To our customers,

Old Company Name in Catalogs and Other Documents

On April 1!, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

8.

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

USER'S MANUAL “(ENESAS

RA78K SERIES ASSEMBLER PACKAGE
FOR LANGUAGE

ooooooooooooooooooo

Printed in Japan

USER'S MANUAL

NEC

RA78K SERIES ASSEMBLER PACKAGE
FOR LANGUAGE '

No part of this document may be copied or reproduced in any form or by any means withaout the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document,

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a davice described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights
or other intellectual property rights of NEC Corporation or of others.

INTRODUCTION

This manual is designed to facilitate correct understanding of the
basic functions of each program in the RA78K Series Assembler
Package (hereinafter referred to as "this package or the package")
and the methods of describing source programs for the RA78K
Series,

This manual does not cover how to operate the respective programs
of the RA78K series assembler package. Therefore, after you have
comprehended the contents of this manual, read the RA78K Series
Assembler Package User's Manual for Operation (hereinafter-
referred to as "the Operation Manual") to operate each program in
the assembler package. (Because the Operation Manual has been
published in separate editions for the operating environments of
the respective assembler packages, use the operation manual
applicable to the operating environment of your assembler
package.)

Descriptions relating to the RA78K/I, RA78K/II and RA78K/III in
this manual are applicable to the package product versions V3.0
and upwards of the RA78K series assembler package. In all
application examples in this manual, 78K/III series programs have

been used.

Structured assembler

Preprocessor
Assembler]
Linker]
| RA78K Series Assembler Package
Object Converter]
Librarian |

List Converter]

[Target Devices])
The software of the following microcomputers can be developed
with this package:

Package Device
RA78K/0 78K/0 series: uPD78012, uPD78014
RA78K/I 78K/I series: uPD78112
uPD78134, uPD78136, uPD78138
RA78K/II | 78K/II series: uPD78210, uPD78212, uPD78213,
uPD78214

uPD78220, uPD78224
uPD78233, uPD78233
RA78K/III 78K/II1I series: uPD78310A, uPD78312A
uPD78320, uPD78322,
uPD78330. uPD78334
RA78K/VI 78K/VI series uPD78600, uPD78602

[Readers of Manual]

Although this manual is intended for those who are familiar with
the functions and instructions of the microcomputer subject to
software development, the manual can also be used by those who use

an assembler program for the first time.

[Organization of Manual]
This manual consists of the following six chapters and appendixes:

Chapter 1 - General
Outlines the functions of this package including the role of the
package in microcomputer development.

Chapter 2 - How to Describe Source Programs

Describes the general rules applicable to the description of a
source program such as the basic configuration and description
format of source programs, and the expressions and operators of
the assembler.

ii

Chapter 3 - Directives
Details the description format, function, and usage of each of the

assembler directives, including application examples.

Chapter 4 - Control Instructions _
Details the description format, function, and usage of each of the

assembler control instructions, including application examples.

Chapter 5 - Macros
Outlines macro functions such as macrocdefinition, macro reference
(macrocall), and macroexpansion.

Macro directives are also explained in Chapter 3.

Chapter 6 - Product Utilization
Introduces some measures recommended for effective utilization
of this package.

Appendixes ,

Contain a list of reserved words, a list of directives, and
maximum performance characteristics.

The 78K series instruction sets are not detailed in this manual.
For these instructions, refer to the user's manual of each

microcomputer subject to software development.

[Recommended Usage of Manuall

For those who use an assembler for the first time: Read from
Chapter 1, General of this manual,.

For those who have a general understanding of assembler programs:
You may skip Chapter 1, General of this manual. (However, it is
advisable to read Section 1.3, "Reminders Before Program
Development”,)

Source programs for the 78K series can be described in several
different ways. Be sure to read Chapter 2, "How to Describe Source

Programs".

iii

For those which wish to know the directives and control instruc-
tions of the assembler: Read Chapters 3 and 4, respectively,

because the format, function, use, and application examples of

each directive or control instruction are detailed in these

chapters. A list of directives is provided in Appendix B. Use this

list for guick reference.

[Symbols and Abbreviations}

The following symbols and abbreviations are used in this manual:

Symbol

Meaning
Continuation (repetition) of data in the same format
Parameter(s) in brackets can be omitted.

Characters enclecsed in ' '

(single quotes) must be
input as is.

Characters enclosed in " " (double quotes) must be
input as is.

Characters enclosed in parentheses must be input
as is. _

Characters enclosed in ¢ > must be input as is
(or indicates a title). '

Important point

Indicates one or more Blank or TAB characters.

This part of the program description is omitted.

iv

TABLE CF CONTENTS

CHAPTER 1 GENERAL
1.1 Assembler Overview " a & 8 & & &8 B S SR 4SS E S A A S rS S ESN e 1

1.7.7 What is an assembler?ceeceeecccesoncscacsnnna 1-

1.1.2 What is a relocatable assembler?cceeccecsns

Y
L}
O h = -

1.2 Functional Outline of Assembler Package
1.2.1 Creation of source module file with editor 1-10

1.2.2 Structured assembler preprocCessSoOrcescessseaes 1-11

1.2.3 Assembler ,..c. ittt ineeesatansonson csesenees 1-12
T1.2.4 Linker ...t ciiieeessnnessnnsassnannssnns seees 1-13
1.2.5 Object convertercciieenenvacass trearsscacans 1-14
1.2.6 Libraria@n .ececsssssscccasosassoncasennssaannscnssa 1-15
1.2.7 List converterc.ceeeeevenen crssersassenersnsaa 1-16
1.3 MEMOXY MaPS vivernernsnsnranesccennsasssrtoasannarasnnsesss 1-17
1.4 Reminders Before Program Developmentcic00000. eea 1-23
1.4.1 Number of files that can be input to Linker 1-23
1.4.2 Restriction on number of symbols eseas 1-23

1.4.3 Maximum performance characteristics of

. assembler package ...ccceaesaonas emeraaraernan ve. 1-24
1.5 Features of Assembler Package .s.ecevscenss ceereseeenns 1-25
CHAPTER 2 HOW TO DESCRiBE SOURCE PROGRAMS st rrereseens 2-1
2.1 Basic Configuration of Source Programceesse ceseee 2-1

2.1.1 Module headervceceirerrvnecectansans ceeesaren 2-2

2.1.2 Module bodycveesueennns veemstsaenson reeseaeee 2-2

2.1.3 Module tail ...iiieennennaisocsasenoanansansnas ees 2-3

é.1.4 Overall configuration of source program 2-3

2.1.5 Description example of source programee.... 2-5

2.2 Description Format of Source Programceeesccescss 2-8
2.2.1 Configuration of statement cererasas 2-8
2.2.2 Character set ...ttt nvenseresnsseassnaanas 2-9
2.2.3 Fields of statement Cesessaananan ceeeanes 2-13

2.3 Expressions and Cperators casasneena ceaenran 2-25
2.3.1 Functions of operators A 2-27
2.3.2 Restrictions on Operations treearaen .. 2-46

2.4 Bit Position Specifiervsiererencscnccrtssrssssnnnnas 2-52

2.5 Characteristics of Operandscveeeveancannnns ceraen . 2-56
2.5.1 Size and address range of operand value, 2-56
2.5.2 Symbol attributes and relocation

attributes of operands crssssasaaasa rasens . 2-59

CHAPTER 3 DIRECTIVES tsseenrnanas S e semsssasnessaseanns 3-1

3.7 Overview of Directivesoveveveenan Chheesrsaesaas 3-1

3.2 Segment Definition Directivesc.c.. ersserssraasn 3-3
(1) CSEG ..vvvenene Cessasssanas cheiessesasesaann censess 3-5
(2) DSEG vevvneannsnns Ceteceraseesaaane fresersasasanans 3-14
(3) BSEG tuveuenenesenenansnssnensesnaneneneaeaeananen " 3-20
(4) CRGvuun sererssens cestsassranaan casaas rverervass 3-28
(5) ENDS 4utiitieiennennenoennesoansnsssassansnansnnnns 3-32

3.3 Symbol Definition Directives ...vevecencccaceseans ceves 3-34
(1) BQU ..iviiiienancnnnns crssesesreesnnsssaesa ceseseas 3-35
(2) EQUD (applicable to 78K/VI only) ...ceeeernnerecns . 3-42
(3) SET Ceressessanens teteetsuranrannnnnens ceseass 3-44

3.4 Memory Initialization and Area Reservation
Directivescicvenennnans eeeeressrsssesssneanaenns 3-47
(1) DB cvievnvanecanse Ceseesecssessasaasnaasnesnnansenns 3-48
(2) DW tverensans feteresesesaasasentats et tatabann 3-51
(3) DS cersasne St sesasesesnesatesatsasennonenena 3-55
(4) DBIT e esesssaneaas e resensssanesanennan .. 3-58

3.5 Linkage Directives ..iiieeiereeareeeecsncenasonensannns 3-60
(1) EXTRN .evienennncnsnvncnnnonaanans Cenesaan ceenanaan 3-62
(2) EXTBIT0v... ceremasrsasaanaran sheaeann e seasnan 3-65
(3) PUBLIC creecasnaa G heasea e ee sttt arannan 3-67

3.6 Object Module Name Declaration Directiveeeeeeeeess 3-70
(1) NAMEvinvrennnns S aeteescsssseescesscaassnasannan 3-M1

3.7 Automatic Branch Instruction Selection Directive 3-73
(1) BR tiiiirirerasesasenenssecsnasasnanna Feemerenanua . 3-74

3.8 General-purpose Register Selection Directive 3-78
(1) RSS wruurvnnnnnn. @ttt reeeeecaa e 3-79

vi

3.9 Macro Directives ...iieieesessessnssessnsscssossasnssaans
{1) MACRO ...t ieinnccecteatosansscncsan st s strat e aas
{(2) LOCAL ..ciceecnannnnn eveseneserrrnreans cessensnsens
(3) REPT .vevnvuene s eaeretrtesessesssassseanansuans .
T 3 T Seereresesns .o
(5) BXITM ...ttt ittt ttectocacosenaasnensanssannnannns

(6) ENDM .ieeesecesvsnnsonsscnenansnananansasnscancs

3.10 Assembly Termination Directivevcrernveneoncnonsns
{1) END ..eenennesns tedaesrerareraserre st e e
CHAPTER 4 CONTROL INSTRUCTIONS .:i.vancvscsscansasssasasssans
4,1 Overview Sf Control Instructions ...evvieeverevonesonss
4,2 Processor Type Specification Instruction ceeenen
{1) PROCESSOR ..vesnvvnnsoos e e e sscanan tersat et anenans .

4.3 Debug Information Output Control Instructions
(1) DEBUG/NODEBUG ..vteveesnansncanncnnnsnn crereaeeaaes

4.4 Cross-reference List Output Control Instructions
(1) XREF/NOXREF . .iceeieriatesosasansasanossssasanssnna

4,5 INCLUDE Control Instructionc.iiciiiiesniannsannens
{1) INCLUDE Gt st e eesescaraserransernnns cesracsaa

4.6 Asseﬁbly List Control Instructionsc.cievecnencncacs
(1) EJECT tueeeevsosvsnsaosnsancasacasnsncanannss ceseanne .

(2) LIST/NOLIST tvvveunnnesanasntosonensssancasssaannns

(3) GEN/NOGEN . .vvevvcecennenanneensanaennnnnnn Ceeeeaan

{(4) COND/NOCOND ..vevcesnceasnnsononnasnanns cnecensseenans

(5) TITLE cvvevcennnnonoens Ceeesiacseaaasans Ceereaseanns

(6) SUBTITLE T ersasensass e

4.7 Conditional Assembly Control Instructions
(1) IF/_IF, ELSEIF/ ELSEIF, ELSE, ENDIF .evueoueeuennsn

{2) SET, RESET ..veevocnscccnnrcne ctesessssarasensesees
CHAPTER 5 MACROS ...veceeesnsns et s rescsetensenensnasnnnns .
5.1 Overview of Macroc.ec... creesssencssanssnarsrnenees
5.2 Utilization of MACros ...ccceeestecssoscaessoncoonnnnsse
5.2.1 Macrodefinitioncciieeesnn semenarasaaeanana.
5.2.2 MacTo refl@rencCe ...iceesssssssscnusnvasnovesonnnen
5.2.3 Macroexpansion ...essescscacecacs cetraestannenn .

3 Symbols within Macrocecceevesccenss e eencenannn
5.4 Macro Operators cessennenns Ceies st ecraaaaenann

CHAPTER 6.

APPENDIX A, LIST OF RESERVED WORDS

PRODUCT UTILIZATION

A.1 Reserved Words for
A.2 Reserved Words for

A.3 Reserved Words for

A.4 Reserved Words for

APPENDIX B. LIST OF DIRECTIVES

Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig,
Fig.
Fig.
Fig.
Fig.

1-9,
1-10.
1-11,
1-12.
1-13.
1-14.
1-15.
2-1.
2-2.
2-3.
2-4,
2-5.

APPENDIXES

T8K/0 tvvvennnn
78K/TI vvveeenn.
78K/ITII suvveune
78K/VI

LIST OF ILLUSTRATIONS AND TABLES

Assembler Packageccee

Flow of Assembleriiceecasnsensns -

Development Process of Microcomputer-applied

Product

Software Development ProCeSS ..e.eeecessecscasas

Assembly Phase by This Packageceeescsnnenes

Re—assembly for Debugging LR N A R R L

Program Development Utilizing Existing

Modules ..

Program Development Procedure with This
Package

Creation of Source Module File

Function of Structured Assembler Preprocessor ..

Functions
Functions
Functions
Functions
Functions

Configuration of Source Module

Overall Configuration of Source Program

of
of
of
of
of

Assemblercceenna

LinKker ..ieeveerrocronnsesonnnnes .e

Object Convertervivevnvarons

Librarianoeeeeeeceseecscesnenens

List Converter

2 B e s b s s e e e

Examples of Source Module Configurations

Configuration of Sample Program

Fields That Make Up a Statementvevecenens

viii

A-1
A-2
A-3
A-5
A-%
B-1
C-1

1-1
1-2

-
I

—_ -
i 1
~] U W

-
|

1-8

1-9
1-10
1-11
1-12
1-13
1-14
1-15
1-16
2-1
2-3
2-4
2-5
2-8

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Table

Table 2-2
Table 2-3
Table 2-4

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table
Table

Table

Table
Table

3-1.
3-2.
3-3.
3-4.
3-5.
3-6.

2-6.
2-7.
2-8.
2-9.

2-10.

2-11.
2"12.

2-14.,
2-15.

2—160

2-17.
2-18.

Memory Allocation to Segmentsiecvcreeeneann
Relocation 6f Code Segment004 chthersean
Relocation of Data Segmenteeeesseseeences .
Relocation of Bit Segment ceecsncanoenas

Relocation of Absolute Segmentvveevevecanes

. Relationship of Symbols between Two Mcdules

Instructicons That Can Be Described in

Module Header teseenea vessrane fens
SYMbOl TYPeS tuiiieenneroennnnennnn trssreeanenns
Types and Values of Symbol Attributes
Methods of Representing Numeric Constant

YD 4ttt et innennenensasssssasonnensnannsannas
Special Characters That Can Be Described in
Operand Filedciiiiiitieieneoncerenonenns
Types of Operators crereaneasan cresnans
Order of Precedence of Operatorseeeesen.
Types of Relocation Attributescocvenn..

Combinations of Operators and Terms by
Relocation Attributeiiiiiiinnnnrinnnrenns
Combinations of Operators and Terms by
Relocation Attribute (External Reference

TErM) eoeeeeernnnsnassnsnanas Grereenenaaen ceeane
Types of Symbol Attributesiceveeviennan.
Combinations of Operators and Terms by

Symbol Attribute reraraseresassaane

Combinations of 1st and 2nd Terms by
Relocation Attributeciiceveirenen. eevanas
Values of Bit Symbols teesesenanna .
Sizes and Address Ranges of Operand Values

of Instructions et e et et e .
Sizes and Address Ranges of Operand Values

of Directivesceciieneennnn Cerseseserasenn
Attributes of Instruction Operandscecee..
Attributes of Directive Operandsceveune.

ix

Table
Table

Table
Table
Table
Table
Table
Table
Table

Table
Table

Table 4
Table 4-2

3-1.
3-2.

3-10.
3-11.

List of Directives;........
Segment Definition Methods and Memory Address

AlloCcation ..cevieeenaseessiorccnnnasasansennas
Relocation Attributes of CSEGccveeemnnnnnn

Default Segment Names
Relocation Attributes
Default Segment Names
Relocation Attributes

Default Segment Names

of
of
of
of
of

CSEG
DSEG

BSEG

Representation Formats of Operands Indicating

Bit Values LI R R Y LB I L R R A O B SRR B I B R I R N N B RN A

Optimization Conditions of BR Directive ..

Absolute Names and Function Names of
General -purpose Registers
List of Control Instructions .

Processor Types for Target Devices

.....

3-1

3-3
3-7
3-9
3-16
3-17
3-21
3-24

3-37
3-76

CHAPTER 1. GENERAL

1.1 Assembler Overview

The RA78K Serieg Assembler Package is a series of programs
designed to translate each source program coded in the assembly
language for the 78K series microprocessors, into machine language
coding.

The assembler package contains six programs: Structured Assembler
Preprocessor, Assembler, Linker, Object Converter, Librarian, and

List Converter.

Structured assembler

preprocessor

Assembler

Linker

Object converter

Librarian

R L e L e N

List converter

Fig. 1-1. Assembler Package

1.1.1 What is an assembler?

(1) Assembly language and machine language
An assembly language is the most fundamental programming
language for microprocessors.
To have a microprocessor do its job, programs and data are
required. These programs and data must be written by a human
being (i.e., a programmer) and stored in the memory section of
a microcomputer. Programs and data that can be handled by the
microcomputer is nothing but a sét or combinations of binary
numbers which is called machine language (i.e., the languaqge
that can be understood or interpreted by the computer).
To create a program in machine language coding, namely, by
using a set of binary numbers is not an easy job for a
programmer, because it's difficult for the programmer to
remember the coding and the programmer is likely to make
errors in coding.

1-1

Because assembly language instructions are in one-to-one
correspondence with machine language instructions, the
assembly language can give the computer a detailed or specific
instruction {for example, improving the I/O processing speed).
For this reason, there is a method of creating a program
using an abbreviated symbol (or mnemonic symbol) which
represents the meaning of a machine language instruction to
assist the human memory. A programming language system by

this symbolic coding is called an assembly language.

To translate a program created in the assembly language into

a set of binary numbers that can be understood by the micro-
processor, another program is required. This program is called
an assembler. '

Program coded in
Program written in - a set of binary
assembly language pgggg%%tlon numbers

::> Translation ‘_;>

Y 7

{Source module file) {Assembler) (Object module file)

Fig. 1-2. Flow of Assembler

(2) Development of microcomputer-applied products and role of
this package
Fig. 1-3 illustrates the standing of the programming in
assembly language in the development process of microcomputer-
applied éroduct.

Product
planning
System
design) -
Hardware Software
development development
Logic Software
design design
Program coding
. in assembly
Manufacturing language:

Inspection

o>
NO OE:::> ' YES

YES Debugging
o>
YES
System
evaluation
Product
marketing

Fig. 1-3. Development Process of Microcomputer-applied Product

The software development process will be further detailed
in Fig. 1-4 below.

Software
development

Preparation of
program specs

|
N

Preparation of
flowchart

] e in assembly language for 78K series
Coding

—

Editing of | - Creates an assembler source mcdule
source module file with the editor.

------ Creates an object module file.

------ Checks the object module file for
proper operation using a hardware
debugger {e.g., in-circuit emulator).

Debugging

NO

System
evaluation

Fig. 1-4. Software Development Process

1-4

The assembly phase in the software development process will

be reviewed in further detail by giving an example of this
package. '

rom Editing
of source
: odul

Assembler Outputs an object module
file
' Any
YES assembly
error?
NO

Linker Outputs a load module file.
Object OQutputs a HEX-format object
converter medule file,

(To Debugging)

Fig. 1—5..Assembly Phase by This Package

1.1.2 What is a relocatable assembler?
The machine language translated from a source language by the
assembler will be stored in the memory of the microcomputer before
use. In this case, in which memory location each machine language
instruction will be stored must have been determined. Therefore,
information on "the allocation of each machine language instruc-
tion to a specific address in memory" will be added to the machine
language converted by the assembler. ‘
Depending on the method of allocating addresses to machine
language instructions, an assembler can be broadly divided into an
absolute assembler and a relocatable assembler.
o Absolute assembler
Allocates the machine language instructions converted in
one-time assembly operation to absolute addresses.
© Relocatable assembler
Addresses determined for the machine language instruc-
tions converted in one-time assembly operation are
tentative. Absolute addresses will be determined by a
program called the linker.

In the past, when a program was created with the absolute
assembler, programmers had to, as a rule, complete programming at
a time. However, if you create a large program at a time, the
program becomes complicated, making analysis and maintenance of
the program troublesome. To avoid this, such a large program is
developed by dividing it into several subprograms (i.e., modules)
for each functional unit. This programming technique is called
the mecdular programming.
The relocatable assembler is an assembler suitable for modular
programming. The following advantages can be derived from modular
programming with the relocatable assembler:
(1) Increase in development efficiency
It's difficult to write a large program at a time.
In such a case, divide the program into modules for each
function and the program can be developed with two or more
programmers engaged in writing subprograms at the same time,
This will certainly increase development efficiency of the

program.

1-6

If any bugs are found in the program, you do not need to
re-assemble the entire program just to correct part of the
program. Only the subprogram (module) requiring correction(s)
can be re-assembled. This will help shorten the debugging

time.
Program consisting of Program consisting of
single module two or more modules
Module Module
. Module
Entire
Bugs b 3 % % program
are rmust be Bugs
found | : assembled | po xxxx only this
again. found ! module .
Module need to be
assembled
again.
Module

Fig. 1-6. Re-assembly for Debugging

(2) Utilization of resources
Highly reliable, highly versatile modules which have been
previously created can be utilized for creation of another
program, - If you accumulate such high-versatility modules as
software resources, you can save time and labor in developing

a new program.

Module A Module B Module C Module D

New -
module

> | Module A

" New
module

Module D|<¢

New program

Fig. 1-7. Program Development Utilizing Existing Modules

1-8

1.2 Functional Outline of Assembler Package

An ordinary program development procedure with this assembler
package is illustrated in Fig. 1-8. The development of a program
is basically performed by using assembler, linker, and object
converter programs.

Hereafter, programs such as Assembler, Librarian and List
Converter are collectively referred to as "the assembler package

or this package" and the assembly program is referred to as the
assembler.

C source module file

o . Include
[y) a
g I Compiler I file
: i
v
o
H Startup Assembly Object
module c) source module
ﬁ) file for module ﬁ) file
\\ C compiler file /
Assembly
list
file
Library
ﬁ) file
[
n
w0
g
T
=
L
o
fu
Q
=
u
I
D
Absolute
assembly
(P list
file
1E sSource
o controller debugger
g "'-.,_‘_\ ///
& =~ RS-232-C -
® ~~ - =T RS-232C
ot T a~
In-ecircuit
emulator

Fig. 1-8. Program Development Procedure with This Package

1-9

1.2.1 Creation of source module file with editor

Divide one program functionally into several modules.

Each module becomes the unit of coding as well as the unit of
input to the assembler. A module serving as the unit of input to
the assembler is called a source module.

After coding each source module, the source module is written into
a file with the editor. The file thus created is called a source
module file.

The source module file becomes an input file to the assembler.

Program Source module

‘Source
module

END

Source ~
module ~ o

~ END

END

Source
module

END |

Write to' file
{Editor)

¢

Source module file

Fig. 1-9. Creation of Source Module File

1.2.2 Structured assembler preprocessor

The structured assembler preprocessor is a program for implement-
ing structured programming in the assembly language. This program
accepts a source program written in the structured assembly
language as an input file and outputs an assembler source module
file. |

For details of the structured assembler preprocessor and
structured assembly language, see the ST78K Series Structured
Assembler Preprocessor User's Manual published separately.

Structured
assembler
source
(::) file

Input

Structured

assembler

preprocessor

Qutput
Assembler
source

CP file

Fig. 1-10. Function of Structured Assembler Preprocessor

1.2.3 Assembler

The assembler accepts assembler source module files as input files
and translates assembly language into machine language (a set of
binary numbers). If any coding error is found in the input source
module, the assembler outputs an assembly error. If no assembly
error.is found, the assembler outputs an object module file which
contains machine language information and relocation information
relating to the allocation address of each machine language
instruction. The assembler also outputs information at assembly

time as an assembly list file.

Source module file

Translates
assembly
language into
machine
language.

Creates
object
module file.

(P Qutput

Object
module file

Creates list
file.

I
]
]
!
|
|
t
|
|
|
|
i
[
I
{ Assembler
I
[
I
i
I
|
I
I
|
|
|
|
|

Assembly list file

Fig. 1-11. Functions of Assembler

1-12

1.2.4 Linker

The linker accepts two or more object module files output by

the compiler or assembler as input files and combines them with a
library file for output as a single load module file.

The linker also determines addresses to be allocated to each
relocatable segment in the input module, whereby the correct
values of the respective relocatable symbols and external
reference symbols are determined and embedded into the output load

module file.

Two or more object module files

.. Library Directive
(})) (;) file file

PHL?
Linker /
Output
Load module - Link list
file ~file

Fig. 1-12. Functions of Linker

1.2.5 Object converter

The object converter accepts the load module file output by the
linker as an input file, converts its file format, and outputs
the result of the conversion as an HEX-format object module file.
The object converter also outputs the symbol 1nformatlon required
in symbollc debugging as a symbol table file.

Load
module
file
Input
Cbject
converter

Output

P9

HEX-format object Symbol table
module file file

Fig. 1~13. Functions of Object Converter

1-14

1.2.6 Librarian

Modules . (programs) which have versatility and a definitive
interface should be kept in a single library file. By so doing,

a number of object module files in a single file can be handled
with ease.

The linker has a function to extract only the required modules
from the liBrary file and link them with the input object module
file(s). Therefore, if you register (store) two or more modules in
a single library file, you do not need to specify the required
module names one by one at linking time.

The librarian is used to create and update a library file.

Object module file output Object module file output
by C Compiler by Assembler

? Y
Input\ | /

Librarian

Cutput

7

Library file

Fig. 1-14. Functions of Librarian

1.2.7 List converter

The list converter accepts the object module file and assembly
list file output by the assembler and the load module file output
by the linker as input files and outputs an absolute assembly list
file.

One drawback of a relocatable assembly list is such that address
values and relocatable values in the list differ from the actual
values. Because an absolute assembly list has no such drawback,
the absolute assembly list output by the list converter will
facilitate program debugging as well as program maintenance.

Assembly Object Load
list module © module

file file file

Y Y
Input\ /

List converter

Output

Absolute

assembly .
(}) list file

Fig. 1-15. Functions of List Converter

1.3 Memory Maps

The memory maps of the respective series in this package are shown

in this section.

(1)

The memory map of the uPD78014 is shown below.

The internal ROM/RAM areas

in the 78K/0 series are as

Memory map of 78K/0

FFFFH A
B sfr area
sfr area (FFO0H~FFFFH)
) Rt 2 ddr ;
saddr area
FFOOH (FE20H~FF1FH)
Internal
FE20H jrovrmrrormrromneceres high-speed RAM
FBOOH {nternald RAM
ow-spee
FAEOH Area prohibited
FASIH from use
L A1 External
T T memory
1FFFH
OFFFH
CALLF instr
entry area
{800H ~FFFH}
800H
= % |Internal ROM
7FH
CALLT instr
table area
{40H—~7FH)
40H
Vector
table area
0H

listed below.

applicable to each target device

Target
device

Internal
ROM area

Internal high-
speed RAM area

Internal low-
speed RAM area

uPD78012

0000H to 3FFFH

FDOOH to FEFFH

FAEOH to FAFFH

uPD78014

0000H to 7FFFH

FBOOH to FEFFH

FAEQOH to FAFFH

(2) Memory maps of 78K/I and 78K/II
The memory map of uPD78112 is shown below.

FFFFH
sfr area
sfr area (FFOOH~FFFFH)
FF20H frovvsmmmemernnnanae
saddr area
FFO0H (FE40H~FF1FH}
Senttehre
FEEOH Internal RAM
FEJOH
=~ 2=
IFFFH
0FFFH
CALLF instr
entry area
(800H~FFFH)
800H
T T |internal rom
FH
CALLT instr
table area
{(40H~7FH)
40H
Vector
table area

0H

The internal ROM/RAM areas applicable to each target device

in the 78K/I series are as listed below.
Target Internal Internal External | Extended
device ROM area RAM area MEemory memory
uPD78112 0000H to 1FFFH FE40H to FEFFH
uPD78134/ | 0000H to 3FFFH | FD80H to FEFFH None None
uPD78134A
uPD78136 0000H to HFFFH FDOOH to FEFFH
uPD78138 0000H to 7FFFH FC80H to FEFFH

1-18

The internal ROM/RAM areas applicable to each target device

in the 78K/II series as as listed below.

Target Internal Internal External | Extended
devige ROM area RAM area memory memory
uPD78210 None FE80H to 0000H to
FEFFH FE7FH
ubPD78212 0000H to FD80OH to 2000H to
' 1FFFH FEFFH FD7FH
uPD78213 None FDOOH to 0000H to 10000H to
FEFFH FCFFH FFFFFH
uPD78214 0000H to FDOOH to 4000H to
3FFFH FEFFH FCFFH
uPD78220 None FC80H to 0000H to
) FEFFH FC7FH
upPD78224 0000H to FC80H to 4000H to
. 3FFFH FEFFH FC7FH
uPD78233 None FC80H to 0000H to
FEFFH FC7FH
uPD78234 0000H to FC80H to 4000H to
3FFFH FEFFH FC7FH

{3) Memory map of 78K/III
The memory map of the uPD78312A is shown below.

FFFFH
sfr area
FF20H p--vvmmmmrmmnseemnnnas
T
FEBOH El
FE20H f----snmmmmemmmomanas
FEOOH
BO7FH
CALLT instr
table area
(8040H ~807FH)
8040H Vector table
8000H |—22=2
1FFFH
0FFFH
CALLF instr
entry area
(800H-~FFFH)
800H
1FH - -
CALLT instr
table area
(40H~7FH)
40H
Vector
table area
OH

sfr area

(FFOOH~FFFFH)
saddr area
{FE20H--FF1FH)

Internal RAM

External
memory

Internal ROM

1-20

The internal ROM/RAM areas applicable to each target device

in the 78K/III series are as listed below.

Target Internal Internal
device ROM area RAM area
uPD78310/ None FEOOH to FEFFH
uPD78310A

uPD78312/ Q0000H to 1FFFH FEOQOH to FEFFH
ubPD78312A

uPD78320 None FC80H to FEFFH
uPD78322 Q000H to 3FFFH FC80H to FEFFH
uPD78330 None | FBOOH to FEFFH
uPD78334 0000H to 7FFFH FBOOH to FEFFH

1-21

(4) Memory map of 78K/VI
The memory map of the uPD78602 is shown below.

FFFFH
sfr area
(FFOOH~FFFFH)
sfr area
FFOQH
FEFFH I
Gengril saddr area
registers {FCOOH ~FEFFH)
FEOGH ggal-t%mel
I ro
_______ contros . Internal RAM
FDIIH ;
Macro ferv1ce
FDOGH contro
FBOOH
1 AL External
= T memory
3FFFH
A Program/data A
area
FFH
1 CALLT/BRKT [
T instr table *F Internal ROM
area {see Note below)
49H
Trap table
40H
31H
Vector
table area
0H

Note: When the EA (External Access) pin of the uPD78600 or
uPD78602 is set at a Low level, the internal ROM
area becomes an external memory area.

The internal ROM/RAM areas applicable to each target device
in the 78K/VI series are as listed below.

Target Internal Internal
device ROM area RAM area
uPD78600 None FBOOH to FEFFH

uPD78602 0000H to 3FFFH FBOOH to FEFFH

1-22

1.4 Reminders Before Program Development

Before you set your hand to the development of a program, keep
in mind the following points:

1.4.1 Number of files than can be input to Linker
The number of object module files that can be input to the linker
is as follows:

With 78K/0, 78K/I, 78K/VI: 128 files
With 78K/III : 64 files

1.4.2 Restriction on number of symbols

The number of local symbols and that of PUBLIC symbols in the
assembler and linker, respectively, are restricted as shown in the
table below.

Number of symbols

No. of local symbols No; of PUBLIC symbols

Assembler 2,900 (see Note 1)

Linker 2,900 x No. of modules| 3,000 (see Note 2)

NOTE: 1. There is no restriction on the number of symbols
by symbol type. Undefined symbols will also be
counted and included in the total number of
Symbols.

