e2 studio Porting projects produced with the Code Generator to projects

for use with the Smart Configurator

e? studio R20AN0673EC0100
Rev.1.00

Apr 5, 2022

Porting projects produced with the Code Generator to projects for use with the

Smart Configurator

Introduction

This application note describes how to port projects produced with the Code Generator to projects for use

with the Smart Configurator.

Target Device
e RL78/G23 Group

If you are applying the information in this application note to another MCU, do so in a way that sulits the

given MCU and evaluate the results.

Reference Documents

RL78 Smart Configurator User's Guide: e2 studio (R20AN0579)

e? studio Integrated Development Environment User's Manual: Getting Started Guide (R20UT4819)
RL78/G13 Renesas Starter Kit Sample Code (CS+ for CC-RL) (RO1AN2899)

Contents
Lo OVEIVIEW ..o 3
1.1 PUrpoSe Of THiS DOCUMENT.....cuuiiiiiiiiiii ettt ettt ettt ettt e s e bb e e e e bt e e e e e nbe e e e e abeeeeenbnas 3
A @ T =T =] o T =1 01V 0] 11 01= o PP PPPPPPPPNt 3
2. Porting Projects Produced with the Code Generator to Projects for Use with the Smart

(@] a1 i{e 8T =1 o] S 4
2.1 Projects Used in This APPlICALION NOLEeiiiiiiiiiiiiit ettt e e e e e baaeeeeeaeeeas 5
2.2 Downloading the SOUICE PrOJECL......c.ciiiiiiiiiiii ettt ettt e e ettt e e e e e e e bbb et e e e e e e e e nbnbreeeaaaeeas 6
2.3 Generating a Report 0N the SOUICE PrOJECTcooi it 7
A B A €= 1= T = L gV IR (TSN L= o o] o PR 7
2.4 Newly Creating the Destination PrOJECT..........cuiiiiiieiiiii ettt 10
2.5 Setting Peripheral Functions in the Smart Configurator............ooccie i 10
2.5.1 Correspondence between the Code Generator and the Smart Configuratorcccccccoeeiiiinnee. 10
2.5.2 Setting the ClOCK GENEIALONeiiii ittt ettt e e e e e e et e e e e e e e e e s e bbb seeeaaeeesaannnnnees 11
2.5.3 SEHNG the TIMEE ...ttt e e e e et e et e e e e e s s ba b e et e e e e e e s aannbeeeeeeaeeaaansnnnees 18
2.5.4 Setting Other Peripheral FUNCHONSuvviiiiiee e eee e s e e e s e e e e e e s s er e e e e e s e nnnnnees 20
A T €= T 1= T = oV X @ To = PSSR 20
R20AN0673EC0100 Rev.1.00 Page 1 of41l

Apr 5, 2022 RENESAS

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

2.6 Porting User-defined SOUICE COOEccoiiiiiiiiiiiie ittt e et e e e s bbe e e e snbreeeeaaes 21
P2 ST R O 1T = OO PP RTSPPPTPURRRPR 21
2.6.2 Areas for Writing User-defined SOUICe COUE.......ccuuuiiiiie i e e e e e e e e rnranee e e e 21
2.6.3 Copying the User-created SOUICE FilEScccoiiiiiiiiiii e e e e nnraree e e e 22
2.6.4 Copying Source Code, Including the main() FUNCHION...........cooiiiiiiiiiecie e 25
2.6.5 Correspondences between Code Generated by the Code Generator and by the Smart Configurator
... 31
2.6.6 Copying Custom Code in Generated COUE..........cciiiuiiiiiiiiiie ittt e e b eeeeaaes 33
2.6.7 Modifying the INCIUAE DIFECHIVES.........uiiiiiiiiee ittt e et e e e st e e e e sbreeeeaaes 36
2.6.8 Modifying Parts that Call API FUNCHONSccoiuiiiiiiiiiee ittt e e e e 37
2.7 Setting BUIlA OPtIONSuuuuiiiiiiiiiiiiiii s 39
T = (= (=] g Lot T B oo U o 1= o1 £ 40
LAY S o] T 151 (o] Y 2SR 41
R20AN0673EC0100 Rev.1.00 Page 2 of 41

Apr 5, 2022 RENESAS

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

1. Overview

1.1 Purpose of This Document

Using sample source code, this application note concretely describes how to port projects produced with the
Code Generator for RL78/G13 to projects for use with the Smart Configurator target for same package
RL78/G23 device in terms of the differences in methods of settings and in the names of functions that are
generated.

For the usage of the e2 studio, refer to the e? studio Integrated Development Environment User’'s Manual:
Getting Started Guide.

1.2 Operating Environment
Table 1.1 Operating Environment

Target Device RL78/G23 Group
Emulator E2 lite or E2
IDE e? studio 2021-04 and later versions
Toolchain Renesas C/C++ compiler package for RL78 family
Toolchain version CC-RL78 V1.10.00
R20AN0673EC0100 Rev.1.00 Page 3 of 41

Apr 5, 2022 RENESAS

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

2. Porting Projects Produced with the Code Generator to Projects for Use with the
Smart Configurator

Figure 2.1 shows the steps in porting projects produced with the Code Generator to projects for use with the

Smart Configurator.
C Start >

A 4

2.3 Generating a Report on the Source Project

A 4

2.4 Newly Creating the Destination Project

\4

2.5 Setting Peripheral Functions in the Smart Configurator

Y

2.6 Porting User-defined Source Code

2.7 Setting Build Options

Y

Completion and
building

Figure 2.1 Steps in Porting Projects Produced with the Code Generator to Projects for Use with
the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 4 of 41
Apr 5, 2022 RENESAS

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

2.1 Projects Used in This Application Note
The following two projects are used in this application note.

A project for the RL78/G13 Renesas Starter Kit Sample Code (CS+ for CC-RL), which is a tool for evaluating
Renesas MCUs, is used as the source project. The destination project is newly created.

Table 2.1 Projects Used in This Application Note

Project Name Description

RSKRL78G13_Tutorial A project for the RL78/G13 Renesas Starter Kit Sample Code
(CS+ for CC-RL), produced with the use of the Code Generator
serves as the source project. This project is used to generate a
report to provide guidance on the setting of peripheral functions
and the copying of user-created source code.
RSKRL78G23_Tutorial_SC A destination project which is newly created for use with the
Smart Configurator. In this project, the settings of peripheral
functions and user-created source code in the source project are
modified and reflected in the Smart Configurator according to the
steps in Figure 2.1.

R20AN0673EC0100 Rev.1.00 Page 5 of 41
Apr 5, 2022 RENESAS

e2 studio Porting projects produced with the Code Generator to projects

for use with the Smart Configurator

2.2 Downloading the Source Project

You can download the RL78/G13 Renesas Starter Kit Sample Code (CS+ for CC-RL) project, which is used
as the source project in this application note, from the Web site of Renesas Electronics.

Note: To download the project, you need to register a My Renesas account.

(1) From the top page of the Web site of Renesas (https://www.renesas.com), select [RL78 Low Power 8 &

16-bit MCUs] under the [Products] menu, then select [RL78/G13] under [Portfolio] in [RL78 Low Power 8

& 16-bit MCUs] page.

MICROCONTROLLERS & MICROPROCESSORS

RA Arm Cortex-M MCUs
RZ Arm-based High-end 32 & 64-bit MPUs
RE Cortex®-M Ultra-low Power SOTB MCUs

JRL/8 Low Power 8 & 16-bit MCUS |

RX 32-bit Performance / Efficiency MCUs
Renesas Synergy™ PNtform MCUs

Other MCUs & MPUs

AUTOMOTIVE PRODUCTS
RH&850 Automotive MCUs
RL78 Automotive MCUs
R-Car Automotive System-On-Chipa\SoCs)

PRODUCTS

APPLICATIONS

ANALOG PRODUCTS
Amplifiers

Switches & Multiplexers
Audio & Video

Data Converters

¥ see all analog products

CLOCKS & TIMING
Application-Specific Clocks
Clock Distribution

Clock Generation

Crystal Oscillators

Jitter Attenuators with Frequency Translation

DESIGN RESOURCES

MEMORY & LOGIC

SRAMS

EEPROM & PROM

MRAMS

FIFO Products

Multi-Port Memory
Memory Interface Products
Standard Logic

+ see all memory & logic products

POWER & POWER MANAGEMENT

Battery Management
DC/DC Converters

SALES & SUPPORT

ABOUT

RF PRODUCTS

Modulators & Demodulators
Transistor Arrays

Phased Array Beamformers
RF Amplifiers

RF Attenuators

RF Mixers

RF Switches

Variable Gain Amplifiers (VGA)
RF Synthesizers & PLLs

SENSOR PRODUCTS

Environmental Sensors

Portfolio
RL78/G23
RL78/G13 RL78/G13A
S
Standard PIN: ‘Z%T?g;dpins S

ROM: 16-512 KB

.
8/G11
PGA
PIN 5 pins
R KB

Figure 2.2 Downloading the Source Project (1)

(2) Select [RL78/G13-Starter-Kit] from the list of [Boards & Kits] section in [RL78/G13] page.

