
e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 1 of 41

Apr 5, 2022

e2 studio

Porting projects produced with the Code Generator to projects for use with the
Smart Configurator

Introduction

This application note describes how to port projects produced with the Code Generator to projects for use
with the Smart Configurator.

Target Device

• RL78/G23 Group

If you are applying the information in this application note to another MCU, do so in a way that suits the
given MCU and evaluate the results.

Reference Documents

RL78 Smart Configurator User's Guide: e² studio (R20AN0579)

e² studio Integrated Development Environment User's Manual: Getting Started Guide (R20UT4819)

RL78/G13 Renesas Starter Kit Sample Code (CS+ for CC-RL) (R01AN2899)

Contents

1. Overview ... 3

1.1 Purpose of This Document .. 3

1.2 Operating Environment ... 3

2. Porting Projects Produced with the Code Generator to Projects for Use with the Smart

Configurator ... 4

2.1 Projects Used in This Application Note ... 5

2.2 Downloading the Source Project ... 6

2.3 Generating a Report on the Source Project .. 7

2.3.1 Generating the Report ... 7

2.4 Newly Creating the Destination Project ... 10

2.5 Setting Peripheral Functions in the Smart Configurator .. 10

2.5.1 Correspondence between the Code Generator and the Smart Configurator 10

2.5.2 Setting the Clock Generator .. 11

2.5.3 Setting the Timer ... 18

2.5.4 Setting Other Peripheral Functions ... 20

2.5.5 Generating Code ... 20

R20AN0673EC0100
Rev.1.00

Apr 5, 2022

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 2 of 41

Apr 5, 2022

2.6 Porting User-defined Source Code ... 21

2.6.1 Overview .. 21

2.6.2 Areas for Writing User-defined Source Code .. 21

2.6.3 Copying the User-created Source Files .. 22

2.6.4 Copying Source Code, Including the main() Function... 25

2.6.5 Correspondences between Code Generated by the Code Generator and by the Smart Configurator

 ... 31

2.6.6 Copying Custom Code in Generated Code ... 33

2.6.7 Modifying the Include Directives .. 36

2.6.8 Modifying Parts that Call API Functions .. 37

2.7 Setting Build Options ... 39

3. Reference Documents ... 40

Revision History .. 41

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 3 of 41

Apr 5, 2022

1. Overview

1.1 Purpose of This Document

Using sample source code, this application note concretely describes how to port projects produced with the
Code Generator for RL78/G13 to projects for use with the Smart Configurator target for same package
RL78/G23 device in terms of the differences in methods of settings and in the names of functions that are
generated.

For the usage of the e2 studio, refer to the e2 studio Integrated Development Environment User’s Manual:
Getting Started Guide.

1.2 Operating Environment

Table 1.1 Operating Environment

Target Device RL78/G23 Group

Emulator E2 lite or E2

IDE e2 studio 2021-04 and later versions

Toolchain Renesas C/C++ compiler package for RL78 family

Toolchain version CC-RL78 V1.10.00

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 4 of 41

Apr 5, 2022

2. Porting Projects Produced with the Code Generator to Projects for Use with the
Smart Configurator

Figure 2.1 shows the steps in porting projects produced with the Code Generator to projects for use with the
Smart Configurator.

Figure 2.1 Steps in Porting Projects Produced with the Code Generator to Projects for Use with

the Smart Configurator

Start

2.3 Generating a Report on the Source Project

2.4 Newly Creating the Destination Project

2.5 Setting Peripheral Functions in the Smart Configurator

2.6 Porting User-defined Source Code

2.7 Setting Build Options

Completion and
building

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 5 of 41

Apr 5, 2022

2.1 Projects Used in This Application Note

The following two projects are used in this application note.

A project for the RL78/G13 Renesas Starter Kit Sample Code (CS+ for CC-RL), which is a tool for evaluating
Renesas MCUs, is used as the source project. The destination project is newly created.

Table 2.1 Projects Used in This Application Note

Project Name Description

RSKRL78G13_Tutorial A project for the RL78/G13 Renesas Starter Kit Sample Code

(CS+ for CC-RL), produced with the use of the Code Generator

serves as the source project. This project is used to generate a

report to provide guidance on the setting of peripheral functions

and the copying of user-created source code.

RSKRL78G23_Tutorial_SC A destination project which is newly created for use with the

Smart Configurator. In this project, the settings of peripheral

functions and user-created source code in the source project are

modified and reflected in the Smart Configurator according to the

steps in Figure 2.1.

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 6 of 41

Apr 5, 2022

2.2 Downloading the Source Project

You can download the RL78/G13 Renesas Starter Kit Sample Code (CS+ for CC-RL) project, which is used
as the source project in this application note, from the Web site of Renesas Electronics.

Note: To download the project, you need to register a My Renesas account.

(1) From the top page of the Web site of Renesas (https://www.renesas.com), select [RL78 Low Power 8 &

16-bit MCUs] under the [Products] menu, then select [RL78/G13] under [Portfolio] in [RL78 Low Power 8

& 16-bit MCUs] page.

Figure 2.2 Downloading the Source Project (1)

(2) Select [RL78/G13-Starter-Kit] from the list of [Boards & Kits] section in [RL78/G13] page.

Figure 2.3 Downloading the Source Project (2)

https://www.renesas.com/us/en/

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 7 of 41

Apr 5, 2022

(3) Click [RL78/G13 Renesas Starter Kit Sample Code (CS+ for CC-RL) Rev.1.00 Sample Code] under

[Downloads] section in the [RL78/G13-Starter-Kit] page to proceed with downloading.