2. If the number of PUBLIC symbols exceeds 2,000,
the execution speed slows down because of the
additional time required to access a temporary
file.

1-23

1.4.3 Maximum performance characteristics of assembler package
The maximum performance characteristics of the assembler package

that should be kept in your mind before program development are
listed in the tables below.

(1) Maximum performance characteristics of Assembler

Item Restriction
Symbol length | w/o -S option 8 characters
with -S option 31 characters
No. of characters per line 130 characters
No. of segments 100 segments

(2) Maximum performance characteristics of Linker

Item Restriction
No. of input module files 64 files

1.5 Features of Assembler Package

This package has the following features:

(1)

(2}

(3)

(4)

Macro function

When the same group of instructions must be described in a
source program over and over again, a macro can be defined by
giving a single macro name to the group of instructions.

By using this macro function, coding efficiency and readabi-
lity of the program can be increased.

Optimize function of branch instructions

The assembler package has an assembler directive to automatic-
ally select a branch instruction (i.e., BR directive).

To create a program with high memory efficiency, a 2-byte
branch instruction must be described according to the branch
destination range of the branch instruction. However, it is
troublesome for the programmer to describe a branch instruc-
tion by paying attention to the branch destination range for
each branching. If the BR directive is described, the
assembler generates the appropriate branch instruction
according to the branch destination range. This is called
the optimize function of branch instructions. '
Conditional assembly function

With this function, part of a source program can be specified
for assembly or non-assembly according to a predetermined
condition. If a debug statement is described in a source
program, whether or not the debug statement should be
translated into maéhine language can be selected by setting
a switch for conditional assembly; When the debug statement
is no longer required, fhe source program can be assembled
without major modifications to the program.

Directive for general-purpose register selection

As representations for the 78K/III series general -purpose
registers, absolute names (R0,7R1, RPO, etc.) and function
names (X, A, AX, etc.) are used. When describing a function
name in a source program, a general-purpose register select
directive must always be used. The RSS directive is provided

to allow description of a function name in a source progran.

CHAPTER 2. HOW TO DESCRIBE SOURCE PROGRAMS

2.1 Basic Configuration of Seource Program
When a source program is described by dividing it into several
modules, each module which becomes the unit of input to the

assembler is called a source module. (If a source program consists

of only one module, the source program means the same as the
source module.)
Each source module which becomes the unit of input to the

assembler consists mainly of the following three parts:
(1) Module header

(2) Module body
(3) Module tail

Module header

Module body

Module tail

Fig. 2-1. Configuration of Source Module

2.1.1 Module header

In the module header, control instructions shown in Table 2-1
below can be described. Note that these control instructions
cannot be described in other than the module header.

Table 2-1., Instructions That Can Be Described in Module Header

Item that can Explanation Chapter/section
be described in this manual
Control instruc- Control functions that See Chapter 4,
tions that have have the same functions "Control inst-
the same functions as assembler options ructions".
as assembler include: PROCESSOR,
options DEBUG/NODEBUG, XREF/

NOXREF, and TITLE.

2.1.2 Module body
In the module body, the following items cannot be described:
o Control instructions that have the same functions
as assembler options

All other directives, control instructions, and instructions can

be described in the module body.

The module body must be described by dividing it into units each

called a segment.

The user may define the following four segments with a directive

corresponding to each segment:

(1) Code segment Must be defined with the CSEG directive.

(2) bata segment Must be defined with the DSEG directive.

{3) Bit segment Must be defined with the BSEG directive.

(4) Absolute segment ... Must be defined by specifying a
location address for the relocation
attribute (AT location address) with the
CSEG, DSEG, or BSEG directive. May also
be defined with the ORG directive.

The module body may be configured with any segment combinations,
provided a data segment and a bit segment must be defined before
a code segment.

2.1.3 Module tail
The module tail indicates the end of the source module. The END
directive must be described in this part.

2.1.4 Overall configuration of source program
The overall configuration of a source module becomes as shown

below.

Control instruction(s) that have
the same function(s) as assembler | Module header
function(s)

bt

Directive(s)
Control instruction(s) | Module body
Instruction(s)

END directive _ Module tail

Fig. 2-2. Overall Configuration of Scurce Program

Examples of simple source module configurations are shown in

Fig. 2-3 on the next page.

Module header { $ PROCESSOR (312A) | $ PROCESSOR (312A)
VECT CSEG AT 0H FLAG BSEG
Module body {freseeermmmrcmmrmmiieen]l b
MAIN CSEG WORK DSEG
framsnsssssceemmncenanananars
SUB CSEG
Module tail { --------- END ------------------------- E ND ------------

Fig. 2-3. Examples of Source Module Configurations

2.1.5 Description example of source program

In this subsection, a description example of a source program for
the 78K/III series is shown. (This example is attached to the
package product as a sample program file.)

The configuration of the sample program can be illustrated simply
as follows:

<Module name: SAMPM>

NAME SAMPM

DATA DSEG AT OFE20H

Variable
definition
CODE CSEG AT 0H ¢Module name: SAMPS>
MAIN : DW START
NAME SAMPS
, CSEG .
START .
§ CSEG) CSEG
CONVAH . SASC:
§
CALL 'CONVAH CALL 1SASC RET
!
!
END , RET
END

Fig. 2-4. Configuration of Sample Program

This sample program was created by dividing a single source
program into two modules. The module "SAMPM" is a main routine
of this program and the module "SAMPS", a subroutine which is to
be called within the main routine.

2-5

<Main routine>

AT OH
KAIN: DY START

CSEG H{p]
START: MoV RFH, #00

Hovy SP.$OFEBOH
noy MK, $00
uoy STBC.#08H
oy HDTSA, R14AH
nove HL, $BDTSA iset hex 2-code data In HL registor
CALL {CONYAH sconvert ASCII <= KEX

soutpyt BC-reglister <= ASCII code
lﬂgl DE, 8STASC iset DE <~ store ASCI] code table
MO

nay .

Koy EDE+]. A
BR tH

END

A B
NoY EDE+].A

s PROCESSOR(310) (1) } Module header
NAME SAKPN 1(2) 3
:tlllllll8!:!!l’!ttltlll!!llllllllllttlltt!t!l‘ll’l
it :
v HEX -> ASCII Conversion Prograa H
i x
' r nain-routine x
it :
;8!1lllllll!lll!ll:zltt!!I!ltllllll!ll!llltttll!l
PUBLIC KAIN,START :23;
EXTRE CONYAK H
DATA DSEG AT OFEZ20H 1 (6)
RDTSA: D§ i .
STASC: DS 2
CGDE CSEG ;(8)

¢ Module body

)

1(8) } Module tail

Control instruction which has the same function as
an assembler option
Declaration of a module name

Declaration

of a symbol referenced from another module

as an external definition symbol

Declaration
an external
Declaration
an absolute

"Declaration

an absclute
Declaration

of a symbol defined in another module as
reference symbol

of the start of a data segment (to be located as
segment starting from address OFE20H)

of the start of a code segment (to be located as
segment starting from address 0H)

of the start of the code segment (meaning

the end of the absolute segment}

Declaration

of the end of the mcdule
2-6

<Subroutine»

§ PROCESSOR(310)
NAME SANPS

XIXEEITIEREERINEREISIRILTIIILEIIIICLIITLTICLINLLINCRLLE

] sub-rout ine

input condition

PUBLIC CONYAH

c
CONYAK: :OV

RET

:2!2lt!!ll’I!*!88!2!!’!!*I’"‘*’*?t“t’!"“‘I"!!!ll!,t
convert ASCI| code
hee {lower dbits) <- hex code

i® subroutine

IR IR NI L ISR IR X NI IIT TP AR AR RN RAE

W input

M output Aeg

SASC: CMP A HOMH
BC $SASC!

0D A BOTH -

A
SASCI: ADD A, H30H
RET

END

]
-

3% output condition :
X

L]

x

3
+¥ HEX -> ASCII Conversion Progres

¥
x
2
3
 §
P (BL) <- hex 2 code x
BC-register <-ASCI| 2 code »

H]

t 8

AR AR RN R R KN R AN R R AN A RN A E N XA RS R AR XXX Y

‘hex upper code load

istore resylt

thex lower code Josd

istore result

<= ASC1I code

icheck hex code > 9

ihias(+7)
vhins(+30)

HE))
€10}

Helb
HEk

1{13)

— —

— —

(9)

-

- =
W N

- O
—

assembler option

o

Declaration of
Declaration of
as an external
Declaration of
Declaration of

a module name

} Module header
$

¢ Module body

4
}Module tail

Control instruction that has the same function as an

a symbol referenced from another module

definition symbol
the start of a code segment

the end of the module

2.2 Description Format of Scurce Program

2.2.1 Configuration of statement
A source program consists of statements.

Each statement consists of the four fields shown in Fig. 2-5.

Statement 3| [Symbol Mnemonic Operand Comment [CRILF
field field field field
| { 4
1 | |

0 @ ©, @

The Symbol field and the Mnemonic field must be
separated from each other with a colon (:} or one or
more blank (or TAB) characters.

The Mnemonic field and the Operand field must be
separated from each other with one or more blank (or TAB)
characters. Depending on the instruction described in
the Mnemonic field, the Operand field may not be required.
The Comment field if used must be preceded with a
semicolon (;). _

Each line must be delimited with an LF cocde. (One CR
code may exist immediately before the LF code.)

®e 6 ©

Fig. 2-5. Fields That Make Up A Statement

A statement must be described within a line. (A line must be -
terminated with an LF {0AH) code.)
Up to 128 characters excluding CR and LF can be described per
line. If a statement consisting of 128 or more characters is
input, the assembler outputs an warning message and ignores the
129th and subsequent characters in the statement. However, in
the assembly list, these ignored characters will also be output.
The following lines may also be describea:

o Dummy line (a line without statement description)

¢ Line consisting of the Symbol field alone

o Line consisting of the Comment field alone

2-8

2.2.2 Character Set
Characters that can be described in a source file are classified
into the following three types:

¢ Language characters

o Character data

o Comment characters

(1) Language characters
Language characters refer to characters used to describe
instructions on a source program. The language character set

includes alphabetic, numeric, and special characters.

[Alpha-numeric characters

Name Characters
Numeric characters 01234567829
Alphabetic | Uppercase ABCDEFGHIJEKLMN
characters | letters OPQRSTUVWIXYZ
Lowercase abcdefghijklmn
opgrstuvwxy?z

NOTE 2-1

When any lowercase letter is used in a symbol or reserved
word description, the lowercase letter is interpreted as

its uppercase equivalent.

[Special characters]

Character Name Main use
? Question mark Symbol equivalent to alphabetic
characters
@ Unit price Symbol equivalent to alphabetic
symbol characters
_ Underscore Symbol equivalent to alphabetic
characters
Blank Delimiter of each field
. HT (09H) TAB code Character equivalent to Blank
' Comma Delimiter between the 1st and 2nd
operands
: Colon Delimiter between the Symbol and
Mnemonic fields
; Semicolon Symbol indicating the start of
the Comment field
CR (ODH) Carriage return Symbol indicating the end of a
code line
LF (0AH) Line-feed code Same as above
+ Plus sign ADD operator or positive sign
- Minus sign SUBTRACT operator or negative sign
* Asterisk MULTIPLY operator
/ Slash DIVIDE operator
Period BIT operator
{) Left and right Symbols specifying the order of
parentheses arithmetic operations to be

Not Equal. sign
Equal sign

performed
Relational operators
Relational operator

Single guotation
mark

Symbol indicating the start or

end of a character constant

Character Name Main use

$ Dollar sign ‘| o Symbol indicating the location
counter

o Symbol indicating the start of
an assembler option

o Symbol specifying a relative
addressing mode

Sharp sign Symbol specifying an immediate

addressing mode

Exclamation o Symbol specifying an absolute

point addressing mode

o Symbol specifying the operand
representation format "addri16"
of an MOV instruction

[] Braces o Symbol specifying an indirect

addressing mode

NOTE 2-2
If any illegal character has been described in the

input source module, the assembler will replace the
illegal character with "!" for output to the assembly
list.

(2) Character data
Character data refers to characters used to describe string
constants, character strings, and control instructions (TITLE,
SUBTITLE, and INCLUDE).

[Character data character set]

o All characters except "0OH" can be used (provided codes may
be different depending on the 0S). If "0OH" has been
described, an error will result and subsequent characters
before the closing single quote (') will be ignored.

o If any illegal character has been described, the assembler
will replace the illegal character with "!" for output to
the assembly list. (The CR (0DH)} code will not be output to
the assembly list.)

2-11

(3)

o With MS-DOS, the assembler interprets code "1AH" as the end
of file (EOF) and thus the code can be a part of the input
data.

Comment characters
Comment characters refer to characters used to describe a

comment statement.

[Comment character set]

Characters in the comment character set are the same as those
in the character data character set. However, no error will
result even if code "QOH" has been described. Instead, the
assembler will output the illegal character to the assembly
list by replacing it with "!".

"2.2,3 Fields of Statement
The respective fields that make up a statement are detailed in
this subsection.

(1) Symbol field

Statement ¥ Mnemonic Operand Comment

field field field

A symbol is described in the Symbol field. The term "symbol"

refers to a name given to a numerical data or address.

By using symbols, the contents of a source program can be

understood more easily.

[Symbol types)

Symbols are available in the types shown 'in Table 2-2,

depending on their use and method of definition.

Table 2-2. Symbol Types

Symbol type

Use

Method of definition

Name

Used as a numerical data
in a source program.,

This type is described
in the Symbol field of
the EQU, SET, or DBIT
directive.

Label

Used as an address data
in a source program.

This type is defined by
suffixing a colon (:)
to a symbol.

Segment name

Used as a segment name
subject to operation
in a linker option

This type is described
in the Symbol field of
the CSEG, BSEG, or ORG
directive.

Module name

Used as a module hame
in symbeolic debugging

This type is described
in the Operand field
of the NAME directive.

Macro name

Used as a macro name
for macro reference in
a source program.

This type is described
in the Symbol field of
the MACRO directive.

[Conventions of symbol description]

All

symbols must be described according to the following

rules:

@

A symbol must be made up of alphanumeric characters and
special characters (?, @, and _) that can be used as a
symbol in a manner equivalent to alphabetic characters.
As' the first character of a symbol, any of the numeric
characters 0 to 9 cannot be used.

A symbol must be made up of not more than eight characters
or not more than 31 characters. Which symbol length
specification (1 to 8 or 1 to 31 characters) is to be used
may be specified with an assembler option (-S or -NS).

If a symbol is described by exceeding the maximum symbol

®

length specified by the option, an error will result.

No reserved word can be used as a symbol. Reserved words
are indicated in Appendix A, List of Reserved Words.

The same symbol cannot be described two or more times,
provided that the name defined with the SET directive can
be re-defined with the SET directive.

Lowercase letters described as a symbol will be inter-
preted by the assembler as their uppercase equivalents.
However, if the assembler option -CA is specified, the
assembler will distinguish between uppercase and
lowercase.

When describing a label in the Symbol field, ":" (colon)
must be described immediately after the label.

(Example of correct symbol descriptions)

TEN EQU 10H ; "TEN" is a name.

NEXT: BR 1100H ; "NEXT" is a label.

C1 CSEG ; "C1" is a segment name.
NAME SAMPLE ; "SAMPLE" is a module name.

MAC1 MACRO ; "MAC1" is a macro name.

2-14

(Example of incorrect symbol descriptions)

ABCDEFGEI EQU

1ST: MoV
NEXT BR
TEN EQU
ten EQU

[Symbol attributes]
Names and labels each have a

Segment names, module names,

70H

A,#0H

{100H

10H
20H

-
!

~e

-~

"I" is ignored when the maximum
symbol length specification is

8 characters.

No numeric character can be used
as the 1st character of a symbol.
"NEXT" is a label and must be
separated from Mnemonic field
with a colon (:)

"TEN" and "ten" are the same
named symbols. Description of
"ten" will thus result in an

error,

value and an attribute.

and macro names have no value.

A value refers to the value of a defined numerical data or

address data itself.

The attribute of a symbol is called a symbol attribute and

must be one of the types and values indicated in Table 2-3.

Table 2-3.

Types

and Values of Symbol Attributes

Attribute type

Classification

Value

NUMBER o Names to which numeric 16-bit value (Cf.1)
constants are assigned Decimal represen-
o Symbecls defined with tation: -32768 to
EXTRN directive 65535
Hexadecimal
representation:
. OH to QOFFFFH
DNUMBER O Names defined with 32-bit value (Cf.2)
(applicable EQUD directive Decimal represen-
to 78K/vi tation: -214783648
only) to 4294967295
Hexadecimal
representation:
OH to QFFFFH
ADDRESS o Symbols defined as labels | 16-bit value (Cf.1)
o Names defined as labels Decimal represen-
with EQU and SET tation: -32768 to
directives 65535
Hexadecimal
representation:
0H to QFFFFH
BIT o Names defined as bit 78K/0, I, III:
values sfr or saddr area
o Symbols defined with 78K/VI;:
EXTBIT directive 1 OH to OFFFFH
sfr or sfrp area
Byte register
Word register (Cf.3)
CSEG Segment names defined with
CSEG directive
DSEG Segment names defined with
DSEG directive
BSEG Segment names defined with
BSEG directive
MODULE Module names defined with These attribute
NAME directive (A module types have no
name if not defined is value.
created from the primary
name of the input source
filename.
MACRO Macro names defined with

MACRO directive

Notes: 1. With an expression, each term must be a 16-bit value.

An overflow in the operation on values in the expression

will be ignored.

2. No expression can be described.

3. The bit position specification of the word register

must be 0 to OFH. The bit poisition specification for

others must be 0 to 7.

2-16

(Examples)
TEN EQU 10H ; Name "TEN" has attribute NUMBER
and value 10H.

ORG 80H
START: MOV A,#10H ; Label "START" has attribute
ADDRESS and wvalue 80H.
BIT1 EQU OFE20H. 0 ; Name "BIT1" has attribute BIT and

value OFEZ20H. 0.

{(2) Mnemonic field

Statement = ||Symbol
field

Operand Comment
field field

In the Mnemonic field, a mnemonic instruction, directive, or
macro reference is described.

With an instruction or directive requiring an operand or
operands, the Mnemonic field must be separated from the
Operand field with one or more Blank or TAB characters.
However, with the first operand of an instruction that begins
with "#", "$", "1", or "[", the assembly will be executed
prperly even if nothing exists between the Mnemonic and first
Operand fields.

(Example of correct descriptions)
MOV A, #0H '

CALL !CONVAH

RET

(Example of incorrect descriptions)

MOVA, #0H ; No blank exists between Mnemonic and
Operand fields.

CAL L !CONVAH

HLT

A blank exists in Mnemonic field.

-

uPD783%t2 has no such instruction as
"HLT".
2-17

-

{3) Operand field

Statement > Symbol Mnemonic
field field

Comment
field

In the Operand field, the data (operands) required for the
instruction, directive, or macro reference described in the
Mnemonic field must be described. Depending on the instruction
or directive, no operand can be described in the Operand field
or two or more operands must be described in the Operand
field.
When describing two or more operands, delimit each operand
with a comma (,).
The following eight types of data can be described in the
Operand field:
o Constants (numeric constant and string constant)

Character strings ‘
Register names
Special characters ($, #, !, and [1) _
Relocation attributes of segment definition directives
Symbols

Expressions

¢ O 0O 0O 0 O ©

Bit térms

The size and attribute of the required operand may be
different depending on the instruction or directive. Refer to
Section 2.5, "Characteristics of Operands" for the sizes and
attributes of operands.

For the operand representation formats and description methods
in the 78K series instruction set, see the user's manual of -
the microcomputer subject to development.

Each of these eight data types that can be described in the
Operand field is detailed below.

[Constants]

A constant is a fixed value or data item and is also referred

to as an immediate data.

Constants are divided into numeric constants and string

constants,

o Numeric constants

A binary, octal, decimal, or hexadecimal number can be

described as a numeric constant. The method of representing

each numeric constant type is shown in Table 2-4 below.

A numeric constant will be processed as an unsigned 16-bit

data.

Value range: 0 < n ¢ 65,535 (OFFFFH)
To describe a negatzﬁe ;élue, the "-" (minus) operand must
be used.

Table 2-4. Methods of Representing Numeric Constant Types

(value). If the first character
of the constant begins with one
of the characters "Aithrough F",
"0" must be prefixed to the
constant.

Constant type Method of representation Example

Binary constant |Character "B" is suffixed to a 1101B
string of binary characters
{value).

Octal constant |Character "0" is suffixed to a 740
string of octal characters
(value).

Decimal constant|A string of decimal characters 128
(value) may be described with or 128D
without character "D" suffixed
to the string.

Hexadecimal Character "H" is suffixed to a 8CH

constant string of hexadecimal characters 0A6H

o String constants
A string constant is expressed by enclosing a character
or a string of characters shown in 2.2.2, "Character set"
with a pair of single guotation marks.
As a result of an assembly process, the string constant is
converted into 7-bit ASCII code with the parity bit (MSB)
set as "0".
The length of a string constant is 0 to 2.
To use a single quotation mark as it is originally intended
as a string constant, the single quotation mark must be

input twice in succession.

Examples:
'al ; Represents "41H" (A).
o ; Represents "20H" (Space}.
e ; Represents "27H" (').
'tral ; Represents '"2741H" ('A).

[Character strings] ' _
A character string is expressed by enclosing a string of
characters shown in 2.2.2, "Character set" with a pair of
single quotation marks. Character strings are mainly used for
operands in the DB directive and TITLE or SUBTITLE control

instruction.

(Application examples of character strings)
CSEG)
DB 'YES' Initializes with character
string "YES".

MAS2 : DB 'NO' ; Initializes with character

string with "NO".

MAS1T

~e

2-20

[Register names)
The following registers can be described in the Operand
field.
o0 General-purpose registers
0 General-purpose register pairs
o Special function registers

General-purpose registers and general-purpose register pairs
can be described with their absolute names (RO to R15 and

RP1 to RP7), as well as with their function names (X, A, B,
¢, b, 8, H, L,, AX, BC, DE, HL, VP, and UP). (However, when
describing any of the general-purpose registers and general-
purpose register pairs with its function name, the RSS
{Register Set Select) directive must have been described. See
Section 3.7, General Register Selection Directive for detaiis
of the RSS directive.)

A register name that can be described in the Operand field
may be different depending on the type of instruction. See
the user's manual of the microcomputer subject toc development

for details of the method of describing each register.

[Special characters]
Special characters that can be described in the Operand field
are shown in Table 2-5,.

Table 2-5. Special Characters That Can Be Described in
Operand Filed

Special character Function

$ 0 Indicates the location address of the
instruction having this operand (or the
1st byte of the address with a multiple-
byte instruction).

o Indicates a relative addressing mode for
a Branch instruction.

! 0 Indicates an absolute addressing mode
for a Branch or Call instruction.

o0 Indicates the specification of addri1é
which allows all memory space to be
specified for an MOV instruction.

Indicates an immediate data.

[] Indicates an indirect addressing mode.

(Application examples of special characters)

Address Source program
100 LOOP: INC A
101 BNZ $$-1 rraceaa 1

In 1 above, the first "$" in the Operand field indicates
the relative addressing of the conditional branch instruc-
tion BNZ. The second "$" indicates the location address

101 to which the first byte of the object code for the
instruction "BNZ $$-1" is to be assigned.

The description in 1 can be substituted with "BNZ $LOOP".

Source program
BR !100H

"1" indicates the ébsolute address-

ing of BR (unconditional branch)
instruction. ’

"1" indicates addr16 specification
of MOV instruction

SUB A, #10H i "#" indicates an immediate data.

-

MOV A, !'2000H

~a

TEN EQU 10H
SUB A, #TEN ; "#" indicates an immediate data.

AND A, [HL] ; "[1" indicate an indirect
addressing mode.

[Relocation attributes of segment definition directives]
Relocation attributes may be described in the Operand field.
A relocation attribute is described as the operand of a
segment definition directive. By this operand, a range of
location addresses for the segment can be defined.
Each segment definition directive has its own relocation
attribute. For details of relocation attributes, see Section

3.2, Segment Definition Directives.

(Application examples of relocation attributes)

NAME TEST
Dt DSEG AT OFE20H ; Locates data segment to address
FE20H,
C1 CSEG CALLTO i Locates code segment to addresses
40H to 7FH.

[Symbols]
If a symbol is described in the Operand field, the value of
the symbol becomes a numerical data subject to operation by

the instruction or directive described in the Mnemonic field.

(Application examples of symbols)
TEN EQU 10H

MOV A, #TEN ; This description can be substituted
with "MOV A, #10H".

WAIT CSEG AT 100H
LOOP: 1INC A
BNZ $LOOP ;7 This description can be substituted
with "BNZ $100H".

[Expressions]
Expressions can be described in the Operand field.
An expression is a valid series of constants, $ indicating
a location address, names, or labels, that are connected with
operators and can be used as an operand of an instruction.
For the expressions and operators, see Section 2.3,
"Expressions and Operators'.

(Application example of expression)
TEN EQU 10H
MOV A, #TEN-5H

In this example, "#TEN-5H" is an expression. In this
expression, name "TEN" and numeric constant "S5H" are connected
with the "-" (minus) operator. The value of the expression is
0BH. Therefore, this description can be substituted with

"MOV A, #OBH".

[Bit terms]
Bit terms can be described in the Operand field.
A bit term may be obtained by the bit position specifier. For
details of bit terms, see Section 2.4, Bit Position Specifier.

(Application examples of bit terms)
MOV1 CY,0FE20H.3
AND1 CY,Aa.5

CLR1 P1.2
SET1 1+FE30H.3 ; Equals OFE31H.3.
SET1 OFE40H.4+2 ; Equals OFE40H.6.

2-23

(4) Comment field

Statement > Symbol Mnemonic
field field

Operand
field

In the Comment fieid, any remarks to identify or explain a
particular step or operation in a program (namely, a comment
statement) may be described following the input of a semicolon
(;). By describing a comment statement in the Comment field,
an easy-to-understand source program can be created. The
comment statement described in the Comment field is not
subject to assembler operation (i.e., conversion into machine

language) but will be output without change on an assembly

list.
Characters that can be described
those shown in 2.2.2, '"Character

in the Comment field are

set".

(Examples of comment descriptions)

$ PRGCESSOR(310)
NAME SAKPS

P EE R kR RN R kI AT X AR SR ST REE X IRI NI LIND
.

3
1 3
72 HEX -> ASCII Conversion Program x
'y x
El sub-routine x
VX ¥
7 input ¢ondition @ (HL) <- hex 2 code x

L S

x

* output condition I BC-register <-ASCI| 2 code

;tt!t*‘llltlIll!tlllllXllllll!!!ll!!!l!l!l!l!!!ktt!!

PUBLIC CONVAH

CSEC
CONVAH: MOV I 1]

ROL4 [HL) vhex upper code load

CiLL J54S
KOV B
NOY A
ROL4 [
CALL !
MOV C

RETY

]

L

A

A vstore result
[11]

L) vhex lower code load
:S

istore result

-2-24

Lines consisting of
Comment field only

Lines in which comments
are described

2.3 Expressions and Operators

An expression is a valid series of constants, $ indicating a
location address, names, or. labels connected with operators.
Elements of an expression other than the operators are called
terms and are referred to as the 1st term, 2nd term, and so forth
from left to right, in their order of description.

Operators are ayailable in the types shown in Table 2-6, and

their order of precedence in calculation has been predetermined
as shown in Table 2-7.

‘A pair of parentheses (i.e., left and right parentheses) are used

to change the order in which calculations are to be performed.
Example: MOV A, #5*(SYM+1) ; ()

In (1) above, "5*%(SYM+1)"™ is an expression. "5" is the 1st term
of the expression and "SYM" and "1" are the 2nd and 3rd terms,
respectively. "*", "+", and "{)" are operators.

"Table 2-6. Types of Operators

Type of operator Operators

Arithmetic operators +, -, *, [/, MOD, + sign, - sign
Logical operators OR, AND, NOT, XOR

Relational operators EQ or =, NE or <>, GT or >,

GE or »>=, LT or <, LE or <=

Shift operators SHR, SHL

Byte-separating operators HIGH, LOW

Other operators - ()

Table 2-7. Order of Precedence of Operators

Priority Operator
Highest
1 + sign, - sign, NOT, HIGH, LOW
2 * (Multiply), / (Divide), MOD, SHR, SHL
3 + (Add), - (Subtract)
4 AND
5 OR, XOR
6 EQ or =, NE or <», GT or >,
Lowest GE or »=, LT or <, LE or <=

Operations on expressions are performed according to the following
rules: _

C) Operations are performed according to the order of
precedence given to each operator. If two or more operators
of the same order of precedence exist in an expression,
the operation designated by the leftmost operator is first
carried out.

C) An expression in parentheses is carried out before
expressions outside the parentheses.

(:) Operations between two or more unary operators are allowed.
Examples: ' '

1=--1=1
T=-41=-1

(@ Each term in an operation is handled as an unsigned 16-bit
data and the result of the operation is also handled as
an unsigned 16-bit. '
Example:
65535=0FFFFH ‘
-1=-{0001H)=0FFFFH

C) If an overflow occurs in an operation due to its result
exceeding 16 bits, only the low-order 16 bits of the
result become valid. In this case, note that an error will
not result,

Example: _
65535+1=(0FFFFH)+(00001H)=(10000H) > 0000H

If a constant exceeds 16 bits, an error will result and
the value of the constant is regarded as 0 for calculation.

NOTE 2-3

No operation can be used performed on any special function
register (SFR)}. However, as an exception in this assembler,
only the LOW operator can be described for a specical
fucntion name. This exception is to allow setting of the
low-order 8 bits of the address of a designation or source
special function register in the sfr pointer of the macro
service channel. See (2) LOW in 2.3.1, Functions of Operators
for how to describe the SFR name in the LOW operator.

2.3.1 Functions of Operators

The functions of the respective operators are described in this
subsection.

Arithmetic Operators

(1) + (ADD) operator
Function _ .
Returns the sum of the value of the 1st term of an expression

and the‘value of its 2nd term.

Application Example

ORG 100H
START: BR '$§+6H : ()

Explanation

The BR instruction causes a jump to "current address + address
6", namely, to address "100H+6H=106H".

Therefore, (a) in the above example can also be described as:
START: BR !106H |

(2) - (SUBTRACT) operator
Function .
Returns a difference between the value of the 1st term of an

expression and the value of its 2nd term.

Application Example

ORG 100H
BACK!: BR TBACK—3H .

Explanation

The BR instruction causes a jump to "address assigned to
BACK minus 3", namely, to address "100H-3H=0FDH".

Therefore, (b) in the above example can also be described as:
BACK: BR !0FDH

2-28

(3)

(4)

* (MULTIPLY} operator

Function
Returns the product of the value of the 1st term of an
expression and the value of its 2nd term.

Application Example

TEN EQU 10H _
MOV A, #TEN*3 (0

Explanation

With the EQU directive, value "10H" is defined in name "TEN".
"#" indicates an immediate data. Expression "TEN*3" is the
same as "10H*3" and returns value 30H.

Therefore, {c} in the above expression can also be described
as: MOV A, #30H

/ (DIVIDE) operator

Function

Divides the value of the 1st term of an expression by the
value of its 2nd term and returns the integer part of the
result. The decimal fraction part of the result will be
truncated. If the divisor of a divide operation is 0, an error
will result.

Application Example

MOVE A, #256/50 (d

Explanation

The result of division "256/50" is 5 with remainder 6.

The * operator returns value "5" which is the integer part of
the result of the division.

Therefore, (d) in the above example can also be described as:
MOV A, #5

2-29

(5) MOD (Remainder) operator

Function

Obtains the remainder in the result of dividing the value of
the 1st term of an expression by the value of its 2nd term.
An error will result if the divisor (2nd term) is 0.

A blank is required before and after the MOD operator.

Application Example

MOV A, %256 MOD 50 : (o

Explanation

The result of division "256/50" is 5 with remainder 6.
The MOD operator returns the remainder 6.

Therefore, (e) in the above example can also be described as:
MOV A, #6

2-30

(6)

(7)

+ sign

Function

Returns the value of the term of an expression without change.

Application Example

FIVE EQU +5

Explanation

The value "5" of the term is returned without change.

value "5" is defined in name "FIVE" with the EQU directive,
- sign

Function - _

Returns the value of the term of an expression by twos

complement.

Application Example

NO EQU -1

Explanation

-1 becomes the twos complement of 1.

The twos complement of binary 0000 0000 0000 0001

becomes: 1411 1111 1111 1111

Therefore, with the EQU directive, value "OFFFFH" is defined

in name "NO".

Logical Operators

(1) NOT operator

(2)

Function

Negates the value of the term of an expression on a bit-by-bit
basis and returns the result.

