds actual addresses
list files in relocatable addresses and symbols in the P
input file.
Output files
P Error list files These are files containing error data generated ELV

during list conversion.

CHAPTER 8 LIST CONVERTER

Figure 8-1. Files Input and Output by the List Converter

Assemble list Object module Load

files files module files Parameter files
tm] |w] [=])

List converter

Absolute Error list
assembie list files
files

225

CHAPTER 8 LIST CONVERTER

8.2 Functions of the List Converter

The following is a comparison of the advantages and disadvantages of relocatable assemblers with respect to
absolute assemblers.

[Advantages]
1) Relocatable assemblers can be developed by a team of several personnel.
2) Relocatable assemblers can be divided into modules for easy development and storage.
3) Relocatable assemblers support library management.
4) Relocatable assemblers are appropriate for development of large-scale programs.

[Disadvantages]
1) The addresses in the assemble lists of relocatable assemblers do not agree with their actual, physical
addresses.
2) The values of external symbols become 0 in the assemble lists of relocatable assemblers. To find out
the actual values of external symbols, a link map must be referred to.
3) Relocatable values in assemble lists are different from actual values.

The above disadvantages particularly reduce productivity in the areas of debugging and storage because of the
considerable documentation they require. The list converter offers a solution to these disadvantages of relocatable
assembler packages.

1) The absolute assemble list output by the list converter agrees completely with the addresses used in
actual program operation.

2) The actual values of external symbols are embedded in the list.

3) Relocatable values are embedded in the list as actual values.

4) For the symbol values in symbol tables or cross-reference lists, the actual values are embedded in the
list.

226

CHAPTER 8 LIST CONVERTER

Example 1. Relocation embedding

e Assemble list

18 18 —~=-- CSEG

19 191 0000 B20O CONVAH: MOV A, #0
20 20| 0002 059F ROL4 [HL]
21 21| 0004 | R281300 CALL ! SASC
22 22 { 0007 2431 MOV B,A
23 23

24 241 0009 B90O MOV A, #0
25 25| 000B 059F ROL4 [HL]
26 26 | 000D | R281300 CALL I SASC
27 271 0010 2421 MOV C,A
28 28

29 291 0012 56 RET

e Absolute assembile list

15 5) ---- CSEG

16 16 | 0002 | B90O CONVAH: MOV A, #0
17 17| 0004] 059F ROLA4 [HL]
18 18 | 0006 | R281500 CALL I SASC
19 191 0009 2431 MOV B,A
20 20

21 21| 00O0B B90O MOV A, #0
22 22| 000D 059F ROL4 [HL]
23 23 | 000F { R281500 CALL I SASC
24 241 0012 2421 MOV C,A
25 25

26 261 0014 56 RET

227

CHAPTER 8 LIST CONVERTER

Example 2. Embedding of object codes

¢ Assembile list

18 18 ———- CSEG

19 19 0000 B90O CONVAH: MOV A, #0
20 20 0002 059F ROL4 [HL]

21 21 0004| R281300] CALL 1 SASC
22 22 0007 2431 MOV B,A

23 23

24 24 0009 B90O MOV A, #0
25 25 000B 059F ROL4 [HL]

26 26 000D R281300 CALL I SASC
27 27 0010 2421 MOV c,a

28 28

29 29 0012 56 RET

e Absolute assemble list

15 15 ———- CSEG

16 16 0002 B90O CONVAH: MOV A, #0
17 17 0004 O059F ROL4 [HL]
18 18 0006| R281500] CALL I SASC
19 19 0009 2431 MOV B,A
20 20

21 21 000B E900 ' MOV A, #0
22 22 000D 059F ROL4 [HL]
23 23 000F R281500 CALL I SASC
24 24 0012 2421 MOV C,A
25 25

26 26 0014 56 RET

228

CHAPTER 8 LIST CONVERTER

8.3 List Converter Startup

8.3.1 List converter startup

Two methods can be used to start up the list converter.
(1) Command-line startup

X>lcnv78k3 [Aoption]---Ainput-file-name [Aoption]---[A]
f | | | !
(1) @ @ 4 3)

(1) Current drive name

(2) Command file name of the list converter

(3) Enter detailed instructions for the operation of the list converter.
(4) Primary name of assemble list

Example C>icnv78k3 78k3main -178k3.Ink

Cautions 1. In (3) above, when specifying two or more list converter options, separate the list
converter options with a blank space. For a detailed explanation of list converter
options, see 8.4, "List Converter Options."

2. Use the extension .PRN for (4) above.

3. In (4) above, if only the primary name of the assemble list is specified in the command
line, the primary names of the object module file and load module file must be identical
to the primary name of the assemble list file.

The file types must also be as shown below.

File Name Type

Object module type .REL

Load module file .LNK

Use an option when specifying a file which is different in the primary name.

229

CHAPTER 8 LIST CONVERTER

(2) Startup from a parameter file

Use the parameter file when the data required to start up the list converter will not fit on the command line, or
when the same list converter option is specified repeatedly each time list conversion is performed.
To start up the list converter from a parameter file, specify the specify parameter file option (-F) on the command

line.
Start up the list converter from a parameter file as follows.

X>lenv78k3 [Ainput file name] A-f parameter file name
I |
(1) ()

(1) Specify a parameter file option
(2) A file which includes the data required to start up the list converter

Remark Create the parameter file using an editor.

The rules for describing the contents of a parameter file are as follows.

[[[A] option [Aoption] --- [A]A]]---

1) If the input file name is omitted from the command line, only 1 input file name can be specified in the
parameter file.

2) The input file name can also be described after the option.

3) Describe in the parameter file all list converter options and output file names that should be specified in

the command line.
Example Create the parameter file (78K3.PLV) using an editor.
¢ Contents of 78k3.PLV
;parameter file
78k3main -178k3.1lnk
-e78k3.elv

* Use parameter file (78K3.PLV) to start up the list converter.

C>lenv78k3 -f78k3.plv

230

CHAPTER 8 LIST CONVERTER

8.3.2 Execution start and end messages

(1) Execution start message
When the list conventer is started up, an execution startup message appears on the display.

List Conversion Program for RA78K/III VX.xXX [XX XXX XX]
Copyright (C) NEC Corporation 1989, 19xx

Passl: start...

Pass2: start...
(2) Execution end message

If it detects no list conversion errors resulting from the list conversion, the list converter outputs the following
message to the display and returns control to the operating system.

Conversion complete.

If the list converter detects a fatal error during list conversion which makes it unable to continue list conversion
processing, the list converter outputs a message to the display, cancels list conversion and returns control to the
operating system.

Example 1. A nonexistent assemble list file is specified.

C>lcnv78k3 sample

List Conversion Program for RA78K/III VX.xxX [xXxX xxx XxX]

Copyright (C) NEC Corporation 1989,19xx

A006 File not found '-ISAMPLE. LINK'

Program aborted.

In this example, an error occurs because a nonexistent assemble
list file is specified, and the processing is aborted.

231

CHAPTER 8 LIST CONVERTER

Example 2. A nonexistent list converter option is specified.

C>lenv78K4 78K4main -a

List Conversion Program for RA78K/IV VX.XX [xX XXX x%]
Copyright (C) NEC Corporation XXX
AQ01l8 Option is not recognized '-a’

Program aborted.

In this example, an error occurs because a nonexistent list
converter option is specified, and the processing is aborted.

When the list converter outputs an error message and aborts list conversion, look for the cause in Chapter 11,
"Error Messages" and take action accordingly.

232

CHAPTER 8 LIST CONVERTER

8.4 List Converter Options

8.4.1 Types of list converter options

The list converter options are detailed instructions for the operation of the list converter. List converter options
are classified into 7 types.

Table 8-2. List Converter Options

Number Classification Option Explanation
1 Specify object module file input -R Inputs an object module file.
2 Specify load module file input -L Inputs a load module file.
3 Specify symbol name case -CA Does not distinguish uppercase and lowercase in symbol
NCA names.
4 Specify absolute assemble list -0 Specifies output of an absolute assemble list file.
file output
5 Specify error list file output -E Outputs an error list file.
-NE
6 Specify parameter file -F Inputs the input file name and options from a specified file.
7 Specify help - Displays a help message on the display.

The above table is provided as an introduction to the list converter options. When actually using the list converter
options, read Appendix E.5, "List of List Converter Options."

233

CHAPTER 8 LIST CONVERTER

8.4.2 Explanation of list converter options
This section contains detailed explanations of each list converter option.

(1) Specify object module file input (-R)

Description format : -R input file name
Default value : -R assembile list file name.REL

[Function]
Option -R specifies the input of an object module file.

[Application]
When the primary name of an object module file is different from the primary name in the assemble list file,
or if its file type is not ".REL", specify option -R.

[Description]
1) |f afatal error occurs, the absolute assemble list file cannot be output.
2) If only the primary name of the input file name is specified, the list converter will assign the file type
".REL' and input the file.

[Example]
Assembile list file name is 78K3MAIN.PRN, the object module file name is SAMPLE.REL, and the load
module file name is 78K3.LNK.

C>lcnv78k3 78k3main -rsample.rel

List Conversion Program for RA78K/III VX.XX [XX XXX XX]
Copyright (C) NEC Corporation 1989, 19xx

Passl: start...

Pass2: start...

Conversion complete.

234

CHAPTER 8 LIST CONVERTER

(2) Specify load module file input (-L)

Description format : -L [input-file-name]
Default value : -L assemble-list-file-name.LNK

[Function]
Option -L specifies the input of a load module file.

[Application]
When the primary name of a load module file is different from the primary name in the assemble list file, or if
its file type is not “.LNK", specify option -L.

[Description]
1) If a fatal error occurs, the absolute assemble list file cannot be output.

2) If only the primary name of the input file name is specified, the list converter will assign the file type
"LNK' and input the file.

[Exampie}
Assembile list file name is 78K3MAIN.PRN and the load moduie file name is SAMPLE.LNK.

C>lcnv78k3 78k3main -lsample.lnk

List Conversion Program for RA78K/IIT VX.XX [XX XXX XX]

Copyright (C) NEC Corporation 1989,19xx
Passl: start...

Pass2: start...

Conversion complete.

235

CHAPTER 8 LIST CONVERTER

©)

236

Specify symbol name case (~-CA/-NCA)

Description format : -CA
: -NCA
Default value : -CA

[Function]
1) Option -CA specifies that no distinction is made between uppercase and lowercase characters in a
symbol name.
2) Option -NCA specifies that a distinction is made between uppercase and lowercase characters in a
symbol name.

[Application]
Use option -CA when you need to ignore the distinction between upper case and lower case.

[Description]
1) When option -CA is specified, the assembler converts lowercase characters in a symbol name to
uppercase and outputs them to an object.
2) When option -NCA is specified, the assembler outputs the symbol name to an object without converting
lowercase characters to uppercase.

[Note]
Match this option with option -CA/-NCA of the assembler.

[Example]
Example Specify that a distinction is made between uppercase and lowercase characters in a symbol

name.

C>lecnv78k3 78k3main -nca

List Conversion Program for RA78K/III VX.xX [XX XXX XX]

Copyright (C) NEC Corporation 1989, 19xx

Passl: start...
Pass2: start...

Conversion complete.

CHAPTER 8 LIST CONVERTER

@

Specify absolute assemble list file output (-O)

Description format : -O [output-file-name]
Default value : -0 assembile list file name.P

[Function]
Option -O specifies the output of an absolute assemble list file. Option -O also specifies the output
destination and output file name.

[Application]
Use option -O to change the output destination and output file name of the absolute assemble list file.

[Description]

1) A file name can be specified as a disk-type file name or as a device-type file name. However, only
CON, PRN, NUL and AUX can be specified as device-type file names. If CLOCK is specified, an abort
error will occur.

2) If the same device is specified for the file name as for the error file, an abort error will occur.

3) [the output file name is omitted when option -O is specified, the absolute assemble list file name will
become 'assemble list file name.P'.

4) If only the primary name of the output file name is specified, the list converter will assign the file type P’
and output the file.

5) If the drive name is omitted when option -O is specified, the absolute assemble list file will be output to
the current drive.

[Example]

Example1. Create an absolute assemble list file (SAMPLE.P)

C>lcnv78k3 78k3main -osample.p

List Conversion Program for RA78K/III VX.xX [XX XXX XX]

Copyright (C) NEC Corporation 1989, 19xx

Passl: start...
Pass2: start...

Conversion complete.

Example2. Output the absolute assemble list file to printer

C>lcnv78k3 78k3main -oprn

List Conversion Program for RA78K/III Vx.xX [XX XXX XX]
Copyright (C) NEC Corporation 1989,19xx

Passl: start...

Pass2: start...

Conversion complete.

237

CHAPTER 8 LIST CONVERTER

(5) Specify error list file output (-E/-NE)

Description format : -E [output file hame]
: -NE
Default value : -NE

[Function]
1) Specify option -E to specify the output of an error list file. This option also specifies the output
destination and output file name.
2) Option -NE makes option -E unavailable.

[Application]
Specify option -E to save error messages in a file.

[Description]
1) The file name of the error list file can be specified as a disk-type file name or as a device-type file name.
However, if the device-type file name CLOCK is specified, an abort error will occur.
2) If the device specified in the file name is the same as that specified in the absolute assemble list file, an
abort error will occur.

3) |If option -E is specified and the output file name is omitted, the error list file name will be 'assemble list
file name.ELV'.

4) If only the primary name of the output file name is specified, the list converter will assign the file type
"ELV' and output the file.
5) If the drive name is omitted when option -E is specified, the error list file will be output to the current

drive.
6) If both options -E and -NE are specified at the same time, the option specified last takes precedence.
[Example]

Create an error list file (SAMPLE.ELV).

C>lcnv78k3 78k3main -esample.elv

List Conversion Program for RA78K/III VX.XX [XX XXX xxj
Copyright (C) NEC Corporation 1989, 19xx

Passl: start...
¥% WARNING Al05 Segment name is not found in load module file ‘DATA’

Program aborted.

« The error list file (SAMPLE.ELV) is referenced.

Passl: start

**%* ERROR Al05 Segment name is not found in load module file 'DATA’

238

CHAPTER 8 LIST CONVERTER

(6) Specify parameter file (-F)

Description format : -F file name
Default value : Options and input file names can only be entered on the startup line.

[Function]
Option -F specifies input of options and the input file name from a specified file.

[Application]
1) Specify option -F when the data required to start up the list converter will not fit on the command line.
2) When you wish to repeatedly specify the same options each time list conversion is performed, describe
those options in a parameter file and specify option -F.

[Description]

1) Only a disk-type file name can be specified as 'file name'. If a device-type file name is specified, an
abort error will occur.

2) If the file name is omitted, an abort error will occur.

3) If only the primary name of the file name is specified, the list converter will assign the file type .PLV' and
open the file.

4) Nesting of parameter files is not permitted. if option -F is specified within a parameter file, an abort error
will occur.

5) The number of characters that can be described within a parameter file is unlimited.

6) Separate options or input file names with a blank space, a tab or [.J].

7) Options and input file names described in a parameter file will be expanded at the position specified for
the parameter file on the command line.

8) The expanded options specified last will take precedence.

9) If option -F is specified two or more times, an abort error will occur.

239

CHAPTER 8 LIST CONVERTER

[Example]
Start up list converter using a parameter file.
The contents of the parameter file (78K3.PLV) are as follows.

iparameter file
78k3main -178k3.1lnk
-a78k3.elv

Enter the following on the command line.

C>lcnv78k3 -f78k3.plv

List Conversion Program for RA78K/III Vx.xx [xx xxx xx]

Copyright (C) NEC Corporation 1989, 19xx
Passl: start...

Pass2: start...

Conversion complete.

240

CHAPTER 8 LIST CONVERTER

(7) Specify help (--)

Description format : --
Default value : No display

[Function]
Option -- displays a help message on the display.

[Application]
The help message is a list of explanations of the list converter options. Refer to these when executing the
list converter.

[Description]
When option -- is specified, all other options are unavailable.

[Example]
When option -- is specified, a help message is output on the display.

C>lenv78k3 --

List Conversion Program for RA78K/III Vx.xXX [XX XXX XX]
Copyright (C) NEC Corporation 1989,19xx

usage : lcnv78k3 [option[...]] input-file [option[...]]

The option is as follows([] means omissible).

~r[file] : Specify object module file.

-1[file] :Specify load module file.

-o[file] :Specify output list file (absolute assemble list file).
-ffile :Input option or input-file name from specified file.
-e[file] :Create error list file.

-ca/-nca:Convert alphabet to capital for symbol / Not.

-— :Show this message.

DEFAULT ASSIGNMENT: -ca

241

[MEMO]

242

CHAPTER 9 PROGRAM OUTPUT LIST

The following is an explanation of the formats and other information for the lists output by each program.

e Lists Output by the Assembler
Assembie list file header
Assemble list
Symbol list
Cross-reference list
Error list

Lists Output by the Linker
Link list file header
Map list
Public symbol list
Local symbol list
Error list

List Output by the Object Converter
Error list

L]

List Output by the Librarian
Library data output list

List Output by the List Converter
Absolute assemble list
Error list

243

CHAPTER 9 PROGRAM OUTPUT LIST

9.1 Lists Output by the Assembler

The assembler outputs the following lists.

Output List File Name Qutput List Name

Assemble list

Assembile list file Symbol list

Cross-reference list

Error list file Error list

9.1.1 Assembile list file headers

The header is always output at the beginning of an assemble list file.

[Output format]

78K/III Series Assembler (1)Vx.xx (2) Date: (3)xx xxx xxxxXx Page: (4) 1
(5)

Command: (6)-c310 78k3main.asm -0 -p -e

Para-file: (7)

In-file: (8) 78K3MAIN.ASM

Obj-file: (9)78K3MAIN.REL

Prn-file: {(10) 78K3MAIN.PRN

244

CHAPTER 9 ' PROGRAM OUTPUT LIST

[Explanation of output items]

ltem Details
(1) Assembler version no.
(2) Title character string
Character string specified by option -LH or TITLE control instruction
3) Date of assemble list creation
4) Page no.

(5)

Subtitle character string

Character string specified by SUBTITLE control instruction

(6)

Command-line image

@)

Contents of parameter file

(8)

Input source module file name

(9)

Output object module file name

(10)

Assemble list file name

245

CHAPTER 9 PROGRAM OUTPUT LIST

9.1.2 Assembile list

The assemble list outputs the results of the assemble with error messages (if errors occur).

[Output format]

Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

(1) (2) (3) (4) (5)

(1)1 (2)1 (5)3 PROCESSOR (310)

(1y2 (232 (5)

(1y3 (2)3 (5) NAME SAMPM

(1)4 (2)4 (5)I.***
(1)5 (2)5 (5);* *
(1)e (2)6 (5);* HEX -> ASCII Conversion Program *
(Y7 (2)7 (5);* *
(1)8 (28 (5);* main-routine *
(19 (2)9 (5);* ' *
(1)10 (2)10 (5);***
(1)11 (2)11 (5)

(1y12 (2)12 (5} PUBLIC MAIN, START

(1)13 (2)13 (5) EXTRN CONVAH

(1)14 (2)14

33 33 (6)0016 (8)6521EF MOVW DE, #STASC ;set DE <- store ASCII

code table
34 34 ‘ MOV
(7)*** ERROR F201, STNO 34 (31) Syntax error
35 35 (6)0019 (8)50 MOV [DE+],A

Segment informations:

ADRS LEN NAME

(9)FE20 (10)0003H (11)DATA
(9)0000 (10)0002H (11)CODE
(9)0000 (10)001EH (11)?CSEG
Target chip : (12)uPDxxxxx

Device file : (13)Vx.xx

Assembly complete, (14)3 error(s) and (15)0 warning(s) found. ((16) 34)

246

CHAPTER ¢ PROGRAM OUTPUT LIST

[Explanation of output items]

ltem Details
(1) Line no. of source module image
2) Line no. (including expansion of INCLUDE files and macros)
(3) Macro display
M: This is a macro definition line.
#n: This is a macro expansion line. n is the nest level.
Blank: This is not a macro definition or expansion line.
(4) INCLUDE display
In : Within an INCLUDE file. n is the nest level.
Blank : INCLUDE file is not used.
(5) Source program statement
(6) Location counter value
(7) Fatal error/warning occurrence line
(8) Relocation data
R: Object code or symbol value is changed by the linker.
Blank: Object code or symbol value is not changed by the linker.
9) Segment address
(10) Segment size
(11) Segment name
(12) RA78KS3 target device
(13) Device file version no.
(14) Number of fatal errors
(15) Number of warnings
(16) Final error line

247

CHAPTER 9 PROGRAM OUTPUT LIST

9.1.3 Symbol list

A symbot list outputs the symbols (including local symbols) defined in a source module.

