To our customers,

Old Company Name in Catalogs and Other Documents

On April 1!, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

8.

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

USER'S MANUAL RRENESAS

RA78K SERIES ASSEMBLER PACKAGE

for OPERATION

USER’'S MANUAL NEC

RA78K SERIES ASSEMBLER PACKAGE

for OPERATION

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document,

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granied under any patents, copyrights
or other intellectual property rights of NEC Corporation or of others,

INTRODUCTION

This manual is designed to facilitate correct understanding of the
functions and operation of each program contained in the RA78K
Series Assembler Package (hereinafter referred to as '"this package
or the package"}.

This manual does not cover the language related to the 78K series
such as directives and source program formats. Therefore, before
using this manual, read through the RA78K Series Assembler Package
User's Manual for Language (hereinafter referred to as "the
Language Manual").

Descriptions related to the RA78K/I, RA78K/II, and RA78K/III in
this manual are applicable to the version numbers V3.0 and upwards
of the RA78K series assembler packages. For application examples
in the manual, programs for the 78K/III series microcomputers have
been used.

Structured assembler
preprocessor

Assembler

Linker

RA78K Series Assembler Package Object Converter

Librarian

List Converter

[Target Devices]
The software of the following microcomputers can be developed

with this package:

Package name Target device
RA78K/0 78K/0 uPD78012, uPD78014
RA78K/1I 78K/I uPD78112
uPD78134, uPD78134A, uPD78136, uPD78138
RA78K/II 78K/II uPD78120, uPD78212, uPD78213, uPD78214

uPD78220, uPD78224
uPD78233, uPD78234
RA78K/III 78K/III uPD78310, uPD78312
uPD78310A, uPD783122
uPD78320, uPD78322
uPD78330, uPD71334

RA78K/VI 78K/VI uPD78600, uPD78602, uPD78603, uPD78604

[{Readers of Manual]

Although this manual is intended for those who are familiar with
the functions of the microcomputer subject to software development
and the method of describing source programs, the manual can also

be used by those who use an assembler program for the first time.

[Organization of Manuall

This manual consists of the following 11 chapters and appendixes:

Chapter 1 - General ,
Outlines the functions of this package including the
role of the package in microcomputer development.

Chapter 2 - Product Qverview
Describes the program file names cffered in this
package and the cperating envirconment of each
program. .

Chapter 3 - Execution of Assembler Package
Describes the program development procedures through
execution of the respective programs in this package
by using sample programs. Since this chapter places]
emphasis on how to actually operate each program,
those who wish to operate this package should start

reading the manual from this chapter.

ii

Chapters 4 through 8 - Assembler, Linker} Object Converter,
Librarian, and List Converter
Details the functions and operations of the
respective programs {(Assembler, Linker, Object
Converter, Librarian, and List Converter) of this
package. These chapters are the most important for

you to actually operate each program in this package.

Chapter 9 - Qutput Lists of Programs
Explains the formats of various lists to be output by
the respective programs of this package.

Chapter 10 - Utilization of Assembler. Package
Introduces some measures recommended for effective
utilization of this package.

Chapter 11 - Error Messages
Describes error messages to be output by the
respective programs of this package.

Appendixes - Contain examples of sample program lists, hints on

use, lists of respective program options, and a list

of librarian subcommands.

[Recommended Usage of Manual]

For those who wish to actually operate this package: First, read
Chapter 3, Execution of Assembler Package of this manual.

For those who have a general understanding of assembler programs
or those who have read the RAT78K Series Assembler Package User's
Manual for Language: You may skip Chapter 1, General of this
manual.

Utilize various lists in the respective appendixes after you have
familiarized yourself with the operation of each program. For
quick reference, use the respective program options in Appendix
C and the error message lists in Chapter 11.

iii

fSymbols and Abbreviations]

The following symbols and abbreviations are used in this manual:

Symbol Meaning
.- Continuation (repetition) of data in the same format
[] Parameter(s) in brackets can be omitted.

Characters enclosed in (single quotes) must be

input as is.

Characters enclosed in " "

(double quotes) must be
input as is.
Underlined portion of a command description must be

input by the user,

O Only one blank character must be input.

AN One or more blank characters must be input.

A Zero or more blank characters may or may not be
input.

? This part of the program description is omitted.

/ Delimiter or separator

Carriage Return input

N Backslash

With PC-DOS, a backslash is used in place of "¥".

iwv

[Conventions of Filename Specification]

(1) Disk type file specification

"tdrive name:][¥][pathname] primary name [.{file type]ll

Character string
consisting of not more
than 3 characters

—+Character string consisting
of not more than 8 characters

“— Subdirectory name

\— Route directory name (With PC-DOS,
a backslash (\) appears in place of "¥".)

\—»Drive name in which the file 'specified by primary name
and file type is stored. If [drive name:] is omitted,
the current drive is assumed. :

Example:

Note: 1. No blank character (space) can be specified
before or after ":" (colon), "." (period), or
ll¥ll.

2. Uppercase and lowercase letters are not
distinguished from each other.

3. With PC-DOS, a backslash (\/) is used in place of
II¥II .

(2) Device type file specification

any of the following logical devices can be specified:

Logical device |Description
CON Output to the console
PRN Qutput to the printer
AUX Output to an auxiliary
output device.
NUL Dummy output (Nothing
will be output.)

* 1BM PCT™ 1BM pc/xT™, 1BM Pc/ATTH, and pc-pos™ are
trademarks of IBM Corp.
** MS-DOSTM is a trademark of Microsoft Corp.
*%% v30™™ ig a trademark of NEC Corporation.
xx 8028611 and 80861M are trademarks of Intel Corp.

vi

CHAPTER 1 GENERAL

1.1

TABLE OF CONTENTS

Assembler OVErView .iietecesnteesacensa et e sessassnannens
1.1.1 What is an assSembler?eeeececcecsaes ..

1.1.2 What is a relocatable assembler?

1.2 Functional Outline of Assembler Package «.ceieeecesoses

1.2.1 Creation of source module file with editor

1.2.2 Structured assembler preprocesSSOr ..ceeeeccscanans
1.2.3 Assembler .ieiesverecanassvassasssannascnsascs e
T.2.4 LINKEL teverenesacssuccssssnsnanassssnsssarannasna
1.2.5 Object converter ...cceeeees teeesssaerenes crsenas
1.2.6 LibrariaAn c.ccoeceeeiecaceeancecnsanacanass recasaas
1.2.7 List convertercececccensnnnssnns cavsaarrassena
1.2.8 Source debUggerccieeiersrcccnsranns cersesue
1.3 MEMOTY MABPS tesevvaronsstssssssassscssasasnsansansnsa .o

1.4 Reminders Before Program Development

1.4.1 Number of files that can be input to Linker
1.4.2 Restriction on number of symbolsccvvveen.
1.4.3 Maximum performance characteristics of

assembler package ..iceeienscsssanesacenasncassana

1.5 Features of Assembler Packageccee.. ceserararaseaan
CHAPTER 2 PRODUCT OVERVIEWcecocuscosnssansasss sesasns
2.1 Contents of Product s.eecesravrecnssnrsonssannsnnneanansns

2.2 FPorm of Supplied File Medium ..cceseccsonscsasens

2.3 System Configuration secsassacccescsasessna

CHAPTER 3 EXECUTION OF ASSEMBLER PACKAGE sasescacan

3.1

Before Executing the Assembler Packade .eseeesess

3.17.1 Confirming the contents of the supplied disk ...

3.1.2 Sample Program ..s.essssoesasasasssssasnsnssasns

2 Procedure for Assembler Package Execution

3 Summary of Assembler Package Execution Procedure

vii

2-1
2-1
2-3
2-3

CHAPTER 4 ASSEMBLER;.;............... 4-1

4.1 Input/Output Files of ASSEmDIEr ...veeeecsssasesssanana 4-1
4,2 Assembler Functions sassssasasesessacsasnanassase 4-3
4.3 How to Start Up the Assemblerveveeeeos veessneeaas 4-4
4.3.1 Starting up the assembler seevarnsnnnsnesve 4-4
4.3.2 Execution start and end mMeSSAgesS .vveenerencancns 4-6
4.4 Assembler OpLions ... eeiieeceesetacananastotassnanncasns 4-8
4.4.1 Types of assembler options ...cieeeeieriaeiaeeas «e. 4-8

4,4,2 Priority of assembler optionsv.ivivevoncssnses 4-10
4.4.3 Description of each assembler option ..vcceveuaee. 4-12
(1) Option for processor type
specification (-C) ..icivevninninnneennn caesasse 4-13
{2) Options for object module file output
specification (-0/-NO) ...cirrvnnrencncannas . 4-17
{3) Options for forced object module file
output specification (-J/-NJ} ceevercencnnns . 4-19
{(4) Options for debug information output
specification (-G/-NG) Cesersnnrasna . 4-27
(5) Options for symbol name length
specification (-S/-NS) +eeeereannnan teseeaaes 4-23
(6) Options for symbol name uppercase/lowercase
specification (-CA/-NCA) .vveeeennnnncanonnns 4-25
(7) Option for Include file read path
specification (-I) ...i.iiiecennccanannn aeee. 4-27
{8) Options for assembly list file output
specification (-P/-NP) .vevievesarcanersnnas . 4-29
{9) Options for assembly list file information
specification (-KA/-NKA, -KS/-NKS,
-KX/-NKX) Ceseessassseseasasesanssasasn 4-31
(10) Options for assembly list file format
specification (-LW, -LL, -LH, -LT,
. ~LF/-NLF)} ¢eveeereccecanas Ceeteeaaaaaaa ceee. 4-39
(11) Options for error list file output
specification (-E/-NE)} cens
(12) Option for parameter file specification
(-F) ceeseneanaan Creessessacssssssana cmsseses 4-59
(13) Option for temporary file creating path
specification (-T) casesecnsenaanann . 4-61

viii

(14) Options for HELP message display

specification (--}) (eieancens cteernessvesaanse
CHAPTER 5 LINKER tesesenerranuns ceememrsasanears cen s
5.1 Input/Output Files of LinKer ..eeeeeeeeeeseaseees ceeaan
5.2 Linker FunctionsS ...eeeescecosocsenonnsa tesreasssensenn
5.3 Memory Spaces and Memory Areas cetasecsataannaen
5.3.1 Memory SpaceS .eesuvenscase cseesesiesnsarrssnnnna
5.3.2 Memory areas .cceeaas esesssssnaca eeesrversaenanea
5.4 Merging the Input Segmentsvvsn. resssesesennnnnan
5.4.1 Merge types of segments ..ccececeaceceas ceaterastacena
5.4.2 Rules for determining the merge type comss
5.4.3 Merging the segments (.cieeeencccanarsosnns caanaaan
5.4.4 Segment merging method by merge type «sieveeceeen .
5.5 Determining the Location Addresses of Segments
5.5.1 Location types of segments creenan .
5.5.2 Rules for determining the location type

5.5.3 Rules for determining the segment location
BddresSSesS seeseesncscnnssasacannnnas cerecarasanens
5.5.4 Procedure for locating segments ...ciciienesnscas
5.6 Link Directives, . cceeeececrnnsaannnns csacssanescnnn cons
5.6.1 Directive filec..u.. ceeaeanns eeesar s
5.6.2 Memory directive ,...iicecieecancannns cecmecseanen
5.6.3 Segment location directive .iiieieccersscscccesns .
5.7 How to Start Up the Linkerieeeccccansenncans e s
5.7.7 Starting up the linkerciciieenarasassnss “ranas
5.7.2 Execution start and end mesSSages ..eeevecsasases

5.8 Linker Options ...c.veececsecsa .

' 5.8.2 Priority of linker optionscecevuncnnn

5.8.7 Types of linker optioOns .uieeeiveinscenassnanennnan

5.8.3 Description of each linker option

(1)

(2)

(3)

Options for load module file output
specification (-0/-NO) ..ciceacenas ceranenens
Options for forced load module file output

specification (-J/-NJ) eeteneceaenennen

Options for debug information output
specification (-G/-NG) ciivereeccnsenennanns .

ix

5-1
5-1
5-3
5-4
5-4
5-5
5-8
5-8
5-8
5-10
5-11
5-17
5-17
5-21

(4) Options for stack—reserving.symbol creation
specification (=S/-NS) ... eveercartansncacens 5-56
(5) Option for directive file specification
(-D) eeieniinnns tecearersssans teseraean sessee D-59
{(6) Options for link list file output
specification (-B/-NP) cievevneveseononansans 5-61
(7) Options for link list file information
specification (-KM/-NKM, -KD/-NKD,
~KP/-NKP, -KL/-NKL) s L K
(8) Options for link list file format
specification (-LL, -LF/-NLF) ...ccecaanssass 5-75
(9) Options for error list file output
specification (-E/-NE)} ..vceecececasanssssasas 5-80
(10) Option for library file specification (-B) .. 5-82
(11) Option for library file read path
specification (-I) c.vescriacscnncnncans crmeen 5-84
(12) Option for parameter file specification
{(-F) +seevenen esesasannnae seeenenn cacarennen . 5-86
(13) Option for temporary file creation path
specification (-T) cieeeececenstcecncannranes 5-88
(14) Option for HELP message display

SpeCifiCatiOl’l ("-) ---------------- * &4 & 8 85 308 5_90

CHAPTER 6- OBJECT CONVERTER @ 4 5 & 8 58 8 8 S8 04 A S eSS s eaeeedsses 6_1

6.1 Input/Output Files of Object Converter saeess 6-1
6 » 2 Obj eCt Converter Functions "% 4 &= s % ¢ 8 8 @ a e d Bt eA R E sSSP 6_3
6.3 How to Start Up the Object Converter tescnsevsss 0-B

6.3.1 Starting up the object converterc.... 6-6
6.3.2 Execution start and end MESSA0ES .essecsccesassss 0-8

LI LB 3 6-10
6.4.1 Types of object converter options ...cecceeecennn 6-10

6.4 Object Converter Options cramees st iacancs

6.4.2 Description of each object converter option 6-11
(1) Options for HEX-format output module file
output specification (-0/-NO) cesssseee 6-12
{(2) Options for symbel table file output
specification (-S/-NS) .iieeeeneessseanaanees 6-15
(3) Options for object code output sequence
specification (~R/-NR) sceveceasscscesnacenes 6-18

Option for object code fill specification
(-U)

Options for error list file output

(4)
(5)

specification (-E/-NE)
(6) Option for parameter file specification
(-F) '
{(7) Option for HELP message display

specification (--)

--

CHAPTER 7.
7.1 Input/Output Files of Librarian

LIBRARIAN

® % ¢ s as s s s e s a8 ad b aasamasn

7.2 Librarian Functions
7.3 How to Start Up the Librarian .

W e 848 8" e s E s

P A A I R R R B R R N B R B L B N B B

7.4 Librarian Options

7.3.1 Starting up the librarian ..ccecveseces

7.3.2 Execution start and end messages

7.4.1 Types of librarian options

¢ B B B s PP e s

MR R I B B B R B

s 4 8 s e B e s s E e *E e

7.4.2 Description of each librarian option c.eeeececenss

(1) Options for list file format specification

(-LW, -LL,

-LF/-NLF)

(2) Option for temporary file creation path

specification (-T)

* 4 8 8B 8 B S U RS S RSN e AR S PSR

(3) Option for HELP message display

specification (--)

7.5 Subcommands

P T E R I B AN B B B L N L N L L L

7.5.1 Types of subcommands seeeececsnencnecacnscncancns

7.5.2 Description of each subcommand ...

(1) CREATE subcommandce.. Ceascerasesaasanns
(2) ADD subcommandceeeenscassssnsssncsnansas
{(3) DELETE subcommandesesssasesanssnaccnnss
(4) REPLACE subcommandcecesenas R
(5) PICK subcommand ...eeocescecsnccncssancsacsnns
(6) LIST subcommand ...ceeeesevcescasosnacns cacases
(7) HELP subcommandeccceces cieenen resceasns
{(8) EXIT subcommand ..ccessssssscscnsssnarsanncas

xi

7-1
7-1
7-3
7-5
7-5
7-9
7-11
7-11
7-12

7-13

S 7-19

7-21
7-23
7-23
7-24
7-25
7-27
7-29
7-31
7-33
7-35

CHAPTER 8. LIST CONVERTER
8.1 Input/Output Files of List CONVErterveeceeanacsaeaes 8-1
8.2 List Converter Functions$ caeecnea ceaseeennas «s 8-3
8.3 How to Start Up the List Converterccccecescsssesess 8-6

8.3.1 Starting up the list converter0v0uv... 8-6

8.3.2 Execution start and end MESSAGES seeeveseeneess . 8-8
8.4 List Converter Options e, 8-10
8.4.1 Types of list converter options .eceseeecea. cesnan 8-10

8.4.2 Description of each list converter option 8-11

(1) Option for object module file input

specification (-R) ...eeeerceercrancacacnans .. 8-12
(2} Option for load module file input

specification (-L) cicseansas serssavessensses 8-14
{(3) Option for absolute assembly list file

output specification (-0) ...c.eciieennnnennn 8-16
(4) Options for error list file output

specification (-E/-NE) .ceieerereneeconcanean 8-18

(5) Option for parameter file specification
(—F) 5 4 % 3 @ s e s e P E S A o s 8" 0 e o B 4 % 5 0 RSN ABRES 8-20
(6) Option for HELP message display

specification (--) cieeccacaens

CHAPTER 9. OUTPUT LISTS OF PROGRAMS ...icueesacacvsasenasnses 9=1
9.1 Output Lists of Assemblerccicieeeccenn trseresesaaa I-1
9.1.1 Header of assembly list file ersescesnnss F=2
9.1.2 Assembly list sseecaccreneusnasasenan .. 9-3
9.1.3 Symbol table list ...iieeee... cssessasanss ceenaees 9-5
9.1.4 Cross-reference list ..iciiieennnns tetaceresesnan . 9-6
9.1.5 Error list ...iiiiieinnennnnnnnn Serarasesserenanne 9-8
9.2 Output Lists of Linker seessssasasasaasas Cera e 9-9
9.2.1 Header of link 1list file .ieissecevccrnncsncnsases 9-9
9.2.2 Map list s hssstescatsat e u teee e .. 9-11
9.2.3 PUBLIC symbol 1list ...icivieerecescanaans cessansss 9-12
9.2.4 Local symbol list crsesasesacnesataaraseena 9-13
9.2.5 Error list ,....... cescannas ceensesacessssvanacas 9-14
9.3 OQutput List of Obiject Converterevieeecens eressnsans 9-15
9.3.1 Error list ..uieecnneneeinccennnnana cetrecesteaanae 9-15

xii

9.4 Cutput List of Librarian ...iiviiiiiitieienssssnsassanes
9.4.1 Library information output 1ist ...eevecevrareans
9.5 Output Lists of List Converterceeciececncnceranneans
9.5.1 Absoclute assembly list cscesseassrersesas
9.5.2 Error list ...civiiencnnns tesssensanans Ceaeieansa
CHAPTER 10. UTILIZATION OF ASSEMBLER PACKAGE ..c:icveetacesnes
10.7 How to Execute Each Operation with Efficiency

10.2

10.3
10.4
10.5

10.6
10.7

(Use of EXIT Status Function)cevcisnnsonsencanne
How to Prepare or Complete the Development
Environment (Use of Envirconment Variables)-
How to Interrupt Program Execution ...ciececericcceees .
How to Increase the Readability of Assembly List
How to Save Yourself Trouble in Program Invocation ...
10.5.1 Describing control instructions in the

SOUTCEe PTOYLAM svssossesscssoasnsosacsassansonsss
10.5.2 Creating a parameter file or subcommand file ..
Creation of Object Module Library Filecceceusn .
How to Change the Option Mark

(Use of Environment Variable)cceececscacasnsrsss .

CHAPTER 11. ERROR MESSAGES ..veereeass Ase sttt s aansans e

1.1
11.2
11.3
11.4
11.5

Assembler Error Messages ..ieeeeaes cesasanas resereaena
Linker Error MessSages .eeececaen tieisesassess s aan .
Object Converter Error MeSSAgeS .cveesasscsasacscasscans
Librarian Error Messages st encarrearenraearenns

List Converter Error MesSSagesS .ecesecas

xiii

10-1

10-2
10-3
10-3
10-5

10-5
10-5
10-6

APPENDIXES

APPENDIX A. SAMPLE PROGRAMcivecennaes

A.1 Source ListsS seseeveceacnassancannns .

A.2 Execution Examples ...eeeecccncsnnnnns
A.3 Output Lists Cheireceaneanna sreersannn

A.3.1
A.3.2
A.3.3
A.3.4
A.3.5
A.3.6
A.3,7
A.3.8

Assembly Lists aenenns

SymbOl LiStS L N N R LI B A R I B

Cross-reference Lists ..ceeeeees

Map List * ® 4 & & 8 88 " S A0 S S S P S P A B S F S S S S FF S A ST A SRS
PUBLIC Symbol List ..eveieceanens

Local Symbol LisSt ...iecccevenccsasoscsrtasssasncas vea

Library Information Output List .iicsecececeoscns

Absolute Assembly List

APPENDIX B. LIST OF HINTS ON USE ...ccvee.

APPENDIX

C.1
c.2
C.3
C.4
C.5

List
List
List
List
List

APPENDIX

cC.
of
of
of
of
of

OPTION LISTS .ieieescascnacasa
Assembler Options ...vevieenns
Linker Options sececececcenas .
Object Converter Options
Librarian Options ..cecececaes

List Converter Options «veeve.

LIST OF LIBRARIAN SUBCOMMANDS

Xiv

------ * 8 8 88 8 s e swn

A-1
A-1
A-3
A-4
A-4
A=7
A-8
A-9
A-10
A-10
A-10
A-11

C-1
C-1
Cc-6
c-11
c-13
C-14

D-~1

Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fiqg.
Fig.

Fig.
Fig.

Fig.

Fig.

List of Figures

1-1. Assembler Package ..ciciveenansnss sevesennensraana
1-2. Flow of Assembler it iineiannnann
1-3. Development Process of Microcomputer-applied
ProduUCt soseesevenseecencanas Ceeeaecacececnracans
1-4, Software Development ProCess ...eeessacssvas cenn
1-5. Assembly Phase by This Package ...ccceseensanans
1-6. Re-assembly for Debuggingveveeeeseses cseann
1-7. Program Development Utilizing Existing Modules .
1-8. Program Development Procedure with This Package
1-9. Creation of Source Module File ...ceanaans ceesnes
1-10. Function of Structured Assembler Preprocessor ..
T-11. Functions of Assembleroceeeeeeees cersecee
1-12. Functions of Linker .iiiveeincrnneneosnnses teaen
1-13. Functions of Object Convertereeeecvcocaras
1-14. Functions of Librarian Ceeaeneesaaaeaaa.
1-15. Functions of List Converterccceteescoccscas
1-16. Functions of Source Debuggercvveeecennceas
3-1. Structure of Sample Program tecetmresesssascsnna
3-2. Link Directive (1) c.iciiecevesressansascescassss
3-3. Link Directive (2) sssssnnasaneas aeeassaes
3-4. Assembler Package Execution Procesure
4-1. TI/0 Files of Assemblereeeerneecennsnnennes
5-1, I/0 Files of Linker Cessessacstennennna .
S-2. Memory Spaces eras et et eattacasnnennunnus
5-3. Memory Spaces and MemOYY AYCaAS ..eeenoccnasansoan
5-4, Merging Process (with Same Named Segments)
5-5. Merging Process (with No Same-Named Segment) ...
5-6. Method of Merging When Merge Type is SEQUENT
(with Segment Type Other Than BSEG) cciveceaces .
5-7. Method of Merging in Bit Units ..ceeececesceanss
5-8. Method of Merging When Merge Type is 2-byte
ALIGN 1 it iieceeeccsescenuonsssasssscancsnasasssans
5-9 Method of Merging When Merge Type is 4-byte
ALIGN teveroncesss caeeees tescsecasesressaasassea
5-10. Locating a Segment by BOND Specification

v

1-1
1-2

1-3
1-4
1-5
1-7
1-8
1-9
1-10
1-11
1-12
1-13
1-14
1-15
1-16
1-17
3-2
3-7
3-7
3-11
4-2
5-2
5-4
5-5
5-10
5-11

5-11
5-12

Fig.

Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

5-13.
5-'_1 4-

5-15.
5-16.
5-17.
5-18.

Locating a Segment
Specification ...
Locating a Segment
Specification
Locating a Segment
Locating a Segmént
Specification ...
Locating a Segment
Examples of
Memory Area
Priority of
by Location Type
Memory Area Name
Incorrect
I/0 Files
I/0 Files
Procedure

I/0 Files

Improper Segment Location

Name Specification

Memory Area Definition
of Object Converter .
of Librarian
for Creating a Library File

of List Converter

2-byte ALIGN

AREA Specification
Combined AREA/ALIGN
FREE Specification

xvi

LR I)

* e s 800

Address Allocation to Segments

5-20

5-20
5-21
5-23
5-24

5-25
5-29
5-32
6-2
7-2
7-4
8§-2

Table
Table

Table
Table
Table
Table
Table
Table
Table
Table
Table

Table
Table
Table
Table
Table

Table

Table

Table
Table
Table
Table

Table
Table
Table
Table
Table
Table

List of Tables

1-1. Restrictions on Number of Symbols

1-2. Maximum Performance Characteristics of

Assembler Package ...iciecerasascnsesans ceeasenes
2-1. Program Files OFFEred vvveveneanseacnsennaasnnns
2-2. System Configuration .c..eeeeeeenesnnsnscancannans
4-1. I/0 Files of Assemblereeeen. cesraresesanes
4-2. Types of Assembler Options ..ceeceecrssencnsens .
4-3., Priority of Assembler Optionscceeecveceanane
4-4, List of Target DeviCesS ..ieececessananssosananns
4-5. Characters That Can Be Described as Title

5-1. I/O Files of Linker teneaaeaans A e
5-2. Areas to Be Allocated to Segments by

Default ASsSUumMPtion ..eesevresvevnesecsosscnnases
5-3. Merge Type by Relocation Attribute ..ieeeeceses e
5-4. List of Location Types of Segments ...ecee.. cens
5-5. Leocation Type Given by Relocation Attribute
5-6. Types of Directivesceiererencsncnsanss P

5-7. Default Memory Areas and Address Ranges That

Can Be Re-defined ...iciesecanuacanan S eaeseanas .
5-8. Merge Types That Can Be Specified with
DireChive tiiiieineneieianenonenenanannennss v

5-9. Segment Location by Combination of Bind

Specification and Memory Space Specification ...
5-10. Types of Linker Optionscicereeccnancencns
5-11. Priority of Linker Options ...eevenceens cremnae
6-1. I/O Files of Object Converterceeeececeses
6-2. File Types of Output Files for Each Extension

Space i.iieinnes s heasaaneas st tecsee s ceemaa .
6-3. Types of Object Converter Optionsceceeceses .
7-1. I/0 Files of Librarian cecttsesssesesacsens
7-2. Types of Librarian Options .s.ciererensesacensoas
7-3. SubcommMandsS ...seseecsccncesassssssncssascnsannnnas
8-1. I/0 Files of List Converter ceeaean
8-2. Types of List Converter OptionS ...eeeececvaresss

xvii

1-23

1-24
2-1
2-3
4-1
4-8
4-10
4-13
4-48
5-1

5-7
5-9%
5-17
5-22
5-26

5-36

5-38
5-45
5-47
6-1

CHAPTER 1. GENERAL

1.1 Assembler Overview

The RA78K Series Assembler Package is a series of programs
designed to translate each source program coded in the assembly
language for the 78K series microcomputers, into machine language
coding.

The assembler package contains six programs: Structured Assembler
Preprocessor, Assembler, Linker, Object Converter, Librarian, and

List Converter.

Structured assembler
preprocessor

Assembler program

Linker program

Assembler package

Object converter
program

Librarian program

List converter program

Fig. 1-1., Assembler Package

1.17.1 What is an assembler?

(1) Assembly language and machine language
An assembly language is the most fundamental programming
language for microprocessors.
To have a microprocessor in a microcomputer do its job,
programs and data are required. These programs and data must
be written by a human being (i.e., a programmer) and stored in
the memory section of the microcomputer. Programs and data
that can be handled by the microcomputer is nothing but a set
or combinations of binary numbers which is called machine
language (i.e., the language that can be understood or
interpreted by the computer).

.To create a program in machine language coding, namely, by

a set of binary numbers is not an easy job for a human being,
because it's difficult for him or her to remember the coding
and he or she is likely to make errors in coding.

Because assembly language instructions are in one-to-one
correspondence with machine language instructions, the
assembly language can give the computer a detailed or specific
instruction (for example, improving the I/O processing speed).
For this reason, there is a method of creating a program

using an abbreviated symbol (or mnemonic symbol) which
represents the meaning of a machine language instruction to
assist the human memory. A programming language system by

this symbolic coding is called an assembly language.

To translate a program created in the assembly language into

a set of binary numbers that can be understocod by the micro-
processor, another program is required. This program is called

an assembler.

Program coded in

Program written in a set of binary
assembly language numbers
“Translation?
? "| iprogram
{Assembler)
{Assembler source {Object mecdule file)

module file)

Fig. 1-2, Flow of Assembler

(2) Development of microcomputer-applied products and role of
this package
Fig. 1-3 illustrates the standing of the programming in
assembly language in the development process of a micro-

computer-applied product.

Product
planning

r

System
Hardware design Software
development +‘ development

h 4

Y

. , Software
Logic design design
V b 4
Program ceding in
Manufacturing assembly language
4 Position of
Assembly - :
. thi ackage
Inspection s P g
NO
oK YES
YES
bebugging
e YES
y
System
evaluation
y

Product
marketing

Fig. 1-3. Development Process of Microcomputer-applied Product

1-3

The software development process will be further detailed

in Fig.

1-4 below.

Software
development

>

b 4

Preparation of
program specs

b 4

Preparation of
flowchart

Coding pes

P

h 4

Editing of
source module

Linking vee

r

Pile conversion| -+

r

Debugging ves

NO

System
evaluation

in assembly languaée for 78K series

Creates an assembler source module
file with the editor.

. Creates an object module file.

Links two or more object files'and
creates a load module file.

Converts the load module file into
a HEX-format object module file.

‘Checks the object module file for

proper operation using a hardware
debugger {(e.g., in-¢circuit
emulator).

Fig. 1-4. Software Development Process

The assembly phase in the software development process will
be reviewed in further detail by giving an example of this
package.

l © START]

2
-

r

From Editing of
source module

4

assembler «++ Qutputs an object module

file
YES as:relr‘l:bly
Linker «+» Qutputs a load module file.
A 4
Object +++ Qutputs a HEX-format object
converter \
module file.,

.
| To Debugging)

Fig. 1-5, Assembly Phase by This Package

1.1.2 What is a relocatable assembler?
The machine language translated from a source language by the
assembler will be stored in the memory of the microcomputer before
use. In this case, in which memory location each machine language
instruction will be stored must have been determined. Therefore,
information on "the allocation of each machine language instruc-
tion to a specific address in memory" will be added to the machine
language converted (translated) by the assembler.
Depending on the method of allocating addresses to machine
language instructions, an assembler can be broadly divided into an
absolute assembler and a relocatable assembler.
o Absolute assembler

The machine language instructions converted (translated) in

one-time assembly operation are allocated to absolute

addresses.

o Relocatable assembler

Addresses determined for the machine language instruc-

tions converted in one-time assembly operation are

tentative. Absolute addresses will be determined by a

program called the linker.

In the past, when a program was created with the absolute
assembler, programmers had to, as a rule, complete programming at
a time. However, if you create a large program at a time, the
program becomes complicated, making analysis and maintenance of
the program troublesome. To avoid this, such a large program is
developed by dividing it into several subprograms (i.e., modules)
for each functional unit. This programming technique is called
the modular programming.
The relocatable assembler is an assembler suitable for modular
programming. The following advantages can be derived from modular
programming with the relocatable assembler:
{1) Increase in development efficiency
It is difficult to write a large program at a time. In such a
case, divide the program into modules for each function and
the program can be developed with two or more programmers
engaged in writing subprograms at the same time. This will

certainly increase the development efficiency of the program.

1-6

If any bugs are found in the program, you do not need to

re-assemble the entire program just to correct part of the

program. Only the subprogram (module) requiring correction(s)

can be re-assembled. This will help shorten the debugging

time.

Bugs
are
found!

Program consisting of

single module

Module \
L X X X X °
Fig. 1-6.

Entire
program
must be.
assembled
again.

Program consisting of
two or more modules

Mcodule

Module

Module

Re-assembly for Debugging

1-7

Module

Only this
module
must be
assembled
again.

(2) Utilization of resources
Highly reliable, highly versatile modules which have been
previously created can be utilized for creation of another
program. If you accumulate such high-versatility modules as
software resources, you can save time and labor in developing

a new program.

Module A Module B Module C Module D

New module

Module A

New module

Module D

New program

Fig. 1-7. Program Development Utilizing Existing Modules

1.2 Functional Outline of Assembler Package

An ordinary program development procedure with this assembler
package is illustrated in Fig. 1-8. The development of a program
is basically performed by using assembler, linker, and object
converter programs.

This relocatable assembler package also contains programs such as
Librarian and List Converter so that programs can be developed
with high efficiency.

C source module file

& Include
" - file
‘2 Compiler ﬁ)
g
3]
8 \
v Startup assembly Object
module ®) Isource module
ﬂD file for medule file
C compiler file
N AN
Assembly y
iist
file
Library
O file
o
o
[\]
)
2]
o
o
>
-]
g Load
] C) module
m / file
<
Z List E FO0bject ¢
* converter i S converter s
Absolute ‘ HEX- fornat]
assembly 'e) oy act
ﬁD list file ﬁD table
file ’/’/, file
1E [T source
contreller debugger
" . et
0 S RS-232C -
= . Wl
S .. .~ R§-232C
. -
2 M
Qo

In-circuit
emulator

Fig. 1-8. Program Development Procedure with This Package

1-9

1.2.1 Creation of source module file with editor

Divide one program into several functional modules.

Each module becomes the unit of coding as well as the unit of
input to the assembler. A module serving as the unit of input to
the assembler is called a source module.

After coding each scurce module, the soﬁrce module is written into
a file with the editor. The file thus created is called a source
module file.

The source module file becomes an input file to the assembler.

Program Source module

Source
module

END

Source ~o
module ~ END

END

Source
module .

Write to file
END (Editor)

Source meodule file

Fig. 1-9. Creation of Source Module File

"1.2.2 Structured assembler preprocessor

The structured assembler preprocessor is a program for implement-
ing structured programming in the assembly language. This program
accepts a source program written in the structured assembly
language as an input file and outputs an assembler source module
file.

For details of the structured assembler preprocessor and
structured‘assembly language, see the ST78K Series Structured

Assembler Preprocessor User's Manual published separately.

Structured
(:> assembler
source

file

% Structured™
w assembler
% preprocesso

Assembler

source module
(%) file

Fig. 1-10. Function of Structured Assembler Preprocessor

1-11

1.2.3 Assembler

The assembler accepts assembler source module files as input files
and translates assembly language into machine language (a set of
binary humbers}. If any coding error is found in the input source
module, the assembler outputs an assembly error. If no assembly
error is found, the assembler outputs an object module file which
contains machine language information and relocation information
relating to:the allocation address of each machine language
instruction. The assembler also outputs information at assembly
time as an assembly list file.

Assembler
source module
file

Translates assembly
language into machine
language.

Any
assembly
error?

YES

Assembler

output Creates object

module file.

>

A 4

Object
module
file

Creates list file,

Assembly list file

Fig. 1-11. Functions of Assembler

1-12

1.2.4 Linker

The linker accepts two or more object module files output by

the compiler or assembler as input files and combines them with a
library file for output as a single load module file.

The linker also determines addresses to be allocated to each
relocatable segment in the input module, whereby the correct
values of the respective relocatable symbols and external
reference symbols are determined and embedded into the output load

module file.,

. Library Directive
Two or more object module files file file

Input

e
7 7

Link list Load module
file file

Fig. 1-12. Functions of Linker

1.2.5 CObject converter

The object converter accepts the load module file output by the
linker as an input file, converts its file format, and outputs
the result of the conversion as an HEX-format object module file.
The object converter also outputs the symbol information required

in symbolic debugging as a symbol table file.

Load
module

O file

Output
HEX-format object Symbol table

module file file

Fig. 1-13. Functions of Object Converter

1-14

1.2.6 Librarian

Modules (programs) which have versatility and a definitive
interface should be kept in a single library file. By so doing,
a number of object module files in a single file can be handled
with ease.

The linker has a function to extract only the required modules
from the library file and link them with the input object module
file(s). Therefore, if you register {store) two or more modules in
a single library file, it is unnecessary for you to specify the
required module names one by one at linking time.

The librarian is used to create and update a library file,

Object module files output by
Compiler or Assembler

L9

Input

Librarian

Output
r

e

Library file

Fig. 1-14. Functions of Librarian

1.2.7 List converter

The list converter accepts the object module file and assembly
list file output by the assembler and the load module file output
by the linker as input files and outputs an absolute assembly list

file.

One drawback of a relocatable assembly list is such that address
values and relocatable values in the list differ from the actual

values. Because an absolute assembly list has no such drawback,

the absolute assembly list output by the list converter will

facilitate program debugging as well as program maintenance.

Assembly
list
file

L

Object Load

module module

file file
Input.

(List converter

‘ Output

Absclute
assembly

(P list file

Fig. 1-15, Functions of List Converter

1.2.8 Source debugger

Symbolic debugging (program debugging at the symbolic level) can
be performed by downloading.the HEX-format object module file
output by the object converter into the IE (in-circuit emulator)
or EB {evaluation board) of the target system and by reading the
symbol table file output by the object converter.

As another way of debugging, you can specify an option which tells
the compiler to output debugging information at the time of
compiling the source program subject to debugging. By so doing,
information on the symbols and line numbers required for debugging
is added to the object module so that program debugging can be
performed at the source level.

Symbolic debugging Source level debugging

HEX-format object Symbol table

! Load module file
module file file)

(:> * Object information

i i * Debugging information

1

IE controller Source debugger
R4
\..\ s
. P
RS-232C .~ Rrs-232C
Tw, -

In-circuit
emulator

Fig. 1-16. Functions of Source Debugger

1.3 Memory Maps

The memory maps of the respective series in this package are shown
in this section.

(1) Memory map of 78K/0 {(uPD78014)

FFFFH } .
sfr area
Sfr area | (FFOOH~ FFFFH)
FFZ0H | 4 saddr area
| | (FE20H~FFI1FH)
FFOOH Vool
|
| Internal
FE20H v high-speed RAM
FBOOH {
: t Internal low-speed RAM
FAEQH : {
4 Area prohibited
FA80H | \ from use
~ o~ 1
~ ~ I External memory
TFFFH - *)
OFFFH X
CALLF instr
entry area
(80080~ FFFH)
800H
-~ ~ | Internal ROM
TFY
CALLT instr
table area
(40t~ TFH)
4108
Vector
table area
0H !

The internal ROM/RAM areas applicable to each target device
in the 78K/0 series are as listed below.

Target Internal Internal high- Internal low-
device ROM area speed RAM area speed RAM area
uPD78012 0000H to 3FFFH FDOOH to FEFFH FAEQH to FAFFH

uPD7801 4 0000H to 7FFFH FBOOH to FEFFH FAEQH to FAFFH

{2) Memory map of 78K/I (uPD78112)

FFFFH T c
) sfr area
str area | (FFOOH~ FFFFH)
FFZ0H | t saddr area
| | (FE40H~FFLFH)
FFOOH Generil ') E T
rs .
FEEON o | | Internal RaM
memory area 1 |
FE4OH o
1FFFH 4
GFFFH -
CALLF instr
entry area
(800H~ FFFH)
800H
-~ ~ | Internal ROM
TFH
CALLT instr
table area
(404~ TFH)
{01
Vector
table area
GH ¥

The internal ROM/RAM areas applicable to each target device
in the 78K/I series are as listed below.

. Target Internal Internal
device ROM area RAM area
uPD78112 0000H to 1FFFH FE40H to FEFFH
uPD78134/ 0000H to 3FFFH FD80OH to FEFFH
uPD78134A

uPD78136 0000H to 5FFFH FDOOH to FEFFH

uPD78138 0000H to 7FFFH FC80H to FEFFH

{3) Memory map of 78K/III (uPD78312A)

FFFFH 1 .
sfr area
sfr area | (FFOGH~ FFFFH)
FF20H | t+ saddr area
| | (FE20H~FF1FH)
FFOOH General y | f
registers | l
"FE80H [pata b
memory area | | Internal RAM
FE20H V }
FEOOH 4 .
B07TFH
. CALLT instr
table area
{8040H~ 80TFH)
B040H Mzctor External memory
table area
80006H
3FFFH
IFFFH - 4 A
OFFFH
CALLF instr
entry area
{800H~ FFFH)
§00H
-~ ~ | Internal ROM
TFH
CALLT instr
table area
(408~ TFH)
40H
Vector
table area
0K |

The internal ROM/RAM areas applicable to each target device

in the 78K/IIl series are as listed below.

Target Internal Internal
device ROM area RAM area
uPD78310/ None FEQOH to FEFFH
uPD78310A

ubPD78312/ 0000BH to 1FFFH FEQOOH to FEFFH
uPD783124a

uPD78320 None . FC80H to FEFFH
uPD78322 0000H to 3FFFH FCB0H to FEFFH
uPD78330 None FBOOH to FEFFH
uPD78334 0000H to 7FFFH FBOOH to FEFFH

1-21

(4) Memory map of 78K/VI (uPD78602)

FFFFH 1
| sfr area
sfr area E(FFOOH“‘FFFFH)
FFOOH i \
VI
FEFFH
General : saddr area
registers {FCOOH~FEFFH)
FEOOH Real-time
e Internal RAM
FD31H MacEo
FDOGH service control
]
FBOOH i 11*
~ ~ },External memory
. |
3FFFH) !
~ Program/data ~
~ area] ~
FFH
~CALLT/BRKT instr™
~table area ~
491 Internal ROM
Trap table (see Note below)
40H
310
Vector
table area

0H |

Note: When the EA (External Access) pin of the uPD78600 or
uPD78602 is set at a Low level, the internal ROM
area becomes an external memory area.

The internal ROM/RAM areas applicable to each target device
in the 78K/VI series are as listed below,

Target Internal Internal
device ROM area RAM area
uPD78600 None FBOCH to FEFFH
uPD78602 0000H to 3FFFH FBOOH to FEFFH

1.4 Reminders Before Program Development
Before you set your hand to the development of a program, keep

in mind the following points:

1.4.1 Number of files than can be input to Linker
The number of object module files that can be input to the linker
is as follows:

With 78K/0, 78K/I, 78K/VvI: 128 files

With 78K/III . : 64 files

1.4.2 Restriction on number of symbols

The number of local symbols and that of PUBLIC symbols in the
assembler and linker, respectively, are restricted as shown in the
table below.

Table 1-1. Restrictions on Number of Symbols

Number of symbols
No. of local symbols No. of PUBLIC symbols
Assembler 2,900 {see Note 1)
Linker 2,900 x No. of modules | 3,000 (see Note 2)

NOTE: 1. There is no restriction on the number of symbols
by symbol type. Undefined symbols will also be
counted and included in the total number of
symbols. .

2. If the number of PUBLIC symbols exceeds 2,000,

the execution speed slows down because of the
additional time required to access a temporary

file.

1-23

1.4.3 Maximum performance characteristics of assembler package
The maximum performance characteristics of the assembler package
that should be kept in your mind before program development are
listed in Table 1-2 below. |

Table 1-2. Maximum Performance Characteristics of

Assembler Package

Program name | Item Restriction
Assembler Symbol length | w/o -S option 8 characters
with -5 option 31 characters
No. of characters per line 130 characters
No. of ?ASEG 20 segments
segments
other than 7ASEG |80 segments

Linker No. of input module files 64 files (with
- 78K/I1I) or

128 files {with

other than

78K/III)

1-24

1.5 Features' of Assembler Package

This package has the fecllowing features:

(1)

(2}

(3)

(4)

Macro function

When the same group of instructions must be described in a
source program over énd over again, a macro can be defined by
giving a single macro name to the group of instructions.

By using this macro function, coding efficiency and readabi-
lity of the program can be increased.

Optimize function of branch instructions

The assembler package has an assembler directive to automatic-
ally select a branch instruction (i.e., BR directive).

To create a program with high memory efficiency, a 2-byte
branch instruction must be described according to the branch
destination range of the branch instruction. However, it is
troublesome for the programmer to describe a branch instruc-
tion by paying attention to the branch destination range for
each branching. If the BR directive is described, the
assembler generates the appropriate branch instruction
according to the branch destination range. This is called
the optimize function of branch instructions.

Conditional assembly function _

With this function, part of a source program can be specified
for assembly or non-assembly according to a predetermined
condition. If a debug statement is described in a source
program, whether or not the debug statement should be
translated into machine language can be selected by setting
a switch for conditional assembly. When the debug statement
is no longer required, the source program can be assembled
without major modifications to the program.

Directive for general-purpose register selection

As representations for the 78K series general-purpose
registers, absolute names (R0, R1, RP0O, etc.) and function
names (X, A, AX, etc.) are used. When describing a function
name in a source program, a general-purpose register select
directive must always be used. The RSS directive is provided

to allow description of a function name in a source program.

CHAPTER 2.

2.1 Contents of Product

PRODUCT OVERVIEW

This product offers the program files listed in Table 2-1 below.

Table 2-1. Program Files Offered

{x=1,2, or 3)

Program name Filename File type
(see Note 1)
Assembler RA7BKn.EXE Command file
RA78Kn.OMx Overlay files
(with 78X/0:
Xx=1 or 2;
with 78K/I:
x=1, 2, 3, or 4;
with 78K/III:
x =1, 2, 3, 4,
5, or 6;
with 78K/VI:
x=1 or 2)
RA78Kn.HLP HELP file
Linker LK78¥n.EXE Command file
RA78Kn.0OM] Overlay file (shared
{see Note 2) with Assembler)
LK78Kn.HLP HELP file
Object converter OC78Kn.EXE Command file
4 OC78Kn.HLP HELP file
Librarian LB78Kn.EXE Command file
LB78Kn.HLP HELP file
List converter LCNV78Kn.EXE Command file
RA78Kn.0OMx Overlay files (shared

with Assembler)

LCNV78Kn.HLP

HELP file

78KnMAIN . ASM
78KnSUB.ASM

Sample program files
for operation check

Note: 1.