A blank is required between the NOT operator and the term.

Application Example

MOVW AX, #NOT 3H MY

Explanation

NOT logical operation is performed on value 3H as follows:
NOT) 0000 0000 0000 0011
71171 1111 1111 1100
The result becomes OFFFCH. Therefore, (a) in the above example
can also be described as: MOVW AX, #0FFFCH

AND operator

Function

Performs an AND (logical product) operation between the value
of the 1st term of an expression and the value of its 2nd
term on a bit-by-bit basis and returns the result.

A lank is required before and after the AND operator.

Application Example

MOV A, #110H AND OFFH . (@

Explanation

AND operation is performed between two values 110H and
OFFH as follows: _
0000 0001 0001 0000
AND) 0000 0000 1111 1111
0000 0000 0001 0000

2-32

(3)

(4)

The result becomes 10H. Therefore, (b) in the above example
can also be described as: MOV A, #10H

OR operator

Function

Performs an OR (logical sum) operation between the value
of the i1st term of an expression and the value of its 2nd.
term on a bit-by-bit basis and returns the result.

A blank is required before and after the OR operator.

Application Example

MOV A, #0AH OR 1101B ; (@)

Explanation

OR operation is performed between two values 0AH and 1101B
as follows:
0000 0000 0000 1010
OR) 0000 0000 0000 1101
0000 0000 0000 1111
The result becomes O0FH. Therefore, {c¢) in the above example
can also be described as: MOV A, #0FH

XOR operator

Function

Performs an Exclusive-OR operation between the value of the
1st term of an expression and the value of its 2nd term on
a bit-by-bit basis and returns the result.

A blank is required before and after the XOR operator.

Application Example

MOV A, #9AH XOR 9DH MCH

2-33

Explanation

XOR operation is performed between two values 9AH and 9DH
as follcows:
0000 0000 1001 1010
XOR) 0000 0000 1001 1301
0000 0000 0000 0111
The result becomes 7H. Therefore, (d) in the above example can
also be described as: MOV A, #7H

2-34

Relational Operators

(1) EQ or = (Equal) operator

Function

Returns OFFH if the value of the 1st term of an expression is
equal to the value of its 2nd term (i.e., true) and 00H if
both values are not equal (i.e., false).

A blank is required before and after the EQ operator.

Application Example

Al EQU 12C4H
A2 EQU 12COH

MOV A, £A1 EQ (A2+4) ;@
MOV X, #A1 EQ A2 O

Explanation

In {(a} above,

expression "A1 EQ (A2+4)" becomes "12C4H EQ (12COH+4)".
The operator compares the value of the 1st term and that
of the 2nd term and returns OFFH because the value of the
1st term is equal to the value of the 2nd term.

In'(b) above,

expression "A1 EQ A2" becomes "12C4H EQ 12COH".

The operator compares the value of the 1st term and that
of the 2nd term and returns 00H because the value of the
1st term is not equal to the value of the 2nd term.

2-35

(2) NE or <> (Not Equal) operator

Function |

Returns OFFH if the value of the 1st term of an expression is
not equal to the value of its 2nd term (i.e., true) and OOH
if both values are egual (i.e., false).

A blank is required before and after the NE operator.

Application Example

Al EQU 5678H
A2 EQU S670H
MOV A, ¥A1 NE A2 ; (©
MOV A, #A1 NE (A2+8H) ; ()
Explanation

In (¢) above,

expression "A1 NE A2" becomes "5678H NE 5670H".

The operator compares the value of the 1st term and that
of the 2nd term and returns OFFH because the value of the
1st term is not equal to the value of the 2nd term.

In (d) above,

expression "A1 NE (A2+8H)" becomes "5678H NE (5670H+8H)".
The operator compares the value of the 1st term and that
of the 2nd term and returns 00H because the value of the
1st term is equal to the value of the 2nd term.

2-36

(3) GT or > (Greater-Than) operator

Function

Returns OFFH if the value of the 1st term of an expression is
greater than the wvalue of its 2nd term (i.e., true) and 00H
if the value of the 1st term is equal to or less than the
value of the 2nd term (i.e., false).

A blank is required before and after the GT operator.

Application Example

Al EQU 1023H
A2 EQU 1013H

MOV A, 2A1 GT A2 , (e)
MOV X, A1 GT (A2+1CH) v ()
Explanation

In (e) above,

expression "A1 GT A2" becomes "1023H GT 1013H".

The operator compares the value of the 1st term and that

of the 2nd term and returns OFFH because the value of the
1st term is greater than the value of the 2nd term.

In {f) above,

expression "Al GT (A2+10H)" becomes "1023H GT (1013H+10H)".
The operator compares the value of the 1st term and that
of the 2nd term and returns 00H because the value of the
1st term is equal to the value of the 2nd term.

(4) GE or »= (Greater-than or Eqﬁal) operator

runction

Returns OFFH if the value of the 1st term of an expression is
greater than or equal to the value of its 2nd term (i.e.,
true) and 00H if the value of the 1st term is less than the
value of the 2nd term (i.e., false).

A blank is required before and after the GE operator.

Application Example

Al EQU 2037H
A2 EQU 2015H

MOV A, A1 GE A2 s ()
MOV X, A1 GE (A2+23H)

Explanation

In {g) above,

expression "A1 GE A2" becomes "2037H GE 2015H".

The operator compares the value of the 1st term and that

of the 2nd term and returns OFFH because the value of the
1st term is greater than the value of the 2nd term.

In (h) above,

expression "A1 GE (A2423H)" becomes "2037H GE (2015H+23H)".
The operator compares the value of the 1st term and that
of the 2nd term and returns 00H because the value of the
1st term is less than the value of the 2nd term.

2-38

(5) LT or < {(Less-Than) operator

Function

Returns OFFH if the value of the 1st term of an expression is
less than the value of its 2nd term (i.e., true) and O00H if
the value of the 1st term is equal to or greater than the
value of the 2nd term (i.e., false).

A blank is required before and after the LT operator.

Application Example

Al EQU 1000H
A2 EQU 1020H
MOV A, #A1 LT A2 » (i)
MOV X, # (A1+20H) LT A2 ;{(}
Explanation

In {i}) above,

expression "A1 LT A2" becomes "1000H LT 1020H".

The operator compares the value of the 1st term and that

of the 2nd term and returns QFFH because the value of the

1st term is less than the value of the 2nd term,

In (j) above,

expression "{A1+20H) LT A2" becomes "(1000H+20H) LT 1020H".
The operator compares the value of the 1st term and that of
the 2nd term and returns 00H because the value of the 1st term
is equal to the value of the 2nd term.

2-39

(6) LE or <= (Less-than or Equal) operator

Function
Returns OFFH if the value of the 1st term of an expression is
less than or equal to the value of its 2nd term (i.e., true)

and 00H if the value of the 1st term is greater than the value
of the 2nd term (i.e., false).

A blank is required before and after the LE operator.

Application Example

Al EQU 103AH
A2 EQU 1040H

MOV A, 2A1 LE A2 (k)
MOV X, # (A1+7H) LE A2)

Explanation

In (k) above,

expression "A1 LE A2" becomes "103AH LE 1040H".

The operator compares the value of the 1st term and that

of the 2nd term and returns OFFH because the value of the
1st term is less than the value of the 2nd term.

In (1) above,

expression "(A1+7H) LE A2" becomes "(103AH+7H) LE 1040H".
The operator compares the value of the 1st term and that
of the 2nd term and returns 00H because the value of the
1st term is greater than the value of the 2nd term.

2-40

Shift Operators

(1) SHR (Shift Right) operator

Function

Returns a value obtained by shifting the value of the 1st
term of an expression to the right the number of bits
specified by the value of the 2nd term. In this case, zeroes

equivalent to the specified number of bits shifted move in
from the MSB side.

A blank is required before and after the SHR operator. -

Application Example

MOV A, #1AFH SHR 5 (@)

Explanation

This operator shifts value "01AFH" to the right by 5 bits.

0000 0001 10110 1111

0000 0000 0000 1101§0111 1
S ——— : —— st

0's are inserted. Right-shifted by 5 hits

As the result of the Shift Right operation, value ODH is
returned. Therefore, (a) in the above example can also be
described as: MOV A, #0DH

(2) SHL (shift Left) operator

"Function

Returns a value obtained by shifting the value of the 1st term
of an expression to the left the number of bits specified by
the value of the 2nd term. In this case, zeroes eguivalent to
the specified number of bits shifted move in from the LSB
side,

A blank is required before and after the SHL operator.

Application Example

MOV A, #11H SHL 3 ' (B)

Explanation
This operator shifts value "11H" to the left by 3 bits.

0000 0000 0001 Q001

000/i0000 0000 1000 1000
Se— : St

Left-shifted by 3 bits. 0's are inserted,

As the result of the Shift Left operation, value 88H is
returned. Therefore, (b) in the above example can also be
described as: MOV A, #88H

2-42

Byte Separating Operators

(1) HIGH operator

Function
Returns the high-order 8-bit value of the term of an
expression.

A blank is required between the HIGH operator and the term.

Application Example

ORG 1234H
START:
MOV A, #HIGH START ;@
Explanation

Because label "START" has value 1234H, the HIGH operator
returns the high-order 8 bits of the value, namely, 12H.
Therefore, (a) in the above example can also be described as:
MOV A, #12H

(2) LOW operator
Function
Returns the low-order 8-bit value of the term of an
expression.

A blank is required between the LOW operator and the term.

Application Example

ORG 5678H
WORK :
MOV A. #LOW WORK ; (B)
Explanation

Because label "WORK" has value 5678H, the LOW operator
returns the low-order 8 bits of the value, namely, 78H.
Therefore, (b) in the above example can also be described as:
MOV A, #78H

2-43

Note
No operation can be used performed on any special function
register (SFR). However, as an exception in this assembler,
only the LOW operator can be described for a specical
function name. This exception is to allow setting of the
low-order 8 bits of the address of a designation or source
special function register in the sfr pointer of the macro
service channel.
An SFR name can be described in the LOW operator in either
of the following two ways:

(1) LOWA SFR name

(@ LoWw [A] ([A)SFR name[Aa])
The result of the LOW operation becomes an absolute term with
the NUMBER attribute.

2-44

Other Operators

(1y ()

Function
Causes an operation in parentheses to be performed prior to
operations outside the parentheses.

This operator is used to change the order of precedence of
other operators.

If parentheses are nested at multiple levels, the expression

in the innermost parentheses will be first calculated.

Application Example

MOV A, # (4+3) %2

Explanation

(4+3) %2

o

@

Calculations are performed in the order of expressions
(D and @ and value 14 is returned as the result.
If parentheses are not used as shown below,

Lo

@ ,

calculations are performed in the order of expressions
(1) and @) and a different value 10 is returned as the
result.
See Table 2-7 for the order of precedence of operators.

2-45

2.3.2 Restrictions on Operations

The operation of an expression is performed by connecting terms
with operator(s). Elements that can be described as terms include
constants, %, names, and labels., Each term has a relocation
attribute and a symbol attribute.

Depending on the types of relocatable attribute and symbol
attribute inherent in each term, operators that can work on the
term are limited. Therefore, when describing an expression,

it is important to pay attention to the relocation éttribute and

symbol attribute of each of the terms constituting the expression.

(1) COperators and relocation attributes
As previously mentioned, each of the terms which constitute an
expression has a relocation attribute. Terms can be divided
into three types when classified by their relocation
attributes: Absolute term, Relocatable term, and External
reference term.
Types of relocation attributes in operations, nature of each
attribute, and terms applicable to each attribute are shown
in Table 2-8.

Table 2-8., Types of Relocation Attributes

Type Nature Applicable term

Absolute Term whose value o Constants

term is determined o Labels defined within an
at assembly time absolute segment

0 $ indicating the location
address defined within an
absolute segment

¢ Names defined the above
constants, labels, or §

Relocatable Term whose value o Labels defined within a
term is nect determined relocatable segment
at assembly time 0 $ indicating the location

address defined within a
relocatable segment

o Names defined relocatable
labels

Table 2-8. Types of Relocation Attributes (contd)

ancther module

Type Nature Applicable term

External Term which exter- o Labels defined with EXTRN
reference nally references - directive

term the symbol of 0 Names defined with EXTBIT

directive

Combinations of the type of operator and terms on which each

operator can work are shown in Table 2-9.

Table 2-9. Combinations of Operators and Terms by Relocation

Attribute
Relocation attribute X: ABS X: ABS X: REL X: REL
of term
Type of operator Y: ABS ¥: REL Y: ABS Y: REL
X + ¥ A R -
X - Y A - R A*
X * Y A - - -
X /X A - - -
X MOD ¥ A - - -
X SHL Y A - - -
X S8HR Y A - - -
X EQY A - - A*
X LT Y A - - A%
X LE Y A - - A*
X GT Y A — - A¥
X GE Y A - - A*
X NE Y A - - A%
X AND Y A - - -
X OR Y A - - -
X XOR Y A - - -
NOT X A A - -
+ X A A R R
- X A A - -
HIGH X A A R** R**
LOW X A A R** R**

<Legend> ABS: Absolute term
REL: Relocatable term
The result of the operation becomes an absolute

A

R

.
O

term.

The result of the operation becomes an relocatable

term.

The operation cannot be performed.

* The operation is allowed only between the symbols defined
within the same segment. However, the relocatable term on
which a HIGH or LOW operation is performmed will not bee

regarded as the same segment.

** No term for which the HIGH or LOW operation is specified

cannot be used.

2-47

The following four operators can work on external reference
terms: +, -, HIGH, and LOW, (However, note that only one
external reference term can be described in an expression.)
Combinations of the type of operator and external reference
terms on which each operator can work are shown in Table 2-10.

Table 2-10. Combinations of Operators and Terms by Relocation
Attribute (External Reference Term)

Relocation attribute X: ABS | X: EXT| X: REL | X: EXT | X: EXT
of term ‘

Type of operatd Y: EXT{ ¥Y: ABS | ¥Y: EXT| ¥: REL | Y: EXT
X + Y T E E - - -
X - Y - E - - -
+ X . A B R E E
HIGH X A E* R* - E* E*
LOW X A E* R* E* E*

<Legend> ABS: Absoclute term
REL: Relocatable term _
EXT: External reference term
A : The result of the operation becomes an absolute
term,
R : The result of the operation béecomes an relocatable
term. . .
E : The result of the operation becomes an external
reference term.
: The operation cannot be performed.

* No term for which the HIGH or LOW operation is specified
cannot be used.

(2) Operators and symbol attributes
As previously mentioned, each of the terms which constitute an
expression has a symbol attribute in addition to a relocation
attribute. Terms can be divided into two types when classified
by their system attributes: NUMBER term and ADDRESS term.
Types of system attributes in operations and terms applicable
to each attribute are shown in Table 2-11.

2-48

Table 2-11. Types of Symbol Attributes

Type Applicable term

NUMBER term o Names and labels which have NUMBER attribute
0 Constants

ADDRESS term © Names and labels which have ADDRESS attribute
' 0 $ indicating the location counter

Combinations of the type of operator and terms on which each
operator can work are shown in Table 2-12,

Table 2-12. Combinations of Operators and Terms by Symbol

Attribute

Symbol attribute X:ADDRESS | X:ADDRESS| X:NUMBER | X:NUMBER

Type of opergiogerm Y:ADDRESS | Y:NUMBER Y:ADDRESS| Y:NUMBER
X + Y = A A N
X - Y N A - N
X * Y = Z Z N
X /Y - - - N
X MOD ¥ - -~ -~ N
X SHL Y - - - N
X SHR Y - - - N
X EQY N - - N
X LT Y N - - N
X LE Y N - - N
X GT Y N - - N
X GE Y N - - N
X NEY N - - N
X AND Y - - - N
X ORY - - - N
X XOR Y - - - N
NOT X - - N N
+ X A A N N
- X - - N N
HIGH X A A N N
LOW X A A N ﬁ'

<Legend>» ADDRESS:
NUMBER :

A

N

ADDRESS term
NUMBER term

: The result of the operation becomes an ADDRESS

term.,

term,

The operation cannot be performed.

2-50

The result of the operation becomes a NUMBER

(3) How to check restrictions on the operation
An example of an operation by the relocation attribute and
symbol attribute of each term is shown here.

Example: BR $TABLE+5H

Here, assume that "TABLE" is a label defined in a

relocatable code segment.

C) Operator and relocation attribute
Because "TABLE+5H" is "relocatable term + absolute term",
apply this operation to Table 2-9, "Combinations of
Operators and Terms by Relocatable Attribute".

Type of operator » X + Y

Relocation attribute of term —— X:REL, Y:ABS
From the table, you will find that the result becomes R
{namely, a relocatable term).

(2) operator and symbol attribute

Because "TABLE+5H" is "ADDRESS term + NUMBER term",
apply this operation to Table 2-12, '"Combinations of
Operators and Terms by Symbol Attribute”.

Type of operator - X + Y

Symbol attribute of term —— X:ADDRESS, Y:NUMBER
From the table, you will find that the result becomes A
{namely, an ADDRESS term).

2.4 Bit Position Specifier

Bits can be accessed by using the bit position specifier (.)

Bit Position Specifier

Description Format

(1) Period (.) (Bit position specifier)

X [al,

(Al Y

Bit term

Combinations of X (1st term) and Y (2nd term) are shown in
the following table.

X (1st term) | Y (2nd term) | 78K/0 | 78K/I,TI | 78K/III | 78K/VI
A register expression o) 0 o}
X register {0 to 7) o) 0
br* expression o)
register {0 to 7) or
br*
wr* expression o
register {0 to OFH)
or br*
PSW expression o} o
(0 to 7)
PSWL o]
PSWH
sfr* expression 0 o o
' (0 to 7)
bsfr* expression o
(0 to 7)
or br*
saddr* expression o o o
(0 to 7)
bsaddr* expression o
(0 to 7)
mem* or br*

* For details on the specifier description, see the user's
manual of each device.

Function

The bit position specifier specifies a byte address with its

1st term and the position of a bit with its 2nd term. By this

bit position specifier, a specific bit can be accessed,

2-53

Explanation

© A bit term refers to an expression or register specified

on

both sides of the period (.).

© The bit position specifier is not affected by the precedence

order of operators. The left side (expression or register)

of

the bit position specifier is recognized as the 1st term

and its right side (expression) as the 2nd term.
o There are the following restrictions on the 1st term:

@
@

An expression with the NUMBER or ADDRESS attribute

can be described on the left side of the period.

An externally referenced symbol can also be described on
the left side of the period.

© There are the following restrictions on the 2nd term:

@

@
@

The value of an expression described on the right side
of the period must be in the range of 0 to 7. If this
value range is exceeded, an error will result.

Only an absolute expression with the NUMBER attribute
can be described on the right side of the pericd.

No ekternally referenced symbol can be used on the
right side of the period.

Operations and Relocation Attributes

Combinations of the 1st and 2nd terms by relocation attribute

are shown in Table 2-13.

Table 2-1

3. Combinations of 1st and 2nd Terms by Relocation
Attribute

Combination of X: ABS | ABS | REL | REL | ABS | EXT | REL | EXT | EXT

terms Y: ABS | REL | ABS | REL | EXT | ABS | EXT | REL | EXT
X. Y A - R - - E - - -
<Legend> ABS: Absolute term

REL: Relocatable term

EXT: External reference term

A : The result of the operation becomes an absolute
term.

R : The result of the operation becomes an relocatable

term.

The result of the operation becomes an external

reference term,

~ ¢ The operation cannot be performed.

E

Values of Bit Symbols

If a bit symbol is defined by describing a bit term using the

bit position specifier in the operand field of the EQU
directive, the value that the bit symbol will have is shown in
Tablie 2-14 below.

Table 2-14. Values of Bit Symbols

Operand type Symbol value 78K/0 | 78K/I,11 [78K/III | 78K/VI
A.bit1 (Cf.2) 1.bit1 o) o o)
X.bit1l (Cf.2) 0.bit1 o o)
br.bit1 register-name- o
(Cft.1 & 2) valuel.bit1
, (Cf.3)
wr.bit2 register-name-
(C£.1 & 2) value2.bit2
(Cf.3)
PSW.bit1l (Cf.2) | TFEH.bit1 o) o
PSWL.bit1(Cf.2) o)
PSWH.bit1(C£.2) | 1TFFH.bit1
sfr.bit1 OFFxxH.bit1 0 o o]
(Cf.1 & 2) (Cf.4)
bsfr.bit1 o}
{CE.1 & 2)
expression. biti} OxxxxH. bit] o!
(Cf.2) (Cf.4)
Notes: 1. For details of the bit symbol description, see the
user's manual of each device.
2. bit1 = 0 to 7 and bit2 = 0 to OFH.
3. Register-name-valuel:

ROL=0 ROH=1 R1L=2 R1H=3 R2L=4 R2H=5 R3L=6 R3H=7
R4L=8 R4H=9 R5L=0AH R5H=0BH R6L=0CH R6H=0DH
R7L=0EH R7H=0FH

Register-name-vale2:

R0=0 RO=2 R2=4 R3=6 R4=8 R5=0AH R6=0CH R7=0EH
0FFxxH denotes the address of an sfr or bsfr.
OxxxxH denotes the value of an expression.,

Application Example

MOV 1
AND1
CLR1
SET1
SET1

CY, 0OFE20H.3

CY, A.S

P1.2

1+FE30H.3 : Equals OFE31H. 3.
OFE40H.4+2 | ; Equals QFE40H. 6.

2.5 Characteristics of Operands
Instructions and directives requiring an operand or operands
differ from one type of instruction to another in the size and
address range of the required operand value and in the symbol
attrlbute of the operand.
For example, an instruction "MOV rt1,#byte" functions to transfer
the value indicated by "byte" to register "r1". In this case,
because r1 is an 8-bit register, the size of the data "byte" to
be transferred must be 8 bits or less.
If an instruction is described as "MOvV RO, #100H", an assembly
error occurs, because the size of the 2nd operand "100H" of the
instruction exceeds the capacity of the 8-bit register RO.
So, when you describe an operand, attention must be paid to the
following points:
o Is the size of the operand value or its address range
suitable for the operand (numerical data, name, or
label) of the instruction?
© Is the symbol attribute suitable for the operand (name
or label) of the instruction?

2.5.1 Size and address range of operand value

Certain conditions are set for the size and address range of
the value of a numerical data, name, or label that can be
described as the operand of an instruction or directive,

With instructions, conditions for the size and address range
of an operand value are governed by the operand representation
format of each instruction. With directives, such conditions
are governed by the type of directive.

These conditions are shown in Tables 2-15 and 2-16 below.

2-56

Table 2-15. Sizes and Address Ranges of Operand Values of
Instructions
Operand Size & address 78K/0 78K/I,II 78K/III 78K/VI
represen- range of
tion format operand value 112 Others | 31X Others
saddr OFE20H to OFF1FH o o
OFE40H to QOFF1FH o
bsaddr OFCOQH to QOFEFFH o
saddrp Even value of o o o
QFE20H to OFF1FH
wsaddr Even value of o
OFCO0OH to OFF1EH
dsaddr Multiple of 4 of o
O0FCO00H to OFEFCH
addrie MOV 0H to o o o
MOVW QFFFFH
0H to o]
OFAT7FH
Other | 0H to 0 o]
in- QFEFFH
struc-| 0H to o
tion QFDFFH
CH to o)
OFFFFH
addri13 0H to 1FFFH o
addr i1 800H to OFFFH o o o]
addr8 0H to OFFH o
addrs Even value of o o 0
40H teo 7EH
Even value of o
- 8040H to 807EH
byte 8-bit value o] 0 0 o
0H to OFFH
word 16-bit value o) o] (o} (o}
0H to OFFFFH
dword 32-bit value o!
OH to QOFFFFFFFFH
bit 3-bit value o o o
0 to 7
bit3 3-bit value o
0 to 7 .
bit4 4-bit wvalue o
0H to OFH
n 2-bit value o}
0 to 3
3-bit wvalue o o
0 to 7
n3 3-bit value o
0 to 7
n4 4-bit value o
OH to OFH
n5 5-bit value o
O0H to 1FH

Table 2-16. Sizes and Address Ranges of Operand Values of

Directives
Directive Size & address 78K/0 78K/I,II 78K/III 78K/VI
range of
operand value 112 |Others [31X [Others
1 CSEG AT 0H to OFEDDH o o) o (o]
DESG AT CH to OFEFFH o o o o
BSEG AT OH to QFEFFH Q [e]
OFE40H to OFEFFH o]
QFE20H to QFEFFH =] *)
ORG 0H to QFFFfH o o o o
2 | EQU 16-bit value (o} o] o} o
0H to OFFFH
EQUD 32-bit value o
OH toc OFFFFFFFFH
SET 16-bit value o o) o o)
0H to OFFFFH
3| DB g-bit value 0 o o o
OH to OFFH
DW 16-bit wvalue e} o o] o]
0H to OFFFFH
DS 16-bit wvalue o o o] (o]
0H to QFFFFH
4 | BR 0H to QFEFFH o} o) o] o
5 | RSS 1-bit value o
0 or 1

Types of directives:

U LDy —

to the 78K/IIT only)

Segment Definition Directives
Symbol Defintion Directives
Memory Initialization and Area Reservation Directives
Automaic Brach Instruction Selection Directive
General-purpose Register Selection Directive (appllcable

2-58

2.5.2 Symbol attributes and relocation attributes of operands
When describing a name, label, or $§ (location counter) as the
operand of an instruction, the name or label may or may not
be described-as an operand depending on the symbol attribute
and relocation attribute of the operand as the term in an
expression (see 2.3.2, "Restrictions on operations") or the
reference direction of the name or label.

Names and labels are referenced in two directions: Backward
and Forward.

o Backward reference Name or label to be referenced
as an operand has been defined
in a previous line.

o Forward reference Name or label to be referenced
as an operand has been defined

in a subsequent line.

Example:
NAME TEST
CSEG
L1: ‘"—:i Backward reference
BR TL1 —
BR TL2 *—:j Forward reference
Lz: -
END

These attributes of the operands of instructions and directives
are shown in Tables 2-17 and 2-18 below.

2-59

Table 2-17. Attributes of Instruction Operands

Symbol NUMBER ADDRESS NUMBER Special DNUMBER
attribute or function
ADDRESS register -
Relocation | Absolute | Absolute|Relocatable] External (sfr Absolute -
attribute term term term ref. term name) term -
Reference BW W BwW FW | BW FW BW W BW FwW =
direction |8z
Operand = Xk x
format ~ e~ -
sfr o - - - - - - - o) - - [+ <]
cf.1 cf,2,3
sfrp - - - - - - - - [¢) - - ojofo
cf.2,4
bsfr - - - - - - - - o - - Q
Cf.3
wsfr - - - - - - - - o - - o
Ccf.4
saddr (o] o) o o) o 0 o) o - - o|lo| o
cf.2,5
saddrp o o e} o o o] o =3 o ojio|o
CE.2,6
bsaddr o] o Q o o o o o - - -)
wsaddr [}) o [+) [} [[+) o - - - [~
dsaddr o o o o o o o o - - - o
addr16 o [} o o o} o o o - - - af o | of o
Ccf.1
addr11 [2)) [2) 0 [2) o o o - - - ol o ! o ’
addrs [} o 0 o 13 o o o - - - I o
addrb o o o o o o [a]] - - - o|leio
dword - - - - - - - - - o - (o}
word o o [} o [o [¢) o - - - oclo| ol e
byte [« <] o o)] o 0 o] - - - ololof o
bit 5} o - - - - - - - - - ojo]o
bit3/bit4 [2) o - - - - - - - - - o
bit3i/bit4 o o - - - - - - - - - clol|ao
n3/nd4/ns o o - - = - - - - _ - °
BW ... Backward reference FW ..., Forward reference
¢ ... Can be described. ~ ... Cannot be described.

2-60

Notes: 1. The address of an external area to be accessed must be

described with an absclute expression.
2. If an sfr reserved word in the saddr area has been
described for an instruction in which a combination
sfr/sfrp changed from saddr/saddrp exists as operand
codes will be output as saddr/saddrp.
sfr reserved word that allows 8-bit accessing
sfrp reserved word that aloows 16-bit accessing
sfr reserved word for asddr area
sfrp reserved word for saddr area

S U
= s =

Table 2-18. Attributes of Directive Operands

of
s,

Symbel NUMBER ADDRESS BIT
attribute
Relocation Abs. Abs. Rel. Ext. Abs. Rel. Ext.
attribute term term term term ref. term term
Reference . BWIFW| BW| FW| BW | FW| BW| FW| BW | FW | BW | FW | BW | FW
direction
Directive
ORG o - - - - - - - - - - - - -
Cf1
EQU o - 0 - 0 - - - (o} - 0 - - -
Cf2 Cf2
SET o - I|-1-{-1-1-1-1-1-1-71-1T-7T-
Cf1
DB | Size o |- |-1-1-1-1-1-71-1-1-1-1-1-
Cf1
Initial | o o o o o] o o) Q - - - - - -
value
DW | Size o] - - - - - - - - - - - - -
Cf1
Initial | o o o o o o | o o - - - - - -
value
DS o - - - - - - - - - - - - -
BR 0 o o o o o o o) - - - - - -
RSS o Q - - - - - - - - - - - -
CEf1

Abs. term ... Absolute term Rel. term ... Relocatable term
Ext. term ... External reference term

BW ... Backward reference FW ... Forward reference

© ... Can be described. - ... Cannot be described.

Notes: 1.
2.

3.

Only an absolute expression can be described,

A term created by the HIGH or LOW operator which has

a relocatable term as its operand is not allowed.

An error will result if an expression includes one

of the following four attribute combinations and

the result of the operation is likely to be affected

by the optimization:

© ADDRESS attribute - ADDRESS attribute

O ADDRESS attribute relational operator ADDRESS
attribute

0 HIGH operator absolute ADDRESS attribute

0 LOW operator absolute ADDRESS attribute

2-62

CHAPTER 3. DIRECTIVES

3.1 Overview of Directives _
Directives are described in a source program just the same as
ordinary instructions. Directives are pseudoinstructions in a
program which give the assembler processor various instructions
necessary for this package to perform a series of processes.
Instructions will be translated into cbject codes (i.e., machine
language)}, but directives will not, as a rule, be converted into
object codes.)
Directives are available in nine types as listed in Table 3-1 and
have the following major functions:

o Facilitate description of source programs.

o Initialize memory and reserve memory areas.

o Provide the information required for the assembler and

linker to perform their intended processing.

Table 3-1. List of Directives

No. | Type of directive Directives

1 Segment definition CSEG, DSEG, BSEG, ORG, ENDS
directives

2 Symbol definition EQU, EQUD (applicable to 78K/VI
directives only), SET

3 Memory initialization/ | DB, DW, DS, DBIT
area reservation
directives

4 Linkage directives PUBLIC, EXTRN, EXTBIT

5 Object module NAME
declaration directive

6 Automatic branch BR
instruction selection
directive :

7 | General register RSS (applicable to 78K/III only)
gselection directive

8 Macro directives MACRO, LOCAL, REPT, IRP, EXITM,

ENDM

9 Assembly termination END

directive

A detailed description of each of these directives will be
provided in the following sections.

In the description format of ‘each directive, " 1" indicates
that the parameter in braces may be omitted from specification
and "..." indicates the repetition of description in the same

format.

For example, if the description format reads:

[{AYHB[, ...]] :
you may describe parameter(s) in any of the following three
formats:

oA
o A B, B, B
o B, B

3.2 Segment Definition Directives
A source module is described in units of segments.
Segment definition directives are used to define these segments.
Segments are divided into the following four types:
o Code segment
o Data segment
0 Bit segment
o Absolute segment

To which address range in memory each segment will be located is
determined by the type of segment.

Table 3-2 shows the method of defining each segment and the
memory address area to be allocated to each segment.

Table 3-2. Segment Definition Methods and Memory Address

Allocation
Type of Method of Memory address area to be
segment definition allocated te each segment
Code segment CSEG directive Within the internal or
external ROM area
Data segment | DSEG directive Within the internal or
external RAM area
Bit segment BSEG directive Within the saddr area in
the internal RAM
Absolute Specifies location Specified address
segment address (AT location
address) to reloca-
tion attribute with
CSEG, DSEG, or BSEG
directive

If the user wishes to determine the memory allocaticn to a
segment, describe (define) the segment as an absolute segment.
An example of memory allocation to segments is shown in

Fig. 3-1. '

<Source program®

Source module

Source |
module

Source
module

(Memory?»
emory 0H
<One source module)

Data segment ROM
Specified
address

J
Bit segment
Code segment! RAM
saddr
Absolute segment
which belongs tog
code segment
L,
FFFFH

Fig. 3-1. Memory Allocation to Segments

CSEG code segment

CSEG

(1) CSEG (code segment)

Description Format

Symbol Mnemonic Operand
field field field
[segment name] CSEG

[relocation attribute]

Comment

field

[;comment]

Function

o The CSEG directive indicates to the assembler the start of a

code segment.

o All instructions described after this directive until the

re-appearance of any segment definition directive (CSEG,
DSEG, BSEG, ORG, or ENDS) in the source module will belong
to the code segment and will be located within the ROM

address area upon conversion into machine language.