[Output format]

Symbol Table List

VALUE ATTR RTYP NAME VALUE ATTR RTYP NAME
(2) CSEG (4) ?CSEG (2)CSEG (4)CODE
(1) ------ H {3)EXT (4)CONVAH (2)DSEG (4)DATA
(1) FE20H (2)ADDR (4)HDTSA (1)0H (2)ADDR (3)PUB (4)}MAIN
(2)MOD (4) SAMPM (1)0OH (2)ADDR (3)PUB (4)START
(1) FE21H (2)ADDR (4) STASC
[Explanation of output items}
ltem Details
(1) Symbol vaiue
2) Symbol attributes SABIT : BIT attribute symbol (saddr.bit)
CSEG : Code segment name SFBIT : BIT atiribute symbol (sfr.bit)
DSEG : Data segment name RBIT : BIT attribute symbol (A.bit, X.bit,
BSEG : Bit segment name PSW.bit, PSWL.bit, PSWH.bit)
MOD : Module name RBBIT : BIT attribute symbol (br.bit)
SET : Symbol defined by SET directive RWBIT - : BIT attribute symbol {(wr.bit)
NUM : NUMBER attribute symbol Blank : External reference symbol declared
DNUM : DNUMBER attribute symbol by EXTRN or EXTBIT
ABIT : BIT attribute symbol (addr.bit) e : Undefined symbol
(3) Symbol reference format
EXT : External reference symbol declared by EXTRN
EXTB : External reference symbol declared by EXTBIT
PUB : External reference symbol declared by PUBLIC
Biank : Local symbol, segment name, macro name, module name
el : Undefined symbol
4) Defined symbol name

248

CHAPTER 9 PROGRAM OUTPUT LIST

9.1.4 Cross-reference list

A cross-reference list outputs data indicating where (on what line) symbols are defined in a source module.

[Output format]

Cross-Reference List

NAME VALUE R ATTR RTYP SEGNAME XREFS
(1) ?CSEG (4)CSEG (6) ?CSEG (7)22#
(1)CODE (4)CSEG (6) CODE (7)19%
(1) CONVAH (2)--—--- H (3) E (5)EXT (7)13@ 31
(1)DATA (4)DSEG (6)DATA (7)15#
(1)HDTSA (2) FE20H (4)ADDR (6)DATA (7)16# 28 29
(1)MAIN (2) OH (4)ADDR (5)PUB (6)CODE (7)12€ 20#
(1) SAMPM (4)MOD (7)3#
(1) START (2) OH (3) R (4)ADDR (5)PUB (6) ?CSEG (7)12@ 20 23%
(1)STASC (2) FE21H (4)ADDR (6)DATA (7)17# 33

[Explanation of output items] (1/2)

[tem Details

(1) Defined symbol name

2 Symbol value

(3) Relocation attributes
R: Relocatable symbol
E: External symbol
Blank: Absolute symbol
*: Undefined symbol

(4) Symbol attributes SABIT : BIT attribute symbol (saddr.bit)

CSEG : Code segment name SFBIT : BIT attribute symbol (sfr.bit)
DSEG : Data segment name RBIT : BIT attribute symbof (A.bit, X.bit,
BSEG : Bit segment name PSW.bit, PSWL.bit, PSWH.bit)
MOD : Module name RBBIT : BIT 'attribute symbol (br.bit)
SET : Symbol defined by SET directive RWBIT : BIT attiribute symbol (wr.bit)
NUM : NUMBER attribute symbol Blank : External reference symbol declared
DNUM : DNUMBER attribute symbol by EXTRN or EXTBIT
ADDER : ADDRESS attribute symbol e : Undefined symbol
ABIT : BIT attribute symbol (addr.bit)

249

CHAPTER 9 PROGRAM OUTPUT LIST

250

[Explanation of output items] (2/2)

ltem Details
(5) Symbol reference format
EXT : External reference symbol declared by EXTRN
EXTB : External reference symbol declared by EXTBIT
PUB : External reference symbol declared by PUBLIC
Blank : Local symbol, segment name, macro name, module name

il : Undefined symbol

Defined symbol name

Definition/reference line no.

Definition line: XXXXX#

Reference line: XXXXXV (V=1 blank)

EXTRN declaration, EXTBIT declaration, PUBLIC declaration: XXXXX @

CHAPTER 9 PROGRAM OUTPUT LIST

9.1.5 Error list

An error list stores the error messages output when the assembler is started up.

[Output format]

Passl Start
(1)ERAMAIN.ASM((2)25) : (3)F202 (4)Illegal operand
(1)ERAMATIN.ASM((2)31) : (3)F201 (4)Syntax error
(1)ERAMAIN.ASM((2)34) : (3)F201 (4)Syntax error
Pass2 Start
(1) ERAMAIN.ASM((2)25) : (3)F202 (4)Illegal operand
(1)ERAMAIN.ASM((2)31) : (3)F201 (4)Syntax error
(1) ERAMAIN.ASM((2)34) : (3)F201 (4)Syntax error

[Explanation of output items]

ltem Detaits
(1) Name of source module file in which error occurred
2) Line on which error occurred
(3) Error no.
(4) Error message

251

CHAPTER 9 PROGRAM OUTPUT LIST

9.2 Lists Output by the Linker

The linker outputs the following lists.

Output List File Name Output List Name

Map list

Link list file Public symbol list

Local symbol list

9.2.1 Link list file headers

The header is always output at the beginning of a link list file.

[Output format]
78K/III Series Linker (1l)Vx.xx Date: (2)xx xxx xXxxX Page: (3) 1
Command : (4) 78k3main.rel 78k3sub.rel -g -o078k3.map -d78k3.dr
Para-file: (5)
out-file: (6)78K3.MAP

Map-file: (7)78K3MAIN.MAP

Direc-file: (8)78K3.DR

Directive: (9)MEMORY ROM: (0000H, 3FFFH)
MEMORY RAM: (ODOOOH, 2EFFH)

*** Link information ***
(10) 3 output segment(s)

(11) 3EH byte(s) real data
(12) 23 symbol(s) defined

252

CHAPTER 9 PROGRAM OUTPUT LIST

[Explanation of output items]

Item

Details

(1)

Linker version no.

@)

Date of link list file creation

3)

Page no.

“4)

Command-line image

(5)

Contents of parameter file

(6)

Output load module file name

Link list file name

Directive file name

Directive file contents

Number of segments output to load module file

Size of data output to load module file

Number of symbols output to load module file

253

CHAPTER 9 PROGRAM OUTPUT LIST

9.2.2 Map list

The map list outputs data on the location of segments.

[Output format]

%*% Memory map *

(1) SPACE=REGULAR

MEMORY= (2) ROM

BASE ADDRESS=(3)0000H SIZE=(4)3FFFH
OUTPUT INPUT INPUT BASE SIZE
SEGMENT SEGMENT MODULE ADDRESS
(6)CODE (9)0000H (10)0002H (11)CSEG AT
(7)CODE (8) SAMPM (9)0000H (10) 0002H
(6) ?CSEG (9)0002H (10)003CH (11)CSEG
(7)?CSEG (8) SAMPM (9)0002H (10)0020H
(7)?CSEG (8) SAMPS (9)0022H (10)001CH
(5)* gap * (9)003EH (10)3FC1H

MEMORY= (2) RAM

BASE ADDRESS=(3)D000H SIZE=(4)2EFFH
OuUTPUT INPUT INPUT BASE SIZE
SEGMENT SEGMENT MODULE ADDRESS
(5)* gap * . (9)D000H (10)2E20H
(6) DATA (9)FE20H (10)0003H (11)DSEG AT
(7)DATA (8) SAMPM (9)FE20H (10)0003H
(5)* gap * (9)FE23H (10)00DCH
Target chip : (12)uPDxXXxXxX
Device file : (13)Vx.xx

254

CHAPTER 9 PROGRAM OUTPUT LIST

[Explanation of output items]

ltem

Details

(1)

Memory space name

(2)

Memory area name

3)

Memory area start address

(4)

Memory area size

(5)

Output group

Displays 'gap' for areas where nothing is located.

(6)

Segment names output to load module file

(7)

Segment names read from object module file

(8)

Input module name

Segment start address

(10)

Output/input segment size

(11)

Segment type and reallocation attributes

(12)

Target device for this assemble

(13)

Device file version no.

255

CHAPTER 9 PROGRAM OQUTPUT LIST

9.2.3 Public symbol list

A public symbol list outputs data on public symbols defined in an input module.

[Output format]

*** pyblic symbol list ***

MODULE ATTR VALUE NAME
(1) SAMPM (2)ADDR (3)0000H (4)MAIN
(1) SAMPM (2)ADDR (3)0002H (4) START
(1) SAMPS (2)ADDR (3)0022H (4) CONVAH

[Explanation of output items]

ltem Details

(1) Name of module in which public symbols are defined

@) Symbol attributes SABIT : BIT attribute symbol (saddr.bit)
CSEG : Code segment name SFBIT : BIT attribute symbol (sfr.bit)
DSEG : Data segment name RBIT : BIT attribute symbol (A.bit, X.bit,
BSEG : Bit segment name PSW.bit, PSWL.bit, PSWH.bit)
MOD : Module name RBBIT : BIT attribute symbol (br.bit)
SET : Symbol defined by SET directive RWBIT : BIT attribute symbol (wr.bit)
NUM : NUMBER attribute symbol Blank : External reference symbol deciared
DNUM : DNUMBER attribute symbol by EXTRN or EXTBIT
ADDER : ADDRESS attribute symbol bl : Undefined symbol
ABIT : BIT attribute symbol (addr.bit)

(3) Symbol value

4) Public symbol name

256

CHAPTER 9 PROGRAM OUTPUT LIST

9.2.4 Local symbol list

A local symbol list outputs data on tocal symbols defined in an input module.

[Output format]

***% Tocal symbol list ***

MODULE ATTR VALUE NAME

(1) SAMPM (2)MOD (4) SAMPM

(1) SAMPM (2)DSEG (4)DATA

(1) SAMPM (2)ADDR (3)FE20H (4)HDTSA

(1) SAMPM (2)ADDR (3)FE21H (4)STASC

(1) SAMPM (2)CSEG (4)CODE

(1) SAMPM (2)CSEG (4) ?CSEG

(1) SAMPS (2)MOD (4) SAMPS

(1) SAMPS (2)CSEG (4) ?CSEG

(1) sAMPS (2)ADDR (3)0035H (4)sAasc

(1) SAMPS (2)ADDR (3)003BH (4)sSAsSCl

[Explanation of output items]
item Details
1) Name of module in which local symbols are defined
2) Symbol attributes SABIT : BIT attribute symbol (saddr.bit)
CSEG : Code segment name SFBIT : BIT attribute symbol (sfr.bit)
DSEG : Data segment name RBIT : BIT attribute symbol (A.bit, X.bit,
BSEG : Bit segment name PSW.bit, PSWL.bit, PSWH.bit)
MOD : Module name RBBIT : BIT attribute symbol (br.bit)
SET : Symbol defined by SET directive RWBIT : BIT attribute symbol (wr.bit)
NUM : NUMBER attribute symbol Blank : External reference symbol declared
DNUM : DNUMBER attribute symbol by EXTRN or EXTBIT
ADDER : ADDRESS attribute symbol b : Undefined symboi
ABIT : BIT attribute symbol (addr.bit)
3) Symbol value
4) Local symbol name

257

CHAPTER 9 PROGRAM OUTPUT LIST

9.2.5 Error list

An error list stores the error messages output when the linker is started up.

[Output format]

*** ERROR (1)F405 (2)Undefined symbol 'CONVAH' in file '78K3MAIN.REL'

[Explanation of output items]

Iltem Details

(1) Error no.

2) Error message

258

CHAPTER 9 PROGRAM OUTPUT LIST

9.3 List Output by the Object Converter

The object converter outputs the following list.

Output List File Name Output List Name

Error list file Error list

9.3.1 Error list

Error messages output when the object converter is started up are stored in an error list.

[Output format]
Same as error list output by the linker.

9.4 List Output by the Librarian

The librarian outputs the following list.

Output List File Name Output List Name

List file Library data output list

259

CHAPTER 9 PROGRAM OUTPUT LIST

9.4.1 Library data output list

The library data output list outputs data on the modules in a library file.

[Output format]
78K/III Series librarian Vx.xx DATE : (1) xx XXX XX PAGE (2)1
LIB-FILE NAME : (3)78K3.LIB ((4)xx XXX XX)
(5)0001 (6)78K3MAIN.REL ((7)xx XXX XX)
(8)MAIN (8) START
NUMBER OF PUBLIC SYMBOLS : (9)2
(5)0002 (6)78K3SUB.REL ((7)xx xxx xx)
(8) CONVAH
NUMBER OF PUBLIC SYMBOLS : (9)1

[Explanation of output items]

Item Details

(1 Date of list creation

2) Number of pages

(3) Library file name

4) Date of library file creation

(5) Module serial no. (beginning from 0001)

(6) Module name

7) Date of module creation

(8) Public symbol name

(9) Number of public symbols defined in module

260

CHAPTER 9 PROGRAM OUTPUT LIST

9.5 Lists Output by the List Converter

The list converter outputs the following lists.

Output List File Name Output List Name

Absolute assemble list file Absolute assembile list

Error list file Error list

9.5.1 Absolute assemble list

The absolute assemble list embeds absolute values in the assemble list and outputs the list.

[Output format]
Same as for the assemble list output by the assembler.

9.5.2 Error list

Error messages output when the list converter is started up are stored in an error list.

[Output format]
Same as for the error list output by the assembler.

261

[MEMO]

262

CHAPTER 10 GETTING THE MOST FROM THE RA78K3

This chapter introduces some methods that will help you to use the RA78K3 efficiently.

263

CHAPTER 10 GETTING THE MOST FROM THE RA78K4

10.1 Improving Operating Efficiency (EXIT Status Function)

When any of the programs of the RA78KS finishes processing, the program stores the maximum level of errors
occurring during processing as the "EXIT status," and returns control to the operating system.

The EXIT statuses are as follows:

* Normal operation:

* WARNING occurs:

* FATAL ERROR occurs:
* ABORT:

N = O O

The exit status can be used to create a batch file, making operation more efficient.

[Example]
Contents of the batch file (RA.BAT)

ra78k3 %l.asm -g -e

echo off

IF ERRORLEVEL 1 GOTO ERR
echo\

echo on

ra78k3 %2.asm -g -e

echo off

IF ERRORLEVEL 1 GOTO ERR
echo\

echo on

1k78k3 %1.rel %$2.rel -0%3.1lnk -g
echo off

IF ERRORLEVEL 1 GOTO ERR
echo\

echo on

oc78k3 %3.1nk

echo off

IF ERRORLEVEL 1 GOTO ERR
GOTO EXIT

:ERR

echo Error occurred
:EXIT

* Perform processing using batch file (RA.BAT).

A>ra.bat

264

CHAPTER 10 GETTING THE MOST FROM THE RA78K4

10.2 Preparing the Development Environment (Environmental Variables)
The RA78K3 supports the following environmental variables for preparing the software development environment.

PATH : Search path for execution format

INC78K3 : Search path for include file (assembier only)
LIB78K3 : Search path for library file (linker only)

T™MP : Path for creating temporary files

When developing programs, it is a good idea to create a subdirectory in which to collect all related files. This will
make program development easier and more convenient.

[Example]
Example Contents of AUTOEXEC.BAT

; AUTOEXEC . BAT
Verify on

break on :

PATH A:\BIN;A:\BAT;A:\RA78K3; (1)
SET INC78K3=A:\RA78K3\INCLUDE <« (2)
SET LIB78K3=A:\RA78K3\LIB «~(3)
SET TMP=A:\TMP «— (4)

(1) Because this path is specified, execution format files are retrieved from directories in the order
AABIN, A:\BAT, A:\\RA78K3.

(2) The assembler retrieves include files from the directory AARA78K3\INCLUDE.

(3) The linker retrieves library files from A:\RA78K3\LIB.

(4) Each program creates a temporary file in A\TMP.

10.3 Interrupting Program Execution
Execution of each program can be interrupted by entering CTRL-C from the keyboard.
If ‘break on' is specified during execution of AUTOEXEC.BAT, control is returned to the operating system

regardless of the timing of the key input. When 'break off' is specified, control is only returned to the operating
system during screen display. In this case, all open temporary files and output files are deleted.

265

CHAPTER 10 GETTING THE MOST FROM THE RA78K4

10.4 Making the Assemble List Easy to Read

Display a title in the header of an assemble list using option -LH or the TITLE control instruction. By displaying a
title that briefly indicates the contents of the assemble list, the contents of the assemble list can be made easy to see
at a glance.

When the SUBTITLE control instruction is used, a subtitle can also be displayed. For information on control
instructions, see Chapter 4, "Control Instructions" in the language manual.

[Exampie]
Print a title in the header of an assemble list file.

C>ra78k3 78k3main.asm w90 -IhRA78k3_MAINROUTINE

78K/III Series Assembler VX.XX [XX XXX XX]

Copyright (C) NEC Corporation 1989,19xx

Passl start

Pass2 start

Target chip : uPDxxxxx

Device file : Vx.xx
Assembly complete, 0 error(s) and 0 warning(s) found.

This references 78K3MAIN.PRN.

78K/I1I Series Assembler Vx.xx RA78K3_MAINROUTINE Date:xxX XXX XxXxX Page: 1

I— Title

Command: 78k3main.asm -1wS0 -1hRA78K3_MAINROUTINE
Para-file:

In-file: 78K3MAIN.ASM

Obj-file: 78K3MAIN.REL

Prn-file: 78K3MAIN.PRN

Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

$ PROCESSOR (310)

266

CHAPTER 10 GETTING THE MOST FROM THE RA78K4

10.5 Reducing Program Startup Time

10.5.1 Describing a control instruction in the source program

Control instructions which have the same functions as the options normally specified in assembler startup can be
specified in advance in the source program. This eliminates the need to specify options every time the assembler is
started up.

[Example of use]

S PROCESSOR(310)
NAME SAMPM

I.'k****************‘k************************‘k**
i * *
;* HEX -> ASCITI Conversion Program *
i* *
3 * main-~routine *

* *

AR SRR EEEEEEEEEEEEEEEEEESEREEESEEESESEEEEESES
7

PUBLIC MAIN, START
EXTRN CONVAH

267

CHAPTER 10 GETTING THE MOST FROM THE RA78K4

10.5.2 Creating parameter files and subcommand files

When executing any of the RA78K3's programs (assembler, linker, object converter and list converter), if all the
necessary data will not fit on the command line, or if the same options are specified every time the program is
executed, create a parameter file.

Also, subcommands can be registered in a subcommand file in the librarian. This makes object module library
formation easy.

[Example of use 1]
Example 1. Create a parameter file and perform assembly.
Contents of parameter file 78K3MAIN.PRA

; Parameter file
78k3main.asm -osample.rel -g

-psample.prn

» Contents of parameter file 78K3.SLB

;library creation command
create 78k3.1ib

add 78k3.1ib 78K3main.rel &
78k3sub.rel

exit
 Enter the following on the command line.

C>1b78k3 <78k3.slb

268

CHAPTER 10 GETTING THE MOST FROM THE RA78K4

10.6 Object Module Library

The assembler and linker create 1 file for every 1 output module. When there are many object modules,
therefore, the number of files also increases. The RA78K3 incorporates a function for collecting a number of object
modules in a single file. This function is called module library formation. A file which forms such a library is called a
library file. ,

Library files can be input to the linker. Therefore, when performing modular programming, library files containing
common modules can be created, enabling efficient file management and operation.

269

[MEMO]

270

CHAPTER 11 ERROR MESSAGES

This chapter explains the causes of error messages output by the RA78K3's programs (assembler, linker, object
converter and librarian), and the action to be taken by the user.