Remarks:

n in the filename indicates one of the numbers 0, 1, 2,
3, and 6 corresponding to 78K series names 78K/0, 78K/I,
78K/II, 78K/I1II, and 78K/VI, respectively.

This overlay file is not used with the 78K/VI.

In addition to the above programs, the ST78Kn structured
assembler preprocessor (n=0, 1, 2, 3, or 6) is included.
For details, refer to the 78K Series Structured

Assembler Preprocessor User's Manual.

1. A command file refers to a file which will be the
first to be read into memory when each program (i.e.,
assembler, linker, object converter, librarian, or
list converter) is started up.
2. An overlay file refers to a file which will be read
into memory only when required during the execution of

each program.

2.2 Form of Supplied File Medium

This product is supplied in either of the following two file

media:

o 8-inch 2DD (double-sided double-density) floppy disk
© 5-inch 2HD {double-sided high-density) floppy disk

2.3 System Configuration

The respective programs contained in this product

operate in

the environment indicated in Table 2-2 below.
Table 2-2., System Configuration
Host computer 08§ Memory size
CPU CONFIG.SYS required
PC-9800 series | v30TM MS-DOS Must be 384K bytes
8038611 | (v3.10) | set to (see Note 2)
8086 M FILES=13
or more,
IBM PC PC-DOS
IBM pc/xTIM (v3.10,
IBM PC/ATTM v3.30)

NOTE: 1. Each program in the RA78K series relocatable assembler

package operates on the MS-DOS for the PC-9800 series

offered by NEC. NEC is not responsible for proper

operation of these programs on any commercially available
MS-DOS other than that supplied by NEC.

2. The memory size required indicates the maximum value of

memory space required for each program to operate and

dees not include the system area.

CHAPTER 3. EXECUTION OF ASSEMBLER PACKAGE

This chapter describes a procedure required when you actually
execute this assembler package. By executing each program in the
assembler package according to the procedure described in this
chapter, you may accustom yourself to the operation of each
program in the assembler package.

In all the execution examples contained in this and subsequent
chapters, operations on the basis of MS-DOS (PC-9800 series) are

shown using programs for the 78K/III series.
3.1 Before Executing the Assembler Package

3.1.1 Confirming the contents of the supplied disk

Set the supplied floppy disk (or its backup disk) containing this
assembler package in the disk drive and confirm that the disk
contains all the program files listed in Section 2.1, Contents of
Preoduct.

3.1.2 Sample program

0f the program files stored in the supplied floppy disk;
"78KnMAIN.ASM" and "78KnSUB.ASM" (where n is 0, 1, 2, 3, or 6
indicating each 78K series name) are the files containing a sample
program for the operation check of the assembler package. These
files will be input as source program files to the assembler in
the assembler operation to be described later. Here, the contents
of this sample program will be briefly explained.

The sample program is used to convert hexadecimal data into ASCII
codes and is divided into two modules: a main routine and a
subroutine. The main routine is given a module name "SAMPM'" and is
stored in a source module file named "78KnMAIN.ASM",

The subroutine is given a module name "SAMPS" and is stored in a
source module file naméd "78KnSUB.ASM".

78KnMAIN.ASM

{Main routine) 78KnSUB.ASM
NAI\AE SAMPM (Subroutine)
. . NAME SAMPS
CALL sae
.RMHWHM END
END "

Fig. 3-1. Structure of Sample Program

o0 78K3MAIN.ASM {(Main routine)
$ PROCESSOR(310)

NAME SAMPM
FEERKERFRERRF R AR R R R R R RN KR FE R F R R RN AR R AR H 44

»
.

BEX -> ASCI! Conversion Program

main-routine

L B SR
M W e W

S I 2 I RIS IR 2 222222222222)

PUBLIC MAIN, START
EXTRN CONVAH -

DATA DSEG AT OFE20H

’
.
Il

HDTSA: DS 1

STASC: DS s

CODE CSEG AT 08

MAIN: D¥ START
CSEG

START: MOV EFM, #00
HOYY 3P, #0FEB0H
HOY MM, %00
KOV STBC, #08H

MOV HDTSA, #1AH

MOVW HL, #HDTSA ;set hex 2-code data in UL registor
CALL 1CONVAR ;convert ASCIEF <- HEX

;output BC-register <- ASCI! code
MOVW DE, #STASC :set DE ¢~ store ASCI] code table
MoV A B
MOV [DE+].4
MOY A C
MoV [DE+], &
BR 3%
END

o 78K3SUR.ASM (Subroutine)

-'§ PROCESSOR(310)

NAME SAMPS .
#*#*****t****#****t#*ttt**#t*t**##t*#**#*#***t****#

#
HEX -> ASCI! Conversion Program L]
& ¥
% sub-routine ¥
T ¥ ¥
k input condition : (HL) <- hex 2 code ¥
] ’ %
¥ output condition : BC-register <{-ASCII Z code *
i ¥
*##*****#***#*#*****#*****#**###t*%********#t****#*
PUBLIC CONYAH

CSEG
CONVAE: MOV AL £0 o
ROL4 [HL] :hex upper code load
CALL 'SASC
MOV B, A istore result
MOV A 80
ROL4 [AL] :hex lower code load
CALL 1S4ASC
MOV C.A ;store result
RET
##*#***#****#**#*********#**************#*****#*#*
;% subroutine convert ASCII code ¥
,t input Acc (lower 4bits) <- hex code ¥
+ % output Acc {- ASCII code ¥
#****#*#t****#*#****#*#******tt##***#*#*****#*****
SASC: CMP A, #0AH :check hex code > 8
BC $SASC] .
ADD A, $07H :bias(+7)
SASCi: ADD A, #3080 :bias(+30)
RET
END

‘Note: 1. This sample program is provided as a reference program .
which is merely intended for your use in learning the
functions and operations of the assembler package.
Therefore, it cannot be used as is as an application
program.

2. With this sample program, no initial value setting is
performed for the Register Set Select (RSS) flag and
Register Bank Select (RBSO to RBS2) flags. Therefore, the

register settings used in the sample program are as

follows:
Register bank: 0 (OFEFOH to OFEFFH)
RSS flag : 0

3-4

3.2 Procedure for Assembler Package Execution

This section introduces to you the basic procedure for executing

this assembler package.

{1} Assemble the sample program '"78K3MAIN.ASM".

o Enter the start-up command line of the assembler as follows:

A>ra78k3 T8k3main. asm -g

© The following message will be output to the console:

uCOM-T8K/II1 Assembler Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USxxxxxxxxxx

Passl Start
Pass2? Start

Assembly complete, 0 error(s) and 0 warning(s) found.

(2} Check the contents of drive A.
The assembler has now created two files: "78K3MAIN.REL"
(object module file) and "78K3MAIN.PRN" (assembly list file).
If you specify the -E option at assembly time, the assembler
will output an error list file.

{(3) Assemble the sample program "78K3SUR.ASM".

o Enter the start-up command line of the assembler as follows:

A>ral8k3 78k3sub.asm -g

¢ The following message will be output to the conscle.

uCOM-T8K/111 Assembler Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USxxxxxxxxxx

Passl Start
Pass? Start

Assembly complete, 0 error(s) and 0 warning({s) found.

(4) Check the contents of drive A.

(5)

Two files "7BK3SUB.REL" (object module file) and "78K3SUR.PRN"
(assembly list file) have been output by the assembler.

If you specify the -E option at assembly time, the assembler
will output an error list file,

Create a directive file.

The directive file is a file to tell the linker how address
allocation to segments in the input module should be made.
Therefore, if you wish to expand the default ROM/RAM area or
define a new memory area for address allocation to segments,
a directive file must be created. If a specific address on
memory must be allocated to a segment which is not defined as
an abscolute segment in the source module, a directive file
must also be created.

A directive file can be input to the linker by specifying the

-D option at linkage time.

Example 1: To expand default RAM area with device (uPD78310
or uPD783102) which has no internal (on-chip} ROM

Enter the following in the directive file:

MEMORY RAM : (DEOQQH,Z20FFH)

Default memory épace Memory space after specification

OH OH
This space This space
is assumed is handled
as ROM. as ROM.
;DEOOH
FEOOH ,
FEFFH A FEFFH
FFFFH FFFFH

Example 2: To expand default ROM/RAM area with device
{uPD78312 or uPD78312A) which has internal ROM
and allocate segment CSEG1 to address 2000
Enter the following in the directive file:
MEMORY ROM : (0OH,3FFFH)
MEMORY RAM : (DOOOH,2EFFH)
MERGE CSEG1 : AT(2000H)

Default memory space Memory space after specification
OH OH

IFFFH

3FFFH

FEOOH
FEFFH g

FFFFH

Fig. 3-3. Link Directive (2)

3-7

(6) Link the two object module files "78K3MAIN.REL" and

(7)

(8)

"78K3SUB.REL" which have been ocutput by the assembler in
steps (1) and (3) above, respectively. Alsc input the
directive file "78KX3.DR".

0 Enter the start-up command line of the linker as follows:

A>1k78k3 78k3main.rel T8k3sub.tel -d78k3.dr -o78k3. Ink -p78k3.map -g

This may be omitted if no
directive file is required.

o The following message will be output to the conscle:

GCOM=T8K/I1! Linker Vx.xx [xx xxx xx]
Copyright (C} Corporation xxxx USXXXXXXXXXX

Link complete, 0 error(s) and 0 warning(s) found.

Check the contents of drive A,
Two files "78K3.LNK" (load module file) and "78K3.PRN"
(link list file) have been output by the linker.

If you specify the -E option at linkage time, the linker will
output an error list file.

Convert the load module file which have been output by the
linker in step (6) above, into a HEX-format object file.

© Enter the start-up command line of the object converter as
follows:

A>oc78k3 T8k3. Ink

o The following message will be output to the console:

uCOM-78K/I01 Object Converter Vx.xx [xx xxx xx]
Copyright (C) Corporation xuxx USxxxxxxxxxx

Object Converter complete, 0 error(s) and 0 varning(s) found.

(9) Check the contents of drive A.
Two files "78K3.HEX" (HEX-format object module file) and
"78K3.SYM" (symbol table file) have been output by the object

converter.

{(10) Create a library file.
Register the file "78K3SUB.REL" (object module file) output
by the assembler as a library file.

o Enter the start-up command line of the librarian as
follows:

A>1b78k3 <78k3. job

o The following message will be ocutput to the console.

uCOM-78K/111 Librarian ¥x.xx [xx xxx xx]
Copyright (C) Corporation xxxx USXXXXXXXXXX

¥create 78k3.1ib

$add 78k3.1ib 78k3sub.rel

¥exit

{11) Check the contents of drive A,
A library file named "78K3.LIB" has been output by the

librarian.

(12) Create an absolute assembly list file.
To create an absolute assembly list file for the main
routine "78K3MAIN.ASM", input three files "78K3MAIN.REL",
"78K3MAIN.ASM", and "78K3.LNX" to the list converter,
o Enter the start-up command line of the list converter as

follows:

A>lenv78k3 T8k3Imain -178k3. 1nk

o The following message will be ocutput to the console.

List Conversion Program for RA78K/111 Vx.xx [xx xxx xx]
Copyright {C) NEC Corporation xxxx USXXXXXXXXXX

Passl: start...
Pass2: start...

Conversion complete.

{13) Check the contents of drive A.

An absoclute assembly list file named "78K3MAIN.P" has been
output by the list converter.

3.3 Summary of Assembler Package Execution Procedure
A summary of the procedure for executing the assembler package on

the sample program files is as illustrated in Fig. 3-4 below.

Source Source
module C) module
g) file file

module
CP file (P
Assembly Assembly
list file ' list file

Link Load
list C) module
CP file file

7 v

Symbol table HEX-format cohject
file medule file

Fig. 3-4 (1}. Assembler Package Execution Procedure

Source

C) module

file

Assembly

lIist file

= List

i converter i

. Absolute
assembly
list file

Symbol table

Scurce
C) module
file

___56;;;; \\\\\\\T:;_

module
file

% converter ¥

T

file

Absoclute
assembly
list file

v

HEX-format object
module file

Assembly
list file

Fig. 3-4 (2). Assembler Package Execution Procedure

3-12

Source
module
file

gAssembler

Source
module
file

Source
module
file

AN

=

Assembly Object Assembly . Object Assembly
list file module list file module list file
file i i i
Librarian:
Library
file
Symbol table ypx_format object
file module file -
Fig. 3-4 (3). Assembler Package Execution Procedure

. 313

CHAPTER 4. ASSEMBLER

The assembler accepts source module files coded in the assembly
language for the 78K series microcomputers as input files,
translates the assembly language coding of each source module into
machine language coding, and outputs each source module file as an
object module file.

In addition, the assembler outputs list files such as an assembly
list file and an error list file. If any error is found during the
assembly of an input source module file, the assembler outputs the
error message on an assembly list file or error list file to

clearly indicate the cause of the error.
4.1 Input/Output Files of Assembler
The files listed in Table 4-1 below are input and output to and

from the assembler.

Table 4-1. I/0 Files of Assembler

Type Name and description of file Default
: file type
Input Assembler source module file A source .ASM

files module file coded in the assembly language
for the 78K series that must be converted
(translated) into machine language before

use.
This file must be created by the user.
Include file A file to be referenced None

in an assembler source file,

This file must be created by the user and
must have been coded in the assembly
language for the 78K series. :
Parameter file ... A file containing the .PRA
parameters of the executable program
(Assembler}).

This file must be created by the user.
Output | Object module file A binary file which .REL
files contains machine language information,
relocation information on the address of
each machine-coded instruction, and symbol
information.

Assembly list file A file containing .PRN
assembly information such as assembly list
and cross-reference list.

Error list file A file containing .ERA
information on errors at assembly time.

‘Table 4-1. I/O Files of Assembler (contd)

the assembly process,

Type Name and description of file Default
file type
I/0 Temporary file A file which is RA78Kn.$$1
file automatically generated by the assembler or
as a work file, RA78Kn.$%$2
This file will be erased on completion of (fixed to

this name)

(n =0, 1, 2, 3, or 6)
Include Assembler source Parameter
file module file file
Temporary
file

Assemble

v

1ol I I

Assembly Object Error list
list module file
file file

Fig. 4-1. I/0 Files of Assenbler

4-2

(1)

(2)

(3)

(4)

(5)

Assembler Functions

The assembler reads a source module file and translates the
assembly language of the source module into machine language.
If any error related to the system or file I/0 is found in

the input source module, the assembler outputs an abort error
message. If any coding error is found in the input source
module, the assembler outputs a fatal error message or warning
error message. If an abort error message or fatal error
message is output, no object module file will be produced

by the assembler. However, if the -~J option has been specified
at assembly time, the assembler will output an object module
file even when a fatal error exists in the input source medule
file.

The assembler performs assembly processing according to the
assembler option specified in the start-up command line of the
assembler. See Section 4.4 for the assembler options.

The assembler outputs an execution end message when its
processing has been completed normally and returns control to
the 08§.

The maximum performance characteristics of the assembler are

as shown below,

Item Maximum value

Symbol length w/o -S option 8 characters
with -S option 31 characters

Number of characters that can be 130 characters

described per line of source module

Number of segments ?ASEG 20 segments
other than ?ASEG B0 segments

4-3

4.3 How to Start Up the Assembler

4,3,.1 Starting up the assembler

The assembler can be started up (invoked) in either of the
following two ways:

(1) Start-up with the start-up command line of the assembler

X>[pathname]ra78kn(Aoption]... Asource-filenamelAoption]... [A]
Filename of the source
module to be assembled

Gives the assembler particular
instructions for its operation
(see Note 2).

Lué Command filename of assembler (where n is
0, 1, 2, 3, or 6 indicating each 78K series
name)

s Current directory name (see Note 1)

— Current drive name (see Note 1)

Example: A>ra78k3 -g 78k3main.asm -e -np

NOTE: 1. With MS-DOS v3.10, the command file and overlay
files of the assembler must have been stored in the
same directory.

2. If two or more assembler options are to be
specified, each assembler option must be delimited
with a space. See Section 4.4 for details of the
assembler options.

{2) Start-up with parameter file

A parameter file is used when all the required information
for starting up the assembler cannot be specified in the
start-up command line of the assembler or when the same
assembler options are to be used repeatedly in each assembly
process. .

When using this parameter file, the -F opticn must be
specified in the start-up command line of the assembler to
specify the use of the parameter file.

The assembler can be started up with a parameter file as
follows:

X>ra78kn[Asource-filename} A-f parameter-filename

File containing information
required to start up the
assembler

>Option specifying parameter file

o A parameter file must be created with the editor.
o The description format of parameters within the parameter
file is as shown below.

[[[Aloption{ Aoptionl.. [ATA]] ...

o If the source module filename to be input is omitted in
the start-up command line of the assembler, only one input
source module filename can be described within the
parameter file.

o The input source module filename may be described either
before or after an option.

o In the parameter file, all the assembler options and output
filename which should normally be specified in the start-up
command line must be described.

For details of the parameter file, see Subsection 4.4.3,

"Description of each assembler option'".

Example: To create parameter file "78K3MAIN.PRA" with the
editor
o Contents of 78K3MAIN.PRA

:parameter file
T8k3main. asm -osample.rel -g
-psample. prn

o Start-up of assembler using parameter file "78K3MAIN.PRA"

A>ra78k3 -f78k3main.pra

4.3.2 Execution start and end messages

(1)

(2)

Execution start message
When the assembler is started up, the following message is

output to the console, indicating the start of the assembler

execution.

uCOM-78K/I11 Assembler Vx.xx [xx xxx xx]
Copyright (C)} Corporation xxxx USXXXXXXXXXX

Execution end messages

0 If no assembly error is found as a result of an assembly
operation, the assembler will ocutput the following message
to the console and return control to the 0S.

Passl Start
PassZ Start

Assenbly complete, 0 error(s) and 0 warning(s) found.

0 If any assembly errors are found as a result of an assembly
operation, the assembler will output the following message
(the number of errors found) to the conscle and return
control to the 05.

Passl Start
T8k3MAIN. ASM(20) : E101 Syntax error
Pass? Start

. T3k3MAIN. ASM(20) : E101 Syntax error

Assembly complete, 1 error{s) and 0 warning{s) found.

o If any fatal error is found during an assembly operation,
the assembler will output the following message to the

console, stop its processing, and return control to the 0S.

Example 1:

A>ral8k3 sample. asm

uCOM-78K/111 Assembler Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USxxxxxxxxxx

A006 File not found " SAMPLE. ASM’
Program aborted.

In this example, the assembly operation was discontinued by
an abort error resulting from the specification of a source

module file which does not exist in drive A.

Example 2:

A>ra?8k3 78k3main. asm -w

uCOM-78K/I11 Assembler Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USXxXxxxxxxxx

A018 Option is not recognized "-v
Program aborted.

In this example, the assembly operation was discontinued
by an abort error resulting from the input of an assembler

option "-W (-w)" which is not recognized by the assembler.

If the assembly program is aborted following the output of
an error message, check the cause of the error by referring
to Chapter 11, Error Messages and take corrective action(s)

as required.

4,4 Assembler Options

4.4.1 Types of assembler options

An assembler option gives the assembler particular instructions
for its operation and is broadly divided into the following 14

types:

Table 4-2. Types of Assembler Options

No. | Classification Option Functional description

1 Option for -C Specifies the processor
processor type type indicating the
specification target device subject to

assembly.

2 Cptions for object -0 Specifies the output or
module cutput non-output of an object
specification -NO module file,

3 Options for forced -J Specifies the output or
ocbject module non-output of an object
output specifica- -NJ module file by force.
tion '

4 Options for debug -G Specifies the output or
information output non-output of symbol
specification -NG information for debugging

to the object module.

5 Options for symbol -8 Specifies the extension
name length or non-extension of the
specification -NS symbol name length,

6 Options for symbol -CA Specifies whether or not
name upper-/lower- the symbol name in lower-
case specification case letters is to be

-NCA distinguished from that
in lowercase letters.

7 Option for Include -I Tells the assembler to
file read path read Include file(s)
specification from the path(s) speci-

fied by this option.

8 Options for assemb- | -P Specifies the ocutput or
ly list file output non-output of an assembly
specification -NP ligt file.

9 Options for -KA Specifies the output or
assembly list file non-ocutput of an assembly
information -NKA list in the assembly list
specification file,

-KS Specifies the output or
non-output of a symbol

-NKS list in the assembly list
file,

-KX Specifies the output or
non-output of a cross-

-NKX reference list in the

assembly list file.

4-8

Table

4-2. Types of Assembler Options (contd)

No.! Classification Option Functional description
10 Options for ~LW Specifies the number of
assembly list print columns per line of
file format an assembly list file.
specification ~-LL Specifies the number of
print lines per page of
an assembly list file.
-LH Specifies the output of
a specified character
string to the header of
an assemply list file.
-LT Specifies the number of
columns for tabulation,
-LF Specifies the addition or
nen-addition of a form-
-NLF feed (FF) code to the end
of an assembly list file.

11 :Options for error -E Specifies the output or
list file output non-output of an error
specification -NE list file.

12 Option for -F Specifies the input of
parameter file input filename and options
specification from the file specified

by this option.

13 (Option for -T Specifies the creation of
temporary file a temporary file on the
creation path path specified by this
specification option.

14 (Option for HELP -— Specifies the output of
message output HELP message to the
specification console,

The above table merely introduces all the available assembler

options. Each of these assembler options is detailed in Subsection
4.4.3 below. For guick reference, see Appendix C.1, List of

Assembler Options in which the description format of each

option and the relationship between one option and the other are

also

outlined.

4-9

4.4.2 Priority of assembler coptions
Table 4-3 shows the precedence order of assembler options when

two or more options are specified at the same time.

Table 4-3. Priority of Assembler Options

-NO { -NP | -NKA | -NKS [-XX | -NKX| --
-] P4 X
-G | X X
-P A A FAN X
-KA X X
-KS X X X
-KX X X
-L¥ X X
-LL X X
-LH X X
-LT X X
-LF X X

In Table 4-3, "X" in the table indicates that the option on the
leftmost column becomes invalid if the option on the top column is
specified.

Example: A>ral8k3 -¢310 78k3main.asm -np -1w80 -1f

In this case, the -LW and -LF options become invalid (because the
~-NP option has been specified at the same time}.

"A" in the table indicates that the option on the leftmost column
becomes invalid if all of the options on the top column are

specified at the same time.

Example: A>ral?8k3d -c310 78k3main. asm -p —nka -nks -nkx

In this case, the -P option becomes invalid, because the -NKA,
-NKS, and -NKX have been specified at the same time.
4-10

- If two options contradicting each other {such as -0 and -NO, -P
and -NP, etc.) are specified at the same time, whichever you
specified later will take precedence over the other.

Example: A>ra?8kd -¢3]10 78k3main. asm —o -no

In this example, the -NO option takes precedence over the -0

option which has been specified before the -NO option.

The assembler options not listed in Table 4-3 are not affected by
any other assembler options. However, if the "--" option (for HELP
message output specification} is specified, all the other options

specified at the same time with the "--" option become invalid.

4.4.3 Description of each assembler option .
A detailed description of each assembler option is provided in

this subsection.

4-12

-C Processor type specification

(1) Option for processor type specification (-C)

Description format: -C processor-type

Default assumption: This option cannot be omitted.

Function
The -C option specifies the processor type indicating the
target device subject to assembly.

Use
This option must always be specified. The assembler performs
assembly on the specified target device and generates object

codes corresponding to the target device.

Explanation

Any of the following target devices can be specified with the
-C option:

Table 4-4. List of Target Devices

Series name | Target device name Processor type
78K/0 uPD78012 012
uPD78014, uPD78P014 014
78K/1 uPD78112, uPD78P112 112
uPD78134, uPD78P134 134
uPD78136 136
uPD78138, uPD78P138 138
78K/I1 uPD78210 210
: uPD78212 212
uPD78213 213
uPD78214, uPD78P214 213
uPD78220 220
uPD78224, uPD78P224 224
uPD78233 233
uPpD78234, uPD78P234 234

-C Processor type specification

Table 4-4. List of Target Devices (contd)

Series name | Target device name Processor type

78K/III uPD78310 310
uPD78312, uPD78P312 312
uPD78310A 310A
uPD78312A, uPD78P312A 312A
uPD78320 320
uPD78322, uPD78P322 322
uPD78330 330
uPD78332, uPD78P332 332

78K/VI uPD78600 600
uPD78602 602

NOTE
The -C option is an option which cannot normally be omitted
from specification. However, by describing a control instruc-
tion which has the same function as the -C option in the
header of the input source module, this option specification
can be omitted in the start-up command line of the assembler.
The description formats of this control instruction are as

shown below.

A $ APROCESSOR A (A processor-type A)
A$ APC A(Aprocessor-type A) ; abbreviated format

See Chapter 4, Control Instructions in the "RA78K Series
Assembler Package User's Manual for Language" for details of
this control instruction,

-C Processor type specification

Application Examples

Example 1: To assemble the source program of the uprD78310,

specify this option in the command line as
follows:

A>ra78k3 -c¢310 T8k3Imain. asm

uCOM-T8X/i11 Assembler Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USXXXXXXXXXX

Passl Start
Pass? Start

Assenmbly complete, 0 error(s) and 0 warning(s) found.

Example 2: To start up the assembler by describing the

processor type in the source module header

3 PROCESSOR(310)

NAME SAMPM
CEEERERRR KRR R R R RR AR R R R R R R R R AR R R R R RS

HEX -=> ASC11 Conversion Program

main-routine

M e W W e W
A e W W W W

’
.
T

ST YIS IR LTSRS R 242 ER 2SR AL AL

PUBLIC MAIN, START
EXTRN CONVAH

In this case, the processor type specification in

the command line may be omitted.

Processor type specification

A>rai8k3 -c310 78k3main. asm

uCOM-78X/111 Assembler Vx.xx [xx xxx xx]
Copyright () Corporation xxxx USxxxxxxxxxx

Passl Start
Pass? Start

Assembly complete, 0 error{s) and 0 warning(s) found.

Example 3: To start up the assembler by specifying a target
device different from that specified in the source

module header

$ PROCESSOR(312)

NAME SAMPM
Ehkkkb bk kbbb kb bbbt bbb kb kb bk kb kb bk b ik 2k k&

: HEX -> ASCII Conversion Program
: main-routine

O W M W e
e e W W M W

.
’
.

khkkb bbbk kd bbb bbbk kbbb bbb kb kb kbbb bk bkt b ks

PUBLIC MAIN, START
EXTRN CONVAR

A>ra78k3 -c320 78k3main. asm

uCOM-T8K/1!1 Assembler Vx.xx [xx xxx xx]
Copyright {(C) Corporation xxxx USxxxxxxxxxx

Passi Start
W321 Duplicate option
Pass2 Start
W321 Duplicate option

Assembly complete, 0 error(s) and 1 warning(s) found.

In this case, the target device specified in the
command line takes precedence over that specified

in the source module header.

4-16

. _0/-NO Object module file output specification

(2) Options for object module file output specification (-0/-NO)

Description format: -0 [output-filename]
or
-NG
Default assumption: -0 input-filename.REL
Function

o The -0 option specifies the output of an object module file.
It also specifies the output destination or output filename
of the object module file to be ocutput by the assembler,

o0 The -NO option specifies the non-output of an object

module file.

Use
o Use the -0 option if you want to change the output
destination or output filename of an object module file.
o If the assembly of a source module is to be performed only

to output an assembly list, use the -NO option. This will
reduce the assembly time.

Explanation

o If a fatal error is found during an assembly operation with
the -0 option specified, no object module file will be
output by the assembler.

o If a drive name is omitted from the -0 option specification,
the object module file will be output to the current drive.

o If an output filename is omitted from the -0 option specifi-
cation, "input filename.REL" is assumed as the output
filename.

o If the -0 and -NO options are specified at the same time,

whichever you specified later will take precedence over the
other,

-0/ ~-NO Object module file output specification

Application Examples

Example 1: To output an object module file named "SAMPLE.REL"

A>ra78k3 -c310 78k3main. asm -osample. rel

uCOM-78K/111 Assembler Vx.xx [xx xxx xx)
Copyright (C) Corporation xxxx USXXXXXXxxxx

Passl Start
Pass?2 Start

Assenbly complete, 0 error(s) and 0 warning(s)} found.

Example 2: To assemble the source program with both -NO and -0

options specified

A>ra78k3 -c¢310 T8k3main. asm -no -o

uCOM-78K/111 Assembler Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USxxXxXxxxxx

Pass]l Start
Pass2 Start

Assenbly complete, 0 error{s) and 0 warning(s) found.

In this case, -NO option becomes invalid and -0
option is accepted as valid.

4-18

-J/-NJ Forced object module file

ocutput specification

(3) Options for forced object module file output specification

(-J/-NJ)
Description format: -J
or
-NJ
Default assumption: -NJ

Function
o The -J option tells the assembler to output an object module
file even if a fatal error occurs during an assembly
operation.

o The -NJ option is used to invalidate the -J option.

Use
Normally, the specified object module file will not be output
if any fatal error occurs during the assembly operation.
Therefore, if you want to execute the program even in case of

a fatal error, use the -J option to output an object module
file.

Explanation

o If a fatal error occurs during an assembly operation with
the -J option specified, an object module file will be
output by the assembler.

o If the -J and -NJ options are specified at the same time,

whichever you specified later will take precedence over the
other.

-J/-NJ Forced object module file
____output specification

Application Examples

Example 1: To ocutput an object module file even in case of a
fatal error

A>ra78k3 -c310 78k3main. asm -j

uCOM-78K/111 Assembler Vx.xx {xx xxx xx]
Copyright (C) Corporation xxxx USXXXxxxXxxxx

Passl Start
Pass?2 Start

Assembly complete, 0 error(s) and 0 warning(s) found.

-G/ -NG Debug information output specification

{4) Options for debug information output specification (-G/-NG)

|
@

Description format:
or
-NG

Default assumption: -NG

Function
o The -G option specifies the addition of debugging informa-
tion {(local symbol information)} to an object module file to
be output by the assembler.
o The -NG option specifies the non-addition of debugging

information to an object module file.

If the -G option is not specified, the line numbers and
symbol information required for a symbol table file which
becomes an input file to the source debugger will not be
added to the output object module file. Therefore, when
performing debugging at the source level, assemble all the

modules to be linked by specifying the -G option.

Explanation

o If the -G option is omitted, the -NG option is assumed and
thus no debugging information will be output.

o) If the -G and -NG options are specified at the same time,.
whichever you specified later will take precedence over the

other,

4-21

-G/ -NG . Debug information output specification

Note
A control instruction which has the same function as the -G or
-NG option can be described in the header of the input source

module file. The description formats of these control instruc-
tions are as shown below.

A $ ADEBUG

A $ ADG : abbreviated format
A $ ANODEBUG

A $ ANODG ‘ ; abbreviated format

See Chapter 4 in the "RA78K Series Assembler Package User's

Manual for Language" for details of these control instruc-
tions.

Application Examples

Example 1: To assemble the source program with -G option

specified to add debugging information to an object
module file

A>raT8k3 -c310 78k3main. asm -g

uCOM-78K/I11 Assembler Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USxxxxxxxxxx

Passl Start
Pass?2 Start

Assenbly complete, 0 error(s) and 0 warning(s) found.

4-22

-8/-NS Symbol name length specification

(5) Options for symbol name length specification (-§/-NS)

]
9]

Description format:
or
-NS
Default assumption: -NS

Function _
o The -S option tells the assembler to extend the length of
a symbol name that can be recognized by the assembler to a
maximum of 31 characters.

o The -NS option tells the assembler not to extend the symbol
name length.

Use
If you want to extend the symbol name length to more than
eight characters, use the -8 option so that the number of
characters that can be recognized as a symbol name may be

extended up to 31 characters.

Explanation

o If the -5 option is specified, the assembler will recognize
up to 31 characters as a symbol name and output the symbol
information to the object. .

o If the -S option is omitted, the -NS option is assumed and
the assembler will recognize up to eight characters as a
symbol name.

o If the -S and -NS options are specified at the same time,
whichever you specified later will take precedence over the
other.

o When using the source debugger, do not specify the -§S

option.

-S/-NS Symbol name length specification

Application Examples

Example 1: To assemble the source program with -S option
specified to extend symbol name length to 31

characters max.

A>raT8k3d -c310 78k3main. asm -s

uCOM-T8K/II1 Assembler Vi.xx [xx xxx xx]
Copyright (C) Corporation xxxx USxxxxxxxxxx

Passl Start
Pass2 Start

Assembly complete, 0 error(s) and 0 warning(s) found.

4-24

-CA/-NCA Symbol name uppercase/lowercase

specification

(6) Options for symbol name uppercase/lowercase specification

(-CA/-NCA)
Description format: -CA
or
-NCa
Default assumption: -CA

Function
0 The -CA option tells the assembler not to distinguish
between symbol names described (partly or wholly) in
uppercase letters and those described (partly or wholly) in
lowercase letters.
o The -NCA option tells the assembler to distinguish symbol
names described in uppercase letters from those described

in lowercase letters.

Use
Use the -CA option if no distinction need to be made between
symbol names written in uppercase letters and those in

lowercase letters for symbeol information output.

Explanation

o If the -CA option is specified, the assembler will output
symbol information to the object module file by converting
lowercase letters in symbol names to their uppercase
equivalents.

o If the -NCA option is specified, the assembler will output
symbol information to the object mocdule file without
converting lowercase letters in symbol names to their
uppercase equivalents.

o If the -CA and -NCA options are specified at the same time,
whichever you specified later will take precedence over the
other.

4-25

-CA/-NCA Symbol name uppercase/lowercase

specification

Application Examples

Example 1: To assemble the source program with -NCA option
specified to distinguish between uppercase and
lowercase letters of symbol names

A>ra78k3 -c310 78%3main. asm -nca

uCOM-T8K/111 Assembler Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USXXXXXXXXXX

Pass! Start

Pass2 Start

Assenbly complete, 0 error(s) and 0 warning(s) found.

4-26

-I Include file read path spec

ification

(7) Option for Include file read path specification (-I

)

Description format: -I pathname[, pathname] ...

Default assumption: Path specified by environment
variable INC78Kn (where n=0,
3, or 6) or current path in w

source file exists

1' 2!
hich

Function
The -I option tells the assembler to input the Incl

specified by $include in the source module from the
specified by this option.

oy
wn
D

|

Use the -I option if you want to search an Include
a path.

Explanation

o Two or more path names may be specified with the
by delimiting each pathname with "," (comma).

0 No blank (space) is allowed before and after the

L] n
? -

o If two or more pathnames are input following the
or if two or more -I options are specified at the
the assembler will search the specified paths in
order of specification, for the file(s) specified
$include.

o If other than pathnames are input following the -
or if no pathname is specified, an abort error wi

o If nine or more -I options are specified at the s

(in the same command line), an abort error will a

ude file(s)
pathis)

file from

-I option

delimiter

-I coption
same time,

their

by

I option
11 result.
ame time

1so result.

-1 Include file read path specification

Application Examples

Example 1: To assemble the source program with -I option
specified to read an Include file from directory
"SAMPLE"

A>raT8k3 -c310 78k3main. asm —-ib:Ysample

uCOM-78K/111 Assembler Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USxxxxxxxxyxx

Passl Start
Pass? Start

Assembly complete, 0 error(s) and 0 warning(s) found.

4-28

-P/-NP Assembly list file output specification

(8) Options for assembly list file output specification (-P/-NP)

Description format: -P [ocutput-filename]
or
-NP

Default assumption: -P input-filename.PRN

Function

c
w
0]

o0 The -P option specifies the output of an assembly list file.

It also specifies the output destination or output filename
of the assembly list file to be output by the assembler.
The -NP option specifies the non-output of an assembly list
file.

Use the -P option if you want to change the output
destination or output filename of an assembly list file,
If the assembly of a source module is to be performed only
to output an object module file, use the -NP option. This
will reduce the assembly time.

Explanation

o An output filename can be specified with either a disk type

filename or a device type filename. Only the following
device type filenames can be used with this option: CON,
PRN, NUL, and AUX. If "CLOCK" is specified as an output
filename, an abort error will result,
If an output filename is omitted from the -P option specifi-
cation, "input filename.PRN" is assumed as the output
assembly list filename.
If a drive name is omitted from the -P option specification,
the assembly list file will be output to the current drive.
If the -P and -NP cptions are specified at the same time,
whichever you specified later will take precedence over the
other.

4-29

-P/~NP Assembly list file output specification

Application Examples

Example 1: To assemble the source program with -P option
specified to create an assembly list file named
"SAMPLE,PRN"

A>ra78k3 -c310 78k3main. asm —-psample. prn

uCOM=-T78K/111 Assembler Vx.xx [xx xxx ux]
Copyright (C) Corporation xxxx USxxxxxxxxxx

Passl Start
Pass2 Start

Assembly complete, 0 error{s) and 0 warning(s) found.

Example 2: To assemble the source program with -P option
specified to output an assembly list file to
PRN (printer).

A>ra78k3 -c310 78k3main. asm_ -pprn

uCOM-78K/111 Assembler Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USXxxXxxxxxxx

Passl Start
PassZ Start

Assembly conmplete, 0 error(s) and 0 warning(s) found.

~-KA/-NKA Assembly list file information

specification

(9) Options for assembly list file information specification
{-KA/-NKA, -KS/-NKS, -KX/-NKX)

(a) Options for assembly list ocutput specification (-KA/-NKA)

Description format: -KA
or
~-NKA

Default assumption: -KA

Function
o The -KA option specifies the output of an assembly list to
the assembly list file.
o The -NKA option specifies the non-output of an assembly list
to the assembly list file.

Use
Use the -KA option if you want to have only an assembly list

as the contents of an assembly list file.

Explanation

o If the -KA and -NKA options are specified at the same time,
whichever you specified later will take precedence over the
other.

o If the -NKA option is specified together with the -NKS and
-NKX options, no assembly list file will be output.

-KA/-NKA ‘ Assembly list file information

specification

Application Examples

Example 1: To assemble the source program with -KA option

specified to output an assembly list

A>raT8k3 -c310 7T8k3main. asm -ka -1w80

uCOM-78K/I11 Assembler Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USxxxxxxxxxx

Passl Start
Pass2 Start

Assemnbly conmplete, 0 error(s) and 0 warning(s) found.

-KA/-NKA Assembly list file information
specification

o When assembly list file "78K3MAIN.PRN" is referenced, you
will find that the following assembly list has been output
to the assembly list file.

uCOM-T8K/111 Assembler Vx.xx . Date:xx xxx xxxx Page: 1

Command: -¢310 78k3main.asm ~ka -1w80
Para-file:

In-file: T78K3IMAIN. ASK

Obj-file: 7T8KIMAIN.REL

Prn-file: T8K3MAIN.PRN

Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

é é 3 PROCESSOR(310)

3 3 NAME SAMPM

4 4 e i R R E R R 2R A RS R L)
5 5 o ¥ : ¥
6 6 ¥ HEX -> ASCII! Conversion Program ¥
7 7 o %
8 3 2] main-routine *
9 9 % *

10 10 i1 IR IR RIS RE RSS2 222222

11 11

12 12 PUBLIC MAIN, START

13 13 EXTEN CONVAN

14 14

15 15 ---- DATA DSEG AT OFE20H

16 16 FEZ0 EDTSA: DS 1

11 17 FEZ1 STASC: DS 2

18 18 :

19 19 ---—- CODE CSEG AT 0H

20 20 0000 ROOCO MAIN: DW START

21 21

22 22 —— CSEG

23 23 0000 2B4100 START: MOV RFM, #00

24 24 0003 OBFCBOFE MOVW SP, #0FES8OH

25 25 0007 2B4009 MOV MM, 200

%g %g 000A 0944F708 MOV STBC, 081

28 28 000E 3A2014 MOV HDTSA, #1AH

29

29 0011 6T2Z0FE MOVY¥ KL, #HDTSA

-KS/-NKS Assembly list file information

specification

(b) Options for symbol list output specification (-KS/-NKS)

Description format: -KS
or
-NKS

Default assumption: -NKS

Function
o The -KS option specifies the output of a symbol list to the

the assembly list file following the output of an assembly
list.

o The -NKS option specifies the non-output of a symbol list
to the assembly list file.

Use

Use the -KS option if you want to have an assembly list and
a symbol list as the contents of an assembly list file.

Explanation

o If the -KS and -NKS options are specified at the same time,
whichever you specified later will take precedence over the
other.

o If the -KS and -KX options are specified at the same time,
the -KS option will be ignored.

0 If the -NKS option is specified together with the -NKA and
-NKX options, no assembly list file will be output.

-KS/-NKS Assembly list file information

specification

Application Examples

Example 1: To assemble the source program with -KS option

specified to output a symbol list

A>ra78k3 -c310 T8k3main.asm —-ks -1w80

uCOM-78K/111 Assembler Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxXx USXXXXXXXXXX

Passl Start
Pass? Start

Assembly complete, 0 error(s) and 0 warning(s) found.

o When assembly list file "78K3MAIN.PRN" is referenced, you
will find that the following symbol list has been output next

to an assembly list.

uCOM-T8K/111 Assembler Vx.xx Date:xx xxx xxxx Page: 3
Symbol Table List

VALUE ATTR RTYP NAME ' VALUE ATTR RTYP NAME
CSEG ?CSEG CSEG CODE
----1 - EXT CONVAH DSEG DATA
FEZ0R ADDR HDTSA : 0H ADDR PUB MAIN
MOD SAMPM 0H ADDR PUB START
FE21H ADDR STASC

4-35

-KX/-NKX Assembly list file information

specification

(c) Options for cross-reference list output specification

{ ~KX/-NKX)
Description format: -KX
or
-NKX

Default assumption: -~NKX

Function
o The -KX option specifies the output of a cross-reference
list to the assembly list file following the output of
an assembly list,
¢ The -NKX option specifies the non-output of a cross-

reference list to the assembly list file.

Use
Use the -KX option to output a cross-reference list as the
contents of an assembly list file if you want to know how
often and where the respective symbdls defined in the source
module file have been referenced or at which line of the

assembly list each symbol has been referenced.

Explanation

o If the -KX and -NKX options are specified at the same time,
whichever you specified later will take precedence over the
other.

o If the -KS and -KX options are specified at the same time,
the -KS option will be ignored.

o If the -NKX option is specified together with the -NKA and
-NKS options, no assembly list file will be output.

-KX/-NKX : Assembly list file information

specification

Note

A control instruction which has the same function as the -KX
or -NKX option may be specified in the header of the input
source module file. The description formats of these control

instructions are as shown below.

A $ A XREF

At AXR ; abbreviated format
A% ANOXREF

A3$ ANOXR ; abbreviated format

See Chapter 4 in the "RA78K Series Assembler Package User's

Manual for Language" for details of these control instruc-
tions.

Application Examples

Example 1: To assemble the source program with -KX option

specified to output a cross-reference list

A>ra78k3 —c310 78k3main. asm -kx -1w80

uCOM-78K/1I1 Assembler Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USXXXXXXXXXX

Passl Start
Pass? Start

Assenbly complete, 0 error(s) and 0 warning(s) found.

-KX/-NKX Assembly list file information

specification

© When assembly list file "78K3MAIN.PRN" is referenced, you
will find that the following cross-reference list has been

output next toc an assembly list.

uCOM-78K/111 Assembler Vr.xx Date:xx xxx xxxx Page:

Cross-Reference List

NAME YALUE R ATTR RTYP SEGNAME XREFS

?CSEG CSEG ?CSEG 22%

CODE CSEG CODE 19%

CONVAH -——-0 E EXT . 13@ 31

DATA : DSEG DATA 15%

HDTSA FEZ0H ADDR DATA 164 28 29
MAIN 0H ADDR PUB CODE 129 204

SAMPM MOD 3%

START 0N R ADDR PUB ?CSEG 128 20 23%
STASC FE21H ADDR DATA 174 33

4-38

-LW : Assembly list file format specification

(10) Options for assembly list file format specification
(-LW, -LL, -LH, -LT, -LF/-NLF)

(a) Option for page width specification (-LW}

Description format: -LW [No. of columns per line]

Default assumption: -LW132 (-LW80 with output to

console)

Function

o The -LW option specifies the number of print columns per
line of a list file.

Use

Use the -LW option if you want to change the number of print
columns per line of any list file.

Explanation

o The number of print columns per line to be specified with
the -LW option must be within the following value range
excluding the terminator (CR or LF):

72 < No. of print columns per line ¢ 132
(For ouEput to the conscle, the maximum_value becomes 80
columns.)
If any value beyond this range or other than a value is
specified with this option, an abort error will result.

o If the number of columns per line is omitted, a value of 132
is assumed to have been specified., However, if the output
destination of an assembly list file is the console, a value
of 80 is assumed.

o If the -LW option is specified at the same time with the

-NP option, the -LW option will be ignored and thus will
become invalid.

~LW Assembly list file format specification

Application Examples
Example 1: To assemble the source program with -LW option
omitted and -P option specified to output an
assembly list file to the printer

A>ra78k3 -c310 78k3main. asm -pprn

uCOM-T8K/111 Assembler Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USxxxxxxxxxx

Passl Start
Pass? Start

Assenmbly completé. 0 error{s) and 0 warning(s) found.

~-LW

Assembly list file format specification

ALKNO

b
P OWm oL N

1 b b e
[~ XL iy L]

Il
0o -3

MMNNR
WO

o When assembly list file "78K3MAIN.PRN" is referenced,

the output assembly list will look like this.

Assemble 1list

STNO

[
OWOomh bt

BRI R B B b s e e
ABRNPODOIDNARWN

R B By
-~ N

WWW W
S BN OOD

& ode WD L2
= Owm

ADRS

FE20
FE21

0000

0000
0003
0007
000A

000E
0011

0014

0017
001A
G018
co1c
001D

001E

OBJECT

ROOCO

2B4).00
OBFCBOFE
2B4000
0944F708

3A201A
67 20FE

R280000

6521FE
D3
50
D2
50

14FE

MI

SOURCE STATEMENT
$ PC(310)

NAME SAMPM

:.C.."..Q.'.'I.'..'...Q'lI'.I.G‘I.C..I...C.Illl.