<Source mecdule> {Memory>
NAME Tl
" DSEG ROM

Ccde

segment

RAM

Fig. 3-2. Relocation of Code Segment

CSEG code segment CSEG

Use

© DPescribe instructions, DB directive, or DW directive
in the code segment defined by the CSEG directive.
(However, to relocate the code segment from a fixed address,
"AT absolute address” must be described as its relocation
attribute in the Operand field.)

© Description of one functional unit such as a subroutine
should be defined as a single code segment. If the size of
the unit is relatively large or if the subroutine is highly
versatile (can be utilized for development of other
programs), the subroutine should be defined as a single
module.

Explanation

o The start address of a code segment can be specified with
the ORG directive. It can also be specified by describing
the relocation attribute "AT" followed by an absolute
expression in the Opefand field of the CSEG directive.

O A relocation attribute defines a range of location addresses
for a code segment. There are seven types of relocation
attributes available for code segments as shown in Table
3-3.

CSEG ___code segment CSEG

Table 3-3. Relocation Attributes of CSEG

Relocation | Description [Explanation HiHlH
attribute | format 2i8|Zlez
: M M| M|] e
©| V) | o @
~l |~~~

CALLTO CALLTO Instructs the assembler to olo|lolao

locate the specified segment
so that its first address
becomes a multiple of 2
within addresses 0040H to A
007FH. Specify this relocation
attribute for a code segment
which defines the entry
address of a subroutine to be
called with the one-byte
"CALLT" instruction (i.e.,
if CCW TPF=0)
CALLT1 CALLT1 Instructs the assembler to o
locate the specified segment
so that its first address
becomes a multiple of 2
within addresses 2040H to
B07FH. Specify this relocation
attribute for a code segment
which defines the entry
address of a subroutine to be
called with the cne-byte
"CALLT" instruction (i.e.,
if CCW TPF=1)
TABLE TABLE Instructs the assembler to o
locate the specified segment
so that its first address
becomes a multiple of 2
within addresses 0050H to
00FFH.
FIXED FIXED Instructs the assembler to ocjo|lojo
‘ locate the specified segment
within addresses 0800H to
OFFFH. Specify this relccation
attribute for a code segment
which defines a subroutine to
be called with the 2-byte
"CALLF" instruction.
AT AT Instructs the assembler to o|lojo|lojo
absolute locate the specified segment
expression to an absolute address (within
0000H to FEFFH).

3-7

CSEG code segment CSEG

Table 3-3. Relocation Attributes of CSEG (contd)

Relocation | Description | Explanation = g
attribute | format 2121 31e(L8
Ml x| x| x|
| @w| o|lo|®
SN~ sl |~
UNIT UNIT Instructs the assembler to ojolo]lo|o
(default locate the specified segment
value) to any address within the

following range:
With 78K/0:
0080H to FA7FH
With 78K/I,III:
0000CH to FEFFH
With 78K/II:
0080H to TEFFH
With 78K/VI:
0100H to the last address
of ROM area
PAGE PAGE Instructs the assembler so o
that the high-order 8 bits
are located within the same
address range.
o: Applicable Blank: Not applicable

NOTE: "CCW TPF" refers to the table position flag (TPF) of the
CPU control word (CCW) which specifies the lccation of a
vector table to be referenced by the CALLT instruction or
or an interrupt request. According to the value of this
flag, the vector table location is switched and selects
the address indicated by the vector table. CCW is mapped
to the address OFE4EH of the SFR (special function register)
area.

o If no relocation attribute is specified for the code
segment, "UNIT" is assumed to have been specified.

o If a relocation attribute other than those listed in Table
3-3 is specifiedﬂ the assembler will cutput an error message
and assume that "UNIT" has been specified. An error will
result if the size of each code segment exceeds the size
of the area specified by its relocation attribute.

o If the absolute expression specified wiﬁh the AT relocation
attribute is illegal, the assembler will output an error
message and continue processing by assuming the value of

the expression to be "Q".

CSEG

code segment CSEG

o By describing a segment name in the Symbol field of the

CSEG directive, the code segment can be named.

If no segment name is specified for a code segment, the

assembler will automatically give a segment name to the

cbde segment. The default segment names of code segments
are shown in Table 3-4.

Table 3-4. Default Segment Names of CSEG

Relocation attribute Default segment name

CALLTO (applicable to 2CSEGTO
all devices except
78K/VI)

CALLT?1 (applicable to ?CSEGT1
78K/III only)

FIXED ?CSEGFX

UNIT ?CSEG (default value)

AT ' Segment name cannot be
omitted.

?CSEG is assumed from
default relocation
attribute "UNIT".

If two or more code segments with the same relocation
attribute (except AT} exist in a source module, these code
segments may have the same segment name. These same named
code segments will be processed as a single code segment
within the assembler.

An error will result if the same named segments differ in
their relocation attributes. Therefore, the number of the
same named segments for each relocation attribute is one.
The same named code segments in two or more different
modules will be combined into a single code segment at
linkage time.

No segment name can be referenced as a symbol.

The total number of segments that can be output by the
assembler is as follows:

CSEG code segment CSEG

With 78K/0, II, and VI:

100 segments including code, data, and bit segments. The
same named segments are counted as one.

With 78K/I and III: |

80 segments under different segment names with the exception
of segments defined with the ORG directive. The same named
segments are counted as one.

Application Examples

Example 1
NAME = SAMP1
CSEG CALLTO ; (1)
TLAB1: DW LAB1
CSEG ‘ 12)
CLR1 CCWwW.1 L (3)
CALLT (TLAB1] s)
CSEG , (5)
LAB1:
END

(1) Within this code segment, the entry address of a
subroutine to be called by the CALLT instruction if
TPF = 0 is defined. Therefore, relocation attribute
"CALLTO" must be specified for this code segment.

(2) Within this code segment, instructions which may be
located to any locations in the ROM area are
described., Therefore, no relocation attribute will
be specified for this code segment.

(3) Clears TPF (Bit 1 of CCW)}. (TPF = 0)

3-10

CSEG

code segment

{4) Label "TLAB1" is described to indicate the address

in which the entry address of the subroutine is
stored.

(5) In this code segment, the subroutine to be called

by the CALLT instruction in (4) is defined.

Example 2
NAME SAMP2
CSEG CALLTI1 , (1
TLAB2: DW LAB2
CSEG ; (2)
SETI1 CCw.1 ' (3)
CALLT I([TLAB2) (4
CSEG ;{5)
LABZ:
END

(1)

(2)

(3)

(4)

(5)

Within this code segment, the entry address of a
subroutine to be called by the CALLT instruction if
TPF = 1 is defined. Therefore, relocation attribute
"CALLT1" must be specified for this code segment.
Within this code segment, instructions which may be
located to any locations in the ROM area are
described., Therefore, no relocation attribute will
be specified for this code segment,

Sets TPF (Bit 1 of CCW). (TPF = 1)

Label "TLAB2" is described to indicate the address
in which the entry address of the subroutine is
stored.

In this code segment, the subroutine to be called
by the CALLT instruction in (4) is defined.

3-11

CSEG code segment CSEG

Example 3
NAME SAMP3
CSEG FIXED s (1)
SuUB1:
CSEG
CALLF 1SUB1 V2
END

(1) Within this code segment, the entry address of a
subroutine to be called by the CALLF instruction is
defined. Therefore, relocation attribute "FIXED" must
be specified for this code segment.

(2) Label "SUB1" is described as the operand of the CALLF
instruction to indicate the address in which the entry
address of the subroutine is stored.

Example 4

NAME SAMPY
SN41 CSEG Y

SN42: CSEG :{2) }——This description is
erronecus.

END

{1) A code segment is defined without relocation attribute
specification (segment type "CSEG"). Segment name is
"SN41".

(2) A code segment without specified relocation attribute
(segment type "CSEG") has already been defined in (1)
above. Therefore, this descripticn results in an error.
Change the segment name to "SN41".

3-12

CSEG code segment CSEG

Example 5

NAME SAMP S5
SNS5 C5EG AT 1000H (M

SNs5 CSEG 1(2) —— This description is
_ erroneous.

END

(1) The location of a code segment is specified as an
absolute segment with start address "1000H".

(2) The same named segment is not allowed with the
AT relocation attribute.

Example 6
«Module 1»
NAME . SAMP61
SN6 CSEG)
END
<Module 2>
NAME SAMP6 2
SNE6 CSEG (2
END
(1) and (2)

Code segment "SN6" defined in (1) in module 1 becomes
the same in segment name and segment type as the code
segment defined in (2) in module 2. Therefore, these
two code segments will be processed as a single code
segment at linkage time.

DSEG data segment DSEG
(2) DSEG (data segment)

Description Format

Symbol Mnemonic Operand Comment
field field field field
[segment name] DSEG [relocation attribute] [; comment]
Function

© The DSEG directive indicates to the assembler the start of
a data segment.

© Memory areas defined by the DS directive after this ‘
directive until the re-appearance of any segment definition
directive (CSEG, DSEG, BSEG, ORG, or ENDS) in the source
module will belong to the data segment and will be finally
allocated within the RAM address area.

«Source module> <Memory>

NAME T2
"_DSEG ROM
Data
segment
CSEG
" END

RAM

Fig. 3-3. Relocation of Data Segment

3-14

DSEG

data segment DSEG

Use

o The DS directive is mainly described in the data segment

defined by the DSEG directive. Data segments will be located
within the RAM area. Therefore, no instructions can be
described in any data segment.

In a data segment, the DS directive must be described to
reserve a RAM work area to be used by the program and a
label must be given to the address of each work area.

When describing a source program, this label is used.

Each area reserved as a data segment will be allocated

by the linker so that it does not overlap with any other
work areas on the RAM (stack area, general-purpcse register
area, and work areas defined by other modules).

Explanation

o The start address of a data segment can be specified with

the ORG directive. It can also be specified by describing
the relocation attribute "AT" followed by an absolute
expression in the Operand field of the DSEG directive.

A relocation attribute defines a range of location addresses
for a data segment. There are four types of relocation
attributes available for data segments as shown in Table
3-5.

3-15

DSEG data segment DSEG

Table 3-5. Relocation Attributes of DSEG

Relocation |[Description |Explanation
attribute format
SADDR SADDR Instructs the assembler to
locate the specified segment
to the following addresses
within the saddr area.
With 78K/0, I, and III:
FE20H to FEFFH
With uPD78112:
FE40H to FEFFH
With 78K/VI:
FCFFH to FEFFH
SADDRP SADDRP Instructs the assembler to [o)
locate the specified segment
to addresses FE20H to
FEFFH within the saddr area so
that its first address becomes
. a multiple of 2.
WSADDRP WSADDRP Instructs the assembler to 's)
locate the specified segment
to addresses FCOOH to
FEFFH within the saddr area so
that its first address becomes
a multiple of 2. :
IHRAM IHRAM Instructs the assembler to o]
' locate the specified segment
within the high-speed RAM

0178K/0
0|78K/1
ol78K/1I
0 [78K/I11]
o) 78K>VI

area.
AT AT Instructs the assembler to ojo|lof{olo
absolute locate the specified segment -

expression to an absolute address
(within 0000H to FEFFH).

UNIT UNIT Instructs the assembler to clolofloflo
(default locate the specified segment
value) to any address within the
memory area name RAM.
PAGE PAGE Instructs the assembler so o]

that the the high-order 8
bits are located within the
same address range.

o: Applicable Blank: Not applicable

o If no relocation attribute is specified for the data
segment, "UNIT" is assumed to have been specified.

o If a relocation attribute other than those listed in Table
3-5 is specified, the assembler will output an error message
and assume that "UNIT" has been specified. An error will
result if the size of each data segment exceeds the size of

the area specified by its relocation attribute,

DSEG data segment DSEG

o If the absolute expression specified with the AT relocation
attribute is illegal, the assembler will output an error
message and continue processing by assuming the value of
the expression to be "0".

0 By describing a segment name in the Symbol field of the

DSEG directive, the data segment cah be named.
If no segment name is specified for a data segment, the
assembler will automatically give a segment name to the
data segment. The default segment names of data segments
are shown in Table 3-6.

Table 3-6. Default Segment Names of DSEG

Relocation attribute Default segment name

SADDR ?DSEGS

SADDRP (applicable ?DSEGSP

to 78K/III only)

WSADDR (applicable - ?DSEGWS

to 78K/VI only

DSADDR (applicable ?DSEGDS

to 78K/VI only

IHRAM (applicable ?DSEG

to 78K/0 only)

UNIT ?DSEG {default wvalue)

AT Segment name cannot be
omitted.
?DSEG is assumed from
default relocation
attribute "UNIT".

o If two or more data segments with the same relocation
attribute (except AT) exist in a source module, these data
segments may have the same segment name. These same named
data segments will be processed as a single data segment
within the assembler.

o If the relocation attribute is SADDRP or WSADDR, the
specified segment will be located so that its first address
(the address immediately after the described DSEG directive)
becomes a multiple of 2. With the DSADDR relocation
attribute, the specified segment will be located so that its
first address becomes a multiple of 4. The assembler will
provide a gap of 1 to 3 bytes if necessary.

3-17

DSEG data segment DSEG

O An error will result if the same named segments differ in
their relocation attributes. Therefore, the number of the
same named segments for each relocation attribute is one.

0 The same named data segments in two or more different
modules will be combined into a single data segment at
linkage time.

o No segment name can be referenced as a symbol.

0 The total number of segments that can be ocutput by the
assembler is as follows:

With 78K/0, II, and VI:

100 segments including data, code, and bit segments. The
same named segments are counted as one.

With 78K/I and III:

80 segments under different segment names with the exception
of segments defined with the ORG directive. The same named

segments are counted as one.

Application Examples

Example 1
NAME SAMP!
DSEG T
"IWORK1: DS 1
|WORK2: DS 2
CSEG
MOV A, IWORK1 ()
MOV A, WORK1 1(3) [—This description is
. erroneous,
MOVW DE, #WORK? T4
MOVW AX, (DE)
MOVW AX, WORK?2?2 ;{5) [+—— This description is
. erronegus.
END

DSEG

data segment DSEG

(1) The start of a data segment is defined with the DSEG
directive. Because its relocation attribute is omitted,
"UNIT" is assumed.)

(2) This description corresponds to '"MOV A,!addr1é”.

(3) This description corresponds to "MOV A,saddr".
Relocatable label "WORK1" cannot be described as
"saddr". Therefore, an error will occur as a result
of this description.

(4) This description corresponds to "MOVW rpl,#word".

(5) This description corresponds to "MOVW AX,saddrp".
Relocatable label "WORK2" cannot be described as
"saddrp". Therefore, an error will result as a
result of this description.

Example 2
NAME SAMP2
DATA1 DSEG S (D)
CSEG
DATA1 DgEG | L@
END

(1) A data segment with segment name "DATA1" is defined
with the DSEG directive.

(2) This segment will be processed as a continuous segment
which follows the data segment defined in (1) above.
The first address of the segment defined in (2) will be
the address next to the last address of the segment

defined in {1) above.

BSEG bit segment BSEG

(3) BSEG (bit segment)

Description Format

Symbel Mnemonic Operand Comment
field field field field

[segment name] BSEG [relocation attribute] [;comment]
Function

0 The BSEG directive indicates to the assembler the start of
a bit segment.

0 A bit segment is a segment which defines the RAM addresses
to be used in the source module. |

0 Memory areas defined by the DBIT directive after this
directive until the re-appearance of any segment definition
directive (CSEG, DSEG, BSEG, ORG, or ENDS) in the source

‘module will belong to the bit segment and will be finally
allocated to addresses within the saddr area (the RAM area
with the 78K/VI).

<Source module> <Memory>
oH
NAME T3
BSEG
Bit
segment
DSEG ROM
CSEG
END B RAM

Fig. 3-4. Relocation of Bit Segment

3-20

bit segment

BSEG | BSEG

Use
o Describe the DBIT directive in the bit segment defined by
the BSEG directive.
o No instructions can be described in any bit segment.

(See Application Examples 1 and 2.)

Explanation

o The start address of a bit segment can be specified by
describing the relocation attribute "AT" followed by an
absolute expression in the Operand field of the BSEG ’
directive.

0 A relocation attribute defines a range of location addresses
for a bit segment. There are three types of relocation
attributes available for bit segments as shown in Table 3-7.

Table 3-7. Relocation Attributes of BSEG

Description
format

Relocation
attribute

Explanation

78K/0
78K/ I
78K/II
78K/11I
Ol78K/VI

Instructs the assembler to
locate the specified segment
to addresses FCOQH to FEFFH
within the saddr area. The
beginning of the segment is
located at the 0th bit.

SADDR SADDR

AT

AT
absolute
expression

Instructs the assembler to
locate the beginning of the
specified segment to the Oth
bit of an absolute address
within the following address
range:
With 78K/0 and VI:

0000H to FEFFRH

{With 78K/X, II and III:

FE20H to FEFFH
With uPD78112:
FE40H_to FEFFH

UNIT

UNIT
(default
value)

Instructs the assembler to
locate the specified segment
to any address within the
following address range:
Wwith 78K/0, I, II, and III:
FE20H to FEFFH
With uPD78112:
FE40H to FEFFH
With 78K/VI:
Default RAM area

o: Applicable

Blank: Not applicable

3-21

BSEG bit segment BSEG

© If no relocation attribute is specified for the bit
segment, "UNIT" is assumed to have been specified.

o If a relocation attribute other than those listed in Table
3-7 is specified, the assembler will output an error message
and assume that "UNIT" has been specified. An error will
result if the size of each bit segment exceeds the size of
the area specified by its relocation attribute.

o In both the assembler and linker, the location counter in a
bit segment is displayed in the form "xxxx. b". (The byte
address is hexadecimal 4 digits and the bit position is
hexadecimal 1 digit (0 to 7).}

With absoclute bit segment
0 1 2 3 4 5 6 7 «Bit position

Byte address

OFE20H CD@@@@@@@ Location counter
— @ OFE20H.0 @ OFE21H.0
OFENH| @ @00 @ Bi6GIG| © FEuH.1 ® oFERH.I
N OV S S S @ OFE20H.2 @ OFE21H.2
@ OFE20H.3 @ OFE2LH.3
® OFE20H.4 @@ OFE21H.4
® OFE20H.5 @ O0FE2IH.5
@ OFE20H.6 @ OFE2IH.6
® OFE20H.7 @@ OFE2IH.7

With relocatable bit segment
¢ 1 2 3 4 5 6 7 —Bit position
Byte address

oH @@@@@@@@ Location counter
e W ® OHO @ IH.0
H O 00 @ 6866 © Ml e
o S @ OH2 @ IH.2
@ 0H.3 @ 1H.3
® O0H.4 @ 1H.4
® OH.5 @& 1H.5
@ 0H.6 © IH.6
® OH.7 ® 1H.7

BSEG

bhit segment BSEG

Note: Within a relocatable bit segment, the byte address
gspecifies an offset value in byte units from the
- beginning of the segment.

In a symbol table to be output by the object converter, a
bit offset from the beginning of an area in which a bit has
been defined is displayed.

Symbol value| Bit offset
FE20H.0 0000
FE20H.1 0601
FE20H.2 0002
FE20H.7 0007
FE21H.0 0008
FE21H.1 0009
FES0H.0 0300

o If the absolute expression specified with the AT relocation

attribute is illegal, the assembler will output an error
message and continue processing by assuming the value of

the expression to be "0".

By describing a segment name in the Symbol field of the

BSEG directive, the bit segment can be named.

If no segment name is specified for a bit segment, the
assembler will automatically give a segment name to the bit
segment, The default segment names of bit segments are shown
in Table 3-8.

3-23

BSEG bit segment BSEG

Table 3-8. Default Segment Names of BSEG

Relocation attribute Default segment name
SADDR (applicable to ?BSEGS
78K/VI only)

UNIT ?BSEG {default value)
AT Segment name cannot be
omitted.

?BSEG is assumed from
default relocation
attribute "UNIT".

o If two or more bit segments with the same relocation
attribute (except AT) exist in a source module, these bit
segments may have the same segment name. These same named
bit segments will be processed as a single bit segment
within the assembler. |

O An error will result if the same named segments differ in
their relocation attributes. Therefore, the number of the
same named segments for each relocation attribute is one.

0 The same named data segments in two or more different
modules will be combined into a single data segment at
linkage time, This linking is performed in units of bits.

o No segment name can be referenced as a symbol.

o Only the DBIT, EQU, SET, PUBLIC, EXTBIT, EXTRN, MACRO, REPT,
IRP, and ENDM directives, macrodefinitions and macro
references can be described in a bit segment. An error will
result if any instruction other than the above is described.

o The total number of segments that can be output by the
assembler is as follows:

With 78K/0, II, and VI:

100 segments including data, code, and bit segments. The
same named segments are counted as one.

With 78K/I and III:

80 segments under different segment names with the exception
of segments defined with the ORG directive. The same named
segments are counted as one.

BSEG

bit segment

BSEG

Application Examples

Example 1

NAME
BSEG
B1 DBIT
B2 DBIT
B3 DBIT

CSEG
MOV1

ANDI1

END

SAMP1

(D
CY, B1 ;@)
CY, B2 ' (3)

(1) A bit segment is defined with the BSEG directive.
Because its relocation attribute is omitted, the

relocation attribute "UNIT and the segment name "?BSEG"

are assumed. In each bit segment, a bit work area is
defined for each bit with the DBIT directive. A bit
segment should be described at the early part of the

module body.

(2) This description corresponds to "MOV1 CY,saddr.bit".
(3) This description corresponds to "AND1 CY,saddr.bit".

3-25

BSEG bit segment BSEG
Example 2
NAME SAMP2
FLAG EQU ‘0OFE20H
FLAG(EQU FLAG.O (1)
FLAG1 EQU FLAG.1 {1
BSEG
FLAG2 DBIT . (2)
CSEG
MOV1 CY, FLAGYO ;(3)
MOV1 CY, FLAG2Z2 4
END
(1) Bit addresses (Bit 0 and Bit 1 of QOFE20H) are defined
with consideration given to byte address boundaries.
(2) Bit address FLAG2 defined in the bit segment is

(3}

(4)

located without consideration to any byte address

boundary.

This description can be substituted with "Mov1 CY,

FLAG.0". Here, FLAG indicates a byte address.

In this description, no consideration is given to

byte address boundaries,

3-26

BSEG

bit segment

BSEG

Example 3

Bl

NAME
BSEG

END

SAMP3
AT 0FE20H

Q)

(1) A bit segment is located as an absolute segment starting
from address OFE20H.

ORG origin ORG

{4) ORG (origin)

Description Format

Symbol Mnemonic Operand Comment
field field field field
[segment name] ORG [absolute expressionl [;comment]
Function

o The ORG directive sets the value of the expression specified
by its operand in the location counter.

¢ Instructions described or memory areas reserved after this
directive until the re-appearance of any segment definition
directive (CSEG, DSEG, BSEG, ORG, or ENDS) in the source
module will belong to the absolute segment and will be
allocated beginning with the address specified in the
operand of this directive.

¢<Source module> . <Memory>
NAME T4
DSEG 1000H
BSEG OFE20H
Absolute
segment
CSEG ROM
ORG _ 1000H]
Absolute RAM
segment OFE20H
END

Fig. 3-5. Relocation of Absolute Segment

Use
Specify the ORG directive to start memory allocation to a code

segment or data segment from a specific address.

3-28

ORG origin ORG

Explanation

o The absolute segment defined with the ORG directive belongs
to the code segment or data segment defined with the CSEG or
DSEG,immediately before the ORG directive.

Within an absolute segment which belongs to a data segment,
no instructions can be described.

An absolute segment which belongs to a bit segment cannot be
described with the ORG directive,

o The number of times that the ORG directives can be described
per source module is as follows:

With 78K/0, II, and VI:

No specific restriction {(provided the total number of
segments must not exceed 100)

With 78K/I and III: Up to 20 times

o The code segment or data segment defined with the ORG
directive is interpreted as a code segment or data segment
which has the relocation attribute AT.

o By describing a segment name in the Symbol field of the
ORG directive, the absolute segment can be named. The
maximum number of characters that can be recognized as a
segment name is 8.

o If no segment name is specified for an absolute segment, the
assembler will automatically give a default segment name as
follows:

With 78K/0, II and VI:

"2a00xxxx" will be given to the absolute segment (where
"xxxx" indicates the start address of the segment specified
by the operand).' A

With 78K/I and III:

"2ASEGn" will be given to the absolute segment {(where n is a
value in the range of 1 to 20 and is given in the order of
absolute segment description within the source module).

o If neither CSEG nor DSEG directive has been described before
the ORG directive, the absolute segment defined by the ORG
directive is interpreted as an absolute segment in a code

segment.

3-29

ORG origin ORG

o If a name or label is to be described as the operand of
the ORG directive, the name or label must be an absolute
term which has already been defined in the source module.

© No segment name can be referenced as a symbol.,

Application Examples

Example 1
NAME SAMP1
DSEG
SADR ORG. O0FE20H A1)
SADR1: DS 1
SADR2: DS !
SADR3I: DS 2

MAINGO ORG 100H

MOV A, SADRI1 {2) b—1his description is
, erroneous.
CSEG 2 (3)
MAINI ORG 1000H y (4)

MOV A, SADRZ
MOVW AX, SADR3

END

(1) An absolute segment which belongs to a data segment is
defined. This absolute segment will be located to the
short direct addressing area which starts from address
"FE20H".

(2) Within an absolute segment which belongs to a data
segment, no instruction can be described.

(3) This directive declares the start of a code segment.

(4) This absolute segment will be located to an area which
starts from address "1000H".

3-30

ORG origin ORG

Example 2
NAME SAMP2
ORG 0H)]
CSEG ' (2)
ORG 800H 1 (3)
ORG 1000H T (4)
END

(1) This absolute segment belongs to a code segment and will
be located to an area which starts from address "0H".

(2) This directive declares the start of a code segment.

(3) This absclute segment will be located to an area which
starts from address "800H".

(4) This absolute segment will be located to an area which
starts from address "1000H".

Three absolute segments have been defined without segment name
in (1), (3), and (4} above. Therefore, the assembler will

automatically give absolute segment names ?ASEG1, ?ASEG2, and
?ASEG3, respectively, to these segments in the order of their

definition.

ENDS end of segment ENDS

(5) ENDS (end of segment)

Description Format

Symbol Mnemonic Operand Comment
field field field field
None ENDS None [;comment)
Function

The ENDS directive indicates the end of the relocatable
segment defined by the CSEG, DSEG, or BSEG directive.

Use
The ENDS directive is used in pairs with the CSEG, DSEG, or

BSEG directive in a source module.

Explanaticn

o The ENDS directive indicates the end of each segment in
source module description.

o After the ENDS directive has been described, only a comment
statement can be described before the next segment
definition directive (CSEG, DSEG, BSEG, or ORG) is
described.

o0 Description of the ENDS directive may be omitted.

3-32

ENDS end of segment ENDS

Application Example

NAME SAMP1
BSEG
ENDS (1)
ydata Ssegment
DSEG s (2)
ENDS » (3
WORK: DS 1 i4) —This description is
erronecus,
CSEG s (5
ENDS (6)
END

{1} This directive indicates the end of a bit segment.

{(2) This directive indicates the start of a data segment.
Only comments can be described between (1) and (2).

(3) This directive indicates the end of the data segment.

(4) Only a comment statement can be described between the ENDS
directive and the CSEG directive in (5) below.

(5) This directive indicates the start of a code segment.

(6) This directive indicates the end of the code segment.

3-33

3.3 Symbol Definition Directives

Symbol definition directives assign names to numerical data to be
used for describing a source module. By these names, the meaning
of each data value becomes clear and you may easily understand the
contents of the source module.

Symbol definition directives inform the assembler of the value of
each name to be used in the source module.

Three directives are available for symbol definition: EQU, EQUD,
and SET.

3-34

EQU equate EQU
(1) EQU (equate)
Description Format

Symbol Mnemonic Operand Comment

field field field field

name EQU expression [;comment]

Function

The EQU directive defines a name which has the value and
attributes (symbol attribute and relocation attribute) of
the expression specified in the Operand field.

Define a numerical data to be used in the source module as a
name with the EQU directive and describe it in the operand of
an instruction in place of the numerical data.

Numerical data to be frequently used in the source module
should be defined as names. By so doing, if you must change
a data value in the source module, all you need to do is
change the operand value of the name. (See Application
Example 1.)

Explanation

o When a name or label is to be described in the operand of
the EQU directive, use the name or label which has already
been defined in the source module.

No external reference term can be described as the operand
of this directive. |

o If an expression includes a term created by the HIGH or LOW
operator which has a relocatable term as its operand, the
expression cannot be described in the Operand field of the
EQU directive.

3-35

equate EQU

0 If an expression which contains one of the following

attribute combinations, an error will result:

{a)

(b)

(c)
(Q)

Expression 1 with ADDRESS attribute - Expression 2

with ADDRESS attribute]

Expression 1 with ADDRESS aétribute Relational

operator Expression 2 with ADDRESS attribute

provided either of the following conditions C) and C)

is met in the expression (a) or (b):

C) If label 1 in the expression 1 with ADDRESS
attribute and label 2 in the expression 2 with
ADDRESS attribute belong to the same segment and
if a BR directive for which the number of bytes of
the object code cannot be determined instantly is
described between the two labels

(@ 1f label 1 and label 2 differ in segment and if
a BR directive for which the number of bytes of the
object code cannot be determined instantly is
described between either label and the beginning of
the segment to which the label belongs

HIGH Absolute expression with ADDRESS attribute

LOW Absolute expression with ADDRESS attribute

provided the following () is met in the expression

(c) or (4):

(:) If a BR directive for which the number of bytes of
the object code cannot be determined instantly is
described between the label in the expression with
ADDRESS attribute and the beginning of the segment
to which the label belongs

© If an error exists in the description format of the

operand, the assembler will output an error message but will

attempt to store the value of the operand as the value of
the name described in the Symbol field to the extent that it
can analyze.

0 A name defined with the EQU directive cannot be defined

again within the same source module.

0 A name which has defined a bit value with the EQU directive

will have an address and a bit position as its value.

3-36

EQU

equate

EQU

o Table 3-9 shows the bit values that can be described as the
operand of the EQU directive. Any of these bit values other

than "expression.bit" can be referenced within the same

module. "expression.bit1" can be referenced from another

module,

Table 3-9., Representation Formats of Operands Indicating

Bit Values
Operand type Symbol value 78K/0 1 78K/I1,1T | 78K/III | 78K/VI
A.bit1 (Cf.2) 1.bit1 o] o o
X.bit1 (Cf.2) 0.bit1 o 0
br.bit1 register-name- o
(Cf.1 & 2) valuel.bit1
(Cf.3)
wr.bit2 register-name-
(Cf.1 & 2) value2.bit2
(Cf.3)
PSW.bit1 (Cf.2) | 1FEH.bit1 0 o
PSWL.bit1(Cf.2) o
PSWH.bit1({C£f.2) | TFFH.bit1
sfr.bit1 OFFxxH.bit1 o e} Q
(CE£.1 & 2) (Cf.4)
bsfr.bit1 0
(Cf.1 & 2)
expression. bit1| OxxxxH. bitl o (o} (o} o
(Cf.2) (CEf.4)

Notes:

1.

2,
3.

For details of the bit symbol description, see the
user's manual of each device.

bit1l = 0 to 7 and bit2 = 0 to OFH.
Register-name-valuel:

R0L=0 ROH=1 R1L=2 R1H=3 R2L=4 RZ2H=5 R3L=6 R3H=7
R4L=8 R4H=9 RS5L=0AH R5H=0BH R6L=0CH R6H=0DH
R7L=0EH R7H=0FH

Register-name-vale2:

R0=0 R0=2 R2=4 R3=6 R4=8 R5=0AH R6=0CH R7=0EH
O0FFxxH denotes the address of an SFR or bsfr.
0xxxxH denotes the value of an expression.

3-37

EQU

EQU equate
Application Examples
Example 1
NAME SAMP1
DATA1 EQU 10H D
DATAZ2 EQU 20H
ADRS1 EQU 0OFE20H ; (2)
ADRS? EQU 0FE21H
CSEG
MOV A, ®DATA1 {3
ADD A, ADRS1 » (4)
MOV ADRSZ , #DATA1 ;{5
END

(1) Name "DATA1" has value "10H", symbol attribute "NUMBER",
and relocation attribute "ABSOLUTE".