& Boards & Kits
Part Number Title Type Company
RL78/G13 (RSF100LE) Target Board Evaluation Renesas
RL78/G13 (RSF100SLAFB) Target Board Evaluation Renesas
Renesas Starter Kit for RL78/G13 Starter Renesas
RTKOEEOOO7D020018) CPX3 Evaluation Kit for DC under 48V (J80D2 with RLT8/G13) Evaluation Renesas
Figure 2.3 Downloading the Source Project (2)

R20AN0673EC0100 Rev.1.00
Apr 5, 2022

Page 6 of 41
RENESAS

https://www.renesas.com/us/en/

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

(3) Click [RL78/G13 Renesas Starter Kit Sample Code (CS+ for CC-RL) Rev.1.00 Sample Code] under
[Downloads] section in the [RL78/G13-Starter-Kit] page to proceed with downloading.

¥ Downloads
Title. start typing to filter = File Size

H#E:E PCB Design Files ZIP 1.21 MB Jan 25,2013

H#E: sample Code zZIp 1.17 MB Jul 31, 2019

H#&ZE sample Code 7Ip 2.08 MB Aug 4, 2015

in -
HZEZE Sample Code ZIp 4,44 MB Jan 27, 2012
sas Starter Kit Sample Code for 1AR Toolchain Rev.1.00 - B

- Sample Code ZIp 1.91 MB Jan 27, 2012

rsion) - Software & Tools - Other ZIP 546,41 ME Jun g, 2014

- Software & Tools - Other ZIp 338.02MEB Jun9, 2014
Product Activation Code for the RL78/L13 Renesas Starter Kit H#&Z Software & Tools - Other ZIp 0O KBE Oct 21,2013

Figure 2.4 Downloading the Source Project (3)

2.3 Generating a Report on the Source Project

Use the function for generating reports from the Code Generator to output a report on the source project in
the form of a list of peripheral functions. Refer to this report to set peripheral functions in the Smart
Configurator for the destination project.

2.3.1 Generating the Report

e From CS+

(1) Start CS+ and open the source project [RSKRL78G13_Tutorial] that uses the Code Generator. Expand
[Code Generator] under [Project Tree] and double-click on [Peripheral Functions].

(2) Select [Save Code Generator Report] from the [File] menu to generate the report.

@3 RSKRL7BG13 Tutorial - CS+ for CC - [Code Generator]

File | Edit View Project Build Debug Tool Window Help

| New NN . & & A BXNECGE
| Open.. Ctrl+0 \d Solution List & &

Open with Encoding...
: E Property 33:4 Code Generator

Add 3
L : jj Reflect in Pin D;] Generate Code ﬁ-'_ i W ,_5“ 'f,}[‘, 'j) .’_5)] @ 49 |§3 =]
38| Close Project
3 Close File MM Clock setting Block diagram On-chip debug setting Confirming reset source Safety functions Data flash
Pin assignment setting
& Save Project Ctrl+Shift+S
H% Save Project As..
ave Code Generator Report tri+
E save Code G Rep Ctrl+S
e8| Save Object As...
B} Object Save Settings...
@l save all Ctrl+Shift+A
I When it's decided once, it isnt possible to change it later.
._.] Page Setup.. It's necessary to make a project again to change it.

Figure 2.5 Generating the Report from CS+

R20AN0673EC0100 Rev.1.00 Page 7 of 41
Apr 5, 2022 RENESAS

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

(3) When the report has been generated, two files, Function.html and Macro.html, are output to the project
folder.

| Iﬂ = | RSKRL73G13_Samples_CS — O >
Home Share View e
U <« Workspace » RSKRLV2G13_Samples_C5 w |8 Search RSKRL7BG13_Samples_.. @
MNarme - Date modified Type Size "
LIM 2/ 2 File folder
LVD 2f 2 File folder
RTC 2/ 2 File folder
SmartManual Docs 2/15/2022 File folder
Snooze 211772022 File folder
Sync_Serial 2/17/2022 File folder
Timer 2/17/2022 7:26 AM File folder
Tutorial 2/13/2022 2:32 PM File folder
WDT 2/17/2022 File folder
l: function.html 2/ 2 Microsoft Edge HTML Document 196 KB
macro.html 2/ 2 Microsoft Edge HTML Document 41 KB
@ RSKRL7EG13_Tutorial.mtpj 3 9 MTPJ File 443 KB
|j RSKRL7EG13_Tutorial.rcpe 3 9 RCPE File 11,030 KB v

23 items =

Figure 2.6 Report Files Output by the Report Function of the Code Generator for CS+

e From the e? studio

(1) Start the e? studio and open the source project [RSKRL78G13_Tutorial] for which the Code Generator
was used. Expand [Code Generator] under [Project Tree] and double-click on [Peripheral Functions].

(2) Click on the [Generate Report] button to generate the report.

[code Preview [Properties ?;j Generate Codeﬁ = 0

Elock diagram On-chip debug setting Confirming reset source Safety functi [Generate Report] button

R peripheral Functions

Fin assignment

Operation mode 5

ing
() High speed main mode 3.6 (V) VDD <55 (V) (O Low voltage main mode 1.6 (V) VDD < 5.5 (V)

(® High speed main mode 2.7 (V) < VDD £ 5.5 (V)
(O High speed main mode 2.4 (V) VDD £ 55 (V)
() Low speed main mode 1.8 (V) VDD £ 55 (V)

EVDD setting
(O27(V)<EVDD<55(V) ® 24 (V) <EVDD 255 (V)
(C18(W) <EVDD 255 (V) (O 16(V)<EVDD <55 (V)
Main system clock (fMAIN) setting
() High-speed OCO (fiH) (® High-speed system clock (fMX)

Figure 2.7 Generating a Report from the e? studio

(3) When the report has been generated, two files, Function.html and Macro.html, are output to the doc
folder.

R20AN0673EC0100 Rev.1.00 Page 8 of 41
Apr 5, 2022 RENESAS

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

doc - O X
« v P <« Workspace » Tutonal » doc w Search doc yel
Mame - Date modified Type Size
& Function.html Microsoft Edge H... 2459 KB
& Macro.html Microsoft Edge H... 13 KB

Z2items State: &1 Shared =

Figure 2.8 Report Files Output by the Report Function of the Code Generator for the e? studio

Table 2.2 Report Files Output by the Report Function of the Code Generator

File Name Description
Function.html A list of API functions generated by the Code Generator.
Macro.html A list of peripheral functions set by the Code Generator.
R20AN0673EC0100 Rev.1.00 Page 9 of 41

Apr 5, 2022 RENESAS

e2 studio

Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

2.4 Newly Creating the Destination Project

Newly create a C project target device with R7F100GLGXFA as the destination project for use with the
Smart Configurator. Regarding how to create a project, refer to section 2, Generating a C Project, in the
Renesas e? studio Smart Configurator User Guide.

2.5 Setting Peripheral Functions in the Smart Configurator

2.5.1 Correspondence between the Code Generator and the Smart Configurator

Table 2.3 shows the correspondence of the peripheral functions which are to be set in the

RSKRL78G13_Tutorial project between those in the Code Generator and those in the Smart Configurator.