271

CHAPTER 11 ERROR MESSAGES

11.1 Overview of Error Messages

Error messages output by the RA78K3 are divided into the following 3 levels.

1)

)

(3)

272

Abort errors (Axxx)

An error has occurred which makes the program unable to continue processing. The program quits (interrupts)
immediately.

If the abort error is found on the startup line, processing ends when another startup-iine error is found.

Fatal errors (Fxxx)

An execution error has occurred. When another error is found, the program quits (interrupts) without
generating an output object.

When a fatal error occurs, to clarify that an output object is not generated, if an object with the same name
exists, that object is deleted.

Warning errors (Wxxxx)

Compiler: Creates an output object that may be different from that expected by the user but that runs normally.
Assembler: Creates an output object as the user expected though an error occurs at the position independent
of code generation.

Remark In a program executed in conversational format, the execution ends normally unless an abort error
occurs.

Assembler error messages are classified as follows.
Each assembler error message is explained beginning on the next page.

o AOXx - Command line analysis error

e A9xx -- File or system error

o Alxx - Other abort error

o F2xx - Statement description error

¢ F3xx - Expression error

s Faxx - Symbol error

e Fbxx - Segment error

o FBxx - Control instruction or macro error
o W7xx - Any type of warning error

CHAPTER 11 ERROR MESSAGES

11.2 Assembler Error Messages

Table 11-1. Assembler Error Messages (1/12)

A101 Message Source file size 0 'file name'
Cause A source module with file size 0 has been input.
A102 Message lllegal processor type specified
Cause A mistake was made in the specification of the target device.
A103 Message Syntax error in module header
Cause A mistake was made in description format for a control instruction that can be described in a
source module header.
A104 Message Can’t use this control outside module header
Cause A control instruction for description in a source module header is described in an ordinary
source. ‘
A105 Message Duplicate PROCESSOR control
Cause A PROCESSOR control instruction is described more than once in a source module header.
A106 Message lllegal source file name for module name
Cause Module name cannot be created because the primary name for the source file name has a
character that is not a legal symbol structure character.
A107 Message Default segment ?CSEG is already used
Cause Attempted to define an undefined segment with a default segment.
A108 Message Symbol table overflow 'symbol name'
Cause The number of symbols exceeds the limit (2700 symbols) that can be defined.
A109 Message Too many DS
Cause Too many gaps have opened between object codes in a segment because too many DS
directives are used, so data cannot be output to the object file.
A110 Message String table overfiow
Cause Limits of the string table are exceeded.
Action by user | Reduce number of symbols to 9 characters or less.
At111 Message Object code more than 128 bytes
Cause Object code exceeds 128 bytes per line in a source statement.
A112 Message No processor specified
Cause Target device is not specified in the command line or in the source module file.

273

CHAPTER 11 ERROR MESSAGES

Table 11-1. Assembler Error Messages (2/12)

F201 Message Syntax error
Cause An incorrect statement description format was used.
F202 Message lllegal operand
Cause The described operand is iliegal.
F203 Message lliegal register
Cause A register that cannot be described was specified.
F204 Message lllegal character
Cause An illegal character is described in the source module.
F205 Message Unexpected LF in string
Cause A carriage return code appears in a character string before the string is closed.
F206 Message Unexpected EOF in string
Cause An end-of-file code appears in a character string before the string is closed.
F207 Message Unexpected null code in string
Cause A null code (O0H) is described in a character string.

274

CHAPTER 11 ERROR MESSAGES

Table 11-1. Assembler Error Messages (3/12)

F301 Message Too complex expression
Cause Expression is too complex.
F302 Message Absolute expression expected
Cause A relocatable expression is described.
F303 Message lllegal expression
Cause Incorrect description format for expression is used.
F304 Message Illegal symbol in expression ‘symbol name'
Cause An unusable symbol is described in an expression.
F305 Message Too long string constant
Cause Limit on string constant length (2 characters) is exceeded.
F306 Message lllegal number
Cause Incorrect numerical value is described.
F307 Message Division by zero
Cause A value is divided by zero.
F308 Message Too large integer
Cause The value of a constant exceeds 16 bits or 32 bits.
F309 Message Illegal bit value
Cause Incorrect bit value is described.
F310 Message Bit value out of range
Cause Bit value exceeds the range 0 to 7 or 0 to 15.
F311 Message Operand out of range (n)
Cause Specified value exceeds the range n (0 to 7).
F312 Message Operand out of range (byte)
Cause Value of an operand exceeds the range {(00H to FFH), or the value of the byte in an operand is
outside the range (-128 to +127).
F313 Message Operand out of range (addr5)
Cause Operand is outside the describable range (40H to 7EH or 8040H to 807EH) for addr5.
F314 Message Operand out of range (addr11)
Cause Operand is outside the describable range (800H to FFFH) for addr11.
F315 Message Operand out of range (saddr)
Cause Operand is outside the describable range (O0FE20H to OFF 1FH) for saddr.

275

CHAPTER 11 ERROR MESSAGES

Table 11-1. Assembler Error Messages (4/12)

F316 Message Operand out of range (addr16)
Cause Operand is outside the describable range (varies according to target device) for addr16.
F317 Message Even expression expected
Cause Odd-number address is described for word access.
F318 Message Operand out of range (sfr)
Cause The description range (OFFOOH to OFFFFH) of the operand of the SFR/SFRP directive is
exceeded, or an odd number is specified as the operand of the SFRP directive.
F326 Message lllegal SFR access in operand
Cause An SFR symbol which cannot be accessed is described.

276

CHAPTER 11 ERROR MESSAGES

Table 11-1. Assembler Error Messages (5/12)

F401 Message lllegal symbol for PUBLIC ‘symbol name'
Cause This symbol cannot be declared PUBLIC.
F402 Message lllegal symbol for EXTRN/EXTBIT 'symbol name’
Cause This symbol cannot be declared EXTRN/EXTBIT.
F403 Message Can't define PUBLIC symbol ‘'symbol name’
Cause This symbol already has a PUBLIC declaration and cannot be defined with a PUBLIC
declaration.

Action by user | Because the symbol defining a bit parameter other than saddr.bit, SET symbo!, a symbol
already deéclared to be externally referenced, segment name, module name, macro name,
BSFR/WSFR symbol (user-defined symbol), and EQUD symbol cannot be declared as PUBLIC,
either cancel the PUBLIC declaration, or change the EQU definition.

F404 Message Public symbol is undefined 'symbol name'
Cause A symbol with a PUBLIC declaration is undefined.
F405 Message lllegal bit symbol
Cause An illegal symbol is used as a forward-reference symbol or bit symbol for the bit symbol of an

operand in a machine-tanguage instruction.

Action by user | Describe backward reference or EXTBIT declaration for the bit symbol.

F406 Message Can't refer to forward bit symbol 'symbol name'
Cause Description refers forward to a bit symbol or refers to a bit symbol in an expression.
F407 Message Undefined symbol reference 'symbol name’
Cause An undefined symbol is used.
F408 Message Muitiple symbol definition 'symbol name'
Cause Symbol name is defined more than once.
F409 Message Too many symbols in operand
Cause The number of symbols described in an operand exceeds the number that can be described in 1
line.
F410 Message Phase error
Cause The value of the symbol changed during assemble (for example, an EQU symbol label changed

by optimum processing of BR directive is defined in an operand).

277

CHAPTER 11 ERROR MESSAGES

Table 11-1. Assembler Error Messages (6/12)

F501 Message Too many default ORG segment
Cause The number of ORG directives without segment name specification exceeds the limit (20
directives in one module).
F502 Message lilegal segment name
Cause Symbol is described with an illegal segment name.
F503 Message Different segment type 'segment name'
Cause Two or more segments are defined with the same name but types are different.
F504 Message Too many segment
Cause Number of segments defined exceeds limit (100).
F505 Message Current segment is not exist
Cause The ENDS directive is described before a segment is created or before the next segment is
created after a segment has been once completed.
F506 Message Can't describe DB, DW, DS, ORG, label in BSEG
Cause DB, DW, DS, ORG directives are defined in a bit segment.
F507 Message Can’t describe opcodes (,RSS) outside CSEG
Cause Machine language instruction or RSS directive is described in something other than a code
segment.
F508 Message Can't describe DBIT outside BSEG
Cause DBIT directive is described in something other than a bit segment.
F509 Message lllegal address specified
Cause An address allocated to an absolute segment is outside the range for that segment.
F510 Message Location counter overfiow
Cause Location counter is outside the range for a segment.
F511 Message Segment name expected
Cause Segment name is not specified for segment definition directive for reallocation attribute is AT.
F512 Message Segment size is odd numbers ‘segment name’
Cause Size of reallocation attribute calltO or callt1 segment is described in an odd number.

278

CHAPTER 11 ERROR MESSAGES

Table 11-1. Assembler Error Messages (7/12)

F601 Message Nesting over include
Cause Nesting of include file exceeds limit (2 fevels).
F602 Message Must be specified switches
Cause Switch name not specified.
F603 Message Too many switches described
Cause Switch name description exceeds fimit (5 per module).
F604 Message Nesting over of IF-classes
Cause Nesting of IF/_IF clauses exceeds limit (8 levels).
F605 Message Needless ELSE statement exists
Cause An ELSE statement exists where it is not necessary.
F606 Message Needless END!F statement exists
Cause An ENDIF statement exists where it is not necessary.
F807 Message Missing ELSE or ENDIF
Cause An ELSE or ENDIF statement required by IF/_IF clause is missing.
F608 Message Missing ENDIF
Cause An ENDIF statement required by IF/_IF clause is missing.
F609 Message llegal ELSEIF statement
Cause An ELSEIF or _ELSEIF statement is described after an ELSE statement.
F610 Message Multiple symbol definition { MACRO) ‘'symbol name'
Cause Symbol used to define a macro name is already defined.
F611 Message lilegal syntax of parameter
Cause Formal parameter of a macro is incorrect.
F&12 Message Too many parameter
Cause Number of formal parameters for a macro definition exceeds limit-(16).
F613 Message Same nameparameter described 'symbol name'
Cause Symbol is specified with same hame as a formal parameter for a macro definition.

279

CHAPTER 11 ERROR MESSAGES

Table 11-1. Assembler Error Messages (8/12)

F614 Message Can't nest macro definition
Cause Macro definition cannot be nested in another macro definition.
F615 Message lllegal syntax of local symbotl
Cause Description of operand in a LOCAL directive is incorrect.
F616 Message Too many local symbols
Cause Number of local symbols that can be described in 1 macro body (64) is exceeded.
F617 Message Missing ENDM
Cause ENDM statement required by macro definition directive is missing.
F618 Message lllegal syntax of ENDM
Cause ENDM statement description is incorrect.
F619 Message lllegal definition macro
Cause Referenced macro is incorrectly defined.
F620 Message lllegal syntax of actual parameter
Cause Description of actual parameter of macro is incorrect.
F621 Message Nesting over of macro reference
Cause The limit on nesting in a macro reference (8 levels) is exceeded.
F622 Message lllegal syntax of EXITM
Cause EXITM statement is incorrect.
F623 Message lilegal operand of REPT
Cause An unpermitted expression is described in the operand of a REPT directive.
F624 Message More than ??RAFFFF
Cause More than 65535 local symbols are replaced during macro development.
F625 Message Unexpected ENDM
Cause An unexpected ENDM is found.
F626 Message Can't describe LOCAL outside macro definition
Cause LOCAL directive is described in a normal source statement other than a macro body.
F627 Message More than two segments in this include / macro
Cause 2 or more segments are found in an include file, macro body, rept-endm block, or irp-endm
block.
F628 Message lilegal REPT/IRP block
Cause <1> REPT/IRP is described without segment definition, or none of the CSEG directive, an

instruction that creates a label or object, and the DS directive is described in the REPT/IRP
block.

<2> REPT/IRP is described without segment definition, or the DSEG/BSEG directive is
described in the REPT/IRP block.

280

CHAPTER 11 ERROR MESSAGES

Table 11-1. Assembler Error Messages (9/12)

W701 Message Too long source line
Cause Over 218 characters are described on 1 line of a source statement.
Program 219th and subsequent characters are ignored.
processing
W702 Message Duplicate PROCESSOR option and control
Cause Command-line specification option for target device (-C) and PROCESSOR directive in source
header are both specified.
Program Command-line specification option for target device (-C) is available, and PROCESSOR
processing directive in source header is ignored.
W703 Message Multiple defined module name
Cause NAME directive is defined 2 or more times.
Program NAME directive is unavailable and the already defined module name is available.
processing
W704 Message Already declared EXTRN symbol 'symbol name'
Cause This symbol is already declared EXTRN.
Action by user | Specify EXTRN declaration once in 1 module.
W705 Message Already declared EXTBIT symbol 'symbol name'
Cause This symbol is already declared EXTBIT.
Action by user | Specify EXTBIT declaration once in 1 module.
W706 Message Missing END statement
Cause END statement is not described at end of source file.
Program Assumes that END statement is described at end of source file.
processing

281

CHAPTER 11 ERROR MESSAGES

Table 11-1. Assembler Error Messages (10/12)

W707 Message lllegal statement after END directive
Cause ltem other than comment, space, tab, or CR code is described after END statement.
Program Ignores everything after END statement.
processing
W708 Message Already declared LOCAL symbol ‘'symbol name'
Cause This symbol is already declared LOCAL.
Action by user | Declare 1 symbol LOCAL only once per macro.
W709 Message Few count of actual parameter
Cause Fewer actual parameters are set than formal parameters.
Program Formal parameters are handled as null strings where actual parameters are insufficient.
processing
W710 Message Over count of actual parameter
Cause More actual parameters are set than formal parameters.
Program Surplus actual parameters are ignored.
processing
W711 Message Too many errors to report
Cause Too many errors exist to report in a single line (i.e. 6 or more errors)
Program 6th and subsequent error messages are not output but processing continues.
processing
w712 Message Insufficient cross-reference work area
Cause Memory is insufficient to process output of cross-reference list.
Program Cross-reference list is not output but processing continues.
processing
F801 Message lilegal Debug Information
Cause Macro reference or include file speccification exceeds the limit.

282

CHAPTER 11 ERROR MESSAGES

Table 11-1. Assembler Error Messages (11/12)

A901 Message Can't open source file 'file name’
Cause Source file cannot be opened.
A902 Message Can't open parameter file 'file name'
Cause Parameter file cannot be opened.
A903 Message Can't open include file ‘file name'
Cause Include file cannot be opened.
A904 Message lllegal include file file name'
Cause A drive name only, path name only or a device-type file name is specified as an include file
name.
A905 Message Can't open overlay file 'file name'
Cause Overlay file cannot be opened.
Action by user | Make sure the ovetrlay file is in the same directory as the assembler execution format.
A906 Message lllegal overlay file 'file name'
Cause Contents of overlay file are illegal.
A907 Message Can't open object file 'fite name'
Cause Object file cannot be opened.
Action by user | Use a disk with an open area in its directory.
A908 Message Can't open print file 'filé name'
Cause Assemble list file cannot be opened.
Action by user | Use a disk with an open area in its directory.
A909 Message Can't open error list file 'file name'
Cause Error list file cannot be opened.
Action by user | Use a disk with an open area in its directory.
A910 Message Can't open temporary file file name'
Cause Temporary file cannot be opened.
Action by user | Use a disk with an open area in its directory.
A911 Message System error
Cause A system error has occurred.
A912 Message Can't set Control-C
Cause CTRL+C key cannot be input because assemble execution has been stopped.
A913 Message Can't read source file 'file name'
Cause A file input/output error has occurred in the source file.

283

CHAPTER 11 ERROR MESSAGES

Table 11-1. Assembler Error Messages (12/12)

A914 Message Can't read parameter file 'file name’
Cause A file input/output error has occurred in the parameter file.
A915 Message Can't read include file ‘'file name'
Cause A file input/output error has occurred in the include file.
A916 Message Can't read overlay file 'file name'
Cause A file input/output error has occurred in the overlay file.
A917 Message Can't write object file 'file name'
Cause A fite input/output error has occurred in the object file.
Action by user | Output object file to another directory or create an open area in the specified disk.
A918 Message Can't write print file ‘file name'
Cause A file input/output error has occurred in the assembile list file.
Action by user | Output assemble list file to another directory or create an open area in the specified disk.
A919 Message Can't write error list file 'file name’
Cause A file input/output error has occurred in the error list file.
Action by user | Output error list file to another directory or create an open area in the specified disk.
A920 Message Can't read / write temporary file ‘file name'
Cause A file input/output error has occurred in the temporary file.
Action by user | Output temporary file to another directory or create an open area in the specified disk.
A921 Message Assembler internal error
Cause An assembler-internal error has occurred.
Action by user | Execute assemble again.
AQ22 Message Insufficient memory in hostmachine
Cause System does not have sufficient memory to execute assembler.
A923 Message Insufficient memory for macro in hostmachine
Cause Memory for macro became insufficient in the middle of macro processing.

Action by user

Reduce number of macros defined.

284

CHAPTER 11 ERROR MESSAGES

11.3 Linker Error Messages

Table 11-2. Linker Error Messages (1/8)

A101 Message 'File name' invalid input file (or made by different hostmachine)
Cause File other than object module file was input, or link was attempted with object module file
created on an incompatible host machine.
F102 Message Directive syntax error
Cause Description of directive is incorrect.
A103 Message 'File name' lllegal processor type
Cause Target device of assemble or compile is not a target device of this linker.

Action by user | Check to ensure that the object module file is correct. Check to ensure that the target device for
the assemble or compile can be handled by the linker. Also check that the overlay file is the
correct version. (The linker references part of the overlay file of the assembler to obtain
characteristic data on the target device.)

A104 Message 'File name' Different processor type from first input file ‘first input file name’
Cause An object module file is input whose target device is different from that of the first input object
module file.
w105 Message Library file 'file name' has no public symbol
Cause Library file has no public symbol. Therefore, an object module included in the library file cannot
be linked. (If the option —w is 1 or move, the message is displayed.)
A106 Message Can't create temporary file 'file name'
Cause Cannot create temporary file.

285

CHAPTER 11 ERROR MESSAGES

Table 11-2. Linker Error Messages (2/8)

F107 Message Name ‘name' in directive already defined
Cause Attempted to define a reserved word or a previously defined name as the memory area of a
directive.
This name (reserved word, memory space name, memory area name) is already defined.
F108 Message Overlapped memory area ‘Memory area 1' and 'Memory area 2'
Cause The memory area addresses defined in the memory directive are overlapped.
F109 Message Memory area 'Memory area name' too long name (up to 31 characters)
Cause The memory area name specified in the directive is too long.
The memory area name specified in the directive is 32 characters or longer.
F110 Message Memory area 'Memory area name' already defined
Cause The memory area specified in the memory directive is already registered.
F111 Message Memory area 'Memory area name' redefinition out of range
Cause The range of the memory area specified in the memory directive is outside the redefinable
range.
F112 Message Segment 'segment name' wrong allocation type
Cause - Wrong allocation type is specified for the segment in the merge directive.
A113 Message Linker internal error
Cause Internal error in the linker
Action by user | Contact an authorized representative or NEC.
F114 Message lilegal number
Cause Description of a numerical value in a directive is incorrect.
F115 Message Too large value (up to 65535/0FFFFH)
Cause A value greater than 65535 (OFFFFH) is described in the directive.
F116 Message Memory area 'Memory area name' definition out of range
Cause The sum of the start address and size of the memory area specified in the memory directive
exceeds 65535 (OFFFFH).
F117 Message Too many line number data in 'file name'
Cause Input line number data (debugging data) again and continue processing. An object file will only

be output if option -J is specified.

