To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

LENESAS

-
»
)
ﬁ\
»
<
)
>
-
=

M16C/60,30,20,10,Tiny,R8C/Tiny Series
C Compiler Package V.5.43

C Compiler User’s Manual

Renesas Electronics
WWW.renesas .com ReV. 1.00 2007.03

® Microsoft, MS-DOS, Windows and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States
and other countries. HP-UX is a registered trademark of Hewlett-Packard Company.

® Sun, Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. or other
countries, and are used under license

® UNIX is a registered trademark of The Open Group in the United States and other countries.

® Linux is a trademark of Linus Torvalds.

® Turbolinux and its logo are trademarks of Turbolinux, Inc.

® |[BM and AT are registered trademarks of International Business Machines Corporation.

® HP9000 is a product name of Hewlett-Packard Company.

® SPARC and SPARCstation are registered trademarks of SPARC International, Inc.

® Intel and Pentium are registered trademarks of Intel Corporation.

® Adobe and Acrobat are registered trademarks of Adobe Systems Incorporated.

® Netscape and Netscape Navigator are registered trademarks of Netscape Communications Corporation in the U.S. and other countries.

All other brand and product names are trademarks, registered trademarks or service marks of their respective holders.

Keep safety first in your circuit designs!
® Renesas Technology Corporation and Renesas Solutions Corporation put the maximum effort into making semiconductor products better and
more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury,
fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as
(i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

® These materials are intended as a reference to assist our customers in the selection of the Renesas Technology product best suited to the
customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas
Technology Corporation, Renesas Solutions Corporation or a third party.

® Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage, or infringement of any third-
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in
these materials.

® All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on
products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation and Renesas Solutions
Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas
Technology Corporation, Renesas Solutions Corporation or an authorized Renesas Technology product distributor for the latest product
information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical
errors. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corporation and Renesas
Solutions Corporation by various means, including the Renesas home page (http://www.renesas.com).

® When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms,
please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products.
Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage, liability or other loss
resulting from the information contained herein.

® Renesas Technology semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in
which human life is potentially at stake. Please contact Renesas Technology Corporation, Renesas Solutions Corporation or an authorized
Renesas Technology product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus
or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

® The prior written approval of Renesas Technology Corporation and Renesas Solutions Corporation is necessary to reprint or reproduce in
whole or in part these materials.

® If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the
Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the
export control laws and regulations of Japan and/or the country of destination is prohibited.

® Please contact Renesas Technology Corporation or Renesas Solutions Corporation for further details on these materials or the products
contained therein.

For inquiries about the contents of this document or product, fill in the text file the installer generates in the following directory and email to your
local distributor.

\SUPPORT\Product-name\SUPPORT.TXT

Renesas Tools Homepage http://www.renesas.com/en/tools

Preface

NC30 is the C compiler for the Renesas M16C/60, M16C/30, M16C/Tiny, M16C/20, M16C/10,
R8C/Tiny Series. NC30 converts programs written in C into assembly language source files for the
M16C/60, M16C/30, M16C/Tiny, M16C/20, M16C/10, R8C/Tiny Series. You can also specify compiler
options for assembling and linking to generate hexadecimal files that can be written to the
microcomputer.
Please be sure to read the precautions written in this manual before using NC30.

Terminology

The following terms are used in this manual.

Term Meaning
NC30 Compiler system included in this compiler
nc30 Compile driver and its executable file
AS30 Assembler package included in this compiler
as30 Relocatable macro assembler and its executable file

Description of Symbols

The following symbols are used in this manual.

Symbol Description
Root user prompt
% UNIX prompt
A> MS-Windows(TM) prompt
<RET> Return key
<> Mandatory item
[Optional item
A Space or tab code (mandatory)
A Space or tab code (optional)
komitted) Indicates that part of file listing has been omitted

Additional descriptions are provided where other symbols are used.