Hd [
i HEX -> ASCII Conversion Program .
ie *
Hd main-routine *
' -

.
:Q‘.'.l."."'I"'...'...’I.I'..l.l..l'......llll

PUBLIC MAIN,START
EXTRN CONVAH

DATA DSEG AT OFEZ20H

HDTSA: DS 1
STASC: DS 2
CODE CSEC AT OH
MAIN: D START
CSEG
START: MOV RFM, #00
MOVW SP,#0FEBQH
MOV MM, #00
MoV STBC, #08H
Mov HDTSA,#1AH
MOVW HL, #HDTSA ;set hex 2-code data in HL registor
CALL ! CONVAH ;jconvert ASCII «<- HEX

;output BC-register <- ASCII code

MOVW DE, #STASC ;set DE <- store ASCII code table

MOV f

MoV [DE+],A
MoV A,C
MOV [DE+],A
ER 113

END

-LW Assembly list file format specification

Example 2: To assemble the source program with -LW option
specified to set 80 columns as No. of columns per

page of an assembly list

A>ra78k3 -c3!0 78k3main. asm -1w8D

uCOM-78K/111 Assembler Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USXXXXXXXXXX

Passl Start
PassZ Start

Assembly complete, 0 error(s) and 0 warning(s) found.

~-LW Assembly list file format specification

o In this case, the ocutput assembly list will look like this.

Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

% % 3 PC(310)
3 3 NAME SAMPM
4 4 ;##***H#*Htﬁ*t*************#*****H*HH#*#**
%
5 5 3]
¥
] 6 e J HEX -> ASCI!] Conversion Program
¥
1 7 ik
¥
8 8 o ¥ nain-routine
¥
9 9 ¥
%
10 10 ;*HH**H****H#*HHH****HH#HHHHH#HH
’ ¥
11 11
12 12 PUBLIC MAIN, START
13 13 EXTRN CONVAH
14 14
15 15 —-——- DATA DSEG AT OFE20H
16 16 FE20 EDTSA: DS 1
17 i7 FEZ1 STASC: DS 2
18 18
19 19 ———- CODE CSEG AT OH
20 20 0000 ROOOO MAIN: D¥ START
21 21
22 22 --—- CSEG
23 23 0000 2ZB4100 START: MOV RFM, $00 -
24 24 0003 OBFCBOFE MOYW SP, #0FE80H
25 25 0007 2B4000 MOY MM, 00
26 %g 0004 (0944F708 MOY STBC, #08H
21
28 28 000E 3AZ01A MOV HDTSA, #1AH
29 29 0011 ©6720FE MOVW HL, #HDTSA ;set hex
]] 2-code data in HL registor
0 0

4-43

—Lb Assembly list file format specification

(b) Option for page length specification (-LL)

Description format: -LL [No. of lines per page]

Default assumption: -LL66 (No form-feed operation

with output to console)

Function
© The -LL option specifies the number of lines per page of
a list file.

Use

Use the -LL option if you want to change the number of lines
per page of any list file,

Explanation

o The number of print lines per page to be specified with the

~LL option must be within the following value range:
20 ¢ No. of print lines per page < 32767

If any value beyond this range or other than a value is
specified with this option, an abort error will result.

0 If the number of print lines per page is omitted, a value of
66 is assumed to have been specified.

o If "0" is specified as the number of print lines per page,
no form-feed operation {page ejection) will be carried out.

o If the -LL option is specified at the same time with the
-NP option, the -LL option will be ignored and thus will

become invalid.

-LL Assembly list file format specification

Application Examples

Example 1: To assemble the source program with -LL option
specified to set 20 lines as No. of lines per page

of an assembly list file

A>ra78k3 -c¢310 78k3main.asm —-1120 —-1w80

uCOM-78K/1t1 Assembler Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USxXxxxxxxxx

Passl Start
Pass? Start

Assembly complete, 0 error(s) and 0 warning(s) found.

-LL Assembly list file format specification

o When assembly list file "78K3MAIN.PRN" is referenced, the
output assembly list will look like this,

uCOM-T8K/11]1 Assembler Vx.xx Date:xx xxx xxxx Page: 1

Command: -¢310 78k3main.asm ~1120 -1w80
Para-file:

In-file: T78K3MAIN. ASM

Obj-file: T8K3MAIN. REL

Prn-file: T8K3MAIN. PRN

Assemble list

uCOM-T8K/I1] Assembler Vx.xx Date:xx xxx xxxx Page: 2

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

1 % $ PROCESSOR{310)
2
3 3 NAME SAMPM
4 4 chEkk kR Rk b kk bk b kb bk b kb Rk kbR kb Rk kkk
5 5 ok ¥
6 6 Lk HEX -> ASCI! Conversion Program *
¥) 1 3] ¥
B 8 ¥ main-routine ¥
uCOM-78K/11[Assembler Vx.xx Date:xx xxx xxxx Page: 3
ALNO STNO ADRS OBJECT M I SOURCE STATEMENT
9 9 * ' ¥
10 10 11321133232 32 i a2ttt iRtttz
11 11
12 12 ‘ PUBLIC MAIN, START
13 13 EXTRN CONVAH
14 14
15 1§ =~ DATA DSEG AT OFE20H
16 16 FE20 HDTSA: DS 1
17

17T FE21 ' STASC: DS 2

~-LH Assembly list file format specification

(c) Option for title character string specification (-LH)

Description format: -LH character-string

Default assumpticon: None

Function
o The -LH option specifies the character string to be printed
in the TITLE column in the header of an assembly list file.

Use
Use the -LH option if you want to give a title to each page of
an assembly list file so that the contents of the file can be

identified at a glance.

Explanation

o The number of characters that can be specified as a title is
up to 60 characters. However, no blank may be described in
the title character string.

o If more than 60 characters are described as the title
character string, the assembler will accept only the first
60 characters of the string as valid and will not output an
error message.
<With 78K/0, 78K/III>
However, if the number of characters per line is 117 or
less, the effective character string length as a title
becomes as follows:

Effective length=(maximum No. of characters per line)-58
<With 78K/I, 78K/VI>
However, if the number of characters per line is 119 or
less, the effective character string length as a title
becomes as follows:

Effective lengths=(maximum No. of characters per line)-60

o If no character string is specified with the -LH option, an
abort error will result.

4-47

-LH

Assembly list file format specification

o If the -LH option is specified at the same time with the
-NP option, the -LH option will be ignored and thus will
become invalid.

o If the -LH option is omitted, the TITLE column of the
output assembly list file will become blank.

o The character set that can be described as a title is as
shown in Table 4-5 below.

Table 4-5. Characters That Can Be Described as Title

0DH,0EH, 10H
15H,17H,18H
1BH, 7FH

Character On Command line In Parameter File
* 2 > < | May be used by enclosing May be used. Each
each character in " " character enclosed in
(double quotes). " " is interpreted the
See Note below. same as when used on
the command line.
; May be used by enclosing Cannot be used.
this character in " " (Interpreted as
(double quotes). comment.)

May be used. Cannot be used.
(Interpreted as
comment.)

" (double Cannot be used as an Cannot be used as an

guote) effective character effective character

for a title. for a title,

00H Cannot be used. May be used (but the
character string is
interpreted to have
been terminated)

03H,06H,08H Cannot be used. May be used, but each

of these characters is
output as "1!" in an
assembly list file.
(ODH alone will not be
output to the list.)

01H,02H, 04H,
05H,07H,08H,
OCH, OFH, 11H,
12H,13H,14H,

1DH,1EH,1FH

16H,19H,1CH,

May be used, but each
of these characters is
output as "!" in an
assembly list file,

May be used, but each
of these characters is
output as "!" in an
assembly list file.

1 AH

May be used, but this
character is displayed

Cannot be used.
(End-0f-File code)

as "!" in an assembly
list file.
Alphabetic Each uppercase or Each uppercase or
characters lowercase letter is lowercase letter is
input as is. input as is,
Others May be used. May be used.

Note: Character "*" on the start-up command may be described
without enclosing it in a pair of double guotes if the
character is not subject to expansion as a wild card.

4-48

-LH Assembly list file format specification

Note
A control instruction which has the same function as the -LH
option can be described in the header of the input source
module file. The description formats of this control instruc-
tion are as shown below.

AS$S ATITLE A (A'character-string'A)
AS ATT A (A'character-string'A) ; abbreviated format

See Chapter 4 in the "RA78K Series Assembler Package User's

Manual for Language' for details of this control instruction.

Application Examples

Example 1: To assemble the source program with -LH option
specified to print a title in the header of
asgsembly list file

A>ral8k3 -¢310 78k3majn.asm -1hRAT8K3 MAINROUTINE

uCOM-78K/111 Assembler Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USxxxxxxxuxx

Passl Start
Pass?2 Start

Assembly complete, 0 error{s) and 0 warning{s) found.

~LH Assembly list file format specification

o When assembly list file "78K3MAIN.PRN" is referenced, the
output assembly list will look like this.

uCOM-T78K/11] Assembler Vx.xx RATSBK3_MAINROUTINE Date:xx xxx xxxx Page: 1
L——————— Title"

Command: -c310 T8k3main.asm -1w80 -1hRAT8K3_MAINROUTINE

Para-file:

In-file: 78K3IMAIN. ASM

Obj-file: T8K3MAIN. REL

Prn-file: T8X3IMAIN. PRN
Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

1 1 $ PROCESSOR{310)
2 2
3 3 NAME SAMPM
4 4 ckkdrkkk bk bbbk kkkk bk kbbb kh kb bk kb bk kb ki k
5 5] ¥
6 6 H HEX -> ASCII Conversion Program x
1 1 ¥ ¥
8 8 ¥ main-routine £
9 9 o ; ¥

10 10 ckddkkkkkkdbd bbbk bbb bb kbR ad bk bbb kb ki ki ikt

11 11 '

12 12 PUBLIC MAIN, START

13 i3 EXTRN CONVAH

14 14

15 15 ===~ DATA DSEG AT OFE20H

lg 16 FE20 HDTSA: DS 1

1

17 FE21 STASC: DS 2

-LT Assembly list file format specification

{d) Option for title character string specification (-LT)

Description format: -LT No. of columns

Default assumption: -LT8

Function
The -LT coption specifies the number of columns which becomes
the basis of tabulation processing to output an assembly list
by replacing a HT (Horizontal Tabulation) code in a source

module with several blank characters on any list,

If the number of columns per line of a list is lessened by
specifying the -LW option, use the -LT option to lessen the
number of blanks by a HT code, thereby saving the number of

columns.

Explanation

o The number of columns to be specified with the -LT option

must be within the following value range:

0 < No. of columns < 8
If an§ value beyond thg above range or other than a value
is input with this option, an abort error will result.

o If -LT0 is specified, tabulation processing will not be
performed. In this case, a HT code is replaced with one
blank character for output.

o If the -LT option is specified at the same time with the -NP
option, the -LT option will become invalid.

-LT Assembly list file format specification

Application Examples
Example 1: When assembly list file "78K3MAIN.PRN" output from

the source program assembled with -LT option
omitted is referenced, the output assembly list
will look like this.

uCOM-T78K/111 Assembler Vx.xx Date:xx xxx xxxx Page: 1

Command: -c¢310 78k3main.asm -iw8D
Para-file:

In-file: TBK3MAIN. ASM

Obj-file: 78K3MAIN. REL

Prn-file: TBKIMAIN. PRN

Assemble lis;

ALNO STNO ADRS OBJECT M | SOURCE STATEMENT

1 1 $ PROCESSOR(310)
2 2
3 3 NAME SAMPM
4 4 chdkkkdkk kbbb kiR bk kb bk Ak kR Ak ko Kk
5 5 o # ¥
] 5 3 HEX -> ASCII Conversion Progranm ¥
T 7 Tk]
8 3 i main-routine *
% 9 ¥ *
10 10 ckkkkkkb kb kb bk Rk kR khkk kb ks k kb kkkd kb Rk k kK k%
11 11
12 12 PUBLIC MAIN, START
13 13 EXTRN CONVAH
14 14
15 15 —---- DATA DSEG AT OFEZ0H
16 16 FE20 HDTSA: DS i
17 17 FE21 _ STASC: DS 2
18 18
19 19 —-- CODE CSEG AT 0H
20 20 0000 ROOOO MAIN: D¥ START
21 21
22 22 —---- CSEG
23 23 0000 2B4100 START: MOV RFM, #00
24 24 0003 OBFCB0FE MOVW SP, #0FE80H
25 25 0007 2B4000 MOV MM, £#00
26 26 000A 0944F708 MOV STBC, #08H
21 217 :
28 28 000E 342014 MOV HDTSA, #1AH
29 29 0011 6720FE MOVYW HL, #HDTSA

4-52

-LT Assembly list file format specification

Example 2: To assemble the source program with -LT1 option
specified (number of blanks by HT code=1}

A>ral8kd -c¢310 78k3main. asm -1tl

uCOM-78K/111 Assembler Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USxxxxxxxxxx

Passl Start
Pass2 Start

Assembly complete, 0 error{(s) and 0 warning(s) found.

-LT Assembly list file format specification

© When assembly list file "78K3MAIN.PRN" is referenced,
the output assembly list will look like this.

uCOM-78K/I11 Assembler Vx.xx Date:xx xxx xxxx Page: 14

Command: -¢310 78k3main.asm -Iw80 -1t!
Para-file: .
In-file: T8K3MAIN.ASM
Obj-file: 7T8K3MAIN.REL
Prn-file: T8K3IMAIN.PRN

Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

1 % § PROCESSOR{310)
2
3 3 NAME SAMPM
4 4 ckkkkkkd bk kb kk kR kR bk Rk k bk ke k bk kb ke kkk ikt 44
5 § 4] : ¥
8] ;% HEX -> ASCII Conversion Program %
7 1 Pk *
8 8 ¥ main-routine ¥
9 9 ¥ ¥
10 10 (RFERRER R RR R R AR bk kR kb kkk ke kb kk kR k¥
11 11

12 12 PUBLIC MAIN, START

13 13 EXTRN CONVAH

14 14

15 15 —=--- DATA DSEG AT OFE20H

16 16 FE20 HDTSA: DS 1

17 1T FE21 STASC: DS 2

18 18

19 19 —-—- CODE CSEG AT 0H

20 20 0000 ROOOD MAIN: DK START

21 21

22 22 -—--- CSEG

23 23 0000 2B4100 START: MOV RFN, #00

24 24 0003 OBFC8OFE MOVW SP, #0FES0H

25 25 0007 2B4000 MOV MM, #00

26 26

0004 O0944F708 MOY STBC, #08KH

The number of blanks by HT code is 1.

4-54

-LF/-NLF Assembly list file format specification

{e) Options for form-feed code addition specification
(-LF/-NLF)

Description format: -LF
or
-NLF

Default assumption: -NLF

Function
o The -LF option specifies the addition of form-feed (FF) code
to the end of an assembly list file.
o The -NLF option specifies the non-addition of form-feed (FF)
code to the end of an assembly list file.

Use
If you want to have a new page after printing the contents of
an assembly list file, add a form-feed (FF) code to the end of

the assembly list file by specifying the -LF option.

Explanation

o If the -LF option is specified at the same time with the -NP
option, the -LF option will become invalid.

o If the -LF and -NLF options are specified at the same time,
whichever you specified later will take precedence over the
other.

—LF/-NLF Assembly list file format specification

Application Examples

Example 1: To assemble the source program with -LF option
specified to add FF code to the end of an assembly
list file

A>ra78k3 -c310 78k3main. asm -pprn -If

uCOM-78K/111 Assembler Vx.xx “fxx xxx xx]
Copyright (C) Corporation xxxx USxxxxxxxxxx

Passl Start
Pass? Start

Assembly complete, 0 error(s) and 0 warning(s) found.

-E/-NE Error list file output specification

(11) Options for error list file output specification (-E/-NE)

Description format: -E [output-filename]
or
-NE

NE

Default assumption:

Function

Use

o The -E option specifies the output of an error list file. It

also specifies the output destination or output filename of
an error list file to be output by the assembler.

The -NE option specifies the non-output of an error list
file.

Use the -E option if you want to save error messages to a
file.

Also use the -E option if you want to change the output
destination or output filename of an error list file.

Explanation

o An output filename can be specified with either a disk type

filename or a device type filename. However, if a device
type filename "CLOCK" is specified as an output filename, an
abort error will result.

If an output filename is omitted from the -E option specifi-
cation, "input filename.ERA" is assumed as the output error
list filename.

If a drive name is omitted from the -E option specification,
the error list file will be output tc the current drive.

If the -E and -NE options are specified at the same time,

whichever you specified later will take precedence over the
other.

4-57

-E/-NE Error list file output specification

Application Examples

Example. 1: To assemble the source program with -E option
specified to create an error list file named
"SAMPLE.ERA"

A>ral8ks -c310 78k3main. asm -esample.era

uCOM-T8K/11] Assembler Vi.xx [xx xxx xx]
Copyright (C) Corporation xxxXx USXXXXxxxxxxx

Passl Start

TSK3MAIN. ASM(20) : E101 Syntax error

T8K3MAIN. ASM{23) : Et0l Syntax error

Pass2 Start

TOK3IMAIN. ASM(12) : E137 Publie symbol is undefined
TBKIMAIN. ASM{20) : E101 Syntax error

TBKIMAIN. ASM(23) : E101 Syntax error

Assembly complete, 3 error(s} and 0 warning(s) found.

o When error list file "SAMPLE.ERA" is referenced, the output
error list file will look like this.

Passl Start

T8KIMAIN. ASM(20) : E101 Syntax error
TBK3MAIN.ASM(23) : E101 Syntax error

Pass2 Start

TEK3MAIN. ASM(12) : E137 Public symbol! is undefined
T8K3MAIN. ASM(20) : E10! Syntax error

T8K3MAIN. ASM(23) : E101 Syntax error

-F Parameter file specification

(12) option for parameter file specification (-F)

Description format: -F filename

Default assumption: Options and input filenames can
be input only from start-up

command line.

Function
' The -F option tells the assembler that options and input file-

name(s) will be input from the file specified by this option.

Use
o Use the -F option if all the required parameters for
starting up the assembler cannot be specified in the
start-up command line.
o If you have a set of assembler options which you must
specify repeatedly at each assembly operation, describe
these assembler options in a parameter file and then

specify the -F option in the start-up command line.

Explanation

o A filename can be specified with only a disk type filename.
If any device type filename is specified with this option,
an abort error will result. .

o If a filename is omitted from the -F option specification,
an abort error will also result.

o Nesting of parameter files is not allowed. If the -F option
is specified in a parameter file, an abort error will
result.

o The number of characters that can be described 1in a para-
meter file is not limited.

o A blank character, Tab character, or " " must be used as

a delimiter between options or input filenames.

4-59

-F Parameter file specification

o The options and input filenames described in the parameter
file will be expanded to the location on the command line
where the parameter file (-F option) has been specified.

0 The assembler will process these expanded options in the
order from the last input option.

o All characters described between ";" or "#" and "d" or EOF
code will be interpreted as a comment statement.

o If two or more -F options are gpecified at the same time,

an abort error will result.

Application Examples

Example 1: To assemble the source program with -F option
specified
0 Contents of parameter file "78K3MAIN.PRA"

;parameter file
78k3main. asm -osample. rel -g
-psample. pra ’

o Enter -F option in the start-up command line as follows:

A>ral8k3 -f78kl3main.pra

uCOM-78K/I11 Assembler Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USxxxxxxxxxx

Passl Start
Pass? Start

Assenbly complete, 0 error{s) and 0 warning(s) found.

-7 Temporary file creation

path specification

(13) Option for temporary file creation path specification (-T)

Description format: -T pathname

Default assumption: Temporary file is created on the path
specified by environment variable TMP

or on the current path if no path is

specified by TMP

Function
The -T option tells the assembler to create a temporary file
on the path specified by this option.

Use

The -T option can be used to specify where a temporary file
is tc be created.

Explanation

o Other than a path cannot be specified as a pathname. If a
pathname is omitted from the -T option specificaticn, an
abort error will result.

¢ If a previously created temporary file exists, the assembler
will create a temporary file by overwriting the file unless
it is write-protected.

o If the required memory space for temporary file creation is
available, the assembler will create a temporary file in
memory. If the memory space is exhausted during the
temporary file creation, the assembler will save the
temporary file contents in memory to another disk and
subseguent accessing to the temporary file will be made to
that disk.

o The temporary file created for an assembly process by the
assembler will be erased on completion of the assembly
process. The temporary file will also be erased when the
assembly process is discontinued by CTRL-C key input.

4-61

-T Temporary file creation

path specification

o A path for temporary file creation is determined in the

following order:

C) .Path specified by the -T option

(2) Path specified by environment variable TMP (when the
-T option is omitted)

C) Current path {when no path is specified by environment
variable TMP)

If a temporary file cannot be created on the path specified

by (1) or (2), an abort error will result.

Application Examples

Example 1: To assemble the source program with -T option

specified to create a temporary file on directory
TMP

A>raiBk3 -c310 78k3main.asm -ttmp

uCOM-78K/I111 Assembler Vx.xx [xx xxx xx]
Copyright {C) Corporation xxxx USXXXxxxxxxx

Passl Start
Pass2 Start

Assembly complete, 0 error(s) and 0 warning(s) found,

—— HELP message display specification

(14) Option for HELP message display specification {--)

Description format: --

Default assumption: No HELP message is displayed.

Function
The -- option tells the assembler to display the HELP message

on the console.

Use
The HELP message is a list of all assembler options and
their functional descriptions. Use the -- option if you want

to refer to this message when executing the assembler.

Explanation

o If the -- option is specified, all the other assembler
options specified at the same time will become invalid.

o If you want to see the next screen for the continuation of
the HELP message, type the RETURN (CR) key. If you want to
terminate the HELP message display, first type any key other
than the RETURN key and then type the RETURN key.

—— HELP message display specification

Application Examples
Example 1: Input -- option as shown below and the HELP message

will be displayed on the screen.

A>ra78k3 --

uCOM-78K/111 Assembler Vi.xx [xx xxx xx]
Copyright (C) Corporation xxxx USXXXXXXXXXX

usage : RAT8K3 [option{...]] input-file [option{...]]
The option is as follows ([] means omissible).
-Cx :Select target chip. (x = 310,3124,etc.) *Must be specified.

-0[filel/-N0 :Create the object module file [with the specified name] / Not.
-f[filel/~NE :Create the error list file [with the specified name] / Not.
-P[file]/-NP :Create the print file [with the specified name] / Not.

-KA/-NKA :Qutput the assemble list to print file / Not.
-K§/-NKS :Qutput the symbol table list to print file / Not.
-KX/-NKX :Qutput the cross reference list to print file / Not.

-LW{width] :Specify print file columns per line.
-LL[length] :Specify print file lines per page.

-LF/-NLF :Add Form Feed at end of print file / Not.
-LTn +Expand TAB character for print file(n=1 to 8)/ Not expand(n=0).
-LHstring :Print list header with the specified string.

CHAPTER 5. LINKER

The Linker accepts object module files which are output by the

assembler for the 78K series as input files and outputs a load
module file,

The linker also outputs list files such as a link list file and an
error list file.

If any link error occurs, the linker outputs an error message to
an error list file to clearly indicate the cause of the error.

In this case, no load module file will be output by the linker.

5.1 Input/Output Files of Linker

The files listed in Table 5-1 below are input and cutput to and
from the linker.

Table 5-1. I/0 Files of Linker

Type Name and description of file fDefault

. ' file type
Input Object module file A binary file which .REL
files contains machine language infermation,
relocation information on the address of
each machine-coded instruction, and symbol

information.
This file is output by the Assembler.
Library file .,....... A file in which two .LIB

or more object module files are registered.
Thig file is output by the Librarian.
Directive file A file containing .DR
linking instructions to the linker.
This file must be created by the user.

Parameter file ... A file containing the .PLK
parameters of the executable program
{Linker).

Thig file must be created By the user.

Table 5-1. I/0 Files of Linker (contd)

Type Name and description of file Default
file type

Output | Load module file A binary image file .LNK
files containing all information on the result

of the linking process.

This file becomes an input file to the

Object Converter

Link list file A list file containing .MAP

linkage information such as map list,

directive file, and Public symbol list.

Error list file A file containing .ELK

information on errors at linkage time.

1/0 Temporary file A file which is LK78Kn.$3$1,
file automatically generated by the linker as LK78Kn.$%2,
a work file. or

This file will be erased on completion of LK78Kn.$%$3
the linking process. (fixed to
this name)
(n =0, 1, 2, 3, or 6)
Library Object module files Directive Parameter
file file file

T

Link list Load module Error list
file file file '

Fig. 5-1. I/0 Files of Linker

5-2

7

Temporary
file

(1)

(2)

(3)

(4)

(5)

(6)

Linker Functions

The linker reads the input object module files and outputs a
load module file.

The linker performs the linking process according to the
linker option(s) specified at the start-up of the linker.
{See. Section 5.8, Linker Options for details of the linker
options.)

The linker merges the input segments and allocates an
address to each segment. See Section 5.4, Merging the Input
Segments for details of how to merge the input segments

and Section 5.5, Determining the Location Addresses of
Segments for details of how to allocate an address to each
segment.

After determining the location addresses of the respective
segments, the linker determines the value of a label defined
in a relocatable segment. Because a label defined in a
relocatable segment has an offset from the beginning of a
segment defined in an object module file, the linker
determines the symbol value of the segment by adding this

of fset value to the start address of the segment.

After the symbol value of each segment has been determined,
based on the determined symbol value or location address, the
linker resolves the relocation of any segment whose value
could not be determined at assembly time, because a
relocatable symbol, an externally defined symbol, or the
location counter in a relocatable segment is referenced.

On completion of the linking process without any abort or
fatal error, the linker outputs a linking end message and
returns control to the 0S.

5.3 Memory Spaces and Memory Areas

5.3.1 Memory spaces
A memory space refers to a space for defining a memory area. This
linker has 16 memory spaces (one regular space and 15 extension
spaces), each of which is named as follows:
Regular space = REGULAR
Extension spaces = EX1, EX2, EX3, EX4, EX5, EX6, EX7, EX8,
EX9, EX10, EX11, EX12, EX13, EX14, EXi5

(1) Regular space
The regular space is an address space in which ordinary
internal ROM and RAM areas and/or "sfr" area exist. Only this
regular space is used as a memory space when memory is not to
be extended by using the memory bank selection function.

{2) Extension spaces
For the user who wish to expand memory into an area in which
an external memory can be located by using the memory bank
selection function, the extension spaces are provided to
facilitate location of segments to two or more memory banks,
By locating segments to any of these extension spaces by
memory bank selection in addition to the regular space, object
code generation extending over two or more memory spaces may
be implemented and symbol references between the regular and

extension spaces may be resolved.

REGULAR EX1 EX2 EX3 EX4 EXS EX6 - EX14 EX15

Fig. 5-2. Memory Spaces

5-4

5.3.2 Memory areas

A memory area 1is an area which has been defined in a memory space
for locating segments. Memory areas are divided into default
memory areas which are to be defined in advance by the linker and
memory areas which are to be defined with MEMORY directives by
the user.

The linker always locates segments to an address range in which a
memory area has been defined, never to an address range in which

no memory area has been defined.

(1) Each memory area has a name which has been defined in a memory
space (i.e., a memory area name), a start address, and a size.
Relations between memory spaces and memory areas are as shown
below.

C) Memory area "ROM" is defined in the REGULAR space with
start address OH and size 8000H.

C) Memory area "RAM" is defined in the REGULAR space with
start address CO00H and size 3F00H.

(3) Memory area "MEM1" is defined in the EX1 space with start
address 8000H and size 4000H.

() Memory area "MEM2" is defined in the EX2 space with start
address 8000H and size 4000H.

0000 T TTTTEEr T Tttt rr T I’""“""“';

Memory area E E { E E)
RO M : f 5 i 5 5

, L 7epp 1 8000 | 1 8000 1
' X Memory area emory area N '
: : MEMI "MEM 2 : :
cooo BFFF BFFF X

Memory area ! : ! ' ! ! :
RAM : : | : : :

, . FEFF : ! : : :

REGULAR space EX1 space EX2 space EX3 space

Fig. 5-3. Memory Spaces and Memory Areas

5-5

(2) As mentioned earlier, memory areas are divided into those
which are to be defined by the linker by default assumption
and those which can be defined freely by the user.

As default memory areas, two memory areas are available: one
which has a name "ROM" (in uppercase letters) and the other
which has a name "RAM" (in uppercase letters). The start
addregs and size of each of these memory areas differ
depending on the target device. With the 78K/0, however, ROM,
high-speed RAM (IHRAM), and low-speed RAM (LRAM) areas are
available as default memory areas.

The user can use the memory area ROM and memory area RAM as
defined by default assumption for locating segments or re-
define the start address or size of any of these default
memory areas. However, note that the address range that can be
re-defined differs depending on the target device. So, be sure
toc re-define the start address or size of any of these memory
areas within the address range established for each target
device.

See Section 5.6, Link Directives for the definition and
re-definition of a memory area. '

(3) If no directive relating to address allocation to any segment
is given during a linking process, the linker determines a
memory area to which segments are to be allocated based on
the type and relocation attribute of each segment described
by the user in the source program. The areas to be allocated
toc the respective segments by default assumption are shown
in Table 5-2.

5-6

~Table 5-2. Areas to Be Allocated to Segments by Default Assumption

Applicable Type and Address to be allocated Changeability
target device relocation to each segment by of location
attribute default assumption address{es)
0 I |IIT | VI of segment
o) o o} o CSEG (UNIT) With 78K/0: : Yes

{see Note 1) | 80H to FA7FH
With 78K/I,78K/III,78K/VIi:
Any address in ROM area

o X X X CSEG CALLT Even address in area Yes
from 40H to 7FH
X o o X CSEG CALLTO Even address in area Yes
from 40H to 7FH
X X Q X CSEG CALLT1 Even address in area Yes
from 8040H to B8O7FH
X X X o CSEG TABLE Even address in area Yes
from 50H to FFH
o o o bl4 CSEG FIXED Any address in area Yes
from 800H to FFFH
o 0 o] 0 CSEG AT Specified address No
{see Note 2}
o o o] o DSEG AT Specified address No
{see Note 2)]
o) o o o BSEG AT Specified address No
{see Note 2)
o o) 0 DSEG (UNIT) with 78K/0: Yes
(see Note 1) | Any address in high-speed
RAM area

With 78K/1I,78K/III,78K/VI:
Any address in RAM area

o X ® X DSEG LRAM Any address in low-speed Yes
RAM area .
(o] o o ! DSEG SADDR With 78K/0,78K/I,78K/III: Yes

FE20H to FEFFH
(see Note 3)
With 78K/VI:
FCOOH to FEFFH

o o) o X BSEG (UNIT) FE20H to FEFFH Yes
) {see Note 3)

X X e o] BSEG SADDR FCOOH to FEFFH Yes

o X o X DSEG SADDRP Even address in area Yes

from FE20H to FEFFH
{see Note 3)

X X X o} DSEG WSADDR Even address in area Yas
. from FCOOH to FEFFH
X X X o DSEG DSADDR Address in multiples Yes

of 4 in area from
FCO0H to FEFFH

e} X | x X DSEG IHRAM Any address in High- Yes
speed RAM area
o] b4 X X DSEG DRAM Any address in Low- Yes

speed RAM area

Note: 1. If no ROM area (or RAM area) exists in the memory area in
which a segment whose type and relcocation attribute are
CSEG (UNIT) or DSEG (UNIT) is to be located, an error
will result. When locating a segment in an extension
space, a ROM area {or RAM area) can be defined in only
one of the memory spaces. Therefore, for a memory space
in which no other ROM area (or RAM area) exists, a
segment whose type and relocation attribute are CSEG
{UNIT) or DSEG (UNIT) will be located in any memory area
in the memory space unless a memory area or location
address is explicitly specified.

2. Includes the segment defined by the ORG directive.
3. With the uPD78112, an area from FE40H to FEFFH is
applicable, in place of an area from FE20H to FEFFH.

5.4 Merging the Input Segments

5.4.1 Merge types of segments
Each segment has a merge type. The merge type of a segment is a
type which specifies how the segment must be merged with other

segments. The following four merge types are available.
SEQUENT (Sequential), 2-byte ALIGN, 4-byte ALIGN, and COMPLETE

Note: 4-byte ALIGN is the merge type for exclusive use of the
78K/VI series.

5.4.2 Rule for determining the merge type

The merge type of a segment is determined according to the
following rule.

The linker determines the merge type of each segment according
to the relocation attribute of the segment specified at assembly
time. Combinations of relocation attributes and merge types are
shown in Table 5-3 below, However, if the merge type of a segment
is specified by a link directive at linkage time, the merge type
specified by the link directive will take precedence over the
merge type given from the relocation attribute of the segment.
See Section 5.6, Link Directives for details of each link

directive.

5-8

Table 5-3. Merge Type by Relocatioﬁ Attribute

Applicable Relocation attribute Merge type
target device of segment to be given

0 I II1T | VI

0 o} o] o} CSEG (UNIT)

o} O o h CSEG FIXED

o o (@) 0 DSEG (UNIT}

o) (o) (o) 0 DSEG SADDR

(o] X" 0 X DSEG SADDRP SEQUENT

o X X X DSEG LRAM {Sequential)
0 X X X DSEG IHRAM

o o 0 0 BSEG (UNIT)

X b4 X o] BSEG SADDR

0 X b4 X BSEG LRAM

o) X p:4 X CSEG CALLT

X 0 o X CSEG CALLTO

p:4 X o pd CSEG CALLTI 2-byte ALIGN
X X X 0 CSEG TABLE

O pid o) X DSEG SADDRP

X X X 0 DSEG WSADDR

X X X e} DSEG DSADDR 4-byte ALIGN
[e) [o} o o CSEG AT {(see Note below)

o) o) o) 0 DSEG AT (see Note below) COMPLETE

e} o] O (o] BSEG AT

Note: Includes the segments defined by the ORG directive.

5.4.3 Merging the segments

The linker performs the merging process of segments according to

the following rules.

(1)

(2)

(3)

0f all the input.segments, two or more segments which are
identical in all the segment name, segment type {(CSEG, DSEG,
or BSEG), relocation attribute specified at assembly time,
location type, and merge type are merged by the linker into
a single segment for output, except when the merge type is
COMPLETE.

Input segment group Output segment
{with same name and
same attribute)

Merge

Fig. 5-4., Merging Process (with Same Named Segments)

If two or more input segments have the same segment name but
differ in any of their segment type, relocation attribute,

location type, and merge type, an error will result.

Of all the input segments, a segment which has no other
segment identical in segment name will be output as is by
the linker. In this case, the segment name, segment type,
relocation type, location type, and merge type of the output

segment will be the same as those at input time.

Input segment Output segment
(which has no other

segment identical

in name)

SEGA — | SEGA

Fig. 5-5. Merging Process (with No Same-Named Segment)

5.4.4 Segment merging method by merge type
The method of merging input segments for each merge type is

explained in this subsection.

(1) When merge type is SEQUENT

The method of merging input segments differs between BSEG

and any other segment type.

o With segment type other than BSEG
When the merge type is SEQUENT, the input segment data are
merged without gap between the two segment data in the order
of their appearance in the linker. The value of each origin
data indicating the effective part within the segment data
.will be updated.

Input segment data Output segment data
0— . -0
DS 100 . DS 100
100— Effective - Size A | Effective <100
part B T {part @ A
0— N DS 200
900— DS 200 . - Effective <200+
g:ﬁ:ctive | size B | part @
DS ZQO
DS 200 F - - --- | e A+B
- DS 300
0— DS 300 N . Effective < A+B+300
’ t
300~ Iprfecrive | | Si2e C et @ —A+B+C
part (3 |

Fig. 5-6. Method of Merging When Merge Type is SEQUENT
{with Segment Type Other Than BSEG)
5-11

o With segment type BSEG
The input segments are merged in a similar manner to the

above, except that merging is done in units of bits.

Module C Segment B2
Size.: — | Frem
- Segment B2
5 bits __T??_L{}:e_-i_ Size: 14 bits
(5 bits + 9
Module D —— | From - :
module D bits = 14 bits)
Size: _
9 bits Segment B2

Fig. 5-7. Method of Merging in Bit Units

{2) When merge type is 2-byte ALIGN
When the merge type is 2-byte ALIGN, the input segment data
are also merged sequentially in the order of their appearance
in the linker, provided that the linker makes alignment so
that the start address of each input segment becomes multiples
of 2, In other words, if the start address of any input
segment becomes an odd;numbered address, the linker will merge
the input segments by providing a gap of 1 byte before the
start address of the input segment so that the start address
becomes multiples of 2.
The value of each origin data indicating the effective part
within the segment data will be updated just the same as when
the merge type is SEQUENT.

(3)

Input segment data Qutput segment data

0— . . <0
DS 100 . DS 100
100— Iffective - Size 1FFH 1 Effective <100
part = | part @
1ff- e «— |FF 7 Gap for
0~ T B E R <200 (1FF+1)— alignment
Tt DS 200 DS 200
200~ : . «— 400 tstart 200 +
Pt | psize 4008 —— ggiicé”e offset 200)
DS 100 DS 100
100— - e <600 (1FF+1+400)
0— . DS 300 600
DS 300 - — Q0 {start +
300— Effective — Size 500H —— gilfficélve offset 300)
part 3 «~BOO(1FF+1+400+500)

00— =

Fig. 5-8. Method of Merging When Merge Type is 2-byte ALIGN

In the above figure, the size of the input segment including
the effective part () is 1FFH. If the input segments are
sequentially merged, the start address of the input segment
including the effective part (2) does not become multiples
of 2. Therefore, these two input segments are merged with a
gap of 1 byte so that the start address of the input segment
including the effective part (:) becomes 200H (multiples of
2). As regards the origin data, the values corresponding to
the effective data () , C), and (:) are updated so as to
start from 100H, 400H, and 900H, respectively.

When merge type is 4-byte ALIGN
When the merge type is 4-byte ALIGN, the input segment data
are also merged sequentially in the order of their appearance
in the linker, provided that the linker makes alignment so
that the start address of each input segment becomes multiples
of 4. In other words, if the start address of any input
segment becomes an odd-numbered address, the linker will merge
the input segments by providing a gap of 1 to 3 bytes before
the start address of the input segment so that the start
address becomes multiples of 4.

5-13

The value of each origin data indicating the effective part
within the segment data will be updated just the same as when
the merge type is SEQUENT.

Input segment data Output segment data
00— - —
D’S 100 ' : DS 100
100— Effective ~ Slze 1FFH -l_ Effective —100
part — | part
1ff— R <« |FF]Gap for
01— T S e <200 (1FF+1) - alignment
: DS 200 , DS 200
00— - : - «— 400 (start 200 +
ggfiiﬁ;ve - size 4020 —— | DIERCELVE offset 200)
DS 100 DS 100 ()
102 - e <502 (1FF+1+402) g
0— N s <604 (IFF+1+400+2) 1%
DS 300 DS 300
300— e — Size 500H —— ; — 404 (start 604 +
giiii&;ve gifiiﬁ;ve offset 300)
500— - «—BO4 (1FF+1+402424500)

Fig. 5-9. Method of Merging When Merge Type is 4-byte ALIGN

In the above figure, the size of the input segment including
the effective part C) is 1FFH. If the input segments are
sequentially merged, the start address of the input segment
including the effective part (:) does not become multiples
of 4. Therefore, these two input segments are merged with a
gap of 2 bytes so that the imaginary start address of the
input segment including the effective part () becomes 604H
(multiples of 4). As regards the origin data, the values
corresponding to the effective data (:), () , and C) are
updated so as to start from 100H, 400H, and 904H,
respectively.
Note: 4-byte ALIGN is the merge type applicable only to the
78K/VI series,.

(4) When merge type is COMPLETE
If two or more input segments which are identical in the
segment name and all have the merge type COMPLETE exist, an
error will result. An input segment which has any of the

following names will be handled specially by the linker,

?ASEG1, ?ASEG2, ?ASEG3, ?ASEG4, ?ASEGS5, ?ASEG6, ?ASEG7,
?ASEG8, °?ASEGY9, ?ASEG10, ?ASEG11, ?ASEG12, ?ASEG13, ?ASEG14,
?ASEG15, ?ASEG16, ?ASEG17, ?ASEG18, ?ASEG19, ?ASEG20

(a) If only one segment which has any of the above segment
names is input, the linker will perform the ordinary
merging process for the input segment.

(b} If two or more segments which have one of the above listed
names as their identical segment name are input and if the
same named segments all have either the merge type SEQUENT
or 2-byte ALIGN, the linker will perform the ordinary
merging process for the input segments.

(c) If two or more segments which have one of the above listed
names as their identical segment name are input and if the
same named segments all have the merge type COMPLETE, the
linker will not merge these input segments and locate them
as separate segments,

(d) If two or more segments which have one of the above listed
names as their identical segment name are input and if the
merge types of the same named segments include both the
COMPLETE type and the SEQUENT or 2-byte ALIGN type, the
linker will perform the process described in (c) above for
the segment(s} which have the merge type COMPLETE and then
perform the ordinary merging process for the rest of the
segments, (If the remaining segments are identical in all
the segment type, relocation attribute, location type, and
merge type, these segments will ‘be merged into a single
segment. Otherwise, the linker will output an error.)

Note:

The above listed 20 segment names will be automatically
given by the assembler to segments which have been defined
with the ORG directive but whose segment names were omitted
from specification at assembly time. Therefore, segments
which have these names are normally absolute segments and
they all have the merge type COMPLETE. However, because the
user may use any of these names explicitly at assembly time
and even in such as case the linker performs the merging
process for the input segments having any of these names as
outlined above, attention must be paid to this point. The
assembler also automatically generate such segment names as
?CSEG and ?DSEG. The user is thus prohibited from defining

any symbol which begins with "?2".

5.5 Determining the Location Addresses of Segments

On completion of the merging process, the linker determines the

location address of each segment. This section details how to

determine the location address of each segment.

5.5.1 Location types of segments

Table 5-4. List of Location Types of Segments

Location type

Address information

to be added

Meaning

BOND

Start address

Assigns the address speci-
fied at assembly time for
allocation to a segment as
the start address of the
segment.,

2-byte ALIGN

Alignment value

Determines the location
addresses of a segment so
that the start address of
the segment becomes an
even-numbered address which
can be divided by 2.

4-byte ALIGN

(see Note
below)

Alignment value

Determines the location
addresses of a segment so
that the start address of
the segment becomes an
even-numbered address which
can be divided by 4.

AREA

Start address
End address

Determines the location
addresses of a segment so
that the entire segment
can be located between the
start and end addresses
{(with or without including
both}.

FREE

None

Assign a segment to any
address on memory.,

Note: 4-byte ALIGN is the location type applicable only to
the 78K/VI series.

of the above five location types, AREA and 2-byte or 4-byte ALIGN

may be specified at the same time. Each location type is detailed

below.

(1) BOND

This type locates a segment by using the address specified
within a usable memory and determined by the start address
specification as the start address of the segment. In this
case, the entire segment must be within the range of the
usable memory area. Even when the start address of a segment
is within a usable memory area, an error will result unless
the tail of the segment is within the same continuous memory

aread.

Value specified as _
start address

Memory area
Segment A

Fig. 5-10. Locating a Segment by BOND Specification

(2) 2-byte ALIGN
This type locates a segment so that the start address of the
segment becomes an even-numbered address which can be divided
by 2. The entire segment must be located within the address
range cof a usable memory area (namely, it must not extend

over two different memory areas).

2 bytes

— 2 bytes

2 bytes

2 bytes

Segment B 2 bytes

Memory area -
2 bytes

2 bytes

2 bytes

- 2 bytes

Fig. 5-11. Locating a Segment by 2-byte ALIGN Specification

(3) 4-byte ALIGN
This type locates a segment so that the start address of the
segment becomes an even-numbered address which can be divided
by 4. The entire segment must be located within the address
range of a usable memory area (namely, it must not extend
over two different memory areas).

bytes

bytes

bytes

]
O N S

bytes

Segment B 4 bytes
Memory area .- --

4 bytes

4 bytes

4 bytes

- 4 bytes

Fig. 5-12. Locating a Segment by 4-byte ALIGN Specification

5-19

(4) AREA
This type assigns a segment to anywhere in a usable memory
area which is specified by start and end addresses and
determines the start address of the segment. In this case,
the entire segment must be located within the address range of

the usable memory area.

Value specified as
start address -

Segment C Memory area

Value specified as _ J
end address

Fig. 5-13. Locating a Segment by AREA Specification

(5) Combination of AREA and 2-byte/4-byte ALIGN
This combination type locates a segment in an area between
the start address of AREA and the end address of AREA
according to the condition specified by an alignment value.
In this case, alignment by the linker begins with address
0, not with the start address of AREA.

: 0 .
Value specified as Any of the locations
alignment wvalue — e - indicated by *— may be
Value specified as used as start address.
start address of — .
AREA Landll --
$— Memory area
Segment D Alignment is made
within this area.
§— |- --
£— |-- --

value specified as _
end address of AREA

Fig. 5-14. Locating a Segment by Combined AREA/ALIGN Specification

5-20

{6) FREE
This type assigns a segment to anywhere in any usable memory
area and determines the start address of the segment. In this
case, the entire segment must be located within the address

range of the usable memory area.

Segment E Memory area

Fig. 5-15. Locating a Segment by FREE Specification

Each location type has a priority level for use when determining
the location addresses of a segment. Location addresses are thus
determined in the order of the location type with the highest
priority.

The precedence order of location types is as shown below.

Highest =<— BOND > AREA + 4-byte ALIGN > AREA + 2-byte ALIGN >
AREA > 4-byte ALIGN > 2-byte ALIGN > FREE > —> Lowest

5.5.2 Rules for determining the location type

The location type of a segment is determined according to the

following rules:

(1) If no location type is specified for a segment by a link
directive at linkage time, the location type of the segment
will be determined by the relocation attribute of the
segment specified at assembly time. The location type which
will be given to each segment in this case is shown in Table
5-5. However, if a location type is specified for a segment
by a link directive at linkage time, the linker will give
priority to the location type specified the link directive.
See Section 5.6 for the link directives.

