
078-0140-01G

Provides reference info for writing programs using the
Neuron C programming language.

Neuron C
Reference Guide

Echelon, LONWORKS, LONMARK, NodeBuilder, LonTalk, Neuron,
3120, 3150, ShortStack, LonMaker, and the Echelon logo are
trademarks of Echelon Corporation that may be registered in
the United States and other countries.

Other brand and product names are trademarks or
registered trademarks of their respective holders.

Neuron Chips and other OEM Products were not designed
for use in equipment or systems, which involve danger to
human health or safety, or a risk of property damage and
Echelon assumes no responsibility or liability for use of the
Neuron Chips in such applications.

Parts manufactured by vendors other than Echelon and
referenced in this document have been described for
illustrative purposes only, and may not have been tested
by Echelon. It is the responsibility of the customer to
determine the suitability of these parts for each
application.

ECHELON MAKES AND YOU RECEIVE NO WARRANTIES OR
CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR IN ANY
COMMUNICATION WITH YOU, AND ECHELON SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE.

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of Echelon
Corporation.

Printed in the United States of America.
Copyright © 2006, 2014 Echelon Corporation.

Echelon Corporation
www.echelon.com

http://www.echelon.com/

Welcome
This manual describes the Neuron® C Version 2.3 programming language. It is a
companion piece to the Neuron C Programmer's Guide. It provides reference
information for writing programs using Neuron C. Neuron C is a programming
language based on ANSI C that is designed for applications that run on Neuron
Chips and Smart Transceivers (Neuron-hosted devices). Neuron C includes
network communication, I/O, and event-handling extensions to ANSI C, which
make it a powerful tool for the development of LONWORKS® applications.

A subset of the Neuron C language is also used to describe the interoperable
interface of host-based applications that are designed with the ShortStack®
Developer’s Kit, FTXL™ Developer’s Kit, or the i.LON® SmartServer. This
interoperable interface is contained within a file called a model file, which
contains Neuron C declarations and definitions for the device interface.

This guide focuses on the Neuron C language used for Neuron-hosted application
development, and only highlights differences for model file compilation where
necessary.

Audience
The Neuron C Programmer’s Guide is intended for application programmers who
are developing LONWORKS applications. Readers of this guide are assumed to be
familiar with the ANSI C programming language, and have some C programming
experience.

For a complete description of ANSI C, consult the following references:

• —. 1989. American National Standard for Information Systems
Programming Language C. Standard number X3.159-1989. New York,
NY: American National Standards Institute.

• —. 2007. International Standard ISO/IEC 9899:1999. Programming
languages – C. Geneva, Switzerland: International Organization for
Standardization.

• Harbison, Samuel P. and Guy L. Steele, Jr. 2002. C: A Reference
Manual, 5th edition. Upper Saddle River, NJ: Prentice Hall, Inc.

• Kernighan, Brian W. and Dennis M. Ritchie. 1988. The C Programming
Language, 2nd edition. Upper Saddle River, NJ: Prentice Hall, Inc.

• Plauger, P.J. and Jim Brodie. 1989. Standard C: Programmer’s Quick
Reference Series. Buffalo, NY: Microsoft Press.

• Plauger, P.J. and Jim Brodie. 1992. ANSI and ISO Standard C
Programmer's Reference. Buffalo, NY: Microsoft Press.

Related Documentation
The following manuals are available from the Echelon Web site
(www.echelon.com) and provide additional information that can help you develop
Neuron C applications for LONWORKS devices:

Neuron C Reference Guide iii

http://www.echelon.com/

• Introduction to the LONWORKS Platform (078-0391-01A). This manual
provides an introduction to the ISO/IEC 14908 (ANSI/CEA-709.1 and
EN14908) Control Network Protocol, and provides a high-level
introduction to LONWORKS networks and the tools and components that
are used for developing, installing, operating, and maintaining them.

• I/O Model Reference for Smart Transceivers and Neuron Chips (078-
0392-01C). This manual describes the I/O models that are available for
Echelon’s Smart Transceivers and Neuron Chips.

• IzoT Commissioning Tool User's Guide (078-0514-01). This manual
describes how to use the Izot Commissioning Tool to design, commission,
monitor and control, maintain, and manage a LONWORKS network.

• LONMARK® Application Layer Interoperability Guidelines. This manual
describes design guidelines for developing applications for open
interoperable LONWORKS devices, and is available from the LONMARK
Web site, www.lonmark.org.

• Neuron C Programmer’s Guide (078-0002-01I). This manual describes
how to write programs using the Neuron C Version 2.3 programming
language.

• Neuron Tools Errors Guide (078-0402-01D). This manual documents and
explains the various warning and error messages that can occur for the
various Neuron C development tools.

• IzoT NodeBuilder FX User’s Guide (078-0516-01). This manual describes
how to develop a LONWORKS device using the IzoT NodeBuilder tool.

All of the Echelon documentation is available in Adobe PDF format. To view the
PDF files, you must have a current version of the Adobe Reader, which you can
download from Adobe at: www.adobe.com/products/acrobat/readstep2.html.

Typographic Conventions for Syntax
Table 1 lists the typographic conventions used in this manual for displaying
Neuron C syntax:

Table 1. Typographic Conventions

Typeface or Symbol Used for Example

boldface type keywords

literal characters

network

{

italic type abstract elements identifier

[square brackets] optional fields [bind-info]

iv

http://www.lonmark.org/
http://www.adobe.com/products/acrobat/readstep2.html

Typeface or Symbol Used for Example

| vertical bar a choice between two
elements

input | output

Example: The syntax for declaring a network variable is:

network input | output [netvar modifier] [class] type [bind-info] identifier

• You type the keywords network, input, and output as shown

• You replace the abstract elements netvar modifier, class, type, bind-info,
and identifier with the actual modifier, class, type, bind information, and
identifier for the network variable

• The declaration must include either input or output, but not both

• The elements netvar modifier, class, and bind-info are all optional

When a particular element or expression includes punctuation, such as quotation
marks, parentheses, and semicolons (but not including square brackets and
vertical bars), you must type that punctuation as shown.

Code examples appear in the monospace Courier font:

#include <mem.h>

unsigned array1[40], array2[40];

// See if array1 matches array2
if (memcmp(array1, array2, 40) != 0) {
 // The contents of the two areas do not match
}

Neuron C Reference Guide v

Table of Contents
Welcome ... iii
Audience .. iii
Related Documentation .. iii
Typographic Conventions for Syntax ... iv
Neuron C Overview ... xix

Chapter 1. Predefined Events .. 1
Introduction to Predefined Events .. 2
Event Directory .. 3

flush_completes Event... 3
Syntax .. 3
Example ... 3

io_changes Event ... 3
Syntax .. 4
Example 1 .. 4
Example 2 .. 5

io_in_ready Event .. 5
Syntax .. 5
Example ... 5

io_out_ready Event .. 5
Syntax .. 5
Example ... 5

io_update_occurs Event ... 6
Syntax .. 6
Example ... 6

msg_arrives Event ... 7
Syntax .. 7
Example ... 7

msg_completes Event .. 7
Syntax .. 7
Example ... 7

msg_fails Event.. 8
Syntax .. 8
Example ... 8

msg_succeeds Event .. 8
Syntax .. 8
Example ... 8

nv_update_completes Event ... 9
Syntax .. 9
Example 1 – Event for a Single Network Variable 10
Example 2 – Event for a Network Variable Array 10
Example 3 – Event for a Range of Network Variables 10

nv_update_fails Event ... 10
Syntax .. 11
Example 1 – Event for a Single Network Variable 11
Example 2 – Event for a Network Variable Array 11
Example 3 – Event for a Range of Network Variables 12

nv_update_occurs Event ... 12
Syntax .. 12
Example 1 – Event for a Single Network Variable 13
Example 2 – Event for a Network Variable Array 13
Example 3 – Event for a Range of Network Variables 13

Neuron C Reference Guide vii

nv_update_succeeds Event ... 13
Syntax .. 14
Example 1 – Event for a Single Network Variable 14
Example 2 – Event for a Network Variable Array 14
Example 3 – Event for a Range of Network Variables 15

offline Event ... 15
Syntax .. 15
Example ... 15

online Event ... 16
Syntax .. 16
Example ... 16

reset Event ... 16
Syntax .. 17
Example ... 17

resp_arrives Event ... 17
Syntax .. 17
Example ... 17

timer_expires Event .. 17
Syntax .. 18
Example ... 18

wink Event ... 18
Syntax .. 18
Example ... 18

Chapter 2. Compiler Directives ... 21
Compiler Directives ... 22

Pragma Directives ... 22
Other Directives... 43

Chapter 3. Functions .. 47
Introduction .. 48

Overview of Neuron C Functions ... 49
Execution Control ... 51
Network Configuration ... 52
Integer Math ... 53
Floating-Point Math ... 55
Strings .. 57
Utilities .. 58
Input/Output ... 60

Signed 32-Bit Integer Support Functions .. 61
Binary Arithmetic Operators ... 63
Unary Arithmetic Operators .. 64
Comparison Operators .. 64
Miscellaneous Signed 32-bit Functions ... 65
Integer Conversions .. 66
Conversion of Signed 32-bit to ASCII String 66
Conversion of ASCII String to Signed 32-bit 67
Signed 32-Bit Performance ... 67

Floating-Point Support Functions .. 68
Binary Arithmetic Operators ... 71
Unary Arithmetic Operators .. 72
Comparison Operators .. 73
Miscellaneous Floating-Point Functions 74
Floating-Point to/from Integer Conversions 74

viii

Conversion of Floating-Point to ASCII String 75
Conversion of ASCII String to Floating-Point 77
Floating-Point Performance ... 77

Using the NXT Neuron C Extended Arithmetic Translator 79
Function Directory ... 79

abs() Built-in Function ... 79
Syntax .. 80
Example ... 80

access_address() Function .. 80
Syntax .. 80
Example ... 80

access_alias() Function ... 80
Syntax .. 81
Example ... 81

access_domain() Function .. 81
Syntax .. 81
Example ... 81

access_nv() Function... 81
Syntax .. 82
Example ... 82

addr_table_index() Built-in Function .. 82
Syntax .. 82
Example ... 82

ansi_memcpy() Function .. 83
Syntax .. 83
Example ... 83

ansi_memset() Function ... 83
Syntax .. 83
Example ... 83

application_restart() Function ... 84
Syntax .. 84
Example ... 84

bcd2bin() Built-in Function .. 84
Syntax .. 84
Example ... 84

bin2bcd() Built-in Function .. 85
Syntax .. 85
Example ... 85

clear_status() Function .. 85
Syntax .. 85
Example ... 86

clr_bit() Function .. 86
Syntax .. 86
Example ... 86

crc8() Function .. 86
Syntax .. 86
Example ... 87

crc16() Function .. 87
Syntax .. 87
Example ... 87

crc16_ccitt() Function ... 88
Syntax .. 88
Example ... 88

Neuron C Reference Guide ix

delay() Function .. 88
Syntax .. 89
Example ... 90

eeprom_memcpy() Function ... 90
Syntax .. 90
Example ... 90

error_log() Function .. 90
Syntax .. 91
Example ... 91

fblock_director() Built-in Function .. 91
Syntax .. 91
Example ... 91

Floating-Point Support Functions .. 91
flush() Function .. 93

Syntax .. 93
Example ... 93

flush_cancel() Function .. 93
Syntax .. 93
Example ... 94

flush_wait() Function ... 94
Syntax .. 94
Example ... 94

get_current_nv_length() Function ... 95
Syntax .. 95
Example ... 95

get_fblock_count() Built-in Function ... 95
Syntax .. 97
Example ... 97

get_nv_count() Built-in Function ... 97
Syntax .. 97
Example ... 97

get_tick_count() Function... 97
Syntax .. 97
Example ... 97

go_offline() Function ... 98
Syntax .. 98
Example ... 98

go_unconfigured() Function ... 98
Syntax .. 99
Example ... 99

high_byte() Built-in Function .. 99
Syntax .. 99
Example ... 99

interrupt_control() Built-in Function .. 99
Syntax .. 100
Example ... 100

io_change_init() Built-in Function .. 100
Syntax .. 101
Example ... 101

io_edgelog_preload() Built-in Function ... 101
Syntax .. 101
Example ... 102

io_edgelog_single_preload() Built-in Function 102

x

Syntax .. 102
Example ... 102

io_idis() Function .. 102
Syntax .. 103
Example ... 103

io_iena() Function ... 103
Syntax .. 103
Example ... 103

io_in() Built-in Function ... 103
Syntax .. 104
Example ... 108

io_in_request() Built-in Function .. 108
Syntax .. 108
Example 1 .. 108
Example 2 .. 108

io_out() Built-in Function ... 109
Syntax .. 109
Example ... 112

io_out_request() Built-in Function .. 112
Syntax .. 112
Example 1 .. 112
Example 2 .. 112

io_preserve_input() Built-in Function ... 113
Syntax .. 113
Example ... 113

io_select() Built-in Function ... 113
Syntax .. 113
Example ... 114

io_set_baud() Built-in Function ... 114
Syntax .. 114
Example ... 114

io_set_clock() Built-in Function ... 115
Syntax .. 115
Example ... 116

io_set_direction() Built-in Function .. 116
Syntax .. 116
Example ... 117

io_set_terminal_count() Built-in Function .. 117
Syntax .. 117
Example ... 117

is_bound() Built-in Function .. 118
Syntax .. 118
Example ... 118

low_byte() Built-in Function .. 119
Syntax .. 119
Example ... 119

make_long() Built-in Function ... 119
Syntax .. 119
Example ... 119

max() Built-in Function .. 119
Syntax .. 120
Example ... 120

memccpy() Function ... 120

Neuron C Reference Guide xi

Syntax .. 120
Example ... 121

memchr() Function ... 121
Syntax .. 121
Example ... 121

memcmp() Function .. 121
Syntax .. 122
Example ... 122

memcpy() Built-in Function ... 122
Syntax .. 122
Example ... 122

memset() Built-in Function .. 122
Syntax .. 123
Example ... 123

min() Built-in Function .. 123
Syntax .. 123
Example ... 123

msec_delay() Function .. 123
Syntax .. 123
Example ... 123

msg_alloc() Built-in Function .. 124
Syntax .. 124
Example ... 124

msg_alloc_priority() Built-in Function .. 124
Syntax .. 124
Example ... 124

msg_cancel() Built-in Function .. 125
Syntax .. 125
Example ... 125

msg_free() Built-in Function .. 125
Syntax .. 125
Example ... 125

msg_receive() Built-in Function .. 126
Syntax .. 126
Example ... 126

msg_send() Built-in Function .. 127
Syntax .. 127
Example ... 127

muldiv() Function ... 127
Syntax .. 127
Example ... 127

muldiv24() Function ... 128
Syntax .. 128
Example ... 128

muldiv24s() Function ... 128
Syntax .. 129
Example ... 129

muldivs() Function ... 129
Syntax .. 129
Example ... 129

node_reset() Function ... 129
Syntax .. 130
Example ... 130

xii

nv_table_index() Built-in Function ... 130
Syntax .. 130
Example ... 130

offline_confirm() Function .. 131
Syntax .. 131
Example ... 131

poll() Built-in Function ... 131
Syntax .. 132
Example ... 132

post_events() Function ... 132
Syntax .. 132
Example ... 132

power_up() Function ... 133
Syntax .. 133
Example ... 133

preemption_mode() Function ... 133
Syntax .. 133
Example ... 133

propagate() Built-in Function .. 134
Syntax .. 134
Example 1 .. 134
Example 2 .. 135

random() Function .. 135
Syntax .. 135
Example ... 135

resp_alloc() Built-in Function .. 135
Syntax .. 135
Example ... 135

resp_cancel() Built-in Function ... 136
Syntax .. 136
Example ... 136

resp_free() Built-in Function ... 136
Syntax .. 136
Example ... 136

resp_receive() Built-in Function .. 137
Syntax .. 137
Example ... 137

resp_send() Built-in Function .. 137
Syntax .. 137
Example ... 137

retrieve_status() Function.. 138
Syntax .. 138
Example ... 140

reverse() Built-in Function... 140
Syntax .. 140
Example ... 140

rotate_long_left() Function... 140
Syntax .. 140
Example ... 140

rotate_long_right() Function .. 140
Syntax .. 141
Example ... 141

rotate_short_left() Function ... 141

Neuron C Reference Guide xiii

Syntax .. 141
Example ... 141

rotate_short_right() Function .. 141
Syntax .. 142
Example ... 142

scaled_delay() Function .. 142
Syntax .. 143
Example ... 143

sci_abort() Built-in Function .. 143
Syntax .. 143
Example ... 143

sci_get_error() Built-in Function ... 143
Syntax .. 144
Example ... 144

service_pin_msg_send() Function .. 144
Syntax .. 144
Example ... 144

service_pin_state() Function .. 144
Syntax .. 145
Example ... 145

set_bit() Function .. 145
Syntax .. 145
Example ... 145

set_eeprom_lock() Function ... 146
Syntax .. 146
Example ... 146

Signed 32-bit Arithmetic Support Functions 147
sleep() Built-in Function .. 147

Syntax .. 148
Example ... 148

spi_abort() Function ... 149
Syntax .. 149
Example ... 149

spi_get_error() Function ... 149
Syntax .. 149
Example ... 149

strcat() Function ... 149
Syntax .. 150
Example ... 150

strchr() Function ... 150
Syntax .. 150
Example ... 150

strcmp() Function ... 150
Syntax .. 151
Example ... 151

strcpy() Function ... 151
Syntax .. 151
Example ... 151

strlen() Function ... 152
Syntax .. 152
Example ... 152

strncat() Function ... 152
Syntax .. 152

xiv

Example ... 152
strncmp() Function ... 153

Syntax .. 153
Example ... 153

strncpy() Function .. 153
Syntax .. 154
Example ... 154

strrchr() Function ... 154
Syntax .. 154
Example ... 154

swap_bytes() Built-in Function .. 155
Syntax .. 155
Example ... 155

timers_off() Function .. 155
Syntax .. 155
Example ... 155

touch_bit() Built-in Function ... 155
Syntax .. 155
Example ... 156

touch_byte() Built-in Function ... 156
Syntax .. 156
Example ... 156

touch_byte_spu() Built-in Function ... 156
Syntax .. 156
Example ... 157

touch_first() Built-in Function ... 157
Syntax .. 157
Example ... 157

touch_next() Built-in Function .. 158
Syntax .. 158
Example ... 158

touch_read_spu() Built-in Function .. 159
Syntax .. 159
Example ... 159

touch_reset() Built-in Function ... 159
Syntax .. 160
Example ... 160

touch_reset_spu() Built-in Function .. 160
Syntax .. 160
Example ... 160

touch_write_spu() Built-in Function ... 161
Syntax .. 161
Example ... 161

tst_bit() Function .. 161
Syntax .. 162
Example ... 162

update_address() Function... 162
Syntax .. 162
Example ... 162

update_alias() Function ... 163
Syntax .. 163
Example ... 163

update_clone_domain() Function ... 164

Neuron C Reference Guide xv

Syntax .. 164
Example ... 164

update_config_data() Function .. 164
Syntax .. 165
Example ... 165

update_domain() Function ... 165
Syntax .. 165
Example ... 165

update_nv() Function ... 166
Syntax .. 166
Example ... 166

update_program_id() Function .. 167
Syntax .. 167
Example ... 167

watchdog_update() Function .. 167
Syntax .. 167
Example ... 168

Chapter 4. Timer Declarations .. 169
Timer Object ... 170

Chapter 5. Network Variables, Config Properties, and Message Tags 171
Introduction .. 172
Network Variable Declarations Syntax .. 173

Network Variable Modifiers (netvar-modifier) 173
Network Variable Classes (class) ... 175
Network Variable Types (type) ... 176
Configuration Network Variables .. 177
Network Variable Property Lists (nv-property-list) 177
Configuration Network Variable Arrays .. 179
Network Variable Connection Information (connection-info) 180

Configuration Property Declarations .. 184
Configuration Property Modifiers (cp-modifiers) 185
Configuration Property Instantiation .. 187
Device Property Lists .. 188

Accessing Property Values from a Program ... 189
Message Tags ... 191

Chapter 6. Functional Block Declarations ... 193
Introduction .. 194
Functional Block Declarations Syntax ... 194

Functional Block Property Lists (fb-property-list) 197
Related Data Structures .. 199
Accessing Members and Properties of a FB from a Program 200

Chapter 7. Built-In Variables, Objects, Symbols, and Semaphore 203
Introduction .. 204
Built-In Variables .. 205

activate_service_led Variable ... 205
config_data Variable .. 205
cp_modifiable_value_file Variable .. 206
cp_modifiable_value_file_len Variable ... 206
cp_readonly_value_file Variable ... 206
cp_readonly_value_file_len Variable .. 207
cp_template_file Variable ... 207

xvi

cp_template_file_len Variable .. 207
fblock_index_map Variable ... 207
input_is_new Variable ... 207
input_value Variable ... 208
msg_tag_index Variable .. 208
nv_array_index Variable ... 208
nv_in_addr Variable .. 208
nv_in_index Variable ... 210
read_only_data Variable ... 210
read_only_data_2 Variable ... 210
read_only_data_3 Variable ... 210

Built-In Objects .. 212
msg_in Object ... 212
msg_out Object... 213
resp_in Object .. 213
resp_out Object .. 214

Built-In Symbols .. 214
Built-In Semaphore .. 216

Appendix A. Syntax Summary ... 219
Syntax Conventions ... 220
Neuron C External Declarations ... 220
Variable Declarations .. 221

Declaration Specifiers ... 221
Timer Declarations ... 222
Type Keywords .. 222
Storage Classes ... 223
Type Qualifiers .. 223
Enumeration Syntax ... 223
Structure/Union Syntax.. 224
Configuration Property Declarations... 224
Network Variable Declarations .. 225
Connection Information .. 225

Declarator Syntax .. 226
Abstract Declarators ... 228

Task Declarations .. 229
Function Declarations .. 229

Conditional Events .. 230
Complex Events... 230

I/O Object Declarations .. 231
I/O Options ... 232

Functional Block Declarations .. 233
Property List Declarations .. 234
Statements .. 235
Expressions ... 236

Expressions, Built-in Variables, and Built-in Functions 239
Implementation Limits .. 240

Appendix B. Reserved Keywords .. 243
Reserved Words List .. 244

Index ... 253

Neuron C Reference Guide xvii

Neuron C Overview
Neuron C is a programming language based on ANSI C that is designed for
Neuron Chips and Smart Transceivers. It includes network communication,
input/output (I/O), and event- and interrupt-handling extensions to ANSI C,
which make it a powerful tool for the development of LONWORKS applications.

Neuron C implements all the basic ANSI C types and type conversions as
necessary. In addition to the ANSI C data constructs, Neuron C provides some
unique data elements. Network variables are fundamental to Neuron C and
LONWORKS applications. Network variables are data constructs that have
language and system firmware support to provide something that looks like a
variable in a C program, but has additional properties of propagating across a
LONWORKS network to or from one or more other devices on that network. The
network variables make up part of the device interface for a LONWORKS device.

Configuration properties are Neuron C data constructs that are another part of
the device interface. Configuration properties allow the device’s behavior to be
customized using a network management tool such as the LonMaker Integration
Tool or a customized plug-in created for the device.

Neuron C also provides a way to organize the network variables and
configuration properties in the device into functional blocks, each of which
provides a collection of network variables and configuration properties, that are
used together to perform one task. These network variables and configuration
properties are called the functional block members.

Each network variable, configuration property, and functional block is defined by
a type definition contained in a resource file. Network variables and
configuration properties are defined by network variable types and configuration
property types. Functional blocks are defined by functional profiles (which are
also called functional profile templates).

Network variables, configuration properties, and functional blocks in Neuron C
can use standardized, interoperable types. The use of standardized data types
promotes the interconnection of disparate devices on a LONWORKS network:

• For configuration properties, the standard types are called standard
configuration property types (SCPTs; pronounced skip-its).

• For network variables, the standard types are called standard network
variable types (SNVTs; pronounced snivets).

• For functional blocks, the standard types are called standard functional
profiles (SFPTs).

• If you cannot find standard types or profiles that meet your
requirements, Neuron C also provides full support for user network
variable types (UNVTs), user configuration property types (UCPTs), and
user functional profiles (UFPTs).

Neuron C applications run in the environment provided by the Neuron firmware.
The Neuron firmware – also known as the Neuron Chip Firmware – implements
the LonTalk protocol and provides an event-driven scheduling system.

Neuron C also provides a lower-level messaging service integrated into the
language in addition to the network variable model. The network variable model
has the advantage of being a standardized method of information interchange,

Neuron C Reference Guide xix

whereas the messaging service is not standardized with the exception of its usage
by the LONWORKS file transfer protocol (LW-FTP). The use of network variables,
both standard types and user types, promotes interoperability between multiple
devices from multiple vendors. The lower-level messaging service allows for
proprietary solutions in addition to the file transfer protocol.

Another Neuron C data object is the timer. Timers can be declared and
manipulated like variables, and when a timer expires, the Neuron firmware
automatically manages the timer events and notifies the program of those events.

For Series 5000 and 6000 devices, Neuron C provides interrupts that allow
applications to respond to asynchronous, time-sensitive, actions.

Neuron C provides many built-in I/O objects. These I/O objects are standardized
I/O “device drivers” for the Neuron Chip or Smart Transceiver I/O hardware.
Each I/O object fits into the event-driven programming model. A function-call
interface is provided to interact with each I/O object.

When using the Neuron C language to create model files for host-based device
development, only the declarations for network variables, configuration
properties, and functional blocks are relevant. Most other constructs, including
executable code or I/O device declarations, are ignored (for example, when a
model file shares source code with a Neuron-hosted Neuron C application). You
can also use conditional compilation when sharing Neuron C source code between
both application types.

The rest of this reference guide discusses these various aspects of Neuron C in
much greater detail, accompanied by examples. See the Neuron C Programmer’s
Guide for additional information about how to use the Neuron C language.

xx Predefined Events

1

Predefined Events

This chapter provides reference information on predefined
events.
The predefined events described in this chapter apply only
to application development for Neuron-hosted devices.
However, the development tools for host-based device
development support a similar API.

Neuron C Reference Guide 1

Introduction to Predefined Events
An event is a programmatic notification provided by the Neuron firmware that
there has been an occurrence of something significant to the application program.
For example, a network variable update has been received from the network, or
an input pin has changed state.

Events are used in when-clauses to enable the execution of a when-task, using the
following general syntax:

when(<event>) {
 ...
}

Neuron C defines a number of predefined events for events that are managed by
the Neuron firmware. Predefined events are represented by unique keywords, or
by an event identifier with arguments, similar to a Neuron C function call, listed
in Table 2 below. Some predefined events, such as the I/O events, can be
followed by a modifier that narrows the scope of the event. If the modifier is
optional and is not supplied, any event of that type qualifies.

Most events can also be used as predicates in code; see Bypass Mode in Chapter 7
of the Neuron C Programmer’s Guide.

Table 2. Events Listed by Functional Group

Functional Group Event

System / Scheduler offline
online
reset
timer_expires
wink

Input/Output io_changes
io_in_ready
io_out_ready
io_update_occurs

Sleep flush_completes

Network Variables nv_update_completes
nv_update_fails
nv_update_occurs
nv_update_succeeds

Messages msg_arrives
msg_completes
msg_fails
msg_succeeds
resp_arrives

Within a single program, the following predefined events, which reflect state
transitions of the application processor, can appear in no more than one when
clause:

2 Predefined Events

offline
online
reset
timer_expires (unqualified)
wink

All other predefined events can be used in multiple when clauses. Predefined
events (except for the reset event) can also be used in any Neuron C expression.

Event Directory
The following sections list Neuron C events alphabetically, providing relevant
syntax information and a detailed description of each event.

flush_completes Event
The flush_completes event evaluates to TRUE, following a call to the flush()
function, when all outgoing transactions have been completed and no more
incoming messages remain to be processed. For unacknowledged messages,
“completed” means that the message has been transmitted by the media access
control (MAC) layer. For acknowledged messages, “completed” means that the
completion code has been processed. In addition, all network variable updates
have completed.

See also the discussion of sleep mode in Chapter 7, Additional Features, of the
Neuron C Programmer's Guide.

Syntax
flush_completes

Example
 ...
 flush();

when (flush_completes)
{
 sleep();
}

io_changes Event
The io_changes event evaluates to TRUE when the value read from the I/O
object specified by io-object-name changes state. The state change can be one of
the following three types:

• A change to a specified value

• A change by (at least) a specified amount (the absolute value)

• Any change (an unqualified change)

Neuron C Reference Guide 3

The reference value is the value read the last time the change event evaluated to
TRUE. For the unqualified io_changes event, the event equates to TRUE when
the current value is different from the reference value.

A task can access the input value for the I/O object through the input_value
keyword. The input_value is always a signed long.

For the bit, byte, and nibble I/O objects, changes are not latched. The change
must persist until the io_changes event is processed. The leveldetect input
object can be used to latch changes that might not persist until the io_changes
event can be processed.

Syntax
io_changes (io-object-name) [to expr | by expr]

io-object-name The I/O object name (see the I/O Model Reference). I/O
objects of the following input object types can be used in
an unqualified change event. The by and to options can
also be used where noted.
bit (to)
byte (by, to)
dualslope (by)
leveldetect (to)
nibble (by, to)
ontime (by)
period (by, to)
pulsecount (by)
quadrature (by)

to expr The to option specifies the value of the I/O state
necessary for the io_changes event to become TRUE.
The compiler accepts an unsigned long value for expr,
where expr is a Neuron C expression. However, each I/O
object type has its own range of meaningful values.

by expr The by option compares the current value with the
reference value. The io_changes event becomes TRUE
when the difference (absolute value) between the current
value and the reference value is greater than or equal to
expr.

 The default initial reference value used for comparison purposes is zero. You can
set the initial value by calling the io_change_init() function. If an explicit
reference value is passed to io_change_init(), that value is used as the initial
reference value: io_change_init(io-object-name, value). If no explicit value is
passed to io_change_init(), the I/O object’s current value is used as the initial
value: io_change_init(io-object-name).

Example 1
IO_0 input bit push_button;

when (io_changes(push_button) to 0)
{
 ...

4 Predefined Events

}

Example 2
IO_7 input pulsecount total_ticks;

when (io_changes(total_ticks) by 100)
{
 ...
}

io_in_ready Event
The io_in_ready event evaluates to TRUE when a block of data is available to be
read on some asynchronous I/O models. When data is available, the application
then calls io_in() to retrieve the data.

The io_in_ready event is used with the parallel, sci, and spi I/O models; see
the I/O Model Reference for more information about these I/O models.

Syntax
io_in_ready (io-object-name)

io-object-name The I/O object name (see the I/O Model Reference).

Example
when (io_in_ready(io_bus))
{
 io_in(io_bus, &data);
}

io_out_ready Event
The io_out_ready event evaluates to TRUE whenever the I/O interface is in a
state where it can be written to, and the io_out_request() function has been
previously invoked.

The io_out_ready event is used with the parallel, sci, and spi I/O models; see
the I/O Model Reference for more information about these I/O models.

Syntax
io_out_ready (io-object-name)

io-object-name The I/O object name (see the I/O Model Reference).

Example
when (...)
{
 io_out_request(io_bus);
}

Neuron C Reference Guide 5

when (io_out_ready(io_bus))
{
 io_out(io_bus, &data);
}

io_update_occurs Event
The io_update_occurs event evaluates to TRUE when the input object specified
by io-object-name has an updated value. The io_update_occurs event applies
only to timer/counter input object types listed in Table 3.

Table 3. Timer/Counter Objects for the io_update_occurs Event

I/O Object io_update_occurs evaluates to TRUE after:

dualslope The A/D conversion is complete

ontime The edge is detected defining the end of a period

period The edge is detected defining the end of a period

pulsecount Every 0.8388608 seconds

quadrature The encoder position changes

An input object may have an updated value that is actually the same as its
previous value. To detect changes in value, use the io_changes event. A given
I/O object cannot be included in when clauses with both io_update_occurs and
io_changes events.

A task can access the updated value for the I/O object through the input_value
keyword. The input_value type is always a signed long, but may be cast to
another type as necessary.

Syntax
io_update_occurs (io-object-name)

io-object-name The I/O object name (see the I/O Model Reference).

Example
#include <io_types.h>
ontime_t therm_value; // 'ontime_t' defined in io_types.h
IO_7 input ontime io_thermistor;

when (io_update_occurs(io_thermistor))
{
 therm_value = (ontime_t)input_value;
}

6 Predefined Events

msg_arrives Event
The msg_arrives event evaluates to TRUE once for each a message that arrives.
This event can be qualified by a specific message code specified by the sender of
the message. See Chapter 6, How Devices Communicate Using Application
Messages, of the Neuron C Programmer's Guide, for a list of message code ranges
and their associated meanings. You can reduce scheduling overhead by using an
unqualified msg_arrives event followed by a switch statement on the code field
of the msg_in object.

Syntax
msg_arrives [(message-code)]

message-code An optional integer message code. If this field is omitted,
the event is TRUE for receipt of any message.

Example
when (msg_arrives(10))
{
 ...
}

msg_completes Event
The msg_completes event evaluates to TRUE when an outgoing message
completes (that is, either succeeds or fails). This event can be qualified by a
specific message tag.

Checking the completion event (msg_completes, msg_fails, msg_succeeds) is
optional by message tag.

If a program checks for either the msg_succeeds or msg_fails event, it must
check for both events. The alternative is to check only for msg_completes.

Syntax
msg_completes [(message-tag)]

message-tag An optional message tag. If this field is omitted, the
event is TRUE for any message.

Example
msg_tag tag_out;

 ...
 msg_out.tag = tag_out;
 msg_send();
 ...

when (msg_completes(tag_out))
{
 ...

Neuron C Reference Guide 7

}

msg_fails Event
The msg_fails event evaluates to TRUE when a message fails to be
acknowledged after all retries have been attempted. This event can be qualified
by a specific message tag.

Checking the completion event (msg_completes, or msg_fails in combination
with msg_succeeds) is optional by message tag. If a program checks for either
the msg_succeeds or msg_fails event for a given message tag, it must check for
both events for that tag. The alternative is to check only for msg_completes.

Syntax
msg_fails [(message-tag)]

message-tag An optional message tag. If this field is omitted, the
event is TRUE for any message.

Example
msg_tag tag_out;

 ...
 msg_out.tag = tag_out;
 msg_send();
 ...

when (msg_fails(tag_out))
{
 ...
}

msg_succeeds Event
The msg_succeeds event evaluates to TRUE when a message is successfully
sent (see the Neuron C Programmer's Guide for the definition of success). This
event can be qualified by a specific message tag.

Checking the completion event (msg_completes, or msg_fails in combination
with msg_succeeds) is optional by message tag. If a program checks for either
the msg_succeeds or msg_fails event for a given message tag, it must check for
both events for that tag. The alternative is to check only for msg_completes.

Syntax
msg_succeeds [(message-tag)]

message-tag An optional message tag. If this field is omitted, the
event is TRUE for any message.

Example
msg_tag tag_out;

8 Predefined Events

 ...
 msg_out.tag = tag_out;
 msg_send();
 ...

when (msg_succeeds(tag_out))
{
 ...
}

nv_update_completes Event
The nv_update_completes event evaluates to TRUE when an output network
variable update completes (that is, either fails or succeeds) or a poll operation
completes. Checking the completion event (nv_update_completes, or
nv_update_fails in combination with nv_update_succeeds) is optional by
network variable.

If an array name is used, then each element of the array is checked for
completion. The event occurs once for each element that experiences a
completion event. An individual element can be checked by using an array index.
When nv_update_completes is TRUE for an event qualified by the name of an
entire NV array, you can examine the nv_array_index built-in variable (type
short int) to obtain the element’s index to which the event applies.

If a network variable range is used, then the network variable at the beginning of
the range must have a lower global index than the network variable at the end of
the range. Each network variable in the range is checked for completion until
the first such network variable with an event is found. The event occurs for each
network variable in the range that experiences a completion event.

If a program checks for the nv_update_succeeds event, it must check for the
nv_update_fails event as well. The alternative is to check only for
nv_update_completes. A program is also permitted to check only for
nv_update_fails as long as there is no use of nv_update_completes or
nv_update_succeeds for any network variable.

Syntax
nv_update_completes [(network-var)]

nv_update_completes [(network-var1 .. network-var2)]

network-var A network variable identifier, a network variable array
identifier, or a network variable array element. A range
can be specified with two network variable identifiers or
network variable array elements separated with a range
operator (two consecutive dots). The range is defined by
the indices of the referenced network variables. If the
parameter is omitted, the event is TRUE when any
network variable update completes.

Neuron C Reference Guide 9

Example 1 – Event for a Single Network
Variable

network output SVNT_abs_humid nvoHumidity;
 ...
 nvoHumidity = 32; // This initiates an NV update
 ...

when (nv_update_completes(nvoHumidity))
{
 ...
}

Example 2 – Event for a Network Variable
Array

network output SVNT_abs_humid nvoHumidity[4];

 ...
 nvoHumidity[1] = 32; // This initiates an NV update
 ...

when (nv_update_completes(nvoHumidity))
{
 ...
}

Example 3 – Event for a Range of Network
Variables

network output SVNT_abs_humid nvoHumidity1, nvoHumidity2,
nvoHumidity3;

 ...
 nvoHumidity2 = 32; // This initiates an NV update
 ...

when (nv_update_completes(nvoHumidity1 .. nvoHumidity3))
{
 ...
}

nv_update_fails Event
The nv_update_fails event evaluates to TRUE when an output network
variable update or poll fails (see the Neuron C Programmer’s Guide for the
definition of success).

If an array name is used, then each element of the array is checked for failure.
The event occurs once for each element that experiences a failure event. An
individual element can be checked with use of an array index. When
nv_update_fails is TRUE for an event qualified by the name of an entire NV

10 Predefined Events

array, the nv_array_index built-in variable indicates the relative index of the
element to which the event applies. The nv_array_index variable’s type is a
short int.

If a network variable range is used, then the network variable at the beginning of
the range must have a lower global index than the network variable at the end of
the range. Each network variable in the range is checked for failure until the
first such network variable with an event is found. The event occurs for each
network variable in the range that experiences a failure event.

Checking the completion event (nv_update_completes, or nv_update_fails in
combination with nv_update_succeeds) is optional by network variable.

If a program checks for the nv_update_succeeds event, it must check for the
nv_update_fails event as well. The alternative is to check only for
nv_update_completes. A program is also permitted to check only for
nv_update_fails as long as there is no use of nv_update_completes or
nv_update_succeeds for any network variable.

Syntax
nv_update_fails [(network-var)]

nv_update_fails [(network-var1 .. network-var2)]

network-var A network variable identifier, a network variable array
identifier, or a network variable array element. A range
can be specified with two network variable identifiers or
network variable array elements separated with a range
operator (two consecutive dots). The range is defined by
the indices of the referenced network variables. If the
parameter is omitted, the event is TRUE when any
network variable update fails.

Example 1 – Event for a Single Network
Variable

network output SVNT_abs_humid nvoHumidity;

 ...
 nvoHumidity = 32;
 ...

when (nv_update_fails(nvoHumidity))
{
 ...
}

Example 2 – Event for a Network Variable
Array

network output SVNT_abs_humid nvoHumidity[4];

 ...
 nvoHumidity[1] = 32;

Neuron C Reference Guide 11

 ...

when (nv_update_fails(nvoHumidity))
{
 ...
}

Example 3 – Event for a Range of Network
Variables

network output SVNT_abs_humid nvoHumidity1, nvoHumidity2,
nvoHumidity3;

 ...
 nvoHumidity2 = 32;
 ...

when (nv_update_fails(nvoHumidity1 .. nvoHumidity3))
{
 ...
}

nv_update_occurs Event
The nv_update_occurs event evaluates to TRUE when a value has been
received for an input network variable.

If an array name is used, then each element of the array is checked to see if a
value has been received. The event occurs once for each element that receives an
update. An individual element can be checked with use of an array index. When
nv_update_occurs is TRUE for an event qualified by the name of an entire NV
array, the nv_array_index built-in variable (type short int) can be examined to
obtain the element’s index to which the event applies.

If a network variable range is used, then the network variable at the beginning of
the range must have a lower global index than the network variable at the end of
the range. Each network variable in the range is checked to see if a value has
been received. The event occurs once for each network variable in the range that
receives an update.

Syntax
nv_update_occurs [(network-var)]

nv_update_occurs [(network-var1 .. network-var2)]

network-var A network variable identifier, a network variable array
identifier, or a network variable array element. A range
can be specified with two network variable identifiers or
network variable array elements separated with a range
operator (two consecutive dots). The range is defined by
the indices of the referenced network variables. If the
parameter is omitted, the event is TRUE for any network
variable update.

12 Predefined Events

Example 1 – Event for a Single Network
Variable

network input SNVT_switch nviSwitch;

when (nv_update_occurs(nviSwitch))
{
 ...
}

Example 2 – Event for a Network Variable
Array

network input SNVT_switch nviSwitch[4];

when (nv_update_occurs(nviSwitch))
{
 ...
}

Example 3 – Event for a Range of Network
Variables

network input SNVT_switch nviSwitch1, nviSwitch2,
nviSwitch3;

when (nv_update_occurs(nviSwitch1 .. nviSwitch3))
{
 ...
}

nv_update_succeeds Event
The nv_update_succeeds event evaluates to TRUE once for each output
network variable update that has been successfully sent and once for each poll
that succeeds (see the Neuron C Programmer’s Guide for the definition of
success).

If an array name is used, then each element of the array is checked for success.
The event occurs once for each element that experiences a success completion
event. An individual element may be checked by using an array index. When
nv_update_succeeds is TRUE for an event qualified by the name of an entire
NV array, the nv_array_index built-in variable indicates the relative index of
the element to which the event applies. The nv_array_index variable’s type is a
short int.

If a network variable range is used, then the network variable at the beginning of
the range must have a lower global index than the network variable at the end of
the range. Each network variable in the range is checked to see if a value has
been received. The event occurs once for each network variable in the range that
experiences a success completion event.

Neuron C Reference Guide 13

Checking the completion event (nv_update_completes, or nv_update_fails in
combination with nv_update_succeeds) is optional by network variable.

If a program checks for the nv_update_succeeds event, it must check for the
nv_update_fails event as well. The alternative is to check only for
nv_update_completes. A program is also permitted to check only for
nv_update_fails as long as there is no use of nv_update_completes or
nv_update_succeeds for any network variable.

Syntax
nv_update_succeeds [(network-var)]

nv_update_succeeds [(network-var1 .. network-var2)]

network-var A network variable identifier, a network variable array
identifier, or a network variable array element. A range
can be specified with two network variable identifiers or
network variable array elements separated with a range
operator (two consecutive dots). The range is defined by
the indices of the referenced network variables. If the
parameter is omitted, the event is TRUE when any
network variable update succeeds.

Example 1 – Event for a Single Network
Variable

network output SNVT_abs_humid nvoHumidity;

 ...
 nvoHumidity = 32;
 ...

when (nv_update_succeeds(nvoHumidity))
{
 ...
}

Example 2 – Event for a Network Variable
Array

network output SNVT_abs_humid nvoHumidity[4];

 ...
 nvoHumidity[1] = 32;
 ...

when (nv_update_succeeds(nvoHumidity))
{
 ...
}

14 Predefined Events

Example 3 – Event for a Range of Network
Variables

network output SNVT_abs_humid nvoHumidity1, nvoHumidity2,
nvoHumidity3;

 ...
 nvoHumidity2 = 32;
 ...

when (nv_update_succeeds(nvoHumidity1 .. nvoHumidity3))
{
 ...
}

offline Event
The offline event evaluates to TRUE only if the device is online and an Offline
network management message is received from a network tool, or when a
program calls go_offline(). The offline event is handled as the first priority
when clause. It can be used in no more than one when clause in a program.

The offline state can be used in case of an emergency, for maintenance prior to
modifying configuration properties, or in response to some other system-wide
condition. After execution of this event and its task, the application program
halts until the device is reset or brought back online. While it is offline, a device
can respond to certain messages, but only Reset or Online messages from a
network tool are processed by the application. For example, network variables on
an offline device cannot be polled using a network variable poll request message
but they can be polled using a Network Variable Fetch network management
message.

If this event is checked for outside of a when clause, the programmer can
confirm to the scheduler that the application program is ready to go offline by
calling the offline_confirm() function (see Going Offline in Bypass Mode in
Chapter 7, Additional Features, of the Neuron C Programmer's Guide).

When an application goes offline, all outstanding transactions are terminated.
To ensure that any outstanding transactions complete normally before the
application goes offline, the application can call flush_wait() in the
when(offline) task.

Syntax
offline

Example
when (offline)
{
 flush_wait();
 // process shut-down command
}

Neuron C Reference Guide 15

when (online)
{
 // start-up again
}

online Event
The online event evaluates to TRUE only if the device is offline and an Online
network management message is received from a network tool. The online
event can be used in no more than one when clause in a program. The task
associated with the online event in a when clause can be used to bring a device
back into operation in a well-defined state.

Syntax
online

Example
when (offline)
{
 flush_wait();
 // process shut-down command
}

when (online)
{
 // resume operation
}

reset Event
The reset event evaluates to TRUE the first time this event is evaluated after a
Neuron Chip or Smart Transceiver is reset. I/O object and global variable
initializations are performed before processing any events. The reset event task
is always the first when clause executed after reset of the Neuron Chip or Smart
Transceiver. The reset event can be used in no more than one when clause in a
program.

A typical application’s reset task initializes peripheral I/O circuitry, prepares the
APIs for utilities and libraries, and initializes application timers and the
interrupt system. See also Initial Value Updates for Input Network Variables in
Chapter 3 of the Neuron C Programmer’s Guide.

The code in a reset task is limited in size. If you need more code than the
compiler permits, move some or all of the code within the reset task to a function
called from the reset task. The execution time for the code in a reset task must
be less than 18 seconds to prevent installation errors due to time-outs in network
tools. If your device requires more than 18 seconds for reset processing, use a
separate and independent task to complete the reset processing. For example,
you can set a global variable within a reset task that is tested within another
when clause to create this independent task.

16 Predefined Events

The power_up() function can be called in a reset clause to determine whether
the reset was due to power-up, or to some other cause such as a hardware reset,
software reset, or watchdog timer reset.

Syntax
reset

Example
when (reset)
{
 // initialize peripheral devices, and so on
}

resp_arrives Event
The resp_arrives event evaluates to TRUE when a response arrives. This event
can be qualified by a specific message tag.

Syntax
resp_arrives [(message-tag)]

message-tag An optional message tag. If this field is omitted, the
event is TRUE for receipt of any response message.

Example
msg_tag tag_out;

 ...
 msg_out.tag = tag_out;
 msg_out.service = REQUEST;
 msg_send();
 ...

when (resp_arrives(tag_out))
{
 ...
}

timer_expires Event
The timer_expires event evaluates to TRUE when a previously declared timer
object expires. If the timer_name option is not included, the event is an
unqualified timer_expires event. Unlike all other predefined events, which are
TRUE only once per occurrence, the unqualified timer_expires event remains
TRUE as long as any timer object has expired. This event can be cleared only by
checking for specific timer expiration events.

Neuron C Reference Guide 17

Syntax
timer_expires [(timer-name)]

timer-name An optional timer object. If this field is omitted, the event
is TRUE as long as any timer object has expired.

Example
mtimer countdown;

 ...
 countdown = 100;
 ...

when (timer_expires(countdown))
{
 ...
}

wink Event
The wink event evaluates to TRUE whenever a Wink network management
message is received from a network tool. The device can be configured or
unconfigured, but it must have a program running on it.

The wink event is unique in that it can evaluate to TRUE even though the
device is unconfigured. This event facilitates installation by allowing an
unconfigured device to perform an action in response to the network tool’s wink
request.

Each application implements an application-specific behavior in response to the
Wink message, but all application-specific wink implementations share the same
characteristic: the wink event should trigger a finite, harmless, visual or visual
and audible physical response that allows for unambiguous identification of an
individual physical device.

A typical implementation would flash one of its LEDs for 10 seconds, or show a
similar response.

Note that the wink event and its task can execute when the device is in the
unconfigured state. The application’s implementation of the wink task should,
therefore, not rely on application timers (stimer, mtimer), other when-tasks, or
interrupts.

Syntax
wink

Example
when (wink)
{
 ...
 io_out(io_indicator_light, ON);
 delay(...);

18 Predefined Events

 io_out(io_indicator_light, OFF);
 ...
}

Neuron C Reference Guide 19

2

Compiler Directives

This chapter provides reference information for compiler directives,
also known as pragmas. The ANSI C language standard permits each
compiler to implement a set of pragmas that control certain compiler
features that are not part of the language syntax.
Many compiler directives apply to both Neuron-hosted and host-based
application development, but some directives are not allowed in a
model file.
Version 6 of the Neuron C compiler supports a fully-featured
preprocessor, which is based on the MCPP open-source preprocessor.

Neuron C Reference Guide 21

Compiler Directives
ANSI C permits compiler extensions through the #pragma directive. These
directives are implementation-specific. The ANSI standard states that a
compiler can define any sort of language extensions through the use of these
directives. Unknown directives can be ignored or discarded. The Neuron C
Compiler issues warning messages for unrecognized directives.

In the Neuron C Compiler, pragmas can be used to set certain Neuron firmware
system resources and device parameters such as buffer counts and sizes and
receive transaction counts. See Chapter 8, Memory Management, of the
Neuron C Programmer’s Guide for a detailed description of the compiler
directives for buffer allocation.

Other pragmas control code generation options, debugging options, error
reporting options, and other miscellaneous features. Additional #pragma
directives can be used to control other Neuron firmware-specific parameters.
These directives can appear anywhere in the source file.

Pragma Directives
The following pragma directives are defined in Neuron C Version 2.3:

#pragma addresses num

Sets the number of address table entries to num. Valid values for num vary,
depending on the chip you are using. For the Series 3000 and 5000 chips,
values are 0 to 15. For the Series 6000 chip, valid values are 0 to 254.

The Neuron C Compiler version 6 or later automatically compites a
recommended number of addresses based on inspection of your application’s
interface. You can inspect the resulting address table allocation through the
Neuron Linker’s map file.

You can use this pragma override the compiler’s allocation algorithm, for
example to trade EEPROM space for address table entries (see Chapter 8,
Memory Management, of the Neuron C Programmer’s Guide).

A minimum address table size of 15 records is recommended for all
applications.

This directive is not supported in model files.

See pragma num_addr_table_entries for the legacy form of this directive.

#pragma aliases num

Controls the number of alias table entries allocated by the compiler. This
number must be chosen during compilation; it cannot be altered at runtime.
For Series 3100 devices with system firmware version 15 or earlier, valid
values for num are 0 to 62. For Series 3100 devices with system firmware
version 16 or later, and Series 5000 or 6000 devices, built with the
NodeBuilder FX Development Tool, valid values for num are 0 to 127.

The Neuron C Compiler version 6 or later automatically computes a
recommended number of aliases based on inspection of your application’s
interface. You can inspect the results of this in the Neuron Linker’s map file,
or you can use this directive to override the compiler’s recommendations.

22 Compiler Directives

Earlier versions of the Neuron C Compiler require that you specify the
number of aliases with this directive.

This directive is not supported in model files.

See pragma num_alias_table_entries for the legacy form of this directive.

#pragma all_bufs_offchip

This pragma is only used with the MIP/DPS. It causes the compiler to
instruct the firmware and the linker to place all application and network
buffers in off-chip RAM. This pragma is useful only on the Neuron 3150®
Chip or 3150 Smart Transceiver, because these are the only parts that
support off-chip memory. See the Microprocessor Interface Program (MIP)
User's Guide for more information.

This directive is not supported in model files.

#pragma allow_duplicate_events

This directive causes the compiler to issue an NCC#176 duplicate event
message as a warning instead of as an error. The compiler normally treats a
duplicate event as a programming error. However, there are rare situations
where you want to test for a certain important event more than once within
the scheduler loop by having multiple, duplicated when clauses at different
points in the list of tasks run by the scheduler. This duplication can prevent
such an event from having to wait too long to be serviced. For more
information, see the discussion on The Scheduler in Chapter 7, Additional
Features, in the Neuron C Programmer’s Guide.

This directive is not supported in model files.

#pragma app_buf_in_count count [, modifier]

See Allocating Buffers in Chapter 8, Memory Management, of the Neuron C
Programmer’s Guide for detailed information on this pragma and its use.

This directive is not supported in model files.

Neuron C Reference Guide 23

#pragma app_buf_in_size size [, modifier]

See Allocating Buffers in Chapter 8, Memory Management, of the Neuron C
Programmer’s Guide for detailed information on this pragma and its use.