Figure 2.4 Downloading the Source Project (3)

2.3 Generating a Report on the Source Project

Use the function for generating reports from the Code Generator to output a report on the source project in
the form of a list of peripheral functions. Refer to this report to set peripheral functions in the Smart
Configurator for the destination project.

2.3.1 Generating the Report

• From CS+

(1) Start CS+ and open the source project [RSKRL78G13_Tutorial] that uses the Code Generator. Expand

[Code Generator] under [Project Tree] and double-click on [Peripheral Functions].

(2) Select [Save Code Generator Report] from the [File] menu to generate the report.

Figure 2.5 Generating the Report from CS+

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 8 of 41

Apr 5, 2022

(3) When the report has been generated, two files, Function.html and Macro.html, are output to the project

folder.

Figure 2.6 Report Files Output by the Report Function of the Code Generator for CS+

• From the e2 studio

(1) Start the e2 studio and open the source project [RSKRL78G13_Tutorial] for which the Code Generator

was used. Expand [Code Generator] under [Project Tree] and double-click on [Peripheral Functions].

(2) Click on the [Generate Report] button to generate the report.

Figure 2.7 Generating a Report from the e2 studio

(3) When the report has been generated, two files, Function.html and Macro.html, are output to the doc

folder.

[Generate Report] button

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 9 of 41

Apr 5, 2022

Figure 2.8 Report Files Output by the Report Function of the Code Generator for the e2 studio

Table 2.2 Report Files Output by the Report Function of the Code Generator

File Name Description

Function.html A list of API functions generated by the Code Generator.

Macro.html A list of peripheral functions set by the Code Generator.

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 10 of 41

Apr 5, 2022

2.4 Newly Creating the Destination Project

Newly create a C project target device with R7F100GLGxFA as the destination project for use with the
Smart Configurator. Regarding how to create a project, refer to section 2, Generating a C Project, in the
Renesas e2 studio Smart Configurator User Guide.

2.5 Setting Peripheral Functions in the Smart Configurator

2.5.1 Correspondence between the Code Generator and the Smart Configurator

Table 2.3 shows the correspondence of the peripheral functions which are to be set in the
RSKRL78G13_Tutorial project between those in the Code Generator and those in the Smart Configurator.

Table 2.3 Correspondence of Peripheral Functions between the Code Generator and the Smart

Configurator

Code Generator Smart Configurator

Periphera
l
functions

Setting items Tabs Peripheral
functions

Setting items

Port Port5 P52 Components Ports PORT5 P52

P53 P53

P54 P54

P55 P55

Port6 P62 PORT6 P62

P63 P63

Port7 P70 PORT7 P70

P71 P71

P72 P72

P73 P73

Interrupt INTP1 － Components Interrupt
Controller

INTP1 －

INTP2 － Components Interrupt
Controller

INTP2 －

INTP4 － Components Interrupt
Controller

INTP4 －

A/D
Converter

Operation
mode setting

－ Components A/D
Converter

Operation
mode setting

－

A/D channel
selection

－ Components A/D
Converter

A/D channel
selection

－

Timer Interval timer Interval value
(16 bits)

Components Interval
Timer

16 bit count
mode

Interval value
(16 bits)

Set the Smart Configurator with the project that has been created in section 2.4, Newly Creating the
Destination Project, with reference to the report that was output in section 2.3, Generating a Report on the
Source Project.
This section describes settings of the clock generator and timer. Set other peripheral functions according to
the same procedure.

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 11 of 41

Apr 5, 2022

2.5.2 Setting the Clock Generator

Set the clock generator.

(1) Open the Macro.html file of the report that was output in section 2.3, Generating a Report on the Source

Project, and display the parts to be set for the clock generator.

Figure 2.9 Report on the Clock Generator Output by the Code Generator

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 12 of 41

Apr 5, 2022

(2) Open the window for setting the Smart Configurator for the project that was created in section 2.4, Newly

Creating the Destination Project, and select the [Clocks] tabbed page.

Figure 2.10 Window for Using the Smart Configurator to Make Clock Settings

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 13 of 41

Apr 5, 2022

(3) Reflect the items in the [Setting] and [Status] columns in Macro.html of the report in the settings of the

Smart Configurator.

Figure 2.11 Setting Clocks in the Smart Configurator (1)

(1)

(2)

(3)

(5)
(6)

(4)

(7)

(1)

(2)

(3)

(6)

(5)

(5)

(7)

(4)

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 14 of 41

Apr 5, 2022

Figure 2.12 Setting Clocks in the Smart Configurator (2)

(8)

(9)

(10)

(8)

(9)

(10)

(11)

(12)

(11)

(12)

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 15 of 41

Apr 5, 2022

(4) Select the [System] tabbed page.

Figure 2.13 Window for Using the Smart Configurator to Make Clock Settings

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 16 of 41

Apr 5, 2022

(5) Reflect the left items in the [Setting] and [Status] columns in Macro.html of the report in the settings of the

Smart Configurator.

Figure 2.14 Setting System in the Smart Configurator

(13)

(14) (13)

(14)

(15)

(15) (16)

(16)

(17)

(17)

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 17 of 41

Apr 5, 2022

Table 2.4 Settings of the Clock Generator

 Code Generator Smart Configurator – [Clocks] tabbed

page

Item to be Set

([Macro] or [Setting] in

Macro.html)

Setting

([Status] in

Macro.html)

Item to be Set Setting

(1) Operation mode setting High speed main

mode 2.7 (V) ≤ VDD

≤ 5.5 (V)

Operation

mode

High speed main mode

2.7 (V) ~ 5.5 (V)

(2) EVDD setting 2.7 (V) ≤ EVDD ≤

5.5 (V)

EVDD setting 2.7 V ≤ EVDD0 ≤ 5.5 V

(3) fIH operation Unused High-speed on-

chip oscillator

Not selected

(4) fMX operation Used Check that the fMX clock source is

selected.