5-21

Table 5-5. Location Type Given by Relocation Attribute

5-22

Applicable Relocation Location type
target device attribute to be given

0 I |IITXI | VI of segment

o 0 O o CSEG (UNIT)

o) 0 o) o} .DSEG (UNIT) FREE

0 X X X DSEG IHRAM

o X X X CSEG CALLT Combination of AREA (start

’ value:40H; end value:7FH)

X o o X CSEG CALLTY and ALIGN (alignment value:
2 bytes)

x X o] X CSEG CALLT1 Combination of AREA (start
value:8040H; end value:807FH)
and ALIGN (alignment wvalue:

2 bytes)

o} o o) X CSEG FIXED AREA (start value:800H; end
value:FFFH)

o o o o) DSEG SADDR With 78K/0,78K/1,78K/IIIL:
AREA (start value:FPE20H; end
value:FEFFH)} (See Note 2.)
With 78K/VI:

AREA (start value:FC00H; end
value:FEFFH)

0 o o o BSEG (UNIT) With 78K/0,78K/1,78K/III:
AREA (start value:FEZ0H; end
value:FEFFH) (See Note 2.)
With 78K/VI: FREE

o X fo) X DSEG SADDRP Combination of AREA (start
value:FE20H; end value:FEFFH)
and ALIGN (alignment value: -
2 bytes)

0 X X X DSEG LRAM AREA (start value: FAE(QH; end

o) X X pd BSEG LRAM value: FAFFH)

X X b'4 o CSEG TABLE AREA (start value: 50H; end
value: FFH)

X X X o BSEG SADDR AREA (start value: FCOOH; end
value: FEFFH)

X X X 0 DSEG WSADDR Combination of AREA (start
value:FCO00H; end value:FEFFH)
and ALIGN (alignment value:

2 bvtes)

X X X 1O DSEG DSADDR Combination of AREA (start
value:FCO0H; end value:FEFFH)
and ALIGN (alignment value:

4 bytes)
o} o o o} CSEG AT BOND (value specified at
(see Note 1) assembly time)
o) o) o o DSEG AT
{see Note 1)
] o) Q O BSEG AT :
Note: 1. Includes the segment defined by the ORG directive.
2. With the uPD78112, the start value is FE40H.

5.5.3 Rules for determining the segment location addresses

The location addresses of each segment are determined according to

the following rules:

(1) Each segment is located so that the segment in its entirety is

within a memory area.

If either of the following two address allocations is made:

o Allocation which would cause part or all of the segment not

to be located within a memory area

o0 Allocation which would cause the segment to be located in a

noncontinuous address area (by being extended over two or

more usable memory areas)

the linker will output an error message and immediately

terminate its processing. However, if the -J option has been

specified in case of the address allocation which would cause

part or all of the segment not to be located within a memory

area, the linker will output an error message but will force

the segment to be located as specified and continue its

processing.

Segment to be located

Usable
memory

a. Part of segment
is not within
a memory area,

Usable
memory

b. A1l of segament
is not within
a4 memory area.

b.

First halr| |Usable
of A memory

Latter half Usable

of A memory

Segment extends
over two or more

memory areas.

Fig. 5-16. Examples of Improper Segment Location

5-23

(2) If a memory area name is specified.for a segment as the Bind
specification by a link directive, the segment will be located
in the specified memory area.

Likewise, if a memory space name is specified, the segment
will be located in a memory area defined in the specified
memory space. (Even if a memory space name is gpecified, no

segment will be located in any place not defined as a memory

area.)
Segment A Segment B can Memory area
= —)
to be located in be located. ROM
memory area MEMI1 i Usable
memory
— |Segment A can| |Memory area
be located. MEM1
Segment B

to be located in
memory area ROM

Fig. 5-17. Memory Area Name Specification

(3) Each segment has a location type and the linker determines
the location addresses of the segment according to the
location type.

(4) The location addresses of segments are all determined in units
of bytes. With segment type BSEG, the location addresses of
the segment are determined after converting its segment size
to bytes with 8 bits taken as 1 byte (by rounding up a
fractional part to 1 byte).

5.5.4 Procedure for locating segments

This subsection explains a segment locating operation.

(1)

(2)

(3)

Location address determination for segments is made in the

order of the segment which has a location type of the
highest priority.

If two segments have a location type of the same priority,
location addresses will be determined in the order of the

first input segment.

Input order of Priority of Factor for determining
segments allocation allocation priority
f 1 I 1 ¥ 1
| Segment A . Segment D Location
AREA BOND type
ALIGN BOND
Segment B Segment A
2. — 1. Input order
AREA AREA . First
ALIGN Location
type -
AREA =
‘Segment C Segment C ALIGN
3. — 1. Input order
AREA AREA Third
ALIGN ALIGN
4 -Segment D . Segment B Location
4 type
BOND AREA ARFA

Fig. 5-18. Priority of Address Allocation to Segments
by Location Type

If two or more usable memory areas exist for address
allocation to a segment, the segment will be located in

a memory area which has the lowest-order address.

5.6 Link Directives

Link directives (hereafter referred to as directives) refer to a
group of pseudoinstructions which give the linker particular
instructions on such as input files, usable memory areas, and
address allocation to segments.

Each directive must be used according to the following procedure:
The user must describe directives in a file using the editor (a
file containing directives is called a directive file) and must
specify the directive file by using the -D option when starting up
the linker. The linker reads the directive file and performs a
linking process while interpreting each directive in the file.

These directives are available in the following two types.

Table 5-6. Types of Directives

Item Type of directive Description

1 Memory directive Defines a usable memory area.

2 Segment location Specifies the location addresses
directive 7 of a segment.

5.6.1 Directive file

A directive file is a text file in which link directives have been
described. Here, the basic conventions of description in a
directive file are explained.

The description format (syntax) of each type of directive in a

directive file is as shown below.

C) Memory directive

MEMORY memory-area-name: {(origin value,size)
[/memory-space-name]

C) Segment location directive

MERGE segment-name:|[location-type-definition]
[merge-type-definition][=bind-specification]
[/memory-space-name]

Two or more directives may be described in a directive file.
5-26

{1) Reserved words
In a directive file, the following five words are recognized

by the linker as reserved words.
MEMORY MERGE AT SEQUENT COMPLETE

The user cannot use any of these reserved words in a directive
file for any other meanings (segment name, memory area name,
etc.).
All the reserved words may be déscribed in either uppercase
or lowercase letters but both uppercase and lowercase cannot
be mixed to describe any of these reserved words.
Examples: MEMORY

memory

Memory ; Not acceptable

(2) Numeric values
When a numeric constant is to be described as the parameter of
each directive, the numeric constant may be described in

either decimal or hexadecimal numbers.

(3) Comment statement
If ";" or "#" is described in a directive file, characters
between the ";" or "#" and an LF character will be handled as
a comment statement. If the directive file reaches its end
before an LF character appears in the directive file,
characters up to the end of the file will be handled as a
comment statement.
Example: The underlined part is interpreted as a comment

statement..

: DIRECTIVE FILE FOR 78312
MEMORY MEM1: (1000H, 1000H) ¥ SECOND MEMORY AREA

5.6.2 Memory directive

The memory directive defines a memory area. The defined memory
area may be given a name (memory area name) and referenced by
using the segment location directive.

Up to 100 memory areas may be defined including those defined by

default assumption.

MEMORY Memory directive

Syntax

MEMORY A memory-area-name A: A(Aorigin value A, Asize &)

[/ A memory-space-name]

(1) Memory area name

The parameter "memory area name' specifies the name of the
p Yy p

memory area to be defined.

o

Characters that can be used as a memery area name are
AtoZ, atoz, 0te 9, -, ?, and @. However, none of the
numeric characters 0 to 9 can be used as the first character
of a memory area name.

Uppercase letters are distinguished as different characters

from their lowercase equivalents.

Uppercase and lowercase may be mixed to describe a memory
area name.

The maximum length of a memory area name is 31 characters,
If any memory area name is described by exceeding this

limit value, an error will result.

No two same named memory areas can be defined throughout

the entire memory space. Giving the same memory area name to
different memory areas is not allowed regardless of whether

or not they are in the same memory space.

' ! i I
i : | i
Memory area ! ' ! !
MEM1 :
_7 Memory area Memory are
; X ROM — x — [rOM
‘Memory area h . d
MEM1 —I ' ! ‘ :
1]] I
REGULAR space RéGULAR space EX1 space
Example of same Example of different
memory space memory spaces

Fig. 5-19. Memory Area Name

5-29

MEMORY Memory directive

(2) Origin wvalue
The parameter "origin value" specifies the start address
(first address) of the memory area to be defined.

© An origin value must be described with a numeric constant in
the value range from OH to FFFFH.

(3) Size

The parameter "size" specifies the size of the memory area to

be defined.

0 A numeric constant with a value of 1 or more must be
described as the size of the memory area.

o If you need to re-define the size of the memory area (ROM or
RAM) defined by the linker by default assumption, note that
there are restrictions on the address ranges that can be
re-defined.

The size of each memory area defined by default assumption

and its address range that can be re-defined in each target
device are shown in Table 5-7 below.

Table 5-7. Default Memory Areas and Address Ranges That
Can Be Re-defined

Series | Target | 1 ROM area _ _ _ _ _ | IHRAM area__ _ _ |
name device befault TRange for Default rhange for
assumption, re-definition assumption ;| re-definition
78K/0 | 78012 0H to |OH to FDOOH to | FDOOH to
3FFFH (FATFH FEFFH | FEFFH
78014 0H to |CH to FBOOH to | FBOOH to
7FFFH | FATFH FEFFH | FEFFH
Series | Target | LRAM area
name device Default TRange for 1
‘ assumption!re-definition
78K/0 | 78012 0H to 'OH to
3FFFH 'FA7FH
78014 OH to ;OH to
7FFFH FATFH

MEMORY Memory directive

Table 5-7. befault Memory Areas and Address Ranges That
Can Be Re-defined (contd)

Series Target | _ _ _ ROM area_ _ _ _ __ _ 1 _ _ _ ¢ THRAM area _ _ _ _ _|
name device Default ‘Range for Default T Range for
assumption]re—definition assumption, re-definition
78K/ 1 78112 80H to !10H to FE40H to i 2000H to
1FFFH | FE3FH FEFFH . FEFFH
78134/ 80H to {0H to FD8OH to j 4000H to
78134A | 3FFFH { FD7FH FEFFH | FEFFH
78136 80H to i0H to FDOOH to i 6000H to
SFFFH | FCFFH FEFFH . FEFFH
78138 80H to 10H to FCa80H to i 8000H to
7FFFH !FCIFH FEFFH , FEFFH
78K/III| 78310/ 0H to i0H to FEOOH to i 0H to
78310A ! FDFFH | FDFFH FEFFH ., FEFFH
78312/ 0H to I'0H to FEQOH to i 20000 to
783124 1FFFH | FDFFH FEFFH , FEFFH
78320 0H to I0H to FC80H to i OH to
FC7FH I FC7FH FEFFH | FEFFH
78322 OH to 1 0H to - FC80H to | 4000H to
3FFFH | FC7FH FEFFH ! FEFFH
78330 0H to IOH to FBOOH to ' QOH to
7FFFH ' FAFFH FEFFH | FEFFH
78330 0H to TO0H to FBOOH to ! 0H to
JFFFH | FAFFH FEFFH ! PEFFH
78334 0H to 'gH to FBOOH to ' 8000H tb
7FFFH | FAFFH FEFFH | PEFFH
78K/VI 78600 0H to T0H to FBOOH to ! 0H to
FAFFH | FA7FH FEFFH | FEFFH
78602 0H to 1 0H to FBOOH to ! 4000H to
3FFFH { FAFFH FEFFH | PEFFH
78603 0H to | 0H to F700H to | 0H to
F6FFH | F6FFH FEFFH | FEFFH
78604 0H to 1OH to F700H to | 8000H to
7FFFH i F6FFH FEFFH | FEFFH

With a target device which has an internal ROM, the internal
ROM area becomes its default ROM area. With a target device
which has no internal ROM, an area from address 0H to an
address immediately before the internal RAM becomes its
default ROM area. The internal RAM area of each target
device serves as its default RAM area.

The address range that can be re-defined for the ROM area

is an area from address 0H to an address immediately before

the internal RAM, whereas that for the RAM area is an area

excluding the internal ROM area and "sfr" area.

Note: With the 78K/0 series, default IHRAM and LRAM areas
are the areas of the internal IHRAM and LRAM
themselves {provided that for the UNIT type, no
allocation to 0H to 7FH is allowed). The range allowed
for redefinition of the LRAM area is only within the
LRAM area.

5-31

MEMORY Memory directive

(4)

o On a memory space, two or more memory areas cannot be

defined in the same address range.

0 JI """""""" i
| |
4000 | !
Memory areal .
MEM1 ;
§000 | grormrmimem B Two areas overlap with each other
i i at this part and thus MEM1 and MEM2
8000 : : cannot be defined at the same time.
iMemory areaj
1 i
| MEM 2
AODO | Trmimimmmmmms !

Fig. 5-20. Incorrect Memory Area Definition

Memory space name

The parameter "memory space name" specifies the name of the

memory space to which the defined memory area is to be

o

‘assigned.

Any of the following 16 memory spaces may be specified as

a memory space name,

REGULAR, EX1, EX2, EX3, EX4, EX5, EX6, EX7, EX8,

EX9, EX10, EX11, EX12, EX13, EX14, EX15

A memory space name must be described wholly in uppercase
letters.

If a memory space name is omitted, the REGULAR space is
assumed to have been specified.

If a memory space name is omitted following the description

of "/", an error will result.

MEMORY Memory directive

Function

{1) The MEMORY directive defines a memory area which has the name
specified by "memory area name" in the memory space specified
by this directive.

(2) One memory area can be defined per MEMORY directive.

(3) Two or more MEMORY directives may be specified at the same
time. In this case, the memory area names specified by the
MEMORY directives are registered in the order of their
specification. If the same named memory area name is defined
two or more times, an error will result.

(4) The default memory area (ROM/RAM) is valid unless the same
memory area 1is re-defined with the MEMORY directive. If no
MEMORY directive is gpecified, only the default memory areas
(ROM and RAM) of each target device that the linker has are

assumed to have been specified.

Application Examples

(1) To define addresses OH to 1FFH of default memory space REGULAR
as memory area "ROMA"

MEMORY ROMA : (0, 200H)

(2) To define addresses 1F00H to 1FFFH of memory space EX1 as
memory area "RAMA"

MEMORY RAMA : (1FO0OH, 100H) / EXI1

5-33

5.6.3 Segment location directive
The segment location directive locates a specified segment at

specific address(es) on a memory area.

MERGE Segment location directive

Syntax

MERGE Asegment-name A: Af[location-type-definition]
[Amerge-type-definition] [/A memory-space-name]

[A= Abind-specification] [A/A memory-space-name]

(1) Segment name

(2)

The parameter "segment name" specifies a segment name which is

included in the object module file to be input to the linker.

o Other than an input segment cannot specified as a segment
name.

o If the -NCA option has been specified at assembly time, the
segmeht name to be specified with this directive must be
the one which have been described in the assembler source
program.

o If the -NCA option has not been specified at assembly time,

the segment name must be described in uppercase letters.

Location type definition
As the parameter "location type definition", only the
following type can be specified.

AT A(Astart-address A)

0 The reserved word "AT" must be described in either uppercase
or lowercase letters. Both uppercase and lowercase cannot
be mixed to describe this reserved word,

o A start address must be described with a numeric constant.

o The processing of the location type AT is as follows:

Start address — - Locates the segment at specified
start address.

Segment

MERGE

Segment location directive

Note:

C

If a location type definition is omitted, the location
address(es) of the segment will be determined accord-
ing to the relocation attribute specified by the
segment directive in the source program.

As a result of locating the segment according to the
specified start address, if the segment is located
beyond the address range of the memory area in which
the segment should be located, an error will result.
If two or more location type definitions are described
in one MERGE directive, an error will result.

A location type definition cannot be described for any
segment which has been specified as AT with the
segment directive or whose location address(es) have
been specified with the ORG directive.

A segment with a location type which has a predeter-
mined default memory area in the absence of a location
type definition specification can be located to
address{es) other than the default area by specifvying

a location type definition for the segment.

(3) Merge type definition

The parameter "merge type definition" specifies the method of

merging the specified segment if two or more same named input

segments exist,.

© Only the following merge types can be specified with this

directive.

Table 5-8. Merge Types That Can Be Specified with Directive

Item Merge type Description
1 SEQUENT Merges segments sequentially in the
order of their input to the linker.
2 COMPLETE An error will result if same named
segments exist.

MERGE Segment location directive

o The reserved words SEQUENT and COMPLETE must be described
in either uppercase or lowercase letters. Both uppercase
and lowercase cannot be mixed to describe any of these
reserved words, ‘

Note: o If a merge type definition is omitted, the merge type
SEQUENT is assumed to have been specified. However, if
any of the same named input segments has the reloca-
tion attribute AT specified at assembly time, the
merge type COMPLETE is assumed to have been specified.

o Two or more merge type definitions cannot be described
in one MERGE directive.

© Only the merge type COMPLETE can be specified for any
segment which has been specified as AT with the
segment directive or whose location address(es) have
been specified with the ORG directive or for which
AT (start-address) has been specified in the location
type definition.

(4) Bind specification
The parameter "bind specification" determines a memory area in
which the segment is to be located. Only a "memory area name"
can be specified in this bind specification.
o If a bind specification is omitted, one of the following
memory areas described with the segment directive at

assembly time is assumed to have been specified:

CSEG .cens ROM area
DSEG RAM area
BSEG RAM area

o For a segment for which a bind specification has been
described, the relocation attribute of the segment specified
at assembly time is effective. Therefore, the memory area
specified by a bind specification must allow segment
location according to the relocation attribute specified at
assembly time. If the segment cannot be located to satisfy
conditions by both the relocation attribute and bind
specification, an error will result.

5-37

MERGE Segment location directive

For example, if you attempt to locate a segment which has
the CALLT attribute in memory area MEM1 by a bind specifi-
caticn, the memory area MEM1 must contain an area in which
the segment can be located, within the range from 40H to
7FH.

If two or more memory area names are specified as a bind

specification, an error will result.

{5} Memory space name

The parameter "memory space name" specifies the name of the

memory space in which the segment is to be located.

o]

Table

Any of the following 16 memory spaces may be specified as
a memory space name,

REGULAR, EX1, EX2, EX3, EX4, EX5, EX6, EX7, EXS8,

EX9, EX10, EX11, EX12, EX13, EX14, EX15

A memory space name must be described wholly in uppercase
letters.

If a memory space name is omitted, the REGULAR space is
assumed to have been specified.

If a memory space name is omitted following the description
of "/", an error will result.

The linker locates the segment in the specified memory
space. The memory area subject to actual segment location
differs depending on the combination ¢of the memory space
specification and bind specification. The destination
(memory area) to which the segment is to be located is

shown in the following table.

5-9. Segment Location by Combination of Bind Specification
and Memory Space Specification

Bind

specification | Memory space Destination of segment

None

Not specified |Default memory area in the
REGULAR space

None

Specified Any memory area in the
specified memory space.

Memory area name Not specified | Specified memory area in

the REGULAR space.

Memory area name Specified Specified memory area in

the specified memory space.

MERGE Segment location directive

The above table merely indicates the significance of memory
area definition subject to segment location. In practice,
the linker determines the location address(es) of each
segment to locate the segment by satisfying all other
conditions including the location type definition.

Example: When memory space EX1 is specified but location
type definition and bind specification are omitted
for segment CSEG with relocation attribute FIXED

C) By the default assumption of location type definiticn,
the segment must be located within addresses 800H to
FFFH,

C) By the combination of bind specification and memory
specification from the above table, the segment may be
located in any memory area in memory space EX1.

C) To satisfy both conditions (:) and (D, the segment
is located in a memory area defined in the address
range from 800H to FFFH in memory space EXI1.

Cautions

(1) For an input seagment for which no MERGE directive is
specified, the linker determines the location address{es) of
the segment according to the relocation attribute of the
segment specified with the segment directive at assembly time,

{2) If the segment specified by a segment name does not exist,
an error will result.

(3) If the MERGE directive is specified two or more times for the

sameé segment, an error will result.

MERGE Segment location directive

Application Examples

Examples of allocating addresses to segment SEG] whose relocation
attribute is CSEG FIXED are shown here.

(1) To allocate address 2000H in ROM area to input segment SEG1

{2)

(3)

MERGE SEG1 : AT(2000H)
To locate input segment SEG1 in memory area MEM1
MERGE SEG1 : = MEMI

To allocate address 2000H in memory area MEM1 to input segment
SEG1

MERGE SEG1 : AT(2000H) = MEMI

5-40

5.7 How to Start Up the Linker

5.7.1 Starting up the linker

The linker can be started up (invoked) in either of the following
two ways:

(1) start-up with the start-up command line of the linker

X>[pathname]lk78kn{Aoption]... Aobject-filename[Aoption]... [A]

Filename of the object
module to be linked
(see Note 2)

~———————23 Gives the linker particular
instructions for its operation
(see Note 3}.

— Command filename of linker
{n=0,1,2,3, or 6 indicating
each 78K series name)

“— Current directory name (see Note 1)

“— Current drive name (see Note 1)

Example: A>1k78k3 T8k3Imain.rel 78k3sub.rel -078k3.1nk -g

NOTE: 1. With MS-DOS V3.10, the command file and overlay
files of the linker must have been stored in the
same directory.

2. The number of cobject module files that can be input
is up to 128 with the 78K/0, 78K/I, or 78K/III,
and up to 64 with the 78K/VI. '

3. If two or more linker options are to be specified,
each linker opticon must be delimited with a space.
See Section 5.8 for details of the linker options.

(2) Start-up with parameter file

A parameter file is used when all the reguired information

for starting up the linker cannot be specified in the start-up

command line of the linker or when the same linker options are

to be used repeatedly in each linking process.

When using this parameter file, the -F option must be

specified in the start-up command line of the linker to

specify the use of the parameter file.

The linker can be started up with a parameter file as follows:

X>1k78kn[Aobject-filename] A_l—lj parameter-filename

0

File containing information
required to start up the
linker

»0Option specifying parameter file

A parameter file must be created with the editor.

0 The description format of parameters within the parameter

file is as shown below.

[[[Aloption[Aoptioni.. [ATA]l] ...

If the object module filename to be input ig omitted in

the start-up command line of the linker, input object
mbdule filenames must be described in the parameter

file. ‘

The input object module filename may be described either
before or after an option.

In the parameter file, all the linker options and output
filename which should normally be specified in the start-up

command line must be described.

Example: To create parameter file "78K3.PLK" with the
editor
o Contents of 78K3.PLK

;parameter file
78k3main. rel 78k3sub.rel -078%k3.Ink -p78k3.map -e
-ta:¥tmp -g

o Start-up of linker using parameter file "78K3.PLK"

A>Ik78k3 -f78k3. plk

5.7.2 Execution start and end messages

(1) Execution start message
When the linker is started up, the following message is
output to the console, indicating the start of the linker

execution.

uCOM-78K/I11 Linker Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USxxxxxxxxxx

(2) Execution end messages
o If no linking error is found as a result of a linking
operation, the linker will output the following message to

the console and return control to the 08S.

Link complete, 0 error(s) and O warning(s) found.

o If any linking errors are found as a result of a linking
operation, the linker will output the following message
(the number of errors found) to the console and return
control to the 0S.

Object Converter complete, 2 error(s) and 0 warning(s) found.

o If any fatal error is found during a linking operation,
the linker will output the following message to the console,

stop its processing, and return control to the 0S.

Example 1:

A>1k78k3 sampl.rel sampl.rel

uCOM-78K/111 Linker Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USXXXXXXXXXX

AQ06 File not found °~SAMPI.REL'
A006 File not found °~ SAMPZ.REL’
Program aborted.

In this example, the linking operation was discontinued by
an abort error resulting from the specification of object

module files which do not exist in drive A.

Example 2:

A>1%78k3 78k3main. rel 78kIsub.rel -a

uCOM-78K/11! Linker Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USKXXxxxxxxx

A018 Option is not recognized '-a’
Program aborted.

In this example, the linking operation was discontinued
by an abort error resulting from the input of a linker

option "-A {-a)" which is not recognized by the linker.

If the linker is aborted fellowing the output of an error
message, check the cause of the error by referring to
Chapter 11, Error Messages and take corrective action(s)

as reguired.

5.8 Linker Options

5.8.1 Types of linker options

A linker option gives the linker particular instructions for its

operation and is broadly divided into the following 14 types:

Table 5-10. Types of Linker Options

No. { Classification Option Functicnal description

1 Options for load -0 Specifies the output or
module cutput non-cutput of a load
specification -NO module file.

2 Options for forced -J Specifies the output or
load module output non-cutput of a load
specification -NJ module file by force.

3 Options for debug -G Specifies the output or
information output non-cutput of symbol
specification -NG information for debugging

to the load module file,

4 Options for stack- -5 Specifies the generation
reserving symbol or non-generation of the
creation specifi- -NS PUBLIC symbols for stack
cation. area reservation.

5 Option for -D Specifies the input of
directive file the file specified by
specification this option as a directive

file. .

6 Options for link -P Specifies the output or
list file output non-output of a link list
specification ~NP file.

7 Options for ~-KM Specifies the output or
link list file non-output of a map list
information -NKM list to the link list
specification file.

-KD Specifies the output or
non-output of a link

-NKD directive file to the
link list file.

-KP Specifies the output or
non-output of a PUBLIC

-NKP symbol list to the link
list file.

-KL Specifies the output or
non-output of a local

-NKL symbol list to the link

list file.

Table 5-10.

Types of Linker Options (contd)

message output
specification

No. | Classification Option Functional description

8 Options for link ~-LL Specifies the number of
list file format print lines per page of
specification a list.

-LF Specifies the addition or
non-addition of a form-
-NLF feed (FF) code to the
end of a list file,

9 Options for error -E Specifies the output or
list file output non-ocutput of an error
specification -NE list file.

10 Option for library -B Specifies the input of
file specification the file specified by

this option as a library
file.

11 Option for library -I Tells the linker to read
file read path library file(s) from the
specification specified path{s).

12 Option for -F Specifies the input of
parameter file input filename and options
specification from the file specified

by this option.

13 Option for -T Specifies the creation of
temporary file a temporary file on the
creation path . path specified by this
specification option.

14 Option for HELP - Specifies the output of

HELP message to the
console,

The above table merely introduces all the available linker

options. Each of these linker options is detailed in Subsection

5.8.3 below. For gquick reference, see Appendix C.2, List of Linker

Options in which the description format of each option and the

relationship between one option and the other are also outlined.

5.8.2 Priority of linker options
Table 5-11 shows the precedence order of linker options when

two or more options are specified at the same time.

Table 5-11. Priority of Linker Options

-NO | -RG { -NP -NKM | -NKP | -NKL | --
-] x X
-G % X
-P VA A A X
-kM X X
-KD X X X
-KP X X X
-KL X X X
-LL X X
-LF bt X

In Table 5-11, "X" in the table indicates that the option on the
leftmost column becomes invalid if the option on the top column is

specified.

Example: A>1kT8k3 78k3main.rel T8k3sub.rel -np -knm

In this case, the -KM option become invalid (because the -NP

option has been specified).

"A" in the table indicates that the option on the leftmost column
becomes invalid if all of the options on the top column are

specified at the same time.

Example: A>1k78%3 T8k3main.rel 78k3Isub.rel -p -nkm -nkp -nkl

In this case, the -P option becomes invalid, because the -NKM,
~-NKP, and -NKL. have been specified at the same time.

5-47

If two options contradicting each other (such as -0 and -NO, -P
and -NP, etc.) are specified at the same time, whichever you

specified later will take precedence over the other.

Example: A>1k78k3 78k3main.rel 78k3sub.rel -o -no

In this example, the -NO option takes precedence over the -0

option which has been specified before the -NO option.

The linker options not listed in Table 5-11 are not affected by
any other linker options. However, if the "--" option (for HELP
message output specification) is specified, all the other options

specified at the same time with the "--" option become invalid.

5.8.3 Description of each linker option
A detailed description of each linker option is provided in
this subsection.

-0/ -NO Load module file output specification

{1) Options for load module file output specification (-0/-NO)

Description format: -0 [output-filename]
or
~-NO

Default assumption: -0 input-filename.LNK

Function

© The -0 option specifies the output of a load module file. It

also specifies the output destination or ocutput filename of
the load module file to be output by the linker.

The -NO option specifies the non-output of a load module
file.

Use the -0 option if you want to change the output
destination or output filename of a load module file.

If the linkage of object module files is to be performed
only to output a link list file, use the -NO option. This
will reduce the linkage time.

Explanation

© As an output filename, either a disk type filename or a

device type filename (NUL or AUX only) may be specified.

If a fatal error is found during a linking operation with
the -O option specified, no load module file will be output
by the linker.

If an output filename is omitted from the -0 option specifi-
cation, "input filename.LNK" is assumed as the output
filename and the load module file under that name will be
output to the current directory.

If only a pathname is specified as the output filename, the
load module file named "input-filename.LNK" will be output
to the specified path.

-0/ -NO Load module file output specification

o If the -0 and -NO options are specified at the same time,

whichever you specified later will take precedence over the
other.

Application Examples

Example 1: To link two object module files with -0 option

specified to cutput a lcad module file named
"78K3.LNK"

A>1k78k3 78k3main.rel 78k3sub.rel -o78k3. lnk

uCOM-78XK/111 Linker Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USXXXXXXXXXX

Link complete, 0 error(s) and 0 warning{(s) found.

Example 2: To link two object modules with both -NO and -0
options specified

A>1k78%k3 78k3main.rel 78k3sub.rel -no -o

uCOM-78K/111 Linker Vi.xx [xx xxx xx]
Copyright (C) Corporation xxxXx USXXXXXXXXXX

Link complete, 0 error(s) and 0 warning(s) found.

In this case, -NO option becomes invalid and -0
option is accepted as wvalid.

~J/-NJ Forced load module file output
specification

(2) Options for forced load module file output specification

(-J/-NJ)
Description format: -J
or
-NJ
Default assumption: -NJg
Function

o The -J option specifies the output of a load module file
even if a fatal error occurs during a linking operation.
o The -NJ option is used to invalidate the -J option.

Normally, the specified load module file will not be output
if any fatal error occurs during the linking operation.
Therefore, if you want to execute the program even in case of
a fatal error, use the -J option to output a load module
file.

Explanation

o If a fatal error occurs during a linking operation with
the -J option specified, a load module file will be output
by the linker.

o If the -J and -NJ options are specified at the same time,
whichever you specified later will take precedence over the
other.

-J/-NJ Forced load module file output

specification

Application Examples

Example 1: To link object module files with -J option
specified to output a locad module file even in case
of a fatal error

A>1kT78k3 78k3main.rel 78k3sub.rel ~j'

uCOM-T8K/111 Linker ¥x.xx [xx xxx xx]
Copyright (C) Corporation xxxx USXXXXXXXXXX

Link complete, 0 error(s) and 0 warning(s) found

-G/-NG Debug information output specification

(3) Options for debug information output specification (-G/-NG)

Description format: -G
or
-NG

Default assumption: -NG

Function
o The -G option specifies the addition.of debugging informa-

tion (local symbol information) to the load module file to
be output by the linker.

o The -NG option specifies the non-addition of debugging
information to the load mecdule file.

Use
The -G option must always be specified when symbolic debugging

is to be performed with the source debugger.

Explanation

o If the -G option is specified at the same with the -NO
option, the -G option will become invalid.

o If the -G option is omitted, the -NG option is assuﬁed and -
thus no debugging information will be output.

o If the -G and -NG options are specified at the same time,
whichever you specified later will take precedence over the
other,

o If the -NG option is specified at the same time with the
-KP or -KL option, neither a PUBLIC symbol list nor a local
symbol list will be output.

-G/ -NG . Dbebug information output specification

Application Examples
Example 1: To link two object module files with -G option

specified to add debugging information to a load

module file

A>1k78k3 78k3main.rel T8k3sub.rel -g

uCOM-T8K/1I1 Linker ¥x.xx [xx xxx xx]
Copyright (C) Corporation xxxx USxXXXXXXXXX

Link complete, 0 error(s) and 0 warning(s) found.

-S/-NS Stack-reserving symbol creation

specification

(4) Options for stack-reserving symbol creation specification
(-S/~NS)

Description format: -S [area-name]
or
-NS

Default assumption: -NS

Function
o The -S option tells the linker to create PUBLIC symbols
" @STBEG" and "_@STEND" for stack area reservation.
o The -NS option tells the linker not to create the PUBLIC

symbols for stack area reservation.

Use

Use the -8 option to reserve a stack area.

Explanation

© As an area name, the memory area defined by the user or
memory area name defined by default assumption must be
specified.

o The linker distinguishes an area name described (partly or
wholly) in uppercase letters from that described (partly
or wholly) in lowercase letters.

0 The linker searches the memory area specified by the -8
option for any free area which has the highest start address
value and to which no segment is located. If any such free
area is found, the linker creates a PUBLIC symbol "_@STBEG"
which has as its value the start address of the free area
and a PUBLIC symbol " @STEND" which has as its value the
last address of the free area + 1. These symbols will be
handled as symbols which have been declared as PUBLIC and
have the NUMBER attribute and will be registered at the end
of the symbol table of the linker.

5-56

-S/-NS Stack-reserving symbol creation

specification

When these symbols are output to a link list file, the
"Module Name" column of the list file is left blank.

o If the size of any such free area found is less than 15
bytes, the linker will output a warning message.

o If no such free area is found, the linker will also output a
warning message. In this case, both " @STBEG" and " @STEND"
will have "the last address of the memory area specified by
-$ option + 1" as their value.

o If no area name is specified, "RAM" is assumed to have been
specified.

o If the -§ and -NS options are specified at the same time,

whichever you specified later will take precedence over the

other.

Application Examples

Example 1: To link two object module files with -S optiocn
specified to reserve a stack area in RAM (assuming
that a segment with size 10H is to be input to RAM
area and a segment with size D8H is to be input to

saddr area)

A>1k78k3 78k3main. rel T8k3sub.rel -s

uCOM-T8K/I11 Linker Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USxYxxxxxxxx

Link complete, 0 error(s) and 0 warning{s) found.

5-57

-S/-NS

Stack-reserving symbol creation

specification

FEOOR
FE10H
FE20H
Memory area
RAM
FEF&H
FEFFH

Segment
Size: 10H

Vacant 10H

Segment
Size: DB8H

Vacant B8H

}_h

This part (FE10H to
FE1FH) is a free area
with the highest start
address value.

_@STEND=FE10H
~@STBEG=FEZ0H
are created as stack

symbols,

-D Directive file specification

(5) Option for directive file specification (-D)

Description format: -D filename

Default assumption: None

Function
o The -D option tells the linker to input the file specified
by this option as a directive file.

Use
A directive file is used when a new memory area is to be
defined, when the default memory area is to be re-defined, or
when a specific address is to be allocated to a segment. To
input this directive file to the linker, the -D option must be
specified.

Explanation

o As a filename, only a disk type filename can be specified.
If any device type filename is specified, an abort error
will result.

o If a filename is omitted from the -D option specification,
an abort error will result.

o Nesting of directive files is not allowed.

o The number of characters that can be described in a
directive file is.not limited.

o If two or more -D options are specified at the same time
or if two or more filenames are specified in the -D option
specification, an abort error will result.

o For details of the directive file, see Section 5.6, Link

Directives.

-D Directive file specification

Application Examples

Example 1: To re-define default memory areas ROM and RAM
o Contents of directive file "78X3.DR"

memory ROM : (0000h, SFFFh)
memory RAM : {(DO0Oh, 2EFFh)

o To link two object modules with -D option specified to
use directive file 78K3.DR

A>1k78k3 78k3main.rel T8k3sub.rel -d78k3.dr

uCOM-78K/111 Linker Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USXXXXXXXXXX

Link complete, 0 error(s) and 0 warning(s) found.

5-60

-P/-NP Link list file output specification

(6) Options for link list file output specification (-P/-NP)

Description format: -P [output-filename]
or '
-NP

Default assumption: -P input-filename.MAP

Function
0 The -P option specifies the output of a link list file. It
also specifies the output destination or output filename of
the link list file to be output by the linker.
o The -NP option specifies the non-output of a link list
file.

o Use the -P option if you want to change the output
destinaticn or output filename of a link list file.

o If the linkage of object modules is to be performed only
to output a load module file, use the -NP option. This

will reduce the linkage time.

Explanation

o An output filename can be specified with either a disk type
filename or a device type filename. Only the following
device type filenames can be used with this option: CON,
PRN, NUL, and AUX. If "CLOCK" is specified as an output
filename, an abort error will resuylt,

o If an output filename is omitted from the -P option specifi-
cation, a link list file named "input filename.MAP" will be
output to the current directory.

o If only a pathname is specified as the ocutput filename, a
link list file named "input filename.MAP" will be output to
the specified path.

-P/-NP Link list file output specification

o If the -P and -NP options are specified at the same time,
whichever you specified later will take precedence over the

other.

Application Examples

Example 1: To link two object modules files with -P option
specified to create a link list file named
"78K3.MAP"

A>1k78k3 78k3main.rel 78k3sub.rel -pT78k3.map

uCOM-78K/111 Linker Vx.xx [xx xxx xx]
Copyright {C) Corporation xxxx USXxxxxxxxxx

Link complete, 0 error(s) and 0 warning(s) found.

Example 2: To link two object module files with -P option
specified to output a link list file to PRN
(Printer)

A>1k78k3 78k3main.rel 78k3sub.rel -pprn

uCOM-78K/II1 Linker Vx.xx [xx xxx xx]
Copyright {C) Corporation xxxx USxxxxXxxxxx

Link complete, . 0 error(s) and 0 warning(s) found.

~KM/ -NKM - Link list file information

specification

(7) Options for link list file information specification
(-KM/-NKM, -KD/-NKD, -KP/-NKP, -KL/-NKL)

(a) Options for map list output specification (-KM/-NKM)

Description format: -KM
or
~NKM

Default assumption: -KM

Function

o The -KM option specifies the output of a map list to the
link list file.

o The -NEM option specifies the non-output of a map list to
the link list file.

Use
Use the -KM option if you want to have only a map list as the

contents of the link list file specified with the -P option.

Explanation

o If the -KM and -NKM options are specified at the same time,
whichever you specified later will take precedence over the
other.

o If the -KD option is specified at the same time with the
~-NKM option, no directive file will be output to the link
list file.

o If the -NKM, -NKP-, and -NKL options are all specified
together with the -P option, no link list file will be
output.

-EM/ -NKM Link list file information

specification

Application Examples

Example 1: To link two object module files with -P and -KM
options specified to output a map list to link
list file "78K3.MAP"

A>1k78k3 78k3main.rel T78k3sub.re] -p78k3.map -km

uCOM-78K/11I Linker Vi.xx [xx xxx xx]
Copyright (C) Corporation xxxx USxxxxxXxxxx

Link complete, 0 error{(s) and 0 warning(s) found.

5-64

-KM/ -NKM

Link list file information
specification

o When link list file "78K3.MAP" is referenced, you will find
that the following map list has been output to the link list

file.

uCOM-T8K/I111 LINKER Vx.xx

Date:xx xxXx xxxx Page:

Command: T8k3main.rel 78k3sub. rel -pT8k3.map —-km

Para-file:

Qut-file: T8K3MAIN.LNK
Map-file: T8K3.MAP
Direc-file:

Directive:

#%¥* Link information #%%
3 output segment{s)

40K byte{s) real data
17 symbol(s) defined

¥¥% Memory map ¥%x%

SPACE=REGULAR

MEMORY=ROM
BASE ADDRESS=0000H SIZE=FE0OH
QUTPUT INPUT INPUT
SEGMENT SEGMENT MODULE
CODE
CODE SAMPM
7CSEG
?CSEG SAMPM
?CSEG SAMPS
£ gap ¥
MEMORY=RAM

BASE ADDRESS=FEOQH SIZE=0100H
QUTPUT INPUT INPUT
SEGMENT SEGMENT MODULE

DATA SAMPM

BASE
ADDRESS
0000H

" Q000K

00021
0002H
00220
003EH

BASE
ADDRESS
FEOOH
FEZOH
FEZ0H
FE23H

5-65

SIZE

0002H
000ZH
003CH
00204
001CH
FDC2H

STZE

00200
00030
0003H
00DDH

CSEG AT
CSEG

DSEG AT

Map
list

-KD/ -NKD Link list file information

specification

(b) Options for directive file output specification (-KD/-NKD)

Description format: -KD
or
-NXD

Default assumption: -KD

Function
o The -KD option specifies the output of a directive file to
the link list file.
o The -NEKD option specifies the non-cutput of a directive file
to the link list file.

Use
Use the -KD option if you want to have a directive file as the

contents of the link list file specified with the -P option.

Explanation

o If the -XKD and -NKD options are specified at the same time,
whichever you specified later will take precedence over ‘the
other,

o If the -KD option is specified at the same time with the
-NKM option, no directive file will be ocutput to the link
list file.

o If the -NKM, -NKP-, and -NKL coptions are all specified
together with the -P option, no link list file will be
output.

~-KD/f-NKD Link list file information

specification

Application Examples

Example 1: To link two object medule files with -D, -P, and
-KD options specified to output a directive file to
link list file "78K3.MAP"

A>1k78k3 78k3main.rel 7T8k3sub.rel -d78k3.dr -p78k3.map -kd

uCOM-78K/111 Linker Vx.xx [xx xxx xx]
Copyright (C) Corporatiom xxx¥ USxxxxxxxxxx

Link-complete, 0 error{s) and 0 warning(s) found.

-KD/ ~NKD

Link list file information

specification

o When link list file "78K3.MAP" is referenced, you will find
that the following directive file has been output to the

link list file.

uCOM-78K/111 LINKER Vx.xx

Date:xx xxx Xxxx Page: 1

Command: 78k3main.rel T8k3sub.rel -d78k3.dr -p78k3.map -kd

Para-file:

Out-file: TBK3MAIN.LNK

Map-file: TBK3.MAP

Direc-file:T8K3.DR

Directive: memory ROM : (GOOQOH, 3FFFH)
memory RAM : (FOOOH, OEFFH)

#%% Link information %##
3 output segment(s)

400 byte(s) real data
17 symbol(s) defined

¥+% Memor& map ¥¥%
SPACE=REGULAR

MEMORY=ROM
BASE ADDRESS=0000H SIZE=3FFFH

« Name of directive file
«— (Contents of directive file

OUTPUT INPUT INPUT BASE SIZE
SEGMENT SEGMENT MODULE ADDRESS
CODE 0000Y 0002H CSEG AT
CODE SAMPM 0000H 0002H
?CSEG 0002H 003CH CSEG
2CSEG SAMPM 0002H 0020H
?CSEG SAMPS 00224 001CH
* gap * 003EH 3FC1H
MEMORY=RAM
BASE ADDRESS=FO000H S1ZE=0EFFH
QUTPUT INPUT INPUT BASE S1ZE
SEGMENT SEGMENT MODULE ADDRESS
¥ gap * FOOOH 0E20H
DATA FE20H 00034 DSEG AT
: DATA SAMPM FE20H 00031
¥ gap ¥ FE23H 00DCR

-KP/ -NKP Link list file information

specification

(c) options for PUBLIC symbol list output specification

{-KP/-NKP)
Description format: -KP
or
~-NKP

Default assumption: -NKP

Function
o The -KP option specifies the output of a PUBLIC symbol list
to the link list file.
o The -NKP option specifies the non-output of a PUBLIC symbol
list to the link list file.

Use
Use the -KP option to output a PUBLIC symbol list as the

contents of the link list file specified with the -P option.

Explanation

o If the -KP and -NKP options are specified at the same time,
whichever you specified later will take precedence over the
other.

o If the -NKM, -NKP, and -NKL options are all specified
together with the -P option, no link list file will be
oﬁtput.

o If the -KP and -NG options are specified at the same time,
the -XP option will be ignored and no PUBLIC symbol list
will be output.

-KP/-NKP Link list file information

specification

Application Examples

Example 1: To link two object module files with -G, -P, and
-KP options specified to output a PUBLIC symbol
list to link list file '"'78K3.MAP"

A>1k78k3 78k3main.re] 78k3sub.rel -g -p78k3.man -kp

uCOM-78K/I11 Linker Vx.xx [xx xxx xx}
Copyright (C)_Corporation xxxx USXXXXXXXXXX

Link complete, 0 error{s) and 0 warning(s) found.

~KP/-NKP Link list file information

specification

o When link list file "7B8K3.MAP" is referenced, you will find

that the following PUBLIC symbol list has been output to
the link list file.

uCOM-78K/111 LINKER Vx.xx Date:xx xxx xxxx Page: 1

Command: 78k3main.rel 78k3sub.rel -g -p78kd.map -kp
Para-file:

Out-file: TBK3IMAIN.LNK

Map-Tile: T8K3.MAP

Direc-file:

Directive:

¥4%% Link information #¥%
3 output segment(s)

40H byte(s) real data
17 symbol(s) defined

++% Memory map ¥¥¥

SPACE=REGULAR

MEMORY=ROM
BASE ADDRESS=0000H SIZE=FEDQOH
QUTPUT INPUT INPUT BASE SIZE
SEGMENT SEGMENT MODULE ADDRESS
CODE 0000H D002H CSEG AT
CODE SAMPM 0000H 00021
?2CSEG 0002H 003CH CSEG
?CSEG SAMPM 0002ZH p020H
7CSEG SAMPS 0022H 001CH
¥ gap ¥ Q03EH FDC2H
MEMORY=RAM
BASE ADDRESS=FEOOH SUZE=0100H1
QUTPUT INPUT INPUT BASE SIZE
SEGMENT SEGMENT MODULE ADDRESS
¥ gap ¥ FEOOH 0020H
DATA FE20Y 0003H DSEG AT
DATA SAMPM FEZ0H 00031
% gap * FE23H 00DDH
uCOM-78K/111 LINKER Vx.xx Date:xx xxx xxxx Page: 2

$%% Public symbol list #*¥

MODULE ATIR VALUE NAME PUBLIC symbol
SAMPM ADDR 0000H MAIN list

SAMPM ADDR 00020 START

SAMPS ADDR 0022 CONVAH

5-71

-KL/-NKL Link list file information

specification

(d) options for local symbol list output specification

{ -KL/-NKL)
Description format: -KL
or
-NEKL

Default assumption: -NKL

Function
o The -KL option specifies the output of a local symbol list
to the link list file.
o The -NKL option specifies the non-output of a local symbol
list to the link list file.

Use

Use the -KL option to output a local symbol list as the
contents of the link list file specified with the -P option.

Explanation

o If the -KL and -NKL options are specified at the same time,
whichever you specified later will take precedence over the
other,

o If the -NKM, -NKP, and -NKL options are all specified
together with the -P option, no link list file will be
output}

o If the -KL and -NG options are specified at the same time,
the -KL option will be ignored and no local symbol list
will be output.