286

CHAPTER 11 ERROR MESSAGES

Table 11-2. Linker Error Messages (3/8)

F201 Message Multiple segment definition 'segment name' in merge directive
Cause Segment specified in the merge directive is already registered (the same segment is attempted
to specify allocation using multiple merge directives).
F202 Message Segment type mismatch 'segment 1' in file 'segment 2' -ignored
Cause A segment with the same name as this segment but having the reallocation attributes of a
different segment type is found.
A203 Message Segment 'segment name' unknown segment type
Cause An error exists in the segment data of the input object module file (specification of link of output
segments is incorrect).
F204 Message Memory area/space 'name' not defined
Cause Memory area/space name specified in merge directive is not defined.
F205 Message Name 'name' in directive has bad attribute
Cause An item that cannot be described in a segment name, memory area name or memory space
name is described in the directive (for example, a memory space name is described where a
memory area name is required).
F206 Message Segment 'segment name’ can't allocate to memory - ignored
Cause Segment cannot be allocated to memory (not enough memory area exists to allocate segment).
F207 Message Segment 'segment name' has illegal segment type
Cause This segment type data is illegal.
F208 Message Segment 'segment name' may not change attribute
Cause Attempted to change the link type in the directive for a segment created with the reallocation
attribute 'AT xxxxH' specified during assemble, or created using the ORG directive.
F209 Message Segment 'segment name' may not change arrangement
Cause Attempted to change the allocation address in the directive for a segment created with the
reallocation attribute 'AT xxxxH' specified during assemble, or created using the ORG directive.
Action by user | Do not specify the allocation address in the assembler for a segment whose link type is to be
specified during link.
F210 Message Segment 'segment name' does not exist - ignored
Cause Segment specified in the directive does not exist.

287

CHAPTER 11 ERROR MESSAGES

Table 11-2. Linker Error Messages (4/8)

F301 Message Relocatable object code address out of range (file 'file name', segment 'segment name’, address
xxxxH, type ‘addressing type')
Cause Correction data of relocatable object code included in the input object module file is output to an
address where no object code exists (relocation entry address is out of range of origin data).
Action by user | Check that symbol reference is correct.
F302 Message lllegal symbol index in line number (file 'file name', segment 'segment name')
Cause Line number data for debugging included in the input object module file is incorrect, and does
not correctly reference the symbol data.
Line number index and symbol index do not correspond.
F303 Message Can't find symbol index in relocatable object code (file 'file name’, segment 'segment name’,
address xxxxH, type 'addressing type')
Cause Correction data of relocatable code included in the input object module file is incorrect, and does
not correctly reference the symbol data.
Relocation entry and symbol index do not correspond.
Action by user | Check that reference method of symbols and variables is correct.
F304 Message Operand out of range (segment 'segment name', address xxxxH, type 'addressing type')
Cause Operand value used in decision of relocatable object code is out of range for operand values
corresponding to the instruction.
Action by user | Describe the value for the operand in the source program that fits within the range determined
for each addressing type.
F305 Message Even value expected
(segment 'segment name', address xxxxH, type ‘addressing type’)
Cause The operand value used to determine the callt or saddrp addressing relocatable object code is

an odd number (callt and saddrp addressing operands must be even numbers).

Caution The address shown in 'address xxxxH' in the messages in F301 to F305 are absolute addresses

288

after segment allocation.

CHAPTER 11 ERROR MESSAGES

Table 11-2. Linker Error Messages (5/8)

A401 Message 'File name' Bad symbol table
Cause Symbol data of input object module file is illegal. Symbol entry of input file does not begin with
file'.
A402 Message File file name' has no string table for symbol
Cause Symbol data of input object module file is illegal.

Action by user | Perform assemble or compile again.

This may be avoidable by making the recognizable number of characters 8 for the assembler
and 7 for the compiler.

A403 Message Symbol 'symbol name' unmatched type in file

‘file-name1’ First defined in file 'file-name2’

Cause Externally defined/referenced symbol type with same name is different in file 1 and file 2.

F404 Message Multiple Symbol definition ‘'symbol name' in file

file-name1' First defined in file file-name2’

Cause Public symbol defined in object module file 1 is aiready declared PUBLIC in object module file 2.

289

CHAPTER 11 ERROR MESSAGES

Table 11-2. Linker Error Messages (6/8)

F405 Message Undefined symbol ‘'symbol-name' in file 'file-name’
Cause Symbol declared EXTRN in the file is not declared PUBLIC in another file.
W406 Message Stack area less than 10 bytes
Cause Size of protected stack area is 10 bytes or less (size of stack area protected in memory area

specified with -S option is 10 bytes or less). (Displayed if -W option is 1 or more.)

w407 Message Can't allocate stack area

Cause No free area is available in memory area in which stack area is protected (stack area cannot be
protected in memory area specified with -S option).

W411 Message Different REL type in file ‘file name’

Cause The version of the type of OMF differs
(displayed if the -W option is 2 or more).

F412 Message Muitiple CHGSFR in file ‘file name’
First defined in file ‘file name’
Cause CHGSFR specification made for all input OMF differs.
F413 Message Multiple LOCATION in file 'file name'
First defined in file 'file name’
Cause This is output if 2 or more LOCATION instructions for all input OMF are found.
F414 Message ‘LOCATION’ operation not found in ali modules
Cause This is output if no LOCATION instructions for all input OMF are found.
F415 Message -QD/QF/etc. and Not -QD/QF/etc. REL are mixed
Cause The compile option for all input OMF, except CC_DC, does not match.

290

CHAPTER 11 ERROR MESSAGES

Table 11-2. Linker Error Messages (7/8)

W416 Message Multiple CAP/NOCAP are in file 'file-name (option)'
First defined in file 'file-name (option)'
Cause CAP/NOCAP assemble or compile options are not identical for all input OMF.
(Displayed if -W option is 2 or more.)
w417 Message The version of tool name in file 'file-name' are more than one
Used the first one in file 'file-name’
Cause A discrepancy exists between each tool (CC78K3, ST78K3, RA78K3) used until the link stage
for all input OMF and the DF version.
(Displayed if -W option is 2 or more.)
w418 Message File ‘file name' is old. Can't find TOOL infomation
Cause This is output when TOOL information is not found in input OMF.
Normally, this is always output when link is performed with an old (DF-incompatible) object
module file.
(Display is —~W option is 2 or more.)
F420 Message File ‘file name' has already had error(s)/warning(s) by 'tool name'
Cause An error message or warning message for each tool (CC78K3, ST78K3, RA78K3) used until the
link stage is output.
A501 Message Insufficient memory in hostmachine
Cause The system does not have sufficient memory to operate the program.

291

CHAPTER 11 ERROR MESSAGES

Table 11-2. Linker Error Messages (8/8)

A901 Message Can't open overlay file ‘file name'
Cause Overlay file cannot be opened.
Action by user | Make sure the overlay file is in the correct directory (a directory containing an execution
program).
A902 Message File 'file name' not found
Cause The specified library file cannot be opened.
A903 Message Can't read input file 'file name'
Cause Object module file specified as an input file cannot be read.
A904 Message Can't open output file file name’
Cause Output file cannot be opened.
Action by user | Check condition (open capacity, condition of media, etc.} of the disk used to create output file.
A905 Message Can't create temporary file 'file name'
Cause Temporary file for symbol entry cannot be created.
Action by user | Check condition (open capacity, condition of media, etc.) of the disk used to attempt to create
temporary file.
A906 Message Can't write map file ‘file name'
Cause Data cannot be written to the link list file.
Action by user | Check condition (open capacity, condition of media, etc.) of the disk used to attempt to create
link list file.
AQ07 Message Can't write output file 'file name'
Cause Data cannot be written to the load module file.
Action by user | Check condition (open capacity, condition of media, etc.) of the disk used to attempt to create
output file.
A908 Message Can't access temporary file 'file name'
Cause Temporary file cannot be written.
Action by user | Check condition (open capacity, condition of media, etc.) of the disk used to attempt to create
temporary file.
A909 Message Can't read device file 'device file name'
Cause DF cannot be read because no TOOL information exists for all input OMF.

292

CHAPTER 11 ERROR MESSAGES

11.4 Object Converter Error Messages

Table 11-3. Object Converter Error Messages (1/2)

A100 Message 'File name' lllegal processor type
Cause Target device of the assembler or compiler is different from the target device of this program.
Action by user | Check whether the load module file is correct and check target device of the assemble or
compile. Also, check whether the version of the device file is correct.
A101 Message ‘File name' invalid input file { or made by different hostmachine)
Cause Attempted to input a file other than a load module file, or to convert a load module file created on
an incompatible host machine.
A103 Message Symbol 'symbol name' lllegal aitribute
Cause A mistake exists in the symbol attribute of the input file.
A104 Message 'File name' lilegal input file - not linked
Cause Attempted to input an object module file.
A105 Message Insufficient memory in hostmachine
Cause Memory is not sufficient to operate the program.
A106 Message lllegal symbol table
Cause A mistake exists in the symbol table of the input load module file.
F200 Message Undefined symbol 'symbol name'
Cause A symbol whose address is undetermined has been found.
Action by user |Define the symbol's value.
This symbol is referenced as an external reference symbol. If it is not externally defined, specify
an external definition outside the module in which the value of the symbol is defined.
F201 Message Out of address range
Cause The address of an object in a foad module file is out of range.

293

CHAPTER 11 ERROR MESSAGES

Table 11-3. Object Converter Error Messages (2/2)

W300 Message xxxxH - yyyyH overlapped
Cause Objects overlapped in the address from xxxxH to yyyyH are output.
A900 Message Can't open file ‘file name'
Cause File cannot be opened.
A901 Message Can't close file 'file name'
Cause File cannot be closed.
_ A902 Message Can't read file ‘file name’
Cause File cannot be correctly read.
AS03 Message Can't access file 'file name'
Cause File cannot be correctly read or written to.
A904 Message Can't write file 'file name'
Cause Data cannot be correctly written to an output file.

294

CHAPTER 11 ERROR MESSAGES

11.5 Librarian Error Messages

Table 11-4. Librarian Error Messages (1/4)

AQO1 Message Missing input file
Cause Only options are specified. No input files are specified.
A002 Message Too many input files
Cause Total number of input files exceeds the limit.
A003 Message Unrecognized string ‘7?77’
Cause Something other than an option is specified on a conversational-format command line.
A004 Message lllegal file name ‘file name'
Cause File name includes character(s) not permitted by the operating system, or exceeds the limit for
number of characters.
A005 Message lilegal file specification 'file name’
Cause An illegal item is specified in the file name.
A006 Message File not found ‘file name'
Cause Specified input file does not exist.
A007 Message Input file specification overlapped ‘file name'
Cause Input file name specification is overlapped.
A008 Message File specification conflicted ‘file name'
Cause Input or output file name specifications overlap.
A009 Message Unable to make file ‘file name'
Cause Specified output file cannot be created.
A010 Message Directory not found 'file name'
Cause A drive or directory which does not exist is included in the output file name.
AO011 Message lilegal path 'file name'
Cause An item other than a path name is specified in an option specifying the path name for a
parameter.
A012 Message Missing parameter 'option’
Cause Required parameter is not specified.
AO13 Message Parameter not needed 'option’
Cause An unnecessary parameter is specified.

295

CHAPTER 11 ERROR MESSAGES

Table 11-4. Librarian Error Messages (2/4)

A014 Message Out of range 'option’

Cause Specified value is out of range.
A015 Message Parameter is too long 'option’

Cause Number of characters sbeciﬁed in parameter exceeds limit.
AO016 Message lilegal parameter ‘option’

Cause A mistake exists in the syntax of the parameter.
A017 Message Too many parameters ‘option’

Cause Total number of parameters exceeds limit.
AO18 Message Option is not recognized ‘option’

Cause An incorrect option is specified.
A019 Message Parameter file nested

Cause -F option is specified in a parameter.
A020 Message Parameter file read error 'file name'

Cause An error occurred in reading a parameter file.
A021 Message Memory allocation failed

Cause An error occurred in memory allocation.

296

CHAPTER 11 ERROR MESSAGES

Table 11-4. Librarian Error Messages (3/4)

A100 Message Internal error
Cause An internal error has occurred.
F101 Message Invalid sub command
Cause Subcommand name is incorrect.
F102 Message Invalid syntax
Cause Parameter specification in subcommand is incorrect.
F103 Message litegal input file - different target chip
(file: file name)
Cause Specification of target device in input object module file is incorrect.
F104 Message lilegal library file - different target chip
(file: file néme)
Cause Specification of target device in library file is incorrect.
F105 Message Module not found (module: file name)
Cause Specified module does not exist in library file.
F106 Message Module already exists (module: file name)
Cause A module of the same name already exists in the updated library file or another input file.
F107 Message Master library file is not specify
Cause Updated library file is not specified in a previous operation, but the library file name is replaced
with *. .
F108 Message Multiple transaction file (file: file name)
Cause Input object module files overlap.
F109 Message Public symbol already exists (symol: symbol name)
Cause An externally defined symbol name already exists in an updated library file or other input file.
F110 Message File specification conflicted (fite: file name)
Cause Specified input file name is same as output file name.
F111 Message lliegal file format (file: file name)
Cause Format of an updated library file or other input file is incorrect.
F112 Message Library file not found (file: file name)
Cause Specified library file is not found.

297

CHAPTER 11 ERROR MESSAGES

Table 11-4. Librarian Error Messages (4/4)

F113 Message Object module file not found (file: file name)
Cause Specified object module file is not found.
F114 Message No free space for temporary file
Cause Sufficient space does not exist in the disk to create a temporary file.
F115 Message Not enough memory
Cause Sufficient memory is not availabie to operate the program.
F116 Message Sub command Buffer full
Cause Limit for continuous line length in a subcommand (128 x 15 characters) is exceeded.
Limit for length of 1 line in a subcommand (128 characters) is exceeded.
A901 Message File open error (file: file name)
Cause An error exists in the file, or the system is not operating properly.
Fo02 Message File read error (file: file name)
Cause An error exists in the file, or the system is not operating properly.
A903 Message File write error (file: file name)
Cause An error exists in the file, or the system is not operating properly.
AQ04 Message File seek error (file: file name)
Cause An error exists in the file, or the system is not operating properly.
A905 Message File close error (file: file name)
Cause An error exists in the file, or the system is not operating properly.

298

CHAPTER 11 ERROR MESSAGES

11.6 List Converter Error Messages

Table 11-5. List Converter Error Messages (1/2)

A101 Message File is not 78K/Ill *file name'
Cause Input file name is not a 78K/1ll file name.
W101 Message Load module file is older than object module file
'load module file name, object module file name'
Cause A load module file is specified which is older than the object module file.
A102 Message Load module file is not executable ‘file name'
Cause Attempted to input a file other than a load module file, or attempted to convert a load module file
created on an incompatible host machine.
w102 Message Load module file is older than assemble module file
'load module file name, assemble list file name'
Cause A load module file is specified which is older than the assemble list file.
A103 Message Load module file has relocation data 'file name'
Cause Address of load module file is not determined.
w103 Message Assemble list has error statement 'file name'
Cause An error exists in the assemble list.
A104 Message Object module file is executable 'file name'
Cause Object module file is in an executable format.
w104 Message Segment name is not found in assemble list file 'segment name'
Cause Segment name of object module file is not found in assembie list.
A105 Message Segment name is not found in load list file 'segment name'
Cause Segment name of object module file is not found in load module file.

299

CHAPTER 11 ERROR MESSAGES

Table 11-5. List Converter Error Messages (2/2)

w105 Message Segment data length is different 'segment name'

Cause Length of segment data in assemble list file is different from length of segment data in object

module file.
Program Surplus segment data is ignored and processing continues.
processing

A106 Message Segment name is not found in object module file 'file name'

Cause Segment name of assemble list file is not found in object module file.
A107 Message Not enough memory

Cause Memory is not sufficient for program operation.
A108 Message Load module file has no symbol data

'load module name'

Cause Option -NG is specified in linker, so symbol data in load module file cannot be output.
A901 Message File open error has occurred 'file name'
Cause File cannot be opened.
A902 Message File read error has occurred ‘file name'
Cause File cannot be correctly read.
A903 Message File write error has occurred 'file name’
Cause Data cannot be correctly written to file.
A904 Message File seek error has occurred ‘file name'
Cause File seek error has occurred.
A999 Message Internal error
Cause Program-internal error

300

APPENDIX A SAMPLE PROGRAMS

The following is an introduction to the sample lists of each program used in the RA78K3.

e Source lists

e Execution example

o Output lists
Assembile lists
Symbol lists
Cross-reference lists
Map list
Public symbol lists
Local symbol lists
Library data output lists
Absolute assemble lists

301

APPENDIX A SAMPLE PROGRAMS

A.1 Source Lists

(1) 78K3MAIN.ASM

KA AAKR A AAAAKA AR A A A I A A A AR A XA A A A I Ak bk d kb Ak kkh*k

S PROCESSOR (310)

NAME SAMPM
,.**'k***
P * *
i * HEX -> ASCII Conversion Program *
,.* *
P main-routine *
.k *
7
H

PUBLIC MAIN, START
EXTRN CONVAH

DATA DSEG AT OFE20H
HDTSA: DS 1
STASC: DS 2
CODE CSEG AT OH
MAIN: Dw START
CSEG
START: MOV RFM, #00
MOVW SP, #0FE8QH
MOV MM, #00
MOV STBC, #08H
MOV HDTSA, #1AH
MOVG HL, #HDTSA ;set hex 2-code data in HL registor
CALL CONVAH ;convert ASCITI <- HEX
;output BC-register <- ASCII code
MOVW DE, #STASC ;jset DE <- store ASCII code table
MOV A,B
MOV [DE+],A
MOV A,C
MOV [DE+],A
BR $$
END

302

APPENDIX A SAMPLE PROGRAMS

(2) 78K3SUB.ASM
S PROCESSOR(310)

NAME SAMPS

I.***

~

HEX -> ASCII Conversion Program

~

~
L I D R S R
*

sub-routine

input condition : (HL) <- hex 2 code

L

output condition : BC-register <-ASCII 2 code *

;
;***

PUBLIC CONVAH

CSEG
CONVAH: MOV A, #0
ROL4 [HL] :hex upper code load
CALL ' SASC
MOV B,A ;store result
MOV AL #0
ROL4 [HL] ;hex lower code load
CALL 1 SASC
MOV C,A ;store result
RET

;**********************************‘k*k******************

;* subroutine convert ASCII code *
P input Acc (lower 4bits) <- hex code *
i * output Acc <- ASCII code *

AR SRR SRR R SRR EESREEEEESESEREEEEREEREEREEESESESEREEEEEET]
’

SASC: CMP A, #0AH ;check hex code > 9
BC $SASC1
ADD A,#07H ;bias (+7)
SASCl: ADD A, #30H ;bias (+30)
RET
END

303

APPENDIX A SAMPLE PROGRAMS

A.2 Execution Example

C>ra78k3 78k3main.asm -g -kx -lw90

78K/III Series Assembler Vx.XX [XxX XXX XX]
Copyright (C) NEC Corporation 1989, 19xx

Passl Start
Pass2 Start

Target chip : uPDXXXXX
Device file : Vx.xx

Assembly complete, 0 error(s) and 0 warning(s) found.

C>ra78k3 78k3sub.asm -g -kx -lw30

78K/III Series Assembler Vx.xXX [xx xxx xx]
Copyright (C) NEC Corporation 1989, 19xx

Passl Start
Pass2 Start

Target chip : uPDXxXXXX
Device file : Vx.XX

Assembly complete, 0 error(s) and 0 warning(s) found.

C>1k78k3 78k3main.rel 78k3sub.rel -g -078k3.Ink -p78k3.map -kp -kl

78K/III Series Linker Vx.xx [XxxX XXX xX]
Copyright (C) NEC Corporation 1989, 19xx

Target chip : uPDxxxxx
Device file : VX.xXx

Link complete, 0 error(s) and 0 warning(s) found.

304

APPENDIX A SAMPLE PROGRAMS

C>0c78k3 78k3.Ink

78K/III Series Object Converter Vx.xXX [XX XXX XX]
Copyright (C) NEC Corporation 1289,19xx

Target chip : uPDxXXXXX
Device file : Vx.xx

Object Conversion Complete, 0 error(s) and

C>1b78k3

78K/III Series Librarian Vx.xx [XxX XXX Xx]
Copyright (C) NEC Corporation 1989, 19xx

*create 78k3.1lib

*add 78k3.1lst 78k3sub.rel

*exit

C>lcnv78k3 78k3main -178k3.Ink

0 warning(s)

List Conversion Program for RA78K/III Vx.xx [xx xxx xx]

Copyright (C) NEC Corporation 1989, 19xx

Passl: start...
Pass2: start...
Conversion complete.

found.