(5) High-speed system clock

setting

X1 oscillation (fX) X1 oscillator Selected

(6) fMX frequency 20(MHz) [X1] Frequency 20

(7) Stable time 6553.6 (2^17/fX)(μs) Stable time 2^17/fx

(8) HOCO Operation Unused HOCO clock Not selected

(9) fSUB frequency 32.768 (fSUB)(kHz) [XT1]

Frequency

32.768

(10) Subsystem clock in STOP,

HALT mode setting

Enables supply Supply mode Enable supply in STOP,

HALT mode

(11) RTC and interval timer

operation clock

32.768 (fSUB)(kHz) Check that the fSXR clock source is

selected.

(12) CPU and peripheral

clock(fCLK)

20000 (fMX)(kHz) Check that the fMAIN clock source is

selected.

(13) On-chip debug operation

setting

Used On-chip debug

operation setting

Used

(14) Security ID authentication

failure setting

Erase flash memory

data

Security ID

authentication

failure setting

Erase flash memory

data

(15) Pseudo-RRM/DMM

function setting

Used Pseudo-

RRM/DMM

function setting

Used

(16) Start/Stop function setting Unused Start/Stop

function setting

Unused

(17) Monitoring point function

setting

Unused Monitoring point

function setting

Unused

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 18 of 41

Apr 5, 2022

2.5.3 Setting the Timer

Set the timer.

(1) Refer to ‘a-1 To add a Code Generator component’ under section 4.4.2, Adding a software component

into the project, in the Renesas e2 studio Smart Configurator User Guide, and add the compare match

timers as components of the project.

In the [Add new configuration for selected component] dialog box, use the default names as the names of

the configurations of the resources, as listed below.

Table 2.5 Correspondence between Resources and the Configuration Names of the Compare Match

Timers

Component Type Component Resource Configuration Name Operation/

Work Mode

Code Generator Interval timer TAU0_1 Config_TAU0_1 (default) 16bit count mode

(2) Display the parts showing the settings of the compare match timers in the Macro.html file of the report

that was output in section 2.3, Generating a Report on the Source Project.

Figure 2.15 Report on the Timer Output by the Code Generator

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 19 of 41

Apr 5, 2022

(3) Open the window for setting Interval timer TAU0_1 that was created in step (1).

Figure 2.16 Window for Setting the Interval Timer (TAU0_1) in the Smart Configurator

(4) Reflect the settings of the Timer in Macro.html in those for TAU0 channel1 in the Smart Configurator.

Figure 2.17 Settings of the Interval Timer (TAU0_1) in the Smart Configurator

(2)

(3)

(4)

(1)

(1)

(3)

(2)

(4)

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 20 of 41

Apr 5, 2022

Table 2.6 Settings of the Timer (TAU0 Channel1)

 Code Generator Smart Configurator

Item to be Set

([Macro] or [Setting] in

Macro.html)

Setting

([Status] in

Macro.html)

Item to be Set Setting

(1) Interval value (16 bits) 100 ms Interval value (16 bits) 100 ms

(2) Generates INTTM01 when

counting is started

Unused Generates INTTM01 when

counting is started

Unused

(3) End of timer channel 1 count,

generate an interrupt (INTTM01)

Used End of timer channel 1 count,

generate an interrupt (INTTM01)

Used

(4) Priority (INTTM01) Low Priority (INTTM01) Level3 (Low)

2.5.4 Setting Other Peripheral Functions

For settings of the PORT and A/D converter, refer to the steps described in Table 2.2, Report Files Output
by the Report Function of the Code Generator, section 2.5.2, Setting the Clock Generator, section 2.5.3,
Setting the Timer, and set the Smart Configurator in the equivalent ways.

2.5.5 Generating Code

When all settings are finished, save the project and click on the [Generate Code] button to make the
Smart Configurator generate the code.

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 21 of 41

Apr 5, 2022

2.6 Porting User-defined Source Code

2.6.1 Overview

The user-created source files or user-defined source code written in the source files which were generated
by the Code Generator in the source project created by using the Code Generator must be copied to the
destination project created by using the Smart Configurator.

Figure 2.18 shows the procedure for porting user-defined source code.

Figure 2.18 Procedure for Porting User-defined Source Code

2.6.2 Areas for Writing User-defined Source Code

Files generated by the Code Generator and Smart Configurator include areas where the user can freely add
code. Areas for custom code are indicated by comments as shown below.

In the comments above, the part ‘xxxxxx’ depends on the area where custom code is to be added. For
example, it is the word ‘include’ in the part where include declarations are to be written and the word ‘global’
in the part where global variables are to be defined.

Start

222.6.3 Copying the User-created Source Files

2.6.4Error! Reference source not found. Copying Source
Code, Including the main() Function

2.6.6 Copying Custom Code in Generated Code

2.6.7 Modifying the Include Directives

2.6.8 Modifying Parts that Call API Functions

End

/* Start user code for xxxxxx. Do not edit comment generated here */

/* End user code. Do not edit comment generated here */

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 22 of 41

Apr 5, 2022

Custom code located between these comments must be copied from the source projects to the destination
projects.

2.6.3 Copying the User-created Source Files

Copy the user-created source files other than the source files output by the Code Generator from the source
project.

As shown below, copy the specified source files and header files from the folder ‘Tutorial’ in the source
project to the ‘src’ folder in the destination project.