Table 2.3 Correspondence of Peripheral Functions between the Code Generator and the Smart
Configurator

Code Generator Smart Configurator
Periphera | Setting items Tabs Peripheral Setting items
I functions
functions
Port Port5 P52 Components = Ports PORT5 P52
P53 P53
P54 P54
P55 P55
Port6 P62 PORT6 P62
P63 P63
Port7 P70 PORT7 P70
P71 P71
P72 P72
P73 P73
Interrupt INTP1 — Components | Interrupt INTP1 —
Controller
INTP2 — Components | Interrupt INTP2 —
Controller
INTP4 — Components | Interrupt INTP4 —
Controller
A/D Operation — Components | A/D Operation —
Converter - mode setting Converter mode setting
A/D channel | — Components | A/D A/D channel | —
selection Converter selection
Timer Interval timer | Interval value | Components | Interval 16 bit count Interval value
(16 bits) Timer mode (16 bits)

Set the Smart Configurator with the project that has been created in section 2.4, Newly Creating the

Destination Project, with reference to the report that was output in section 2.3, Generating a Report on the
Source Project.
This section describes settings of the clock generator and timer. Set other peripheral functions according to
the same procedure.

R20ANO673EC0100 Rev.1.00

Apr 5, 2022

RENESAS

Page 10 of 41

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

2.5.2 Setting the Clock Generator
Set the clock generator.

(1) Open the Macro.html file of the report that was output in section 2.3, Generating a Report on the Source
Project, and display the parts to be set for the clock generator.

MCU name: RL78/G13(ROM:64KB)
Chip name: R5F100LE
Module Macro | Sub Setting Status
Clock Generator Used
CGC Used
Pin assignment setting-PIOR0 bit = 1 Unused
Pin assignment setting-PIOR1 bit = 1 Unused
Pin assignment setting-PIOR2 bit = 1 Unused
Pin assignment setting-PIOR3 bit = 1 Unused
Pin assignment setting-PIOR4 bit = 1 Unused
Operation mode setting High speed main mode 2.7 (V) = VDD £ 5.5 (V)
EVDD setting 27 (V)=EVDD £55 (V)
Main system clock (IMAIN) setting High-speed system clock (fVX)
fIH operation Unused
VX operation Used
High-speed system clock setting X1 oscillation (fX)
fMX frequency 20(MHz)
Stable time 6553.6 (2MTITX)(us)
fSUB operation Used

Figure 2.9 Report on the Clock Generator Output by the Code Generator

R20AN0673EC0100 Rev.1.00 Page 11 of 41
Apr 5, 2022 RENESAS

e2 studio

Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

(2) Open the window for setting the Smart Configurator for the project that was created in section 2.4, Newly
Creating the Destination Project, and select the [Clocks] tabbed page.

T} RSKRL7BG23 Tutorial SC.scfg % = 8
Clocks configuration =
Generate Code Generate Report
Operation mode: High-speed main mode 4.0{V}~5.5(V)
EVDD setting: 40V <EVDDO 255V
' High-speed en-chip osciliator fIHP
32 {MHz)
Frequency: 32 = | (MHz)
\I N TMAIN
; : 32 MHz)
fCLK
32000 (kHz)
Middle-speed on-chip oscillator
X1 oscillator
Low-speed on-chip oscillator ik
. 32768 {kHz)
Frequency: 32768 {kHz)
fSXP
I o . e
¥T1 osdllator p———————— 32768 {(kHz)
®
Operation mode: XT1 oscillation -
f5XR
Frequency: 32,768 (kHz) 32.768 (kHz)
XT1 oscillation maode: Low power consumption 1 -
Supply mode: Enables supply in STOP,HALT mode hd
Overview Boar:l CIockslSystem Components | Pins | Interrupt

Figure 2.10

Window for Using the Smart Configurator to Make Clock Settings

R20ANO673EC0100 Rev.1.00

Apr 5, 2022

RENESAS

Page 12 of 41

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

(3) Reflect the items in the [Setting] and [Status] columns in Macro.html of the report in the settings of the
Smart Configurator.

Setting Status @a‘ jon mods: | High-speed main mode 27(V]~5.5(V) x -

Used EVDD setting 27V EVDDOS S5V

Used [E S —— ‘
Pin assignment setting-PIORO0 bit = 1|Unused ‘ T (\
Pin assignment setting-PIORA bit = 1|Unused @ : o .
Pin assignment setting-PICR2 bit = 1|Unused e
Pin assignment setting PIOR3 bit = 1| Unused L y— B oom
Pin assignment setting-PIOR4 bit = 1| Unused (1))
Operation mode setling High speed main mode 2.7 (V) sVDD | —

550 D, = SR sl
EVDD setting 27 (W<EVDD<55(V) | (2) e = — e -
Main system clock (IMAIN) setting |High-speed system clock (fMX) Stable time: BT | essa 6 k)
fiH operation unused)(3)
X operation used | (4)
High-speed system clock setting X1 oscillation () [(5)
X frequency 20(MHz) | (6)
Stable time 6553.6 (2"17/m)ws)] (7)

Operation mode: High-speed main mode 2.7{V)~5.5(V)] (1) -
EVDD setting: 27V £ EVDDO £55V] (2) i
AAAIN
[High-speed on-chip oscillator] (3) 3 . i 20 [MHZ)

(4) fCLK
B 20000 (kHz)

Middle-speed on-chip oscillator

| %1 oscillztar] (5) Dider
Operation mode: %1 oxcillation -] (B)H = -
Frequency: 20 s | (6)

Stable time: 201748 = 5553.6:.152] ©)

Figure 2.11 Setting Clocks in the Smart Configurator (1)

R20AN0673EC0100 Rev.1.00 Page 13 of 41
Apr 5, 2022 RENESAS

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

fSUB frequency 32.768(kHz)] (8) Low-speed on-chip oscillator
XT1_ oscillator oscillation mode Low power consumption (9) Frequency: 32 763 (kHzZ)
setting
Subsystem clock in STOP,
HALT mode setting Enables supply | (10)
XT1 oscillator
fL Frequency 15(kHz)
= = QO peration mode: ¥T1 oscillation b
RTC and interval timer
operation clock 32768 (SUB)(kHz) | (11) [Frequency: 32768 kHz) (8)
gglLJK?nd peripheral clock 20000 (MMX)(kHz) (12) [.'aT1 oscillation mode: Low power consumption 1 =](9)
[Supply mmode: Enables supply in STOP.HALT mode bl](lO)
TMAIN
: (12) 20 (MHz)
l FCLK
: 20000 (kHz)
MXP
20 (MHz2)
fiL
P 32768 (kHz)
SHP
32768 {kHz)
o jay
SXR
L] 32768 {kHz)

Figure 2.12 Setting Clocks in the Smart Configurator (2)

R20AN0673EC0100 Rev.1.00 Page 14 of 41
Apr 5, 2022 RENESAS

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

(4) Select the [System] tabbed page.

48} RSKRL78G23 Tutorial SC.scfg X = B
% Si

System configuration
yst 9 Generate Code Generate Report

~ On-chip debug setting
On-chip debug operation setting
() Unused (® Use emulator (DICOM Port

Emulator setting

(OE2 (@ E2 Lite

Pzeudo-RRM/DMM function setting
() Unused (@ Used

Start/Stop function setting
(® Unused () Used

Manitaring point function setting
Unused Used

Trace function setting

() Unused ® Used

Security ID setting
[JUse security ID
(0x0000000:0000000000000

Security I authentication failure setting
(O Do not erase flash memory data

(®) Erase flash memory data

Overview Board | Clocks Components | Pins | Interrupt

Figure 2.13 Window for Using the Smart Configurator to Make Clock Settings

R20AN0673EC0100 Rev.1.00 Page 15 of 41
Apr 5, 2022 RENESAS

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

(5) Reflect the left items in the [Setting] and [Status] columns in Macro.html of the report in the settings of the
Smart Configurator.