5-72

-KL/ -NKL Link list file information

specification

Application Examples

Example 1: To link two object module files with -G, -P, and
-KL options specified to output a local symbol list
to link list file "78K3.MAP"

A>1k78k3 78k3main.rel 78k3sub.rel -g -pl8kd.map -kl

uCOM-78K/111 Linker Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USXXXXXXXXxx

Link complete, 0 error(s) and 0 warning(s) found.

—-KL/-NKL Link list file information

specification

¢ When link list file "78K3.MAP" is referenced, you will find

that the following local symbol list has been output to
the link list file. '

uCOM-78%K/11{ LINKER Vx.xx Date:xx xxx xxxx Page: 1

Command: 78k3main. el 78k3sub.rel -g -pT8k3.map -ki
Para-file:

Qut-file: TEKIMAIN.LNK

Map-file: T78K3.MAP

Direc-file:

Directive:

¥#% Link information ¥##
3 output segment({s)

400 byte(s) real data
17 symbol(s) defined

4% Memory map #¢#

SPACE=REGULAR

MEMORY=ROM
BASE ADDRESS=0000H SIZE=FEO0OH
QUTPUT INPOT {NPUT BASE SIZE
SEGMENT SEGMENT MODULE ADDRESS
CODE 0000H eoozi CSEG AT
CODE SAMPM 0000H 00021
?CSEG 00021 003CH CSEG
?CSEG SAMPM 0002l 00200
2CSEG SAMPS go22l oo1CcH
* gap ¥ 003EN FDC2H
MEMORY=RAM
BASE ADDRESS=FEGOH SIZE=01001
QUTRUT INPUT INPUT BASE SIZE
SEGMENT SEGMENT MODULE ADDRESS
* gap * FEOOH 0020H
DATA FEZQH 0003H DSEG AT
DATA SAMPM FE20H 0003H
* gap # FEZ3H 00DDH
uCOM-78%K/111 LINKER Vx.xx : Date:xx xxx xxxx Page: 2
*¥% Local symbol list #%# 1
MODULE ATTR YALUE NAME
SAMPM MOD SAMPM)
SAMPM DSEG DATA Local symbol
SAMPM ADDR FEZ0H HDTSA .
SAMPM ADDR FE21H STASC list
SAMPM CSEG CODE
SAMPM CSEG ?CSEG
SAMPS MOD SAMPS
SAMPS CSEG 7CSEG
SAMPS ADDR 6035H SASC
SAMPS ADDR 003BH SASCL -

5-74

-LL Link list file format specification

{8) Options for link list file format specification
(-LL, -LF/-NLF)

{a) Option for page length specification (-LL)

Description format: -LL [No. of lines per page]

Default assumption: -LL66 (No form-feed operation

with console output)

Function
o The -LL option specifies the number of lines per page of
a link list file.

Use

Use the -LL option if you want to change the number of lines

per page of a link list file.

Explanation

o The number of print lines per page to be specified with the

-LL option must be within the following value range:
20 < No. of print lines per page < 32767

If any value beyond this range or other than a value is
specified with this option, an abort error will result.

o If the number of print lines per page is omitted, a value of
66 is assumed to have been specified.

o If "0" is specified as the number of print lines per page,
no form-feed operation (page ejection) will be carried out.

o If the -LL option is specified at the same time with the
-NP option, the -LL option will be ignored and thus will

become invalid.

5-75

-LL Link list file format specification

Application Examples

Example 1: To link two object module files with -P and -LL
options specified to set 20 lines as No. of lines

per page of link list file

A>1k78k3 78k3main.rél 78k3sub.rel -p78k3.map -1120

uCOM-78K/111 Linker Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USxxxxxxxxxx

Link complete, 0 error{s) and 0 warning(s) found.

-LL Link list file format specification

o When file "78K3.MAP" is referenced, the output link list
file will look like this.

uCOM-T3K/111 LINKER Vx.xx Date:xx xxx xxxx Page: 1
Command: 78k3main.rel T8k3sub. rel -p78k3.map ~1120
Para~file:

Qut-file: T8K3MAIN.LNK

Map~file: T78K3.MAP

Direc-file:

Directive:

#%¥% Link information #%#
3 output segment(s)

40H byte(s) real data
17 symbol(s) defined

uCOM-78K/111 LINKER Vx.xx Date:xx xxx xxxx Page: 2

$%% Memory map ##%

SPACE=REGULAR

MEMORY=ROM
BASE ADDRESS=0000H SIZE=FEO0OH
OUTPUT INPUT INPUT BASE SIZE
SEGMENT SEGMENT MODULE ADDRESS
CODE 0000H 00021 CSEG AT
uCOM-78K/II1 LINKER Vx.xx Date:xx xxx xxxx Page: 3
CODE SAMPM 0000H 000201
7CSEG 0002H 003CH CSEG
?CSEG SAMPM 0002H 00204
?CSEG SAMPS 0022H 001CH
¥ gap * O003EH FDC2H
MEMORY=RAM
BASE ADDRESS=FE0OH SIZE=0100H
QUTPUT INPUT INPUT BASE SIZE
SEGMENT SEGMENT MODULE ADDRESS
¥ gap #* FEQOH 00200
DATA FEZ0H 00030 DSEG AT
uCOM-78K/111 LINKER Vx.xx Date:xx xxxXx xxxx Page: 4
DATA SAMPM FEZO0H 0003
¥ gap # FE231 00DDH

-LF/-NLF Link list file format specification

(b) Options for form-feed code addition specification

(-LF/-NLF)
Description format: -LF
or
-NLF

Default assumption: -NLF

Function
¢ The -LF option .specifies the addition of a form-feed (FF)
code to the end of a link list file.
o The -NLF option specifies the non-addition of a form-feed
(FF) code to the end of a link list file.

Use
If you want to have a new page after printing the contents of
a link list file, add a form-feed (FF) code to the end of the
the link list file by specifying the -LF option.

Explanation

o If the -LF option is specified at the same time with the -NP
option, the -LF option will become invalid.

o If the -LF and -NLF coptions are specified at the same time,
whichever you specified later will take precedence over the
other.

-LF/-NLF Link list file format specification

Application Examples

Example 1: To link two object module files with -P and -LF
options specified to add an FF code to the end of
link list file

A>1kT78k3 78k3main.rel 78k3sub.rel -pl8k3.map -If

uCOM-78K/111 Linker Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USxxxxxxxxxx

Link complete, 0 error(s) and 0 warning{s) found.

5-79

-E/~NE Error list file output specification

{9) Options for error list file output specification (-E/-NE)

Description format: -E [output-filename]
or
-NE

Default assumption: -NE

Function
© The -E option specifies the output of an error list file. It
also specifies the output destination or output filename of
the error list file to be output by the linker.

o The -NE option specifies the non-output of an error list
file.

Use

o Use the -E option if you want to save error messages to a
file.

0 Also use the -E option if you want to change the output
destination or output filename of an error list file.

Explanation

© An output filename can be specified with either a disk type
filepame or a device type filename. However, if a device
type filename "CLOCK" is specified as an output filename, an
abort error will result.

o If an output filename is omitted from the -E option specifi-
cation, "input filename.ELK" is assumed as the output ‘error
list filename.

o If a drive name is omitted from the -E option specification,
the error list file will be output to the current drive.

o If the -E and -NE options are specified at the same time,

whichever you specified later will take precedence over the

other,

5-80

-E/-NE Error list file output specification

Application Examples

Example 1: To link two object module files with -D and -E
options specified to create an error list file
named "78K3.ELK"

A>1k178k3 78k3main.rel 78k3sub.rel —dsamp.dr -eT8k3.elk

uCOM-78K/111 Linker Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USXXXXXXXXXX

SAMP.DR(5) : F204 Segment 'CODE’ may not change attribute
SAMP.DR(S) : F207 Segment 'CODE’ may not change arrangement
%% ERROR A199 Cannot create output file for PASS1I ERROR(S)
Program Aborted.

When error list file "78K3.ELK" is referenced due
to an error in the directive file contents, the

output error list file will look like this.

SAMP.DR(5) : F204 Segment 'CODE’ may not change attribute
SAMP.DR(5) : F207 Segment ''CODE" may not change arrangement
%% ERROR A109 Cannot create output file for PASSl ERROR(S)

-B Library file specification

{10) Option for library file specification (-B)

Description format: -B filename

Default assumption: Necne

Function

The -B option tells the linker to input the file specified by
this option as a library file.

Use

Both the assembler and linker create one file for each output
module. The more the number of input object modules, the more
the number of output module files. Thus, a function to collect
two or more modules into a single file is provided. This
collection of modules is called a library and a file used to
maintain and make available the modules is called a library
file. If you create a library file of commonly used modules,
files can be efficiently managed and operated. Use the -B
option to input a library file to the linker.

Explanation

o Other than a disk type filename cannot be specified as a
filename.

o A filename cannot be omitted from the -B option specifica-
tion.

o If a pathname is included in the filename specification with
the -B option, the specified library file will be input from
the specified path. If the specified library file does not
rexist on the specified path, an error will result,

o If a filename is specified without including a pathname, the
linker will search the path specified by the -I option or
the default search path for the specified library file.

-B Library file specification

o If two or more -B options are specified at the same time,
library files will be input in the order of their specifica-
tion by -B options. Up to 10 -B options may be specified at
the same time.

© See Chapter 7, Librarian for how to create a library file.

Application Examples
Example 1: To link object module file 78K3MAIN.REL with -B
option specified to input library file "78K3.LIB"
(which contains object module file 78K3SUB.REL)

A>1k78k3 78k3mgin.rel -b78k3.1ib

uCOM-78XK/111 Linker Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USxxxxxxxxxx

Link complete, 0 error(s) and 0 warning(s) found,

-1

Library file read path specification

(11) Option for library file read path specification (-I}

Description format: -I pathname[, pathname] ...

Default assumption: Path specified by environment
variable LIB78Kn (n=0, 1, 2, 3,or 6)
or current path if not specified by
LIB78Kn

Function

The -I option tells the linker to input library file(s}) from

the path(s) specified by this option,

Use

a

Use the -I option if you want to search a library file from

path.

Explanation

Q

The -I option is valid only when a library file name which
does not include any pathname has been specified with the
-B option.

Two or more -I options can be specified at the same time.
Two or more path names may be specified per -I option by
delimiting each pathname with "," (comma). In this case,

no blank (space) is allowed before and after the delimiter

"won
] .

Up to 10 pathnames may be specified per linking process.

If two or more pathnames are specified, the linker will
search the specified paths in their order of specification,
for the specified library file(s).

Even if the specified library file is not found in the
specified path(s), the linker will not output an error
message.

If no pathname is specified, an abort error will result.

5-84

-1 Library file read path specification

o If a library file is specified with the -B option without

including any pathname, the linker will search paths in

the following order.

C) Path specified by the -I option

(2) Path specified by environment variable LIB78Kn (when the
-1 option is omitted)

(:) Current path (when no path is specified by environment
variable LIB78Kn)

If the specified library filename is not found in any of the

above three paths, an error will result.

Application Examples

Example 1: To link two object module files with -B and -I
options specified to search directory LIB for
library file "78K3.LIB"

A>1%x78k3 78k3main.rel 78k3sub.rel -b78k3.1ib -i¥lib

uCOM-78K/111 Linker Vx.xx [xx xxx xx)]
Copyright (L) Corporation xxxx USxxxxxxxxxx

Link complete, 0 error(s) and 0 wvarning(s) found.

. 5-85

-F Parameter file specification

(12) Option for parameter file specification (-F)

Description format: -F filename

Default assumption: Options and input filenames can
be input only from start-up
command line.

Function
The -F option tells the linker that options and input file-
name(s) will be input from the file specified by this option.

Use

o Use the -F option if all the required parameters for
starting up the linker cannot be specified in the start-up
command line.

o If you have a set of linker options which you must specify
repeatedly at each linking coperation, describe these linker
options in a parameter file and then specify the -F option

in the start-up command line.

Explanation

o A filename can be specified with only a disk type filename.
If any device type filename is specified with this option,
an abort error will result.

o If a filename is omitted from the -F option gpecification,
an abort error will also result.

o Nesting of parameter files is not allowed. If the -¥ option
is specified in a parameter file, an abort error will
result.

¢ The number of characters that can be described in a param-
eter file is not limited.

o A blank character, Tab character, or " (J " must be used as

a delimiter between options or input filenames.

5-86

-F Parameter file specification

o The options and input filenames described in the parameter
file will be expanded to the location on the command line
where the parameter file (-F option) has been specified.

o The linker will process these expanded options in the order
from the last input option.

o All characters described between ";'" and "[@" or an EOF code
will be interpreted as a comment statement.

o If two or more -F options are specified at the same time,

an abort error will result.

Application Examples

Example 1: To link two object module files with -F option
specified
o Contents of parameter file "78K3.PLK"

;parameter file
78k3main. rel 78k3sub.rel -o78k3. Ink -p78k3.map -e
-ta:Ytop -g

o Enter -F option in the command line as follows:

A>1k78k3 —f78k3.

uCOM-78K/II1 Linker Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USxxxxxxxxxx

Link complete, 0 error{s) and 0 warning(s) found.

-T Temporary file creation
' path specification

(13) Option for temporary file creation path specification (-T)

Description format: -T pathname

Default assumption: Temporary file is created on the path
specified by environment variable TMP
or on the current path if no path is
specified by TMP

Function

The -T option tells the linker to create a temporary file on
the path specified by this option.

Use
The -T option can be used to specify where a temporary file

is to be created.

Explanation

o Other than a path cannot be specified as a pathname. If a
pathname is omitted from the -T option specification, an
abort error will result.

o Even if a previously created temporary file exists, the
linker will create a temporary file by overwriting the
file unless it is write-protected when a temporary file
creation is requested next time.

o If the required memory space for temporary file creation is
available, the linker will create a temporary file in
memory. If no memory space is available for temporary file
creation, the linker will save the memory contents to
another file and create a temporary file in that space.

o The temporary file created for a linking process by the
linker will be erased on completion of the linking
process. The temporary file will also be erased when the
linking process is discontinued by CTRL-C key input.

5-88

~-T Temporary file creation

path specification

o A path for temporary file creaticn is determined in the

following order:

C) Path specified by the -T option

C) Path specified by environment variable TMP (when the
-T option is omitted)

(:) Current path (when no path is specified by environment
variable TMP)

If a temporary file cannot be created on the path specified

by (1) or (2), an abort error will result.

Application Examples

Example 1: To link two object module files with -T option
specified to create a temporary file on directory
T™MP

A>1k78k3 78k3main.rel 78k3Isub.rel —-t¥tm

uCOM-78K/111 Linker Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USxxxxxxxxxx

Link complete, 0 error(s) and 0 warning(s) found.

- HELP message display specification

(14) Option for HELP message display specification (--)

Description format: --

Default assumption: No HELP message is displayed.

Function
The -- option tells the linker to display the HELP message

on the console.

Use

The HELP message is a list of all linker options and their
functional descriptions. Use the -- option if you want to

refer to this message when executing the linker.

Explanation
If the -- option is specified, all the other linker options

specified at the same time will become invalid.

5-90

- HELP message display specification

Application Examples

Example 1: Input -- option as shown below and the HELP message

will be displayed on the screen.

A>1k78K3 --

uCOM-T78K/111 Linker Vx.xx [xx xux xx]
Copyright (C) Corporation xxxx USXXXXXXXXXX

usage : LK78K3 [option(...]] input-file[...] {option[...]]
option is as follovws

-Ffile :Read directive file from specified file.
-0[file]/-NO :Create load module file [with specified name] / Not.
-P[filel}l/-NP :Create link map file [with specified name] / Not.
-Effile}l/-NE :Create error list file [with specified name] / Not.
-KM/-NKM :Qutput map list to link map file / Not.

-KP/-NKP :0utput public symbol list to link map file / Not.
-KL/-NKL :0utput local symbol list to link map file / Not.

-L¥[page width] :Specify map ‘list file columns.
-LLIpage length] :Specify map list file lines per page.

-LF/-NLF :Add Form Feed code at end of link map file / Not.
-G/-NG :Qutput symbol information to load module file / Not.
-J/-NJ :Create load module file if error ceccured / Not.
-Tdirectory :Set temporary directory.

- :Show this message
DEFAULT ASSIGNMENT: -0 -P -NE -KM -NKP -NKL -LW132 -LL66 -LF -G -T.

5-91

CHAPTER 6. OBJECT CONVERTER

The Object Converter accepts a load module file cutput by the
linker for the 78K series (in which all reference address infor-
mation has been resolved) as an input file and outputs it as a
HEX-format object module file (or HEX file for short).

The object converter also outputs information on symbols required
for symbolic debugging as a symbol table file.

If any object converter error exists, the object converter outputs

an error message to clearly indicate the cause of the error.

6.1 Input/Output Files of Object Converter
The files listed in Table 6-1 below are input and output to and
from the object converter.

Table 6-1. I/0 Files of Object Converter

Type Name and description of file Default
file type
Input Load module file A binary image . LNK

files file containing object code as a result
of a linking process.

This file is cuftput by the linker.
Parameter file A file containing . POC
the parameters of an executable program.
This file must be created by the user.
Output | HEX-format obiect module file .. A file LHEX
files generated by converting an input load
module file in HEX object format.
Symbol table file ... A file containing .SYM
information on symbols in each module
in the input load module file.

Error list file A file containing . EOC
information on errors during object
conversion process.

7

Symbol table

file

Load module file

Parameter file

HEX-format object

module file

v

Error list
file

7

Fig. 6-1. I/O Files of Object Converter

6.2 Object Converter Functions

{1) Converter action taken for extension spaces
When raw data have been output to segments located in
extension spaces, the object converter creates a separate
HEX-format object module file for each extension space.
When symbols which have the ADDRESS attribute or BIT attribute
have been defined in segments located in extension spaces, the
object converter creates a separate symbol table file for each
extension space. The object converter outputs symbols which
have the NUMBER attribute to a symbol table file for the
regular space.
The file type of a HEX-format object module file and that of a
symbol table file for each extension space are shown in Table
6-2 below.

Table 6-2. File Types of Output Files for Each Extension Space

File Regular space Extension space
_____________________ oA e e s ——— ———— '——__—"‘“__'-"'"1'____——‘--__""
REGULAR EX1 { EX2 EXB-| E}M-| .o EX13|EX14 |EX15
HEX .HEX .H1 LH2 | .H3 ! ,H4}| ... LH13|.H14 |.H15
Symbol . SYM .51 | .82 .S3| .54513]|.814;.815

(2) HEX-format object module file
The HEX-format object module file output by the object
converter can be input to a HEX loader such as a ROM writer
or a debugger.
The HEX-format object module file of the sample program is
shown below.
:020000000200FC
:100002002B41000BFCBOFE2B40000944F7083A20EC
:100012001A6720FE2822006521FED3§0D25014FE1A
:10002200B900059F2835002431B900059F28350005

:0C003200242156AF0A83024807A830560C
:00000001FF

The first to fifth lines constitute an object code record
and the last line constitutes an end record.

[Format of HEX-format Object Module File]

10 0002 00 2B41000BFC80F... 3A20 EC CR LF

P @ ® ® ®

C) Record mark
Indicates the beginning of the record.

C) Code count (2 digits)}
Indicates the number of bytes of the codes to be stored
in the data record. The maximum code count is 16 bytes.
This field is fixed to "QOH" with the end record.

() Location address (4 digits)
Indicates the first address of the codes expressed by
the data record,.
This field is fixed to "0000H" with the end record.

C) Record type (2 digits)
00H ... Indicates the data record.
01H ... Indicates the end record.

(5 Code (32 digits max.)
Object codes are indicated in units of one byte by
dividing it into high-order 4 bits and low-order 4 bits.
Code can be represented up to 16 bytes.
This field does not exist in the end record.

() Check sum (2 digits)
A value obtained by subtracting the data from "Code count"
field to "Code" field in sequence, from 0 is entered in
this field.

{3) Symbol table file

The symbol table file output by the object converter can be
" input to a debugger.

The symbol table of the sample program is shown below.

#04

.FF PUBLIC
010022CONVAH
010002START
:FF SAMPM
:FF SAMPS
<0100355A5C
01003BSASCI

[Format of Symbol Table File]

Start of symboll, 04 cr | LE
Start of PUBLIC . FF Blank PUBLIC CR | LF
symbols Symbol Symbol PUBLIC bol B
N C symbo
(See Note 3) attribute val.ue name : CR | LF PUBLIC
i i H symbols
: FF Blank Module name 1 CR | LF
Start of local Symbol Symbol Local symbol Local
symbols ¢ |attribute value name CR | LF symbols
Symbol Symbol Local symbol CR | LF per module
attribute value name
FF Blank Module name 2 CR|LF
(Repeat this
format for each i i H i
object module)
End mark of = CR | LF T 1
symbol table See Note 1. See Note 2.

NOTE: 1. This field is fixed to four characters.

2. This field is fixed to six characters. If the
symbol value is less than six characters, a
blank is inserted in each unfilled character
position.

3. One of the following values is entered as the
symbol attribute of each symbol in this field:

Value Symbol attribute
00 Constant defined with EQU directive
01 With 78K/0, 78K/I, or 78K/III:

Label within CODE segment

With 78K/VI:

Label with CODE or DATA segment
02 With 78K/0, 78K/I, or 78K/III:
Label within DATA segment

With 78K/VI:

Constant defined with EQU directive
03 With 78K/0, 78K/I, or 78K/III:
Bit symbol

With 78K/VI:

Bit syvmbol with ABIT attribute

05 Bit symbol with SFBIT attribute
06 Bit symbol with RBRIT attribute
07 Bit symbol with RWBIT attribute
FF Module name

Note: Symbol values 05, 06, and 07 apply
only to the 78K/VI series.

6-5

6.3 How to Start Up the Object Converter

6.3.1 Starting up the object converter
The object converter can be started up in the following two ways:

{1) Start-up with command line

§>[pathname]oc?SknLAoption]..Jﬁinput-filenameLAoption] see [A]

Filename of the load module
file to be converted

> Gives the object converter
particular instructions for
its operation (see Note
below).

—=>Command filename of the object converter
{n=0,1,2, 3, or 6 indicating one of 78K
series names)

~—>Current directory name

L——S>Current drive name

Example: A>ocT8k3 78k3. Ink -osample. hex

Note: If two or more object converter options are to be
specified, each object converter option must be
delimited with a space.

See Section 6.4 for details of each object converter
opticen.

6-6

{2) Start-up with parameter file
A parameter file is used when all the required information
for starting up the object converter cannot be specified in
the start-up command line of the object converter or when the
same object converter options are to be used repeatedly in
each object conversion process.
When using this parameter file, the -F option must be
specified in the start-up command line of the object converter
to specify the use of the parameter file,
The object converter can be started up with a parameter file

as follows:

X> oc78kn[Alcad-moudle-filelA -f parameter-filename
-t

File containing the
information required to
start up the object
converter

‘> Option specifying use of
parameter file

o A parameter file must be created with the editor.
o The description format of parameters within the parameter

file is as shown below.

[{ [AlJoption[Aoption]l.. [ATA]] ...

o If the load module filename to be input is omitted in the
start-up command line of the object converter, only one
input load module filename may be described within the
parameter file.

o The input load module filename may be described either
before or after an option.

o In the parameter file, all the object converter options and
output filename which should normally be specified in the

start-up command line must be described.

Example: To create parameter file "78K3.POC" with the editor
o Contents of "78K3.pPOC"

;parameter file
T8k3. Ink -csample. hex
-ssample. sym -r

o0 Start-up of object converter by specifying parameter
file "78K3.pOC"

A>ocT8k3 -f78k3. poe

6.3.2 Execution start and end messages

(1) ExXecution start message
When the object converter is started up, the following message
is output to the console, indicating the start of the object

conversion execution. -

uCOM-78K/I11 Object Converter Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USKXXXXXXXXXX

(2) Execution end messages
o If the object conversion operation is completed normally,
the object converter will output the following message to

the console and return control to the 0§8.

Object Converter complete, 0 error(s) and 0 warning(s) found.

o If any errors are found as a result of an object conversion
operation, the object converter will output the following
message (the number of errors found) to the console and

return control to the 0S.

Object Converter complete, 3 error(s) and 0 warning(s) found.

o If any fatal error is found during an object conversion
operation, the object converter will output the following
message, stop its processing, and return contreol to the
0Ss.

Example 1:

A>ocl8k3 sample. 1nk

uCOM-78K/I11 Object Converter Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USxxxxxxxxxx

A006 File not found ' SAMPLE.LNK'
Progran aborted.

In this example, the object conversion operation was
discontinued by an abort error resulting from the
specification of a load module file which does not exist

in drive A.

Example 2:

A>oc78k3 78k3.1nk -a

uCOM-78K/111 Object Converter Vx.xx [xx xxx xx]
Copyright (C)} Corporation xxxx USXXXXXXxxxx

A018 Option is not recognized " -a'
Program aborted.

In this example, the object conversion operation was
discontinued by an abort error resulting from the input of
an object converter option "-~A (-a)" which is not recognized

by the object converter.

If the object converter is aborted following the output of

an error message, check the cause of the error by referring
to Chapter 11, Error Messages and take corrective action(s)
as required.

6.4 Object Converter Options

6.4.1 Types of object converter Optibns

An object converter option gives the object converter particular
instructions for its operation and is broadly divided into the

following seven types:

Table 6-3. Types of Object

Converter Options

No. | Classification Option Functional description

1 Options for HEX- -0 Specifies the output or
format object non-output of a HEX-
module file -NO format object module
output specifi- file.

. cation

2 Options for symbol -S Specifies the output or
table file cutput non-output of a symbol
specification -NS table file.

3 Options for object -R Specifies the output of
code output HEX-format object codes
sequence specifi- by sorting in their
cation -NR address sequence or as

stored in the input load
module file.

4 Option for object -U Specifies the output of
code fill specifi- the fill value specified
cation by this option as object

code to an address area
to which no HEX-format
object code is output.

5 Options for error ~-E Specifies the output or
list file output non-output of an error
specification -NE list file.

6 Option for -F Specifies the input of
parameter file input filename and options
specification from the file specified

by this option.

7 Option for HELP - Specifies the output of
message output HELP message to the
specification console.

The above table merely intréduces all the available object

converter options. Each of these object converter options 1is

detailed in Subsection 6.4.2 below. For quick reference, see
Appendix C.3, List of Object Converter Options in which the

description format of each option and the relationship between one

option and the other are also outlined.

6.4.2 Description of each object converter option
A detailed description of each object converter option is provided

in this subsection.

-0/ -NO HEX-format object module file

ocutput specification

(1) Options for HEX-format output module file output specification

(-0/-NO)
Description format: -0 (output-filename)
or
-NO

Default assumption: -0 input-filename.HEX (file type

for extension space: .H1 to .H15}

Function

© The -0 option specifies the output of a HEX-format object

module file. It also specifies the output destination or
output filename of the HEX-format object module file to be
output by the object converter.

The -NO option specifies the non-output of a HEX-format
object module file.

Use the -0 option if you want to change the output destina-
tion or output filename of a HEX-format object module file.
If the object conversion of a load module file is to be
performed only to output a symbol table file, use the -NO

option. This will reduce the object conversion time.

Explanation

0 As an output filename, only a disk type filename must be

specified. If any device type filename is specified, an
abort error will result.

If an output filename is omitted from the -0 option specifi-
cation, "input filename.HEX" (file type: ".H1" to ".H15" for
a HEX file created for each extension space) is assumed as
the output filename and a HEX-format object module file

under that name will be output to the current directory.

6-12

-0/ -NO HEX-format object module file
output specification

o If only a pathname is specified as the output filename, a
HEX—formét object module file named "input-filename,HEX"
(file type: ".H1" to ".H15" for a HEX file created for each
extension space) will be output to the specified path.

o If the -0 and -NO options are specified at the same time,
whichever you specified later will take precedence over the
other,

o When raw data have been output to segments located in
extension spaces, the object converter creates a separate
HEX-format object module file for each extension space.

The file type of a HEX-format object module file for each

extension space is as shown below.

File Regular space Extension space
________________ S e Catabriuh Sxtbabte
REGULAR EX1 | EX2 | EX3 | EX4 .o EX13|EX¥14|EX15
HEX .HEX JH1 | .H2 | JH3 | .H4| ... JH13j.H14|.H15

Application Examples
Example 1: To convert load module file "78K3.LNK" with -0

option specified to output a HEX file named
"SAMPLE.HEX"

A>oc78k3 178k3. lnk_-osample. hex

uCOM-78K/111 Object Converter VX.XxX [xx xxx xx]
Copyright (C) Corporation xxxx USxxxxxxXXXX

Object Converter complete, 0 error{s) and 0 warning(s) found.

-0/-NO HEX-format object module file

output specification

Example 2: To convert the load module file with both -NO
and -0 options specified

A>0c78k3 78k3. 1nk -no -o

uCOM-78K/111 Object Converter Vx.xx

[xx xxx xx]
Copyright {C) Corporation xxxx

USXXXXXXXXXX

Object Converter complete, 0 error{s) and 0 warning(s} found.

In this case, -NO option becomes invalid and -0

option is accepted as valid.

-S/-Ns Symbol table file output

specification

(2) Options for symbol table file output specification (-S8/-NS)
Description format: -S [output-filename]
or
-NS
Default assumption: -~S input-filename.SYM (file type
for extension space: .81 to .815)
Function

o The -S option specifies the output of a symbol table file.
It also specifies the output destination or output filename
of the symbol table file to be output by the object
converter,

o The -NS option specifies the non-output of a symbol table
file.

Use

o Use the -S option if you want to change the output destina-
tion or output filename of a symbol table file.

o If the object conversion of a load module module file is to
be performed only to output a HEX-format object module file,
use the -NS option. This will reduce the object conversion
time. '

Explanation

0 As an output filename, only a disk type filename must be
specified. If any device type filename is specified, an
abort error will result.

o If an output filename is omitted from the -S option specifi-
cation, "input filename.SYM" (file type: ".S1" to ".S815" for
a symbol file created for each extension space) is assumed
as the output filename and a symbeol tahle file under that

name will be output to the current directory.

6-15

-S/-NS ‘ Symbol table file output

specification

o If only a pathname is specified as the output filename, a
symbol table file named "input-filename.SYM" (file type:
".81" to ".S15" for a symbol file created for each
extension space) will be output to the specified path.

o If the -S and -NS options are specified at the same time,
whichever you specified later will take precedence over the
other.

o When symbols which have the ADDRESS attribute or BIT
attribute have been defined in segments located in extension
spaces, the object converter creates a separate symbol table
file for each extension space. The object converter outputs
symbols which have the NUMBER attribute to a symbol table
file for the regular space.

The file type of a symbol table file for each extension

space is as shown below.

File Regular space Extension space
REGULAR EX1 EX2 | EX3 | EX4| ... EX13IEXT41EX15
Symbol .SYM .81 | .82} .83} .54|5131.8141.815

Application Examples
Example 1: To convert load module file "78K3.LNK" with -S

option specified to output a symbol table file
named "SAMPLE.SYM"

A>oc78k3 18%3. Ink -ssample. sym

uCOM-78K/111 Object Converter Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USxxxxxxaxxx

Object Converter complete, 0 error(s) and 0 warning(s) found.

-S/-NS Symbol table file output

specification

Example 2: To convert the load module file with both -NS
and -S options specified

A>oc78k3 78k3. Ink_-ns -s

uCOM-T8K/111 Object Converter Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USXXXXxxXXXX

Object Converter complete, 0 error{s) and 0 warning(s) found.

In this case, -NS option becomes invalid and -8
option is accepted as valid.

-R/-NR Object code output sequence

specification

(3} Options for object code output sequence specification {-R/-NR)

Description format: -R
or
-NR

Default assumption: NR

Function
o The -R option specifies the output of HEX-format object
codes by sorting them in the order of their addresses.
o The -NR option specifies the output of HEX-format object
codes in the order of their storage in the input load

module file,
Use
Use the -R option if you want to have HEX-format object codes

sorted in the order of their addresses.

Explanation

o If the -R and -NR opticns are specified at the same time,
whichever you specified later will take precedence over the
other.

o If the -R or -NR option is specified together with the -NO

option, the -R or -NR option will become invalid.

-R/-NR - Object code output sequence

specification

Application Examples
Example 1: To convert load module file "78K3.LNK" with -R

option specified to sort HEX-format object codes in

address sequence

A>oc78k3 T8k3. Ink -r

tCOM-T8K/111 Object Converter Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USXXXXXXXXXX

Cbject Converter complete, 0 error(s) and " 0 warning(s) found.

-0 Object code fill specification

(4) Option for object code fill specification (-U)

Description format: -U fill-valuel,[start],size]

Default assumption: None

Function
The -U option tells the object converter to output the fill
value specified by this option as object codes to an address
area to which no HEX-format object code has been output.

Unwanted codes may be written into an address area to which

no HEX-format object code has been output. If the program
accidentally accesses any address in such address area, proper
program operation cannot be expected. To avoid this, the -U
option can be used to write some code beforehand into an
address area to which no HEX-format object code has been
output.

Explanation

o A fill value may be specified in hexadecimal or decimal
numbers but must not exceed the following value range:
OH < fill value < OFFH
If a naﬁerical valug beyond the above range or other than
a numerical value is specified, an abort error will result.
© As the parameter "start', the start address of an address
area into which code is to be filled may be specified in
hexadecimal or decimal numbers but must not exceed the
following value range:
OH < start < OFFOOH
If a n;merical_value beyond the above range or other than

a numerical value is specified, an abort error will result.

6-20

Object code fill specification

o If "start" is omitted from the -U option specification,

address OH is assumed to have been specified.

As the parameter "size", the size of the address area into

hich code is to be filled may be specified in hexadecimal

or decimal numbers but must not exceed the following value
range:
OH ¢ size < OFFOOH

If a naﬁericaz value beyond the above range or other than

a numerical value is specified, an abort error will result.

If the parameter "start'" is specified, the parameter "size"

cannot be omitted.

If both parameters "start" and "size" are omitted, the

object converter will process the input load module file as

follows:

(a) If the target device subject to assembly has an internal
(on-chip) ROM, the object converter will assume that the
internal ROM area has bheen specified.

(b) If the target device subject to assembly has no internal
ROM, the object converter will output an error message
and stops its processing.

If the -U option is specified two or more times in the same

command line, the last input -U option will take precedencé

over the cothers,

The "start" and "size" specification formats with the -U

option and the interpretation of each format by the object

converter are as summarized below.

{a) -U fill-value ¢ Internal ROM area if the target

device has an internal ROM
o Abort error if the target device
has no internal ROM

(b} -U fill-value, size o Address area from address OH to

address specified by 'size"

(c) -U fill-value, o Address area from "start" address

start, size to address specified by "size"

6-21

-U ' Object code fill specification

Application Examples

Example 1: To fill a code into an address area to which no

HEX-format object code has been ocutput

© Assume that the following HEX-format object module file
exists. In this case, no code has been written into an
address area from 003EH to OFFFH.

:020000000200FC
:100002002B41000BFC8O0FE2B40000944FT083A20EC
:100012001A6720FE2822006521FED350D25014FE14 @
:10002200B900059F2835002431BS00059F28350005
:0C003200242156AF0A8302A807A830560C
:101000003B5SD0400264A3 -
:1010100024A5FG22B66T7 -~

:00000001FF

0000H
0002H

003EH

Code is filled in this part.

1000H
®

o Specify -U option to fill code "OOH" in address area
003EH to OFFFH

A>ocTBk3 T8k3. Ink -ul0h, 003eh, 0fc2h

uCOM-78XK/I11 Object Converter Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USXXXXXXXXXX

Object Converter complete, 0 error{s) and 6 warning(s) found.

-E/-NE - Error list file output specification

(5) Options for error list file output specification (-E/-NE)

Description format: -E [output-filename]
or
-NE

Default assumption: -NE

Function
o The -E option specifies the output of an error list file. It
also specifies the output destination or output filename of
the error list file to be output by the object converter.
o The -NE option specifies the non-output of an error list
file.

Use

o Use the -E option if vou want to save error messages to a
file.

o Also use the -E option if you want to change the output
destination or output filename of an error list file.

Explanation

o An output filename can be specified with either a disk type
filename or a device type filename. However, if a device
type filename "CLOCK" is specified as an output filename, an
abort error will result.

o If an output filename is omitted from the -E option specifi-
cation, "input filename.EOC" is assumed as the output error
list filename.

o If a drive name is omitted from the -E option specification,
the error list file will be output to the current drive,

o If the -E and -NE options are specified at the same time,
whichever you specified later will take precedence over the

other.

-E/-NE ___Error list file output specification

Application Examples

Example 1: To convert load module file "78K3.LNK" with -E

"option specified to create an error list file
named "78K3.EOC"

A>oc78k3 18k3.1nk —-e78k3. eoc

uCOM-T78X/111 Object Converter Vx.xx [xx xxx xx]
Copyright {C) Corporation xxxx USxxx¥xxxxxx

F100 Undefined symbol : CONVAH
Object Converter complete, 1 error(s) and 0 varning(s) found.

© When error list file "78K3.EOC" is referenced, the output
error list file will look like this.

F100 Undefined symbo} : CONVAH

-F Parameter file specification

(6) Option for parameter file specification (-F)

Description format: -F filename

Default assumption: Options and input filenames can
be input only from start-up

command line.

Function
The -F option tells the object converter that options and
input filename(s} will be input from the file specified by

this cption.

Use
o Use the -F option if all the required parameters for
starting up the object converter cannot be specified in the
start-up command line.
o If you have a set of object converter options which you must
specify repeatedly at each object conversion operation,
describe these object converter options in a parameter file

and then specify the -F option in the start-up command line.

Explanation

o A filename can be specified with only a disk type filename.
If any device type filename is specified Qith this option,
an abort error will result.

o If a filename is omitted from the -F option specification,
an abort error will also result.

o Nesting of parameter files is not allowed. If the -F option
is specified in a parameter file, an abort error will
result. ‘

o The number of characters that can be described in a param-
eter file is not limited.

o A blank character, Tab character, or " (@ " must be used as
a delimiter between options or input filenames.

6-25

-F Parameter file specification

o The options and input filenames described in the parameter
file will be expanded to the location on the command line
where the parameter file (-F option) has been specified.

o The object converter will process these expanded options in
the order from the last input option.

o All characters described between ";" or "#" and "@" or an
EOF code will be interpreted as a comment statement,

o If two or more -F options are specified at the same time,

an abort error will result.

Application Examples

Example 1: To convert load module file "78K3.LNK" with -F
option specified
o Contents of parameter file "78K3.POC"

;parameter file
78k3. Ink -osample. hex
-ssample. sym -r

o Enter -F option in the command line as follows:

A>ocT8k3 —f78k3. poe

uCOM-78K/I11 Object Converter ¥x.xx [xx xxx xx]
Copyright (L) Corporation xxxx USXXXXXXXXXX

Objeect Converter complete, 0 error(s) and 0 warning(s) found.

6-26

- HELP message display specification

(7) Option for HELP message display specification (--)

Description format: --

Default assumption: No HELP message is displayed.

Function

The -- option tells the object converter to display the HELP

message on the console.

Use
The HELP message is a list of all object converter options and
their functional descriptions. Use the -~ option if you want

to refer to this message when executing the object converter.

Explanation

If the -- option is specified, all the other object converter

options specified at the same time will become invalid.

6-27

- HELP message display specification

Application Examples

Example 1: Input -- option as shown below and the HELP message

- will be displayed on the screen.

A>ocT8k3 ——

uCOM-78K/11] Object Converter Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USXxXXxxxxxxx

usage : 0C78K3 [optionl ...])] input-file [optionl ...]]

The option is as follows ({] means ommisible).

-Ffile :lnput option or input-file name from specified file.
-0[filel/-NO :Create HEX module file [with specified name] / Not.
-S[filel/-NS :Create symbol table file [with specified name]l / Not.
-R/-NR :Sort HEX object by address / Not.

-Uvaluel, [start], size] :Fill up HEX object with specified value.
-- :Show this message.

DEFAULT ASSIGEMENT: -0 -8 -NR

CHAPTER 7. LIBRARIAN

The librarian (or library program) performs the editing of object
module files or library files for the 78K series in units of
modules. The librarian alsc outputs a list file.

If any error exists during a library processing, the librarian
outputs an efror message to the console to clearly indicate the

cause of the error.

7.1 Input/Output Files of Librarian
The files listed in Table 7-1 below are input and output to and

from the librarian.

Table 7-1. I/0 Files of Librarian

Type Name and description of file Default
file type

Input Subcommand file A file containing None

file the subcommands and parameters of an

executable program.
This file must be created by the user.

Output | List file A file containing the .LST
file result of information output from a

library file.
1/0 Object module file An object module .REL
files file output by the assembler or compiler.

Library file A library file output .LIB

by the librarian.
This file is input to the librarian for
updating the file contents.

Temporary file A file which is LB78Kn.$$x
automatically generated by the librarian -x=1 to 6

as a work file. (fixed to
This file will be erased on completion of this name)

the library process.

{n=0, 1, 2, 3, or 6)

Object module files output

by assembler or compiler file

TLY

Subcommand

e

Input/outp:E:i:?\\

Librarian

’////,/’f;;:;

Input/outﬁjéjj;/

Library
file

Qutput

List
file

o

Temporary
file

Fig. 7-1. I/0 Files of Librarian

7.2 Librarian Functions

(1)

(2)

(3)

Note:

Storing modules in library (Creating a library file)

Both the assembler and the linker create one file per output
module. The more the object modules are produced, the more the
output files are generated. Thus, the function to collect two
or more files into a single file is provided. This collection
of modules is called a library and a file used to maintain and
make available the modules is called a library file.

A library file can be input to the linker. Therefore, if a
library file of commonly used modules is created when
developing a program using the modular programming technique,
files can be efficiently managed and operated.

Editing library files

The librarian has the following editing functions for library
files:

o Adding module(s) to a library file

o Deleting module(s) from a library file

o Replacing module(s) in a library file

o Selecting and copying module(s) from a library file

(These functions are discussed in detail in Section 7.5,
Subcommands. }

Listing the library file information

The librarian has the function to edit and output the follow-
ing items of information stored in a library file:

o Module name

Program created

o

o Date of registration

o Date of file updating

o PUBLIC symbol information
The librarian functions (2) and (3).above are offered in the
librarian as subcommands. The librarian performs its
processing by interpreting and executing each subcommand.
See Section 7.5, Subcommands for the operation of each

subcommand.

(4) Library file creation procedure

Fig. 7-2 illustrates a general procedure for creating a
library file.

(; START)

4

gii:te Library XN CREATE subcommand

L

r

Add Object Module resee ADD subcommand
file.

4

Update or extract
- . sasas ADD subcommand
M b
Object Module File DELETE subcommand

REPLACE subcommand
PICK subcommand

________ | S

ceons LIST subcommand

Fig. 7-2. Procedure for Creating a Library File

7.3 How to Start Up'the Librarian
7.3.1 Starting up the librarian
The librarian can be started up (invoked) in either of the

following two ways:

(1) Start-up with the start-up command line of the librarian

X> [pathname]lb78kn[loption]...
2

L—~—-———+ Gives the librarian particular

instructions for its operation
(see Note below).

—— command filename of librarian
(n =0, 1, 2, 3, or 6 indicating
each 78K series name)

> cCurrent directory name

5 Current drive name

Example: A>1b78k3 -1120 -1%80

NOTE: If two or more librarian options are to be specified,
each librarian option must be delimited with a space.
See Section 7.4, Librarian Options for details of each
option.

When the librarian is started up, the following message is
output to the console:

uCOM-T8K/111 Librarian Vi, xx [xx xxx xx]
Copyright (C) Corporation xxxx USXXXXXXXXXX

Specify a desired librarian subcommand following the prompt

gt

*create T8k3.1ib
¥add 78k3.1ib 78%3Imain.rel 78k3sub.rel
kexit

On input of the subcommand, the librarian starts processing
the subcommand. On completion of the subcommand processing,
the prompt "*" appears again, indicating the standby state for
your input of the next subcommand. This process will be
repeated until you input the EXIT subcommand to terminate . the
librarian.

* Subcommand specification

r'§aEEBEMEEa processing 7

* EXIT subcommand specification
Termination of librarian

Up to 128 characters may be input per line. A continuation
line may be specified if all the reguired operand information
cannot be input on a single line. Up to 15 continuation lines

are allowed per subcommand.

{2) Start-up With subcommand file
A subcommand file refers to a file in which commands to the
librarian are stored. If you do not use a subcommand file when
starting up the librarian, you must input two or more sub-
commands individually following the output of the prompt "*".
However, by creating a subcommand file, these subcommands can
be processed all at once by the librarian.
You may have to specify the same subcommands repeatedly each
time you create a library file. In such a case, use a sub-
command file to create a library file.
When using this subcommand file, '"<" must be described before
the subcommand filename in the start-up command line of the
librarian to specify the use of the subcommand file.
The librarian can be started up with a subcommand file as
follows:

X>1b78kn A< subcommand-filenamel[Aoption] ...

File containing a group
of subcommands

Always prefix this character to
subcommand filename to specify
use of subcommand file.

o0 A subcommand file must be created with the editor.
0 The description format of parameters within the subcommand

file is as shown below.

subcommand -name operand-informaticn

subcommand-name operand-information

EXIT

o If two or more lines are required for the specification of
a subcommand, describe "&" at the end of each line to

indicate a continuation line.

7-7

o All characters between ";" (colon) and the end of the line
are not interpreted as a librarian subcommand but handled
as a comment statement.

o If the last subcommand in the subcommand file is not the
EXIT subcommand, the librarian will assume that the EXIT
subcommand has been described in the subcommand file.

o The librarian processes each subcommand by reading it from
the subcommand file. On completion of all the subcommands

in the subcommand file, the librarian is terminated.

Example: To create subcommand file "78K3.SLB" with the
editor
o Contents of 78K3.SLB

;library creation command
create 78k3.1ib

add 78k3.1ib 78k3main.rel &
78k3sub. rel

exit

o Start-up of librarian using subcommand file "78K3.SLB"

A>1b78k3 <78k3.slb

7.3.2 Execution start and end messages

(1)

(2)

Execution start message
When the librarian is started up, the following message is
output to the console, indicating the start of the librarian

execution.

uCOM-78K/111 Librarian Vx.xx [xx xxx xxl
Copyright (C) Corporation xxxx USXXXXXXXXXX
¥

Execution end messages

o The librarian does not output an execution end message. The
user must input the EXIT subcommand on completion of each
processing. On input of this subcommand, the librarian
returns control to the 0S.