Figure 2.19 Copying the User-created Source Files

Since the copied source files will use the names of the API functions generated by the Code Generator,
these names must be modified to those generated by the Smart Configurator. In addition, the header files to
be included must also be modified as required. For modifying the names of the API functions, refer to
section 2.6.8, Modifying Parts that Call API Functions. For modifying the include directives, refer to section
2.6.7, Modifying the Include Directives.

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 23 of 41

Apr 5, 2022

The ‘src’ folder must be added to the include directory since the ‘src’ folder will include header files to be
included. Add the include directory through the following steps.

(1) Right-click on [RSKRL78G23_Tutorial_SC], which is the destination project, to open [Properties for

RSKRL78_Tutorial_SC]. Select [Settings] under [C/C++ Project Settings] in the left pane. Select the [Tool

Settings] tabbed page in the right window. Then select [Source] under [Compiler] and click on the [Add]

 button in the [Include file directories] category.

Figure 2.20 Adding the Include Directory (1)

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 24 of 41

Apr 5, 2022

(2) Select [Workspace] in the [Add directory path] dialog box. In the [Folder selection] dialog box, select the

folder (e.g. ‘src’) to be added as the include directory and click on [OK]. Check that the folder specified for

[Directory] has been added to the [Add directory path] dialog box and click on [OK].

Figure 2.21 Adding the Include Directory (2)

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 25 of 41

Apr 5, 2022

2.6.4 Copying Source Code, Including the main() Function

Copy user-defined source code from the source file including the main() function.

In the source project, the main() function will be in the ‘r_main.c’ file in the ‘Tutorial’ folder. Since ‘r_main.c’ is
a source file generated by the Code Generator, the user-defined source code will be in the area between
comments.

In the destination project, the file that includes the main() function is not among the files generated by the
Smart Configurator. Instead, the main() function is in the {ProjName}.c file, which is automatically generated
when a new project is created. Since the name of the destination project is ‘RSKRL78G23_Tutorial_SC’ in
this application note, the main() function will be in ‘RSKRL78G23_Tutorial_SC.c’. All source code in
‘{ProjName}.c’ is user-defined.

Open ‘r_main.c’ and copy all source code written between comments of the type shown in section 2.6.2,
Areas for Writing User-defined Source Code.

The following explains how to copy the include directives as an example.

For the include files, the source code between comments of the type shown in section 2.6.2, Areas for
Writing User-defined Source Code, will generally be copied. Header files that contain user-defined source
code (e.g. ‘r_cg_userdefine.h’) are also copied.

An include directive for ‘r_smc_entry.h’ is automatically written in ‘{ProjName}.c’ when this source file is
generated during creation of the new project.

Preprocessor directives for the inclusion of other header files written in ‘r_main.c’ (e.g. ‘r_cg_macrodriver.h’
through ‘r_cg_adc.h’) need not be copied unless these header files contain user-defined source code.

The statements to be copied are highlighted in yellow below.

/***

Includes

***/

#include "r_cg_macrodriver.h"

#include "r_cg_cgc.h"

#include "r_cg_port.h"

#include "r_cg_intc.h"

#include "r_cg_adc.h"

#include "r_cg_timer.h"

/* Start user code for include. Do not edit comment generated here */

/* Following header file provides common defines for widely used items. */

#include "rskrl78g13def.h"

/* Following header file provides useful macros and function prototypes for

controlling the LCD interface. */

#include "lcd.h"

/* Header file with integer to string conversion functions */

#include "utility.h"

/* End user code. Do not edit comment generated here */

#include "r_cg_userdefine.h"

r_cg_main.c

#include "r_smc_entry.h"

/* Following header file provides useful macros and function prototypes for

controlling the LCD interface. */

#include "lcd.h"

/* Header file with integer to string conversion functions */

#include "utility.h"

#include "r_cg_userdefine.h"

{ProjName}.c

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 26 of 41

Apr 5, 2022

Source code written between comments of the type shown in section Error! Reference source not found.,
Areas for Writing User-defined Source Code, such as the user-defined prototype declarations and function
definitions, is copied to ‘{ProjName}.c’, preserving the original order.

In the example, copy the user-defined prototype and variable declarations highlighted in yellow on the next
page.

/* Start user code for global. Do not edit comment generated here */

/* Define the RSK short name */

#define NICKNAME "RL78G13 "

/* Global initialised variable*/

int8_t ucStr[9]=" STATIC ";

/* Constant Data for replacement */

const int8_t ucReplace[] = "TESTTEST";

/* Global variable changed by pressing switches */

volatile int8_t gSwitchFlag = 0;

/* Static test function prototype */

void Statics_Test(void);

/* End user code. Do not edit comment generated here */

r_main.c

int main(void);

/* Define the RSK short name */

#define NICKNAME "RL78G13 "

/* Global initialised variable*/

int8_t ucStr[9]=" STATIC ";

/* Constant Data for replacement */

const int8_t ucReplace[] = "TESTTEST";

/* Global variable changed by pressing switches */

volatile int8_t gSwitchFlag = 0;

/* Static test function prototype */

void Statics_Test(void);

{ProjName}.c

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 27 of 41

Apr 5, 2022

Copy the function calls and other code in the main() function that is highlighted in yellow below.

All sections indicated as ‘- Omitted -’ must also be copied. Code related to functions generated by the Code
Generator, such as ‘R_MAIN_UserInit()’, need not be copied unless user-defined code has been added to
the functions.

void R_MAIN_UserInit(void);

/***

* Function Name: main

* Description : This function implements main function.

