

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

User’s Manual

Printed in Japan
©

RA75X ASSEMBLER PACKAGE
VERSION 5.XX

Language

Document No. U12385EJ7V0UM00
(Previous No. EEU-1363D)
Date Published July 1997 N

1990

[MEMO]

MS-DOS is either a registered trademark or a trademark of Microsoft Corporation in the United
States and/or other countries.
PC/AT and PC DOS are trademarks of International Business Machines Corporation.

The information in this document is subject to change without notice.
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or of others.

M7A 96.10

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 800-366-9782
Fax: 800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951

NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax: 011-889-1689

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and components,
host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from
country to country.

J96. 8

Major Revisions in This Version

Section Description

Whole manual RA75X Assembler Package Version 4.5X → Version 5.XX

Whole manual Change of each program of the RA75X Assembler Package

• With addition of macro function to assembler program, deletion macro processor

• Addition of library converter program

Whole manual Addition of target devices:

µPD750064, 750066, 750068, 75P0076, 750104, 750106, 750108, 75P0116, 753012A, 753016A,

753017A, 75P3018A, 753036, 75P3036, 753204, 753206, 753208, 75P3216, 753304Note,

754202, 754144, 754244, 754264, 75F4264Note, 754302, 754304, 75P4308

Whole manual Change: Target device under development → development completed:

µPD750004, 750006, 750008, 75P0016, 753012, 753016, 753017, 75P3018, 753104, 753106,

753108, 75P3116

p.25, p.88, p.89 Change: Symbol length:

1 to 8 characters → 1 to 31 characters (1 to 8 characters when -NS option is specified)

p.35 Change of a part of Table 3-8. Operator Priority Order

p.110 Addition to Caution in 4.6 BRANCH INSTRUCTION AUTO SELECT PSEUDO-INSTRUCTIONS (1) BR

p.121 to p.140 Addition of CHAPTER 5 MACRO

p.151 Addition of 6.4 CONDITIONAL ASSEMBLE CONTROL INSTRUCTIONS

p.174 to p.186 Addition of control instruction and Note to APPENDIX B LIST OF RESERVED WORDS

p.190 Addition of (5) Other to APPENDIX D LIST OF MAXIMUM PERFORMANCE CAPABILITIES

The mark shows major revised points.

Note Under development

[MEMO]

PREFACE

This manual has been prepared so that the basic functions of each program of the RA75X assembler package
(subsequently referred to as “assembler package”) and the source program describing procedure can be
understood correctly.

This manual does not describe the operating procedure for each program. Therefore, after reading this manual,
be sure to read the RA75X Assembler Package User’s Manual Operation (U12622E) when operating each
program. (Subsequently referred to as Operation)

This manual applies to assembler package products of version 5.XX.

Librarian

Object Converter

Linker

Assembler

Library Converter

Structured Assembler

[Intended Readership]

This manual is intended for use by those who have an understanding of the microcontroller (75X Series/75XL
Series) functions and instructions to be developed.

List Converter

RA75X Assembler
Package

[Target Devices]

The following microcontroller’s software can be developed using this assembler package.

<75X Series>

Series Title Target Device

— Evachip µPD75000, 75000A

General-purpose series General-purpose µPD75004, 75006, 75008, 75P008

General-purpose + A/D converter µPD75028, 75036, 75P036, 75064,
µPD75066, 75068, 75P068

General-purpose + A/D converter + EEPROM µPD75048, 75P048

Control series For control µPD75104, 75106, 75108, 75112,
µPD75116, 75104A, 75108A,
µPD75P108, 75P108B, 75P116

For low-voltage high-speed control µPD75108F, 75112F, 75116F

F products + low voltage µPD75116H, 75117H, 75P117H

FIP drive series For FIP drive µPD75206, 75208, 75212A,
µPD75216A, 75217, 75218,
µPD75P216A, 75P218, 75268,
µPD75CG208, 75CG216A

FIP drive + A/D converter µPD75236, 75237, 75238, 75P238

LCD drive series For LCD drive µPD75304, 75306, 75308, 75304B,
µPD75306B, 75308B, 75312, 75316,
µPD75312B, 75316B, 75P308,
µPD75P316, 75P316A, 75P316B

LCD drive + A/D converter µPD75328, 75P328

LCD drive + A/D converter + advanced function µPD75336, 75P336

Slave series µPD75402A, 75P402

Control (A/D converter For control (A/D converter on-chip) µPD75512, 75516, 75P516
on-chip) series

For control (A/D converter on-chip) + high speed µPD75517, 75518, 75P518

Telephone series LCD drive + DTMF + D/A converter µPD75352A

LCD drive + DTMF + D/A converter + A/D converter µPD75617A

<75XL Series>

Series Title Target Device

General-purpose series General-purpose µPD750004, 750006,
µPD750008, 75P0016

General-purpose + RC oscillator µPD750104, 750106,
µPD750108, 75P0116

General-purpose + A/D converter µPD750064, 750066,
µPD750068, 75P0076

Series for LCD drive For LCD drive µPD753012, 753012A, 753016,
µPD753016A, 753017, 753017A,
µPD75P3018, 75P3018A

For LCD drive + A/D converter µPD753036, 75P3036

For LCD drive (small) µPD753104, 753106,
µPD753108, 75P3116

µPD753204, 753206,
µPD753208, 75P3216

For LCD drive + RC oscillator (small) µPD753304Note

Key-less entry series µPD754202

µPD754144, 754244,
µPD754264, 75F4264Note

General-purpose small-size series µPD754302, 754304, 75P4308

Note Under development

Caution A device file, which must be purchased separately, is required for the development of a 75XL
Series device.

[Format]

This manual consists of the following chapters.

CHAPTER 1 GENERAL DESCRIPTION CHAPTER 2 75X SERIES/75XL SERIES FEATURES

These two chapters outline the functions of the entire assembler package including the assembler package roles
for microcontroller development.

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

This chapter describes source program description rules including the configuration of the source program,
description grammars, and assembler operators.

CHAPTER 4 PSEUDO-INSTRUCTIONS CHAPTER 5 MACRO CHAPTER 6 CONTROL INSTRUCTIONS

These chapters deal with assembler pseudo-instructions, macros, and control instructions using examples
concerning the procedure for writing and using those instructions.

CHAPTER 7 ASSEMBLER PACKAGE UTILIZATION

This chapter introduces know-how concerning source program description.

APPENDIX

The appendixes list assemble objective devices, reserved words, pseudo-instructions, maximum performance
capabilities, precautions, and index.

This manual makes no detailed description of instructions. For details of the instructions, refer to the user’s
manual of each target device to be developed.

[Reading the Manual]

Those who use the assembler for the first time should start with CHAPTER 1 GENERAL DESCRIPTION. Those
who have general knowledge of the assembler can skip CHAPTER 1 GENERAL DESCRIPTION.

There are several rules relating to the 75X Series/75XL Series source program description procedure. Carefully
read CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD.

Those who want to know the pseudo-instructions, macros, and control instructions of the assembler should read
CHAPTERS 4, 5, and 6. These three chapters describe instruction formats, functions and applications.

[Legend]

The symbols have the following meanings in this manual.

... : The same format is repeated.

[] : Values inside brackets can be omitted.

“ ” : Character(s) or character string(s) marked by “ ”

‘ ’ : Character(s) marked by ‘ ’

() : Character(s) marked by ()

< > : Character(s), the title in particular, marked by < >

“ ” : Character(s) marked by “ ”

__ : Input character string(s) or important portion(s)

: One or more blank space

: One blank space

: Abbreviated program description

CR : Carriage return

LF : Line feed

/ : Demarcation symbol

 - : From to

[Related Documents]

The following are documents related to this manual.

Document Name
Document No.

English Japanese

RA75X Assembler Package Version 5.XX Under planning U12622J
User’s Manual <Operation>

RA75X Structured Assembler Under planning U12598J
Preprocessor User’s Manual

75X Series Structured Assembler EEA-1203 EEA-603
Preprocessor Application Note

...

[MEMO]

– i –

CONTENTS

CHAPTER 1 GENERAL DESCRIPTION ... 1

1.1 OUTLINE OF ASSEMBLER .. 1

1.1.1 Assembler ... 2

1.1.2 Relocatable Assembler ... 7

CHAPTER 2 75X SERIES/75XL SERIES FEATURES .. 11

2.1 MEMORY FEATURES ... 11

2.2 MEMORY AND SEGMENT DEFINITION PSEUDO-INSTRUCTIONS 12

2.3 PROGRAM MEMORY AND CODE SEGMENT 13

2.3.1 Reason why Code Segments are Relocatable .. 13

2.3.2 Roles of Linker Relating to Relocation .. 13

2.3.3 Structural Features of Program Memory ... 13

2.4 DATA MEMORY SPECIAL AREAS ... 16

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD................................ 17

3.1 BASIC CONFIGURATION OF SOURCE PROGRAM 17

3.2 SAMPLE PROGRAM ... 18

3.3 SOURCE PROGRAM DESCRIPTION FORMAT 22

3.3.1 Statement Format .. 22

3.3.2 Character Set ... 23

3.3.3 Character Configuration Fields ... 25

3.4 FORMULAS AND OPERATORS .. 35

3.4.1 Operator Functions ... 36

(1) Arithmetic Operators ... 37

(2) Logical Operators ... 40

(3) Compare Operators .. 42

(4) Shift Operators ... 48

(5) Bit Location Specification Operator .. 51

(6) Byte Separation Operators ... 53

(7) Other Operator .. 54

3.4.2 Operation Restrictions ... 55

3.5 OPERAND CHARACTERISTICS .. 62

3.5.1 Symbol Addressing ... 62

3.5.2 Operand Value Size and Range ... 64

– ii –

CHAPTER 4 PSEUDO-INSTRUCTIONS... 65

4.1 OUTLINE OF PSEUDO-INSTRUCTIONS... 65

4.2 SEGMENT DEFINITION PSEUDO-INSTRUCTIONS............................... 66

(1) CSEG .. 68

(2) DSEG .. 82

(3) ORG .. 84

4.3 PROGRAM LINKAGE PSEUDO-INSTRUCTIONS 86

(1) NAME.. 88

(2) PUBLIC ... 89

(3) EXTRN .. 91

4.4 SYMBOL DEFINITION PSEUDO-INSTRUCTIONS 94

(1) EQU .. 95

(2) SET ... 97

4.5 DATA DEFINITION AND AREA RESERVE

PSEUDO-INSTRUCTIONS .. 98

(1) DB ... 99

(2) DS ... 101

(3) STKLN .. 103

4.6 BRANCH INSTRUCTION AUTO SELECT

PSEUDO-INSTRUCTIONS .. 106

(1) BR ... 107

4.7 VECTOR ENTRY TABLE DEFINITION PSEUDO-INSTRUCTIONS....... 112

(1) VENTn .. 113

4.8 GETI INSTRUCTION TABLE DEFINITION

PSEUDO-INSTRUCTIONS .. 115

(1) TCALL .. 116

(2) TBR ... 117

4.9 ASSEMBLY END PSEUDO-INSTRUCTION .. 118

(1) END... 119

CHAPTER 5 MACRO ... 121

5.1 OUTLINE OF MACROS... 121

5.2 MACRO TYPES ... 122

5.3 MACRO RULES ... 123

5.3.1 Macro Definition Rules ... 123

5.3.2 Macro Reference Rules .. 125

5.4 OUTLINE OF MACRO INSTRUCTIONS .. 126

– iii –

5.5 MACRO DEFINITION INSTRUCTIONS .. 126

(1) MACRO... 127

(2) EXITM ... 128

(3) ENDM.. 129

5.6 EXTERNAL MACRO DECLARE INSTRUCTION 130

(1) LODM.. 131

5.7 MACRO INSTRUCTION .. 133

(1) Macro Instruction ... 134

5.8 REPEAT MACRO INSTRUCTIONS .. 135

(1) REPT... 136

(2) IRP .. 137

(3) IRPC.. 138

5.9 GLOBAL SYMBOL DECLARE INSTRUCTION 139

(1) GLOBAL ... 140

CHAPTER 6 CONTROL INSTRUCTIONS .. 141

6.1 GENERAL DESCRIPTION OF CONTROL INSTRUCTIONS 141

6.2 INCLUDE CONTROL INSTRUCTION .. 141

(1) INCLUDE .. 142

6.3 ASSEMBLY LIST CONTROL INSTRUCTIONS 143

(1) TITLE .. 144

(2) NOLIST ... 146

(3) LIST .. 148

(4) EJECT... 149

6.4 CONDITIONAL ASSEMBLE CONTROL INSTRUCTIONS 151

(1) IFDEF .. 152

(2) IF ... 153

(3) SWITCH .. 154

CHAPTER 7 ASSEMBLER PACKAGE UTILIZATION .. 157

7.1 ASSEMBLER PACKAGE UTILIZATION .. 157

7.2 RELOCATION ATTRIBUTES AND INSTRUCTIONS 160

7.2.1 INBLOCK and INBLOCKA Attributes and Branch Instructions 160

7.2.2 XBLOCK and XBLOCKA Attributes and Branch Instructions 162

7.2.3 Relocation Attributes and Subroutine Call Instructions 162

7.2.4 IENT Attribute and GETI Instruction ... 163

7.2.5 PAGE Attributes and MOVT, BR PCDE, and BR PCXA Instructions 164

– iv –

APPENDIX A LIST OF ASSEMBLED RELEVANT UNIT TYPES 165

APPENDIX B LIST OF RESERVED WORDS... 173

APPENDIX C LIST OF PSEUDO-INSTRUCTIONS.. 187

APPENDIX D LIST OF MAXIMUM PERFORMANCE CAPABILITIES 189

APPENDIX E LIST OF PRECAUTIONS ... 191

APPENDIX F INDEX... 193

– v –

CONTENTS OF FIGURES

Figure No. Title Page

1-1. RA75X Assembler Package ... 1

1-2. Assembler Flow .. 2

1-3. Development Process of Microcomputer Applied Products 3

1-4. Software Development Process ... 4

1-5. Assembling Process for Assembler Package .. 5

1-6. Renewing Assembly ... 8

1-7. Program Creation Using Existing Modules .. 9

2-1. Memory Addressing ... 11

2-2. Source Program Configuration... 12

2-3. Program Memory Map .. 14

2-4. Data Memory Map ... 16

3-1. Source Program Configuration Example .. 17

3-2. Sample Program Configuration .. 18

3-3. Statement Component Fields ... 22

4-1. Segment Definition and Memory Location ... 67

4-2. Relocation Attributes and Program Memory .. 71

4-3. Symbol Relations between Two Modules ... 87

4-4. VENTn Pseudo-Instruction and Program Memory ... 114

5-1. Concept of Macro ... 122

5-2. Concept of Repeated Macro .. 122

7-1. INBLOCK and INBLOCKA Attributes and Branch Instructions 161

– vi –

[MEMO]

– vii –

CONTENTS OF TABLES

Table No. Title Page

3-1. Symbol Types .. 25

3-2. Symbol Attribute Types ... 27

3-3. Symbol Attribute Names .. 28

3-4. Numeric Constant Representation ... 31

3-5. Register Types .. 32

3-6. Special Characters Describable in Operand Column .. 32

3-7. Operator Types ... 35

3-8. Operator Priority Order .. 35

3-9. Relocation Attribute Types ... 55

3-10. Combination of Terms and Operators Classified by Relocation Attributes

(Except External Reference Terms) ... 56

3-11. Combinations of Terms and Operators Classified by Relocation Attributes

(External Reference Terms) .. 57

3-12. Symbol Attribute Types for Operation .. 59

3-13. Combinations of Terms and Operators Classified by Symbol Attributes 60

3-14. Symbol Attributes Enabled for Reference (1) ... 62

3-15. Symbol Attributes Enabled for Reference (2) ... 63

3-16. Symbol Attributes Enabled for Reference (3) ... 64

4-1. List of Pseudo-Instruction Types ... 65

4-2. Segment Definition Procedure and Memory Address to be Located 66

4-3. Relocation Attribute Functions .. 69

4-4. Symbol Attribute Specification Procedure ... 92

4-5. Name and Label Reference Methods ... 108

4-6. Optimization Procedure ... 108

5-1. List of Macro Instructions ... 126

6-1. Control Instruction Table... 141

7-1. Subroutine Call Instructions and Relocation Attributes ... 162

– viii –

[MEMO]

CHAPTER 1 GENERAL DESCRIPTION

In this chapter, the assembler package role in 75X Series/75XL Series development will be described.

1.1 OUTLINE OF ASSEMBLER

The RA75X assembler package (subsequently referred to as assembler package) is a general term for a seriesof
programs used to convert the source program described by 75X Series/75XL Series assembler language to
machine codes.

This assembler package consists of seven programs; a structured assembler, an assembler, a linker, an object
converter, a librarian, a list converter, and a library converter.

Figure 1-1. RA75X Assembler Package

Structured Assembler Program

Assembler Program

Linker Program

RA75X Assembler Package Object Converter Program

Librarian Program

List Converter Program

Library Converter Program

1

2

CHAPTER 1 GENERAL DESCRIPTION

1.1.1 Assembler

(1) Assembly language and machine code
The assembly language is the most basic programming language for microcomputers.
Programs and data are necessary for microcomputer operations. The human operator will carry out

programming to store them into the microcomputer memory unit. The programs and data that the microcomputer
can handle are a collection of binary numbers called machine codes (the words which the computer can
understand).

We may have difficulty or make errors in creatingprograms using the machine codes, that is binary numbers.
Thus, the meaning of the machine codes is represented by easily understood English symbolic codes and the

symbolic codes in turn are used for program creation. The program language system based on those codes is called
an assembly language.

An assembler is a program to translate the program created using the assembler language into a collection of
binary numbers which the microcomputer can understand.

Figure 1-2. Assembler Flow

Translation Program

(Object Module File)(Assembler)(Source Module File)

Program Described Using the

Assembly Language

Program Consisting of a

Collection of Binary

Numbers

Translation

3

CHAPTER 1 GENERAL DESCRIPTION

(2) Development of microcomputer applied products and the roles of assembler package
Figure 1-3. Development Process of Microcomputer Applied Products shows where programming with the

assembly language is positioned in product development.

Figure 1-3. Development Process of Microcomputer Applied Products

Hardware

Development

Logic design

Manufacturing

Inspection

NO
OK

YES

Merchandising

System evaluation

YES

NO
OK

Debugging

YES

OK
NO

Position of

Assembler

Package
Assemble

Coding

Software design

Software

Development

System design

Product planning

4

CHAPTER 1 GENERAL DESCRIPTION

Figure 1-4. Software Development Process shows the software development process in more detail.

Figure 1-4. Software Development Process

Edit

Assemble

YES

NO

NO

OK

YES

Debugging

System evaluation

...... Operations are checked using the hardware debugger.

(IE-75000-RNote 1, IE-7500I-R, EVAKIT-75XNote 2).

...... Object module files are created.

...... Source module files are created using the editor.

...... Using the 75X/75XL series assembly language.

Software
development

Program specifica-
tion creation

Flowchart creation

Coding

Notes 1. Maintenance product (No longer available for purchase)
2. Discontinuation product (No longer available for purchase)

OK

5

CHAPTER 1 GENERAL DESCRIPTION

The assembler package is now inserted in the assembling process.

Figure 1-5. Assembling Process for Assembler Package

Coding

Edit

Assemble

OK

OK
NO

YES

NO

YES

NO

YES

Debugging

OK

Link

...... Hexadecimal Object

Module File Output

...... Object Module File Output

...... Load Module File Ouptut

Flowchart creation

Object converter

6

CHAPTER 1 GENERAL DESCRIPTION

This package has the following features.

1. Branch instruction optimization function
A BR pseudo-instruction is provided. This directive automatically selects an appropriate branch
instruction code format.
Conventionally, for branch operations, it is required to select either 2-byte or 1-byte branch instructions
according to the branch instructions’ destination range because it is critical for the efficiently use of
memory resources.
However, it is a lot of work for a programmer to take the destination range into account every time a branch
instruction is described.
To avoid this, use the BR directive, which makes the assembler generate appropriate branch instruction
codes according to the destination range. This feature is called branch instruction optimization function.

2. VENTn pseudo-instruction
This pseudo-instruction facilitates writing to the vector table. The 75X Series/75XL Series devices have
an interrupt vector table at addresses 0000H to 000FH (The size depends on the part number). This
vector table can hold the starting address of interrupt services, the setting of the memory bank enable flag
(MBE), and the value of register bank enable flag (RBE) during an interrupt servicing.

3. TCALL, TBR pseudo-instructions
These pseudo-instructions facilitate setting data to the GETI instruction reference table.
When 2-byte or 3-byte branch instructions or call instructions need to be executed as 1-byte instructions,
special data must be set in the reference table (0020H to 007FH). This setting work can be facilitated by
the use of the GETI instruction.

4. Librarian (LB75X)
The library function integrates plural object modules into a library file.
Integrating general-purpose modules into a single file improves the module use efficiency. It also
contributes to improved file management and operation efficiency.

5. List converter (LCNV75X)
The list converter improves the debugging work efficiency when a program assembled by a relocatable
assembler is debugged with the IE-75000-RNote 1, IE-75001-R, or EVAKIT-75XNote 2.
Usually, the assemble list values eventually do not match the object codes which reference the addresses
and relocatable symbols in the relocatable segments. For this reason, if absolute addresses need to be
specified for debugging, it is required to refer to the link map list because the assemble list alone cannot
show the absolute addresses.
The list converter is the program that eliminates the reference requirement. This program replaces the
relocatable addresses and object codes in the assemble list, which is output from the assembler, with the
eventually determined absolute addresses, to generate an absolute assemble list.

Notes 1. Maintenance product (No longer available for purchase)
2. Discontinuation product (No longer available for purchase)

6. Macro
A macro is a labeled series of instructions. Only the label must be written in the source program in place
of the corresponding instructions.
If there are instruction groups that are frequently used, use of macros is effective because it lightens the
source program. Also, if a function is composed of specific instruction series, labeling these series
instructions as a macro makes the program simple and easy to code or revise.

7

CHAPTER 1 GENERAL DESCRIPTION

1.1.2 Relocatable Assembler

The machine code converted by the assembler is written into the microcomputer memory for use. Before the
writing operation, the location where the converted machine code should be written in the memory must be
determined.

Thus, the machine code to be converted with the assembler is provided with the information concerning “At
which address in the memory each machine code should be positioned”.

Depending on the method of positioning the machine codes at the memory addresses, the assemblers are
roughly classified into “absolute assemblers” and “relocatable assemblers”.

• Absolute assembler

The machine codes converted by one assembly are positioned at the absolute addresses.

• Relocatable assembler

The addresses of the machine codes converted by one assembly are temporary addresses. Absolute
addresses are determined using a program called ‘linker’.

When creating one program using an absolute assembler, the program must have been created by programming
at one time in principle. However, if a large program is created at one time, it may become complex and program
analysis for maintenance may become difficult. Thus, one program is divided into several subprograms (modules)
for each function unit. This program development process is called ‘modular programming’.

The relocatable assembler is suitable for modular programming.
Modular programming using the relocatable assembler makes it possible to obtain the following advantages.

8

CHAPTER 1 GENERAL DESCRIPTION

When the Program Consists

of One Module

When the Program Consists of

Greater than One Module

Module

Module

It is necessary to

reassemble the

whole program.

It is necessary

to reassemble

the whole

program.

Module

Module

Module

Bug

Found

X X X X

X X X X
Bug

Found

(1) Improvement of development efficiency
It is difficult to execute programming for a large program at one time. In such cases, dividing the program into

function modules enables several people to develop the program concurrently with improved efficiency.
If a bug is found in the program, it is not necessary to assemble the whole program for partial correction. It is

possible to reassemble only the modules requiring correction.
By so doing, the debugging time can be decreased.

Figure 1-6. Renewing Assembly

9

CHAPTER 1 GENERAL DESCRIPTION

New Program

New Module

Module D

Module A

New Module

Module DModule CModule BModule A

(2) Utilization of resources
Previously generated highly-reliable, highly-universal modules can be utilized for the development of another

program. By accumulating those highly-universal modules, the extent of new program development can be
decreased.

Figure 1-7. Program Creation Using Existing Modules

[MEMO]

10

CHAPTER 2 75X SERIES/75XL SERIES FEATURES

In this chapter, features of the memory space of the 75X Series/75XL Series which is the target of the assembler
package will be described.

2.1 MEMORY FEATURES

The 75X Series has the following maximum memory spaces:

Program memory (ROM) : 64K words × 8 bits (64 Kbytes)
Data memory (RAM) : 4K words × 4 bits (4K nibbles)

The program memory and data memory spaces are separate. The program memory has a 1-word, 8-bit
configuration and the data memory has a 1-word, 4-bit configuration.

As shown in Figure 2-1, the program memory is addressed by a 16-bit program counter and the data memory
is addressed by a total of 12 bits consisting of 4 bits of the memory bank (MB) and 8 bits of the address directly or
indirectly specified by an instruction.

Figure 2-1. Memory Addressing

4K Words

(Max.)

64K Words

(Max.)

0000H

FF7FH

Program Memory

8 Bit

(1 Byte)

Program Counter

16 Bit

4 Bit 8 Bit

12 Bit

Memory

Bank
Specified Address

4 Bit

(1 Nibble)

Data

Memory

000H

FFFH

11

12

CHAPTER 2 75X SERIES/75XL SERIES FEATURES

2.2 MEMORY AND SEGMENT DEFINITION PSEUDO-INSTRUCTIONS

The relocatable assembler is provided with the segment definition pseudo-instructions to define the memory area
to cope with the memory configuration described in section 2.1 MEMORY FEATURES.

CSEG pseudo-instruction and DSEG pseudo-instruction are segment definition pseudo-instructions.
The CSEG pseudo-instruction is used to define the use of program memory area and the DSEG pseudo-

instruction is used to define the use of data memory area.
A group of source program statements defined for the use of program memory area by the CSEG pseudo-

instruction is called ‘code segment’ and a group of source program statements defined for the use of data memory
area by the DSEG pseudo-instruction is called ‘data segment’.

Figure 2-2 shows the Source Program Configuration.
The relocatable assembler regards an area up to where the first segment definition pseudo-instruction appears

in the source program (even if the segment definition pseudo-instruction has not been described anywhere) as the
code segment starting at address 10H (because program memory addresses 0 to 0FH might be used as the
interrupt vector area).

As described above, the relocatable assembler source program consists of segments.

Figure 2-2. Source Program Configuration

FF7FH

Program Memory

0000H

Data Memory

0000H

0FFFH

Data Segment

Regarded as an absolute code

segment until the first segment

define pseudo-instruction arrives. SEG1 CSEG

SEG2 CSEG

SEGD1 DSEG

SEG3 CSEG

SEGD2 DSEG

SEG4 CSEG

...

...

Source Program

Code Segment

13

CHAPTER 2 75X SERIES/75XL SERIES FEATURES

2.3 PROGRAM MEMORY AND CODE SEGMENT

2.3.1 Reason why Code Segments are Relocatable

The 75X Series/75XL Series has a maximum program memory space of 64 Kbytes.
Greater than one programmer may be engaged in the development of such a large program. In view of

development efficiency, maintenance and reliability, it may be desirable for greater than one person to be engaged
in programming by dividing the program. This is called ‘modular programming’.

However, when executing the modular programming, the location in the program memory where each program
is positioned cannot be clearly known until the programs of all persons involved are completed. Further, it is difficult
to determine at the start of one program generation where the program should be positioned in the program memory
space.

For these reasons, the code segments defined for program memory area use by the CSEG pseudo-instruction
must be assembled so that they can be located anywhere in the program memory. This is why the code segments
are relocatable.

2.3.2 Roles of Linker Relating to Relocation

The relocatable assembler assembles the relocatable code segments in relative address format setting the start
address of one relocatable code segment at address 0H. By applying one of the assembly results or two or more
object modules (object output in one-assembly units) to the linker, the relocatable code segments in each object
module are relocated and the absolute addresses are determined.

As such the linker is a program to relocate the relative address object modules and replace them with the absolute
address object modules.

However, the 75X series/75XL series program memoryhas special areas used for special purposes and
structural boundaries defined by instruction restriction.

Thus, it is necessary for the programmer to understand the structural features of the program memory and to
instruct the linker about the relocation positions of the relocatable code segments.

Remark The structural boundaries consist of a boundary called ‘block’ and a boundary called ‘page’.

2.3.3 Structural Features of Program Memory

Figure 2-3 shows the special areas used for the specific purposes of the 75X series/75XL series program
memory.

Addresses 0000H to 000FH : Vector table area for setting each vectored interrupt start address
Addresses 0020H to 007FH : GETI instruction reference table area
Addresses 0000H to 07FFH : Entry area for subroutines referred to by CALLF instruction
Addresses 0000H to 3FFFH : Area which can be branched by BR! instruction and entry area for subroutines

referred to by CALL! instruction

Caution The vector table area varies depending on the product type.

14

CHAPTER 2 75X SERIES/75XL SERIES FEATURES

7 6

0000H

0002H

0004H

0006H

0008H

000AH

000CH

000EH

Internal Reset Start Address (Upper 6 Bits)

Internal Reset Start Address (Lower 8 Bits)

INTBT/INT4 Start Address (Upper 6 Bits)MBE RBE

INTBT/INT4 Start Address (Lower 8 Bits)

INT0 Start Address (Upper 6 Bits)

INTS0 Start Address (Upper 6 bits)

INT1 Start Address (Lower 8 BIts)

INT1 Start Address (Upper 6 Bits)

INT0 Start Address (Lower 8 Bits)

INTS0 Start Address (Upper 6 Bits)

INTT0 Start Address (Lower 8 Bits)

INTTPG Start Address (Lower 8 Bits)

INTKS Start Address (Upper 6 Bits)

INTKS Start Address (Lower 8 Bits)

GETI Instruction Reference Table

MBE RBE

MBE RBE

MBE RBE

MBE RBE

MBE RBE

INTTPG Start Address (Upper 6 Bits)

INTT0 Start Address (Lower 8 Bits)

MBE RBE

MBE RBE

0020H

007FH

0080H

07FFH

0800H

0FFFH

1000H

1FFFH

2000H

3FFFH

4000H

FF7FH

Caution The vector table area differs from the last address depending on the product type.

Block

FF7FH

FEFFH

FF00H

FE00HBlock

Block

CALL

! addr

Instruction

Entry Address

03FFH

Block

CALLF

! faddr

Instruction

Entry Address

02FFH

0300H

01FFH

0200H

0 Block Page

00FFH

0100H

Page

Page

Page

Page

Page

Page

Figure 2-3. Program Memory Map

Address

Address

 0000H

15

CHAPTER 2 75X SERIES/75XL SERIES FEATURES

(1) Block
When the 64-Kbyte program memory is divided every 4K (4096) bytes from address 0H as shown in Figure 2-3,

one 4-Kbyte unit is called ‘block’ and the boundary of two neighboring blocks is called ‘block boundary’.
The ‘block’ is the concept which derived from the character of the 75X Series/75XL Series branch instruction

(BRCB instruction).
The BRCB instruction is a 2-byte branch instruction and is branched with the least significant 12 bits of the

address described in the instruction operand replaced with those of the program counter. The most significant 2
bits of the program counter are the same as those of the current location address +2. Thus, the branch range varies
depending on where the BRCB instruction is located in the program memory. This is the reason why the concept
of ‘block’ has been introduced to the program memory of the 75X Series/75XL Series.

(2) Page
When the 64-Kbyte program memory is divided every 256 bytes from address 0H as shown in Figure 2-3, one

unit (256 bytes) is called ‘page’ and the boundary of two neighboring pages is called ‘page boundary’.
The ‘page’ is the concept which derived from the characters of the 75X Series/75XL Series table reference
instruction MOVT and branch instructions BR PCDE and BR PCXA.
The MOVT instruction is used to refer to the program memory table data. The DE or XA register contents are

set to the least significant 8 bits of the program counter and the program memory contents addressed by the input
DE or XA register contents are transferred to the XA register.

For example, when the program counter value is 100H and DE = 10H, data at program memory address 110H
is transferred to the XA register.

The BR PCDE and BR PCXA branch instructions set the DE and XA register contents to the least significant 8
bits of the program counter. That means that the branch destination varies depending on the data transferred to
the DE and XA register.

For example, when the program counter value is 5FFH and DE = 01H, the program counter value is changed
to 501H.

In other words, the MOVT instruction reference destination and the BR PCDE and BR PCXA instruction branch
destinations are both limited to inside the same page where those instructions are located. This is the reason why
the concept of ‘page’ has been introduced to the program memory.

16

CHAPTER 2 75X SERIES/75XL SERIES FEATURES

2.4 DATA MEMORY SPECIAL AREAS

The 75X Series/75XL Series data memory is provided with the peripheral hardware including input/output ports
and timers at addresses 0F80H to 0FFFH. Thus, the absolute address specification of data segment is not possible
for this area.