This directive is not supported in model files.

#pragma app_buf_out_count count [, modifier]

See Allocating Buffers in Chapter 8, Memory Management, of the Neuron C
Programmer’s Guide for detailed information on this pragma and its use.

This directive is not supported in model files.

#pragma app_buf_out_priority_count count [, modifier]

See Allocating Buffers in Chapter 8, Memory Management, of the Neuron C
Programmer’s Guide for detailed information on this pragma and its use.

This directive is not supported in model files.

#pragma app_buf_out_size size [, modifier]

See Allocating Buffers in Chapter 8, Memory Management, of the Neuron C
Programmer’s Guide for detailed information on this pragma and its use.

This directive is not supported in model files.

#pragma codegen option

This pragma allows control of certain features in the compiler’s code
generator. Application timing and code size could be affected by use of these
directives. The valid options that can be specified are:

 cp_family_space_optimization
 create_cp_value_files_uninit
 expand_stmts_off
 expand_stmts_on
 no_cp_template_compression
 no16bitstkfn
 nofastcompare
 noptropt
 noshiftopt
 nosiofar
 optimization_off
 optimization_on
 put_cp_template_file_in_data_memory
 put_cp_template_file_offchip
 put_cp_value_files_offchip
 put_read_only_cps_in_data_memory

 pxopt
 use_i2c_version_1

Some of these options are provided for compatibility with prior releases of the
Neuron C Compiler. The no16bitstkfn, nofastcompare, noptropt, and
noshiftopt options disable various optimizations in the compiler. The
nosiofar option is provided for Neuron firmware versions that include the
serial I/O functions in the near system-call area. In addition, the
cp_family_space_optimization, no_cp_template_compression,

24 Compiler Directives

optimization_off, and optimization_on options perform code
optimizations; use the #pragma optimization directive instead.

The create_cp_value_files_uninit option is used to prevent the compiler
from generating configuration value files that contain initial values. Instead,
the value files are generated with no initial value, such that the Neuron
loader does not load anything into the block of memory; instead, the contents
prior to load are unaltered. This can be helpful if an application image needs
to be reloaded, but its configuration data is to remain unchanged.

The expand_stmts_off and expand_stmts_on options control statement
expansion. Normally, statement expansion is off. To permit the network
debug kernel to set a breakpoint at any statement whose code is stored in
modifiable memory for a Series 3100 chip, the statement’s code must be at
least two bytes in length. Due to optimization, some statements can be
accomplished in less than two bytes of generated Neuron machine code.
Activating statement expansion tells the code generator to ensure that each
statement contains at least two bytes of code by inserting a no-operation
(NOP) instruction if necessary.

Applications targeted for a Series 5000 or 6000 chip do not need to enable
statement expansion. These devices support a one-byte breakpoint
instruction, which is automatically used when debugging. Thus, statement
expansion and the related increase in application size are not required for
these devices.

The automatic configuration property merging feature in NodeBuilder 3.1
(and later) might change the device interface for a device that was previously
built with the NodeBuilder 3 tool. You can specify #pragma codegen
no_cp_template_compression in your program to disable the automatic
merging and compaction of the configuration property template file. Use of
this directive could cause your program to consume more of the device’s
memory, and is intended only to provide compatibility with the NodeBuilder
3.0 Neuron C compiler. You cannot use both the
no_cp_template_compression option and the
cp_family_space_optimization option in the same application program.
This feature is independent of the #pragma optimization directive.

The noptropt option can be desirable when debugging a program, because
the debugger does not have knowledge of whether the compiler has
eliminated redundant loads of a pointer between statement boundaries. If a
breakpoint is set in such circumstances, modification of the pointer variable
from the debugger would not modify the loaded pointer register which the
compiler can then use in subsequent statements. Use of this pragma avoids
this problem, but could also cause a substantial performance or size
degradation in the generated code. This codegen option should not be used
except while debugging.

The put_cp_template_file_in_data_memory option is used to direct the
compiler to create the configuration template file in a device’s data memory
instead of code memory. The purpose of doing this would be to permit write
access to the template file, or to permit more control over memory
organization to accommodate special device memory requirements.

In certain situations when linking a program for a Neuron 3150 Chip or a
3150 Smart Transceiver, it might be necessary to force the configuration
property template file into offchip memory rather than letting the linker

Neuron C Reference Guide 25

choose between offchip or onchip memory. Specify the
put_cp_template_file_offchip option to force the template file into offchip
memory.

In certain situations when linking a program for a Neuron 3150 Chip or a
3150 Smart Transceiver, it might be necessary to force the configuration
property value files into offchip memory rather than letting the linker choose
between offchip or onchip memory. Specify the put_cp_value_files_offchip
option to force the value files into offchip memory.

The put_read_only_cps_in_data_memory option is used to direct the
compiler to create the configuration read-only value file in a device’s data
memory instead of code memory. The purpose of doing this would be to
permit write access to the read-only configuration properties (CPs), or to
permit more control over memory organization to accommodate special device
memory requirements.

The pxopt option is provided for a new form of pointer register optimization.
When used in combination with optimization all it may be useful to compile
twice, once with and once without pxopt. Then compare the memory
footprint stated in the link map summary.

The use_i2c_version_1 option is provided for compatibility with releases of
the Neuron C Compiler prior to the introduction of Neuron C Version 2.1.
The option disables use of a revised i2c I/O object in the compiler. Although
unlikely, it is possible that a program using the i2c I/O object which compiled
and linked with an older release of the Neuron C Compiler would not fit if
compiled under the Neuron C Version 2.1 compiler or later, because the
version 2 I/O object is a bit larger than the previous implementation, due to
its greatly increased flexibility and support of additional I/O pins as
compared to the version 1 implementation. See the description of the i2c I/O
model in the I/O Model Reference.

Only the cp_family_space_optimization and
no_cp_template_compression options are supported in model files.

#pragma deadlock_is_finite

This pragma allows the system semaphore to expire. The semaphore is used
for sharing data between an interrupt task and the main application. This
directive cancels the specification of the #pragma deadlock_is_infinite
directive.

You can specify this directive as often as necessary to allow debugging of code
within a lock construct (the Neuron C __lock{ } keyword). You cannot debug
interrupt-related code when interrupt tasks run on the interrupt (ISR)
processor.

This directive is not supported in model files.

#pragma deadlock_is_infinite

This pragma prevents the system semaphore from expiring. The semaphore
is used for sharing data between an interrupt task and the main application.
This directive should only be used for NodeBuilder debug targets; using it
with release targets causes a compiler warning (NCC#607) and can allow
deadlocks not to cause a watchdog timeout (an infinite deadlock).

26 Compiler Directives

You can specify this directive as often as necessary to allow debugging of code
within a lock construct (the Neuron C __lock{ } keyword). You cannot debug
interrupt-related code when interrupt tasks run on the interrupt (ISR)
processor.

This directive is not supported in model files. #pragma debug option

This pragma allows selection of various network debugger features. A
program using network debugger features can only be used with version 6
and later versions of the Neuron firmware.

The valid options are shown in the list below. This pragma can be used
multiple times to combine options, but not all options can be combined.

 network_kernel
 no_event_notify
 no_func_exec
 no_node_recovery
 no_reset_event
 node_recovery_only

The debugger network kernel must be included to use the device with the
network debugger supplied with the NodeBuilder Development Tool or the
LCA Field Compiler API. The network kernel consists of several independent
but interacting modules, all of which are included in the program image by
default. To reduce the size of the network debug kernel included in a
program, one or more of the following options can be specified in additional
#pragma debug directives. See the NodeBuilder User’s Guide and the
NodeBuilder Online Help for more information.

Use of the no_event_notify option excludes the event notification module.

Use of the no_func_exec option excludes the remote function execution
module.

Use of the no_node_recovery option turns off the device’s reset recovery
delay that the compiler automatically includes when the network debugging
kernel is included.

Use of the no_reset_event option turns off the reset event notification
feature. This feature is not necessary if the no_event_notify option is used
to exclude all event notification, since the reset event notification is part of
the event notification feature.

Use of the node_recovery_only option instructs the compiler to include the
node recovery feature only, without the network debug kernel.

This directive is not supported in model files.

#pragma dhcp (enabled | disabled)

Enables or disables use of the dynamic host configuration protocol (DHCP),
where supported. Only Series 6000 chips support LonTalk/IP which is
required for DHCP.

Compilation targets with support for DHCP have DHCP enabled by default.
You can use this directive to disable DHCP. When you use this directive to
explicitly enable DHCP, a compile-time warning will be reported when the
compilation target does not support DHCP.

Neuron C Reference Guide 27

#pragma disable_mult_module_init

Requests the compiler to generate any required initialization code directly in
the special init and event block, rather than as a separate procedure callable
from the special init and event block. The in-line method, which is selected
as a result of this directive, is slightly more efficient in memory usage, but
might not permit a successful link for an application on a Neuron 3150 Chip
or 3150 Smart Transceiver. This pragma should only be used when trying to
fit a program into a Neuron 3120xx Chip or 3120 Smart Transceiver. See the
discussion on What to Try When a Program Does Not Fit on a Neuron Chip in
Chapter 8, Memory Management, of the Neuron C Programmer’s Guide.

This directive cannot be used with the debug directive.

 This directive is not supported in model files

. #pragma disable_servpin_pullup

Disables the internal pullup resistor on the service pin. This pullup resistor
is normally enabled. The pragma takes effect during I/O initialization.

This directive has no effect when used for a Series 5000 or 6000 chip.

This directive is not supported in model files.

#pragma disable_snvt_si

Disables generation of the self-identification (SI) data. The SI data is
generated by default, but can be disabled using this pragma to reclaim
program memory when the feature is not needed. See Standard Network
Variable Types (SNVTs) in Chapter 3, How Devices Communicate Using
Network Variables, of the Neuron C Programmer’s Guide.

The compiler does not issue error message NCC#15 if you specify this
directive multiple times in the application.

This directive is not supported in model files.

#pragma disable_warning number

Controls the compiler’s printing of specific warning and hint messages
Warning messages are less severe than errors, yet could indicate a problem
in a program, or a place where code could be improved. To disable all
warning messages, specify an asterisk (*) for the number.

See the enable_warning directive to enable disabled warnings.

The disable_warning directive supercedes the warnings_off directive.

#pragma domains num

Sets the number of domain table entries to num. Valid values for num are 1
or 2. The default number of domain table entries is 2. You can use this
pragma to trade EEPROM space for a domain table entry (see Chapter 8,
Memory Management, of the Neuron C Programmer’s Guide).

This directive is not supported in model files.

Two domains are recommended for all applications.

#pragma eeprom_locked

This pragma provides a mechanism whereby an application can lock its
checksummed EEPROM. Checksummed EEPROM includes the application

28 Compiler Directives

and network images, but not application EEPROM variables. Setting the
flag improves reliability because attempts to write EEPROM as a result of
wild jumps fail. EEPROM variables are not protected. See the discussion of
the set_eeprom_lock() function in Chapter 3, Functions, on page 47, for
more information.

There are drawbacks to using the EEPROM lock mechanism. A device with
this pragma (or one using the set_eeprom_lock() function) requires that
the device be taken offline before checksummed EEPROM can be modified.
So, if the device is configured by a network tool that does not take the device
offline prior to changes, the tool does not change the configuration.

This directive is not supported in model files.

#pragma enable_io_pullups

Enables the internal pullup resistors on pins IO4 through IO7 for Series 3100
devices. The pragma takes effect during I/O initialization. These pullup
resistors are normally disabled. Use of this pragma can eliminate external
hardware components when pullup resistors are required. The PL 3120-E4
Smart Transceiver and the PL 3150 Smart Transceiver both have an extra
I/O pin, IO11. On these models of Smart Transceiver, this directive also
enables a pullup resistor for the IO11 pin.

This directive has no effect for a Series 5000 or 6000 chip because those chips
do not have on-chip programmable pull-up resistors. The linker issues the
NLD#507 warning message if you include this directive for a Series 5000 or
6000 device.

This directive is not supported in model files.

#pragma enable_multiple_baud

Must be used in a program with multiple serial I/O devices that have
differing bit rates. If needed, this pragma must appear prior to the use of any
I/O function (for example, io_in() and io_out()).

This directive is not supported in model files.

#pragma enable_sd_nv_names

Causes the compiler to include the network variable names in the self-
documentation (SD) information when self-identification (SI) data is
generated. See Standard Network Variable Types (SNVTs) in Chapter 3,
How Devices Communicate Using Network Variables, of the Neuron C
Programmer’s Guide.

#pragma enable_warning number

Controls the compiler’s printing of specific warning and hint messages
Warning messages are less severe than errors, yet could indicate a problem
in a program, or a place where code could be improved. To enable all warning
messages, specify an asterisk (*) for the number.

See the disable_warning directive for the reverse operation.

The enable_warning directive supercedes the warnings_on directive.

#pragma enhanced_mode (enabled | disabled)

Enables or disables use of enhanced mode (Series 6000 chips only). Enhanced
mode is a non-backward compatible extension of the LonWorks protocol that

Neuron C Reference Guide 29

improves reliability through the use of an expanded transaction ID space.
Some devices, such as FT-6050 and Neuron 6050 devices can be configured to
use either compatibility or enhanced mode. Other devices, such as Series
5000 devices, only support compatibility mode, while the FT-6010 only
supports enhanced mode. Enhanced mode is always disabled by default,
thereby enabling compatibility mode.

Enabling enhanced mode on targets without support for enhanced mode
yields a compile time warning.

#pragma explicit_addressing_off

#pragma explicit_addressing_on

These pragmas are only used with the Microprocessor Interface Program
(MIP) or for creating ShortStack Micro Server applications. See the
LonWorks Microprocessor Interface Program (MIP) User's Guide or the
ShortStack User’s Guide for more information.

These directives are not supported in model files.

#pragma fyi_off

#pragma fyi_on

Controls the compiler’s printing of informational messages. Informational
messages are less severe than warnings, yet could indicate a problem in a
program, or a place where code could be improved. Informational messages
are off by default at the start of compilation. These pragmas can be
intermixed multiple times throughout a program to turn informational
message printing on and off as desired.

#pragma hidden

This pragma is for use only in the <echelon.h> standard include file.

.#pragma idempotent_duplicate_off

#pragma idempotent_duplicate_on

These pragmas control the idempotent request retry bit in the application
buffer. This feature only applies to MIP or ShortStack Micro Server
applications. One of these pragmas is required when compiling, if the
#pragma micro_interface directive also is used. See the LonWorks
Microprocessor Interface Program (MIP) User's Guide or the ShortStack
User’s Guide for more information.

These directives are not supported in model files.

#pragma ignore_notused symbol

Requests that compiler ignore the symbol-not-referenced flag for the named
symbol. The compiler normally prints warning messages for any variables,
functions, I/O objects, and so on, that are declared but never used in a
program. This pragma may be used one or more times to suppress the
warning on a symbol by symbol basis.

The pragma should appear after the variable declaration. A good coding
convention is to place the pragma on the line immediately following the
variable’s declaration. For automatic scope variables, the pragma must
appear no later than the line preceding the closing brace character ('}') that

30 Compiler Directives

terminates the scope containing the variable. There is no terminating brace
for any variable declared at file scope.

#pragma include_assembly_file filename

This pragma can be used with the Neuron C Version 2 compiler to cause the
compiler to open filename and copy its contents to the assembly output file.
The compiler copies the contents such that the assembly code does not
interfere with code being generated by the compiler. See the Neuron
Assembly Language Reference for more information about including assembly
language routines with Neuron C programs.

This directive is not supported in model files.

#pragma library “library”

This pragma allows you to specify a library file (a file with a .lib extension)
with which the application is to be linked. You can use this directive as an
alternative to adding an explicit library reference to a NodeBuilder project.
The directive is recommended for new development, because it promotes self-
contained, modular development, and self-documenting code.

You can specify a library with either an absolute path or a relative path
(relative to the location of the NodeBuilder device template file [*.nbdt file]),
for example:
#pragma library “cenelec.lib”
#pragma library “..\myLibraries\myToolkit.lib”

You can also include macros in the path names. Table 4 lists system-defined
macros, but you can also define custom macros. A custom macro is expanded
to the value of an operating system environment variable of the same name
as the macro. For example, if you define an environment variable “MYPROJ”
as “$LONWORKS$\myProjects”, then the following directive defines the
myToolkit.lib file within the “c:\LonWorks\myProjects” directory:
#pragma library “$MYPROJ$\myToolkit.lib”

If the environment variable “MYPROJ” is not defined, the linker replaces the
unknown macro with an empty string; it does not issue an error message for
the undefined macro.

The system macros listed in Table 4 are always automatically pre-defined,
and do not need defining in the system environment.

Table 4. System Macros for #pragma library Directive

Macro Expansion

$LONWORKS$ The local LonWorks directory, generally
c:\LonWorks.

Note that there is no trailing backslash.

IMG IMG enables a two-step search. First, IMG
expands to the same as SYM (detailed below).
When unsuccessful, IMG expands to

$LONWORKS$\Images

Neuron C Reference Guide 31

Macro Expansion

STD $LONWORKS$\NeuronC\Libraries

SYM The location of the selected firmware image and
.SYM file.

For example, the NodeBuilder Code Wizard automatically adds the following
directive to the base .nc file (the file that corresponds to the device template
.nbdt file):
#ifdef _NEURONC
ifndef _MODEL_FILE
ifndef USER_DEFINED_CODEWIZARD_LIB
pragma library "IMG\CodeWizard-3.lib"
endif // USER_DEFINED_CODEWIZARD_LIB
endif // _MODEL_FILE
#endif // _NEURONC

You can nest macros up to five times, after which the recursion stops.

You can specify the #pragma library directive up to 19 times. That is, the
compiler can process a total of 19 input libraries during one compilation,
counting all included files and the original source file.

This directive is not supported in model files.

#pragma locate

This pragma is designed for use in exceptional cases only. It is used as a
solution when rules and controls for placement of Neuron C functions or
variables are insufficient. The pragma directive can be uses to assign a
named segment type, or an origin or origin modifier within the segment, or
both, to a named function or variable. The directive uses the syntax:
#pragma locate <name> { (seg|segment) <segment>} { (org|at)
<orgvalue>}

<name> refers to a variable or function. The variable or function must not
yet be implemented at the location of the corresponding locate directive, but a
function prototype may already be present, and a ‘forward declaration’ for a
variable may be in place. The forward variable declaration is an extern
declaration for a locally implemented variable.

The segment instruction begins with a keyword seg or segment. Both
keywords have the same effect. The <segname> with follows is passed to the
Neuron Assembler verbatim when code for the named item is generated.
Where the compiler would normally choose the segment type according to
built-in rules or controls, in this case it will generate a Neuron Assembly SEG
<segname> instruction for this item.

This segment instruction now overrules all other preferences expressed in
keywords, modifiers, directives or run-time options, without warning. It will
not change the generated code other than the segment a certain item is
allocated to. For example, a variable which normally would reside in the
near RAM area can be forced into a far RAM segment with a segment
instruction. The compiler still generates code assuming a near RAM location.

32 Compiler Directives

You must use the far modifier in the variable declaration to enforce the
RAM placement.

The origin instruction begins with a keywork at or org. The orgvalue
expression which follows can be onchip, offchip, a valid C integer constant, or
any other arbitrary expression. The words onchip and offchip are
recognized and automatically translated into the Neuron Assembler’s
onchipmem and offchipmem modifiers, respectively. Any valid C integer
constant (using 0x prefix for hexadecimal numbers) is automatically
translated into the Neuron Assembler’s number format. The result of the
translations, or the verbatim orgvalue expression provided, is used as the
modifier in the generated Neuron Assembly ORG instructions.

As is true of the segment instruction, the origin instruction overrules all
other preferences expressed through keywords, modifiers, directives, or run-
time options, without warning.

Neither segment nor origin instruction can be repeated within the same
locate directive. The directive, as noted above, provides limited error
checking and there is no warning if conflicting or incompatible preferences
have been expressed elsewhere.

The following examples illustrate this pragma.
 //Fixed address for “myVar:”
 #pragma locate myVar org 0xB123

 //Force the cp_modifiable_value_file onchip:
 #pragma locate cp_modifable_value_file org onchip

 //Force function f into the EECODE segment:
 #pragma locate f segment eecode

#pragma micro_interface

This pragma is only used with the Microprocessor Interface Program (MIP) or
with ShortStack Micro Server applications. See the LonWorks
Microprocessor Interface Program (MIP) User's Guide or the ShortStack
User’s Guide for more information.

#pragma names_compatible

This pragma is useful in Neuron C Version 2 (and later) to force the compiler
to treat names starting with SCPT*, UNVT*, UCPT*, SFPT*, and UFPT* as
normal variable names instead of as special symbols to be resolved through
resource files. This list does not include names starting with SNVT*.
Disabling the special behavior permits the compiler to accept programs
written using Neuron C Version 1 that declare such names in the program.

This directive is not supported in model files.

#pragma net_buf_in_count count [, modifier]

Neuron C Reference Guide 33

See Allocating Buffers in Chapter 8, Memory Management, of the Neuron C
Programmer’s Guide for more detailed information on this pragma and its
use.

This directive is not supported in model files.

#pragma net_buf_in_size size [, modifier]

See Allocating Buffers in Chapter 8, Memory Management, of the Neuron C
Programmer’s Guide for detailed information on this pragma and its use.

This directive is not supported in model files.

#pragma net_buf_out_count count [, modifier]

See Allocating Buffers in Chapter 8, Memory Management, of the Neuron C
Programmer’s Guide for detailed information on this pragma and its use.

This directive is not supported in model files.

#pragma net_buf_out_priority_count count [, modifier]

See Allocating Buffers in Chapter 8, Memory Management, of the Neuron C
Programmer’s Guide for detailed information on this pragma and its use.

This directive is not supported in model files.

#pragma net_buf_out_size size [, modifier]

See Allocating Buffers in Chapter 8, Memory Management, of the Neuron C
Programmer’s Guide for detailed information on this pragma and its use.

#pragma netvar_processing_off

#pragma netvar_processing_on

This pragma is only used with the Microprocessor Interface Program (MIP).
See the LonWorks Microprocessor Interface Program (MIP) User's Guide for
more information.

These directives are not supported in model files.

#pragma no_hidden

This pragma is for use only in the <echelon.h> standard include file.

#pragma num_addr_table_entries num

Legacy form of pragma addresses, see there for details. The legacy form is
supported and has the same effect than the shorter pragma addresses
directive. The shorter form is recommended for all new development.

#pragma num_alias_table_entries num

Legacy form of pragma aliases, see there for details. The legacy form is
supported and has the same effect than the shorter pragma aliases directive.
The shorter form is recommended for all new development.

#pragma num_domain_entries num

Legacy form of pragma domains, see there for details. The legacy form is
supported and has the same effect than the shorter pragma domains
directive. The shorter form is recommended for all new development.

#pragma one_domain

34 Compiler Directives

Sets the number of domain table entries to 1. This pragma is provided for
legacy application support and should no longer be used. New applications
should use the domains pragma instead. The default number of domain
table entries is 2.

This directive is not supported in model files.

#pragma optimization level

This pragma allows you to specify a code optimization level for optimal use of
device memory. Supported levels are 0 (no optimization) to 5 (maximum
optimization).

When you specify no optimization, the Neuron C compiler attempts to create
fairly economical code. However, some improvements are generally possible,
and sometimes necessary. In addition to specifying additional code
optimization using this directive, consider manual optimization, as described
in the What to Try When a Program Does Not Fit on a Neuron Chip section of
Chapter 8 in the Neuron C Programmer’s Guide.

With optimization enabled, the Neuron C compiler performs several types of
code optimization. For example, it identifies common sub-expressions and
moves them into sub-routines when economical, thus reducing the memory
footprint of the generated code.

Table 5 lists the levels of optimization. Levels 2, 3, 4, and 5 are ignored if
you disable optimation within the NodeBuilder FX Development Tool (select
the Disable optimizer checkbox from the Compiler tab of the NodeBuilder
Device Template Target Properties dialog). Levels 0 and 1 are ignored if you
enable optimation within the NodeBuilder FX Development Tool (clear the
Disable optimizer checkbox).

Table 5. Optimization Levels for the #pragma optimization Directive

Level Optimization Performed Notes

0 No optimization

CP templates are not compressed

1 No optimization Default for debug
targets

2 Minimal optimization

CP templates are not compressed

3 General optimization Default for release
targets

4 General optimization, plus optimization of
space for cp_family definitions

5 Maximum optimization

You can use the following keywords instead of the numeric level indicators:

• none for level 0

Neuron C Reference Guide 35

• debug for level 1

• standard for level 3

• all for level 5

The keyword level indicators are generally preferred over their numeric
counterparts because they are self-documenting.

As part of optimization levels 3 and 4, the Neuron C compiler can attempt to
compact the configuration property template file by merging adjacent family
members that are scalars into elements of an array. Any CP family members
that are adjacent in the template file and value file, and that have identical
properties, except for the item index to which they apply, are merged. Using
optional configuration property re-ordering and merging can achieve
additional compaction beyond what is normally provided by automatic
merging of whatever CP family members happen to be adjacent in the files.
With this feature enabled, the Neuron C compiler optimizes the layout of CP
family members in the value and template files to make merging more likely.

Important: Configuration property re-ordering and merging can reduce the
memory required for the template file, but could also result in slower access
to the application’s configuration properties by network tools. This could
potentially cause a significant increase in the time required to commission
your device, especially on low-bandwidth channel types such as power line
channels. You should typically only use configuration property re-ordering
and merging if you must conserve memory. If you use configuration property
re-ordering and merging, be sure to test the effect on the time required to
commission and configure your device.

The default for debug targets is no optimization because the NodeBuilder
debugger allows you to place breakpoints in the source code, but after
optimization, the compiler might have collapsed two or more statements
together. In this case, the debugger might attempt to place a breakpoint in a
statement that does not exist in the optimized code. Thus, debugging
compiler-optimized code is not supported.

The #pragma optimization directive replaces the following directives:

#pragma codegen cp_family_space_optimization
#pragma codegen optimization_on
#pragma codegen optimization_off
#pragma codegen no_cp_template_compression

While all of these directives continue to work, the compiler issues the
NCC#589 warning message if you use these deprecated directives. If your
application uses any of these directives with the #pragma optimization
directive, the compiler issues the NCC#588 warning message.

If you specify code optimization in NodeBuilder (or from the command line for
the NCC tool), and you specify the #pragma optimization directive, the
compiler issues the NCC#590 warning message.

This directive is not supported in model files.

#pragma ram_test_off

For Series 3100 chips, disables the off-chip RAM buffer space test to speed up
initialization. Normally the first thing the Neuron firmware does when it
comes up after a reset or power-up is to verify basic functions such as CPUs,

36 Compiler Directives

RAM, and timer/counters. This can consume large amounts of time,
particularly at slower clock speeds. By turning off RAM buffer testing, you
can trade off some reset time for maintainability. All RAM static variables
are nevertheless initialized to zero.

This directive has no effect for a Series 5000 or 6000 chip. System RAM
(from 0xE800 to 0xEFFF) is always tested during reset, and the extended
memory area (extended RAM or non-volatile memory, from 0x4000 to
0xE7FF) is not tested during reset.

This directive is not supported in model files.

#pragma read_write_protect

Allows a device’s program to be read and write protected to prevent copying
or alteration over the network. This feature provides protection of a
manufacturer’s confidential algorithms. A device cannot be reloaded after it
is protected. The write protection feature is included to disallow Trojan horse
intrusions. The protection must be specifically enabled in the Neuron C
source program. After a device is loaded with an application containing this
pragma, the application program can never be reloaded on a Neuron 3120xx
Chip or 3120 Smart Transceiver. It is possible, however, to erase and reload
a Neuron 3150 Chip or 3150 Smart Transceiver, with the use of the EEPROM
blanking programs. Likewise, it is possible to erase and reload the external
EEPROM of a Series 5000 or 6000 device. For more information on the use of
the EEPROM blanking programs, see the Smart Transceivers data books.

This directive is not supported in model files.

#pragma receive_trans_count num

Sets the number of receive transaction blocks to num. Valid values for num
are 1 to 16. See Allocating Buffers in Chapter 8, Memory Management, of the
Neuron C Programmer’s Guide for more detailed information on this pragma
and its use.

This directive is not supported in model files.

#pragma relaxed_casting_off

#pragma relaxed_casting_on

These pragmas control whether the compiler treats a cast that removes the
const attribute as an error or as a warning. The cast can either be explicit or
implicit (as in an automatic conversion due to assignment or function
parameter passing). Normally, the compiler considers any conversion that
removes the const attribute to be an error. Turning on the relaxed casting
feature causes the compiler to treat this condition as a warning instead.
These pragmas can be intermixed throughout a program to enable and
disable the relaxed casting mode as desired. See the example for Explicit
Propagation of Network Variables in Chapter 3, How Devices Communicate
Using Network Variables, of the Neuron C Programmer’s Guide.

#pragma resident (enabled | disabled)

This directive switches the default compilation to resident mode (#pragma
resident enabled) or transient mode (#pragma resident disabled). Without
this directive (or the --resident compiler option), plain functions default to
transient function when this feature is supported, and default to resident
functions otherwise.

Neuron C Reference Guide 37

See Transient and Resident Functions in Chapter 3, Functions, for more
details.

#pragma run_unconfigured

This pragma causes the application to run whenever it is online, even if the
device is in the unconfigured state. Without this directive, the application
runs only when the device is both online and configured. You can use this
directive to have an application perform some form of local control prior to or
independently of being installed in a network.

Applications that use this pragma and run on firmware versions prior to
version 12 should not attempt to send messages when hard-offline. The hard-
offline state can be detected by calling retrieve_status() and checking the
status_node_state field for the value CNFG_OFFLINE. The reason for
this restriction is that the hard-offline state is used by network tools during
configuration modification. Were one to send messages in this state, the
message might be sent using invalid configuration and thus potentially go to
the wrong location. Note that an application is typically taken soft-offline
during modification so the device is only subject to these concerns if it is
power-cycled while the modification is in progress. Applications that do not
use this pragma do not ever run when hard-offline and thus are not
vulnerable to this condition.

This directive is not supported in model files.

#pragma scheduler_reset

Causes the scheduler to be reset within the nonpriority when clause
execution cycle, after each event is processed (see Chapter 7, Additional
Features, of the Neuron C Programmer’s Guide for more information on the
Neuron scheduler).

This directive is not supported in model files.

#pragma set_guidelines_version string

The Neuron C version 2.1 (and later) compiler generates LONMARK
information in the device’s XIF file and in the device’s SIDATA (stored in
device program memory). By default, the compiler uses “3.4” as the string
identifying the LONMARK guidelines version that the device conforms to. To
override this default, specify the overriding value in a string constant
following the pragma name, as shown. For example, a program could specify
#pragma set_guidelines_version “3.2” to indicate that the device
conforms to the 3.2 guidelines. This directive is useful for backward
compatibility with older versions of the Neuron C compiler.

Note this directive can be used to state compatibility with a guidelines
version that is not actually supported by the compiler. Future versions of the
guidelines that require a different syntax for SI/SD data are likely to require
an update to the compiler. This directive only has the effect described above,
and does not change the syntax of SD strings generated.

The set_guidelines_version directive is typically used to specify a version
string in the major.minor form (for example, “3.4”). The compiler issues a
NCC#604 warning message if the application-specific version string does not
match that format, but permits the string.

Using this directive can prevent certification of the generated device.

38 Compiler Directives

#pragma set_id_string "ssssssss"

Provides a mechanism for setting the device’s 8-byte program ID. This
directive is provided for legacy application support and should no longer be
used. The program ID should be set in the NodeBuilder device template
instead, and should not be set to a text string except for network interface
devices (for example, devices using the MIP). If this pragma is present, the
value must be the same as the program ID set by the NodeBuilder tool.

This pragma initializes the 8-byte program ID located in the application
image. The program ID is sent as part of the service pin message
(transmitted when the service pin on a device is activated) and also in the
response for the Query ID network management message. The program ID
can be set to any C string constant, 8 characters or less.

This pragma can only be used to set a non-standard text program ID where
the first byte must be less than 0x80. To set a standard program ID, use the
#pragma set_std_prog_id directive, documented below. If this pragma is
used, the #pragma set_std_prog_id directive cannot be used. Neither
pragma is required or recommended.

#pragma set_netvar_count nn

This pragma is only used with the Microprocessor Interface Program (MIP) or
ShortStack Micro Server applications. See the LonWorks Microprocessor
Interface Program (MIP) User's Guide or the ShortStack User’s Guide for
more information.

This directive is not supported in model files.

#pragma set_node_sd_string C-string-const

Specifies and controls the generation of a comment string in the self-
documentation (SD) string in a device's application image. Most devices have
an SD string. The first part of this string documents the functional blocks on
the device, and is automatically generated by the Neuron C Version 2
compiler. This first part can be followed by a comment string that documents
the purpose of the device. This comment string defaults to a NULL string
and can have a maximum of 1023 bytes (minus the length of the first part of
the SD string generated by the Neuron C compiler), including the zero
termination character. This pragma explicitly sets the comment string.
Concatenated string constants are not allowed. This pragma can only appear
once in the source program.

Neuron C Reference Guide 39

#pragma set_std_prog_id hh:hh:hh:hh:hh:hh:hh:hh

Provides a mechanism for setting the device’s 8-byte program ID. This
directive is provided for legacy application support and should not be used for
new programs. The program ID should be set in the NodeBuilder device
template instead. If this pragma is present, the value must agree with the
program ID set by the NodeBuilder tool.

This pragma initializes the 8-byte program ID using the hexadecimal values
given (each character other than the colons in the argument is a hexadecimal
digit from 0 to F). The first byte can only have a value of 8 or 9, with 8
reserved for devices certified by the LONMARK association. If this pragma is
used, the #pragma set_id_string directive cannot be used. Neither pragma
is required or recommended when using the NodeBuilder Development Tool.

For more information about standard program IDs, see the LonMark
Application Layer Interoperability Guidelines.

#pragma skip_ram_test_except_on_power_up

Specify this directive to speed up reset processing by skipping the automatic
testing of RAM by the Neuron firmware. For Series 3100 devices, RAM is
still tested if the reset is a result of powering up the device. RAM is still
always set to zero by each reset.

This directive is not supported in model files.

#pragma snvt_si_eecode

Causes the compiler to force the linker to locate the self-identification and
self-documentation information in EECODE space. See Memory Areas in
Chapter 8, Memory Management, of the Neuron C Programmer’s Guide for a
definition of the EECODE space. By default, the linker places the table in
EEPROM or in ROM code space, as it determines. Placing this table in
EEPROM ensures that it can be modified using Memory Write network
management messages. A network tool can use this capability to modify self-
documentation of a device during installation. This pragma is only useful on
a Neuron 3150 Chip, 3150 Smart Transceiver, or a Series 5000 or 6000
device.

This directive is not supported in model files.

#pragma snvt_si_ramcode

Causes the compiler to force the linker to locate the self-identification and
self-documentation information in RAMCODE space. See Memory Areas in
Chapter 8, Memory Management, of the Neuron C Programmer’s Guide for a
definition of the RAMCODE space. By default, the linker places the table in
EEPROM or in ROM code space, as it determines. Placing this table in RAM
ensures that it can be modified using Memory Write network management
messages.

Note: RAMCODE space is always external memory, and is assumed to be
non-volatile. This pragma is only useful on a Neuron 3150 Chip, 3150 Smart
Transceiver, or a Series 5000 or 6000 device.

This directive is not supported in model files.

40 Compiler Directives

#pragma specify_io_clock string

Specify this directive to inform the compiler of the value of the Neuron clock
speed (external crystal frequency for Series 3100 devices, or the I/O clock
frequency for Series 5000 and 6000 devices).

The directive is generally not required for Series 5000 or 6000 chips because
the I/O clock frequency is fixed for those chips.

This directive is only useful in combination with the sci I/O model, and
permits the compiler to calculate the register settings for the SCI I/O
hardware in any Neuron Chip or Smart Transceiver equipped with SCI I/O
hardware. The clock rate is specified with a string constant following the
pragma name as shown. The only clock rates that may be used with SCI I/O
hardware are “20 MHz”, “10 MHz”, “6.5536 MHz”, “5 MHz”, and “2.5 MHz”.
The strings must appear exactly as shown, including capitalization.

This directive is not supported in model files.

#pragma system_image_extensions nv_length_override

This directive enables the NV length override system image extension. This
system image extension is used to implement changeable network variable
types. You must provide an extension function named
get_nv_length_override() as detailed below. Using this compiler directive
together with a version of the Neuron firmware that does not support system
extensions will cause a linker error (NLD#477).

You can continue to access the nv_len property as discussed in the Neuron C
Programmer’s Guide. However, the Neuron C Version 2.1 (and later) system
image extension technique provides a more robust implementation and
should therefore be used for all new designs. Writing to the nv_len property is
not recommended.

Where #pragma system_image_extensions nv_length_override enables
the nv_length_override system image extension, you must also provide the
system extension. To do so, you must implement a function that meets the
following prototype:

unsigned _RESIDENT get_nv_length_override(unsigned nvIndex);

The function returns the current length in bytes of the network variable with
the given index, or the result of the get_declared_nv_length() API to signal
that the length has not been changed. The get_declared_nv_length() API is
supported with Neuron C version 2.3 (or later). You can use conditional
compilation based on the _SUPPORT_LARGE_NV preprocessor symbol to
manage source code backwards compatibility, as demonstrated in the
following example:
unsigned _RESIDENT get_nv_length_override(unsigned nvIndex)

{

#if defined(_SUPPORT_LARGE_NV)
 unsigned uResult = get_declared_nv_length(nvIndex);
#else
 unsigned uResult = 0xFF;
#endif

 // TO DO: return the current length of the network variable

Neuron C Reference Guide 41

 // with index "nvIndex."

 // Example code follows:

 //

 // switch (nvIndex) {

 // case nviChangeableNv::global_index:

 // if (nviChangeableNv::cpNvType.type_category != NVT_CAT_INITIAL

 // && nviChangeableNv::cpNvType.type_category != NVT_CAT_NUL) {

 // uResult = nviChangeableNv::cpNvType.type_length;

 // }

 // break;

 // } // switch

 return uResult;

}

You must maintain information about the current length (and type) for
network variables with changeable types in some appropriate, persistent,
variable. You can use the sizeof() operator to obtain the initial size of the
network variable. See the discussion on Changeable Type Network Variables
in the chapter How Devices Communicate Using Network Variables of the
Neuron C Programmer's Guide for more information.

This directive is not supported in model files.

#pragma transaction_by_address_off

#pragma transaction_by_address_on

These pragmas explicitly control which version of transaction ID allocation
algorithm the Neuron firmware uses. Some versions of the Neuron firmware
support a new version of transaction ID allocation that has superior duplicate
rejection properties. For the Neuron 3150 Chip, 3150 Smart Transceiver,
Neuron 3120E1 Chip, Neuron 3120E2 Chip, and 3120 Smart Transceiver,
firmware version 6 (or later) supports either algorithm. For the Neuron 3120
Chip, firmware version 4 (or later) supports either algorithm. For a Series
5000 or 6000 device, firmware version 18 (or later) supports either algorithm.
The newer version of transaction tracking (the on option) is used by default
when available, unless the device is a LONWORKS network interface (for
example, running the MIP), or the device’s application program generates
explicit destination addresses.

These directives are not supported in model files.

#pragma unknown_system_image_extension_isa_warning

This directive causes the [NLD#477] linker message, which normally reports
an error for the use of #pragma system_image_extensions
nv_length_override on a version of the Neuron firmware that does not
support system image extension, to be changed to a warning. This change
allows you to compile the same application code for different targets with
respect to their system image support.

The Code Wizard in NodeBuilder 3.1 (and later) uses this directive to
generate Neuron C source code that compiles, for example, for a LTM-10A
target (debug platform), and a TP/FT-10F Flash Control Module (release

42 Compiler Directives

platform). See the discussion on Changeable Type Network Variables in the
chapter How Devices Communicate Using Network Variables of the Neuron C
Programmer's Guide for more information.

You normally do not need to specify this directive if your debug and release
targets use the same system firmware version and hardware, or if you use
conditional compilation to distinguish between the targets.

This directive is not supported in model files.

#pragma warnings_off

#pragma warnings_on

Controls the compiler’s printing of warning messages. Warning messages
generally indicate a problem in a program, or a place where code could be
improved. Warning messages are on by default at the start of a compilation.
These pragmas can be intermixed multiple times throughout a program to
turn warning message printing on and off as desired.

These directives override the settings for the #pragma enable_warning
number and #pragma disable_warning number directives.

The warnings_off and warnings_on directives are deprecated. Use the
enable_warning and disable_warning directives instead.

Other Directives
The following additional directives are defined in Neuron C Version 2.3:

#error “text”

This directive allows you to issue a custom error message. When this
directive is processed, program compilation fails. This directive is useful for
managing conditional compilation, for example:
#ifdef XXX
 ...
#else
 #ifdef YYY
 ...
 #else
 #error “You must define either XXX or YYY”
 #endif
#endif

This directive is supported in both the standard-compliant unquoted form or
the backwards-compatible quoted one.

#warning “text”

This directive allows you to issue a custom warning message. When this
directive is processed, program compilation continues. Both the quoted and
unquoted forms of the warning directive are supported. This directive is
useful for managing conditional compilation, for example:
#ifdef XXX
 ...
#else
 #ifdef YYY
 ...

Neuron C Reference Guide 43

 #else
 #warning “You should define either XXX or YYY”
 #endif
#endif

 Or
#ifdef XXX
 ...
#else
 #ifdef YYY
 ...
 #else
 #warning You should define either XXX or YYY
 #endif
#endif

When printing the diagnostic triggered by the warning directive, a quoted
message will appear with quotes.

MCPP and Neuron C Compiler Versions 5 and 6

The current version of the Neuron C Compiler supports all standard preprocessor
directives. If you want support for both Neuron C Compiler 6 and Neuron C
Compiler 5, you should use conditional compilation, as demonstrated in the
following example.

#ifdef _NCC_VERSION

// this is a compiler version 6 or better. The value of

// NCC_VERSION equates to the compiler’s major version
// number. The value can be evaluated in #if or #elif
// statements, but these must be hidden from earlier versions
// of the compiler:

include “v6-definitions.h”
#else // _NCC_VERSION not defined:
// This is a compiler prior to version 6. #ifdef, #ifndef, #else
// and #endif are available, but not #if or #elif. These
// declarations could be made here or, for symmetry with the
// above, in a dedicated definition file:

#endif // compiler version test

When source code relies on the availability of conditional compilation with use
of #if or #elif directives, the following precautionary code snippet is
recommended for inclusion in prime source code locations:

#ifndef _NCC_VERSION
error “This source requires a Neuron C Compiler 6 or better”
#endif // compiler version check

44 Compiler Directives

The error directive in the above example is presented in quoted form, but
Version 6 of the Neuron C Compiler supports both quoted and unquoted, as
shown below.

#ifndef _NCC_VERSION
error “This source requires a Neuron C Compiler 6 or better”
error This source requires a Neuron C Compiler 6 or better

#endif // error directive example

The standard line directive is supported in the following form:

#line 123 “c:\mysource\xyz\main.nc”

// line directive example

The line directive is used to synchronize compiler and debugger on the location of
source code. While the directive is supported according to the language standard,
it is not recommended for use in your code, as it may prevent debugging your
application using NodeBuilder’s source code debugger.

Neuron C Reference Guide 45

3

Functions

This chapter provides reference information on the Neuron C built-in
and library functions.
Built-in and library functions are used with executable code, and do
not apply to host-based device development with model files.

Neuron C Reference Guide 47

Introduction
This chapter discusses some general attributes of Neuron C functions and lists
available Neuron C functions, providing syntax information, descriptions, and
examples of each function. Some functions are built-in functions. This means
they are used as if they were function calls, but they are permanently part of the
Neuron C language and are implemented by the compiler without necessarily
mapping into an actual function call. Some built-in functions have special
behaviors depending on their context and usage. The rest of the functions are
library calls. Some library calls have function prototypes in one of the standard
include files, as noted. The standard include files are:

<a2d.h>
<access.h> (this file includes <addrdefs.h>)
<addrdefs.h>
<byte.h>
<control.h>
<float.h>
<io_types.h>
<limits.h>
<mem.h>
<modnvlen.h>
<msg_addr.h>
<netdbg.h>
<netmgmt.h>
<nm_ckm.h>
<nm_err.h>
<nm_fm.h>
<nm_inst.h>
<nm_mod.h>
<nm_model.h>
<nm_nmo.h>
<nm_rqr.h>
<nm_sel.h>
<nm_ste.h>
<nm_sub.h>
<nm_wch.h>
<psg.h>
<psgreg.h>
<s32.h>
<status.h>
<stddef.h>
<stdlib.h>
<string.h>

Functions not defined in any of the above include files derive their prototypes
from <echelon.h>, an include file that is automatically incorporated in each
compilation. Except for <echelon.h>, you must incorporate the necessary
include file (or files) to use a function. Although some of the following function
descriptions list both an include file and a prototype, you should only specify the
#include directive. The prototype is contained in the include file, and is shown
here only for reference.

48 Functions

The functions listed in this chapter include floating-point and extended (32-bit)
precision arithmetic support. A general discussion of the use of floating-point
variables and floating-point arithmetic, and a discussion of the use of extended
precision variables and extended precision arithmetic is included in the following
list of functions.

Any existing application program developed for a Neuron 3120 Chip or 3120
Smart Transceiver using any system library functions might require more
EEPROM memory on a Neuron 3120 Chip or 3120 Smart Transceiver than it
would on a Neuron 3150 Chip, 3150 Smart Transceiverm or Series 5000 or 6000
chip. This is because more of the system functions are stored in the ROM
firmware image on a Neuron 3150 Chip, a 3150 Smart Transceiver, or a Series
5000 or 6000 chip. Examination of the link map provides a measure of the
EEPROM memory used by these functions. See System Library on a Neuron
3120 Chip in Chapter 8, Memory Management, of the Neuron C Programmer's
Guide for more detailed information on how to create and examine a link map to
obtain a measure of the Neuron 3120 Chip or 3120 Smart Transceiver EEPROM
usage required for these functions. Also see the NodeBuilder User’s Guide for
additional information on the link map.

Note: “Neuron 3120 Chip” above refers to all the Neuron 3120 Chips, including
3120, 3120E1, 3120E2, 3120E3, 3120E4, 3120E5, and 3120A20 Chips, as well as
the FT 3120 Smart Transceiver, the PL 3120 Smart Transceiver, and the PL
3170 Smart Transceiver.

Transient and Resident Functions
Compiling an application designed for use with a Series 6000 chip defaults to
transient functions. Transient functions are loaded into the memory space on
demand, and are transparently managed by the Neuron C Compiler and Neuron
firmware. Neuron Chips and Smart Transceivers released prior to the Series
6000 chips do not support transient functions.

Transient functions support applications whose total code space exceed the
available physical chip address space.

Resident functions are all those which are not transient. Resident functions
reside within the chip’s address space permanently, unrecoverably consuming
address space but incurring no invocation overhead.

Note that when-tasks and interrupt tasks are always resident, but calling
transient functions from when-tasks is possible. Interrupt tasks cannot call
transient functions, however.

The compiler supports several tools to enforce resident functions:

The __resident keyword (note the leading double underscore) can be used to
specify an individual function as resident. Function implementation and
prototype must match; both must declare the function as resident or transient.
Note that no keyword is supplied to enforce transient functions; transient
functions are the default where this feature is supported by the target device
hardware and firmware.

Example:
extern unsigned __resident xor_n(unsigned n, unsigned* data);

unsigned __resident xor_n(unsigned n, unsigned* data) {
 unsigned result = 0;

Neuron C Reference Guide 49

 while (n--) result ^= *data++;
 return result;
}

The standard Neuron C include files also define a _RESIDENT preprocessor
symbol. This can be used to create code which is backwards-compatible with
earlier versions of the Neuron C Compiler. Earlier versions of the compiler do not
define the necessary preprequisites, leading to the definition of _RESIDENT as
an empty string. The current version of the Neuron C Compiler supplies the
required prerequisites and the _RESIDENT symbol expands to the __resident
keyword.

Example:
extern unsigned _RESIDENT xor_n(unsigned n, unsigned* data);

unsigned _RESIDENT xor_n(unsigned n, unsigned* data) {
 unsigned result = 0;
 while (n--) result ^= *data++;
 return result;
}

Most function prototypes included with standard Neuron C include files use this
technique, as most Neuron C runtime utility functions and system API are
declared resident.

Instead of defining individual functions as resident explicitly, you can also use
the pragma resident directive to enable or disable the default mode, which
applies to plain functions.

In the next example, function a will be transient with compilation targets which
support transient functions, and function b will always be resident. Function c
has the same residence as function a:
void a(void) {
 …
}

#pragma resident enabled
void b(void) {
 …
}
#pragma resident disabled

void c(void) {
 …
}

The compiler also supports a new command line option, --resident, for use with
the command console or automated build scripts. This option has the same effect
as a global #pragma resident enabled directive and sets the default of plain
function definitions (such as function ‘a’ in the previous example) to resident.

See appendix A, Neuron C Tools Stand-Alone Use in the Neuron C Programmer’s
Guide for more about using the Neuron C tools from the console or build scripts.

Overview of Neuron C Functions
You can call the functions listed in the following sections from a Neuron C
application program. These functions are built into the Neuron C Compiler, or
are part of the Neuron firmware, or are linked into the application image from a
system library. The availability of these functions varies by model of Neuron

50 Functions

Chip or Smart Transceiver, as well as by firmware version. This detailed
information is available at www.echelon.com/downloads.

At the time of this release, all Neuron C runtime utilities and system API are
resident. The __resident or _RESIDENT modifier is implied in all the prototypes
which follow in this guide.

Execution Control
Table 6 lists the execution control functions.

Table 6. Execution Control Functions

Function Description

delay() Delay processing for a time
independent of input clock rate

flush() Flush all outgoing messages and
network variable updates

flush_cancel() Cancel a flush in process

flush_wait() Wait for outgoing messages and
updates to be sent before going off-line

get_tick_count() Read hardware timer

go_offline() Cease execution of the application
program

interrupt_control() Enable or disable interrupts

msec_delay() Delay processing for a specified
number of milliseconds

post_events() Define a critical section boundary for
network variable and message
processing

power_up() Determine whether last processor reset
was due to power up

preemption_mode() Determine whether the application
processor scheduler is currently
running in preemption mode.

propagate() Force propagation of an output
network variable

scaled_delay() Delay processing for a time that
depends on the input clock rate

Neuron C Reference Guide 51

http://www.echelon.com/downloads

Function Description

sleep() Enter low-power mode by disabling
system clock

timers_off() Turn off all software timers

watchdog_update() Re-trigger the watchdog timer to
prevent device reset

Network Configuration
Table 7 lists the network configuration functions.

Table 7. Network Configuration Functions

Function Description

access_address() Read device’s address table

access_alias() Read device’s alias table

access_domain() Read device’s domain table

access_nv() Read device’s network variable
configuration table

addr_table_index() Determine address table index of
message tag

application_restart() Begin application program over again

get_current_nv_length() Read a network variable's current
length

go_unconfigured() Reset this device to an uninstalled
state

node_reset() Activate the reset pin, and reset all
CPUs

nv_table_index() Determine global index of a network
variable

offline_confirm() Inform network tool that this device is
going offline

update_address() Write device’s address table

update_alias() Write device’s alias table

52 Functions

Function Description

update_clone_domain() Write device’s domain table with clone
entry

update_config_data() Write device’s configuration data
structure

update_domain() Write device’s domain table with
normal entry

update_nv() Write device’s network variable
configuration table

Integer Math
Table 8 lists the integer mathematics functions.