On-chip debug operation setting |Used I (_’]_3) « On-chip debug setting
Security ID setling Unused On-chip debug operation setting
Security ID authentication
e genirlg Erase flash memory data | (14 O Unused ® Use emulator] (13) ©com Port
Emulataor setting E1/E20 Emulator setting
- i E2 E2 Lit
Eeststjil;;[] RRM/DMM function - (15 @] ®E2 Lite
Pseudo-RRM/DMM functi ti
Start/Stop function setting Unused (16) —°°) / unetion s=ting - (15)
] U
Monitoring point function setting |Unused (17 O Unuse, [@Use]

Output the function for Used Start/Stop function setting
confirming reset source (16) O Used

llegal memory access detection UmiEzy]

function setting Manitoring point function setting
RAM guard function setting Unused [Unused] (17) Used
Egtﬁnfggista U e Unused Trace function setting

" u d Used
Interrupt register guard function [, O Unuse ®Use
setting Security ID setting
Chip state control register guard | - o [Use security ID

function setting

0x00000000000000000000
DEIFs 1R SIE03ES QUi Disables data flash access

Setting Security ID authentication failure setting
Setting of data flash library Unused
() Do not erase flash memory data
[@ Erase flash memory data j (14)
Figure 2.14 Setting System in the Smart Configurator
R20AN0673EC0100 Rev.1.00 Page 16 of 41

Apr 5, 2022 RENESAS

e2 studio

for use with the Smart Configurator

Porting projects produced with the Code Generator to projects

Table 2.4 Settings of the Clock Generator

Code Generator

Smart Configurator — [Clocks] tabbed

page

Item to be Set
([Macro] or [Setting] in
Macro.html)

Setting
([Status] in
Macro.html)

Iltem to be Set

Setting

(1)

Operation mode setting

High speed main
mode 2.7 (V) < VDD
< 55 (V)

Operation
mode

High speed main mode
2.7 (V) ~55 (V)

(2)

EVDD setting

2.7 (V) < EVDD <

EVDD setting

27V<EVDDO=s55V

setting

function setting

5.5 (V)
(3) | fIH operation Unused High-speed on- | Not selected
chip oscillator
(4) | fMX operation Used Check that the fMX clock source is
selected.
(5) High-speed system clock X1 oscillation (fX) X1 oscillator Selected
setting
(6) | fMX frequency 20(MHz) [X1] Frequency | 20
(7) | Stable time 6553.6 (2717/fX)(1'Ss) Stable time 27171
(8) HOCO Operation Unused HOCO clock Not selected
(9) | fSUB frequency 32.768 (fsUB)(kHz) [XT1] 32.768
Frequency
(10) | Subsystem clock in STOP, | Enables supply Supply mode Enable supply in STOP,
HALT mode setting HALT mode
(11) | RTC and interval timer 32.768 (fSUB)(kHz) Check that the fSXR clock source is
operation clock selected.
(12) | CPU and peripheral 20000 (fMX)(kHz) Check that the fMAIN clock source is
clock(fCLK) selected.
(13) | On-chip debug operation Used On-chip debug Used
setting operation setting
(14) | Security ID authentication Erase flash memory Security ID Erase flash memory
failure setting data authentication data
failure setting
(15) | Pseudo-RRM/DMM Used Pseudo- Used
function setting RRM/DMM
function setting
(16) | Start/Stop function setting Unused Start/Stop Unused
function setting
(17) | Monitoring point function Unused Monitoring point | Unused

R20AN0673EC0100 Rev.1.00
Apr 5, 2022

RENESAS

Page 17 of 41

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

2.5.3 Setting the Timer
Set the timer.

(1) Refer to ‘a-1 To add a Code Generator component’ under section 4.4.2, Adding a software component
into the project, in the Renesas e? studio Smart Configurator User Guide, and add the compare match
timers as components of the project.

In the [Add new configuration for selected component] dialog box, use the default names as the names of
the configurations of the resources, as listed below.

Table 2.5 Correspondence between Resources and the Configuration Names of the Compare Match

Timers
Component Type Component Resource | Configuration Name Operation/
Work Mode
Code Generator Interval timer TAUO_1 Config_TAUO_1 (default) | 16bit count mode

(2) Display the parts showing the settings of the compare match timers in the Macro.html file of the report
that was output in section 2.3, Generating a Report on the Source Project.

Timer Used
TAUO Used
Channell
Channel 1 Interval timer
Operation mode setting 16 bits
Interval value (16 bits) 100ms, (Actual valug: 100)
End of timer channel 1 count,
generate an interrupt Used
(INTTIMO1)
Priority (INTTMO1) Low

Figure 2.15 Report on the Timer Output by the Code Generator

R20AN0673EC0100 Rev.1.00 Page 18 of 41
Apr 5, 2022 RENESAS

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

(3) Open the window for setting Interval timer TAUO_1 that was created in step (1).

o= =
Software component configuration o] =
Generate Code Generate Report
Compone.. 5 i =l + Configure @
£E I %= = Clock setting
{‘.‘,-‘pe filter text . Operation clock CK00 ~
v (= Startup ~ Clock source fcLK | (Clock frequency: 20000 kHz)
v (= Generic
@ rbsp Interval timer setting
~ (= Drivers Interval value (16 bits) 100 pus v (Actual value: 100)
& Interrupt [[JGenerates INTTMO1 when counting is started
v (= Timers
& Config_TAUOD 1 Interrupt setting
= A/D converter [“1End of timer channel 1 count, generate an interrupt (INTTMO1)
& /O port Priority Level 3 (low) v
v

Overview | Board | Clocks System Components | Pins | Interrupt

Figure 2.16 Window for Setting the Interval Timer (TAUO_1) in the Smart Configurator

(4) Reflect the settings of the Timer in Macro.html in those for TAUO channell in the Smart Configurator.

Channel 1 Interval timer
Operation mode setting 16 bits
Interval value (16 bits) 100ms, (Actual value: 100) | (1)
Generates INTTMO1 when counting
is started Unused)
End of timer channel 1 count,
generate an interrupt (INTTMO1) Lk ©)
Priority (INTTMO1) Low (4)
Configure)
Clock setting
Operation clock CK00 b
Clock source fCLK/275 ~ (Clock frequency: 625 kHz)
Interval timer setting 1
Interval value (16 bits) [100 ms v]»‘-\ctual value: 100)
[D Generates INTTMO1 when counting is started] (2)
Interrupt setting
[E End of timer channel 1 count, generate an interrupt (INTTMOU] (3)
Priority [Level 3 (low) ~](4)

Figure 2.17 Settings of the Interval Timer (TAUO_1) in the Smart Configurator

R20AN0673EC0100 Rev.1.00 Page 19 of 41
Apr 5, 2022 RENESAS

e2 studio

for use with the Smart Configurator

Porting projects produced with the Code Generator to projects

Table 2.6 Settings of the Timer (TAUO Channell)

Code Generator

Smart Configurator

Item to be Set Setting Item to be Set Setting
([Macro] or [Setting] in ([Status] in
Macro.html) Macro.html)

(1) | Interval value (16 bits) 100 ms Interval value (16 bits) 100 ms

(2) | Generates INTTMO01 when Unused Generates INTTMO1 when Unused
counting is started counting is started

(3) | End of timer channel 1 count, Used End of timer channel 1 count, Used
generate an interrupt (INTTMO1) generate an interrupt (INTTMO1)

(4) | Priority (INTTMO1) Low Priority (INTTMO1) Level3 (Low)

254

Setting Other Peripheral Functions

For settings of the PORT and A/D converter, refer to the steps described in Table 2.2, Report Files Output
by the Report Function of the Code Generator, section 2.5.2, Setting the Clock Generator, section 2.5.3,
Setting the Timer, and set the Smart Configurator in the equivalent ways.

2.5.5 Generating Code

When all settings are finished, save the project and click on the [Generate Code] button ?ll to make the

Smart Configurator generate the code.

R20AN0673EC0100 Rev.1.00
Apr 5, 2022

RENESAS

Page 20 of 41

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

2.6 Porting User-defined Source Code

2.6.1 Overview

The user-created source files or user-defined source code written in the source files which were generated
by the Code Generator in the source project created by using the Code Generator must be copied to the
destination project created by using the Smart Configurator.

Figure 2.18 shows the procedure for porting user-defined source code.

=

222.6.3 Copying the User-created Source Files

A

2.6.4Error! Reference source not found. Copying Source
Code. Includina the main() Fuinction

v

2.6.6 Copying Custom Code in Generated Code

Y

2.6.7 Modifying the Include Directives

Y

2.6.8 Modifying Parts that Call API Functions

=

Figure 2.18 Procedure for Porting User-defined Source Code

2.6.2 Areas for Writing User-defined Source Code

Files generated by the Code Generator and Smart Configurator include areas where the user can freely add
code. Areas for custom code are indicated by comments as shown below.

/* Start user code for xxxxxx. Do not edit comment generated here */

/* End user code. Do not edit comment generated here */

In the comments above, the part ‘xxxxxx’ depends on the area where custom code is to be added. For
example, it is the word ‘include’ in the part where include declarations are to be written and the word ‘global’
in the part where global variables are to be defined.