$create 78k3.1ib
$#add 78k3.1ib 78k3main.rel 78kisub.rel
¥exit

o If any fatal error is found during a librarian operation,
the librarian will output the following message to the

console, stop its processing, and return control te the OS.

Example 1:

A>1b78k3 78k3.slb

uCOM-78K/11] Librarian Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USxxxxxxxxxx

4003 Unrecognized string "LIB.JOB

Usage: LB78K3 [options]

In this example, the librarian operation was discontinued by
an abort error resulting from the omission of "<" before

the subcommand filename specification.
Example 2:

A>]1b78k3 -a

uCOM-T8K/111 Librarian ¥x.xx ([xx xxx xx]
Copyright (C) Corporation xxxx USXxxxxxxxxx

A018 Option is not recognized '-a’

Usage: LB78K3 [options]

In this example, the librarian operation was discontinued
by an abort error resulting from the input of a librarian

option "-A (-a)" which is not recognized by the librarian.

If the librarian is aborted following the output of an error
message, check the cause of the error by referring to
Chapter 11, Error Messages and take corrective action(s)

as required.

7.4 Librarian Options
7.4.1 Types of librarian options
A librarian option gives the librarian particular instructions for

its operation and is divided into the following three types:

Table 7-2. Types of Librarian Options

No. | Classification Option Functional description
1 Options for list -LW Specifies the number of
file format print ceolumns per line of
specification a list file.
~-LL Specifies the number of

print lines per page of
a list file.

-LF Specifies the addition or
non-addition of a form-
~-NLF feed (FF) code to the
end of a list file.

2 Option for -T Specifies the creation of
temporary file a temporary file on the
creation path path specified by this
specification : option.

3 Option for HELP -- Specifies the output of
message output HELP message to the
specification console.

The above table merely introduces all the available librarian
options. Each of these librarian options is detailed in Subsection
7.4.2 below. For quick reference, see Appendix C.4, List of
Librarian Options in which the description format of each option
and the relationship between oﬁe option and the other are also

outlined.

7.4.2 Description of each librarian option
A detailed description of each librarian option is provided in

this subsection.

~LW List file format specification

(1) Options for list file format specification (-LW, -LL,
-LF/-NLF)

(a) Option for page width specification (-LW)

Description format: -LW [No. of columns per line]

Default assumption: -LW132 (-LW80 with console output)

Function

o The -LW option specifies the number of print columns per
line of a list file.

Use

Use the -LW option if you want to change the number of print
columns per line of a list file.

Explanation

o The number of print columns per line to be specified with
the -LW option must be within the following value range
excluding the terminator (CR or LF):

72 < No. of print columns per line < 132
(For ouEput to the console, the maximum-value becomes 80
columns.)
If any value beyond this range or other than a value is
specified with this option, an abort error will result.

o If the number of columns per line is omitted, a value of 132
is assumed to have “been specified. However, if the output
destination of a list file is the console, a value of 80 is
assumed.

o If the LIST subcommand is not specified, the -LW option
specification will be ignored and thus will become invalid.

o If two or more -LW options are specified in the same command
line, the last specified -LW option will take precedence
over the other -LW options.

7-13

-LW List file format specification

Application Examples

Example 1: To execute the librarian with -LW option specified

to set 80 columns as No. of columns per line of a
list file

A>1b78k3 -1w80

uCOM-78K/111 Librarian Vx.xx [xx xxx xx]

Copyright (C) Corporation xxxx USxxxxxxxxxx
tcreate T8k3.1ib 78k3sub. rel « Subcommand
¥1ist 78k3.1ib «— subcommand

7-14

LI List file format specification

(b} Option for page length specification (-LL}

Description format: -LL [No. of lines per page]

Default assumption: -LL66 (No form-feed operation

with console output)

Function
o The -LL option specifies the number of lines per page of
a list file,

Use

Use the -LL option if you want to change the number of lines
per page of a list file.

Explanation

¢ The number of print lines per page to be.specified with the

-LL option must be within the following wvalue range;
20 < No. of print lines per page < 32767

If any ;élue beyond this range or othgr than a value is
specified with this option, an abort error will result.

o If the number of print lines per page is omitted, a value of
66 is assumed to have been specified.

o If "0" is specified as the number of print lines per page,
no form-feed operation (page ejection) will be carried out.

o If the LIST subcommand is not specified, the -LL option
specification will be ignored and thus will become invalid.

0 If two or more -LL options are specified in the same command
line, the last specified -LL option will take precedence

over the other -LL options.

~LL List file format specification

Application Examples

Example 1: To execute the librarian with -LL option specified

to set 20 lines as No. of lines per page of a list
file

A>1b78k3 -1120

uCOM-T8K/11l Librarian Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USEXXXXXXXXX
kcreate T8k3.1ib 78k3sub. rel «— Subcommand

¥list 78k3.1ib “— Subcommand

7-16

-LF/-NLF List file format specification

(c) Options for form-feed code addition specification
{-LF/-NLF)

Description format: -LF
or
-NLF

Default assumption: -NLF

Function
o The -LF option specifies the addition of a form-feed (FF)
code to the end of a list file.
o The -NLF option specifies the non-addition of a form-feed
(FF) code to the end of a list file.

Use
If you want to have a new page after printing the contents of
a list file, add a form-feed (FF) code to the end of the list
file by specifying the -LF option.

Explanation

o If the LIST subcommand is not specified, the -LF option
specification will be ignored and thus will become invalid.

o If the -LF and -NLF options are specified at the same time,
whichever you specified later will take precedence over the

other.

-LF/-NLF List file format specification

Application Examples

Example 1: To execute the librarian with -LF option
specified to add an FF code to the end of a
list file

A>1b78k3 -1f

uCOM-78K/111 Librarian Vx.xx [xx xxx xx}

Copyright (C) Corporation xxxx USxxxxxxxxxx
¥create 78k3.1ib 78k3sub.rel «— Subcommand
¥list 78k3.1lib +«— Subcommand

_ Temporary file creation

path specification

(2) option for temporary file creation path specification (-T)

Description format: -T pathname

Default assumption: Temporary file is created on the path
specified by environment variable TMP
or on the current path if no path is
specified by TMP

Function
The -T option tells the librarian to create a temporary file

on the path specified by this option.

Use

The -T option can be used to specify where a temporary file

is to be created. Y

Explanation

o Other than a path cannot be specified as a pathname. If a
pathname is omitted from the -T option specification, an
abort error will result.

o If a previously created temporary file exists, the librarian
will create a temporary file by overwriting the file unless
it is write-protected.

o If the required memory space for temporary file creation is
available, the librarian will create a temporary file in
-memory. If the memory space is exhausted during the
temporary file creation, the librarian will save the
temporary file contents in memory to another disk and
subsequent accessing to the temporary file will be made to
‘that disk.

7-19

-T , Temporary file creation

path specification

o The temporary file created for a library file process by the
librarian will be erased on completion of the library file
process. The temporary file will also be erased when the
library file process is discontinued by CTRL-C key input.

o A path for temporary file creation is determined in the
following order:

C) Path specified by the -T option
(2 Path specified by environment variable TMP (when the
-T option is omitted)
(:) Current path (when no path is specified by environment
variable TMP)
If a temporary file cannot be created on the path specified
by (D or (@, an abort error will result.

Application Examples

Example 1: To execute the librarian with -T option specified

to create a temporary file on directory TMP

A>1b78k3 -t¥tm

uCOM-T8K/II! Librarian Vx.xx [xx xxx xx]

Copyright (C) Corporation xxxx USXXXXXXXXXX
%

-— _ HELP message display specification

{3) Option for HELP message display specification (--)

Description format: --

Default assumption: No HELP message is displaved.

Function

The -- option tells the librarian to display the HELP message
on the console. '

Use
The HELP message is a list of all librarian subcommands and
their functional descriptions. Use the -~ option if you want

to refer to this message when executing the librarian.

Explanation

If the -- option is specified, all the other librarian

options specified at the same time will become invalid.

- HELP message display specification

Application Examples

Example 1: Input -- option as shown below and the HELP message

will be displaved on the screen.

A>]1b78k3 —-

uCOM-T8K/I11 Librarian Vx.xx [xx xxx xx]
Copyright {(C) Corporation xxxx USxxxxxxxxxx

Subcommands : create, add, delete, replace, pick, list, help, exit |
Usage : subcommand{ option] masterLBF[option] transaction[option]

transaction :== OMFname
LBFname[(nodulenamel,...])]

{create > : create masterLBF[transaction]
| <{add > : add masterLBF transaction
{delete > : delete masterLBF(nodulename{,...})
{replace> : replace masterLBF transaction
I {piek > : pick masterLBF (modulenamel,...13)
{list > : list{ option} masterLBF{{modulename[,...])
option : -P = output public symbol
‘ -NP = no output public symbol

-0 filename = specify output file name
| <help > @ help
{exit > 1 oexit

7.5 Subcommands
7.5.1 Types of subcommands
A subcommand gives the librarian a detailed instruction for its

operation. The librarian has the following eight subcommands:

Table 7-3. Subcommands

Item | Subcommand Abbreviated | Functional description
No. name format

1 CREATE C Creates a new library file.

2 ADD . adds a module to a library
file.

3 DELETE D Deletes a module from a
library file.

4 REPLACE R Replaces a module in a library
with another module.

5 PICK P Selects and copies a module
from a library file.

6 LIST L Cutputs information on the
modules stored in a library
file.

7 HELP H Outputs HELP message to the
console.

8 EXIT E Terminates the librarian.

The above table merely introduces to you all the subcommands of
the librarian. Each of these subcommands is detailed in
Subsection 7.5.2 below. For quick reference, see Appendix D,
List of Subcommands, in which the description format of each

subcommand has been described.

7.5.2 Description of each subcommand

This subsection details each librarian subcommand.

Note: General format of a subcommand file is as follows:

*subcommand[Aoption]Alibrary-filename[Aoption]

@ transaction[Aoption]

®

(1) The library filename specified immediately before this
subcommand specification may be substituted with ".".
(2 transaction = Aobject-module-filename

Alibrary-filename[A (Amodule-name[&, ...])]

7-24

CREATE Creating a new library file

(1) CREATE subcommand

Description format: CREATE 1library-filenamel transaction]

Abbreviated format: C

Function

The CREATE subcommand creates a new library file.

Explanation

o0 The size of the newly created library file becomes 0.

o If the second operand "transaction" is specified, the object
module file(s) specified by the operand will be added to
(stored in) the library file upon its creation.

o If the file specified by the first operand "library-
filename" already exists, the librarian will overwrite the
existing library file.

o In the "transaction" specification, neither an object module
file which has the same PUBLIC symbol as that of a module in

a library file nor an object module which has the same name

as a module in a library file can be added to the library
file.
o If any error occurs, the librarian will stop its processing

and will not create a library file.

Application Examples

Example 1: To create a new library file named "78K3.LIB"

*create 78k3.1lib

CREATE ‘ Creating a new library file

<Before creation»

<After creation>

78K3. LIB

Example 2: To add modules M1 and M2 to a new library file
upen its creation

*create 78k3.1lib ml.rel m2.rel

<Before creation>

=
=
)

(After creation>

78K3. L1IB

ADD , _ . Adding module(s) to an existing
library fle

(2) ADD subcommand

Description format: ADD Alibrary-filenamelAtransaction]

Abbreviated format: A

Function

The ADD subcommand adds module(s) to an existing library file.

Explanation

o The existing library file to which module(s) are to be added
may or may not contain any module.

o If a module which has the same module name as that specified
by the second operand "transaction" exists in the existing
library file specified by the first operand, an error will
result.

o If the module specified for addition has the same PUBLIC

symbol as that of the module in the existing library file,
an error will result.

Application Examples

Example 1: To add modules M1 and M2 to library file
"78K3.LIB"

*add 78k31lib ml.rel m2,rel

ADD _ Adding module(s) to an existing

library file

<Before addition>
78K3. LIB

M1 M2

<After addition>

78K3. LIB

M2

Example 2: To add module M3 to library file "78K3.LIB"

*add 78k3.1ib m3.rel

<Before addition»>
78K3. LIB

M1 M3

M2

<After addition>
78K3. LIB

7-28

DELETE Deleting module(s) from an existing
library file

{3) DELETE subcommand

Description format: DELETE Alibrary-filename A
(A module-name(A, ...]4A)
Abbreviated format: D

Function
The DELETE subcommand deletes module(s) from an existing
library file.

Explanation

o If the module specified by the second operand "module-name"
does not exist in the library file specified by the first
operand, an error will result. _

o If any error occurs, the librarian will stop the Delete
operation but the contents of the existing library file will

remain unchanged.

Application Examples

Example 1: To delete modules M1 and M3 from library file
"78K3.LIB"

*delete 78k3.l1lib mi.rel m3.rel

DELETE

Deleting module(s) from an existing
library file

<Before deletion>

78K3. LIB

M2

M3

<After deletion:>

78K3. LIB

REPLACE Replacing a module in an existing
library file

(4) REPLACE subcommand

Description format: REPLACE Alibrary-filename Atransaction

Abbreviated format: R

Function
The REPLACE subcommand replaces a module in an existing

library file with a module in another object module file,

Explanation

o If the same named module as that specified for replacement
by the second operand does not exist in the library file
specified by the first operand, an error will result.

o If the module specified for replacement has the same PUBLIC
symbol as that of the module in the existing library file,
an error will result.

o The object module filename specified for replacement must
be the same filename as that when it was added to the
library file.

o If any error occurs, the librarian will stop the Replace
operation but the contents of the existing library file will

remain unchanged.

REPLACE Replacing a module in an existing

library file

Application Examples

Example 1: To replace module M2 in library file "78K3.LIBR" with
another (new) module M2

*replace 78k3.1lib m2.rel

<Before replacement>
78K3. LIB

M2

M3

<After replacement>
78K3. L1B

M3

M2

Because the librarian first deletes the module M2 in the
library file and then adds the new module M2 to the library

file, the sequence of the new module M2 becomes the last
in the library file.

PICK Selecting & copying module(s) from

an existing library file

(5) PICK subcommand

Description format: PICK Alibrary-filename A
{ Amodule-name [A, ...]&)
Abbreviated format: P

Function
The PICK subcommand picks up (selects) and copies specified

module(s) from an existing library file.

Explanation

o The module picked up from the library file will become
an object module file which has the same name as that when
it was added to the library file.

o If the module name specified for selection by the second
operand does not exist in the library file specified by the
first operand, an error will result.

o If any error occurs, the librarian will stop the Pick
(select & copy) operation. However, if an error occurs
during the select and copy process of two or more modules,
the module(s) selected and copiéd before the occurrence of
the error will become valid and thus will be saved on the
disk.

7-33

PICK Selecting & copying module(s) from

an existing library file

Application Examples

Example 1: To select and copy module M2 from library file
"78K3.LIB"

*pick 78k3.1lib m2.rel

<Before selection:
78K3. LIB

M1

M2

M3

<After selecticn>
78K3. LIB

M2

M3

LIST Listing the module information

(6) LIST subcommand

Description format: LIST [Aoption]Alibrary-filename
[AAmodule-name [A, ...lA)]

option ::= -PUBLIC/-NOPUBLIC
-0 Afilename

Abbreviated format: L

Function
The LIST subcommand outputs information on the specified
module(s) within a specified library file to a list file.

Explanation

o Two or more options may be specified at the same time.

o -0 option:
A device type filename may also be specified as an output
filename. If an output filename is omitted, an error will
result. If a file type is omitted from the output filename
specification, "input filename.LST" is assumed to have been
specified as the output filename.

o -PUBLIC and -NOPUBLIC options
These options may be input in their abbreviated format (-P
or -NP indicated by the underline). |
The -PUBLIC option specifies the output of information on
PUBLIC symbols only.
The -NOPUBLIC option specifies the non-output of information
on PUBLIC symbols.
If both the -PUBLIC and -NOPUBLIC options are specified at
the same time, whichever you specified later will take

precedence over the other.

7-35

LIST : Listing the module information

Application Examples

Example 1: To output information on modules in library file
"78K3.LIB" to list filename "78K3.LST" with -P
option specified for output of PUBLIC symbol
information

*list -p -078k3.1st 78k3.1lib

o When list file "78K3.LST" is referenced, the output list
file contains the following module information.

uCOM-78K/I11 Tibrarian Vx.xx DATE : xx xxx XX PAGE
LIB-FILE NAME : 78K3.LIB {xx xxx xx)
0001 T78K3MAIN,REL (xx xxx xx)
MAIN START
NUMBER OF PUBLIC SYMBOLS : 2
0002 T78K3SUB. REL (xx xxx xx)
CONVAR

NUMBER OF PUBLIC SYMBOLS : 1

7-36

HELP : Displaying the HELF message

{7}y BELP subcommand

Description format: HELP

Abbreviated format: H

Function

The HELP subcommand outputs the HELP message to the console.

Explanation

The HELP message is a list of all librarian subcommands and
their functional descriptions. Use the HELP subcommand or --

option if you want to refer to this message when executing the
librarian.

Application Examples

Example 1: Input HELP subcommand as shown below and the HELP

message will be displayed on the screen.,

| Subcommands : create, add, delete, replace, pick, 1ist, help, exit
Usage : subcommand[option] masterLBF[option] transaction option]

transaction :== OMFname
LBFnamef{(modulenanel,...])]

Cereate > : create masterLBF[transaction]
<add > : add masterLBF transaction '
| <delete > : delete masterLBF{modulenamef,...])
‘ <replace> : replace masterLBF transaction
¢pick > : pick masterLBF (modulenamel,...])
¢list > : list{ opticn] masterLBF[{modulenanef,...])
option : -P = output public symbol
-NP = no ocutput public symbol
-0 filename = specify output file name
> : help

{exit > ¢ oexit

EXIT : Terminating the librarian

{8) EXIT subcommand

Description format: EXIT

Abbreviated format: E

Function

The EXIT subcommand terminates the librarian.

Explanation

Use this subcommand to terminate the librarian.

Application Examples

Example 1: To terminate the librarian

*axit

CHAPTER 8. LIST CONVERTER

The list converter (or list conversion program) accepts an
assembly list file or object module file ocutput by the assembler
or a load module file output by the linker as an input file,
embeds actual addresses in relocatable addresses or symbols in the
input file, and outputs them as an absolute assembly list file. By
this output list, you can save yourself a trouble of reading an
assembly list while'referring to a link map.

8.1 Input/Output Files of List Converter
The files listed in Table 8-1 below are input and output to and

from the list converter.

Table 8-1. I/0 Files of List Converter

Type Name and description of file Default
file type
Input Object module file A binary file .REL

files containing machine language information
and relocation information and symbol
information related to relocation
addresses of machine language instruc-
tions

Assembly list file ... A file containing .PRN
assembly information such as assembly
list and cross-reference list.

Load module file A binary image file .LNK
of object codes generated as a result of
a linking process.

Parameter file A file containing the .PLV
parameters of the executable program (i.e.,
list converter).

This file must be created by the user.

Output | Absolute assembly list file A list .P
files file in which actual addresses of
relocatable addresses and symbols in
the input file are embedded.

Error list file A file containing .ELV .
error information during a list
conversion process.

Assembly Object Load Parameter

list module module file
Assembly Object Load
list module module Parameter
file file file file
Input

List converter:

Output
Absolute Error list
assembly file
list file

Fig. 8-1. I/0 Files of List Converter

8.2 List Converter Functions

As compared with the absolute assembler, the relocatable assembler

has the following advantages:

o It allows program development to be initiated by two or more
programmers.

o It facilitates development and maintenance of each program
by dividing it into several modules (subprograms).

o It allows the library management of programs.

o It is suitable for development of large-scale programs.

On the other hand, the relocatable assembler also has these

disadvantages: _

o Addresses in an assembly list do not coincide with their
physical addresses.

o The value of each external symbol is 0 in an assembly list
and thus a link map must be referenced to obtainlthe actual
value of the external symbol.

o The value of a relocatable segment in an assembly list
differs from its actuél value.

These disadvantages lead to lowering the productivity of documents

particularly for program debugging and program maintenance.

This list converter helps solve the above disadvantages of the

relocatable assembler.

(1) Addresses in an absolute assembly list output by the list
converter are in complete agreement with those at program
operation time.

{(2) The actual value of each external symbol can be embedded in
the absolute assembly list.

(3) The value of a relocatable segment can be embedded in the
absolute assembly list as an actual value.

(4) An actual value can be embedded even for a symbel value on a

symbol table or cross-reference list.

Example 1: Embedding of locations
- o Assembly list

22 22 | ==-- CSEG
23 23 | 0000 | 2B4100 START: MOY
24 24 | 0003 | OBFC8OFE MOVW
25 25 [0007 | 2B4000 MOV
26 26 | 0004 | 0944F708 MOV
21 21

28 28 | 000E | 3AZ20iA MOV
29 29 | 0011 | 6T20FE MOV
30 30

31 31 | 00141 R280000 CALL

o Absolute assembly list

212 22 | —==~ CSEG
23 23 10002 2B4100 START: MOV
24 24 1 0005 | OBFCBOFE MOVY
25 25 1 0009 | 2B4000 MoV
26 26 { 600C | 0944F708 MOV
21 21

28 28 | 0010 | 3A2014 MOV
29 29 | 0013 | G6TZ0FE MOVYW
30 30

31 31| 0016 | R282200 CALL

RFM, #00
SP, #0FEBOH
MM, #00
STBC. #081

HDTSA, $1AH
HL, #EDTSA

ICONVAN

RFM, #00
SP, #0FE80H
MM, #00
STBC, #08H

HDTSA, #1AH
HL, #HDTSA

1CONVAH

Example 2: Embedding of object codes
o Assembly list

21 27 '

28 28 000E 3A201A MOy HDTSA, #1AH
2% gg 0011 6720FE MOVY HL, #HDTSA
30 ¢

g% gé 0014 | R280000 CALL TCONVAH

33 33 0017 6€521FE MOV¥ DE, #STASC
34 34 001A D3 MoV A B

3% 35 001B 50 MOY [DE+], A

36 36 001C D2 MOV A C

37 37 001D 50 MOY [DE+].A

o Absolute assembly list

21 21

28 28 0010 3A201A MoV ADTSA, #1AH
29 29 0013 6720FE MOVYW HL, #EDTSA
30 30

31 31 0016 | R282200 CALL ICONVAH
32 32

33 33 0019 65ZIFE MOVW DE, #STASC
34 34 001C D3 MOY A.B

335 35 001D 50 MOV [DE+],A
36 36 O001E D2 MoV A C

37 37 001F 50 MOV [DE+], A

8-5

8.3 How to Start Up the List Converter

8.3.1 Starting up the list converter

The list converter can be started up (invoked) in either of the
following two ways:

(1) Start-up with the start-up command line of the list converter

X>lcnv78kn[Aoption]... Ainput-filename [Aoptionl...[A]

Example:

NOTE:

1.

2.

3.

Primary name of
assembly list file
{see Notes 2 and

3 below)

v
“~————> Gives the list converter particular
instructions for its operation
(see Note 4 below).

— Command filename of list converter (see Note 1)

(n =0, 1, 2, 3, or 6 indicating each 78K
series name)

— Current drive name (see Note 1)

-A>1cnv78k3 78k3main -178k3. Ink

With MS-DOS V3.10, the command file and overlay
files of the list converter must have been stored

in the same directory.

The file type of the input assembly list file must
always be ".PRN".

If only the primary name of an assembly list file is
to be specified in the command line, the primary name
of the input object module file or load module file
must be the same as that of the assembly list file,
The file type of the object module file or load
module file must be as shown below.

File name File type
Object module file .REL
Load module file » LNK

The list converter option (-R or -L} must be used
to specify the input of a file which has a primary
name different from that of the assembly list file.
If two or more list converter options are to be
specified, each list converter option must be
delimited with a space.

See Section 8.4 for details of the list converter
options. ‘

8-6

(2) Start-up with parameter file
A parameter file is used when all the required information
for starting up the list coﬁverter cannot be specified in the
start-up command line of the list converter or when the same
list converter options are to be used repeatedly in each
list conversion process.
When using this parameter file, the ~-F option must be
specified in the start-up command line of the list converter
to specify the use of the parameter file.
The list converter can be started up with a parameter file as

follows:

X>lenv78kn(Ainput-filename]) A-f parameter-filename

File containing information
required to start up the
list converter

LOption specifying parameter file

o A parameter file must be created with the editor.
o The description format of parameters within the parameter
file is as shown below.

[{ [Aloption[Aoptionl.. [ATA}] ...

o If no input filename is specified in the start-up command
line of the list converter, the input filename(s) must be
described within the parameter file.

o The input filename may be described either before or after
an optiocn.

o In the parameter file, all the list converter options and
output filename which should normally be specified in the

start-up command line must be described.

8.3.2

Example: To create a parameter file named "78K3.PLV" with the
editor

o Contents of 78K3.PLV

;parameter file
78%k3main -178k3. Ink
-eT8k3.elyv

o Start-up of list converter using parameter file
"78K3.PLV"

A>lenvi8k3 -f78k3. plv

Executlion start and end messadges

(1) Execution start message

When the list converter is started up, the following message
is output to the console, indicating the start of the list

converter execution.

L

ist Conversion Program for RAT8K/III Vx. xx [xx xxx xx]
Copyright (C) NEC Corporation xxxx USxxxxxxxxxx

Pass]: start...
Passl2: start...

(2) Execution end messages

(o]

If no error is found as a result of a list conversion
operation, the list converter will output the following-

message to the console and returns control to the 0S.

Conversion complete.

o If any fatal error is found during a list conversion
operation, the list converter will output the following
message to the consocle, stop its processing, and return
control to the OS.

Example 1:

A>lenvTBk3 sample

List Conversion Program for RAT8K/III Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation xXxxx USXXXXXXXXXx

A006 File not found °~SAMPLE. PRN’
Program aborted

In this example, the list conversion operation was dis-
continued by an abort error resulting from the specification

of an assembly list file which does not exist in drive A.

Example 2:

A>lenv?8k3_78k3Imain -2

List Conversion Program for RATS8K/III Vx.xx Ixx xxx xx]
Copyright (C) NEC Corporation xxxx USxxxxxxxxxx

AO18 Option is not recognized "-a’
Program aborted

In this example, the list conversion operation was dis-
continued by an abort error resulting from the input of a
list converter option "-A (-a)' which is not recognized by

the list converter.

If the list converter is aborted following the output of an
error message, check the cause of the error by referring to
Chapter 11, Error Messages and take corrective actioni(s)

as required.

8.4 List Converter Options

8.4.1 Types of list converter options

A list converter option gives the list converter particular

instructions for its operation and is divided into the following

six types:

Table 8-2, Types of List Converter Options

No. | Classification Option Functional description

1 Option for object -R Specifies the input of

medule file input an object module file.
specification

2 Option for load -L Specifies the input of
module file input a load module file.
specification

3 Option for absolute | -0 Specifies the output of
assembly list file an absolute assembly
output specication list file.

4 Options for error -E Specifies the cutput or
list file output non-output of an error
specification -NE list file

5 Option for -F Specifies the input of
parameter file input filename and
specification options from the file

specified by this option,

6 Option for HELP -- Specifies the output of
message output HELP message to the
specification console.

The above table merely introduces to you all the available list

converter options. Each of these list converter options is

detailed in Subsection 8.4.2 below. For quick reference, see
Appendix C.5, List of List Converter Options in which the

description format of each option and the relationship between one

option and the other are also outlined.

8.4.2 Description of each list converter option
A detailed description of each list converter option is provided

in this subsection.

-R Object module file input specification

(1) Option for object module file input specification (-R)

Description format: -R input-filename

Default assumption: -R assembly-list-filename.REL

Function

o The -R option specifies the input of the object module
file specified by this option to the list converter.

Use the -R option if the primary name of the object module
file to be input to the list converter is different from that
of the assembly list file or the file type of the input
filename is not ".REL".

Explanation

o If any fatal error occurs, no absolute assembly list file
will be output by the list converter.

o If only a primary name is described in the input filename
specification, the list converter will assume ".REL" as the
file type of the input filename.

-R Object module file input specification

Application Examples

Example 1: To execute the list converter with -R option
specified to input object module file "SAMPLE.REL"
when the assembly list filename is "78K3MAIN.PRN"

A>lenv78k3 78k3main_-rsample. rel

List Conversion Program for RAT8K/III Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation xxxx USxxxxxxxxxx

Passl: start...
Pass2: start...
Conversion complete,

-L Load module file input specification

(2) Option for load module file input specification (-L)

Description format: -L input-filename

Default assumpticn: -L assembly-list-filename.LNK

Function

o The -L option specifies the input of the load module file
specified by this option to the list converter.

Use
Use the -L option if the primary name of the load module file

to be input to the list converter is different from that of

the assembly list file or the file type of the input filename
is not ".LNK".

Explanation

o If any fatal error occurs, no absolute assembly list file
will be output by the list conwverter.

o If only a primary name is described in the input filename
specification, the list converter will assume ".LNK" as the
file type of the input filename.

-L Load module file input specification

Application Examples

Example 1: To execute the list converter with -L option
specified to input load module file "SAMPLE.LNK"
when the assembly list filename is "78K3MAIN.PRN"

A>lenvi8k8 78k3main -lsample. Ink

List Conversion Program for RAT8K/III Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation xxxx USxxxxxxxxxx

Passl: start...
Pass?: start...
Conversion complete.

Absolute assembly list file

output specification

(3)

Option for absolute assembly list file output specification
(-0)

Description format: -0 output-filename

Default assumption: -0 assembly-list-filename.P

Function

The -0 option specifies the output of an absolute assembly
list file. It also specifies the output destination or
output filename of the absolute assembly list file to be
output by the list converter.

Use the -0 option if you want to change the output destination

or output filename of an absolute assembly list file.

Explanation

o An output filename can be specified with either a disk type
filename or a device type filename. Only the following
device type filenames can be used with this option: CON,
PRN, NUL, and AUX. If "CLOCK" is specified as an output
filename, an abort error will result.

o If the same device as that of an error list file is
specified as a device type output filename, an abort
error will also result.

o If an output filename is omitted from the -0 option specifi-
cation, "assembly-list-filename.P" is assumed as the output
absclute assembly list filename.

o If only a primary name is described in the cutput filename
specification, the list converter will assume ".P" as the

file type of the output filename.

-0 Absolute assembly list file

output specification

o If a drive name is omitted from the -0 option specification,
the absolute assembly list file will be output to the

current drive.

Application Examples

Example 1: To execute the list converter with -O option
specified to create an absolute assembly list file
named '"SAMPLE.P"

A>lcnvT8k3 78k3main -osample.p

List Conversion Program for RAT8K/III Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation xxxx USXXXXXXXXXX

Passl: start...

Pass2: start...
Conversion complete.

Example 2: To execute the list converter with -0 option
specified to output an absolute assembly list file
to PRN (Printer).

A>lenv78k3 T8k3main —oprn

List Conversion Program for RAT8XK/III Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation xxxx USXxxxxxxxxx

Conversion complete.

-E/-NE Error list file output specification

{4) Options for error list file output specification (-E/-NE)

Description format: -E [output-filename]
or
-NE

Default assumption: -NE

Function
o The -E option specifies the output of an error list file. It
also specifies the output destination or output filename of
an error list file to be output by the list converter.

o The -NE option specifies the non-output of an error list
file.

Use

o Use the -E option if you want to save error messages to a
file.

0 Also use the -E option if you want to change the output

destination or output filename of an error list file.

Explanation

o An output filename can be specified with either a disk type
filename or a device type filename. However, if a device
type filename "CLOCK" is specified as an output filename, an
abort error will result.

o If the same device as that of an absolute assembly list file
is specified as an device type output filename, an abort
error will also result.

o If an cutput filename is omitted from the -E option specifi-
cation, "assembly-list-filename.ELV" is assumed as the
cutput error list filename.

o If only a primary name is described in the ocutput filename
specification, the list converter will assume ".ELV" as the
file type of the output filename.

8-18

-E/-NE - Error list file output specification

o If a drive name is omitted from the -E option specification,
the error list file will be output to the current drive.

o If the -E and -NE options are specified at the same time,
whichever you specified later will take precedence over the

other.

Application Examples

Example 1: To execute the list converter with -E option
specified to create an error list file named
"SAMPLE.ELV"

A>lenv78k3 T8k3main -esample. elv

List Conversion Program for RAT8K/III Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation xxxx USxxxxxxxxxx

Passl: start...
Pass2: start...
Conversion complete.

o When error list file "SAMPLE.ELV" is referenced, the output

error list file will loock like this.

Passl: start

*4% WARNING W101 Load module file is older than object module file " 78K3MAIN.LNK
, T8K3MAIN.REL’

$+% WARNING Wi02 Load module file is older than assemble module file ' T8K3MAIN.L
NK, T8K3IMAIN.PRN

Pass?: start

Parameter file specification

(5) Option for parameter file specification (-F)

Description format: -F filename

Default assumption: Options and input filenames can
be input only from start-up

command line.

Function

Use

The -F option tells the list converter that options and input
name(s) will be input from the file specified by this option.

o Use the -F option if all the required parameters for

starting up the list converter cannoct be specified in the
start-up command line.

If you have a set of list converter options which you must
specify repeatedly at each list conversion operation,
describe these list converter options in a parameter file

and then specify the -F option in the start-up command line.

Explanation

o A filename can be specified with only a disk type filename.

If any device type filename is specified with this option,
an abort error will result.

If a filename is omitted from the -F option specification,
an abort error will also result.

If only a primary name is specified in the filename speci-
fication, the list converter will assume ".PLV" as the file
type of the input filename and then open the file.

Nesting of parameter files is not allowed. If the -F option

is specified in a parameter file, an abort error will
result,

-F Parameter file specification

o The number of characters that can be described in a param-
eter file is not limited.

o A blank character, Tab character, or " @ " must be used as
a delimiter between options or input filenames.

o The options and input filenames described in the parameter
file will be expanded to the location on the command line
where the parameter file (-F option) has been specified.

o The list converter will process these expanded options in
the order from the last input option.

o If two or more -F options are specified at the same time,

an abort error will result.

Application Examples

Example 1: To execute the list converter with -F option
specified
o Contents of parameter file "78K3.PLV"

rparameter file
T6k3main -178%3. Ink
-e78k3. elv

o Enter -F option in the command line as follows:

A>lenv18k3 -178Kk3. plv

List Conversion Program for RATS8K/IID Vx.xx [%x xxx xx]
Copyright (C) NEC Corporation xxxx USxxxxxxxxxx

Passl: start...
Pass?2: start...
Conversion complete.

-—— HELP message display specification

(6) Option for HELP message display specification (--)

Description format: --

Default assumption: No HELP message is displayed.

Function

The -- option tells the list converter to display the HELP

message on the console,

Use

The HELP message is a list of all list converter options and
their functional descriptions. Use the -- option if you want

to refer to this message when executing the list converter.

Explanation

If the -- option is specified, all the other list converter

options specified at the same time will become invalid.

HELP message display specification

Application Examples
Example 1: Input -- option as shown below and the HELP message
will be displayed on the screen.
A>lenv78K3 -~

List Conversion Program for RAT8K/I1I1 Vx.xx [xx xxx xx]

Copyri

ght (C) NEC Corporation xxxx USxxxxxxxxxx

usage : LCNV78K3 [option[...]1] input-file [option[...]]
The option is as follows{([Imeans omissible).

-Rfile
-Lfile
~Pfile
-0file
-Ffile :
-E[filel:

:Specify object module file.

:Specify load module file.

:Specify assemble list file (relocatable assemble list file).
+Specify output list file (absolute asemble list file).
:Input option or input-file name from specified file.

Create error list file.

:Shov this message.

CHAPTER .2. OUTPUT LISTS OF PROGRAMS

9.1 Output Lists of Assembler
The assembler outputs the following lists:

Qutput list filename Qutput list name

Assembly list file Assembly list

Symbol list

Cross-reference list

Error list file Error list

9.1.1 Header of assembly list file
The header section is always output at the beginning of an
assembly list file.

[Output Format]

uCOM-78K/111 Assembler ©Vx.xx @ Date:@ xx¥ xxxx Page: @ |
®

Command: ®~c310 78k3main. asm -1w8d

Para-file:®

In-file: @ T8K3IMAIN. ASM
Obj-file: @ 78K3MAIN. REL
Prn-file: @ 78K3MAIN. PRN

[Description of Cutput Items]

Item No. | Description

) Vx.xXx: Version number of the assembler

QD Title character string (namely, the character string
specified by the -LH option or the TITLE control
instruction)

3) Date: Date when the assembly list was created

{(4) Page: Page number

Subtitle character string (namely, the character
string specified by the SUBTITLE control instructiocn)

{6) Command: Image of command line
(7) Para-file: Contents of parameter file
(8) In-file: Input source module filename

Obj-file: Output cbject module filename

a0 Prn-file: Assembly list filename

9.1.2 Assembly list
The result of an assembly operation and error messages, if any,

are output on this list.

[Qutput Format]

Assemble list

ALNO STNO ADRS OBJECT (yC§ SOURCE STATEMENT
D1 @1 ®3 PC(310)
D2 @2
D3 @3 ® NAME SAMPM
Dt @4
5 5 PUBLIC MAIN, START
D x4 ERROR E137, STNO 5 (0) Public symbol is undefined
g g ' ® EXTEN CONVAH
8 § --—- & DATA DSEG AT OFE20H
9 9 ®FE20 HDTSA: DS 1
io 1? ®FE21 STASC: DS 2
1 1
12 12 ®-—- CODE CSEG AT OH
13 13 MAILN D¥ START
@ 44 EREOR E101, STNO 13 (5) Syntax error
14 1
5 15 -—-- CSEG
16 16 0000 ®2B4100 START: MOV RFM, #00
117 17 0003 ®OBFCBOFE MOVW SP, #0FE80H
18 18 0007 ®2B4000 MOV MM, 200
19

19 000A ®0944F708 MoV STBC, #08H

Segment informations:
ADRS LEN NAME
@FE20 ®0003H dDDATA
@0000 qP000OH dDCODE
@o000 dqoo20H dD?CSEG

Target chip:@uPD78310
Assembly complete, ®2 error(s) and @0 warning(s) found. (@®13)

9-3

[Description of Output Items]

Item No. | Description
) ALNO: Line number of source module image
@) STNO: Line number (includes Include file expansion or
macroexpansion)
Q) M: MACRO indicator

M ¢ Macro-defined line
#n ! Macro-expanded line (where "n" indicates
nesting level)

Blank: Line neither macro-defined nor macro-expanded
I: INCLUDE indicator :
In : This line is in the INCLUDE file (where
"

"n" indicates nesting level)
Blank : INCLUDE file not used.

SOURCE STATEMENT: Source program statement

ADRS: Location counter value

***:; Line at which a fatal or warning error occurred

OBJECT: Relocation information
R : Object code or symbol value will be changed
by the linker.
Blank: Object code or symbol value will not be
changed.

Object code

Symbol value set with EQU or SET directive

ADRS: Segment address

LEN: Segment size

NAME: Segment name

Target chip: Target device of this assembler

Number of fatal errors

Number of warning errors

v v s B e I =

Last error line

9.17.3 Symbol table list

This list contains information of the symbols (including local

symbols) defined in the source module.

[Output Format]

Symbo!l Table List

VALUE ATTR RTYP NAME VALUE ATTR RTYP NAME
@ CSEG @ ?CSEG @ CSEG @ CODE
D ----H @EXT @CONVAH @ DSEG @DATA
@DFE200 @ADDR @HDTSA @0H @ADDR @PUB @MAIN
@MoD @ SAMPM (DO0H @ ADDR @PUB @ START
@®FEZIH @ADDR @STASC

[Description of Output Items])

Item No. | Description
(1) VALUE: Symbol value
2) ATTR: Symbol attribute
CSEG : Code segment name
DSEG : Data segment name
BSEG : Bit segment name
MCOD : Module name
SET : Symbol defined with SET directive
NUM : Symbol with NUMBER attribute
DNUM : Symbol with DNUMBER attribute
ADDR : Symbol with ADDRESS attribute
ABIT : Symbol with BIT attribute (addr.bit)
SABIT: Symbol with BIT attribute (saddr.bit)
SFBIT: Symbol with BIT attribute (sfr.bit)
RBIT : Symbol with BIT attribute (A.bit, X.bit,
PSW.bit, PSWL.bit, PSWH.bit)
RBBIT: Symbol with BIT attribute {(br.bit)
RWBIT: Symbol with BIT attribute {(wr.bit)
Blank: Externally referenced symbol declared
with EXTRN or EXTBIT directive
**%%%x: Undefined symbol
3 RTYP: Symbol reference format
EXT : Externally referenced symbol declared
with EXTRN directive
EXTB : Externally referenced bit symbeol
declared with EXTBIT directive
PUB : Externally defined symbol declared
with PUBLIC directive
Blank: This column is blank for a local symbol,
segment name, macro name, or module name,
**%%%;: [Undefined symbol
) NAME: Defined symbol name

9-5

9.1.4 Cross-reference list

This list contains information on the line number of a source

module at which a symbol defined in the source module is

referenced.

[OQutput Format]

Cross-Reference List

NAME VALUE R ATTR RTYP SEGNAME XREFS
@ ?CSEG @ CSEG ® ?CSEG @224
(@ CODE @ CSEG ® CODE Q19#
@ CONVAH @--—--1 @EF ®EXT @138 31
@DATA @DSEC ®DATA D15%
HDTSA Q@FE20H @ ADDR ®DATA 164 28 29
MAIN @ 0N ADDR ®PUB CODE 120 204
SAMPM MOD 3%
START 0H @R ADDR ®PUB ?CSEG 128 20 23%
STASC FEZ1H ADDR DATA 17% 33
[Description of Output Items]
Item No. | Description
Q) NAME: Defined symbol name
[@) VALUE: Symbol value
3 R: Relocation attribute
R : Relocatable symbol
E : External symbol
Blank: Absolute symbol
* : Undefined symbol
@ ATTR: Symbol attribute
CSEG : Code segment name

DSEG
BSEG
MOD
SET
NUM
DNUM
ADDR
ABIT
SABIT:
SFBIT:
RBIT

= 40 en 8

RBBIT:
RWBIT:
Blank:

*kh kK .

Data segment name

Bit segment name

Module name

Symbol defined with SET directive
Symbol with NUMBER attribute

Symbol with DNUMBER attribute

Symbol with ADDRESS attribute

Symbol with BIT attribute (addr.bit)
Symbol with BIT attribute (saddr.bit)
Symbol with BIT attribute (sfr.bit)
Symbol with BIT attribute (A.bit, X.bit,
PSW.bit, PSWL.bit, PSWH.bit)

Symbol with BIT attribute (br.bit)
Symbol with BIT attribute (wr.bit)
Externally referenced symbol declared
with EXTRN or EXTBIT directive
Undefined symbol

9-6

Item No. | Description

5) RTYP: Symbol reference format

EXT : Externally referenced symbol declared
with EXTRN directive

EXTB : Externally referenced bit symbol
declared with EXTBIT directive

PUB : Externally defined symbol declared
with PUBLIC directive

Blank: This column is blank for a local symbol,
segment name, macro name, or module name.

%x%*%: Undefined symbol

®) SEGNAME: Defined segment name

@) XREFS: Line number at which the symbol indicated
in Item 1 has been defined or referenced
xxxxx#: Line at which symbol has been defined
xxxxx#: Line at which symbol has been referenced
(where A must be only one blank)
xxxxx@: Line at which symbol has been declared
as EXTRN, EXTBIT, or PUBLIC.

9.1.5 Error list
This list contains information on each error which has occurred

during the start-up processing of the assembler.

[Qutput Format]

Passl Start

DO T8KMAIN. ASM(D 10) : @E101 @Syntax error

OT8KMAIN. ASM(@ 12) : ®EL01 @Syntax error

Pass2 Start

O T8EMAIN. ASM(D 10) : ®E101 @Syntax error

O TBEMAIN. ASM(@12) : @E101 @Syntax error

D TBKMAIN. ASM(@26) : @E158 @Undefined symbol reference
O T8KMAIN. ASM(@26) : @E102 @Illegal expression

[Description of Output Items]

Item No. | Description
) Source module filename in which an error occurred
@ Line number at which the error occurred
€) Error number
@ Error message

9.2 Output Lists of Linker
The linker outputs the following lists:

Qutput list filename Qutput list name

Link list file Map list

PUBLIC symbol list

Local symbol list

Error list file - Error list

9.2.1 Header of link list file

The header section is always output at the beginning of a link
list file.

[Output Format]

uCOM-78K/11F LINKER @ Vx. xx Date:® xxx xxxx Page:@ 1

Command: @ 18k3main. rel 78k3sub. rel -g -d78k3.dr -o78k3.1nk -p78k3.map
Para-file:

Out-file: ®T78K3.LNK

Map-file: (D 78K3.MAP

Direc-file:@78K3.DR

Directive: @memory ROM : (00000h, 03FFFh)
memory RAM : (OF000h, 00EFFh)

#%% Link information ##%

@® 3 output segment(s)
dD 40H byte{s) real data
@ 17 symbol(s) defined

[Description of Output Items])

Item No.

Description

VX.xX: Version number of assembler

Date: Date when the assembly list was created

Page: Page number

Command: Image of command line

Para-file: Contents of parameter file

Out-file: Qutput load medule filename

Map-file: Link list filename

Direc-file: Directive filename

Directive: Contents of the directive file

Number of segments output to the load module file

Size of segment data output to the load module file

G eegddadadddd g

Number of symbols output to the load module file

9.2.2 Map list

This list contains information on the location of each segment.

[Output Format]

¥+ Memory map ###

(@ SPACE=REGULAR

MEMORY=Q ROM
BASE ADDRESS=@ 00001 SIZE=@ 3FFFH

OUTPUT INPUT - INPUT BASE SI1ZE
SEGMENT SEGMENT MODULE ADDRESS
® CODE @0000K (@0002H CDCSEG AT
@CODE @ SAMPM @0000H dBo002H
® ?CSEG @0002K (@003CH OCSEG
D ?CSEG @ SAMPM 0002H 00204
@ 7CSEG ® SAMPS 0022K 001CH
®4% gap # 003EE 3FCLH

MEMORY=Q RAM
BASE ADDRESS=@F000H SIZE=@OEFFH

OUTPUT INPUT INPUT BASE SIZE
® SEGMENT SEGMENT MODULE ADDRESS
® % gap * @Fo00H (OE20H
® DATA @FE200 @0003H QPDSEG AT
- (DDATA ® SAMPM @FE200 (@0003H
®* gap # FE23H 00DCH

[Description of Output Items]

Item No. | Description
O] SPACE=: Memory space name
@ MEMORY=: Memory area name
3 BASE ADDRESS=: Start address of the memory area
@ SIZE=: Size of the memory area
5) Output group name
"gap" is displayed for an area in which no segment
has been located.
6) OUTPUT SEGMENT: Name of output segment to the load
module file
@ INPUT SEGMENT: Name of input segment from the object
module file .
©) INPUT MODULE: Input module name
(9) BASE ADDRESS: Start address of the input or output
segment
19 SIZE: Size of the input or output segment
) Segment type and relocation attribute of the output
segnent .