Table 8. Integer Math Functions

Function Description

abs() Arithmetic absolute value

bcd2bin() Convert binary coded decimal data to
binary

bin2bcd() Convert binary data to binary coded
decimal

high_byte() Extract the high byte of a 16-bit
number

low_byte() Extract the low byte of a 16-bit number

make_long() Create a 16-bit number from two 8-bit
numbers

max() Arithmetic maximum of two values

min() Arithmetic minimum of two values

muldiv() Unsigned multiply/divide with 32-bit
intermediate result

muldiv24() Unsigned multiply/divide with 24-bit
intermediate result

muldiv24s() Signed multiply/divide with 24-bit
intermediate result

Neuron C Reference Guide 53

Function Description

muldivs() Signed multiply/divide with 32-bit
intermediate result

random() Generate 8-bit random number

reverse() Reverse the order of bits in an eight-bit
number

rotate_long_left() Rotate left a 16-bit number

rotate_long_right() Rotate right a 16-bit number

rotate_short_left() Rotate left an 8-bit number

rotate_short_right() Rotate right an 8-bit number

s32_abs() Take the absolute value of a signed 32-
bit number

s32_add() Add two signed 32-bit numbers

s32_cmp() Compare two 32-bit signed numbers

s32_dec() Decrement a 32-bit signed number

s32_div() Divide two signed 32-bit numbers

s32_div2() Divide a 32-bit signed number by 2

s32_eq() Return TRUE if first argument equals
second argument

s32_from_ascii() Convert an ASCII string into a 32-bit
signed number

s32_from_slong() Convert a signed long number into a
32-bit signed number

s32_from_ulong() Convert an unsigned long number into
a 32-bit signed number

s32_ge() Return TRUE if first argument is
greater than or equal to second
argument

s32_gt() Return TRUE if first argument is
greater than second argument

s32_inc() Increment a 32-bit signed number

54 Functions

Function Description

s32_le() Return TRUE if first argument is less
than or equal to second argument

s32_lt() Return TRUE if first argument is less
than second argument

s32_max() Take the maximum of two signed 32-
bit numbers

s32_min() Take the minimum of two signed 32-bit
numbers

s32_mul() Multiply two signed 32-bit numbers

s32_mul2() Multiply a 32-bit signed number by 2

s32_ne() Return TRUE if first argument does
not equal second argument

s32_neg() Return the negative of a signed 32-bit
number

s32_rand() Return a random 32-bit signed number

s32_rem() Return the remainder of a division of
two signed 32-bit numbers

s32_sign() Return the sign of a 32-bit signed
number

s32_sub() Subtract two signed 32-bit numbers

s32_to_ascii() Convert a 32-bit signed number into an
ASCII string

s32_to_slong() Convert a 32-bit signed number into
signed long

Floating-Point Math
Table 9 lists the floating-point mathematics functions.

Table 9. Floating-Point Functions

Function Description

fl_abs() Take the absolute value of a floating-
point number

fl_add() Add two floating-point numbers

Neuron C Reference Guide 55

Function Description

fl_ceil() Return the ceiling of a floating-point
number

fl_cmp() Compare two floating-point numbers

fl_div() Divide two floating-point numbers

fl_div2() Divide a floating-point number by two

fl_eq() Return TRUE if first argument equals
second argument

fl_floor() Return the floor of a floating-point
number

fl_from_ascii() Convert an ASCII string to floating-
point

fl_from_s32() Convert a signed 32-bit number to a
floating-point number

fl_from_slong() Convert a signed long number into a
floating-point number

fl_from_ulong() Convert an unsigned long number to a
floating-point number

fl_ge() Return TRUE if first argument is
greater than or equal to second
argument

fl_gt() Return TRUE if first argument is
greater than second argument

fl_le() Return TRUE if first argument is less
than or equal to second argument

fl_lt() Return TRUE if first argument is less
than second argument

fl_max() Find the maximum of two floating-
point numbers

fl_min() Find the minimum of two floating-point
numbers

fl_mul() Multiply two floating-point numbers

fl_mul2() Multiply a floating-point number by
two

56 Functions

Function Description

fl_ne() Return TRUE if first argument is not
equal to second argument

fl_neg() Return the negative of a floating-point
number

fl_rand() Return a random floating-point
number

fl_round() Round a floating-point number to the
nearest whole number

fl_sign() Return the sign of a floating-point
number

fl_sqrt() Return the square root of a floating-
point number

fl_sub() Subtract two floating-point numbers

fl_to_ascii() Convert a floating-point number to an
ASCII string

fl_to_ascii_fmt() Convert a floating-point number to a
formatted ASCII string

fl_to_s32() Convert a floating-point number to
signed 32-bit

fl_to_slong() Convert a floating-point number to
signed long

fl_to_ulong() Convert a floating-point number to
unsigned long

fl_trunc() Return the whole number part of a
floating-point number

Strings
Table 10 lists the string functions.

Table 10. String Functions

Function Description

strcat() Append a copy of a string at the end of
another

strchr() Scan a string for a specific character

Neuron C Reference Guide 57

Function Description

strcmp() Compare two strings

strcpy() Copy one string into another

strlen() Return the length of a string

strncat() Append a copy of a string at the end of
another

strncmp() Compare two strings

strncpy() Copy one string into another

strrchr() Scan a string in reverse for a specific
character

Utilities
Table 11 on page 58 lists the utlility functions.

Table 11. Utility Functions

Function Description

ansi_memcpy() Copy a block of memory with ANSI
return value

ansi_memset() Set a block of memory to a specified
value with ANSI return value

clear_status() Clear error statistics accumulators and
error log

clr_bit() Clear a bit in a bit array

crc8() Calculate an 8-bit CRC over an array

crc16() Calculate a 16-bit CRC over an array

crc16_ccitt() Calculate a 16-bit CCITT CRC over an
array

eeprom_memcpy() Copy a block of memory to EEPROM
destination

error_log() Record software-detected error

fblock_director() Call the director associated with an
fblock

58 Functions

Function Description

get_fblock_count() Return the number of fblock
declarations in the program

get_nv_count() Return the number of network variable
declarations in the program

memccpy() Copy a block of memory

memchr() Search a block of memory

memcmp() Compare a block of memory

memcpy() Copy a block of memory:

• from msg_in.data and
resp_in.data

• to resp_out.data

• length greater than or equal to
256 bytes

• others

memset() Set a block of memory to a specified
value:

• length greater than or equal to
256 bytes

• others

retrieve_status() Read statistics from protocol processor

service_pin_msg_send() Send a service pin message

service_pin_state() Read the service pin state

set_bit() Set a bit in a bit array

set_eeprom_lock() Set the state of the checksummed
EEPROM's lock

tst_bit() Return TRUE if bit tested was set

Neuron C Reference Guide 59

Input/Output
Table 12 lists the I/O functions.

Table 12. Input/Output Functions

Function Description

io_change_init() Initialize reference value for
io_changes event

io_edgelog_preload() Define maximum value for edgelog
period measurements

io_edgelog_single_preload() Define maximum value for edgelog
single_tc period measurements

io_idis() Disable the I/O interrupt used in the
hardware support for the sci and spi
I/O objects

io_iena() Enable the I/O interrupt used in the
hardware support for the sci and spi
I/O objects

io_in() Input data from I/O object:

• Dualslope input

• Edgelog input

• Infrared input

• Magcard input

• Neurowire I/O slave mode

• Neurowire I/O with invert
option

• Serial input

• Touch I/O

• Wiegand input

• others

io_in_ready() Event function which evaluates to
TRUE when a block of data is available
from the parallel I/O object

io_in_request() Start dualslope A/D conversion

60 Functions

Function Description

io_out() Output data to I/O object:

• Bitshift output

• Neurowire I/O slave mode

• Neurowire I/O with invert
option

• Serial output

• Touch I/O

• others

io_out_ready() Event function which evaluates to
TRUE when a block of data is available
from the parallel I/O object

io_out_request() Request ready indication from parallel
I/O object

io_preserve_input() Preserve first timer/counter value after
reset or io_select()

io_select() Set timer/counter multiplexer

io_set_baud() Set the serial bit rate for an sci I/O
object

io_set_clock() Set timer/counter clock rate

io_set_direction() Change direction of I/O pins

sci_abort() Abort pending sci transfer

sci_get_error() Read most recent sci error code

spi_abort() Abort pending spi transfer

spi_get_error() Read most recent spi error code

Signed 32-Bit Integer Support Functions
The Neuron C compiler does not directly support the use of the C arithmetic and
comparison operators with 32-bit integers. However, there is a complete library
of functions for signed 32-bit integer math. These functions are listed in Integer
Math on page 53. For example, in standard ANSI C, to evaluate X = A + B * C in
long (32-bit) arithmetic, the '+' and '*' infix operators can be used as follows:

long X, A, B, C;
X = A + B * C;

With Neuron C, this can be expressed as follows:

Neuron C Reference Guide 61

s32_type X, A, B, C;
s32_mul(&B, &C, &X);
s32_add(&X, &A, &X);

The signed 32-bit integer format can represent numbers in the range of
±2,147,483,647 with an absolute resolution of ±1.

An s32_type structure data type for signed 32-bit integers is defined by means of
a typedef in the <s32.h> file. It defines a structure containing an array of four
bytes that represents a signed 32-bit integer in Neuron C format. This is
represented as a two’s complement number stored with the most significant byte
first. The type declaration is shown here for reference:

typedef struct {
 int bytes[4];
} s32_type;

All of the constants and functions in the <s32.h> file are defined using the
Neuron C signed 32-bit data type, which is a structure. Neuron C does not
permit structures to be passed as parameters or returned as values from
functions. When these objects are passed as parameters to C functions, they are
passed as addresses (using the '&' operator) rather than as values. However,
Neuron C does support structure assignment, so signed 32-bit integers can be
assigned to each other with the '=' assignment operator.

No errors are detected by the 32-bit functions. Overflows follow the rules of the C
programming language for integers, namely, they are ignored. Only the least
significant 32 bits of the results are returned.

Initializers can be defined using structure initialization syntax. For example:
s32_type some_number = {0, 0, 0, 4};
// initialized to 4 on reset

s32_type another_number = {-1, -1, -1, -16};
// initialized to -16

A number of constants are defined for use by the application if desired.
s32_zero, s32_one, s32_minus_one represent the numbers 0, 1, and -1.

If other constants are desired, they can be converted at runtime from ASCII
strings using the function s32_from_ascii().

Example:
s32_type one_million;

when(reset) {
 s32_from_ascii("1000000", one_million);
}

Because this function is fairly time consuming, it could be advantageous to pre-
compute constants with the NXT Neuron C Extended Arithmetic Translator
utility. This program accepts an input file with declarations using standard
integer initializers, and creates an output file with Neuron C initializers. See
Using the NXT Neuron C Extended Arithmetic Translator on page 79.

For example, if the input file contains the following statement:
const s32_type one_million = 1000000;

then the output file contains the following:

62 Functions

const s32_type one_million = {0x00,0x0f,0x42,0x40}
/* 1000000 */;

Users of the NodeBuilder tool can use Code Wizard to create initializer data for
s32_type network variables and configuration properties. The NodeBuilder
Neuron C debugger can display signed 32-bit integers through the s32_type
shown above.

The Neuron C debugger can display signed 32-bit integers as raw data at a
specific address. To examine the value of one or more contiguous signed 32-bit
integer variables, enter the address of the first variable into the raw data
evaluation window, select Raw Data at Address, Data Size as quad, Count as
the number of variables that you want to display, and Format as Dec. The data
is displayed as unsigned, even if it is negative. To view the data as signed, click
on the value field, and the Modify Variable window shows the data in both
formats. You can also modify signed 32-bit integer variables by clicking on the
value field, and entering new data in the usual format for integers.

The signed 32-bit integer arguments are all passed to the support functions as
addresses of structures. The calling function or task is responsible for declaring
storage for the arguments themselves. Argument lists are ordered so that input
arguments precede output arguments. In all cases, any of the signed 32-bit
integer input arguments can be reused as output arguments to facilitate
operations in place.

Binary Arithmetic Operators
Table 13 on page 63 lists the binary arithmetic operator functions.

Table 13. Binary Arithmetic Operators

Short
Name Function

add void s32_add(const s32_type *arg1, const s32_type *arg2,
 s32_type *arg3);

Adds two signed 32-bit integers. (arg3 = arg1 + arg2).

sub void s32_sub(const s32_type *arg1, const s32_type *arg2,
 s32_type *arg3);

Subtracts two signed 32-bit integers. (arg3 = arg1 - arg2).

mul void s32_mul(const s32_type *arg1, const s32_type *arg2,
 s32_type *arg3);

Multiplies two signed 32-bit integers. (arg3 = arg1 *arg2).

div void s32_div(const s32_type *arg1, const s32_type *arg2,
 s32_type *arg3);

Divides two signed 32-bit integers. (arg3 = arg1 / arg2).

Neuron C Reference Guide 63

Short
Name Function

rem void s32_rem(const s32_type *arg1, const s32_type *arg2,
 s32_type *arg3);

Returns the remainder of the division of two signed 32-bit integers
(arg3 = arg1 % arg2). The sign of arg3 is always the same as the sign
of arg1.

max void s32_max(const s32_type *arg1, const s32_type *arg2,
 s32_type *arg3);

Returns the maximum of two signed 32-bit integers. (arg3 =
max(arg1, arg2)).

min void s32_min(const s32_type *arg1, const s32_type *arg2,
 s32_type *arg3);

Returns the minimum of two signed 32-bit integers. (arg3 = min(arg1,
arg2)).

Unary Arithmetic Operators
Table 14 lists the unary arithmetic operator functions.

Table 14. Unary Arithmetic Operators

Short
Name Function

abs void s32_abs(const s32_type *arg1, s32_type *arg2);

Returns the absolute value of a signed 32-bit integer. (arg2 =
abs(arg1)).

neg void s32_neg(const s32_type *arg1, s32_type *arg2);

Returns the negative of a signed 32-bit integer. (arg2 = - arg1).

Comparison Operators
Table 15 lists the comparison operator functions.

Table 15. Comparison Operators

Short
Name Function

eq boolean s32_eq(const s32_type *arg1,
 const s32_type *arg2);

Returns TRUE if the first argument is equal to the second argument,
otherwise FALSE. (arg1 == arg2).

64 Functions

Short
Name Function

ne boolean s32_ne(const s32_type *arg1,
 const s32_type *arg2);

Returns TRUE if the first argument is not equal to the second
argument, otherwise FALSE. (arg1 != arg2).

gt boolean s32_gt(const s32_type *arg1,
 const s32_type *arg2);

Returns TRUE if the first argument is greater than the second
argument, otherwise FALSE. (arg1 > arg2).

lt boolean s32_lt(const s32_type *arg1,
 const s32_type *arg2);

Returns TRUE if the first argument is less than the second argument,
otherwise FALSE. (arg1 < arg2).

ge boolean s32_ge(const s32_type *arg1,
 const s32_type *arg2);

Returns TRUE if the first argument is greater than or equal to the
second argument, otherwise FALSE. (arg1 >= arg2).

le boolean s32_le(const s32_type *arg1,
 const s32_type *arg2);

Returns TRUE if the first argument is less than or equal to the second
argument, otherwise FALSE. (arg1 <= arg2).

cmp int s32_cmp(const s32_type *arg1, const s32_type *arg2);

Returns +1 if the first argument is greater than the second argument, -1
if it is less, and 0 if it is equal.

Miscellaneous Signed 32-bit Functions
Table 16 lists miscellaneous signed 32-bit functions.

Table 16. Signed 32-Bit Functions

Short
Name Function

sign int s32_sign(const s32_type *arg);

Sign function, returns +1 if the argument is positive, 0 if the argument
is zero, and -1 if the argument is negative.

inc void s32_inc(s32_type *arg);

Increments a signed 32-bit integer.

Neuron C Reference Guide 65

Short
Name Function

dec void s32_dec(s32_type *arg);

Decrements a signed 32-bit integer.

mul2 void s32_mul2(s32_type *arg);

Multiplies a signed 32-bit integer by two.

div2 void s32_div2(s32_type *arg);

Divides a signed 32-bit integer by two.

rand void s32_rand(s32_type *arg);

Returns a random integer uniformly distributed in the range
[-2,147,483,648 to +2,147,483,647].

Integer Conversions
Table 17 lists the integer conversion functions.

Table 17. Integer Conversions

Short
Name Function

to
slong

signed long s32_to_slong(const s32_type *arg);

Converts a signed 32-bit integer to a Neuron C signed long integer
(range -32,768 to +32,767). Overflow is ignored.

to
ulong

unsigned long s32_to_ulong(const s32_type *arg);

Converts a signed 32-bit integer to a Neuron C unsigned long integer
(range 0 to 65,535). Overflow is ignored.

from
slong

void s32_from_slong(signed long arg1, s32_type *arg2);

Converts a Neuron C signed long integer (range -32,768 to +32,767) to a
signed 32-bit integer.

from
ulong

void s32_from_ulong(unsigned long arg1, s32_type *arg2);

Converts a Neuron C unsigned long integer (range 0 to +65,535) to a
signed 32-bit integer.

Conversion of Signed 32-bit to ASCII String
Table 18 lists the conversion function for a signed 32-bit number to an ASCII
string.

66 Functions

Table 18. Conversions of Signed 32-Bit Numbers to ASCII Strings

Short
Name Function

to
ascii

void s32_to_ascii(const s32_type *arg1, char *arg2);

Converts a signed 32-bit integer *arg1 to an ASCII string followed by a
terminating null character. The *arg2 output buffer should be at least
12 bytes long. The general output format is [-]xxxxxxxxxx, with one to
ten digits.

Conversion of ASCII String to Signed 32-bit
Table 19 lists the conversion function for an ASCII string to a signed 32-bit
number.

Table 19. Conversions of ASCII Strings to Signed 32-Bit Numbers

Short
Name Function

from
ascii

void s32_from_ascii(const char *arg1, s32_type *arg2);

Converts an ASCII string arg1 to a signed 32-bit integer in *arg2. The
conversion stops at the first invalid character in the input buffer – there
is no error notification. The acceptable format is [-]xxxxxxxxxx. The
number of digits should not exceed ten. Embedded spaces within the
string are not allowed.

Signed 32-Bit Performance
Table 20 on page 67 lists times in milliseconds for the various 32-bit functions.
They were measured using a Series 3100 Neuron Chip with a 10 MHz input
clock. These values scale with a faster or slower clock. The measurements are
maximums and averages over random data uniformly distributed in the range [-
2,147,483,648 to +2,147,483,647].

Table 20. Signed 32-Bit Function Performance

Function Maximum Average

Add/subtract 0.10 0.08

Multiply 2.07 1.34

Divide 3.17 2.76

Remainder 3.15 2.75

Maximum/minimum 0.33 0.26

Absolute value 0.25 0.12

Neuron C Reference Guide 67

Function Maximum Average

Negation 0.20 0.20

Arithmetic Comparison 0.33 0.26

Conversion to ASCII 26.95 16.31

Conversion from ASCII 7.55 4.28

Conversion to 16-bit integer 0.12 0.10

Conversion from 16-bit integer 0.10 0.10

Random number generation 0.12 0.11

Sign of number 0.15 0.11

Increment 0.07 0.04

Decrement 0.10 0.04

Multiply by two 0.10 0.10

Divide by two 0.30 0.16

 Floating-Point Support Functions
The Neuron C compiler does not directly support the use of the ANSI C
arithmetic and comparison operators with floating-point values. However, there
is a complete library of functions for floating-point math. These functions are
listed in Floating-Point Math on page 55. For example, in standard ANSI C, to
evaluate X = A + B * C in floating-point, the '+' and '*' infix operators can be used
as follows:

float X, A, B, C;
X = A + B * C;

With Neuron C, this can be expressed as follows:
float_type X, A, B, C;
fl_mul(&B, &C, &X);
fl_add(&X, &A, &X);

The floating-point format can represent numbers in the range of approximately -
1*101038 to +1*101038, with a relative resolution of approximately ±1*10-7.

A float_type structure data type is defined by means of a typedef in the
<float.h> file. It defines a structure that represents a floating-point number in
IEEE 754 single precision format. This has one sign bit, eight exponent bits and
23 mantissa bits, and is stored in big-endian order. Processors that store data in
little-endian order represent IEEE 754 numbers in the reverse byte order. The
float_type type is identical to the type used to represent floating-point network
variables. The type declaration is shown here for reference.

68 Functions

typedef struct {
 unsigned int sign : 1;
 // 0 = positive, 1 = negative
 unsigned int MS_exponent : 7;
 unsigned int LS_exponent : 1;
 unsigned int MS_mantissa : 7;
 unsigned long LS_mantissa;
} float_type;

See the IEEE 754 standard documentation for more details.

All the constants and functions in the <float.h> file are defined using the
Neuron C float_type floating-point format, which is a structure. Neuron C does
not permit structures to be passed as parameters or returned as values from
functions. When these objects are passed as parameters to C functions, they are
passed as addresses (using the '&' operator) rather than as values. However,
Neuron C does support structure assignment, so floating-point objects can be
assigned to each other with the '=' assignment operator.

An fl_error global variable stores the last error detected by the floating-point
functions. If error detection is desired for a calculation, application programs
should set the fl_error variable to FL_OK before beginning a series of floating-
point operations, and check the value of the variable at the end.

The errors detected are as follows:

FL_UNDERFLOW A non-zero number could not be represented
because it was too small for the floating-point
representation. Zero was returned instead.

FL_INVALID_ARG A floating-point number could not be converted
to integer because it was out of range; or, an
attempt was made to evaluate the square root
of a negative number.

FL_OVERFLOW A number could not be represented because it
was too large for the floating-point
representation.

FL_DIVIDE_BY_ZERO An attempt was made to divide by zero. This
does not cause the Neuron firmware
DIVIDE_BY_ZERO error to be logged.

A number of #define literals are defined for use by the application to initialize
floating-point structures. FL_ZERO, FL_HALF, FL_ONE, FL_MINUS_ONE
and FL_TEN can be used to initialize floating-point variables to 0.0, 0.5, 1.0, -
1.0, and 10.0 respectively.

Example:
float_type some_number = FL_ONE;
// initialized to 1.0 at reset

Five floating-point constants are pre-defined: fl_zero, fl_half, fl_one,
fl_minus_one, and fl_ten represent 0.0, 0.5, 1.0, -1.0, and 10.0 respectively.

Example:
fl_mul(&some_number, &fl_ten, &some_number);

Neuron C Reference Guide 69

// multiply some number by 10.0

If other constants are desired, they can be converted at runtime from ASCII
strings using the fl_from_ascii() function.

Example:
float_type ninety_nine; // constant 99.0
when(reset) {
 fl_from_ascii("99", &ninety_nine);
 // initialize constant
}

Because this function is fairly time consuming, it could be advantageous to pre-
compute constants with the NXT Neuron C Extended Arithmetic Translator.
This program accepts an input file with declarations using standard floating-
point initializers, and creates an output file with Neuron C initializers. It
recognizes any SNVT_xxx_f data type, as well as the float_type type. See
Using the NXT Neuron C Extended Arithmetic Translator on page 79.

For example, if the input file contains the following statements:
network input float_type var1 = 1.23E4;
const float_type var2 = -1.24E5;
SNVT_temp_f var3 = 12.34;

then the output file contains the following:
network input float_type var1 = {0,0x46,0,0x40,0x3000}
/* 1.23E4 */;
const float_type var2 = {1,0x47,1,0x72,0x3000}
/* -1.24E5 */;
SNVT_temp_f var3 = {0,0x41,0,0x45,0x70a4}
/* 12.34 */;

Users of the NodeBuilder tool can also use Code Wizard to create initializer data
for float_type objects.

Variables of a floating-point network variable type are compatible with the
Neuron C float_type format. The ANSI C language requires an explicit type
cast to convert from one type to another. Structure types cannot be cast, but
pointers to structures can. The following example shows how a local variable of
type float_type can be used to update an output network variable of type
SNVT_angle_f.

70 Functions

Example:
float_type local_angle; // internal variable
network output SNVT_angle_f nvoAngle; // network variable

void f(void) {
 nvoAngle = *(SNVT_angle_f *) &local_angle;
}

The following example shows how an input SNVT_length_f network variable
can be used as an input parameter to one of the functions in this library.

Example:
network input SNVT_length_f nvoLength;
// network variable

when(nv_update_occurs(nvoLength)) {
 if(fl_eq((const float_type *)&nvoLength, &fl_zero))
 // compare length to zero
 . . .
}

The IEEE 754 format defines certain special numbers such as Infinity, Not-a-
Number (NaN), and Denormalized Numbers. This library does not produce the
correct results when operating on these special numbers. Also, the treatment of
roundoff, overflow, underflow, and other error conditions does not conform to the
standard.

To assign the IEEE value of NaN to a floating-point object, you can use the hex
value 0x7FC00000 as shown in the example below:

Example:
float_type fl = {0,0x7F,1,0x40,0}; // NaN

The NodeBuilder debugger can display floating-point objects according to their
underlying float_type structure.

The debugger can display floating-point objects as raw data at a specific address.
To examine the value of one or more contiguous floating-point variables, enter
the address of the first variable into the raw data evaluation window, select Raw
Data at Address, Data Size as quad, Count as the number of variables that
you want to display, and Format as Float. You can also modify floating-point
variables by clicking on the value field, and entering new data in the usual
format for floating-point numbers.

The floating-point function arguments are all passed by pointer reference. The
calling function or task is responsible for declaring storage for the arguments
themselves. Argument lists are ordered so that input arguments precede output
arguments. In all cases, floating-point output arguments can match any of the
input arguments to facilitate operations in place.

Binary Arithmetic Operators
Table 21 on page 72 lists the binary arithmetic operator functions.

Neuron C Reference Guide 71

Table 21. Binary Arithmetic Operators

Short
Name Function

add void fl_add(const float_type *arg1,
 const float_type *arg2, float_type *arg3);

Adds two floating-point numbers: (arg3 = arg1 + arg2).

sub void fl_sub(const float_type *arg1,
 const float_type *arg2, float_type *arg3);

Subtracts two floating-point numbers: (arg3 = arg1 - arg2).

mul void fl_mul(const float_type *arg1,
 const float_type *arg2, float_type *arg3);

Multiplies two floating-point numbers: (arg3 = arg1 *arg2).

div void fl_div(const float_type *arg1,
 const float_type *arg2, float_type *arg3);

Divides two floating-point numbers: (arg3 = arg1 / arg2).

max void fl_max(const float_type *arg1,
 const float_type *arg2, float_type *arg3);

Finds the max of two floating-point numbers: (arg3 = max(arg1,
arg2)).

min void fl_min(const float_type *arg1,
 const float_type *arg2, float_type *arg3);

Finds the minimum of two floating-point numbers: (arg3 = min(arg1,
arg2)).

Unary Arithmetic Operators
Table 22 lists the unary arithmetic operator functions.

Table 22. Unary Arithmetic Operators

Short
Name Function

abs void fl_abs(const float_type *arg1, float_type *arg2);

Returns the absolute value of a floating-point number: (arg2 =
abs(arg1)).

neg void fl_neg(const float_type *arg1, float_type *arg2);

Returns the negative of a floating-point number: (arg2 = - arg1).

sqrt void fl_sqrt(const float_type *arg1, float_type *arg2);

Returns the square root of a floating-point number: (arg2 = √ arg1).

72 Functions

Short
Name Function

trunc void fl_trunc(const float_type *arg1, float_type *arg2);

Returns the whole number part of a floating-point number: (arg2 =
trunc(arg1)). Truncation is towards zero. For example, trunc(-3.45) =
-3.0.

floor void fl_floor(const float_type *arg1, float_type *arg2);

Returns the largest whole number less than or equal to a given floating-
point number: (arg2 = floor(arg1)). Truncation is towards minus
infinity. For example, floor(-3.45) = -4.0.

ceil void fl_ceil(const float_type *arg1, float_type *arg2);

Returns the smallest whole number greater than or equal to a given
floating-point number: (arg2 = ceil(arg1)). Truncation is towards plus
infinity. For example, ceil(-3.45) = -3.0.

round void fl_round(const float_type *arg1, float_type *arg2);

Returns the nearest whole number to a given floating-point number:
(arg2 = round(arg1)). For example, round(-3.45) = -3.0.

mul2 void fl_mul2(const float_type *arg1, float_type *arg2);

Multiplies a floating-point number by two: (arg2 = arg1 * 2.0).

div2 void fl_div2(const float_type *arg1, float_type *arg2);

Divides a floating-point number by two: arg2 = arg1 / 2.0).

Comparison Operators
Table 23 lists the comparison operator functions.

Table 23. Comparison Operators

Short
Name Function

eq boolean fl_eq(const float_type *arg1,
 const float_type *arg2);

Returns TRUE if the first argument is equal to the second argument,
otherwise FALSE: (arg1 == arg2).

ne boolean fl_ne(const float_type *arg1,
 const float_type *arg2);

Returns TRUE if the first argument is not equal to the second
argument, otherwise FALSE: (arg1 != arg2).

Neuron C Reference Guide 73

Short
Name Function

gt

boolean fl_gt(const float_type *arg1,
 const float_type *arg2);

Returns TRUE if the first argument is greater than the second
argument, otherwise FALSE: (arg1 > arg2).

lt boolean fl_lt(const float_type *arg1,
 const float_type *arg2);

Returns TRUE if the first argument is less than the second argument,
otherwise FALSE: (arg1 < arg2).

ge boolean fl_ge(const float_type *arg1,
 const float_type *arg2);

Returns TRUE if the first argument is greater than or equal to the
second argument, otherwise FALSE: (arg1 >= arg2).

le boolean fl_le(const float_type *arg1,
 const float_type *arg2);

Returns TRUE if the first argument is less than or equal to the second
argument, otherwise FALSE: (arg1 <= arg2).

cmp int fl_cmp(const float_type *arg1,
 const float_type *arg2);

Returns +1 if the first argument is greater than the second argument, -1
if it is less, or 0 if it is equal.

Miscellaneous Floating-Point Functions
Table 24 lists miscellaneous floating-point functions.

Table 24. Floating-Point Functions

Short
Name Function

sign int fl_sign(const float_type *arg);

Sign function, returns +1 if the argument is positive, 0 if the argument
is zero, or -1 if the argument is negative.

rand void fl_rand(float_type *arg);

Returns a random number uniformly distributed in the range [0.0, 1.0)
– that is, including the number 0.0, but not including the number 1.0.

Floating-Point to/from Integer Conversions
Table 25 on page 75 lists the conversion functions for floating-point and integer
numbers.

74 Functions

Table 25. Floating-Point Conversion Functions

Short
Name Function

to
slong

signed long fl_to_slong(const float_type *arg);

Converts a floating-point number to a Neuron C signed long integer
(range -32,768 to +32,767). Truncation is towards zero. For example,
fl_to_slong(-4.56) = -4. If the closest integer is desired, call fl_round()
before calling fl_to_slong().

to
ulong

unsigned long fl_to_ulong(const float_type *arg);

Converts a floating-point number to a Neuron C unsigned long integer
(range 0 to 65,535). Truncation is towards zero. For example,
fl_to_ulong(4.56) = 4. If the closest integer is desired, call fl_round()
before calling fl_to_ulong().

to
s32

void fl_to_s32(const float_type *arg1, void *arg2);

Converts a floating-point number to a signed 32-bit integer (range
±2,147,483,647). The second argument is the address of a four-byte
array, compatible with the signed 32-bit integer type s32_type.
Truncation is towards zero. For example, fl_to_s32(-4.56) = -4. If the
closest integer is desired, call fl_round() before calling fl_to_s32().

from
slong

void fl_from_slong(signed long arg1, float_type *arg2);

Converts a Neuron C signed long integer (range -32,768 to +32,767) to a
floating-point number.

from
ulong

void fl_from_ulong(unsigned long arg1,
 float_type *arg2);

Converts a Neuron C unsigned long integer (range 0 to +65,535) to a
floating-point number.

from
s32

void fl_from_s32(const void *arg1, float_type *arg2);

Converts a signed 32-bit number (range ±2,147,483,647) to a floating-
point number. The first argument is the address of a four-byte array.

Conversion of Floating-Point to ASCII
String
Table 26 on page 76 lists the conversion functions for floating-point numbers to
ASCII strings.

Neuron C Reference Guide 75

Table 26. Conversions of Floating-Point Numbers to ASCII Strings

Short
Name Function

to
ascii

void fl_to_ascii(const float_type *arg1, char *arg2,
 int decimals, unsigned buf_size);

Converts a floating-point number *arg1 to an ASCII string followed by a
terminating NUL character. The decimals value is the required
number of decimal places after the point. The buf_size value is the
length of the output buffer pointed to by arg2, including the terminating
null. If possible, the number is converted using non-scientific notation,
for example [-]xxx.xxxxx. If the result would not fit in the buffer
provided, the number is converted using scientific notation, for example
[-]x.xxxxxxE[-]nn. This function uses repeated multiplication and
division, and can be time-consuming, depending on the input data. If
decimals is 0, the buffer includes a trailing decimal point. If decimals is
-1, there is no trailing decimal point. The number is rounded to the
specified precision.

Example: Converting the number -12.34567, with a buf_size of 10.

decimals output string

5 -12.34567

4 -12.3457

3 -12.346

2 -12.35

1 -12.3

0 -12.

-1 -12

to
ascii
fmt

void fl_to_ascii_fmt(const float_type *arg1, char *arg2,
 int decimals, unsigned buf_size,
 format_type format);

Converts the *arg1 floating-point number to an ASCII string followed
by a terminating null. This function operates in the same way as
fl_to_ascii(), except that the caller specifies the output format. The
format parameter can be set to FMT_DEFAULT, FMT_FIXED or
FMT_SCIENTIFIC to specify the default conversion (same as
fl_to_ascii()), non-scientific notation or scientific notation respectively.

76 Functions

Conversion of ASCII String to Floating-
Point
Table 27 lists the conversion functions for an ASCII srtring to a floating-point
number.

Table 27. Conversions of ASCII Strings to Floating-Point Numbers

Short
Name Function

from
ascii

void fl_from_ascii(const char *arg1, float_type *arg2);

Converts an ASCII string to a floating-point number. The conversion
stops at the first invalid character in the input buffer—there is no error
notification. The acceptable format is the following:

[+/-][xx][.][xxxxx][E/e[+/-]nnn]

Examples:

0, 1, .1, 1.2, 1E3, 1E-3, -1E1

There should be no more than nine significant digits in the mantissa
portion of the number, or else the results are unpredictable. A
significant digit is a digit following any leading zeroes.

Embedded spaces within the number are also not allowed. This routine
uses repeated multiplication and division, and can be time-consuming,
depending on the input data.

Examples:

0.00123456789E4 // is acceptable

123.4567890 // is not acceptable

123 E4 // is not acceptable

The value 123.4567890 is not acceptable because it has 10 significant
digits, and the value 123 E4 is not acceptable because it has an
embedded space.

Floating-Point Performance
Table 28 lists times in milliseconds for the various functions in the floating-point
library. They were measured using a Series 3100 Neuron Chip with a 10 MHz
input clock. These values scale with faster or slower input clocks. The
measurements are maximums and averages over random data logarithmically
distributed in the range 0.001 to 1,000,000.

Table 28. Floating-Point Function Performance

Function Maximum Average

Add 0.56 0.36

Subtract 0.71 0.5

Neuron C Reference Guide 77

Function Maximum Average

Multiply 1.61 1.33

Divide 2.43 2.08

Square Root 10.31 8.89

Multiply/Divide by two 0.15 0.13

Maximum 0.61 0.53

Minimum 0.66 0.60

Integer Floor 0.25 0.21

Integer Ceiling 0.92 0.63

Integer Rounding 1.17 1.01

Integer Truncation 0.23 0.17

Negation 0.10 0.08

Absolute Value 0.10 0.08

Arithmetic Comparison 0.18 0.09

Conversion to ASCII 22.37 12.49

Conversion from ASCII 27.54 22.34

Conversion to 16-bit
integer

2.84 1.03

Conversion from 16-bit
integer

2.58 0.75

Conversion to 32-bit
integer

5.60 2.71

Conversion from 32-bit
integer

0.99 0.72

Random number
generation

2.43 0.43

Sign of number 0.02 0.02

78 Functions

Using the NXT Neuron C Extended Arithmetic
Translator

You can use the NXT Neuron C Extended Arithmetic Translator to create
initializers for signed 32-bit integers and floating-point variables in a Neuron C
program. To use the NXT translator, open a Windows command prompt and
enter the following command:

nxt input-file output-file

(where input-file contains Neuron C variable definitions)

The source file can contain only one variable per line. Initializers of float_type,
and SNVT_<xxx>_f variables are converted appropriately.

The output file is generated with properly converted initializers. Unaffected lines
are output unchanged. The output file can be included in a Neuron C application
with the #include directive. The output file is overwritten if it exists and was
generated originally by this program.

In some cases, such as for structs and typedefs, the translator cannot identify
signed 32-bit or floating-point initializers. These can be identified by adding ‘s’ or
‘S’ (for signed 32-bit integers), or ‘f' or 'F' (for floating-point values) to the end of
the constant.

As an example, if the input file contains the following statements:
s32_type var1 = 12345678;
struct_type var2 = {0x5, "my_string", 3333333S};
float_type var1 = 3.66;
struct_type var2 = {5.66f, 0x5, "my_string"};

then the output file will contain the following:
s32_type var1 = {0x00,0xbc,0x61,0x4e} /* 12345678 */;
struct_type var2 = {0x5,
 "my_string", {0x00,0x32,0xdc,0xd5} /* 3333333 */};

float_type var1 = {0,0x40,0,0x6a,0x3d71} /* 3.66 */;
struct_type var2 = {{0,0x40,1,0x35,0x1eb8} /* 5.66 */, 0x5,
 "my_string"};

Note: Users of the NodeBuilder Development Tool can also use Code Wizard to
generate initializer data for s32_type and float_type network variables or
configuration properties.

Function Directory

The following sections list the Neuron C functions alphabetically, providing
relevant syntax information and a detailed description of each function.

abs() Built-in Function
The abs() built-in function returns the absolute value of a. The argument a can
be of short or long type. The return type is unsigned short if a is short, or
unsigned long if a is long.

Neuron C Reference Guide 79

Syntax
type abs (a);

Example
int i;
long l;

void f(void)
{
 i = abs(-3);
 l = abs(-300);
}

access_address() Function
The access_address() function returns a const pointer to the address structure
that corresponds to the index parameter. This pointer can be stored, used to
perform a structure copy, or used in other ways common to C pointers, except
that the pointer cannot be used for writes.

See the ISO/IEC 14908 (ANSI/EIA/CEA-709.1) Control Network Specification for
a description of the data structure.

Syntax
#include <access.h>
const address_struct *access_address (unsigned index);

Example
#include <access.h>
address_struct addr_copy;

void f(void)
{
 addr_copy = *(access_address(2));
}

access_alias() Function
The access_alias() function returns a const pointer to the alias structure that
corresponds to the index parameter. This pointer can be stored, used to perform
a structure copy, or used in other ways common to C pointers, except that the
pointer cannot be used for writes.

The Neuron 3120 Chip with version 4 firmware does not support aliasing.

See the ISO/IEC 14908 (ANSI/EIA/CEA-709.1) Control Network Specification for
a description of the data structure.

Series 6000 chips and version 21 Neuron firmware introduce support for an
extended address table, which requires a extended alias configuration structure
to accommodate the potentially larger address table index associated with the

80 Functions

alias. The standard Neuron C access.h include file defines both the traditional
alias configuration structure and the extended form (alias_struct,
alias_struct_ex). An ALIAS_STRUCT_TYPE preprocessor definition is supplied
which equates to the correct type of the alias configuration structure for the
current compilation target.

Syntax
#include <access.h>
const ALIAS_STRUCT_TYPE *access_alias (unsigned index);

Example
#include <access.h>
ALIAS_STRUCT_TYPE alias_copy;
void f(void)
{
 alias_copy = *(access_alias(2));
}

access_domain() Function
The access_domain() function returns a const pointer to the domain structure
that corresponds to the index parameter. This pointer can be stored, used to
perform a structure copy, or used in other ways common to C pointers, except
that the pointer cannot be used for writes.

See the ISO/IEC 14908 (ANSI/EIA/CEA-709.1) Control Network Specification for
a description of the data structure.

Syntax
#include <access.h>
const domain_struct *access_domain (unsigned index);

Example
#include <access.h>
domain_struct domain_copy;

void f(void)
{
 domain_copy = *(access_domain(0));
}

access_nv() Function
The access_nv() function returns a const pointer to the network variable
configuration structure that corresponds to the index parameter. This pointer
can be stored, used to perform a structure copy, or used in other ways common to
Neuron C pointers, except that the pointer cannot be used for writes.

Neuron C Reference Guide 81

See the ISO/IEC 14908 (ANSI/EIA/CEA-709.1) Control Network Specification for
a description of the data structure.

Series 6000 chips and version 21 Neuron firmware introduce support for an
extended address table, which requires a extended network variable
configuration structure to accommodate the potentially larger address table
index associated with the network variable. The standard Neuron C access.h
include file defines both the traditional network variable configuration structure
and the extended form (nv_struct, nv_struct_ex). An NV_STRUCT_TYPE
preprocessor definition is supplied which equates to the correct type of the
network variable configuration structure for the current compilation target.

Syntax
#include <access.h>
const NV_STRUCT_TYPE *access_nv (unsigned index);

Example
#include <access.h>
network output SNVT_amp nvoAmpere;
NV_STRUCT_TYPE nv_copy;

void f(void)
{
 nv_copy = *(access_nv(nv_table_index(nvoAmpere));
}

addr_table_index() Built-in Function
The addr_table_index() built-in function is used to determine the address
table index of a message tag as allocated by the Neuron C compiler. The
returned value is in the range of 0 to 14.

The Neuron C compiler does not allow this function to be used for a non-bindable
message tag (that is, a message tag declared with the bind_info(nonbind)
option).

Syntax
unsigned int addr_table_index (message-tag);

Example
unsigned mt_index;
msg_tag my_mt;

void f(void)
{
 mt_index = addr_table_index(my_mt);
}

82 Functions

ansi_memcpy() Function
The ansi_memcpy() function copies a block of len bytes from src to dest. It
returns the first argument, which is a pointer to the dest memory area. This
function cannot be used to copy overlapping areas of memory, or to write into
EEPROM or flash memory.

The ansi_memcpy() function as implemented here conforms to the ANSI
definition for memcpy(), as it returns a pointer to the destination array. See
memcpy() for a non-conforming implementation (does not have a return value),
which is a more efficient implementation if the return value is not needed. See
also ansi_memset(), eeprom_memcpy(), memccpy(), memchr(),
memcmp(), memcpy(), and memset().

Syntax
#include <mem.h>
void *ansi_memcpy (void *dest, void *src, unsigned long len);

Example
#include <mem.h>

unsigned buf[40];
unsigned *p;

void f(void)
{
 p = ansi_memcpy(buf, "Hello World", 11);
}

ansi_memset() Function
The ansi_memset() function sets the first len bytes of the block pointed to by p
to the character c. It also returns the value p. This function cannot be used to
write into EEPROM or flash memory.

The ansi_memset() function as implemented here conforms to the ANSI
definition for memset(), as it returns the pointer p. See memset() for a non-
conforming implementation (does not have a return value), which is a more
efficient implementation if the return value is not needed. See also
ansi_memcpy(), eeprom_memcpy(), memccpy(), memchr(), memcmp(),
and memcpy().

Syntax
#include <mem.h>
void *ansi_memset (void *p, int c, unsigned long len);

Example
#include <mem.h>

unsigned target[20];

Neuron C Reference Guide 83

unsigned *p;

void f(void)
{
 p = ansi_memset(target, 0, 20);
}

application_restart() Function
The application_restart() function restarts the application program running
on the application processor only. The network, MAC, and interrupt processors
are unaffected. When an application is restarted, the when(reset) event
becomes TRUE.

Recommendation: For applications that include interrupt tasks, call
interrupt_control(0) to suspend the interrupt processing prior to restarting the
application.

Syntax
#include <control.h>
void application_restart (void);

Example
#define MAX_ERRS 50 int error_count;
...
when (error_count > MAX_ERRS)
{
 application_restart();
}

bcd2bin() Built-in Function
The bcd2bin() built-in function converts a binary-coded decimal structure to a
binary number. The structure definition is built into the compiler. The most
significant digit is d1. Note that d1 should always be 0.

Syntax
unsigned long bcd2bin (struct bcd *a);

struct bcd {
 unsigned d1:4,
 d2:4,
 d3:4,
 d4:4,
 d5:4,
 d6:4;
};

Example
void f(void)

84 Functions

{
 struct bcd digits;
 unsigned long value;

 memset(&digits, 0, 3);
 digits.d3=1;
 digits.d4=2;
 digits.d5=3;
 digits.d6=4;
 value = bcd2bin(&digits);
 //value now contains 1234
}

bin2bcd() Built-in Function
The bin2bcd() built-in function converts a binary number to a binary-coded
decimal structure.

Syntax
void bin2bcd (unsigned long value, struct bcd *p);

For a definition of struct bcd, see bcd2bin, above.

Example
void f(void)
{
 struct bcd digits;
 unsigned long value;
 ...
 value = 1234;
 bin2bcd(value, &digits);
 // digits.d1 now contains 0
 // digits.d2 now contains 0
 // digits.d3 now contains 1
 // digits.d4 now contains 2
 // digits.d5 now contains 3
 // digits.d6 now contains 4
}

clear_status() Function
The clear_status() function clears a subset of the information in the status
structure (see the retrieve_status() function on page 138). The information
cleared is the statistics information, the reset cause register, and the error log.

Syntax
#include <status.h>
void clear_status (void);

Neuron C Reference Guide 85

Example
when (timer_expires(statistics_reporting_timer))
{
 retrieve_status(status_ptr); // get current statistics
 report_statistics(status_ptr); // check it all out
 clear_status();
}

clr_bit() Function
The clr_bit() function clears a bit in a bit array pointed to by array. Bits are
numbered from left to right in each byte, so that the first bit in the array is the
most significant bit of the first byte in the array. Like all arrays in C, this first
element corresponds to index 0 (bitnum 0). When managing a number of bits
that are all similar, a bit array can be more code-efficient than a series of
bitfields because the array can be accessed using an array index rather than
separate lines of code for each bitfield. See also the set_bit() function and the
tst_bit() function.

Syntax
#include <byte.h>
void clr_bit (void *array, unsigned bitnum);

Example
#include <byte.h>

unsigned short a[4];

void f(void)
{
 memset(a, 0xFF, 4); // Sets all bits
 clr_bit(a, 4); // Clears a[0] to 0xF7 (5th bit)
}

crc8() Function
The crc8() function iteratively calculates an 8-bit cyclic redundancy check (CRC)
over an array of data using the following polynomial:

1458 +++ xxx

This function is useful in conjunction with the support for the Touch I/O model,
but can also be used whenever a CRC is needed.

Syntax
#include <stdlib.h>
unsigned crc8 (unsigned crc, unsigned new-data);

86 Functions

Example
#include <stdlib.h>

unsigned data[SIZE];

void f(void)
{
 unsigned i; // Or 'unsigned long' depending on SIZE
 unsigned crc = 0;
 for (i = 0; i < SIZE; ++i) {
 // Combine partial CRC with next data byte
 crc = crc8(crc, data[i]);
 }
}

crc16() Function
The crc16() function iteratively calculates a 16-bit cyclic redundancy check
(CRC) over an array of data bytes using the following polynomial:

121516 +++ xxx

This function is useful in conjunction with the support for the Touch I/O model,
but can also be used whenever a CRC is needed.

Syntax
#include <stdlib.h>
unsigned long crc16 (unsigned long crc, unsigned new_data);

Example
#include <stdlib.h>

unsigned data[SIZE];

void f(void)
{
 unsigned i; // Or 'unsigned long' depending on SIZE
 long crc = 0;
 for (i = 0; i < SIZE; ++i) {
 // Combine partial CRC with next data value
 crc = crc16(crc, data[i]);
 }
}

Neuron C Reference Guide 87

crc16_ccitt() Function
The crc16_ccitt() function iteratively calculates a 16-bit Comité Consultatif
International Téléphonique et Télégraphique1 (CCITT) cyclic redundancy check
(CRC) over an array of data bytes using the following polynomial:

151216 +++ xxx

Apart from using a different polynomial, this function differs from the crc16()
function in that this function operates on a data array, which is generally faster.

This function is useful in conjunction with the support for the Touch I/O model,
but can also be used whenever a CRC is needed.

Syntax
#include <stdlib.h>

extern system far unsigned long crc16_ccitt (unsigned long crc_in,
const unsigned *sp, unsigned len);

crc-in Specifies the input seed for the CRC calculation.

sp Specifies a pointer to the buffer that contains the data to
be checked.

len Specifies the length of the data buffer, 1 to 255 bytes. A
value of 0 represents 256 bytes.

Example
#include <stdlib.h>

unsigned data[SIZE];

void f(void)
{
 long seed = 0x04C1;
 long crc crc16_ccitt(seed, *data, SIZE);
}

delay() Function
The delay() function allows an application to suspend processing for a given
time. This function provides more precise timing than can be achieved with
application timers.

Table 29 lists the formulas for determining the duration of the delay.

1 International Telegraph and Telephone Consultative Committee.

88 Functions

Table 29. Delay Values for Various System Clock Rates

Series 3100
Input Clock

Series 5000
and 6000
System
Clock Delay (in microseconds)

— 80 MHz 0.0375*(max(1,min(65535,count*16))*42+221)

— 40 MHz 0.075*(max(1,min(65535,count*8))*42+204)

— 20 MHz 0.15*(max(1,min(65535,count*4))*42+187)

40 MHz — 0.15*(max(1,min(65535,count*4))*42+176)

— 10 MHz 0.3*(max(1,min(65535,count*2))*42+170)

20 MHz — 0.3*(max(1,min(65535,count*2))*42+159)

— 5 MHz 0.6*(max(1,count)*42+139)

10 MHz — 0.6*(max(1,count)*42+128)

6.5536 MHz — 0.9155*((max(1,floor(count/2))*42+450)

5 MHz — 1.2*((max(1,floor(count/2))*42)+155)

2.5 MHz — 2.4*((max(1,floor(count/4))*42)+172)

1.25 MHz — 4.8*((max(1,floor(count/8))*42)+189)

625 kHz — 9.6*((max(1,floor(count/16))*42)+206)

For example, for a Series 3100 device with a 10 MHz input clock, the formula
above yields durations in the range of 88.8 microseconds to 840 milliseconds by
increments of 25.2 microseconds. Using a count greater than 33,333 (for a Series
3100 device at 10 MHz) could cause the watchdog timer to time out. See also the
scaled_delay() function, which generates a delay that scales with the input
clock.

Note: Because of the multiplier used by delay(), and because the watchdog
timer timeout scales with the input clock (for Series 3100 devices), there is the
potential for a watchdog timeout at 20 MHz and 40 MHz operation. The
maximum inputs to delay() for Series 3100 devices are 16666 at 20 MHz and
8333 at 40 MHz. Timing intervals greater than the watchdog interval must be
done through software timers or through a user routine that calls delay() and
watchdog_update() in a loop. Also see msec_delay().

Syntax
void delay (unsigned long count);

Neuron C Reference Guide 89

count A value between 1 and 33333. The formula for
determining the duration of the delay is based on the
count parameter and the input clock (see above).

Example
IO_4 input bit io_push_button;
boolean debounced_button_state;

when(io_changes(io_push_button))
{
 delay(400); //delay approx. 10ms at any clock rate
 debounced_button_state=(boolean)io_in(io_push_button);
}

eeprom_memcpy() Function
The eeprom_memcpy() function copies a block of len bytes from src to dest. It
does not return any value. This function supports destination addresses that
reside in EEPROM or flash memory, where the normal memcpy() function does
not. This function supports a maximum length of 255 bytes.

See also ansi_memcpy(), ansi_memset(), memccpy(), memchr(),
memcmp(), memcpy(), and memset().

Syntax
void eeprom_memcpy (void *dest, void *src, unsigned short len);

Example
#pragma relaxed_casting_on
eeprom far unsigned int widget[100];
far unsigned int ram_buf[100];

void f(void)
{
 eeprom_memcpy(widget, ram_buf, 100);
}

Because the compiler regards a pointer to a location in EEPROM or FLASH as a
pointer to constant data, #pragma relaxed_casting_on must be used to allow
for the const attribute to be removed from the first argument, using an implicit
or explicit cast operation. A compiler warning still occurs as a result of the const
attribute being removed by cast operation. See the discussion of the
eeprom_memcpy() function in the Memory Management chapter of the Neuron
C Programmer's Guide.

error_log() Function
The error_log() function writes the error number into a dedicated location in
EEPROM. Network tools can use the Query Status network diagnostic command

90 Functions

to read the last error. The NodeBuilder Neuron C debuggers maintain a log of
the last 25 error messages.

The Neuron Tools Errors Guide lists the error numbers that are used by the
Neuron Chip firmware. These are in the range 128 ... 255. The application can
use error numbers 1 ... 127.

Syntax
#include <control.h>
void error_log (unsigned int error_num);

error_num A decimal number between 1 and 127 representing an
application-defined error.

Example
#define MY_ERROR_CODE 1
...
when (nv_update_fails)
{
 error_log(MY_ERROR_CODE);
}

fblock_director() Built-in Function
The fblock_director() built-in function calls the director function associated
with the functional block whose global index is index. If the index is out of range,
or the functional block does not have a director function, the fblock_director()
built-in function does nothing except return. Otherwise, it calls the director
function associated with the functional block specified, passes the cmd parameter
on to that director function, and returns when the called director function
completes.