R20AN0673EC0100 Rev.1.00 Page 21 of 41
Apr 5, 2022 RENESAS

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

Custom code located between these comments must be copied from the source projects to the destination
projects.

2.6.3 Copying the User-created Source Files
Copy the user-created source files other than the source files output by the Code Generator from the source
project.

As shown below, copy the specified source files and header files from the folder ‘Tutorial’ in the source
project to the ‘src’ folder in the destination project.

Project Tree 1 x o
' @8l @ B Project Explorer =] <|§|> ? g = 8
— = - - v =% RSKRL78G23 Tutorial SC [HardwareDebug]
=% RSKRLT2G13 Tutorial (Project] " 7 Includ
..... E, R5F100LE (Microcontroller) i} Includes
[].../9 Pin Configurator (Design Tool) v @3 sic
[_:|°__~I Code Generator (Design Teol) v B =mc_gen
_____ *“:: = Config_ADC
..... & = Config_INTC
----- .-r Isnet:;wt (= Config_PORT
..... & A/D Converter & generel
..... f Timer = rbsp .
..... B’ Watchdog Timer (= r_config
..... ' Real-time Clock .| led.c
----- B 12-Bit Interval Timer @ led.h
----- &' Clock Qutput/Buzzer Qutput \c| RSKRL78G23_Tutorial_SC.c
..... u' DMA Controller Lo utility.c
..... 7 Voltage Detector ilitv.h
..... A, CC-RL (Build Tool) - (B utilty
.55, RL78 E1(Serial) (Debug Tool) (= output
----- ’::' Pregram Analyzer (Analyze Tool) [= trash
E,:ﬂ]. File 113:3 RSKRL72G23_Tutorial_5C.scfg
..... £ cstart.asm = RSKRL78G23_Tutorial_SC HardwareDebug.launch
..... ‘_’L‘" stkinit.asm
..... h-] iodefine.h

|) Text Files
[lDependencies

Figure 2.19 Copying the User-created Source Files

Since the copied source files will use the names of the API functions generated by the Code Generator,
these names must be modified to those generated by the Smart Configurator. In addition, the header files to
be included must also be modified as required. For modifying the names of the API functions, refer to
section 2.6.8, Modifying Parts that Call APl Functions. For modifying the include directives, refer to section
2.6.7, Modifying the Include Directives.

R20AN0673EC0100 Rev.1.00 Page 22 of 41
Apr 5, 2022 RENESAS

e2 studio

Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

The ‘src’ folder must be added to the include directory since the ‘src’ folder will include header files to be
included. Add the include directory through the following steps.

(1) Right-click on [RSKRL78G23_Tutorial_SC], which is the destination project, to open [Properties for
RSKRL78_Tutorial_SC]. Select [Settings] under [C/C++ Project Settings] in the left pane. Select the [Tool

Settings] tabbed page in the right window. Then select [Source] under [Compiler] and click on the [Add]
£ button in the [Include file directories] category.

a8

|t5-'pr: filter text

Resource
Builders
Build Variables
Environment
Logging
Stack Analysis
Tool Chain Editor
C/C++ General
Project Matures
Project References
Renesas QF
Run/Debug Settings
Task Repository

Settings

Configuration: | HardwareDebug [Active | w

& Tool Settings [Toolchain Device # Build Steps

w B3 SMS Assembler
(22 Source
(% Object
(2 User
w B3 Common
i cpu
(2 Device
(22 Miscellaneous
Language
(22 Object
(22 Optimization
(2 Qutput Code
@ Miscellaneous
(2 MISRA C Rule Check
(2 User

Manage Configurations

Build Artifact Binary Parsers €3 Err) !

EEE

Include file directories (-1}
HTCINSTALLYinc
"Sworkspace_loc/5{ProjName}/src/smc_gen/r_bsp}"
"Slworkspace_loc/S{ProjNamel/src/smec_gen/r_config)”
"Sworkspace_loc/S{ProjNamel/src/smc_gen/general}"

"S{workspace_loc/5{ProjNamel/src/smc_gen/Config_TAUD_1}"
"Sworkspace_loc/S{ProjNamel/src/srmc_gen/Config_ADC}"
"Sworkspace_loc/S{ProjNamel/src/smc_gen/Cenfig_PORT}"
"S{workspace_loc/5{ProjName}/src/smc_gen/Config_INTC}"

Include files at head of compiling units (-preinclude) &)

o000

Figure 2.20

Adding the Include Directory (1)

R20ANO673EC0100 Rev.1.00

Apr 5, 2022

Page 23 of 41

RENESAS

e2 studio Porting projects produced with the Code Generator to projects

for use with the Smart Configurator

(2) Select [Workspace] in the [Add directory path] dialog box. In the [Folder selection] dialog box, select the

folder (e.g. ‘src’) to be added as the include directory and click on [OK]. Check that the folder specified for
[Directory] has been added to the [Add directory path] dialog box and click on [OK].

Q Add directory path |

Directory:

[&dd subdirectories

Cancel File system...

& Folder selection O >

Select one or more Workspace Folders

w =% RSKRL72G23_Tutorial_5C
= .settings
= ocutput
=+ smc_gen
= trash

ﬁ Add directory path |

Directory:

[| S{workspace_loc/${ProjName}/src} I
J

] Add subdirecteries

Cancel File systen...

Figure 2.21 Adding the Include Directory (2)

R20ANO673EC0100 Rev.1.00

Page 24 of 41
Apr 5, 2022

RENESAS

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

2.6.4 Copying Source Code, Including the main() Function
Copy user-defined source code from the source file including the main() function.

In the source project, the main() function will be in the ‘r_main.c’ file in the ‘Tutorial’ folder. Since ‘r_main.c’ is
a source file generated by the Code Generator, the user-defined source code will be in the area between
comments.

In the destination project, the file that includes the main() function is not among the files generated by the
Smart Configurator. Instead, the main() function is in the {ProjName}.c file, which is automatically generated
when a new project is created. Since the name of the destination project is ‘RSKRL78G23_Tutorial_SC’ in
this application note, the main() function will be in ‘RSKRL78G23_Tutorial_SC.c’. All source code in
{ProjName}.c’ is user-defined.

Open ‘r_main.c’ and copy all source code written between comments of the type shown in section 2.6.2,
Areas for Writing User-defined Source Code.

The following explains how to copy the include directives as an example.

For the include files, the source code between comments of the type shown in section 2.6.2, Areas for
Writing User-defined Source Code, will generally be copied. Header files that contain user-defined source
code (e.g. r_cg_userdefine.h’) are also copied.

An include directive for ‘r_smc_entry.h’ is automatically written in ‘{ProjName}.c’ when this source file is
generated during creation of the new project.

Preprocessor directives for the inclusion of other header files written in ‘r_main.c’ (e.g. ‘r_cg_macrodriver.h’
through ‘r_cg_adc.h’) need not be copied unless these header files contain user-defined source code.

The statements to be copied are highlighted in yellow below.

r cg main.c

/*~k***~k*****~k*********~k*****~k***~k*****~k*********~k*****************************

Includes
****************‘k*‘k*********************‘k*‘k*‘k********************************/
#include "r cg macrodriver.h"

#include "r cg cgc.h"

#include "r cg port.h"

#include "r cg intc.h"

#include "r cg adc.h"

#include "r cg timer.h"

/* Start user code for include. Do not edit comment generated here */

/* Following header file provides common defines for widely used items. */
#include "rskrl78gl3def.h"

/* Following header file provides useful macros and function prototypes for
controlling the LCD interface. */

#include "lcd.h"

/* Header file with integer to string conversion functions */

#include "utility.h"

/* End user code. Do not edit comment generated here */
#include "r cg userdefine.h"

{ProjName}.c

#include "r smc entry.h"

/* Following header file provides useful macros and function prototypes for
controlling the LCD interface. */

#include "lcd.h"

/* Header file with integer to string conversion functions */

#include "utility.h"

#include "r cg userdefine.h"

R20AN0673EC0100 Rev.1.00 Page 25 of 41
Apr 5, 2022 RENESAS

e2 studio Porting projects produced with the Code Generator to projects

for use with the Smart Configurator

Source code written between comments of the type shown in section Error! Reference source not found.,
Areas for Writing User-defined Source Code, such as the user-defined prototype declarations and function

definitions, is copied to ‘{ProjName}.c’, preserving the original order.