The assembler has the symbol (name) indicating the address of the hardware loaded at addresses 0F80H to
0FFFH as the reserved word. The reserved word is called ‘specific address name code’.

When operating the peripheral hardware, the specific address name code assigned for the address to be
manipulated is described for the instruction operand.

Among the specific address name codes, the symbol attribute of the names indicating the bit addresses between
0FB0H.0 and 0FBFH.3 or 0FF0H.0 and 0FFFH.3 is ‘PBIT’ and the symbol attribute of all other names is ‘DATA’.

For details of symbol attributes, refer to 3.5 OPERAND CHARACTERISTICS.

Figure 2-4. Data Memory Map

Data Memory

General
Register
Area

Stack Area

00FFH

0100H

Data Area

Static RAM

(512 × 4)

Display Data

Memory Area

0F80H

0FFFH

Peripheral

Hardware

Area

128 × 4

(64 × 4)

256 × 4

256 × 4

(32 × 4)

Bank 0

Bank 15

Bank 1

Caution The area where hardware is incorporated depends on the product type.
Depending on the product type, the stack area of memory banks other than memory bank 0 is
also available.
For how to set a value to the stack pointer, refer to 4.5 (3) STKLN.

01BFH

01C0H

01FFH

0000H

001FH

0020H

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

In this chapter, the contents necessary for describing the source program (description format, formulas and
operators, operand characteristics, etc.) will be described.

3.1 BASIC CONFIGURATION OF SOURCE PROGRAM

As described in CHAPTER 2 75X SERIES/75XL SERIES FEATURES, the 75X Series/75XL Series source
program is configured in units called ‘segment’.

The segment is generally configured of functionally similar types of routine or data.
There are code segments and data segments, and they are located in the program memory (ROM) area and the

data memory (RAM) area, respectively.
The segment memory space varies depending on the assembled product type.
For details, refer to APPENDIX A LIST OF ASSEMBLED RELEVANT UNIT TYPES.
The segment must be less than each memory space in size.
The code segment can be positioned at any address using the linker. The absolute code segment and the data

segment cannot be changed from the address specified by the source program.
To provide instructions to the assembler in the source program, the appropriate object module is generated by

placing assembler options or pseudo-instructions.
The source program can be configured by combining any segments.
Figure 3-1 shows a source program configuration example.

Figure 3-1. Source Program Configuration Example

NAME TEST1

C1 CSEG

D1 DSEG

END

ORG 20H

ORG 40H

D1 DSEG

END

C1 CSEG AT 10H

C2 CSEG AT 200H

D1 DSEG

END

...

...

...

...
...

...

...
...

...

17

18

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

3.2 SAMPLE PROGRAM

This section shows a source program (source module) description example (this example is attached to the
product as the sample program file).

Source module description procedure should be learned from this example.
This program is designed for the µPD75106.
The sample program contents are briefly explained below.
This sample program is an analog-to-digital conversion program to sample the analog signal (PTH00 pin input

signal) eight times using the hardware (programmable threshold port and serial interface) incorporated into the
µPD75106 and to generate the average value from the serial output pin.

In this sample program, one program is divided into two modules.
One module is called AD_MAIN and stored in the source module file “75XTEST1.ASM”.
The other module is called AD_SUB and stored in the source module file “75XTEST2.ASM”.
Figure 3-2 shows the sample program configuration.

Figure 3-2. Sample Program Configuration

AD_MAIN AD_SUB

END

CSEG

HEIKIN :

CSEG

CSEG

DSEG

NAME AD_MAIN

EI

CALL !HEIKIN

CALL !SIOSUB

NAME AD_SUB

ADCONV :

END

CSEG

CSEG

SIOSUB :

~
~

~
~

~
~

~
~

Caution

This sample program has been provided to learn the assembler package functions and operations.
Thus, it cannot be used as an application program as it is.

~

19

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

<Main Routine>

$ TITLE = ‘A-D CONVERT’ ; (1)

; ∗∗
; ∗∗∗ A-D CONVERT PROGRAM ∗∗∗
; ∗∗

NAME AD_MAIN ; (2)

EXTRN CODE (SIOSUB, ADCONV) ; (3)

PUBLIC TDATA, SEL15 ; (4)

STKLN 10 ; (5)

VENT0 MBE = 1, RBE = 1, MAIN ; (6)

VENT4 MBE = 1, RBE = 0, ADCONV

SEG0 DSEG 1 AT 10H ; (7)

TDATA : DS 2

; ∗∗∗ GETI TABLE ∗∗∗
SEG1 CSEG IENT ; (8)

SEL15 : SEL MB15

; ∗∗∗ MAIN ROUTINE ∗∗∗
SEG2 CSEG INBLOCK ; (9)

MAIN : SEL RB1

GETI SEL15 ; STACK POINTER SET

MOV XA, #STACK ;

MOV SP, XA ;

MOV A, #0011B

MOV PCC, A ; PCC ← 0011B

; ∗∗ DATA RAM 0H-13FH ZERO CLEAR ∗∗

SEL MB1

MOV HL, #3FH

MOV XA, #00

LOOP1 : MOV @HL, A ; 100H-13FH

DECS HL

BR LOOP1

SEL MB0

LOOP2 : MOV @HL, A ; 0H-FFH

DECS HL

BR LOOP2

(1) Assembler option

(2) Module name declaration

(3) Declaration as an external reference
symbol of the symbol defined by
another module

(4) Declaration as an external definition
symbol of the symbol to be referred
to from another module

(5) Stack size specification

(6) Specification of the memory bank
and register bank processing start
addresses upon interruption

(7) Data segment start declaration

(8) Code segment start declaration

(9) Code segment start declaration

(10) Code segment start declaration

(11) Module end declaration

20

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

; ∗∗ TIMER SET (SAMPLING TIME = 30MSEC, FXX = 4. 19MHz) ∗∗

GETI SEL15 ; SEL MB15

MOV XA, #79H

MOV TMOD0, XA

MOV XA, #01001100B

MOV TM0, XA

EI

EI IET0

SEL MB1

LOOP3 : MOV XA, #0H

MOV B, #00H

LOOP4 : SKE B, #08H

BR LOOP4

CALL !HEIKIN

MOV TDATA, XA

CALL !SIOSUB

BR LOOP3

; ∗∗∗ HEIKIN (SAMPLE NUMBERS = 8) ∗∗∗
SEG3 CSEG SENT ; (10)

HEIKIN : MOV C, #2H

LOOP5 : XCH A, X

CLR1 CY

RORC A

XCH A, X

RORC A

DECS C

BR LOOP5

RET

END ; (11)

21

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

<Subroutine>

$ TITLE = ‘A-D CONVERT’ ; (12)

; ∗∗
; ∗∗∗ A-D CONVERT PROGRAM ∗∗∗
; ∗∗

NAME AD_SUB ; (13)

EXTRN DATA (TDATA), CODE (SEL15) ; (14)

PUBLIC SIOSUB, ADCONV ; (15)

STKLN 2 ; (16)

; ∗∗∗ SIO SUB-ROUTINE ∗∗∗
SEG4 CSEG SENT ; (17)

SIOSUB : PUSH BS

SEL RB2

SEL MB1

MOV XA, TDATA

GETI SEL15 ; SEL MB15

MOV SIO, XA

MOV XA, #11101110B

MOV SIOM, XA ; CLOCK = 262KHZ, MSB

POP BS

RET

; ∗∗∗ ANALOG INPUT (RBE = 0) ∗∗∗
SEG5 CSEG SENT ; (18)

ADCONV : PUSH BS

GETI SEL15 ; SEL MB15

MOV HL, #0D3H

MOV XA, #0C0H

MOV BSB0, A ; BSB0 ← 0H

LOOP : SET1 BSB0, @L

MOV A, BSB0

MOV PTHM, XA ; COMP. START

MOV A, #0AH ; 18 MACHINE

WAIT : INCS A ; CIRCLE WAIT

BR WAIT

MOV1 CY, @H+PTH0, 0

MOV1 BSB0. @L, CY

DECS L

BR LOOP

MOV X, #0H

MOV A, BSB0

ADDS XA', XA ; ADD DATA

SET1 RBE

POP BS

INCS B ; SAMPLE COUNT INC.

RETI

END ; (19)

(12) Assembler option

(13) Module name declaration

(14) Declaration as an external reference
symbol of the symbol defined by
another module

(15) Declaration as an external definition
symbol of the symbol referred to from
another module

(16) Stack size specification

(17) Code segment start declaration

(18) Code segment start declaration

(19) Module end declaration

22

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

3.3 SOURCE PROGRAM DESCRIPTION FORMAT

3.3.1 Statement Format

The source program consists of statements.
One statement consists of 4 fields indicated in Figure 3-3. Statement Component Fields.

Figure 3-3. Statement Component Fields

Symbol ColumnSegment Operand Column
Comment
Column

<1> <2> <3>

<1> The symbol column and the mnemonic column are divided with a colon (:) or more than one blank space
(or TAB).
The separator to be used, a colon or space character, depends on the instruction described in the
mnemonic column.

<2> The mnemonic column and the operand column are divided with more than one blank space (or TAB).
The operand column may not be necessary depending on the instruction to be described in the
mnemonic column.

<3> When entering in the comment column, describe a semi-colon (;) before the comment column.

One statement is described on one line.
Using description procedure based on a free method, description can be started with any column in the order

of the symbol, mnemonic, operand and comment columns.

Description can be done for the following lines:

• Blank line (line having no statement description)

• Line with symbol column only

• Line with comment column only

Mnemonic
Column

23

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

3.3.2 Character Set

For statement description, standard-size alphanumeric characters and standard-size special characters are
used (editors etc. available on the market may be used).

(1) Alphabetic letters (Figures in parentheses represents the JIS code.)

A B C D E F G H I J K L M N O P Q
(41H) (42H) (43H) (44H) (45H) (46H) (47H) (48H) (49H) (4AH) (4BH) (4CH) (4DH) (4EH) (4FH) (50H) (51H)

R S T U V W X Y Z
(52H) (53H) (54H) (55H) (56H) (57H) (58H) (59H) (5AH)

a b c d e f g h i j k l m n o p q
(61H) (62H) (63H) (64H) (65H) (66H) (67H) (68H) (69H) (6AH) (6BH) (6CH) (6DH) (6EH) (6FH) (70H) (71H)

r s t u v w x y z
(72H) (73H) (74H) (75H) (76H) (77H) (78H) (79H) (7AH)

Caution

When a reserved word is described using small alphabetic letters, they are interpreted as capital
letters.

(2) Numerals (Figures in parentheses represents the JIS code.)

0 1 2 3 4 5 6 7 8 9
(30H) (31H) (32H) (33H) (34H) (35H) (36H) (37H) (38H) (39H)

24

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

(3) Special characters

Characters JIS Code Name Main Applications

? 3FH Question mark Character corresponding to alphabetic letter
@ 40H Unit price symbol Indirect addressing start symbol
_ 6FH Underline Character corresponding to alphabetic letter

20H Blank Division symbol Division symbol foreach column
HT 09H Tab code Character corresponding to blank space
, 2CH Comma Operand division symbol
: 3AH Colon Label division symbol
; 3BH Semi-colon Comment column start symbol

CR 0DH Return code Last symbol of one line
LF 0AH Line feed code (ignored by the assembler)

+ 2BH Plus Assembler operator Add operator or plus sign
– 2DH Minus Subtraction operator or minus sign
* 2AH Asterisk Multiplication operator
/ 2FH Slash Division operator
. 2EH Period Bit operator

() 28H Left and right parentheses Operation order change

’ 27H Quotation mark Character constant start and end symbols
< 3CH Inequality
> 3EH sign Compare operators
= 3DH Equality sign

$ 24H Dollar symbol • Location counter value
• Assembler option start symbol
• Relative addressing specification symbol

23H Sharp • Immediate addressing specification symbol
! 21H Exclamation • Absolute addressing specification symbol

• Illegal character representation in the assembly list

NULL 00H Null code
FF 0CH Form feed Ignored by the assembler.

DEL FFH Delete code

& 26H Ampersand Linkage between macro parameter and character string

Remark Characters of codes 80H to FFH can be described in the comment column only. Comments can be
entered using kanji.

25

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

A symbol is described in the symbol column. The symbol is a name for the numeric value data or address.
Using the symbol makes it easy to understand the source program contents.
The symbol types, attributes and description rules are shown below.

[Symbol types]

Table 3-1 gives a list of symbol types according to purposes and definitions.

Table 3-1. Symbol Types

Symbol Type Purpose Definition

Name Used as numeric value data in the source Described in the symbol column of EQU, SET, CSEG and
program. DSEG pseudo-instructions or the operand column of the

EXTRN pseudo-instruction.

Label Used as address data in the source Described in the symbol column of instructions and ORG,
program. DB, DS, BR, VENTn, TCALL and TBR pseudo-instructions.

Colon (:) is used as the division symbol.

Segment Name Used as the operation target in linker Described in the symbol column of the CSEG and DSEG
option. pseudo-instructions.

Macro Name Used as the expansion location of the macro. Described in the symbol column of the MACRO instruction.

[Symbol description rules]

The symbols are described according to the following rules:

<1> Each symbol consists of alphanumerics and characters corresponding to alphabetic letters (?, _).
Numerals (0 to 9) cannot be used as the start character.

<2> Each symbol can have a length of 1 to 31 characters (when -NS option is specified: 1 to 8 characters)
(for details of -NS option, refer to Operation Manual). It is all right if symbols with 32 (9) or more
characters are described, however, only the first thirty one characters (eight characters) are valid.

<3> The reserved word cannot be used as a symbol. The reserved words are shown in APPENDIX B LIST
OF RESERVED WORDS.

<4> The same symbol cannot be defined more than twice. (The name defined by the SET pseudo-instruction
can be redefined by the SET pseudo-instruction.)

<5> If a symbol is described with small alphabetic letters, they are interpreted as capital alphabetic letters.

<6> The label and the mnemonic column are divided by colon (:) and the name and the mnemonic column
are divided by a blank space.

<7> Only one label can be described on one line.

3.3.3 Character Configuration Fields

This section describes the character component fields.

(1) Symbol column

Symbol ColumnSegment Mnemonic
Column Operand Column Comment

Column

26

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

.

.

.

.

.

.

Example 1. Correct symbols

TEN EQU 10H ; ‘TEN’ is a name.

NEXT: BR !100H ; ‘NEXT’ is a label.

C1 CSEG ; ‘C1’ is a segment name.

Example 2. Incorrect symbols

1ST: MOV A, #0H ; Numeral cannot be used for the start character.

TEN: EQU 10H ; ‘TEN’ is a name. Colon (:) is not necessary.

NEXT BR !100H ; ‘NEXT’ is a label. The label and the mnemonic column are divided
using colon (:).

TEN EQU 10H ; ‘TEN’ and ‘ten’ are the same name symbols.

ten EQU 10H Thus, the description ‘ten’ is an error.

3. Statement consisting of symbols only

ABCD: ; ‘ABCD’ is defined as a label.

4. Others

ABC EQU 3 ; The same data “3” is assigned for ABC and XYZ.

XYZ EQU ABC

LOOP : ADDC A, @HL

LOOP : MOV A, B

BR $LOOP

An error results because label “LOOP” has been doubly defined.

Example of more than one description on the same line

MAIN : FLY : LOOP : MOV A, B ... An error results.

27

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

[Symbol attributes]

The name and label have values and attributes.

The module and macro names have no values.

The value is a defined numeric value data or address data value.

The attributes are symbol attributes listed below.

Table 3-2. Symbol Attribute Types

Attribute Type Description

NUMBER Name with the constant (except specific address name codes and bit values) defined using EQU and SET
pseudo-instructions
External reference name with the symbol attribute declared as ‘NUMBER’ using EXTRN pseudo-instruction

CODE Label defined in the code segment
Name with the label having symbol attribute ‘CODE’ or ‘$’ (location) in the code segment defined using EQU and
SET pseudo-instructions
External reference name with the symbol attribute declared as ‘CODE’ using EXTRN pseudo-instruction

DATA Label defined in the data segment
Name with the label having symbol attribute ‘DATA’ or ‘$’ (location) in the data segment defined using EQU and
SET pseudo-instructions
External reference name with the symbol attribute declared as ‘DATA’ using EXTRN pseudo-instruction
Specific address name code (except bit values)
Reserved word STACK (the symbol attributes are included in DATA attributes although displayed as STACK)

BIT Name with the bit value defined using EQU and SET pseudo-instructions (The name with the bit value defined
using a specific address name code and the symbol value set to FB0H.0 to FBFH.3 or FF0H.0 to FFFH.3
becomes the following PBIT attribute.)
Specific address name code with the bit value except FB0H.0 to FBFH.3 or FF0H.0 to FFFH.3
External reference name with the symbol attribute declared as ‘BIT’ using EXTRN pseudo-instruction

PBIT Specific address name code with the bit value of FB0H.0 to FBFH.3 or FF0H.0 to FFFH.3
Symbol with the bit value defined using a specific address name code and the symbol value of FB0H.0 to
FBFH.3 or FF0H.0 to FFFH.3
External reference name with the symbol attribute declared as ‘PBIT’ using EXTRN pseudo-instruction

Example

TEN EQU 10 ; Name ‘TEN’ has NUMBER attribute and value 10.

SEG0 CSEG ; ‘SEG0’ is a segment name.

DATA : DB 0AH ; Label ‘DATA’ has CODE attribute and value 0AH.

D1 DSEG ; ‘D1’ is a segment name.

WORK : DS 5 ; Label ‘WORK’ has DATA attribute and value 5.

BIT1 EQU 0FE0H.2 ; Name ‘BIT1’ has BIT attribute and value 0FE0H.2.

PBIT1 EQU PORT0.0 ; Name ‘PBIT1’ has PBIT attribute and same value as PORT0.0.

28

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

The symbol attribute names are shown below.

Table 3-3. Symbol Attribute Names

Item No. Symbol Attribute Name

1 NUMBER Constant symbol

2 CODE Code symbol

3 DATA Data symbol

4 BIT Bit symbol

5 PBIT Port bit symbol

[Necessity of symbol attributes]

In the following example, the symbol attribute of labels D1 and D2 is ‘DATA’ and the symbol attribute of label
C1 is ‘CODE’.

Take a look at (a). BRCB instruction is a 2-byte branch instruction indicating that the operand value is set to
the least significant 12 bits of the program counter and is branched to the program memory. In the case of (a),
however, the operand value is the data memory address. This is a program error.

Example

; ∗∗ DEFINE WORKING AREA ∗∗

DATA1 DSEG 1 AT 0H

D1 : DS 2

D2 : DS 2

; ∗∗ MAIN PROGRAM ∗∗

CODE1 CSEG

C1 : MOV A, B

BR C1

MOV XA,D2

BRCB D1 ; (a)

END

The symbol described as each instruction operand must have an attribute so that the assembler can detect
such program errors.

In the case of (a), the assembler checks if the symbol attribute (NUMBER or CODE) required by BRCB
instruction as an operand matches the symbol attribute of symbol ‘D1’ actually described in the operand column.
Because the result shows that the symbol attribute required by BRCB instruction as an operand is not ‘DATA’,
the assembler detects an error and generates the relevant error message in the list.

As explained above, program description errors can be prevented from occurring by the assembler providing
all symbols described in the source program with symbol attributes. This is the reason why attributes are
necessary for the symbols.

~
~

~

29

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

Caution

The name indicating the bit address with a specific address name code has special attribute called ‘PBIT’.
Thus, when operating the peripheral hardware, operands can be checked more precisely by describing
specific address name codes.

Since the symbol attributes are necessary to understand the EXTRN pseudo-instruction described later, you
should learn by heart the symbol attribute types and which symbols have symbol attributes.

[Valid range of symbol in macro]

The symbol defined in a macro is usually valid only within the macro (called local symbol). Therefore, a local
symbol has no relationship with symbols located outside the macro or in other macros.

On the other hand, a symbol referenced by plural macros or used in common between a macro and a statement
outside the macro is called global symbol. Global symbols are useful when common values must be set or
referenced from one another.

The next section explains the valid ranges of global symbol and local symbol that are used in macros.

<1> Global symbol
A symbol declared with the GLOBAL instruction for its label and SET name will be treated as a global
symbol.
Upon GLOBAL declaration, a global symbol becomes valid in the entire source program. If the
declaration is made within a macro definition part, the symbol will become valid when and after the macro
is developed.

<2> Local symbol
Unless otherwise declared, the symbol in a macro is automatically defined as a local symbol. Therefore,
it cannot be referenced from outside the macro or used in common by plural macros.
If a macro body includes a label (the description format is “SymbolName:”), the symbol name is changed
and output to the output list file because the assembler’s symbol description rules prohibit labels with
an identical name. In the output process, such name will be changed as follows:

(a) The modified symbol name is Znnnnn, where Z is the first character of the original symbol name and
nnnnn is an appended incrementing number between 00000 and 65535 (in decimal notation).
If nnnnn reaches 65535, the next number returns to 00000.

(b) Each time a macro references the symbol, nnnnn is incremented by 1 to create a new symbol name.

(c) If a macro includes a label, the name of the symbol which references the label name in the macro
will also be modified to Znnnnn at the same time.
However, the nnnnn value does not change for the same label name.

(d) If, within a macro, a label is named the same as a symbol name which has been already defined in
the SET statement as a local symbol, an error message is output. Then, such label will be output
to the output list file in a source program image when the macro is developed.
The local symbol’s SET is not output when the macro is developed. If the local symbol defined in
a SET definition statement is referenced by a statement in the macro body, the result is shown below.

(i) When it is described in the macro instruction operand formula:
The value the symbol includes is referenced with its local symbol name unchanged.

(ii) In other cases:
If the symbol is numeric, only the value the symbol includes is converted directly to a decimal
number and then output to the output list file.

If the macro is nested, a symbol defined in the macro or in a lower nesting level macro involving the
macro can be referenced.
An identical name cannot be used for the SET name and the label in the same macro.
If an identical name is used, an error occurs when the macro is defined and the symbol name will
be regarded as a mere character string when the macro is referenced.

30

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

Symbol ColumnSegment
Mnemonic

Column Operand Column
Comment
Column

(2) Mnemonic column

The instruction mnemonic, pseudo-instruction and control instruction are described in the mnemonic column. In
the case of an instruction or a pseudo-instruction requiring an operand, the mnemonic and operand columns are
divided using more than one blank space or TAB.

Example 1. Correct example

MOV A, #0H

CALL !CONVAH

RET

2. Incorrect example

MOVA, #0H ; There is no blank space between the mnemonic column and the operand
column.

CAL L !CONVAH ; There is a blank space in the mnemonic.

HLT ; There is no ‘HLT’ in the 75X Series/75XL Series instructions.

31

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

(3) Operand column

Symbol ColumnSegment
Mnemonic

Column Operand Column Comment
Column

Data necessary for execution of an instruction or a pseudo-instruction is described in the operand column.
Some instructions and pseudo-instructions may not require operands or may require more than one operand.

When describing more than one operand, each operand is divided with a comma (,).

The following items can be described in the operand column.

• Constant (numeric constant and character constant)

• Register name

• Special character ($ # ! @)

• Name and label

• Formula

• Specific address name code

The required operand size and symbol attributes vary depending on the instruction and pseudo-instruction. For
details, refer to 3.5 OPERAND CHARACTERISTICS.

Each item describable in the operand column is explained below.

[Constants]

Each constant has its own value. There are numeric and character constants.

• Numeric constant (immediate data)

Binary, octal, decimal and hexadecimal numbers can be described as numeric constants. Procedure for
representing each numeric constant is as follows:

Table 3-4. Numeric Constant Representation

Numeric Constant Type Representation Example

Binary number • Add ‘B’ at the end of numeric value. 1101B

Octal number • Add ‘O’ at the end of numeric value. 74O

Decimal number • Describe the numeric value what it is. 128
• Or add ‘D’ at the end. 128D

Hexadecimal number • Add ‘H’ at the end of numeric value. 8CH
• If the first letter is ‘A’, ‘B’, ‘C’, ‘D’, ‘E’ or ‘F’, add ‘0’ before it. 0A6H

• Character constant

The character constant is the characters in 3.3.2 Character Set marked using quotation marks (’). It is
assembled and converted to a 7-bit ASCII code with a parity bit set to 0.

When using the quotation marks, describe two quotation marks continuously.

Character constant representation example

‘A’

‘ ’ ; one blank space

‘ ’ ‘ ’ ; one quotation mark

‘main’

32

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

[Register name]

Registers listed in Table 3-5. Register Types can be described in the operand column.

Table 3-5. Register Types

Register Name Description Format

General register A, B, C, D, E, H, L, X

Register pair XA, BC, DE, HL, XA', BC', DE', HL'

Special format @BCDE, @BCXA, @PCDE, @PCXA, @DE, @DL, @HL, @HL+, @HL–, @H+mem.bit, pmem.@L

Special register MBn, RBn, BS

Flag CY

Cautions

1. Some registers listed in Table 3-5. Register Types may not be used depending on the assembled
products. For details, refer to APPENDIX A LIST OF ASSEMBLED RELEVANT UNIT TYPES and
APPENDIX B LIST OF RESERVED WORDS.

2. These register names cannot be used for formula (refer to “Formula”).

Example MOV A, B+1 ... B+1 cannot be described.

3. As a special format, a blank space or TAB can be inserted between @ and BCDE as @ BCDE.

[Special character]

Special characters listed below can be described in the operand column.

Table 3-6. Special Characters Describable in Operand Column

Special Character Function

$ • Indicates the location address (1st byte in the case of an instruction with greater than one byte)
for which an instruction having this operand is assigned.

• Indicates the relative addressing of the branch instruction.

! • Indicates the absolute address of the branch and call instructions.

• Indicates immediate data.

@ • Indicates indirect addressing.

Example Usage example of special character

Address Source program

100 LOOP : INCS A

101 BR $-1 ... <1>

In the case of <1>, ‘$’ in the operand column indicates the location address 101 for which the 1st byte of the
object code for instruction ‘BR $-1’. The description of <1> is rewritten as ‘BR LOOP’.

33

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

Source program

BR !100H ; ‘!’ indicates the absolute addressing of the unconditional branch instruction.

AND A, #6H ; ‘#’ indicates immediate data.

SIX EQU 6H

AND A, #SIX ; ‘#’ indicates immediate data.

AND A, @HL ; ‘@’ indicates indirect addressing.

[Name and label]

When a name or a label is described in the operand column, the name or label value is manipulated as numeric
data by the instruction or pseudo-instruction.

Example 1. Usage example of name

SIX EQU 6H

MOV A, #SIX ; This description can be rewritten as ‘MOV A, #6H’.

2. Usage example of label

ORG 100H

LOOP : INCS A

BR LOOP ; This description can be rewritten as ‘BR 100H’.

[Formula]

A formula can be described in the operand column.

The formula combines constants, special characters and names or labels using operators. It can be described
in a location where numeric representation is possible as an instruction operand.

Formulas and operators will be described in 3.4.

(Formula description example)

SIX EQU 6H

MOV A, #SIX-5H

In this example, #SIX-5H is the formula.

In this formula, the name and the numeric constant are combined using a minus operator (–). The formula
value is 1H. Thus, this description is rewritten as ‘MOV A, #1H’.

34

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

[Specific address name code]

The assembler has the symbols reserved to control the hardware such as input/output ports and timers at
0F80H to 0FFFH in the data memory space. These symbols are called specific address name codes.

The specific address name code differs depending on the assembled product type. For details, refer to
APPENDIX B LIST OF RESERVED WORDS.

For the address and meaning of each specific address name code, refer to the User’s Manual for each device.

(4) Comment column

In the comment column, comment is described after the semi-colon (;). An easy-to-understand source
program can be generated by describing comment. Description in the comment column does not undergo
assembling called machine word conversion and is output in the assembly list.

Characters listed in 3.3.2 Character Set can be described in the comment column.

Example

$ TITLE = ‘A-D CONVERT ’
; ∗∗∗
; ∗∗∗ A-D CONVERT PROGRAM ∗∗∗ Line with comment only
; ∗∗∗

NAME AD_MAIN
EXTRN CODE (SIOSUB, ADCONV)
PUBLIC TDATA, SEL15
STKLN 10
VENT0 MBE = 1, RBE = 1, MAIN
VENT4 MBE = 1, RBE = 0, ADCONV

SEG0 DSEG 1 AT 10H
TDATA : DS 2

Line with comment only
; ∗∗∗ GETI TABLE ∗∗∗
SEG1 CSEG IENT
SEL15 : SEL MB15

; ∗∗∗ MAIN ROUTINE ∗∗∗
SEG2 CSEG INBLOCK
MAIN : SEL RB1

GETI SEL15 ; STACK POINTER SET
MOV XA, #STACK ;
MOV SP, XA ; Line with comment described

in the comment column
MOV A, #0011B
MOV PCC, A ; PCC ← 0011B

Symbol ColumnSegment
Mnemonic

Column
Operand Column Comment

Column

35

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

3.4 FORMULAS AND OPERATORS

The formula combines constants, special characters, names and labels with operators.
Formula component elements except operators are called terms. The terms in turn are called the first, second

terms and so on from the left.
There are two types of formulas; absolute formula in which values are determined when assembled, relocatable

formula in which values are determined when linked and external reference formula.
Table 3-7 gives a list of operator types and Table 3-8 shows priority order concerning operation execution.
To change the operation order, parentheses ‘()’ are used.

Example

MOV A, #5* (SYM+1) ; <1>

In <1>, 5* (SYM+1) is the formula. 5, SYM and 1 are the first, second and third terms, respectively. *, + and ()
are operators.

Table 3-7. Operator Types

Operator Types Operators

Arithmetic operators +, –, *, /, MOD, + sign, – sign

Logical operators NOT, AND, OR, XOR

Compare operators EQ or =, NE or < >, GT or >, GE or >=, LT or < and LE or <=

Shift operators SHR, SHL

Bit location specification operator . (period)

Byte separation operators HIGH, LOW

Others ()

Table 3-8. Operator Priority Order

Operator Priority Order Operator

High 1 . (bit location specification operator)
2 HIGH, LOW
3 + sign, – sign, NOT
4 *, /, MOD, SHR, SHL
5 +, –
6 AND
7 OR, XOR

Low 8 EQ, NE, GT, GE, LT, LE, =, < >, >, >=, <, <=

Formula operations are carried out according to the following rules:

<1> Operation order follows the operator priority order. If the operators have the same priority, the operation
on the left is first carried out.

<2> Operation in parentheses ‘()’ is carried out ahead of operation outside parentheses.
<3> The external reference symbol undergoes operation with its value set to 0 when assembled. When

linked, the correct value is assigned. For details, refer to 3.4.2 Operation Restrictions.
<4> In division, decimal fractions are omitted.
<5> When the devisor is 0, the error is printed and the result is made 0.
<6> Negative numbers are in two’s complement format.

36

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

3.4.1 Operator Functions

This section describes the operator functions.

37

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

Arithmetic Operators +, – Arithmetic Operators

(1) Arithmetic Operators

(a) + (add)

[Function]

Returns the sum of the 1st and 2nd term values.

[Usage Example]

C1 CSEG AT 100H

START: BR $$ +6H ; (a)

Branches to “address assigned for ‘START’ + address 6” by BR instruction. Namely, jumps to “100H + 6H
= 106H”.

Thus, (a) can also be described as “START: BR $106H”.

(b) – (subtraction)

[Function]

Returns the balance between the 1st and 2nd term values.

[Usage Example]

C2 CSEG AT 100H

BACK: BR $BACK-6H ; (b)

Branches to “address assigned for ‘BACK’ – address 6” by BR instruction. Namely, jumps to “100H – 6H
= 0FAH”.

Thus, (b) can also be described as “START: BR $0FAH”.

.

.

.

.

.

.

38

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

Arithmetic Operators *, / Arithmetic Operators

(c) * (multiplication)

[Function]

Returns the product of the 1st and 2nd term values.

[Usage Example]

TWO EQU 2H

MOV A, #TWO*3 ; (c)

Value 2H is defined for name ‘TWO’ by EQU pseudo-instruction.

Formula “TWO*3” means “2H*3” and value 6H is loaded into the A register.

Thus, (c) can also be described as “MOV A, #6H”.

(d) / (division)

[Function]

Divides the 1st term value by the 2nd term value and returns the integer part of the quotient.

The decimal fractions are omitted.

If the divisor is 0, an error results.

[Usage Example]

Y5: MOV A, #256/50 ; (d)

“256/50 = 5 with remainder 6” results.

Accordingly 5 in the integer part is loaded into the A register.

Thus, (d) can also be described as “MOV A, #5”.

.

.

.

39

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

Arithmetic Operators + sign, – sign, MOD Arithmetic Operators

(e) + sign

[Function]

Returns the term value what it is.