Syntax
void fblock_director (unsigned int index, int cmd);

index A decimal number between 0 and 254 representing a
functional block global index.

cmd A decimal number between –128 and 127, interpreted as
an application-specific command.

Example
void f(void)
{
 fblock_director(myFB::global_index, 3);
}

Floating-Point Support Functions
void fl_abs (const float_type *arg1, float_type *arg2);

Neuron C Reference Guide 91

void fl_add (const float_type *arg1, const float_type *arg2, float_type
*arg3);

void fl_ceil (const float_type *arg1, float_type *arg2);

int fl_cmp (const float_type *arg1, const float_type *arg2);

void fl_div (const float_type *arg1, const float_type *arg2, float_type
*arg3);

void fl_div2 (const float_type *arg1, float_type *arg2);

void fl_eq (const float_type *arg1, const float_type *arg2);

void fl_floor (const float_type *arg1, float_type *arg2);

void fl_from_ascii (const char *arg1, float_type *arg2);

void fl_from_s32 (const void *arg1, float_type *arg2);

void fl_from_slong (signed long arg1, float_type *arg2);

void fl_from_ulong (unsigned long arg1, float_type *arg2);

void fl_ge (const float_type *arg1, const float_type *arg2);

void fl_gt (const float_type *arg1, const float_type *arg2);

void fl_le (const float_type *arg1, const float_type *arg2);

void fl_lt (const float_type *arg1, const float_type *arg2);

void fl_max (const float_type *arg1, const float_type *arg2, float_type
*arg3);

void fl_min (const float_type *arg1, const float_type *arg2, float_type
*arg3);

void fl_mul (const float_type *arg1, const float_type *arg2, float_type
*arg3);

void fl_mul2 (const float_type *arg1, float_type *arg2);

void fl_ne (const float_type *arg1, const float_type *arg2);

void fl_neg (const float_type *arg1, float_type *arg2);

void fl_rand (float_type *arg1);

void fl_round (const float_type *arg1, float_type *arg2);

int fl_sign (const float_type *arg1);

void fl_sqrt (const float_type *arg1, float_type *arg2);

void fl_sub (const float_type *arg1, const float_type *arg2, float_type
*arg3);

void fl_to_ascii (const float_type *arg1, char *arg2, int decimals,
 unsigned buf-size);

void fl_to_ascii_fmt (const float_type *arg1, char *arg2, int decimals,
 unsigned buf-size, format_type format);

void fl_to_s32 (const float_type *arg1, void *arg2);

signed long fl_to_slong (const float_type *arg2);

92 Functions

unsigned long fl_to_ulong (const float_type *arg2);

void fl_trunc (const float_type *arg1, float_type *arg2);

These functions are described in Floating-Point Support Functions on page 68.

flush() Function
The flush() function causes the Neuron firmware to monitor the status of all
outgoing and incoming messages.

The flush_completes event becomes TRUE when all outgoing transactions have
been completed and no more incoming messages are outstanding. For
unacknowledged messages, “completed” means that the message has been fully
transmitted by the MAC layer. For acknowledged messages, “completed” means
that the completion code has been processed. In addition, all network variable
updates must be propagated before the flush can be considered complete.

Syntax
#include <control.h>
void flush (boolean comm_ignore);

comm_ignore Specify TRUE if the Neuron firmware should ignore any
further incoming messages. Specify FALSE if the Neuron
firmware should continue to accept incoming messages.

Example
boolean nothing_to_do;
...
when (nothing_to_do)
{
 // Getting ready to sleep
 ...
 flush(TRUE);
}

when (flush_completes)
{
 // Go to sleep
 nothing_to_do = FALSE;
 sleep();
}

flush_cancel() Function
The flush_cancel() function cancels a flush in progress.

Syntax
#include <control.h>
void flush_cancel (void);

Neuron C Reference Guide 93

Example
boolean nothing_to_do;
...
when (nv_update_occurs)
{
 if (nothing_to_do) {
 // was getting ready to sleep but received an input NV
 nothing_to_do = FALSE;
 flush_cancel();
 }
}

flush_wait() Function
The flush_wait() function causes an application program to enter preemption
mode, during which all outstanding network variable and message transactions
are completed. When a program switches from asynchronous to direct event
processing, flush_wait() is used to ensure that all pending asynchronous
transactions are completed before direct event processing begins.

During preemption mode, only pending completion events (for example,
msg_completes or nv_update_fails) and pending response events (for example,
resp_arrives or nv_update_occurs) are processed. When this processing is
complete, flush_wait() returns. The application program can now process
network variables and messages directly and need not concern itself with
outstanding completion events and responses from earlier transactions.

Syntax
#include <control.h>
void flush_wait (void);

Example
msg_tag TAG1;
network output SNVT_volt nvoVoltage;

when (...)
{
 msg_out.tag = TAG1;
 msg_out.code = 3;
 msg_send();
 flush_wait();

 nvoVoltage = 3;
 while (TRUE) {
 post_events();
 if (nv_update_completes(nvoVoltage)) break;
 }
}

when (msg_completes(TAG1))
{
 ...

94 Functions

}

get_current_nv_length() Function
The get_current_nv_length() function returns the currently defined length of
a network variable in bytes, given the global index, netvar-index, of that network
variable. This is useful when working with changeable-type network variables.

In Neuron C Version 2.3, the get_current_nv_length() API is functionally
equivalent to reading the nv_len property. Earlier versions of Neuron C limited
the nv_len property to changeable-type network variables.

Syntax
unsigned int get_current_nv_length (unsigned int netvar-index);

netvar-index The global index for the network variable whose current
length is required. The global index can be obtained
through the global_index property, or through the
nv_table_index() built-in function.

Example
SCPTnvType cp_family cp_info(reset_required) nvType;
const SCPTmaxNVLength cp_family nvMaxLength;
network output changeable_type SNVT_volt_f nvoVolt
 nv_properties {
 nvType,
 nvMaxLength = sizeof(SNVT_volt_f)
};

void f(void)
{
 unsigned currentLength =
 get_current_nv_length(nvoVolt::global_index);
}

Recommendation: Use the sizeof() operator to obtain the length of a network
variable that is not a changeable type, or to obtain the length of the initial type of
a changeable type network variable.

With Neuron C version 2.3 or better, you can use the nv_len property or the
get_current_nv_length() API to obtain the current length of all network variables,
regardless of their changeable-type attribute.

get_declared_nv_length() Function
This API is added with version 2.3 of the Neuron C language.

The get_declared_nv_length() function returns the initial length of a network
variable in bytes, given its global index, netvar-index. The function returns 255
(0xFF) to indicate that the declared (initial) length of the given network variable
should be obtained from the nv_fixed system data structure instead.

This API is used in the implementation of changeable-type network variables on
applications which implement where larger than 31 byte network variables.

Neuron C Reference Guide 95

Syntax
unsigned int get_declared_nv_length (unsigned int netvar-index);

netvar-index The global index for the network variable whose current
length is required. The global index can be obtained
through the global_index property, or through the
nv_table_index() built-in function.

Example
#pragma system_image_extensions nv_length_override

unsigned _RESIDENT get_nv_length_override(unsigned nvIndex)

{

#if defined(_SUPPORT_LARGE_NV)
 unsigned uResult = get_declared_nv_length(nvIndex);
#else
 unsigned uResult = 0xFF;
#endif

 // TO DO: add code to return the current length of the network variable

 // with index "nvIndex."

 // Example code follows:

 //

 // switch (nvIndex) {

 // case nviChangeableNv::global_index:

 // if (nviChangeableNv::cpNvType.type_category != NVT_CAT_INITIAL

 // && nviChangeableNv::cpNvType.type_category != NVT_CAT_NUL) {

 // uResult = nviChangeableNv::cpNvType.type_length;

 // }

 // break;

 // } // switch

 return uResult;

}

Recommendation: Use the sizeof() operator to obtain the length of a network
variable that is not a changeable type, or to obtain the length of the initial type of
a changeable type network variable.

get_fblock_count() Built-in Function
The get_fblock_count() built-in function is a compiler special function that
returns the number of functional block (fblock) declarations in the program. For
an array of functional blocks, each element counts as a separate fblock
declaration.

96 Functions

Syntax
unsigned int get_fblock_count (void);

Example
unsigned numFBs;

void f(void)
{
 numFBs = get_fblock_count();
}

get_nv_count() Built-in Function
The get_nv_count() built-in function is a special compiler function that returns
the number of network variable declarations in the program. For each network
variable array, each element counts as a separate network variable.

Syntax
unsigned int get_nv_count (void);

Example
network input SNVT_time_stamp nviTimeStamp[4];
unsigned numNVs;

void f(void)
{
 numNVs = get_nv_count(); // Returns ‘4’ in this case
}

get_tick_count() Function
The get_tick_count() function returns the current system time. The tick
interval, in microseconds, is defined by the literal TICK_INTERVAL. This
function is useful for measuring durations of less than 50 ms for a Series 3100
device at 40 MHz. For Series 3100 devices, the tick interval scales with the input
clock. For Series 5000 and 6000 devices, the tick interval is fixed at (0.5 *
TICK_INTERVAL).

Syntax
unsigned int get_tick_count (void);

Example
void f(void)
{
 unsigned int start, delta;

Neuron C Reference Guide 97

 start = get_tick_count();
 ...
 delta = get_tick_count() - start;
}

go_offline() Function
The go_offline() function takes an application offline. This function call has the
same effect on the device as receiving an Offline network management message.
The offline request takes effect as soon as the task that called go_offline() exits.
When that task exits, the when(offline) task is executed and the application
stops.

When an Online network management message is received, the when(online)
task is executed and the application resumes execution.

When an application goes offline, all outstanding transactions are terminated.
To ensure that any outstanding transactions complete normally, the application
can call flush_wait() in the when(offline) task.

Syntax
#include <control.h>
void go_offline (void);

Example
boolean maintenanceMode;

...

when (maintenanceMode)
{
 go_offline();
}

when (offline)
{
 // process shut-down command
 flush_wait();
 io_out(maintenanceLed, 0);
}

when (online) {
 ...
 // re-start suspended operation, I/O devices,
 // interrupts, etc
 io_out(maintenanceLed, 1);
}

go_unconfigured() Function
The go_unconfigured() function puts the device into an unconfigured state. It
also overwrites all the domain information, which clears authentication keys as
well.

98 Functions

The go_unconfigured() function can be used after detecting and logging a
serious, unrecoverable error. Some security devices also call this function when
they detect a attempt to tamper with the device, and thus render the device
inoperational and erase the secret authentication keys.

Syntax
#include <control.h>
void go_unconfigured (void);

Example
void f() {
 ...
 if (unrecoverable) {
 error_log(MY_UNRECOVERABLE_ERROR);
 go_unconfigured();
 }
}

high_byte() Built-in Function
The high_byte() built-in function extracts the upper single-byte value from the
a double-byte operand. This function operates without regard to signedness. See
also low_byte(), make_long(), and swap_bytes().

Syntax
unsigned short high_byte (unsigned long a);

Example
short b;
long a;

void f(void)
{
 a = 258; // Hex value 0x0102
 b = high_byte(a); // b now contains the value 0x01
}

interrupt_control() Built-in Function
The interrupt_control() built-in function enables or disables interrupts. You
can call the interrupt_control() function at any time to enable or disable one
or more of the three interrupt types: I/O interrupts, timer/counter interrupts, or
periodic system timer interrupts. This function applies only to the hardware
interrupts provided by Series 5000 and 6000 devices, and is only available to an
application that defines at least one interrupt task.

If you need to disable or enable all interrupts at the same time, you can also use
the io_idis() function to disable interrupts and the io_iena() function to enable
interrupts.

Neuron C Reference Guide 99

The Neuron C Compiler automatically generates the interrupt_control() function
when your application defines at least one interrupt task. Note that the compiler
does not generate this API unnecessarily; if you use conditional compilation to
control inclusion or exclusion of interrupt tasks in your application, you should
use the same conditional compilation conditions to control calls to the
interrupt_control() API.

Syntax
void interrupt_control(unsigned irqSelect);

irqSelect Specifies the type of interrupts to enable. You can use the
following predefined symbols to specify the interrupt type:
#define INTERRUPT_IO 0x03
#define INTERRUPT_TC 0x0C
#define INTERRUPT_REPEATING 0x10

A value of zero disables all interrupts. A value of -1 (0xFF) enables all interrupt
tasks defined within the application. You can enable and disable interrupts at
any time, as required for your application, but you cannot enable an interrupt
type for which your application does not define an interrupt task.

All interrupts are disabled after device reset. An application that uses interrupts
must enable these interrupts when it is ready, typically towards the end of the
reset task. Enable interrupts only when the device is in the online state.

The function prototype and predefined symbols are defined within the
<echelon.h> header file. The Neuron C compiler automatically includes this file
for every application; you do not need to include it explicitly.

Example
#include "status.h"

when(reset) {
 // query node status:
 status_struct status;
 retrieve_status(&status);

 // proceed with device initialization:
 ...

 // enable interrupt system if configured and online:
 if (status.status_node_state == 0x04) {
 interrupt_control(INTERRUPT_IO | INTERRUPT_REPEATING);
 }
}

when(offline) {
 interrupt_control(0);
}

when(online) {
 interrupt_control(INTERRUPT_IO | INTERRUPT_REPEATING);
}

100 Functions

io_change_init() Built-in Function
The io_change_init() built-in function initializes the I/O object for the
io_changes event. If this function is not used, the I/O object’s initial reference
value defaults to 0.

Syntax
void io_change_init (input-io-object-name [, init-value]);

input-io-object-name Specifies the I/O object name, which corresponds to
io-object-name in the I/O declaration.

init-value Sets the initial reference value used by the io_changes
event. If this parameter is omitted, the object’s current
value is used as the initial reference value. This
parameter can be short or long as needed.

Example
IO_4 input ontime signal;

when (reset)
{
 // Set comparison value for 'signal'
 // to its current value
 io_change_init(signal);
}
...
when (io_changes(signal) by 10)
{
 ...
}

io_edgelog_preload() Built-in Function
The io_edgelog_preload() built-in function is optionally used with the edgelog
I/O model. The value parameter defines the maximum value, in units of the clock
period, for each period measurement, and can be any value from 1 to 65535. If
the period exceeds the maximum value, the io_in() call is terminated.

The default maximum value is 65535, which provides the maximum timeout
condition. By setting a smaller maximum value with this function, a Neuron C
program can shorten the length of the timeout condition. This function need only
be called once, but can be called multiple times to change the maximum value.
The function can be called from a when(reset) task to automatically reduce the
maximum count after every start-up.

If a preload value is specified, it must be added to the value returned by io_in().
The resulting addition could cause an overflow, but this is normal.

Syntax
void io_edgelog_preload (unsigned long value);

Neuron C Reference Guide 101

value A value between 1 and 65535 defining the maximum
value for each period measurement.

Example
IO_4 input edgelog elog;

when (reset)
{
 io_edgelog_preload(0x4000); // One fourth timeout
 // value: 16384
}

io_edgelog_single_preload() Built-in Function
The io_edgelog_single_preload() built-in function is optionally used with the
edgelog I/O model when declared with the single_tc option keyword. The value
parameter defines the maximum value, in units of the clock period, for each
period measurement, and can be any value from 1 to 65535. If the period exceeds
the maximum value, the io_in() call is terminated.

The default maximum value is 65535, which provides the maximum timeout
condition. By setting a smaller maximum value with this function, a Neuron C
program can shorten the length of the timeout condition. This function need only
be called once, but can be called multiple times to change the maximum value.
The function can be called from a when(reset) task to automatically reduce the
maximum count after every start-up.

If a preload value is specified, it must be added to the value returned by io_in().
The resulting addition could cause an overflow, but this is normal.

Syntax
void io_edgelog_single_preload (unsigned long value);

value A value between 1 and 65535 defining the maximum
value for each period measurement.

Example
IO_4 input edgelog single_tc elog;

when (reset)
{
 io_edgelog_single_preload(0x4000);
 // One fourth timeout value: 16384
}

io_idis() Function
For Series 3100 devices, the io_idis() function disables the I/O interrupt used in
the hardware support for the sci and spi I/O models. You can turn off interrupts
when going offline or to assure that other time-critical application functions are
not disturbed by SCI or SPI interrupts.

102 Functions

For Series 5000 and 6000 devices, the io_idis() function disables all application
interrupts. This function does not affect the I/O interrupt used in the hardware
support for the sci and spi I/O models.

Syntax
void io_idis (void);

Example
when (...)
{
 io_idis();
}

io_iena() Function
For Series 3100 devices, the io_iena() function enables the I/O interrupt used in
the hardware support for the sci and spi I/O models. You can turn off interrupts
when going offline or to assure that other time-critical application functions are
not disturbed by SCI or SPI interrupts.

For Series and 6000 devices, the io_iena() function enables all application
interrupts. This function does not affect the I/O interrupt used in the hardware
support for the sci and spi I/O models.

Syntax
void io_iena (void);

Example
when (...)
{
 io_iena();
}

io_in() Built-in Function
The io_in() built-in function reads data from an input object.

The <io_types.h> include file contains optional type definitions for each of the
I/O object types. The type names are the I/O object type name followed by “_t”.
For example bit_t is the type name for a bit I/O object.

The data type of the return-value is listed below for each object type.

Object Type Returned Data Type

bit input unsigned short

bitshift input unsigned long

byte input unsigned short

Neuron C Reference Guide 103

dualslope input unsigned long

edgelog input unsigned short

i2c unsigned short

infrared input unsigned short

leveldetect input unsigned short

magcard input signed short

magcard_generic input unsigned long

magtrack1 input unsigned short

muxbus input unsigned short

neurowire master void

neurowire slave unsigned short

nibble input unsigned short

ontime input unsigned long

parallel void

period input unsigned long

pulsecount input unsigned long

quadrature input signed long

serial input unsigned short

spi unsigned short

totalcount input unsigned long

touch void

wiegand input unsigned short

Syntax
return-value io_in (input-io-object-name [, args]);

return-value The value returned by the function. See below for details.

input-io-object-name The I/O object name, which corresponds to io-object-name
in the I/O declaration.

args Arguments, which depend on the I/O object type, as
described below. Some of these arguments can also
appear in the I/O object declaration. If specified in both
places, the value of the function argument overrides the
declared value for that call only. If the value is not
specified in either the function argument or the
declaration, the default value is used.

General
For all input objects except those listed below, the syntax is:

104 Functions

io_in (input-obj);

The type of the return-value of the io_in() call is listed in the table above.

bitshift
For bitshift input objects, the syntax is:

io_in (bitshift-input-obj [, numbits]);

numbits The number of bits to be shifted in, from 1 to 127. Only
the last 16 bits shifted in are returned. The unused bits
are 0 if fewer than 16 bits are shifted in.

edgelog
For edgelog input objects, the syntax is:

io_in (edgelog-input-obj, buf, count);

buf A pointer to a buffer of unsigned long values.

count The maximum number of values to be read.

The io_in() call has an unsigned short return-value that is the actual number
of edges logged.

ic2
For i2c I/O objects, the syntax is:

io_in (i2c-io-obj, buf, addr, count);

io_in (i2c-io-obj, buf, addr, count, stop);

buf A (void *) pointer to a buffer.

addr An unsigned short int I2C device address.

count The number of bytes to be transferred.

stop A Boolean value to specify whether the stop condition is
asserted after the transfer.

The io_in() call has a boolean return-value that indicates whether the transfer
succeeded (TRUE) or failed (FALSE).

infrared
For infrared input objects, the syntax is:

io_in (infrared-obj, buf, ct, v1, v2);

buf A pointer to a buffer of unsigned short values.

ct The maximum number of bits to be read.

v1 The maximum period value (an unsigned long). See the
I/O model description in the I/O Model Reference.

v2 The threshold value (an unsigned long). See the
infrared I/O model description in the I/O Model
Reference.

Neuron C Reference Guide 105

The io_in() call has an unsigned short return-value that is the actual number
of bits read.

magcard
For magcard input objects, the syntax is:

io_in (magcard-input-obj, buf);

buf A pointer to a 20 byte buffer of unsigned short bytes,
which can contain up to 40 hex digits, packed 2 per byte.

The io_in() call has a signed short return-value that is the actual number of
hex digits read. A value of -1 is returned in case of error.

magcard_bitstream
For magcard_bitstream input objects, the syntax is:

io_in (magcard-bitstream-input-obj, buf, count);

buf A pointer to a buffer of unsigned short bytes, sufficient
to hold the number of bits (packed 8-per-byte) to be read.

count The number of data bits to be read.

The io_in() call has an unsigned long return-value that is the actual number of
data bits read. This value is either identical to the count argument, or a smaller
number that indicates a timeout event occurred during the read.

magtrack1
For magtrack1 input objects, the syntax is:

io_in (magtrack1-input-obj, buf);

buf A pointer to a 78 byte buffer of unsigned short bytes,
which each contain a 6-bit character with parity stripped.

The io_in() call has an unsigned short return-value that is the actual number
of characters read.

muxbus
For muxbus I/O objects, the syntax is:

io_in (muxbus-io-obj [, addr]);

addr An optional address to read. Omission of the address
causes the firmware to reread the last address read or
written (muxbus is a bi-directional I/O device).

neurowire
For neurowire I/O objects, the syntax is:

io_in (neurowire-io-obj, buf, count);

buf A (void *) pointer to a buffer.

count The number of bits to be read.

106 Functions

The io_in() call has an unsigned short return-value signifying the number of
bits actually transferred for a neurowire slave object. For other neurowire I/O
object types, the return-value is void. See the Driving a Seven Segment Display
with the Neuron Chip engineering bulletin (part number 005-0014-01) for more
information.

parallel
For parallel I/O objects, the syntax is:

io_in (parallel-io-obj, buf);

buf A pointer to the parallel_io_interface structure.

serial
For serial input objects, the syntax is:

io_in (serial-input-obj, buf, count);

buf A (void *) pointer to a buffer.

count The number of bytes to be read (from 1 to 255).

spi
For spi I/O objects, the syntax is:

io_in (spi-io-obj, buf, len);

buf A pointer to a buffer of data bytes for the bidirectional
data transfer.

len An unsigned short number of bytes to transfer.

The io_in() function has an unsigned short return-value that indicates the
number of bytes transferred on the previous transfer. Calling io_in() for a spi
object is the same as calling io_out(). In either case, the data in the buffer is
output and simultaneously replaced by new input data.

touch
For touch I/O objects, the syntax is:

io_in (touch-io-obj, buf, count);

buf A (void *) pointer to a buffer.

count The number of bytes to be transferred.

wiegand
For wiegand input objects, the syntax is:

io_in (wiegand-obj, buf, count);

buf An (unsigned *) pointer to a buffer.

count The number of bits to be read (from 1 to 255).

Neuron C Reference Guide 107

Example
IO_0 input bit d0;
boolean value;
...
void f(void)
{
 value = io_in(d0);
}

io_in_request() Built-in Function
The io_in_request() built-in function is used with a dualslope I/O object to
start the dualslope A/D conversion process.

Syntax
void io_in_request (input-io-object-name, control-value);

input-io-object-name Specifies the I/O object name, which corresponds to
io-object-name in the I/O declaration. This built-in
function is used only for dualslope and sci I/O models.

control-value An unsigned long value used to control the length of the
first integration period. See the descriptions of the
dualslope and sci I/O objects in the I/O Model Reference
for more information.

Example 1
IO_4 input dualslope ds;
stimer repeating t;

when (online)
{
 t = 5; // Do a conversion every 5 sec
}

when (timer_expires(t))
{
 io_in_request(ds, 40000);
}

The io_in_request() is used with a sci I/O object to start the serial transfer.

Example 2
#pragma specify_io_clock "10 MHz"
IO_8 sci baud(SCI_2400) iosci;
unsigned short buf[20];

when (...)
{
 io_in_request(iosci, buf, 20);
}

108 Functions

io_out() Built-in Function
The io_out() built-in function writes data to an I/O object.

The <io_types.h> include file contains optional type definitions for each of the
I/O object types. The type names are the I/O object type name followed by “_t”.
For example bit_t is the type name for a bit I/O object. The data type of output-
value is listed below for each object type.

Object Type Output Value Type

bit output unsigned short

bitshift output unsigned long (also, see below)

byte output unsigned short

edgedivide output unsigned long

frequency output unsigned long

i2c (see below)

infrared_pattern output (see below)

muxbus output unsigned short

neurowire master (see below)

neurowire master void (also, see below)

neurowire slave (see below)

neurowire slave unsigned short (also, see below)

nibble output unsigned short

oneshot output unsigned long

parallel (see below)

pulsecount output unsigned long

pulsewidth output unsigned short

sci Not applicable

serial output (see below)

spi unsigned short

stretchedtriac unsigned short

touch (see below)

triac output unsigned long

triggeredcount output unsigned long

Syntax
return-value io_out (output-io-object-name, output-value [, args]);

return-value The value returned by the function. void for all models
except i2c (for which return-value is a Boolean value).

Neuron C Reference Guide 109

output-io-object-name Specifies the I/O object name, which corresponds to
io-object-name in the I/O declaration.

output-value Specifies the value to be written to the I/O object.

args Arguments, which depend on the object type, as described
below. Some of these arguments can also appear in the
object declaration. If specified in both places, the value of
the function argument overrides the declared value for
that call only. If the value is not specified in either the
function argument or the declaration, the default value is
used.

General
For all output objects except those listed below, the syntax is:

io_out (output-obj, output-value);

The type of the output-value of the io_out() call is listed in the table above.

bitshift
For bitshift output objects, the syntax is:

io_out (bitshift-output-obj , output-value [, numbits]);

numbits The number of bits to be shifted out, from 1 to 127. After
16 bits, zeros are shifted out.

i2c
For i2c I/O objects, the syntax is:

io_out (i2c-io-obj, buf, addr, count);

io_out (i2c-io-obj, buf, addr, count, stop);

buf A (void *) pointer to a buffer.

addr An unsigned int I2C device address.

count The number of bits to be written (from 1 to 255).

stop A Boolean value to specify whether the stop condition is
asserted after the transfer.

infrared_pattern
For infrared_pattern output objects, the syntax is:

io_out (infrared-pattern-obj, freqOut, timing-table, count);

freqOut An unsigned long value that selects the output-frequency.

timing-table An array of unsigned long timing values.

count An unsigned short value specifying the number of entries
in the timing table. The number of values in the table,
and therefore the count value, must be an odd number.
See the detailed description of the infrared_pattern I/O

110 Functions

model in the I/O Model Reference for a detailed
explanation of this restriction.

muxbus
For muxbus I/O objects, the syntax is:

io_out (muxbus-io-obj, [addr,] data);

addr An optional address to write (from 0 to 255). Omission of
the address causes the firmware to rewrite the last
address read or written (muxbus is a bi-directional I/O
device).

data A single byte of data to write.

neurowire
For neurowire I/O objects, the syntax is:

io_out (neurowire-io-obj, buf, count);

buf A (void *) pointer to a buffer.

count The number of bits to be written (from 1 to 255).

Calling io_out() for a neurowire output object is the same as calling io_in().
In either case, data is shifted into the buffer from pin IO_10.

parallel
For parallel I/O objects, the syntax is:

io_out (parallel-io-obj, buf);

buf A pointer to the parallel_io_interface structure.

serial
For serial output objects, the syntax is:

io_out (serial-output-obj, buf, count);

buf A (void *) pointer to a buffer.

count The number of bytes to be written (from 1 to 255).

spi
For spi I/O objects, the syntax is:

io_out (spi-io-obj, buf, len);

buf A pointer to a buffer of data bytes for the bidirectional
data transfer.

len An unsigned short number of bytes to transfer.

Calling io_out() for a spi object is the same as calling io_in(). In either case, the
data in the buffer is output and simultaneously replaced by new input data.

Neuron C Reference Guide 111

touch
For touch I/O objects, the syntax is:

io_out (touch-io-obj, buf, count);

buf A (void *) pointer to a buffer.

count The number of bits to be written (from 1 to 255).

Example
boolean value;
IO_0 output bit d0;

void f(void)
{
 io_out(d0, value);
}

io_out_request() Built-in Function
The io_out_request() built-in function is used with the parallel I/O object and
the sci I/O object.

The io_out_request() sets up the system for an io_out() on the specified
parallel I/O object. When the system is ready, the io_out_ready event becomes
TRUE and the io_out() function can be used to write data to the parallel port.
See Chapter 2, Focusing on a Single Device, of the Neuron C Programmer's Guide
for more information.

Syntax
void io_out_request (io-object-name);

io-object-name Specifies the I/O object name, which corresponds to
io-object-name in the I/O object’s declaration.

Example 1
when (...)
{
 io_out_request(io_bus);
}

The io_out_request() is used with a sci I/O object to start the serial transfer.

Example 2
IO_8 sci baud(SCI_2400) iosci;
unsigned short buf[20];

when (...)
{
 io_out_request(iosci, buf, 20);
}

112 Functions

io_preserve_input() Built-in Function
The io_preserve_input() built-in function is used with an input timer/counter
I/O object. If this function is not called, the Neuron firmware discards the first
reading on a timer/counter object after a reset (or after a device on the
multiplexed timer/counter is selected using the io_select() function because the
data might be suspect due to a partial update). Calling the
io_preserve_input() function prior to the first reading, either by an io_in() or
implicit input, overrides the discard logic.

The io_preserve_input() call can be placed in a when (reset) clause to
preserve the first input value after reset. The call can be used immediately after
an io_select() call to preserve the first value after select.

Syntax
void io_preserve_input (input-io-object-name);

input-io-object-name Specifies the I/O object name that corresponds to
io-object-name in the I/O declaration. This built-in
function is only applicable to input timer/counter I/O
objects.

Example
IO_5 input ontime ot1;
IO_6 input ontime ot2;
unsigned long variable1;

when (io_update_occurs(ot1))
{
 variable1 = input_value;
 io_select(ot2);
 io_preserve_input(ot2);
}

io_select() Built-in Function
The io_select() built-in function selects which of the multiplexed pins is the
owner of the timer/counter circuit, and optionally specifies a clock for the I/O
object. Input to one of the timer/counter circuits can be multiplexed among pins
4 to 7. The other timer/counter input is dedicated to pin 4.

When io_select() is used, the I/O object automatically discards the first value
obtained.

Syntax
void io_select (input-io-object-name [, clock-value]);

input-io-object-name The I/O object name that corresponds to
io-object-name in the I/O declaration. This built-in
function is used only for the following timer/counter input
objects:

Neuron C Reference Guide 113

 infrared
ontime
period
pulsecount
totalcount

clock-value Specifies an optional clock value, in the range 0 to 7, or a
variable name for the clock. This value permanently
overrides a clock value specified in the object’s
declaration. The clock value option can only be specified
for the infrared, ontime, and period objects.

Example
IO_5 input ontime pcount1;
IO_6 input ontime pcount2;
unsigned long variable1;

when (io_update_occurs(pcount_1))
{
 variable1 = input_value;
 // select next I/O object
 io_select(pcount_2);
}

io_set_baud() Built-in Function
The io_set_baud() built-in function allows an application to optionally change
the baud rate for an SCI device. The SCI device optionally has an initial bit rate
setting from its declaration.

See also Chapter 2, Compiler Directives, on page 21, for information about the
specify_io_clock compiler directive.

Syntax
void io_set_baud (io-object-name, baud-rate);

io-object-name The I/O object name that corresponds to io-object-name in
the I/O declaration. This built-in function is used only for
sci I/O objects.

baud-rate The serial bit rate through use of the enumeration values
found in the <io_types.h> include file. These
enumeration values are SCI_300, SCI_600, SCI_1200,
SCI_2400, SCI_4800, SCI_9600, SCI_19200, SCI_38400,
SCI_57600, and SCI_115200. The enumeration values
select serial bit rates of 300, 600, 1200, 2400, 4800, 9600,
19200, 38400, 57600, and 115200, respectively.

Example
IO_8 sci baud(SCI_2400) iosci;

when (...)

114 Functions

{
 io_set_baud(iosci, SCI_38400);
 // Optional baud change
}

io_set_clock() Built-in Function
The io_set_clock() built-in function allows an application to specify an
alternate clock value for any input or output timer/counter object that permits a
clock argument in its declaration syntax. The objects are listed below:

 dualslope
 edgelog
 frequency
 infrared
 oneshot
 ontime
 period
 pulsecount
 pulsewidth
 stretchedtriac
 triac

For multiplexed inputs, use the io_select() function to specify an alternate
clock.

When io_set_clock() is used, the I/O object automatically discards the first
value obtained.

You can call this function at any time. However, if your application specifies an
alternate clock value, it must call this function within the reset task and after
each call to the io_select() function.

Syntax
void io_set_clock (io-object-name, clock-value);

io-object-name The I/O object name that corresponds to io-object-name in
the I/O declaration. This built-in function is used only for
timer/counter I/O objects.

clock-value Required clock selector value in the range of 0 to 7 (for
Series 3100 devices) or 0 to 15 (for Series 5000 and 6000
devices), or a variable name for the clock. This value
overrides a clock value specified in the object’s
declaration.

You can use a TCCLK_* macro value from <echelon.h>
to specify the clock selector value. For Series 3100
devices, you can use the macros whose values are in the
range 0..7; for Series 5000 and 6000 devices, you can use
any of the macros (values 0..15) for increased clock
resolution.

However, for Series 5000 and 6000 devices, you cannot
specify a value that defines a clock rate that is higher

Neuron C Reference Guide 115

than one-half of the device’s system clock. For example, if
your system clock rate is 20 MHz, you can specify any
TCCLK_* macro that defines a 10 MHz or lower clock
rate (that is, you cannot specify TCCLK_40MHz or
TCCLK_20MHz – no error is issued, but the effective
value used in this case is TCCLK_10MHz).

Example
IO_1 output pulsecount clock(3) pcout;

when(...)
{
 io_set_clock(pcout, 5);
 // equivalent to io_set_clock(pcout, TCCLK_156k2Hz);
 ...
}

io_set_direction() Built-in Function
The io_set_direction() built-in function allows the application to change the
direction of any bit, nibble, or byte type I/O pin at runtime. The dir parameter
is optional. If not provided, io_set_direction() sets the direction based on the
direction specified in the declaration of io-object-name.

A program can define multiple types of I/O objects for a single pin. When
directions conflict and a timer/counter object is defined, the direction of the
timer/counter object is used, regardless of the order of definition. However, if the
program uses the io_set_direction() function for such an object, the direction is
changed as specified.

To change the direction of overlaid I/O objects, at least one of the objects must be
one of the allowed types for io_set_direction() and that I/O object must be used
to change directions, even if the subsequent I/O object used is a different one.

For example, if you overlaid a bit input with a oneshot output, you only can use
the bit I/O object with io_set_direction() to change the direction from input to
output, thus enabling the oneshot output.

Any io_changes events requested for input objects can trigger when the object is
redirected as an output, because the Neuron firmware returns the last value
output on an output object as the input value. Thus, the user might want to
qualify io_changes events with flags maintained by the program to indicate the
current direction of the device.

Syntax
typedef enum {IO_DIR_IN=0, IO_DIR_OUT=1} io_direction;
void io_set_direction (io-object-name, [io_direction dir]);

io-object-name The I/O object name that corresponds to io-object-name in
the I/O declaration. This built-in function is used only for
direct I/O objects such as bit, nibble, and byte.

dir An optional direction, using a value from the
io_direction enum shown above. If omitted, uses the

116 Functions

declared direction of the I/O device to set the pin
direction.

Example
IO_0 output bit b0;
IO_0 input byte byte0;
int read_byte;

void f(void)
{
 io_set_direction(b0, IO_DIR_OUT);
 io_out(b0, 0);
 io_set_direction(byte0); // Defaults to IO_DIR_IN
 read_byte = io_in(byte0);
}

io_set_terminal_count() Built-in Function
The io_set_terminal_count() built-in function allows the application to change
the terminal count for the stretched triac I/O object at runtime. This function
allows a device to:

• Have a single application for both 50 Hz and 60 Hz power domains

• Operate at a non-standard power line frequency

• Provide higher-than-typical tolerances to changes in frequency

The application can determine the current values for frequency at runtime, and
use this function to adjust the triac on-time as needed.

See the I/O Model Reference for more information about the stretched triac
model.

Syntax
void io_set_terminal_count (io-object-name, terminal_count);

io-object-name The I/O object name that corresponds to io-object-name in
the I/O declaration. This built-in function is used only for
the stretchedtriac direct I/O object.

terminal_count A value from 0 to 193 for triac devices running with 50 Hz
AC power, or a value from 0 to 160 for triac devices
running with 60 Hz AC power. This value represents the
amount of stretching for the triac trigger pulse within the
half-cycle. Specify this value to calibrate the triac device.

Example
IO_0 output stretchedtriac sync (IO_5) frequency(60)
ioTriac;

when (...) {
 io_out(ioTriac, 160); // full on
}

Neuron C Reference Guide 117

when (...) {
 io_out(ioTriac, 80); // half on
}

when (...) {
 io_out(ioTriac, 0); // full off
}

is_bound() Built-in Function
The is_bound() built-in function indicates whether the specified network
variable or message tag is connected (bound). The function returns TRUE if the
network variable or message tag is connected, otherwise it returns FALSE.

Typically, the function is used to override error detection algorithms. Many
actuators, for example, are configured to receive updates to input network
variables periodically for new values, or for re-sent values (heartbeats). Failing
such updates for a period of time might constitude an error for such an
application, but the device cannot expect such an update if its network variables
(or message tags) are not yet bound.

The is_bound() function can be used to detect this case, and prevent entering
the error condition.

For network variables, is_bound() returns TRUE if the network variable
selector value is less than 0x3000. For message tags, is_bound() returns TRUE
if the message tag has a valid address in the address table.

Syntax
boolean is_bound (net-object-name);

net-object-name Either a network variable name or a message tag.

Example
mtimer update_monitor;

network input cp SCPTmaxSentTime cpMaxSendTime;
network input SNVT_color nviColor nv_properties {
 cpMaxSendTime
};

...

when(timer_expires(update_monitor))
{
 if (is_bound(nviColor) && nviColor::cpMaxSendTime)
 {
 heartbeat_failure();
 update_monitor = nviColor::cpMaxSendTime * 100ul;
 }
}

118 Functions

low_byte() Built-in Function
The low_byte() built-in function extracts the lower single-byte value from the
double-byte operand a. This function operates without regard to signedness. See
also high_byte(), make_long(), and swap_bytes().

Syntax
unsigned short low_byte (unsigned long a);

Example
short b;
long a;

void f(void)
{
 a = 258; // Hex value 0x0102
 b = low_byte(a); // b now contains the value 0x02
}

make_long() Built-in Function
The make_long() built-in function combines the low-byte and high-byte single-
byte values to make a double-byte value. This function operates without regard
to signedness of the operands. See also high_byte(), low_byte(), and
swap_bytes().

Syntax
unsigned long make_long (unsigned short low-byte,
 unsigned short high-byte);

Example
short a, b;
long l;

void f(void)
{
 a = 16; // Hex value 0x10
 b = -2; // Hex value 0xFE
 l = make_long(a, b); // l now contains 0xFE10
 l = make_long(b, a); // l now contains 0x10FE
}

max() Built-in Function
The max() built-in function compares a and b and returns the larger value. The
result type is determined by the types of a and b, as shown in Table 30 on page
120.

Neuron C Reference Guide 119

Table 30. Result Types for the max() Function

Larger Type Smaller Type Result

unsigned long (any) unsigned long

signed long signed long
unsigned short
signed short

signed long

unsigned short unsigned short
signed short

unsigned short

signed short signed short signed short

If the result type is unsigned, the comparison is unsigned, else the comparison
is signed. Arguments can be cast, which affects the result type. When
argument types do not match, the smaller type argument is promoted to the
larger type prior to the operation.

Syntax
type max (a, b);

Example
int a, b, c;
long x, y, z;

void f(void)
{
 a = max(b, c);
 x = max(y, z);
}

Note: The description of the max() function result types and type promotion of
arguments also applies equally to the min() function.

memccpy() Function
The memccpy() function copies len bytes from the memory area pointed to by
src to the memory area pointed to by dest, up to and including the first
occurrence of character c, if it exists. The function returns a pointer to the byte
in dest immediately following c, if c was copied, else memccpy() returns NULL.
This function cannot be used to write to EEPROM or flash memory. See also
ansi_memcpy(), ansi_memset(), eeprom_memcpy(), memchr(),
memcmp(), memcpy(), and memset().

Syntax
#include <mem.h>
void* memccpy (void *dest, const void *src, int c, unsigned long len);

120 Functions

Example
#include <mem.h>

unsigned array1[40];

void f(void)
{
 // Copy up to 40 bytes to array1,
 // but stop if an ASCII “W” value is copied.
 unsigned *p;
 p = memccpy(array1, “Hello World”, ‘W’, sizeof(array1));
}

When the function returns, array1 contains “Hello W”, but no terminating ‘\0’
character, and p points to the 8th byte in the array1 array (following the ‘W’).

memchr() Function
The memchr() function searches the first len bytes of the memory area pointed
to by buf for the first occurrence of character c, if it exists. The function returns a
pointer to the byte in buf containing c, else memchr() returns NULL. See also
ansi_memcpy(), ansi_memset(), eeprom_memcpy(), memccpy(),
memcmp(), memcpy(), and memset().

Syntax
#include <mem.h>
void *memchr (const void *buf, int c, unsigned long len);

Example
#include <mem.h>

unsigned array[40];

void f(void)
{
 unsigned *p;

 // Find the first 0xFF byte, if it exists
 p = memchr(array, 0xFF, sizeof(array));
}

memcmp() Function
The memcmp() function compares the first len bytes of the memory area
pointed to by buf1 to the memory area pointed to by buf2. The function returns 0
if the memory areas match exactly. Otherwise, on the first non-matching byte,
the byte from each buffer is compared using an unsigned comparison. If the byte
from buf1 is larger, then a positive number is returned, else a negative number is
returned. See also ansi_memcpy(), ansi_memset(), eeprom_memcpy(),
memccpy(), memchr(), memcpy(), and memset().

Neuron C Reference Guide 121

Syntax
#include <mem.h>
int memcmp (void *buf1, const void *buf2, unsigned long len);

Example
#include <mem.h>

unsigned array1[40], array2[40];

void f(void)
{
 // See if array1 matches array2
 if (memcmp(array1, array2, sizeof(array1)) != 0) {
 // The contents of the two areas does not match
 }
}

memcpy() Built-in Function
The memcpy() built-in function copies a block of len bytes from src to dest. It
does not return any value. This function cannot be used to copy overlapping
areas of memory, or to write into EEPROM or flash memory. The memcpy()
function can also be used to copy to and from the data fields of the msg_in,
resp_in, msg_out, and resp_out objects.

The memcpy() function as implemented here does not conform to the ANSI C
definition, because it does not return a pointer to the destination array. See
ansi_memcpy() for a conforming implementation. See also ansi_memset(),
eeprom_memcpy(), memccpy(), memchr(), memcmp(), and memset().

Syntax
void memcpy (void *dest, void *src, unsigned long len);

Example
void f(void)
{
 memcpy(msg_out.data, "Hello World", 11);
}

memset() Built-in Function
The memset() built-in function sets the first len bytes of the block pointed to by
p to the character c. It does not return any value. This function cannot be used
to write into EEPROM or flash memory.

The memset() function as implemented here does not conform to the ANSI C
definition, because it does not return a pointer to the array. See ansi_memset()
for a conforming implementation. See also ansi_memcpy(),
eeprom_memcpy(), memccpy(), memchr(), memcmp(), and memcpy().

122 Functions

Syntax
void memset (void *p, int c, unsigned long len);

Example
unsigned target[20];

void f(void)
{
 memset(target, 0, sizeof(target));
}

min() Built-in Function
The min() built-in function compares a and b and returns the smaller value.
The result type is determined by the types of a and b, as described for max() on
page 119.

Syntax
type min (a, b);

Example
int a, b, c;
long x, y, z;

void f(void)
{
 a = min(b, c);
 x = min(y, z);
}

msec_delay() Function
The msec_delay() function allows an application to suspend processing for a
time interval specified by milliseconds. The maximum delay is 255 ms. This
function provides more precise timing than can be achieved with application
timers, and provides an easier way to specify millisecond delays than the
delay() or scaled_delay() functions. See delay() and scaled_delay() for
functions that can delay the application program for a longer duration.

Syntax
void msec_delay(unsigned short milliseconds);

milliseconds A number of milliseconds to delay (max of 255 ms).

Example
IO_4 input bit io_push_button;
boolean debounced_button_state;

Neuron C Reference Guide 123

when (io_changes(io_push_button))
{
 msec_delay(10); // Delay 10ms at any clock rate
 debounced_button_state = (boolean)io_in(io_push_button);
}

msg_alloc() Built-in Function
The msg_alloc() built-in function allocates a nonpriority buffer for an outgoing
message. The function returns TRUE if a msg_out object can be allocated. The
function returns FALSE if a msg_out object cannot be allocated. When this
function returns FALSE, a program can continue with other processing, if
necessary, rather than waiting for a free message buffer.

See Chapter 6, How Devices Communicate Using Application Messages, in the
Neuron C Programmer's Guide for more information about application messages.

Syntax
boolean msg_alloc (void);

Example
void f(void)
{
 if (msg_alloc()) {
 // OK. Build and send message
 ...
 }
}

msg_alloc_priority() Built-in Function
The msg_alloc_priority() built-in function allocates a priority buffer for an
outgoing message. The function returns TRUE if a priority msg_out object can
be allocated. The function returns FALSE if a priority msg_out object cannot be
allocated. When this function returns FALSE, a program can continue with
other processing, if desired, rather than waiting for a free priority buffer.

See Chapter 6, How Devices Communicate Using Application Messages, in the
Neuron C Programmer's Guide for more information about application messages.

Syntax
boolean msg_alloc_priority (void);

Example
void f(void)
{
 if (msg_alloc_priority()) {
 // OK. Build and send message
 ...

124 Functions

 }
}

msg_cancel() Built-in Function
The msg_cancel() built-in function cancels the message currently being built
and frees the associated buffer, allowing another message to be constructed.

If a message is constructed but not sent before the critical section (for example, a
task) is exited, the message is automatically cancelled. This function is used to
cancel both priority and nonpriority messages.

See Chapter 6, How Devices Communicate Using Application Messages, in the
Neuron C Programmer's Guide for more information about application messages.

Syntax
void msg_cancel (void);

Example
void f(void)
{
 if (msg_alloc()) {
 ...
 if (offline()) {
 // Requested to go offline
 msg_cancel();
 } else {
 msg_send();
 }
 }
}

msg_free() Built-in Function
The msg_free() built-in function frees the msg_in object for an incoming
message.

See Chapter 6, How Devices Communicate Using Application Messages, in the
Neuron C Programmer's Guide for more information about application messages.

Syntax
void msg_free (void);

Example
void f(void)
{
...
 if (msg_receive()) {
 // Process message
 ...
 msg_free();

Neuron C Reference Guide 125

 }
...
}

msg_realloc() Function
The msg_realloc () function allows using an input buffer for an outgoing
message. This ensures that propagation of the outgoing message will not enter
preemption mode. However, the maximum size of the outgoing message is
constrained by the applicaiton input buffer size, not the application output buffer
size. Access to the msg_in built-in object is prohibited after successfully calling
the msg_realloc() function until msg_cancel() or msg_send() has been called. The
msg_realloc() function succeeds when at least one input buffer is available.

See Chapter 6, How Devices Communicate Using Application Messages, in the
Neuron C Programmer's Guide for more information about application messages.

Syntax
boolean msg_realloc (void);

msg_receive() Built-in Function
The msg_receive() built-in function receives a message into the msg_in object.
The function returns TRUE if a new message is received, otherwise it returns
FALSE. If no message is pending at the head of the message queue, this function
does not wait for one. A program might need to use this function if it receives
more than one message in a single task, as in bypass mode. If there already is a
received message, the earlier one is discarded (that is, its buffer space is freed).

Note: Because this function defines a critical section boundary, it should never
be used in a when clause expression (that is, it can be used within a task, but not
within the when clause itself). Using it in a when clause expression could result
in events being processed incorrectly.

The msg_receive() function receives all messages in raw form, so that the
online, offline, and wink special events cannot be used. If the program handles
any of these events, it should use the msg_arrives event, rather than the
msg_receive() function.

See Chapter 6, How Devices Communicate Using Application Messages, in the
Neuron C Programmer's Guide for more information about application messages.

Syntax
boolean msg_receive (void);

Example
void f(void)
{
...
 if (msg_receive()){
 // Process message
 ...

126 Functions

 msg_free();
 }
...
}

msg_send() Built-in Function
The msg_send() built-in function sends a message using the msg_out object.

See Chapter 6, How Devices Communicate Using Application Messages, in the
Neuron C Programmer's Guide for more information about application messages.

Syntax
void msg_send (void);

Example
msg_tag motor;
define MOTOR_ON 0
define ON_FULL 1

when (io_changes(switch1)to ON)
{
 // Send a message to the motor
 msg_out.tag = motor;
 msg_out.code = MOTOR_ON;
 msg_out.data[0] = ON_FULL;
 msg_send();
}

muldiv() Function
The muldiv() function permits the computation of (A*B)/C where A, B, and C
are all 16-bit values, but the intermediate product of (A*B) is a 32-bit value.
Thus, the accuracy of the result is improved. There are two versions of this
function: muldiv() and muldivs(). The muldiv() function uses unsigned
arithmetic, while the muldivs() function (see below) uses signed arithmetic.

See also muldiv24() and muldiv24s() for functions which use 24-bit
intermediate accuracy for faster performance.

Syntax
#include <stdlib.h>
unsigned long muldiv (unsigned long A, unsigned long B,
 unsigned long C);

Example
#include <stdlib.h>
unsigned long a, b, c, d;
...

Neuron C Reference Guide 127

void f(void)
{
 d = muldiv(a, b, c); // d = (a*b)/c
}

muldiv24() Function
The muldiv24() function permits the computation of (A*B)/C where A is a 16-bit
value, and B and C are both 8-bit values, but the intermediate product of (A*B) is
a 24-bit value. Thus, the performance of the function is improved while
maintaining the accuracy of the result. There are two versions of this function:
muldiv24() and muldiv24s(). The muldiv24() function uses unsigned
arithmetic, while the muldiv24s() function (see below) uses signed arithmetic.

See also muldiv() and muldivs() for functions which use 32-bit intermediate
accuracy for greater accuracy at the expense of slower performance. You can
always use muldiv24() without loss of precision, compared to muldiv(), if
neither A nor B ever exceeds 256.

Syntax
#include <stdlib.h>
unsigned long muldiv24 (unsigned long A, unsigned int B,
 unsigned int C);

Example
#include <stdlib.h>
unsigned long a, d;
unsigned int b, c;
...

void f(void)
{
 d = muldiv24(a, b, c); // d = (a*b)/c
}

muldiv24s() Function
The muldiv24s() function permits the computation of (A*B)/C where A is a 16-
bit value, and B and C are both 8-bit values, but the intermediate product of
(A*B) is a 24-bit value. Thus, the performance of the function is improved while
maintaining the accuracy of the result. There are two versions of this function:
muldiv24s() and muldiv24(). The muldiv24s() function uses signed
arithmetic, while the muldiv24() function (see above) uses unsigned
arithmetic.

See also muldiv() and muldivs() for functions which use 32-bit intermediate
accuracy for greater accuracy at the expense of slower performance. You can
always use muldiv24s() without loss of precision, compared to muldivs(), if
either A or B always is in the -128..+127 value interval.

128 Functions

Syntax
#include <stdlib.h>
signed long muldiv24s (signed long A, signed int B, signed int C);

Example
#include <stdlib.h>
signed long a, d;
signed int b, c;
...

void f(void)
{
 d = muldiv24s(a, b, c); // d = (a*b)/c
}

muldivs() Function
The muldivs() function permits the computation of (A*B)/C where A, B, and C
are all 16-bit values, but the intermediate product of (A*B) is a 32-bit value.
Thus, the accuracy of the result is improved. There are two versions of this
function: muldivs() and muldiv(). The muldivs() function uses signed
arithmetic, while the muldiv() function (see above) uses unsigned arithmetic.

See also muldiv24() and muldiv24s() for functions which use 24-bit
intermediate accuracy for faster performance.

Syntax
#include <stdlib.h>
signed long muldivs (signed long A, signed long B, signed long C);

Example
#include <stdlib.h>
signed long a, b, c, d;
...

void f(void)
{
 d = muldiv(a, b, c); // d = (a*b)/c
}

node_reset() Function
The node_reset() function resets the Neuron Chip or Smart Transceiver
hardware. When node_reset() is called, all the device’s volatile state
information is lost. Variables declared with the eeprom or config class and the
device’s network image (which is stored in EEPROM) are preserved across resets
and loss of power. The when(reset) event evaluates to TRUE after this function
is called.