9-11

9.2.3 PUBLIC symbol list

This list contains information on the PUBLIC symbols defined in

each input module.

[Output Format]

¥*% Public symbol list ##%

MODULE

@ SAMPM
@D SAMPM
@ SAMPS

ATTR

® ADDR
® ADDR
@ ADDR

VALUE NAME

@0000H @DMAIN
0002K @START
@00228 @CONVAH

[Description of Output Items]

Ttem No.

Description

@

MODULE: Name
indicated in

of module in which the PUBLIC symbol
Item 4 has been defined

@)

ATTR: Symbol
CSEG :
DSEG :
BSEG
‘MOD :
SET
NUM
DNUM :
ADDR
ABIT :
SABIT:
SFBIT:
RBIT :

RBBIT:
RWBIT:
Blank:

KKK KK g

attribute

Code segment name

Data segment name

Bit segment name

Module name

Symbol defined with SET directive
Symbol with NUMBER attribute

Symbol with DNUMBER attribute

Symbol with ADDRESS attribute

Symbol with BIT attribute (addr.bit)
Symbol with BIT attribute (saddr.bit}
Symbol with BIT attribute (sfr.bit)
Symbol with BIT attribute (A.bit, X.bit,
PSW.bit, PSWL.bit, PSWH.bit)

Symbol with BIT attribute (br.bit)
Symbol with BIT attribute (wr.bit)
Externally referenced symbol declared
with EXTRN or EXTBIT directive
Undefined symbol

VALUE: Symbol value

NAME: PUBLIC symbol name

9.2.4 Local symbol 1list

This list contains information on the local symbols defined in

each input module.

[Output Format]

*k¥ Local
MODULE

(D SAMPM
@ SAMPM
@ SAMPM
@ SAMPM
SAMPM
SAMPM
SAMPS
SAMPS
SAMPS
SAMPS

symbol list #k#%

ATTR VALUE NAME
@MOD @ SAMPM
® DSEG @DATA

@ ADDR @FE208 @HDTSA
@ ADDR @FE21IH @ STASC

CSEG
CSEG
MOD

CSEG

CODE

?2CSEG
SAMPS
?CSEG

ADDR @0035H SASC
ADDR @ 003BH SASCI

[Description of OQutput Items]

Item No. | Description
) MODULE: Name of module in which the local symbol
indicated in Item 4 has been defined

@) ATTR: Symbol attribute
CSEG : Code segment name
DSEG : Data segment name
BSEG : Bit segment name
MOD : Module name .
SET : Symbol defined with SET directiv
NUM : Symbol with NUMBER attribute
DNUM : Symbol with DNUMBER attribute
ADDR : Symbol with ADDRESS attribute
ABIT : Symbol with BIT attribute (addr.bit)
SABIT: Symbol with BIT attribute (saddr.bit)
SFBIT: Symbel with BIT attribute (sfr.bit)
RBIT Symbol with BIT attribute (A.bit, X.bit,

PSW.bit, PSWL.bit, PSWH.bit)
RBBIT: Symbol with BIT attribute (br.bit)
RWBIT: Symbol with BIT attribute (wr.bit)
Blank: Externally referenced symbol declared
with EXTRN or EXTBIT directive

*k%k%; [Indefipned symbol -

©) VALUE: Symbol value

O) NAME: Local symbol name

9.2.5 Error list
This list contains information on each error which has occurred

during the start-up processing of the linker.

[Output Format]

@ Undefined symbol "CONVAE' in file " 78K3MAIN.REL’
@ Cannot create cutput file for PASS3 ERROR(S)

¢+ ERROR D F40
#%% ERROR (D A3S

won

[Description of Output Items]

Item No. | Description

Q) Error number

[®) Error message

9.3 Output List of Object Converter
The object converter outputs only the following list:

Qutput list filename

Output list name

Error list file

‘Error list

9.3.1 Error list

This list contains information on each error which has occurred

during the start-up processing of the object converter.

[Output Format & Description of Output Items]

Same as those of the error list output by the linker.

9.4 Output List of Librarian
The librarian outputs only the following list:

Qutput list filename Qutput list name
List file Library information output list

9.4.1 Library information output list

This list contains information on each module in the library file.

fOutput Format]

uCOM-78K/111 librarian Vx.xx DATE : Dxx xxx xx PAGE @1
LIB-FILE NAME : @ 78K3.LIB (@xx xxx xx)
®0001 ®T78K3MAIN. REL (@xx xxx xx)

®MAIN @ START

NUMBER OF PUBLIC SYMBOLS : @2
®0002 ®T78K3SUB. REL (@D xx xxx xx)

® CONVAH

NUMBER OF PUBLIC SYMBOLS : @1

[Description of Output Items]

Item No. | Description
DATE: Date when the list was created

PAGE: Page number/number of pages

LIB-FILE NAME: Library filename

(xx xxxX xx): Date when the library file was created

Module serial number (serial numbering begins
with 0001) _
Module name

{xx xxx xx): Date when the module was created

PUBLIC symbol name

CHECESNONONCOEO NSNS

NUMBER OF PUBLIC SYMBOLS: Number of PUBLIC symbols
defined in each module

9-16

9.5 OQutput Lists of List Converter
The list converter outputs the following lists:

Output list filename Cutput list name
Absolute assembly Absolute assembly list
list file

Error list file Error list

9.5.1 Absolute assembly list
An absolute assembly list is an assembly list in which absolute

values have been embedded.

[Output Format & Description of Output Items]
Same as those of the assembly list output by the assembler.

9,5.2 Error list
This list contains information on each error which has occurred

during the start-up processing of the list converter.

[Output Format & Description of Output Items]
Same as those of the error list output by the assembler.

CHAPTER 10. UTILIZATION OF ASSEMBLER PACKAGE

10.1 How to Execute Each Operation with Efficiency (Use of EXIT
Status Function)
On completion of the processing by each program in this assembler
package, each program returns to the OS the maximum error level
which has occurred during the processing as EXIT status.
The following EXIT status (ERROR LEVEL) codes are available:
o Program terminated normally: 0

o0 Program terminated with

WARNING outputs : 0
o Program terminated with
FATAL ERROR cutputs H

o Program aborted

(Y]
[\

By using these EXIT status codes with a batch file, each operation

(assembly, linking, object conversion, etc.) may be carried out
efficiently.

[Application Example]
o Contents of batch file "RA.BAT"

ra78k3 -c310 %l.asm -g -¢
echo off

IF ERRORLEVEL 1 GOTO ERR
echo¥

echo on

ra78kd -c310 %2.asm -g -e
echo off

IF ERRORLEVEL t GOTO ERR
echo¥

echo on

1k78k3 %1.rel %2.rel -0%3.1nk -g
echo off

IF ERRORLEVEL 1 GOTO ERR
echo¥

echo on

ocT8k3 %3.1nk

echo off

1F ERRORLEVEL !t GOTO ERR
GOTO EXIT

:ERR

echo Error has occurred.
echo off

<EXIT

10-1

o To execute each program by using batch file "RA.BAT"
A> ra.bat

10.2 How to Prepare or Complete the Develcopment Environment
(Use of Environment Variables)

In the development of a program, required operations may be

carried out smoothly if you create a directory for two or more

related files to put them together in a single file. This can

be implemented by specifying an environment variable.

This package supports the following environment variables to

prepare or complete the program development environment.

PATH : Search path for executable files

INC78Kn: Search path for INCLUDE files (Assembler only)

LIB78Kn: Search path for library files (Linker only)

TMP : Path for temporary file creation

Note: n in the above INC78Kn and LIB78Kn denotes ocne of
the numbers 0, 1, 2, 3, and 6 corresponding to
78K/0, 78K/I, 78K/II, 78K/III, and 78K/VI series

names, respectively.

{Application Example]
o Contents of AUTOEXEC.BAT file

;AUTOEXEC. BAT

verify on
break on
PATH A:¥BIN:A:YBAT:A:YRATSKS: ~@
SET INCT8K3=A:¥RAT8K3YINCLUDE -Q
SET LIB78K3=A:YRAT8K3VYLIB —@
SET TMP=A:YTMP -@

fExplanation]

C) By the PATH specification, executable files A:¥BIN, A:¥BAT,
and A:¥RA78K3 are searched in the order named.

C) By this environment variable specification, the assembler
searches A: ¥YRA78K3¥INCLUDE for Include file(s).

C) By this environment variable specification, the linker
searches A: ¥RA7BK3¥LIB for library file(s).

(:) By this environment variable specification, each program
creates a temporary file in A:¥TMP.

10-2

10.3 How to Interrupt Program Execution

The processing by each program can be interrupted by the control
key input CTRL-C. If "break on" is specified in the AUTOEXEC.BAT
file, control will be returned to the 0S irrespective of the key
input timing. If "break off" is specified, control will be
returned to the 0S only while the screen is on display. In either
case, all temporary files and output files being open will be

erased.

10.4 How to Increase the Readability of Assembly List

Print the title of an assembly list in its header section by using
the -LH option or the TITLE control instruction. Use a title

which will plainly indicate the contents of the assembly list.

A subtitle may also be printed on the assembly list by using the
SUBTITLE controel instruction. See Chapter 4 in the "RA78K Series
Assembler Package User's Manual for Language" for these control

instructions.

[Application Examplel

0 To assemble the source program with -LH option specified to
print title "RA78K3 MAINROUTINE'" in the header of an assembly
list

10-3

© When assembly list file "78K3MAIN.PRN" is referenced, the
output assembly list will look like this.

A>ra78k3 -c310 78k3main.asm —1w80 -1hRAT8KI MAINRQUTINE

LCOM-T8K/11] Assembler Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USXXxxXxxxxxxx

Passi Start
Pass2 Start

Assembly complete, 0 error{s) and 0 warning(s) found.

.78K3MAIN, PRNEZEREBLI T,

uCOM-178K/111 Assembler Vx.xx RATBK3_MAINROUTINE Date:xx xxx xxxx Page: 1
l——-—-— Title

Command: -c310 78k3main.asm -1w80 -1hRAT8K3_MAINROUTINE
Para-file:

In-file: T8K3IMAIN. ASM

Obj-file: T8KIMAIN. REL

Prn-file: T8KIMAIN. PRN

Assemble list

ALNO STNO ADRS OBJECT M 1 SOURCE STATEMENT

! ! g PROCESSOR(310)

2 2

3 3 NAME SAMPM :

4 4 It 21 R 22 S TR SRS RS L R s R R R
S 9] *
5 6 ok HEX -> ASC!I Conversion Progranm %
-1 T b] ¥
3] ok main-routine ¥
4 8 o ; ¥
10 10 SARRRERR R R AR R bR R R AR AR AR R R R kR kR AR ARk
11 11

12 12 PUBLIC MAIN, START

13 13 EXTRN CONVAH

10-4

10.5 How to Save Yourself Trouble in Program Invecation

10.5.1 Describing control instructions in the source program

The control instructions which have the same functions as the
options that you always specify at the start-up of the assembler
should be specified at the beginning of the source program (i.e.,
module header). By so doing, you need not specify these assembler
options in the command line each time you want to start up the

assembler.

[Application Example]

PROCESSOR(310) .
DEBUG] Control instructions
XREF .

NAME SAMPM
S EIEIIE I 2R R R I e S R RS R R RS R LR L]

& &H e

¥
¥ KEX -> ASCII Conversion Program ¥
i ’ %
¥ main-routine ¥
* ¥
;******t*************##*#t**t#**#***#***t****#***

PUBLIC MAIN, START
EXTRN , CONVAH

10.5.2 Creating a parameter file or subcommand file

A parameter file is used when all the required information for
starting up the program (assembler, linker, objeét converter, or
list converter) cannot be specified in the start-up command ling
of the program or when the same options are to be used repeatedly
in each process,

In the librarian, by registering subcommands in a subcommand file
and by using the subcommand file, a library file of object modules

can be created easily.

10-5

[Application Examples]
Example 1: To assemble the source program with -F option
specified to use a parameter file
o Contents of parameter file "78K3MAIN.PRA"
;parameter file

78k3main. asm -osample. rel -g
-psample. prn

o Enter -F option in the command line as follows:

A>ral8kd -f78k3main.pra

Example 2: To start up the librarian using a subcommand file
o Contents of subcommand file "78K3.SLB"

;library creation command
create T8k3. lib
add 78k3.1ib T8k3main. rel &

T8k3sub.rel
éxit

o Enter the subcommand file in the command line as follows:

A>1b78k3 <78k3.slb

10.6 Creation of Object Module Library File

Both the assembler and linker create one file for each output
module. The more the number of input object modules, the more the
number of output module files. Thus, a function to collect two or
more modules into a single file is provided. This collection of
modules is called a‘library and a file used tc maintain and make
available the modules is called a library file.

A library file can be input to the linker. Therefore, when the
modular programming technigue is employed for program development,
files can be efficiently managed and operated if you create a

library file of commonly used modules.

10-6

10.7 How to Change the Option Mark (Use of Environment Variable)
This assembler package is provided with an environment variable
"OPTMARK" so that the user may change the option mark "-" to any

other option mark.

OPTMARK : Search path for executable file

[Application Example]
¢ Contents of AUTOEXEC.BAT file

;AUTOEXEC. BAT

verify on

break on

PATH A:YBIN;A:YBATA:YRATEBKY;
SET INCT8K3=A:YRATBK3IYINCLUDE
SET LIBT8K3=A:YRATEKIYLIB

SET TMP=A:Y¥YTMP
SET OPTMARK=/ « Change option mark to "/"

o Enter option mark "/" in the command line as follows:

A>ral8k3 78k3main.asm /g /e

10-7

11.1 Assembler

Error messages

CHAPTER 11, ERROR MESSAGES

Error Messages

related to the Assembler

A101 | Message |[Source file size 0 'filename'
Cause An attempt was made to input the source file
indicated by the displayed filename which
has a size of (O bytes.
A102 | Message |[Illegal processor type specified
Cause An error exists in the target device
specification.
A103 | Message |[Syntax error in module header
Cause A syntax error exists in the description
format of a control instruction that can be
described in the header of a source module.
A104 | Message |[Can't use this control outside module header
Cause This contreol instruction cannot be described
outside the header of a scurce module.
A105 | Message |Duplicate PROCESSOR control
Cause The PROCEESOR control instruction has been
described two or more times in the header of
a source module.
A106 | Message |[Illegal source file name for module name
Cause Module name creation failed, because the primary
name of the source module containg character(s)
illegal for symbol name configuration or has
already been defined in the source file.
2107 | Message |Default segment ?CSEG is already used
Cause An attempt was made to define the default
segment when a segment definition was omitted.
A108 | Message | Symbol table overflow 'symbol name'
Cause The number of symbols that can be defined

exceeded the 1limit value (2900 symbols). The
output symbol name is a symbol when this limit
value was exceeded. ‘

11-1

A109 | Message { Too many DS
Cause Too many DS directives have been specified,
resulting in an excessive gap between object
codes within the segment and thus the reguired
information cannot be ocutput to the object
module file,
User Divide the source module file into two or
action more modules or reduce the number of DS
directives.
A110 | Message | String table overflow
Cause Bn overflow has occurred in the string table.
User Reduce the number of symbols each consisting of
action nine or more characters. N
A11171 | Message | Object code more than 128 bytes
Cause Object code exceeded 128 bytes per line of a
source statement.
A112 | Message | No processor specified
Cause The target device name has not been secified
either on the start-up command line nor in the
source module file (scurce header).
F201 | Message | Syntax error
Cause A syntax error exists in the description
format of the statement.
F202 | Message | Illegal operand
Cause The operand description is incorrect.
F203 | Message | Illegal register
Cause A register that cannot be described has been
specified.
F204 | Message | Illegal character
Cause An illegal character has been described in
the source module.
F205 | Message [Unexpected LF in string
Cause An LF code appeared before closing the character
string.
F206 | Message | Unexpected EOF in string
Cause The file reached its end before closing the
character string.
F207 | Message { Unexpected null code in string
Cause A null code (00H) has been described in the

character string.

11-2

F301 | Message Too complex expression
Cause The expression is too complex to evaluate.
F302 | Message |Absolute expression expected
Cause A relocatable expression has been described
instead of an absolute expression,
F303 | Message |Illegal expression
Cause An error exists in the description format of
an expression.
F304 | Message |Illegal symbol in expression 'symbol name'
Cause The symbol indicated by the displayed symbol
name is a symbol that cannot be used in an
expression.
F305 | Message |Too long string constant
Cause The string constant exceeded the limit value
(2 characters).
F306 | Message |Illegal number
Cause An error exists in the described number.
307 | Message {Division by zero
Cause An attempt was made to divide by zero.
F308 | Message |Too large integer
Cause The value of the integer constant exceeded
16 bits or 32 bits.
F309 | Message |Illegal bit value
Cause An error exists in the description of a bit
value.
F310 | Message |Bit value out of range
Cause The specified bit value exceeded the range
of 0 to 7 or 0 to 15.
F311 | Message |Operand out of range (n)
Cause With 78K/0, 78K/1I, 78K/III:

The specified operand value exceeded the range
(0 to 7) for data n.

With 78K/VI: ,

The specified operand value exceeded the range
{0 to 7) for data n3, (0 to 15) for data 4, or
(0 to 31) for data nb5.

11-3

F312

Message

Operand out of range (byte)

Cause

The specified operand value exceeded the range
(00H to FFH) or the specified byte value in
the operand exceeded the range (-128 to +127).

F313

Message

Operand out of range (addrb5)

Cause

The specified operand value exceeded the range
(40H to 7EH or 8040H to 807EH) for data that
can be described as "addr5".

F314

Message

Operand out of range (addril)

Cause

The specified operand value exceeded the range
(800H to FFFH) for data that can be described
as "addrl11".

F315

Message

Operand out of range (saddr)

Cause

with 78K/0, 78K/I, 78K/III:
The specified coperand wvalue
(OFE20H to OFF1FH) for data
described as "saddr".

With 78K/VI:

The specified operand value exceeded the randge
({OFCO0H to OFEFFH)} for data that can be
described as "bsaddr", "wsaddr", or "dsaddr".

exceeded the range
that can be

F316

Message

Operand out of range (laddri6)

Cause

The specified operand value exceeded the range
(which differs depending on the target device)
for data that can be described as "laddrlé6",

F317

Message

Even expression expected

Cause

with 78K/0, 78K/I, 78K/III:

An odd-numbered address has been described as
"saddrp" or "sfrp".

With 78K/VI:

An odd-numbered address has been described as
"waddrp" or the operand of the WSFR directive.

F318

Message

Operand out of range {sfr)

Cause

With 78K/0, 78K/I, 78K/III:

The specified operand value exceeded the range
(FFOOH to FFFFH) for data that can be
described as the operand of the SFR or SFRP
directive or an odd number has been described
as the operand of the SFRP directive.

With 78K/VI:

The specified operand value exceeded the range
(FFOOH to FFFFH) for data that can be
described as the operand cf the SFR or SFRP
directive or an odd value (number) has been
described as the operand of the WFRP directive.

F319

Message

Operand out of range {addr8)

Cause

The specified operand value exceeded the range
(00H to OOFFH) for data that can be described
as "addrs'",

11-4

F320

Message

A multiple of 4 expression expected

Cause A value other than a multiple of 4 has been
described as "addr8'".

F401 | Message |Illegal symbol for PUBLIC 'symbol name'

Cause The symbol indicated by the displayed symbol
name cannot be declared as a PUBLIC symbol with
the PUBLIC directive.

FA02 | Message |Illegal symbol for EXTRN/EXTBIT 'symbol name'

Cause The symbol indicated by the displayed symbol
name cannot be declared as an external reference
symbol with the EXTRN or EXTBIT directive.

F403 | Message |Can't define PUBLIC symbol 'symbol name'

Cause A bit term other than "saddr.bit" has been

' defined in the PUBLIC symbol indicated by the
displayed symbol name.

User Because a symbol in which a bit term other

action than "saddr.bit" has been defined, a SET symbol,
a symbol which has already been externally
referenced or declared, a segment name, a module
name, a macro name, a BSFR/WSFR symbol (user
defined symbol), or an EQUD symbol cannot be
declared as PUBLIC, either cancel the PUBLIC
declaration or change the EQU definition.

F404 | Message |Public symbol is undefined 'symbol name'

Cause The PUBLIC symbol indicated by the displayed

symbol name hag not been defined.
F405 | Message | Illegal bit symbol

Cause As the bit symbol of an operand in a machine
language instruction, a forward-referenced
symbol or a symbol not appropriate as a bit
symbol has been described.

User Use a backward-referenced symbol or a symbol

action declared with the EXTBIT directive as the
bit symbol of the operand.

F406 | Message |Can't refer to forward bit symbol 'symbol name'

Cause The bit symbol indicated by the displayed
symbol name has been either forward-referenced
or described in an expression.

F407 | Message |Undefined symbol 'symbol name'
Cause The symbol indicated by the displayed symbol

name has not been defined.

11-5

F408 | Message (Multiple symbol definition 'symbol name'

Cause The symbol indicated by the displayed symbol
name has already been defined. {Duplicate
symbol definitions)

F409 | Message |Too many symbols in operand

Cause The number of symbols that can be described

as operands per line exceeded the limit value.
F410 | Message |Phase error

Cause The value of a symbel has changed during the
assembly phase. For example, an EQU symbol
defined by using in an operand a label changed
by optimization with the BR directive.

User Correct the source program by searching the

action location at which the symbol is referenced and
describing an expression there instead of the
EQU symbol.

¥501 { Message |Too many default ORG segments

Cause ORG directives without segment name specifica-
tion have been described by exceeding the
limit value (20 default ORG directives per
module).

F502 | Message |Iilegal segment name

Cause A symbol illegal as a segment name has been
described.

F503 | Message |Different segment type 'segment name'

Cause The segment indicated by the displayed éegment
name differs in segment type from another
segment defined with the same name,

F504 | Message |Too many seaments

Cause The number of seqments that can be defined

exceeded the limit value (100 segments).
F505 | Message |Current segment does not exist

Cause The ENDS directive has been described before
the creation of a segment or before the creation
or the next segment after the completion of
one segment.

F506 | Message . |Can't describe DB,DW,DS,label in BSEG
Cause The DB, DW, or DS directive has been described

in a bit segment.)

11-6

F507 | Message |[Can't describe opcodes (,RSS) outside CSEG
Cause with 78K/0, 78K/I, 78K/VI:
A machine language instruction (op code} has
been described outside a code segment.
With 78K/III:
A machine language instruction (op code) or RSS
directive has been described outside a code
segment.
F508 | Message |Can't describe DBIT outside BSEG
Cause The DBIT directive has been described outside
a bit segment.
F509 | Message | Illegal address specified
Cause The address specified for allocation to an
absolute segment exceeded the range applicable
to the segment.
F510 | Message | Location counter overflow
Cause The location counter value exceeded the range
applicable to the segment.
F511 | Message | Segment name expected
Cause A segment name has been omitted from the
segment definition directive to define a
segment with relocation attribute AT.
F601 | Message | Nesting over of include
Cause INCLUDE files have been nested by exceeding the
limit value (2 nesting levels]).
F602 | Message | Must specify switches
Cause The required switch names have not been
specified.
F603 | Message | Too many switches described
Cause The number of switch names that can be described
per module exceeded the limit value (five switch
names).
F604 | Message | Nesting over of IF-clauses
Cause "IF-ENDIF blocks have been nested by exceeding
the limit value (eight nesting levels).
F605 | Message | Needless ELSE statement exists
Cause An ELSE statement exists in a location where
it is unwanted. '
F606 | Message | Needless ENDIF statement exists
Cause An ENDIF statement exists in a location where

it is unwanted.

11-7

F607 | Message [Missing ELSE or ENDIF
Cause An IF or _IF statement is not paired with an
ELSE or ENDIF statement.
F608 | Message |Missing ENDTF
Cause An IF or _IF statement is not paired with an
ENDIF statement.
F609 | Message |Illegal ELSEIF statement
Cause An ELSEIF or _ELSEIF statement has been
described after an ELSE statement.
F610 | Message |Multiple symbol definition (MACRO} 'symbol name'
Cause The symbol indicated by the displayed symbol
name has already been defined as a macro name.
F611 | Message |Illegal syntax of parameter
Cause An error exists in the formal parameter
description of a macro.
F612 | Message | Too many parameters
Cause The number of formal parameters per macro-
definition exceeded the limit value (16 formal
parameters}).
F613 | Message | Same name parameter described 'symbol name'
Cause The symbol indicated by the displayed symbol
name has been specified as a formal parameter
with the same name as another formal parameter
in a macrodefinition.
F614 | Message | Can't nest macro definitions
Cause An attempt was made to define a macro in another
macrodefinition.
F615 | Message | Illegal syntax of local symbol
Cause An error exists in the operand description of
the LOCAL directive.
F616 | Message | Too many local symbols
Cause The number of local symbols that can be
described per macro body exceeded the limit
value {64 symbols),
F617 | Message | Missing ENDM
Cause An ENDM statement is missing from the macro
definition directive.
F618 | Message | Illegal syntax of ENDM
Cause An error exists in the ENDM statement descrip-
tion.
F619 | Message | Illegal defined macro
Cause The referenced macro has an error when it was

defined.

11-8

F620 | Message |Illegal syntax of actual parameter
Cause An error exists in the actual parameter descrip-
tion of a macro.
F621 | Message |Nesting over of macro references
Cause Macro references have been nested by exceeding
the limit value (eight nesting levels).
F622 | Message | Illegal syntax of EXITM
Cause An error exists in the EXITM statement descrip-
tion.
F623 | Message | Illegal operand of REPT
Cause An expression not allowed as an operand has
been described in the REPT directive.
F624 { Message | More than ?7?RAFFFF
Cause The number of local symbols replaced in a macro-
expansion exceeded 65,535 symbols.
F625 | Message | Unexpected ENDW
Cause An excess ENDW statement exists in the macro-
definition.
F626 | Message | Can't describe LOCAL outside macro definition
Cause The LOCAL directive has been described in
an ordianry source statement (outside a macro
beody) .
W701 | Message | Too long source line
Cause The source statement length exceeded 128
characters.
Program | The assembler ignores 129th and subsequent
action characters in the source line.
W702 | Message | Duplicate PROCESSOR option and control
Cause Two different target devices have been specified
by the -C option in the start-up command line
and the PROCESSOR control instruction in the
source header.
Program | The assembler accepts the -C option as valid
action and ignores the PROCESSOR control instruction
in the source header.
W703 | Message | Multiple defined module name
Cause The NAME directive has been defined two or
more times.
Program | The assembler accepts the module name which
action has already been defined and ignores all the

other NAME definitions.

11-9

Message

W704 Already declared EXTRN symbol 'symbol name'
Cause The symbol indicated by the displayed symbol
name has already been declared with the EXTRN
directive.
User Limit the number of EXTRN declarations for a
acticn symbol to one per module.
W705 | Message |Already declared EXTBIT symbol 'symbol name'
Cause The symbol indicated by the displayed symbol
name has already been declared with the EXTBIT
directive.
User Limit the number of EXTBIT declarations for a
action symbol to one per module.
W706 | Message |Missing END statement
Cause An END statement has not been described at the
end of the source file,
Program |The assembler processes the source file by
action assuming that the END statement has been
described at the end of the file.
W707 | Message |[Illegal statement after END directive
Cause A statement other than a comment statement,
blank, Tab, or LF code has been described
following an END statement.
Program |The assembler ignores the statement (or charac-
action ters) after the END statement.
W708 | Message |Already declared LOCAL symbol 'symbol name'
Cause The symbol indicated by the displayed symbol
name has already been declared with the LOCAL
directive.
User Limit the number of LOCAL declarations for a
action symbol to one per macro.
W709 | Message |Few count of actual parameter
Cause The number of actual parameters has been set
less than the number of formal parameters,
Program |The assembler gives a null string to each
action actual parameter in excess of the number of
actual parameters.
W710 | Message |Over count of actual parameter
Cause The number of actual parameters has been set
more than the number of formal parameters.
Program | The assembler ignores the actual parameters
action in excess of the number of formal parameters.
W711 | Message | Too many errors to report
Cause Too many errors {six or more errors) exist in
this line.
Program | The assembler does not output an error message
action for the 6th and subseguent errors and continues

its processing.

11-10

W712 | Message |Insufficient cross-reference work area

Cause Memory capacity i1s not enough for the output
processing of a cross-reference list.

Program | The assembler continues its processing

action without creating a cross-reference 1list,

29071 | Message [Can't open source file 'filename'

Cause The source file indicated by the displayed
filename cannot be opened.

2902 | Message |Can't open parameter file 'filename'

Cause The parameter file indicated by the displayed
filename cannot be opened.

A903 | Message |Can't open include file 'filename'

Cause The INCLUDE file indicated by the displayed
filename cannot be opened.

2904 | Message [Illegal include file 'filename'

Cause Only a drive name, pathname, or device type
filename has been specified as the filename
of the INCLUDE file indicated by the displayed
filename.

A905 | Message |[Can't open overlay file 'filename'

Cause The overlay file indicated by the displayed
filename cannot be opened.

User Check if the overlay file exists in the same

action directory as the executable (COM) file of the
assembler.

2906 | Message | Illegal overlay file 'filename'

Cause The overlay file indicated by the dlsplayed

filename contains incorrect data.
A907 | Message |Can't open object file 'filename'’

Cause The object module file indicated by the
displayed filename cannot be opened.

User Use a disk which has a free directory area.

action

A908 | Message |Can't open print file 'filename'

Cause The assembly list file indicated by the
displayved filename cannot be opened.

User Use a disk which has a free directory area.

action

2909 | Message | Can't open error list file 'filename'

Cause The error list file indicated by the displayed
filename cannot be opened.

User Use a disk which has a free directory area.

action

11-11

A910 | Message |{Can't open temporary file 'filename'

Cause The temporary file indicated by the displavyed
filename canncot be opened.

User Use a disk which has a free directory area.

action

A911 | Message |System error
Cause A system error has occurred.
A912 | Message |Can't set control-C

Cause Contreol -C cannot be set to interrupt the
assembler execution.

A913 | Message |[Can't read source file 'filename'

Cause A file I/0 error has occurred while reading
the source file indicated by the displayed
filename.

A914 | Message |[Can't read parameter file 'filename'’

Cause A file I/O error has occurred while reading
the parameter file indicated by the displayed
filename.

A915 | Message |Can't read include file 'filename'

Cause A file I/0 error has occurred while reading
the INCLUDE file indicated by the displayed
filename. :

A916 | Message |Can't read overlay file 'filename'

Cause A file I/0 error has occurred while reading
the overlay file indicated by the displayed
filename.

A917 | Message |[Can't write object file 'filename'’

Cause A file I/O error has occurred while writing
the object module file indicated by the
displayed filename.

User Cutput the object module file to another disk

action or create a free area in the specified disk.

A918 | Message [Can't write print file 'filename’

Cause A file I/0O error has occurred while writing
the assembly list file indicated by the
displayed filename.

User Output the assembly list file to another disk

action or create a free area in the specified disk.

A919 | Message |Can't write error list file 'filename'

Cause A file I/0O error has occurred while writing
the error list file indicated by the displayed
filename.

User Output the error list file to another disk

action or create a free area in the specified disk.

11-12

A920 | Message [Can't read/write temporary file 'filename’
Cause A file I/0 error has occurred while reading or
writing the temporary file indicated by the
displayed filename.
User OQutput the temporary file to another disk or
action create a free area in the specified disk.
A%21 | Message | Assembler internal error
Cause An error has occurred in the assembler itself,
User Rerun the assembler.
action
AG22 | Message | Insufficient memory in hostmachine
Cause The system has no sufficient memory to execute
the assembler.
A923 | Message | Insufficient memory for macro in hostmachine
Cause The system has become short of the internal
memory capacity during the processing of a
nacro.
User

action

Reduce the number of macrodefinitions.

11-13

11.2 Linker Error Messages

Error messages related to the Linker

A101 | Message |'filename' invalid input file (or made by
different hostmachine)

Cause An attempt was made to input a file other than
an object meodule file or to link an object
module file created by a host machine which
has no compatibility.

F102 | Message |Directive syntax error
Cause An error exists in the directive description.
A103 | Message | 'filename' Illegal processor type

Cause The target device for assembly or compilation
is not of the processor type for this linker.

User First, confirm that the object module file is

action correct and that the linker can handle the
target device for assembly or compilation. Also
confirm that the overlay file is of the
correct version. (The linker obtains information
peculiar to the target device by referring to
part of the overlay file of the assembler.)

A104 | Message | 'filename' Different processor type from first
input file 'first input filename'

Cause The input object module file is different in
the target device from that of the first input
object module file.

W105 | Message |Library file 'filename' has no public symbol

Cause No PUBLIC symbol exists in the library file
indicated by the displayed filename. For this
reason, the object modules in the library flle
will not be linked.

A106 | Message |[Can't create temporary file 'filename'

Cause The temporary file indicated by the displayed
filename cannot be created.

F107 | Message |Name 'name' in directive has already defined

Cause An attempt was made to define a reserved word
or an already defined name as a memory area
name in the directive. (The reserved word,
memory space name, Or memory area name indicated
by the displayed name has already been defined.)

F108 | Message |Overlapped memory area 'memory areal’' and
'memory area?l'
Cause In the MEMORY directive, addresses overlap

between the two memory areas.

11-14

F109 | Message |Memory area 'memory area name' too long name
(up to 31 characters)

Cause The memory area name indicated by the displayed
memory area name and specified in the directive
is too long. The memory area name length is
limited to 32 characters in the directive,

F110 | Message |Memory area 'memory area name' already defined

Cause The memory area name indicated by the displayed
memory area name and specified in the MEMORY
directive has alreadyv been defined.

F111 | Message |Memory area 'memory area name' redefinition out
of range

Cause The memory area indicated by the displayed
memory area name has been specified in the
MEMORY directive by exceeding the range
that can be re-defined for the memory area.

F112 | Message | Segment 'segment name' wrong allocation type

Cause An error exists in the location type specifica-
tion of the segment indicated by the displayed
segment name in the MERGE directive.

F113 | Message |linker internal error

Cause An error has occurred in the Linker itself,

User Contact the NEC or NEC's specified agent.

action

Fi114 | Message | Illegal number
Cause An error exists in the value of a directive,
F115 | Message | Too large value (up to 65535/0FFFFH)

Cause A value exceeding 65535 (0FFFFH) has been
described in a directive.

F116 | Message | Memory area 'memory area name' definition
out of range

Cause In the MEMORY directive, the sum of the start
address of the displayed memory area and the
memory size exceeded 65535 (OFFFFH).

F201 | Message | Multiple segment definition 'segment name' in
merge directive

Cause The segment indicated by the displayed segment

name and specified in the MERGE directive has
already been defined.

11-15

F202

Message

Segment type mismatch 'segmentl' in file
'filename' - ignored

Cause

A segment which has the same name as that
indicated by the displayed segment name but

is different in segment type and relocation
attribute from the displayed segment exists in
the file indicated by the displayed filename.

F203

Message

Segment 'segment name' unknown segment type

Cause

An error exists in the segment information of
the input object module file. (An error exists
in the merge type specification of the ocutput
segment.)

F204

Message

Memory area/space 'name' not defined

Cause

The memory area or memory space indicated by

{the displayed name and specified in the MERGE

directive has not been defined.

F205

Message

Name 'name' in directive has bad attribute

Cause

A name which cannot be specified as a segment
name, memory area name, Or memory space name
has been described in the directive. (For
example, a memory space name has been specified
erroneously in place of a memory area name.)

F206

Message

Segment 'segment name' can't allocate to
memory - ignored

Cause

The segment indicated by the displayed segment
name cannot be allocated to any memory area.
(A sufficient memory area is not available for
locating the segment.)

F207

Message

Segment 'segment name' has illegal segment type

Cause

The segment type information of the segment
indicated by the displayed segment name is
illegal.

User
action

Re-assemble or re-compile the source program
which contains this segment. Check the MERGE
directive for correct description.

F208

Message

Segment 'segment name' may not change attribute

Cause

An attempt was made with a link directive to
change the merge type of the displayed segment
whose relocation attribute was specified as
"AT xxxxH" at assembly time or which has been
created with the ORG directive.

User
action

For a segment whose merge type is to be _
specified at linkage time, do not specify any
location address for the segment at assembly
time.

11-16

r209

Message

Segment 'segment name' may not change
arrangement

Cause

An attempt was made with a link directive to.
change the location address of the displayed
segment whose relocation attribute was
specified as "AT xxxxH" at assembly time or
which has been created with the ORG directive,

User
action

For a segment whose merge type is to be
specified at linkage time, do not specify any
location address for the segment at assembly
time,

F210

Message

Segment 'segment name' does not exist - ignored

Cause

The displayed segment specified in the directive
does not exist.

F301

Message

Relocatable object code address out of range
(file 'filename', segment 'segment name',
address xxxxH, type 'addressing type'}

(See Note 1 below.)

Cause

Information to correct the relocatable object
code contained in the input object module file
has been output to an address in which no
object code exists. (The relocation entry
address is outside the range of the origin
data.)

F302

Message

Illegal symbol index in line number (file
'filename', segment 'segment name'
{See Note 1 below.)

Cause

An error exists in the line number information
for debugging contained in the input object
module file and thus the symbol information

is not properly referenced.

The line number index does not correspond with
the symbol index.

F303

Message

Can't find symbol index in relocatable object
code (file 'filename', segment 'segment name',
address xxxxH, type 'addressing type'}

(See Note 1 below.)

Cause

An error exists in the information to correct
the relocatable object code contained in the
input object module file and thus the symbol
information is not properly referenced.

The relocation entry index does not correspond
with the symbol index.

User

action

Confirm that symbols and variables have been

referenced in the correct way.

Note: The address to be displayed as "address xxxxH" is an
absolute address after the segement location.

11-17

F304 | Message

Operand out of range (segment 'segment name',
address xxxxH, type 'addressing type')
{See Note 1 below.)

Cause The operand value used for resolving relocatable
object codes exceeded the range of the coperand
value applicable to the instruction.

User Describe the scource program so that the operand

action value used for resolving relocatable object

codes falls within the range of the operand
value determined for each addressing type.

F305 | Message

Even value expected (segment 'segment name',
address xxxxH, type 'addressing type')
(See Note 1 below.)

Cause

The operand value used for resolving the
relocatable object codes of the "callt" or
"saddrp" addressing type has become an odd
value. The operand value for the "callt" or
"saddrp" addressing type must be an even value.

F306 | Message

A multiple of 4 value expected
(segment 'segment name', address xxxxH,
type 'addressing type') (See Note 1 below.)

Cause

The operand value used for resolving the
relocatable object codes of the "dsaddr"
addressing type is not a multiple of 4.

Note: The address to be displayed as '"address xxxxH" is an
absolute address after the segement location.

A401 | Message

'filename' Bad symbol table

Cause

The symbol information of the input object
module file is incorrect.

The symbol entry of the input file must begin
with ".file",

2402 | Message

File 'filename' has no string table for symbol

Cause The symbol information of the input object
module file is incorrect.

User Re-assemble or re-compile the source program.

action This error may be- avoided by limiting the

number of characters that can be recognized as
a symbol to eight characters with the assembler
and to seven characters with the linker.

2403 | Message

Symbol 'symbol name' unmatched type in file
'filenamel' First defined in file 'filename2'

Cause

A difference exists in the type between the same
named externally defined or referenced symbol
in the file 1 and that in the file 2.

11-18

| F404 | Message [Multiple Symbol definition 'symbol name' in file
'filenamel' First defined in file 'filename2’

Cause The PUBLIC symbol defined in the object module
file 1 has already been declared as PUBLIC in
the object module file 2. (Duplicate PUBLIC
symbol declarations)

F405 | Message |Undefined symbol 'symbol name' in file
'filename'

Cause The symbol indicated by the displayed symbol
name and declared as EXTRN in the file indicated
by the displayed filename has not been declared
as PUBLIC in another file.

W406 | Message |Stack area less than 10 bytes

Cause The size of the reserved stack area is less
than 10 bytes. (The size of the stack area
reserved in the memory area specified with the
-8 option is less than 10 bytes.)

W407 | Message |Can't allocate stack area

Cause The memory area has no free area for stack
area reservation. (No stack area can be
reserved in the memory area specified with the
-S option.)

AS501 | Message |Insufficient memory in hostmachine

Cause The system has no sufficient memory capacity
for the program to operate.

2901 | Message |Can't open overlay file 'filename'

Cause The overlay file indicated by the displayed
filename cannot be opened.

User Confirm that the overlay file exists in the

action correct directory (i.e., the same directory as
the executable program with MS-DOS version
3.10}.

2902 | Message | file 'filename' file not found

Cause The library file indicated by the displayed

filename cannct be opened,.
2903 | Message |[Can't read input file 'filename'
Cause The object module file specified as an input

file and indicated by the displayed filename
cannot be read.

11-19

A904 | Message |[Can't open output file 'filename'
Cause The output file indicated by the displaved
filename cannot be opened.
User Check the disk for output file creation for
action free area or proper file medium condition.
A9%905 | Message |Can't create temporary file 'filename'
Cause The temporary file for symbol entry indicated
by the displayed filename cannot be created.
User Check the disk for temporary file creation for
action free area or proper file medjum condition.
A906 | Message [Can't write map file 'filename'
Cause No data can be written into the link list
file indicated by the displayved filename.
User Check the disk for link 1ist file creation for
action free area or proper file medium condition.
2907 | Message jCan't write output file 'filename'
Cause No data can be written into the load module
file indicated by the displayed filename.
User Check the disk for output file creation for
action free area or proper file medium condition.
2908 | Message |Can't access temporary file 'filename'
Cause No data can be written into the temporary file
indicated by the displayed filename.
User Check the disk for temporary file creation for
action free area or proper file medium condition.

11-20

11.3 Object Converter Error Messages

Error messages related to the Object Converter
A100 | Message | 'filename' Illegal processor type

Cause The target device for assembly or compilation
is not of the processor type for this program.

User First, confirm that the load module file is

action correct and that the object converter can handle
the target device for assembly or compilation,.
Also confirm that the overlay file is of the
correct version.

A101 | Message | 'filename' invalid input file (or made by

different hostmachine)

Cause An attempt was made to input a file other than
a load module file or tc convert a load module
file created by a host machine which has no
compatibility.

A103 | Message | Symbol 'symbol name' Illegal attribute

Cause An error exists in the attribute value of the
symbol indicated by the displayed symbol name
in the input file.

A104 | Message | 'filename' Illegal input file - not linked

Cause An attempt was made tc input the file not
linked (i.e., object module file) and
indicated by the displayed filename.

A105 | Message | Insufficient memory in hostmachine

Cause The system has no sufficient memory capacity

for the program to operate,
A106 | Message [Illegal symbol table

Cause An error exists in the symbol table of the

input load module file.
F200 | Message | Undefined symbol 'symbol name'

Cause An address for the symbcel indicated by the
displayed symbol name has not been rescolved.

User Define the value of this symbol.

action If this symbol has been referenced as an exter-
nal referenced symbol but has not been defined
externally, define the symbol externally in the
module in which the wvalue of this symbol has
been defined.

F201 | Message | Out of address range
Cause The address{es) of object code(s) in the load

module file are out of the permissible address
range.

11-21

w300

Message

xxxxH - yyyyH overlapped

Cause Object codes for addresses XxxXxxH to yyyyH have
been output in duplication.
A900 | Message {Can't open file 'filename'
Cause The file indicated by the displayed filename
cannot be opened.
A901 | Message { Can't close file 'filename'
Cause The file indicated by the displayed filename
cannot be closed.
A902 | Message |[Can't read file 'filename'
Cause The file indicated by the displayed filename
: cannot be read properly.
A903 | Message | Can't access file 'filename'
Cause The file indicated by the displayed filename
cannot be read- or write-accessed properly.
A904 | Message | Can't write file 'filename'
Cause Data cannot be properly written into the file

indicated by the displayed filename.

11-22

171.4 Librarian

Error Messages

Error Messages

relafed to the Librarian

A001 | Message |[Missing input file

Cause Only options have been specified and no input

file has been specified.
AQ02 | Message |[Too many input files

Cause The total number of input files has been

specified by exceeding the limit value.
A003 | Message |Unrecognized string 'whatever specified'

Cause A character string other than options has been
specified in the command line in the Conversa-
tional mode.

A004 | Message |[Illegal file name 'filename'

Cause The filename indicated by the displayed filename
contains character(s) not recognized by the 08
or exceeded the limit value for the number of
characters that can be described as a filename.

AQ05 | Message |Illegal file specification 'filename'

Cause The displayed filename is illegal as a
filename.

2006 | Message |File not found 'filename'

Cause The specified input file indicated by the
displaved filename does not exist.

AQQ7 | Message |Input file specification overlapped 'filename'

Cause The input file indicated by the displayed
file has been specified in duplication.

AQ08 | Message |File specification conflicted 'filename’

Cause The input/output file indicated by the displayed

filename has been specified in duplication,
AQ09 | Message |Unable to make file 'filename'

Cause The specified file indicated by the displayed

filename cannot be created.
2010 | Méssage | Directory not found 'filename'

Cause The specification of the output filename
indicated by the displayed filename contains
a non-existing drive or directory.

A011 | Message | Illegal path 'filename'
Cause In the specification of an option requiring a

pathname as its parameter, other than a pathname
has been specified for the file indicated by the
displaved filename.

11-23

AD012

Message

Missing parameter 'option'

Cause The redquired parameter has not been specified
lfor the option indicated by the displayed
option.
A013 | Message |Parameter not needed 'option'

Cause An unwanted parameter has been specified for

the option indicated by the displaved option.
A014 [Message |[Out of range 'option'

Cause A value outside the range has been specified
for the option indicated by the displayed
option.

A015 | Message |Parameter is too long 'option'

Cause The parameter of the option indicated by the
displayed option has been specified by exceeding
the limit value for the number of characters
that can be described.