In the example, copy the user-defined prototype and variable declarations highlighted in yellow on the next

page.

r main.c

/* Start user code for global. Do not edit comment generated here */

/* Define the RSK short name */
#define NICKNAME "RL78G13 "

/* Global initialised variable*/

int8 t ucStr[9]=" STATIC ";
/* Constant Data for replacement */
const int8 t ucReplace[] = "TESTTEST";

/* Global variable changed by pressing switches */
volatile int8 t gSwitchFlag = 0;

/* Static test function prototype */
void Statics Test (void);

/* End user code. Do not edit comment generated here */

{ProjName}.c

int main(void) ;

/* Define the RSK short name */
#define NICKNAME "RL78G13 "

/* Global initialised variable*/

int8 t ucStr[9]=" STATIC ";
/* Constant Data for replacement */
const int8 t ucReplace[] = "TESTTEST";

/* Global variable changed by pressing switches */
volatile int8 t gSwitchFlag = 0;

/* Static test function prototype */
void Statics_Test (void) ;

R20AN0673EC0100 Rev.1.00
Apr 5, 2022 RENESAS

Page 26 of 41

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

Copy the function calls and other code in the main() function that is highlighted in yellow below.

r main.c

void R MAIN UserInit (void);

/***

* Function Name: main
* Description : This function implements main function.
* Arguments : None
* Return Value : None
***/
volid main (void)
{
R_MAIN UserInit();
/* Start user code. Do not edit comment generated here */

/* Initialise the LCD module. */
InitialiseDisplay () ;

/* Display information on the debug LCD. */
DisplayString (LCD _LINE1l, (int8 t*)"Renesas");
DisplayString (LCD LINE2, (int8 t*)NICKNAME) ;

/* Flash the user LEDs for some time or until a push button is pressed. */
FlashLEDs () ;

/* Flash the user LEDs at a rate set by the user potentiometer (ADC) using
interrupts. */
TimerADC () ;

/* Demonstration of initialised variables. Use this function with the
debugger. */

Statics Test();

/* Halt program in an infinite while loop */

while (10U)

{

}

/* End user code. Do not edit comment generated here */

All sections indicated as ‘- Omitted -" must also be copied. Code related to functions generated by the Code
Generator, such as ‘R_MAIN_Userlnit()’, need not be copied unless user-defined code has been added to
the functions.

R20AN0673EC0100 Rev.1.00 Page 27 of 41
Apr 5, 2022 RENESAS

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

{ProjName}.c

int main (void)

{
EI();
/* Initialise the LCD module. */
InitialiseDisplay () ;

/* Display information on the debug LCD. */
DisplayString (LCD LINE1l, (int8 t*)"Renesas");
DisplayString (LCD LINE2, (int8 t*)NICKNAME) ;

/* Flash the user LEDs for some time or until a push button is pressed. */
FlashLEDs () ;

/* Flash the user LEDs at a rate set by the user potentiometer (ADC) using
interrupts. */
TimerADC () ;

/* Demonstration of initialised variables. Use this function with the
debugger. */

Statics Test();

return 0;

Copy the function calls and other code in the private function that is highlighted in yellow below. All sections
indicated as ‘- Omitted -’ must also be copied. Code related to functions generated by the Code Generator,
such as ‘R_MAIN_Userlnit()’, need not be copied unless user-defined code has been added to the functions.

R20AN0673EC0100 Rev.1.00 Page 28 of 41
Apr 5, 2022 RENESAS

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

r main.c

/**

* Function Name: R MAIN UserInit

* Description : This function adds user code before implementing main function.
* Arguments : None

* Return Value : None
**/
void R MAIN UserInit (void)

{

/* Start user code. Do not edit comment generated here */
EIQ);

/* End user code. Do not edit comment generated here */

}

/* Start user code for adding. Do not edit comment generated here */

void Statics Test (void)

{
/* Declare loop count variable */
uint8 t uiCount;
/* Declare string variable to hold the string to be copied */
uint8 t ucStr[] = "STATIC \0";
/* Declare variable buffer to store the copied string */
uint8 t ucReplace[] = "TESTTEST\0";

/* Declare a delay count variable */
uint32 t ulDelay;

/* Write ucStr varaible, "STATIC" to LCD */
DisplayString (LCD LINE2, (int8 t*)ucStr);

/* Begin for loop which writes one letter of ucReplace to the LCD at a time
The nested while loops generate the delay bewteen each letter change */

for (uiCount=0; uiCount<8; uiCount++)

{
/* Replace letter number uiCount of ucStr from ucReplace */
ucStr[uiCount] = ucReplace[uiCount];

/* Display the character on the debug LCD */
DisplayString (LCD LINEZ2, (int8 t*)ucStr);

/* LED Flashing Delay */
for (ulDelay=0; ulDelay<700000; ulDelay++)

{
/* Delay */

}

/* Clear LCD Display */
ucStr[uiCount] = "\0';

/* Write MCU nickname to LCD again */
DisplayString (LCD LINE2, (int8 t*)NICKNAME) ;
}

/**

End of function Statics Test
**/

/* End user code. Do not edit comment generated here */

R20AN0673EC0100 Rev.1.00 Page 29 of 41
Apr 5, 2022 RENESAS

e2 studio

for use with the Smart Configurator

Porting projects produced with the Code Generator to projects

{ProjName}.c

{

}

void Statics_Test (void)

/* Declare loop count variable */

uint8 t uiCount;

/* Declare string variable to hold the string to be copied */
uint8 t ucStr[] = "STATIC \0";

/* Declare variable buffer to store the copied string */
uint8 t ucReplace[] = "TESTTEST\O0";

/* Declare a delay count variable */
uint32 t ulDelay;

/* Write ucStr varaible, "STATIC" to LCD */
DisplayString (LCD_LINE2, (int8 t*)ucStr);

/* Begin for loop which writes one letter of ucReplace to the LCD at a time
The nested while loops generate the delay bewteen each letter change */

for (uiCount=0; uiCount<8; uiCount++)

{
/* Replace letter number uiCount of ucStr from ucReplace */
ucStr[uiCount] = ucReplace[uiCount];

/* Display the character on the debug LCD */
DisplayString (LCD_LINE2, (int8 t*)ucStr);

/* LED Flashing Delay */
for (ulDelay=0; ulDelay<700000; ulDelay++)
{
/* Delay */
}
}

/* Clear LCD Display */
ucStr[uiCount] = '\0';

/* Write MCU nickname to LCD again */
DisplayString (LCD _LINE2, (int8 t*)NICKNAME) ;

/***

End of function Statics Test
***/

R20AN0673EC0100 Rev.1.00
Apr 5, 2022 RENESAS

Page 30 of 41

e2 studio

for use with the Smart Configurator

Porting projects produced with the Code Generator to projects

2.6.5 Correspondences between Code Generated by the Code Generator and by the Smart

Configurator

Since files generated by the Code Generator and the Smart Configurator are not paired and are output in
different folder structures, copying between the appropriate files is required.

The following lists the main files and output folders for which user-created code must be copied from the
source project to the destination project.

Table 2.7 Correspondences

Configurator

between Code Generated by the Code Generator and by the Smart

Code Generator Smart Configurator Note

Output Source File Output Folder Source File

Folder

Tutorial | r_main.c src {ProjName}.c File that contains main().

Tutorial | r_cg_userdefine.h | src\smc_gen\general r_cg_userdefine.h Header file for user-
defined code that is used
in common with peripheral
functions.

Tutorial | r_cg_xxx.c src\smc_gen\Config_ XXX Config_XXX.c Source file for initializing

and operating peripheral
functions. With the Smart
Configurator, one file is

output for each resource.

I_CQ_XXX_USer.c

src\smc_genConfig_ XXX

Config_XXX_user.c

Source file for writing
user-defined code or
interrupt callback
functions after peripheral
functions have been
initialized. With the Smart
Configurator, one file is
output for each resource.

r_cg_xxx.h

src\smc_gen\general

r_cg_xxx.h

Header file including
macro definitions for
setting the SFR registers.
These files are used in
common with the
peripheral functions.

src\smc_gen\Config_XXX

Config_XXX.h

Header file for
Config_XXX.c.

Note: ‘xxx’ and ‘XXX’ represent the names of peripheral functions.

R20AN0673EC0100 Rev.1.00
Apr 5, 2022

RENESAS

Page 31 of 41

e2 studio

Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

For files requiring the porting of custom code in the RSKRL78G13_Tutorial sample code, the following
shows the correspondences between the locations in code generated by the Code Generator and by the
Smart Configurator. In this example, the porting of custom code is not required for files on a gray
background. The other files have custom code that requires porting.