Neuron C Reference Guide 129

Syntax
#include <control.h>
void node_reset (void);

Example
#define MAX_ERRORS1 50
#define MAX_ERRORS2 55
int error_count;
...

when(error_count > MAX_ERRORS2)
{
 node_reset();
}

when(error_count > MAX_ERRORS1)
{
 application_restart();
}

nv_table_index() Built-in Function
The nv_table_index() built-in function is used to determine the index of a
network variable as allocated by the Neuron C compiler. The returned value is
limited by the application’s number of static network variables, and is never
more than 61 for devices that are limited to 62 static network variables, or 253
for devices that are limited to 254 static network variables.

The global_index property, introduced in Neuron C Version 2, is equivalent to
the nv_table_index() built-in function. The global_index property is
recommended for new development.

Syntax
int nv_table_index (netvar-name);

netvar-name A network variable name, possibly including an index
expression.

Example
unsigned nv_index;
network output SNVT_lux nvoLux;

void f(void)
{
 nv_index = nv_table_index(nvoLux);
 // Equivalent statement, recommended:
 nv_index = nvoLux::global_index;
}

130 Functions

offline_confirm() Function
The offline_confirm() function allows a device to confirm to a network tool that
the device has finished its clean-up and is now going offline. This function is
normally only used in bypass mode (that is, when the offline event is checked
outside of a when clause). If the program is not in bypass mode, use when
(offline) rather than offline_confirm().

In bypass mode, when the Neuron firmware goes offline using
offline_confirm(), the program continues to run. It is up to the programmer to
determine which events are processed when the Neuron firmware is offline.

Syntax
#include <control.h>
void offline_confirm (void);

Example
void f(void)
{
 ...
 if (offline){
 // Perform offline cleanup
 ...
 offline_confirm();
 }
}

poll() Built-in Function
The poll() built-in function allows a device to request the latest value for one or
more of its input network variables. Any input network variable can be polled at
any time. If an array name without an index is used, then each element of the
array is polled. An individual element can be polled by using an array index.

When writing a Neuron hosted application in Neuron C, the input network
variable does not need to be declared as polled. However, you must declare
input network variables that will use the poll() function, or an equivalent API,
as polled when writing model files for host-based device development.

The new, polled value can be obtained through use of the nv_update_occurs
event.

If multiple devices have output network variables connected to the input network
variables being polled, multiple updates are sent in response to the poll. The
polling device cannot assume that all updates are received and processed
independently. This means it is possible for multiple updates to occur before the
polling device can process the incoming values. To ensure that all values sent are
independently processed, the polling device should declare the input network
variable as a synchronous input.

An input network variable that is polled with the poll() function consumes an
address table entry when it is bound to any output network variables.

Neuron C Reference Guide 131

The device interface file must identify all polled network variables. This
identification occurs automatically, however, a device’s program ID must be
updated if poll() calls are added or deleted from an application.

See also the Initial Value Updates for Input Network Variables section in Chapter
3 of the Neuron C Programmer’s Guide for additional guidance about how to use
the poll() function.

Syntax
void poll ([network-var]);

network-var A network variable identifier, array name, or array
element. If the parameter is omitted, all input network
variables for the device are polled.

Example
network input SNVT_privacyzone nviZone;

 ...
 poll(nviZone);
 ...

when (nv_update_occurs(nviZone))
{
 // New value of nviZone arrived
}

post_events() Function
The post_events() function defines a boundary of a critical section at which
network variable updates and messages are sent and incoming network variable
update and message events are posted.

The post_events() function is called implicitly by the scheduler at the end of
every task body. If the application program calls post_events() explicitly, the
application should be prepared to handle the special events online, offline, and
wink before checking for any msg_arrives event.

The post_events() function can also be used to improve network performance.
See The post_events() Function in Chapter 7, Additional Features, of the
Neuron C Programmer's Guide for a more detailed discussion of this feature.

Syntax
#include <control.h>
void post_events (void);

Example
boolean still_processing;
...
void f(void)
{

132 Functions

 while (still_processing) {
 post_events();
 ...
 }
}

power_up() Function
The power_up() function returns TRUE if the last reset resulted from a power-
up. Any time an application starts up (whether from a reset or from a power-up),
the when(reset) task runs, and you can use this function to determine whether
the start-up resulted from a power-up.

Syntax
#include <status.h>
boolean power_up (void);

Example
when (reset)
{
 if (power_up()) {
 initialize_hardware();
 } else {
 // hardware already initialized
 ...
 }
}

preemption_mode() Function
The preemption_mode() function returns a TRUE if the application is
currently running in preemption mode, or FALSE if the application is not in
preemption mode. Preemption mode is discussed in Chapter 3, How Devices
Communicate Using Network Variables, of the Neuron C Programmer's Guide.

Syntax
#include <status.h>
boolean preemption_mode (void);

Example
void f(void)
{
 if (preemption_mode()) {
 // Take some appropriate action
 ...
 }
}

Neuron C Reference Guide 133

propagate() Built-in Function
The propagate() built-in function allows a device’s application program to
request that the latest value for one or more of its output network variables be
sent out over the network. Any bound (that is, connected) output network
variable can be propagated at any time. Propagating an unbound output
network variable has no effect on the network, allowing the application to run the
exact same code, regardless of whether the network variable is unbound or is
bound to many network variables.

If an array name is used, then each element of the array is propagated. An
individual element can be propagated by using an array index.

Input network variables cannot be propagated, and calls to propagate() for
input network variables have no effect.

This function allows variables to be sent out even if they are declared const, and
are thus in read-only memory (normally a network variable’s value is sent over
the network only when is the application writes a new value to the network
variable). Also, it permits updating a network variable through a pointer, and
then causing the variable to be propagated separately.

Polled output network variables can be propagated with the propagate()
function. However, if an output network variable is declared as polled, but is
also affected by the propagate() function, the polled attribute does not appear
in the device interface (XIF) file. Thus, network tools can handle the network
address assignment for the variable properly. If any member of an array is
propagated, the polled attribute is blocked for all elements of the array. If a
propagate() call appears without arguments, all output variables’ polled
attributes are blocked.

Syntax
void propagate ([network-var]);

network-var A network variable identifier, array name, or array
element. If the parameter is omitted, all output network
variables for the device are propagated.

Example 1
// The pragma permits network variable addresses
// to be passed to functions with non-const pointers,
// with only a warning.

network output UNVT_whatever nvoWhatever;

void f(const UNVT_whatever* p);

when (...)
{
 f(&nvoWhatever); // Process by address in function f
 propagate(nvoWhatever); // Cause NV to be sent out
}

134 Functions

Example 2
network output const eeprom SNVT_address nvoAddress;

// Propagate nvoAddress on request
when (...)
{
 propagate(nvoAddress);
}

random() Function
The random() function returns a random number in the range 0 ... 255. The
random number is seeded using the unique 48-bit Neuron ID. The random()
function is computed from the data on all three CPU buses. If, after each reset,
the random() function is called at exactly the same time, the returned random
number is the same. However, if your device does anything different, based on
I/O processing or messages received, or based on data changes, and so on, the
random number sequence is different.

Syntax
unsigned int random (void);

Example
void f(void)
{
 unsigned value = random();
}

resp_alloc() Built-in Function
The resp_alloc() built-in function allocates an object for an outgoing response.
The function returns TRUE if a resp_out object can be allocated. The function
returns FALSE if a resp_out object cannot be allocated. When this function
returns FALSE, a program can continue with other processing, if necessary,
rather than waiting for a free message buffer.

See Chapter 6, How Devices Communicate Using Application Messages, in the
Neuron C Programmer's Guide for more information about application messages.

Syntax
boolean resp_alloc (void);

Example
when (...)
{
 if (resp_alloc()) {
 // OK. Build and send message
 ...

Neuron C Reference Guide 135

 }
}

resp_cancel() Built-in Function
The resp_cancel() built-in function cancels the response being built and frees
the associated resp_out object, allowing another response to be constructed.

If a response is constructed but not sent before the critical section (for example, a
task) is exited, the response is automatically cancelled. See Chapter 6, How
Devices Communicate Using Application Messages, of the Neuron C
Programmer's Guide for more information.

Syntax
void resp_cancel (void);

Example
void f(void)
{
 if (resp_alloc()) {
 ...
 if (offline()) {
 // Requested to go offline
 resp_cancel();
 } else {
 resp_send();
 }
 }
}

resp_free() Built-in Function
The resp_free() built-in function frees the resp_in object for a response. See
Chapter 6, How Devices Communicate Using Application Messages, of the
Neuron C Programmer's Guide.

Syntax
void resp_free (void);

Example
void f(void)
{
...
 if (resp_receive()) {
 // Process message
 ...
 resp_free();
 }
...
}

136 Functions

resp_receive() Built-in Function
The resp_receive() built-in function receives a response into the resp_in
object. The function returns TRUE if a new response is received, otherwise it
returns FALSE. If no response is received, this function does not wait for one. A
program might need to use this function if it receives more than one response in a
single task, as in bypass mode. If there already is a received response when the
resp_receive() function is called, the earlier one is discarded (that is, its buffer
space is freed).

Note: Because this function defines a critical section boundary, it should never
be used in a when clause expression (that is, it can be used within a task, but not
within the when clause itself). Using it in a when clause expression could result
in events being processed incorrectly.

See Chapter 6, How Devices Communicate Using Application Messages, of the
Neuron C Programmer's Guide for more information.

Syntax
boolean resp_receive (void);

Example
void f(void)
{
...
 if (resp_receive()) {
 // Process message
 ...
 resp_free();
 }
...
}

resp_send() Built-in Function
The resp_send() built-in function sends a response using the resp_out object.
See Chapter 6, How Devices Communicate Using Application Messages, of the
Neuron C Programmer's Guide for more information.

Syntax
void resp_send (void);

Example
define DATA_REQUEST 0
define OK 1

when (msg_arrives(DATA_REQUEST)))
{
 unsigned x, y;
 x = msg_in.data[0];

Neuron C Reference Guide 137

 y = get_response(x);
 resp_out.code = OK;
 // msg_in no longer available
 resp_out.data[0] = y;
 resp_send();
}

retrieve_status() Function
The retrieve_status() function returns diagnostic status information to the
Neuron C application. This information is also available to a network tool over
the network, through the Query Status network diagnostics message. The
status_struct structure, defined in <status.h>, is shown below.

Syntax
#include <status.h>
void retrieve_status (status_struct *p);

typedef struct status_struct {
 unsigned long status_xmit_errors;
 unsigned long status_transaction_timeouts;
 unsigned long status_rcv_transaction_full;
 unsigned long status_lost_msgs;
 unsigned long status_missed_msgs;
 unsigned status_reset_cause;
 unsigned status_node_state;
 unsigned status_version_number
 unsigned status_error_log;
 unsigned status_model_number;
} status_struct;

status_xmit_errors A count of the transmission errors that have been
detected on the network. A transmission error is detected
through a CRC error during packet reception. This error
could result from a collision, noisy medium, or excess
signal attenuation.

status_transaction_timeouts
A count of the timeouts that have occurred in attempting
to carry out acknowledged or request/response
transactions initiated by the device.

status_rcv_transaction_full
The number of times an incoming repeated,
acknowledged, or request message was lost because there
was no more room in the receive transaction database.
The size of this database can be set through a pragma
during compilation (#pragma receive_trans_count).

status_lost_msgs The number of messages that were addressed to the
device and received in a network buffer that were
discarded because there was no application buffer
available for the message. The number of application
buffers can be set through a pragma at compile time
(#pragma app_buf_in_count).

138 Functions

status_missed_msgs The number of messages that were on the network but
could not be received because there was no network buffer
available for the message. The number of network buffers
can be set through a pragma during compilation
(#pragma net_buf_in_count).

status_reset_cause Identifies the source of the most recent reset. The values
for this byte are (x = don’t care):

 Power-up reset 0bxxxxxxx1
External reset 0bxxxxxx10
Watchdog timer reset 0bxxxx1100
Software-initiated reset 0bxxx10100

status_node_state The state of the device. The states are:

 Unconfigured 0x02
Unconfigured/no application 0x03
Configured/online 0x04
Configured/hard-offline 0x06
Configured/soft-offline 0x0C
Configured/bypass-mode 0x8C

status_version_number
The version number, which reflects the Neuron firmware
version.

status_error_log The most recent error logged by the Neuron firmware or
application. A value of 0 indicates no error. An error in
the range of 1 to 127 is an application error and is unique
to the application. An error in the range of 128 to 255 is a
system error (system errors are documented in the
Neuron Tools Errors Guide). The system errors are also
available in the <nm_err.h> include file.

status_model_number
The model number of the Neuron Chip or Smart
Transceiver. The value for this byte is one of the
following:

 0x00 for all Neuron 3150 Chips, and
 for an FT 3150 Smart Transceiver
0x01 for a PL 3150 Smart Transceiver
0x08 for Neuron 3120 Chip
0x09 for Neuron 3120E1 Chip
0x0A for Neuron 3120E2 Chip
0x0B for Neuron 3120E3 Chip
0x0C for Neuron 3120A20 Chip
0x0D for Neuron 3120E5 Chip
0x0E for Neuron 3120E4 Chip
 or an FT 3120 Smart Transceiver
0x0F for a PL 3120 Smart Transceiver
0x11 for a PL 3170 Smart Transceiver
0x20 for an FT 5000 Smart Transceiver
0x21 for a Neuron 5000 Processor
0x24 for an FT 6050 Smart Transceiver

Neuron C Reference Guide 139

0x25 for a Neuron 6050 Chip
0x26 for an FT 6010 Smart Transceiver

Example
For an example of the use of this function, see Chapter 7, Additional Features, of
the Neuron C Programmer's Guide.

reverse() Built-in Function
The reverse() built-in function reverses the bits in a.

Syntax
unsigned int reverse (unsigned int a);

Example
void f(void)
{
 unsigned value = reverse(0xE3);
 // now value is 0xC7
}

rotate_long_left() Function
The rotate_long_left() function returns the bit-rotated value of arg. The bit
positions are rotated the number of places determined by the count argument.
The signedness of the argument does not affect the result. Bits that are rotated
out from the upper end of the value are rotated back in at the lower end. See also
rotate_long_right(), rotate_short_left(), and rotate_short_right().

Syntax
#include <byte.h>
long rotate_long_left (long arg, unsigned count);

Example
#include <byte.h>

void f(void)
{
 long k = rotate_long_left(0x3F00, 3);
 // k now contains 0xF801
}

rotate_long_right() Function
The rotate_long_right() function returns the bit-rotated value of arg. The bit
positions are rotated the number of places determined by the count argument.
The signedness of the argument does not affect the result. Bits that are rotated

140 Functions

out from the lower end of the value are rotated back in at the upper end. See also
rotate_long_left(), rotate_short_left(), and rotate_short_right().

Syntax
#include <byte.h>
long rotate_long_right (long arg, unsigned count);

Example
#include <byte.h>

void f(void)
{
 long k = rotate_long_right(0x3F04, 3);
 // k now contains 0x87E0
}

rotate_short_left() Function
The rotate_short_left() function returns the bit-rotated value of arg. The bit
positions are rotated the number of places determined by the count argument.
The signedness of the argument does not affect the result. Bits that are rotated
out from the upper end of the value are rotated back in at the lower end. See also
rotate_long_left(), rotate_long_right(), and rotate_short_right().

Syntax
#include <byte.h>
short rotate_short_left (short arg, unsigned count);

Example
#include <byte.h>

void f(void)
{
 short s = rotate_short_left(0x3F, 3);
 // s now contains 0xF9
}

rotate_short_right() Function
The rotate_short_right() function returns the bit-rotated value of arg. The bit
positions are rotated the number of places determined by the count argument.
The signedness of the argument does not affect the result. Bits that are rotated
out from the lower end of the value are rotated back in at the upper end. See also
rotate_long_left(), rotate_long_right(), and rotate_short_left().

Neuron C Reference Guide 141

Syntax
#include <byte.h>
short rotate_short_right (short arg, unsigned count);

Example
#include <byte.h>

void f(void)
{
 short s = rotate_short_right(0x3F, 3);
 // s now contains 0xE7
}

scaled_delay() Function
The scaled_delay() function generates a delay that scales with the input clock
for the Neuron Chip or the Smart Transceiver.

The formula for determining the duration of the delay is the following:

delay = (25.2 *count + 7.2) *S (delay is in microseconds)

In the formula above, the scaling factor S is determined by the input clock, as
shown in the following table.

Table 31. Determining S

S

Input Clock Rate

(Series 3100)

System Clock Rate

(Series 5000 and 6000)

0.063 — 80 MHz

0.125 — 40 MHz

0.25 40 MHz 20 MHz

0.5 20 MHz 10 MHz

1 10 MHz 5 MHz

1.5259 6.5536 MHz —

2 5 MHz —

4 2.5 MHz —

8 1.25 MHz —

16 625 kHz —

See also the delay() and msec_delay() functions. The delay() function
generates a delay that is not scaled and is only minimally dependent on the input

142 Functions

clock. The msec_delay() function provides a scaled delay of up to 255
milliseconds.

Syntax
void scaled_delay (unsigned long count);

count A delay value between 1 and 33333. The formula for
determining the duration of the delay is based on count
and the Neuron input clock (see above).

Example
IO_2 output bit software_one_shot;

void f(void)
{
 io_out(software_one_shot, 1);
 //turn it on
 scaled_delay(4);
 //approx. 108 µsec at 10MHz
 io_out(software_one_shot, 0);
 //turn it off
}

sci_abort() Built-in Function
The sci_abort() built-in function terminates any outstanding SCI I/O operation
in progress.

Syntax
void sci_abort (io_object_name);

Example
IO_8 sci twostopbits baud(SCI_2400) iosci;

when (...)
{
 sci_abort(iosci);
}

sci_get_error() Built-in Function
The sci_get_error() built-in function returns a cumulative OR of the bits shown
below to specify data errors. Calling this function clears the SCI error state.

0x04 Framing error
0x08 Noise detected
0x10 Receive overrun detected

Neuron C Reference Guide 143

Syntax
unsigned short sci_get_error (io_object_name);

Example
IO_8 sci twostopbits baud(SCI_2400) iosci;

when (io_out_ready(iosci)) {
 unsigned short sci_error;
 sci_error = sci_get_error(iosci));
 if (sci_error) {
 // Process SCI error
 }
 else {
 // Process end of SCI transmission ...
 }
}

service_pin_msg_send() Function
The service_pin_msg_send() function attempts to send a service pin message.
It returns non-zero if it is successful (queued for transmission in the network
processor) and zero if not. This function is useful for automatic installation
scenarios. For example, a device can automatically transfer its service pin
message a random amount of time after powering up. This is also useful for
devices that do not have a physical service pin, but have some other method for
an installer to request a service pin message.

Syntax
#include <control.h>
int service_pin_msg_send (void);

Example
#include <control.h>

when (...)
{
 ...
 service_pin_msg_send();
}

service_pin_state() Function
The service_pin_state() function allows an application program to read the
service pin state. A state of 0 or 1 is returned. A value of 1 indicates the service
pin is at logic zero. This function is useful for improving ease of installation and
maintenance. For example, an application can check for the service pin being
held low for three seconds following a reset, and then go unconfigured (for ease of
re-installation in a new network).

144 Functions

Syntax
#include <control.h>
int service_pin_state (void);

Example
#include <control.h>

stimer three_sec_timer;

when (reset)
{
 if (service_pin_state()) three_sec_timer = 3;
}

when (timer_expires(three_sec_timer))
{
 if (service_pin_state()) {
 // Service pin still depressed
 // go to unconfigured state
 go_unconfigured();
 }
}

Note this example is functional, but incomplete: the device would go
unconfigured if the service pin is still being pressed after three seconds, or when
it has been released and, by chance, is pressed again when the three seconds
expire. A more robust device would stop the timer when the service pin is being
released, to facilitate the press-and-hold scheme.

set_bit() Function
The set_bit() function sets a bit in a bit array pointed to by array. Bits are
numbered from left to right in each byte, so that the first bit in the array is the
most significant bit of the first byte in the array. Like all arrays in C, this first
element corresponds to index 0 (bitnum 0). When managing a number of bits
that are all similar, a bit array can be more code-efficient than a series of
bitfields because the array can be accessed using an array index rather than
separate lines of code for each bitfield. See also clr_bit() and tst_bit().

Syntax
#include <byte.h>
void set_bit (void *array, unsigned bitnum);

Example
#include <byte.h>

unsigned short a[4];

void f(void)
{

Neuron C Reference Guide 145

 memset(a, 0, 4); // Clears all bits at once
 set_bit(a, 4); // Sets a[0] to 0x08 (5th bit)
}

set_eeprom_lock() Function
The set_eeprom_lock() function allows the application to control the state of
the EEPROM lock. This feature is available only for:

• Neuron 3120xx Chips or FT 3120 Smart Transceivers with system
firmware Version 4 or later

• Neuron 3150 Chips and FT 3150 Smart Transceivers with system
firmware Version 6 or later

• Series 5000 chips and Series 6000 chips

The function enables or disables the lock (with a TRUE or FALSE argument,
respectively).

The EEPROM lock feature reduces the chances that a hardware failure or
application anomaly can lead to a corruption of checksummed onchip EEPROM
or offchip EEPROM or flash memory. The lock is automatically suspended while
a device is offline to allow network management operations to occur. The
application must release the lock prior to performing self-configuration.
Application EEPROM variables are not locked. For more information, including
a discussion of the drawbacks of using this feature, see #pragma
eeprom_locked in Chapter 2, Compiler Directives, on page 21.

Syntax
#include <control.h>
void set_eeprom_lock (boolean lock);

Example
#include <control.h>

when (reset)
{
 // Lock the EEPROM to prevent accidental writes
 set_eeprom_lock(TRUE);
}
...
void f(void)
{
 // Unlock EEPROM for update
 set_eeprom_lock(FALSE);
 ...//Update EEPROM
 //Relock EEPROM
 set_eeprom_lock (TRUE)
 ...
}

146 Functions

Signed 32-bit Arithmetic Support Functions
void s32_abs (const s32_type *arg1, s32_type *arg2);

void s32_add (const s32_type *arg1, const s32_type *arg2, s32_type *arg3);

int s32_cmp (const s32_type *arg1, const s32_type *arg2);

void s32_dec (s32_type *arg1);

void s32_div (const s32_type *arg1, const s32_type *arg2, s32_type *arg3);

void s32_div2 (s32_type *arg1);

void s32_eq (const s32_type *arg1, const s32_type *arg2);

void s32_from_ascii (const char *arg1, s32_type *arg2);

void s32_from_slong (signed long arg1, s32_type *arg2);

void s32_from_ulong (unsigned long arg1, s32_type *arg2);

void s32_ge (const s32_type *arg1, const s32_type *arg2);

void s32_gt (const s32_type *arg1, const s32_type *arg2);

void s32_inc (s32_type *arg1);

void s32_le (const s32_type *arg1, const s32_type *arg2);

void s32_lt (const s32_type *arg1, const s32_type *arg2);

void s32_max (const s32_type *arg1, const s32_type *arg2, s32_type *arg3);

void s32_min (const s32_type *arg1, const s32_type *arg2, s32_type *arg3);

void s32_mul (const s32_type *arg1, const s32_type *arg2, s32_type *arg3);

void s32_mul2 (s32_type *arg1);

void s32_ne (const s32_type *arg1, const s32_type *arg2);

void s32_neg (const s32_type *arg1, s32_type *arg2);

void s32_rand (s32_type *arg1);

void s32_rem (const s32_type *arg1, const s32_type *arg2, s32_type *arg3);

int s32_sign (const s32_type *arg1);

void s32_sub (const s32_type *arg1, const s32_type *arg2, s32_type *arg3);

void s32_to_ascii (const s32_type *arg1, char *arg2);

signed long s32_to_slong (const s32_type *arg1);

unsigned long s32_to_ulong (const s32_type *arg1);

The signed 32-bit arithmetic support functions are part of the extended
arithmetic library. See Signed 32-Bit Integer Support Functions on page 61 for a
detailed explanation of the extended arithmetic support functions that are
available.

sleep() Built-in Function
For Series 3100 devices, the sleep() built-in function puts the Neuron Chip or
Smart Transceiver in a low-power state. The processors are halted, and the

Neuron C Reference Guide 147

internal oscillator is turned off. Any of the three syntactical forms shown below
can be used. The second form uses a declared I/O object’s pin as a wakeup pin.
The third form directly specifies a pin to be used for a wakeup event.

Series 5000 and 6000 devices do not support sleep mode.

The Neuron Chip or Smart Transceiver wakes up when any of the following
conditions occurs:

• A message arrives (unless the COMM_IGNORE flag is set)

• The service pin is pressed

• The specified input object transition occurs (if one is specified)

See also Chapter 7, Additional Features, of the Neuron C Programmer's Guide.

Syntax
void sleep (unsigned int flags);

void sleep (unsigned int flags , io-object-name);

void sleep (unsigned int flags , io-pin);

flags One or more of the following three flags, or 0 if no flag is
specified:

 COMM_IGNORE Causes incoming messages to be
ignored

 PULLUPS_ON Enables all I/O pullup resistors
(the service pin pullup is not
affected)

 TIMERS_OFF Turns off all timers in the
program

 If two or more flags are used, they must be combined
using either the + or the | operator.

io-object-name Specifies an input object for any of the IO_4 through IO_7
pins. When any I/O transition occurs on the specified pin,
the Neuron core wakes up. If neither this parameter nor
the io-pin argument are specified, I/O is ignored after the
Neuron core goes to sleep.

io-pin Specifies one of the IO_4 through IO_7 pins directly
instead of through a declared I/O object.

Example
IO_6 input bit wakeup;
...
when (flush_completes)
{
 sleep(COMM_IGNORE + TIMERS_OFF, wakeup);
}

148 Functions

spi_abort() Function
The spi_abort() built-in function terminates any outstanding SPI I/O operation
in progress.

Syntax
void spi_abort (io-object-name);

Example
IO_8 spi master clock(4) iospi;

when (...)
{
 spi_abort(iospi);
}

spi_get_error() Function
The spi_get_error() built-in function returns a cumulative OR of the bits shown
below to specify data errors. Calling this function clears the SPI error state.

0x10 Mode fault occurred
0x20 Receive overrun detected

Syntax
unsigned short spi_get_error (io-object-name);

Example
IO_8 spi master clock(4) iospi;

when (io_out_ready(iospi)) {
 unsigned short spi_error = spi_get_error(iospi));
 if (spi_error) {
 // Process SPI error
 } else {
 // Process end of SPI transmission ...
 }
}

strcat() Function
The strcat() function appends a copy of the string src to the end of the string
dest, resulting in concatenated strings (thus the name strcat, from string
concatenate). The function returns a pointer to the string dest. See also
strchr(), strcmp(), strcpy(), strlen(), strncat(), strncmp(), strncpy(),
and strrchr().

This function cannot be used to copy overlapping areas of memory, or to write
into EEPROM memory or network variables.

Neuron C Reference Guide 149

Syntax
#include <string.h>
char *strcat (char *dest, const char *src);

Example
#include <string.h>

void f(void)
{
 char buf[40]

 strcpy(buf, "Hello");
 strcat(buf, " World"); // buf contains "Hello World"
 ...
}

strchr() Function
The strchr() function searches the string s for the first occurrence of the
character c. If the string does not contain c, the strchr() function returns the
null pointer. The NUL character terminator ('\0') is considered to be part of the
string, thus strchr(s,'\0') returns a pointer to the NUL terminator. See also
strcat(), strcmp(), strcpy(), strlen(), strncat(), strncmp(), strncpy(),
and strrchr().

Syntax
#include <string.h>
char *strchr (const char *s, char c);

Example
#include <string.h>

void f(void)
{
 char buf[20];
 char *p;

 strcpy(buf, "Hello World");
 p = strchr(buf, 'o'); // Assigns &(buf[4]) to p
 p = strchr(buf, '\0'); // Assigns &(buf[11]) to p
 p = strchr(buf, 'x'); // Assigns NULL to p
}

strcmp() Function
The strcmp() function compares the contents of the s1 and s2 strings, up to the
NUL terminator character in the shorter string. The function performs a case-
sensitive comparison. If the strings match identically, 0 is returned. When a
mismatch occurs, the characters from both strings at the mismatch are

150 Functions

compared. If the first string’s character is greater using an unsigned comparison,
the return value is positive. If the second string's character is greater, the return
value is negative.

The terminating NUL ('\0') character is compared just as any other character.
See also strcat(), strchr(), strcpy(), strlen(), strncat(), strncmp(),
strncpy(), and strrchr().

Syntax
#include <string.h>
int strcmp (const unsigned char *s1, const unsigned char *s2);

Example
#include <string.h>

void f(const unsigned char* test)
{
 int val = strcmp(test, ”magic codeword”);
 if (!val) {
 // Strings are equal
 } else if (val < 0) {
 // String test is less than the magic words
 } else {
 // String test is greater than the magic words
 }
}

strcpy() Function
The strcpy() function copies the string pointed to by the parameter src into the
string buffer pointed to by the parameter dest. The copy ends implicitly, when
the terminating NUL ('\0') character is copied—no string length information is
available to the function. There is no attempt to ensure that the string can
actually fit in the available memory. That task is left up to the programmer. See
also strcat(), strchr(), strcmp(), strlen(), strncat(), strncmp(),
strncpy(), and strrchr().

This function cannot be used to copy overlapping areas of memory, or to write
into EEPROM memory. Use of the compiler directive #pragma
relaxed_casting_on is needed to copy to a network variable, and doing so does
not automatically propagate the network variable update (see the propagate()
function).

Syntax
#include <string.h>
char *strcpy (char *dest, const char *src);

Example
#include <string.h>

Neuron C Reference Guide 151

void f(void)
{
 char s1[20], s2[20];

 strcpy(s1, "Hello World");
 strcpy(s2, s1);
}

strlen() Function
The strlen() function returns the length of the string s, not including the
terminating NUL ('\0') character. See also strcat(), strchr(), strcmp(),
strcpy(), strncat(), strncmp(), strncpy(), and strrchr().

Syntax
#include <string.h>
unsigned long strlen (const char *s);

Example
#include <string.h>

void f(void)
{
 unsigned long length = strlen("Hello, world!");
}

strncat() Function
The strncat() function appends a copy of the first len characters from the string
src to the end of the string dest, and then adds a NUL ('\0') character, resulting
in concatenated strings (thus the name strncat, from string concatenate). If the
src string is shorter than len, no characters are copied past the NUL character.
The function returns a pointer to the string dest. See also strcat(), strchr(),
strcmp(), strcpy(), strlen(), strncmp(), strncpy(), and strrchr().

This function cannot be used to copy overlapping areas of memory, or to write
into EEPROM memory or network variables.

Syntax
#include <string.h>
char *strncat (char *dest, char *src, unsigned long len);

Example
#include <string.h>

void f(void)
{
 char buf[40]

152 Functions

 strncpy(buf, "Hello Beautiful", 16);
 strncat(buf, "World News Tonight", 5);
 // buf now contains "Hello Beautiful World"
}

strncmp() Function
The strncmp() function compares the contents of the s1 and s2 strings, up to the
NUL ('\0') terminator character in the shorter string, or until len characters
have been compared, whichever occurs first. The function performs a case-
sensitive comparison. If the strings match identically, 0 is returned.

When a mismatch occurs, the characters from both strings at the mismatch are
compared. If the first string’s character is greater using an unsigned comparison,
the return value is positive. If the second string’s character is greater, the return
value is negative. The terminating NUL character is compared just as any other
character. See also strcat(), strchr(), strcmp(), strcpy(), strlen(),
strncat(), strncpy(), and strrchr().

Syntax
#include <string.h>
int strncmp (const unsigned char *s1, const unsigned char *s2,
 unsigned long len);

Example
#include <string.h>

void f(const unsigned char* test)
{
 int val = strncmp(test, ”magic “, 6); // Compare first
6 chars
 if (!val) {
 // Strings are equal within the first 6 characters
 } else if (val < 0) {
 // String test is less than “magic “ (first 6 chars)
 } else {
 // String test is greater than “magic “ (first 6
chars)
 }
}

strncpy() Function
The strncpy() function copies the string pointed to by the src parameter into the
string buffer pointed to by the dest parameter. The copy ends either when the
terminating NUL ('\0') character is copied or when len characters have been
copied, whichever comes first.

The function returns dest.

If the copy is terminated by the length, a NUL character is not added to the end
of the destination string. See also strcat(), strchr(), strcmp(), strcpy(),
strlen(), strncat(), strncmp(), and strrchr().

Neuron C Reference Guide 153

This function cannot be used to copy overlapping areas of memory, or to write
into EEPROM memory or network variables.

Syntax
#include <string.h>
char *strncpy (char *dest, const char *src, unsigned long len);

Example
#include <string.h>

char s[20];

void f(char *p)
{
 strncpy(s, p, sizeof(s)); // Prevent overflow
 s[sizeof(s)-1] = '\0'; // Force termination
}

strrchr() Function
The strrchr() function scans a string for the last occurrence of a given
character. The function scans a string in the reverse direction (hence the extra ‘r’
in the name of the function), looking for a specific character. The strrchr()
function finds the last occurrence of the character c in string s. The NUL ('\0')
terminator is considered to be part of the string. The return value is a pointer to
the character found, otherwise null. See also strcat(), strchr(), strcmp(),
strcpy(), strlen(), strncat(), strncmp(), and strncpy().

Syntax
#include <string.h>
char *strrchr (const char *s, char c);

Example
#include <string.h>

void f(void)
{
 char buf[20];
 char *p;

 strcpy(buf, "Hello World");
 p = strrchr(buf, 'o'); // Assigns &(buf[7]) to p
 p = strrchr(buf, '\0'); // Assigns &(buf[11]) to p
 p = strrchr(buf, 'x'); // Assigns NULL to p
}

154 Functions

swap_bytes() Built-in Function
The swap_bytes() built-in function returns the byte-swapped value of a. See
also high_byte(), low_byte(), and make_long().

Syntax
unsigned long swap_bytes (unsigned long a);

Example
long k;

void f(void)
{
 k = swap_bytes(0x1234); // k now contains 0x3412L
}

timers_off() Function
The timers_off() function turns off all software timers. This function could be
called, for example, before an application goes offline.

Syntax
#include <control.h>
void timers_off (void);

Example
when (...)
{
 timers_off();
 go_offline();
}

touch_bit() Built-in Function
The touch_bit() function writes and reads a single bit of data on a 1-Wire® bus.
It can be used for either reading or writing. For reading, the write-data
argument should be one (0x01), and the return value contains the bit as read
from the bus. For writing, the bit value in the write-data argument is placed on
the 1-Wire bus, and the return value normally contains that same bit value, and
can be ignored. This function provides access to the same internal function that
touch_byte() calls.

Syntax
unsigned touch_bit(io-object-name, unsigned write-data);

Neuron C Reference Guide 155

Example
void f(void)
{
 unsigned dataIn, dataOut;
 ...
 dataOut = 42;
 dataIn = touch_bit(ioObj, dataOut);
}

touch_byte() Built-in Function
The touch_byte() function sequentially writes and reads eight bits of data on a
1-Wire bus. It can be used for either reading or writing. For reading, the
write-data argument should be all ones (0xFF), and the return value contains the
eight bits as read from the bus. For writing, the bits in the write-data argument
are placed on the 1-WIRE bus, and the return value normally contains those
same bits.

Syntax
unsigned touch_byte(io-object-name, unsigned write-data);

Example
void f(void)
{
 unsigned dataIn, dataOut;
 ...
 dataOut = 42;
 dataIn = touch_byte(ioObj, dataOut);
}

touch_byte_spu() Built-in Function
This function applies to 1-Wire bus devices that require the bus to be actively
held high during certain device operations. These devices require more current
than a typical external pull-up resistor can provide for device operations. An
example of such a device is the Maxim Integrated Products DS18S20 High-
Precision 1-Wire Digital Thermometer. For other 1-Wire devices, use the
standard touch_byte() function.

The touch_byte_spu() function writes eight bits of data on a 1-Wire bus.
Unlike the standard touch_byte() function, this function cannot be used for
reading data. For writing, the bits in the data argument are placed on the 1-
Wire bus, and the bus is left in the actively driven high state.

Syntax
extern void touch_byte_spu(unsigned pinmask, unsigned data);

pinmask Specifies a single-bit representation for which I/O pins
IO0..IO7 to drive high when idle. Valid values are 0x01
(for IO0) to 0x08 (for IO7).

156 Functions

data Specifies the data to place on the 1-Wire bus.

Example
#define 1WIREPIN 0x02;

void f(void)
{ touch_byte_spu(1WIREPIN, 42);
}

touch_first() Built-in Function
The touch_first() function executes the ROM Search algorithm as described in
application note 937, Book of iButton Standards, from Maxim Integrated
Products. Both functions make use of a search_data_s data structure for
intermediate storage of a bit marker and the current ROM data. This data
structure is automatically defined in Neuron C, regardless of whether a program
references the touch I/O functions.

A return value of TRUE indicates whether a device was found, and if so, that the
data stored at rom_data[] is valid. A FALSE return value indicates no device
found. The search_done flag is set to TRUE when there are no more devices on
the 1-Wire bus. The last_discrepancy variable is used internally, and should
not be modified.

To start a new search, first call touch_first(). Then, as long as the
search_done flag is not set, call touch_next() as many times as are required.
For a Series 3100 device, each call to touch_first() or touch_next() takes 41
ms to execute at 10 MHz (63 ms at 5 MHz) when a device is being read. For a
Series 5000 and 6000 device, each call to touch_first() or touch_next() takes
14 ms to execute at 80 MHz (29 ms at 10 MHz) when a device is being read.

Syntax
int touch_first(io-object-name, search_data *sd);

Example
typedef struct search_data_s {
 int search_done;
 int last_discrepancy;
 unsigned rom_data[8];
} search_data;

search_data sd;

void f(void)
{
 sd.rom_data[0] = ...;
 sd.rom_data[1] = ...;
 ...
 sd.rom_data[7] = ...;

 if (touch_first(ioObj, &sd)) {
 // Found ...

Neuron C Reference Guide 157

 }
}

touch_next() Built-in Function
The touch_next() function executes the ROM Search algorithm as described in
application note 937, Book of iButton Standards, from Maxim Integrated
Products. Both functions make use of a search_data_s data structure for
intermediate storage of a bit marker and the current ROM data. This data
structure is automatically defined in Neuron C, regardless of whether a program
references the touch I/O functions.

A return value of TRUE indicates whether a device was found, and if so, that the
data stored at rom_data[] is valid. A FALSE return value indicates no device
found. The search_done flag is set to TRUE when there are no more devices on
the 1-Wire bus. The last_discrepancy variable is used internally, and should
not be modified.

To start a new search, first call touch_first(). Then, as long as the
search_done flag is not set, call touch_next() as many times as are required.
For a Series 3100 device, each call to touch_first() or touch_next() takes 41
ms to execute at 10 MHz (63 ms at 5 MHz) when a device is being read. For a
Series 5000 and 6000 device, each call to touch_first() or touch_next() takes
14 ms to execute at 80 MHz (29 ms at 10 MHz) when a device is being read.

Syntax
int touch_next(io-object-name, search_data *sd);

Example
typedef struct search_data_s {
 int search_done;
 int last_discrepancy;
 unsigned rom_data[8];
} search_data;

search_data sd;

void f(void)
{
 sd.rom_data[0] = ...;
 sd.rom_data[1] = ...;
 ...
 sd.rom_data[7] = ...;

 if (touch_first(ioObj, &sd)) {
 // Found ...
 while (!(sd.search_done)) {
 if (touch_next(ioObj, &sd)) {
 // Found another ...
 }
 }
 }
}

158 Functions

touch_read_spu() Built-in Function
This function applies to 1-Wire bus devices that require the bus to be actively
held high during certain device operations. These devices require more current
than a typical external pull-up resistor can provide for device operations. An
example of such a device is the Maxim Integrated Products DS18S20 High-
Precision 1-Wire Digital Thermometer. For other 1-Wire devices, use the
standard touch_byte() function.

The touch_read_spu() function reads a specified number of bits of data on a 1-
Wire bus. This function ensures that the bus is not in the actively driven high
state prior to reading the data.

Syntax
extern void touch_read_spu(unsigned pinmask, unsigned *dp, unsigned
count);

pinmask Specifies a single-bit representation for which I/O pins
IO0..IO7 to drive high when idle. Valid values are 0x01
(for IO0) to 0x08 (for IO7).

dp Specifies a pointer to the buffer into which the function
stores the read data.

count Specifies the number of bits to read.

Example
#define 1WIREPIN 0x02;

unsigned sensorData;

void f(void)
{
 ...

 touch_read_spu(1WIREPIN, *sensorData,
 sizeof(sensorData));
}

touch_reset() Built-in Function
The touch_reset() function asserts the reset pulse and returns a one (1) value if
a presence pulse was detected, or a zero (0) if no presence pulse was detected, or a
minus-one (-1) value if the 1-Wire bus appears to be stuck low. The operation of
this function is controlled by several timing constants. The first is the reset pulse
period, which is 500 µs. Next, the Neuron Chip or Smart Transceiver releases
the 1-Wire bus and waits for the 1-Wire bus to return to the high state. This
period is limited to 275 µs, after which the touch_reset() function returns a (-1)
value with the assumption that the 1-Wire bus is stuck low. There also is a
minimum value for this period: for a Series 3100 device, it must be >4.8 µs @10
MHz, or >9.6 µs @5 MHz; for a Series 5000 and 6000 device, it must be >0.3 µs @
80 MHz, or >4.8 µs @5 MHz.

Neuron C Reference Guide 159

The touch_reset() function does not return until the end of the presence pulse
has been detected.

Syntax
int touch_reset (io-object-name);

Example
void f(void)
{
 touch_reset(ioObj);
}

touch_reset_spu() Built-in Function
This function applies to 1-Wire bus devices that require the bus to be actively
held high during certain device operations. These devices require more current
than a typical external pull-up resistor can provide for device operations. An
example of such a device is the Maxim Integrated Products DS18S20 High-
Precision 1-Wire Digital Thermometer. For other 1-Wire devices, use the
standard touch_reset() function.

The touch_reset_spu() function asserts the reset pulse and returns a one (1)
value if a presence pulse was detected, or a zero (0) if no presence pulse was
detected, or a minus-one (-1) value if the 1-Wire bus appears to be stuck low. The
operation of this function is controlled by several timing constants. The first is
the reset pulse period, which is 500 µs. Next, the Neuron Chip or Smart
Transceiver releases the 1-Wire bus and waits for the 1-Wire bus to return to the
high state. This period is limited to 275 µs, after which the touch_reset_spu()
function returns a (-1) value with the assumption that the 1-Wire bus is stuck
low. There also is a minimum value for this period: for a Series 3100 device, it
must be >4.8 µs @10 MHz, or >9.6 µs @5 MHz; for a Series 5000 and 6000 device,
it must be >0.3 µs @ 80 MHz, or >4.8 µs @5 MHz.

The touch_reset_spu() function does not return until the end of the presence
pulse has been detected. This function ensures that the bus is not in the actively
driven high state prior to asserting the reset pulse.

You can use this function to reset the state of the bus so that you can use the
standard touch_first() and touch_next() functions.

Syntax
extern int touch_reset_spu(unsigned pinmask);

pinmask Specifies a single-bit representation for which I/O pins
IO0..IO7 to drive high when idle. Valid values are 0x01
(for IO0) to 0x08 (for IO7).

Example
#define 1WIREPIN 0x02;

void f(void)

160 Functions

{
 ...
 int rc = touch_reset_spu(1WIREPIN);
}

touch_write_spu() Built-in Function
This function applies to 1-Wire bus devices that require the bus to be actively
held high during certain device operations. These devices require more current
than a typical external pull-up resistor can provide for device operations. An
example of such a device is the Maxim Integrated Products DS18S20 High-
Precision 1-Wire Digital Thermometer. For other 1-Wire devices, use the
standard touch_byte() function.

The touch_write_spu() function writes a specified number of bits of data on a
1-Wire bus. This function ensures that the bus is in the actively driven high
state after writing the data.

Syntax
extern void touch_write_spu(unsigned pinmask, const unsigned *dp,

unsigned count);

pinmask Specifies a single-bit representation for which I/O pins
IO0..IO7 to drive high when idle. Valid values are 0x01
(for IO0) to 0x08 (for IO7).

dp Specifies a pointer to the buffer into which the function
stores the read data.

count Specifies the number of bits to write.

Example
#define 1WIREPIN 0x01;

const unsigned actuatorData;

void f(void)
{
 ...

 actuatorData = 168;
 touch_write_spu(1WIREPIN, &actuatorData,
 sizeof(actuatorData));
}

tst_bit() Function
The tst_bit() function tests a bit in a bit array pointed to by array. Bits are
numbered from left to right in each byte, so that the first bit in the array is the
most significant bit of the first byte in the array. Like all arrays in C, this first
element corresponds to index 0 (bitnum 0). The function returns a boolean value,
TRUE if bit was set, FALSE if bit was not set. When managing a number of bits
that are all similar, a bit array can be more code-efficient than a series of

Neuron C Reference Guide 161

bitfields because the array can be accessed using an array index rather than
separate lines of code for each bitfield. See also clr_bit() and set_bit().

Syntax
#include <byte.h>
boolean tst_bit (void *array, unsigned bitnum);

Example
#include <byte.h>

unsigned short a[4];

void f(void)
{
 memset(a, 0, sizeof(a)); // Clear all bits at once
 set_bit(a, 4); // Set a[0] to 0x08 (5th bit)

 if (tst_bit(a, 4)) {
 // Code executes here if bit was set
 }
}

update_address() Function
The update_address() function copies from the structure referenced by the
address pointer parameter to the address table entry specified by the index
parameter.

Important: This function has a mechanism that ensures that a reset or power
cycle during an EEPROM modification does not cause the device to go
unconfigured. This mechanism uses the error log to serve as a semaphore. Thus,
the error log is written to on every call to this function, even if the net effect of
the function is to not modify or write to the configuration data at all (because the
new contents match the old). Applications must minimize calls to this function to
ensure that the maximum number of supported writes for EEPROM is not
exceeded over the lifetime of the application.

See the ISO/IEC 14908 (ANSI/EIA/CEA-709.1) Control Network Specification for
a description of the data structure.

Syntax
#include <access.h>
void update_address (const address_struct *address, unsigned index);

Example
#include <access.h>
address_struct address_copy;
msg_tag my_mt;

void f(void)

162 Functions

{
 address_copy = *access_address(
 addr_table_index(my_mt));
 // Modify the address_copy here as necessary
 ...
 update_address(&address_copy,
 addr_table_index(my_mt));
}

update_alias() Function
The update_alias() function copies from the structure referenced by the alias
pointer parameter to the alias table entry specified by the index parameter.

The Neuron 3120 Chip with version 4 firmware does not support aliasing.

Important: This function has a mechanism that ensures that a reset or power
cycle during an EEPROM modification does not cause the device to go
unconfigured. This mechanism uses the error log to serve as a semaphore. Thus,
the error log is written to on every call to this function, even if the net effect of
the function is to not modify or write to the configuration data at all (because the
new contents match the old). Applications must minimize calls to this function to
ensure that the maximum number of supported writes for EEPROM is not
exceeded over the lifetime of the application.

See the ISO/IEC 14908 (ANSI/EIA/CEA-709.1) Control Network Specification for
a description of the data structure.

Series 6000 chips and version 21 Neuron firmware introduce support for an
extended address table, which requires an extended alias configuration structure
to accommodate the potentially larger address table index associated with the
alias. The standard Neuron C access.h include file defines both the traditional
alias configuration structure and the extended form (alias_struct,
alias_struct_ex). An ALIAS_STRUCT_TYPE preprocessor definition is supplied
which equates to the correct type of the alias configuration structure for the
current compilation target.

Syntax
#include <access.h>
void update_alias (const ALIAS_STRUCT_TYPE*alias, unsigned index);

Example
#include <access.h>
ALIAS_STRUCT_TYPE alias_copy;

void f(unsigned index)
{
 alias_copy = *(access_alias(index));
 // Modify the alias_copy here as necessary
 …
 update_alias(&alias_copy, index);
}

Neuron C Reference Guide 163

update_clone_domain() Function
The update_clone_domain() function copies from the structure referenced by
the domain pointer parameter to the domain table entry specified by the index
parameter.

This function differs from update_domain() in that it is only used for a cloned
device. A cloned device is a device that does not have a unique
domain/subnet/node address on the network. Typically, cloned devices are
intended for low-end systems where network tools are not used for installation.
The LonTalk protocol inherently disallows this configuration because devices
reject messages that have the same source address as their own address. The
update_clone_domain() function enables a device to receive a message with a
source address equal to its own address. There are several restrictions when
using cloned devices; see the NodeBuilder FX User’s Guide.

Important: This function has a mechanism that ensures that a reset or power
cycle during an EEPROM modification does not cause the device to go
unconfigured. This mechanism uses the error log to serve as a semaphore. Thus,
the error log is written to on every call to this function, even if the net effect of
the function is to not modify or write to the configuration data at all (because the
new contents match the old). Applications must minimize calls to this function to
ensure that the maximum number of supported writes for EEPROM is not
exceeded over the lifetime of the application.

More information about cloned devices can be found in the ISO/IEC 14908
(ANSI/EIA/CEA-709.1) Control Network Specification.

Syntax
#include <access.h>
void update_clone_domain (domain_struct *domain, unsigned index);

Example
#include <access.h>
domain_struct domain_copy;

void f(void)
{
 domain_copy = *(access_domain(0));
 // Modify the domain copy as necessary
 update_clone_domain(&domain_copy, 0);
}

update_config_data() Function
The update_config_data() function copies from the structure referenced by the
p configuration data pointer parameter to the config_data variable. The
config_data variable is declared const, but can be modified through this
function. The config_data variable is automatically defined for every program
in the <echelon.h> file.

Important: This function has a mechanism that ensures that a reset or power
cycle during an EEPROM modification does not cause the device to go

164 Functions

unconfigured. This mechanism uses the error log to serve as a semaphore. Thus,
the error log is written to on every call to this function, even if the net effect of
the function is to not modify or write to the configuration data at all (because the
new contents match the old). Applications must minimize calls to this function to
ensure that the maximum number of supported writes for EEPROM is not
exceeded over the lifetime of the application.

See the ISO/IEC 14908 (ANSI/EIA/CEA-709.1) Control Network Specification for
a description of the data structure.

Syntax
#include <access.h>
void update_config_data (const config_data_struct *p);

Example
#include <access.h>
config_data_struct config_data_copy;

void f(void)
{
 config_data_copy = config_data;
 // Modify the config_data_copy as necessary
 update_config_data(&config_data_copy);
}

update_domain() Function
The update_domain() function copies from the structure referenced by the
domain pointer parameter to the domain table entry specified by the index
parameter.

Important: This function has a mechanism that ensures that a reset or power
cycle during an EEPROM modification does not cause the device to go
unconfigured. This mechanism uses the error log to serve as a semaphore. Thus,
the error log is written to on every call to this function, even if the net effect of
the function is to not modify or write to the configuration data at all (because the
new contents match the old). Applications must minimize calls to this function to
ensure that the maximum number of supported writes for EEPROM is not
exceeded over the lifetime of the application.

See the ISO/IEC 14908 (ANSI/EIA/CEA-709.1) Control Network Specification for
a description of the data structure.

Syntax
#include <access.h>
void update_domain (domain_struct *domain, unsigned index);

Example
#include <access.h>
domain_struct domain_copy;

Neuron C Reference Guide 165

void f(void)
{
 domain_copy = *access_domain(0);
 // Modify the domain_copy as necessary
 ...
 update_domain(&domain_copy, 0);
}

update_nv() Function
The update_nv() function copies from the structure referenced by the nv-entry
pointer parameter to the network variable configuration table entry as specified
by the index parameter.

Important: This function has a mechanism that ensures that a reset or power
cycle during an EEPROM modification does not cause the device to go
unconfigured. This mechanism uses the error log to serve as a semaphore. Thus,
the error log is written to on every call to this function, even if the net effect of
the function is to not modify or write to the configuration data at all (because the
new contents match the old). Applications must minimize calls to this function to
ensure that the maximum number of supported writes for EEPROM is not
exceeded over the lifetime of the application.

See the ISO/IEC 14908 (ANSI/EIA/CEA-709.1) Control Network Specification for
a description of the data structure.

Series 6000 chips and version 21 Neuron firmware introduce support for an
extended address table, which requires a extended network variable
configuration structure to accommodate the potentially larger address table
index associated with the network variable. The standard Neuron C access.h
include file defines both the traditional network variable configuration structure
and the extended form (nv_struct, nv_struct_ex). An NV_STRUCT_TYPE
preprocessor definition is supplied which equates to the correct type of the
network variable configuration structure for the current compilation target.