[Usage Example]

FIVE EQU +5

Returns the term value 5 what it is.

Value 5 is defined for name ‘FIVE’ by EQU pseudo-instruction.

(f) – sign

[Function]

Returns two’s complement of the term value.

[Usage Example]

NO EQU –1

Two’s complement of 0001B becomes 1111B.

Thus, value 0FH is defined for name ‘NO’ by EQU pseudo-instruction.

(g) MOD (remainder)

[Function]

Returns the remainder of the 1st term value divided by the 2nd term value.

A blank space is necessary before and after ‘MOD’.

When the divisor is 0, an error results.

[Usage Example]

REM6 : MOV A, # 256 MOD 50 ; (e)

“256/50 = 5 with remainder 6” results.

Accordingly, remainder 6 is loaded into the A register.

Thus, (e) can also be described as “MOV A, #6”.

40

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

Logical Operators NOT, AND Logical Operators

(2) Logical Operators

(a) NOT (negation)

[Function]

Returns the bit-wise logical NOT of the term value.

A blank space is necessary between ‘NOT’ and the term.

[Usage Example]

COMPL : MOV XA, #NOT 0FFF3H ; (a)

Obtains the bit-wise logical NOT of 0FFF3H.

NOT) 1111 1111 1111 0011

0000 0000 0000 1100

Accordingly, the value 0CH is loaded into the XA register.

Thus, (a) can also be described as “MOV XA, #0CH”.

(b) AND (logical product)

[Function]

Returns the bit-wise logical AND of the 1st and 2nd term values.

A blank space is necessary before and after ‘AND’.

[Usage Example]

MASK : MOV A, #6FAH AND 0FH ; (b)

Obtains the logical AND of 6FA and 0FH.

0110 1111 1010

AND) 0000 0000 1111

0000 0000 1010

Accordingly, the value 0AH is loaded into the A register.

Thus, (b) can also be described as “MOV A, #0AH”.

41

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

Logical Operators OR, XOR Logical Operators

(c) OR (logical sum)

[Function]

Returns the bit-wise OR of the 1st and 2nd term values.

A blank space is necessary before and after ‘OR’.

[Usage Example]

MDFY1 : MOV A, #0AH OR 1101B ; (c)

Obtains the OR of 0AH and 1101B.

1010

OR) 1101

1111

Accordingly, the value 0FH is loaded into the A register.

Thus, (c) can also be described as “MOV A, #0FH”.

(d) XOR (exclusive logical sum)

[Function]

Returns the bit-wise, exclusive logical sum of the 1st and 2nd term values.

A blank space is necessary before and after ‘XOR’.

[Usage Example]

 MDFY2 : MOV A, #0AH XOR 1101B ; (d)

Obtains the exclusive OR of 0AH and 1101B.

1010

XOR) 1101

0111

Accordingly, the value 7H is loaded into the A register.

Thus, (d) can also be described as “MOV A, #7H”.

42

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

Compare Operators EQ: EQual Compare Operators

(3) Compare Operators

(a) EQ or = (equal)

[Function]

Returns 0FFFFH (true) when the 1st and 2nd term values are equal or 0000H (false) when those values
are not equal.

A blank space is necessary before and after ‘EQ’.

[Usage Example]

A1 EQU 8H

A2 EQU 4H

MOV A, # (A1 EQ (A2+4)) AND 0FH ; (a)

MOV A, # (A1 EQ A2) AND 0FH ; (b)

In the case of (a),

“A1 EQ (A2 + 4)” becomes “8H EQ (4H + 4)”.

Since the 1st and 2nd term values are equal, 0FFFFH is returned, the logical product with 0FH is obtained
and 0FH is loaded into the A register.

In the case of (b),

“A1 EQ A2” becomes “8H EQ 4H”.

Since the 1st and 2nd term values are not equal, 0000H is returned, the logical product with 0FH is
obtained and 0H is loaded into the A register.

43

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

Compare Operators NE: NOT Equal Compare Operators

(b) NE or < > (not equal)

[Function]

Returns 0FFFFH (true) when the 1st and 2nd term values are not equal or 0000H (false) when those values
are equal.

A blank space is necessary before and after ‘NE’.

[Usage Example]

A1 EQU 0AH

A2 EQU 2H

MOV A, # (A1 NE A2) AND 0FH ; (c)

MOV A, # (A1 NE (A2+8H)) AND 0FH ; (d)

In the case of (c),

“A1 NE A2” becomes “0AH NE 2H”.

Since the 1st and 2nd term values are not equal, 0FFFFH is returned, the logical product with 0FH is
obtained and 0FH is loaded into the A register.

In the case of (d),

“A1 NE (A2 + 8H)” becomes “0AH NE (2H + 8H)”.

Since the 1st and 2nd term values are equal, 0000H is returned, the logical product with 0FH is obtained
and 0H is loaded into the A register.

44

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

Compare Operators GT: Greater Than Compare Operators

(c) GT or > (greater than)

[Function]

Returns 0FFFFH (true) when the 1st term value is greater than the 2nd term value or 0000H (false) when
the 1st term value is equal to or less than the 2nd term value.

A blank space is necessary before and after ‘GT’.

[Usage Example]

A1 EQU 7H

A2 EQU 5H

MOV A, # (A1 GT A2) AND 0FH ; (e)

MOV A, # (A1 GT (A2+2H)) AND 0FH ; (f)

In the case of (e),

“A1 GT A2” becomes “7H GT 5H”.

Since the 1st term value is greater than the 2nd term value, 0FFFFH is returned, the logical product with
0FH is obtained and 0FH is loaded into the A register.

In the case of (f),

“A1 GT (A2 + 2H)” becomes “7H GT (5H + 2H)”.

Since the 1st and 2nd term values are equal, 0000H is returned, the logical product with 0FH is obtained
and 0H is loaded into the A register.

45

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

Compare Operators GE: Greater or Equal Compare Operators

(d) GE or >= (greater or equal)

[Function]

Returns 0FFFFH (true) when the 1st term value is greater than or equal to the 2nd term value or 0000H
(false) when the former is less than the latter.

A blank space is necessary before and after ‘GE’.

[Usage Example]

A1 EQU 8H

A2 EQU 3H

MOV A, # (A1 GE A2) AND 0FH ; (g)

MOV A, # (A1 GE (A2+6H)) AND 0FH ; (h)

In the case of (g),

“A1 GE A2” becomes “8H GE 3H”.

Since the 1st term value is greater than the 2nd term value, 0FFFFH is returned, the logical product with
0FH is obtained and 0FH is loaded into the A register.

In the case of (h),

“A1 GE (A2 + 6H)” becomes “8H GE (3H + 6H)”.

Since the 1st term value is less than the 2nd term, 0000H is returned, the logical product with 0FH is
obtained and 0H is loaded into the A register.

46

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

Compare Operators LT: Less Than Compare Operators

(e) LT or < (less than)

[Function]

Returns 0FFFFH (true) when the 1st term value is less than the 2nd term value or 0000H (false) when the
1st term value is equal to or greater than the 2nd term value.

A blank space is necessary before and after ‘LT’.

[Usage Example]

A1 EQU 1H

A2 EQU 0AH

MOV A, # (A1 LT A2) AND 0FH ; (i)

MOV A, # ((A1+0AH) LT A2) AND 0FH ; (j)

In the case of (i),

“A1 LT A2” becomes “1H LT 0AH”.

Since the 1st term value is less than the 2nd term value, 0FFFFH is returned, the logical product with 0FH
is obtained and 0FH is loaded into the A register.

In the case of (j),

“(A1 + 0AH) LT A2” becomes “1H + 0AH LT 0AH”.

Since the 1st term value is greater than the 2nd term value, 0000H is returned, the logical product with
0FH is obtained and 0H is loaded into the A register.

47

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

Compare Operators LE: Less or Equal Compare Operators

(f) LE or <= (less or equal)

[Function]

Returns 0FFFFH (true) when the 1st term value is less than or equal to the 2nd term value or 0000H (false)
when the former is greater than the latter.

A blank space is necessary before and after ‘LE’.

[Usage Example]

A1 EQU 5H

A2 EQU 9H

MOV A, # (A1 LE A2) AND 0FH ; (k)

MOV A, # ((A1+5H) LE A2) AND 0FH ; (l)

In the case of (k),

“A1 LE A2” becomes “5H LE 9H”.

Since the 1st term value is less than the 2nd term value, 0FFFFH is returned, the logical product with 0FH
is obtained and 0FH is loaded into the A register.

In the case of (l),

“(A1 + 5H) LE A2” becomes “(5H + 5H) LE 9H”.

Since the 1st term value is greater than the 2nd term value, 0000H is returned, the logical product with
0FH is obtained and 0H is loaded into the A register.

48

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

Shift Operators SHR Shift Operators

(4) Shift Operators

(a) SHR (right shift)

[Function]

Shifts the 1st term value to the right by the value (No. of bits) indicated by the 2nd term value and returns
the shifted value.

Zeros equal to the number of shifted bits are set in the most significant bits.

A blank space is necessary before and after ‘SHR’.

[Usage Example]

FIELD : MOV A, #1AFH SHR 5 ; (a)

FLAG : MOV H, #30H.1 SHR 6 ; (b)

In the case of (a),

1AFH is shifted to the right by 5 bits.

Accordingly, the value 0DH is loaded into the A register.

Thus, (a) can also be described as “MOV A, #0DH”.

In the case of (b),

30H.1 is shifted to the right by 6 bits.

Accordingly, the value 03H is loaded into the register.

Thus, (b) can also be described as “MOV H, #03H”.

5-Bit Shift0 is inserted.

6-Bit Shift0 is inserted.

0 00 0 0 0 0 1 1 0 1 0 1 1 1 1

0 00 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1

0 10 1 0 0 0 0 0 1

0 00 0 0 0 0 0 1 1 0 0 0 0 0 1

49

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

Shift Operators SHL Shift Operators

(b) SHL (left shift)

[Function]

Shifts the 1st term value to the left by the value (No. of bits) indicated by the 2nd term value and returns
the shifted value.

Zeros equal to the number of shifted bits are set in the least significant bits.

A blank space is necessary before and after ‘SHL’.

[Usage Example]

FLY : MOV XA, #21H SHL 2 ; (c)

LSB2 : MOV XA, #0BFH SHR 2 SHL 2 ; (d)

In the case of (c),

21H is shifted to the left by 2 bits.

Accordingly, the value 84H is returned.

Thus, (c) can also be described as “MOV XA, #84H”.

0 is inserted.2-Bit Shift

0 00 0 0 0 0 0 0 0 1 0 0 0 0 1

0 00 0 0 0 0 0 1 0 0 0 0 1 0 000

50

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

Shift Operators SHL Shift Operators

In the case (d),

0BFH is shifted to the right by 2 bits and to the left by 2 bits.

Accordingly, 0BCH is loaded into the XA register.

Thus, (d) can also be described as “MOV XA, #0BCH”.

This has been obtained by shifting the address to the right by 2 bits and then shifting it to the left by 2 bits.
Since the left bit shift sets the least significant 2 bits to 0, the operation is the same as the masking of the
least significant 2 bits.

Thus, (d) can also be described as follows:

LBS2 : MOV XA, #0BFH AND 0FCH

= 002FH

= 00BFH

= 00BCH

0 00 0 0 0 0 0 1 0 1 1 1 1 1 1

0 00 0 0 0 0 0 0 0 1 0 1 1 1 11

0 00 0 0 0 0 0 1 0 1 1 1 1 0 000

1

51

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

[Function]
Calculates the bit address from the 1st and 2nd term bit locations and returns the calculated bit address.

[Description]

The 1st and 2nd terms have restrictions.

<1> 1st term restrictions

The 1st term must be in the range from 000H to 0FFFH.
The formula attribute is NUMBER term or absolute DATA term.
Refer to Table 3-12. Symbol Attribute Types for Operation.

<2> 2nd term restrictions

When the symbol is described in the 2nd term, the symbol attribute is NUMBER only. The 2nd term value
is an absolute value from 0 to 3.

[Usage Example]

SYM : EQU PORT0.2 ; (a)

BIT1 : CLR1 36H.1+1 ; (b)

BIT2 : CLR1 36H.1+1H.0 ; (c)

In the case of (a),

PORT0 is a reserved word having the value 0FF0H.

Symbol ‘SYM’ has the value of 0FF0H × 4 + 2 = 3FC2H.

The bit address is obtained by shifting the 1st term value to the left by 2 bits and setting the 2nd term value
to the empty least significant 2 bits.

Bit Location Specification Operator Bit Location Specification Operator

(5) Bit Location Specification Operator

(a) . (bit location specification)

52

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

Bit Location Specification Operator Bit Location Specification Operator

Thus, the bit address becomes 3FC2H and symbol ‘SYM’ has the value 3FC2H.

In the case of (b),

The assembler internally possesses 36H.1 as the following type data.

0 0 1 1 0 1 1 0 0 1 = 36H.1 (Bit Address 0D9H)

1 is added to this value.

0 0 1 1 0 1 1 0 0 1

+ 1

0 0 1 1 0 1 1 0 1 0 = 36H.2 (Bit Address 0DAH)

Thus, 36H.1 + 1 = 36H.2.

Note that the result is not 36H.1 + 1 = 37H.1.

In the case of (c),

36H.1 + 1H.0 becomes as follows:

0 0 1 1 0 1 1 0 0 1 = 36H.1 (bit address 0D9H)
+ 0 0 0 1 0 0 = 1H.0 (bit address 4H)

0 0 1 1 0 1 1 1 0 1 = 37H.1 (bit address 0DDH)

Thus, 36H.1 + 1H.0 = 37H.1

F F 0

1 1 1 1 1 1 1 1 0 0 0 0

2-Bit Shift to the Left

1 1 1 1 1 1 1 1 0 0 0 0

2nd term value is set here.

2nd term value ‘2’ is set.

1 1 1 1 1 1 1 1 0 0 0 0 1 0

3 F C 2

53

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

Byte Separation Operators Byte Separation Operators

(6) Byte Separation Operators

(a) HIGH

[Function]

Returns the high-order 8 bits of the term.
There must be a space between HIGH and the term.

[Usage Example]

ORG 1234H

START :

MOV A, #HIGH START ; <1>

[Description]

As the label ‘START’ has a value of 1234H, the value of the high-order 8 bits, 12H, is returned.
Therefore, <1> can also be written as “MOV A, #12H”.

(b) LOW

[Function]

Returns the low-order 8 bits of the term.
There must be a space between LOW and the term.

[Usage Example]

ORG 5678H
WORK :

MOV A, #LOW WORK ; <2>

[Description]

As the label ‘WORK’ has a value of 5678H, the value of the low-order 8 bits, 78H, is returned.
Therefore, <2> can also be written as “MOV A, #78H”.

.

.

.

.

.

.

54

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

Other Operator Other Operator

(7) Other Operator

(a) ()

[Function]

Calculation in () is carried out ahead of calculation outside ().

This function is used to change the operation priority order.

[Usage Example]

MOV A, # (1+3) *2

(1+3) *2

<1>

<2>

Operation is carried out in the order of <1> and <2> and 8H is returned.

If there is no (),

1+3 *2

<1>

<2>

Operation is carried out in the order or <1> and <2> and 7H is returned.

Refer to Table 3-8 for details of the operator priority order.

55

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

3.4.2 Operation Restrictions

Formula calculation is carried out with terms combined using operators. Constants, $, names and labels can
be described as terms and each term has relocation and symbol attributes.

Possible operators for the particular terms are limited depending on the relocation and symbol attribute types
of those terms. Thus, when describing a formula, it is important to take note of the relocation and symbol attributes
of the terms forming the formula.

(1) Operation and relocation attributes
Each term forming the formula has relocation attributes.
The relocation attribute types, characteristics and the corresponding terms are shown below.

Table 3-9. Relocation Attribute Types

Type Characteristics Corresponding Term

Absolute term Values to be determined upon • Constant
assembly • Label defined in the absolute segment and its segment

name
• $ indicating the location address defined in the absolute

segment
• Constant, the above label and the name which defines the

above $

Relocatable term Terms not to be determined upon • Label defined in the relocatable segment and its segment
assembly name

• $ indicating the location address defined in the relocatable
segment

• Name which defined the relocatable label

External reference term Term for external reference to • Label defined by EXTRN pseudo-instruction
another module symbol • Reserved word STACK (the assembler automatically defines

STACK as an external reference symbol)

56

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

Permissible combinations of the operators and terms are classified by relocation attributes in the table below
(except external reference terms).

Table 3-10. Combination of Terms and Operators Classified by Relocation Attributes
(Except External Reference Terms)

Relocation Attributes of Term X : ABS X : ABS X : REL X : REL

 Operator Type Y : ABS Y : REL Y : ABS Y : REL

X + Y A R R —

X – Y A — R ANote

X * Y A — — —

X / Y A — — —

+ X A A R R

– X A A — —

X MOD Y A — — —

NOT X A A — —

X AND Y A — — —

X OR Y A — — —

X XOR Y A — — —

X EQ Y A — — ANote

X NE Y A — — ANote

X GT Y A — — ANote

X GE Y A — — ANote

X LT Y A — — ANote

X LE Y A — — ANote

X SHL Y A — — —

X SHR Y A — — —

X . Y A — — —

HIGH X A A R R

LOW X A A R R

Note Operation enable only between the symbols defined in the same segment.

Caution If the term is a relocatable term or external reference term, nesting is not possible. If used in
combination with a BRCB, EQU or SET instruction, only an absolute term can be used.

Remark • ABS : Absolute term
• REL : Relocatable term
• A : Operation result is the absolute term.
• R : Operation result is the relocatable term.
• — : Operation impossible

57

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

Four operators can operate the external reference terms. They are ‘+’, ‘–’, ‘.’, and ‘NOT’.
Executable combinations of these operators and external reference terms are classified by relocation attributes

in the table below (except reference terms).

Table 3-11. Combinations of Terms and Operators Classified by Relocation Attributes
(External Reference Terms)

Relocation Attributes of Term X : ABS X : EXT X : REL X : EXT X : EXT

Operator Type Y : EXT Y : ABS Y : EXT Y : REL Y : EXT

X + Y E E — — —

X – Y — E — — —

+ X A E R E E

– X A — — — —

NOT X A — — — —

X . Y — E — E —

HIGH X A E R E E

LOW X A E R E E

Caution If the term is a relocatable term or external reference term, nesting is not possible. If used in
combination with a BRCB, EQU or SET instruction, only an absolute term can be used.

Remark • ABS : Absolute term
• REL : Relocatable term
• EXT : External reference term
• A : Operation result is the absolute term.
• R : Operation result is the relocatable term.
• E : Operation result is the external reference term.
• — : Operation impossible

58

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

Caution

Only ‘+’, ‘–’, ‘.’, and ‘NOT’ operators can be used for the external reference name.

Thus, the following description cannot be made.

Module 1 Module 2

EXTRN BIT (FLAG1) PUBLIC FLAG1

MOV H,#FLAG1 SHR 6 FLAG1 EQU 30H.3

CLR1 CY

OR1 CY, @H+FLAG1

Operation (SHR) cannot be carried out for the external
reference name FLAG1.
Thus, this description results in an error.

Since the above description is an error, avoid it as follows:

Module 1 Module 2

EXTRN BIT (FLAG1) PUBLIC FLAG, FLAG1
EXTRN FLAG ... <1>

FLAG EQU 30H
MOV HL,#FLAG ... <2> FLAG1 EQU 30H.3

CLRI CY

ORI CY, @H+FLAG1

Refer to the symbol indicating FLAG1 data address
(30H) in <1> and set the most significant 4-bit address
of FLAG1 to the H register in <2> using the symbol.

All operators can be used for the absolute symbol.

~

59

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

(2) Operation and symbol attributes
Each term forming the formula has symbol attributes in addition to the relocation attributes.
The symbol attribute types for operation and the corresponding terms are shown in the table below.

Table 3-12. Symbol Attribute Types for Operation

Symbol Attribute Types Corresponding Terms

NUMBER term • Constant
• Constant symbol (having symbol attribute ‘NUMBER’)

CODE term • Code symbol (having symbol attribute ‘CODE’)
• ‘$’ defined in the code segment

DATA term • Data symbol (having symbol attribute ‘DATA’)
• ‘$’ defined in the data segment

BIT term • Bit symbol (having symbol attribute ‘BIT’)
• Bit operator using constant (bit value)

PBIT term • Port bit symbol (having symbol attribute ‘PBIT’)

60

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

Combinations of operation possible operators and terms are classified by symbol attributes as shown in Table
3-13.

Table 3-13. Combinations of Terms and Operators Classified by Symbol Attributes

(1) Binary operators

Attributes X : Num X : Code X : Data X : Bit X : Num X : Num X : Num X : Code X : Data X : Bit

Operators Y : Num Y : Num Y : Num Y : Num Y : Code Y : Data Y : Bit Y : Code Y : Data Y : Bit

Operator
X + Y N C D B — D B — — B

X – Y N C D B — — — NNote 1 NNote 1 NNote 1

X * Y N N N N — — — — — —

X / Y N N N N — — — — — —

X MOD Y N N N N — — — — — —

X AND Y N N N N N N N — — —

X OR Y N N N N N N N — — —

X XOR Y N N N N N N N — — —

X SHL Y N N N N — — — — — —

X SHR Y N N N N — — — — — —

X EQ Y N N N N N N N N N N

X NE Y N N N N N N N N N N

X LT Y N N N N N N N N N N

X LE Y N N N N N N N N N N

X GT Y N N N N N N N N N N

X GE Y N N N N N N N N N N

X . Y B — BNote 2 — — — — — — —

HIGH X N C D — N N N C D —

LOW X N C D — N N N C D —

(2) Unary operators

Attributes of X Num Code Data Bit Pbit
Operator

NOT X N — — — —

+ X N C D B —

– X N — — — —

Notes 1. These operations are only possible when the 1st and 2nd terms of the formula (X and Y in the table) are
defined in the same segment. Otherwise, errors will result.

2. This is the case when a bit operator is used for the specific address name code. When the value is
FB0H.0 to FBFH.3 or FF0H.0 to FFFH.3, the operation result is the PBIT attribute.

61

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

Remark Num : NUMBER attribute Code : CODE attribute
Data : DATA attribute Bit : BIT attribute
Pbit : PBIT attribute
N : The operation result is the NUMBER attribute.
C : The operation result is the CODE attribute.
D : The operation result is the DATA attribute.
B : The operation result is the BIT attribute.
P : The operation result is the PBIT attribute.

Caution

Only the bit operator can be used for the specific address name code. If a specific address name code is
included in other formulas, errors will result.

Example PORT0 + 1 : Error

PORT0.1 : Operation possible

PORT0.1 + 1 : Error

62

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

3.5 OPERAND CHARACTERISTICS

Instructions requiring operands (instructions and pseudo-instructions) have different operand value sizes,
ranges and symbol attributes depending on their types.

3.5.1 Symbol Addressing

If a symbol is described in the operand column, the address or value assigned for the symbol is interpreted as
the operand value.

HERE : BR !THERE Branches to the address assigned for ‘THERE’.

THERE : SET1 0FH.1

VALUE EQU 10H

MOV A,VALUE Has the same meaning as “MOV A,10H”.

When the symbol is referred to, the assembler checks the symbol attribute and its value. If the symbol attribute
or symbol value is not appropriate as an operand for the instruction, it results in an error.

When the symbol is referred to as an instruction operand, the following symbol attributes and their values can
be referred to.

(1) Program memory (ROM) addressing
If a symbol is used for program memory addressing, checking described in Table 3-14. Symbol Attributes

Enabled for Reference (1) is carried out. In addition, whether the symbol value is in the range of ROM incorporated
into the assembled product type specified by -C option. If the symbol value is outside the ROM range, an error
results.

Table 3-14. Symbol Attributes Enabled for Reference (1)

Symbol Attribute Enabled for Reference
Identifier (Value Range)

NUMBER CODE DATA BIT PBIT

addr1 (Whole ROM range) — — —

addr (0H to 3FFFFH) — — —

caddr (In the same block) — — —

faddr (0H to 7FFH) — — —

taddr (Even values in 20H to 7FH) — — —

Remark : Reference possible
— : Reference not possible (reference results in errors)

.

.

.

63

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

(2) Data memory (RAM) addressing
If a symbol is used for data memory addressing, checking described in Table 3-15. Symbol Attributes Enabled

for Reference (2) is carried out. In addition, whether the symbol value is included in the data memory incorporated
into the assembled product type specified by -C option or the I/O in the RAM addresses 0F80H to 0FFFH. If the
symbol value is not included in them, an error results.

As for addressing operations marked with circles in the column of “specific address name code R/W attribute
check” in Table 3-15, if the specific address name code defined in the range from 0F80H to 0FFFH is used as an
operand, whether the access is READ or WRITE access enabled for the specific address name code is also
checked.

Table 3-15. Symbol Attributes Enabled for Reference (2)

Symbol Attribute Enabled for Reference Specific Address
 Identifier (Value Range) Name Code R/W

NUMBER CODE DATA BIT PBIT Attribute Check

mem (Whole RAM range) — — —

pmem (FC0H to FFFH) — — — —

mem.bit (0H.0 to FFFH.3) — — —

@H + mem.bit (Whole RAM range) — — — —

fmem.bit (FB0H.0 to FBFH.3, FF0H.0 to FFFH.3) — — — —

Remark : Reference possible
— : Reference not possible (reference results in errors)

Caution

1. When the operand identifier is mem, whether the symbol value is in the RAM range is checked. After
that, only the hexadecimal lower 2 digits are padded into the object and the higher 1 digit (100H for the
symbol value 130H, for example) is not padded.

2. When carrying out memory bit manipulation, the object code mem.bit or fmem.bit is generated from the
symbol described in the operand column. Object code mem.bit is normally generated.

However, if the symbol is a reserved word in the 0FB0H.0 to 0FBFH.3 or 0FF0H.0 to 0FFFH.3 range,
object code fmem.bit is generated.

To generate the fmem.bit object code, a reserved word in the above range must be specified. If the
reserved word is in the above range, the mem.bit object code is generated when immediate data is
specified.

Examples are shown below.

Example 1. SET1 PORT0.1

PORT0 is a reserved word mapped at address 0FF0H.
Thus, the fmem.bit object code is generated.

2. SET1 0FF0H.1

Although 0FF0H is in the range enabling fmem.bit to be generated, the mem.bit object code
is generated because immediate data has been specified.

3. If a specific address name code is used when register indirect addressing (@H +
mem.bit,pmem.@L) is included in the operand, READ and WRITE access attributes are not
checked.

64

CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD

(3) Immediate data
Symbol attributes enabled as DB pseudo-instruction operands are the same as with n8 (0H to FFH) in the table

below.

Table 3-16. Symbol Attributes Enabled for Reference (3)

Symbol Attribute Enabled for Reference (3)
Identifier (Value Range)

NUMBER CODE DATA BIT PBIT

n4 (0H to FH)

n8 (0H to FFH)

Remark : Reference possible
: Reference possible but range check not executed.

(Assembled using the least significant 4 or 8 bits of the symbol value)

3.5.2 Operand Value Size and Range

In the case of an instruction, the numeric value or name describable as an operand, the label value size and
address range are determined by the operand identifier of the instruction set.

For details, refer to the User’s Manual for each device.

CHAPTER 4 PSEUDO-INSTRUCTIONS

In this chapter, the types and functions of pseudo-instructions which describe in the source program will be
described.

For details of linker option and assembler option (-Xoption, -XXoption, and -XXXoption), refer to the Operation
Manual.

4.1 OUTLINE OF PSEUDO-INSTRUCTIONS

Pseudo-instructions are described in the source program as is the case with instructions. They are used to
provide various instructions when assembler package carries out a series of operations.

Instructions are converted into object codes (machine codes) as a result of assembly. However, pseudo-
instructions are not converted into object codes in principle.

Pseudo-instructions have the following functions:

• Facilitate source program description

• Execute memory initialization and area reserve

• Provide the assembler and linker with the necessary information for processing operations.

Table 4-1 gives a listing of pseudo-instruction types.

Table 4-1. List of Pseudo-Instruction Types

Pseudo-Instruction Type Pseudo-Instruction

Segment definition pseudo-instruction CSEG, DSEG, ORG

Program linkage pseudo-instruction NAME, PUBLIC, EXTRN

Symbol definition pseudo-instruction EQU, SET

Data definition pseudo-instruction DB

Area reserve pseudo-instruction DS, STKLN

Branch instruction auto select pseudo-instruction BR

Vector entry table definition pseudo-instruction VENTn

GETI instruction table definition pseudo-instruction TCALL, TBR

Assembly end pseudo-instruction END

Each pseudo-instruction is described in detail below.
In the following description, brackets mean that items in them can be omitted and ... means the repetition of the

same format. For example, when [(size)] [initial value [, ...]] is described, the following description is possible.

• (Size)

• (Size) initial value 1, initial value 2, initial value 3

• Initial value 1, initial value 2

65

66

CHAPTER 4 PSEUDO-INSTRUCTIONS

4.2 SEGMENT DEFINITION PSEUDO-INSTRUCTIONS

The segment is a block of the same type routines or data and the segment definition pseudo-instruction is a
pseudo-instruction to declare the segment start.

The following four types of segments are available:

• Code segment

• Data segment

• Absolute segment

• Stack segment

The type of segment determines in which range of the memory the address is located.
Each segment definition procedure and the located memory address are shown in the table below.

Table 4-2. Segment Definition Procedure and Memory Address to be Located

Segment Type Definition Procedure Memory Address to be Located

Code segment CSEG pseudo-instruction In program memory (ROM)

Data segment DSEG pseudo-instruction In data memory (RAM)

Absolute segment ORG pseudo-instruction In program memory (ROM)

Stack segment Generated only when STKLN In data memory (RAM)
pseudo-instruction is specified.

When the user wants to determine the memory location address, describe the absolute segment.
A segment location example is shown in Figure 4-1. Segment Definition and Memory Location.

Caution

• Until the first segment definition pseudo-instruction is generated in the source program (even if the segment
definition pseudo-instruction has not been described anywhere in the source program), the segment is
interpreted as an absolute code segment with the start address set to 10H.

• When using a list converter, describe the segment definition pseudo-instruction before describing an object
code generating instruction.

67

CHAPTER 4 PSEUDO-INSTRUCTIONS

Figure 4-1. Segment Definition and Memory Location

<Source Program>

<One Source Module>

Data Segment

Absolute Data

Segment

Code Segment

Absolute Segment

Stack Segment

<Program Memory>

<Data Memory>

68

CHAPTER 4 PSEUDO-INSTRUCTIONS

CSEG code segment CSEG

(1) CSEG (code segment)

[Description Format]

Symbol column Mnemonic column Operand column Comment column

Segment name CSEG (Relocation attribute) [; comment]

[Functions]

• CSEG pseudo-instruction instructs the assembler to start the code segment.

• Instructions which are described after this pseudo-instruction until the segment definition pseudo-instruction
(CSEG, DSEG) appears again will belong to the code segment. They will be located in the ROM address upon
final conversion into machine words.

• The code segment location address range can be further limited by specifying the relocation attribute in the
operand column of CSEG pseudo-instruction.

There are eight relocate instructions listed in Table 4-3.

Functions are listed in Table 4-3 and the relations between attributes and program memory are shown
in Figure 4-2.

69

CHAPTER 4 PSEUDO-INSTRUCTIONS

CSEG code segment CSEG

Table 4-3. Relocation Attribute Functions

Item Relocation Attribute Function

1 INBLOCKA Specifies that the code segment be relocated in any one block in the program memory (“block”
means the 4-Kbyte area of X000H to XFFFH).
For the segment including BRCB instruction or BR pseudo-instruction for reference to its own
segment, this attribute or INBLOCK attribute is specified.

2 XBLOCKA Specifies that the code segment be relocated at any position in the program memory (the segment
of this attribute may be located over more than one block).

3 INBLOCK Specifies that the code segment be relocated in any one block in the 0000H to 3FFFH range of the
program memory.
For the segment including BRCB instruction or BR pseudo-instruction for reference to its own
segment, this attribute or INBLOCKA attribute is specified.
For the segment referred to by “BR !addr (branch instruction to 0H to 3FFFH)” or “CALL !addr
(branch instruction to 0H to 3FFFH or call instruction)”, this attribute or XBLOCK attribute is
specified.

4 XBLOCK Specifies that the code segment be relocated in any location in the 0000H to 3FFFH range of the
program memory (the segment of this attribute may be located over more than one block).
For the segment referred to by “BR !addr (branch instruction to 0H to 3FFFH)” or “CALL !addr
(branch instruction to 0H to 3FFFH or call instruction)”, this attribute or INBLOCK attribute is
specified.

5 SENT Specifies that the code segment be relocated in the 0000H to 07FFH range of the program
memory.
This attribute is specified for the segment having the internal entry address referred to by the
2-byte subroutine call instruction “CALLF !faddr”.