* Arguments : None

* Return Value : None

***/

void main(void)

{

 R_MAIN_UserInit();

 /* Start user code. Do not edit comment generated here */

 /* Initialise the LCD module. */

 InitialiseDisplay();

 /* Display information on the debug LCD. */

 DisplayString(LCD_LINE1, (int8_t*)"Renesas");

 DisplayString(LCD_LINE2, (int8_t*)NICKNAME);

 /* Flash the user LEDs for some time or until a push button is pressed. */

 FlashLEDs();

 /* Flash the user LEDs at a rate set by the user potentiometer (ADC) using

 interrupts. */

 TimerADC();

 /* Demonstration of initialised variables. Use this function with the

 debugger.*/

 Statics_Test();

 /* Halt program in an infinite while loop */

 while (1U)

 {

 ;

 }

 /* End user code. Do not edit comment generated here */

}

r_main.c

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 28 of 41

Apr 5, 2022

Copy the function calls and other code in the private function that is highlighted in yellow below. All sections
indicated as ‘- Omitted -’ must also be copied. Code related to functions generated by the Code Generator,
such as ‘R_MAIN_UserInit()’, need not be copied unless user-defined code has been added to the functions.

int main(void)

{

 EI();

 /* Initialise the LCD module. */

 InitialiseDisplay();

 /* Display information on the debug LCD. */

 DisplayString(LCD_LINE1, (int8_t*)"Renesas");

 DisplayString(LCD_LINE2, (int8_t*)NICKNAME);

 /* Flash the user LEDs for some time or until a push button is pressed. */

 FlashLEDs();

 /* Flash the user LEDs at a rate set by the user potentiometer (ADC) using

 interrupts. */

 TimerADC();

 /* Demonstration of initialised variables. Use this function with the

 debugger.*/

 Statics_Test();

 return 0;

}

{ProjName}.c

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 29 of 41

Apr 5, 2022

/**

* Function Name: R_MAIN_UserInit

* Description : This function adds user code before implementing main function.

* Arguments : None

* Return Value : None

**/

void R_MAIN_UserInit(void)

{

 /* Start user code. Do not edit comment generated here */

 EI();

 /* End user code. Do not edit comment generated here */

}

/* Start user code for adding. Do not edit comment generated here */

void Statics_Test(void)

{

 /* Declare loop count variable */

 uint8_t uiCount;

 /* Declare string variable to hold the string to be copied */

 uint8_t ucStr[] = "STATIC \0";

 /* Declare variable buffer to store the copied string */

 uint8_t ucReplace[] = "TESTTEST\0";

 /* Declare a delay count variable */

 uint32_t ulDelay;

 /* Write ucStr varaible, "STATIC" to LCD */

 DisplayString(LCD_LINE2, (int8_t*)ucStr);

 /* Begin for loop which writes one letter of ucReplace to the LCD at a time

 The nested while loops generate the delay bewteen each letter change */

 for (uiCount=0; uiCount<8; uiCount++)

 {

 /* Replace letter number uiCount of ucStr from ucReplace */

 ucStr[uiCount] = ucReplace[uiCount];

 /* Display the character on the debug LCD */

 DisplayString(LCD_LINE2, (int8_t*)ucStr);

 /* LED Flashing Delay */

 for(ulDelay=0; ulDelay<700000; ulDelay++)

 {

 /* Delay */

 }

 }

 /* Clear LCD Display */

 ucStr[uiCount] = '\0';

 /* Write MCU nickname to LCD again */

 DisplayString(LCD_LINE2, (int8_t*)NICKNAME);

}

/**

End of function Statics_Test

**/

/* End user code. Do not edit comment generated here */

r_main.c

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 30 of 41

Apr 5, 2022

void Statics_Test(void)

{

 /* Declare loop count variable */

 uint8_t uiCount;

 /* Declare string variable to hold the string to be copied */

 uint8_t ucStr[] = "STATIC \0";

 /* Declare variable buffer to store the copied string */

 uint8_t ucReplace[] = "TESTTEST\0";

 /* Declare a delay count variable */

 uint32_t ulDelay;

 /* Write ucStr varaible, "STATIC" to LCD */

 DisplayString(LCD_LINE2, (int8_t*)ucStr);

 /* Begin for loop which writes one letter of ucReplace to the LCD at a time

 The nested while loops generate the delay bewteen each letter change */

 for (uiCount=0; uiCount<8; uiCount++)

 {

 /* Replace letter number uiCount of ucStr from ucReplace */

 ucStr[uiCount] = ucReplace[uiCount];

 /* Display the character on the debug LCD */

 DisplayString(LCD_LINE2, (int8_t*)ucStr);

 /* LED Flashing Delay */

 for(ulDelay=0; ulDelay<700000; ulDelay++)

 {

 /* Delay */

 }

 }

 /* Clear LCD Display */

 ucStr[uiCount] = '\0';

 /* Write MCU nickname to LCD again */

 DisplayString(LCD_LINE2, (int8_t*)NICKNAME);

}

/***

End of function Statics_Test

***/

{ProjName}.c

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 31 of 41

Apr 5, 2022

2.6.5 Correspondences between Code Generated by the Code Generator and by the Smart
Configurator

Since files generated by the Code Generator and the Smart Configurator are not paired and are output in
different folder structures, copying between the appropriate files is required.

The following lists the main files and output folders for which user-created code must be copied from the
source project to the destination project.

Table 2.7 Correspondences between Code Generated by the Code Generator and by the Smart

Configurator

Code Generator Smart Configurator Note

Output

Folder

Source File Output Folder Source File

Tutorial r_main.c src {ProjName}.c File that contains main().