(2} Name "ADRS1" has value "OFE20H", symbol attribute
"NUMBER", and relocation attribute "ABSOLUTE".

(3) Name "DATA1" defined in (1) above is described as the
operand of the MOV instruction with a value of 10H.

(4) Name "ADRS1" defined in (2) above is described as the
operand of the ADD instruction with a value of OFE20H.

(5) Names "ADRS2" and "DATA1" which have already been defined
are described as the operands of the MOV instruction.

If the value "10H" defined as "DATA1" must be changed to 50H,
you only need to change 10H to 50H in the directive
description (1). Descriptions (3) and {5) need not to be

changed..

3-38

equate

Example 2
NAME SAMP2?2
WORK 1 EQU 0FE20H 1)
WORK10 EQU WORK1. 0 (2)
WORK1Y? EQU WORK1. 1 1 (2)
P02 EQU PO. 2 L (3)
P03 EQU PO. 3 L (3)
Ad EQU A4 L (4)
X5 EQU X.5 : (5)
PSWL5 EQU PSWL. 5 : (6)
PSWHE6 EQU PSWH. 6 (7

CSEG

MOV1 CY, WORK10 (8

MOV1 Po2, CY) {9)

OR1 CY, A4 ;)

X0OR1 CY, X5 ; (D)

SET1 PSWL5 iy
CLR1 PSWH 6 .13
END

(1) Name "WORK1" has value "02FE20H", symbol attribute
"NUMBER", and relocation attribute "ABSOLUTE".

equate : EQU

(2)

(3)

(4)

(5)

(6)

(7)

(8)
(9)
(10)
(11)
(12)
(13)

Bit values "WORK1.0" and "WORK1.1" which are in the
operand format '"saddr.bit" are assigned names "WORK10"
and "WORK11", respectively. Value "OFE20H" has already
been defined in (1) for "WORK1" described as the operand
of the EQU directive.

Bit values "P0.2" and "P0.3" which are in the operand
format "sfr.bit" are assigned names "P02" and "po3",
respectively. ' '

Bit value "A.4" which is in the operand format "A.bit" is
assigned name- "A4",

Bit value "X.5" which is in the operand format "X.bit" is
assigned name "X5",

Bit value "PSWL.5" which is in the operand format
"PSWL.bit" is assigned name "PSWL5".

Bit value "PSWH.6" which is in the operand format
"PSWH.bit" is assigned name "DPSWH6".

This description corresponds to "MOV1 CY, saddr.bit".
This description corresponds to "MOV1 sfr.bit, CY".

This description corresponds to "OR1 CY, A.bit".

This description corresponds to "XOR1 CY, X.bit",

This description corresponds to "SET1 PSWL.bit".

This description corresponds to "CLR1 PSWH.bit".

Names which have defined "sfr.bit", "a,bit", "X.bit",
"PSWL.bit", and "PSWH.bit" as in (3) through (7), can be
referenced only within the same module.

A name which has defined "saddr.bit" can also be referenced
as an external definition symbol from another module. (See
3.5 (2), "EXTBIT directive".)

As a result of assembling the source module in Example 2,
‘the following assembly list is generated.

EQU egquate EQU

Assenble list
ALNO STNO ADRS OBJECT M | SOURCE STATEMENT
| 1 HAKE SAMP]
2 2 (FE20) YORK! EQU QFE20H :E])
3 3 éFEZ0.0) YORK10 EQU ¥ORK1 :(2)
§ g FE20.1) NORKIT EQU ¥ORX1.1 1 (2)
5 -
6] gFFOO.Zg Po2 EQU P0.2 :53)
g g FF00.3 PO3 EQU P0O.3 ;(8)
k] 9 (0081.4) Ad EQU A4 HeY)
{? {? (0080.5) X5 EQU X.5 ;(5)
12 12 EUIFE.S) PS¥LS EQU PS¥L.5 ;EB;
{2 {% 01FF. 6} PSYHE EQU PSWH.8 H
15 15 ---- CSEC
16 18
%; {g D000 080000 Wov1 CY,¥0RK10 (8
ég ég 0003 081200 KoY ro2,CY 1 (9)
%% %é 0008 034C 0kl CY. A4 (1)
%3 %ﬁ 0oD8 0365 XOR! CY. X5 (D)
%2 %g 0004 0285 SETI PS¥LS ;(12)
27 27 000C 029E CLRI PSHHE 1 (13)
28 28
29 29 ERD

On lines (2) through (7) of the assembly list, the bit address
‘values of the bit values defined as names are indicated in the
OBJECT (CODE) column. '

3-41

EQUD equate double word EQUD

{2) EQUD (equate double word)

Description Format

Symbol Mnemonic Operand Comment
field field field field
name EQUD 32-bit immediate data [;comment])
or symbol
Function

The EQUD difective defines a name which haé the 32-bit value
specified’ in the Operand field.

G
n
o

|

Define a 32-bit numerical data to be used in the source module
as a name with the EQU directive and describe it in the
operand of an instruction in place of the numerical data.
Numerical data to be frequently used in the source module
should be defined as names. By so doing, if you must change

a data value in the source module, all you need to do is
change the operand value of the name.

Explanation

© A name defined with the EQUD directive can be described in
the operand "dword" of an instruction. The defined name has
the attribute_DNUMBER.

0 Only a 32-bit value or a symbol which has already been
defined with the EQUD directive can be described in the
operand field. No operation can be performed on the operand.

0 A name defined with the EQUD directive cannot be defined
again within the same source module.

O A name defined with the EQUD directive cannot be either
forward or backward referenced.

3-42

EQUD equate double word

Application Example

L1 EQUD 10000H

L2 EQUD 123456H
L3 EQUD L1 e
L4 EQUD 10H

EL1 EQUD -10H
: 2

(1) L3 has value "10000H".
(2) An operation is performed in the operand field.

3-43

SET set SET
(3) SET (set)

Description Format

Symbol Mnemonic Operand Comment
field ' field field field
name SET absolute expression [;comment]
Function

o The SET directive defines a name which has the value and
attributes (symbol attribute and relocation attribute) of
the expression specified in the Operand field.

o The value and attribute of a name defined with the SET
directive can be re-defined within the same module.

o The value and attribute of a name defined with the SET
directive are valid until the same name is re-defined.

Use
Define a numerical data (variable) to be used in the source
module as a name with the SET directive and describe it in the
operand of an instruction in place of the numerical data
(variable).r
If you wish to change the value of a name in the source
module, a different value can be defined for the same name
with the SET directive.

Explanation

0 An absolute expression must be described in the Operand
field of the SET directive.

o The SET directive may be described anywhere in a source
program. A name which has been defined with the SET

directive cannot be forward-referenced.

SET - set SET

o If an error exists in the statement in which a name has been
defined with the SET directive, the assembler will output an
error message but attempt to store the value of the operand
as the value of the name described in the Symbol field to
the extent that it can analyze.

o A symbol (name) defined with the EQU directive cannot be

re-defined with the SET directive or vice versa.

Application Example

NAME SAMP1
COUNT SET 10H (1)
CSEG

MOV B, #COUNT (2

LOOP:
DEC B
BNZ LOOP
COUNT SET 20H (3

MOV B, #COUNT .{4

END

3-45

SET

set SET

(1)

{2)

(3)
(4)

Name "COUNT" has value "10H", symbol attribute "NUMBER",
and relocation attribute "ABSOLUTE". The value and
attributes are valid until re-definition in (3).

The value "10H" of name "COUNT" will be transferred to
register B,

The value of name "COUNT" is changed to 20H.

The value "20H" of name "COUNT" will be transférred.to
register B. i

3.4 Memory Initialization and Area Reservation Directives
Memory initializing directives define constant data to be used
in a source program., The value of the defined constant data is
generated as an object code.

Area reservation directives reserve memory areas to be used by

the source program.

3-47

DB - define byte DB

(1) DB (define byte)

Description Format

Symbol Mnemonic Operand Comment

field field field field

[label:] DB (size) { ;Comment]
{[initial value[,...]}

Function
o The DB directive tells the assembler to initialize a byte
area. The number of bytes to be initialized can be specified
as "size".
0 The DB directive also tells the assembler to initialize a
memory area in byte units with the initial value(s)
specified in the Operand field.

Use

The DB directive is used when defining an expression or

character string to be used in the program.

Explanation

o If a value in the Operand field is parenthesized, a size is
assumed to have been specified. Otherwise, an initial value
is assumed,

o The DB directive cannot be described in a bit segment.

With size specification:

o If a size is specified in the Operand field, the assembler
will initialize an area equivalent to the specified number
of bytes with value "Q0H".

0 An absolute expression must be described as the size. If the
size description is illegal, the assembler will output an
error message and will not perform initialization.

3-48

DB

define byte DB

With initial value specification:
o The following two parameters can be specified as initial
values:
C) Expression
The value of an expression will be secured as an 8-bit
data., Therefore, the value of the operand must be in
the range of 0 to OFFH. If the value exceeds 8 bits,
the assembler will secure only the low-order 8 bits of
the value as initial value data and output an error
message.
C) Character string
If a character string is described as the operand, an
8-bit ASCII code will be secured for each character in
the string.
o Two or more initial values may be specified within the
statement line of the DB directive.
o As an initial value, an expression which includes a
relocatable symbol or external reference symbol may be

described.

3-49

DB

define byte

DB

Application Example

(1)

(2)

(3)

(4)

(5)

WORKI1 :
WORK?2:

DATAL :
DATA?2:
DATA3:

MASSAG:

NAME
CSEG
DB
DB
CS5EG
DB
DB

DB

DB

"END

SAMP1

(1}
(2)

"ABCDEF'
0AH, 0BH, 0CH
(3+1)

"TAB'+1

D

1)
V(3
s (4
. (8)

This description is
erroneous.

Because "size" is specified, the assembler will initialize
each byte area with value "QOQH".
By this directive, the assembler will initialize a 6-byte
area with character string "ABCDEF".
By this directive, the assembler will initialize a 3-byte
area with "0OAH, OBH, QCH".
By this directive, the assembler will initialize a 4-byte
area with "00H".

Because the value of expression 'AB'+1 is 4143H (4142H+1)
and exceeds the range of 0 to OFFH, this description

will result in an error.

3-50

DW ‘ define word DW

(2) DW (define word)

Description Format

Symbol Mnemonic Operand Comment

field field field field

[label:] DW (size) [; Comment]
{[initial value[,...]}

Function
o The DW directive tells the assembler to initialize a word
area. The number of words to be initialized can be specified
as '"size".
o The DW directive also tells the assembler to initialize a
memory area in word units {(i.e., in units of 2 bytes) with
the initial value(s) specified in the Operand field.

Use
The DW directive is used when defining a 16-bit numeric

constant such as an address or data to be used in the program.

Explanation
o If a value in the Operand field is parenthesized, a size is

assumed to have been specified. Otherwise, an initial value
is assumed. _

o The DW directive cannot be described in a bit segment.

With size specification:

o If a size is specified in the Operand field, the assembler
will jinitialize an area equivalent to the specified number
of words with value "QO0H".

o An absolute expression must be described as the size. If the
size description is illegal, the assembler will output an

error message and will not perform initialization.

DW define word DW

With initial value specification:
© The following two parameters can be specified as initial
values:
() constant
A constant must consist of not more than 16 bits.
C) Expression
The value of an expression will be secured as a 16-bit
data,
o No character string can be described as an initial value.
© The high-order 2 digits of the specified initial value will
be stored in the HIGH address and the low-order 2 digits of
the value in the LOW address.
0 Two or more initial values may be specified within the
statement line of the DW directive.
© As an initial value, an expression which includes a
relocatable symbol or external reference symbol may be
described.

3-52

DW define word DW

Application Example

NAME SAMPLE
CSEG |
WORK1: DW (10) gi?
WORK2: DW 128) i
CSEG
ORG 0H
DW MAIN)
DW SUB1)
CSEG
MAIN:
CSEG
SUB1:
DATA: DW 1234H, 5678H
END

(1) Because 'size" is specified, the assembler will initialize
each word area with value "O00H".

(2) Vectof entry addresses are defined with the DW directive.

(3) By this directive, the assembler will initialize a 2-word
area with value '"34127856".

3-53

DW define word DW

NOTE 3-1

With a word value, the HIGH (high-order) address of memory B
is initialized with the high-order 2 digits of the value

and the LOW (low-order) address of memory is initialized with
the low-order 2 digits of the value.

Source module Memory
Example: NAME SAMPLE

CSEG

ORG 1000H [Low-
order

Dw lll ILH 2 gigits 3 4 1000H(LOW address)
Figh-r 1 2 100 1H(HIGH address)

END corder
2 digits

3-54

DS define storage DS

(3) DS (define storage)

Description Format

Symbol Mnemonic Operand Comment
field field field field
[label:] DS absolute expression [; comment]
Function

The DS directive tells the assembler to reserve a memory area
for the number of bytes specified in the Operand field.

Use
The DS directive is mainly used to reserve a memory {(RAM)
area to be used by a source program. If a label is specified,
the value of the first address of the reserved memory
area is assigned to the label. In the source module, this
label is used for description toc manipulate the memory.

Explanaticn

o The contents of an area reserved with this directive are
unknown. -

o The specified absclute expression will be evaluated with
unsigned 16 bits. '

o If the value of the operand is 0, no memory area will be
reserved. '

o The DS directive cannot be described within a bit segment.

o The symbol (label) defined with the DS directive can be
referenced only in the backward direction.

3-55

DS

define storage DS

"0 Only the following parameters extended from an absolute

expression can be described in the Operand field:

@
@

®
@

®

Constant

Expression with a constant expression on which an

operation is to be performed (constant expression)

EQU symbol or SET symbol defined with a conétant or

constant expression '

Expression 1 with ADDRESS attribute - expreésion_z

with ADDRESS attribute

(If label 1 in "expression 1 with ADDRESS attribute and

label 2 in "expression 2 with ADDRESS attribute" are

relocatable, the labels must have been defined in the
same module., However, an error will result in either

of the following two cases:

(a) If label 1 and label 2 belong to the same segment
and if a BR instruction for which the number of
bytes of the object code cannot be determined
instantly is described between the two labels

(b) If label 1 and label 2 differ in segment and if a
BR instruction for which the number of bytes of the
object code cannot be determined instantly is
described between either label and the beginning of
the segment to which the label belong

Any of the expressions@ through (4) above on which an

operation is to be performed.

o The following parameters cannot be described in the Operand
field:

@
@

®

External reference symbol
Symbol which has defined "expression 1 with ADDRESS
attribute - expression 2 with ADDRESS attribute" with
the EQU directive
Location counter ($) if described in either expression 1
or expression 2 in the form of "expression 1 with
ADDRESS attribute - expression 2 with ADDRESS attribute"
Symbol which has defined with the EQU directive an
expression with the ADDRESS attribute on which the HIGH
or LOW operator is to be operated

3-56

DS

define storage

DS

Application Example

WORK1:
WORK?:

TABLE!L:

NAME
DSEG
DS
DS
DS
CSEG
MOVW

MOV

MOVW

END

SAMPLE

10

HL, sTABLE1

A, I'WORKI1

BC, sWORK2

ey
L (2

(1) By this directive, the assembler will reserve a 10-byte

(2)

(3)

work area, but the contents of the area are unknown.

Label

"PABLE1" is assigned to the first address of the area.

By this directive, the assembler will reserve a 1-byte

work area.

By this directive, the assembler will reserve a 2-byte

work area.

3-57

DBIT define bit | DBIT
(4) DBIT (define bhit)
Description Format
Symbol Mnemonic Operand Comment
field fiela field field
[name] DBIT None [;comment]
Function

The DBIT directive

memory area within
Use
The DBIT directive

bit segment.

Explanation

causes the assembler to reserve a 1-bit
a bit segment.

is used to reserve a hit area within a

o The DBIT directive is described only in a bit segment.

o The contents of a 1-bit area reserved with this directive

are unknown.

o If a name is specified in the Symbol field, the name will

have an address and a bit position as its value.

3-58

DBIT

define bit

DBIT

Application Example

(1) By these three DBIT directives, the assembler will reserve

(2)

(3)

NAME
BSEG
BITI1 DBIT
BIT2 DBIT
BIT3 DBIT
CSEG
MOV1

OR1

END

SAMPLE

CY, BIT1

CY, BIT:2

LD
L)

. (2)

{2

three 1-bit areas and define names (BIT1, BIT2, and BIT3)

each having an address and a bit position as its value,

This instruction corresponds to "MOV1 CY,saddr.bit"
and describes name

(1) above as operand 'saddr.bit".

"BIT1" of the bit area reserved in

This instruction corresponds to "OR1 CY,saddr.bit" and

describes name BITZ as

"saddr.bit".

3.5 Linkage Directives

Linkage diréctives function to make clear the relation between
the external definition of a symbol and its external reference,
Let's consider a case where a program is created by being divided
into two modules: Module 1 and Module 2. In Module 1,-if you wish
to reference a symbol defined in Module 2, the symbol cannot be
used without declaration in each module. For this reason, some
sort of signal or indication as "I want to use the symbol"” or
"You may use the symbol" is required between the two modules,

In Module 1, the external reference declaration of a symbol must

be made to indicate that a symbol defined in another module must
be referenced. On the other hand, in Module 2, the external

definition declaration of a symbol must be made to indicate that

the symbol may be referenced in another module.
The symbol can be referenced for the first time when the two
external reference and external definition declarations are
effectively made.
Linkage directives function to establish this interrelationship
and are available in the following two types:
o To declare external definition of symbol: PUBLIC directive
o To declare external reference of symbol : EXTRN and EXTBIT

directives

<Module 1> <Module 2>

NAME MODUL1 NAME MODUL 2

EXTRN MDL2) [———— PUBLIC MDL2 ;{3

CSEG (l CSEG

: . . MDL2: :
BR 'MDL 2 (2
END END

Fig. 3-6. Relationship of Symbols between Two Modules

3-60

In Module 1 in Fig. 3-6, the symbol "MDL2" defined in Module 2
is referenced in (2). Therefore, the symbol is declared as an
external reference with the EXTRN directive in (1).

In Module 2, the symbol "MDL2" to be referenced from Module 1 is
declared as an external definition in (3).

The linker checks whether or not this external reference of the

symbol corresponds to the external definition of the symbol.

EXTRN external EXTRN
(1} EXTRN (external)
Description Format

Symbol Mnemonic Operand Comment

field field field. field

[label:] EXTRN symbol namef[,...] [;comment]

Function
The EXTRN directive declares to the linker that a symbol
(other than bit symbols) in another module is to be

referenced in this module.

c
(7]
(0]

When referencing a symbol defined in another module, the

EXTRN directive must be used to declare the symbol as an

external reference.

Explanation

(8]

The EXTRN directive may be described anywhere in a source
module. (See Section 2.1, Basic Configuration of Source
Program.)

Up to 20 symbol names may be specified in the Operand field
by delimiting each symbol name with a comma {(,).

When referencing a symbol having a bit value, the symbol
must be declared as an external reference with the EXTBIT
directive.

The symbol declared with the EXTRN directive must have been
declared as PUBLIC in another module.

No macro name can be described as the operand of the EXTRN
directive. (See Chapter 5, Macro for the macro name.)

A symbol may be declared as EXTRN only once in a module,
For the second and subsequent EXTRN declarations for the

symbol, the linker will output a warning message.

3-62

EXTRN

external EXTRN

A symbol which has been declared with the PUBLIC, EXTBIT, or
NAME directive cannot be described as the operand of the

"EXTRN directive. Conversely, a symbol which has been

declared as EXTRN cannot be re-defined or declared with

any other directive.

A symbol which has defined an address in the saddr area with
the EXTRN directive can be referenced.

All symbols declared as EXTRN will be handled as symbols
which have the NUMBER attribute.

3-63

EXTRN

external

EXTRN

Application Example

<Module 1>

NAME
CSEG

Moy

MOV

END

"SAMPI

EXTRN SADRI, SADR?

A, SADR1

MOVW DE, 2SADR?

AX, DE

A

(@)

3

<Module 2>

SADRIL:
SADRZ:

NAME SAMP2

PUBLIC SADRI.SADRZ W
DSEG

ORG 0FE2¢H

DS 1 Y
DS 2 .6
END

(1) This directive declares symbols "SADR1" and "SADR2" to be
referenced in (2) and (3), respectively, as external

references. Two or more symbols may be described in the

Operand field.

(2) This instruction references symbol "SADR1".

(3) This instruction references symbol "SADR2".
(4) This directive declares symbols "SADR1" and "SADR2" as

external definitions,
(5) This directive defines symbol "SADR1".
(6) This directive defines symbol '"SADR2".

3-64

EXTBIT external bit EXTBIT

(2) EXTBIT (external bit)

Description Format

Symbol Mnemonic Operand Comment

field field field field

[label:] EXTBIT bit symbol name[,...] [;comment]
Function

The EXTBIT directive declares to the linker that a bit symbol
having a saddr.bit value {bsaddr.bit3 or !addr16.bit3 value
with the 78K/VI) in another module is to be referenced in
this module.

[
L]
]

|

When referencing a symbol having a bit value (saddr.bit,
bsaddr.bit3, or !addr16.bit3) defined in another module, the
EXTBIT directive must be used to declare the symbol as an

external reference.

Explanation

o The EXTBIT directive may be described anywhere in a source
module, _

o Up to 20 symbol names may be specifiedrin the Operand field
by delimiting each symbol name with a comma (,).

o A symbol declared with the EXTBIT directive must have been
declared as PUBLIC in another module.

o A symbol may be declared as EXTBIT only once in a module.
For the second and subsequent EXTBIT declarations for the
symbol, the linker will output a warning message.

3-65

EXTBIT external bit

EXTBIT

Application Example

<Module 1> ¢<Module 2>
NAME SAMPI NAME SAMP?
EXTBIT FLAGIL, FLAG? (U} ' PUBLIC FLAGI, FLAGZ i
CSEG FLAG1 EQU GFE20H.0 - i8

FLAG2 EQU 0FE20H.1 (6

MOV1 CY, FLAGI1:® CSEG
OR1 CY, FLAG? .3
END END

{1) This directive declares symbols "FLAG1" and "FLAG2" to be
referenced in (2) and (3), respectively, as external

references. Two or more symbols may be described in the

Operand field.
(2) This instruction references symbol "FLAG1". This
description corresponds to "MOV1 CY, saddr.bit'.
(3) This instruction references symbol "FLAG2". This

description corresponds to "OR1 CY, saddr.bit".

{4) This directive declares symbols "FLAG1" and "FLAG2" as

external definitions.
{5) This directive defines symbol "FLAG1".
(6) This directive defines symbol "FLAG2".

PUBLIC public PUBLIC

(3) PUBLIC (public)

Description Format

Symbol Mnemonic Operand Comment

field field field field

[label:] PUBLIC symbol name(,...] [; comment]
Function

The PUBLIC directive declares to the linker that the symbol
described in the Operand field is a symbol to be referenced
from another module. ‘

Use
When defining a symbol to be referenced from another module,
the PUBLIC directive must be used to declare the symbol as an
external definition.

Explanation
o The PUBLIC directive must be described in the module header

of a source module,

o Up to 20 symbol names may be specified in the Operand field
by delimiting each symbol name with a comma (,).

o Symbol(s) to be described in the Operand field must have
been defined within the same source module.

o A symbol may be declared as PUBLIC only once in all modules.
For the second and subsequent PUBLIC declarations forx the

symbol, the linker will output a warning message.

PUBLIC

public PUBLIC

© The following symbols cannot be used as the operand of the
PUBLIC directive:

Name defined with the SET directive

Symbol defined with the EXTRN or EXTBIT directive within
the same module

Name with a bit value other than saddr.bit, bsaddr.bit3,
and !addr16.bit3

Segment name

Module name

Macro name

3-68

PUBLIC public PUBLIC
Application Example
Example of program consisting of three modules
<Module 1> ¢<Module 2>
NAME SAMP1 NAME SAMP?
PUBLIC A1, A2 B PUBLIC Bl »i2)
EXTRN Bl EXTRN Al
EXTBIT C1I CSEG
Bl: :
Al EQU 10H Mov C, #LOW (A1)
A2 EQU 0FE20H.1 i
END
CSEG
BR IB1 <Module 3>
X0R1 €Y, Cl NAME - SAMP3
5 PUBLIC C! (3
END EXTBIT A2
1 EQU 0FEZ1H.0
CSEG
MOVl .CY, Al
END

(1) This directive declares that symbols "A1" and "A2" are

to be referenced from other modules,

({2) This directive declares that symbol "B1" is to be

referenced from another module.
(3) This directive declares that symbol "C1" is to be

referenced from another module.

3.6 CObject Module Name Declaration Directive
The object module name declaration directive NAME gives a module
name to an object module to be created by this assembler.

3-70

NAME name NAME
{1) NAME (name)
Description Format

Symbol Mnemonic Operand Comment

field field field field

[label:] NAME object module name [; comment]

Function

The NAME directive gives (assigns) the object module name

described in the Operand field to an object module to be

output by the assembler.

Use

A

module name is required for each object module in symbolic

debugging with a debugger.

Explanation

o

The NAME directive may be described anywhere in a source
module. For the conventions of module name description, see
Subsection 2.2.3 (1), "Symbol field" in Chapter 2.

No module name can be described as the operand of any

directive other than NAME or of any instruction.

-If the NAME directive is omitted, the assembler will assume

the primary name of the input source module file as the
module name, If two or more module names are specified, the
assembler will output a warning message and ignore the
second and subseguent module name declarations.

A module name to be described in the Operand field must not
exceed eight characters even if the maximum symbol length
is specified as 31 characters with the assembler option
(-5).

The assembler option ~CA/-NCA to specify the uppercase/
lowercase for symbol names is valid.

3-71

NAME . name

Application Example

NAME SAMPLE Q)
DSEG

CSEG

END

(1) This directive declares module name "SAMPLE".

3-72

3.7 Automatic Branch Instruction Selection Directive

As unconditional branch instructions, which directly describe a
branch destination address as their operand, two instructions "BR
laddri16" and "BR $addri16" ("BRM $addr16" and "BRS $addri16'" with
the 78K/VI) are available.

The BR !addrl1é instruction or BRM $addrl16 are three-byte
instructions which allow branching to any address, whereas the BR
$addr16 instruction and BRS $addrié are two-byte instructions
which allow branching to an address within the range of -80H to
+7FH from the address next to the current location counter value.
Therefore, to create a program with high memory utilization
efficiency, the 2-byte instruction "BR $addr16" or "BRS $addrié6"
must be described according to the address range of the branch
destination. However, it is qguite troublesome to take this address
range into account when you describe the branch instruction.

For this reason, there was a need for a directive which directs
the assembler to automatically select the two-byte or three-byte
branch instruction according to the address range of the branch
destination. The BR directive is provided for this purpose.

BR

branch BR

(1)

BR (branch)

Description Format

Symbol Mnemonic Operand Comment

field field field field

[label:] BR expression [;comment]
Function

The BR directive causes the assembler to automatically select
the 2-byte or 3-byte branch instruction according to the
value range of the expression specified in the Opérand field
and to generate the object code applicable to the selected
instruction. This function is referred to as "optimization,of
branch instructions”.

o If the branch destination is within the range of -80H to
+7FH from the address next to the current location counter
value, you can describe the 2-byte branch instruction "BR
$addri6" or "BRS $addr16". With this instruction, required
memory space can be reduced by one byte as compared with
that when using the 3-byte branch instruction "BR !addrieée"
or "BRM $addr16". To create a program with high memory
utilization efficiency, the 2-byte branch instruction should
be used positively. However, each time you describe a branch
instruction, it is troublesome for you to take into account
the address range of the branch destination. So, use the
BR directive when you are not sure of whether or not the

the 2-byte branch instruction can be described.

3-74

BR branch BR

o If it is definite that you can describe the 2-byte or
3-byte branch instruction, describe the applicable branch
instruction. In this case, the assembly time can be
shortened as compared with that when the BR directive is
described.

Explanation

o The BR directive can be described only in a code segment.

o As the operand of the BR directive, describe the branch
destination. "$" indicating the current location counter
cannot be described at the beginning of an expression to
be described in the Operand field.

o For optimization, the following conditions must be
satisfied.

C) The number of labels or forward-referenced symbols
in the expression is 1 or less.

() An EQU symbol with the ADDRESS attribute has not been
described,

(:) A symbol which has defined "expression 1 with ADDRESS
attribute - expression 2 with ADDRESS attribute" with
the EQU directive has not been described.

() An expression with ADDRESS attribute on which the HIGH
or LOW operator is to be operated has not been
described.

If these conditions are not met, the 3-byte BR instruction

will be selected.

o The optimization conditions of the BR directive are shown in

Table 3-10 below.

3-75

BR branch BR

Table 3-10. Optimization‘Conditions of BR Directive

Jump Absolute Relocatable]
source segment : segment
Jump condition
destination\| Reference Backward Forward Backward Forward
condition direction
Numeric value Optimize Cptimize 3-byte BR| 3-byte BR

Name (symbol attribute: | Optimize Optimize 3-byte BR| 3-byte BR
NUMBER)

Label | Same segment Optimize Optimize Optimize Optimize
Same named Optimize Optimize Optimize Optimize
segment i

Another segment Optimize Optimize 3-byte BR | 3-byte BR
(same type)

Another segment 3-byte BR| 3-byte BR|'- 3-byte BR| 3-byte BR
(another type)

External reference 3-byte BR| 3-byte BR| 3-byte BR| 3-byte BR
name -
Location counter (%) Optimize - Optimize -
NOTE: o "-" in the table indicates that the combination is
prohibited.

o "Backward" reference denotes the reference of a
symbol which has already been defined in the source
module.

o "Forward" reference denotes the reference of a
symbol which is to be defined in a subsequent line.

3-76

BR

branch BR

Application Example

(1)

(2)

(3)

(4)

NAME SAMPLE
CSEG -
L1: MOV A, #10H .
: Relocatable
' segment
BR L1 2 (1)
BR L2 » (2)
51 CSEG AT 1000H —
L2: : .
BR L2 6 Absolute
saegment
BR L1 LY
END

This BR directive will be optimized.

If displacement between the line (1) and the "L1:" label
definition is within -80H, the object code of a 2-byte
branch instruction will be generated.

This BR directive will be substituted with a 3-byte
branch instruction, because it branches to a label

in another segment.

This BR directive will be optimized.

If displacement between the line (3) and the "L2:" label

~definition is within -80H, the object code of a 2-byte

branch instruction will generated.

Because the relocation attribute of "L1" described as
the operand of this BR directive is a relocatable
term, the object code of a 3-byte branch instruction
will be generated. |

3-77

3.8 General-purpose Register Selection Directive (applicable to
78K/III only)
With the general-purpose registers of the 78K/III, correspond-
ence of their function names to their absolute names is different
depending on the value of the Register Set Select (RSS) flag in
the PSW. {See Table 3-11 below.)
This means that when you describe the function name of a register
in a program in place of its absolute name, the register to be
actually accessed becomes different depending on the value of the
RSS flag and that the object code to be generated also differs
depending on the value of the RSS flag.
The general-purpose register selection directive RSS informs the
assembler of the value set in the RSS flag to generate the object
code corresponding to the value of the RSS flag.

Table 3-11. Absoclute Names and Function Names of
General-purpose Registers

Absolute Function name Absolut Function name
rame RSS=0 | RSS=1 name RSS=0 | RSS=1

RO RPO B9

RI RFI

R2 RF2

R3 RP3

Rd RPE | VP

RS RPS | UP

R6 RP6 | DE DE

R7 RP7 HL HL

RS VP, | VP.

R9 VP, VP,

R10 Up, UP,

R11 UP, uP,

RI12 E E

R13 D D

R14 L L

R15 H H

NOTE: A blank column in the table indicates that by
describing the absolute name, the corresponding
register can be accessed.

3-78

RSS register set select RSS

(1) RSS {register set select)

Description Format

Symbol Mnemonic Operand Comment
field field field field
{label:] RSS absolute value with [:comment]

evaluated value ¢ or 1

Function

o The RSS directive is a directive dedicated to the 78K/III.

¢ The RSS directive causes the assembler to generate object
codes by substituting the general-purpose registers of the
function names described in the source program with those of
the corresponding absolute names, based on the value of the
Register Set Select (RSS) flag specified in the Operand
field.
See Table 3-11 for the function names and absolute names of
the general-purpose registers.

a
n
D

|

o When addressing is to be performed by using the function

" name of a general-purpose register in place of its absolute
name to make the best of its inherent function, use the
RSS directive.

o When describing a general-purpose register with its function
name, the value ‘then set in the RSS flag must be declared
with the RSS directive.

Explanation
o The RSS (Register Set Select) flag is the Bit 5 of the PSWL

register.