6 IENT Specifies that the code segment be relocated in the 0020H to 007FH range of the program
memory. The start address of this segment is an even address. This attribute is specified for the
segment including the GETI instruction table.

7 PAGE Specifies that the start address of the code segment be relocated on the 256-byte boundary
(XX00H) in the program memory.
This attribute can be used in combination with INBLOCKA, XBLOCKA, INBLOCK, XBLOCK and
SENT attributes (if only PAGE attribute is specified, “INBLOCK PAGE” is regarded as having been
specified).
This attribute is specified for the segment including the table for table reference instruction MOVT
PCXA and MOVT PCDE or inter-register indirect branch instructions BR PCDE and BR PCXA.

8 AT absolute formula Specifies that the code segment be relocated at the formula absolute address specified using ‘AT
absolute formula’.

70

CHAPTER 4 PSEUDO-INSTRUCTIONS

XBLOCKA Whole program memory
(with a maximum of 64 Kbytes)

CSEG code segment CSEG

Next, the rules for relocation attribute selection are described.

• Segment for relocation address specification by absolute address................ AT absolute formula attribute

• Segment including GETI instruction table .. IENT attribute

• Segment referred to by CALLF !faddr instruction ... SENT attribute

• Segments with 4 Kbytes or less including BRCB instruction and BR pseudo-instruction for own-segment
reference

• Segments externally referred to by “BR !addr”Note 1 or “CALL !addr”Note 2 INBLOCK attribute

• Segment for relocation in the 0000H to 3FFFH range .. INBLOCK attribute

• Other segment .. INBLOCKA attribute

* When locating on the 256-byte boundary, use PAGE attribute as well.

• All other segments

• Segment externally referred to by “BR !addr”Note 1 or “CALL !addr”Note 2 XBLOCK attribute

• Segment for relocation in the 0000H to 3FFFH range .. XBLOCK attribute

• Other segments .. XBLOCKA attribute

* When location on the 256-byte boundary, use PAGE attribute as well.

Notes 1. “BR !addr” is a branch instruction for the 0000H to 3FFFH (16 Kbytes) range.
2. “CALL !addr” is a call instruction for the 0000H to 3FFFH (16 Kbytes) range.

Caution

INBLOCK and XBLOCK, INBLOCKA and XBLOCKA are relocation attributes having similar meaning. The
summary of their differences follows:

Relocatable Range Relocation Block

INBLOCK 000H to 3FFFH Each segment with INBLOCK or INBLOCK specified is relocated in
one block. Thus, the maximum size of each segment becomes equal
to the block size (4 Kbytes). If there are several small segments
having more than one segment, two or more segments may be
relocated in one block.

XBLOCK 000H to 3FFFH Each segment with XBLOCK or XBLOCKA specified is relocated
irrespective of the block. Thus, the maximum size of each segment
is not affected by the block size (4 Kbytes).

INBLOCKA Whole program memory
(with a maximum of 64 Kbytes)

71

CHAPTER 4 PSEUDO-INSTRUCTIONS

CSEG code segment CSEG

Figure 4-2. Relocation Attributes and Program Memory

0H

0FFFH

1FFFH

EFFFH

FF7FH

0H

100H

200H

3F00H

FF7FH

INBLOCKA (or INBLOCK)

INBLOCKA (or INBLOCK)

<1>

INBLOCKA

IENT

SENT

<4>

PAGE

PAGE

PAGE

<5>

PAGE

PAGE

0H

7FFH

FF7FH

SENT

0H

20H

7FH

FF7FH

IENT

0H

3FFFH

FF7FH

XBLOCKA (or XBLOCK)

XBLOCKA <2>

XBLOCKA

XBLOCK

INBLOCKA

INBLOCK

<3>

72

CHAPTER 4 PSEUDO-INSTRUCTIONS

CSEG code segment CSEG

[Applications]

• Describe an instruction or DB pseudo-instruction for the code segment defined by CSEG pseudo-instruction.

• Refer to Table 4-3. Relocation Attribute Functions for details concerning the relocation attribute operating
procedure.

• Define the single-function unit including a subroutine as one code segment. If the unit has a relatively large
size or the subroutine can be put to widespread use (including the development of another program), it is
recommended to define the unit as one module.

[Description]

• Be sure to describe the segment name in the CSEG pseudo-instruction symbol column. If segment name
description is omitted, an error results.

• A segment name can be referred to as symbol. In this case, the segment start address is used.

• CSEG pseudo-instruction remains valid until the next segment definition pseudo-instruction or END pseudo-
instruction appears.

• The segment name automatically becomes the external definition symbol. In other modules, the segment
name can be referred to using EXTRN declaration. In this case, PUBLIC declaration is not necessary. If
PUBLIC declaration is described, an error results.

For details of EXTRN and PUBLIC pseudo-instructions, refer to 4.3 PROGRAM LINKAGE PSEUDO-
INSTRUCTIONS.

• If relocation attributes are omitted, INBLOCK attribute is interpreted as having been specified.

• Segments having the same name are called the same name segments. If there is a same name segment in
the module to be linked, the following processing operations are carried out.

(1) If the same name segments are in two or more different source modules and the relocation attributes of those
segments are the same, the linker combines them into one segment.
The segments are linked in the same order as the object module order specified upon linkage.
When the segment name is referred to as the label, the symbol value becomes the start address of each
segment before it is linked.

x000H

<Module 1>

<Module 2>

SEG1 CSEG INBLOCK

SEG1 CSEG INBLOCK

.

.

.

.

.

.

73

CHAPTER 4 PSEUDO-INSTRUCTIONS

TEST1.ASM TEST2.ASM

LBL1 : LBL2 :.
.
.
.
.
.
.
.
.

END

.

.

.

.

.

.

.

.

.

END

; (1) ; (2)

The same name code segment SEG1 is in each of two source modules TEST1.ASM and
TEST2.ASM. Since these segments have the relocation attribute specified for the same INBLOCK
attribute, they are linked upon linkage into one segment. As they are linked in the same order as
the input module order specified upon linkage.

<a> When A > LK75X TEST1 TEST2/ is input, the segments are linked in the order of (1) and
(2) starting with the smallest address.

 When A > LK75X TEST2 TEST1/ is input, the segments are linked in the order of (2) and
(1).

If the segment name SEG1 is used as a symbol,
the same name as LBL1 in (1)
the same name as LBL2 in (2)
In the segment other than (1) and (2),
the same value as LBL1 in <a>
the same value as LBL2 in
(If two or more same name segments are in the same source module, they will become the start
address of the first segment name.)

CSEG code segment CSEG

(2) If more than one same name segment has a different relocation attribute, an error results upon linkage.

(3) If the same name segments are in one source module, the assembler carries out operations (1) and (2) above.
• If no relocation attribute has been specified for the 2nd same name segment onward, the default INBLOCK

attribute will not result. Instead, the same name segments will be regarded as having the previous relocation
attributes and linked.

• If, when the assembler links homonymous the segment name is referred to as label, the symbol value will be
the first address of the linked segments.

Example 1. If the same name segment having the same relocation attribute is different modules

SEG1 CSEG INBLOCKSEG1 CSEG INBLOCK

74

CHAPTER 4 PSEUDO-INSTRUCTIONS

CSEG code segment CSEG

Example 2. If the same name segment having a different relocation attribute is in different modules

TEST1.ASM TEST2.ASM

As in example 1, the same name code segment SEG2 is in each of two source modules
TEST1.ASM and TEST2.ASM. Since these segments have the different relocation attributes (1)
and (2) unlike in example 1, they will not become one segment. If linking the TEST1 object module
with the TEST2 object module is attempted, an error will result.
If *1 statement is set as follows so that the relocate attribute is not specified in the first statement
of segment (2) in TEST2.ASM,

SEG2 CSEG ; *1

an error will also result. This is because, if no relocation attribute is specified for the segment
pseudo-instruction, INBLOCK attribute will be provided as the default value and the segment will
have the different relocation attribute from segment (1) (in this case, operation becomes different
if TEST1.ASM and TEST2.ASM are loaded into one source module. (Refer to example 5)).

SEG2 CSEG XBLOCK SEG2 CSEG INBLOCK ;*1

.

.

.

.

.

.

.

.

.

END

; (1)

.

.

.

.

.

.

.

.

.

; (2)

END

75

CHAPTER 4 PSEUDO-INSTRUCTIONS

CSEG code segment CSEG

Example 3. When the same name segment having the same relocation attribute is in one module

TEST1.ASM

If the segment name SEG1 is referred to as a symbol, the start address (the same value as LBL1)
of the linked segment will become the symbol value irrespective of reference locations.

Example 4. When the same name segments having different relocation attributes in one module

The same name segment SEG1 having the
same relocation attribute INBLOCK is in the
source module TEST1.ASM. In this case,
segment (2) is linked in the rear of segment (1)
upon assembly and they are processed as one
segment.

TEST1.ASM Two same name segments SEG1 having
different relocation attributes are in the source
module TEST1.ASM. In this case, (1) and (2) are
not linked because the relocation attributes are
different. Statement *1 which defines segment
(2) upon assembly becomes an error.

; (2)

LBL2 :

SEG2 CSEG

LBL1 :

; (1)

; (2)

SEG1 CSEG

; (1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

END

SEG1 CSEG INBLOCK

SEG1 CSEG INBLOCK

SEG1 CSEG XBLOCK ;*1

SEG1 CSEG INBLOCK
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

END

76

CHAPTER 4 PSEUDO-INSTRUCTIONS

CSEG code segment CSEG

Example 5. When the same name segment with relocation attribute definition omitted is included in one module

Two same name segments (1) and (2) are in
the source module TEST1.ASM. Although
relocation attribute has been specified for segment
(1), no specification has been made for segment
(2) which was defined after (1). If no relocation
attribute has been specified for the 2nd segment
onward in one source module, the 2nd and
succeeding segments are regarded as continuing
from the 1st segment and are linked upon
assembly. In this example, segment (1) and (2)
are linked. Thus, after segment (1) is assembled
as an absolute segment from the ROM address
800H, segment (2) is assembled as continuing
from segment (1) and having an absolute attribute.

TEST1.ASM

LBL1 :

SEG2 CSEG

; (1)

LBL2 :

END

; (2)

SEG1 CSEG AT 800H ;*1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

If *1 is SEG1 CSEG

*2 is SEG1 CSEG AT 800H

with the relocation attribute of statement *1 replaced by that of statement *2, the relocation attribute
of (1) becomes the default INBLOCK attribute which is different from the absolute attribute of (2).
Thus, they are not linked and statement *2 will result in errors upon assembly.

SEG1 CSEG ;*2

77

CHAPTER 4 PSEUDO-INSTRUCTIONS

.

.

.

.

.

.

.

.

.

Segments ‘C1’, ‘C2’, ‘C3’ are located in the blockNote upon linkage. They are not located over the
block boundary.

Note INBLOCK : In the same block in 0000H to 3FFFH range
INBLOCKA : In the same block in the whole ROM space

0000H

Not located over this

block boundary.
1000H

C1 CSEG INBLOCK

MOV A, #5

BR L1

L1: SET1 PORT3.3

RET

C2 CSEG INBLOCK

CLR1 MBE

IN XA, PORT4

MOV 20H, XA

C3 CSEG INBLOCK

MOV A, @DL

BRCB !L2

L2: ADDS A, #1

END

C1

C2

C3

CSEG code segment CSEG

 [Usage Examples]

Example 1. When INBLOCK or INBLOCKA attribute is specified

The segments are located as follows upon linkage.

.

.

78

CHAPTER 4 PSEUDO-INSTRUCTIONS

CSEG code segment CSEG

Example 2. When XBLOCK or XBLOCKA attribute is specified

If an address is not specified by the linker, the segments may be located as follows.

0000H

1000H

2000H

May be located over

the block boundary.

C7

Segment ‘C7’ is located at any addressNote upon linkage.

Note XBLOCK : Any address in 0000H to 3FFFH range
XBLOCKA : Any address in the whole ROM space

.

.

.

.

.

.

C7 CSEG XBLOCK

S1: MOV XA, #50

BR LOOP

LOOP: MOV A, #5

BR S1

END

79

CHAPTER 4 PSEUDO-INSTRUCTIONS

CSEG code segment CSEG

Example 3. When SENT attribute is specified

Segment ‘C4’ and ‘C5’ with SENT attribute specified are located in the 0H to 7FFH range.

.

.

.

.

.

.

.

.

.

.

.

.

C4 CSEG SENT

SUB1: MOV A, B

RET

C5 CSEG SENT

SUB2: SET1 PORT4.1

RET

C6 CSEG

CALLF !SUB1

CALLF !SUB2

END

000H

C6

07FFH

1000H

C4

C5
Located in 0H

to 7FFH range.

80

CHAPTER 4 PSEUDO-INSTRUCTIONS

CSEG code segment CSEG

Example 4. When IENT attribute is specified

Segment ‘C8’ with IENT attribute specified is located in the 20H to 7FH range. The location address
becomes an even address.

.

.

.

C8

C9

0000H

0020H

007FH

1000H

Located in 20H to 7FH range.

Location address becomes

an even address.

C8 CSEG IENT

T1: MOV A, @DL

INCS L

CSUB2: TCALL SUB2

BSUB3: TBR SUB3

C9 CSEG

GETI CSUB2

GETI BSUB3

END

81

CHAPTER 4 PSEUDO-INSTRUCTIONS

CSEG code segment CSEG

Example 5. When PAGE attribute is specified

.

.

.

C10 CSEG SENT PAGE

MOVT XA, @PCDE

BR PCXA

RET

C11 CSEG INBLOCK PAGE

MOV DE, #50

BR PCDE

END

Segment ‘C10’ and ‘C11’ are located so that the start address becomes xx00H.

.

.

.

0000H

0800H

1000H

The segment start is

positioned at xx00H.

C11

C10

82

CHAPTER 4 PSEUDO-INSTRUCTIONS

DSEG data segment DSEG

(2) DSEG (data segment)

[Description Format]

Symbol column Mnemonic column Operand column Comment column

Segment name DSEG [Bank value] [AT absolute formula] [;comment]

[Functions]

• DSEG pseudo-instruction instructs the assembler to start the data segment.

• Memory areas to be defined by DS pseudo-instruction before the segment definition pseudo-instruction
(CSEG, DSEG) appears again following this pseudo-instruction will belong to the data segment. They will
finally be reserved in the data memory.

[Applications]

• Describe DS pseudo-instruction mainly for the data segment defined by DSEG pseudo-instruction.

The data segments are located in the data memory. Thus, instructions cannot be described in the data
segments.

• In each data segment the data memory work area for use by the program is reserved using DS pseudo-
instruction and a label is attached to the address of each work area.

When the data memory work area is referred to in the source program, this label is used.

 [Description]

• Segment names can be referred to as symbols.

• DSEG pseudo-instruction remains valid until the next segment definition pseudo-instruction or END pseudo-
instruction appears.

• Segment names automatically become external definition symbols.

• The areas to be used can be switched by specifying the located data memory bank value. If this specification
is omitted, bank 0 is used.

• In the case of µPD75000, the bank value is 0 to 15. In the case of all other unit types, the number of on-chip
banks may differ. For details, refer to APPENDIX A LIST OF ASSEMBLED RELEVANT UNIT DEVICE.

• Specify the data segment start address by specifying ‘AT absolute formula’. If this specification is omitted, ‘AT
0H’ is set.

83

CHAPTER 4 PSEUDO-INSTRUCTIONS

.

.

.

.

.

.

10-nibble area from address 130H of bank 1 is reserved.

DSEG data segment DSEG

Example 1. DSEG0 DSEG AT 30H
Storage starts at address 30H of bank 0.

2. SEG1 DSEG 1 AT 20H
Storage starts at address 120H of bank 1.

Caution

Since 0F80H to 0FFFH of the data memory is reserved as the location protected area, specifying the data
segment for this area using an absolute address will result in errors.

[Usage Example]

SEG0 DSEG 1 AT 30H

DATA1:DS 10

84

CHAPTER 4 PSEUDO-INSTRUCTIONS

ORG origin ORG

(3) ORG (origin)

[Description Format]

Symbol column Mnemonic column Operand column Comment column

 [Label:] ORG Formula [; comment]

[Function]

• Sets the formula value specified by the operand to the location counter.

[Application]

• When locating the code or data segment at the particular address, specify ORG pseudo-instruction.

[Description]

• External reference name cannot be described in the formula.

• When using a symbol in the formula, define the symbol before ORG pseudo-instruction.

• When CSEG pseudo-instruction is defined using ‘AT absolute formula’ or CSEG pseudo-instruction is not
used, ORG pseudo-instruction is used.

Namely, ORG pseudo-instruction cannot be used for description in the relocatable segment.

• When using a list converter, ORG pseudo-instruction must be described using capitals in and after the 9th
column of the source program.

• The location before change by the operand is assigned for the label in the symbol column on the line where
ORG pseudo-instruction is described.

85

CHAPTER 4 PSEUDO-INSTRUCTIONS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(1) Error
ORG pseudo-instruction has been described in the relocatable segment.

(1) Location counter value = 100H

(2) Location counter value = current value + 40H

(3) Location counter value = 50H

(4) Error

Symbol ‘XYZ’ has not been defined before ORG pseudo-instruction.

Example 2.

REL CSEG

ORG 10H ; (1)

ORG origin ORG

Example 1.

ABS CSEG AT 10H

ORG 100H ; (1)

ORG $ + 40H ; (2)

ORG 50H ; (3)

ORG XYZ ; (4)

XYZ EQU $

86

CHAPTER 4 PSEUDO-INSTRUCTIONS

4.3 PROGRAM LINKAGE PSEUDO-INSTRUCTIONS

Program linkage pseudo-instructions are used to clarify the relationships when the symbol defined by another
module is referred to.

Let us look into the case where one program is generated separately in modules 1 and 2.

<Module 1> <Module 2>

Reference

NAME MAIN

External Definition Declaration

SEG0 CSEG

END

.

.

.

NAME SUB

External Reference Declaration

CALL !SEG0

.

.

.

.

.

.

NAME MAIN

SEG0 CSEG

END

NAME SUB

CALL !SEG0
.
.
.

.

.

.

.

.

.
Reference

When referring in module 2 to the symbol defined in module 1, declarations are made in none of the modules
and the symbol cannot be used. It is necessary to display “What to use” and “May use” in each module.

In module 1, the external definition (PUBLIC) declaration of the symbol that “the symbol may be referred to from
another module” is made.

In module 2, the external reference (EXTRN) declaration of the symbol that “the symbol defined in another
module is referred to” is made.

Only when two declarations of external reference and external definition are made effectively, the symbol can
be referred to.

<Module 1> <Module 2>

The following program linkage pseudo-instructions are used to set the above interrelationships.

• EXTRN pseudo-instruction to declare the external reference of symbol

• PUBLIC pseudo-instruction to declare the external definition of symbol

87

CHAPTER 4 PSEUDO-INSTRUCTIONS

Symbol relations between modules are described referring to Figure 4-3. Symbol Relations between Two
Modules.

Figure 4-3. Symbol Relations between Two Modules

 <Module 1> <Module 2>

NAME MAIN

PUBLIC MAIN1

PUB1 EQU 10H

C1 CSEG

MAIN1:

END

<3>
<1>

<2> NAME SUB

EXTRN CODE (MAIN1)
.
.
.

.

.

.

.

.

.

.

.

.

C2 CSEG

BR MAIN1

END

.

.

.

.

.

.

There are module 1 and module 2. They are named ‘MAIN’ and ‘SUB’, respectively.

• In module ‘SUB’ in Figure 4-3, external reference declaration is made in module ‘SUB’ using EXTRN pseudo-
instruction because symbol ‘MAIN1’ defined in module ‘MAIN’ is referred to.

• In module ‘MAIN’, external definition declaration is made for symbol ‘MAIN1’ referred to from module ‘SUB’
is made using PUBLIC pseudo-instruction.

The linker checks the interrelationships between the external reference and definition symbols.

88

CHAPTER 4 PSEUDO-INSTRUCTIONS

NAME name NAME

(1) NAME (name)

[Description Format]

Symbol column Mnemonic column Operand column Comment column

 [Label:] NAME Module name [; comment]

[Functions]

• The module name described for the operand is supplied to the object module output by the assembler.

• This pseudo-instruction can be omitted. If it is omitted, the primary source module file name becomes the
module name.

• A characvter which cannot be used as the module name is replaced with ‘X’.

[Application]

• The module name is necessary for symbolic debugging using a debugger.

[Description]

• The module name cannot be described as an operand for other pseudo-instructions and instructions.

• The module name is an alphanumeric string with thirty one or less characters (for details, refer to the [symbol
description rules] in 3.3.3 Character Component Fields (1) Symbol column).

• The name specified as the module name cannot be used as a symbol. The symbol with the same name as
the module name cannot be defined.

• If more than one NAME pseudo-instruction is described in one module, an error results.

[Usage Example]

NAME SAMPLE ; (1)

DSEG

CSEG

END

(1) The module name is declared as SAMPLE.

Caution

If object file creation (-O option) has not been specified by assembler option, NAME pseudo-instruction
specification has no meaning.

.

.

.

.

.

.

89

CHAPTER 4 PSEUDO-INSTRUCTIONS

PUBLIC public PUBLIC

(2) PUBLIC (public)

[Description Format]

Symbol column Mnemonic column Operand column Comment column

None PUBLIC Symbol [, ...] [; comment]

[Function]

• Declares that the symbol described for the operand is the symbol referred to from another module.

[Application]

• If the symbol referred to from another module has been defined, be sure to declare external definition for the
symbol using PUBLIC pseudo-instruction.

[Description]

• PUBLIC pseudo-instruction must be described before the symbol described is described in the operand
column. Thus, it is recommended to describe PUBLIC pseudo-instruction in the module header.

• Two or more symbols divided by commas (,) can be specified for the operand.

• The symbol described for the operand must be defined in the same module.

• The symbol is an alphanumeric string with thirty one or less characters headed by an alphabetic letter (for
details, refer to the [symbol description rules] in 3.3.3 Character Component Fields (1) Symbol column).

90

CHAPTER 4 PSEUDO-INSTRUCTIONS

PUBLIC public PUBLIC

 [Usage Example]

Example Example of program consisting of three modules

<Module 1> <Module 2> <Module 3>

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

<1> Declares that symbol ‘A1’ is the symbol referred to from another module.

<2> Declares that symbol ‘B1’ is the symbol referred to from another module.

<3> Declares that symbol ‘C1’ is the symbol referred to from another module.

Caution

The segment name requires no PUBLIC declaration. The external reference name (the symbol declared
by EXTRN pseudo-instruction), the name defined by SET pseudo-instruction and the specific address name
code must not be described for the operand.

<1> <3><2> NAME M2

PUBLIC B1

EXTRN NUMBER(A1)

CSEG

B1:

MOV C,#A1

END

NAME M3

PUBLIC C1

EXTRN CODE(B1)

DSEG

C1:

CSEG

BR B1

END

NAME M1

PUBLIC A1

EXTRN DATA(C1)

A1 EQU 10H

MOV A,#C1

END

91

CHAPTER 4 PSEUDO-INSTRUCTIONS

EXTRN external EXTRN

(3) EXTRN (external)

[Description Format]

Symbol column Mnemonic column Operand column Comment column

Symbol

CODE (Symbol [, ...])

DATA (Symbol [, ...])
None EXTRN [, ...] [; comment]

BIT (Symbol [, ...])

PBIT (Symbol [, ...])

NUMBER (symbol [, ...])

[Functions]

• Declares that the symbol described for the operand is referred to by this module.

• This symbol has been defined in another module.

[Applications]

• When the symbol defined in another module is referred to, be sure to declare external reference for the symbol
using EXTRN pseudo-instruction.

• The external reference declared symbol can be described as a symbol without being defined in the module.

[Description]

• EXTRN pseudo-instruction must be described before the symbol referred to is described in the operand
column. Thus, it is recommended to describe EXTRN pseudo-instruction in the module header.

• Two or more symbols divided by commas (,) can be specified for the operand.

• When the symbol attribute (CODE, DATA, BIT, PBIT, NUMBER) is specified, it becomes the symbol attribute
of the symbol.

• The external reference name values are solved by the linker when linking. If no symbol attribute has been
described, it cannot be checked upon assembly (for details, refer to Table 3-2. Symbol Attribute Types).
When defining the external reference name using EXTRN pseudo-instruction, it is necessary to specify the
symbol attribute.

If symbol attribute is omitted, ‘NUMBER’ will be the symbol attribute.

The symbol attribute specification procedure is shown in Table 4-4. Symbol Attribute Specification
Procedure.

92

CHAPTER 4 PSEUDO-INSTRUCTIONS

EXTRN external EXTRN

Table 4-4. Symbol Attribute Specification Procedure

Item No. Attribute Specification Procedure

1 CODE • Label defined in the code segment
• Name with the label having symbol attribute ‘CODE’ or ‘$’ in the code segment defined using EQU

pseudo-instruction

2 DATA • Label defined in the data segment
• Name with the label having symbol attribute ‘DATA’ or ‘$’ in the data segment defined using EQU

pseudo-instruction

3 BIT • Name with the bit value defined using EQU pseudo-instruction

4 PBIT • Name with the specific address name code defined using EQU pseudo-instruction with the bit
operator, with a value in the range from FB0H.0 to FBFH.3 or from FF0H.0 to FFFH.3

5 NUMBER • Name with the constant (except the bit value and specific address name code) defined using EQU
pseudo-instruction

Example

 <Module 1> <Module 2>

NAME M1 NAME M2

PUBLIC A1 EXTRN CODE (A1) ; (1)

C1 CSEG C2 CSEG

A1:

CALL !A1

END

The attribute of symbol ‘A1’ in module 2 will become ‘CODE’ as a result of (1) EXTRN declaration.

.

.

.

.

.

.

.

.

.

93

CHAPTER 4 PSEUDO-INSTRUCTIONS

EXTRN external EXTRN

[Usage Example]

Example

<Module 1> <Module 2>

NAME SAMP2

PUBLIC D1, D2

SEG2 DSEG

D1 : DS 1 ; (3)

D2 DS 1 ; (4)

END

NAME SAMP1

EXTRN D1, D2

SEG1 CSEG

MOV A, D1 ; (1)

MOV X, D2 ; (2)

END

.

.

.

.

.

.

.

.

.
.
.
.

<1> External reference is declared for symbols ‘D1’ and ‘D2’ referred to in (1) and (2).

<2> External definition is declared for symbols ‘D1’ and ‘D2’.

Both <1> and <2> enable more than one symbol to be described on one line.

(1) Symbol ‘D1’ is referred to.

(2) Symbol ‘D2’ is referred to.

(3), (4) Symbols ‘D1’ and ‘D2’ are defined.

Caution

Four operators ‘+’, ‘–’, ‘.’ , and ‘NOT’ can be used for the external reference name (for details, refer to 3.4.2
Operation Restrictions).

<1> <2>

94

CHAPTER 4 PSEUDO-INSTRUCTIONS

4.4 SYMBOL DEFINITION PSEUDO-INSTRUCTIONS

Symbol definition pseudo-instructions are used to assign the name for the data which is to be used for source
module description. This makes the data value meaning clear and the source module contents easy-to-understand.

These pseudo-instructions are used to notify the assembler of the name values for use in the source module.
These pseudo-instructions must be described before the reference symbol is described in the operand column.

Thus, describe the name definition using the symbol definition pseudo-instruction in the module header.
EQU and SET pseudo-instructions are symbol definition pseudo-instructions.

95

CHAPTER 4 PSEUDO-INSTRUCTIONS

EQU equate EQU

(1) EQU (equate)

[Description Format]

Symbol column Mnemonic column Operand column Comment column

Name EQU Formula [; comment]

[Function]

• Defines the value of formula specified by the operand and the attributes (symbol attribute and relocation
attribute).

[Applications]

• The numeric data to be used in the source module is defined as the name and is described for the instruction
operand in place of the numeric value.

It is recommended to define as the name the numeric data which is frequently used in the source module.

• If the data value in the source module has been defined as the name, the data value can be changed by simply
changing the operand value of the name.

[Description]

• When describing the name and label for the EQU pseudo-instruction operand, they must have been defined
in the source module.

• If there is an error in the description in the symbol or mnemonic column of the statement with the name defined
using EQU pseudo-instruction, the name is not registered.

The statement which referred to the name will also be an error.

• In the case of a description error in the operand column of the statement with the name defined using EQU
pseudo-instruction, name registration is carried out but 0 or an indeterminate value is assigned for the name
value.

• The name defined using EQU pseudo-instruction cannot be redefined in the same source module.

• The symbol attribute of the name is the same as that of the operand.

• EQU pseudo-instruction can be described anywhere in the source program.

• When defining the symbol which becomes CODE attribute using EQU pseudo-instruction, the operand must
be one that has been defined in the same segment.

• Only if the bit operator has been used for the specific address name code, the specific address name code
can be described for the operand. If the code is described in all other cases, an error results.

• If definition of a new symbol is attempted using the symbol of CODE attribute defined by another segment for
the segment, an error results.

96

CHAPTER 4 PSEUDO-INSTRUCTIONS

EQU equate EQU

.

.

.

C1 CSEG

START :

C2 CSEG AT 200H

EXAM EQU START

.

.

.

.

.

.

An error occurs because symbol address calculations may not be carried out.

[Usage Example]

SUBR EQU 7 ; (1)

SEG1 EQU 83H ; (2)

CALL !SUBR

BRCB !SEG1

END

.

.

.

.

.

.

.

.

.

Set 07H and 83H to (1) name ‘SUBR’ and (2) name ‘SEG1’, respectively. They will become NUMBER attribute.

.

.

.

An error results.

97

CHAPTER 4 PSEUDO-INSTRUCTIONS

SET set SET

(2) SET (set)

[Description Format]

Symbol column Mnemonic column Operand column Comment column

Name SET Formula [; comment]

[Functions]

• Defines the name having the formula value specified by the operand and the attributes (symbol and relocation
attributes).

• The name can be described for the instruction code and pseudo-instruction operand.

[Applications]

• The variable used in the source module is defined as the name and is described for the instruction operand
in place of numeric data (variable).

• When changing the name value in the source module, different numeric data can be defined for the same
name using SET pseudo-instruction again.

[Description]

• When describing the name for SET pseudo-instruction operand, the name must have been defined in the
source module.

• The external reference name and forward reference symbol cannot be described for SET pseudo-instruction
operand.

• If there is an error in the description in the symbol or mnemonic column of the statement with the name defined
using SET pseudo-instruction, the name is not registered. The statement which referred to the name will also
be an error.

• In the case of a description error in the operand column of the statement with the name defined using SET
pseudo-instruction, name registration is carried out but 0 is assigned for the name.

• PUBLIC declaration is disabled for the name defined using SET pseudo-instruction. The name is not output
to the symbol table file generated by the object converter.

• The symbol attribute of the name is the same as that of the operand.

• SET pseudo-instruction can be described anywhere in the source program.

• When defining the symbol which becomes CODE attribute using SET pseudo-instruction, the operand must
be one that has been defined in the same segment.

• Only if the bit operator has been used for the specific address name code, the specific address name code can
be described for the operand. If the code is described in all other cases, an error results.

98

CHAPTER 4 PSEUDO-INSTRUCTIONS

SET set SET

[Usage Example]

IMMED SET 5 ; (1)

MOV A, #IMMED ; (2)

IMMED SET 10H-6 ; (3)

MOV A, #IMMED ; (4)

(1) Value 5 is supplied to name ‘IMMED’.

This value remains valid just before description of (3).

(2) Value 5 of ‘IMMED’ has been transferred to the register.

(3) The value of name ‘IMMED’ is changed to 10H - 6 = 0AH.

(4) Value 0AH of ‘IMMED’ has been transferred to the register.

4.5 DATA DEFINITION AND AREA RESERVE PSEUDO-INSTRUCTIONS

Data definition pseudo-instructions are used to define constant data for use by the program.
The defined data value is generated as the object code.
Area reserve pseudo-instructions are used to reserve the memory area for use by the program.

.

.

.

.

.

.

.

.

.

99

CHAPTER 4 PSEUDO-INSTRUCTIONS

DB define byte DB

(1) DB (define byte)

[Description Format]

Symbol column Mnemonic column Operand column Comment column

 [Label;] DB Formula Character string [, ...] [; comment]

[Function]

• Initializes the memory byte-wise using the initial value specified by the operand.

[Application]

• When the constants (numeric and character constants) for use by the program is defined byte-wise, DB
pseudo-instruction is described in the code segment.

[Description]

• The following two types of operands can be described as the initial value.

<1> Formula
The formula value is reserved as 8-bit data.
If the formula value is greater than 8 bits, lower 8 bits are secured as data and an error is printed.

<2> Character string
A 7-bit ASCII code is reserved for one character and ASCII codes proportional to the number of
characters are assigned sequentially for the memory.