Tutorial r_cg_userdefine.h src\smc_gen\general r_cg_userdefine.h Header file for user-

defined code that is used

in common with peripheral

functions.

Tutorial r_cg_xxx.c src\smc_gen\Config_XXX Config_XXX.c Source file for initializing

and operating peripheral

functions. With the Smart

Configurator, one file is

output for each resource.

r_cg_xxx_user.c src\smc_genConfig_XXX Config_XXX_user.c Source file for writing

user-defined code or

interrupt callback

functions after peripheral

functions have been

initialized. With the Smart

Configurator, one file is

output for each resource.

r_cg_xxx.h src\smc_gen\general r_cg_xxx.h Header file including

macro definitions for

setting the SFR registers.

These files are used in

common with the

peripheral functions.

src\smc_gen\Config_XXX Config_XXX.h Header file for

Config_XXX.c.

Note: ‘xxx’ and ‘XXX’ represent the names of peripheral functions.

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 32 of 41

Apr 5, 2022

For files requiring the porting of custom code in the RSKRL78G13_Tutorial sample code, the following
shows the correspondences between the locations in code generated by the Code Generator and by the
Smart Configurator. In this example, the porting of custom code is not required for files on a gray
background. The other files have custom code that requires porting.

Table 2.8 Files that Require Porting of Custom Code in the RSKRL78G13_Tutorial Sample Code

Peripheral

Function

Code Generator Smart Configurator

Output

Folder

Source File Output Folder Source File

File

including

main()

Tutorial r_main.c src {ProjName}.c

General

settings

Tutorial r_cg_userdefine.h src\smc_gen\general r_cg_userdefine.h

Interrupt Tutorial r_cg_intc.c src\smc_gen\Config_INTC Config_INTC.c

r_cg_intc_user.c src\smc_gen\Config_INTC Config_INTC_user.c

r_cg_intc.h src\smc_gen\general r_cg_intc.h

src\smc_gen\Config_INTC Config_INTC.h

PORT Tutorial r_cg_port.c src\smc_gen\Config_PORT Config_PORT.c

r_cg_port_user.c src\smc_gen\Config_PORT Config_PORT_user.c

r_cg_port.h src\smc_gen\general r_cg_port.h

src\smc_gen\Config_PORT Config_PORT.h

Timer Tutorial r_cg_timer.c src\smc_gen\Config_TAU0_1 Config_TAU0_1.c

src\smc_gen\general r_cg_tau_common.c

r_cg_timer_user.c src\smc_gen\Config_TAU0_1 Config_TAU0_1_user.c

r_cg_timer.h src\smc_gen\general r_cg_tau_common.h

src\smc_gen\general r_cg_tau.h

src\smc_gen\Config_TAU0_1 Config_TAU0_1.h

A/D

converter

Tutorial r_cg_adc.c src\smc_gen\Config_ADC r_cg_ad_common.c

src\smc_gen\Config_ADC Config_ADC.c

r_cg_adc_user.c src\smc_gen\Config_ADC Config_ADC_user.c

r_cg_adc.h src\smc_gen\general r_cg_ad_common.h

src\smc_gen\general r_cg_ad.h

src\smc_gen\Config_ADC Config_ADC.h

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 33 of 41

Apr 5, 2022

2.6.6 Copying Custom Code in Generated Code

The following explains how to copy custom code from the files in the source project to the destination project
according to the correspondences listed in Table 2.8, taking the case of the Timer (in use for interval timer)
as an example.

Firstly, copy the custom code for Timer that is highlighted in yellow below from ‘r_cg_timer.h’ to
‘Config_TAU0_1.h’.

/* Start user code for function. Do not edit comment generated here */

/* Declare TimerADC function prototype */

void TimerADC(void);

/* End user code. Do not edit comment generated here */

r_cg_timer.h

/* Start user code for function. Do not edit comment generated here */

/* Declare TimerADC function prototype */

void TimerADC(void);

/* End user code. Do not edit comment generated here */

Config_TAU0_1.h

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 34 of 41

Apr 5, 2022

After that, copy the custom code for Timer that is highlighted in yellow below from ‘r_cg_timer_user.c’ to
‘Config_TAU0_1_user.c’.

/* Start user code for include. Do not edit comment generated here */

#include "r_cg_adc.h"

/* rskrl78g13def.h provides common defines for widely used items. */

#include "rskrl78g13def.h"

/* Following header file provides function prototypes for LCD controlling

functions & macro defines */

#include "lcd.h"

/* Header file with integer to string conversion functions */

#include "utility.h"

/* End user code. Do not edit comment generated here */

/* Start user code for global. Do not edit comment generated here */

/* Declare a variable for storing the ADC value */

volatile uint16_t gTimerADCperiod = 0;

/* End user code. Do not edit comment generated here */ -

static void __near r_tau0_channel1_interrupt(void)

{

 /* Start user code. Do not edit comment generated here */

 /* Toggle user LEDs */

 LED0 = ~LED0;

 LED1 = ~LED1;

 LED2 = ~LED2;

 LED3 = ~LED3;

 /* Store the ADC value into the lower 12 bits of the variable */

 gTimerADCperiod = ADCR >> 6;

 /* Ensure that the timer period is never set below 0x75 */

 if(gTimerADCperiod < 0x0075)

 {

 gTimerADCperiod = 0x0075;

 }

 /* Update timer period with respect to adc value */

 TDR01 = gTimerADCperiod * 58;

 /* Clear TM01 interrupt flag */

 TMIF01 = 0;

 /* End user code. Do not edit comment generated here */

}

/* Start user code for adding. Do not edit comment generated here */

/***

* Function Name: TimerADC

* Description : Uses the ADC to change the duty of the timer, used to flash

the LEDs.