Syntax
#include <access.h>
void update_nv (const NV_STRUCT_TYPE *nv-entry, unsigned index);

Example
#include <access.h>
NV_STRUCT_TYPE nv_copy;
network output SNVT_switch nvoSwitch;

void f(void)
{
 nv_copy = *access_nv(nvoSwitch∷global_index);
 // Modify the nv_copy here as necessary
 ...
 update_nv(&nv_copy, nvoSwitch∷global_index);
}

166 Functions

update_program_id() Function
The update_program_id() function copies the 8-byte array referenced by the
pid_p pointer parameter to the program ID stored in the device’s EEPROM.

Important: This function has a mechanism that ensures that a reset or power
cycle during an EEPROM modification does not cause the device to go
unconfigured. This mechanism uses the error log to serve as a semaphore. Thus,
the error log is written to on every call to this function, even if the net effect of
the function is to not modify or write to the configuration data at all (because the
new contents match the old). Applications must minimize calls to this function to
ensure that the maximum number of supported writes for EEPROM is not
exceeded over the lifetime of the application.

Syntax
#include <access.h>
void update_program_id (unsigned char * pid_p);

Example
#include <access.h>
unsigned char progID_copy[8];

void f(void)
{
 update_program_id(progID_copy);
}

watchdog_update() Function
The watchdog_update() function updates the watchdog timer. For Series 3100
devices, the watchdog timer times out in the range of .84 to 1.68 seconds with a
10 MHz Neuron input clock. The watchdog timer period scales inversely with the
input clock frequency. For Series 5000 and 6000 devices, the watchdog timer
period is fixed at 840 ms (1.19 Hz) for all system clock rates. The actual timeout
range is between 0.8 s and 1.7 s.

The scheduler updates the watchdog timer before entering each critical section.
To ensure that the watchdog timer does not expire, call the watchdog_update()
function periodically within long tasks (or in bypass mode). The post_events(),
msg_receive(), and resp_receive() functions also update the watchdog timer,
as does the pulsecount output object.

Within long tasks when the scheduler does not run, the watchdog timer could
expire, causing the device to reset. To prevent the watchdog timer from expiring,
an application program can call the watchdog_update() function periodically.

Syntax
#include <control.h>
void watchdog_update (void);

Neuron C Reference Guide 167

Example
void f(void)
{
 boolean still_processing;
 ...
 while (still_processing) {
 watchdog_update();
 ...
 }
}

168 Functions

4

Timer Declarations

This chapter provides reference information for declaring
and using Neuron C timers.
Neuron C timers are an application development feature for
Neuron-hosted devices and do not apply to model files.

Neuron C Reference Guide 169

Timer Object
A timer object is declared using one of the following:

mtimer [repeating] timer-name [=initial-value];

stimer [repeating] timer-name [=initial-value];

mtimer Indicates a millisecond timer.

stimer Indicates a second timer.

repeating An option for the timer to restart itself automatically
upon expiration. With this option, accurate timing
intervals can be maintained even if the application cannot
respond immediately to an expiration event.

timer-name A user-supplied name for the timer. Assigning a value to
this name starts the timer for the specified length of time.
Assigning a value of zero to this name turns the timer off.
The value of a timer object is an unsigned long
(0..65535); however, the maximum value assigned to a
millisecond timer cannot exceed 64000. A timer that is
running or has expired can be restarted by assigning a
new value to this object. The timer object can be
evaluated while the timer is running, and it indicates the
time remaining. Up to 15 timer objects can be declared in
an application.

initial-value An optional initial value to be loaded into the timer on
power-up or reset. Zero is loaded if no initial-value is
supplied (and therefore the timer is off).

When a timer expires, the timer_expires event becomes TRUE. The
timer_expires event returns to FALSE after the timer_expires expression is
read, or when the timer is set to zero.

Example:
stimer led_timer = 5; // start timer with value of 5 sec

when (timer_expires(led timer))
{
 toggle_led();
 led_timer = 2; // restart timer with value of 2 sec
}

The timers_off() function can be used to turn off all application timers – for
example, before an application goes offline. See Chapter 2, Focusing on a Single
Device, of the Neuron C Programmer's Guide for a discussion of timer accuracy.

170 Timer Declarations

5

Network Variable, Configuration
Property, and Message Tag

Declarations

This chapter describes the network variable, configuration
property, and application message tag declarations for use
in Neuron C programs. It also describes how configuration
properties are associated with a device, with a functional
block on the device, or with a network variable on the
device. Finally, this chapter describes the syntax for
accessing the configuration properties from the device’s
program.
Network variables, configuration properties, and message
tags are part of a device’s interface. The discussion in this
chapter applies to development of both Neuron-hosted
applications and host-based applications with model files.

Neuron C Reference Guide 171

Introduction
The external application interface of a LONWORKS device consists of its functional
blocks, network variables, and configuration properties. The network variables
are the device’s means of sending and receiving data using interoperable data
types and using an event-driven programming model. The configuration
properties are the device’s means of providing externally exposed configuration
data, again using interoperable data types. The configuration data items can be
read and written by a network tool. The device interface is organized into
functional blocks, each of which provides a collection of network variables and
configuration properties that are used together to perform one task. These
network variables and configuration properties are called the functional block
members.

Configuration properties can be implemented using two different techniques.
The first, called a configuration network variable, uses a network variable to
implement a configuration property. This has the advantage of enabling the
configuration property to be modified by another LONWORKS device, just like any
other network variable. It also has the advantage of having the Neuron C event
mechanism available to provide notification of updates to the configuration
property. The disadvantages of configuration network variables are that they are
limited to a maximum of a network variable. Network variables are limited to 31
bytes each on series 3100 and 5000 Neuron Chips and Smart Transceivers.
Neuron C Version 2.3 and Series 6000 chips support network variables up to 228
bytes each. Model files, such as those used with the ShortStack Development Kit,
also support network variables up to 228 bytes.

The second method of implementing configuration properties uses configuration
files to implement the configuration properties for a device. Rather than being
separate externally-exposed data items, all configuration properties implemented
within configuration files are combined into one or two blocks of data called value
files. A value file consists of configuration property records of varying length
concatenated together. Each value file must fit as contiguous bytes into the
memory space of the device that is accessible by the application. When there are
two value files, one contains writeable configuration properties and the second
contains read-only data. To permit a network tool to access the data items in the
value file, there is also a template file, an array of text characters that describes
the elements in the value files.

The advantages of implementing configuration properties as configuration files is
that there are no limits on configuration property size or the number of
configuration properties other than the limitations on the size of a file. The
disadvantages are that other devices cannot connect to or poll a configuration
property implemented within a configuration file; requiring a network tool to
modify a configuration property implemented within a configuration file; and, no
events are automatically generated upon an update of a configuration property
implemented within a configuration file. The application can force notification of
updates by requiring network tools to disable a functional block or take a device
offline when a configuration property is updated, and then re-enable or put the
device back online.

You can declare functional blocks, network variables, and configuration
properties using the Neuron C Version 2 syntax. You can declare configuration
properties that are implemented within configuration files or configuration

172 Network Variable, Configuration Property, and Message Tag Declarations

network variables. The Neuron C Version 2 compiler uses these declarations to
generate the value files, template file, all required self-identification and self-
documentation data, and the device interface file (.xif extension) for a Neuron C
application.

Network Variable Declarations Syntax
The complete syntax for declaring a network variable is one of the following:

network input | output [netvar-modifier]
[class] type [connection-info] [config_prop [cp-modifiers]]
identifier [= initial-value] [nv-property-list] ;

network input | output [netvar-modifier]
[class] type [connection-info] [config_prop [cp-modifiers]]
identifier [array-bound] [= initializer-list] [nv-property-list] ;

The brackets around array-bound are shown in bold type. The brackets do not,
in this case, indicate an optional field. They are a required part of the syntax of
declaring an array, and must be entered into the program code.

The maximum number of network variables available to a device depends on the
target chip type, firmware version, and the device development platform used.
For all chips, firmware, and development platforms, each element of a network
variable array counts as a separate network variable relative to the maximum
number and configuration network variables count towards that maximum
number.

Network Variable Modifiers (netvar-modifier)
One or more of the following optional modifiers can be included in the declaration
of each network variable:

sync | synchronized Specifies that all values assigned to this network variable
must be propagated, and in their original order. Mutually
exclusive with the polled modifier.

polled Specifies that the value of the output network variable is
to be sent only in response to a poll request from a device
that reads this network variable. When this keyword is
omitted, the value is propagated over the network every
time the variable is assigned a value and also when
polled. Mutually exclusive with the sync modifier.

Normally only used for output network variables. Can be
used with input network variables in model files.

changeable_type Specifies that the network variable type can be changed
at runtime. If either the sync or polled keyword is used
(these two keywords are mutually exclusive) along with
the changeable_type keyword, then the
changeable_type keyword must follow the other
keyword. For more information on changeable type
network variables, see Changeable Type Network
Variables in How Devices Communicate Using Network
Variables in the Neuron C Programmer’s Guide.

Neuron C Reference Guide 173

 The changeable_type keyword requires the program ID
to be specified, and requires the Changeable Interface flag
to be set in that program ID. A compilation error occurs
otherwise.

174 Network Variable, Configuration Property, and Message Tag Declarations

sd_string (concatenated-string-constant)

 Sets a network variable’s self-documentation (SD) string
of up to 1023 characters. This modifier can only appear
once per network variable declaration. If any of the sync,
polled, or changeable_type keywords are used, then the
sd_string modifier must follow these other keywords.
Concatenated string constants are permitted. Each
variable’s SD string can have a maximum length of 1023
bytes.

 The use of any of the following Neuron C Version 2
keywords causes the compiler to take control of the
generation of self-documentation strings: fblock,
config_prop, cp, device_properties, nv_properties,
fblock_properties, or cp_family.

 In an application that uses compiler-generated SD data,
additional SD data can still be specified with the
sd_string() modifier. The compiler appends this
additional SD information to the compiler-generated SD
data, but it is separated from the compiler-generated
information with a semicolon.

Network Variable Classes (class)
Network variables constitute one of the storage classes in Neuron C. They can
also be combined with one or more of the following classes:

config This variable class is equivalent to the const and
eeprom classes, except that the variable is also identified
as a configuration variable to network tools which access
the device’s interface information. The config keyword is
obsolete and is included only for legacy applications. The
Neuron C compiler does not generate self-documentation
data for config class network variables. New
applications should use the configuration network
variable syntax explained in Configuration Network
Variables on page 177.

const The network variable is of const type. The Neuron C
compiler does not allow modifications of const type
variables by the device’s program. However, a const
network input variable is still placed in modifiable
memory and the value can change as a result of a network
variable update from another device.

 When used with the declaration of a configuration
network variable, the const storage class prevents both
the Neuron C application and network tools from writing
to the configuration network variable. The application
can cast away the const-ness of the property to implement
device-specific configuration properties as configuration
network variables. However, because the network
variable is placed in modifiable memory, network variable

Neuron C Reference Guide 175

connections can still cause changes to such a
configuration network variable.

eeprom The network variable is placed in EEPROM or flash
memory instead of RAM. All variables are placed in RAM
by default. EEPROM and flash memory are only
appropriate for variables that change infrequently, due to
the overhead and execution delays inherent in writing
such memory, and due to the limited number of writes for
such memory devices.

far The network variable is placed in the far section of the
variable space. In Neuron C, variables are placed in near
memory by default, but the near memory areas are
limited in space. The maximum size of near memory
areas is 256 bytes of RAM and 255 bytes of EEPROM, but
could be less in some circumstances.

offchip This keyword places the variable in the off-chip portion of
the variable space. By default, the linker places variables
in either space as it chooses, depending on availability. If
the requested memory is not available, the link fails.

onchip This keyword places the variable in the on-chip portion of
the variable space. By default, the linker places variables
in either space as it chooses, depending on availability. If
the requested memory is not available, the link fails.

uninit This keyword prevents compile-time initialization of
variables. This is useful for eeprom variables that
should not or need not be written by program load or
reload.

 A different mechanism, subject to your network
management tool, is used to determine whether
configuration properties, including configuration network
variables, are initialized after loading or commissioning
the device. The uninit keyword cannot be used to
prevent configuration network variables from being
initialized by the network management tool. See your
network tool's documentation for details.

Network Variable Types (type)
A network variable can be declared using any of the following types:

• A standard network variable type (SNVT) as described in Chapter 3, How
Devices Communicate Using Network Variables, of the Neuron C
Programmer's Guide. Use of a SNVT promotes interoperability. See
types.lonmark.org for a list of SNVTs.

• A user network variable type (UNVT) as described in Chapter 3, How
Devices Communicate Using Network Variables, of the Neuron C
Programmer's Guide. UNVTs are defined using the NodeBuilder
Resource Editor as described in the NodeBuilder FX User’s Guide.

• Any of the variable types specified in Chapter 1, Overview, of the
Neuron C Programmer's Guide, except for pointers. The types are those

176 Network Variable, Configuration Property, and Message Tag Declarations

http://types.lonmark.org/

listed below:

[signed] long [int]
unsigned long [int]
signed char
[unsigned] char
[signed] [short] [int]
unsigned [short] [int]
enum (An enum is int type)

Structures and unions of the above types. Structures and unions cannot
exceed the network variable size limit when used as the type of a network
variable. Network variables are limited to 31 bytes with Series 3100 and
5000 Neuron chips and Smart Transceivers, and support up to 228 bytes
on most other platforms.

Single-dimension arrays of the above types.

For interoperability, SNVTs and UNVTs defined in resource files should
be used for network variables instead of these base types.

• A typedef. Neuron C provides some predefined type definitions, for
example:

typedef enum {FALSE, TRUE} boolean;

The user can also define other type definitions and use these for network
variable types.

For interoperability, SNVTs and UNVTs defined in resource files should
be used for network variables instead of typedefs.

Configuration Network Variables
The syntax for network variable declarations above includes the following syntax
fragment for declaring the network variable as a configuration property:

network ... [config_prop [cp-modifiers]] ...

The config_prop keyword (which can also be abbreviated as cp) is used to
specify that the network variable (or array) is a configuration property (or array
of configuration properties).

If you declare a configuration network variable as const, the compiler issues a
warning message (NCC#599). An application can update a constant
configuration network variable as it would any network variable.

The cp-modifiers for configuration network variables are identical to the cp-
modifiers described in Configuration Property Modifiers (cp-modifiers) on page
185.

Network Variable Property Lists (nv-property-list)
A network variable property list declares instances of configuration properties
defined by CP family statements and configuration network variable declarations

Neuron C Reference Guide 177

that apply to a network variable. The syntax for a network variable’s property
list is:

nv_properties { property-reference-list }

property-reference-list :
property-reference-list , property-reference
property-reference

property-reference :
property-identifier [= initializer] [range-mod]
property-identifier [range-mod] [= initializer]

range-mod : range_mod_string (concatenated-string-constant)

property-identifier :
[property-qualifier] cpnv-prop-ident
[property-qualifier] cp-family-prop-ident

property-qualifier : static | global

cpnv-prop-ident : identifier [constant-array-index-expr]
identifier

cp-family-prop-ident : identifier

Example:
// CP for heartbeat and throttle (default 1 min each)
SCPTmaxSndT cp_family cpMaxSendT = { 0, 0, 1, 0, 0 };
SCPTminSndT cp_family cpMinSendT = { 0, 0, 1, 0, 0 };

// NV with heartbeat and throttle:
network output SNVT_lev_percent nvoValue
 nv_properties {
 cpMaxSendT,
 // override default for minSendT to 30 seconds:
 cpMinSendT = { 0, 0, 0, 30, 0 }
};

The network variable property list begins with the nv_properties keyword. It
then contains a list of property references, separated by commas, exactly like the
device property list. Each property reference must be the name of a previously
declared CP family or the name of a previously declared configuration network
variable. The rest of the syntax is very similar to the device property list syntax
discussed above.

Following the property-identifier, there can be an optional initializer, and an
optional range-mod. These optional elements can occur in either order if both are
specified. If present, the instantiation initializer for a CP family member
overrides any initializer provided at the time of declaration of the CP family;
thus, using this mechanism, some CP family members can be initialized
specially, with the remaining CP family members having a more generic initial
value. If a network variable is initialized in multiple places (in other words, in
its declaration as well as in its use in a property list), the initializations must
match.

You cannot have more than one configuration property of any given SCPT or
UCPT type that applies to the same network variable. A compilation error occurs
when a particular configuration property type is used for more than one property
in the network variable’s property list.

178 Network Variable, Configuration Property, and Message Tag Declarations

Finally, each property instantiation can have a range-modification string
following the property identifier. The range-modification string works identically
to the range-mod described in Configuration Property Modifiers (cp-modifiers) on
page 185. A range-modification string provided in the instantiation of a CP
family member overrides any range-modification string provided in the
declaration of a CP family.

Unlike device properties, network variable properties can be shared between two
or more network variables. The use of the global keyword creates a CP family
member that is shared between two or more network variables. The use of the
static keyword creates a CP family member that is shared between all the
members of a network variable array, but not with any other network variables
outside the array. See the discussion of network variable properties in the
Neuron C Programmer’s Guide for more information.

A configuration network variable cannot, itself, also have a network variable
property list. That is, you cannot define configuration properties that apply to
other configuration properties.

Configuration Network Variable Arrays
A configuration network variable array that is a configuration property can be
used in one of two ways. Each element of the array can be treated as a separate
configuration property, or all elements of the array can be treated as a single
configuration property taken together.

To use each network variable array element as a separate, scalar configuration
property, specify the starting index of the first array element in the properties
list, as in Example 1 below. The example shows elements [2] through [5] of the
cpMaxSendT array used as properties for nvoValue[0] through nvoValue[3],
respectively, with the remaining elements of cpMaxSendT being unused.

Example 1:
network input cp SCPTmaxSendT cpMaxSendT[10];
network output SNVT_lev_percent nvoValue[4]
 nv_properties {
 cpMaxSendT[2]
};

To use the entire network variable array as a single property, do not specify any
index in the properties list, as in Example 2 below. The entire array
cpMaxSendT becomes a single property of nvoValue.

Example 2:
network input cp SCPTmaxSendT cpMaxSendT[10];
network output SNVT_lev_percent nvoValue
 nv_properties {
 cpMaxSendT
};

Similarly, a single network variable array element, or the entire network
variable array can be used as a device property (see Device Property Lists on page
188).

A configuration network variable array must be shared with the static or global
keyword if it applies to a network variable array.

Neuron C Reference Guide 179

Example 3:
network input cp SCPTmaxSendT
cpMaxSendT[10];
network output SNVT_lev_percent nvoValue[4]
nv_properties {
 static cpMaxSendT // MUST be shared
};

Network Variable Connection Information
(connection-info)

The following optional fields can be included in the declaration of each network
variable. The fields can be specified in any order. This information can be used
by a network tool, as described in the NodeBuilder FX User’s Guide. These
connection information assignments can be overridden by a network tool after a
device is installed, unless otherwise specified using the nonconfig option.

bind_info (
[expand_array_info]
[offline]
[unackd | unackd_rpt | ackd [(config | nonconfig)]]
[authenticated | nonauthenticated [(config | nonconfig)]]
[priority | nonpriority [(config | nonconfig)]]
[rate_est (const-expr)]
[max_rate_est (const-expr)]
)

expand_array_info Applies to a network variable array. This option is used
to tell the compiler that, when publishing the device
interface in the SI and SD data and in the device interface
file, each element of a network variable array should be
treated as a separate network variable for naming
purposes. The names of the array elements have unique
identifying characters postfixed. These identifying
characters are typically the index of the array element.
Thus, a network variable array xyz[4] would become the
four separate network variables xyz0, xyz1, xyz2, and
xyz3.

offline Specifies that a network tool must take this device offline,
or ensure that the device is already offline, before
updating the network variable. This option is commonly
used with a config class network variable (this is an
obsolete usage, but is supported for legacy applications).

 Do not use this feature in the bind_info for a
configuration network variable that is declared using the
config_prop or cp keyword. Use the offline option in
the cp_info, instead.

unackd | unackd_rpt | ackd [(config | nonconfig)]

 Selects the LonTalk protocol service to use for updating
this network variable. The allowed protocol service
options are:

180 Network Variable, Configuration Property, and Message Tag Declarations

 unackd — unacknowledged service; the update is sent
once and no acknowledgment is expected.

 unackd_rpt — repeated service; the update is sent
multiple times and no acknowledgments are expected.

 ackd (the default) — acknowledged service; with retry;
if acknowledgments are not received from all receiving
devices before the layer 4 retransmission timer expires,
the message is sent again, up to the retry count.

 An unacknowledged (unackd) network variable uses
minimal network resources to propagate its values to
other devices. As a result, propagation failures are more
likely to occur, and failures are not detected by the
sending device. This class might be used for variables
that are updated on a frequent, periodic basis, where loss
of an update is not critical, or in cases where the
probability of a collision or transmission error is
extremely low.

 The repeated (unackd_rpt) service is typically used
when a message is propagated to many devices, and a
reliable delivery is required. This option reduces the
network traffic caused by a large number of devices
sending acknowledgements simultaneously and can
provide the same reliability as the acknowledged service
by using a repeat count equal to the retry count.

 The config keyword, the default, indicates that this
service type can be changed by a network tool. This
option allows a network tool to change the service
specification at installation time.

 The nonconfig keyword indicates that this service
cannot be changed by a network tool.

authenticated | nonauthenticated [(config | nonconfig)]
Specifies whether a network variable update requires
authentication. With authentication, the identity of the
sending device is verified by all receiving devices.
Abbreviations for authentication are auth and
nonauth. The config and nonconfig keywords specify
whether the authentication designation can be changed
by a network tool.

 A network variable connection is authenticated only if the
readers and writers have the authenticated keywords
specified. However, if only the originator of a network
variable update or poll has used the keyword, the
connection is not authenticated (although the update does
take place). See also the Authentication section in
Chapter 3, How Devices Communicate Using Network
Variables, of the Neuron C Programmer's Guide.

 The default is nonauth (config).

Neuron C Reference Guide 181

 Note: Use only the acknowledged service with
authenticated updates. Do not use the unacknowledged
or repeated services.

182 Network Variable, Configuration Property, and Message Tag Declarations

priority | nonpriority [(config | nonconfig)]

 Specifies whether a network variable update has priority
access to the communications channel. This field specifies
the default value. The config and nonconfig keywords
specify whether the priority designation can be changed
by a network tool. The default is config. All priority
network variables in a device use the same priority time
slot because each device is configured to have no more
than one priority time slot.

 The default is nonpriority (config).

 The priority keyword affects output or polled input
network variables. When a priority network variable is
updated, its value is propagated over the network within
a bounded amount of time as long as the device is
configured to have a priority slot by a network tool. The
exact bound is a function of the bit rate and priority. This
is in contrast to a nonpriority network variable update,
whose delay before propagation is unbounded.

rate_est (const-expr) The estimated sustained update rate, in tenths of
messages per second, that the associated network
variable is expected to transmit. The allowable value
range is from 0 to 18780 (0 to 1878.0 network variable
updates per second).

max_rate_est (const-expr)
The estimated maximum update rate, in tenths of
messages per second, that the associated network
variable is expected to transmit. The allowable value
range is from 0 to 18780 (0 to 1878.0 network variable
updates per second).

 Note: It might not always be possible to determine
rate_est and max_rate_est. For example, update rates
are often a function of the particular network where the
device is installed. These values can be used by a
network tool to perform network load analysis and are
optional.

 Although any value in the range 0..18780 can be specified,
not all values are used. The values are mapped into
encoded values n in the range 0..127. Only the encoded
values are stored in the device’s self-identification (SI)
data. The actual value can be reconstructed from the
encoded value. If the encoded value is zero, the actual
value is undefined. If the encoded value is in the range
1..127, the actual value is

5)8/(2 −= na

rounded to the nearest tenth. The value a, produced by
the formula, is in units of messages per second.

Neuron C Reference Guide 183

Configuration Property Declarations
You can implement a configuration property as a configuration network variable
or as part of a configuration file. To implement a configuration property as a
configuration network variable, declare it using the network … config_prop
syntax described in Network Variable Declarations Syntax on page 173. To
implement a configuration property as a part of a configuration file, declare it
with the cp_family syntax described in this section.

The syntax for declaring a configuration property family implemented as part of
a configuration file is the following:

[const] type cp_family [cp-modifiers]
identifier [[array-bound]] [= initial-value] ;

The brackets around array-bound are shown in bold type. The brackets do not,
in this case, indicate an optional field. They are a required part of the syntax of
declaring an array, and must be entered into the program code.

Example 1 – Declaring a CP family for a singular CP:
SCPTlocation cp_family cpLocation = "";

Example 2 – Declaring a CP family for a CP-array:
SCPTbrightness cp_family cpBrightness[3];

Example 3 – Declaring a CP family for CP-array with explicit initial
values:

SCPTbrightness cp_family cpBrightness[3] = {
 { 0, ST_OFF },
 { 100u, ST_ON },
 { 200u, ST_ON }
};

Any number of CP families can be declared in a Neuron C program. Declarations
of CP families do not result in any data memory being used until a family
member is created through the instantiation process. In this regard, the CP
family is similar to an ANSI C typedef, but it is more than just a type definition.

A configuration property type is also similar to an ANSI C typedef, but it is also
much more. The configuration property type also defines a standardized
semantic meaning for the type. The configuration property definition in a
resource file contains information about the default value, minimum and
maximum valid values, a designated (optional) invalid value, and language string
references that permit localized descriptive information, additional comments,
and units strings to be associated with the configuration property type.

CP families that are declared using the const keyword have their family
members placed in the read-only value file. All other CP families have their
family members placed in the writeable value file (this file is also called the
modifiable value file).

The type for a CP family cannot be just a standard C type such as int or char.
Instead, the declaration must use a configuration property type from a resource
file. The configuration property type can either be a standard configuration
property type (SCPT) or a user configuration property type (UCPT). There are
over 300 SCPT definitions available today, and you can create your own
manufacturer-specific types using UCPTs. The SCPT definitions are stored in

184 Network Variable, Configuration Property, and Message Tag Declarations

the standard.typ file, which is part of the standard resource file set included
with the NodeBuilder tool. There could be many similar resource files containing
UCPT definitions, and these are managed on the computer by the NodeBuilder
Resource Editor as described in the NodeBuilder FX User’s Guide.

A configuration property family can be declared with an optional array-bound.
This declares the family such that each member of the configuration property
family is a separate array (of identical size). Each instantiation of a member of
the configuration property family becomes a separate array. All elements of the
array are part of the single configuration property that instantiates a member of
such a family.

The initial-value in the declaration of a CP family is optional. If initial-value is
not provided in the declaration, the default value specified by the resource file is
used. The initial-value given is an initial value for a single member of the family,
but the compiler replicates the initial value for each instantiated family member.
For more information about CP families and instantiated members, see the
discussion in Chapter 4, Using Configuration Properties to Configure Device
Behavior, of the Neuron C Programmer’s Guide.

The cp_family declaration is repeatable. The declaration can be repeated two or
more times, and, as long as the duplicated declarations match in every regard,
the compiler treats these as a single declaration.

Example 1 – Repeated family declaration:
SCPTbrightness cp_family cpBrightness;
SCPTbrightness cp_family cpBrightness;

In Example 1, the compiler treats the two families as one. One of the two
declarations can be omitted. Note the CP family declaration is similar to a C
language typedef in that no memory is allocated; the repeated declaration simply
has no effect.

Example 2 – Repeated family declaration:
SCPTbrightness cp_family cpBrightness;
SCPTbrightness cp_family cpDarkness;

In Example 2, the compiler treats the two families as two distinct families,
because of the different family names.

Example 3 – Invalid re-use of family name:
SCPTbrightness cp_family cpBrightness = {100, ST_ON};
SCPTbrightness cp_family cpBrightness = {0, ST_OFF};

The declaration in Example 3 causes a compile-time error, because of the fact
that the two families have different properties (the default value) yet are
declared using the same family name.

Configuration Property Modifiers (cp-modifiers)
The configuration property modifiers are an optional part of the CP family
declaration discussed above, as well as the configuration network variable
declaration discussed later.

The syntax for the configuration property modifiers is shown below:

cp-modifiers : [cp_info (cp-option-list)] [range-mod]

Neuron C Reference Guide 185

cp-option-list : cp-option-list , cp-option
 cp-option

cp-option : device_specific | manufacturing_only
 | object_disabled | offline | reset_required

range-mod : range_mod_string (concatenated-string-constant)

There must be at least one keyword in the option list. For multiple keywords, the
keywords can occur in any order, but the same keyword must not appear more
than once. Keywords must be separated by commas.

You can specify the following configuration property options:

device_specific Specifies a configuration property that should always be
read from the device instead of relying upon the value in
the device interface file or a value stored in a network
database. This mechanism is used for configuration
properties that must be managed by the device or by a
passive configuration tool that does not have access to the
network database. An example of such a configuration
property is a setpoint that is updated by a local operator
interface on the device.

 Recommendation: Declare a device_specific CP
family or configuration network variable as const. If the
CP family or configuration property network variable is
defined within a functional profile and the declaration
does not match the profile, the compiler issues a warning
message.

manufacturing_only Specifies a factory setting that can be read or written
when the device is manufactured, but is not normally (or
ever) modified in the field. In this way a standard
network tool can be used to calibrate the device when a
device is manufactured, while a field installation tool
would observe the flag in the field and prevent updates or
require a password to modify the value.

object_disabled Specifies that a network tool must disable the functional
block containing the configuration property, take the
device offline, or ensure that the functional block is
already disabled or the device is already offline, before
modifying the configuration property.

offline Specifies that a network tool must take this device offline,
or ensure the device is already offline, before modifying
the configuration property.

 A configuration property can be declared as both offline
and object_disabled. In this case, the offline
declaration takes precedence.

reset_required Specifies that a network tool must reset the device after
changing the value of the configuration property.

The optional range-mod modifier allows you to specify a range-modification string
that modifies the valid range for the configuration property defined by the
resource file. The range-modification string can only be used with fixed-point

186 Network Variable, Configuration Property, and Message Tag Declarations

and floating-point types, and consists of a pair of either fixed-point or floating-
point numbers delimited by a colon. The first number is the lower limit and the
second number is the high limit. If either the high limit or the low limit should
be the maximum or minimum specified in the configuration property type
definition, then the field should be empty. In the case of a structure or an array,
if one member of the structure or array has a range modification, then all
members must have a range modification specified. In this case, each range
modification pair is delimited by the ASCII '|'. To specify no range modification
for a member of a structure (that is, revert to the default for that member),
encode the field as '|'. Use the same encoding for structure members that cannot
have their ranges modified due to their data type. The '|' encoding is only
allowed for members of structures.

Whenever a member of a structure is not a fixed or floating-point number, its
range cannot be restricted. Instead, the default ranges must be used. In the case
of an array, the specified range modifications apply to all elements of the array.
For example, to specify a range modification for a 3-member structure where the
second member has the default ranges, and the third member only has an upper
limit modification, the range modification string is encoded as: "n:m||:m;".
Positive values for range modifications and their exponents (if any) are implicit,
while negative numbers and negative exponents must be explicitly designated as
such with a preceding ‘-’ character. Floating-point numbers use a ‘.’ character for
the decimal point. Fixed-point numbers must be expressed as a signed 32-bit
integer. Floating-point numbers must be within the range of an IEEE 32-bit
floating-point number. To express an exponent, precede the exponent by an ‘e’or
an ‘E’ and then follow with an integer value.

Configuration Property Instantiation
As discussed above, the cp_family declaration is similar to a C language
typedef because no actual variables are created as a result of the declaration. In
the case of a type definition, variables are instantiated when the type definition
is used in a later declaration that is not, itself, another typedef. At that time,
variables are instantiated, which means that variables are declared and
computer storage is assigned for the variables. The variables can then be used in
later expressions in the executable code of the program.

Configuration properties can apply to a device, one or more functional blocks, or
one or more network variables. In each case, a configuration property is made to
apply to its respective objects through a property list. Property lists for a device
are explained in the next section, property lists for network variables are
explained later in this chapter, and property lists for functional blocks is
described in Chapter 6, Functional Block Declarations, on page 193.

The instantiation of CP family members occurs when the CP family declaration’s
identifier is used in a property list. However, a configuration network variable is
already instantiated at the time it is declared. For a configuration network
variable, the property list serves only to inform the compiler of the association
between the configuration property and the object or objects to which it applies.

Neuron C Reference Guide 187

Device Property Lists
A device property list declares instances of configuration properties defined by
CP family statements and configuration network variable declarations that apply
to a device. The complete syntax for a device property list is:

device_properties { property-reference-list };

property-reference-list :
property-reference-list , property-reference
property-reference

property-reference :
property-identifier [= initializer] [range-mod]
property-identifier [range-mod] [= initializer]

range-mod : range_mod_string (concatenated-string-constant)

property-identifier :
cpnv-prop-ident
cp-family-prop-ident

cpnv-prop-ident : identifier [constant-array-index-expr]
identifier

cp-family-prop-ident : identifier

The device property list begins with the device_properties keyword. It then
contains a list of property references, separated by commas. Each property
reference must be the name of a previously declared CP family or the name of a
previously declared configuration network variable. If the network variable is an
array, and a single element of that array is to be used as a property for the
device, specify that element with an index expression (such as var[4]) in the
device_properties clause. On the other hand, if the property is itself the
entire network variable array, specify just the array name without an index
expression (such as var, where var is declared as an array) in the
device_properties clause.

Following the property-identifier, there can be an optional initializer, and an
optional range-mod. These optional elements can occur in either order if both are
given. If present, the instantiation initializer for a CP family member overrides
any initializer provided at the time of declaration of the CP family; thus, using
this mechanism, some CP family members can be initialized specially, with the
remaining CP family members having a more generic initial value. If a network
variable is initialized in multiple places (in other words, in its declaration as well
as in its use in a property list), the initializations must be identical in type and
value.

The device property list appears at file scope. This is the same level as a function
declaration, a task declaration, or a global data declaration.

A Neuron C program can have multiple device property lists. These lists are
merged together by the compiler to create one combined device property list.
This feature is provided for modularity in the program (different modules can
specify certain properties for the device, but the list is combined by the compiler).
However, you cannot have more than one configuration property of any given
SCPT or UCPT type that applies to the device.

188 Network Variable, Configuration Property, and Message Tag Declarations

If two separate modules specify a particular configuration of the same type in the
device property lists, this situation causes a compilation error.

Finally, each property instantiation can have a range-modification string
following the property identifier. The range-modification string works identically
to the range-mod described Configuration Property Modifiers (cp-modifiers) on
page 185. A range-modification string provided in the instantiation of a CP
family member overrides any range-modification string provided in the
declaration of the CP family.

Example:
UCPTsomeDeviceCp cp_family cpSomeDeviceCp;
SCPTupdateRate cp_family cpUpdateRate = {3};
SCPTlocation cp_family cpLocation;

device_properties {
 cpSomeDeviceCp,
 cpUpdateRate
 range_mod_string(":180"),
 cpLocation = { "Unknown" }
};

This example implements three device properties: cpSomeDeviceCp
implements a UCPT with a default value as defined in the user-defined resource
file. cpUpdateRate implements SCPTupdateRate with a maximum value of
180 seconds (the SCPT supports up to 65,535 seconds). Note that the entire
cpUpdateRate configuration property family, not just the cpUpdateRate
device property, uses an implementation-specific default value of 3 seconds (the
SCPT is defined with a default of 0 seconds). Finally, cpLocation shows the
declaration of a SCPTlocation-typed device property with a device-specific
default value ("Unknown").

Accessing Property Values from a Program
Configuration properties can be accessed from a program just as any other
variable can be accessed. For example, you can use configuration properties as
function parameters and you can use addresses of configuration properties.

However, to use a CP family member in an expression, the compiler must know
which family member is being accessed, because there could be more than one
member of the same CP family with the same name, but applying to different
network variables. The syntax for accessing a configuration property from a
network variable’s property list is:

nv-context :: property-identifier [index-expr]
nv-context :: property-identifier

nv-context : identifier [index-expr]
 identifier

Example:
// CP for heartbeat and throttle (default 1 min each)
SCPTmaxSndT cp_family cpMaxSendT = { 0, 0, 1, 0, 0 };
SCPTminSndT cp_family cpMinSendT = { 0, 0, 1, 0, 0 };

// NV with heartbeat and throttle:

Neuron C Reference Guide 189

network output SNVT_lev_percent nvoValue
 nv_properties {
 cpMaxSendT,
 // Override default for minSendT to 30 seconds
 // for this family member, only:
 cpMinSendT = { 0, 0, 0, 30, 0 }
};

void f(void)
{
 ...
 if (nvoValue::cpMaxSendT.seconds > 0) {
 ...
 }
}

The particular family member is identified by a qualifier that precedes it. This
qualifier is called the context. The context is followed by two consecutive colon
characters, and then the name of the property. Because there cannot be two or
more properties with the same configuration property type that apply to the same
network variable, each property is unique within a particular context. The
context therefore uniquely identifies the property.

For example, a network variable array, nva, with 10 elements, could be declared
with a property list referencing a CP family named xyz. There would then be 10
different members of the xyz CP family, all with the same name. However,
adding the context, such as nva[4]::xyz, or nva[j]::xyz, uniquely identifies the
family member.

Because the same CP family could also be used as a device property, there is a
special context defined for the device. The device’s context is two consecutive
colon characters without a preceding context identifier.

If accessing a CP family or network variable CP where each member is an array,
you can add an array index expression to the end of the context/property
reference expression, just as you would add an array index expression to any
other array in C.

Using the example above with xyz being a name of a configuration property
array, the expression nva[4]::xyz evaluates to the entire configuration property
array (the expression returns the address of the array’s first element), whereas
nva[4]::xyz[2] returns the third element of the configuration property array that
applies to the fifth element of the nva network variable array.

Finally, even though a configuration network variable can be uniquely accessed
through its variable identifier, it can also be accessed through the context
expression, just like the CP family members.

When accessing a member of a configuration property family that implements a
device property, the context expression is an empty string. For example, ::cpXyz
refers to a device property cpXyz.

For more information about accessing configuration properties, including
examples, see Configuration Properties in the Neuron C Programmer’s Guide.

190 Network Variable, Configuration Property, and Message Tag Declarations

Message Tags
A message tag is a connection point for application messages. Incoming
application messages are always received on a common message tag called
msg_in, but you must declare one or more message tags if outgoing explicit
messages are used. The incoming tag and each outgoing tag or tags can be
assigned a unique network address by a network tool.

A message tag declaration can optionally include connection information. The
syntax for declaring a message tag is as follows:

msg_tag [connection-info] tag-identifier [, tag-identifier ...];

The connection-info field is an optional specification for connection options, in the
following form:

bind_info (options)

The following connection options apply to message tags:

nonbind Denotes a message tag that carries no implicit addressing
information and does not consume an address table entry.
It is used as a destination tag when creating explicitly
addressed messages.

rate_est (const-expr) The estimated sustained message rate, in tenths of
messages per second, that the associated message tag is
expected to transmit. The allowable value range is from 0
to 18780 (0 to 1878.0 messages/second).

max_rate_est (const-expr) The estimated maximum message rate, in tenths
of messages per second, that the associated message tag is
expected to transmit. The allowable value range is from 0
to 18780 (0 to 1878.0 messages/second).

tag-identifier A Neuron C identifier for the message tag.

It might not always be possible to determine rate_est and max_rate_est. For
example, message output rates are often a function of the particular network
where the device is installed. These optional values can be used by a network
tool to perform network device analysis. Although any value in the range
0-18780 can be specified, not all values are used. The values are mapped into
encoded values n in the range 0-127. Only the encoded values are stored in the
device’s self-identification (SI) data. The actual value can be reconstructed from
the encoded value. If the encoded value is zero, the actual value is undefined. If
the encoded value is in the range 1-127, the actual value is:

5)8/(2 −= na

rounded to the nearest tenth. The actual value, a, produced by the formula, is in
units of messages per second.

You must assign a message tag to the msg_out.tag field for each outgoing
message. This specifies which connection point (corresponds to an address table
entry) to use for the outgoing message. After the tag field has been assigned, the
message must be either sent or cancelled.

Neuron C Reference Guide 191

6

Functional Block Declarations

This chapter provides reference information for functional
block declarations. The Neuron C language allows creation
of functional blocks to group network variables and
configuration properties that perform a single task together.
Functional blocks are an important part of a device’s
interface definition. Functional block declarations apply to
both Neuron-hosted applications and host-based
applications with a model file.

Neuron C Reference Guide 193

Introduction
The external application interface of a LONWORKS device consists of its functional
blocks, network variables, and configuration properties. A functional block is a
collection of network variables and configuration properties that are used
together to perform one task. These network variables and configuration
properties are called the functional block members.

Functional blocks are defined by functional profiles. A functional profile is used
to describe common units of functional behavior. Each functional profile defines
mandatory and optional network variables and configuration properties. Each
functional block implements an instance of a functional profile. A functional
block must implement all the mandatory network variables and configuration
properties defined by the functional profile, and can implement any of the
optional network variables and configuration properties defined by the functional
profile. A functional block can also implement network variables and
configuration properties not defined by the functional profile – these are called
implementation-specific network variables and configuration properties.

Functional profiles are defined in resource files. You can use standard functional
profiles (SFPT) defined in the standard resource file set, and you can define your
own functional profiles (UFPT) in your own resource file sets. Functional blocks
based on standard functional profiles are also called LonMark objects. A
functional profile defined in a resource file is also called a functional profile
template (FPT). See types.lonmark.org for a list of standard functional profiles.

You can declare functional blocks in your Neuron C applications using fblock
declarations. These declarations are described in this chapter.

A functional block declaration does not cause the compiler to generate any
executable code, although the compiler does create some data structures as
described in Related Data Structures on page 199. These data structures are
used to implement various functional block features.

Principally, the functional block declaration creates associations among network
variables and configuration properties. The compiler then uses these
associations to create the self-documentation (SD) and self-identification (SI)
data in the device and in its associated device interface file (.xif extension).

The functional block information in the device interface file or the SD and SI data
communicates the presence and names of the functional blocks contained in the
device to a network tool. The information also communicates which network
variables and configuration properties in the device are members of each
functional block.

Functional Block Declarations Syntax
The complete syntax for declaring a functional block is:

fblock FPT-identifier { fblock-body } identifier [array-bounds]
 [ext-name] [fb-property-list] ;

array-bounds : [const-expr]

194 Functional Block Declarations

http://types.lonmark.org/

ext-name : external_name (C-string-const)
 external_resource_name (C-string-const)
 external_resource_name (const-expr : const-expr)

fblock-body : [fblock-member-list] [director-function]

fblock-member-list : fblock-member-list fblock-member ;
 fblock-member ;

fblock-member : nv-reference implements member-name
 nv-reference impl-specific

impl-specific : implementation_specific (const-expr) member-name

nv-reference : nv-identifier array-index
 nv-identifier

array-index : [const-expr]

director-function : director identifier ;

Example:
// Prototype for director function
extern void MyDirector (unsigned uFbIdx, int nCmd);

// Network variables referenced by this fblock:
network output SNVT_lev_percent nvoValue;
network input SNVT_count nviCount;

// The functional block itself ...
fblock SFPTanalogInput {
 nvoValue implements nvoAnalog;
 nviCount implementation_specific(128) nviCount;
 director myDirector;
} MyAnalogInput external_name("AnalogInput");

The functional block declaration begins with the fblock keyword, followed by the
name of a functional profile from a resource file. The functional block is an
implementation of the functional profile. The functional profile defines the
network variable and configuration property members, a unique key called the
functional profile number (also called the functional profile key), and other
information. The network variable and configuration property members are
divided into mandatory members and optional members. Mandatory members
must be implemented, and optional members need not be implemented.

The functional block declaration then proceeds with a member list. In this
member list, network variables are associated with the abstract network variable
members of the profile. These network variables must have previously been
declared in the program. The association between the members of the functional
block declaration and the profile’s abstract network variable members is
performed with the implements keyword. At a minimum, every mandatory
profile network variable member must be implemented by an actual network
variable in the Neuron C program. Each network variable (or, in the case of a
network variable array, each array element) can implement no more than one
profile member, and can be associated with at most one functional block.

If allowed by the profile, you can have an empty member list. Such a functional
block is useful as a collection of related configuration properties.

Neuron C Reference Guide 195

A Neuron C program can also implement additional network variables in the
functional block that are not in the list of optional members of the profile. Such
additional network variable members beyond the profile are called
implementation-specific members. These extra members are declared in the
member list using the implementation_specific keyword, followed by a unique
index number, and a unique name. Each network variable in a functional profile
assigns an index number and a member name to each abstract network variable
member of the profile, and the implementation-specific member cannot use any of
the index numbers or member names that the profile already uses.

Note that implementation-specific member network variables or configuration
properties can prevent device certification. Instead of adding implementation-
specific member network variables or configuration properties, consider removing
those items from the interoperable interface, or defining a user-defined functional
profile, possibly inheriting from a standard functional profile, and adding the
desired new members to that UFPT.

At the end of the member list there is an optional item that permits the
specification of a director function. The director function specification begins
with the director keyword, followed by the identifier that is the name of the
function, and ends with a semicolon. See the chapter on functional blocks in the
Neuron C Programmer’s Guide for more explanation and examples of functional
block members and the director function.

After the member list, the functional block declaration continues with the name
of the functional block itself. A functional block can be a single declaration, or it
can be a singly-dimensioned array.

If the fblock is implemented as an array, as shown in the example below, then
each network variable that is to be referenced by that fblock must be declared as
an array of at least the same size. When implementing an fblock array’s
member with an array network variable element, the starting index of the first
network variable array element in the range of array elements must be provided
in the implements statement. The Neuron C compiler automatically adds the
following network variable array elements to the fblock array elements,
distributing the elements consecutively.

Example:
network output SNVT_lev_percent nvoValue[6];

// The following declares an array of four fblocks, which
// have members nvoValue[2]..nvoValue[5], respectively
fblock SFPTanalogInput {
 nvoValue[2] implements nvoAnalog;
} myFB[4];

An optional external name can be provided for each functional block. An external
name can be specified with an external_name keyword, followed by a string in
parentheses. The string becomes part of the device interface that is exposed to
network tools. The external name is limited to 16 characters. If the
external_name feature is not used, nor the external_resource_name feature
described below, the functional block identifier (supplied in the declaration) is
also used as the default external name. In this case, there is a limitation of 16
characters applying to the functional block identifier.

An external name can optionally be specified using a reference to a resource file.
The reference is specified using the external_resource_name keyword, instead

196 Functional Block Declarations

of the external_name string described above. In this case, the device interface
information contains a scope and index pair (the first number is a scope, then a
colon character, and then the second number is an index). The scope and index
pair identifies a language string in the resource files, which a network tool can
access for a language-dependent name of the functional block. You can use the
scope and index pair to reduce memory requirements and to provide language-
dependent names for your functional blocks.

Alternatively, a string argument can be supplied to the
external_resource_name keyword. The compiler takes this string and uses it
to look up the appropriate string in the resource files that apply to the device.
This mechanism is provided as a convenience to the programmer, so the compiler
can look up the scope and index; but the result is the same, the scope and index
pair is used in the external interface information, rather than a string. The
string must exist in an accessible resource file for the compiler to properly
perform the lookup.

Functional Block Property Lists (fb-property-list)
You can include a property list at the end of the functional block declaration,
similar to the device property lists and the network variable property lists
discussed in the previous chapter. The functional block’s property list, at a
minimum, must include all of the mandatory properties defined by the functional
profile that apply to the functional block. Implementation-specific properties can
be added to the list without any special keywords. You cannot implement more
than one property of any particular SCPT or UCPT type for the same functional
block.

The functional block’s property list must only contain the mandatory and
optional properties that apply to the functional block as a whole. Properties that
apply specifically to an individual abstract network variable member of the
profile must appear in the nv-property-list of the network variable that
implements the member, rather than in the fb-property-list.

The complete syntax for a functional block’s property list is:

fb_properties { property-reference-list }

property-reference-list :
 property-reference-list , property-reference
 property-reference

property-reference :
 property-identifier [= initializer] [range-mod]
 property-identifier [range-mod] [= initializer]

range-mod : range_mod_string (C-string-constant)

property-identifier :
 [property-qualifier] cpnv-prop-ident
 [property-qualifier] cp-family-prop-ident

property-qualifier : static | global

cpnv-prop-ident:
 identifier [constant-array-index-expr]
 identifier

cp-family-prop-indent: identifier

Neuron C Reference Guide 197

The functional block property list begins with the fb_properties keyword. It
then contains a list of property references, separated by commas, exactly like the
device property list and the network variable property list. Each property
reference must be the name of a previously declared CP family or the name of a
previously declared configuration network variable. The rest of the syntax is
very similar to the network variable property list syntax discussed in the
previous chapter.

Following the property-identifier, there can be an optional initializer, and an
optional range-mod. These optional elements can occur in either order if both are
specified. If present, the instantiation initializer for a CP family member
overrides any initializer provided at the time of declaration of the family; thus,
using this mechanism, some CP family members can be initialized specially, with
the remaining family members having a more generic initial value. If a network
variable is initialized in multiple places (in other words, in its declaration as well
as in its use in a property list), the initializations must match.

Each property instantiation can have a range-modification string following the
property identifier. The range-modification string works identically to the range-
mod described in Configuration Property Modifiers (cp-modifiers) on page 185. A
range-modification string provided in the instantiation of a CP family member
overrides any range modification string provided in the declaration of the CP
family.

The elements of an fblock array all share the same set of configuration
properties as listed in the associated fb-property-list. Without special keywords,
each element of the fblock array obtains its own set of configuration properties.
Special modifiers can be used to share individual properties among members of
the same fblock array (through use of the static keyword), or among all the
functional blocks on the device that have the particular property (through use of
the global keyword).

Example:
// CP Family Declarations:
SCPTgain cp_family cpGain;
SCPTlocation cp_family cpLocation;
SCPToffset cp_family cpOffset;
SCPTmaxSndT cp_family cpMaxSendT;
SCPTminSndT cp_family cpMinSendT;

// NV Declarations:
network output SNVT_lev_percent nvoData[4]
 nv_properties {
 cpMaxSendT, // throttle interval
 cpMinSendT // heartbeat interval
};

// four open loop sensors, implemented as two arrays of
// two sensors, each. This might be beneficial in that
// this software layout might meet the hardware design
// best, for example with regards to shared and individual
// properties.

fblock SFPTopenLoopSensor {
 nvoData[0] implements nvoValue;
} MyFb1[2]

198 Functional Block Declarations

 fb_properties {
 cpOffset, // offset for each fblock
 static cpGain, // gain shared in MyFb1
 global cpLocation // location shared in all 4
};

fblock SFPTopenLoopSensor {
 nvoData[2] implements nvoValue;
} MyFb2[2]
 fb_properties {
 cpOffset, // offset for each fblock
 static cpGain, // gain shared in MyFb2
 global cpLocation // location shared in all 4
};

Like network variable properties, functional block properties can be shared
between two or more functional blocks. The use of the global keyword creates a
CP family member that is shared among two or more functional blocks. This
global member is a different member than a global member that would be shared
among network variables, because no single configuration property can apply to
both network variables and functional blocks.

The use of the static keyword creates a CP family member that is shared among
all the members of a functional block array, but not with any other functional
blocks outside the array. See the discussion of functional block properties in the
Neuron C Programmer’s Guide for more information on this topic.

Consequently, the example shown above instantiates four heartbeat
(SCPTminSndT) and four throttle (SCPTmaxSndT) CP family members (one
pair for each member of the nvoData network variable array), and four offset CP
family members (SCPToffset), one for each member of each fblock array. It
also instantiates a total of two gain control CP family members (SCPTgain), one
for MyFb1, and one for MyFb2. Finally, it instantiates a single location CP
family member (SCPTlocation), which is shared by MyFb1 and MyFb2.

Just as for properties of network variables, you can treat a network variable
array that is a configuration property either as a collection of separate properties
where each element is a separate property, or as a single configuration property
that is an array. In the former case, specify the network variable name with an
array index representing the starting index for the element of the network
variable array that is to be the first property used. In the latter case, specify the
network variable name without an index to treat the entire network variable
array as a single property.

Related Data Structures
Each functional block is assigned a global index (from 0 to n-1) by the compiler.
In the case of an array of functional blocks, each element is assigned a
consecutive index (but because these indices are global, they do not necessarily
start at zero). An application can get the global index for a functional block using
the global_index property as described in Accessing Members and Properties of
a Functional Block from a Program on page 200.