• Up to a maximum of 16 operands divided using commas (,) can be described. If the operand is a character
string, up to a maximum of 80 characters can be described for one operand.

DB pseudo-instruction can be described only in the code segment (CSEG).

100

CHAPTER 4 PSEUDO-INSTRUCTIONS

DB define byte DB

[Usage Example]

NAME SAMP1

CSEG1 CSEG

DATA1 : DB 0A0H ; (1)

DATA2 : DB 0AFH-20H ; (2)

WORD1 : DB ‘ABCD’ ; (3)

WORD2 : DB 3*2, ‘X’, ‘V’ ; (4)

DATA3 : DB 132H ; (5)

END

(1) 1-byte area is initialized by 0A0H.

(2) 1-byte area is initialized by 0AFH to 20H, that is, 8FH.

(3) 4-byte area is initialized by character string ‘ABCD’.
The area is assigned for the memory using ASCII codes 41H, 42H, 43H and 44H.

(4) 3-byte area is initialized by 3*2, ‘X’ and ‘V’. The area is assigned for the memory using 06H, 58H and
56H.

(5) Because the number of bytes is greater than 1 byte, an error results.

.

.

.

101

CHAPTER 4 PSEUDO-INSTRUCTIONS

DS define storage DS

(2) DS (define storage)

[Description Format]

Symbol column Mnemonic column Operand column Comment column

 [Label;] DS Absolute formula [; comment]

[Function]

• Reserves the memory area proportional to the number of nibbles specified by the operand.

[Applications]

• DS pseudo-instruction is used to reserve the memory (RAM) area mainly for use by the program.

• If there is a label, the start address value of the reserved memory area is assigned for the label. In the source
module, memory operation description is done using the label.

[Description]

• The contents of the reserved area are indeterminate.

• When describing a name and a label for the operand, they must be described for the absolute term previously
defined in the source module.

• When a label is described in the symbol column, the label has the start address value of the reserved area.

• When the operand value is 0, no area is reserved.

102

CHAPTER 4 PSEUDO-INSTRUCTIONS

DS define storage DS

[Usage Example]

NAME SUB1

DSEG0 DSEG 1 AT 10H

WORK : DS 2 ; (1)

CSEG0 CSEG

MOV A,#5

MOV WORK.A

MOV WORK+1,A

MOV WORK1,A ; (2)

WORK1 : DS 2 ; (3)

END

(1) 2-nibble work area is reserved. The reserved areacontents are indeterminate. Label ‘WORK’
is assigned for the start address.

(2) Because the operand symbol ‘WORK1’ has already been defined for (3) following this
instruction, an error results.

.

.

.

103

CHAPTER 4 PSEUDO-INSTRUCTIONS

STKLN stack length STKLN

(3) STKLN (stack length)

[Description Format]

Symbol column Mnemonic column Operand column Comment column

None STKLN Absolute formula [; comment]

[Function]

The area proportional to the nibble specified by the operand from the start address of the stack area indicated
by reserved word ‘STACK’ is reserved as the stack area (thus, this is a pseudo-instruction which becomes valid
only when SP is set using the reserved word ‘STACK’). This pseudo-instruction reserves the stack area only in the
module where it is described.

[Application]

• STKLN pseudo-instruction is used to reserve the stack area for use by the program.

[Description]

• The reserved area contents are indeterminate.

• STKLN pseudo-instruction can be described anywhere in the source program.

• Only the predefined labels or names can be described for the operands.

• STKLN pseudo-instruction becomes valid only when a value is set to the stack pointer using the reserved
word STACK in the source program.

Use the following procedure to set the value to the stack pointer.

In the 75X Series/75XL Series, the addresses 0 to 0FFH in the data memory are the stack area, and there are
some devices that also have the stack area at addresses except 0 to 0FFH. However, the stack pointer can
only be set at addresses 0 to 0FFH for assembler package. The 8-bit register which holds the start address
information of the STACK area is mapped as a stack pointer ataddress 0F80H of the data memory. It has
thespecific address name code ‘SP’. Since the SPcontents are indeterminate by the RES signal generation,
it must be initialized to the specified value at the beginning of the program. The following two methods are
available to set the value to the SP:

1) Method of specifying using the absolute address
2) Method of specifying using the reserved word ‘STACK’

Each method has the following advantages and disadvantages.

104

CHAPTER 4 PSEUDO-INSTRUCTIONS

STKLN stack length STKLN

1. Method of specifying using the absolute address
When specifying the stack pointer value using the absolute address, describe the source program as follows:

Example Stack pointer setting specifying the absolute address

;INITIALIZE SP

TEST CSEG

MOV XA, #00H

MOV SP,XA

As the stack pointer value is specified using the absolute address and assembled, the value can no longer be
changed. To change the stack pointer value, reassembly and relinkage operations are necessary after the source
program is revised.

For these reasons, if it is difficult to determine the stack pointer value, the following method should be used.
However, if the device has a stack area at addresses other than 0 to 0FFH in the data memory, specify the stack

pointer value with an absolute address.

2. Method of specifying using the reserved word ‘STACK’
Stack pointer setting using the reserved word ‘STACK’ is carried out in two stages with the assembler and the

linker.
To specify the stack pointer value with the reserved word ‘STACK’, describe the source program as follows:

Example Stack pointer setting using the reserved word ‘STACK’

;INITIALIZE SP

TEST CSEG

MOV XA, #STACK

MOV SP,XA

In this case, the reserved word ‘STACK’ value is determined upon linkage. In the stage of assembly, 00H is
supplied as the default value to ‘STACK’.

In other words, because the initial value of the stack pointer can be set freely in the linker stage if a value has
been set to the SP using the reserved word ‘STACK’, assembly is not required for changing the stack pointer. Thus,
if the stack pointer value cannot be determined after the program development has been just started, programming
using the reserved word ‘STACK’ is more efficient than SP specification using the absolute address.

Further, the reserved word STACK is closely related to the STKLN pseudo-instruction and linker stack option
used to reserve the stack area.

Addresses 0 to 0FFH of the data memory can be used not only as the stack area but also as the normal data
area. In this case, the data memory used as the data area should not overlap the data memory used as the stack
area. For that purpose, the linker can prevent the data and stack areas from overlapping using the assembler
information concerning to what extent the data memory space is used as the stack area. This function is carried
out by the STKLN pseudo-instruction of the assembler and the -SZ option of the linker.

These pseudo-instruction and link option judge the reserved word STACK value to be the SP start address. Thus,
when setting the value to the SP, it is necessary to describe using the reserved word STACK.

105

CHAPTER 4 PSEUDO-INSTRUCTIONS

STKLN stack length STKLN

[Usage Example]

Example STKLN pseudo-instructions of more than one module

<Module 1>

TEST1 CSEG

MOV XA, #STACK

MOV SP,XA

STKLN 12 ← 12-Nibble Stack Area
Reserved in This Module

END

<Module 2>

TEST2 CSEG ← No Stack Area
Reserved in This Module

DATA1 DSEG

END

<Module 3>

TEST3 CSEG

DATA2 DSEG

STKLN 20 ← 20-Nibble Stack Area
Reserved in This Module

END

One program is divided into three modules (modules 1 to 3). In module 1, the value is set to the stack pointer
using the reserved word ‘STACK’ and the depth of the STACK area used in the module 1 is declared by the STKLN
pseudo-instruction.

In module 2 where the stack area is not used, the STKLN pseudo-instruction is not used.
In module 3, the depth of the STACK area used in the module is declared by the STKLN pseudo-instruction.
When these three modules are linked by the linker, the most significant address of the stack area is indicated

by ‘STACK’ and 12 nibbles declared in module 1 and 20 nibbles declared in module 3 add up to 32 nibbles for the
stack area. However, the value of 32 nibbles may be greater than that required for the stack area by the program.
Thus, the -SZ option of the linker has been devised to adjust the size of the stack area for the entire program. For
details of the -SZ option, refer to 5.4.4 Description of Linker Option of the Manual for Operation.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

106

CHAPTER 4 PSEUDO-INSTRUCTIONS

STKLN stack length STKLN

Caution

When reserving or referring to the stack area using the STKLN pseudo-instruction and the reserved word
STACK, the stack area is set to memory bank 0 by the linker.

In the case of unit types having the stack area set to other than bank 0, set the memory bank value to be
used for the reserved word SBS and set the stack pointer (the offset value in the 8-bit bank) to the reserved
word SP. In this case, reserve the stack area using the DSEG pseudo-instruction. (The stack area cannot
be reserved over more than one memory bank.)

When the stack area is reserved using the DSEG pseudo-instruction, the stack pointer and the stack size
cannot be reset by the -SK and -SZ options upon linkage.

Example Setting the stack pointer to memory bank 2

 ;INITIALIZE SBS, SP

TEST CSEG

MOV A, #2

MOV SBS,A

MOV XA,#00H

MOV SP,XA

;

;STACK AREA

DI DSEG 2 AT 0

DS 100H

When setting the stack area to memory bank 0, the STKLN pseudo-instruction and the reserved word
STACK are effective irrespective of the unit types.

4.6 BRANCH INSTRUCTION AUTO SELECT PSEUDO-INSTRUCTIONS

Four 75X Series/75XL Series unconditional branch instructions are used to directly describe the branch
destination address as the operand. They are “BR $addr”, “BRCB !caddr”, “BR !addr” and “BRA !addr1”.

<1> “BR !addr1” is a 3-byte instruction which can be branched to all addresses.

<2> “BR !addr” is a 3-byte instruction which can be branched in the range of 0 to 3FFFH.

<3> “BRCB !caddr” is a 2-byte instruction which can be branched to the inside of the same block (4 Kbytes
of X000H to XFFFH) as where the BRCB instruction exists.

<4> “BR $addr” is a 1-byte instruction which can be branched in the range of (current program counter – 15)
to (current program counter + 16).

Therefore, to generate a program having a high memory efficiency, it is necessary to select the instruction
according to the branch destination range although considering the branch destination range when describing the
branch instruction is extremely troublesome.

Under these circumstances, pseudo-instructions have been devised to select the branch instruction enabling
the assembler to automatically select the branch instruction having a minimum number of bytes according to
the branch destination range. They are branch instruction auto select pseudo-instructions.

107

CHAPTER 4 PSEUDO-INSTRUCTIONS

BR branch BR

(1) BR (branch)

[Description Format]

Symbol column Mnemonic column Operand column Comment column

 [Label :] BR Formula [; comment]

[Function]

• The assembler automatically selects the branch instruction having a minimum number of bytes according to
the formula value range specified by the operand and generates the corresponding object code.

This function is called optimization.

[Applications]

• It is troublesome to take into account the branch destination range when describing the branch instruction.
Thus, if it is difficult to select the describable branch instruction, use the BR pseudo-instruction.

• When the describable branch instruction is clearly identifiable, describe the corresponding instruction. This
helps to decrease the assembly time as compared to when describing the BR pseudo-instruction.

[Description]

• This pseudo-instruction can only be used in the code segment.

• Only ‘CODE’ and ‘NUMBER’ symbol attributes can be described in the formula.

• The assembler can optimize the BR pseudo-instruction only when a symbol having CODE attribute (including
the label defined using colon ‘:’ in the source program code segment) is described for the operand.

• When the NUMBER attribute symbol (the symbol with the absolute value assigned using EQU pseudo-
instruction) or the absolute value is described for the operand, this instruction is replaced with a 3-byte
instructionNote.

• In the case of unit types having no 3-byte instructions, the BR pseudo-instruction is replaced with 2-byte
instruction “BRCB !caddr”.

Refer to the name and label using the methods listed in Table 4-5. Name and Label Reference Methods.

Note When the ROM size is 16 KB or less ... “BR !addr”
When the ROM size is more than 16 KB ... “BRA !addr1”

108

CHAPTER 4 PSEUDO-INSTRUCTIONS

BR branch BR

Table 4-5. Name and Label Reference Methods

Item Reference No. Method Description

1 Backward The name and label referred to as reference the operand have been defined in the
precedingsource module.

2 Forward The name and label referred to as reference the operand have been defined in the subsequent
source module.

<Source Module>

NAME TEST

CSEG

L1 :

BR L1

BR L2

L2 :

END

.

.

.

.

.

.

Backward

Reference

Forward

Reference

Summary of optimization procedure is shown below.

Table 4-6. Optimization Procedure

Either branch
source or
destination is a
relocatable
segment

INBLOCK
attribute
INBLOCKA
attribute IENT
attribute SENT
attribute
Absolute

Backward
reference

Forward
reference

ROM size
is 4 KB or
less

ROM size
is 4 KB or
more

BRCB !caddr

BRCB !caddr

 XBLOCK attribute
XBLOCKA attribute

Both branch source and
destination are absolute
segments

Branch
Destination

No branch

In the range from $ –15 to $
+16

BR $addr

Outside the
range from
$ –15 to $ +16

Inside the
block

Outside
the block

BRA !addr1 (ROM size is more than 16K)
BR !addr (ROM size is 16K or less)

Inside Segment Outside Segment

109

CHAPTER 4 PSEUDO-INSTRUCTIONS

BR branch BR

The assembler executes optimization as follows:

Branch
to outside the
segement?

NO

NO

YES

Is
the branch

source or destination
relocatable?

YES

YES

Forward
reference?

NO

Branch
to in the range from

$ –15 to $ +16?

YES

NO

Outside
the block?

YES

NO

XBLOCK
attribute or XBLOCKA

attribute?

YES

NO
Is

ROM size more
than 4K?

YES

NO

YES

NO

Is
ROM size more

than 16K?

3-byte branch
instruction
BRA !addr1

3-byte branch
instruction
BR !addr

2-byte branch
instruction
BRCB !caddr

1-byte branch
instruction
BR Saddr

Branch pseudo-

instruction BR addr

110

CHAPTER 4 PSEUDO-INSTRUCTIONS

BR branch BR

Caution

• BR pseudo-instruction jumps to itself (BR $, LBL: BR LBL, etc.), the assembler generates
the code of 2-byte BRCB instruction (1-byte relative branch instruction cannot branch to itself).

If the BR pseudo-instruction is described on the block boundary (XFFEH, XFFFH), the generated BRCB
instruction can refer to itself beyond the block boundary. Thus, an error results in this case.

• If the BR pseudo-instruction is located on the block boundary (XFFFH), (PHASE ERROR) may occur on the
subsequent label definition lines.

Do not describe the BR pseudo-instruction on the block boundary.

Example When BR pseudo-instruction is located at a block boundary

ADRS OBJECT SOURCE STATEMENT

0100 C1 CSEG AT 100H

0FFE 5020 BR FORWARD

1000 60 LBL: NOP

* * * ERROR #100 PHASE ERROR ← 3-byte branch changed to 2-byte
branch because the instruction is
located on the block boundary (LBL

101F 60 FORWARD : NOP should have been located at
address 1001)

• If available branch instructions vary among some devices of the same subseries of the 75X Series (due to
ROM size differences, for example) do not use the BR directive.

Example µPD75116H (ROM 16 Kbytes) · · · “BR !addr” (“BRA !addr1” is unavailable.)
µPD75P117H (ROM 24 Kbytes) · · · “BRA !addr1”

Assume that the µPD75P117H is the target device. In this condition, if the program is assembled after a BR
directive is described, the code for “BRA !addr1” will be created. Then, if the ROM size of the µPD75P117H
has been set to 16 Kbytes with the stack bank select register (SBS), the program does not run correctly with
actual applications although it runs with “BRA !addr1” in an in-circuit emulator seemingly without problem
(With “BR !addr”, it runs correctly).

.

.

.

.

.

.

.

.

.

.

.

.

111

CHAPTER 4 PSEUDO-INSTRUCTIONS

BR branch BR

 [Usage Example]

C0 CSEG INBLOCK ;

LABEL : NOP ; LABEL is the CODE attribute symbol.

NUM EQU 100H ; NUM is the NUMBER attribute symbol.

BR LABEL ; Optimization is executed.
(CODE attribute symbol)

BR NUM ; No optimization is executed.
(NUMBER attribute symbol)

BR 100H ; No optimization is executed.
(Operand has absolute value.)

112

CHAPTER 4 PSEUDO-INSTRUCTIONS

4.7 VECTOR ENTRY TABLE DEFINITION PSEUDO-INSTRUCTIONS

When carrying out interrupt servicing, the interrupt start address is set to the vector table corresponding to each
vectored interrupt.

Programming can be carried out efficiently by specifying the memory bank, register bank or the symbol indicating
the interrupt service start address to the vector table.

This also applies to high-speed interrupt service.

Caution

The interrupt start address to be set to the vector table has 14 bits. Thus, segments located at and after
4000H cannot be set as the interrupt start address.

113

CHAPTER 4 PSEUDO-INSTRUCTIONS

.

.

.

.

.

.

VENTn vector entry table VENTn

(1) VENTn (vector entry table)

[Description Format]

Symbol column Mnemonic column Operand column Comment column

 0 0
None VENTn MBE = , RBE = , [; comment]

 1 1
Start address

n = 0 Address
n = 1 Address 2
n = 2 Address 4

 n: Number 0 to 7

n = 7 Address 14

Depending on the assembled unit type, 0 to 7 numbers may not be used or the RBE may not be incorporated.
For details, refer to APPENDIX A LIST OF ASSEMBLED RELEVANT UNIT DEVICE.

[Function]

• The 75X Series/75XL Series has the vector table to set the interrupt start address corresponding to each
vectored interrupt at addresses 0H to 0FH of the program memory.

In this area the area with a total of 16 bits of the memory bank enable flag (MBE), register bank enable flag
(RBE) and the entry address is automatically reserved.

This function is done by the VENTn pseudo-instruction. For details of the entry address area, refer to
Figure 4-4. VENTn Pseudo-Instruction and Program Memory.

[Application]

• This instruction is defined when the vector entry table is used.

[Description]

• Since the VENTn pseudo-instruction is used to define the information inevitable to start the program, it must
be described before all mnemonics, segment definition pseudo-instruction and area reserve pseudo-
instruction.

• Start address information in particular upon internal reset at addresses 0H and 1H is necessary for any
program. These two addresses are defined by the VENT0 pseudo-instruction. In addition, the VENTn pseudo-
instruction can be used as a normal program memory.

• Usable vectored interrupts differ partly depending on the assembled unit type.

Thus, describable VENTn pseudo-instructions also differ depending on the assembled unit type. For details,
refer to APPENDIX A LIST OF ASSEMBLED RELEVANT UNIT DEVICE.

114

CHAPTER 4 PSEUDO-INSTRUCTIONS

≈ ≈

[Usage Example]

VENT0 MBE=0, RBE=0, START Located at 0H.

VENT2 MBE=1, RBE=1, SUBI Located at 4H.

CI CSEG

START : BR SUB3

BR SUB4

END

.

.

.

.

.

.

VENTn vector entry table VENTn

• Memory banks and register banks are not incorporated depending on the assembled unit type. In the case
of those types, be sure to set 0 to MBE and RBE.

• When a list converter is used, the VENTn pseudo-instruction must be described in capitals from the 9th column
of the source program (the VENTn code is not changed by the list converter).

• The interrupt start address must be in the range from 0H to 3FFFH.

Figure 4-4. VENTn Pseudo-Instruction and Program Memory

 Address
7 6 0

0000H MBE RBE Internal Reset Start Address (upper 6 bits) ... VENT0

Internal Reset Start Address (lower 8 bits)

0002H MBE REB INTBT/INT4 Start Address (upper 6 bits) ... VENT1

INTBT/INT4 Start Address (lower 8 bits)

0004H MBE RBE INT0 Start Address (upper 6 bits) ... VENT2

INT0 Start Address (lower 8 bits)

0006H MBE RBE INT1 Start Address (upper 6 bits) ... VENT3

INT1 Start Address (lower 8 bits)

0008H MBE RBE INTSIO Start Address (upper 6 bits) ... VENT4

INTSIO Start Address (lower 8 bits)

000AH MBE RBE INTT0 Start Address (upper 6 bits) ... VENT5

INTT0 Start Address (lower 8 bits)

000CH MBE RBE INTTPG Start Address (upper 6 bits) ... VENT6

INTTPG Stat Address (lower 8 bits)

000EH MBE RBE INTKS Start Address (upper 6 bits) ... VENT7

INTKS Start Address (lower 8 bits)

115

CHAPTER 4 PSEUDO-INSTRUCTIONS

4.8 GETI INSTRUCTION TABLE DEFINITION PSEUDO-INSTRUCTIONS

The GETI instruction can convert the following four types of instructions into 1-byte instructions.
• Subroutine call instruction in the range of 0 to 3FFFH

• Branch instruction to the range of 0 to 3FFFH

• Any 2-byte, 2-machine cycle instruction (except BRCB and CALLF instructions)

• Combination of two 1-byte instructions

The number of bytes can be decreased and programs with high memory efficiency can be generated by
converting frequently used instructions using the GETI instruction.

116

CHAPTER 4 PSEUDO-INSTRUCTIONS

TCALL table call TCALL

(1) TCALL (table call)

[Description Format]

Symbol column Mnemonic column Operand column Comment column

 [Label:] TCALL Call address [; comment]

[Function]

• The necessary data is reserved to execute the call instruction by the GETI instruction.

[Application]

• When it is desired to execute 2 or 3-byte call instructions “CALLF !faddr” and “CALL !addr” to within 16 KB with
1 byte using the GETI instruction, the TCALL pseudo-instruction is described in the GETI instruction table (20H
to 7FH).

[Description]

• TCALL pseudo-instruction is used to reserve GETI instruction data corresponding to the call instruction.

• In the source program, the GETI instruction is described in place of a 2 or 3-byte call instruction and the defined
address of the corresponding TCALL pseudo-instruction is described in the operand column.

• The call address must be in the range of 0 to 3FFFH.

Cautions

1. TCALL pseudo-instruction is a code segment and can only be described with the following relocation
attributes.

<1> IENT attribute

<2> AT attribute with the location counter at an even address in the range of 20H to 7FH

2. Do not describe “CALL !addr” and “CALLF !faddr” in the GETI instruction table (20H to 7FH).

3. Call instruction “CALLA !addr1” to within 64 KB cannot be executed by the GETI instruction.

[Usage Example]

C2 CSEG IENT

S1: TCALL SUB1 ← Actual Call Address

S2: TCALL SUB2

C22 CSEG

GETI S1

GETI S2

117

CHAPTER 4 PSEUDO-INSTRUCTIONS

TBR table branch TBR

(2) TBR (table branch)

[Description Format]

Symbol column Mnemonic column Operand column Comment column

 [Label:] TBR Branch address [; comment]

[Function]

• The necessary data is reserved to execute the branch instruction by the GETI instruction.

[Application]

• When it is desired to execute 2 or 3-byte branch instructions “BRCB !caddr” and “BR !addr” to within 16 KB
with 1 byte using the GETI instruction, the TBR pseudo-instruction is described in the GETI instruction table
(20H to 7FH).

[Description]

• TBR pseudo-instruction is used to reserve GETI instruction data corresponding to the branch instruction.

• In the source program, the GETI instruction is described in place of a 2 or 3-byte branch instruction and the
defined address of the corresponding TBR pseudo-instruction is described in the operand column.

• The branch address must be in the range of 0 to 3FFFH.

Cautions

1. TBR pseudo-instruction is a code segment and can only be described within the following relocation
attributes.

<1> IENT attribute

<2> AT attribute with the location counter at an even address in the range of 20H to 7FH

2. Do not describe “BR !addr” and “BRCB !caddr” in the GETI instruction table (20H to 7FH).

3. Branch instruction “BRA !addr1” to within 64 KB cannot be executed by the GETI instruction.

[Usage Example]

C3 CSEG IENT

BSUB3: TBR SUB3 ← Actual Branch Address

C33 CSEG

GETI BSUB3

118

CHAPTER 4 PSEUDO-INSTRUCTIONS

4.9 ASSEMBLY END PSEUDO-INSTRUCTION

The assembly end pseudo-instruction instructs the assembler to end the source module. This pseudo-instruction
is always described at the end of the source module.

119

CHAPTER 4 PSEUDO-INSTRUCTIONS

END end END

(1) END (end)

[Description Format]

Symbol column Mnemonic column Operand column Comment column

None END None [; comment]

[Function]

• The end of the source module is declared to the assembler.

[Application]

• The END pseudo-instruction is described at the end of the source module.

[Description]

• The assembler assembles the source modules until the END pseudo-instruction appears.

[Usage Example]

NAME SUB

DSEG

CSEG

END ; (1)

(1) The END pseudo-instruction is described at the end of the source module.

.

.

.

.

.

.

[MEMO]

120

CHAPTER 5 MACRO

In this chapter, how to use the macro function will be described. This function is useful if a source program needs
to include the same series of instructions repeatedly.

5.1 OUTLINE OF MACROS

The macro function is useful if the same series of instructions must be included in a source program repeatedly.
The concept of this function is that a part of the program, which users define as a macro body with the MACRO and
ENDM instructions, is copied to every location where the macro body is to be referenced.

A macro, different from a subroutine, is to be used to improve source program coding efficiency. The following
section summarizes the characteristics of subroutines and macros to clarify their appropriate usage.

(1) Subroutine
• A subroutine holds a series of instructions which will be executed many times when the program runs. The

assembler encodes it to machine code only once for each subroutine.

• To reference a subroutine, only a subroutine call instruction must be described (In many cases, instructions
that set arguments are also required before and after the reference). Therefore, effective use of subroutines
can lead to a high program memory utilization.

• Subroutines also contribute to the creation of structured programs if programmers define every processing
having a specific function as a subroutine whenever possible. (A structured program permits easy grasp of
the configuration of the program and facilitates program design.)

(2) Macro
• The basic concept of the macro function is to replace an instruction with a series of referenced instructions.

The instructions to be replaced must be enclosed with the MACRO and ENDM instructions. The instructions
so enclosed will be copied (developed and encoded) to the location of each referencing instruction.

• The assembler, when it detects a macro reference, develops the referenced macro body, while replacing the
tentative parameter in the macro body with the actual parameters at the time of referencing, and converts the
macro body into machine language.

• A macro can include parameters.
For example, assume that there are some instruction groups which do the same operation and differ only in
the data to be specified as operands. In this case, tentative parameters for the data should be assigned in
a macro definition section. Then, if macro names and actual parameters are prepared at the time of macro
referencing, plural instruction groups which differ from one another in a limited section only can be integrated
into a single macro.

In short, subroutines should be used to save the memory size and/or structure of a program, while macros should
be used to improve the coding efficiency.

121

122

CHAPTER 5 MACRO

5.2 MACRO TYPES

There are two macro types. This section outlines each type, and the details will be discussed in sections 5.4
through 5.9.

(1) Macro (MACRO)
A macro is referenced with its macro name which must have been predefined for the corresponding instruction

group. Parameters can also be provided at this time.

Figure 5-1. Concept of Macro

(2) Repeat macro (REPT, IRP, IRPC)
An instruction group which is declared as a macro will be developed at plural locations of the output file

repeatedly. A macro of this type is suited for instruction groups whose contents are almost the same except for very
small parts and that must be executed one after the other. In such case, specify the common part as a macro and
the differences as parameters. The macro will be developed to the specified locations while changing parameter
values at each development process.

Figure 5-2. Concept of Repeat Macro

ENDM

Macro Name MACRO
Tentative parameter series

Macro Name Actual
parameter
series

Output List FileSource Program File

IRP Actual parameter series

ENDM

Source Program File

Output List File

The number of macro development

processes is equal to the number

of actual parameters.

Instruction group

(macro body)

Instruction group

(macro body)

Instruction group

(macro body)

Instruction group

(macro body)

Instruction group

(macro body)

......

......

......

......

......

......

...

......

123

CHAPTER 5 MACRO

5.3 MACRO RULES

5.3.1 Macro Definition Rules

(1) Macro body
A macro body is the section enclosed with a MACRO, REPT, IRP, or IRPC instruction and an ENDM instruction.
A macro body may include any kind of text except a macro definition and LODM instruction. If the LODM

instruction is included in a macro body, the macro cannot be recognized as a macro.
When a MACRO instruction is detected, the lines after the MACRO line until the line preceding ENDM will be

treated as a macro body.

(2) Maximum number of macros and local symbols
Macro bodies and local symbols are stored in the memory area. The maximum number of macros and local

symbols that can be included in a source program, therefore, differs depending on the usable memory space.

(3) Redefinition of macro
If a macro name is defined which coincides with a macro name previously defined for a different macro, the macro

contents for the new macro name overwrite the previously defined macro contents.

(4) Nesting
Nesting is the state in which a jump section is inserted in another jump section. The following four types of nesting

are allowed within a macro.

Nesting to another macro: A macro body includes a macro referencing instruction.
Nesting of repeated macros: A repeated macro is described in the macro body of another repeated macro.
Nesting of include files: A $INCLUDE instruction is described in an include file.
Nesting of $IF blocks: A $IF instruction is described in the $IF block.

The maximum nesting level is 32, including the $IF, $SWITCH, and $INCLUDE instructions. However, nesting
of $INCLUDE statements may be limited by the maximum number of files that can be opened on the operating
system used.

If the nesting level becomes higher than level 32, the assembler aborts the development for higher-level nesting
macros and proceeds with the line that follows, displaying “nest overflow”.

The maximum macro reflexive call level is also 32. If a nest overflow occurs, the assembler aborts the reflexive
call macro and proceeds with the next line.

Caution Depending on the macro body definition size, the maximum nestable level may be less than
32.

124

CHAPTER 5 MACRO

(5) Tentative parameters
For the macros defined with the MACRO instruction or the repeated macros, parameters can be given when the

macro is developed.
To do so, a tentative parameter must be described, when the macro is defined, to the location in the macro body

where the actual parameter needs to be replaced. The actual parameter must be specified for the tentative
parameter as an operand of the macro referencing instruction.

The tentative parameter SET definition is not allowed.
A tentative parameter can be combined with a character string with an ampersand “&” as shown below.

BR LOOP & PRM1 → BR LOOP2 Tentative parameter : PRM1
Actual parameter : 2

This “&” will be ignored when the macro is developed. If “&” needs to be used for other purposes, describe “&&”
to prevent misinterpretation.

Reserved words, predefined macro names, and predefined SET symbols must not be used as tentative
parameter names. If such names are used, the macro will not be recognized as a macro and an error message
will be displayed.

Predefined tentative parameter names written in comment lines will not be recognized as tentative parameters.

(6) Tentative parameter list
A tentative parameter used in a macro body must be declared in the MACRO instruction operand column. This

operand description is called tentative parameter list. One or more symbols can be written in a tentative parameter
list if they fit within the same line.

Each symbol must be separated from other symbols with a comma. If there are errors in the description of
tentative parameters, the corresponding macros will not be registered.

125

CHAPTER 5 MACRO

5.3.2 Macro Reference Rules

A macro which is defined with the MACRO instruction is referenced by its macro name; a repeated macro is
referenced when the definition is completed, that is, when an ENDM is executed.

(1) Actual parameter
Items (a) through (e) below can be described as actual parameters that are used when a macro is referenced.
Note that use of reserved words as actual parameters is prohibited.
In the actual parameter list, parameters must be separated with commas (,). If there is a space character

before or after a comma (,), the space character is not regarded as part of the actual parameter name. A space
character that neither proceeds nor follows a comma is treated as part of the actual parameter name.

(a) Numeric constants
Binary, octal, decimal, hexadecimal constants can be used.

(b) Predetermined symbols
These symbols are those which have been defined with the SET pseudo instruction and the D option. For
the SET pseudo instruction, refer to 4.4 (2) “SET”. For the D option, refer to the Operation manual.

(c) Tentative parameters
If a macro referencing instruction is included in a macro definition section, actual parameters can be passed
between macros by describing the same tentative parameter in the macro referencing operand column.

(d) Character string
If a character string needs to be sent as an actual parameter, write the string as is or enclose it in quotation
marks (’).
The maximum number of characters in a string is 128 excluding the quotation marks at both ends. A single
quotation mark must not be included as part of an actual parameter. Therefore, if a quotation mark needs
to be used as part of a parameter name, write two quotation marks in a row. If a character string includes
characters whose ASCII codes are lower than 20H, an error message will be displayed and macro
referencing will not be executed.

(e) Formula
Formulae can also be used for actual-parameter specification, in which case, those which meet the formula
condition are retrieved and used as actual parameters.

(2) Macro development
A macro will be developed at the location (line) which references the macro.

126

CHAPTER 5 MACRO

5.4 OUTLINE OF MACRO INSTRUCTIONS

Various macros can be defined in the source program.
The following macro-related instructions are provided.

Table 5-1. List of Macro Instructions

Macro Instruction Type Macro Instruction

Macro definition instruction MACRO/EXITM/ENDM

External macro declare instruction LODM

Macro instruction Macro name

Repeat macro instruction REPT, IRP, IRPC

Global symbol declare instruction GLOBAL

5.5 MACRO DEFINITION INSTRUCTIONS

A macro definition instruction specifies an instruction group to be defined as a macro, and names it (defines a
macro name).