305

APPENDIX A SAMPLE PROGRAMS

A.3 Output Lists

A.3.1 Assembile lists

(1) 78K3MAIN.ASM assemble list

78K/III Series Assembler Vx.xx Date:xX XXX XXXX Page: 1

Command: 78k3main.asm -g -kx -1w90
‘Para-file:

In-file: 78K3MAIN.ASM

Obj-file: 78K3MAIN.REL

Prn-file: 78K3MAIN.PRN

Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

1 1 S PROCESSOR(310)

2 2

3 3 NAME SAMPM

4 4 I.**

5 5 ;% *

6 6 P * HEX -> ASCII Conversion Program *

'7 7 1'* *

8 8 Fd main-routine *

9 9 ’* *

10 10 ’.*********’k***************************’k**********

11 11

12 12 PUBLIC MAIN, START

13 13 EXTRN CONVAH

14 14

15 15 ——-—- DATA DSEG AT OFFD20H

16 16 FE20 HDTSA: DS 1

17 17 FE21 STASC: DS 2

18 18

19 19 ———- CODE CSEG AT OH

20 20 0000 ROOOO MAIN: DW START

21 21

22 22 —-—-- CSEG

23 23 0000 2B4100 START: MOV RFM, #00

24 24 0003 OBFC80FE MOVW SP, #0FE80H

25 25 0007 2B4000 MOV MM, #00

26 26 000A 0944F708 MOV STBC, #08H

27 27 '

28 28 000E 3A201A MOV HDTSA, #1AH

29 29 0011 6720FE MOVW HL, #HDTSA ;set hex 2-code da
ta in HL registor

30 30

31 31 0014 . R280000 ' CALL | CONVAH ;convert ASCII <-
HEX

32 32 : ;output BC-registe
r <- ASCII code

33 33 0017 6521FE MOVW DE, #STASC ;set DE <-store A
SCII code table

34 34 001A D3 MOV A,B

306

APPENDIX A SAMPLE PROGRAMS

35 35 001B 50 MOV [DE+],A
36 36 001C D2 MOV A,C

37 37 001D 50 MOV [DE+] , A
38 38

39 39 001lE 14FE BR $S

40 40

41 41 END

Segment informations:
ADRS LEN NAME

FE20 O0CO03H DATA
0000 0002H CODE
0000 0020H ?CSEG

Target chip : uPD78310
Device file : Vx.xx
Assembly complete, 0 error(s) and 0 warning(s) found. (0)

307

APPENDIX A SAMPLE PROGRAMS

(2) 78K3SUB.ASM assemble list

78K/III Series Assembler Vx.xx Date:xxX XXX XXXx Page: 1

Command: 78k3sub.asm -g -kx -1w90
Para-file:

In-file: 78K3SUB.ASM

Obj-file: 78K3SUB.REL

Prn-file: 78K3SUB.PRN

Assemble list

AILNO STNO ADRS OBJECT M I SOURCE STATEMENT

1 1 $ PROCESSOR (310)

2 2

3 3 NAME SAMPS

4 4 I.**********************************‘k****‘k‘k**********

5 5 ;* *

6 6 P * HEX -> ASCII Conversion Program *

7 7 i * *

8 8 P sub-routine *

9 9 i *

10 10 : * input condition : (HL) <- hex 2 code *

11 11 ;* *

12 12 P output condition : BC-register <-ASCII 2 code *

13 13 ;* *

14 14 I.*.*‘k‘k**’k*****‘k‘k*************************************

15 15

16 16 PUBLIC CONVAH

17 17

18 18 ———- CSEG

19 19 0000 B90O CONVAH: MOV A, #0

20 20 0002 059F ROL4 [HL] ;hex upper code load
21 21 0004 R281300 CALL 1 SASC

22 22 0007 2431 MOV B,A ;Store result

23 23

24 24 0009 B90O0 MOV A, #0

25 25 000B O059F ROL4 [HL] ;hex lower code load
26 26 000D R281300 CALL | SASC

27 27 0010 2421 MOV C,A ;store result

28 28

29 29 0012 56 RET

30 30

31 31 l.***‘k********‘k***
32 32 ;* subroutine convert ASCII code *
33 33 ;* input Acc(lower 4 bits) <- hex code *
34 34 P output Acc <- ASCII code *
35 35 ,.**
36 36

37 37 0013 AF0A SASC: CMP A, #0AH ;check hex code > 9

38 38 0015 8302 BC $SASCL
39 39 0017 Aa807 ADD A, #07H ;bias (+7)
40 40 0019 A830 SASCl: ADD A, #30H ;bias (+30)
41 41 001B 656 RET
42 42
43 43 END

308

APPENDIX A SAMPLE PROGRAMS

Segment informations:
ADRS LEN NAME
0000 001CH ?CSEG
Target chip : uPDxXXXX

Device file : Vx.xx
Assembly complete,

0 error(s) and

0 warning(s)

found.

(

0)

309

APPENDIX A SAMPLE PROGRAMS

A.3.2 Symbol lists

(1) 78K3MAIN.ASM symbol list

Symbol Table List

VALUE ATTR RTYP NAME VALUE ATTR -RTYP NAME
CSEG ?CSEG CSEG CODE
----H EXT CONVAH DSEG DATA
FF20H ADDR HDTSA OH ADDR PUB MAIN
MOD SAMPM OH ADDR PUB START
FE21H ADDR STASC

(2) 78K3SUB.ASM symbol list

Symbol Table List

VALUE ATTR RTYP NAME VALUE ATTR RTYP NAME
CSEG ?CSEG 0H ADDR PUB CONVAH
MOD SAMPM 13H ADDR SASC
19H ADDR SASCL

310

APPENDIX A SAMPLE PROGRAMS

A.3.3 Cross-reference lists

(1) 78K3MAIN.ASM cross-reference list

Cross-Reference List

NAME VALUE R ATTR RTYP SEGNAME XREFS

?CSEG CSEG ?CSEG 224

CODE CSEG CODE 194

CONVAH ----H E EXT 13@ 31

DATA DSEG DATA 154

HDTSA FE20H ADDR DATA 16# 28 29
MAIN OH ADDR PUB CODE 12e 20#

SAMPM MOD 3%

START OH R ADDR PUB ?CSEG 12@ 20 234#
STASC FE21H ADDR DATA 174 33

(2) 78K3SUB.ASM cross-reference list

Cross-Reference List

NAME VALUE R ATTR RTYP SEGNAME XREFS

?CSEG CSEG ?CSEG 18#

CONVAH OH R ADDR PUB ?CSEG l6@ 194

SAMPS MOD 3%

SASC 13H R ADDR ?CSEG 21 26 37#
SASC1L 198 R ADDR ?CSEG 38 40#

311

APPENDIX A SAMPLE PROGRAMS

A.3.4 Map list

78K/IV Series Linker Vx.xx Date:xXx XXX XXXX Page: 1

Command : 78k3main.rel 78k3sub.rel -g -078k3.1lnk -p78k3.map -kp -kl
Para-file:

Out-file: 78K3.LNK

Map-file: 78K3.MAP

Direc-file:

Directive:

*** T,ink information ***
3 output segment (s)

3EH byte(s) real data
23 symbol(s) defined

% Memory map *

SPACE=REGULAR

MEMORY=ROM
BASE ADDRESS=0000H SIZE=FEQOQOH
ouTPUT INPUT INPUT BASE SIZE
SEGMENT SEGMENT MODULE ADDRESS
CODE 0000H 0002H CSEG AT
CODE SAMPM 0000H 0002H
?CSEG 0002H 003CH CSEG
?CSEG SAMPM 0002H 0020H
?CSEG SAMPS 0022H 001CH
* gap * 003EH FDC2H
MEMORY=RAM
BASE ADDRESS=FEQQ0H SIZE=0200H
OUTPUT INPUT INPUT BASE SIZE
SEGMENT SEGMENT MODULE ADDRESS
* gap * FEOOH 0020H
DATA FE20H 0003H DSEG AT
DATA SAMPM FE20H 0003H
* gap * FE23H 00DDH
* gap (Not Free Area) * FFOOH 0100H

312

APPENDIX A SAMPLE PROGRAMS

A.3.5 Public symbol list

***% public symbol list ***

MODULE ATTR VALUE NAME
SAMPM ADDR 0000H MAIN
SAMPM ADDR 0002H START
SAMPS ADDR 0022H CONVAH

A.3.6 Local symbol list

*** Local symbol list ***

MODULE ATTR VALUE NAME
SAMPM MOD SAMPM
SAMPM DSEG DATA
SAMPM ADDR FE20H HDTSA
SAMPM ADDR FE21H STASC
SAMPM CSEG CODE
SAMPM CSEG ?CSEG
SAMPS MOD SAMPS
SAMPS CSEG ?CSEG
SAMPS ADDR 0035H SASC
SAMPS ADDR 003BH SASC1

A.3.7 Library data output list

78K/III Series librarian Vx.xx DATE : XX XXX XX PAGE 1
LIB-FILE NAME : 78K3.LIB (xx XXX XX)
0001 78K3MAIN.REL (xx XXX XX)

MAIN START‘

NUMBER OF PUBLIC SYMBOLS : 2

313

APPENDIX A SAMPLE PROGRAMS

A.3.8 Absolute assemble lists

78K/III Series Assembler Vx.XX Date:xXxX XXX XXxX Page: 1

Command: 78k3main.asm -g -kx -1w90
Para-file:

In-file: 78K3MAIN.ASM

Obj-file: 78K3MAIN.REL

Prn-file: 78K3MAIN.PRN

Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

1 1 $ PROCESSOR (310)

2 2

3 3 NAME SAMPM

4 4 ,.***********)\"k***********************************

5 5 ’.* *

6 6 P * HEX -> ASCII Conversion Program *

7 7 i *

8 8 P * main-routine *

9 9 R *

10 10 I.**

11 11

12 12 PUBLIC MAIN, START

13 13 EXTRN CONVAH

14 14

15 15 -=--- DATA DSEG AT OFF20H

16 16 FE20 HDTSA: DS 1

17 17 FE21 STASC: DS 2

18 18

19 19 ---- CODE CSEG AT OH

20 20 0000 RO200 MAIN: DW START

21 21

22 22 -~—- CSEG

23 23 0002 2B4100 START: MOV RFM, #00

24 24 0005 OBFC8QOFE MOVW SP, #0FE80H

25 25 0009 2B4000 MOV MM, #00

26 26 000C 0944r708 MOV STBC, #08H

27 27

28 28 0010 3a201a MOV HDTSA, #1AH

29 29 0013 6720FE MOVW HL, #HDTSA ;set hex 2-code da
ta in HL registor

30 30

31 31 0016 R282200 CALL 1 CONVAH ;convert ASCII <-
HEX

32 32 ;output BC-registe
r <- ASCII code

33 33 0019 6521FE MOVW DE, #STASC ;set DE <- store A
SCII code table

34 34 001C D3 MOV A,B

35 35 001D 50 MOV [DE+],A

36 36 001E D2 MOV A,C

37 37 001F 50 MOV [DE+],A

314

APPENDIX A SAMPLE PROGRAMS

38
39
40
41

Segment i
ADRS LEN

FE20 000
0000 000
0002 002

Target ¢
Device £
Assembly

38

39 0020 14FE

40

41

nformations:
NAME

3H DATA

2H CODE

0H ?CSEG

hip : uPD78310
ile : Vx.xx

complete, 0 error(s) and

BR $$

END

0 warning(s)

found.

(

0)

315

[MEMO]

316

APPENDIX B LIST OF CAUTIONS ON USE

The following is a list of items to note carefully when using the RA78K3.

317

APPENDIX B LIST OF CAUTIONS ON USE

B.1 Cautions

B.1.1 Handling device file

Information dependent on each target device is separated from the RA78K3 Ver. 5.00 and is included in a device
file"™ ' separately available. The RA78K3 Ver. 5.00 or later, therefore, cannot be used unless a device file
corresponding to the device used is purchased.

As for the subseries™"** whose device file is not available, a device file is supplied with RA78K3 Ver. 5.00 or later.
However, the supplied device file is for assembler and C compiler only (file with extension “.78k"). For each device

file supplied, refer to Appendix D Notes on Using Device File.

Notes 1. Device files for the uPD78352A, 78356, 78366, 78366A, and 78372 Subseries are optional.
2. uPD78312, 78312A, 78322, 78328, and 78334 Subseries

B.1.2 Memory necessary for execution (with PC-9800 Series, IBM PC/AT, and compatible machine)

The minimum memory size necessary for executing the assembler is 400 KB. This memory size increases if
macros are used, and assembly may not be performed with 400 KB only in some cases. Therefore, allocate as large
a vacant area of the conventional memory as possible.

B.1.3 Notes on list converter

The default symbol name case specification option of the list converter is -CA. If -CA is not specified by the
assembler, specify -NCA with the list converter.

B.1.4 Notes on debug option

When performing compiling or structured assembly by specifying debug data output by the C compiler or
structured assembler preprocessor, and when assembling the output assembler source, do not specify the debug
data output option. The option necessary during assembly is output in the assembler source as a control statement
by the C compiler or structured assembier preprocessor.

B.1.5 Notes on C compiler

Several points must be noted when assembling the assembler source output by the C compiler and performing C
source level debugging.
For details, refer to the document supplied with the C compiler package (Notes on Use).

B.1.6 Notes on using network

If a directory that creates a temporary file is placéd in a file system shared on a network, an abnormal operation
may take place because files conflict. Avoid this conflict by setting an option or environmental variable.

B.1.7 Notes on ordering ROM code

Be sure to make the following specification by using the object converter when ordering a ROM code.
o Specify the -U option and make sure that there is no vacant area in the internal ROM area.
¢ Specify the -R option and sort the HEX-format objects in the order of address.

318

APPENDIX B LIST OF CAUTIONS ON USE

B.2 Limitations
The RA78K3 has the following limitations.

B.2.1 Limitations of structured assembler
(1) Control statements with crossing range causes an error.
[Description]

If a control statement is enclosed so that the statement is divided or crossed in between #ifdef and #endif, the
control statement causes an error if #ifdef is true.

[Example]
switch (mode)

#ifdef stsw | <<—— Range between #idef and #else/#endif
case 1
break <— Range between case and next case/default/ends
#endif
default : E—
breakK
ends

[Preventive measures]
Nesting is correctly processed. Rewrite the source so that the range of the control statement is not crossed.
The above example should be rewritten as follows:

#ifdef stsw ————«<— Range between #ifdef and #else/#endif
switch (mode)
case 1 : ——

break Range between case and next case/default/ends

default : _
break

ends

#else
switch (mode)
default
break
ends
#endif

319

APPENDIX B LIST OF CAUTIONS ON USE

B.2.2 Limitations of assembler

(1) When a label that is influenced by optimization is described in the portion of saddr when a bit symbol having
the value of saddr.bit is defined as EQU, an error may be illegal.

[Description]

A label that is influenced by optimization is described in the portion of saddr when a bit symbol having the

value of saddr.bit is defined as EQU. Therefore, an error may be illegal or the object code may be illegal in the

following two cases:

¢ If saddr is OFD20H and is outside an area in path 1 and inside an area in path 2, path 1 outputs an error to
the EQU definition line, but path 2 does not output an error <illegal>.

e |f saddr is OFF1FH and is inside an area in path 1 and outside an area in path 2, path 1 does not output an
error to the EQU definition line but path 2 outputs an error <normai>.

An error message (F410 Phase error) is output to the label that is defined after this EQU symbol has been

referenced. If this label is referenced, the object is illegal.

[Preventive measures]
None

(2) The number of characters that can be written on one line is 256.

[Description]
If more than 256 characters are written on one line, an error message (W701 Too long source line) is output,
and the 257th character and those that follow are assumed as the next line and assembled.
The 218th character from the beginning and those that follow are ignored. A 2-byte character such as Kanji is
counted as 2 characters.

[Preventive measures]
None. Write 256 characters or less (including carriage return/line feed) on one line.

(3) If include files that ends in an incomplete form (carriage return/line feed is missing on the last line) are
nested, an error may occur.

[Description]
If include files that ends in an incomplete form (carriage return/line feed is missing on the last line) are
nested, one line in the include file of nest level 2 disappears, and the code is output to the next line. At this
time, an error message (F201 Syntax error) is output.

[Example]
sl eqgu labell*2
s2 equ label2*2
s3 equ label3*2 [EOF] ; No carriage return code before [EOF]

[Preventive measures]
None.
Be sure to end the last line of an include file with carriage return or line feed.
Input a carriage return code before EOF.

320

APPENDIX B LIST OF CAUTIONS ON USE

(4) The location counter cannot be referenced in a bitv segment.

[Description]
The location counter ($) is meaningless in a bit segment.
If a symbol is defined by referencing the location counter in a bit segment, assembly and link is terminated
without an error, but the object converter outputs an error message (A108 Symbol ‘symbol name’ illegal
attribute) and is aborted.

[Example]

bs bseg at 0fe20H

bl dbit

ba equ S
b2 dbit

bb equ S
b3 dbit

end

[Preventive measures]
None

(5) If an include file name is written in Kaniji, the include file may not be correctly recognized.

[Description}
If an include file is written in Kanji, the include file may not be correctly recognized.

[Preventive measures]
None. Do not write an include file name in Kaniji.

321

APPENDIX B LIST OF CAUTIONS ON USE

(6) |f BSEG of the same segment name exists and if the BITPOS or MASK operator (with a name defined by
BSEG (relocatable) specified as an operand) is specified, the object code of an instruction is illegal.

[Description]
If the name defined by BSEG (relocatable) is specified as the operand of the BITPOS or MASK operator, and if
BSEG with the same segment name exists, the object code of the instruction for which the BITPOS or MASK
operator is specified is illegal.

[Example]
testl.asm
bl bseg ; Segment of same name exists.
dbit
lab dbit
dbit

cseg
mov a, #bitpos lab ; Object code is illegal.

end

test2.asm
bl bseg ; Segment of same name exists.
dbit
labl dbit
dbit
cseg
mov a, #bitpos labl ; Object code is illegal.

end

[Preventive measures]
None

322

APPENDIX B LIST OF CAUTIONS ON USE

(7) (ampersand) in conditional assemble control instruction processing is not interpreted.

[Description]
“&” in IRP at the side of the processing that is made false by a conditional assemble control instruction is not
interpreted as a character string coupling symbol “& (ampersand)”, and an error message (F204 lllegal
character) is output.

[Example]
$_IF (AAA = BBB)
IRP 7Z77,<1,2,3>
LABSZ727; DW 0 ; An error (F204) occurs because of “&”.
ENDM
SENDIF

[Preventive measures]
Nest macros.
$S_IF (AAA = BBB)

M1 MACRO paral ; «Addition
IRP 227 ,<1,2,3>

Paral: DW 0 ; «Change
ENDM

ENDM ; «Addition
M1 “LAB&ZZZ" ; «Addition
SENDIF

(8) “7Z"is always necessary at the end of an include file.

[Description]
“NZ" is always necessary at the end of an include file.

[Preventive measures]
None. Make sure that an include file ends with a blank line.

(9) A hang-up occurs if the last line of an include file is macro reference and if “AZ” is missing before EOF.

[Description]
A hang-up occurs if the last line of an include file is macro reference and if “*Z” is missing before EOF.

[Preventive measures]
None. Make sure that an include file ends with a blank line.

323

APPENDIX B LIST OF CAUTIONS ON USE

(10) K a source file with a function of a long function name is compiled, and an assembler source is output and
assembled when a compiler is used, an error may occur.

[Description]
When the compiler is used, and if a source including a function is compiled and an assembler source is output,
the function name of $DGS or label with up to seven characters such as ?? are appended is generated. [f the
function name exceeds 24 characters as a result, the symbol name exceeds 31 characters, and an error
occurs before assembly.

[Preventive measures]
None. Do not use a function name of more than 24 characters.

(11) When a compiler is used and if a C source with symbol definition in the #asm block is compiled and its
assembler source is assembled, the debug data is illegal.

[Description]
When a compiler is used and a C source with symbol definition in the #asm block is compiled, and if the output
assembier source is assembled, the debug information is illegal.