Table 2.8 Files that Require Porting of Custom Code in the RSKRL78G13_Tutorial Sample Code
Peripheral | Code Generator Smart Configurator
Function Output | Source File Output Folder Source File
Folder
File Tutorial | r_main.c src {ProjName}.c
including
main()
General Tutorial | r_cg_userdefine.h | src\smc_gen\general r_cg_userdefine.h
settings
Interrupt Tutorial | r_cg_intc.c src\smc_gen\Config_INTC Config_INTC.c
r_cg_intc_user.c src\smc_gen\Config_INTC Config_INTC_user.c
r_cg_intc.h src\smc_gen\general r_cg_intc.h
src\smc_gen\Config_INTC Config_INTC.h
PORT Tutorial | r_cg_port.c src\smc_gen\Config_ PORT Config_PORT.c
r_cg_port_user.c | src\smc_gen\Config PORT Config_PORT _user.c
r_cg_port.h src\smc_gen\general r_cg_port.h
src\smc_gen\Config_ PORT Config_ PORT.h
Timer Tutorial | r_cg_timer.c src\smc_gen\Config_ TAUO_1 | Config TAUO 1.c
src\smc_gen\general r_cg_tau_common.c
r_cg_timer_user.c | src\smc_gen\Config_ TAUO 1 | Config_TAUO_1 user.c
r_cg_timer.h src\smc_gen\general r_cg_tau_common.h
src\smc_gen\general r_cg_tau.h
src\smc_gen\Config_ TAUO_1 | Config_TAUO_1.h
A/D Tutorial | r_cg_adc.c src\smc_gen\Config_ ADC r_cg_ad_common.c
converter src\smc_gen\Config_ ADC Config_ADC.c
r_cg_adc_user.c | src\smc_gen\Config_ADC Config_ADC_user.c
r_cg_adc.h src\smc_gen\general r_cg_ad_common.h
src\smc_gen\general r_cg_ad.h
src\smc_gen\Config_ ADC Config_ ADC.h

R20ANO673EC0100 Rev.1.00

Apr 5, 2022

RENESAS

Page 32 of 41

e2 studio Porting projects produced with the Code Generator to projects

for use with the Smart Configurator

2.6.6 Copying Custom Code in Generated Code

The following explains how to copy custom code from the files in the source project to the destination project
according to the correspondences listed in Table 2.8, taking the case of the Timer (in use for interval timer)

as an example.

Firstly, copy the custom code for Timer that is highlighted in yellow below from ‘r_cg_timer.h’ to

‘Config_ TAUO_1.h’.

r cq timer.h

/* Declare TimerADC function prototype */
void TimerADC (void) ;

/* Start user code for function. Do not edit comment

/* End user code. Do not edit comment generated here

generated here */

*/

Config TAUO 1.h

/* Declare TimerADC function prototype */
void TimerADC (void) ;

/* Start user code for function. Do not edit comment

/* End user code. Do not edit comment generated here

generated here */

*/

R20AN0673EC0100 Rev.1.00
Apr 5, 2022 RENESAS

Page 33 of 41

e2 studio

Porting projects produced with the Code Generator to projects

for use with the Smart Configurator

After that, copy the custom code for Timer that is highlighted in yellow below from ‘r_cg_timer_user.c’ to
‘Config_ TAUO_1 user.c’.

r cq timer user.c

/* Start user code for include. Do not edit comment generated here */
#include "r cg adc.h"

/* rskrl78gl3def.h provides common defines for widely used items. */
#include "rskrl78gl3def.h"

/* Following header file provides function prototypes for LCD controlling
functions & macro defines */

#include "lcd.h"

/* Header file with integer to string conversion functions */

#include "utility.h"

/* End user code. Do not edit comment generated here */

/* Start user code for global. Do not edit comment generated here */
/* Declare a variable for storing the ADC value */

volatile uintl6 t gTimerADCperiod = 0;

/* End user code. Do not edit comment generated here */ -

static void near r tau0 channell interrupt(void)

{
/* Start user code. Do not edit comment generated here */
/* Toggle user LEDs */

LEDO = ~LEDO;
LED]1 = ~LEDI1;
LED2 = ~LED2;
LED3 = ~LED3;

/* Store the ADC value into the lower 12 bits of the variable */
gTimerADCperiod = ADCR >> 6;

/* Ensure that the timer period is never set below 0x75 */
if (gTimerADCperiod < 0x0075)
{
gTimerADCperiod = 0x0075;
}

/* Update timer period with respect to adc value */
TDRO1 = gTimerADCperiod * 58;

/* Clear TMO01l interrupt flag */
TMIFO01l = 0;
/* End user code. Do not edit comment generated here */

}

/* Start user code for adding. Do not edit comment generated here */
/***
* Function Name: TimerADC
* Description : Uses the ADC to change the duty of the timer, used to flash
the LEDs.
* Arguments : None
* Return Value : None
***/
void TimerADC (void)
{

/* Start ADC operations */

R ADC Start();

/* Start timer TMO1l operations */

R TAUO Channell Start();
}

/***

End of function TimerADC

***/

/* End user code. Do not edit comment generated here */

R20ANO673EC0100 Rev.1.00

Apr 5, 2022 RENESAS

Page 34 of 41

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

Config_TAUO_1 user.c

/* Start user code for include. Do not edit comment generated here */
#include "Config ADC.h"

/* rskrl78gl3def.h provides common defines for widely used items. */
#include "rskrl78gl3def.h"

/* Following header file provides function prototypes for LCD controlling
functions & macro defines */

#include "lcd.h"

/* Header file with integer to string conversion functions */

#include "utility.h"

/* End user code. Do not edit comment generated here */

/* Start user code for global. Do not edit comment generated here */
/* Declare a variable for storing the ADC value */
volatile uintl6 t gTimerADCperiod = 0;
/* End user code. Do not edit comment generated here */
static void near r Config TAUO 1 interrupt(void)
{
/* Start user code for r Config TAUO 1 interrupt. Do not edit comment
generated here */
/* Toggle user LEDs */
LEDO = ~LEDO;
LEDl1 = ~LEDI;
LED2 = ~LED2;
LED3 = ~LED3;

/* Store the ADC value into the lower 12 bits of the variable */
gTimerADCperiod = ADCR >> 6;

/* Ensure that the timer period is never set below 0x75 */
if (gTimerADCperiod < 0x0075)
{
gTimerADCperiod = 0x0075;
}

/* Update timer period with respect to adc value */
TDRO1 = gTimerADCperiod * 58;

/* Clear TMOl interrupt flag */
TMIFO01l = O;
/* End user code. Do not edit comment generated here */

}

/* Start user code for adding. Do not edit comment generated here */

/**

* Function Name: TimerADC

* Description : Uses the ADC to change the duty of the timer, used to flash the
LEDs.

* Arguments : None

* Return Value : None

**/
void TimerADC (void)

{
/* Start ADC operations */
R Config ADC_Start();

/* Start timer TMOl operations */
R Config TAUO 1 Start();

- Omitted -

R20AN0673EC0100 Rev.1.00 Page 35 of 41
Apr 5, 2022 RENESAS

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

Since ‘R_Config_ADC_Start’, highlighted in blue, is the name of the API function from the Code Generator,
the name must be modified to that from the Smart Configurator. Details of the steps for this modification are
described in section Error! Reference source not found., Modifying Parts that Call API Functions.

2.6.7 Modifying the Include Directives

The Code Generator mainly outputs files with names of the form ‘r_cg_xxx.h’ per peripheral function. The
Smart Configurator outputs more than one header files by dividing them into r_cg_xxx.h’ that are common to
peripheral functions and ‘Config_XXX.h’ for resources of the component. Accordingly, the description of
source code including header files must be modified to the appropriate names of header files. (xxx’ and
‘XXX’ represent the names of peripheral functions.)

For example, find files that include ‘r_cg_adc.h’, which was copied in section 2.6.6, Copying Custom Code in
Generated Code, and modify them to have the appropriate include directives.

After a search for files that contain ‘#include “r_cg_adc.h™ in the source project, the results are as follows.