127

CHAPTER 5 MACRO

MACRO macro MACRO

(1) MACRO (macro)

[Description Format]

Symbol column Mnemonic column Operand column Comment column

Name MACRO [Tentative parameter list] [; comment]

[; comment]

<Macro body>

[; comment]

[Label:] ENDM [; comment]

Two or more tentative parameters can be specified by separating them with commas (,). These parameters
must fit within one line.

[Function]

• The statements, which are between the MACRO statement and the ENDM statement, are registered as a
macro, and what is specified in Name is assigned as the name of the macro. Once it is registered, the name
works as an instruction. To reference the registered macro, describe the macro name.

[Application]

• Define a frequently used series of statements in the source program as a macro. Then, describe the macro
name predefined for the macro (reference a macro) so that the corresponding macro body is developed.

[Description]

• The definition of a macro can be made anywhere in the source program unless it is later than a macro
referencing instruction or it is in the macro body section.

• A comment described in the MACRO statement line will not be registered as a macro body.

• If an error is included in a macro name—for example, no macro name is specified or the macro name specified
coincides with a reserved word—the macro corresponding to such macro name will not be registered.

• If a symbol is included in an ENDM statement, the section before that symbol is registered as the macro body.
Although describing a character string in the ENDM operand column causes an error, the corresponding macro
will be registered correctly.

128

CHAPTER 5 MACRO

EXITM exit from macro EXITM

(2) EXITM (exit from macro)

[Description Format]

Symbol column Mnemonic column Operand column Comment column

<MACRO instruction, Repeat macro (REPT, IRP, IRPC) instruction statements>

<Macro body>

EXITM [; comment]

<Macro body>

[Label:] ENDM [; comment]

[Function]

Macro development is aborted immediately when an EXITM instruction is detected during macro development.

[Application]

• This function is mainly used when the conditioned assemble (Refer to 6.4 Conditioned Assemble Control
Instruction) function is used in the macro body defined with the MACRO instruction.

• If plural conditioned assemble functions are used in combination in a macro body, exit from the macro forcibly,
or sections that should not be assembled may also be assembled. The EXITM instruction should be used in
such case.

[Description]

This instruction can be described only in a macro body. Describing this instruction anywhere except a macro
definition part causes an error.

If this instruction is detected during macro referencing, the macro development underway will be aborted and
the statement that follows the ENDM instruction will be processed next.

If the macro development underway is a nested one, only the macro development at the current level will be
aborted and the macro on the next lower level will be developed next.

If an EXITM instruction is detected during the macro body development for a repeat macro instruction, the macro
body development process will be aborted immediately, and the statement that follows the ENDM instruction will
be processed next. If the macro development is a nested one, processing moves on to the process on the next lower
level.

If a character other than a tab or space character precedes the word EXITM on an EXITM line, the EXITM
processing will be continued although an error occurs.

If a character string is described in the operand column, the EXITM processing will be continued although an error
occurs.

129

CHAPTER 5 MACRO

ENDM end macro ENDM

(3) ENDM (end macro)

[Description Format]

Symbol column Mnemonic column Operand column Comment column

<MACRO instruction, Repeat macro (REPT, IRP, IRPC) instruction statements>

[; comment]

<Macro body>

[; comment]

[Label:] ENDM [; comment]

[Function]

• This instruction declares the end of a macro definition.

[Application]

• The ENDM instruction must always be described at the end of a series of macro statements that follow a
MACRO, REPT, IRP, or IRPC instruction.

[Description]

• This instruction indicates completion of a macro body that began with a MACRO, REPT, IRP, or IRPC
instruction.

• In the case of a repeated macro, a macro development process starts immediately when an ENDM instruction
is detected.

• If a symbol is included in an ENDM statement, the section that precedes the symbol will be registered as a
macro body. Although describing a character string in the ENDM operand column causes an error, that macro
will be registered as it.

130

CHAPTER 5 MACRO

5.6 EXTERNAL MACRO DECLARE INSTRUCTION

The macros defined within the source program file are called internal macros. Apart from this, the macros which
are stored in separate files and are referenced from the source program file are called external macros. By preparing
general-purpose macros as external macros in separate files, these macros can be utilized from various source
programs.

To define a series of operations as an external macro, use the MACRO instruction. With one file, only one macro
can be defined. If there are two or more macros in a file, only the definition for the first macro is valid.

131

CHAPTER 5 MACRO

LODM load macro LODM

(1) LODM (load macro)

[Description Format]

Symbol column Mnemonic column Operand column Comment column

LODM External macro name [, ······] [; comment]

Two or more external macro names can be specified on the same line by separating them with commas (,).
These names must fit within one line.

[Function]

• This instruction enables the macro stored in a file to be referenced from the source program.

[Application]

• Use this instruction when a macro stored in a separate file needs to be referenced from the source program.

[Description]

• The LODM instruction declares external macros. To develop external macros, the macro must be referenced
by its name in the same way as the macros defined with the MACRO instruction. Because the mechanism is
the same as the macro definition with the MACRO instruction, an LODM instruction cannot be described in a
macro definition part. If it is described there, an error will occur and the LODM instruction will be invalidated.

• The file name for an external macro must be in the form “ExternalFileName.m”. Therefore, a reserved name
for macros cannot be used for the primary name of the file. In addition, the name of the MACRO instruction
for external macros must match the primary name.

• If there is an error in external macros, only illegal macros will be invalidated.

Remark When an external macro file is retrieved, the following directories are checked in that order.

(1) The directory that includes the source file
(2) The directory specified by the I option (The I option can specify up to eight paths.)
(3) The directory defined with the environment variable “MACLIB”

132

CHAPTER 5 MACRO

LODM load macro LODM

Caution

If MS-DOS™ or PC DOS™ is used, all file names must consist of eight characters or less. Therefore, even
if the S option is specified, the first eight characters of a macro name will be the external macro name to be
specified with the LODM instruction. For this reason, the macro referencing name and the macro definition
name both must consist of eight or less characters and must match for the beginning eight characters. If the
S option is not specified, the beginning eight characters are valid for both macro name definition and
referencing.

If the NCA option is specified, uppercase and lowercase characters are treated as different characters for
macro names, but not for LODM-specified external macro names. However, the macro referencing name must
match the macro definition name.

As for the S/NS option and CA/NCA option, refer to the Operation manual.

Example 1. Difference in definition between S option (extending valid symbol length from 8 to 31
characters) and NS option

Source program External macro content (ABCDEFGH.m) file

LODM ABCDEFGH ··· (1) ABCDEFGH MACRO P1, P2 ··· (3)

; MVI A, P1

ABCDEFGH_I 10H, 20H ··· (2) ADI A, P2

; ENDM

END

Remarks 1. If either the S option is not specified or the NS option is specified, external
macros are defined as and referenced with “ABCDEFGH”.

2. If the S option is specified, external macros are defined as “ABCDEFGH”.
Therefore, the external macro referencing will be invalid. (See (2) in the
illustration above.)

2. Difference in definition between NCA option (distinguishing uppercase and lowercase
characters) and CA option

Source program External macro content (ABCDEFGH.m) file

LODM ABCDEFGH ··· (1) ABCDEFGH MACRO P1, P2 ··· (3)

; MVI A, P1

abcdefgh 10H, 20H ··· (2) ADI A, P2

; ENDM

END

Remarks 1. If either the CA option is specified or the CA, NCA options are not specified,
external macros are defined and referenced.

2. If the NCA option is specified, external macros are defined as “ABCDEFGH”
with uppercase characters. Therefore, the external macro referencing will be
invalid. (See (2) in the illustration above.)

133

CHAPTER 5 MACRO

5.7 MACRO INSTRUCTION

This instruction calls predefined or declared macros and develops their contents.

134

CHAPTER 5 MACRO

macro instruction

(1) Macro Instruction

[Description Format]

Symbol column Mnemonic column Operand column Comment column

[Label [:]] Macro name [Actual parameter list] [; comment]

One or more actual parameters can be specified on the same line by separating them with commas (,).
These parameters must fit within one line.

[Function]

• This instruction references a predefined macro and develops its macro body while replacing the tentative
parameters (predefined when the macro is defined) with the actual parameters.

[Application]

• A macro instruction is used when referencing a macro body is required.

[Description]

• Describe a predefined reference macro name in the mnemonic column and actual parameters in the operand
column. A statement must be one line. Place commas (,) between parameters if there need to be two or
more parameters. The macro name must have been defined prior to the statement which includes a macro
reference in the source program, in either internal or external macro.

• If a character string is described in the symbol column, it is treated as the label for the macro name in the
mnemonic column. The macro name in the mnemonic column is used to reference a macro.

• The colon (:) at the end of a label can be omitted.

• If the number of actual parameters is smaller than the number of tentative parameters, null strings (zero-length
character string) are set for the tentative parameters that remained unfilled. Null strings are set also when some
actual parameters are omitted.

• If on the opposite, the number of actual parameters is larger than the number of tentative parameters, actual
parameters that do not have replacements are ignored. This does not cause an error.

• Incorrect description of the referenced macro name causes an error (Refer to the Operation manual).

• A space character before or after an actual parameter is ignored.

135

CHAPTER 5 MACRO

5.8 REPEAT MACRO INSTRUCTIONS

An instruction of this type repeatedly develops an instruction pattern upon declaration.
There are three instructions for this type as shown below.

• REPT instruction

• IRP instruction

• IRPC instruction

136

CHAPTER 5 MACRO

REPEAT repeat REPEAT

(1) REPT (repeat)

[Description Format]

Symbol column Mnemonic column Operand column Comment column

REPT Formula [; comment]

<Macro body>

[Label:] ENDM [; comment]

[Function]
• This instruction repeatedly develops a macro body by the number of times specified with the operand value.

The macro body will be developed at the location where the REPT instruction is defined.

[Application]

• This instruction, together with the ENDM instruction, is used in the source program to repeatedly describe a
series of statements in a row.

[Description]

• Describe a formula which determines the number of development times (less than or equal to 1023), in the
operand column. If the formula includes a symbol, set the value for the symbol with the SET instruction.

• If there is an undefined symbol in the formula, an error message will be displayed and the repeat macro
instruction will be skipped.

• If the formula value is over 1023, the assembler develops the macro body 1023 times and moves on to the next
processing while issuing an error message.

• If repetition of more than 1023 times is needed, nest the REPT processes.

• If the formula value is 0, the macro body will not be developed at all.

• Note that a macro body must not include any macro definition, LODM instruction, or INCLUDE instruction.

• In the macro body for a repeat macro instruction, other repeat macro instructions such as IRP and IRPC can
be defined if necessary. Also, reference statements for the macro can be included there.

• The maximum nesting level of repeated macros, but not limited to repeated macros, is 32, including nesting
of macro statement, INCLUDE statement, IF statement, and CASE statement. If the nesting level is over 32,
the assembler does not develop macros of over level 32 and issues an error message.

• In the list file, the value of the operand formula is displayed as a hexadecimal 4-digit number (XXXX) in the
STNO column.

137

CHAPTER 5 MACRO

IRP indefinite repeat IRP

(2) IRP (indefinite repeat)

[Description Format]

Symbol column Mnemonic column Operand column Comment column

IRP Tentative parameter, [Actual parameter list] [; comment]

<Macro body>

[Label:] ENDM [; comment]

One or more actual parameters can be specified on the same line by separating them with commas (,).
These parameters must fit within one line.

[Function]

• This instruction develops the macro body by the number of times equal to the number of actual parameters.
The tentative parameter in the macro body will be replaced with each actual parameter which is taken out one
by one from top to bottom in the actual parameter list specified here.

[Application]

• This instruction, together with the ENDM instruction, is used when it is required to describe in the source
program a series of statements only a limited numeral section of which is different.

[Description]

• If actual parameters are omitted, the assembler replaces the tentative parameter with a null string and
develops the macro body only once.

• If an error is included in the IRP operand description, the macro body will not be developed.

• In the macro body for a repeat macro instruction, other repeat macro instructions such as REPT and IRPC can
be defined if necessary. Also, reference statements for the macro can be included there.

• The maximum nesting level of repeat macros, but not limited to repeat macros, is 32, including nesting of macro
statement, INCLUDE statement, IF statement, and CASE statement. If the nesting level is over 32, the
assembler does not develop macros over level 32 and issues an error message.

138

CHAPTER 5 MACRO

IRPC indefinite repeat of character IRPC

(3) IRPC (indefinite repeat of character)

[Description Format]

Symbol column Mnemonic column Operand column Comment column

IRPC Tentative parameter, [Character string] [; comment]

<Macro body>

[Label:] ENDM [; comment]

Describe in the operand column a tentative parameter, a comma (,), and a character string. This all must fit
in one line. Note that the character string must not be enclosed with quotation marks. For this reason, do not
include in the character string a space character or semicolon (:).

[Function]

• This instruction, when a macro is developed, replaces the tentative parameter in the macro body with one
character in the character string specified in the operand column. The macro body will be developed by the
number of characters consisting of the character string, and the character for replacement shifts one by one
for each development.

[Application]

• This instruction, together with the ENDM instruction, is used when it is required to describe in the source
program a series of instructions only one character of which is different.

[Description]

• If actual parameters are omitted, the assembler replaces the tentative parameter with a null string (0-length
character string) and develops the macro body only once.

• If an error is included in the IRPC operand description, the macro body will not be developed.

• In the macro body for a repeat macro instruction, other repeat macro instructions such as REPT and IRPC can
be defined if necessary. Also, reference statements for the macro can be included there.

• The maximum nesting level of repeated macros, but not limited to repeated macros, is 32, including nesting
of macro statement, INCLUDE statement, IF statement, and CASE statement. If the nesting level is over 32,
the assembler does not develop macros over level 32 and issues an error message.

139

CHAPTER 5 MACRO

5.9 GLOBAL SYMBOL DECLARE INSTRUCTION

This instruction enables a symbol declared in the macro, which is called local symbol, to be referenced in other
processing as well as macro development.

140

CHAPTER 5 MACRO

GLOBAL global GLOBAL

(1) GLOBAL (global)

[Description Format]

Symbol column Mnemonic column Operand column Comment column

GLOBAL Symbol name [, ······] [; comment]

Two or more symbol names can be specified on the same line by separating them with commas (,). They must
fit within one line.

[Function]

Usually, a symbol defined in a macro is valid only once for the development of the macro body and is called local
symbol. However, there may be cases where the symbol needs to be used in other operations. A symbol that can
also be referenced is called global symbol. To change a local symbol into a global symbol, declare so with the
GLOBAL instruction. The symbol name specified in this instruction’s operand column will become a global symbol
after this instruction is executed.

For the valid range of symbols, refer to 3.3.3 Character Configuration Fields (1) Symbol Column [Valid
range of symbol in macro].

[Application]

By executing this instruction, a symbol which was defined in a macro and valid only at macro development can
be referenced in other processing.

[Description]

Unless otherwise declared, a macro treats a symbol as a local symbol. Therefore, to use it as a global symbol,
declaration is required with the GLOBAL instruction. There are two typical such cases.

• A macro needs to reference a SET symbol located outside the macro or to change the value.

• A macro includes both a jump instruction and its destination. The macro is referenced only once. The label
of the destination should not be modified.

The GLOBAL instruction can be described either within or outside a macro. If it is described in a macro, the
symbol will be globalized when the macro is referenced.

A global symbol must not coincide with any macro names previously defined. In addition, tentative parameters
in macro definition must not be declared as a global symbol.

If there is a character other than a tab or space before the word GLOBAL, a syntax error will be caused. Even
so, however, the GLOBAL instruction will be normally executed.

CHAPTER 6 CONTROL INSTRUCTIONS

In this chapter, the types and functions of control instructions which describe in the source program will be
described.

6.1 GENERAL DESCRIPTION OF CONTROL INSTRUCTIONS

Control instructions are used to instruct the assembler precisely on operations and are described in the source
program.

They are not used for object code creation.
The following control instructions are available.

Table 6-1. Control Instruction Table

Control Instruction Type Control Instruction

Include control instruction INCLUDE

Assembly list control instruction TITLE, LIST, NOLIST, EJECT

Conditional assemble control IFDEF/ELSE/ENDIF, IF/ELSE/ENDIF,
instruction SWITCH/CASE/BREAK/DEFAULT/ENDS

Like pseudo-instructions, the control instructions are described in the source program.

It is necessary to describe ‘$’ (dollar mark) in the 1st column.

$ [] control instruction

1st column

6.2 INCLUDE CONTROL INSTRUCTION

The include control instruction is used to cite another source module file in the source module.
The load required for source program description can be alleviated by using the include control instruction

efficiently.

141

142

CHAPTER 6 CONTROL INSTRUCTIONS

INCLUDE include INCLUDE

 (1) INCLUDE (include)

[Description Format]

$ [] INCLUDE = File name

$ [] IC = File name ; Abbreviated form

1st column

[Function]

• The specified file contents are inserted and expanded on the specified line onward.

[Application]

• A series of relatively large statements to be described commonly in two or more source modules is arranged
into one file (include file).

When it becomes necessary to cite the series of statements in each source module, the required include file
name is specified by the INCLUDE control instruction.

This alleviates source module description work.

[Description]

• Dollar mark ($) is described in the 1st column.
Only one blank space or TAB code can be input to separate ‘$’ from ‘INCLUDE’.

• When the file name is specified, the path name (drive name and directory name) where the include file is stored
can be specified. If the path name is omitted, the following paths are searched for in this order as the candidates
of the paths where the include file has been stored.

<1> Path where the source module file has been stored
<2> Path which has been specified by the -I option (refer to the Operation Manual) upon assembler startup
<3> Path which has been specified by environment variable “INC75X”

Since the details depend on the OS, refer to the Operation Manual.

• Include file nesting is possible at only thirty two levels (the nesting means the specification of another include
file in the include file).

• When the END pseudo-instruction is described in the include file, assembly is stopped. Thus, do not normally
describe the END pseudo-instruction in the include file.

143

CHAPTER 6 CONTROL INSTRUCTIONS

INCLUDE include INCLUDE

Example

<Source Program> <Include File>

EQU.INC

NAME SAMPLE SYMA EQU 10H

EXTRN L1, L2 SYMB EQU 20H

PUBLIC L3

$ INCLUDE=EQU.INC :(1) SYMZ EQU 100H

CSEG

END

(1) ‘EQU.INC’ has been specified as the include file. If this source program is assembled, the include file
contents will be expanded as follows.

NAME SAMPLE

EXTRN L1, L2

PUBLIC L3

$ INCLUDE=EQU.INC :(1)

SYMA EQU 10H

SYMB EQU 20H

SYMZ EQU 100H

CSEG

END

6.3 ASSEMBLY LIST CONTROL INSTRUCTIONS

Assembly list control instructions are used to provide instructions preventing title or list output with
respect to the assembly list generated by the assembler.

They are NOLIST, LIST, TITLE and EJECT control instructions.

...

...

...

...

The contents of include file
‘EQU.INC’ have been expanded.

144

CHAPTER 6 CONTROL INSTRUCTIONS

TITLE title TITLE

(1) TITLE (title)

[Description Format]

$ [] TITLE = ‘Character string’

$ [] TT = ‘Character string’ ; Abbreviated form

1st column

[Function]

• The TITLE pseudo-instruction specifies the character string to be printed in the title part of the assembly list
header.

[Applications]

• This pseudo-instruction is specified to display in the assembly list the title which clearly indicates the assembly
list contents.

• The assembly list contents can be at a glance by printing the title on each page.

[Description]

• Up to a maximum of 60 characters are valid in a character sting. The 61st and subsequent characters are
omitted.

• When the TITLE control instruction is specified, the list undergoes line feed and the character string specified
by the TITLE control instruction is printed on the page after line feed.

• If the TITLE control instruction is not specified, the assembly list title column will be left blank.

145

CHAPTER 6 CONTROL INSTRUCTIONS

TITLE title TITLE

[Usage Example]

Example

<Source Module>

<Page is turned.>

.

.

.

75X SERIES ASSEMBLER...

PAGE:2

∗ ∗ X X X X ROUTINE ∗ ∗

$ TITLE=‘x x x x ROUTINE’

.

.

.

.

.

.

.

.

.

$ TITLE=‘x x x x ROUTINE’

The assembly list is as follows:

.

.

.

146

CHAPTER 6 CONTROL INSTRUCTIONS

NOLIST no list NOLIST

(2) NOLIST (no list)

[Description Format]

$ [] NOLIST

$ [] NOLI ; Abbreviated form

1st column

[Functions]

• The NOLIST control instruction instructs the assembler on the assembly list output stop position.

• The statements generated between NOLIST control instruction and the next LIST control instruction are
assembled but they are not output in the assembly list.

[Application]

• The NOLIST control instruction is used to limit the list output volume.

[Description]

• When the NOLIST control instruction is described, the dollar mark ($) is described in the 1st column.
Only one blank space or TAB code can be input to separate ‘$’ from ‘NOLIST’.

• The NOLIST control instruction is intended to stop the assembly list output, not to stop the assembly operation.

• If the LIST control instruction is specified after the NOLIST control instruction, the statements generated after
the specified LIST control instruction will be output in the assembly list again.

• If the NOLIST control instruction is omitted, the LIST control instruction is regarded as having been specified.

• When a list converter is used, describing the NOLIST control instruction will prevent the list from being
converted correctly.

147

CHAPTER 6 CONTROL INSTRUCTIONS

NAME SAMP1

$ NOLIST ; (a)

D1 EQU 10H

D2 EQU 11H

D20 EQU 20H

$ LIST ; (b)

CSEG

END

No output in the assembly list.
.
.
.

.

.

.

(a) Since the NOLIST control instruction has been specified, statements generated up to (b) LIST pseudo-
instruction will not be output in the assembly list. The NOLIST control instruction itself is output.

(b) Since the LIST control instruction has been specified, subsequent statements will be output in the
assembly list again. The LIST control instruction itself is not output.

NOLIST no list NOLIST

 [Usage Example]

148

CHAPTER 6 CONTROL INSTRUCTIONS

LIST list LIST

(3) LIST (list)

[Description Format]

$ [] LIST

$ [] LI ; Abbreviated form

1st column

[Function]

• The LIST control instruction instructs the assembler on the assembly list output start position.

[Application]

• The LIST control instruction is used to reset the assembly list output stop state specified by the NOLIST control
instruction to the assembly list output state.

The assembly list output volume and print contents can be controlled by using the NOLIST and LIST control
instructions in pairs.

[Description]

• When the LIST control instruction is described, the dollar mark ($) is described in the 1st column. Only one
blank space or TAB code can be input to separate ‘$’ from ‘LIST’.

• If the LIST control instruction has been specified after the NOLIST control instruction, the line with
the specified LIST control instruction onward will be output in the assembly list. The described LIST
control instruction itself is not output in the assembly list.

[Usage Example]

• Refer to the usage example of NOLIST control instruction.

149

CHAPTER 6 CONTROL INSTRUCTIONS

EJECT eject EJECT

(4) EJECT (eject)

[Description Format]

$ [] EJECT

$ [] EJ ; Abbreviated form

1st column

[Function]

• The EJECT control instruction instructs the assembler to turn the assembly list page.

[Application]

• This instruction is described at a position where the page should be turned in the source module.

[Description]

• When the EJECT control instruction is described, the dollar mark ($) is described in the 1st column.
Only one blank space or TAB code can be input to separate ‘$’ from ‘EJECT’.

• The image of the EJECT control instruction itself is printed on the previous page.

150

CHAPTER 6 CONTROL INSTRUCTIONS

EJECT eject EJECT

[Usage Example]

 <Source Module>

MOV A, #1H

BR $

$ EJECT ;(a)

CSEG

END

(a) The page is turned by the EJECT control instruction and the assembly list becomes as follows.

MOV A, #1H

BR $

$ EJECT

CSEG

END

...

...

...

...

- ← Page is turned.

151

CHAPTER 6 CONTROL INSTRUCTIONS

6.4 CONDITIONAL ASSEMBLE CONTROL INSTRUCTIONS

The conditional assemble control instructions are used to change the switch setting of the conditional assemble
to select whether a series of statements in the source module are or are not to be assembled.

Conditional assemble control instructions include the IFDEF/ELSE/ENDIF control instruction, IF/ELSE/ENDIF
control instruction, and SWITCH/CASE/BREAK/DEFAULT/ENDS control instruction.

Efficient use of these instructions enables to assemble only the necessary statements in the program selectively,
without modifying almost all sections in the source module.

152

CHAPTER 6 CONTROL INSTRUCTIONS

IFDEF if defined IFDEF

(1) IFDEF (if defined)

[Description Format]

$ [] IFDEF Symbol

<THEN clause>

[$ [] ELSE

<ELSE clause>]

$ [] ENDIF

[Functions]

• The clause to be assembled, THEN or ELSE clause, is determined according to the symbol definition status.

• If a symbol is defined, the instruction described in the THEN clause will be assembled.

• If no symbol is defined, the instructions described in the ELSE clause will be assembled. If no ELSE statement
line is described, the ENDIF statement will be processed next.

[Application]

• This instruction allows to modify the source statements that need to be assembled, without greatly changing
the source module.

• The debug-purpose statements in the source module, which are used only during the program development
stage, can be included in or excluded from the target program to be encoded to the machine code, according
to the switch setting of the conditional assemble.

[Description]

• Be sure to locate the IFDEF statement and ENDIF statement at the same level and pair them up. In addition,
the IFDEF and ENDIF statements must not be intervened by any unpaired the SWITCH and END statements,
a macro definition section, or a repeated macro.

• Describing an ENDIF statement and omitting an ELSE statement, or vice versa, causes an error.

153

CHAPTER 6 CONTROL INSTRUCTIONS

IF if IF

(2) IF (if)

[Description Format]

$ [] IF Formula

<THEN clause>

[$ [] ELSE

<ELSE clause>]

$ [] ENDIF

[Functions]

• The clause to be assembled, THEN or ELSE clause, is determined according to the formula value.

• If the value is true (= other than 0), the instructions described in the THEN clause will be assembled.

• If the value is false (= 0), the instructions described in the ELSE clause will be assembled. If no ELSE statement
is described, the ENDIF statement line will be processed next.

[Application]

• This instruction allows to modify the source statements that need to be assembled, without greatly changing
the source module.

• The debug-purpose statements in the source module, which are used only during the program development
stage, can be included in or excluded from the target program to be encoded to the machine code, according
to the switch setting of the conditional assemble.

[Description]

• The value for the formula described in the operand column must be determined prior to the IF statement.

• If errors are included in the formula in the IF statement operand column, the ENDIF statement line will be
processed next.

• Be sure to locate the IF statement and ENDIF statement at the same level and pair them up. In addition, the
IF and ENDIF statements must not be intervened by any unpaired the SWITCH and END statements, a macro
definition section, or a repeated macro.

• Describing an ENDIF statement and omitting an ELSE statement, or vice versa, causes an error.

154

CHAPTER 6 CONTROL INSTRUCTIONS

SWITCH switch SWITCH

(3) SWITCH (switch)

[Description Format]

$ [] SWITCH Formula

$ [] CASE Numeric value:

[<Instruction group>]

[$ [] BREAK]

[$ [] CASE Numeric value:

[<Instruction group>]

$ [] BREAK]

[$ [] DEFAULT

[<Instruction group>]

$ [] BREAK]

$ [] ENDS

[Functions]

• This instruction calculates the formula in the SWITCH statement and jumps to the CASE label that matches
the calculation result. The statements preceding the label are skipped.

• A CASE label, DEFAULT label, or ENDCASE instruction that appears during the macro development process
will not be developed.

• At the end of the instruction group for one CASE or DEFAULT label, one BREAK statement is described.

If a BREAK statement appears during the macro development process, the statements preceding the ENDS
statement line will be skipped.

• As a label for when no matching CASE label is found, the DEFAULT label can be specified.

• If no matching CASE label is found, the statements preceding the DEFAULT or ENDS statement line will be
skipped.

• As the number that can be described in the CASE label, a binary, octal, decimal, or hexadecimal constant
between 0H and 0FFFFH is allowed.

[Application]

• This instruction allows to modify the source statements that need to be assembled, without greatly changing
the source module.

• The debug-purpose statements in the source module, which are used only during the program development
stage, can be included in or excluded from the target program to be encoded to the machine code, according
to the switch setting of the conditional assemble.

...

155

CHAPTER 6 CONTROL INSTRUCTIONS

SWITCH switch SWITCH

[Description]

• The instruction described in the CASE label line will not be developed.

• The value for the formula described in the operand column must be determined prior to the SWITCH statement.

• If errors are included in the formula in the SWITCH statement operand column, the ENDS statement line will
be processed next.

• Be sure to locate the SWITCH statement and ENDS statement at the same level and pair them up. In addition,
the SWITCH and ENDS statements must not be intervened by any unpaired the IDEFF and ENDIF statements,
unpaired the IF and ENDIF statements, a macro definition section, or a repeated macro.

• Describing an ENDS statement only and omitting necessary counterpart statements causes an error. This also
applies to the BREAK statement, CASE label, and DEFAULT label.

• If a CASE label is described posterior to a DEFAULT label, the CASE label is omitted and the macro
development starts with the DEFAULT label.

• A CASE label must not include negative numeric values or formula.

• If two or more CASE labels with the same name are described, the one described earliest is enabled.

• If two or more CASE labels exist and one of them is not paired with a BREAK statement, an error is not caused
and the instructions preceding the instruction group that corresponds to the next CASE label will be developed.

Example

$ SWITCH P1

$ CASE 0 :

BR !labe10

$ CASE 1 :

BR !labe11

$ BREAK

$ CASE 2 :

BR !labe12

$ BREAK

$ ENDS

The example shown above will be developed as follows:

(1) If P1 = 2,

BR !labe12.

(2) If P1 = 1,

BR !labe11.

(3) If P1 = 0,

BR !labe10 and BR !labe11.

[MEMO]

156

CHAPTER 7 ASSEMBLER PACKAGE UTILIZATION

In this chapter, some methods of how to effectively use the assembler package will be introduced.

7.1 ASSEMBLER PACKAGE UTILIZATION

The product can be utilized in carrying out assembly operations using the assembler package.
Some of them are introduced below.

(1) Tabulation function
This function enables to facilitate source program generation and to make it easy to check the assembly list

generated by assembly operation.
‘HT’ code is inserted before the mnemonic column, at the beginning of the operand column and before the

semicolon (;) indicating the beginning of the comment column.
Insertion of the ‘HT’ code helps to make it easy to check each column of the source program and assembly list.

Label Column : Mnemonic Column Operand Column

‘HT’

(2) Assembler option specification
It is quite troublesome to specify the option on each command line upon assembler program startup. It is easier

to describe the necessary options in the parameter file.

Example 1. If the map list file is not to be generated, describe the -NKM and -NP options in the link parameter
file.

2. If the assembly list output is to be limited, use the NOLIST or LIST control instruction according
to requirements.

(3) Description for data definition
Description for data definition is made at the start of the module header.
For example, let us suppose that although the value frequently used in the program has been assigned for the

name by the EQU pseudo-instruction, it is now necessary to change the value for some reason.
In that case, all that must be done is to change the operand value of the name defined by the EQU pseudo-

instruction. If no name has been defined by the EQU pseudo-instruction, changing the name must be carried out
by looking for the name from the beginning to the end of the program.

‘HT’ ‘HT’

; Comment column

157

158

CHAPTER 7 ASSEMBLER PACKAGE UTILIZATION

(4) Comment description
If ‘what’ program has been generated by whom is described at the beginning of the source program, anyone can

check the program easily.
In the case of a general-purpose module, the program can be made easier-to-understand if ‘what’ data is input,

‘what’ data is output and where the data is stored upon completion of module processing.
If there are small processing groups in the program, it may be more helpful to insert comment for each processing

group.
A sample program is shown below.

$ TITLE = ‘A-D CONVERT’

$ XREF

; ∗∗∗
; ∗∗∗ A-D CONVERT PROGRAM ∗∗∗
; ∗∗∗ 1988/XX/XX ∗∗∗
; ∗∗∗ T.XXXX ∗∗∗
; ∗∗∗

Title and cross-reference

list output are specified.

Program contents and the

data of program generation

are described with

comment.

NAME AD_MAIN

EXTRN CODE (SIOSUB, ADCONV)

PUBLIC TDATA, SEL15

STKLN 10

VENT0 MBE = 1, RBE = 1, MAIN

VENT4 MBE = 1, RBE = 0, ADCONV

$ NOLIST

; ∗∗∗ DATA AREA ∗∗∗
SEG0 DSEG 1 AT 10H

TDATA1: DS 2

TDATA2: DS 2

TDATA3: DS 2

TDATA4: DS 2

TDATA5: DS 2

TDATA6: DS 2

TDATA7: DS 2

Assembly list from the next

line to $LIST is not output.