[Example]
int i;
void func (void) {
#asm
syma:
MOV A, #_1
MOV X,A
#endasm

[Preventive measures]
None. To debug a source, do not define a symbol in the #asm block.

(12) When a compiler is used and if a source including the CALLF function is compiled and assembled, an illegal
line number data is output.

[Description]
When a compiler is used and if a source including the CALLF function is compiled and the output assembler

source is assembled, an illegal line number data is output.

[Preventive measures]
None

324

APPENDIX B LIST OF CAUTIONS ON USE

B.2.3 Limitations of linker

(1) An error message is output if the object module file of the source file exceeding 8128 lines is linked.
[Description]

An error message (F117 Too Many line number data in ‘file name’) is output if the object moduie file of the
source file exceeding 8128 lines is linked.

[Preventive measures]
None. Keep the source file to within 8128 lines.

(2) An error message is output if the object file created with an assembler lower than RA78K3 Ver. 5.00 is input.

[Description]
An error message (A909 Can’t read DEVICE_FILE file ‘file name’) is output if the object file created with an
assembler lower than RA78K3 Ver. 5.00 (not supporting device file} is input.

[Preventive measures]
None. Assemble by using an assembler of RA78K3 Ver. 5.00 or later.

B.2.4 Limitations of ECC generator

Unless the -U option (complement option) is specified by the object converter when ECCGEN is used, the ECC
error correcting code of the last code may be illegal.

[Preventive measures]

When using the ECC generator, specify the -U option with the object converter (oc78k3), and specify
appropriate values for the addresses of the internal ROM.

325

[MEMO]

326

APPENDIX C USING SUPPLIED FILE (INTMS.DEF)

This appendix describes the supplied file (INTMS.DEF) that defines macros to allocate an area used for interrupt
vector tables and macro services that are expected to be often used when the RA78K3 is used.

327

APPENDIX C USING SUPPLIED FILE (INTMS.DEF)

C.1 Overview

The INTMS.DEF file defines a macro that is used to allocate an area or define the name of an area.
The INTMS.DEF file for each subseries exists in the following directory.

\ ———— \DEVICE \78312 INTMS.DEF"*
\78322 INTMS.DEF"*
\78328 INTMS.DEF™"
\78334 INTMS.DEF"*

Note For the pPD78312 and 78312A Subseries

Caution The INTMS.DEF file is a file supplied with the RA78K3 of the old version (earlier than Ver.
5.00). Therefore, it is supplied only to maintain compatibility with the RA78K3 earlier than Ver.
5.00. Therefore, the file for the yPD78352A, 78356, 78366, 78366A, and 78372 Subseries is not

supplied.
C.2 Using Macro for Vector Table Setting

A vector table used for interrupts is set by writing the name of a macro prepared for each interrupt. The first
address of an interrupt servicing routine must be defined by the name of an interrupt (such as INTPO).

This macro generates a segment, and the segment name of that segment is determined for each interrupt. Make
sure that the segment name does not overlap the other symbol names.

Table C-1 shows the interrupt names, macro names, and segment names.

[Example]
ADVENT ; Setting of vector table (macro reference)
; Interrupt vector of INTAD is set in segment name |_ADVT

INTAD:
Interrupt servicing routine

Caution This macro does not support (use of external memory addresses 8000H through 807FH as a
vector table) when TPF = 1.

328

APPENDIX C USING SUPPLIED FILE (INTMS.DEF)

Table C-1. interrupt Names, Macro Names, and Segment Names (1/2)

Target Subseries

Note

Interrupt Name Macro Name Segment Name | ,pp78312
APDTESTZA uPD78322 | uPD78328 | uPD78334
RST™" RSTVENT RSTVT O O O O
NMI NMIVENT NMIVT O ®) @) O
INTWDT WDTVENT WDTVT O O O O
INTCROO CROOVENT |_CROOVT O
INTCRO1 CRO1VENT I_CROTVT O
INTCR10 CR10VENT I_CR1OVT O
INTCR11 CR11VENT I_CR11VT O
INTEO EOVENT I_EOVT O
INTE1 E1VENT I_E1VT O
INTE2 E2VENT I_E2VT O
INTTMO TMOVENT I_TMOVT O
INTTM1 TM1VENT L_TMIVT O
INTTM2 TM2VENT I_TM2VT O
INTOV OVVENT I_OWVT O @)
INTOVO OVOVENT 1_OVOVT O
INTPO POVENT I_POVT O O O
INTP1 P1VENT I_P1VT O O O
INTP2 P2VENT I_P2vT @) O O
INTP3 P3VENT I_P3VT 0] O
INTCCOOR COORVENT |_COORVT O
INTP4 PAVENT I_P4VT O O
INTCCX0 CCXOVENT I_CCXOVT O
INTCCO1R CO1RVENT I_CO1RVT O
INTP5 PSVENT I_P5VT O O
INTCCO1 CCO1VENT I_CCO1vVT O
Reset vector

329

APPENDIX C USING SUPPLIED FILE (INTMS.DEF)

Table C-1. Interrupt Names, Macro Names, and Segment Names (2/2)

Target Subseries

Interrupt Name Macro Name Segment Name :PPDD;:;; i PD78322 | 4PD78328 | LPD78334
INTPS PGVENT I_PeVT O O
INTOV1 OV1VENT 1_OV1IVT O
INTCMOO CMOOVENT |_CMOOVT O O
INTCMO1 CMO1VENT I_CMO1VT O O
INTCMO2 CMO2VENT I_CMO2vT O O
INTCMO3 CMO3VENT {_CMO3VT O O
INTCMO4 CMO4VENT I_CMO4VT O
INTCMO5 CMOSVENT I_CMO5VT O
INTCMO6 CMOBVENT |_CMOBVT O
INTCC10 CC10OVENT I_CC1ovVT O
INTCMX0 CMXOVENT I_CMXOVT O
INTCM10 CM10VENT I_CM10VT O O
INTCM11 CM11VENT I_CM11VT O
INTCM12 CM12VENT I_CM12vT O O
INTCM20 CM20VENT |_CM20VT @)
INTCM21 CM21VENT I_CM21VT O
INTCM30 CM3OVEMT I_CM30VT O O O O
INTSER SERVENT I_SERVT @) ®) O ®)
INTSR SRVENT I_SRVT O ®) O O
VINTST STVENT I_STVT O O O
INTCSI CSIVENT [_CSIVT O O O @)
INTAD ADVENT I_ADVT O
INTTB TBVENT |_TBVT
BRK_I™*" BRKVENT BRKVT O O O O
TRAPQ™"™? TROTENT T_TROTT O O O

Notes 1. Break instruction
2. Op code trap

330

APPENDIX C USING SUPPLIED FILE (INTMS.DEF)

C.3 Using Macro Service Control Word Area Allocating Macro
(except uPD78312 and 78312A Subseries)

By describing a macro name prepared for each macro service, a macro service control word area is allocated and

a label is created.
This macro creates the label of a macro service control word and the label of each byte in the macro service control

word. |t also creates a segment name.
The interrupt name and macro name using a macro service, and the created label name and segment name are

in compliance with the following convention.

Label of macro service control word: “MCW” + abbreviated interrupt name + “P”

Label of macro service control register: “MSM” + abbreviated interrupt name
Label of macro service channel pointer: “CHP” + abbreviated interrupt name
Label of macro service counter (counter mode): “MAC” + abbreviated interrupt name
Label of compare byte data storage area (data compare mode): “DTC” + abbreviated interrupt name
Label of SFR pointer (data shift mode): “SPRP” + abbreviated interrupt name

Segment name: Macro name + “_S” or macro name + “S*

For the interrupt name, macro name, and abbreviated interrupt name, refer to Table C-2.

331

APPENDIX C USING SUPPLIED FILE (INTMS.DEF)

Table C-2. Interrupt Names, Macro Names, and Abbreviated Interrupt Names

Interrupt Name Macro Name Abbreviated Targe! Subseries
Interrupt Name | ,PD78322 | uPD78328 | uPD78334
INTOV OVMCW ov O O
INTOVO OVOMCW ovo O
INTPO POMCW PO O O O
INTP1 P1MCW P1 O O O
INTP2 P2MCW P2 O O O
INTP3 P3MCW P3 @) O
INTCCOOR COORMCW COOR O
INTP4 PAMCW P4 O O
INTCCXO0 CCXOMCW CCX0 O
INTCCO1R CO1RMCW CO1R O
INTP5 PSMCW P5 O O
INTCCO1 CCOT1MCW cCco1 @)
INTPS P6MCW P6 O O
INTOV1 OVIMCW oVt O
INTCMOO0 CMOOMCW CMO0 O O
INTCMO1 CMOTMCW CMO1 O O
INTCMO2 CMO2MCW CM02 O O
INTCMO3 CMO3MCW CM03 O O
INTCMO4 CMO4MCW CMo4 O
INTCMOS CMOSMCW CMO5 O
INTCMO6 CMOBMCW CMO06 O
INTCC10 CC10MCW CC10 O
INTCMXO CMXOMCW CMX0 O
INTCM10 CM10MCW CM10 O
INTCM11 CM11MCW CM11 O O
INTCM12 CM12MCW CM12 O
INTCM20 CM20MCW CM20 O O
INTCM21 CM21MCW CcM21 O
INTCM30 CM30MCW CM30 O
INTSR SRMCW SR 0] ©) O
INTST STMCW ST O O O
INTCSI CSIMCW csl O O O
INTAD ADMCW AD @] O @)

APPENDIX C USING SUPPLIED FILE (INTMS.DEF)

[Example]
CSIMCW
MOVW AX, #0xxxxH
MOVW MCWCSIP,AX

Or

MOV A, #0xxH
MOV MSMCSI, A
MOV A, #0xxH
MOV CHPCSI,A

333

APPENDIX C USING SUPPLIED FILE (INTMS.DEF)

C.4 Using Macro Service Channel Area Allocating Macro
(uPD78312 and 78312A Subseries only)

By describing a macro name prepared for each macro service channel, the area of the macro service channel is
allocated and a label is created.

This macro creates each label and segment name in a macro service channel.

The interrupt name and macro name using the macro service, and the related label name and segment name are
in compliance with the following convention.

Label of macro service pointer: “MSP” + channel number + “P”
Label of macro service counter: “MSC” + channel number
Label of SFR pointer: “SFR” + channel number
Segment name: Macro name + “_S”

For the channel name, macro name, and channel number, refer to Table C-3.

Table C-3. Channel Name, Macro Name, and Channel Number

Channel Name Macro Name Channel Number
Channel 0 MCHO 0
Channel 1 MCH?1 1
Channel 2 MCH2 2
Channel 3 MCH3 3
Channel 4 MCH4 4
Channel 5 MCHS 5
Channel 6 MCH6 6
Channel 7 MCH7 7
[Example]
MCHO

MOVW MSPOP, #MEMORY
MOV MSCO, #10H
MOV SFRPO, #LOW PO

334

APPENDIX C USING SUPPLIED FILE (INTMS.DEF)

C.5 Using Macro Service Channel Area Allocating Macro

(except uPD78312 and 78312A Subseries)

The 78K/lll Series is provided with nine types of macro services. Table C-4 lists the name of each service and
the name of the macro service channel area allocating macro corresponding to that macro service.

Table C-4. Macro Service Names and Macro Names

Target Subseries

Macro Service Name Macro Name
uPD78322 | uPD78328 | uPD78334

Counter mode - O O O
Data compare mode - O O O
Data shift mode ~ O O O
PTOIVL (CC = 01)™*' - O
Bit pattern operation mode DS_BL @) O O
A/D conversion result transfer mode | Byte transfer DS_ADB O O

Word transfer DS_ADW O O
Block transfer mode Byte transfer DS_BTB @) O @)

Word transfer DS_BTW O O O
Data differential mode Byte transfer DS_DDB O O O

Word transfer DS_DDW O ®) O
Data differential mode (with memory | Byte transfer DS_DDB_P O O
pointer) Word transfer DS_DDW_P ¢} o
Data addition mode Byte transfer DS_DAB O

Word transfer DS_DAW ®)
PTOIVL (CC = 00, 10)**" DS_PTOI O
PTODTR (CC = 00,01)""* DS_PTDTO O
PTODTR (CC = 10)*"* DS_PTDT1 O
Sequential pulse output control mode 1 DS_POSEQ O
Sequential pulse output control mode 2 DS_POPRL O

Notes 1. PTOIVL: Programmable timer output interval mode
2. PTODTR: Programmable timer output data transfer mode

335

APPENDIX C USING SUPPLIED FILE (INTMS.DEF)

(1) Bit pattern operation mode

[Description format]

DS_BL ch_name,‘relocation’

[Parameter]
ch_name: Name of macro service channel (within 4 alphanumeric characters)
‘relocation’: Relocation attribute of macro service channel.

Be sure to enclose in *’ (normally, ‘SADDR?’).

[Created symbol name]
“MCH” + ch_name: Segment name of macro service channel
“BP” + ch_name: Address of bit pattern
“CHA” + ch_name: Address to be set to channel pointer of macro service control word
“SFRP” + ch_name: Address of SFRP

[Example}
DS_BL PO, 'SADDR’

MOV A, #LOW CHAPO
MOV !CHPPO, A

MOV BPPO, #10101010B
MOV SFRPPO, #LOW PO

336

APPENDIX C USING SUPPLIED FILE (INTMS.DEF)

(2) A/D conversion result transfer mode

[Description format]
DS_ADB ch_name,buff_size,‘relocation’
DS_ADW ch_name,buff_size,‘relocation’

[Parameter}
ch_name: Name of macro service channel (within 4 alphanumeric characters)
buff_size: Size of buffer (number of buffers)
‘relocaton’. Relocation attribute of macro service channel
Be sure to enclosed in * .
Normally, this is ‘SADDR’, but specify ‘SADDRP’ for a word buffer.

[Created symbol name]

“MCH” + ch_name: Segment name of macro service channel
“BA” + ch_name: First address of macro service buffer (DS_ADB)
“BA” + ch_name + “P”: First address of macro service buffer (DS_ADW)
“CHA” + ch_name: Address to be set to channel pointer of macro service control word
“MSC” + ch_name: Address of macro service counter
[Example]
DS_ADW AD, 03H, ' SADDRP'
MOV A, #LOW CHAAD
MOV ICHPAD, A
MOV MSCAD, #03H

337

APPENDIX C USING SUPPLIED FILE (INTMS.DEF)

(3) Block transfer mode

[Description format]
DS_BTB ch_name,‘relocation’
DS_BTW ch_name,‘relocation’

[Parameter]
ch_name: Name of macro service channel (within 4 alphanumeric characters)
‘relocation’: Relocation attribute of macro service channel
Be sure to enclosed in * .
Normally, specify ‘SADDRP’ because the created segment must be located at an even address
of FEOOH to FEFFH.

[Created symbol name]

“MCH” + ch_name: Segment name of macro service channel
“MP” + ch_name + “P": Address of memory pointer
“MPL” + ch_name: Address of low-order byte of memory pointer
“‘MPH” + ch_name: Address of high-order byte of memory pointer
“MSC” + ch_name: Address of macro service counter
“CHA” + ch_name: Address to be set to channel pointer of macro service control word
“SFRP” + ch_name: Address of SFR pointer
[Example]

DS_BTB SR, ' SADDRP’

MOV A, #LOW CHASR

MOV ICHPSR, A

MOV SFRPSR, #LOW RXB

MOVW MPSRP, #BUFFO0

MOV MSCSR, #03H

338

APPENDIX C USING SUPPLIED FILE (INTMS.DEF)

(4)

Data differential mode

[Description format]

DS_DDB ch_name,buff_size,‘relocation’

DS_DDW ch_name,buff_size, relocation

[Parameter]

ch_name: Name of macro service channel (within 4 alphanumeric characters)

buff_size: Size of buffer (number of buffers)

‘relocation”: Relocation attribute of macro service channel
Be sure to enclosed in ‘.
Because LDB must be always located at an even address of FEOOH to FEFFH, specify an
address (odd or even) according to the size of the buffer (number of buffers).

[Created symbol name]

“MCH” + ch_name:
“BA” + ch_name:

Segment name of macro service channel
First address of macro service buffer (DS_DDB)

“BA” + ch_name + “P”: First address of macro service buffer (DS_DDW)
“LDB” + ch_name + “P”. Address of LDB

“LDBL” + ch_name:
“LDBH” + ch_name:

“MSC” + ch_name:
“CHA” 4+ ch_name:

“SFRP” + ch_name:

[Example]
DS_DOW

MOV
MOV

MOV
MOVW
MOV

Address of low-order byte of LDB

Address of high-order byte of LDB

Address of macro service counter

Address to be set to channel pointer of macro service controi word
Address of SFR pointer

RPU, 03H, ' SADDRP’

A, #LOW CHARPU
!CHPP4,A

SFRPRPU, #LOW CCXOUW

LDBRPUP, #DUMY0
MSCRPU, #03H

339

APPENDIX C USING SUPPLIED FILE (INTMS.DEF)

(8)

Data differential mode (with memory pointer)

[Description format]
DS_DDB_P ch_name,‘relocation’
DS_DDW_P ch_name,‘relocation’

[Parameter]
ch_name: Name of macro service channel (within 4 alphanumeric characters)

‘relocation’: Relocation attribute of macro service channel

Be sure to enclosed in *°.
Normally, specify ‘SADDRP’ because the created segment must be located at an even address
of FEOOH to FEFFH.

[Created symbol name]

“MCH” + ch_name:

Segment name of macro service channel

“MP” + ch_name + “P”: Address of memory pointer

“MPL” + ch_name:
“MPH” + ch_name:

Address of low-order byte of memory pointer
Address of high-order byte of memory pointer

“LDB” + ch_name + “P”: Address of LDB

“LDBL” + ch_name:
“LDBH" + ch_name:

“MSC” + ch_name:
“CHA” + ch_name:

“SFRP” + ch_name:

[Example]

340

DS_DDW_P

MOV
MOV

MOV
Movw
MOVW
MOV

Address of low-order byte of LDB

Address of high-order byte of LDB

Address of macro service counter

Address to be set to channel pointer of macro service control word
Address of SFR pointer

RPU, ' SADDRP’

A, #LOW CHARPU
!CHPCCXO0,A

SFRPRPU, #LOW CCXOUW
MPRPUP, #BUFF2
LDBRPUP, #DUMY 1
MSCRPU, #03H

APPENDIX C USING SUPPLIED FILE (INTMS.DEF)

(6) Data addition mode

[Description format]
DS_DAB ch_name,‘relocation’
DS_DAW ch_name,‘relocation’

[Parameter]
ch_name:
‘relocation’:

Name of macro service channel (within 4 alphanumeric characters)
Relocation attribute of macro service channel

Be sure to enclosed in .

Normally, this is ‘SADDR’ but specify ‘SADDRP’ for a word buffer.

[Created symbol name]

“MCH” + ch_name: Segment name of macro service channel
“ADD” + ch_name: Address of addition data storage area (DS_DAB)
“ADD” + ch_name + “P”: Address of addition data storage area (DS_DAW)
“ADDL” + ch_name: Address of low-order byte of addition data storage area (DS_DAW)
“ADDH" + ch_name: Address of high-order byte of addition data storage area (DS_DAW)
“SFR2” + ch_name: Address of transfer destination SFR pointer
“SFR1” + ch_name: Address of transfer source SFR pointer
“CHA” + ch_name: Address to be set to channel pointer of macro service control word
“MSC” + ch_name: Address of macro service counter
[Example]
DS_DAW CMO0O0, ' SADDRP
MOV A, $LOW CHACMOOQ
MOV ICHPCMOO, A
MOV SFR2CMO0, #LOW CMOO
MOV SFR1CMOO, #LOW CMOO
MOVW ADDCMOOP, #DATAQ
MOV MSCMOO, #01H

341

APPENDIX C USING SUPPLIED FILE (INTMS.DEF)

(7) Programmable timer output interval mode (when CC = 00, 10)

[Description format]
DS_PTOI ch_name,‘relocation’

[Parameter]
ch_name: Name of macro service channel (within 4 alphanumeric characters)
‘relocation’: Relocation attribute of macro service channel
Be sure to enclosed in * .
Normally, specify ‘SADDRP’ because the created segment must be located at an even address
of FEOOH to FEFFH.