* Arguments : None

* Return Value : None

***/

void TimerADC(void)

{

 /* Start ADC operations */

 R_ADC_Start();

 /* Start timer TM01 operations */

 R_TAU0_Channel1_Start();

}

/***

End of function TimerADC

***/

/* End user code. Do not edit comment generated here */

r_cg_timer_user.c

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 35 of 41

Apr 5, 2022

/* Start user code for include. Do not edit comment generated here */

#include "Config_ADC.h"

/* rskrl78g13def.h provides common defines for widely used items. */

#include "rskrl78g13def.h"

/* Following header file provides function prototypes for LCD controlling

functions & macro defines */

#include "lcd.h"

/* Header file with integer to string conversion functions */

#include "utility.h"

/* End user code. Do not edit comment generated here */

/* Start user code for global. Do not edit comment generated here */

/* Declare a variable for storing the ADC value */

volatile uint16_t gTimerADCperiod = 0;

/* End user code. Do not edit comment generated here */

static void __near r_Config_TAU0_1_interrupt(void)

{

 /* Start user code for r_Config_TAU0_1_interrupt. Do not edit comment

generated here */

/* Toggle user LEDs */

LED0 = ~LED0;

LED1 = ~LED1;

LED2 = ~LED2;

LED3 = ~LED3;

 /* Store the ADC value into the lower 12 bits of the variable */

gTimerADCperiod = ADCR >> 6;

 /* Ensure that the timer period is never set below 0x75 */

if(gTimerADCperiod < 0x0075)

{

 gTimerADCperiod = 0x0075;

}

 /* Update timer period with respect to adc value */

 TDR01 = gTimerADCperiod * 58;

 /* Clear TM01 interrupt flag */

 TMIF01 = 0;

 /* End user code. Do not edit comment generated here */

}

/* Start user code for adding. Do not edit comment generated here */

/**

* Function Name: TimerADC

* Description : Uses the ADC to change the duty of the timer, used to flash the

LEDs.

* Arguments : None

* Return Value : None

**/

void TimerADC(void)

{

 /* Start ADC operations */

 R_Config_ADC_Start();

 /* Start timer TM01 operations */

 R_Config_TAU0_1_Start();

}

- Omitted -

Config_TAU0_1_user.c

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 36 of 41

Apr 5, 2022

Since ‘R_Config_ADC_Start’, highlighted in blue, is the name of the API function from the Code Generator,
the name must be modified to that from the Smart Configurator. Details of the steps for this modification are
described in section Error! Reference source not found., Modifying Parts that Call API Functions.

2.6.7 Modifying the Include Directives

The Code Generator mainly outputs files with names of the form ‘r_cg_xxx.h’ per peripheral function. The
Smart Configurator outputs more than one header files by dividing them into ‘r_cg_xxx.h’ that are common to
peripheral functions and ‘Config_XXX.h’ for resources of the component. Accordingly, the description of
source code including header files must be modified to the appropriate names of header files. (‘xxx’ and
‘XXX’ represent the names of peripheral functions.)

For example, find files that include ‘r_cg_adc.h’, which was copied in section 2.6.6, Copying Custom Code in
Generated Code, and modify them to have the appropriate include directives.

After a search for files that contain ‘#include “r_cg_adc.h”’ in the source project, the results are as follows.

Tutorial

├─ r_systeminit.c

├─ r_main.c

├─ r_cg_adc.c

├─ r_cg_adc_user.c

└─ r_cg_timer_user.c

Among these files that contain ‘#include “r_cg_adc.h”’, since files other than ‘r_main.c’ ({ProjName}.c for the
destination project) and ‘r_cg_timer_user.c’ (Config_TAU0_1_user.c for the destination project) include
appropriate header files from the Smart Configurator, the include directives need not be modified.

For ‘r_cg.timer_user.c’ (Config_TAU0_1_user.c for the destination project), the include directives in the
corresponding source files of the destination project require modification.

• For the source file (Config_TAU0_1_user.c)

Open ‘Config_TAU0_1_user.c’ in the destination project and find the part where the ADC function is

called. In ‘Config_TAU0_1_user.c’, the following function is called.

⎯ R_Config_ADC_Start()

Since the prototype declarations are in ‘Config_ADC.h’, the directives are modified so that this header file

is included.

/* Start user code for include. Do not edit comment generated here */

#include "Config_ADC.h"

r_cg_timer_user.c (before modification)

Config_TAU0_1_user.c (after modification)

/* Start user code for include. Do not edit comment generated here */

#include "r_cg_adc.h"

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 37 of 41

Apr 5, 2022

2.6.8 Modifying Parts that Call API Functions

Parts of the custom code copied in section 2.6.6, Copying Custom Code in Generated Code, will have calls
of API functions from the Code Generator. These names of the API functions must be modified to those from
the Smart Configurator.

The custom code in ‘r_cg_timer_user.c’ was copied in accordance with section 2.6.6, Copying Custom Code
in Generated Code. The definition of the TimerADC() function is in the file.

Example.

Two API functions: R_ADC_Start() and R_TAU0_Channel1_Start() generated by the Code Generator are
called in ‘TimerADC’ before modification. Since these function are R_Config_ADC_Start() and
R_TAU0_1_Start() generated by the Smart Configurator (when the default configuration name is used during
addition of the component), the name of the API function where it is called must be modified.

Table 2.9 shows the correspondences between the names of API functions generated by the Code
Generator and by the Smart Configurator. According to the table, modify the part where the API function is
called.