Assembly list from the next

line is output.$ LIST

; ∗∗∗ GETI TABLE ∗∗∗
SEG1 CSEG IENT

SEL15: SEL MB15

; ∗∗∗ MAIN ROUTINE ∗∗∗
SEG2 CSEG INBLOCK

MAIN; SEL RB1

GETI SEL15 ; STACK POINTER SET

MOV XA, #STACK ;

MOV SP, XA ;

MOV A, #0011B

MOV POC, A ; PCC ← 0011B

159

CHAPTER 7 ASSEMBLER PACKAGE UTILIZATION

; ∗∗ DATA RAM 0H-13FH ZERO CLEAR ∗∗

SEL MB1

MOV HL, #3FH

MOV XA, #00

LOOP1: MOV @HL, A ; 100H-13FH

DECS HL

BR LOOP1

SEL MB0

LOOP2 : MOV @HL, A ; 0H-FFH

DECS HL

BR LOOP2

; ∗∗ TIMER SET (SAMPLING TIME = 30MSEC, FXX = 4.19MHz) ∗∗

GETI SEL15 ; SEL MB15

MOV XA, #79H

MOV TMOD0, XA

MOV XA, #01001100B

MOV TM0, XA

EI

EI IET0

SEL MB1

LOOP3 : MOV XA, #0H

MOV B, #00H

LOOP4 : SKE B, #08H

BR LOOP4

CALL !HEIKIN

MOV TDATA, XA

CALL !SIOSUB

BR LOOP3

; ∗∗∗ HEIKIN (SAMPLE NUMBERS = 8) ∗∗∗
SEG3 CSEG SENT

HEIKIN: MOV C, #2H

LOOP5 : XCH A, X

CLR1 CY

RORC A

XCH A, X

RORC A

DECS C

BR LOOP5

RET

END

160

CHAPTER 7 ASSEMBLER PACKAGE UTILIZATION

7.2 RELOCATION ATTRIBUTES AND INSTRUCTIONS

This section describes the relations between the relocation attributes and some instructions.

7.2.1 INBLOCK and INBLOCKA Attributes and Branch Instructions

In the case of the code segment with the INBLOCK attribute or the INBLOCKA attribute (referred to as
INBLOCK [A] herein after) specified as the relocation attribute, take note of the position where 2-byte branch
instruction “BRCB” is to be described as explained below.

The following four types of branch instructions are available for the 75X Series/75XL Series.

<1> 3-byte branch instruction “BRA !addr1” to the 16-bit absolute address

<2> 3-byte branch instruction “BR !addr” to the 14-bit absolute address

<3> 2-byte branch instruction “BRCB !caddr” to the inside of own block

<4> 1-byte branch instruction “BR $addr” to the 5-bit relative address

All branch instructions except <3> can be described anywhere in the program memory.
The <3> “BRCB !caddr” instruction can only be branched to the inside of the block indicated by the program

counter at the point when this instruction is executed. If this instruction is located on the block boundary (XFFEH
or XFFFH), the following unfavorable situation will result.

When the 75X Series/75XL Series executes the BRCB instruction, it checks the program counter value to
determine the branch destination. However, the program counter indicates a point 2 bytes ahead of the BRCB
instruction (that is, the next instruction to the BRCB instruction) at that point. In other words, the program counter
points to the inside of the next block adjacent to the block where the BRCB instruction exists. Thus, the BRCB
instruction branches to the inside of the next block instead of its own block.

If such a situation can be detected by the assembler, no problem will occur. However, it cannot be checked in
the case of a relocatable code segment because the last location address is not determined in the assembly stage.
The situation can only be checked in the linkage stage. For this reason, if the BRCB instruction is located on the
block boundary, the linker will generate an error. If this error is overlooked, the program will not operate correctly.

It should be noted, however, that the BRCB instruction may only be located on the block boundary in the
INBLOCK [A] attribute code segment when this instruction is described at the end of the code segment. This is
because the INBLOCK [A] attribute code segment has a maximum possible length limited by the block size and the
BRCB instruction not at the end of the segment cannot be located on the block boundary. Accordingly, the above
problem can be avoided by taking extra care only when the BRCB instruction is to be described in the last statement
in the code segment with the INBLOCK [A] relocation attribute.

Next, the ‘Branch table auto creation function’ of the linker is described.
The assembler optimizes the branch instruction auto select pseudo-instructions (referred to as the BR pseudo-

instruction herein after) in the INBLOCK [A] attribute code segment as follows.

• Replaces the BR pseudo-instructions with 1-byte relative branch instructions if possible.

• Replaces all other BR pseudo-instructions with 2-byte BRCB instructions.

If the referred symbol is a relocatable symbol (including the external reference name) and the absolute address
has not been determined, the 2-byte BRCB instruction code is generated as an object. If, in this case, the relocatable
symbol is relocated in the block other than the one of the code segment which refers to the symbol, the symbol
cannot be referred to by the BRCB instruction created by the assembler.

To solve that problem, the branch table auto creation function of the linker has been devised. In the above
situation, the linker generates a 3-byte branch instruction in an empty area of the block where the code segment
has been located as shown in Figure 7-1. INBLOCK and INBLOCKA Attributes and Branch Instructions.
Namely, branch occurs by the BRCB branch instruction to the 3-byte branch instruction and then the code which
refers to the virtual branchdestination symbol is created by the linker.

Refer to the Operation manual for details of the branch table auto creation function.

161

CHAPTER 7 ASSEMBLER PACKAGE UTILIZATION

Figure 7-1. INBLOCK and INBLOCKA Attributes and Branch Instructions

The above modules are assembled and

applied to the linker.

Since SEG1 and SEG2 have

been located in different

blocks, it is not possible to

refer to SYM1 of SEG2 from

SEG1.

3-byte BR instruction is

generated in the same block

of SEG1 and branched to the

target address via the

generated BR instruction.

BRCB !SYM1

SEG2

SEG1

SYM1

LBR : BR ! SYM1

SEG1 CSEG INBLOCK

BRCB !SYM1

SEG2 CSEG INBLOCK

SYM1:

END

0H

FFFH

1000H

SYM1:

SEG1

SEG2

...

...

...

...

...

...

...

...

...

...

BRCB !LBR

...

...

162

CHAPTER 7 ASSEMBLER PACKAGE UTILIZATION

7.2.2 XBLOCK and XBLOCKA Attributes and Branch Instructions

The code segments with the XBLOCK attribute or the XBLOCKA attribute (referred to as XBLOCK [A] below)
specified as the relocation attribute are relocated irrespective of the block. It means that those segments may be
located on the block boundary.

Thus, 2-byte BRCB instruction cannot be described in the code segments having XBLOCK [A] attribute. If it is
described, errors will result in the assembly stage.

The BR pseudo-instruction described in the XBLOCK [A] attribute code segment is optimized as follows:

• The BR pseudo-instructions are replaced with 1-byte relative branch instructions if possible.

• All other BR pseudo-instructions are replaced with 3-byte absolute branch instructions.

Accordingly, the branch table creation function of the linker has no meaning in the XBLOCK [A] attribute code
segment.

7.2.3 Relocation Attributes and Subroutine Call Instructions

The following three types of subroutine call instructions are available for the 75X Series/75XL Series.

<1> 3-byte call instruction “CALLA !addr1” to the 16-bit absolute address
<2> 3-byte call instruction “CALL !addr” to the 14-bit absolute address
<3> 2-byte call instruction “CALLF !faddr” to the 11-bit absolute address.

In the case of <1>, the whole space of the program memory (with a maximum of 64 Kbytes) can be referred to.
In the case of <2> or <3>, the maximum reference address range is limited as shown in Table 7-1. Subroutine Call
Instructions and Relocation Attributes. Thus, when using a subroutine call in the case of <2> or <3>, the code
segment referred to must be located in the address range shown in the table. For that purpose, the code segment
including the reference destination entry address must have one of the relocation attributes listed in the table.

Table 7-1. Subroutine Call Instructions and Relocation Attributes

Call Reference Relocation Attribute of Reference Destination
Instruction Enable AddressNote Code Segment

<1> “CALLA !addr1” 0000H to FF7FH INBLOCKA, XBLOCKA, INBLOCK, XBLOCK, SENT

<2> “CALL !addr” 0000H to 3FFFH INBLOCK, XBLOCK, SENT

<3> “CALLF !faddr” 0000H to 07FFH SENT

Note The last address described in the section relating to “CALLA !addr1” and “CALL !addr” instructions is the
maximum value. The actual value will become smaller because the on-chip ROM capacity differs
depending on the unit type.

163

CHAPTER 7 ASSEMBLER PACKAGE UTILIZATION

7.2.4 IENT Attribute and GETI Instruction

The code segment with ‘IENT’ specified for the relocation attribute is located at addresses 20H to 7FH of the
program memory.

The GETI instruction is available for the 75X Series/75XL Series. This instruction is used to refer to the 2-byte
table in the program memory and to execute the following instructions with one byte. It considerably helps to
decrease the program size.

• Two 1-byte instructions

• 2-byte instructions (except “BRCB !caddr” and “CALLF !faddr”)

• 3-byte instructions “BR !addr”, “CALL !addr”, “BRA !addr1” and “CALLA !addr1”

3-byte branch instructions and subroutine call instructions in particular can be executed by the GETI instruction
efficiently.

The table referred to by the GETI instruction must be at addresses 20H to 7FH of the program memory. Thus,
IENT is specified as the relocation attribute for the code segment for the table referred to by the GETI instruction.

When specifying an absolute address for the GETI instruction reference table code segment, an even address
in the range of 20H to 7FH must be specified.

Where and how to locate the GETI instruction reference table code segment have now been described. Next,
actual programming of the GETI instruction reference table is shown in Example that follows.

Example GETI instruction reference table code segment

; TABLE FOR GETI

EXAMPLE CSEG IENT ← (a)

; ** TWO 1 BYTE INSTRUCTION **

MOVAHL : MOV A, @HL
← (b)

INCS L

XCHADE : XCH A, @DE
← (c)

INCS DE

; ** 2 BYTE INSTRUCTION **

SETFLAG : SET1 FLAG ← (d)

; ** 3 BYTE INSTRUCTION **

CERR1 : TCALL ERROR1 ← (e)

CERR2 : TCALL ERROR2 ← (f)

BEXIT1 : TBR EXIT1 ← (g)

BEXIT2 : TBR EXIT2 ← (h)

164

CHAPTER 7 ASSEMBLER PACKAGE UTILIZATION

(a): The CSEG pseudo-instruction is used to instruct the assembler to start the code segment. Since this code
segment is intended for the GETI instruction reference table, IENT is specified for the relocation attribute.

(b), (c): Two 1-byte instructions to be executed with one byte using the GETI instruction are described. When
using these two 1-byte instructions in the program, describe the label described in the symbol column
of the first 1-byte instruction as the GETI instruction operand as follow:

GETI MOVAHL or GETI XCHADE

(d): 2-byte instruction to be executed with one byte using the GETI instruction is described. When using this
2-byte instruction in the program, describe as follows:

GETI SETFLAG

(e), (f): The TCALL pseudo-instruction has been described.

(g), (h): The TBR pseudo-instruction has been described.

The TBR and TCALL pseudo-instructions are used to define the GETI instruction table.
For details of the TBR and TCALL pseudo-instructions, refer to 4.8 GETI INSTRUCTION TABLE
DEFINITION PSEUDO-INSTRUCTIONS.

7.2.5 PAGE Attributes and MOVT, BR PCDE, and BR PCXA Instructions

The code segment with ‘PAGE’ specified for the relocation attribute has its start address assigned on any page
boundary (××00H) in the program memory. This attribute is used in combination with the INBLOCKA, XBLOCKA,
INBLOCK, XBLOCK and SENT attributes (if only PAGE is described as the relocation attribute, the relocation
attribute of the code segment will be INBLOCK PAGE). The concept of ‘PAGE’ has been derived from the following
instruction restrictions.

The 75X series/75XL series is provided with the “MOVT” instruction used to refer to the program memory table
data..pa The “MOVT” instruction is also used to set the DE or XA register contents in the least significant 8 bits of
the program counter and to transfer the program memory contents addressed by the register contents to the XA
register. In this case, the most significant 8 bits of the program counter remain unchanged and the program memory
table is addressed by the DE or XA register contents. Thus, the table data on the own page where this instruction
is located can be referred to but date reference beyond the page boundary is not possible.

Further, the 75X series/75XL series is equipped with the “BR PCDE” and “BR PCXA” instructions. These
instructions are intended to determine the branch destination according to the received data. They set the DE or
XA register contents in the least significant 8 bits of the program counter and branch to the program memory
addressed by the register contents. In this case also, the most significant 8 bits of the program counter remain
unchanged. Thus, they can branch to their own page where they are located but they cannot branch beyond the
page boundary.

For these reasons, in the case of the “MOVT”, “BR PCDE” and “BR PCXA” instructions, the data and address
referred to by each instruction and the instructions themselves are programmed to be within 256 bytes and PAGE
is specified as the relocation attribute to align the start address of the code segment to the page boundary.

APPENDIX A LIST OF ASSEMBLED RELEVANT UNIT TYPES

The assembled unit types for the RA75X assembler package are shown below.

165

A
P

P
E

N
D

IX
 A

 L
IS

T
 O

F
 A

S
S

E
M

B
L

E
D

 R
E

L
E

V
A

N
T

 U
N

IT
 T

Y
P

E
S

166 • IE-75001-R, IE-75000-RNote 1 and EVAKIT-75XNote 2

VENTn Pseudo-Instruction

n Value Usable
for MBE = n
and RBE = n

Usable VENTn

Type Usable by
Register Indirect

Addressing
ROM Range RAM Range Usable MBn Usable RBn

–C Option
Specified

Value

Target
Device

Usable
Register Pair

Notes 1. Maintenace product
(No longer available for purchase)

2. Discontinuation product
(No longer available for purchase)

• Expanded High-end device

VENTn Pseudo-Instruction

n Value Usable
for MBE = n
and RBE = n

Usable VENTn

Type Usable by
Register Indirect

Addressing
ROM Range RAM Range Usable MBn Usable RBn

–C Option
Specified

Value

Target
Device

Usable
Register Pair

Note 8-bit data transfer instructions (MOV XA, mem/MOV mem, XA/XCH XA, mem) cannot be used in the address range of 0100H to 0127H.

µPD75117H 117H 0H to 5F7FH 0H to 02FFH
µPD75P117H

µPD75217 217 0H to 5F7FH 0F to 02FFH

µPD75218 218 0H to 7F7FH 0H to 03FFH
µPD75P218

µPD75236 236 0H to 3F7FH 0H to 02FFH

µPD75237 237 0H to 5F7FH 0H to 03FFH

µPD75238 238 0H to 7F7FH 0H to 03FFH
µPD75P238

µPD75517 517 0H to 5F7FH 0H to 03FFH

µPD75518 518 0H to 7F7FH 0H to 03FFH
µPD75P518

µPD75617A 617A 0H to 5F7FH 0H to 05FFHNote

XA, BC, DE,
HL, XA', BC',
DE', HL'

@BCDE, @BCXA,
@PCDE, @PCXA,
@HL+, @HL–,
@DE, @DL, @HL,
@H+mem.bit,
pmem.@L
(µPD75217 only;
except @BCDE
and @BCXA)

Possible

µPD75000 000 0H to 3FFFH 0H to 0F7FH

µPD75000A 000A 0H to FF7FH 0H to 0F7FH

XA, BC, DE,
HL, XA', BC',
DE', HL'

MB0 to MB15 RB0 to RB15 VENT0 to VENT5 BME : 0, 1
RBE : 0, 1

@BCDE, @BCXA,
@PCDE, @PCXA,
@HL+, @HL–,
@DE, @DL, @HL,
@H+mem.bit,
pmem.@L

Impossible

Possible

MB0 to MB2
MB15

MB0 to MB3
MB15

MB0 to MB2, MB15

MB0 to MB3
MB15

MB0 to MB5, MB15

RB0 to RB3 VENT0 to VENT5

VENT0 to VENT7

VENT0 to VENT6

VENT0 to VENT7

MBE : 0, 1
RBE : 0, 1

BRA and
CALLA

Instructions

BRA and
CALLA

Instructions

A
P

P
E

N
D

IX
 A

 L
IS

T
 O

F
 A

S
S

E
M

B
L

E
D

 R
E

L
E

V
A

N
T

 U
N

IT
 T

Y
P

E
S

167

• High-end device

µPD75104 104 0H to 0FFFH 0H to 013FH
µPD75104A

µPD75106 106 0H to 177FH 0H to 013FH

µPD75108 108 0H to 1F7FH 0H to 01FFH
µPD75108F
µPD75108A
µPD75P108B

µPD75P108 P108 0H to 1FFFH 0H to 01FFH

µPD75112 112 0H to 2F7FH 0H to 01FFH
µPD75112F

µPD75116 116 0H to 3F7FH 0H to 01FFH
µPD75116F
µPD75P116

µPD75116H 116H 0H to 3F7FH 0H to 02FFH

µPD75206 206 0H to 177FH 0H to 013FHNote 1

µPD75208 208 0H to 1F7FH 0H to 01BFHNote 1

µPD75CG208 CG208 0H to 1FFFH 0H to 01BFHNote 1

µPD75212A 212A 0H to 2F7FH 0H to 01FFH

µPD75216A 216A 0H to 3F7FH 0H to 01FFH
µPD75P216A

µPD75CG216A CG216A 0H to 3FFFH 0H to 01FFH

µPD75336 336 0H to 3F7FH 0H to 02FFHNote 2

µPD75P336

µPD75352A 352A 0H to 2F7FH 0H to 03FFHNote 3

µPD75512 512 0H to 2F7FH 0H to 01FFH

µPD75516 516 0H to 3F7FH 0H to 01FFH
µPD75P516

XA, BC, DE,
HL, XA', BC',
DE', HL'

@PCDE, @PCXA,
@HL+, @HL–,
@DE, @DL, @HL,
@H+mem.bit,
pmem.@L

ImpossibleRB0 to RB3 VENT0 to VENT5

VENT0 to VENT7

VENT0 to VENT6

MBE : 0, 1
RBE : 0, 1

MB0 to MB1
MB15

MB0 to MB2, MB15

MB0 to MB5,
MB15

MB0 to MB2
MB15

MB0 to MB3, MB15

MB0 to MB1
MB15

Notes 1. The RAM range also includes the display memory. The display memory means a total of 49 nibbles of RAM address 1C0H to 1FFH except
1C3H, 1C7H, 1CBH, 1CFH, 1D3H, 1D7H, 1D8H, 1DFH, 1E3H, 1E7H, 1EBH, 1EFH, 1F3H, 1F7H and 1FBH.

2. 8-bit transfer instructions (MOV XA, mem/MOV mem, XA/ XCH XA, mem) cannot be used in the address rang eof 01E8H to 01FFH.
3. 8-bit trtansfer instructions (MOV XA, mem/MOV mem, XA/XCH XA, mem) cannot be used in the address range of 0100H to 0126H.

VENTn Pseudo-Instruction

n Value Usable
for MBE = n
and RBE = n

Usable VENTn

Type Usable by
Register Indirect

Addressing
ROM Range RAM Range Usable MBn Usable RBn

–C Option
Specified

Value

Target
Device

Usable
Register Pair

BRA and
CALLA

Instructions

A
P

P
E

N
D

IX
 A

 L
IS

T
 O

F
 A

S
S

E
M

B
L

E
D

 R
E

L
E

V
A

N
T

 U
N

IT
 T

Y
P

E
S

168 • Standard device

Notes 1. EEPROM is allocated in the addresses 0400H to 07FFH.
2. 8-bit transfer instructions (MOV XA, mem/MOV mem, XA/XCH XA, mem) cannot be used in the address range of 01E0H to 01FFH.
3. 8-bit transfer instructions (MOV, XA, mem/MOV mem, XA/XCH XA, mem) cannot be used in the address range of 01E8H to 01FFH.

µPD75004 004 0H to 0FFFH 0H to 01FFH

µPD75006 006 0H to 177FH 0H to 01FFH

µPD75008 008 0H to 1F7FH 0H to 01FFH
µPD75P008

µPD75028 028 0H to 1F7FH 0H to 01FFH

µPD75036 036 0H to 3F7FH 0H to 03FFH
µPD75P036

µPD75048 048 0H to 1F7FH 0H to 01FFH
µPD75P048 400H to 07FFHNote 1

µPD75064 064 0H to 0FFFH 0H to 01FFH

µPD75066 066 0H to 177FH 0H to 01FFH

µPD75068 068 0H to 1F7FH 0H to 01FFH
µPD75P068

µPD75268 268 0H to 1F7FH 0H to 01FFH

µPD75304 304 0H to 0FFFH 0H to 01FFHNote 2

µPD75304B

µPD75306 306 0H to 177FH 0H to 01FFHNote 2

µPD75306B

µPD75308 308 0H to 1F7FH 0H to 01FFHNote 2

µPD75308B
µPD75P308

µPD75312 312 0H to 2F7FH 0H to 01FFHNote 2

µPD75312B 312B 0H to 2F7FH 0H to 03FFHNote 2

µPD75316 316 0H to 3F7FH 0H to 01FFHNote 2

µPD75P316

µPD75P316A 316A 0H to 3F7FH 0H to 03FFHNote 2

µPD75316B 316B 0H to 3F7FH 0H to 03FFHNote 2

µPD75P316B

µPD75328 328 0H to 1F7FH 0H to 01FFHNote 3

µPD75P328

XA, BC, DE,
HL,

@PCDE, @PCXA,
@DE, @DL, @HL,
@H+mem.bit,
pmem.@L

VENT0 to VENT5

VENT0 to VENT6

VENT0 to VENT7

VENT0 to VENT5

MBE : 0, 1
RBE : 0, (Fixed)

Not usable ImpossibleMB0
MB1
MB15

MB0 to MB3
MB15

MB0 to MB7,
MB15

MB0
MB1
MB15

MB0 to 3, MB15

MB0, MB1,
MB15

MB0 to 3, MB15

MB0, MB1
MB15

VENTn Pseudo-Instruction
n Value Usable

for MBE = n
and RBE = n

Usable VENTn

Type Usable by
Register Indirect

Addressing
ROM Range RAM Range Usable MBn Usable RBn

–C Option
Specified

Value

Target
Device

Usable
Register Pair

BRA and
CALLA

Instructions

A
P

P
E

N
D

IX
 A

 L
IS

T
 O

F
 A

S
S

E
M

B
L

E
D

 R
E

L
E

V
A

N
T

 U
N

IT
 T

Y
P

E
S

169

• Low-end device

µPD75402A 402 0H to 077FH 0H to 003FH
µPD75P402

Not usableXA, HL Not usable VENT0 to VENT2
VENT4

MBE : 0 (Fixed)
RBE : 0 (Fixed)

@PCXA, @HL Impossible

VENTn Pseudo-Instruction

n Value Usable
for MBE = n
and RBE = n

Usable VENTn

Type Usable by
Register Indirect

Addressing
ROM Range RAM Range Usable MBn Usable RBn

–C Option
Specified

Value

Target
Device

Usable
Register Pair

BRA and
CALLA

Instructions

A
P

P
E

N
D

IX
 A

 L
IS

T
 O

F
 A

S
S

E
M

B
L

E
D

 R
E

L
E

V
A

N
T

 U
N

IT
 T

Y
P

E
S

170 • 75XL Series device

(1/2)

µPD750004 0004 0H to 0FFFH 0H to 1FFH

µPD750006 0006 0H to 17FFH

µPD750008 0008 0H to 1FFFH

µPD75P0016 P0016 0H to 3FFFH

µPD750104 0104 0H to 0FFFH

µPD750106 0106 0H to 17FFH

µPD750108 0108 0H to 1FFFH

µPD75P0116 P0116 0H to 3FFFH

µPD750064 0064 0H to 0FFFH

µPD750066 0066 0H to 17FFH

µPD750068 0068 0H to 1FFFH

µPD75P0076 P0076 0H to 3FFFH

µPD753012 3012 0H to 2FFFH 0H to 3FFHNote

µPD753016 3016 0H to 3FFFH

µPD753017 3017 0H to 5FFFH

µPD75P3018 P3018 0H to 7FFFH

µPD753012A 3012A 0H to 2FFFH

µPD753016A 3016A 0H to 3FFFH

µPD753017A 3017A 0H to 5FFFH

µPD75P3018A P3018A 0H to 7FFFH

XA, BC, DE,
HL, XA', BC',
DE', HL'

@BCDE, @BCXA,
@PCDE, @PCXA,
@HL+, @HL–,
@DE, @DL, @HL,
@H+mem.bit,
pmem.@L

Possible in
MkII mode
only

RB0 to RB3 VENT0 to VENT6 MBE: 0, 1
RBE : 0, 1

MB0, MB1,
MB15

MB0 to MB3,
MB15

Note The display memory is allocated in addresses 1E0H to 1FFH.

VENTn Pseudo-Instruction

n Value Usable
for MBE = n
and RBE = n

Usable VENTn

Type Usable by
Register Indirect

Addressing
ROM Range RAM Range Usable MBn Usable RBn

–C Option
Specified

Value

Target
Device

Usable
Register Pair

BRA and
CALLA

Instructions

A
P

P
E

N
D

IX
 A

 L
IS

T
 O

F
 A

S
S

E
M

B
L

E
D

 R
E

L
E

V
A

N
T

 U
N

IT
 T

Y
P

E
S

171

• 75XL Series device

(2/2)

µPD753036 3036 0H to 3FFFH 0H to 2FFHNote 2

µPD75P3036 P3036

µPD753104 3104 0H to 0FFFH 0H to 1FFHNote 3

µPD753106 3106 0H to 17FFH

µPD753108 3108 0H to 1FFFH

µPD75P3116 P3116 0H to 3FFFH

µPD753204 3204 0H to 0FFFH 0H to 1FFHNote 4

µPD753206 3206 0H to 17FFH

µPD753208 3208 0H to 1FFFH

µPD75P3216 P3216 0H to 3FFFH

µPD753304Note 1 3304 0H to 0FFFH 0H to 0FFH
1E0H to 1F7HNote 5

µPD754202 4202 0H to 07FFH 0H to 07FH

µPD754144 4144 0H to 0FFFH 0H to 07FH,

µPD754244 4244 0400H to 041FHNote 6

µPD754264 4264

µPD75F4264Note 1 F4264

µPD754302 4302 0H to 07FFH 0H to 0FFH

µPD754304 4304 0H to 0FFFH

µPD75P4308 P4308 0H to 1FFFH

XA, BC, DE,
HL, XA', BC',
DE', HL'

@BCDE, @BCXA,
@PCDE, @PCXA,
@HL+, @HL–,
@DE, @DL, @HL,
@H+mem.bit,
pmem.@L

Possible in
MkII mode
only

RB0 to RB3 VENT0 to VENT6

VENT0 to VENT2,

VENT4 to VENT6

VENT0, VENT1,
VENT3, VENT5

VENT0 to VENT2,
VENT5, VENT6

VENT0 to VENT2,
VENT5 to VENT7

VENT0 to VENT6

MBE: 0, 1
RBE : 0, 1

MB0 to MB2,
MB15

MB0, MB1, MB15

MB0, MB15

MB0, MB4, MB15

MB0, MB15

Notes 1. Under development
2. The display memory is allocated in addresses 1ECH to 1FFH.
3. The display memory is allocated in addresses 1E0H to 1F7H.
4. The display memory is allocated in addresses 1ECH to 1F7H.
5. The display memory is allocated in addresses 1E0H to 1F7H.
6. EEPROM is allocated in addresses 0400H to 041FH.

VENTn Pseudo-Instruction

n Value Usable
for MBE = n
and RBE = n

Usable VENTn

Type Usable by
Register Indirect

Addressing
ROM Range RAM Range Usable MBn Usable RBn

–C Option
Specified

Value

Target
Device

Usable
Register Pair

BRA and
CALLA

Instructions

[MEMO]

172

APPENDIX B LIST OF RESERVED WORDS

This is a compilation of the reserved words of the assembler package.
It should be of help during program development.

173

174

APPENDIX B LIST OF RESERVED WORDS

There are six types of reserved words. They are the machine code instruction, control instruction, pseudo-
instruction, operator, register name, and specific address name code. The reserved words are the character strings
which the assembler has reserved and cannot be put to use for unspecified purposes.

The types of reserved words describable in each column of the source program and a list of reserved words are
shown below.

Symbol column None of the reserved words can be described.

Mnemonic column Only machine code instructions and pseudo-instructions can be described.

Operand column Only the operators, register names and specific address name codes can be described.

Comment column All reserved words can be described.

On the following pages, the symbols for the devices in the reserved word list, indicate target devices in the table
below.

Symbol Target Device

EV1 µPD75000

EV2 µPD75000A

0×× µPD75004, 75006, 75008, 75P008

02× µPD75028, 75036, 75P036

04× µPD75048, 75P048

06× µPD75064, 75066, 75068, 75P068

1×× µPD75104, 75104A, 75106, 75108, 75108F, 75108A, 75P108, 75P108B, 75112, 75112F, 75116,
75116F, 75P116

116H µPD75116H

117H µPD75117H, 75P117H

2×× µPD75206, 75208, 75CG208, 75212A, 75216A, 75P216A, 75CG216A

217 µPD75217

218 µPD75218, 75P218

237 µPD75236, 75237, 75238, 75P238

26× µPD75268

3×× µPD75304, 75306, 75308, 75304B, 75306B, 75308B, 75312, 75316, 75312B, 75316B, 75P308,
75P316, 75P316A, 75P316B

32× µPD75328, 75P328

336 µPD75336, 75P336

34× µPD75352A

4×× µPD75P402, 75402A

5×× µPD75512, 75516, 75P516

517 µPD75517, 75518, 75P518

6×× µPD75617A

75XL 75XL Series deviceNote

Note For specific address name code, refer to the Before Using a Device File that comes with the
device file purchased.

175

APPENDIX B LIST OF RESERVED WORDS

List of Reserved Words

Unit Type

Reserved Word

Remarks 1. : Applied
× : Not applied

2. a : PORT0 to 15
b : PORT0 to 20

E E 0 0 0 0 1 2 2 2 2 2 3 3 3 3 4 5 5 6

V V × 2 4 6 × × 1 1 3 6 × 2 3 4 × × 1 ×
1 2 × × × × × × 7 8 7 × × × 6 × × × 7 ×

ADDC

ADDS

AND

AND1

BR

BRA × × × × × × × × × × × × × ×

BRCB

BRK ×

CALL ×

CALLA × × × × × × × × × × × × × ×

CALLF

CLR1

DECS

DI

EI

GETI ×

HALT

IN a b a

INCS

MOV

MOV1 × × × × × × × ×

MOVT

NOP

NOT

NOT1

OR

OR1

OUT a b a

OUT3 ×

POP

PUSH

In
st

ru
ct

io
n

1
1
7
H

1
1
6
H

7
5
X
L

176

APPENDIX B LIST OF RESERVED WORDS

E E 0 0 0 0 1 2 2 2 2 2 3 3 3 3 4 5 5 6

V V × 2 4 6 × × 1 1 3 6 × 2 3 4 × × 1 ×
1 2 × × × × × × 7 8 7 × × × 6 × × × 7 ×

RET

RETI

RETS

ROLC ×

RORC

SEL ×

SET1 ×

SKE

SKF

SKT ×

SKTCLR

STOP

SUBC ×

SUBS ×

XCH

XOR

XOR1

AND

EQ

GE

GT

HIGH

LE

LOW

LT

MOD

NE

NOT

OR

SHL

SHR

XOR

BREAK

CASE

CAP

CA

CONDITION

COND

Reserved Word

Unit Type

1
1
7
H

1
1
6
H

7
5
X
L

In
st

ru
ct

io
n

O
pe

ra
to

r
C

on
tr

ol
 in

st
ru

ct
io

n

177

APPENDIX B LIST OF RESERVED WORDS

E E 0 0 0 0 1 2 2 2 2 2 3 3 3 3 4 5 5 6

V V × 2 4 6 × × 1 1 3 6 × 2 3 4 × × 1 ×
1 2 × × × × × × 7 8 7 × × × 6 × × × 7 ×

CONTINUE

DEBUG

DG

DEBUGA

DA

DEFAULT

EJECT

EJ

ELSE

ELSEIF

ELSEIF_BIT

ENDIF

ENDS

ENDW

ERRLOG

EL

FOR

GENERATE

GEN

GOTO

IF

IF_BIT

IFCHR

IFDEF

INCLUDE

IC

LIST

LI

LODM

LM

MODE

MD

MSGLOG

ML

NEXT

NOCAP

NOCA

NOCONDITION

NOCOND

Reserved Word

Unit Type

1
1
7
H

1
1
6
H

7
5
X
L

C
on

tr
ol

 in
st

ru
ct

io
n

178

APPENDIX B LIST OF RESERVED WORDS

E E 0 0 0 0 1 2 2 2 2 2 3 3 3 3 4 5 5 6

V V × 2 4 6 × × 1 1 3 6 × 2 3 4 × × 1 ×
1 2 × × × × × × 7 8 7 × × × 6 × × × 7 ×

NODEBUG

NODB

NODEBUGA

NODA

NOGENERATE

NOGEN

NOLIST

NOLI

NOSYMBOLS

NOSB

NOSYMLEN

NOSL

NOXREF

NOXR

PAGELENGTH

PL

PAGEWIDTH

PWTAB

REPEAT

SB

SL

SWITCH

SYMBOLS

SYMLEN

TAB

TB

TITLE

TT

UNTIL

UNTIL_BIT

WHILE

WHILE_BIT

XREF

XF

DGLNote

DGSNote

TOL_INFNote

Reserved Word

Unit Type

1
1
7
H

1
1
6
H

7
5
X
L

O
th

er
 c

on
tr

ol
in

st
ru

ct
io

n
C

on
tr

ol
 in

st
ru

ct
io

n

Note Special control instructions output from the structured assembler preprocessor.