[Created symbol name]

“MCH” + ch_name: Segment name of macro service channel
“CHA” + ch_name: Address to be set to channel pointer of macro service control word
“WD” + ch_name + “P". Address of word data
“WDL" + ch_name: Address of low-order byte of word data
“WDH” + ch_name: Address of high-order byte of word data
[Example]
DS_PTO01 CM06, ' SADDRP’
MOV A, #LOW CHACMO6
MOV ICHPCMO6, A
MOVW WDCMO6P, #W_DTA

342

APPENDIX C USING SUPPLIED FILE (INTMS.DEF)

(8) Programmabile timer output data transfer mode (mode 0: when CC = 00, 01)

[Description format]
DS_PTDTO ch_name,‘relocation’

[Parameter]
ch_name:
‘relocation’:

Name of macro service channel (within 4 alphanumeric characters)

Relocation attribute of macro service channel

Be sure to enclosed in ‘.

Normally, specify ‘SADDRP’ because the created segment must be located at an even address
of FEOOH to FEFFH.

[Created symbol name]

“MCH” + ch_name: Segment name of macro service channel

“CHA” + ch_name: Address to be set to channel pointer of macro service control word
“WDO0” + ch_name + “P”: Address of word data 0

“WDOL” + ch_name: Address of low-order byte of word data 0

“WDOH” + ch_name: Address of high-order byte of word data 0
“WD1” + ch_name + “P”": Address of word data 1

“WD1L” + ch_name: Address of low-order byte of word data 1
“WD1H” + ch_name: Address of high-order byte of word data 1

[Example]

DS_PTDTO CMQO0, ' SADDRP'

MOV
MOV

MOVW
MOVW

A, #LOW CHACMOO
CHPCMOO0, A

WDOCMOOP, #W_DTAQ
WD1CMOOP, #W_DTAL

343

APPENDIX C USING SUPPLIED FILE (INTMS.DEF)

©)

Programmable timer output data transfer mode (mode 1: when CC = 10)

[Description format]

DS_PTDT1 ch_name,‘relocation’

[Parameter]
ch_name:
‘relocation’:

Name of macro service channel (within 4 alphanumeric characters)
Relocation attribute of macro service channel

Be sure to enclosed in ‘.
Normalily, specify ‘SADDRP’ because the created segment must be located at an even address
of FEOOH to FEFFH.

[Created symbol name]
“MCH” + ch_name:
“CHA” + ch_name:

“WDO0” + ch_name + “P™

“WDOL” + ch_name:
“WDOH” + ch_name:

“WD1” + ch_name + “P”:

“WD1L” + ch_name:
“WD1H” + ch_name:

“WD2” + ch_name + “P”:

“WD2L” + ch_name:
“WD2H” + ch_name:

[Example]
DS_PTDT1

MoV
Mov

MOVW
Movw
MOVW

344

Segment name of macro service channel
Address to be set to channel pointer of macro service control word
Address of word data 0

Address of low-order byte of word data 0
Address of high-order byte of word data 0
Address of word data 1

Address of low-order byte of word data 1
Address of high-order byte of word data 1
Address of word data 2

Address of low-order byte of word data 2
Address of high-order byte of word data 2

CM01, ' SADDRP’

A, #LOW CHACMO1
ICHPCMO1,A

WDOCMO1P, #W_DTAO
WD1CMO1P, #W_DTA1
WD2CMO1P, #W_DTA2

APPENDIX C USING SUPPLIED FILE (INTMS.DEF)

(10) Successive pulse output control mode 1

[Description format}
DS_POSEQ ch_name, ‘relocation’

[Parameter]
ch_name:
‘relocation’:

Name of macro service channel (within 4 alphanumeric characters)

Relocation attribute of macro service channel

Be sure to enclosed in ‘.

Normally, specify ‘SADDRP’ because the created segment must be located at an even address
of FEOOH to FEFFH.

[Created symbol name}

“MCH" + ch_name: Segment name of macro service channel

“CHA” + ch_name: Address to be set to channel pointer of macro service control word
“WDn” + ch_name + “P”: Address of word data n (n = 0 to 5)

“WDnL” + ch_name: Address of low-order byte of word data n (n = 0 to 5)

“WDnH” + ch_name: Address of high-order byte of word data n (n = 0 to 5)

[Example]

DS_POSEQ RPU, ' SADDRP’

MOV
MOV

MOVW

MOVW

A, #LOW CHARPU
CHPCMXO0, A

WDORPUP, #W_DTAO

.
.

WD5SRPUP, #W_DTAS

345

APPENDIX C USING SUPPLIED FILE (INTMS.DEF)

(11) -Successive pulse output control mode 2

[Description format]
DS_POPRL ch_name,‘relocation’

[Parameter]

ch_name:
‘relocation’:

Name of macro service channel (within 4 alphanumeric characters)

Relocation attribute of macro service channel

Be sure to enclosed in * .

Normally, specify ‘SADDRP’ because the created segment must be located at an even address
of FEOOH to FEFFH.

[Created symbol name]

*MCH” + ch_name: Segment name of macro service channel
“CHA” + ch_name: Address to be set to channel pointer of macro service control word
“WDn" + ch_name + “P”. Address of word data n (n = 0 to 5)
“WDnL” + ch_name: Address of low-order byte of word data n (n = 0 to 5)
“WDnH" + ch_name: Address of high-order byte of word data n (n = 0 to 5)
“T” + ch_name + “P™: Address of word data T
“TL” + ch_name: Address of low-order byte of word data T
“TH” + ch_name: Address of high-order byte of word data T
“MSC” + ch_name: Address of macro service counter
[Example]

346

DS_POPRL RPU, ' SADDRP’

MOV
MOV

MOVW

MOVW
MOvVW
MOV

A, #L.OW CHARPU
CHPCMXO0, A

WDORPUP, #W_DTAO

WD5RPUP, #W_DTAS
TRPUP, #T_DTA
MSCRPU, #10H

APPENDIX C USING SUPPLIED FILE (INTMS.DEF)

C.6 Including File

The INTMS.DEF file is included by the include control instruction.
Include the INTMS.DEF file at the beginning of a module body (immediately after the control instruction described at
the beginning of the source program).

Example
$ PC (312)
$ IC (C :\DEVICE\78312\INTMS.DEF)
NAME TEST
$ IC (C :\DEVICE\78312\SFRBIT.DEF)

The assembler can specify the search path of the include file on a start line or by an environmental variable. By
using this function, therefore, only a file name can be specified in a source file without a path specified.

Example With MS-DOS
Specifying search path
» To specify on start line of assembler

RA78K3 TEST -IA : \RA78K3\DEVICE\78312

» To specify with environmental variable
Input as follows on the command line of MS-DOS.

SET INC78K3 = C : \RA78K3\DEVICE\78312

In these cases, describe as follows in the source file.

S PC (3212)

S IC (INTMS.DEF)
NAME TEST '

$ IC (SFRBIT.DEF)

347

[MEMO]

348

APPENDIX D NOTES ON USING DEVICE FiLE

This appendix describes the points to be noted when using the device file for the uPD78312, 78312A, 78322,

78328, and 78334 Subseries supplied with the RA78K3.
For the uPD78352A, 78356, 78366, 78366A, and 78372 Subseries, refer to the document supplied with an

optional device file (Notes on Using DF783xx Device File).

349

APPENDIX D NOTES ON USING DEVICE FILE

D.1 Device File

A device file is a binary file having model-dependent information prepared for each model of the target device.
The device file includes the following information:

+ SFR names (special function register names), SFR bit names

» Default link directive data

« Interrupt request names

D.2 Correspondence between Target Devices and Device Files

The correspondence between each target device and the model specified when assemble or compile is
performed is as shown in Tables D-1 through D-6.
Immediately after installation, all device files to which each subseries correspond, and the file necessary for

development tools are copied. Basically, it is recommended to use these files as is. If you wish to delete

unnecessary files to save the disk capacity, do so by referring to Tables D-1 through D-6.

(1) uPD78312 Subseries

Table D-1. Required Device Files (uPD78312 Subseries)

Target Device Model Specification Required Device File
1PD78310 -c310 d310.78k
uPD78312 -c312 d312.78k
uPD78P312 -cp312 dp312.78k

(2) uPD78312A Subseries

Table D-2.

Required Device Files (uPD78312A Subseries)

Target Device Model Specification Required Device File
uPD78310A -c310A d310a.78k
UPD78312A -c312A d312a.78k
uPD78P312A -cp312A dp312a.78k

350

APPENDIX D NOTES ON USING DEVICE FILE

(3) uPD78322 Subseries

Table D-3. Required Device Files (uPD78322 Subseries)

Target Device Model Specification Required Device File
uPD78320 -c320 d320.78k
uPD78322 -c322 d322.78k
1PD78P322 -cp322 dp322.78k
uPD78323 -c323 d323.78k
uPD78324 -c324 d324.78k
UPD78P324 -cp324 dp324.78k

(4) uPD78328 Subseries

Table D-4.

Required Device Files (uPD78328 Subseries)

Target Device

Model Specification

Required Device File

uPD78327 -c327 d327.78k
uPD78328 -c328 d328.78k
HPD78P328 -cp328 dp328.78k

{6) uPD78334 Subseries

Table D-5.

Required Device Files (uPD78334 Subseries)

Target Device

Model Specification

Required Device File

1PD78330 -c330 d330.78k
uPD78334 -c334 d334.78k
uPD78P334 -cp334 dp334.78k

(6) Development tools

Table D-6. Required Device Files (development tools)

Development Tools

Required Device File

RA78K3

d*.78k""

CC78K3

d*.78k™"

Note * indicates an alphanumeric character. Use the device file required for the target device by referring to

Tabies D-1 through D-5.

APPENDIX D NOTES ON USING DEVICE FILE

D.3 SFR Name and SFR Bit Name

The name of a special function register (SFR) and its bit can be specified by using a predetermined symbol when
each development tool is used. This symbol is called an SFR name or SFR bit name. This symbol is treated as a
reserved word of the assembler package or C compiler package.

When the C compiler package is used, the SFR names and SFR bit names are recognized if the #pragma sfr
command is used. The other tools recognize them as standard. The assembler package and C compiler package
outputs alarm and error messages in response to inappropriate access based on this information.

M

@)

@)

(4)

352

For the SFR names and SFR bit names that can be used with the uPD78312 and 78312A Subseries, refer

to the following document.
Document name: uPD78312A Special Function Register List

Document number: |IEM-5118

For the SFR names and SFR bit names that can be used with the uPD78322 Subseries, refer to the

following document.
Document name: uPD78322 Special Function Register List

Document number: EM-5501

For the SFR names and SFR bit names that can be used with the uPD78328 Subseries, refer to the

following document.
Document name: uPD78328 Special Function Register List

Document number: |IEM-5514

For the SFR names and SFR bit names that can be used with the uPD78334 Subseries, refer to the

following document.
Document name: uPD78334 Special Function Register List

Document number: IEM-5518

APPENDIX D NOTES ON USING DEVICE FILE

D.4 Default Link Directive Information

Each device in the 78K/lll Series has different internal ROM and RAM capacities. Each device file includes
default link directive data necessary for the assembler package to relocate user program and data according to the
internal ROM and RAM capacities of each device.

The user should change this default setting by creating a link directive for each target system according to the
memory configuration of the actual target system and giving instructions to the assembler package (linker). Note
that the user program, data, and stack are not appropriately located with the default link directive data. This means
that, for example, the user data or stack may be located overlapping the register bank area or reserved area of the C

compiler package.

Tables D-7 through D-10 shows this information of each model.

Note that the area name ROM and area name RAM are essential area names. Unless explicitly specified by the
MERGE statement, all code segments (CSEG) are relocated to the area of the area name ROM, and all data
segments (DSEG) and bit segments (BSEG) are relocated to the area of the area name RAM.

(1) uPD78312 and 78312A Subseries

Table D-7. Default Link Directive Data (uPD78312 and 78312A Subseries)

Model Default Link Directive Data
upPD78310 MEMORY ROM: (00000H, OFEQQOH)
UPD78310A MEMORY RAM: (OFEOOH, 00200H)
uPD78312 MEMORY ROM: (0000CH, 02000H)
UPD78312A MEMORY RAM: (OFEOOH, 00200H)
UPD78P312A

(2) pPD78322 Subseries

Table D-8. Default Link Directive Data (uPD78322 Subseries)

Model Default Link Directive Data

uPD78320 MEMORY ROM: (00000H, OFC80H)

MEMORY RAM: (OFC80H, 00380H)
UPD78322 MEMORY ROM: (00000H, 04000H)
uPD78P322 MEMORY RAM: (OFC80H, 00380H)
HuPD78323 MEMORY ROM: (00000H, OFBOOH)

MEMORY RAM: (OFBOCH, 00500H)
uPD78324 MEMORY ROM: (00000H, 08000H)
UPD78P324 MEMORY RAM: (OFBOOH, 00500H)

353

APPENDIX D NOTES ON USING DEVICE FILE

(3) uPD78328 Subseries

Table D-9. Default Link Directive Data (uPD78328 Subseries)

Model Default Link Directive Data
HPD78327 MEMORY ROM: (00000H, OFDOOH)
MEMORY RAM: (OFDOOH, 00300H)
uPD78328 MEMORY ROM: (00000H, 04000H)
HUPD78P328 MEMORY RAM: (OFDOOH, 00300H)

(4) uPD78334 Subseries

Table D-10. Default Link Directive Data (uPD78334 Subseries)

Model Default Link Directive Data
UPD78330 MEMORY ROM: (00000H, OFBOOH)
MEMORY RAM: (OFBOOH, 00500H)
UPD78334 MEMORY ROM: (00000H, 08000H)
HPD78P334 MEMORY RAM: (OFBOOH, 00500H)

Caution As the default specification, the area name RAM includes the SFR area (0OFFOOH through
OFFFFH). However, because the SFR area is treated by the linker as a reserved area, no
segment (user data and stack) is relocated in this area. For example, even if MEMORY RAM:
(OFEOOH, 00100H) is specified with the uPD78310A, the result is the same as the default
setting of MEMORY RAM: (OFEOOH, 00200H).

354

APPENDIX D NOTES ON USING DEVICE FILE

D.5 Interrupt Request Name

When describing an interrupt routine (interrupt function) in C language, the function described in C language is
specified by the #pragma vect or #pragma interrupt command. At this time, the type of the interrupt is given by a
symbol as a parameter. This symbol is called an interrupt request name. The interrupt request name is used by the
C compiler package. The C compiler package creates an appropriate interrupt vector from the specified interrupt
request name and interrupt function name.

This information is as shown in Tables D-11 through D-14.

As the interrupt request name of the maskable interrupt, the symbol of the corresponding interrupt request signal
is assigned. To the other special interrupt sources, specific symbols are given.

(1) wuPD78312 and 78312A Subseries

Table D-11. Interrupt Request Name (uPD78312 and 78312A Subseries)

Interrupt Request Name Interrupt Vector Table Address Interrupt Request Name Interrupt Vector Table Address
RST 000H INTCROO 01AH
NMI 002H INTCRO1 01CH

INTEO 004H INTCR10 01EH

INTE1 006H INTCR11 020H

INTE2 008H INTSER 022H
INTWDT 00AH INTSR 024H

INTTB 00CH INTST 026H
INTTMO 00EH INTAD 028H
INTTM1 010H BRK_I 03EH
INTTM2 012H

Remark RST: Reset, NMI, INTWDT: Non-maskable interrupt, BRK_I: Software interrupt

355

APPENDIX D NOTES ON USING DEVICE FILE

(2) uPD78322 Subseries

Table D-12. Interrupt Request Name (uPD78322 Subseries)

Interrupt Request Name Interrupt Vector Table Address Interrupt Request Name Interrupt Vector Table Address
RST 000H INTCMO1 018H
NMI 002H INTCMO2 01AH
INTWDT 004H INTCMO3 01CH
INTOV 006H INTCM10 O1EH
INTPO 008H INTCM11 020H
INTP1 00AH INTSER 022H
INTP2 00CH INTSR 024H
INTP3 00EH INTST 025H
INTP4/INTCCXO0 010H INTCSI 028H
INTP5/INTCCO1 012H INTAD 02AH
INTP6 014H TRAPO 03CH
INTCMO00 016H BRK_I 03EH

Remark RST: Reset, NMI, INTWDT: Non-maskable interrupt,
BRK_I, TRAPO: Software interrupt

(3) uPD78328 Subseries

Table D-13. Interrupt Request Name (uPD78328 Subseries)

Interrupt Request Name Interrupt Vector Table Address Interrupt Request Name interrupt Vector Table Address
RST 000H INTCMO04 018H
NMI 002H INTCMO5 01AH

INTWDT 004H INTCMO6 01CH
INTOVO 006H INTCC10 01EH
INTPO 008H INTCM20 020H
INTP1 00AH INTSER 022H
INTP2 00CH INTSR 024H
INTOV1 00EH INTST 025H
INTCMO00 010H INTCSI 028H
INTCMO1 012H INTAD 02AH
INTCMO2 014H TRAPO 03CH
INTCMO3 016H BRK_I 03EH

Remark RST: Reset, NMI, INTWDT: Non-maskable interrupt,
BRK_I, TRAPO: Software interrupt

356

APPENDIX D NOTES ON USING DEVICE FILE

(4) upPD78334 Subseries

Table D-14. Interrupt Request Name (uPD78334 Subseries)

Interrupt Request Name Interrupt Vector Table Address Interrupt Request Name interrupt Vector Table Address
RST 000H INTCM11 018H
NMI 002H INTCM12 01AH
INTWDT 004H INTCM20 01CH
INTOV 006H INTCM21 O1EH
INTPO 008H INTCM30 020H
INTP1 00AH INTSER 022H
INTP2 00CH INTSR 024H
INTP3/INTCCOOR 00EH INTST 026H
INTP4/INTCCO1R 010H INTCSI 028H
INTP5 012H INTAD 03AH
INTP6 014H TRAPO 03CH
INTCMXO 016H BRK I 03EH

Remark RST: Reset, NMI, INTWDT: Non-maskable interrupt,
BRK_I: Software interrupt, TRAP: Exception

357

[MEMO]

358

APPENDIX E LIST OF OPTIONS

In this appendix, the program options are summarized in table form.
Please refer to these when developing programs.
This list of options can also be used as an index.

359

APPENDIX E LIST OF OPTIONS

E. 1 List of Assembler Options
No. Classification Description format Function Relation to other options Interpretation Ref.
when omitted age
1 | Specify device -C [device type] Specifies the device type of Independent Cannot be 53
type the target device. omitted
2 | Specify object -O [output file Specifies the output of an If both options -O and - -O [input file 54
module file name] object module file. NO are specified at the name.REL]
output same time, the option
-NO Specifies that no object specified last takes
module file is output. precedence.
3 | Specify forced -J Specifies that the object If both options -J and -NJ { -NJ 55
object moduie module file can be output even | are specified at the same
filte output if a fatal error occurs. time, the option
-NJ Makes option -J unavailable. specified last takes
precedence.
4 | Specify debug -G Specifies that debug data is to | If both options -G and - -G 56
data output be added to an object module NG are specified at the
file. same time, the option
-NG Makes option -G unavailable. specified last takes
precedence.
-GA Specifies that assembler If both options -GA and -GA 58
source debugging data is to be | -NGA are specified at the
added to an object module file | same time, the option
by the structured assembler. specified last takes
precedence.
-NGA Makes option -GA unavailable.
5 | Specify length -8 Specifies that the recognizable | If both options -S and -NS | -S 60
of symbol name length of a symbol name is to | are specified at the same
be extended to a maximum of | time, the option specified
31 characters. last takes precedence.
-NS Makes option -S unavailable.
6 | Specify symbol | -CA Specifies that no distinction is | If both options -CA and -NCA 61
name case made between uppercase and | -NCA are specified at the
lowercase characters in a same time, the option
symbol name. specified last takes
-NCA Specifies that a distinction is precedence.
made between uppercase and
lowercase characters in a
symbol name.
7 | Specify include | -I path name [, Specifies input of an include Independent Path specified 62
file read path path name] ... (two [file from a specified path. by the
or more path environmental
names can be variable
specied) (INC78K3)
8 | Specify -P {output file Specifies output of an If both options -P and -NP | -P [input file 63
assemble list file | name] assemble list file. It also are specified at the same | name.PRN]
output specifies the destination and time, the option specified
file name of the output file. last takes precedence.
-NP Makes option -P unavailable.
9 | Specify -KA Outputs an assemble list into If -KS and _KX are -KA 64
assemble list an assemble list file. specified at the same
file data -NKA Makes option -KA unavailable. | time, -KS is ignored.
-KS Outputs an assemble list If both options -KA and -NKS 66
followed by a symbol list into -NKA, both options -KS
an assemble list file. and -NKS, or both options
-KX and -NKX are
-NKS Makes option -KS unavailable. | specified at the same
time, the option specified
last takes precedence.
-KX Outputs an assembile list If options -NKA, -NKS and | -NKX 67
followed by a cross-reference | -NKX are all specified, the
list into an assembie list file. assemble list file cannot
-NKX Makes option -KX unavailable. | be output.