If one or more functional blocks are declared in a Neuron C program, the
compiler creates an array of values that can be accessed from the program. This
array is named fblock_index_map, and it has one element per network variable

Neuron C Reference Guide 199

in the program. The array entry is an unsigned short. Its declaration, in the
<echelon.h> file, is:

extern const unsigned short fblock_index_map[];

The value for each network variable is set to the global index of the functional
block of which it is a member. If the network variable is not a member of any
functional block, the value for its entry in the fblock_index_map array is set to
the value 0xFF.

Accessing Members and Properties of a
Functional Block from a Program

The network variable members and configuration property (implemented as
network variable) members of a functional block can be accessed from a program
just as any other variable can be accessed. For example, they can be used in
expressions, as function parameters, or as operands of the address operator or
the increment operator. To access a network variable member of a functional
block, or to access a network variable configuration property of a functional block,
the network variable reference can be used in the program just as any other
variable would be.

However, to use a CP family member, you must specify which family member is
being accessed, because more than one functional block could have a member
from the same CP family. The syntax for accessing a configuration property from
a functional block’s property list is:

fb-context :: property-identifier [index-expr]
fb-context :: property-identifier

fb-context : identifier [index-expr]
 identifier

The particular family member is identified by a qualifier that precedes it. This
qualifier is called the context. The context is followed by two consecutive colon
characters, and then the name of the property. Because there cannot be two or
more properties with the same SCPT or UCPT type that apply to the same
functional block, this restriction means that each property is unique within a
particular context. The context uniquely identifies the property. For example, a
functional block array, fba, with 10 elements, could be declared with a property
list referencing a CP family named xyz. There would then be 10 different
members of the CP family xyz, all with the same name. However, adding the
context, such as fba[4]::xyz, or fba[j]::xyz, uniquely identifies the CP family
member.

Example:
// Continuing from the example earlier in the chapter
// that declared MyFb1[2] and MyFb2[2] ...

void f(void)
{
 MyFb1[0]::nvoData = muldiv(rawData,
 MyFb1[0]::cpGain.multiplier,
 MyFb1[0]::cpGain.divider);
}

200 Functional Block Declarations

Just like for network variable properties, even though a configuration network
variable can be uniquely accessed through its variable identifier, it can also be
accessed through the context expression, just like the CP family members.

Also, the network variable members of the functional block can be accessed
through a similar syntax. The syntax for accessing a functional block member is
shown below (the fb-context syntactical element is defined above):

fb-context :: member-identifier

Example:
if (MyFb1[0]::cpGain.divider == 0) {
 // flag error indicating division by zero
}

The properties of the functional block’s network variable members can also be
accessed through an extension of this syntax. The syntax for accessing a
functional block’s member’s property is shown below (the fb-context syntactical
element is defined above):

fb-context :: member-identifier :: property-identifier [[index-expr]]

Example:
MyTimer = MyFb1[0]::nvoValue::cpMaxSendT;

Neuron C provides the following built-in properties for a functional block (the fb-
context syntactical element is defined above):

 fb-context :: global_index

The global_index property is an unsigned short value that provides the global
index assigned by the compiler. The global index is a read-only value.

fb-context :: director (expr)

Use of the director property as shown calls the director function that appears in
the declaration of the functional block. The compiler provides the first parameter
to the actual director function automatically (the first argument is the global
index of the functional block), and the expr shown in the syntax above becomes
the director function’s second parameter.

For more information about functional blocks and accessing their members and
properties, including examples, see Chapter 5, Using Functional Blocks to
Implement a Device Interface, in the Neuron C Programmer’s Guide.

Neuron C Reference Guide 201

7

Built-In Variables, Objects,
Symbols, and Semaphore

This chapter provides reference information about the built-
in variables, objects, symbols, and semaphore in Neuron C.
Built-in variables, objects, and semaphores apply only to
Neuron-hosted application development, and are ignored in
model files. Built-in symbols apply to both Neuron-hosted
and host-based development.

Neuron C Reference Guide 203

Introduction
Neuron C Version 2 provides built-in variables and built-in objects. The term
“built-in” means that the definition is part of the Neuron C language, and is
directly generated by the compiler, rather than being a reference to a normal
variable.

The built-in variables are:

activate_service_led
config_data
cp_modifiable_value_file
cp_modifiable_value_file_len
cp_readonly_value_file
cp_readonly_value_file_len
cp_template_file
cp_template_file_len
fblock_index_map
input_is_new
input_value
msg_tag_index
nv_array_index
nv_in_addr
nv_in_index
read_only_data
read_only_data_2

The built-in objects are:

msg_in
msg_out
resp_in
resp_out

The built-in, predefined pre-processor symbols are:

_ECHELON
FAMILY(3100|5000|6000)
_FTXL
_ILON
_LID3
_MINIKIT
_MODEL_FILE
_NCC5
_NCC6
_NEURONC
_NODEBUILDER
_PUREC
_SHORTSTACK
SUPPORT* (various)

For Series 5000 and 6000 chips, you can control access to shared data through
the use of the built-in semaphore. The following keyword defines a locked section
controlled by the semaphore:

__lock { }

204 Built-In Variables, Objects, Symbols, and Semaphore

The following sections describe these built-in elements.

Built-In Variables
The following sections list the Neuron C built-in variables alphabetically,
providing relevant syntax information and a detailed description of each function.

activate_service_led Variable
The activate_service_led variable can be assigned a value by the application
program to control the service LED status. Assign a non-zero value to
activate_service_led to turn the service LED on. Assign a zero value to turn
the service LED off. The <control.h> include file contains the definition for the
variable as follows:

extern system int activate_service_led;

This variable is located in RAM space belonging to the Neuron firmware. Its
value is not preserved after a reset.

There can be a delay of up to one second between the time that the application
program sets this variable and the time that its new value is sensed and acted
upon by the Neuron firmware. Therefore, attempts to flash the service LED are
limited to a minimum period of one second.

Example:
// Turn on service LED
activate_service_led = TRUE;

// Turn off service LED
activate_service_led = FALSE;

config_data Variable
The config_data variable defines the hardware and transceiver properties of
this device. It is located in EEPROM, and parts of it belong to the application
image written during device manufacture, and to the network image written
during device installation. The type is a structure declared in <access.h> as
follows:

#define LOCATION_LEN 6
#define NUM_COMM_PARAMS 7
typedef struct {
 // This embedded struct starts at
 // offset 0x11 when placed in outer struct
 unsigned collision_detect : 1;
 unsigned bit_sync_threshold : 2;
 unsigned filter : 2;
 unsigned hysteresis : 3;
 // offset 0x12 starts here when it is nested
 // in the outer struct below
 unsigned cd_to_end_packet : 6;
 unsigned cd_tail : 1;
 unsigned cd_preamble : 1;
} direct_param_struct;
typedef struct { // This is the outer struct

Neuron C Reference Guide 205

 unsigned long channel_id; // offset 0x00
 char location[LOCATION_LEN]; // offset 0x02
 unsigned comm_clock : 5; // offset 0x08
 unsigned input_clock : 3;
 unsigned comm_type : 3; // offset 0x09
 unsigned comm_pin_dir : 5;
 unsigned preamble_length; // offset 0x0A
 unsigned packet_cycle; // offset 0x0B
 unsigned beta2_control; // offset 0x0C
 unsigned xmit_interpacket; // offset 0x0D
 unsigned recv_interpacket; // offset 0x0E
 unsigned node_priority; // offset 0x0F
 unsigned channel_priorities; // offset 0x10
 union { // offset 0x11
 unsigned xcvr_params[NUM_COMM_PARAMS];
 direct_param_struct dir_params;
 } params;
 unsigned non_group_timer : 4; // offset 0x18
 unsigned nm_auth : 1;
 unsigned preemption_timeout : 3;
} config_data_struct;
const config_data_struct config_data;

The application program can read this structure, but cannot write it, using the
config_data global declaration. The structure is 25 bytes long, and it can be
read and written over the network using the read memory and write memory
network management messages with address_mode=2. For detailed
descriptions of the individual fields, see the ISO/IEC 14908 (ANSI/EIA/CEA-
709.1) Control Network Specification. To write this structure, use the
update_config_data() function described on page 164.

cp_modifiable_value_file Variable
The cp_modifiable_value_file variable contains the writeable configuration
property value file. This block of memory contains the values for all writeable
configuration properties implemented as CP family members. It is defined as an
unsigned short array. See Chapter 5, Network Variable, Configuration
Property, and Message Tag Declarations, on page 171, for more information about
configuration properties.

cp_modifiable_value_file_len Variable
The cp_modifiable_value_file_len variable contains the length of the
cp_modifiable_value_file array. It is defined as an unsigned long. See
Chapter 5, Network Variable, Configuration Property, and Message Tag
Declarations, on page 171, for more information about configuration properties.

cp_readonly_value_file Variable
The cp_readonly_value_file variable contains the read-only configuration
property value file. This block of memory contains the values for all read-only
configuration properties implemented as CP family members. The type is an
unsigned short array. See Chapter 5, Network Variable, Configuration

206 Built-In Variables, Objects, Symbols, and Semaphore

Property, and Message Tag Declarations, on page 171, for more information about
configuration properties.

cp_readonly_value_file_len Variable
The cp_readonly_value_file_len variable contains the length of the
cp_readonly_value_file array. The type is unsigned long. See Chapter 5,
Network Variable, Configuration Property, and Message Tag Declarations, on
page 171, for more information about configuration properties.

cp_template_file Variable
The cp_template_file variable contains the configuration property template file.
The configuration template file contains a definition of all configuration
properties implemented as CP family members. This is an unsigned short
array. See Chapter 5, Network Variable, Configuration Property, and Message
Tag Declarations, on page 171, for more information about configuration
properties.

cp_template_file_len Variable
The cp_template_file_len variable contains the length of the cp_template_file
array. The type is an unsigned long. See Chapter 5, Network Variable,
Configuration Property, and Message Tag Declarations, on page 171, for more
information about configuration properties.

fblock_index_map Variable
The fblock_index_map variable contains the functional block index map. The
functional block index map provides a mapping of each network variable (or, each
network variable array element in case of an array) to the functional block that
contains it, if any. The type is an unsigned short array. The length of the
array is identical to the number of network variables (counting each network
variable array element separately) in the Neuron C program.

For each network variable, the mapping array entry corresponding to that
variable’s global index (or that element’s global index) is either set to 0xFF by
the compiler if the variable (or element) is not a member of a functional block, or
it is set to the functional block global index that contains the network variable (or
element). The functional block global indices range from 0 to n-1 consecutively,
for a program containing n functional blocks. See Chapter 6, Functional Block
Declarations, on page 193, for more information about functional blocks.

input_is_new Variable
The input_is_new variable is set to TRUE for all timer/counter input objects
whenever a call to the io_in() function returns an updated value. The type of
the input_is_new variable is boolean.

Neuron C Reference Guide 207

input_value Variable
The input_value variable contains the input value for an io_changes or
io_update_occurs event. When the io_changes or io_update_occurs event is
evaluated, an implicit call to the io_in() function occurs. This call to io_in()
obtains an input value for the object, which can be accessed using the
input_value variable. The type of input_value is a signed long.

Example 1:
signed long switch_state;

when (io_changes(switch_in))
{
 switch_state = input_value;
}

Here, the value of the network variable switch_state is set to the value of
input_value (the switch value that was read in the io_changes clause).

However, there are some I/O models, such as pulsecount, where the true type of
the input value is an unsigned long. An explicit cast should be used to convert
the value returned by input_value to an unsigned long variable in this case.

Example 2:
unsigned long last_count;
IO_7 input pulsecount count;

when (io_update_occurs(count))
{
 last_count = (unsigned long)input_value;
}

msg_tag_index Variable
The msg_tag_index variable contains the message tag for the last
msg_completes, msg_succeeds, msg_fails, or resp_arrives event. When one
of these events evaluates to TRUE, msg_tag_index contains the message tag
index to which the event applies. The contents of msg_tag_index is undefined if
no input message event has been received. The type is unsigned short.

nv_array_index Variable
The nv_array_index variable contains the array index for a
nv_update_occurs, nv_update_completes, nv_update_fails,
nv_update_succeeds event. When one of these events, qualified by an
unindexed network variable array name, evaluates to TRUE, nv_array_index
contains the index of the element within the array to which the event applies.
The contents of nv_array_index will be undefined if no network variable array
event has occurred. The type is unsigned int.

nv_in_addr Variable
The nv_in_addr variable contains the source address for a network variable
update. This value can be used to process inputs from a large number of devices

208 Built-In Variables, Objects, Symbols, and Semaphore

that fan-in to a single input on the monitoring device. When the devices being
monitored have the same type of output, a single input network variable can be
used on the monitoring device. The connection would likely include many output
devices (the sensors) and a single input device (the monitor). However, the
monitoring device in this example must be able to distinguish between the many
sensor devices. The nv_in_addr variable can be used to accomplish this.

When an nv_update_occurs event is TRUE, the nv_in_addr variable is set to
contain the LONWORKS addressing information of the sending device. The type is
a structure predefined in the Neuron C language as shown below:

typedef struct {
 unsigned domain : 1;
 unsigned flex_domain : 1;
 unsigned format : 6;
 struct {
 unsigned subnet;
 unsigned : 1;
 unsigned node : 7;
 } src_addr;
 struct {
 unsigned group;
 } dest_addr;
} nv_in_addr_t;
const nv_in_addr_t nv_in_addr;

The various fields of the network variable input address structure are:

domain Domain index of the network variable update.

flex_domain Always 0 for network variable updates.

format Addressing format used by the network variable update.
Contains one of the following values:

 0 Broadcast
1 Group
2 Subnet/Node
3 Neuron ID
4 Turnaround

src_addr Source address of the network variable update. The
subnet and node fields in the src_addr are both zero (0)
for a turnaround network variable.

dest_addr Destination address of the network variable update if
group addressing is used as specified by the format field.

When the nv_in_addr variable is used in an application, its value corresponds to
the last input network variable updated in the application. The contents of
nv_in_addr are undefined if no network variable update event has occurred.
Updates occur when network variable events are checked or when
post_events() is called (either explicitly from the program or by the scheduler
between tasks) and events arrive for network variables for which there is no
corresponding event check.

See Monitoring Network Variables in Chapter 3, How Devices Communicate
Using Network Variables, of the Neuron C Programmer's Guide for more
description of how nv_in_addr is used.

Neuron C Reference Guide 209

Use of nv_in_addr enables explicit addressing for the application, and affects
the required size for input and output application buffers. See Chapter 8,
Memory Management, of the Neuron C Programmer's Guide for more information
about allocating buffers.

nv_in_index Variable
The nv_in_index variable contains the network variable global index for an
nv_update_completes, nv_update_fails, nv_update_succeeds, or
nv_update_occurs event. When one of these events evaluates to TRUE,
nv_in_index contains the network variable global index to which the event
applies. The contents of nv_in_index are undefined if no network variable
events have occurred. Updates occur when one of the above events are checked
or when post_events() is called (either explicitly from the program or by the
scheduler between tasks) and events arrive for network variables for which there
is no corresponding event.

The global index of a network variable is set during compilation and depends on
the order of declaration of the network variables in the program. The type of
nv_in_index is unsigned short. The global index of a network variable can be
accessed using either the global_index property, or using the
nv_table_index() function.

read_only_data Variable

read_only_data_2 Variable

read_only_data_3 Variable

read_only_data_4 Variable

The read_only_data, read_only_data_2, read_only_data_3 and
read_only_data_4 variables contain the read-only data stored in the Neuron
Chip or Smart Transceiver on-chip EEPROM, at location 0xF000. The secondary
part (read_only_data_2) is immediately following, but only exists on Neuron
Chips or Smart Transceivers with version 6 firmware or later. The tertiary part
(read_only_data_3) is immediately following, but only exists on Neuron Chips
or Smart Transceivers with version 16 firmware or later. The read_only_data_4
variable immediately follows read_only_data_3, but only exists on Series 6000
chips with version 21 system firmware or later.

This data defines the Neuron identification, as well as some of the application
image parameters. The types are structures, declared in <access.h> as follows:

#define NEURON_ID_LEN 6
#define ID_STR_LEN 8

typedef struct read_only_data_struct {
 unsigned neuron_id [NEURON_ID_LEN];
 unsigned model_num;
 unsigned : 4;

210 Built-In Variables, Objects, Symbols, and Semaphore

 unsigned minor_model_num : 4;
 const nv_fixed_struct * nv_fixed;
 unsigned read_write_protect : 1;
 unsigned : 1;
 unsigned nv_count : 6;
 const snvt_struct * snvt;
 unsigned id_string [ID_STR_LEN];
 unsigned NV_processing_off : 1;
 unsigned two_domains : 1;
 unsigned explicit_addr : 1;
 unsigned : 0;
 unsigned address_count : 4;
 unsigned : 0;
 unsigned : 4;
 unsigned receive_trans_count : 4;
 unsigned app_buf_out_size : 4;
 unsigned app_buf_in_size : 4;
 unsigned net_buf_out_size : 4;
 unsigned net_buf_in_size : 4;
 unsigned net_buf_out_priority_count : 4;
 unsigned app_buf_out_priority_count : 4;
 unsigned app_buf_out_count : 4;
 unsigned app_buf_in_count : 4;
 unsigned net_buf_out_count : 4;
 unsigned net_buf_in_count : 4;
 unsigned reserved1 [6];
 unsigned : 6;
 unsigned tx_by_address : 1;
 unsigned idempotent_duplicate : 1;
} read_only_data_struct;

typedef struct read_only_data_struct_2 {
 unsigned read_write_protect_2 : 1;
 unsigned custom_mac : 1;
 unsigned alias_count : 6;
 unsigned msg_tag_count : 4;
 unsigned has_ecs_flag : 1;
 unsigned prt_count : 3;
 int reserved2 [3];
} read_only_data_struct_2;

typedef struct read_only_data_struct_3 {
 unsigned nvCount;
 unsigned aliasCount;
 unsigned long siDataEx;
 unsigned dmf : 1;
 unsigned : 7;
} read_only_data_struct_3;

typedef struct read_only_data_struct_4 {
 unsigned address_count;
} read_only_data_struct_4;

const read_only_data_struct read_only_data;
const read_only_data_struct_2 read_only_data_2;
const read_only_data_struct_3 read_only_data_3;
const read_only_data_struct_4 read_only_data_4;

Neuron C Reference Guide 211

The application program can read these structures, but cannot write them, using
read_only_data, read_only_data_2, read_only_data_3 and
read_only_data_4. The first structure is 41 bytes, and it can be read and
mostly written (except for the first eight bytes) over the network using the read
memory and write memory network management messages with
address_mode=1. The second structure is seven bytes, the third structure is
five bytes and the forth is one byte. The structures are written during the
process of downloading a new application image into the device.

For more information about the individual fields of the read-only data structures,
see the ISO/IEC 14908 (ANSI/EIA/CEA-709.1) Control Network Protocol
specification.

Built-In Objects
The following sections list the Neuron C built-in objects alphabetically, providing
relevant syntax information and a detailed description of each function.

msg_in Object
The msg_in object contains an incoming application or foreign-frame message.
The type is a structure predefined in Neuron C as shown below:

typedef enum {ACKD, UNACKD_RPT,
 UNACKD, REQUEST} service_type;

struct {
 int code;
 int len;
 int data[MAXDATA];
 boolean authenticated;
 service_type service;
 msg_in_addr addr;
 boolean duplicate;
 unsigned rcvtx;
} msg_in;

The various fields of the msg_in object are:

code Message code for the incoming message.

len Length of message data in bytes.

data Message data.

authenticated TRUE if authenticated, message has passed challenge.

service Service type for the incoming message.

addr Source address of this message, and address through
which the message was received. See <msg_addr.h>
include file.

duplicate Message is a duplicate request. See Idempotent Versus
Non-Idempotent Requests in the Neuron C Programmer's
Guide.

212 Built-In Variables, Objects, Symbols, and Semaphore

rcvtx The index into the receive transaction database for this
message.

See Format of an Incoming Message in Chapter 6, How Devices Communicate
Using Application Messages, of the Neuron C Programmer's Guide for more
information about this structure.

msg_out Object
The msg_out object contains an outgoing application or foreign frame message.
The type is a structure predefined in the Neuron C as shown below:

typedef enum {FALSE, TRUE} boolean;
typedef enum {ACKD, UNACKD_RPT,
 UNACKD, REQUEST} service_type;

struct {
 boolean priority_on;
 msg_tag tag;
 int code;
 int data[MAXDATA];
 boolean authenticated;
 service_type service;
 msg_out_addr dest_addr;
} msg_out;

The various fields of the msg_out object are:

priority_on TRUE if a priority message. Defaults to FALSE.

tag Message tag of the outgoing message. This field must be
set.

code Message code of the outgoing message. This field must be
set.

data Message data.

authenticated Specifies message is to be authenticated. Defaults to
FALSE.

service Service type of the outgoing message. Defaults to ACKD.

dest_addr Optional, see the <msg_addr.h> include file.

See msg_out Object Definition in Chapter 6, How Devices Communicate Using
Application Messages, of the Neuron C Programmer's Guide for a more detailed
description of this structure.

resp_in Object
The resp_in object contains an incoming response to a request message. The
type is a structure predefined in Neuron C as shown below:

struct {
 int code;
 int len;
 int data[MAXDATA];
 resp_in_addr addr;
} resp_in;

Neuron C Reference Guide 213

The various fields of the resp_in object are:

code Message code for the incoming response message.

len Length of the message data in bytes.

data Message data.

addr Source address of this response, and address through
which this response was received. See the <msg addr.h>
include file.

See Receiving a Response in Chapter 6, How Devices Communicate Using
Application Messages, of the Neuron C Programmer's Guide for a more detailed
description of this structure.

resp_out Object
The resp_out object contains an outgoing response message to be sent in
response to an incoming request message. The response message inherits its
priority and authentication designation from the request to which it is replying.
Because the response is returned to the origin of the request, no message tag is
necessary. The type is a structure predefined in Neuron C as shown below:

struct {
 int code;
 int data[MAXDATA];
} resp_out;

The various fields of the resp_out object are:

code Message code of the outgoing response message.

data Message data.

See Constructing a Response in Chapter 6, How Devices Communicate Using
Application Messages, of the Neuron C Programmer's Guide for a more detailed
description of this structure.

Built-In Symbols
The Neuron C compiler defines a number of pre-processor symbols, listed in
Table 32, that allow you to share common code with different versions of the
compiler or between Neuron-hosted applications and host-based applications that
use a model file.

Table 32. Built-In Symbols

Symbol Description

_ECHELON Defined for all versions of the Neuron C compiler
in the <echelon.h> file.

_FAMILY_3100
_FAMILY_5000
_FAMILY_6000

Defined if the Neuron C compilation target is
member of the respective chip family.

214 Built-In Variables, Objects, Symbols, and Semaphore

Symbol Description

_FTXL Defined for the Neuron C compiler that is
included with the FTXL LonTalk Interface
Developer utility for model files.

_ILON Defined for the Neuron C compiler that is
included with the i.LON SmartServer LonTalk
Interface Developer utility for model files.

_LID3 Defined for the Neuron C compiler that is
included with version 3 of the LonTalk Interface
Developer utility for model files.

_MODEL_FILE Defined for the Neuron C compiler that is
included with all versions of the LonTalk
Interface Developer utility for model files.

_NCC5 Defined for version 5 of the Neuron C compiler.
This version corresponds to Version 2.2 of the
Neuron C language.

_NCC6 Defined for version 6 of the Neuron C compiler.
This version corresponds to Version 2.3 of the
Neuron C language.

_NEURONC Defined for all versions of the Neuron C compiler.

_NODEBUILDER Defined for the Neuron C compiler that is
included with the NodeBuilder FX Development
Tool, and later versions.

_PUREC Defined when compiling in Pure C Mode. In Pure
C mode, most of the Neuron C advanced features,
such as built-in support for network variables or
message objects, timers and similar features, is
disabled.

_RESIDENT Expands to the __resident keyword for versions of
the Neuron C Compiler which support resident
and transient function definitions. Expands to
nothing with older versions of the compiler.

_SHORTSTACK Defined for the Neuron C compiler that is
included with the ShortStack LonTalk Interface
Developer utility for model files.

_SUPPORT_EAT Defined if the compilation target supports an
extended address table exceeding 15 address
table entries.

Neuron C Reference Guide 215

Symbol Description

_SUPPORT_TRANSIENCE Defined if the compilation target supports
transient functions.

Built-In Semaphore
For Series 5000 and 6000 chips, you use the Neuron C __lock { } keyword,
followed by a code block, within the application or the interrupt service routine
(the interrupt task) to acquire the built-in binary semaphore and synchronize
access to shared resources. The __lock keyword precedes a block of code (within
a pair of curly braces) that is controlled by the semaphor.

The semaphore is not supported for the lowest system clock rates (5 MHz and 10
MHz).

You can use the __lock keyword within either Neuron C code or pure C code (for
example, within a library).

Example:
interrupt (IO_0) {
 ... // do something not guarded by the semaphore

 __lock { // acquire semaphore
 ... // do something guarded by the semaphore
 } // release semaphore

 ... // more unguarded code
}

Because there is only one semaphore, you cannot nest locks. Nested locks yield a
compiler error, NCC#585. While the compiler detects and prevents direct
nesting of __lock{ } constructs within the same function, when task, or interrupt
task, the compiler does not detect runtime nesting.

Example: The following example illustrates nesting of locks at runtime.
void f() {
 __lock {
 ... // do something
 }
}

interrupt (IO_0) {

 __lock { // acquire semaphore
 f();
 } // release semaphore

 ... // more unguarded code
}

This code results in a deadlock because the interrupt task owns the semaphore,
thus function f() can never succeed in acquiring it. The Neuron firmware

216 Built-In Variables, Objects, Symbols, and Semaphore

resolves the deadlock by resetting the chip after the watchdog timer expires, but
you must be sure to release the semaphore before acquiring it again.

Defining a lock with target hardware or firmware that does not support
semaphores yields a linker error, NLD#506.

If you define a lock for an interrupt task that runs within the application
processor, the Neuron Exporter issue a warning message (NEX#4014) that the
hardware semaphore and the __lock{ } statement are not operational for the
specified system clock setting. In addition, when the interrupt task runs, no
semaphore is acquired, access is granted immediately, but a system error is
logged.

Neuron C Reference Guide 217

A

Syntax Summary

This appendix provides a summary of Neuron C Version 2.3
syntax, with some explanatory material interspersed. In
general, the syntax presentation starts with the highest,
most general level of syntactic constructs and works its way
down to the lowest, most concrete level as the appendix
progresses. The syntax is divided into sections for ease of
use, with declaration syntax first, statement syntax next,
and expression syntax last.

Neuron C Reference Guide 219

Syntax Conventions
In this syntax section, syntactic categories (nonterminals) are indicated by italic
type, and literal words and character set members (terminals) by bold type. In
the example below, basic-net-var is a nonterminal, meaning it represents a
syntactic category, or construct, rather than a literal string of characters to be
typed. The symbols network, input, and output are terminals, meaning they
are to be typed in exactly as shown.

basic-net-var :
 network input
 network output

A colon (:) following a nonterminal introduces its definition. Alternative
definitions for a nonterminal are listed on separate, consecutive lines, except
when prefaced by the phrase “one of,” and the alternatives are then shown
separated by a vertical bar. The example above shows two alternative definitions
on separate lines. The example below shows two alternative definitions using the
“one of” notation style.

assign-op :
 one of = | |= | ^= | &= | <<= | >>=
 /= | *= | %= | += | -=

When a definition of a nonterminal has an optional component, that optional
component is shown inside square brackets, like this: [optional-component]. The
following example demonstrates this concept. The square brackets are not to be
typed, and are not part of the syntax. They merely indicate that the keyword
repeating is optional, rather than required.

timer-type :
 mtimer [repeating]
 stimer [repeating]

Neuron C External Declarations
The language consists of basic blocks, called “external declarations”.

Neuron-C-program :
 Neuron-C-program external-declaration
 external-declaration

The external declarations are ANSI C declarations like data and function
declarations, and Neuron C extensions like I/O object declarations, functional
block declarations, and task declarations.

external-declaration :
 ANSI-C-declaration
 Neuron-C-declaration

ANSI-C-declaration :
 ; (C language permits extra semicolons)
 data-declaration ;
 function-declaration

220 Syntax Summary

Neuron-C-declaration :
 task-declaration
 io-object-declaration ;
 functional-block-declaration ;
 device-property-list-declaration

A data declaration is an ANSI C variable declaration.

data-declaration :
 variable-declaration
 variable-list

Variable Declarations
The following is ANSI C variable declaration syntax.

variable-declaration-list :
 variable-declaration-list variable-declaration ;
 variable-declaration ;

variable-declaration :
 declaration-specifier-list variable-list
 declaration-specifier-list

The variable declaration can declare more than one variable in a comma-
separated list. A network variable can also optionally include a property list
declaration after the variable name (and the variable initializer, if present).

variable-list :
 variable-list , extended-variable
 extended-variable

extended-variable :
 variable nv-property-list-declaration
 variable

variable :
 declarator = variable-initializer
 declarator

variable-initializer :
 { variable-initializer-list , }
 { variable-initializer-list }
 constant-expr

variable-initializer-list :
 variable-initializer-list , variable-initializer
 variable-initializer

Declaration Specifiers
The ANSI C declaration specifiers are augmented in Neuron C by adding the
connection information, the message tag specifier, configuration property
specifiers, network variable specifiers, and timer type specifiers.

Neuron C Reference Guide 221

declaration-specifier-list :
 declaration-specifier-list declaration-specifier
 declaration-specifier

declaration-specifier :
 timer-type
 type-specifier
 storage-class-specifier
 cv-type-qualifier
 configuration-property-specifier
 msg_tag
 net-var-types
 connection-information

type-specifier :
 type-identifier
 type-keyword
 struct-or-union-specifier
 enum-specifier

Timer Declarations
Timer objects are declared with one of the following sequences of keywords.
Timer objects are specific to Neuron C.

timer-type :
 mtimer [repeating]
 stimer [repeating]

Type Keywords
The data type keywords can appear in any order. Floating-point types (double
and float) are not supported in Neuron C.

type-keyword :
 char
 double (Reserved for future implementations)
 float (Reserved for future implementations)
 int
 long
 quad (Reserved for future implementations)
 short
 signed
 unsigned
 void

In addition to the above type keywords, the extended arithmetic library defines
two data types as structures, and these can be used as if they were also a type-
keyword. The s32_type is a signed 32-bit integer, and the float_type is an
IEEE754 single precision floating-point value.

 s32_type
 float_type

222 Syntax Summary

Storage Classes
The ANSI C storage classes are augmented in Neuron C with the additional
classes config, eeprom, far, fastaccess, offchip, onchip, ram, system, and
uninit. The ANSI C register storage class is not supported in Neuron C (it is
ignored by the compiler).

class-keyword :
 auto
 config
 eeprom
 extern
 far
 fastaccess
 offchip
 onchip
 ram
 register
 static
 system
 typedef
 uninit

Type Qualifiers
The ANSI C language also defines type qualifiers for declarations. Although the
type qualifier volatile is not useful in Neuron C (it is ignored by the compiler),
the type qualifier const is quite important in Neuron C.

cv-type-qualifiers :
 cv-type-qualifiers cv-type-qualifier
 cv-type-qualifier

cv-type-qualifier :
 const
 volatile

Enumeration Syntax
The following is ANSI C enum type syntax.

enum-specifier :
 enum identifier { enum-value-list }
 enum { enum-value-list }
 enum identifier

enum-value-list :
 enum-const-list ,
 enum-const-list

Neuron C Reference Guide 223

enum-const-list :
 enum-const-list , enum-const
 enum-const

enum-const :
 variable-identifier = constant-expr
 variable-identifier

Structure/Union Syntax
The following is ANSI C struct/union type syntax.

struct-or-union-specifier :
 aggregate-keyword identifier { struct-decl-list }
 aggregate-keyword { struct-decl-list }
 aggregate-keyword identifier

aggregate-keyword :
 struct
 union

struct-decl-list :
 struct-decl-list struct-declaration
 struct-declaration

struct-declaration :
 abstract-decl-specifier-list struct-declarator-list ;

struct-declarator-list :
 struct-declarator-list , struct-declarator
 struct-declarator

struct-declarator :
 declarator
 bitfield

bitfield :
 declarator : constant-expr
 : constant-expr

Configuration Property Declarations
Configuration properties are declared with one of the following sequences of
keywords. Configuration properties are specific to Neuron C, and were
introduced in Neuron C Version 2. The first syntax alternative is used to declare
configuration properties implemented as configuration network variables, and
the second alternative is used to declare configuration properties implemented in
configuration files.

configuration-property-specifier :
 cp [cp-info] [range-mod] (for configuration NVs (CPNVs))
 cp_family [cp-info] [range-mod] (for CPs implemented in

224 Syntax Summary

files)

cp-info :
 cp_info (cp-option-list)

cp-option-list :
 cp-option-list , cp-option
 cp-option-list cp-option
 cp-option

cp-option :
 one of device_specific | manufacturing_only
 | object_disabled | offline | reset_required

range-mod :
 range_mod_string (concatenated-string-constant)

Network Variable Declarations
Network variables are declared with one of the following sequences of keywords.
Network variables are specific to Neuron C. The changeable type network
variable was introduced in Neuron C Version 2.

net-var-types :
 basic-net-var [net-var-modifier] [changeable-net-var]

basic-net-var :
 network input
 network output

net-var-modifier :
 one of polled | sync | synchronized

changeable-net-var :
 changeable_type

Connection Information
The connection-information feature (bind_info) is Neuron C specific. It allows
the Neuron C programmer to communicate specific options directly to the
network management tool for individual message tags and network variables.
Connection information can only be part of a declaration-specifier-list that also
contains either the msg_tag or net-var-type declaration-specifier.

connection-information :
 bind_info (bind-info-option-list)
 bind_info ()

bind-info-option-list :
 bind-info-option-list bind-info-option
 bind-info-option

Neuron C Reference Guide 225

bind-info-option :
 auth (configurable-keyword)
 authenticated (configurable-keyword)
 auth
 authenticated
 bind
 nonbind
 offline
 priority (configurable-keyword)
 priority
 nonpriority (configurable-keyword)
 nonpriority
 rate-est-keyword (constant-expr)
 service-type-keyword (configurable-keyword)
 service-type-keyword

rate-est-keyword :
 max_rate_est
 rate_est

service-type-keyword :
 ackd
 unackd
 unackd_rpt

configurable-keyword :
 config
 nonconfig

Declarator Syntax
The following is ANSI C declarator syntax. Pointers are not supported within
network variables.

declarator :
 * type-qualifier declarator
 * declarator
 sub_declarator

sub-declarator :
 sub-declarator array-index-declaration
 sub-declarator function-parameter-declaration
 (declarator)
 variable-identifier

array-index-declaration :
 [constant-expr]
 []

226 Syntax Summary

Neuron C Reference Guide 227

function-parameter-declaration :
 formal-parameter-declaration
 prototype-parameter-declaration

formal-parameter-declaration :
 (identifier-list)
 ()

identifier-list :
 identifier-list , variable-identifier
 variable-identifier

prototype-parameter-declaration :
 (prototype-parameter-list)
 (prototype-parameter-list , ...) (not supported in Neuron C)

prototype-parameter-list :
 prototype-parameter-list , prototype-parameter
 prototype-parameter

prototype-parameter :
 declaration-specifier-list prototype-declarator
 declaration-specifier-list

prototype-declarator :
 declarator
 abstract-declarator

Abstract Declarators
The following is ANSI C abstract declarator syntax.

abstract-declarator :
 *
 * cv-type-qualifier abstract-declarator
 * abstract-declarator
 * cv-type-qualifiers
 abstract-sub-declarator

abstract-sub-declarator :
 (abstract-declarator)
 abstract-sub-declarator ()
 abstract-sub-declarator prototype-parameter-declaration
 abstract-sub-declarator array-index-declaration ()
 prototype-parameter-declaration
 array-index-declaration

abstract-type :
 abstract-decl-specifier-list abstract-declarator
 abstract-decl-specifier-list

abstract-decl-specifier-list :
 abstract-decl-specifier-list abstract-decl-specifier
 abstract-decl-specifier

228 Syntax Summary

abstract-decl-specifier :
 type-specifier
 cv-type-qualifier

Task Declarations
Neuron C contains task declarations. Task declarations are similar to function
declarations. A task declaration consists of a when or an interrupt clause list,
followed by a task. A task is a compound statement (like an ANSI C function
body).

task-declaration :
 when-clause-list task

 interrupt-clause task

when-clause-list :
 when-clause-list when-clause
 when-clause

when-clause :
 priority preempt_safe when when-event
 priority when when-event
 preempt_safe when when-event
 when when-event

interrupt-clause :

 interrupt interrupt-event

task :
 compound-stmt

Function Declarations
The following is ANSI C function declaration syntax.

function-declaration :
 function-head compound-stmt

function-head :
 function-type-and-name parm-declaration-list
 function-type-and-name

function-type-and-name :
 declaration-specifier-list declarator

parm-declaration-list :
 parm-declaration-list parm-declaration
 parm-declaration

Neuron C Reference Guide 229

parm-declaration :
 declaration-specifier-list parm-declarator-list ;

parm-declarator-list :
 parm-declarator-list , declarator
 declarator

Conditional Events
In Neuron C, an event is an expression which can evaluate to either TRUE or
FALSE. Neuron C extends the ANSI C concept of conditional expressions
through special built-in functions that test for the presence of special Neuron
firmware events. The Neuron C compiler has many useful built-in events that
cover all the common cases encountered in Neuron programming. However, a
Neuron C programmer can also create custom events by using any parenthesized
expression as an event, including one or more function calls, and so on.

when-event :
 (reset)
 predefined-event
 parenthesized-expr

interrupt-event :
 (repeating [, frequency-value])
 (io-object-declarator)
 (io-object-pin-name, interrupt-condition)

predefined-event :
 (flush_completes)
 (offline)
 (online)
 (wink)
 (complex-event)

Complex Events
All of the predefined events shown above can be used not only in the when-clause
portion of the task declaration but also in any general expression in executable
code. The complex events below use a function-call syntax, instead of the
keyword syntax of the special events above.

complex-event :
 io-event
 message-event
 net-var-event
 timer-event

io-event :
 io_update_occurs (variable-identifier)
 io_changes (variable-identifier)
 io_changes (variable-identifier) by shift-expr
 io_changes (variable-identifier) to shift-expr

230 Syntax Summary

message-event :
 message-event-keyword (expression)
 message-event-keyword

message-event-keyword :
 msg_arrives
 msg_completes
 msg_fails
 msg_succeeds
 resp_arrives

net-var-event :
 nv-event-keyword (net-var-identifier .. net-var-identifier)
 nv-event-keyword (variable-identifier)
 nv-event-keyword

net-var-identifier :
 variable-identifier [expression]
 variable-identifier

nv-event-keyword :
 nv_update_completes
 nv_update_fails
 nv_update_occurs
 nv_update_succeeds

timer-event :
 timer_expires (variable-identifier)
 timer_expires

interrupt-condition :
 clock-edge
 clockedge (clock-edge)

frequency-value :
A quoted string value from 2,441.406 to 625,000, in 256 steps.
The default frequency-value is “8kHz”. You can append an
optional multiplier: “Hz” (hertz), “kHz” (kilohertz), “MHz”
(megahertz), or “GHz” (gigahertz). See the Neuron C
Programmer’s Guide for more information about specifying the
frequency-value.

I/O Object Declarations
An I/O object declaration is similar to an ANSI C variable declaration. It can
contain an initialization.

io-object-declaration:
 modified-io-object-declarator variable-identifier = assign-expr
 modified-io-object-declarator variable-identifier

The I/O object declaration begins with an I/O object declarator, possibly followed
by one or more I/O object option clauses.

Neuron C Reference Guide 231

modified-io-object-declarator :
 io-object-declarator [io-option-list]

io-option-list :
 io-option-list io-option
 io-option

The I/O object declarator begins with a pin name, followed by the I/O object type.

io-object-declarator :
 io-object-pin-name [io-object-direction] io-object-type

io-object-pin-name :
 one of IO_0 | IO_1 | IO_2 | IO_3 | IO_4 | IO_5
 IO_6 | IO_7 | IO_8 | IO_9 | IO_10 | IO_11

io-object-direction :
 one of input | output

io-object-type :
 one of bit | bitshift | byte
 dualslope
 edgedivide | edgelog
 frequency
 i2c | infrared | infrared_pattern
 leveldetect
 magcard | magcard_bitstream| magtrack1
 muxbus
 neurowire | nibble
 oneshot | ontime
 parallel | period | pulsecount | pulsewidth
 quadrature | sci | serial | spi
 totalcount | touch | triac | stretchedtriac
 triggeredcount
 wiegand

I/O Options
Most I/O options only apply to a few specific object types. The detailed reference
documentation in the I/O Model Reference explains each option that applies for
that I/O object.

io-option :
 baud (constant-expr)
 clock (constant-expr)
 clockedge (clock-edge)
 ded
 __fast
 invert
 kbaud (constant-expr)
 long
 master
 mux
 numbits (constant-expr)
 __parity (constant-expr)

232 Syntax Summary

 select (io-object-pin-name)
 short
 single_tc
 slave
 slave_b
 __slow
 sync (io-object-pin-name)
 synchronized (io-object-pin-name)
 timing(constant-expr , constant-expr , constant-expr)
 twostopbits
 use_stop_condition

The clock-edge option is specified using either the plus or the minus character, or
both characters in the case of a dual-edge clock. The dual-edge clock (+-) is not
available on minor model 0 of the Neuron 3150 Chip.

clock-edge :
 one of + | - | +-

Functional Block Declarations
The following is Neuron C syntax for functional block declarations. The
functional block is based on a functional profile definition from a resource file.

functional-block-declaration :
 fblock-main fblock-name-section fblock-property-list-declaration
 fblock-main fblock-name-section

fblock-main :
 fblock FPT-identifier { fblock-body }
 fblock FPT-identifier { }

FPT-identifier :
 variable-identifier

The body of the functional block declaration consists of a list of network variable
members that the functional block implements. At the end of the list, the
functional block declaration can optionally declare a director function.

fblock-body :
 fblock-member-list fblock-director-declaration
 fblock-member-list
 fblock-director-declaration

fblock-member-list :
 fblock-member-list fblock-member ;
 fblock-member ;

fblock-member :
 net-var-identifier member-implementation

member-implementation :
 implements variable-identifier
 implementation_specific (constant-expr) variable-identifier

Neuron C Reference Guide 233

The functional block name can specify either a scalar or a single-dimensioned
array (like a network variable declaration). The functional block can also
optionally have an external name, and this external name can either be a string
constant or a resource file reference.

fblock-name-section :
 fblock-name fblock-external-name
 fblock-name

fblock-name :
 variable-identifier [constant-expr]
 variable-identifier

fblock-external-name :
 external_name (concatenated-string-constant)
 external_resource_name (concatenated-string-constant)
 external_resource_name (constant-expr : constant-expr)

Property List Declarations
The following is Neuron C syntax for property declarations. The property
declarations for the device, for a network variable, and for a functional block are
identical in syntax except for the introductory keyword. The keywords were
designed to be different to promote readability of the Neuron C code. Although a
network variable or a functional block can only have at most one property list,
there can be any number of device property list declarations throughout a
program, and the lists are merged into a single property list for the device. This
feature promotes modularity of code.

device-property-list-declaration :
 device_properties { property-instantiation-list }

nv-property-list-declaration :
 nv_properties { property-instantiation-list }

fblock-property-list-declaration :
 fb_properties { property-instantiation-list }

The property instantiation list is a comma-separated list of one or more property
instantiations. A property instantiation uses the name of a previously declared
network variable configuration property or the name of a previously declared CP
family. The instantiation can optionally be followed by either an initialization or
a range-modification, or both, in either order.

property-instantiation-list :
 property-instantiation-list , complete-property-instantiation
 complete-property-instantiation

complete-property-instantiation :
 property-instantiation [property-initialization] [range-mod]
 property-instantiation [range-mod] [property-initialization]

property-initialization :
 = variable-initialization

234 Syntax Summary

property-instantiation :
 [property-qualifier] cpnv-prop-ident
 [property-qualifier] cp-family-prop-ident

property-qualifier :
 one of global | static

cpnv-prop-ident :
 net-var-identifier [constant-expression]
 net-var-identifier

cp-family-prop-ident :
 variable-identifier

Statements
The following is ANSI C statement syntax. Compound statements begin and end
with left and right braces, respectively. Compound statements contain a variable
declaration list, a statement list, or both. The variable declaration list, if present,
must precede the statement list.

compound-stmt :
 { [variable-declaration-list] [statement-list] }

statement-list :
 statement-list statement
 statement

In the C language, there is a grammatical distinction between a complete
statement and an incomplete statement. This is basically done for one reason,
and that is to permit the grammar to unambiguously decide which if statement
goes with which else statement. An if statement without an else is called an
incomplete statement.

statement :
 complete-stmt
 incomplete-stmt

complete-stmt :
 compound-stmt
 label : complete-stmt
 break ;
 continue ;
 do statement while-clause ;
 for-head complete-stmt
 goto identifier ;
 if-else-head complete-stmt
 __lock compound-statement
 switch-head complete-stmt
 return ;
 return expression ;
 while-clause complete-stmt
 expression ;
 ;

Neuron C Reference Guide 235

incomplete-stmt :
 label : incomplete-stmt
 for-head incomplete-stmt
 if-else-head incomplete-stmt
 if-head statement
 switch-head incomplete-stmt
 while-clause incomplete-stmt

These are the various pieces that make up the statement syntax from above.

label :
 case expression
 default
 identifier

if-else-head :
 if-head complete-stmt else

if-head :
 if parenthesized-expr

for-head :
 for ([expression] ; [expression] ; [expression])

switch-head :
 switch parenthesized-expr

while-clause :
 while parenthesized-expr

Expressions
The following is expression syntax.

parenthesized-expr :
 (expression)

constant-expr :
 expression

expression :
 expression , assign-expr
 assign-expr

assign-expr :
 choice-expr assign-op assign-expr
 choice-expr

assign-op :
 one of = | |= | ^= | &= | <<= | >>=
 /= | *= | %= | += | -=

236 Syntax Summary

choice-expr :
 logical-or-expr ? expression : choice-expr
 logical-or-expr

logical-or-expr :
 logical-or-expr || logical-and-expr
 logical-and-expr

logical-and-expr :
 logical-and-expr && bit-or-expr
 bit-or-expr

bit-or-expr :
 bit-or-expr | bit-xor-expr
 bit-xor-expr

bit-xor-expr :
 bit-xor-expr ^ bit-and-expr
 bit-and-expr

bit-and-expr :
 bit-and-expr & equality-comparison
 equality-comparison

equality-comparison :
 equality-comparison == relational-comparison
 equality-comparison != relational-comparison
 relational-comparison

relational-comparison :
 relational-comparison relational-op io-change-by-to-expr
 io-change-by-to-expr

relational-op :
 one of < | <= | >= | >

io-change-by-to-expr :
 io_changes (variable-identifier) by shift-expr
 io_changes (variable-identifier) to shift-expr
 shift-expr

shift-expr :
 shift-expr shift-op additive-expr
 additive-expr

shift-op :
 one of << | >>

additive-expr :
 additive-expr add-op multiplicative-expr
 multiplicative-expr

Neuron C Reference Guide 237

add-op :
 one of + | -

multiplicative-expr :
 multiplicative-expr mul-op cast-expr
 cast-expr

mul-op :
 one of * | / | %

cast-expr :
 (abstract-type) cast-expr
 unary-expr

unary-expr :
 unary-op cast-expr
 sizeof unary-expr
 sizeof (abstract-type)
 predefined-event

unary-op :
 one of * | & | ! | ~ | + | - | ++ | --

postfix-expr :
 postfix-expr [expression]
 postfix-expr -> identifier
 postfix-expr . identifier
 postfix-expr ++
 postfix-expr --
 postfix-expr actual-parameters
 primary-expr

actual-parameters :
 (actual-parameter-list)
 ()

actual-parameter-list :
 actual-parameter-list , assign-expr
 assign-expr

238 Syntax Summary

Primary Expressions, Built-in Variables, and Built-in
Functions

In addition to the ANSI C definitions of a primary expression, Neuron C adds
some built-in variables and built-in functions. Neuron C removes float-constant
from the standard list of primary expressions.

primary-expr :
 parenthesized-expr
 integer-constant
 concatenated-string-constant
 variable-identifier
 property-reference
 builtin-variables
 builtin-functions actual-parameters
 msg-call-kwd ()

concatenated-string-constant :
 concatenated-string-constant string-constant
 string-constant

property-reference :
 [postfix-expr] :: variable-identifier
 postfix-expr :: director actual-parameters
 postfix-expr :: global_index
 postfix-expr :: nv_len

network-variable-reference :

 variable-identifier

 variable-identifier ∷ global_index
 variable-identifier ∷ nv_len
 variable-identifier ∷ __type_index
 variable-identifier ∷ __type_scope

builtin-variables :
 one of activate_service_led
 config_data
 cp_modifiable_value_file
 cp_modifiable_value_file_len
 cp_readonly_value_file
 cp_readonly_value_file_len
 cp_template_file | cp_template_file_len
 fblock_index_map
 input_is_new | input_value
 msg_tag_index
 nv_array_index | nv_in_addr | nv_in_index

Neuron C Reference Guide 239

 read_only_data | read_only_data_2
 msg-name-kwd . variable-identifier

msg-name-kwd :
 one of msg_in | msg_out | resp_in | resp_out

builtin-functions :
 one of abs | addr_table_index
 bcd2bin | bin2bcd
 eeprom_memcpy
 fblock_director
 get_fblock_count | get_nv_count
 get_tick_count
 high_byte
 interrupt_control
 io_change_init
 io_in | io_in_ready | io_in_request
 io_out | io_out_ready | io_out_request
 io_preserve_input
 io_select
 io_set_baud | io_set_clock | io_set_direction
 io_set_terminal_count
 is_bound
 low_byte
 make_long
 max
 memcpy | memset
 min
 nv_table_index
 poll
 propagate
 sci_abort | sci_get_error
 sleep
 spi_abort | spi_get_error
 swap_bytes
 touch_bit | touch_byte | touch_first
 touch_next | touch_reset
 touch_byte_spu | touch_read_spu
 touch_read_spu | touch_write_spu
 touch_reset_spu

msg-call-kwd :
 one of msg_alloc | msg_alloc_priority
 msg_cancel | msg_free | msg_receive
 msg_send | resp_alloc | resp_cancel
 resp_free | resp_receive | resp_send

Implementation Limits
The contents of the standard include file <limits.h> are given below.

#define CHAR_BIT 8
#define CHAR_MAX 255
#define CHAR_MIN 0

240 Syntax Summary

#define SCHAR_MAX 127
#define SCHAR_MIN ((signed char)(-128))

#define UCHAR_MAX 255

#define SHRT_MAX 127
#define SHRT_MIN ((signed short)(-128))

#define USHRT_MAX 255

#define INT_MAX 127
#define INT_MIN ((int)(-128))

#define UINT_MAX 255

#define LONG_MAX 32767
#define LONG_MIN ((signed long)(-32768))

#define ULONG_MAX 65535

#define MB_LEN_MAX 2

Neuron C Reference Guide 241

B

Reserved Keywords

This chapter lists all Neuron C Version 2.3 reserved
keywords, including the standard reserved keywords of the
ANSI C language.

Neuron C Reference Guide 243

Reserved Words List
The following list of reserved words includes keywords in the Neuron C language
as well as Neuron C built-in symbols. Each of these reserved words should be
used only as it is defined elsewhere in this reference guide. A Neuron C
programmer should avoid the use of any of these reserved words for other
purposes, such as variable declarations, function definitions, or typedef names.