7 6 5 4 3 2 1 0
PSWL rs [z lRSSiAC‘UF'P/V‘SUB|Cﬂ

RSS flag

3-79

BR

branch BR

————

The RSS directive informs the assembler of the value (0, 1)
of the RSS flag. Based on the value of the operand of the
RSS directive, the assembler generates object codes by
substituting the general-purpose registers of the function
namies with those of the corresponding absolute names.

When setting, resetting, or switching the value of the RSS
flag with an instruction, the RS8S directive must be
described immediately before or after the instruction to
inform the assembler of the value of the RSS flag.

Even after the RSS flag has been set or reset by the
instruction, the expected object code will not be generated
unless the RSS directive is described.

The RSS directive is valid until the next RSS directive,
segment definition directive (CSEG, DSEG, BSEG, ORG, or
ENDS}, or END directive appears in the source program.
Therefore, the RSS directive must be described for each
segment. _

The RSS directive can be described only within a code
segment.

If an RSS directive appears while no segment is being
created, then the assembler will create a relocatable code
segment as a default segment. The default segment name of
the created segment is ?CSEG and its default relocation
attribute is UNIT.

The default value of the RSS directive is 0 (RSS = 0).

NOTE 3-2

During the branch deétination processing by the context
switching function of the 78K/III, the value of the RSS flag
must be 0. (This is because of that the PC and PSW values
required for restoration from the branch destination process-
ing have been saved to the general-purpose registers R4 to R7.)
For this reason, when describing a branch destinatibn process-
ing routine by the context switching function by using the
function names of general-purpose registers, the value of the
RSS flag must not be set to "1" in the routine.

3-80

BR

branch

BR

Application Examples

Example 1

SUB1:

SUB2:

SUB3:

SUB4 !

NAME
CSEG
MOV
MOV
RET
CSEG
RSS
SETI1
MOV
RET
RSS
CLR1
MOV
RET
RSS
SWRS

PSWL .
B, A

PSWL .
B, A

w

(1
+ (2)

. (8)
L
1 (8)

. (8)
1]

(1)

(2)
(3)

(5)
(6)

(8)

MOV B, A)
RET

END

The default value of RSS in the assembler is "0".
Because the RSS directive is omitted, this description
corresponds to "MOV R3,R1".

This description corresponds to "MOV A,R2".

The RSS directive must be described immediately before
(or after) the instruction which sets the RSS flag in
(4).

This description corresponds to "MOV R7,R5".

The RSS directive must be described immediately before
{or after) the instruction which resets the RS8S flag in

{(7}).
This description corresponds to "MOV R3,R1".

3-81

BR branch BR

(9) The RSS directive must be described immediately before
{or after) the instruction which switches the RSS flag in
(10).

(11) This description corresponds to "MOV R7,R5".

See the following assembly list for the object codes to be
generated from assembly of the source program in Example 1.

Assenble list

ALNO STNO ADRS OBJECT M] SOURCE STATEMENT
1 1 . NAME SAMP1
2 2 --— . CSEG
3 3 0000 2431 S5UBI1. NOY B, A ;El)
4 4 0002 D2 NoY 4, C 1 (2)
5 5 0003 56 RET
6 § === CSEC
1 7 0004 SUB2: R§S 1 ;&3
8 § 0004 0285 SET1 PSWL.5 (4
] 9 0006 2475 Koy Bk (5
10 10 0008 5§ RET
11 11 0009 SUB3: RSS 0 ;(8)
12 12 0008 0295 . CLR! PSYL.5 :%7;
13 13 000B 2431 MOY B. A (8
14 14 000D 56 RET
15 15 DOQE SUB4: RSS | ;(9)
186 16 OQOE 43 SRS . ;5102
17 17 OOOF 2475 MOY B. A QL
18 18 00t1 56 RET
19 18
20 20 END

3-82

branch BR

Example 2

NAME SAMP2
CSEG

SUB5: SET1 PSWL.5 s
MOV B, A . (2)
RET

SUB6: CLR1 PSWL, K5 . (3)
MOV B, A)
RET
END

(1} The RSS flag is set. However, the RSS directive Has not
been described immediately before or after the SETI
instruction,

(2) This description corresponds to "MOV R3,R1". The object
code expected for "MOV R7,R5" will not be generated.

(3) The RSS flag is reset. However, the RSS directive has not
been described immediately before or after the CLR1
instruction.

(4) This description corresponds to '"MOV R3,R1".

See the following assembly list for the object codes to be
generated from assembly of the source program in Example 2.

3.9 Macro Directives _

When you describe a source program, it is troublesome for you to
describe a series of frequently used instruction groups over and
over again, and this may cause an increase in the number of
description or coding errors.

By using the macro function with macro directives, the need to
repeatedly describe the same group of instructions can be
-eliminated, thereby increasing coding efficiency of the program.
The basic function of a macro is the substitution of a series of
statements with a name. For details of the macro function, see
Chapter 5, Macros.

Macro directives include MACRO, LOCAL, REPT, IRP, EXITM, and
ENDM.

In this section, each of these directives is detailed.

Assemble list

ALNO STNO ADRS OBJECT M 1 SOURCE STATEMENT

40 G0 =] T &N e GO DD
OO 0 =1 TN P G0N =

—

0000
0002

0285
2431
56
0285
2481
58

NANE SANP2

CSEG
SUBS: SETI
MOY
RET
SUBE: CLR!
Moy
RET

END

PSeL. 5
B.A

PSEL.S
B.A

3-84

MACRO macro MACRO

(1) MACRO (macro)

Description Format

Symbol Mnemonic Operand ' Comment
field field field field
macro name MACRO [formal parameter[,...]] [;comment]

macro body

ENDM . [;comment]

Function
The MACRO directive executes a macrodefinition by assigning
the macro name specified in the Symbol field to a series of
statements (called a macro body) described between this
directive and the ENDM directive.

o
0
o

Define a series of frequently used statements in the source
program with a macro name. After the macrodefinition, you only
need to describe the defined macro name (for macro reference}
and the macro body corresponding to the macro name will be
expanded.

Explanation

o The MACRO directive must be paired with the ENDM directive.

o For the macro name to be described in the Symbol field,
see the conventions of symbol description in Subsection
2.2.3 (1), "Symbol field" in Chapter 2.

o To reference a macro, describe the defined macro name in
the Mnemonic field. (See Application Example.)

o For the formal parameter(s} to be described in the Operand
field, the same rules as the conventions of symbol descrip-

tion. will apply.

macro MACRO

Up to 16 formal parameters can be described per MACRO
directive.

o Formal parameters are valid only within the macro body.

An error will result if any reserved word is described as
a formal parameter. However, if a user-defined symbol is
described, its recognition as a formal parameter will

take precedence.

The number of formal parameters must be the same as the
number of actual parameters.

A name or label defined within the macro beody if declared
with the LOCAL directive becomes effective with respect to
one-time macroexpansion. '
Nesting of macros (i.e., to refer to other macros within
the macro body) is allowed.up to eight levels including
REPT and IRP directives.

The number of macros that can be defined within a single
source module is not specifically limited. In cther words,
macros may be defined as long as the memory space is
available.

Formal parameter definition lines, reference lines, and

symbol names will not be output to a cross-reference list.

3-86

MACRO macro ' MACRO

Application Example

NAME SAMP
ADMAC MACRO PARA1l, PARA2Z Q1)
MOV A, #PARAI
Macro body
ADD A, #PARA2
ENDM (2
ADMAC 10H. 20H (3
END

{1) A macro is defined by specifying macro name "ADMAC" and
two formal parameters "PARA1" and "PARA2",

{2) This directive indicates the end of the macrodefinition.

{3) Macro "ADMAC" is referenced.

3-87

LOCAL local LOCAL
(2) LOCAL {local)

Description Format

Symbol Mnemonic Operand Comment
field field field field
[label:) LOCAL symbol name[,...] [;comment]
Function

. The LOCAL directive declares that the symbol name specified in
the Operand field is a local symbol which is valid only within
the macre body.

Use
'If a macro defining a symbol within the macro body is
referenced more than once, a double definition error will be
output for the symbol. By using the LOCAL directive, you can
reference (or call) a macro defining symbol(s) within its body

more than once.

Explanation

o A symbol declared as LOCAL will be substituted with a symbol
"??RAn (where n=0000 to FFFF) at each macroexpansion. The
symbol "??RAn" after the macro replacement will be handled
the same as a global symbol and will be stored in the symbol
table and thus can be referenced under the symbol name
??RAN".

0 If a symbol is defined within a macro body and the macro is
referenced more than once, it means that the symbol would be

defined more than once in the source module. For this
reason, it is necessary to declare that the symbol is a
local symbol which is valid only within the macro.

o The LOCAL directive can be used only within a macro-

definition.

3-88

LOCAL

local LOCAL

The LOCAL directive must be described before using the
symbol specified in the Symbol field. (In other words, the
LOCAL directive must be described at the beginning of the
macro body.)

Symbol names to be defined with the LOCAL directive within
a single source module must be all different. (In other
words, the same name cannot be used for local symbols to
be used in each macro.)

The number of symbol names that can be specified in the
Operand field is not limited as long as they are all within
a line., However, the number of symbols within a macro body
is limited to 64. If more than 65 local symbols are
declared, an error message will be output and the macro-
definition will be stored as an empty macro body. Nothing
will be expanded even if the macro is called.

o Macros defined with the LOCAL directive cannot be nested.
o Symbols defined with the LOCAL directive cannot be called

{referenced) from outside the macro.

No reserved word can be described as a symbol name in the
Operand field. However, if a user-defined symbol is
described, its recognition as a local symbol will take
precedence. '

A symbol declared as the operand of the LOCAL directive will
not be output to a cross-reference list.

The statement line of the LOCAL directive will not be ocutput
at the time of the macroexpansion.

3-89

LOCAL local LOCAL -

Application Example

<Source program>

‘ NAME SANPLE
MACI1 MACRO
LOCAL LLAB)
LLAB : Macrodefinition
BR SLLAB {2
ENDM
REF1: MACI1 . (3)
BR 'TLLAB 1) —This description is
erroneous.
REF2: MACI1 1 1{8)
END

(1) This directive defines symbol name "LLAB as a local
symbol.

(2) This instruction references local symbol "LLAB" within
macro MAC1.

{3} This directive references macro MAC1.

(4) Because local symbol "LLAB" is referenced outside the
definition of macro MAC1, this description causes an
error.

{5) This directive‘references macro MACI.

3-90

LOCAL

local

LOCAL

If the source program in the above example is assembled,
macroexpansion {replacement of a macrocall by the body
itself) occurs as shown below. '

<Assembly list>

NAME SAMPLE
MAC1 MACRO
LOCAL LLAB
LLAB: Macrodefinition
BR SLLAB
ENDM
REF1 : MAC1
LOCAL LLAB
LLAB: Macroexpansion
BR $LLAB
BR 1LLAB ~—This description is
erroneous,
REF2: MACI1
LOCAL LLAB
LLAB: _ Macroexpansion
BR $LLAB
END

REPT repeat REPT

{3) REPT (repeat)

Description Format

Symbel - Mnemonic Operand Comment
field field field field
[label:] REPT absolute expression [;comment]
ENDM [,comment]
Function

The REPT directive causes the assembler to repeatedly expand
a series of statements described between this directive and
the ENDM directive (called the REPT-ENDM block) the number of
times equivalent to the value of the expression specified in
the Operand field.

o
0
o

|

If a series of statements is to be described repeatedly in
a source program, use the REPT-ENDM block.

Explanation

¢ An error will result if the REPT directive is not paired
with the ENDM directive.

o In the REPT-ENDM block, macroc references, REPT and IRP
ENDM directives can be nested up to 8 levels.

o If the EXITM directive appears in the REPT-ENDM block,
subsequent expansion of the REPT-ENDM block by the assembler
will be terminated.

o Assembly control instructions may be described in the REPT-
ENDM block.

o The absolute expression described in the Operand field will
be evaluated with unsigned 16 bits. If the value of the
expression is 0, nothing will be expanded.

3-92

REPT . repeat REPT

Application Examples

Example 1 <Source program>
NAME SAMP1
CSEG
REPT 3 S (1)
INC B REPT-ENDM block
DEC C
ENDM L2
END

(1) This directive instructs the assembler to expand
the REPT-ENDM block three consecutive times.
(2) This directive indicates the end of the REPT-ENDM block.

When the above source program is assembled, the REPT-ENDM
block is expanded as shown in the following assembly list:
<Assembly list>

NAME SANP1

CSEG

INC
DEC
INC
: DEC
INC
DEC

G mw o w o=

END

REPT repeat REPT

You can see that the REPT-ENDM block defined by statements (1)
and {(2) has been expanded three times. On the assembly list,
the definition statements (1) and (2) by the REPT directive
in the.source module will not be displayed.

Example 2 <Source program>

NAME SAMP2

CSEG

REPT e
INC
REPT
DEC
ENDM

ENDM

2)

O ol w

END

(1) This directive instructs the assembler to expand the
REPT-ENDM block three consecutive times.

{2) This directive instructs the expansion of the REPT-ENDM
block again within the REPT-ENDM block. Within the
REPT-ENDM block, nesting of macro references, REPT and
IRP is allowed up to 8 levels.

3-94

IRP indefinite repeat IRP

(4) IRP (indefinite repeat)

Description Format

Symbol Mnemonic Operand Comment
field field field field
[label:] IRP formal parameter, <actual [; comment]

parameter[,...]>

ENDM [;comment)

Function

The IRP directive causes the assembler to repeatedly expand
a series of statements described between this directive and
the ENDM directive (called the IRP-ENDM block) the number of
times equivalent to the number of actual parameters while
replacing the formal parameter with the actual parameters
specified in the Operand field (in sequence from left to
right}.

If a series of statements, only part of which becomes
variables is to be described repeatedly in a source program,
use the IRP-ENDM block.

Explanation
o The IRP directive must be paired with the ENDM directive.

o Up to 16 actual parameters may be described in the Operand
field.

o In the IRP-ENDM block, macro references, REPT and IRP
ENDM directives can be nested up to 8 levels.

o If the EXITM directive appears in the IRP-ENDM block,
subsequent expansion of the IRP-ENDM block by the assembler
will be terminated.

o No macro can be defined in the IRP-ENDM block.

3-95

IRP

indefinite repeat

IRP

0 Assembly contrel instructions may be described in the REPT-

ENDM block.

Application Example

<Source program>

NAME SAMP 1

CSEG

IRP PARA. <0AH, 0BH, 0CH> ()
ADD A. 2PARA

MOV (DE+) ., A

ENDM (@)
END

IRP-ENDM block

{1} The formal parameter is "PARA" and the actual parameters
are the following three: "0aH", "0BH", and "OCH".
This directive instructs the assembler to expand the
IRP-ENDM block three times {i.e., the number of actual
parameters) while replacing the formal parameter "PARA"
with the actual parameters "OAH", "OBH" and "OCH".

(2) This directive indicates the end of the IRP-ENDM block.

When the above source program is assembled, the IRP-ENDM

block is expanded as shown in the following assembly list:

3-96

IRP indefinite repeat IRP

<Assembly list>

NAME SAMP 1

CSEG

ADD A. 20AH 1 (3)
MOV (DE+). A

ADD A. 20BH L)
MOV (DE+), A

ADD A. 20CH : (5)
MOV (DE+). A

END

You can see that the IRP-ENDM block defined by statements (1)
and (2) has been expanded three times (equivalent to the
number of actual parameters}).

(3) In this instruction, PARA has been replaced with OAH.

(4) In this instruction, PARA has been replaced with 0BH.

(5) In this instruction, PARA has been replaced with OCH.

3-97

EXITM

exit from macro EXITM

(5) EXITM (exit from macro)

Description Format

Symbol Mnemonic Operand Comment

field field field field

[label:] EXITM None [;comment]
Function

The EXITM directive terminates by force the expansion of
the macro body defined by the MACRO directive and the
repetition by the REPT-ENDM or IRP-ENDM block.

This function is mainly used when a conditional assembly
function (see Section 4.7, Conditional Assembly Control
Instructions) is used in the macro body defined with the
MACRO directive.

If conditional assembly functions are used in combination
within the macro body, part of the source program which
must not be assembled is likely to be assembled unless
contrecl is returned from the macro by force with the EXITM
directive. In such a case, the EXITM directive must be used.

Explanation

o]

If the EXITM directive is described in a macro body,
instructions up to the ENDM directive will be stored as the
macro body.

The EXITM directive indicates the end of a macro only during
the macroexpansion.

If something is described in the Operand field of the ENDM
directive, the assembler will output an error message but
execute the EXITM processing.

EXITM exit from macro EXITM

o If the EXITM directive appears in a macro body, the 7
assembler Will return by force the nesting level of IF/_1¥F/
ELSE/ELSEIF/ ELSEIF/ENDIF blocks to the level when the
assembler entered the macro body.

o If the EXITM directive appears in an Include file resulting
from expanding the INCLUDE control instruction described in
a macro body, the assembler will accept the EXITM directive

as valid and terminate the macroexpansion at that level.

Application Example
o In the example here, conditional assembly control instruc-

tions are used. See Section 4.7, Chapter 4 for the
conditional assembly control instructions.
o See Chapter 5, Macros for the macro body and macro-

expansion.

3-99

EXITM exit from macro EXITM

<Source program®

NAME SAMP1
MACI1 MACRO (1)
NOT1 Al Macro body
$ IF (SW1) 1 {2) \
BT A.1,8L1 '}IF block
EXITM (3
$ ELSE s {4)
MOV 1 CY, A.1 .
ELSE block
. MOV A, 20
3 ENDIF . {5)
$ I[F (SwW2) ‘ . (6)
o BR (HL)]IF block
$ ELSE L (7))
"BR (DE) ELSE block
$ ENDIF . (8)
ENDM (9
CSEG
s SET (SW1) i)
MAC1 - ;1) =—+—Macro reference
NOP
L1: NOP
END

(1) The macro "MAC1" uses conditional assembly functions (2)
and (4) through (8) within the macro body.

(2) This instruction defines an IF block for conditional
assembly. If switch name "SW1" is true (OFFH), the IF
block will be assembled.

(3) This directive terminates by force the expansion of the
macro body in (4) and thereafter.

If this EXITM directive is omitted, the assembler will
proceed to the assembly process in (6) and thereafter

when the macro is expanded.

3-100

EXITM

exit from macro EXITM

(4)

(5)

(6)

{7)

(8)

(9)
(10)

(11)

This instruction defines an ELSE block for conditional
assembly. If switch name "SW1" is false (00H)}, the ELSE
block will be assembled.

This instruction indicates the end of the conditional
assembly.

This instruction defines another IF block for conditional
assembly. If switch name "SW2" is true (QOFFH), the IF
block following this will be assembled.

This instruction defines another ELSE block for
conditional assembly. If switch name "SW2" is false (00H),
the ELSE block will be assembled.

This instruction indicates the end of the conditional
assembly processes in (6} and (7).

This directive indicates the end of the macro body.

This SET control instruction gives true value (0FFH) to
switch name "SW1" and sets the condition of the
conditional assembly.

This instruction references macro "MAC1".

3-101

EXITM ' exit from macro EXITM

When the source program in the above example is assembled,
macroexpansion occurs as shown below.

NAME SAMP1
MACI MACRO V(D

ENDM (@)
CSEG
$ SET (SW1) S0
MAC 1 L0
NOT1 Al
$ IF (SW1) : Macro-expanded
pgrt

BT A.1. 5L1
NOP

L1: NOP
END

By the macro reference in (11), the macro body of macro
"MAC1" has been expanded. Because true value (0FFH) is set

in switch name "SW1" in (10), the first IF block in the macro
body is assembled. Because the EXITM directive is described

at the end of the IF block, the subsequent macroexpansion
is not executed.

3-102

ENDM end macro ENDM

(6} ENDM (end macro)

Description Format

Symbol Mnemonic Operand Comment

field field field field

None ENDM None [; comment]
~Function

The ENDM directive instructs the assembler to terminate the
execution of a series of statements defined as the functions
of the macro.

The ENDM directive must always be described at the end of a
series of statements following the MACRO, REPT, or IRP
directive.

Explanation

o A series of statements described between the MACRO directive
and ENDM directive becomes a macro body.

o A series of statements described between the REPT directive
and ENDM directive becomes an REPT-ENDM block.

o A series of statements described between the IRP directive
and ENDM directive becomes an IRP-ENDM block.

3-103

ENDM end macro ENDM

Application Examples

Example 1 <MACRO-ENDM>

NAME SAMP1
ADMAC MACRO PARA1l, PARA?

MOV A, #PARA1

ADD A, #PARA?2

ENDM

END

Example 2 <REPT-ENDM>»

NAME SAMP?2
CSEG

REPT 3
INC B
DEC
ENDM

END

Example 3 <IRP-ENDM>

NAME SAMP3
CSEG

IRP PARA. <11, 2, 3>
ADD A, #PARA '
MOV (DE+), A

ENDM

END

3-104

3.10 Assembly Termination Directive

The assembly termination directive (END) informs the assembler of
the end of a source module. This assembly termination directive
must always be described at the end of each source module.

The assembler processes a series of statements up to the assembly
termination directive as a source module. Therefore, if an REPT-
ENDM block or IRP-ENDM block exits before the END directive, the
REPT-ENDM block or IRP-ENDM block will become invalid.

3-105

END end END
(1) END (end)

Description Format

Symbol Mnemonic Operand Comment
field field fﬁeld field
None END None [; comment]
Function

The END directive indicates to the assembler the end of a
source module,

Use
The END directive must always be described at the end of each

source module.

Explanation

o The assembler continues to assemble a source module until
the END directive appears in the source module. Therefore,
the END directive is required at the end of each source
module. .

o Always input a line-feed code (LF) code after the END
directive.

o If any statement other than Blank, Tab, LF, and comments
appears after the END directive, the assembler will output

a warning message.

3-106

END end END

Application Example

NAME SAMPLE
DSEG

CSEG

END . T

(1) Always describe the END directive at the end of each

source module.

3-107

CHAPTER 4. CONTROL INSTRUCTIONS

4,1 Overview of Control Instructions

Control instructions are described in a source program to provide

particular instructions on the assembler operation. These

instructions are not subject to object code generation.

Contrel instructions are available in the following six types:

Table 4-1. List of Control Instructions
No. Type of control instruction Control instruction
1 Instruction to specify the PROCESSOR
processor type for the
target device subject
to assembly
2 Instructions to control DEBUG, NODEBUG
debug informaticn output
3 Instructions to control XREF, NOXREF
cross-reference list
output
4 Instruction to control INCLUDE
INCLUDE file
5 Instructions to control EJECT, LIST, NOLIST,
assembly list GEN, NOGEN, COND, NOCOND,
TITLE, SUBTITLE
6 Instructions to control SET, RESET
conditional assembly IF, _IF, ELSEIF, _ELSEIF,
ELSE, ENDIF

Control instructions are described in a source program just the

same as directives.

0f the control instructions listed in Table 4-1, the following

instructions has the same functions as assembler options which

can be specified in the start-up command line of the assembler:

Control instruction Assembler 6ption
PROCESSOR -C
DEBUG/NODEBUG -G/ -NG
XREF/NOXREF -KX/-NKX

TITLE -LH

For the method of specifying assembler options in the start-up
command line, see Subsection 4.3.1, "Starting up the assembler",
Chapter 4 in the RA78K Series Assembler Package User's Manual for
Operation.

4-1

4.2 Processor Type Specification Control Instruction
The processor type control instruction (PROCESSOR) is used to
specify in a source module file the processor type for the target

device (target chip) subject to assembly.

PROCESSOR processor PROCESSOR

(1) PROCESSOR (processor)

Description Format

[A]$[A)PROCESSOR[A] ([A}processor type)[Al)
[(A]$[AIPC[A)([Alprocessor typelA]) ; Abbreviated
format
Function

The PROCESSOR contrel instruction specifies in a source module
file the processor type for the target device subject to
assembly.

¢ The processor type for the target device subject to assembly
must always be specified in either the header section of a
source module file or the start-up command line of the
assembler.

o If vou omit the processor type specification for the target
device subject to assembly in each source module file, you
must specify the processor type at each assembly operation.
Therefore, by specifying the processor type for the target
device subject to assembly in the source module file, you

may save your trouble when starting up the assembler.

Explanation

o Specify one of the processor types for the target device
subject to assembly listed in Table 4-2 below.

o The PROCESSOR control instruction can be described only in
the header section of a socurce module file. If the
instruction is described elsewhere, the assembler will be
aborted.

o If the specified processor type differs from the actual
target device subject to assembly, the assembler will be
aborted.

PROCESSOR

Processor

PROCESSOR

Table 4-2, Processor Types for Target Devices

Series Taraet Device Processor type
78K/0 uPD78012 012
uPD78014, uPD78P(14 014
78K/ T uPD78112, uPD78P112 112
uPD78134, uPD78P134 134
uPD78136 136
78K/I1 uPD78210 210
ubPD78212 212
uPD78213 213
uPD78214, uPD78P214 214
ubPD78220 220
uPD78224, ubPD78p224 224
uPD78233 233
uPD78234 234
78K/I11 uPD78310 310
uPD78312, uPD78P312 312
uPD78310A 310A
uPD78312A 312A
uPD78320 320
ubPD78322 322
uPD78330 330
uPD78334 334
78K/VI uPD78600 600
uPD78602 602

in the module header,

© Only one PROCESSOR control instruction can be specified

The processor type for the target device subject to assembly

may also be specified with the assembler option -C in the

start-up command line of the assembler. If the specified

processor type differs between the source module file and

the start-up command line, the assembler will output a

specification in the start-up command line.

warning message and give precedence to the processor type

If the processor type is not specified in either the source

module file or the start-up command line, the assembler will
be aborted.

PRQCESSOR processor PROCESSOR

Application Example

$ PROCESSOR (310)
$ DEBUG
§ XREF
NAME TEST
CSEG

4-5

4,3 Debug Information Output Control Instructions
Debug information output control instructions (DEBUG and NODEBUG)
are used to specify in a source module file the output or non-

output of debugging information to an object module file created

from the source module file.

4-6

DEBUG/NODEBUG debug/nodebug DEBUG/NODEBUG

(1) DEBUG/NODEBUG {debug/nodebug)

Description Format

[A]1$[A]DEBUG
[A]$S[A]DG ; Abbreviated format
[A]$[AINODEBUG
[AJ$[AINODG ; Abbreviated format
Function
o The DEBUG control instruction indicates to the assembler the

output of local symbol information to an object module file.
The NODEBUG control instruction indicates to the assembler
the non-output of local symbol information to an object
module file.

The local symbol information refers to information on
symbols other than module names and those declared with
PUBLIC, EXTRN, and EXTBIT directives.

Specify the DEBUG control instruction when a program is
to be debugged.

If you must specify the cutput or non-output of debug
information at each assembly operation, you may save your
time and labor by specifying the DEBUG or NODEBUG control

instruction in the source module file.

Explanation

(o]

C

The DEBUG or NODEBUG control instruction can be described
only in the header section of a source module file.

If two or more of these control instructions are specified
at the same time, the last specified controel instruction
will take precedence over the others.

DEBUG/NODEBUG debug/nodebug DERBUG/NODEBUG

o The output or non-output of debug infofmation to an object
module file may also be specified with the assembler option
-G or -NG in the start-up command line of the assembler.

o If the debug information output specification differs
between the source module file and the start-up command
line, the assembler will give precedence to the
specification by the start-up command line.

o The assembler will perform a syntax check on the DEBUG or
NODEBUG control instruction even when the assembler option
-NO (non-output of object module file) has been specified in
the start-up command line.

Application Example
See 4.2 (1), PROCESSOR control instruction for the application
example of the DEBUG control instruction.

4.4 Cross-reference List Output Control Instructions
Cross-reference list output control instructions (XREF and NOXREF)
are used in a source module file to specify the output or non- '
cutput of a cross-reference list to an assembly list file to be

output by the assembler.

XREF/NOXREF ' xref/noxref XREF/NOXREF

(1) XREF/NOXREF (xref/noxref)

Description Format

{AJ$S[A)XREF

[AIS[AIXR : Abbreviated format

[A1$ [AINOXREF

[A]$ [AINOXR : Abbreviated format
Function

o The XREF control instruction indicates to the assembler the
output of a cross-reference list to an assembly list file
to be output by the assembler.

o The NOXREF control instruction indicates to the assembler

the non-output of a cross-reference list,

Use

o Specify the XREF contrel instruction to output a cross-
reference list if you wish to have information on where
each of the symbols defined in the source module file is
referenced or how many such symbols are referenced in the
source module file,

o If you must specify the output or non-output of a cross-
reference list at each assembly operation, you may save your
time and labor by specifying the XREF or NOXREF control

instruction in the source module file.

Explanation

o The XREF or NOXREF control instruction can be described only
in the header section of a source module file.

¢ If two or more of these control instructions are specified
at the same time, the last specified control instruction

will take precedence over the others.

XREF /NOXREF xref/noxref XREF/NOXREF

¢ The output or non-output of a cross-reference list to an
assembly list file may also be specified with the assembler
option -KX or -NKX in the start-up command line of the
assembler.

o If the cross-reference list ocutput specification differs
between the source module file and the start-up command
line, the assembler will give precedence to the
specification by the start-up command line.

o The assembler will perform a syntax check on the XREF or
NOXREF control instruction even when the assembler option
-NP (non-output of assembly list file) has been specified in
the start-up ccommand line.

Application Example

See 4.2 (1), PROCESSOR contrel instruction for the application
example of the XREF control instruction.

4.5 INCLUDE control'instruction

The INCLUDE control instruction is used in a source module file to
specify the inclusion of another module file in the source module
file.

By making the most of this control instruction, you may save your
time and labor in describing a source program.

INCLUDE include INCLUDE

(1) INCLUDE (include)

Description Format

[A1$[AJINCLUDE[A]([Alfilenamel[A])
[A$[AIICIA)([Alfilename[A]) : Abbreviated format

Function
The INCLUDE contrel instruction inserts the contents of the

file specified by "filename" into the source program for
assembly.

A relative large group of statements which may be shared by
two or more source modules should be combined into a single
file as an INCLUDE file. If the group of statements must be
used in each source module, specify the filename of the
required INCLUDE file with the INCLUDE control instruction.
With this contrel instruction, your time and labor in
describing the source modules can be greatly reduced.

Explanation

o The pathname or drive name of an INCLUDE file may be
specified with the assembler option -I.
o Include file read paths are searched in the following
sequence:
(a) When an Include file is specified without pathname
specification
1 Path in which the source file exists
2 Path specified by the assembler option -I
3 Path specified by environment variable INC78Kn
{where n = 0, 1, 2, 3, or 6 corresponding to
each series number)

INCLUDE include INCLUDE

(b) When an Include file is specified with a pathname
If the Include file is specified with a drive name or
a pathname which begins with "¥", the path specified
with the Include file will be prefixed to the Include
filename. If the Include file is specified with a
relative path (which does not begin with "¥"), a
pathname will be prefixed to the Include filename in
the order described in (a) above.

o Nesting of INCLUDE files is allowed up to one level. In
other words, the nesting level display of Include files in
the assembly list is up to 2 (i.e., I1 and I2). (The term
"nesting"” used here refers to the specification of one or -
more other INCLUDE files in an INCLUDE file.)

o The END directive need not be described in an INCLUDE file.

o If the specified Include file cannot be opened, the
assembler will be aborted.

o An Include file must be closed with an IF or _IF control
instruction being properly paired with an ENDIF control
instruction within the Include file. If the IF level at the
entry of the Include file expansion does not correspond with
the IF level immediately after the Include file expansion,
the assembler will output an error message and force the IF
level to return to that level at the entry of the Include
file expansion.

o When defining a macro in an Include file, the macro-
definition must be closed in the Include file. If an ENDM
directive appears unexpectedly (without the corresponding
MACRO directive) in the Include file, an error message will
be output and the ENDM directive will be ignored. If an
ENDM directive is missing for the MACRO directive described
in the Include file, the assembler will output an error
message but will process the macrodefinition by assuming

that the corresponding ENDM directive has been described.

4-14

INCLUDE include INCLUDE
Application Example .
{Source program?’ <EQU.INC> <SET1.,INC>
NAME SAMPLE SYMA EQU 10K) SYMI SET 10H note 23
EXTRN L1, L2 $ INCLUDE (SET1. INC) i
PUBLIC L3 / SYMB EQU 20H
§ INCLUDE (EQU.INC) i1 5 INCLUDE (SET2. INC) i3 <SET2,INC>
) N
CSEG .
: S INCLUDE (SET3, INC)IUN SYMi SET 20H wote 3
END SYMZ EQU i00H
Note 1 Note- 2

Notes: 1.

2.