360

APPENDIX E LIST OF OPTIONS

No. Classification Description format Function Relation to other options Interpretation Ref.
when omitted page |
10 | Specify -LW [number of Changes the number of If option -NP is specified, | -LW 132 (80 69
assembile list file | characters] characters that can be printed | option -LW is unavailable. | characters for
format in 1 line in a list file. display)
-LL [number of Changes the number of lines If option -NP is specified, | -LL 66 (page 71
lines] that can be printed in 1 page in | option -LL is unavaitable. | feed is not
an assemble list file. performed in
the case of
display output)
-LH [character Specifies the character string If option -NP is specified, | None 73
string] printed in the title column of option -LH is unavailable.
the header of an assemble list
file.
-LT [number of Specifies a number of If option -NP is specified, | -LT8 76
characters] characters to be developed in | option -LT is
a tab. unavailable.
-LF Inserts a form feed (FF) code If both options -LF and -NLF 79
at the end of an assemble list | -NLF are specified at the
file. same time, the option
specified last takes
precedence.
-NLF Makes the -LF option If option -NP is specified,
unavailable. option -LF is unavailable.
11 | Specify error list | -E [output file Outputs an error list file. If both options -E and -NE | -NE 80
file output name] are specified at the
-NE Makes the -E option same time, the option
unavailable. specified last takes
precedence.
12 | Specify -F File name Inputs assembler options and Independent Options and 82
parameter file the input file name from a input files can
specified file. only be
specified on
the execution
line.
13 | Specify path for | -T Path name Creates a temporary file in a Independent Path specified 84
temporary file specified path. by
creation environmental
variable TMP
14 | Specify help - Displays a help message on When option -- is No display 88

the display. Description
format: --

specified, all other options
are unavailable.

361

APPENDIX E LIST OF OPTIONS

E. 2 List of Linker Options
No. Classification Description format Function Relation to other options Interpretation Ref.
when omitted page |
1 | Specify load -O [output file Outputs a load module file. If both options -O and - -O (input file 112
module file name] NO are specified at the name).LNK
output same time, the option
-NO Does not output a load module | specified last takes
file. precedence.
2 | Specify forced -J Forces output of a load module | If both options -J and -NJ | -NJ 113
load module file file. are specified at the same
output time, the option
-NJ Makes option -J unavailable. specified last takes
precedence.
3 | Specify debug -G Outputs debugging data to a If both options -G and - -G 114
data output load module file. NG are specified at the
same time, the option
specified last takes
precedence.
-NG Makes option -G unavailable. When option -NG is
specified, the public
symbol list and local
symbotl list cannot be
output regardiess of
specification of -KP or -
KL.
4 | Specify -S [area name] Automatically generates stack | If both options -S and -NS | -NS 115
generation of decision public symbols. are specified at the same
stack decision time, the option
symbols -NS Makes option -S unavailable. specified last takes
precedence.
5 | Specify directive | -D file name Specifies a particular file to be | Independent — 117
file input as a directive file.
6 | Specify link list | -P [output file Specifies output of a link list If both options -P and -NP | -P [input file 118
file output name] file. are specified at the name.MAP]
-NP Makes option -P unavailable. same time, the option
specified last takes
precedence.
7 | Specify link list | -KM Outputs a map list into a link If both options -KM and -KM 119
file data list file. -NKM are specified at the
same time, the option
specified last takes
precedence.
-NKM Makes option -KM unavaitable. | If options -NKM, -NKP
and -NKL are all
specified, the link list file
cannot be output even if
option -P is specified.
-KD Outputs a link directive file into | If option -NKM is -KD 121
a link list file. specified, option -KD
becomes unavailable.
-NKD Makes option -KD unavailable. | If both options -KD and
-NKD, both -KP and
-KP Outputs a public symbol list -NKP, or both -KL and -NKP 123
into a link list file. -NKL are specified at the
same time, the option
specified last takes
precedence.
-NKP Makes option -KP unavailable. | If option -NG is specified,
the public symbol list and
-KL Output a local symboi list into | local symbol list cannot -NKL 125
a link list file. be output even if option -
KP
-NKL Makes option -KL unavailable. | or -KL is specified.

362

APPENDIX E LIST OF OPTIONS

No. Classification Description format Function Relation to other options interpretation Ref.
when omitted | page
8 | Specify link list -LL [number of Specifies number of lines that | If option -NP is specified, | -LL66 (page 127
format lines] can be printed in 1 page in a option -LL is unavailable. | feed is not
link list file. performed in
the case of
display output)
-LF Inserts a form feed (FF) code If both options -LF and -NLF 129
at the end of a link list file. -NLF are specified at the
same time, the option
specified last takes
precedence.
-NLF Makes the -LF option If option -NP is specified,
unavailable. the option -LF is
unavailable.
9 | Specify error list | -E [file name] Qutputs error list file. If both options -E and -NE | -NE 130
file output are specified at the
-NE Defauit value: -NE same time, the option
Makes option -E unavailable. specified last takes
precedence.
10 | Specifies library | -B file name Inputs a specific file as a Independent — 131
file library file.
11 | Specify library -| path name [, Reads a library file from a If a library file without a Path specified 132
file read path path name] ... (two | specified path. path name is specified by | by
or more path option -B, option -1 is environmental
names can be unavailable. variable
specified) 'LIB78K3'
12 | Specify -F file name Inputs linker options and the independent This option 133
parameter file input file name from a specified and the input
file. file name can
only be
entered on the
startup line.
13 | Specify path for | -T path name Creates a temporary file in a independent Path specified 134
temporary file specified path. by the
creation environmental
variable TMP.
Current path, if
no path is
specified
14 | Specify warning | -W [level] Specifies whether or not a Independent Outputs an 136
message output warning message is output to ordinary error
the console. message
15 | Specify help - Displays a help message on All other options are No display 137

the display.

unavailable.

363

APPENDIX E LIST OF OPTIONS

E. 3 List of Object Converter Options
No. Classification Description format Function Relation to other options Interpretation Ref.
when omitted | page |
1 | Specify HEX -O [outpuit file Outputs a HEX format object If both options -O and - -O (input file 167
format object name] module file. NO are specified at the name).HEX
module file -NO No HEX format object module | same time, the option (file type H1 to
output file is output. specified last takes H15 for
precedence. extended
space)
2 | Specify symbol | -S [output file Outputs a symbol table file. If both options -S and -NS | -8 [input file 169
table file output | name] are specified at the name].SYM
-NS Does not output a symbol table | same time, the option (file type S1 to
file. specified last takes S15 for
precedence. extended
space)
3 | Specify sortby |-R Sorts HEX format objects in If both options -S and -NS | -NR 171
object address order of address. are specified at the same
order time, the option specified
last takes precedence.
-NR Makes option -R unavailable. If option -NO is specified,
option -R/-NR becomes
unavailable.
4 | Specify object -U complement Outputs a specified If option -NO is specified, | — 172
complement value [, [start] , complement vaiue as an object | -U becomes unavailable.
size] code for an address area to
which no HEX format object
has been output.
5 | Specify error list | -E [output file Outputs an error list file. If both options -E and -NE | -NE 175
file output namej are specified at the
-NE Makes option -E unavailable. same time, the option
specified last takes
precedence.
6 | Specify -F file name Inputs options and input file Independent Options and 176
parameter file names from a specified file. input file
names can
only be
specified from
the startup
command line.
7 - | Specify help - Displays a help message on All other options are No display 180

the display (console).

unavailable.

364

APPENDIX E LIST OF OPTIONS

E. 4 List of Librarian Options

No. Classification Description format Function Relation to other options Interpretation Ref.
when omitted | page

1 | Specify list file -LW [number of Changes the number of Unavailable if the LIST -LW132 (80 192
format characters] characters that can be printed | subcommand is not characters for

in 1 line in a list file. specified. display output)
-LL [number of Changes the number of lines -LL66 {page 193
lines] that can be printed in 1 page in feed is not
a list file. performed in
the case of
display output)
-LF Inserts a form feed (FF) code If both options -LF and -NLF 194
at the end of a list file. -NLF are specified at the
-NFL Makes the -LF option same time, the option
unavailable. specified last takes
precedence.

2 | Specify path for | -T [path name] Creates a temporary file in a Independent Created in'the 195
temporary file specified path. path specified
creation by the

environmental
variable TMP.

3 | Specify help -- Displays a help message on All other options are No display 197

the display.

unavailable.

365

APPENDIX E LIST OF OPTIONS

E.5 List of List Converter Options

No. Classification Description format Function Relation to other options interpretation Ref.
when omitted | page
1 | Specify object -R [input file Specifies the input of an object | Independent -R [assemble 221
module file input | name] module file. list file
name.REL]
2 | Specify load -L [input file name] | Inputs a load module file. independent -L [assemble 222
module file input list file
name.LNK]
3 | Specify symbol | -CA Specifies that no distinction is | If both options -CA and -CA
name case made between uppercase and | -NCA are specified at the
lowercase characters in a same time, the option
symbol name. specified last takes
-NCA Specifies that a distinction is precedence.
made between uppercase and
lowercase characters in a
symbol name.
4 | Specify absolute | -O [output file Outputs an absolute assemble | Independent -O [assemble 223
assemble list file | name] list file. list file name
output P
5 | Specify error list | -E [output file Outputs an error list file. If both options -E and -NE | -NE 224
file output name] are specified at the
-NE Makes option -E unavailable. same time, the option
specified last takes
precedence.
6 | Specify -F file name Inputs options and input file Independent Options and 225
parameter file name from a specified file. input file
names can
only be input
from the
execution line.
7 | Specify help - Displays a help message on All other options are No display 227

the display {console).

unavailable.

366

APPENDIX F LIST OF SUBCOMMANDS

This appendix is a summary of the subcommands in list form.
It will be helpful to refer to this list when developing software programs.
This list of subcommands can also serve as an index.

367

APPENDIX F LIST OF SUBCOMMANDS

No. | Classification Description Format Function Abbrev. Ref.
format Page
1 CREATE CREATEAIlibrary file name [Atransaction] Creates a new library file. C 200
2 | ADD ADDalibrary file name Atransaction Adds a module to a library file. A 201
3 | DELETE DELETEAlibrary file nameV (Vmodule Deletes a moduie from a library file. D 202
name [V, -1V}
4 | REPLACE REPLACEAlibrary file name Atransaction Replaces one module with another in R 203
a library file.
5 PICK PiCKAlibrary file nameV (Vmodule name Retrieves a specified module from an P 205
[V, V) existing library file.
6 | LIST LIST[Aoption]library file name [V(Vmodule | Outputs data on modules in a library L 207
name)] file.
7 | HELP HELP Displays a help message on the H 209
display (console).
8 EXIT EXIT Exits the librarian. E 210

368

[EXXIE Message

Although NEC hastaken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that

From: ;
errors may occur. Despite all the care and
precautions we've taken, you may
Name encounter problems in the documentation.
Please complete this form whenever
Company you'd like to report errors or suggest
improvements to us.
Tel. FAX
Address
Thank you for your kind support.
North America Hong Kong, Philippines, Oceania Asian Nations except Philippines
NEC Electronics Inc. NEC Electronics Hong Kong Ltd. NEC Electronics Singapore Pte. Lid.

Corporate Communications Dept. Fax: +852-2886-9022/9044
Fax: 1-800-729-9288
1-408-588-6130

Europe

NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

Korea

NEC Electronics Hong Kong Ltd.
Seoul Branch

Fax: 02-528-4411

South America Taiwan
NEC do Brasil S.A. NEC Electronics Taiwan Ltd.
Fax: +55-11-6465-6829 Fax: 02-719-5951

Fax: +65-250-3583

Japan

NEC Corporation

Semiconductor Solution Engineering Division
Technical Information Support Dept.

Fax: 044-548-7900

| would like to report the following error/make the following suggestion:

Document title:

Document number:

Page number:

If possible, please fax the referenced page or drawing.

Document Rating Excellent Good
Clarity a Qa
Technical Accuracy a a

Organization [a

Acceptable Poor
a Q
a [
a a

CS 978

	COVER
	INTRODUCTION
	CHAPTER 1 GENERAL
	1.1 Assembler Overview
	1.1.1 What is an assembler?
	1.1.2 What is a relocatable assembler?

	1.2 Overview of Features of the RA78K3
	1.2.1 Creating a source module file using an editor
	1.2.2 Structured assembler preprocessor
	1.2.3 Assembler
	1.2.4 Linker
	1.2.5 Object converter
	1.2.6 Librarian
	1.2.7 List converter
	1.2.8 ECC generator
	1.2.9 Integrated debugger

	1.3 Reminders Before Program Development
	1.3.1 Number of files that can be input to linker
	1.3.2 Limits of number of symbols
	1.3.3 Maximum perfomance characteristics of RA78K3

	1.4 Features of RA78K3

	CHAPTER 2 PRODUCT OVERVIEW AND METHOD OF INSTALLATION
	2.1 Host Machine and Supply Medium
	2.2 Contents of Media
	2.2.1 For the PC-9800 series or IBM PC/AT and compatibles
	2.2.2 For the HP9000 series 700, SPARCstation family, and RISC NEWS

	2.3 Installation
	2.3.1 For PC-9800 series or IBM PC/AT and compatibles
	2.3.2 For HP9000 series 700, SPARCstation family, RISC MEWS

	2.4 File Organization
	2.4.1 For the PC-9800series or IBM PC/AT and compatibles
	2.4.2 For the HP9000 series 700, SPARCstation family and RISC NEWS

	2.5 Environment Setting
	2.5.1 Environmental variable

	CHAPTER 3 EXECUTING THE RA78K3
	3.1 Before Executing the RA78K3
	3.1.1 Verifying the contents of the disk
	3.1.2 Sample programs

	3.2 Procedure for Executing the RA78K3
	3.3 Summary of the RA78K3 Execution Procedure

	CHAPTER 4 ASSEMBLER
	4.1 Assembler Input and Output Files
	4.2 Functions of the Assembler
	4.3 Assembler Statup
	4.3.1 Assembler startup
	4.3.2 Execution start and end messages

	4.4 Assembler Options
	4.4.1 Types of assembler options
	4.4.2 Order of precedence of assembler options
	4.4.3 Explanation of assembler options

	CHAPTER 5 LINKER
	5.1 Files Output by the Linker
	5.2 Functions of the Linker
	5.3 Memory Spaces and Memory Areas
	5.4 Link Directives
	5.4.1 Directive files
	5.4.2 Memory directives
	5.4.3 Segment location directives

	5.5 Linker Startup
	5.5.1 Linker startup
	5.5.2 Execution start and end messages

	5.6 Linker Options
	5.6.1 Types of linker options
	5.6.2 Order of precedence of linker options
	5.6.3 Explanation of linker options

	CHAPTER 6 OBJECT CONVERTER
	6.1 Object Converter Input and Output Files
	6.2 Functions of the Object Converter
	6.3 Object Converter Startup
	6.3.1 Object converter startup
	6.3.2 Execution start and end messages

	6.4 Object Converter Options
	6.4.1 Types of object converter options
	6.4.2 Explanation of object converter options

	CHAPTER 7 LIBRARIAN
	7.1 Files Input and Output by the Librarian
	7.2 Functions of the Librarian
	7.3 Librarian Startup
	7.3.1 Librarian startup
	7.3.2 Execution start and end messages

	7.4 Librarian Options
	7.4.1 Types of librarian options
	7.4.2 Explanation of library options

	7.5 Subcommands
	7.5.1 Types of subcommands
	7.5.2 Explanation of subcommands

	CHAPTER 8 LIST CONVERTER
	8.1 List Converter Input and Output Files
	8.2 Functions of the List Converter
	8.3 List Converter Startup
	8.3.1 List converter startup
	8.3.2 Execution start and end messages

	8.4 List Converter Options
	8.4.1 Types of list converter options
	8.4.2 Explanation of list converter options

	CHAPTER 9 PROGRAM OUTPUT LIST
	9.1 Lists Output by the Assembler
	9.1.1 Assemble list file headers
	9.1.2 Assemble list
	9.1.3 Symbol list
	9.1.4 Cross-referance list
	9.1.5 Error list

	9.2 Lists Output by the Linker
	9.2.1 Link list file heacers
	9.2.2 Map list
	9.2.3 Public symbol list
	9.2.4 Local symbol list
	9.2.5 Error list

	9.3 List Output by the Object Converter
	9.3.1 Error list

	9.4 List Output by the Librarian
	9.4.1 Library data output list

	9.5 Lists Output by the List Converter
	9.5.1 Absolute assemble list
	9.5.2 Error list

	CHAPTER 10 GETTING THE MOST FROM THE RA78K3
	10.1 Improving Operating Efficiency (EXIT Status Function)
	10.2 Proparing the Development Environment (Environmental Variables)
	10.3 Interrupting Program Execution
	10.4 Making the Assemble List Easy to Read
	10.5 Reducing Program Startup Time
	10.5.1 Describing a control instruction in the source program
	10.5.2 Creating parameter files and subcommand files

	10.6 Object Module Library

	CHAPTER 11 ERROR MESSAGES
	11.1 Overview of Error Messages
	11.2 Assembler Error Messages
	11.3 Linker Error Messages
	11.4 Object Converter Error Messages
	11.5 Librarian Error Messages
	11.6 List Converter Error Messages

	APPENDIX A SAMPLE PROGRAMES
	A.1 Source Lists
	A.2 Execution Example
	A.3 Output Lists
	A.3.1 Assemble lists
	A.3.2 Symbol lists
	A.3.3 Cross-reference lists
	A.3.4 Map list
	A.3.5 Public symbol list
	A.3.6 Local symbol list
	A.3.7 Library data output list
	A.3.8 Absolute assemble lists

	APPENDIX B LIST OF CAUTIONS ON USE
	B.1 Cautions
	B.1.1 Handling device file
	B.1.2 Memory necessary for execution (with PC-9800 Series, IBM PC/AT, and compatible machine)
	B.1.3 Notes on list converter
	B.1.4 Notes on debug option
	B.1.5 Notes on C compiler
	B.1.6 Notes on using network
	B.1.7 Notes on ordering ROM code

	B.2 Limitations
	B.2.1 Limitations of structured assembler
	B.2.2 Limitations of assembler
	B.2.3 Limitations of linker
	B.2.4 Limitations of ECC generator

	APPENDIX C USING SUPPLIED FILE (INTMS.DEF)
	C.1 Overview
	C.2 Using Macro for Vector Table Setting
	C.3 Using Macro Service Control Word Area Allocating Macro (except uPD78312 and 78312A Subseries)
	C.4 Using Macro Service Channel Area Allocating Macro (uPD78312 and 78312A Subseries only)
	C.5 Using Macro Service Channel Area Allocating Macro (except uPD78312 and 78312A Subseries)
	C.6 Including File

	APPENDIX D NOTES ON USING DEVICE FILE
	D.1 Device File
	D.2 Correspondence between Target Devices and Device Files
	D.3 SFR Name and SFR Bit Name
	D.4 Default Link Directive Information
	D.5 Interrupt Request Name

	APPENDIX E LIST OF OPTIONS
	E.1 List of Assembler Options
	E.2 List of Linker Options
	E.3 List of Object Converter Options
	E.4 List of Librarian Options
	E.5 List of List Converter Options

	APPENDIX F LIST OF SUBCOMMANDS