Following each reserved word is a code indicating the usage of the particular
item:

“(c)” indicates a keyword from the ANSI C language

“(1)” indicates keywords from Neuron C Version 1

“(2)” indicates a keyword introduced in Neuron C Version 2

"(2.1)" indicates a keyword introduced in Neuron C Version 2.1

"(2.2)" indicates a keyword introduced in Neuron C Version 2.2

“(2.3)” indicates a keyword introduced in Neuron C Version 2.3

The remaining reserved words are built-in symbols in the Neuron C Compiler,
many of which are found in the <echelon.h> file that is always included at the
beginning of a Neuron C compilation. Various codes are used to indicate the type
of built-in symbol:

"(et)” indicates an enum tag

“(st)” indicates a struct tag

“(t)” indicates a typedef name

“(f)” indicates a built-in function name

“(v)” indicates a built-in variable name

“(e)" indicates an enum value literal

“(d)” indicates a built-in #define preprocessor symbol

“(w)” denotes a built-in event name (as used in a when clause)

“(p)” indicates a built-in property name (new to Neuron C Version 2)

abs (f)

ackd (1)

ACKD (e)

addr_table_index (f)

auth (1)

authenticated (1)

auto (c)

bank_index (f)

baud (1)

bcd (st)

bcd2bin (f)

bin2bcd (f)

bind (1)

bind_info (1)

bit (1)

bitshift (1)

boolean (et,t)

break (c)

244 Reserved Keywords

by (1)

byte (1)

case (c)

changeable_type (2)

char (c)

charge_pump_enable (f)

clock (1)

clockedge (1)

COMM_IGNORE (e)

config (1)

config_prop (2)

const (c)

continue (c)

cp (2)

cp_family (2)

cp_info (2)

cp_modifiable_value_file (v)

cp_modifiable_value_file_len
(v)

cp_readonly_value_file (v)

cp_readonly_value_file_len
(v)

cp_template_file (v)

cp_template_file_len (v)

ded (1)

default (c)

delay (1)

device_properties (2)

device_specific (2)

director (2)

do (c)

double (c)

dualslope (1)

edgedivide (1)

edgelog (1)

eeprom (1)

eeprom_memcpy (1)

else (c)

enum (c)

expand_array_info (2)

extern (c)

external_name (2)

external_resource_name (2)

FALSE (e)

far (1)

__fast (2.2)

fastaccess (1)

fb_properties (2)

fblock (2)

fblock_director (f)

fblock_index_map (v)

float (c)

flush_completes (w)

for (c)

frequency (1)

get_fblock_count (f)

get_nv_count (f)

global (2)

global_index (p)

goto (c)

high_byte (f)

i2c (1)

if (c)

implementation_specific (2)

implements (2)

infrared (1)

infrared_pattern (2.1)

input (1)

input_is_new (v)

input_value (v)

int (c)

interrupt (2.2)

Neuron C Reference Guide 245

interrupt_control (f, 2.2)

INTERRUPT_IO (d)

INTERRUPT_REPEATING
(d)

INTERRUPT_TC (d)

invert (1)

IO_0 (1)

IO_1 (1)

IO_10 (1)

IO_11 (2.1)

IO_2 (1)

IO_3 (1)

IO_4 (1)

IO_5 (1)

IO_6 (1)

IO_7 (1)

IO_8 (1)

IO_9 (1)

io_change_init (f)

io_changes (w)

io_direction (et,t)

IO_DIR_IN (e)

IO_DIR_OUT (e)

io_edgelog_preload (1)

io_edgelog_single_preload
(2.1)

io_in (f)

io_in_ready (f)

io_in_request (f)

io_out (f)

io_out_ready (f)

io_out_request (f)

io_preserve_input (f)

io_select (f)

io_set_baud (2.1)

io_set_clock (f)

io_set_direction (f)

io_set_terminal_count (f, 2.2)

io_update_occurs (w)

is_bound (f)

kbaud (1)

level (1)

leveldetect (1)

__lock (2.2)

long (c)

low_byte (f)

magcard (1)

magcard_bitstream (2.1)

magtrack1 (1)

make_long (f)

manufacturing_only (2)

master (1)

max (f)

max_rate_est (1)

memcpy (f)

memset (f)

min (f)

msg_alloc (f)

msg_alloc_priority (f)

msg_arrives (w)

msg_cancel (f)

msg_completes (w)

msg_fails (w)

msg_free (f)

msg_in (v)

msg_out (v)

msg_receive (f)

msg_send (f)

msg_succeeds (w)

msg_tag (1)

msg_tag_index (f)

mtimer (1)

246 Reserved Keywords

mux (1)

muxbus (1)

network (1)

neurowire (1)

nibble (1)

nonauth (1)

nonauthenticated (1)

nonbind (1)

nonconfig (1)

nonpriority (1)

numbits (1)

nv_array_index (v)

nv_in_addr (v)

nv_in_addr_t (st,t)

nv_in_index (v)

nv_len (p)

nv_properties (2)

nv_table_index (f)

nv_update_completes (w)

nv_update_fails (w)

nv_update_occurs (w)

nv_update_succeeds (w)

object_disabled (2)

offchip (1)

offline (w,2)

onchip (1)

oneshot (1)

online (w)

ontime (1)

output (1)

output_pin (2.1)

parallel (1)

__parity (2.2)

period (1)

poll (f)

polled (1)

preempt_safe (1)

priority (1)

propagate (f)

PULLUPS_ON (e)

pulse (1)

pulsecount (1)

pulsewidth (1)

quad (1)

quadrature (1)

ram (1)

random (f)

range_mod_string (2)

rate_est (1)

register (c)

repeating (1)

REQUEST (e)

reset (w)

reset_required (2)

__resident (2.3)

resp_alloc (f)

resp_arrives (w)

resp_cancel (f)

resp_free (f)

resp_in (v)

resp_out (v)

resp_receive (f)

resp_send (f)

return (c)

reverse (f)

scaled_delay (f)

sci (2.1)

sci_abort (2.1)

sci_get_error (2.1)

sd_string (1)

search_data (t)

search_data_s (st)

Neuron C Reference Guide 247

select (1)

serial (1)

service_type (et,t)

short (c)

signed (c)

single_tc (2.1)

sizeof (c)

slave (1)

slave_b (1)

sleep (f)

sleep_flags (et,t)

__slow

spi (2.1)

spi_abort (2.1)

spi_get_error (2.1)

static (c)

stimer (1)

stretchedtriac (2.2)

struct (c)

swap_bytes (f)

switch (c)

sync (1)

synchronized (1)

system (1)

timeout (1)

timer_expires (w)

TIMERS_OFF (e)

timing (2.1)

to (1)

totalcount (1)

touch (1)

touch_bit (f)

touch_byte (f)

touch_byte_spu (f, 2.2)

touch_first (f)

touch_next (f)

touch_read_spu (f, 2.2)

touch_reset (f)

touch_reset_spu (f, 2.2)

touch_write_spu (f, 2.2)

triac (1)

triggeredcount (1)

TRUE (e)

twostopbits (2.1)

__type_index (2.3)

__type_scope (2.3)

typedef (c)

unackd (1)

UNACKD (e)

unackd_rpt (1)

UNACKD_RPT (e)

uninit (1)

union (c)

unsigned (c)

use_stop_condition (2.1)

void (c)

volatile (c)

when (1)

while (c)

wiegand (1)

wink (1)

Finally, and in addition to the restrictions imposed by the previous list, the
compiler automatically recognizes names of standard network variable types
(SNVT*), standard configuration property types (SCPT*), standard functional
profiles (SFPT*), as well as the user types and functional profiles applicable to
the current program ID.

248 Reserved Keywords

The compiler does not permit the program to define any symbol starting with any
of the following prefixes: SCPT, SFPT, UNVT, UCPT, or UFPT, unless the
#pragma names_compatible directive is present in the program.

In addition to the restrictions imposed by the previous list of reserved words, the
programmer cannot use the following reserved names at all; they are part of the
compiler-firmware interface only, and are not permitted in a Neuron C program.

_bcd2bin

_bin2bcd

_bit_input

_bit_input_ext

_bit_output_ext

_bit_output_hi

_bit_output_lo1

_bit_output_lo2

_bitshift_input

_bitshift_output

_bound_mt

_bound_nv

burst_sequence_output

_byte_input

_byte_output

cp_modifiable_value_file_len_f
ake

cp_readonly_value_file_len_fa
ke

cp_template_file_len_fake

crc16_ccitt

_dualslope_input

_dualslope_start

_edgelog_input

edgelog_input_single

edgelog_setup_single

ext_touch_bit

ext_touch_byte

ext_touch_first

ext_touch_next

ext_touch_read

ext_touch_reset

ext_touch_write

fblock_index_map

_flush_completes

_frequency_output

_i2c_read

_i2c_read0

_i2c_read8

_i2c_read_opt0

_i2c_read_opt8

_i2c_write

_i2c_write0

_i2c_write8

_i2c_write_opt0

_i2c_write_opt8

_i2cs_read0

_i2cs_read8

_i2cs_read_opt0

_i2cs_read_opt8

_i2cs_write0

_i2cs_write8

_i2cs_write_opt0

_i2cs_write_opt8

_init_baud

_init_timer_counter1

_init_timer_counter2

_io_abort_clear

_io_change_init

_io_changes

_io_changes_by

Neuron C Reference Guide 249

_io_changes_to

_io_direction_hi

_io_direction_lo

io_idis

io_iena

_io_input_value

_io_sci_baud

_io_sci_get_error

_io_sci_init

_io_sci_initram

_io_sci_set_buffer_in

_io_sci_set_buffer_out

_io_scispi_abort

_io_scispi_input_ready

_io_scispi_output_ready

_io_set_clock

_io_set_clock_x2

_io_spi_clock

_io_spi_init

_io_spi_initram

_io_spi_set_buffer

_io_update_occurs

_ir_input

_leveldetect_input

_magcard_input

_magt1_input

_magt2_input

magx_input

_memcpy

_memcpy16

_memcpy8

_memset

_memset16

_memset8

_msg_addr_blockget

_msg_addr_blockset

_msg_addr_get

_msg_addr_set

_msg_alloc

_msg_alloc_priority

_msg_arrives

_msg_auth_get

_msg_auth_set

_msg_cancel

_msg_code_arrives

_msg_code_get

_msg_code_set

_msg_completes

_msg_data_blockget

_msg_data_blockset

_msg_data_get

_msg_data_set

_msg_domain_get

_msg_domain_set

_msg_duplicate_get

_msg_fails

_msg_format_get

_msg_free

_msg_len_get

_msg_node_set

_msg_priority_set

_msg_rcvtx_get

_msg_receive

_msg_send

_msg_service_get

_msg_service_set

_msg_succeeds

_msg_tag_set

_muxbus_read

_muxbus_reread

_muxbus_rewrite

_muxbus_write

250 Reserved Keywords

_neurowire_inv_master

_neurowire_inv_slave

_neurowire_master

_neurowire_slave

_nibble_input

_nibble_output

_nv_array_poll

_nv_array_update_completes

_nv_array_update_fails

_nv_array_update_occurs

_nv_array_update_request

_nv_array_update_succeeds

_nv_poll

_nv_poll_all

_nv_update_completes

_nv_update_fails

_nv_update_occurs

_nv_update_request

_nv_update_request_all

_nv_update_succeeds

_offline

_oneshot_output

_online

_parallel_input

_parallel_input_ready

_parallel_output

_parallel_output_ready

_parallel_output_request

_period_input

_pulsecount_output

_pulsewidth_output

_quadrature_input

_resp_alloc

_resp_arrives

_resp_cancel

_resp_code_set

_resp_data_blockset

_resp_data_set

_resp_free

_resp_receive

_resp_send

_select_input_fn

_serial_input

_serial_output

_sleep

_timer_expires

_timer_expires_any

_totalize_input

_touch_bit

_touch_byte

_touch_first

_touch_next

_touch_read

_touch_reset

_touch_write

_triac_level_output

_triac_pulse_output

_triacStrOut

_triacStrInit

_triacStrMax

_wiegand_input

_wink

Neuron C Reference Guide 251

Index

_
__lock keyword, 201

3
32-bit integers. See signed 32-bit integers

A
A/D converter, 96, 100
a2d.h include file. See include files
abs() function, 43

definition, syntax and example, 69
absolute value, 69
abstract declarator, syntax, 211
access.h include file. See include files
access_address() function, 42

definition, syntax and example, 70
access_alias() function, 42

definition, syntax and example, 70
access_domain() function, 42

definition, syntax and example, 71
access_nv() function, 42

definition, syntax and example, 71
ackd keyword, 168
acknowledged service, 168
activate_service_led variable

definition, 191
addr_table_index() function, 43

definition, syntax and example, 72
addrdefs.h include file. See include files
address table

effect of polling network variables, 119
updating of, 150

alias table
updating of, 151

all_bufs_offchip pragma, 20
allow_duplicate_events pragma, 20
ANSI C

references about, iii
ansi_memcpy() function, 49

definition, syntax and example, 72
ansi_memset() function, 49

definition, syntax and example, 73
app_buf_in_count pragma, 20, 126
app_buf_in_size pragma, 21
app_buf_out_count pragma, 21
app_buf_out_priority_count pragma, 21
app_buf_out_size pragma, 21
application

off-line, 86
on-line, 86

program restart, 73
application errors, logging, 80
application messages

allocating, 123
cancelling, 113, 123
events

msg_arrives. See msg_arrives event
msg_completes. See msg_completes event
msg_fails. See msg_fails event
msg_succeeds. See msg_succeeds event
resp_arrives. See resp_arrives event

freeing, 113, 124
message codes, 7
message index, 194
message tags

index of, 72
msg_in. See msg_in object
msg_out. See msg_out object
msg_tag_index. See msg_tag_index variable
posting events, 120
receiving, 114, 124
resp_in. See resp_in object
resp_out. See resp_out object
sending, 125
transaction IDs, 36

application timers. See timers
application_restart() function, 43

definition, syntax and example, 73
authenticated keyword, 168

B
bcd2bin() function, 43

definition, syntax and example, 74
bin2bcd() function, 44

definition, syntax and example, 74
binary coded decimal to binary number, 74
binary number to binary coded decimal, 74
bind_info keyword, 72, 167, 177
bit I/O object, 4, 91, 104, 105
bitfield syntax, 208
bitshift I/O object, 91, 93, 98
boolean, 164
buffers

pragmas controlling allocation of, 20, 21, 29,
32

built-in functions, 40, 222
built-in objects, 198
built-in semaphore, 201
built-in symbols, 200
built-in type, 164
built-in variables, 191, 222
by keyword, 4

Neuron C Reference Guide 253

bypass mode, 114, 118, 124, 155
byte I/O object, 4, 91, 104, 105
byte.h include file. See include files

C
cancel message function, 113
cast operation, 33

syntax, 221
changeable type network variables. See

network variables, changeable types
changeable_type keyword, 161
CHAR_BIT, 223
CHAR_MAX, 223
CHAR_MIN, 223
classes of network variables. See network

variables, classes
clear_status() function, 49

definition, syntax and example, 75
clock for I/O objects. See I/O objects, clock value
cloned device, 151
cloned domain, 151
clr_bit() function, 49

definition, syntax and example, 75
codegen pragma, 21
COMM_IGNORE flag for sleep function, 136
compiler directives, 20
compiler messages, 26, 27
compiler optimizations, 21

pointer, 22
completion events, 82, 83

checking, 7, 8, 9, 11, 13
conditional events. See events, conditional
config keyword, 162, 168
config_data variable, 152

definition, 191
config_data_struct, 192
config_prop keyword, 164
configuration files, 160
configuration network variables

declaring, 164
definition, 160

configuration properties, xix, 160
accessing in a program, 175
configuration template file, 193
CP families, 170
cp_info keyword, 171
device_specific keyword, 172
implementation within configuration files,

170
implemented using network variables, 164
initial value, 171
instantiation, 173
keywords, 208
manufacturing_only keyword, 172
modifiers, 171
object_disabled keyword, 172
offline keyword, 172
property lists, 173

range modification, 172, 184
read-only value file, 192, 193
reset_required keyword, 172
syntax, 170, 217
template file, 22, 160
template file compaction, 31

disabling automatic merging of
properties, 22

value files, 22, 23, 160, 192, 193
writeable value file, 192

configuration template file
cp_template_file. See cp_template_file

variable
cp_template_file_len. See

cp_template_file_len variable
connection, 106
const keyword, 162, 207
constants

built in, syntax, 222
context expression, 176, 186
context operator. See context expression
control.h include file. See include files
CP families. See configuration properties, CP

families
cp_family keyword, 170
cp_info keyword, 171
cp_modifiable_value_file variable

definition, 192
cp_modifiable_value_file_len variable

definition, 192
cp_readonly_value_file variable

definition, 192
cp_readonly_value_file_len variable

definition, 193
cp_template_file variable

definition, 193
cp_template_file_len variable

definition, 193
crc16() function, 49

definition, syntax and example, 76
crc16_ccitt() function

definition, syntax and example, 77
crc8() function, 49

definition, syntax and example, 76
critical section boundary, 114, 124

definition, 120

D
data declaration, syntax, 205
deadlock_is_finite pragma, 23
deadlock_is_infinite pragma, 23
debug pragma, 24
debugger

network, 22, 24
declaration specifiers, syntax, 205
declarations

function, 212
declarator syntax, 210

254 Index

delay
fixed, 79
scalable, 130

delay() function, 41, 130
definition, syntax and example, 78
table of formulas for calculating delays, 78

dest_addr field of nv_in_addr_t, 195
device

copy protection, 32
interface, xix, 160
model number, 127
power-up, 120
reset, 16, 155

effect on timer/counter I/O objects, 101
scheduler. See scheduler
unconfigured, 18, 87

device context, 176
device reset

explicit, 117
device_properties keyword, 173
device_specific keyword, 172
diagnostic status, retrieving, 125
direct_param_struct, 191
director

function, 182
keyword, 187
property. See functional blocks, director

property
disable_mult_module_init pragma, 24
disable_servpin_pullup pragma, 25
disable_snvt_si pragma, 25
disable_warning pragma, 25
domain field of nv_in_addr_t, 195
dualslope I/O object, 4, 6, 92, 96, 103

E
edgelog I/O object, 50, 89, 90, 92, 93, 103
EECODE, 35
EEPROM

blanking program, 32
lock, 25

eeprom keyword, 163
eeprom_locked pragma, 25, 134
eeprom_memcpy() function, 49

definition, syntax and example, 79
enable_io_pullups pragma, 25
enable_multiple_baud pragma, 26
enable_sd_nv_names pragma, 26
enable_warning pragma, 26
enum type syntax, 207
error log

clearing, 75
size, 80

error number
write to log, 80

error_log() function, 49
definition, syntax and example, 80

event-driven scheduling, xix

events
conditional, 213
custom, 213
directory (list) of, 3, 69
duplicate, 20
predefined, 2
table of, 2

expand_array_info keyword, 167
explicit_addressing_off pragma, 26
explicit_addressing_on pragma, 26
expression syntax, 219
extended arithmetic library, 206
extended arithmetic s32_xxx() functions, 134
extended arithmetic translator, 69
external declarations, syntax, 204
external_name keyword, 182
external_resource_name keyword, 182

F
far keyword, 163
fb_properties keyword, 183
fblock keyword, 85, 180
fblock_director() function, 49

definition, syntax and example, 80
fblock_index_map variable, 185

definition, 193
firmware

scheduler. See scheduler
fl_abs() function, 46, 62
fl_add() function, 46, 62
fl_ceil() function, 46, 63
fl_cmp() function, 46, 64
fl_div() function, 46, 62
fl_div2() function, 46, 63
FL_DIVIDE_BY_ZERO, 59
fl_eq() function, 46, 63
fl_error variable, 59
fl_floor() function, 46, 63
fl_from_ascii() function, 46, 60, 67
fl_from_s32() function, 46, 65
fl_from_slong() function, 46, 65
fl_from_ulong() function, 47, 65
fl_ge() function, 47, 64
fl_gt() function, 47, 64
FL_INVALID_ARG, 59
fl_le() function, 47, 64
fl_lt() function, 47, 64
fl_max() function, 47, 62
fl_min() function, 47, 62
fl_mul() function, 47, 62
fl_mul2() function, 47, 63
fl_ne() function, 47, 63
fl_neg() function, 47, 62
FL_OVERFLOW, 59
fl_rand() function, 47, 64
fl_round() function, 47, 63
fl_sign() function, 47, 64
fl_sqrt() function, 47, 62

Neuron C Reference Guide 255

fl_sub() function, 47, 62
fl_to_ascii() function, 47, 66
fl_to_ascii_fmt() function, 48, 66
fl_to_s32() function, 48, 65
fl_to_slong() function, 48, 65
fl_to_ulong() function, 48, 65
fl_trunc() function, 48, 63
FL_UNDERFLOW, 59
flex_domain field of nv_in_addr_t, 195
float.h include file. See include files
float_type, 59
float_type structure, 59, 60, 61, 69
floating-point, 60

extended arithmetic library, 206
functions, 81

performance, 67
NaN, 61

flush() function, 41
definition, syntax and example, 82

flush_cancel() function, 41
definition, syntax and example, 83

flush_completes event, 82
definition, syntax and example, 3

flush_wait() function, 15, 41, 86
definition, syntax and example, 83

frequency I/O object, 103
FT 3120 Smart Transceiver, 41
function. See additional index entries under the

name of the function
abs(), 69
access_address(), 70
access_alias(), 70
access_domain(), 71
access_nv(), 71
addr_table_index(), 72
ansi_memcpy(), 72
ansi_memset(), 73
application_restart(), 73
bcd2bin(), 74
bin2bcd(), 74
clear_status(), 75
clr_bit(), 75
crc16(), 76
crc16_ccitt(), 77
crc8(), 76
delay(), 78, 111
eeprom_memcpy, 79
error_log(), 80
fblock_director(), 80
flush(), 82
flush_cancel(), 83
flush_wait(), 83
get_current_nv_length(), 84
get_fblock_count(), 85
get_nv_count(), 85
get_tick_count(), 85
go_offline(), 86
go_unconfigured(), 87
high_byte(), 87

interrupt_control(), 87
io_change_init(), 89
io_edgelog_preload(), 89
io_edgelog_single_preload(), 90
io_idis(), 90
io_iena(), 91
io_in(), 91
io_in_request(), 96
io_out(), 97
io_out_request(), 100
io_preserve_input(), 101
io_select(), 101
io_set_baud(), 102
io_set_clock(), 103
io_set_direction(), 104
io_set_terminal_count(), 105
is_bound(), 106
low_byte(), 107
make_long(), 107
max(), 107
memccpy(), 108
memchr(), 109
memcmp(), 109
memcpy(), 110
memset(), 110
min(), 111
msec_delay(), 111
msg_alloc(), 112
msg_alloc_priority(), 112
msg_cancel(), 113
msg_free(), 113
msg_receive(), 114
msg_send(), 114
muldiv(), 115
muldiv24(), 115
muldiv24s(), 116
muldivs(), 117
node_reset(), 117
nv_table_index(), 118
offline_confirm(), 118
poll(), 119
post_events(), 120
power_up(), 120
preemption_mode(), 121
propagate(), 121
random(), 122
resp_alloc(), 123
resp_cancel(), 123
resp_free(), 124
resp_receive(), 124
resp_send(), 125
retrieve_status(), 125
reverse(), 127
rotate_long_left(), 128
rotate_long_right(), 128
rotate_short_left(), 129
rotate_short_right(), 129
scaled_delay(), 111, 130
sci_abort(), 131

256 Index

sci_get_error(), 131
service_pin_msg_send(), 132
service_pin_state(), 132
set_bit(), 133
set_eeprom_lock(), 133
sleep(), 135
spi_abort(), 136
spi_get_error(), 137
strcat(), 137
strchr(), 138
strcmp(), 138
strcpy(), 139
strlen(), 139
strncat(), 140
strncmp(), 140
strncpy(), 141
strrchr(), 142
swap_bytes(), 142
timers_off(), 143
touch_bit(), 143
touch_byte(), 144
touch_byte_spu(), 144
touch_first(), 145
touch_next(), 146
touch_read_spu(), 147
touch_reset(), 147
touch_reset_spu(), 148
touch_write_spu(), 149
tst_bit(), 149
update_address(), 150
update_alias(), 151
update_clone_domain(), 151
update_config_data(), 152
update_domain(), 153
update_nv(), 154
update_program_id(), 154
watchdog_update(), 155

function declarations
syntax, 212

functional block members
definition, 180

functional blocks, xix, 49
accessing members of, 186
arrays of, example, 185
declaration syntax, 180
declarations, 216
definition, 160, 180
director function, 80, 182
director property, 187
external_name keyword, 182
external_resource_name keyword, 182
fb_properties keyword, 183
fblock keyword, 180
fblock_index_map. See fblock_index_map

variable
global index, 185
global keyword, 184
global_index property, 187
implementation_specific keyword, 182

implementation-specific members, 180
implements keyword, 181
member list, 181
naming in device interface, 182
number of declarations, 85
property lists, 183
static keyword, 184

functional profiles, xix
definition, 180
keys, 181

functions
built in, 40
floating-point, 81
signed 32-bit arithmetic support, 134
tables of, 41

fyi_off pragma, 26
fyi_on pragma, 26

G
get_current_nv_length() function, 43

definition, syntax and example, 84
get_fblock_count() function, 49

definition, syntax and example, 85
get_nv_count() function, 49

definition, syntax and example, 85
get_nv_length_override() function, 36
get_tick_count() function, 41

definition, syntax and example, 85
global index

of functional block. See functional blocks,
global index

of network variables. See network variables,
global index

global keyword, 166, 184
global_index keyword, 118, 187, 196
global_index property, 84, See functional

blocks, global_index property, See network
variables, global_index property

go_offline() function, 15, 42
definition, syntax and example, 86

go_unconfigured() function, 43
definition, syntax and example, 87

H
hidden pragma, 26
high_byte() function, 44

definition, syntax and example, 87

I
I/O events, 2

io_changes. See io_changes event
io_in_ready. See io_in_ready event
io_out_ready. See io_out_ready event
io_update_occurs. See io_update_occurs

event
I/O object type names, 91

Neuron C Reference Guide 257

I/O object types
optional definitions, 97

I/O objects, xx
clock value of, 103
declaration, syntax, 214
input_is_new. See input_is_new variable
input_value. See input_value variable

I/O type names, 97
I/O types. See I/O object types
i2c I/O object, 92, 93, 98
idempotent transactions, 27
idempotent_duplicate_off pragma, 27
idempotent_duplicate_on pragma, 27
IEEE 754, 59
ignore_notused pragma, 27
implementation limits, 223
implementation_specific keyword, 182
implementation-specific members. See

functional blocks, implementation-specific
members

implements keyword, 181
include files

<access.h>, 70, 71, 150, 152, 153, 154, 155,
191, 196

<byte.h>, 76, 128, 129, 133, 150
<control.h>, 74, 80, 82, 83, 86, 87, 117, 118,

120, 132, 134, 143, 191
<echelon.h>, 26, 29, 40, 152, 186, 226
<float.h>, 59
<io_types.h>, 91, 97, 102
<limits.h>, 223
<mem.h>, 72, 73, 108, 109, 110
<nm_err.h>, 127
<s32.h>, 52
<status.h>, 75, 120, 121, 125
<stdlib.h>, 76, 77, 115, 116, 117
<string.h>, 137, 138, 139, 140, 141, 142
list of standard include files, 40

include_assembly_file pragma, 27
infrared I/O object, 92, 93, 102, 103
input_is_new variable

definition, 193
input_value variable, 4, 6

definition, 193
INT_MAX, 224
INT_MIN, 224
interoperability

interoperable data types, 160
interrupt_control() function

definition, syntax and example, 87
io pin direction, 104
io_change_init() function, 4, 50

definition, syntax and example, 89
io_changes event, 6, 50, 89, 104, 193

definition, syntax and example, 4
reference value, 4

io_edgelog_preload() function, 50
definition, syntax and example, 89

io_edgelog_single_preload() function, 50

definition, syntax and example, 90
io_idis() function, 50

definition, syntax and example, 90
io_iena() function, 50

definition, syntax and example, 91
io_in() function, 51, 89, 90, 101, 193

definition, syntax and example, 91
table of return value data types by I/O

object type, 91
io_in_ready event, 51

definition, syntax and example, 5
io_in_request() function, 51

definition, syntax and example, 96, 100
io_out() function, 51

definition, syntax and example, 97
table of output value data types by I/O

object type, 97
io_out_ready event, 51, 100

definition, syntax and example, 5
io_out_request() function, 5, 51

definition, syntax and example, 100
io_preserve_input() function, 51

definition, syntax and example, 101
io_select() function, 51

definition, syntax and example, 101
effect on timer/counter I/O objects, 101

io_set_baud() function, 51
io_set_clock() function, 52

definition, syntax and example, 102, 103
io_set_direction() function, 52

definition, syntax and example, 104
io_set_terminal_count() function

definition, syntax and example, 105
io_types.h include file. See include files
io_update_occurs event, 193

definition, syntax and example, 6
is_bound() function

definition, syntax and example, 106

L
leveldetect I/O object, 4, 92
libraries, system. See system libraries
library pragma, 27
limits.h include file. See include files
lock, 201
LONG_MAX, 224
LONG_MIN, 224
LonMark Association

guidelines version, 33
LonMark Association, 35
LonMark objects

definition, 180
low_byte() function, 44

definition, syntax and example, 107
low-power state of Neuron Chip, 135

258 Index

M
magcard I/O object, 92, 94
magtrack1 I/O object, 92, 94
make_long() function, 44

definition, syntax and example, 107
manufacturing_only keyword, 172
max() function, 44

definition, syntax and example, 107
max_rate_est keyword, 169
max_rate_est option, 177
MB_LEN_MAX, 224
mem.h include file. See include files
member lists. See functional blocks, member

list
memccpy() function, 49

definition, syntax and example, 108
memchr() function, 49

definition, syntax and example, 109
memcmp() function, 49

definition, syntax and example, 109
memcpy() function, 49

definition, syntax and example, 110
memset() function, 50

definition, syntax and example, 110
message status, monitor, 82
message tags. See application messages,

message tags
declaration, 177
syntax, 177

messages. See application messages
compiler. See compiler messages
incoming, 176

messaging service, xix
micro_interface pragma, 28
Microprocessor Interface Program. See MIP
min() function, 44

definition, syntax and example, 111
MIP, 26, 28, 29, 34, 37
modnvlen.h include file. See include files
msec_delay() function, 42, 130
msg_addr.h include file. See include files
msg_alloc() function

definition, syntax and example, 112
msg_alloc_priority() function

definition, syntax and example, 112
msg_arrives event, 114, 120

definition, syntax and example, 7
msg_cancel() function

definition, syntax and example, 113
msg_completes event, 194

definition, syntax and example, 7
msg_fails event, 194

definition, syntax and example, 8
msg_free() function

definition, syntax and example, 113
msg_in message tag, 176
msg_in object, 7

definition, 198

freeing, 113
receiving, 114

msg_out object
allocation of, 112
allocation of priority object, 112
definition, 198
sending a message, 114
tag field, 177

msg_receive() function, 155
definition, syntax and example, 114

msg_send() function
definition and syntax, 114

msg_succeeds event, 194
definition, syntax and example, 8

msg_tag keyword, 177
msg_tag_index variable

definition, 194
mtimer keyword, 158
muldiv() function, 44

definition, syntax and example, 115
muldiv24() function, 44

definition, syntax and example, 115
muldiv24s() function, 44

definition, syntax and example, 116
muldivs() function, 44

definition, syntax and example, 117
muxbus I/O object, 92, 94, 99

N
names, reserved, 230
names_compatible pragma, 28, 230
NaN. See floating-point, NaN
net_buf_in_count pragma, 29, 126
net_buf_in_size pragma, 29
net_buf_out_count pragma, 29
net_buf_out_priority_count pragma, 29
net_buf_out_size pragma, 29
netmgmt.h include file. See include files
netvar_processing_off pragma, 29
netvar_processing_on pragma, 29
network debugger. See debugger, network
network performance, 120
network tool, 168

wink request, 18
network variables, xix, 160

ackd keyword, 167
address format of update, 195
alias, 151
array index, 194
authenticated keyword, 168
authentication of, 168
bind_info keyword, 167
binding of, 119
changeable types, 36, 161
changeable_type keyword, 161
classes, 162
config keyword, 162
config_prop keyword, 164

Neuron C Reference Guide 259

configuration property, 164
connection information, 167
const keyword, 162
controlling propagation of output values,

121
cp keyword, 164
declaring, 161, 209
definition, xix
destination address, 195
eeprom keyword, 163
events, 2

nv_update_completes. See
nv_update_completes event

nv_update_fails. See nv_update_fails
event

nv_update_occurs. See nv_update_occurs
event

nv_update_succeeds. See
nv_update_succeeds event

expand_array_info keyword, 167
far keyword, 163
global index, 118, 193, 196
global keyword, 166
global_index property, 118, 196
index of, 118, 196
keywords, 209
max_rate_est keyword, 169
modifiers, 161
nonauthenticated keyword, 168
nonpriority keyword, 169
number of declarations, 85
nv_array_index. See nv_array_index

variable
nv_in_addr. See nv_in_addr variable
nv_in_index. See nv_in_index variable
nv_properties keyword, 164
offchip keyword, 163
offline keyword, 167
onchip keyword, 163
polled keyword, 161
polled when device is offline, 15
polling of, 119
priority keyword, 169
property lists, 164
rate_est keyword, 169
requesting latest value of input, 119
sd_string keyword, 162
self-documentation, 162
source address, 194, 195
standard types. See SNVTs
static keyword, 166
sync keyword, 161
synchronized keyword, 161
syntax, 161
types, 163
unackd keyword, 167
unackd_rpt keyword, 167
uninit keyword, 163

Neuron 3120xx Chip, 41

Neuron C
external declarations, 204
overview, xix
reserved names, 230
reserved words, 226
syntax conventions, 204
variable classes, 207

Neuron C Version 2
additional reserved words, 226

Neuron Chip
model number, 127
power-down function, 135
reset. See device, reset

neurowire I/O object, 94, 99
master mode, 92
slave mode, 92

nibble I/O object, 4, 92, 104, 105
nm_ckm.h include file. See include files
nm_err.h include file. See include files
nm_fm.h include file. See include files
nm_inst.h include file. See include files
nm_mod.h include file. See include files
nm_model.h include file. See include files
nm_nmo.h include file. See include files
nm_rqr.h include file. See include files
nm_sel.h include file. See include files
nm_ste.h include file. See include files
nm_sub.h include file. See include files
nm_wch.h include file. See include files
no_hidden pragma, 29
node_reset() function, 43

definition, syntax and example, 117
nonauthenticated keyword, 168
nonbind keyword, 177
nonconfig keyword, 167, 168
nonpriority keyword, 169
num_addr_table_entries pragma, 29
num_alias_table_entries pragma, 29
num_domain_entries pragma, 30
nv_array_index variable, 9, 12

definition, 194
nv_in_addr variable

definition, 194
nv_in_addr_t structure type, 195
nv_in_index variable

definition, 196
nv_properties keyword, 164
nv_table_index() function, 43, 84, 196

definition, syntax and example, 118
nv_update_completes event, 194, 196

definition, syntax and example, 9
nv_update_fails event, 194, 196

definition, syntax and example, 11
nv_update_occurs event, 119, 194, 195, 196

definition, syntax and example, 12
nv_update_succeeds event, 194, 196

definition, syntax and example, 14
NXT utility, 60, 69

260 Index

O
object_disabled keyword, 172
objects

built-in, 198
offchip keyword, 163
off-chip memory, 20
offline event, 86, 114, 118, 120

definition, syntax and example, 15
offline keyword, 167, 172
offline_confirm() function, 15, 43

definition, syntax and example, 118
onchip keyword, 163
one_domain pragma, 30
oneshot I/O object, 103, 104
online event, 86, 114, 120

definition, syntax and example, 16
ontime I/O object, 4, 6, 92, 102, 103
optimization pragma, 30
outgoing message, defined, 198
output buffer allocation

non-priority, 112
overview

Neuron C, xix

P
parallel I/O object, 92, 95, 99, 100

preparing to output data, 100
performance of 32-bit signed functions, 57
period I/O object, 4, 6, 92, 102, 103
pointer optimizations. See compiler

optimizations
pointers, syntax, 210
poll() function

definition, syntax and example, 119
polled keyword, 119, 121, 161
post_events() function, 42, 155, 195, 196

definition, syntax and example, 120
power_up() function, 16, 42

definition, syntax and example, 120
power-down. See sleep() function
pragmas, 20, See compiler directives

controlling compiler messages, 26, 27, 37
controlling compiler optimizations, 21
controlling configuration data table space,

29, 30
controlling configuration property files, 22
controlling device reset/power-up time, 32
controlling name compatibility with Neuron

C Version 1, 230
controlling pointer optimizations, 22
controlling read and write protection, 32
controlling self-identification data, 25, 26,

34, 35
controlling transaction ID allocation, 36
controlling use of serial I/O functions, 21

predefined events, 2, See events, predefined
preempt_safe keyword, 212

preemption mode, 83, 121
preemption_mode() function, 42

definition, syntax and example, 121
priority keyword, 169
program ID, 34, 35
propagate() function, 42

definition, syntax and example, 121
property declarations, 217
property lists, 173

device, 173
functional block, 183
network variable, 164

psg.h include file. See include files
psgreg.h include file. See include files
pull-up resistors, 25, 136
PULLUPS_ON flag for sleep function, 136
pulsecount I/O object, 4, 6, 92, 102, 103, 155,

194
pulsewidth I/O object, 103

Q
quadrature I/O object, 4, 6, 92
query status network diagnostics message, 125

R
RAM, 191

initialization of, 35
testing of, 35

ram_test_off pragma, 32
RAMCODE, 35
random() function, 44

definition, syntax and example, 122
range_mod_string keyword, 172, 184
range-modification for configuration properties.

See configuration properties, range
modification

rate_est keyword, 169
rate_est option, 177
read_only_data variable, 197

definition, 196
read_only_data_2 variable, 197

definition, 196
read_only_data_3 variable, 197

definition, 196
read_write_protect pragma, 32
read-only data structure

accessing, 196
read-only value file

cp_readonly_value_file. See
cp_readonly_value_file variable

cp_readonly_value_file_len. See
cp_readonly_value_file_len variable

receive_trans_count pragma, 32, 126
reflecting bits, 127
relaxed_casting_off pragma, 33
relaxed_casting_on pragma, 33, 80
repeat messaging service, 168

Neuron C Reference Guide 261

repeating timer, 158
reserved words, 226
reset, 191

determining cause of, 120
reset cause register

clearing, 75
reset event, 89, 90, 101, 117, 120

definition, syntax and example, 17
reset task

limits on execution time, 16
reset_required keyword, 172
resource files, xix, 28, 171, 180
resp_alloc() function

definition, syntax and example, 123
resp_arrives event, 194

definition, syntax and example, 17
resp_cancel() function

definition, syntax and example, 123
resp_free() function

definition, syntax and example, 124
resp_in object

definition, 199
freeing, 124
receiving, 124

resp_out object, 123
allocating, 123
definition, 200
sending, 125

resp_receive() function, 125, 155
definition, syntax and example, 124

resp_send() function, 125
definition, syntax and example, 125

response, incoming, structure, 199
response, outgoing, structure, 200
retrieve_status() function, 50

definition, syntax and example, 125
reverse() function, 44

definition, syntax and example, 127
rotate_long_left() function, 44

definition, syntax and example, 128
rotate_long_right() function, 44

definition, syntax and example, 128
rotate_short_left() function, 44

definition, syntax and example, 129
rotate_short_right() function, 44

definition, syntax and example, 129
run_unconfigured pragma, 33

S
s32.h include file. See include files
s32_abs() function, 44, 54
s32_add() function, 44, 54
s32_cmp() function, 44, 55
s32_dec() function, 44, 56
s32_div() function, 45, 54
s32_div2() function, 45, 56
s32_eq() function, 45, 55
s32_from_ascii() function, 45, 53, 57

s32_from_slong() function, 45, 56
s32_from_ulong() function, 45, 57
s32_ge() function, 45, 55
s32_gt() function, 45, 55
s32_inc() function, 45, 56
s32_le() function, 45, 55
s32_lt() function, 45, 55
s32_max() function, 45, 54
s32_min() function, 45, 54
s32_mul() function, 45, 54
s32_mul2() function, 45, 56
s32_ne() function, 45, 55
s32_neg() function, 45, 55
s32_rand() function, 45, 56
s32_rem() function, 46, 54
s32_sign() function, 46, 56
s32_sub() function, 46, 54
s32_to_ascii() function, 46, 57
s32_to_slong() function, 46, 56
s32_to_ulong() function, 56
s32_type, 52
scaled_delay() function, 42, 79

definition, syntax and example, 130
SCHAR_MAX, 223
SCHAR_MIN, 223
scheduler, 20, 33, 155
scheduler_reset pragma, 33
sci I/O object, 36, 96, 100
sci_abort() function, 52

definition, syntax and example, 131
sci_get_error() function, 52

definition, syntax and example, 131
SCPTs, xix
sd_string keyword, 162
self-documentation information, 26, 34, 180
self-documentation strings

network variables, 162
automatic generation, 162

self-identification data, 25, 26, 35, 180
semaphore

built-in, 201
send response function, 125
serial I/O object, 92, 95, 99

use of multiple devices with different baud
rates, 26

service LED, 191
service pin, 132

pull-up resistor, 25
service type, used for network variables, 167
service_pin_msg_send() function, 50

definition, syntax and example, 132
service_pin_state() function, 50

definition, syntax and example, 132
set_bit() function, 50

definition, syntax and example, 133
set_eeprom_lock() function, 25, 50, 133

definition, syntax and example, 133
set_guidelines_version pragma, 33
set_id_string pragma, 34

262 Index

set_netvar_count pragma, 34
set_node_sd_string pragma, 34
set_std_prog_id pragma, 35
SFPTs, xix
SHRT_MAX, 223
SHRT_MIN, 223
signed 32-bit integers, 52

displaying in debugger, 53
functions, 134

performance, 57
sizeof() function, 36
skip_ram_test_except_on_power_up pragma,

35
sleep() function, 3, 42, 135

definition, syntax and example, 135
smaller value function, 111
snvt_si_eecode pragma, 35
snvt_si_ramcode pragma, 35
SNVTs, xix, 26, 60, 163
source addresses, 152

nv_in_addr. See nv_in_addr variable
specify_io_clock pragma, 36
spi_abort() function, 52

definition, syntax and example, 136
spi_get_error() function, 52

definition, syntax and example, 137
src_addr field of nv_in_addr_t, 195
standard network variable types, 163, See

SNVTs
statement syntax, 218
static keyword, 166, 184
statistics information

clearing, 75
statistics of device status. See retrieve_status()

function
status.h include file. See include files
status_error_log, 127
status_lost_msgs, 126
status_missed_msgs, 126
status_model_number, 127
status_node_state, 126
status_rcv_transaction_full, 126
status_reset_cause, 126
status_struct, definition of, 126
status_transaction_timeouts, 126
status_version_number, 127
status_xmit_errors, 126
stddef.h include file. See include files
stdlib.h include file. See include files
stimer keyword, 158
strcat() function, 48

definition, syntax and example, 137
strchr() function, 48

definition, syntax and example, 138
strcmp() function, 48

definition, syntax and example, 138
strcpy() function, 48

definition, syntax and example, 139
string function

strcat(). See strcat() function
strchr(). See strchr() function
strcmp(). See strcmp() function
strcpy(). See strcpy() function
strlen(). See strlen() function
strncat(). See strncat() function
strncmp(). See strncmp() function
strncpy(). See strncpy() function
strrchr(). See strrchr() function

string.h include file. See include files
strlen() function, 48

definition, syntax and example, 139
strncat() function, 48

definition, syntax and example, 140
strncmp() function, 48

definition, syntax and example, 140
strncpy() function, 48

definition, syntax and example, 141
strrchr() function, 48

definition, syntax and example, 142
struct/union type syntax, 208
swap_bytes() function

definition, syntax and example, 142
symbols

predefined, 200
sync keyword, 161
synchronized keyword, 161
syntax

bitfield, 208
cast expression, 221
configuration properties, 217
declarators, 210
events, 213
expression, 219
function declarations, 212
functional blocks, 216
I/O objects, 214
statement, 218
task, 212
unary expression, 221
union, 208

syntax, typographic conventions for, v
system errors, 127
system events

offline. See offline event
online. See online event
reset. See reset event
timer_expires. See timer_expires event
wink. See wink event

system libraries, 41
system_image_extensions pragma, 36

T
task declarations, 212
template file. See configuration properties,

template files
TICK_INTERVAL, 85
timer/counter

Neuron C Reference Guide 263

alternate clock assignment, 103
I/O input, 101

timer_expires event, 158
definition, syntax and example, 17
unqualified, 17

timers, xx, 136, 158
events

timer_expires. See timer_expires event
expiration event, 17
mtimer keyword, 158
repeating keyword, 158
stimer keyword, 158
syntax, 206

TIMERS_OFF flag for sleep function, 136
timers_off() function, 42, 158

definition, syntax and example, 143
to keyword, 4
totalcount I/O object, 92, 102
touch I/O object, 92, 95, 100, 143, 144, 145, 146,

147, 148, 149
crc16() function, 76

touch_bit() function
definition, syntax, and example, 143

touch_byte() function
definition, syntax, and example, 144

touch_byte_spu() function
definition, syntax, and example, 144

touch_first() function
definition, syntax, and example, 145

touch_next() function
definition, syntax, and example, 146

touch_read_spu() function
definition, syntax, and example, 147

touch_reset() function
definition, syntax, and example, 147

touch_reset_spu() function
definition, syntax, and example, 148

touch_write_spu() function
definition, syntax, and example, 149

transaction IDs, 36
transaction_by_address_off pragma, 36
transaction_by_address_on pragma, 36
triac I/O object, 103
tst_bit() function, 50

definition, syntax and example, 149
typedef keyword, 164
types for network variables. See network

variables, types

U
UCHAR_MAX, 223
UINT_MAX, 224
ULONG_MAX, 224
unackd keyword, 167
unackd_rpt keyword, 167

unackd_rpt service, 168
unacknowledged service, 167
unary expression, 221
unconfigured device. See device, unconfigured
uninit keyword, 163
union syntax, 208
unknown_system_image_extension_isa_warnin

g pragma, 37, 38
UNVTs, 163
update_address() function, 43

definition, syntax, and example, 150
update_alias() function, 43

definition, syntax and example, 151
update_clone_domain() function, 43

definition, syntax and example, 151
update_config_data() function, 43, 192

definition, syntax, and example, 152
update_domain() function, 43, 151, 153

definition, syntax and example, 153
update_nv() function, 43

definition, syntax and example, 154
update_program_id() function

definition, syntax and example, 154
user network variable types, 163
USHRT_MAX, 223

V
value files. See configuration properties, value

files
variable classes, syntax, 207
variable declaration syntax, 205
variables

built-in, 191
syntax, 222

volatile keyword, 207

W
warning messages. See compiler messages
warnings_off pragma, 37
warnings_on pragma, 37
watchdog timer

range, 155
watchdog_update() function, 42, 79, 155

definition, syntax and example, 155
when statement, 212
wiegand I/O object, 92, 95
wink event, 114, 120

definition, syntax and example, 18
writeable value file

cp_modifiable_value_file. See
cp_modifiable_value_file variable

cp_modifiable_value_file_len. See
cp_modifiable_value_file_len variable

264 Index

	Welcome
	Audience
	Related Documentation
	Typographic Conventions for Syntax
	Table of Contents
	Neuron C Overview
	Predefined Events
	Introduction to Predefined Events
	Event Directory
	flush_completes
	io_changes
	io_in_ready
	io_out_ready
	io_update_occurs
	msg_arrives
	msg_completes
	msg_fails
	msg_succeeds
	nv_update_completes
	nv_update_fails
	nv_update_occurs
	nv_update_succeeds
	offline
	online
	reset
	resp_arrives
	timer_expires
	wink

	Compiler Directives
	Compiler Directives
	Pragma Directives
	Other Directives
	MCPP and Neuron C Compiler Versions 5 and 6

	Functions
	Introduction
	Transient and Resident Functions
	Overview of Neuron C Functions
	Execution Control
	Network Configuration
	Integer Math
	Floating-Point Math
	Strings
	Utilities
	Signed 32-Bit Integer Support Functions
	Binary Arithmetic Operators
	Unary Arithmetic Operators
	Comparison Operators
	Miscellaneous Signed 32-bit Functions
	Integer Conversions
	Conversion of Signed 32-bit to ASCII String
	Conversion of ASCII String to Signed 32-bit
	Signed 32-Bit Performance
	Floating-Point Support Functions
	Binary Arithmetic Operators
	Unary Arithmetic Operators
	Comparison Operators
	Miscellaneous Floating-Point Functions
	Floating-Point to/from Integer Conversions
	Conversion of Floating-Point to ASCII String
	Conversion of ASCII String to Floating-Point
	Floating-Point Performance
	Using the NXT Neuron C Extended Arithmetic Translator
	Function Directory
	abs()
	access_address()
	access_alias()
	access_domain()
	access_nv()
	addr_table_index()
	ansi_memcpy()
	ansi_memset()
	application_restart()
	bcd2bin()
	bin2bcd()
	clear_status()
	clr_bit()
	crc8()
	crc16()
	crc16_ccitt()
	delay()
	eeprom_memcpy()
	error_log()
	fblock_director()
	Floating-Point Support
	flush()
	flush_cancel()
	flush_wait()
	get_current_nv_length()
	get_declared_nv_length()
	get_fblock_count()
	get_nv_count()
	get_tick_count()
	go_offline() FunctionThe go_offline
	go_unconfigured()
	high_byte()
	interrupt_control()
	io_change_init()
	io_edgelog_preload()
	io_edgelog_single_preload()
	io_idis()
	io_iena()
	io_in()
	io_in_request()
	io_out()
	io_out_request()
	io_preserve_input()
	io_select()
	io_set_baud()
	io_set_clock()
	io_set_direction()
	io_set_terminal_count()
	is_bound()
	low_byte()
	make_long()
	max()
	memccpy()
	memchr()
	memcmp()
	memcpy()
	memset()
	min()
	msec_delay()
	msg_alloc()
	msg_alloc_priority()
	msg_cancel()
	msg_free()
	msg_realloc()
	msg_receive()
	msg_send()
	muldiv()
	muldiv24()
	muldiv24s()
	muldivs()
	node_reset()
	nv_table_index()
	offline_confirm()
	poll()
	post_events()
	power_up()
	preemption_mode()
	propagate()
	random()
	resp_alloc()
	resp_cancel()
	resp_free()
	resp_receive()
	resp_send()
	retrieve_status()
	reverse()
	rotate_long_left()
	rotate_long_right()
	rotate_short_left()
	rotate_short_right()
	scaled_delay()
	sci_abort()
	sci_get_error()
	service_pin_msg_send()
	service_pin_state()
	set_bit()
	set_eeprom_lock()
	Signed 32-bit Arithmetic Support
	sleep()
	spi_abort()
	spi_get_error()
	strcat()
	strchr()
	strcmp()
	strcpy()
	strlen()
	strncat()
	strncmp()
	strncpy()
	strrchr()
	swap_bytes()
	timers_off()
	touch_bit()
	touch_byte()
	touch_byte_spu()
	touch_first()
	touch_next()
	touch_read_spu()
	touch_reset()
	touch_reset_spu()
	touch_write_spu()
	tst_bit()
	update_address()
	update_alias()
	update_clone_domain()
	update_config_data()
	update_domain()
	update_nv()
	update_program_id()
	watchdog_update()

	Timer Declarations
	Timer Object

	Network Variable, Configuration Property, and Message Tag Declarations
	Introduction

	Network Variable Declarations Syntax
	Network Variable Modifiers (netvar-modifier)
	Network Variable Classes (class)
	Network Variable Types (type)
	Configuration Network Variables
	Network Variable Property Lists (nv-property-list)
	Configuration Network Variable Arrays
	Network Variable Connection Information (connection-info)
	Configuration Property Declarations
	Configuration Property Modifiers (cp-modifiers)
	Configuration Property Instantiation

	Device Property Lists
	Accessing Property Values from a Program
	Message Tags

	Functional Block Declarations
	Introduction
	Functional Block Declarations Syntax
	Functional Block Property Lists (fb-property-list)
	Related Data Structures
	Accessing Members and Properties of a Functional Block from a Program

	Built-In Variables, Objects, Symbols, and Semaphore
	Introduction
	Built-In Variables
	activate_service_led
	config_data
	cp_modifiable_value_file
	cp_modifiable_value_file_len
	cp_readonly_value_file
	cp_readonly_value_file_len
	cp_template_file
	cp_template_file_len
	fblock_index_map
	input_is_new
	input_value
	msg_tag_index
	nv_array_index
	nv_in_addr
	nv_in_index
	read_only_data

	Built-In Objects
	msg_in
	msg_out
	resp_in
	resp_out

	Built-In Symbols
	Built-In Semaphore

	Syntax Summary
	Syntax Conventions
	Neuron C External Declarations
	Variable Declarations
	Declaration Specifiers
	Timer Declarations
	Type Keywords
	Storage Classes
	Type Qualifiers
	Enumeration Syntax
	Structure/Union Syntax
	Configuration Property Declarations
	Network Variable Declarations
	Connection Information
	Declarator Syntax
	Abstract Declarators
	Task Declarations
	Function Declarations
	Conditional Events
	Complex Events
	I/O Object Declarations
	I/O Options
	Functional Block Declarations
	Property List Declarations
	Statements
	Expressions
	Primary Expressions, Built-in Variables, and Built-in Functions
	Implementation Limits

	Reserved Keywords
	Reserved Words List