179

APPENDIX B LIST OF RESERVED WORDS

E E 0 0 0 0 1 2 2 2 2 2 3 3 3 3 4 5 5 6

V V × 2 4 6 × × 1 1 3 6 × 2 3 4 × × 1 ×
1 2 × × × × × × 7 8 7 × × × 6 × × × 7 ×

BR

CSEG

DB

DBIT

DS

DSEG

DW ×

END

EQU

EXTRN

NAME

ORG

PUBLIC

SET

STKLN

TBR

TCALL

VENTnNote

MACRO

ENDM

EXITM

REPT

IRP

IRPC

GLOBAL

$

STACK

A

B ×

BC ×

BC' × × × × × × × ×

BCDE × × × × × × × × × × × × × ×

@BCDE × × × × × × × × × × × × × ×

BCXA × × × × × × × × × × × × × ×

@BCXA × × × × × × × × × × × × × ×

Note n = 0 to 7 (depending on the device)

Reserved Word

Unit Type

1
1
7
H

1
1
6
H

7
5
X
L

P
se

ud
o-

in
st

ru
ct

io
n

M
ac

ro
s

S
pe

ci
al

R
eg

is
te

r

180

APPENDIX B LIST OF RESERVED WORDS

E E 0 0 0 0 1 2 2 2 2 2 3 3 3 3 4 5 5 6

V V × 2 4 6 × × 1 1 3 6 × 2 3 4 × × 1 ×

1 2 × × × × × × 7 8 7 × × × 6 × × × 7 ×

C ×

D ×

DE ×

DE' × × × × × × × ×

@DE × ×

@DL × ×

E ×

H

HL

HL' × × × × × × × ×

HL+ ×

HL– ×

@HL ×

@HL+ × × × × × × × ×

@HL– × × × × × × × ×

L

MBn a a b b b b b d d b c d d b b b b b × b d d d

PCDE × × × × × × × ×

@PCDE ×

PCXA × × × × × × × ×

@PCXA

RBn a a × × × × e e e e e e e × × × e e × e e e e

X

XA

XA' × × × × × × × ×

ACKD × × × × × × × Note

ACKE × × × × × × × Note

ACKT × × × × × × × Note

ADM × × × × × × × × × × Note

BP0 × × × × × × × × × × × × × × × × × Note

BP1 × × × × × × × × × × × × × × × × × Note

BP2 × × × × × × × × × × × × × × × × × Note

Note For specific address name code, refer to the Before Using a Device File that comes with the device file
purchased.

Remark a: 0 to 15 c: 0 to 2, 15 e: 0 to 3
b: 0, 1, 15 d: 0 to 3, 15 f: 0 to 7, 15

Reserved Word

Unit Type

1
1
7
H

1
1
6
H

7
5
X
L

R
eg

is
te

r
S

pe
ci

fic
 a

dd
re

ss
 n

am
e

co
de

181

APPENDIX B LIST OF RESERVED WORDS

E E 0 0 0 0 1 2 2 2 2 2 3 3 3 3 4 5 5 6

V V × 2 4 6 × × 1 1 3 6 × 2 3 4 × × 1 ×
1 2 × × × × × × 7 8 7 × × × 6 × × × 7 ×

BP3 × × × × × × × × × × × × × × × × × Note

BP4 × × × × × × × × × × × × × × × × × Note

BP5 × × × × × × × × × × × × × × × × × Note

BP6 × × × × × × × × × × × × × × × × × Note

BP7 × × × × × × × × × × × × × × × × × Note

BS × × × × × × × × × × × × × × Note

BSB0 × × × × × × × Note

BSB1 × × × × × × × Note

BSB2 × × × × × × × Note

BSB3 × × × × × × × Note

BSYE × × × × × × × Note

BT Note

BTM Note

CLOM × × × × × × Note

CMDD × × × × × × × Note

CMDT × × × × × × × Note

COI × × × × × × × Note

CSIE × × × × × × × × × × Note

CSIE0 × × × × × × × × × × × × × × × × × Note

CSIE1 × × × × × × × × × × × × × × × × × Note

CSIM × × × × × × × × × × Note

CSIM0 × × × × × × × × × × × × × × × × × Note

CSIM1 × × × × × × × × × × × × × × × × × Note

DACE0 × Note

DACE1 × Note

DACS0 × Note

DACS1 × Note

DIGS × × × × × × × × × × × × × Note

DIMS × × × × × × × × × × × × × Note

DSPM × × × × × × × × × × × × × Note

EOC × × × × × × × × × × Note

EOT × × × × × × × × × × × × × × × × × Note

EWC × Note

EWE × Note

EWP × Note

EWST × Note

Note For specific address name code, refer to the Before Using a Device File that comes with the device file
purchased.

Unit Type

Reserved Word

S
pe

ci
fic

 a
dd

re
ss

 n
am

e
co

de

1
1
7
H

1
1
6
H

7
5
X
L

182

APPENDIX B LIST OF RESERVED WORDS

E E 0 0 0 0 1 2 2 2 2 2 3 3 3 3 4 5 5 6

V V × 2 4 6 × × 1 1 3 6 × 2 3 4 × × 1 ×
1 2 × × × × × × 7 8 7 × × × 6 × × × 7 ×

GATEC × Note

IE0 Note

IE1 × Note

IE2 × × × × × × Note

IE3 × × × × × × × × × × × × × × × × × × × Note

IE4 × Note

IEBT × × Note

IEBWT × × × × × × × × × × × × × × × × × × × Note

IECSI × × × × × × × × × × Note

IECSI0 × × × × × × × × × × × × × × × × × Note

IEEE × Note

IEKS × × × × × × × × × × × × × Note

IEMFT × × × × × × × × × × × × × × × × × × × Note

IEMT0 × Note

IEMT1 × Note

IEOW × Note

IESIO × × × × × × × × × × × × × Note

IET0 × Note

IET1 × × × × × × × × × × × × × × × × Note

IETPG × × × × × × × × × × × × Note

IEW × × Note

IM0 Note

IM1 × Note

IM2 × × × × × × × × × × Note

IPS × × Note

IRQ0 Note

IRQ1 × Note

IRQ2 Note

IRQ3 × × × × × × × × × × × × × × × × × × × Note

IRQ4 × Note

IRQBT × × Note

IRQBWT × × × × × × × × × × × × × × × × × × × Note

IRQCSI × × × × × × × × × × Note

IRQCSI0 × × × × × × × × × × × × × × × × Note

IRQEE × Note

IRQKS × × × × × × × × × × × × × Note

Note For specific address name code, refer to the Before Using a Device File that comes with the device file
purchased.

Unit Type

Reserved Word

S
pe

ci
fic

 a
dd

re
ss

 n
am

e
co

de

1
1
7
H

1
1
6
H

7
5
X
L

183

APPENDIX B LIST OF RESERVED WORDS

E E 0 0 0 0 1 2 2 2 2 2 3 3 3 3 4 5 5 6

V V × 2 4 6 × × 1 1 3 6 × 2 3 4 × × 1 ×
1 2 × × × × × × 7 8 7 × × × 6 × × × 7 ×

IRQMFT × × × × × × × × × × × × × × × × × × × Note

IRQMT0 × Note

IRQMT1 × Note

IRQOW × Note

IRQSIO × × × × × × × × × × × × × Note

IRQT0 × Note

IRQT1 × × × × × × × × × × × × × × × Note

IRQTPG × × × × × × × × × × × × Note

IRQW × × Note

IST0 × Note

IST1 × × × × × × × × Note

KR0 × × × × × × × × × Note

KR1 × × × × × × × × × Note

KR2 × × × × × × × × × Note

KR3 × × × × × × × × × Note

KR4 × × × × × × × × × × Note

KR5 × × × × × × × × × × Note

KR6 × × × × × × × × × × Note

KR7 × × × × × × × × × × Note

KS0 × × × × × × × × × × × × × Note

KS1 × × × × × × × × × × × × × Note

KS2 × Note

KSF × × × × × × × × × × × × × Note

LCDC × × × × × × × × × × × × × × × Note

LCDM × × × × × × × × × × × × × × × Note

LPS × × × × × × × × × × × × × × × × × × × Note

MBE × Note

MBS × × × × × × × × × × × × × × Note

MFTC × × × × × × × × × × × × × × × × × × × Note

MFTH × × × × × × × × × × × × × × × × × × × Note

MFTL × × × × × × × × × × × × × × × × × × × Note

MFTM × × × × × × × × × × × × × × × × × × × Note

MODH × × × × × × × × × × × × Note

MODL × × × × × × × × × × × × Note

MT0 × Note

MT1 × Note

Note For specific address name code, refer to the Before Using a Device File that comes with the device file
purchased.

Unit Type

Reserved Word

S
pe

ci
fic

 a
dd

re
ss

 n
am

e
co

de

1
1
7
H

1
1
6
H

7
5
X
L

184

APPENDIX B LIST OF RESERVED WORDS

E E 0 0 0 0 1 2 2 2 2 2 3 3 3 3 4 5 5 6

V V × 2 4 6 × × 1 1 3 6 × 2 3 4 × × 1 ×
1 2 × × × × × × 7 8 7 × × × 6 × × × 7 ×

MTM0 × Note

MTM1 × Note

MTOE0 × Note

MTOE1 × Note

MTOF0 × Note

MTOF1 × Note

PCC Note

PDGB × × × × × × × × × × × × × × × × × × × Note

PMGA Note

PMGB Note

PMGC × × × × × × × × × × Note

PMGD × × × × × × × × × × × × × × × × × × × Note

PMGE × Note

POGA × × × × × × × Note

POGB × × × × × × × × × × × × × Note

POGC × × × × × × × × × × × × × × × × × × × Note

POGD × Note

PONF × × × × × × × × × × × × × × Note

PORT0 Note

PORT1 Note

PORT2 Note

PORT3 Note

PORT4 × Note

PORT5 Note

PORT6 Note

PORT7 × × × × × × × × Note

PORT8 × × × × × × × × × Note

PORT9 × × × × × × × × × × × × Note

PORT10 × × × × × × × × × × × × × Note

PORT11 × × × × × × × × × × × × Note

PORT12 × × × × × × × × × × × × × × Note

PORT13 × × × × × × × × × × × × × × Note

PORT14 × × × × × × × × × × × × × × × Note

PORT15 × × × × × × × × × × × × × × × × Note

PORT16 × Note

PORT17 × Note

Note For specific address name code, refer to the Before Using a Device File that comes with the device file
purchased.

Unit Type

Reserved Word

S
pe

ci
fic

 a
dd

re
ss

 n
am

e
co

de

1
1
7
H

1
1
6
H

7
5
X
L

185

APPENDIX B LIST OF RESERVED WORDS

E E 0 0 0 0 1 2 2 2 2 2 3 3 3 3 4 5 5 6

V V × 2 4 6 × × 1 1 3 6 × 2 3 4 × × 1 ×
1 2 × × × × × × 7 8 7 × × × 6 × × × 7 ×

PORT18 × Note

PORT19 × Note

PORT20 × Note

PORTH × × × × × × × × × × × × × Note

PSW × Note

PTH0 × × × × × × × × × × × × × × × × × × × Note

PTH1 × Note

PTHM × × × × × × × × × × × × × × × × × × × Note

RBE × × × × × × × × Note

RBS × × × × × × × × × × × × × Note

RELD × × × × × × Note

RELOAD × Note

RELT × × × × × × × Note

SA × × × × × × × × × × × Note

SBS × × × × × × × × × × × × × × Note

SCC × × Note

SEGEX × Note

SIO × × × Note

SIO0 × × × × × × × × × × × × × × × × × Note

SIO1 × × × × × × × × × × × × × × × × × Note

SIOM × × × × × × × × × × × × × Note

SOC × × × × × × × × × × Note

SP Note

STATA × Note

STATB × Note

SVA × × × × × × × Note

T0 × × Note

T1 × × × × × × × × × × × × × × × Note

TBC0 × Note

TBC4 × Note

TBC8 × Note

TBCM × Note

TGC × × × × × × × × × × × × × × × × × × × Note

TGM × × × × × × × × × × × × × × × × × × × Note

TGS × × × × × × × × × × × × × × × × × × × Note

TI0 × × × × × × × × × × × × × × × × × × × Note

Note For specific address name code, refer to the Before Using a Device File that comes with the device file
purchased.

Unit Type

Reserved Word

S
pe

ci
fic

 a
dd

re
ss

 n
am

e
co

de

1
1
7
H

1
1
6
H

7
5
X
L

186

APPENDIX B LIST OF RESERVED WORDS

E E 0 0 0 0 1 2 2 2 2 2 3 3 3 3 4 5 5 6

V V × 2 4 6 × × 1 1 3 6 × 2 3 4 × × 1 ×
1 2 × × × × × × 7 8 7 × × × 6 × × × 7 ×

TI1 × × × × × × × × × × × × × × × × × × × Note

TM0 × Note

TM1 × × × × × × × × × × × × × × × Note

TMOD0 Note

TMOD1 × × × × × × × × × × × × × × × × Note

TO0 × × × × × × × × × × × × × × × × × × × Note

TO1 × × × × × × × × × × × × × × × × × × × Note

TOE0 × × × × × × × × Note

TOE1 × × × × × × × × × × × × × × × × Note

TOF0 × × × × × × × × × × × × × × × × × × × Note

TOF1 × × × × × × × × × × × × × × × × × × × Note

TPGM × × × × × × × × × × × × Note

WDTM × × × × × × × × × × × × × × × × × × × Note

WM × × Note

WUP × × × × × × × Note

Note For specific address name code, refer to the Before Using a Device File that comes with the device file
purchased.

Unit Type

Reserved Word

S
pe

ci
fic

 a
dd

re
ss

 n
am

e
co

de

1
1
7
H

1
1
6
H

7
5
X
L

Pseudo-Instruction

Symbol Mnemonic Operand
Column Column Column

Segment name CSEG [Relocation attribute Code segment start Segment name: Symbol
specification] declaration Refer to Table 4-3 for symbol relocation

attributes

Segment name DSEG [Bank value] Data segment start Segment name: Symbol
[AT absolute formula] declaration

ORG Absolute formula Location counter Symbol forward reference disabled in
modification operand formula

NAME Module name Module name definition Module name: Symbol

PUBLIC Symbol External definition name
[, ...] declaration

EXTRN Type External reference name 5 types: CODE, DATA, BIT, PBIT,
(symbol [, ...]) declaration NUMBER
[, ...]

Name EQU Formula Name definition Name: Symbol
Symbol forward reference disabled in
operand formula
External reference name reference disabled

Name SET Formula Redefinable name Name: Symbol
definition Symbol forward reference disabled in

operand formula
External reference name reference disabled

[Label:] DB Formula Byte Label: Symbol
 Character string
[, ...]

[Label:] DS Absolute formula Byte Label: Symbol
Data area secure

STKLN Absolute formula Stack area secure Symbol forward reference disabled in
operand formula

[Label:] BR Formula Branch instruction auto Label: Symbol
selection

VENTn MBE = 0 , Entry address area Describe at the beginning of the source
 1 secure (before description of segment pseudo-
RBE = 0 , instruction).
 1 Specify RBE = 0 when the assembled unit
Start address type is the 75X standard and MBE = 0 or

RBE = 0 when the assembled unit type is
the 75X low-end.

[Label:] TCALL Formula GETI instruction For CALL instruction
Table creation Describable only in CSEG IENT attribute

or even absolute address in the range 20H
to 7FH

[Label:] TBR Formula GETI instruction For branch instruction
Table creation Same as above

END End of source module

APPENDIX C LIST OF PSEUDO-INSTRUCTIONS

This is a compilation of all of the pseudo-instructions of the assembler package.
It should be of help during program development.

Function and

Classification
Remarks

187

[MEMO]

188

APPENDIX D LIST OF MAXIMUM PERFORMANCE CAPABILITIES

The maximum performance of assembler package is indicated for the following items.
• Source statement length

• No. of describable symbols

• No. of describable segments

• No. of branch tables which can be created

• Other

(1) Source Statement Length

Program Name Maximum Performance

Assembler 220 characters (including CR, LF)

(2) No. of Describable Symbols

Program Name Maximum Performance

Assembler • In assembly Approx. 3000

Linker • Local symbol No limit

• External definition (PUBLIC) symbol Approx. 3000/all modules

• External reference (EXTRN) symbol Approx. 500/module

(3) No. of Describable Segments

Program Name Maximum Performance

Assembler (a) to (c) total to approx. 120/module

(a) No. of segment definition pseudo-instructions

(b) No. of ORG pseudo-instructions

(c) No. of VENT pseudo-instructions × 2

Linker (a) to (d) total to approx. 250/all modules

(a) No. of input modules × 2

(b) No. of segments

(c) No. of ORG pseudo-instructions

(d) No. of VENT pseudo-instructions × 2

(4) No. of Branch Tables Which can be Created

Program Name Maximum Performance

Linker Approx. 1000

189

190

APPENDIX D LIST OF MAXIMUM PERFORMANCE CAPABILITIES

(5) Other

Program Name Maximum Performance

Assembler • No. of local symbols in one macro 100 (including tentative parameters)

• Nest level Approx. 64 Kbytes

• Macro body field size 32 levels

(including areas for the macro instruction, $IF, $SWITCH, and $INCLUDE instructions)

• Maximum repeat number of repeated macro 1023 times

APPENDIX E LIST OF PRECAUTIONS

Describes the precautions when the assemble package is used.

(1) Caution on memory bit manipulations
If immediate data is specified in the range 0FB0H.0 to 0FBFH.3 or 0FF0H.0 to 0FFFH.3, fmem.bit object code

is generated.

Remedy

If you want to generate fmem.bit object code, be sure to specify a reserved word in the above range.

Reference

3.5 OPERAND CHARACTERISTICS

(2) Caution on segments with the same name
If there are segments with the same name in a single source module, list conversion may not be performed

correctly.

Remedy

When the list converter is used, give different names to all segments in a single source module.

Reference

4.2 SEGMENT DEFINITION PSEUDO-INSTRUCTIONS

(3) Caution on source program writing
If a source program assembly list which does not obey rules <1> to <4> below is input, the list converter may

abort with an error or the list may not be converted correctly.

<1> VENTn and ORG pseudo-instructions must be written in upper-case characters starting in column 9.
<2> The NOLIST control instruction must not be used.
<3> Identical segments must not be written in the same module.
<4> A segment definition pseudo-instruction must be written before an instruction that generates

object code is written.

Reference

CHAPTER 4 PSEUDO-INSTRUCTIONS

(4) Caution on input files
There must be no errors in the following files input to the list converter.

Assembly list file (.PRN)
Object module file (.REL)
Load module file (.LNK)

Reference

Operation Volume, 8.1 LIST CONVERTER INPUT/OUTPUT FILES

191

192

APPENDIX E LIST OF PRECAUTIONS

(5) Caution on input file names used by debugger
The first character of an input file name used by an in-circuit emulator or other debugger must not be a numeral.

If a file of this kind is input, an error will result on the debugger side at load time.

Remedies

<1> Use a non-numeric character as the first character of a file name.
<2> Change existing file names with “name pseudo-instruction”.

Reference

3.3.3 Character Configuration Fields
4.3 (1) NAME (name)

(6) Cautions on BRCB instruction (bugs)
<1> If the BRCB instruction jump destination address is a BLOCK external reference of the form “label

number - constant”, output will not be performed in ascending branch table map address order.

<2> If the BRCB instruction jump destination address is a BLOCK external reference of the form “label
number - constant”, and there is a BRCB instruction for which the description format of the same jump
destination address differs in the same block, an extra branch table will be created.

Reference

3.4.1 (1) (b) – (subtraction)

(7) Caution on byte separation operators (HIGH, LOW)
If the term is a relocatable term or external reference term, nesting is not possible. If used in combination with

a BRCB, EQU or SET instruction, only an absolute term can be used.

References

Table 3-10. Combination of Terms and Operators Classified by Relocation Attributes (Except
External Reference Terms)

Table 3-11. Combination of Terms and Operators Classified by Relocation Attributes (External
Reference Terms)

(8) Caution on library converter option
If a library file is converted with the library converter, it is impossible to debug object modules included

in the library file.

Reference

Operation Volume, CHAPTER 9 LIBRARY CONVERTER

(9) Caution on assembler option
The IE-75000-R and IE-75001-R do not support source debugging. In addition, these assemblers do not

distinguish uppercase and lowercase characters. Furthermore, the maximum length of a symbol name which can
be recognized by these assemblers is eight characters.

Remedy

Specify these options as shown below.
· ~ -NGA -CA -NS

Reference

Operation Volume, 4.4.4 (6) -GA/-NGA, (11) -CA/-NCA, (12) -S/-NS

APPENDIX F INDEX

A

Absolute assembler ... 7
Absolute segment ... 66
Absolute term .. 55
Actual parameter ... 125
Area reserve pseudo-instruction 65, 98
Arithmetic operator .. 35, 37
Assembler ... 1, 2
Assembler option .. 157
Assembly end pseudo-instruction 65, 118
Assembly list .. 143
Assembly list control instruction 141, 143
AT absolute formula .. 69

B

Binary operator .. 60
BIT... 27, 28, 92
Bit location specify operator 35, 51
BIT term .. 59
Block ... 13, 15
Block boundary ... 15
Branch instruction auto select

pseudo-instruction 65, 106
Branch table .. 189
BR PCDE pseudo-instruction 15
BR PCXA pseudo-instruction 15
BR pseudo-instruction 122, 187
Byte separation operators 35, 53

C

CODE .. 27, 28, 92
Code segment ... 13, 66
CODE term.. 59
Compare operator ... 35, 42
Conditional assemble control instruction..... 141, 151
Control instruction ... 141
CSEG pseudo-instruction.................. 12, 66, 68, 187
Comment column 22, 34, 174

D

DATA... 27, 28, 92
Data definition pseudo-instruction 65, 98
Data memory ... 16, 63
Data segment .. 12, 66
DATA term .. 59
DB pseudo-instruction 99, 187
DS pseudo-instruction 101, 187
DSEG pseudo-instruction.................. 12, 66, 82, 187

E

EJECT control instruction.................................... 149
END pseudo-instruction 119, 187
ENDM instruction ... 129
EQU pseudo-instruction 95, 187
EXITM instruction .. 128
External definition declaration 86
External definition symbol 27, 89
External macro declare instruction 126, 130
External reference declaration 86
External reference symbol 27, 91
External reference term... 55
EXTRN pseudo-instruction............................ 91, 187

F

Formula ... 35

G

General register .. 32
GETI instruction ... 115, 163
GETI instruction table definition

pseudo-instruction 65, 115
GLOBAL instruction ... 140
Global symbol .. 28, 140
Global symbol declare instruction 126, 139

H

HT code... 157

I

IENT .. 69
IF control instruction .. 153
IFDEF control instruction..................................... 152
INBLOCK .. 69, 70, 160
INBLOCKA .. 69, 70, 160
INCLUDE control instruction 142
Include control instruction 141, 142
IRPC instruction .. 135, 138
IRP instruction ... 135, 137

193

194

APPENDIX F INDEX

P

PAGE .. 69
Page .. 13, 15
Page boundary .. 15
PBIT .. 27, 28, 92
PBIT term .. 59
Program linkage pseudo-instruction............... 65, 86
Program memory .. 62, 69
PUBLIC pseudo-instruction 89, 187
Pseudo-instruction .. 65

R

RAM .. 11, 63
RBE ... 113, 187
Reference table area... 13
Register pair .. 32
Relocatable assembler.. 7
Relocatable segment .. 55
Relocatable term ... 55
Relocation attribute 55, 160, 162
Relocation ... 13
Repeat macro.. 122
Repeat macro instruction 126, 135
REPT instruction ... 135, 136
Reserved word .. 173
ROM .. 11, 62
R/W attribute ... 63

S

Sample program.. 18
Segment definition pseudo-instruction 12, 65, 66
Segment name .. 25
SENT... 69
SET pseudo-instruction 97, 187
Shift operator... 35, 48
Source program .. 12, 17
Source statement .. 189
Special character .. 32
Special register ... 32
Specific address name code 34
SP ... 103, 104, 105
STACK .. 103, 104, 105
Stack segment .. 66
STKLN pseudo-instruction 65, 103, 187
Structured assembler .. 1
Subroutine call instruction 162
SWITCH control instruction 154
Symbol attribute 27, 28, 29, 31
Symbol column.. 22, 25, 174
Symbol definition pseudo-instruction 65, 94

L

Label ... 25, 33
Librarian .. 1, 6
Linker .. 1
LIST control instruction 148
List converter ... 1, 6
Local symbol ... 123, 140
LODM instruction .. 131
Logical operator .. 35, 40

M

Machine code .. 7
Macro .. 6, 121
Macro body 121, 122, 123, 124
Macro definition instruction 126
MACRO instruction 127, 133
Macro processor ... 1
MBE .. 113, 187
Memory ... 11, 12
Memory addressing... 11
Mnemonic column 22, 30, 174
Modular programming 7, 13
MOVT instruction .. 15

N

Name... 25, 33
NAME pseudo-instruction 88, 187
Nesting .. 123
NOLIST control instruction 146
NUMBER... 27, 28, 92
NUMBER term .. 59
Number of branch table....................................... 189
Number of symbol ... 189
Number of segment ... 189
Numeric constant (immediate data) 31

O

Operator .. 35
Operand column...................................... 22, 31, 174
Optimization .. 108, 109, 110
ORG pseudo-instruction.......................... 65, 84, 187

195

APPENDIX F INDEX

T

Tabulation function .. 157
TBR pseudo-instruction............................... 117, 187
TCALL pseudo-instruction........................... 116, 187
Tentative parameter .. 124
TITLE control instruction 144

U

Unary operator .. 60

V

Vector entry table definition
pseudo-instruction 65, 112

Vector table area ... 13, 14
VENTn pseudo-instruction 113, 187

X

XBLOCK.. 69, 70, 162
XBLOCKA ... 69, 70, 162

[MEMO]

196

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: 1-800-729-9288

1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-889-1689

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Corporation
Semiconductor Solution Engineering Division
Technical Information Support Dept.
Fax: 044-548-7900

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 96.8

Name

Company

From:

Tel. FAX

Facsimile Message

	COVER
	Major Revisions in This Version
	PREFACE
	CHAPTER 1 GENERAL DESCRIPTION
	1.1 OUTLINE OF ASSEMBLER
	1.1.1 Assembler
	1.1.2 Relocatable Assembler

	CHAPTER 2 75X SERIES/75XL SERIES FEATURES
	2.1 MEMORY FEATURES
	2.2 MEMORY AND SEGMENT DEFINITION PSEUDO-INSTRUCTIONS
	2.3 PROGRAM MEMORY AND CODE SEGMENT
	2.3.1 Reason why Code Segments are Relocatable
	2.3.2 Roles of Linker Relating to Relocation
	2.3.3 Structural Features of Program Memory

	2.4 DATA MEMORY SPECIAL AREAS

	CHAPTER 3 SOURCE PROGRAM DESCRIPTION METHOD
	3.1 BASIC CONFIGURATION OF SOURCE PROGRAM
	3.2 SAMPLE PROGRAM
	3.3 SOURCE PROGRAM DESCRIPTION FORMAT
	3.3.1 Statement Format
	3.3.2 Character Set
	3.3.3 Character Configuration Fields

	3.4 FORMULAS AND OPERATORS
	3.4.1 Operator Functions
	(1) Arithmetic Operators
	(2) Logical Operators
	(3) Compare Operators
	(4) Shift Operators
	(5) Bit Location Specification Operator
	(6) Byte Separation Operators
	(7) Other Operator

	3.4.2 Operation Restrictions

	3.5 OPERAND CHARACTERISTICS
	3.5.1 Symbol Addressing
	3.5.2 Operand Value Size and Range

	CHAPTER 4 PSEUDO-INSTRUCTIONS
	4.1 OUTLINE OF PSEUDO-INSTRUCTIONS
	4.2 SEGMENT DEFINITION PSEUDO-INSTRUCTIONS
	(1) CSEG (code segment)
	(2) DSEG (data segment)
	(3) ORG (origin)

	4.3 PROGRAM LINKAGE PSEUDO-INSTRUCTIONS
	(1) NAME (name)
	(2) PUBLIC (public)
	(3) EXTRN (external)

	4.4 SYMBOL DEFINITION PSEUDO-INSTRUCTIONS
	(1) EQU (equate)
	(2) SET (set)

	4.5 DATA DEFINITION AND AREA RESERVE PSEUDO-INSTRUCTIONS
	(1) DB (define byte)
	(2) DS (define storage)
	(3) STKLN (stack length)

	4.6 BRANCH INSTRUCTION AUTO SELECT PSEUDO-INSTRUCTIONS
	(1) BR (branch)

	4.7 VECTOR ENTRY TABLE DEFINITION PSEUDO-INSTRUCTIONS
	(1) VENTn (vector entry table)

	4.8 GETI INSTRUCTION TABLE DEFINITION PSEUDO-INSTRUCTIONS
	(1) TCALL (table call)
	(2) TBR (table branch)

	4.9 ASSEMBLY END PSEUDO-INSTRUCTION
	(1) END (end)

	CHAPTER 5 MACRO
	5.1 OUTLINE OF MACROS
	5.2 MACRO TYPES
	5.3 MACRO RULES
	5.3.1 Macro Definition Rules
	5.3.2 Macro Reference Rules

	5.4 OUTLINE OF MACRO INSTRUCTIONS
	5.5 MACRO DEFINITION INSTRUCTIONS
	(1) MACRO (macro)
	(2) EXITM (exit from macro)
	(3) ENDM (end macro)

	5.6 EXTERNAL MACRO DECLARE INSTRUCTION
	(1) LODM (load macro)

	5.7 MACRO INSTRUCTION
	(1) Macro Instruction

	5.8 REPEAT MACRO INSTRUCTIONS
	(1) REPT (repeat)
	(2) IRP (indefinite repeat)
	(3) IRPC (indefinite repeat of character)

	5.9 GLOBAL SYMBOL DECLARE INSTRUCTION
	(1) GLOBAL (global)

	CHAPTER 6 CONTROL INSTRUCTIONS
	6.1 GENERAL DESCRIPTION OF CONTROL INSTRUCTIONS
	6.2 INCLUDE CONTROL INSTRUCTION
	(1) INCLUDE (include)

	6.3 ASSEMBLY LIST CONTROL INSTRUCTIONS
	(1) TITLE (title)
	(2) NOLIST (no list)
	(3) LIST (list)
	(4) EJECT (eject)

	6.4 CONDITIONAL ASSEMBLE CONTROL INSTRUCTIONS
	(1) IFDEF (if defined)
	(2) IF (if)
	(3) SWITCH (switch)

	CHAPTER 7 ASSEMBLER PACKAGE UTILIZATION
	7.1 ASSEMBLER PACKAGE UTILIZATION
	7.2 RELOCATION ATTRIBUTES AND INSTRUCTIONS
	7.2.1 INBLOCK and INBLOCKA Attributes and Branch Instructions
	7.2.2 XBLOCK and XBLOCKA Attributes and Branch Instructions
	7.2.3 Relocation Attributes and Subroutine Call Instructions
	7.2.4 IENT Attribute and GETI Instruction
	7.2.5 PAGE Attributes and MOVT, BR PCDE, and BR PCXA Instructions

	APPENDIX A LIST OF ASSEMBLED RELEVANT UNIT TYPES
	APPENDIX B LIST OF RESERVED WORDS
	APPENDIX C LIST OF PSEUDO-INSTRUCTIONS
	APPENDIX D LIST OF MAXIMUM PERFORMANCE CAPABILITIES
	APPENDIX E LIST OF PRECAUTIONS
	APPENDIX F INDEX