The names of the API functions from the Smart Configurator listed in Table 2.9 are those when the default
configuration names are set during the addition of the component. Since users are able to set configuration
names, the names of the API functions may differ with the setting for the configuration name.

For the API functions from the Smart Configurator, refer to [Help - e2 studio] - [e2 studio User Guide] -
[Building Projects] - [Smart Configurator] - [API reference].

void TimerADC(void)

{

 /* Start ADC operations */

 R_ADC_Start();

 /* Start timer TM01 operations */

 R_TAU0_Channel1_Start();

}

r_cg_timer_user.c (before modification)

Config_TAU0_1_user.c (after modification)

void TimerADC(void)

{

 /* Start ADC operations */

 R_Config_ADC_Start();

 /* Start timer TM01 operations */

 R_Config_TAU0_1_Start();

}

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 38 of 41

Apr 5, 2022

Table 2.9 Correspondences between the Names of API Functions Generated by the Code Generator

and by the Smart Configurator

Code Generator Smart Configurator

File Name Name of the API

Function

File Name Name of the API Function

Clock generator
r_cg_cgc.c R_CGC_Create mcu_clocks.c mcu_clock_setup

Timer
r_cg_timer.c R_TAU0_Create Config_TAU0_1.c R_Config_TAU0_1_Create

R_TAU0_Channel1_Start R_Config_TAU0_1_Start

R_TAU0_Channel1_Stop R_Config_TAU0_1_Stop

r_cg_timer_user.c − Config_TAU0_1_user.c R_Config_TAU0_1_Create_UserInit

r_tau0_channel1_interrupt r_tau0_channel1_interrupt

Interrupt
r_cg_intc.c R_INTC_Create Config_INTC.c R_Config_INTC_Create

R_INTC1_Start R_Config_INTC_INTP1_Start

R_INTC1_Stop R_Config_INTC_INTP1_Stop

R_INTC2_Start R_Config_INTC_INTP2_Start

R_INTC2_Stop R_Config_INTC_INTP2_Stop

R_INTC4_Start R_Config_INTC_INTP2_Start

R_INTC4_Stop R_Config_INTC_INTP2_Stop

r_cg_intc_user.c − Config_INTC_user.c R_Config_ICU_Create_UserInit

r_intc1_interrupt r_Config_INTC_intp1_interrupt

r_intc2_interrupt r_Config_INTC_intp2_interrupt

r_intc4_interrupt r_Config_INTC_intp4_interrupt

I/O port
r_cg_port.c R_PORT_Create Config_PORT.c R_Config_PORT_Create

r_cg_port_user.c − Config_PORT_user.c R_Config_PORT_Create_UserInit

A/D converter
r_cg_adc.c R_ADC_Create Config_ADC.c R_Config_ADC_Create

R_ADC_Start R_Config_ADC_Start

R_ADC_Stop R_Config_ADC_Stop

R_ADC_Set_OperationOn R_Config_ADC_Set_OperationOn

R_ADC_Set_OperationOff R_Config_ADC_Set_OperationOff

R_ADC_Get_Result R_Config_ADC_Get_Result_10bit

− R_Config_ADC_Set_SnoozeOn

− R_Config_ADC_Set_SnoozeOff

− R_Config_ADC_Set_ADChannel

− R_Config_ADC_Set_TestChannel

r_cg_adc_user.c − Config_ADC_user.c R_Config_ADC_Create_UserInit

r_adc_ interrupt r_Config_ADC_interrupt

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 39 of 41

Apr 5, 2022

2.7 Setting Build Options

The default build options are applied for the newly created destination project. Accordingly, build options in
the source project must be reflected in the destination project.

Refer to section 4.1, Build Option Settings, in the e2 studio Integrated Development Environment User’s
Manual: Getting Started Guide, and set the build options of the source project for the destination project.

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 40 of 41

Apr 5, 2022

3. Reference Documents

User’s Manual: Hardware

The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User’s Manual: Development Tools

CC-RL Compiler User's Manual (R20UT3123)

The latest version can be downloaded from the Renesas Electronics website.

e² studio Integrated Development Environment User's Manual: Getting Started Guide (R20UT4819)

The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 41 of 41

Apr 5, 2022

Revision History

Rev. Date

Description

Page Summary

1.00 Apr 5, 2022 − First edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2022 Renesas Electronics Corporation. All rights reserved

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,

manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics

disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product

that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics

hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but

not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS

ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING

RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,

HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND

ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT

PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH

RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO

THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are

responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Purpose of This Document
	1.2 Operating Environment

	2. Porting Projects Produced with the Code Generator to Projects for Use with the Smart Configurator
	2.1 Projects Used in This Application Note
	2.2 Downloading the Source Project
	2.3 Generating a Report on the Source Project
	2.3.1 Generating the Report

	2.4 Newly Creating the Destination Project
	2.5 Setting Peripheral Functions in the Smart Configurator
	2.5.1 Correspondence between the Code Generator and the Smart Configurator
	2.5.2 Setting the Clock Generator
	2.5.3 Setting the Timer
	2.5.4 Setting Other Peripheral Functions
	2.5.5 Generating Code

	2.6 Porting User-defined Source Code
	2.6.1 Overview
	2.6.2 Areas for Writing User-defined Source Code
	2.6.3 Copying the User-created Source Files
	2.6.4 Copying Source Code, Including the main() Function
	2.6.5 Correspondences between Code Generated by the Code Generator and by the Smart Configurator
	2.6.6 Copying Custom Code in Generated Code
	2.6.7 Modifying the Include Directives
	2.6.8 Modifying Parts that Call API Functions

	2.7 Setting Build Options

	3. Reference Documents
	Website and Support
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