A016 | Message |TIllegal parameter 'option'

Cause A syntax error exists in the parameter descrip-
tion of the option indicated by the displayed
option.

A017 | Message |Too many parameters 'option'

Cause The total number of parameters specified for
the option indicated by the displayed option
exceeded the limit value,.

A018 | Message |Option is not recognized 'option'

Cause The option indicated by the displayed option

is not recognized by the librarian.
A019 | Message |Parameter file nested

Cause The -F option has been specified in the
parameter file.

AQ020 | Message | Parameter file read error 'filename'

Cause An error has occurred while reading the
parameter file indicated by the displayed
filename.

2021 | Message | Memory allocation failed

Cause Memory cannot be allocated.

11-24

A100

Message

Internal error

Cause An errcor has occurred in the librarian itself.
F101 | Message |Invalid sub command

Cause The subcommand name 1s incorrect.
F102 | Message |Invalid syntax

Cause An error exists in the parameter specification
of the subcommand.

F103 | Message [Illegal input file - different target chip
{file: filename)

Cause An error exists in the target device specifica-
tion of the input object module file indicated
by the displayed filename.

F104 | Message [Illegal library file - different target chip
(file: filename)

Cause An error exists in the target device specifica-
tion of the specified library file indicated
by the displayed filename.

F105 | Message |[Module not found (module: module name)

Cause The specified module indicated by the displayed

module name does not exist in the library file.
F106 | Message |Module already exists (module: module name)

Cause The same module as that indicated by the
displayed module name already exists in the
update library file or another input file.

F107 | Message | Master library file is not specified

Cause Replacement with "." has been specified when
an update library file has not been specified
by the previous update coperation.

F108 | Message |{Multiple transaction file (file: filename)

Cause The input object module file indicated by the
displayed filename has been specified in
duplication.

F109 | Message |Public symbol already exists (symbol:symbol name)

Cause The same named'externally defined symbol as
that indicated by the displayed symbol name
already exists in the update library file or
another input file.

F110 | Message |File specification conflicted (file: filename)

Cause The same input filename as the output filename

indicated by the displayved filename has been
specified.

11-25

F111 | Message [Illegal file format (file: filename)

Cause The format of the update library file or ancther
input file indicated by the displayed filename
is incorrect.

F112 | Message |Library file not found (file: filename)

Cause The specified library file indicated by the
displayed filename cannot be located.

F113 | Message |Object module file not found (file: filename)

Cause The specified object module file indicated by
the digplayed filename cannot be located.

F114 | Message [No free space for temporary file

Cause A sufficient free area for temporary file

creation is not available on the disk.
F115 | Message |Not encugh memory

Cause A sufficient memory space for the program to

operate cannot be secured.
F116 | Message |Subcommand Buffer full

Cause The continuation line length of the subcommand
exceeded the limit value (128 characters x 15
lines).

The subcommand line length in the subcommand
file exceeded the limit value (128 characters).
A901 | Message |File open error (file: filename)

Cause A file open error has occurred in the file
indicated by the displayed filename or the
system is not operating properlv.

A902 ! Message |File read error (file: filename)

Cause A file read error has occurred in the file
indicated by the displayed filename or the
system is not operating properly.

2903 | Message |File write error (file: filename)

Cause A file write error has occurred in the file
indicated by the displayed filename or the
system is not operating properly.

A904 | Message |File seek error {(file: filename)

Cause A file seek error has occurred in the file
indicated by the displayed filename or the
system is not operating properly.

A905 | Message | File close error (file: filename)
Cause A file close error has occurred in the file

indicated by the displayed filename or the
system is not operating properly.

11-26

11.5 List Converter Error Messages

Error Messages related to the List Converter

A101 | Message |File is not 78K/xxx 'filename'

Cause The input file indicated by the displayed
filename is not for the 78K/xxx series.

W101 | Message [Load module file is older than object module
file 'load module filename, object module
filename'

Cause The load module file older than the object
module file has been specified.

2102 | Message |Load module file is not executable 'filename'

Cause An attempt was made to input a file other than
a load medule file or to convert a load module
file created by a host machine which has no
compatibility.

W102 | Message |Load module file is older than assemble list
file 'load module filename, assembly list
filename'

Cause The load module file older than the assembly
list file has been specified.

A103 | Message |Load module file has relocation data '"filename'

Cause Addresses for relocatable segments in the load
module file indicated by the displayed filename
have not been resclved.

W103 | Message |Assemble list has error statement 'filename'

Cause The assembly list file indicated by the
displayed filename contains an error line.

A104 | Message |Object module file is executable 'filename'

Cause The object module file indicated by the
displaved filename is executable.

W104 | Message |Segment name is not found in assemble list file
'segment name'

Cause The segment indicated by the displayed segment
name in the object module file cannot be found
in the assembly list file.

A105 | Message |Segment name is not found in load module file
'segment name'

Cause The segment indicated by the displayed segment

name in the object module file cannot be found
in the load module file.

11-27

W105 | Message |[Segment data length is different 'segment name'

Cause The data length of the segment indicated by
the segment name in the assembly list file
differs from that of the segment in the object
module file,

Program |The list converter executes its processing by

action ignoring excess segment data.

A106 | Message |Segment name is not found in object module file
'segment name'

Cause The segment indicated by the displayed segment
name in the assembly list file cannot be found
in the object module file.

A107 | Message |Not enough memory
Cause A memory area for work is insufficient.
A108 | Message |Load module file has no symbol data
'load module name'

Cause Because the -NG option has been specified in
the linker, no symbol information has been
output to the load module file indicated by
the displayed load module name.

A901 | Message |File open error has occurred 'filename'

Cause A file open error has occurred in the file

indicated by the displayed filename,
A902 | Message |File read error has occurred 'filename'

Cause A file read error has occurred in the file

indicated by the displayed filename.
A903 | Message |File write error has occurred 'filename'
Cause A file write errcr has occurred in the file
indicated by the displayed filename.
A904 | Message |File seek error has occurred
Cause A file seek error has occurred.
A999 | Message |Internal error
Cause An error has occurred in the list converter

itself.

11-28

APPENDIXES

APPENDIX A, SAMPLE PROGRAM
Source Lists

78K3MAIN.ASM

3 PC(310)

NAME SAMPM
chkkkkkk kb a kR bk bk kk kb rbkbRd bbbk kb kb hk kR ¥

X ¥
Pk HEX -> ASCII Conversion Program %
¥ ¥
¥ main-routine ¥
¥ ¥
ckkbbhEk bbbk Rk bk kb kb kbR Rk kE R R bk kR

PUBLIC MAIN, START
EXTRN CONVAH

DATA DSEG AT OFEZ0H

HADTSA: DS 1

STASC: DS 2

CODE CSEG AT OB

MAIN: D¥ START
CSEG

START: MOV RFM, 00
MOVW SP, #0FE8CH
MOY MM, $00
MOY STBC, #08H

MOV HDTSA, #1AH

MOVW HL, #HDTS4 :set hex 2-code data in HL registor
CALL YCONVAH ;convert ASCII <~ HEX

;output BC-register <- ASCII code
MOV¥ DE, #STASC :set DE <~ store ASCI] code table
MOV A B
MOV [DE+], A
MOV A, C
MOV [DE+].A
BR 33
END

(2}

78K3SUB.ASM

$ PROCESSO

NAME
RIIIIEIZE SR 2]

HEX -> ASCI

s &

input condi

¥
¥
o
=
3
¥
¥ output cond
¥

T EIII2EEIITTE

PUBLIC

CSEG
CONVAH: MOV
ROL4
CALL
MOV

MOV
ROL4
CALL
MO¥

RET

R(310)

SAMPS
fhkkkbkbkk bk kbbb kbbb bRk kR bk H k3

I Conversion Program :
sub-routine :
tion : (HL) <~ hex Z code :
ition : BC-register <-ASCII 2 code :
#**********************************:

CONVAH

A, %0

[HL] :hex upper code load
1SASC

B.A ;:store result

A, &0

[HL] :hex lower code load
1SASC

C,. A ;store result

L e e 2 2222222 22222222)

: ¥ subroutine

convert ASCII code

¥
¥
¥

i ; input Acc (lower 4bits) <- hex code
<k output Acce <~ ASCI} code
R iiiiiiri23 2333222233222 22333 2222322222222 22221)
SASC: CMP A, $0AH scheck hex code > 9
BC $3ASCL
ADD A, #07H ;bias(+7)
SASC1: ADD A, #30H :bias(+30)
RET
END

A.2 Execution Examples

A>ra78k3 -c310 78k3main.asm_—g -kx -1w80

uCOM-78K/111 Assembler Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USxxxxxxxxxx

Passl Start
Pass? Start

Assembly complete, 0 error(s) and 0 warning(s) found.

A>ra78k3 -c310 78k3sub.asm -g -kx -1w80

uCOM-78K/I11 Assembler Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USXXXXXXXXXX

Passl Start
Pass? Start

Assembly complete, 0 error(s) and 0 warning{s) found.

A>1k78k3 78k3main.rel 78k3sub.rel -g -078k3.1Ink -p78k3.map -kp -ki

uCOM-78K/111 Linker Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USxxxxxxxxxx

Link complete, 0 error{s}) and 0 warning(s) found.

"A>og78k3 78k3. Ink

uCOM-78K/111 Object Converter Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USXXXXXXXXXX

Object Converter complete, 0 error{s) and 0 warning(s) found.
A>1b78k3

uCOM-78K/11] Librarian Vx.xx [xx xxx xx]
Copyright (C) Corporation xxxx USxXxXXXXxXX

¥create T8k3.1ib T78k3.rel

$list -p ~o78k3.1st T8k3.1lib

texit

A>lcnvi8k3 78k3main -178k3. Ink

List Conversion Program for RAT8K/I1I Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation xxxx USxxxxxxxXxxx

Passl: start...
Pass?: start...
Conversion complete.

A.3 Output Lists

A.3.1 Assembly Lists

{1) Assembly list of 78K3MAIN,ASM

uCOM-18K/11] Assembler V¥x. xx

Command:
Para-file:
In-file:
Obj-file:
Prn-file:

TEK SMAIN. ASM
78K 3MAIN. REL
T8KIMAIN. PRN

Assemble list

ALNO STNO ADRS OBJECT

1 1

2 2

3 3

4 4

5 5

b 6

i 7

8 8

9 9
10 10
11 11
12 12
138 13
14 14
15 1§ -=--
18 16 FE20
17 17 FE21
18 18
19 19 --—--
20 20 0000 RO0OO
21 21
22 22 ===-=
23 23 0C00 2B4100D
24 24 0003 OBFCBOFE
2% 25 0007 2B4000
26 26 000A 0944F708
217 217
28 28 000E 3A201A
29 29 0011 G67Z0FE
30 30
31 31 0014 R280000
32 32
33 38 0017 G6S521IFE
34 34 0014 D3
35 3% 001B 50
38 36 001C D2
37 37 001D 50
38 38
39 38 001E 14FE
40 40
41 41

M

I

Date:xx xxx xxxx Page: 1

-¢310 78k3main. asm -g -kx -1w80

SOURCE STATEMENT

$ PC(310)

NAME SAMPM ,
R Iy T T I S22 I I I I TIETTILE:
¥ ¥
¥ HEX -> ASCII Conversion Program *
4 ¥
;: main-routine :
;***************#t*****#******##*********t******

PUBLIC MAIN, START

EXTRN CONVAH
DATA DSEG AT OFEZ0H
HDTSA: DS 1
STASC: DS 2
CODE CSEG AT OR
MAIN: D¥ START

CSEG
START: MOV RFM, #00

MOVW SP, #0FE80H

MoY MM, $00

MoY STBC, #08H

Mov HDTSA, #1AH

MOVW HL, #HDTSA

CALL 1 CONVAN

MOVW DE, #5TASC

MOV - A.B

MOV [DE+], A

MoV A C

MoV [DE+], A

BR 38

END

Segment informations:
ADRS LEN NAME
FE20 0003H DATA
0000 0002H CODE
0000 0020H <2CSEG

Target chip:uPD78310
Assembly complete, 0 error{s) and 0 warning(s) found. (0)

Note: In this assembly list, the comment statement section has
been deleted after the ocutput of the list.

(2) Assembly list of 78K3SUB.ASM

uCOM-T8K/111 Assembler Vx.xx

Conmand:

Para-file:

In-file:
Obj-file:
Prn-file:

ALNO

A R R Y LY R el ol o e e e e e
mm.n-.mmp—-nomon—qd:mhmmo—c}mm—qaam-h-wmr—

LD GO [N 0D D
p— T Y O =3

€D €A Cad Lo D LD O O
e O —3 O Lt b €O B

Lol
€0 B — O

Assemble list

STNO ADRS OBJECT

3 B B3 BN DD T DY
-3 O O e) [N

R T Y e e
T D OO0 =3 OF N i L B = O 4O 00 =3 O OF WP 2 D

0000
0002
0004
a6o017

0009
G00B
000D
0010

0012

0013
0015
0017
00119
001B

B900

059F
R281300

2431

B900

059F
R281300

2421

56

AFOA
83072
AB07
A830
36

M1

Date:xx xxx xxxx Page: "1

-¢310 78k3sub.asm -g ~kx -1w80

T8K3SUB. ASM
78X 3SUB. REL
78K 33UB. PRN

SOURCE STATEMENT
3 PROCESSOR (310)

NAME SAMPS
****#****i********#*******##*****#*************#*

¥ ¥
:# HEX -> ASCII Conversion Program ¥
‘¥ ¥
i ¥ © sub-routine ¥
1 ¥ ¥
% input condition : (HL) <- hex 2 code *
¥ ¥
,t output condition : BC-register<- ASC!l 2 code ¥
o ¥ #
R I I ITIE ISRt 2 222 R L s R R 2 R sl

PUBLIC CONVAH

CSEG

CONVAH: MOV A, %0
ROL{ {HL]
CALL ! SASC
MOV B.A
MoV A, #0
ROL4 (HL]
CALL 1SASC
MOY C.A
RET

******#*t*#***************tt******************#**
¥ subroutine convert ASCII code

;* input Acc (lower 4bits)<- hex code *
. % output Acc {- ASCI] code *
****tt************%*******#*****************#***#

SASC: CMP A, 02K

BC $3ASCL

ADD A, 307H
SASCl: ADD A, #3018

RET

END

Segment informations:
ADRS LEN NAME
0000 OQO01CH ?CSEG

Target chip:uPD78310)
Assembly complete, 0 error(s} and 0 wvarning(s) found. (0)

Note: In this assembly list, the comment statement section has
been deleted after the output of the list.

A.3.2 Symbol Lists
(1) Symbol list of 78K3MAIN.ASM

Symbol Table List

VALUE ATTR RTYP NAME VALUE ATTR RTYP NAME
CSEG - ?CSEG CSEG CODE
~===H EXT CONVAH DSEG DATA
FE20H ADDR HDTSA 0H ADDR PUB MAIN
MOD SAMPM OH ADDR PUB START
FE21H ADDR STASC

{2) Symbol list of 78K3SUB.ASM

Symbol Table List

VALUE ATTR RTYP NAME VALUE ATTR RTYP NAME
CSEG ?CSEG O ADDR PUB CONVAH
MOD SAMPS 130 ADDR SASC
198 ADDR SASCI

A.3.3 Cross-reference Lists
(1) Cross-reference list of 78K3MAIN.ASM

(2)

Cross-Reference List

NAME VALUE R ATTR RTYP SEGNAME XREFS
?CSEG CSEG ?CSEG 22%
CODE CSEG CODE 198
CONVAR ----H E EXT 13@
DATA - DSEG DATA 154
HDTSA FE20H ADDR DATA 164
MAIN OH ADDR PUB CODE 128
SAMPM MOD 3%
START OH R ADDR PUB ?CSEG 124

STASC FEZ1H

ADDR

DATA

17%

Cross-reference list of 78K3SUB.ASM

Cross-Reference List

NAME VALUE R ATTR RTYP SEGNAME XREFS
?7CSEG CSEG ?CSEG 18¢
CONYAH - 0H R ADDR PUB 7?CSEG 16@
SAMPS MoD 3%
SASC 181 R ADDR ?CSEG 21
SASCl 194 R ADDR 7CSEG 38

31

28
204

20
33

19%

26
0%

29

23%

313

A.3.4 Map List

uCOM-T8K/111 LINKER Vx. xx Date:xx xxx xxxx Page:
Command: 78k3main. rel 78k3sub.rel -g -o78k3. 1nk ~p78k3.map ~kp -kl
Para-file:

Qut-file: 7T8K3.LNK
Map-file: T78K3.MAP
Direc-file:
Directive:

¥%¥% Link information #¥#

3 output segment(s)
40H byte(s) real data
17 symbol (s) defined

¥ Memory map ###

SPACE=REGULAR

MEMORY=ROM
* BASE ADDRESS=0000H SIZE=FEOOH
OUTPUT INPUT INPUT BASE STIE
SEGMENT SEGMENT MODULE ADDRESS
CODE 0000H 00020 CSEG AT
CODE SAMPM 000N 0002H
?CSEG 00021 003CH CSEG
7CSEG SAMPM 00024 0020H
?CSEG SAMPS 0022H 001CH
¥ gap ¥ : 003ER FDC2H
MEMORY=RAM
BASE ADDRESS=FEO0QE SIZE=0100H
QUTPUT INPUT INPUT BASE SI1ZE
SEGMENT SEGMENT MODULE ADDRESS
% gap # FEOOH 00201
DATA FE20H 0003H DSEG AT
DATA SAMPM FE20H 0003H
¥ gap % FE23H 00DDH

A.3.5 PUBLIC Symbol List

k4% Public symbol list #+%%

MODULE ATTR YALUE
SAMPM ADDR 00060H
SAMPH ADDR 0002H
SAMPS ADDR 00622H

A.3.6 Local Symbol List

¥¥% Local symbol list #%#

MODULE ATTR YALUE
SAMPM MOD

SAMPM DSEG

SAMPM ADDR FEZ0H
SAMPM ADDR FEZ1H

SAMPM CSEG
SAMPM CSEG

SAMPS MOD

SAMPS CSEG

SAMPS ADDR Q035H
SAMPS ADDR 003BH

NAME

MAIN
START
CONVAH

NAME

SAMPM
DATA

HDTSA
STASC
CODE

?CSEG
SAMPS
?CSEG
SASC

SASCI

A.3.7 Library Information Output List

uCOM-78K/11I librarian ¥x. xx

LIB-FILE NAME : T78K3.LIB

DATE : xx xxx xx

(xx xxx xx)

0001 78K3SUB.REL {(xx xxx xx)

CONVAH

NUMBER OF PUBLIC SYMBOLS :

1

PAGE

1

A.3.8 Absolute Assembly List

uCOM-78K/111 Assembler Vx. xx

-¢310 78k3main. asm —-g -kx -1w80

T8K3IMAIN. ASM
T8K3IMAIN. REL
TEK3MAIN. PRN

Command:
Para-file:
In-file:
Obj-file:
Prn-file:

Assemble 1ist

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT
1 1 $ -PC(310)
2 2 :
3 3 NAME
4 4 ckkbk bkt b ki bk i
5 5 Tk .

b 6 ok HEX -> A
1 1 i

8 8 ¥

9 9 - ¥

10 10 ckkkk Rk kR Rk i kX
11 11

12 12 PUBLIC
13 13 EXTRN
14 14
13 1§ -——- DATA DSEG
16 16 FE20 HDTSA: DS

117 17T FEZ1 STASC: DS

18 18

19 16 --—- CODE CSEG
20 20 0000 RO200 MAIN: bPW
21 21
22 22 ---- CSEG
23 23 0002 ZB4100 START: MOV
24 24 0005 OBFCBOFE MOVW
25 25 0009 2B4000 MOV
26 26 0O0OC O0944F708 MOY
217 217

23 28 0010 3A201A MOV
29 29 0013 G6TZOFE MOV¥W
30 30

31 31 0016 R282200 CALL
32 32
i3 33 0019 6521FE MOVY
34 34 001C D3 MoV
35 35 001D 50 MOV
36 36 001E D2 MOV
317 37T 001F 50 MOY
38 38
349 36 0020 14FE BR
40 40
41 41 END

Date:xx xxx xxxx Page:

SAMPM
kkdkkkkkbkt kbbb hkbb bk bbbkt
SCIl Conversion Progranm

main-routine

e M N W M

thkkkdkkkihbk kb kbbb bkbkdrddiis

MAIN, START
CONVAH

AT OFEZ0H
1
2

AT OH
START

RFM, §00
SP, #0FE80H
MM, 00
STBC, #08H

" HDTSA, $1AK

HL, #HDTSA
I CONVAH

DE, #STASC
A B
[DE+], A
4,C
[DE+1, A
3%

1

Segment informations:
ADRS LEN NAME
FE20 0003H DATA

0000 0002H CODE
0002 0020H ?CSEG

Target chip:uPD78310
Assembly complete, 0 error{s) and 0 warning(s) found. 0)

Note: In this absolute assembly list, the comment statement

section has been deleted after the output of the list.

APPENDIX B. LIST OF HINTS ON USE

Item
No.

Point to Bear in Mind

See
page

About MS-D0OS (PC-DOS) Based System:

o When starting up each program of this assembler

package, the parameter FILES must be set to 13
or more in the environment setting file
"CONFIG.SYS" of MS-DOS (PC-DOS).

0 The required memory size is 384K bytes.

2-2

About Overlay Files:

o With MS-DOS Vv3.10, the overlay files of the
assembler, linker, or list converter must
have been stored in the same directory as
the command file when starting up the
programs. -

Lo R E) Y
I
OV b b
— gy

About Restriction on the Number of Module

Files That Can Be Input to the Linker:

With 78K/0,78K/I, 78K/VI:

o Up to 128 object module files can be input
to the linker.

With 78K/III:

o Up to 64 object module files can be input
to the linker.

1-23

About Restrictions on the Number of Symbols:

o With the assembler, the total number of
local and PUBLIC symbols is 2,900.

o With the linker, the number of local symbols
is 2,900 per module and the number of PUBLIC
symbols is 3,000,

1-23

About Restrictions on the Number of Segments

That Can Be Input to the Assembler:

o Up to 20 ?ASEG segments may be input to the
assembler.

o Up to 80 segments other than ?ASEG may be
input to the assembler,

About Option Specification:

o If two or more options which are not allowed
to be specified with any other cptions are
specified at the same time, whichever vyou
specified last will take precedence over the
preceding options.

o The -C option cannot be omitted when starting

up the assembler, If the -C option is to be
omitted from the start-up command line,
describe the device model with the $PC (device
model) control instruction in the header of
the source module file,

o If the -- {HELP message display)} option is
specified, all other options specified at the
same time will become invalid.

1-2

Item | Classification | Description Function Relation with | Default Seea
Format Other Options [Assumption |Page
1 Option for. -C device model | Specifies target Independent None 4-33
processor type device subject to
specification assembly.
2 options for -0 [filename] Specifies output If -0 and -NO | -0 input 4-17
object module of object module are specified | filename
file output file. at same time, | .REL
specification -NO Specifies suppres- whichever you
sion of object specified
module file output. later takes
precedence.
3 Options for ~-Jd Specifies forced If -J and -NJ | -NJ 4-19
forced object output of object are specified
module file module file even in at same time,
output speci- case of fatal error.
fication -NJ Specifies non-output { whichever you
of object module specified
file in case of later takes
fatal error. precedence.
4 Options for -G Specifies output of If -G and -NG | -NG 4-21
debug informa- debugging informa- | are specified
tion output tion to object at same time,
specification module file. whichever you
-NG Specifies suppres- specified

sion of debugging
formation output to
object module file.

later takds
precedence.

suoT13dQo aa(quessy FO 3ISTI L°D

*D XIdNHEd4Y

SLSIT NOILdO

Ttem

Classification

Description
Format

Function

Relation with
Other Options

Default
Assumption

See
Page

Options for
symbol name
length
specification

-5

Specifies extension
of symbol name
length to max. 31
characters.

-NS

Specifies symbol
name length as
8 characters max.

If -8 and -NS
are specified
at same time,
whichever you
specified
later takes
precedence.

-NS

4-23

Options for
symbol name
uppercase/
lowercase
specification

-CA

Specifies that symbol
names in uppercase
letters are not

to be distinguished
from those in
lowercase letters.

-NCA

Specifies that symbol
names in uppercase
letters are to be
distinguished from
those in lowercase
letters.

If -CA and
-NCA are
specified at
same time,
whichever you

later takes
precedence.

-CA

Options for
Inciude file
read path
specification

-I pathname [,
pathname] ...

Specifies input of
Include file({s) from
path(s} specified by
this option.

Independent

Path spec-
ified by
environment
variable
INC78Kn
(n=0,1,2,
3,6)

Options for
assembly

list file
output speci-
fication

~-P[filename]

Specifies output of
assembly list
file.

~-NP

Specifies suppres-
sion of preprocess
list file output.

If -P and -NP
are specified
at same time,
whichever you
specified
later takes
precedence.

-P input
filename
. PRN

Item | Classification | Description Function Relation with Default See
Format Other Options Assumption | Page
9 Options for ~-KA Specifies output of | If -KS and -KX | -KA 4-31
assembly : assembly list to are specified
list file assembly list file. | at same time,
information -NKA Specifies suppres- the assembler
specification sion of assembly *will ignore
list output to -KS option.
assembly list file.
-KS8 Specifies output of | If -KA and -NKS 4-34
symbol list to -NKA, -KS and
assembly list file. | -NKS, or -KX
and -NKX
-NKS Specifies suppres- are specified
sion of symbol at same time,
list output to whichever you
assembly list file. | specified
~KX Specifies output of | later takes -NKX 4-37
cross-reference list| precedence.
to assembly list
file. : -P option will
-NKX Specifies suppres- be ignored if
sion of cross- -NKA, -NKS,
reference list and -NKX are
output to assembly specified at
list file. gsame time.
10 Options for -LW [no. of Specifies no. of If -NP is -LW132 4-39
assembly list columns] columns per line specified at (-LW80:
file format of assembly list same time, console
specification file. ~LW will be output)

ignored.

Item | Classification | Description Function Relation with | Default See
Format Other Options | Assumption | Page
10 Options for -LL [no. of Specifies no. of If -NP is -LL66 4-44
assembly list lines] lines to be printed specified at {No page
file format per page of assembly | same time, ejecticn:
specification list file. -LL will be conscole
{contd) ignored. output)
-LH character- Specifies character If -NP is None 4-47
skring string to be printed | specified at
as title in header same time,
of assembly list -LH will be
file, ignored.
-LT no. of Specifies no. of If -NP is -LT8 4-51
columns columns for specified at
tabulation. same time,
-LT will be
ignored.
-LF Specifies addition If -LF and -NLF 4-55
of formfeed code -NLF are
to the end of specified at
assembly list file. same ktime,
-NLF Specifies non-addi- whichever you
tion of formfeed specified
code to the end of later takes
assembly list file. precedence.
If-NP is
specified at
same time,
~-LF will be
ignored,
11 Options for -E[filename] Specifies output of If -E and -NE { -NE 4-57

error list
file ocutput
specification

error list file to

file. -

-NE

Specifies suppres-
sion of error list
file ocutput.

are specified
at same time,
whichever you
specified
later takes
precedence.

Item| Classification | Description Function Relation with | Default See
Format Other Opticns | Assumption | Page

12 Option for ~-F [filename] Specifies input of Independent Allows 4-59
parameter file assembler options ' input of
specification or input filename(s) options &

from file specified filenames

by this option. from only
command
line.

13 Option for -T pathname Specifies creation Independent Path spec- | 4-61
temporary file of temporary file ified by
creation path on path specified environment
specification by this option. variable

TMP,

14 | Option for - Specifies output of All other No HELP' 4-63
HELP message HELP message to options message 1is
display console. specified at displayed.
specification same time

will bhe
ignored.

9-2

I'tem | Classification | Description Function Relation with | Default See
Format Other Options | Assumption | Page
1 Options for -0 [filename] Specifies output of If -0 and -NO | -0 input 5-50
load module load module file. are sgpecified | filename
file output -NO Specifies non-output | at same time, | .LNK
specification of load module file, | whichever you
specified
later takes
precedence.
2 Options for -J Specifies forced If -J and -NJ | -NJ 5-52
forced load output of load are specified
module file module file even in at same time,
output speci- . case of fatal error. | whichever you
cation -NJ Specifies non-output | specified
of load module file later takes
in case of fatal precedence,
error.
3 Options for -G Specifies addition If -G and -NG | -NG 5-54
debugging of debugging infor- are specified
information mation to load at same time,
out put module file, whichever you
specification -NG Specifies non-addi- specified

tion of debugging
information to load
module file,

later takes
precedence.

If -NG is
specified at
same time
with -KP or
-KL, neither
local symbol
list nor
PUBLIC symbol
list will be
output.

Suot3do I9NUIT JO 3ISTT Z°D

of map list teo link
list file.

whichever you
specified
later takes
precedence.

If-NKM, -NKP,
~-NKL are all
specified at
same time,

-P will be
ignored.

Item| Classification | Description Function Relation with | Default See
‘ Format Qther Options | Assumption | Page
4 Options for -8 {area-name] Specifies creation If -5 and -NS | -NS 5-56
stack of PUBLIC symbols are specified
reserving for stack area at same time,
symbol reservation. whichever you
creation -NS Specifies non- specified
specification creation of PUBLIC later takes
symbols for stack precedence.
area reservation,
5 Option for -p filename Specifies input of Independent None 5-59
directive file file specified by
specification this option as
directive file,
6 Options for -P [filename] Specifies output of If -P and, -NP | -P input 5-61
link list link list file. are specified | filename
file output at same time, .MAP
specification -NP Specifies non-output | whichever you
of link list file. specified
later takes
precedence.
7 Options for ~-KM Specifies ocutput of If -KM and -KM 5-63
link list file map list to link -NKM are '
information list file, specified at
specification -NKM Specifies non-output | same time,

of local symbol list
to link list file.

If -NG is
specified at -
same time
with -KP or
KL, neither
PUBLIC symbol
list nor
local symbol
list will be
output.

Ttem | Classification | Description Function Relation with | Default See
Format Other Options | Assumption | Page
7 Options for -KD Specifies output of If -NEM is -KD 5-66
1link list file directive file to specified,
information link list file. -KD will be
specification -NKD Specifies non-output | ignored.
(contd) of directive file to | If -KD and
link list file. -NKD, -KP
-KP Specifies output of and -NKP, or -NKP 5-69
PUBLIC symbol list ~-KL and -NKL
to link list file. are specified
-NKP Specifies non-output | at same time,
of PUBLIC symbol list] whichever you
to link list file. specified
-KL Specifies output of later takes -NKL 5-69
local symbol list to | precedence.
link list file.
~NKL Specifies non-output

Item| Classification} Description Function Relation with Default See
Format Other Qptions Assumption i Page
8 Options for -LL {no. of Specifies no. of If -NP is ~-LL66 5-75
link list file|l lines] print lines per page | specified, (No page
format speci- of list. -LL will be ejection:
fication ignored. ' console
output)
-LF Specifies addition If -LF and -NLF 5-78
of a formfeed (FF) -NFL are
code to the end of specified at
ligt file, same time,
-NLF Specifies non-addi- whichever you
tion of formfeed specified
code to the end of later takes
list file. precedence.
If -NP is
specified,
~LF will be
ignored.
9 Options for -E [filename] Specifies output of If -E and -NE | -NE 5-80
errcor list error list file, are specified
file output -NE Specifies non-output | at same time,
specification of error list file. whichever you
specified
later takes
precedence.
10 Option for -B filenamne Specifies input of Independent None 5-82

library file
specification

file specified by
this option as
library file.

Classification

0L-2

Item Description Function Relation with Default See
: Format Other Options Assumption | Page

11 Option for -1 pathname Tells the linker to If library Path spec- {5-84
library file [,pathname]... read library file(s) | file without ified by
read path from path({s) speci- pathname is envircnment
specification fied by this option,., | specified with | variable

-B option, -T LIB78Kn
option becomes | {(n=0,1,2,
invalid. 3,6)

12 Option for ~-F [filename] Specifies input of Independent | Allows 5-86
parameter file assembler options input of
specification or input filename(s) options &

from file specified filenames

by this option. from only
command
line.

13 Option for -T pathname Specifies creation Independent Path spec- |5-88
temporary file of temporary file ified by
creation path on path specified environment
specification by this option. variable

TMP.

14 Option for -- Specifies output of All other No HELP 5-90
HELP message HELP message to cptions message is
display console. specified at displayed.
specification same time

will be
ignored.

LL-D

Item | Cilassification | Description Function Relation with [Default See
Format Other Options | Assumption | Page
1 Options for -0 [filename] Specifies output of If -0 and -NO | -0 input 6-12
HEX-format HEX-format object are specified | filename
object module object module file. at same time, | .HEX
file output ~-NO Specifies non-output | whichever you | (.H1 to
specification of HEX-format object | specified .H15 for
module file. ‘| later takes extension
precedence. space.)
2 QOptions for -5 [filename] Specifies output of If -5 and -NS | -5 input 6-15
symbol table symbol table file. are gpecified | filename
file output -NS Specifies non-ocutput | at same time, .SYM
specification of symbol table whichever you| (.51 to
file. specified .515 for
later takes extension
precedence. space)
3 Options for -R Specifies output of If -R and -NR | -NR 6-18
object code HEX-format object are specified
output seguence codes by sorting in at game time,
specification address seguence. whichever you
~NR Specifies output of | specified

HEX-format object
codes in the order
as stored in input
load module file.

later takes
precedence.
If -NO is
specified,
-R will be
ignored.

suoT3d0 12319AU0D 309(q0 JO 3STT €'

Z1-2

will be
ignored.

Item | Classification | Description Function Relation with | Default See
Format Other Options | Assumption |Page

4 Option for -U fill-value [,| Specifies output of If -NO is None 6-20
abject code [start], size] fill value specified | specified,
fill specifi- by this option as -U will be
cation object code to ignored.

address area to which
no HEX-format object
code is output.

5 Options for ~E [filename] Specifies output of If -E and ~-NE | ~-NE 6-23
error list error list file. are specified
file output ~NE Specifies non-output | at same time,
specification of error list file. whichever you

specified
later takes
precedence.

6 Option for -F [filename] Specifies input of Independent Allows 6-25
parameter file object converter input of
specification options or input options &

filename(s} from input

file specified filenames

by this option. from only
command
line.

7 Option for - Specifies output of All other No HELP 6-27
HELP message HELP message to options message is
display console. specified at displayed.
specification same time

£1-D

suoT3dp URTIRIQTT IO ISTT §°O

Item | Classification | Description Function Relation with | Default See
Format Other Options | Assumption [Page
1 Options for -ILW [no. of Specifies the no. of | If LIST sub- ~-LW132 7-13
list file columns] print celumns per command is {-LW80:
format line of list file. not specified,| console
specification all these output)
~LL [no. of Specifies the no. of | options will -LL66 7-15
lines] print lines per page | be ignored. (no page
of . list file, ejection:
console
output)
-LF Specifies addition If ~-LF and -NLF 7-17
of formfeed {(FF) code] -NLF are
to the end of list specified at
file. same time,
-NLF Specifies non-addi- whichever you
tion of formfeed (FF)| specified
code to the end of later takes
list file. precedence
2 Option for -T pathname Specifies creation of] Independent Path spec- | 7-19
temporary file temporary file on ified by
creation path path specified by environment
specification this option. variable
T™MP
3 Option for - Specifies output of All other No HELP 7-21
HELP message HELP message to options message
output console. specified at is output.
specification same time

will be
ignored.

FL-D

Relation with

Ttem |Classification | Description Function Default See
Format Other Options | Assumption |Page

1 Option for -R filename Specifies input of Independent -R 8-12
object module object module file. ‘ assembly
file input list file-
specification name.REL

2 Option for -L filename Specifies input of Independent ~-L 8-14
load module load module file, assembly
file input list file-
specification name.LNK

3 Option for -0 filename Specifies output of Independent -0 B-16
absolute absolute assembly assembly
assembly list list file. list file-
specification name.P

4 Options for -E [filename] Specifies output of If -E and -NE | -NE 8B-18
error list error list file. are specified
file output -NE Specifies non-output | at same time,
specification of error list file. whichever you

specified
later takes
| precedence.

5 Option for ~-F filename Specifies input of Independent Allows 8-20
parameter file input filename and input of
specification options from file coptions &

specified by this filenames

option. only from
command
line.

6 Option for -- Specifies output of All other No HELP 8-22
HELP message HELP message to options message

output
specification

console.

specified at
same time
will be
ignored.

is output.

suoT3dQ I83I9AUOD 3ISTT FO 3ISTT G°D

L-d

Item | Subcommand | Description Format Function Abbrev. | See
Name Format Page
1 CREATE CREATEA library-filename Creates a new library C 7-25
[Atransaction] file.
2 abDD ADDAlibrary-filename A Adds a module to a A 7-27
transaction library file.
3 DELETE DELETEAlibrary-~filename A Deletes a module from D 7-29
: { A module-name[A , ...]&) a library file.
4 REPLACE REPLACEAlibrary-filename A Replaces a module in a R 7-31
transaction library with another
module.
5 PICK PICK A library-filename A Selects and copies a P 7-33
‘ { A module-namel A, ...]lA) module from a library
file.
6 LIST LIST [A option] library-filename Outputs information on L 7-35
[A(A module-name[&, ...14&)] the modules stored in a
library file.
option::= -P/-NP
-OAfilename
7 HELP HELP Outputs HELP message Lo H 7-37
the console.
8 EXIT EXIT Terminates the librarian.| E 7-38

“d XIANId4V¥

SANVWWODHENS NVYIJYAIIT J0 LSIT

NEC

	COVER
	INTRODUCTION
	CHAPTER 1. GENERAL
	1.1 Assembler Overview
	1.1.1 What is an assembler?
	1.1.2 What is a relocatable assembler?

	1.2 Functional Outline of Assembler Package
	1.2.1 Creation of source module file with editor
	1.2.2 Structured assembler preprocessor
	1.2.3 Assembler
	1.2.4 Linker
	1.2.5 Object converter
	1.2.6 Librarian
	1.2.7 List converter
	1.2.8 Source debugger

	1.3 Memory Maps
	1.4 Reminders Before Program Development
	1.4.1 Number of files than can be input to Linker
	1.4.2 Restriction on number of symbols
	1.4.3 Maximum performance characteristics of assembler package

	1.5 Features of Assembler Package

	CHAPTER 2. PRODUCT OVERVIEW
	2.1 Contents of Product
	2.2 Form of Supplied File Medium
	2.3 System Configuration

	CHAPTER 3. EXECUTION OF ASSEMBLER PACKAGE
	3.1 Before Executing the Assembler Package
	3.1.1 Confirming the contents of the supplied disk
	3.1.2 Sample program

	3.2 Procedure for Assembler Package Execution
	3.3 Summary of Assembler Package Execution Procedure

	CHAPTER 4. ASSEMBLER
	4.1 Input/Output Files of Assembler
	4.2 Assembler Functions
	4.3 How to Start Up the Assembler
	4.3.1 Starting up the assembler
	4.3.2 Execution start and end messages

	4.4 Assembler Options
	4.4.1 Types of assembler options
	4.4.2 Priority of assembler options
	4.4.3 Description of each assembler option
	(1) Option for processor type specification (-C)
	(2) Options for object module file output specification (-O/-NO)
	(3) Options for forced object module file output specification (-J/-NJ)
	(4) Options for debug information output specification (-G/-NG)
	(5) Options for symbol name length specification (-S/-NS)
	(6) Options for symbol name uppercase/lowercase specification (-CA/-NCA)
	(7) Option for Include file read path specification (-I)
	(8) Options for assembly list file output specification (-P/-NP)
	(9) Options for assembly list file information specification (-KA/-NKA, -KS/-NKS, -KX/-NKX)
	(10) Options for assembly list file format specification (-LW, -LL, -LH, -LT, -LF/-NLF)
	(11) Options for error list file output specification (-E/-NE)
	(12) Option for parameter file specification (-F)
	(13) Option for temporary file creating path specification (-T)
	(14) Options for HELP message display specification (--)

	CHAPTER 5. LINKER
	5.1 Input/Output Files of Linker
	5.2 Linker Functions
	5.3 Memory Spaces and Memory Areas
	5.3.1 Memory spaces
	5.3.2 Memory areas

	5.4 Merging the Input Segments
	5.4.1 Merge types of segments
	5.4.2 Rule for determining the merge type
	5.4.3 Merging the segments
	5.4.4 Segment merging method by merge type

	5.5 Determining the Location Addresses of Segments
	5.5.1 Location types of segments
	5.5.2 Rules for determining the location type
	5.5.3 Rules for determining the segment location addresses
	5.5.4 Procedure for locating segments

	5.6 Link Directives
	5.6.1 Directive file
	5.6.2 Memory directive
	5.6.3 Segment location directive

	5.7 How to Start Up the Linker
	5.7.1 Starting up the linker
	5.7.2 Execution start and end messages

	5.8 Linker Options
	5.8.1 Types of linker options
	5.8.2 Priority of linker options
	5.8.3 Description of each linker option
	(1) Options for load module file output specification (-O/-NO)
	(2) Options for forced load module file output specification (-J/-NJ)
	(3) Options for fdebug information output specification (-G/-NG)
	(4) Options for fstack-reserving symbol creation specification (-S/-NS)
	(5) Options for fdirective file specification (-D)
	(6) Options for flinklist file output specification (-P/-NP)
	(7) Options for link list file information specification (-KM/-NKM, -KD/-NKD, -KP/-NKP, -KL/-NKL)
	(8) Options for link list file format specification (-LL/-LF/-NLF)
	(9) Options for error list file output f specification (-E/-NE)
	(10) Options for flibrary file specification (-B)
	(11) Option for library file read path specification (-I)
	(12) Option for parameter file specification (-F)
	(13) Option for temporary file creation path specification (-T)
	(14) Option for HELP message display specification (--)

	CHAPTER 6. OBJECT CONVERTER
	6.1 Input/Output Files of Object Converter
	6.2 Object Converter Functions
	6.3 How to Start Up the Object Converter
	6.3.1 Starting up the object converter
	6.3.2 Execution start and end messages

	6.4 Object Converter Options
	6.4.1 Types of object converter options
	6.4.2 Description of each object converter option
	(1) Options for HEX-format output module file output specification (-O/-NO)
	(2) Options for symbol table file output specification (-S/-NS)
	(3) Options for object code output sequence specification (-R/-NR)
	(4) Option for object code fill specification (-U)
	(5) Options for error list file output specification (-E/-NE)
	(6) Option for parameter file specification (-F)
	(7) Option for HELP message display specification (--)

	CHAPTER 7. LIBRARIAN
	7.1 Input/Output Files of Librarian
	7.2 Librarian Functions
	7.3 How to Start Up the Librarian
	7.3.1 Starting up the librarian
	7.3.2 Execution start and end messages

	7.4 Librarian Options
	7.4.1 Types of librarian options
	7.4.2 Description of each librarian option
	(1) Options for list file format specification (-LW, -LL, -LF/-NLF)
	(2) Option for ltemporary file creation path specification (-T)
	(3) Option for HELP message display specification (--)

	7.5 Subcommands
	7.5.1 Types of subcommands
	7.5.2 Description of each subcommand
	(1) CREATE subcommand
	(2) ADD subcommand
	(3) DELETE subcommand
	(4) REPLACE subcommand
	(5) PICK subcommand
	(6) LIST subcommand
	(7) HELP subcommand
	(8) EXIT subcommand

	CHAPTER 8. LIST CONVERTER
	8.1 Input/Output Flies of List Converter
	8.2 List Converter Functions
	8.3 How to Start Up the List Converter
	8.3.1 Starting up the list converter
	8.3.2 Execution start and end messages

	8.4 List Converter Options
	8.4.1 Types of list converter options
	8.4.2 Description of each list converter option
	(1) Option for object module file input specification (-R)
	(2) Option for load module input specification (-L)
	(3) Option for absolute assembly list file output specification (-O)
	(4) Option for error list file output specification (-E/-NE)
	(5) Option for parameter file input specification (-F)
	(6) Option for HELP massage display specification (--)

	CHAPTER 9. OUTPUT LISTS OF PROGRAMS
	9.1 Outpur Lists of Assembler
	9.1.1 Header of assembly list file
	9.1.2 Assembly list
	9.1.3 Symbol table list
	9.1.4 Cross-reference list
	9.1.5 Error list

	9.2 Output Lists of Linker
	9.2.1 Header of link list file
	9.2.2 Map list
	9.2.3 PUBLIC symbol list
	9.2.4 Local symbol list
	9.2.5 Error list

	9.3 Output List of Object Converter
	9.3.1 Error list

	9.4 Output List of Librarian
	9.4.1 Library information output list

	9.5 Output Lists of List Converter
	9.5.1 Absolute assembly list
	9.5.2 Error list

	CHAPTER 10. UTILIZATION OF ASSEMBLER PACKAGE
	10.1 How to Execute Each Operation with Efficiency (Use of EXIT Status Function)
	10.2 How to Prepare or Complete the Development Environment (Use of Environment Variables)
	10.3 How to Interrupt Program Execution
	10.4 Hoe to Increase the Readability of Assembly List
	10.5 How to Save Yourself Trouble in Program Invocation
	10.5.1 Describing control instructions in the source program
	10.5.2 Creating a parameter file or subcommand file

	10.6 Creation of Object Module Library File
	10.7 How to Change the Option Mark (Use of Environment Variable)

	CHAPTER 11. ERROR MESSAGES
	11.1 Assembler Error Messages
	11.2 Linker Error Messages
	11.3 Object Converter Error Messages
	11.4 Librarian Error Massages
	11.5 List Converter Error Messages

	APPENDIX A. SAMPLE PROGRAM
	A.1 Source Lists
	A.2 Execution Examples
	A.3 Output Lists
	A.3.1 Assembly Lists
	A.3.2 Symbol Lists
	A.3.3 Cross-reference Lists
	A.3.4 Map List
	A.3.5 PUBLIC Symbol List
	A.3.6 Local Symbol List
	A.3.7 Library Information Output List
	A.3.8 Absolute Assembly List

	APPENDIX B. LIST OF HINTS ON USE
	APPENDIX C. OPTION LISTS
	C.1 List of Assembler Options
	C.2 List of Linker Options
	C.3 List of Object Converter Options
	C.4 List of Librarian Options
	C.5 List of List Converter Options

	APPENDIX D. LIST OF LIBRARIAN SUBCOMMANDS