<SET3.INC>

SYMI SET 30H Wote 3

Two or more $IC control instructions can be
specified in the source file. The same Include
file may also be specified two or more times.
Two or more $IC control instructions may be

specified for Include file "EQU.INC".

3. No $IC control instruction can be specified

in any of the Include files "SETt.INC",
"SET2.INC", and "SET3.INC".

INCLUDE

include

INCLUDE

(1) This control instruction specifies "EQU.INC" as the

INCLUDE file. When this source program is assembled,
the contents of the INCLUDE file will be expanded as

«The contents of INCLUDE
file "EQU.INC" have

been expanded.

«—The contents of

file "SET1,INC"

been expanded.

—The contents of
file "SET2.INC"

been expanded.

«~The contents of

file "SET3.INC"

follows:
NAME SAMPLE
EXTRN L1, L2
PUBLIC L3
b3 INCLUDE (EQU.INC) 1)
SYMA EQU 10H
5 INCLUDE (SET1.1NC) 2 {2)
SYM1 SET 10H
SYMB EQU Z0H
§ INCLUDE(SETZ.!NCYHM
SYM1 SET 20H
$ INCLUDE (SET3., INC);{4)
SYM1 SET 30H
SYMZ EQU 100H
CSEG
END

been expanded.

INCLUDE
have

INCLUDE
have

INCLUDE
have

4,6 Assembly List Control Instructions
Assembly list control instructions are used in a source module
file to control the output format of an assembly list such as page
ejection, suppression of list output, title output, and subtitle
output.
These control instructions include:
o EJECT
LIST and NOLIST
GEN and NOGEN
COND and NOCOND
TITLE
SUBTITLE

o 0o o 0O ¢

EJECT eiect EJECT

(1) EJECT (eject)

Description Format

[AJ$[AJEJECT
[AI$[AIET ; Abbreviated format

Function
The EJECT control instruction causes the assembler to execute
page ejection (formfeed) of an assembly list.

Use
Describe the EJECT control instruction in a line of the

source module at which the page ejection of the assembly
list is required.

Explanation

0 Page ejection of the assembly list takes place after the
image (i.e., $ EJECT) of the EJECT control instruction
itself has been printed.

o If the assembler option "-NP" or "-LLO" is specified in the
start-up command line or if the assembly list output';s
disabled by another control instruction, the EJECT control
instruction will become invalid. {See the "RA78K Series
Assembler Package User's Manual for Operation' for the
assembler options -NP and -LL.)

o If an illegal déscription follows the EJECT control instruc-
tion, the assembler will output an error message.

EJECT

eject

EJECT

Application Example

<Source module>

MOV
BR

3 EJECT
CSEG

END

(DE+), A
$8

S

(1) When page ejection is executed with the EJECT control

instruction, the output assembly list will look like this.

(DE+), A
$% -

hPagé ejection

LIST/NOLIST list/no list LIST/NOLIST

(2) LIST/NOLIST (list/no list)

Description Format

[(A]$[A]LIST

[(AlS[AILI ;: Abbreviated format

(AT$[AINOLIST

[AI$[AINOLI + Abbreviated format
Function

Use

o The LIST control instruction indicates to the assembler

the line at which assembly list output must start.

The NOLIST control instruction indicates to the assembler
the line at which assembly list output must be suppressed.
All source statements described after the NOLIST control
instruction specification until the LIST control instruction
appears in the source program will be assembled but will not
be output on the aésembly list.

Use the NOLIST contrecl instruction to merely control the
amount of assembly list output.

Use the LIST control instruction to release the assembly
list output suppression specified by the NOLIST control
instruction.

By using a combination of NOLIST and LIST control instruc-
tions, you may control the amount of assembly list output as
well as the contents of the list.

Explanation

o The NOLIST control instruction functions to suppress

assembly list output. and is not intended to stop the
assembly process.

4-20

LIST/NOLIST list/no list LIST/NOLIST

o If the LIST control instruction is specified after the
NOLIST control instruction, statements described after the
LIST control instruction will be output again on the
assembly list. The image of the LIST or NOLIST control
instruction will also be output to the assembly list.

o If neither the LIST nor NOLIST control instruction is
specified, all statements in the source module will be

output to an assembly list.

Application Example

NAME SAMP !
3 NOLIST S
DATA1 EQU 10H

Statements in this part
DATAZ EQL_J 11H will not be output to the
: assembly list.

DATAX EQU 20H
$ LIST 1 (2)

CSEG

END

{1) Because the NOLIST control instruction is specified here,
statements after "$ NOLIST" and up to the LIST contrecl
instruction in (2) will not be output on the assembly
list. The image of the NOLIST control instruction itself
will be output on the list.

(2) Because the LIST control instruction is specified here,
statements after this control instruction will be output
again on the assembly list., The image of the LIST control
instruction will also be output on the list,

4-21

GEN/NOGEN generate/no generate GEN/NOGEN

{3) GEN/NOGEN (generate/no generate)

Description Format

[A]1$[A]GEN
[A]$[AINOGEN

Function
o The GEN control instruction tells the assembler to output
macrodefinition lines, macro reference lines, and macro-
expanded lines to an assembly list.
o The NOGEN control instruction tells the assembler to
output macrodefinition lines and macro reference lines

but suppress the output of macro-expanded lines.
Use
Use the GEN/NOGEN control instruction to control the amount

of assembly list output.

Explanation

o If neither the GEN nor the NOGEN control instruction is
specified, the assembler will assume GEN and output
macrodefinition lines, macro reference lines, and macro-
expanded lines.

o The specified list control takes place after the image of
the GEN or NOGEN control instruction itself has been
printed on the assembly list.

o The assembler continues its processing and increment the
STNO count even after the list output control by the NOGEN
control instruction.

o If the GEN control instruction is specified after the
NOGEN control instruction, the assembler will resume the

output of macro-expanded lines.

4-22

GEN/NOGEN generate/no generate GEN/NOGEN

Application Example

<Source program>

NAME SAMP

$ ‘NOGEN

ADMAC MACRO PARA1, PARAZ
MOV A, $#PARAI
ADD A, #PARA?2
ENDM
CSEG
ADMAC 10H, 20H
END

When the above source program is assembled, the ocutput
assembly list will look like this.

NAME SAMP
$ NOGEN
ADMAC MACRO PARAIL, PARA2
MOV A, #PARAI
ADD A, #PARAZ2
ENDM
CSEG
ADMAC 10H, 20H
MOV . A, #10H Macro-expanded part
ADD A, #20H will not be output.
END

(1) Because NOGEN control instruction is specified, the
macro-expanded lines will not be output to the list.

4-23

COND/NOCOND condition/no condition COND/NOCOND

(4) COND/NOCOND (condition/no condition)

Description Format

[Al$[A)COND
[A1$[AINOCOND

Function

o The COND contrcl instruction indicates to the assembler
the output of lines which have satisfied the conditional
assembly condition and those which have not satisfied the
conditional assembly condition to an assembly list.

© The NOCOND control instruction indicates to the assembler
the output of only lines which have satisfied the
conditional assembly condition to an assembly list. The
output of lines which have not satisfied the conditional
assembly condition and lines in which IF/ IF, ELSEIF,
_ELSEIF, ELSE, and ENDIF have been described will be
suppressed.

Use
Use the COND/NOCOND control instruction to control the amount
of assembly list output.

Explanation
o If neither the COND nor the NOCOND control instruction is

specified, the assembler will assume COND and output lines

which have satisfied the conditional assembly condition and
those which have not satisfied the conditional assembly
condition to an assembly list.

0 The specified list control takes place after the image of
the COND or NOCOND control instruction itself has been
printed on the assembly list.

o The assembler increments the ALNO and STNO counts even after
the list output control by the NOCOND control instruction.

4-24

COND/NOCOND condition/no condition COND/NOCOND

o If the COND control instruction is specified after the
NOCOND control instruction, the assembler will resume the
output of lines which have not satisfied the conditional
assembly conditien and lines in which IF/_IF, ELSEIF,
_ELSEIF, ELSE, and ENDIF have been described.

Application Example

<Source program>

NAME S AMP
$ " NOCOND
$ SET (SW1)
$ [F (8W1)

MOV A, ¥1H
3 ELSE

This part, though
MOV A, £0H ' assembled, will not
be output to the list.

ENDIF

END

4-25

TITLE title TITLE

(5) TITLE (title)

Description Format

[A)STAITITLE[A] ([A]'title~string'[1)
[AIS[AITT[A)([A]l'title-string' [A]) ; Abbreviated format

Function
The TITLE control instruction specifies the character string
to be printed in the TITLE column (i.e., title string) at each

page header of an assembly iist, symbol table list, Or Cross-
reference list.

o Use the TITLE control instruction to print a title on each
page of a list so that the contents of the list can be
readily identified.

o If you are to specify a title for each list in the start-up
command line with the assembler option, use this control
instruction in the source module file and then you can save
your time and labor in starting up the assembler.

Explanation

¢ The TITLE control instruction can be described conly in the
header section of a source module file,

o If two or more TITLE control instructions are specified at
the same time, the assembler will give precedence to the
last specified control instruction.

o Up to 60 characters can be specified as the title string.
If the specified title string consists of 61 or more
characters, the assembler will accept only the first 60
characters of the string as valid. However, if the character
length specification (X) per line of an assembly list file
is 119 characters (117 characters with 78K/III) or less,

"X - 60 characters" ("X - 58 characters" with 78K/III) will
be the acceptable title string length.
4-26

TITLE

title TITLE

If a single quote (') is to be used in the title string

as it is originally intended, describe the single quote
twice in succession.

If no title string is specified (the number of characters

in the title string = 0), the assembler will leave the TITLE
column blank.

If any character not included in 2.2.2, Character set is

found in the specified title string, the assembler will .

output "!" in place of the illegal character in the TITLE
column.
A title for an assembly list can also be specified with the

assembler option -LH in the start-up command line of the

assembler.

Application Example

<Source module>

$ PROCESSOR (3110)

$ TITLE (THIS IS TITLE"
NAME SAMP

$ EJECT
CSEG
END

TITLE

title

TITLE

When the above source program is assembled, the output

assembly list will look like this (with the number of lines

per page specified as 72).

uCOM-78K/ 111 Assembler VK. XX THIS [S TITLE Date: XX XXX XXXX Page:

Command: sauple.osm -c310 -iwd(
Pare-file:

[n-file: SAMPLE.ASH

Cbj-file: SAMPLE.REL

Prn-file: SAMPLE.PRN

Asseuble {ist)
ALNO STND ADRS OBJECT M [SOURCE STATEMENT

% é 5 TITLEC'THIS 1S TITLE')
3 3 NAKE SANP

4)

5 5 $ EJECT

uCOK-T8K/111 Assembier VX.XX THIS [S TITLE Date:XX XXX XXXX Page:

ALNO STNO ADRS OBJECT M | SOURCE STATEMENT

& § —en- CSEG
7 7
8 8 END

2

SUBTITLE subtitle SUBTITLE

(6)

SUBTITLE (subtitle)

Description Format .

[AI$[AISUBTITLE[A}({A) 'character-string'[Al)
[A)$[A)STIA)([Al 'character-string’' [Al) ; Abbreviated
! format
Function

Use

The SUBTITLE control instruction specifies the character
string to be printed in the SUBTITLE section at each page

header of an assembly list.

Use the SUBTITLE control instruction to print a subtitle on
each page of an assembly list so that the contents of the

assembly list can be readily identified. The character string

of a subtitle may be changed for each page.

Explanation

o Up to 70 characters can be specified as the character
string of a subtitle. If the specified subtitle string

consists of 71 or more characters, the assembler will accept

only the first 70 characters of the string as valid.
o The character string specified with the SUBTITLE control
instruction will be printed in the SUBTITLE section on the

page next to the page in which the SUBTITLE control instruc-
tion has been specified. However, if the control instruction
ig specified at the top (first line) of a page, the subtitle

will be printed on that page.

o If the SUBTITLE control instruction is omitted, the SUBTITLE

section will be left blank.

o If a single quote {'} is to be used in the subtitle string
as it is originally intended, describe the single quote
twice in succession.

SUBTITLE ' subtitle SUBTITLE

o If no subtitle string is specified (the number of characters
in the subtitle string = 0), the assembler will leave the
SUBTITLE section blank.

o If any character not included in 2.2.2, Character set is
found in the specified subtitle string, the assembler will
output "!" in place of the illegal character in the SUBTITLE
section. If an CR (0DH) code is described in the subtitle
string, the assembler will output an error message and
output nothing on the list. If a "OOH" code is described,
subsequent characters before the closing single quote (')
will not be output.

4-30

SUBTITLE subtitle SUBTITLE
Application Example
<Source module>
. NAME SAMP
CSEG
5 SUBTITLE ("THIS IS SUBTITLE 1") (1)
$ EJECT ;@)
CSEG

2%y @
3 EJECT (4
3 SUBTITLE ("THIS 1S SUBTITLE 3') ;@

END

SUBTITLE ("THIS 1S SUBTITLE

(1)
(2)
(3)

(4)
(5)

This control instruction specifies
"PHIS IS SUBTITLE 1".
This control instruction indicates
This control instruction specifies
“THIS IS SUBTITLE 2".
This control instruction indicates
This control instruction specifies
"THIS IS SUBTITLE 3".
4-31

character string

page ejection,

character string

page ejection.

character string

SUBTITLE subtitle SUBTITLE

When the above source program is assembled, the output
assembly list will look like this (with the number of lines
per page specified as 80).

uCON-TEX/ 111 Assembler YX, XX Date:XX XXX XXXX Pepe: |
Comasnd: - sauple.asn =c310 -1vB0
Para-file: R
in=flle: SANPLE.ASK
ObJ-file: SANPLE.XEL
Pra-file: SANPLE.PRK
Assesble 1ist
ALNO SUNO ADRS . OBJECT W | SOURCE STATENENT
1 1 NAKE SAMP
2 2
3 1 - CSEC
b |
8 B H SUBTITLE('THIS 15 SUBTITLE 1*) :s:;
7 7 H EJECT 2
——— {-Page ejection by
utON-T8K/ 111 Assenbler VXXX DateXX XXX XKXX Page: 2 instruction in ({2}
THIS 15 SUBTITLE 1 ' -sybtitle printing by
ALNO STND ADRS OBJECT K | SOURCE STATEMENE instruction in (1)
) 8
9 g ---- CSEG
i
12)2 $ SUBTITLEC'THIS IS SUBTITLE 2°) 1(3)
1313 H EJECT 1{4)
—— ==—~{~Page ejection by
wCOK=78K/ 111 Asseabler ¥X. XX Date:XX %KX XXXX Page: 3 instruction in (4}
THIS 1S SUBTITLE 3 ~Subtitle printing by
ALNO STNO ADRS OBJECT K I SOURCE STATEMENT instruction in (5)
, , . because subtitle (5)
14 :; s SUBTITLEC' THIS 1S SUBTITLE 3') 1(5) is at the ist line.
16 16
17 97 N0

4-32

4.7 Conditional Assembly Control Instructions

Conditional assembly control instructions select a series of
statements in a source module as those subject to assembly or not
subject to assembly by setting switches for conditional assembly.
Conditional assembly control instructions are available in two
groups: one group to set the condition for limiting source
statements subject to assembly (IF/_IF, ELSEIF/ ELSEIF, ELSE, and
ENDIF} and the other, to give a true or false value to a specified
switch name (SET and RESET).

By making the best of these control instructions, assembly of a
gource module by excludingAunwanted statements can be executed
with little or no change to the source module.

4-33

IF/_IF, ELSEIF/ ELSEIF, ELSE, ENDIF

(1) IF/_IF, ELSEIF/ ELSEIF, ELSE, ENDIF

Description Format

[Al$S[A]JIFIA}([Alswitch-name[[A):[A)switch-name]...[A])

or {Al$[{A]_IF Aconditional-expression
[AI${A)JELSEIF[A)([A)switch-name[[A]: [Alswitch-namel...[A])
or [Al$[A]_ELSEIF Aconditional-expression ‘
[A)$[A]ELSE

[{A]$[A]ENDIF

Function

o These control instructions set the conditions to limit
source statements subject to conditional assembly and those
not subject to conditional assembly.

Source statements described between the IF or _IF control
instruction and the ENDIF control instruction are subject to
conditional assembly.

o If the evaluated value of the switch name or conditional
expression specified by the IF or IF control instruction
{(i.e., IF or _IF condition) is true, source statements
described after this IF or _IF control instruction until the
appearance of the next conditional assembly control instruc-
tion (ELSEIF/_ELSEIF, ELSE, or ENDIF} in the source program
will be assembled. For subsequent assembly processing, the
assembler will proceed to the statement next to the ENDIF
control instruction. If the IF or _IF condition is false,
source statements described after this IF or _IF control
instruction until the appearance of the next conditional
assembly control instruction (ELSEIF/ ELSEIF, ELSE, or
ENDIF) in the source program will not be assembled.

IF/ IF, ELSEIF/_ELSEIF, ELSE, ENDIF

o The ELSEIF or _ELSEIF control instruction is checked for

true/false only when the conditions of all the conditional
assembly control instructions described before this ELSEIF
or _ELSEIF control instruction are not satisfied (i.e., all
the evaluated values of the switch names or conditional
expressions are false).

If the evaluated value of the switch name or conditional
expression specified by the ELSEIF or _ELSEIF control
instruction (i.e., ELSEIF or _ELSEIF condition) is true,
source statements described after this ELSEIF or _ELSEIF
control instruction until the appearance of the next
conditional assembly control instructionv(ELSEIF/_ELSEIF,
ELSE, or ENDIF) in the source program will be assembled. For
subsequent assembly processing, the assembler will proceed
to the statement next to the ENDIF control instruction.

If the ELSEIF or _ELSEIF condition is false, source state-
ments described after this ELSEIF or _ELSEIF control
instruction until the appearance of the next conditional
assembly control instruction (ELSEIF/ ELSEIF, ELSE, or
ENDIF) in the source program will not be assembled.

If the conditions of all the IF/_IF and ELSEIF/_ELSEIF
control instructions described before the ELSE control
instruction are not satisfied (i.e., all the evaluated
values of the switch names or conditional expressions are
false), source statements described after this ELSE control
instruction until the appearance of the ENDIF control
instruction in the source program will be assembled.

The ENDIF control instruction indicates to the assembler
the termination of source statements subject to conditional

assembly.

With these conditional assembly control instructions, source
statements subject to assembly can be changed without major

modifications to the source program.

4-35

1F/_IF, ELSEIF/_ELSEIF, ELSE, ENDIF

o0 If a statement for debugging necessary only during the
program development is described in a source program,
whether or not the debugging statement should be assembled
(translated into machine language) can be specified by

setting switches for conditional assembly.

Explanation

o The IF and ELSEIF control instructions are used for
true/false condition judgment with switch name(s), whereas
the _IF and _ELSEIF control instructions are used for
true/false condition judgment with a conditional expression.

o With the IF and ELSEIF control instructions, at least one
switch name must be described.

The rules of describing switch names are the same as the
conventions of symbol description, for which see Subsection
2.2.3 (1), "Symbol field" in Chapter 2. However, the maximum
number of characters that can be recognized as a switch name
is always 8.

o If two or more switch names are to be specified with the IF
or ELSEIF control instruction, delimit each switch name with
a colon (:}. Up to five switch names can be used per module.

© When two or more switch names have been specified with the
IF or ELSEIF contreol instruction, the IF or ELSEIF condition
is judged as satisfied if one of the switch name values is
true,

o The value of each switch name to be specified with the IF
or ELSEIF control instruction must be defined with the SET
or RESET control instruction. (See (2), "SET, RESET" in this
section.) Therefore, the value of the switch name specified
with the IF or ELSEIF control instruction must have been
set in the source module with the SET or RESET control
instruction.

© If the specified switch name or conditional expression
contains an illegal description, the assembler will output
an error message and determine that the evaluated value is
false.

4-36

IF/_1IF, ELSEIF/_ELSEIF, ELSE, ENDIF

o When describing the IF or _IF control instruction, the IF or
_IF control instruction must always be paired with the ENDIF
control instruction. | |

o If an IF-ENDIF block is described in a macro body and
control is transferred back from the macro at that level by
the EXITM processing, the assembler will force the IF level
to return to that level at the entry of the macro beody. In
this case, no error will result.

o Description of an IF-ENDIF block in another IF-ENDIF block
is referred to as nesting IF control instructions. Nesting
of IF control instructions is allowed up to 8 levels.

o In conditional assembly, object codes will not be generated
for statements not assembled, but these statements will be
output without change on the assembly list. If you do not
wish to output these statements, use the NOCOND control

instruction.

Application Example

Example 1
text?(
$ IF (SW1) V(1)
text]l
$ ENDIF ; (2)
END

IF/_IF, ELSEIF/_ELSEIF, ELSE, ENDIF

(1) If the value of switch name "SW1" is true (00FFH),
statements in "text1" will be assembled.

If the value of switch name "SW1" is false (0000H),
statements in "text1" will not be assembled.

The value of switch name "SW1" has been set to true
(00FFH) or false (0000H) with the SET or RESET control
instruction described in "text0".

(2) This instruction indicates the end of the source
statement range for conditional assembly.

Example 2

texty

3 IF {(SW1) (1)
text]

3 ELSE 4 (2)
text?2

3 ENDIF »(3)
END

(1) The value of switch name "SW1" has been set to true
(00FFH) or false (Q000H) with the SET or RESET control
instruction described in "textO".

If the value of switch name "SW1" is true (00FFH),
statements in "text1" will be assembled and statements in
"text2" will not be assembled.

{(2) If the value of switch name "SWi1" in (1) is false (Q000H},
statements in "text1" will not be assembled and statements
in "text2" will be assembled.

{(3) This instrugtion indicates the end of the source

statement range for conditional assembly.
4-38

1F/_IF, ELSEIF/_ELSEIF, ELSE, ENDIF

Example 3
texto
3 I1F (SW1) 4y
textl
$ ELSEIF (5W2) : {2)
text?2
$ ELSEIF (SW3) (3
' text3
$ ELSE s {4)
textd
$ ENDIF ; (8)
END
(1) The values of switch names "Sw1", "sw2", and "sw3" have

(2)

(3)

been set to true (00FFH) or false "0000H" with the SET or

RESET control instruction described in "textO".

If the value
"text1" will
"text3", and
If the value
"text1" will

of switch name "SW1" is true, statements in
be assembled and statements in "text2",
"text4" will not be assembled.

of switch name "SW1" is false, statements in

not be assembled and conditional assembly of

statements in "text2" and thereafter will be executed.

If the wvalue

of switch name "SW1" in (1) is false and the

value of switch name "SW2" is true, statements in "text2"

will be assembled and statements in "text1”, "text3", and

"textd" will

not be assembled.

If the values of both switch names "SW1" in (1) and "sw2"

in (2) are false and the value of switch name "sw3" is

true, statements in "text3" will be assembled and
statements in "text1", "text2" and "text4" will not be

assembled.

4-39

IF/_IF,

ELSEIF/_ELSEIF, ELSE, ENDIF

(4)

(5)

If the values of switch names "SW1" in (1), "sw2" in (2),
and "SW3" in (3) are all false, statements in "text4" will
be assembled and statements in "text1", "text2" and
"text3" will not be assembled.

This instruction indicates the end of the source statement
range for conditional assembly.

Example 4
text)
$ [F (SWA ! SWB) T
text]
$ ENDIF)
END

(1)

(2)

The values of switch names "SWA" and "SWB" have been set
to true (00FFH) or false "0000H" with the SET or RESET
control instruction described in "textO".

If the value of switch name "SWA" or '"SWB" is true,
statements in "text1" will be assembled.

If the values of both switch names "SWA" and "SWB" are
false, statements in "text1" will not be assembled.

This instruction indicates the end of the source statement
range for conditional assembly.

4-40

SET, RESET set, reset SET, RESET

{2) SET, RESET (set, reset)

Description Format

[AISIA)SET[A]([A)switch-name[[A]l:[Alswitch-name]...[A])
[AJ$S[AIRESET[A}([A)switch-name[[A):[A]lswitch-name]l...{A])

Function

Use

o The SET and RESET control instructions give a value to each

switch name to be specified with the IF or ELSEIF control
instruction.

The SET control instruction gives a true value (00FFH) to
each switch name specified in its operand.

The RESET contreol instruction gives a false value (Q000H) to

each switch name specified in its operand.

Describe the SET control instruction to give a true value
(00FFH) to each switch name to be specified with the IF or
ELSEIF control instruction.

Describe the RESET control instruction to give a false value
(0000H) to each switch name to be specified with the IF or
ELSEIF control instruction.

Explanation

o With the SET and RESET control instructions, at least one

switch name must be described.

The rules of describing switch names are the same as the
conventions 6f symbol description, for which see Subsection
2.2.3 (1), "symbol field" in Chapter 2. However, the maximum
nunber of characters that can be recognized as a switch name
is always 8.

If two or more switch names are to be specified with the SET
or RESET control instruction, delimit each switch name with
a colon (:). Up to five switch names can be used per module.

4-41

SET, RESET set, reset SET, RESET

o The specified switch name(s) may be the same as user-defined
symbol(s) other than reserved words and other switch names,

© The switch name once set to "true" with the SET control
instruction can be changed to "false" with the RESET control
instruction, and vice versa.

o A switch name to be specified with the IF or ELSEIF control
instruction must be defined at least once with the SET or
RESET control instruction in the source module before
describing the IF or ELSEIF control instruction.

0 Switch names will not be output to a cross-reference list.

Application Example

Example 1

3 SET (SW1) A ; (1)

$ IF (SW1) 1 {2)
textl .

$ ENDIF ‘ k)|

$ RESET (SW1:SW2) ; (4)

$ IF (SW1) ; (8)

' text?

3 ELSEIF (SW2) ; (B)
text3

$ ELSE (7
text4

8 ENDIF . (8)

END

4-42

SET, RESET set, reset SET, RESET

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

This instruction gives a true value (00FFH) to switch name
"SW1'",

Because the true value has been given to switch name "sw1"
in (1) above, statements in "text1" will be assembled.
This instruction indicates the end of the source

statement range for conditional assembly, which starts
from (2}.

This instruction gives a false value (0000H) to switch
names "SW1" and "SW2", respectively.

Because the false value has been given to switch name
"sW1" in (4) above, statements in "text2" will not be
assembled.

Because the false value has also been given to switch name
"sWw2" in (4) above, statements in "text3" will not be
assembled. |

Because both switch names "SW1" and "Sw2" are false in (5)
and (6) above, statements in "text4" will be assembled.
This instruction indicates the end of the source

statement range for conditional assembly, which starts
from (5).

CHAPTER 5. MACROS

5.1 Overview of Macro

When you must describe a series of instruction groups over and
over again in a source program, a macro function is very useful
for program description.

The macro function refers to the expansion of a series of instruc-
tion groups defined as a macro body with MACRO and ENDM directives
into the location where the macro name is referenced.

A macro is used to increase coding efficiency of a source program
and is different from a subroutine.

A macro and a subroutine each have the following features and
should be used selectively according to the specific purpose.

(1) Subroutine

o Describe a process (or the same sequence of instructions)
which must be repeated over and over again in a program
as a subroutine. The subroutine will be converted into
machine language just once by the assembler.

o To call the subroutine, you only need to describe a
subroutine call instruction. (Generally, instructions to
set arguments are also described before and after the
subroutine.)

Therefore, by making the best of subroutines, the program
memory can be used with high efficiency.

o By coding a series of processes in a program as subroutines,
the program can be structurized. (By this structurization,
the programmer can easily understand the overall structure
of the program, thus making the program design easy.)

{(2) Macro

o The basic function of a macro is the replacement of a group
of instructions with a name.

A series of instruction groups defined as a macro body with
MACRO and ENDM directives will be expanded into the location
where the macro name is referenced.

o When the assembler detects a macro reference, the assembler
expands the macro body and converts the group of instruc-
tions into machine language while replacing the formal
parameter(s) of the macro body with the actunal parameters at
the time of the macro reference.

5-1

o Parameters can be described for a macro.
For example, if there are instruction groups which are the
same in processing procedure but are different in the data
to be described in the operand, define a macro by assigning
formal parameter(s) to the data. By describing the macro
name and the actual parameter(s) at macro reference time,
the assembler can cope with various instruction groups which

differ only in part of the statement description.
The programming technique with subroutines is mainly used for

memory size reduction and program structurization, whereas macros

are used to increase coding efficiency of the program.

5-2

5.2 Utilization of Macros

5.2.1 Macrodefinition
A macro is defined with the MACRO and ENDM directives.

Description Format

Symbol Mnemonic Operand Comment
field field field field
macro name MACRO [formal parameter{,...]] [; comment]
S
ENDM
Function

The MACRO directive executes a macrodefinition by assigning
the macro name specified in the Symbol field to a series of
statements (called a macrc bedy) described between this
directive and the ENDM directive.

Application Example

ADMAC MACRO PARALl., PARA2

MOV A, #PARAL
ADD A, #PARAZ
ENDM

The above example shows a simple macrodefinition which
specifies the addition of two values PARA1 and PARAZ and the
storage of the result in register A, The macro is given a
name "ADMAC" and "PARA1" and "PARA2" are formal parameters.
For details, see (1) MACRO in Section 3.9, Macro Directives,
Chapter 3.

5.2.2 Macro reference
To call a macro, the already defined macro name must be described
in the Mnemonic field of the source program.

Description Format

Symbol Mnemonic Operand Comment
field field field field
[label:] macro name [actual parameter[,...]]} [; comment}
Function

This directive calls the macro body assigned to the macro
name specified in the Mnemonic field.

Use

Use this directive description to call a macro body.

Explanation

o The macro name to be specified in the Mnemonic field must
have been defined before the macro reference.

© Up to 16 actual parameters may be specified per line by
delimiting each actual parameter with a comma (,).

0 No Blank character can be described in the character
string constituting an actual parameter.

o When describing a comma (,)}, semicolon (;), Blank, or TAB
in an actual parameter, enclose the character string which
includes any of these special characters with a pair of
single quotes,

© Formal parameters are replaced with their corresponding
actual parameters in sequence from left to right.

© A warning error will result if the number of formal

parameters is not equal to the number of actual parameters,

Application Example

NAME SAMPLE
ADMAC MACRO PARA1l, PARA?

MOV A, 2PARA1

ADD A, 4PARAZ2

ENDM

CSEG

ADMAC 10H, 20H

END

This directive calls the already defined macro name "ADMAC".

10H and 20H are actual parameters.

5.2.3 Macroexpansion

The assembler processes a macro as follows:

o Expands the macro body corresponding to the referenced macro

name to the location where the macro name is referenced.

o Assembles statements in the expanded macro boedy just the

same as other statements.

Application Example

When the macro referenced in Subsection 5.2.2, "Macro

reference" is assembled, the macro body will be expanded as

shown below.

NAME SAMPLE

ADMAC MACRO PARA1, PARAZ
MOV A, #PARAI
ADD A, #PARA2
ENDM
CSEG
ADMAC 10H, 20H s ()
MOV A, #PARA1 10H
ADD A, #PARA2 20H
END

Macrodefinition

Macroexpansion

By the macro reference in (1), the macro body will be

expanded. The formal parameters within the macro body will

be replaced with the actual parameters.

5.3 Symbols within Macro
Symbols that can be defined in a macro are divided into two types:
global symbols and local symbols.

(1) Global symbols
o A global symbol is a symbol that can be referenced from any
statement within a source program.
Therefore, if a series of statements are expanded by
referencing a macro in which the global symbol has been
defined, the symbol will cause a double definition error.
o Symbols not defined with the LOCAL directive are global.

(2) Local symbols
o A leocal symbol is a symbol defined with the LOCAL directive.
(See (2) LOCAL in Section 3.9, "Macro directives".)
o A local symbol can be referenced within the macro declared
as LOCAL with the LOCAL directive.

o No local symbol can be referenced from outside the macro.

Application Example

<Source program>

NAME - SAMPLE
MACI1 MACRCQ
LOCAL LLAB e
LLAB:
Macrodefinition
GLAB:
BR $LLAB . (2)
BR . SGLAB ; (3)
ENDM
REF1: MACI1 P@) -1 Macro reference
BR ILLAB :(5) =4— This description
is erroneous.
BR 'GLAB s (6)
REF2: MAC! i) =4— Macro reference
END

(1)
(2}

(3)

(4)

(5)

(6)

(7)

This directive defines label "LLAB" as a local symbol.
This instruction references local symbol "LLAB" in
macro MAC1.,
This instruction references global symbol "GLAB" in
macro MAC1,
This directive references macro MACI.
This instruction references local symbol "LLAB" from
outside the definition of macro MAC1. This description
cause an error when the source program is assembled.
This instruction references global symbol "GLAB" from
outside the definition of macro MACI. |
This directive references macro MAC1. The same macro
is referenced twice.