Tutorial
F— r_systeminit.c
F— r_main.c
F— r_cg_adc.c
F— r_cg_adc_user.c
L— r_cg_timer_user.c

Among these files that contain ‘#include “r_cg_adc.h™, since files other than ‘r_main.c’ ({ProjName}.c for the
destination project) and ‘r_cg_timer_user.c’ (Config_ TAUO_1 user.c for the destination project) include
appropriate header files from the Smart Configurator, the include directives need not be modified.

For ‘r_cg.timer_user.c’ (Config_ TAUO_1 user.c for the destination project), the include directives in the
corresponding source files of the destination project require modification.

e For the source file (Config_ TAUO_1_user.c)
Open ‘Config_TAUO_1 user.c’ in the destination project and find the part where the ADC function is
called. In ‘Config_TAUO_1_user.c’, the following function is called.
— R_Config_ ADC_Start()

Since the prototype declarations are in ‘Config_ADC.h’, the directives are modified so that this header file
is included.

r cg timer user.c (before modification)

/* Start user code for include. Do not edit comment generated here */

#include "r cg adc.h"

Config TAUO 1 user.c (after modification)

/* Start user code for include. Do not edit comment generated here */

#include "Config ADC.h"

R20AN0673EC0100 Rev.1.00 Page 36 of 41
Apr 5, 2022 RENESAS

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

2.6.8 Modifying Parts that Call API Functions
Parts of the custom code copied in section 2.6.6, Copying Custom Code in Generated Code, will have calls

of API functions from the Code Generator. These names of the API functions must be modified to those from
the Smart Configurator.

The custom code in ‘r_cg_timer_user.c’ was copied in accordance with section 2.6.6, Copying Custom Code
in Generated Code. The definition of the TimerADC() function is in the file.

Example.

Two API functions: R_ADC_Start() and R_TAUO_Channell_Start() generated by the Code Generator are
called in ‘TimerADC’ before modification. Since these function are R_Config_ ADC_ Start() and
R_TAUO_1_Start() generated by the Smart Configurator (when the default configuration name is used during
addition of the component), the name of the API function where it is called must be modified.

r cq timer user.c (before modification)

void TimerADC (void)

{
/* Start ADC operations */
R ADC Start();

/* Start timer TMOl operations */
R _TAUO Channell Start();

Config TAUO 1 user.c (after modification)

void TimerADC (void)

{
/* Start ADC operations */
R Config ADC Start();

/* Start timer TMO1l operations */
R Config TAUO 1 Start();

Table 2.9 shows the correspondences between the names of API functions generated by the Code
Generator and by the Smart Configurator. According to the table, modify the part where the API function is
called.

The names of the API functions from the Smart Configurator listed in Table 2.9 are those when the default
configuration names are set during the addition of the component. Since users are able to set configuration
names, the names of the API functions may differ with the setting for the configuration name.

For the API functions from the Smart Configurator, refer to [Help - e? studio] - [e? studio User Guide] -
[Building Projects] - [Smart Configurator] - [API reference].

R20AN0673EC0100 Rev.1.00 Page 37 of 41
Apr 5, 2022 RENESAS

e2 studio

Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

Table 2.9 Correspondences between the Names of API Functions Generated by the Code Generator
and by the Smart Configurator

Code Generator

Smart Configurator

File Name

Name of the API
Function

File Name

Name of the APl Function

Clock generator

R_TAUO_Channell_Start

R_TAUO_Channell_Stop

r_cg_cgc.c R_CGC_Create mcu_clocks.c mcu_clock_setup
Timer
r_cg_timer.c R_TAUO_Create Config_TAUO_1.c R_Config_TAUO_1_Create

R_Config_TAUO_1_Start

R_Config_TAUO_1_Stop

r_cg_timer_user.c

r_tau0_channell_interrupt

Config_TAUO_1_user.c

R_Config_TAUO_1_Create_Userlnit

r_tauO_channell_interrupt

Interrupt

r_cg_intc.c

R_INTC_Create

R_INTC1_Start

R_INTC1_Stop

R_INTC2_Start

R_INTC2_Stop

R_INTC4_Start

R_INTC4_Stop

Config_INTC.c

R_Config_INTC_Create

R_Config_INTC_INTP1_Start

R_Config_INTC_INTP1_Stop

R_Config_INTC_INTP2_Start

R_Config_INTC_INTP2_Stop

R_Config_INTC_INTP2_Start

R_Config_INTC_INTP2_Stop

r_cg_intc_user.c

r_intcl_interrupt

r_intc2_interrupt

r_intc4_interrupt

Config_INTC_user.c

R_Config_ICU_Create_Userlnit

r_Config_INTC_intpl_interrupt

r_Config_INTC_intp2_interrupt

r_Config_INTC_intp4_interrupt

1/0O port

r_cg_port.c

R_PORT_Create

Config_PORT.c

R_Config_PORT_Create

r_cg_port_user.c

Config_PORT _user.c

R_Config_PORT_Create_Userlnit

A/D converter

r_cg_adc.c

R_ADC_Create

R_ADC_Start

R_ADC_Stop

R_ADC_Set_OperationOn

R_ADC_Set_OperationOff

R_ADC_Get Result

Config_ADC.c

R_Config_ADC_Create

R_Config_ADC_Start

R_Config_ADC_Stop

R_Config_ADC_Set_OperationOn

R_Config_ADC_Set_OperationOff

R_Config_ADC_Get_Result_10bit

R_Config_ADC_Set_SnoozeOn

R_Config_ADC_Set_SnoozeOff

R_Config_ADC_Set_ADChannel

R_Config_ADC_Set_TestChannel

r_cg_adc_user.c

r_adc_ interrupt

Config_ADC_user.c

R_Config_ADC_Create_Userlnit

r_Config_ADC_interrupt

R20AN0673EC0100
Apr 5, 2022

Rev.1.00

RENESAS

Page 38 of 41

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

2.7 Setting Build Options

The default build options are applied for the newly created destination project. Accordingly, build options in
the source project must be reflected in the destination project.

Refer to section 4.1, Build Option Settings, in the e? studio Integrated Development Environment User’s
Manual: Getting Started Guide, and set the build options of the source project for the destination project.

R20AN0673EC0100 Rev.1.00 Page 39 of 41
Apr 5, 2022 RENESAS

e2 studio Porting projects produced with the Code Generator to projects
for use with the Smart Configurator

3. Reference Documents
User’'s Manual: Hardware

The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User's Manual: Development Tools
CC-RL Compiler User's Manual (R20UT3123)

The latest version can be downloaded from the Renesas Electronics website.

e? studio Integrated Development Environment User's Manual: Getting Started Guide (R20UT4819)

The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

R20AN0673EC0100 Rev.1.00 Page 40 of 41
Apr 5, 2022 RENESAS

http://www.renesas.com/
http://www.renesas.com/contact/

e2 studio

Porting projects produced with the Code Generator to projects

for use with the Smart Configurator

Revision History

Rev.

Date

Description

Page

Summary

1.00

Apr 5, 2022

First edition issued

R20ANO673EC0100 Rev.1.00

Apr 5, 2022

RENESAS

Page 41 of 41

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an 1/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vi (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Viu (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LS| is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

Notice

1.

10.

11.

12.

13.
14.

(Notel)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2022 Renesas Electronics Corporation. All rights reserved

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Purpose of This Document
	1.2 Operating Environment

	2. Porting Projects Produced with the Code Generator to Projects for Use with the Smart Configurator
	2.1 Projects Used in This Application Note
	2.2 Downloading the Source Project
	2.3 Generating a Report on the Source Project
	2.3.1 Generating the Report

	2.4 Newly Creating the Destination Project
	2.5 Setting Peripheral Functions in the Smart Configurator
	2.5.1 Correspondence between the Code Generator and the Smart Configurator
	2.5.2 Setting the Clock Generator
	2.5.3 Setting the Timer
	2.5.4 Setting Other Peripheral Functions
	2.5.5 Generating Code

	2.6 Porting User-defined Source Code
	2.6.1 Overview
	2.6.2 Areas for Writing User-defined Source Code
	2.6.3 Copying the User-created Source Files
	2.6.4 Copying Source Code, Including the main() Function
	2.6.5 Correspondences between Code Generated by the Code Generator and by the Smart Configurator
	2.6.6 Copying Custom Code in Generated Code
	2.6.7 Modifying the Include Directives
	2.6.8 Modifying Parts that Call API Functions

	2.7 Setting Build Options

	3. Reference Documents
	Website and Support
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