5-8

When the source program in the above program is assembled,
the macro body will be expanded as shown below.

NAME

REF1: MACI

LOCAL LLAB Macroexpansion

LLAB:
~— Error

GLAB:

BR $LLAB

BR $GLAB

BR 'LLAB ~— Error

BR IGLAB

REF2: MACI

LOCAL LLAB Macroexpansion
LLAB:
[~——Error '
GLAB:
BR SLLAB
BR SGLAB
END

Global symbol "GLAB" has been defined in macro MACI.
Because macro MAC1 is referenced twice, global symbol
"GLAB" causes a double definition error as a result of
expanding a series of statements in the macro body.

5.4 Macro Operators
Two types of macro operators are available: "& (Concatenate)" and

{single guote)".

(1) & (Concatenate)

o The concatenating sign "&" concatenates one character string
to another within a macro body. At macroexpansion time, the
character string on the left of the concatenating sign is
concatenated to the character string on the right of the
sign. The "&" sign itself disappears after concatenating the
strings.

0 At macrodefinition time, a string before or after "&" in a
symbol can be recognized as a formal parameter or LOCAL
symbol. At macroexpansion time, the formal parameter or
LOCAL symbol before or after "&" is evaluated as a symbol
and can be concatenated in the symbol.

o The "&" sign enclosed in a pair of single quotes is handled
as mere data.

o Two "&" signs described in succession are handled as a

single "&" sign.

Example:
Macrodefinition
Mi MACRO X
LAB&X: PUSH Ro —~Formal parameter "X" is
D&B 10H recognized.
DB X
DB X
DB T&X
ENDM
Macroreference
M1 1
LAB1: PUSH RO
DB 10H <D and B are concatenated
DB _ and become "DB".
DB 1
DB T&X —& enclosed in a pailr of

single quotes is handled
5-10 2as mere data.

(2)

' (Single quote)

o If a character string enclosed in a pair of single guotes

is described at the beginning of an actual parameter in a

macrodefinition or an IRP directive or after a delimiting

character, the character string will be interpreted as an

actual parameter. The character string will be passed to the

actual parameter without the enclosing single quotes.

o If a character string enclosed in a pair of single quotes

exists in a macro body, the character string will be handled

as mere data.

o To use a single guote as it is originally intended (as a

single quotation mark), describe the single quote twice in

succession.

Example:

MAC!

MACRO X

IRP Z,<X>
MOV A, ¥Z
ENDM

ENDM

MAC 1 ‘10, 20,

30"

When the source program in the above program is assembled,

MAC1 will be expanded as shown below.

IRP Z. <10,
MOV A, &Z
ENDM

MOV A, 210
MOV A, =20
MOV A, 230

:|Expansion cf IRP

CHAPTER 6. PRODUCT UTILIZATION

There are several ways to effective use this package for assembly

of source modules. Only a few of these techniques are introduced

in this section.

{1} How to save your trouble in starting up the assembler

It is better to describe in a source module file, control
instructions which have the same functions as assembler
optipns and which you must always use when starting up the
assembler such as the processor type specification (-C) and
debug information output specification (-G). Especially,

the processor type specification which cannot be omitted
should be specified in the module header using the PROCESSOR
control instruction. Then, you do nét need to specify the
assembler option {(-C) in the start-up command line each time
you start up the assembler program. An error will result if
you forget to specify this assembler option in the start-up
command line and you must start up the assembler again from
the beginning with the correct assembler options.

The cross-reference list output control instruction (XREF)

should also be specified in the module header.

Example
$ PROCESSOR (31 2)
3 DEBUG
$ XREF
NAME TEST
CSEG

(2) How to develop programs with high memory utilization
efficiency
The short direct addressing area is an area which can be
accessed with instructions of short byte length as compared
with other data memory areas.
Therefore, by using this area efficiently, a program with
high memory utilization efficiency can be developed.
So, if you declare the short direct addressing area with one
module and if all the variables which you intended to locate
in the short direct addressing area cannot be located, you
can make changes easily so that only variables to be accessed

frequently are located in the short direct addressing area.

Module 1
PUBLIC TMP1, TMP2
WORK DSEG AT OFE20H
TMP1 : DS 9 word
TMP 2 : DS 1 ; byte
Module 2
_ EXTRN TMP 1, TMP 2
SUB CSEG
MO VW TMP1, 21234H
MOV TMP2, %56H

APPENDIX A. LIST OF RESERVED WORDS

Reserved words are available in six types: machine language
instructions, directives, control instructions, operators,
register names, and sfr symbols. The reserved words are
character strings reserved beforehand by the assembler and
cannot be used for other than the intended purposes.

Types of reserved words that can be described in each field of
é source program is shown below.

Symbol field .All reserved words cannot be described in
this field.
Mnemonic field Only machine language instructions and

directives can be described in this field.-

QOperand field Only operators, sfr symbols, and register
names can be described in this field,

Comment field All reserved words can be described in
this field.

Reserved words for each microcomputer in the 78K series are
listed in Sections A.1 through A.4, respectively, in this
appendix.

A.1 List of Reserved Words for 78K/0
ADD ADDC ADDW ADJBA ADJBS ALU AND
ANDI BC BF BNC BNZ BR BRK
BT BTCLR BZ CALL CALLF CALLT CLRI
£ |CLRi CMP CMPW DBNZ DEC DECW DI
2 |pvuw E HALT INC INCW MOV MOV1.
g Imovw movw MULU NOP NOTI1 OR ORI
£ | pop PUSH RET RETB RETI ROL ROL4
ROLC ROR ROR4 RORC SEL SETI SET1
STOP SUB SUBC SUBW XCH XCHW XOR
XOR1
§ AND . EQ GE GT HIGH LE LOW
5 LT MOD NE NOT OR SHL SHR
& | xor
o |BR BSEG CSEG DB DBIT DS DSEG
3 |ow END ENDM ENDS EQU EXITM EXTBIT
5 |EXTRN IRP LOCAL MACRO NAME ORG PUBLIC
8 |REPT SET
. | COND DEBUG DG EJ EJECT ELSE ELSEIF
S| ELSEIF ENDIF GEN Ic 1F IF INCLUDE
:‘-fé LI LIST NOCOND ~ NODEBUG NODG ~ NOGEN NOLI
£ |NOLIST NOXR NOXREF PC PROCESSOR RESET SET
“ | SUBTITLE ST TITLE TT XR XREF
ADCR ADIS ADM ADTC ADTP CKM CROD
CRO1 CR10 CR20 CSIMo CsIM1 IF0 IFOH
IFOL IMS INTMO KRM MKO MKOH MKOL
§ MM OSTS) Pl) P3 P4
5 1ps P6 rcc Mo PMI1 PM2 PM3
s | PMs PM6 PRO PROH PROL PSW PUO
" | sBIC SCS S100 st SINT SP SVA
TCLO TCLI TCL2 TCL3 TMO TM1 ™2
TMCO TMCI TMC2 TOCO TOC1 WDTM
A AX B BC C cyY D
» | DE E H HL L PSW R0
2 | rt R2 R3 R4 RS R6 R
g‘ REBO RB1 RB2 RB3 RPO RPI RP2
RP3 Sp X
| AT CALLT FIXED IHRAM SADDR SADDRP UNIT
o ‘
w o

* Seg. Attr.: Segment attributes

A-2

A.2 List of Reserved Words for 78K/I

#PD7R112
ADD ADDC ADDW ADJBA AD]BS AND ANDI
BC BE BF BL BNC BNE BNL
BNZ BR BT BTCLR BZ CALL CALLF
CALLT CLRI CLR1 CMP CMPW DBNZ DEC
DECW DL DIVUW El INC INCW MOV
MOV . MOV MOV1 MOVW MULUW NOP NOT!
NOT! OR ORI POP PUSH RET RETI
ROL ROLA ROLC ROR ROR4 RORC SEL
SETI SET1 SHL SHR " SHRL SHRW SUB
SUBC- SUBW XCH XOR XORI1
uPD78134
ADD ADDC ADDW ADJBA - ADJBS AND ANDI
BC BE BF BL BNC BNE BNL
BNZ BR BT BTCLR BZ CALL CALLF

2 lcALLT cLr1 CLRI CMP CMPW DBNZ DEC

5 DECW DI DIVUW EI INC INCW MOV

L% MOV MOVI MOVW MOVW MULUW NOP NOTI

£ | NOT1 OR OR1 POP PUSH RET * RETI
ROL ROLA ROLC ROR ROR{ RORC SEL
SETI SETI1 SHL SHLW SHR SHRW SUB
SUBC SUBW XcH XOR XORI
#PD78136/:PD78138 '
ADD ADDC ADDW ADJBA ADJBS AND AND1
BC BE BF BL BNC BNE BNL
BNZ BR BT BTCLR BZ CALL CALLF
CALLT CLR1 CLRI CMP CMPW DBNZ DEC
DECW DI DIVUW EI INC INCW MOV
MOV MOV] MOVW MOVW MULSW MULUW NOP
NOT1 NOTI OR OR1 POP PUSH RET
RETI ROL ROL4 ROLC ROR ROR4 RORC
SEL SET! SET1 SHL SHLW SHR SHRW _
SUB SUBC SUBW XcH XOR XOR1

§ AND EQ GE GT HIGH LE LOW

® LT MOD NE NOT OR SHL SHR

[

& | XOoR

31 BR BSEG CSEG DB DBIT DS DSEG
-5 DW END ENDM ENDS EQU EXITM EXTBIT
§ EXTRN IRP LOCAL MACRO NAME ORG PUBLIC
8 | REPT SET

o COND DEBUG DG E] EJECT ELSE ELSEIF

§ _ELSEIF ENDIF GEN {0 IF - IF INCLUDE

3§ LI LIST NOCOND NODEBUG NODG NOGEN NOLI

*ELJ, NOLIST NOXR NOXREF IC PROCESSOR RESET SET

7 SUBTITLE ST TITLE, T XR XREF
#PD78112
ADM CPTO - CPTIL CPT2 CPT3 CPTM CRo0
CRoO1 CRo2 CRI10 CRI11 CRI12 CR20 CSIM
EDVC FRC ICR IF0 IFOH 1FOL INTMO
INTMI ISMO ISMOH ISMOL MK0 MKOH MKOL
MM Pl P2 P3 P4 P5 Ps
PM1 PM3 PMs " PMS PMC3 PSW PWMO
PWM1 PWMC SA SIO SP STBC TMo
TM1 T™2 TMCO TMC1 '

A | #PD78134/.PD78136/ PD78138

‘é‘ ADCR ADM CLOM CPTO CPT1 CPT2H CPT2L

: CPT3 CPT30’ CRTM CROO CRO1 CRO2 CRI10

“

w | CRIL CR12 CR20 CR30 CSIM EC ECCO0
ECCI EDVC FRC ICR iFo IFOH IFOL
IMS INTMo INTMI ISMo ISMOH 1SMOL IST
MKo MKOH MKOL MM PO POH POL -
P P2 P3 r4 P5 Ps P7
PM0 PM1 PM3 M5 PMG6 PM7 PMC3
PRO PROH PROL PRM3 PSW PUD PWMO
PWMI1 PWMC RTPC SBIC SI0 sP STBC
TMO TM1 TM2 TM3 TMCO TMCl TOCO
TOCH TOMo TOMI
A AX B RC cY D

§ DE E H HL RO R1

@ |R2 R3 R4 RS R6 R7 RPO

E‘ RP] RP2 RP3 RBO RBI RB2 RB3
. :

.| AT CALLTO FIXED SADDR UNIT

gu

0 o

*Seg., attr.: Segment attributes

List of Reserved Words for 78K/III

uPD78310/¢PD78312/ 4 PD78310A /. PD78312A

ADD ADDC ADDW ADJ4 AND ANDI BC
BE BF BFSET . BGE BGT BH BL
BLE BLT BN BNC BNE BNH BNL
BNV BNZ BP BPE BP0 BR BRK
BRKCS BT BTCLR BV BZ CALL CALLF
CALLT CLRI CMP CMPBKC CMPBKE CMPBKN CMPBKNE
CMPMC CMPME CMPMNC CMPMNE CMPW DBNZ DEC
DECW DI DIVUW DIVUX El INC INCW
MOV MOVBK MOVM MOVW MOV1 MULU MULUW
NOP NOTI OR ORI POP . POPU PUSH
PUSHU RET RETCS RETI ROL ROLC ROR
RORC ROLA ROR4 SEL SET1 SHL SHR

w |SHLW SHRW SUB SUBC SUBW SWRS XCH

@ .

8 |XCHBK XCHW XOR XORI

‘:'g: 4 PD78320/4 PD78322/ u PD78327/ 4 PD78328/ 4 PD78330/ . PD78334

& | ADD ADDC ADDW ADJ4 ADJBA ADJBS AND

Y | ANDL BC BE BF BFSET BGE BGT
BH BL BLE BLT BN BNC BNE
BNH BNL BNV BNZ BP BPE BPO
BR BRK BRKCS BT BTCLR BV BZ
CALL CALLF CALLT CHKL CHKLA CLRI CMP
CMPBKC CMPBKE CMPBKNC CMPBKNE CMPMC CMPME . CMPMNC
CMPMNE CMPW CVIBW DBNZ DEC DECW DI
DIVUW DIVUX El INC INCW MOV MOVBK
MOVM MOVW MOV1 MULU MULUW MULW NOP
NOT1 OR ORI POP POPU PUSH PUSHU
RET RETB RETCS RETCSB RETI ROL ROLC
ROR RORC ROLA RORA SEL SET1 SHL
SHR SHLW SHRW SUB SUBC SUBW SWRS
XCH XCHBK XCHM XCHW XOR XORI

§ AND EQ GE GT HIGH LE LOW

@ LT MOD NE NOT . OR SHL SHR

@

& | xor

, |BR BSEG CSEG DB DBIT DS DSEG

3 |ow END ENDM ENDS EQU EXITM EXTBIT

¢ |EXTRN IRP LOCAL MACRO NAME ORG PUBLIC

8 | repT RSS SET

WDM

. | coND DEBUG DG EJ EJECT ELSE ELSEIF

S| ELSEIF ENDIF GEN 1C IF IF INCLUDE

"ég LI LIST NOCOND ~ NODEBUG NODG NOGEN NOLI

€4 | NOLIST . NOXR NOXREF IC PROCESSOR RESET SET

U -
SUBTITLE ST TITLE TT XR XREF
uPD78310/ 4 PD78312/4 PD78310A/ PDT8312A
ADCR ADIC ADM ADMS BRG ccw CPT
CPTOH CPTOL CPT1 CPTIH CPTIL CPTM CROD
CROOH CROOL CRO1 CROLH CROIL CRI0 CRI0H
CRI0L CRIl CRIIN CRIIL CRC CRIC00 CRICOL
CRICI0 CRIClI CRMS00 CRMSI0 CUIM EXICD EXICI
EXIC2 EXMS0 EXMS1 EXMS2 FRCC INTM ISPR
MDO MDOH MDOL MD1 MD1H MDIL MM
PO PoH PoL Pl P2 P3 P4
P5 PMO PM1 PM2 PM3 PMs PMC2
PMC3 PSW PSWH PSWL PWMO PWMOH PWMoL
PWMI PWMIH PWMIL PWMM RFM RTPC RXB
SCC SCM SEIC sp SPH SPL SRIC
SRMS STBC STIC STMS TBIC TBM TMO
TMoH TMoL TMI TM1H TMIL TMCO TMCL
TMICO TMICI TMIC? TMMS0 TMMSI TMMS2 TXB
UDCo UDCOH UDCOL UDCI UDCIH uDCIL UDCCO

2 lubcct woM

€ [PD78320/uPDT8322 .

; ISFR ADCR ADCRH ADM ASIM ASIS BRG

“ | BRGM CCOILW CCOIUW CCW CCXOUW CCXOLW CM0g
cMo1 CMoz cMo3 CM10 CM11 CSE0 CSE0H
CSEOL CSEL CSEIL CSIM CTOILW CTOIUW CTO2LW
CT02UW CTOLW CTO3UW CTXOLW CTXOUW FCC [F0.
IFOH IFOL IF1 IFIH INTMo INTMI1 ISMo
ISMOH ISMOL ISMI ISMIL MKO MKOH MEKOL
MK1 MKIL MM Po P2 P3 PA
P5 P7 Ps P9 PBO PBOH PBOL
PB1 PBIL PM0 PM3 PM5 PM8 PM9
PMCO PMC3 PMC8 PRDC PRM PRSL PWC
RPUM RTP RTPR RTPS RXB SBIC SI0
STBC TMOLW ~ TMOUW TMI TMC TOCD TOCI
TXS

A-6

#PD78327/pPD78328

ADCR ADCRH ADM ASIM ASIS BRG BRGM
CcClo ccw CMOOR CM00S CMOIR CMO1S CMO2R
CM02S CMO3R CM3S CMOMR CMO4S CMO5R CM05S
CM0s cM20 CSE0 CSEOH CSEOL CSEl - CSEIL

‘| csIM FCC IF0 IFOH 1FOL IF1 IFIL
INTMO ISMo0 ISMOH ISMOL ISM1 ISMIL ISPR
MKO MKOH MKOL MK1 MKIL MM PO
POL P2 P3 P4 P5 P7 P8
P9 PBO PBOH PBOL PB1 PBIL PMo
PM3 PM5 PM8 PMY PMC3 PMC3 POH
PRDC PRSL PWC PWMB PWMC RTPC RXB
SBIC SI0 STBC TMO TM1 TM2 TMCO

§ TMClL TOUT TUM TXS WDM

% #PD78330/,: PD78334

» | ADCRO ADCROH ADCRI! ADCRIH ADCR? ADCR?2H ADCR3

“ | ADCR3H ADCR4 ADCR{H ADCRS ADCRSH ADCRé ADCR6H
ADCR? ADCRTH ADM ASIM ASIS BRG BRGM
CCOo0R CCOIR ccw CMOIR CMo2R CMO3R CMO4R
CM11 CM12 CM20 CM21 CM30 CMX0 CSE0
CSEOH CSEOL CSEl CSEIL - CSIM © CToo CT01
CT02 CT10 FCC 1F0 1FOH IFOL IF1
IFIL INTMO INTM1 ISM0 1SMOH ISMoL ISM1
ISMIL ISPR MKO MKOH MKOL MK1 MKI1L
MM PO P1 P2 P3 P4 P5
P7 P8 P9 PBO PBOH PBOL PB1
PBIL PMO PM1 PM3 PM35 PMS PMCO
PMC1 PMC3 PPOS PRDC PRSL PWC PWMO
PWM1 PWMC RTP RTPR RTPS RXB SBIC
SETM SFTM Slo STBC TLA TMO T™1
™2 TM3 TMCO TMCI TOCO TOCI TUMO
TUM1 TXS WDM
A AX B BC c CY DE
E H HL L RO RI R2

w |R3 R4 RS R6 RY RS R9

8 R0 R11 R12 R13 R14 R15 RPC

2 |&P1 RP2 RP3 RP4 RP5 RP6 RP7

% | RBo RB1 RB2 RB3 RB4 RBS RB6
RB7 up UPH UPL VP VPH VPL
X

AT CALLTO CALLTI FIXED SADDR SADDRP UNIT

attr.

o
o
53]

*Seg. attr.: Segment attributes

A.4 List of Reserved Words for 78K/VI

ADDCB

ADDB ADDCD ADDCW ADDD ADDW ADJBA
ADJBS ANDIB ANDIW ANDB ANDD ANDW BCS
BES BFBS BFSETBS BFSETWS BFWS BGES BGTS
BHS BIG_SEM BLES BLS BLTS BNCS BNES
BNHS BNLS BNS BNVS BNZS BPES BPOS
BPS BR BRIZ BRK BRKCS ~ BRKT BRM
BRS BTBS BTCLRBS BTCLRWS BTWS BVS BZS
CALL CALLT CHKL CHKLR CLRl CLRIB CLRIW
CMPB CMPBKCB CMPBKCW CMPBKEB CMPBKEW CMPBKNCE CMPBKNCW
CMPBKNEB CMPBKNEW CMPD ~ CMPMCB CMPMCW CMPMEB CMPMEW
CMPMNCB CMPMNCW CMPMNEB CMPMNEW CMPW CVTBW CVTWD

, | DBNZ DBNZE DBNZNE DECB DECW DI DIVD

& [pivuD DIVUM DIVW DSBNZ El INCB INCW

§ | IRSM_TSK MACW MOVIB MOVIW MOVB MOVBKB

£ | MOVBKW MoOVD MOVEA MOVMD MOVMW MULB MULUB

S |muLuw MuLw NEGB NEGW NOP NOT1 NOTIB
NOTIW NOTB NOTW NOVW ORIB ORIW ORB
ORD ORW POP POPR POPU PREQ SEM PUSH
PUSHR PUSHU QHOUT QSOUT QTIN RET RETB
RETCS =~ RETCSB RETI RET INT RET RSM ROLA ROLB
ROLCB ROLCD ROLCW ROLD ROLW ROR4 RORB
RORCB RORCD RORCW RORD RORW RSM_TSK SEL
SET! SET1B SETIW SHLB SHLD SHLW SHRAB
SHRAD SHRAW SHRB SHRD =~ SHRW SUBB SUBCB
SUBCD SUBCW SUBD SUBW SUS.TSK WALSEM XCHB
XCHBKE XCHBKW XCHMB XCHMW XCHW XORLB XORIW
XORB. XORD XORW

L |anD EQ GE GT HIGH LE LOW

@ |LT MOD NE NOT OR SHL SHR
8 | xor

s |BR BSEG CSEG DB DBIT DS DSEG
% |ow END ENDM ENDS EQU EQUD EXITM
$ |EXTBIT EXTRN IRP LOCAL MACRO NAME ORG
& IPUBLIC REPT SET

. | COND DEBUG DG E} EJECT ELSE ELSEIF

8| ELSEIF ENDIF GEN IC IF IF INCLUDE

EE L LIST NOCOND NODEBUG NODG NOGEN NOL!

‘g:é NOLIST NOXR NOXREF PC PROCESSOR RESET SET

“ | SUBTITLE ST TITLE TT XR XREF
ADCRO ADCRI ADCR2 ADCR3 ADCR4 ADCR5 ADCR6
ADCR7 ADCRH(¢ ADCRHI1 ADCRH2 ADCRH3 ADCRH4 ADCRHS
ADCRH6 ADCRH7 ADM ASIM ASIS BRG BSC
CCOOLW CCOOUW CCOILW CCOIUW CCO2LW CCOZUW CCOLW
CCcoluw CC10 CCil CMO0 CMO01 _ CM02 CMO03 ‘
CMI10 - CM11 CM20 oMzl CRC CSE0 CSEOH
CSEOL CSEIL CSIM CT20 CT21 1F0 1FOH

2 1 1FoL IFIL INTMo INTM1 1PGCO trcet IPGCM0

‘é IPGCM1 IPGCM2 IPGCM3 1PGCM4 IPGCMS 1PGCM6 IPGCM7

o |IPGCMS IPGCT IPGS0 1IPGS1 IPGTM ISM0 ISMOH -

W | 1sMoL ISMIL ISPR MKO MKOH MKOL MKIL
MM 0TC Po P1 P2 P3 P4
Ps5 P7 P8 P9 PBO PBOH PBOL
PBIL PMO PM1 PM3 PM5 PM8 PM9
PMCO PMC3 PMC8 PRMO PRM1 PRSL PWC
RPDC RPUM RTP RTPR RTPS RxB SBIC
SIO STBC TMOLW TMOUW TMI TM2 TMCO
TMCI TOCO TOCI TxS WDM
cY RO R1 R2 R3 R4 RS

nﬂ, R6 R7 ROH ROL RIH RIL R2H

B | RIL R3H R3L R4l R4L R5H RSL

§ R6H R6L R7H R7L RBO RBI RB2
RB3 RPQ RP1 RP2 “RP3 . SP

.| AT DSADDR SADDR TABLE UNIT WSADDR

*Seg. atir.: Segment attributes

APPENDIX B. LIST OF DIRECTIVES

Table B-1. List of Directives
No. Directive Function/ -
Symbol Mnemonic | Operand Comment classification
field field field field
1 | [segment | CSEG [reloc. [;comment] | Declares the start
name] attr.) of a cocde segment.
2 | [segment | DSEG [reloc. [;comment] | Declares the start
name] attr.] of a data segment,
3 | isegment | BSEG [reloc. [;comment] | Declares the start
name] attr.] of a bit segment.
4 | [segment | ORG absol. [;comment] | Declares the start
name] expres. of an absolute
segment. (See Note
1.)
5 |None ENDS None [;comment] | Indicates the end
of the segment.
6 |name EQU expres- {;comment] | Defines a name.
sion (See Note 2,)
name : symbol
7 |name EQUD 32-bit [;comment] | Defines a name.
imm. (See Note 2.)
data/
symbol name: symbol
{(for 78K/VI only)
8 néme SET absol. [;comment] | Defines a relocat-
expres. able name. {See
Note 1.)
name:symbol
9 i[label:] | DB (size) [;comment] | Initializes or
[initial reserves a byte
value data area.
[,...1 {See Note 3.)
label :symbol

Table B‘“1 L]

List of Directives (contd)

No. Directive Function/
Symbol Mnemonic | Operand Comment classification
field field field field
10 | [label:] | DW (size) [;comment] | ITnitializes or
[initial reserves a word
value data area.
[,e..] label : symbol
11 ([label:} | DS absol. [;comment] | Reserves a byte
expres. data area. (See
Note 1.ﬁ
label :syvmbol
12 | [name] DBIT None [;comment] | Reserves a bit
data area. (See
Note 1.)
name:symbol
13 |[label:] | PUBLIC symbol [;comment] | Declares an
name external defini-
[,...] tion name.
14 {[label:]) | EXTRN symbol [;comment] | Declares an
name external reference
[,...] name.
15 ([label:] | EXTBIT bit [;comment] | Declares an
symbol external reference
name name. Symbol names
[,...1 are limited to
those having a bit
value.
16 | [label:] | NAME object [;comment]} | Defines a module
module name,
name
[,...] module name:symbol
17 {[label:] | BR expres- [;comment] | Automatically
sion selects a Branch
[,.-.] instruction.
label :symbol

Table B-1.

List of Directives (contd}

No. Directive Function/
Symbol | Mnemonic | Operand Comment classification
field field field field
18 | [label:]) | RSS n [;comment] | Declares the value
of the Register
Set Select flag.
n=0, 1
{(for 78K/III only)
19 |name MACRO [formal [;comment] | Defines a macro.
parameter
[;e..]1] macro name:symbol
20 |[[label:] | LOCAL symbol [;comment] | Defines a symbol
name valid only within
[,...] the macro. {See
Note 4.)
label: symbol
21 | [label:] | REPT absol. [;comment] | Defines the repeat
expres. | count in macro-
expansion.
label: symbol
22 | {label:] | IRP formal [;comment] | Expands the macro
parameter, body by replacing
cactual formal parameters
parameter with actual para-
[,...]1> meters.
label :symbol
23 | [label:] | EXITM Nohe [;comment] Interrupts the
macroexpansion.
(See Note 4.)
24 |None ENDM None [;comment] | Indicates the end
of macrodefinition.
(See Note 4.)
25 | None END None [;comment] | Indicates the end

-of the source
module

Notes:

1.

Forward reference of a symbol is not allowed in the
expression described in the Operand field.

Neither forward reference of a symbol nor reference
of an external reference name is allowed in the
expression described in the Operand field.

A character string may be described in place of

an initial value.

This directive can be used only in the macro-

'definition.

APPENDIX C. MAXIMUM PERFORMANCE CHARACTERISTICS

{1) Maximum performance characteristics of Assembler

Item

Restriction

Symbol length | w/o -8 option

8 characters

with -5 option

31 characters

No. of characters per line

130 characters

No. of segments

100 segments

(2) Maximum performance characteristics of Linker

Item

Limit

Number of input meodules files

64 files

{3) Restrictions on number of symbols

No. of local symbols No. of PUBLIC symbols

Assembler

Approx. 2,900 symbols | (see Note 1)

Linker

2,900 symbols

X No. of modules

Approx. 3,000 symbols

{see Note 2)

NOTE: 1. There is no restriction on the number of symbols

2.

by symbol type.

If the number of PUBLIC symbols exceeds 31,000,

the execution speed slows down because of the

additional time required to access a temporary

file.

	COVER
	INTRODUCTION
	CHAPTER 1. GENERAL
	1.1 Assembler Overview
	1.1.1 What is an assembler?
	1.1.2 What is a relocatable assembler?

	1.2 Functional Outline of Assembler Package
	1.2.1 Creation of source module file with editor
	1.2.2 Structured assembler preprocessor
	1.2.3 Assembler
	1.2.4 Linker
	1.2.5 Object converter
	1.2.6 Librarian
	1.2.7 List converter

	1.3 Memory Maps
	1.4 Reminders Before Program Development
	1.4.1 Number of files than can be input to Linker
	1.4.2 Restriction on number of symbols
	1.4.3 Maximum performance characteristics of assembler package

	1.5 Features of Assembler Package

	CHAPTER 2. HOW TO DESCRIBE SOURCE PROGRAMS
	2.1 Basic Configuration of Source Program
	2.1.1 Module header
	2.1.2 Module body
	2.1.3 Module tail
	2.1.4 Overall configuration of source program
	2.1.5 Description example of source program

	2.2 Description Format of Source Program
	2.2.1 Configuration of statement
	2.2.2 Character set
	2.2.3 Fields of statement

	2.3 Expressions and Operators
	2.3.1 Functions of Operators
	2.3.2 Restrictions of Operations

	2.4 Bit Position Specifier
	2.5 Characteristics of Operands
	2.5.1 Size and address range of operand value
	2.5.2 Symbol attributes and relocation attributes of operands

	CHAPTER 3. DIRECTIVES
	3.1 Overview of Directives
	3.2 Segment Definition Directives
	(1) CSEG (code segment)
	(2) DSEG (data segment)
	(3) BSEG (bit segment)
	(4) ORG (origin)
	(5) ENDS (end of segment)

	3.3 Symbol Definition Directives
	(1) EQU (equate)
	(2) EQUD (equate double word)
	(3) SET (set)

	3.4 Memory Initialization and Area Reservation Directives
	(1) DB (define byte)
	(2) DW (define word)
	(3) DS (define storage)
	(4) DBIT (define bit)

	3.5 Linkage Directives
	(1) EXTRN (external)
	(2) EXTBIT (external bit)
	(3) PUBLIC (public)

	3.6 Object Module Name Declaration Directive
	(1) NAME (name)

	3.7 Automatic Branch Instruction Selection Directive
	(1) BR (branch)

	3.8 General-purpose Register Selection Directive (applicable to 78K/III only)
	(1) RSS (register set select)

	3.9 Macro Directives
	(1) MACRO (macro)
	(2) LOCAL (local)
	(3) REPT (repeat)
	(4) IRP (indefinite repeat)
	(5) EXITM (exit from macro)
	(6) ENDM (end macro)

	3.10 Assembly Termination Directive
	(1) NED (end)

	CHAPTER 4. CONTROL INSTRUCTIONS
	4.1 Overview of Control Instructions
	4.2 Processor Type Specification Control Instruction
	(1) PROCESSOR (processor)

	4.3 Debug Information Output Control Instructions
	(1) DEBUG/NODEBUG (debug/nodebug)

	4.4 Cross-reference List Output Control Instructions
	(1) XREF/NOXREF (xref/noxref)

	4.5 INCLUDE control instruction
	(1) INCLUDE (include)

	4.6 Assembly List Control Instructions
	(1) EJECT (eject)
	(2) LIST/NOLIST (list/no list)
	(3) GEN/NOGEN (generate/no generate)
	(4) COND/NOCOND (condition/no condition)
	(5) TITLE (title)
	(6) SUBTITLE (subtitle)

	4.7 Conditional Assembly Control Instructions
	(1) IF/_IF, ELSEIF/_ELSEIF, ELSE, ENDIF
	(2) SET, RESET (set, reset)

	CHAPTER 5. MACROS
	5.1 Overview of Macro
	5.2 Utilization of Macros
	5.2.1 Macrodefinition
	5.2.2 Macro reference
	5.2.3 Macroexpansion

	5.3 Symbols within Macro
	5.4 Macro Operators

	CHAPTER 6. PROJECT UTILIZATION
	APPENDIX A. LIST OF RESERVED WORDS
	A.1 List of Reserved Words for 78K/0
	A.2 List of Reserved Words for 78K/I
	A.3 List of Reserved Words for 78K/III
	A.4 List of Reserved Words for 78K/VI

	APPENDIX B. LIST OF DIRECTIVES
	APPENDIX C. MAXIMUM PERFORMANCE CHARACTERISTICS