Contents

Chapterl Introduction t0 INCSBO0.........coiivieieeeieeeeceeete ettt ereeere e ereesaeerseeseeaseeseessenns 7
1.1, NC30 COMPONENLSvvvvvevererereeeeeeereeeisesessessssssssesesesesesesesesesesesesessssssssssssssssssssssssssesssesesssssssssssssnssssssssesssesess 7
1.2, NC30 Processing FLOWc.coeviveeeeeeeeeiieeieeeeeesesesesesesesesesesesesesesssssssssssssssssssssssssssssesssssssssssssssssnssssssssssssssens 8

1.2.1. NGB0ttt ettt ettt b bbb e b as s et e b esea s b et et e s s as st ebe b e s s e sas bt et eben et et et eaeasns et et et ensasarene 9
1.2.2. CPPB0 ettt ettt et ettt e e e e e be b et et et et et et e st e st et etaeaaebaebaebeesabebetaebaebesentetessententensestenteraaraans 9
1.2.3. CCOMNIB0 ..uvvereuenreinteeteesteesteeste et esestesesse e ssesestesassesesastssassssesasessssassssessssesssesessessssssessesessesessesessssensesessssensosenes 9
1.2.4. BOPEB0 1.ttt ettt e st st et et et e s e te s et e s et e b et e R et e s et e s et e R et e R et e s et esese s eae b ese b esa s esatesatenetenaatan 9
1.2.5. SDAULO ...ttt ettt ettt e bbb e bbb e e s e e s e sas e as et et e b et et e bt ebasasas s esasesaetetebetebetebetetesennes 9
1.2.6. SERVIEWET & STK....ouvueeiereieeieteieieieteteteetetetete ettt et et s s s e s s s s asssasse e sebebesebesesesesesebessessssssssssesatesesesetesesesesenes 9
1.2.7. UELB0 .ottt ettt ettt ettt et st et et a et e b s s s et e s s e et e s s ae b et et s s et e b s e e et e st et e b s s e et et nan e et enaseetebnaneetenanants 9
1.2.8. MADPVIEWET ...ttt ve s s bbb sttt et et e st esesesenesesesesasasssaetesesesesesesesesnnasasn 10
1.3. INOLES ettt et e s sttt et st e st s st sa st et sesesesesesesesesssesesesebese s e s s e s s re st R e s e R e R e R e e R e R s e R e b et et ettt et et eetaes 11
1.3.1. Notes about Version-up Of COMPILEToveueeeveerererererereeeeeeeee e seseesesssesesesesesesesesesesesssesssssesssssssssssesesens 11
1.3.2. Notes about the M16C's Type Dependent Part.............ccoeveeeeeeeeieieeeeeeeeererereeeeeeeeseseessssssssesenes 11
1.4. Example Program DeVEIOPIMENL............cocerieieieeereeeecereeeeesere e eseesesesesssesesesessesesesesssesesesesesesssssesesessasnes 12
1.5. N30 OULPUL FILES ...ttt ettt ettt b b eb s bbb bbb b esesesesensasesesessasasseseseasassesen 14
1.5.1. Introduction t0 OULPUL FILES......c.ciieeeecte ettt ve bbb er bbb sesebesean 14
1.5.2. Preprocessed C SOUTCE FILES ...ttt be s st bt sns s b sesebeseasasesenesean 15
1.5.3. Assembly Language SoUICE FILES ...ttt se bbb s sesens 16

Chapter2 Basic Method for Using the CoOmpiler...........cooovivvieeeeericieececeereeeereereeeeeeeeeeseevenns 19

2.1. Starting Up the COMPILETc.ceeveveveieieeeeeeeeeeeeete et revesesesesesesese s sse s sesssesas s st sesesesesesssasasasssssasssssseseseseses 19
2.1.1. NC30 COMMANA FOIMNAL.......ccueieiereeieiieieieieetet sttt ettt st et s st sssss st essssssesssssessssssessssssesesasens 19
2.1.2. COMMEANA FILE.......ceeeiiiecicete ettt bbb bbb s e s ss s b b s as s sasesansesanas 20
2.1.3. Notes on NC30 Command LANe OPLIONScccueverevererererereeerereeeeeessssssssssssssesesesesesesssesssssessssssssssssesesess 21
2.14. NC30 CommANd LNE OPLIONIS.......veveveeeeeeeeeieeeieeeeeeeeeeetese oot sesesesesesesssssssssssssssssssesesesesesesesesesesnssssssssesesesenes 22

2.2. Preparing the Startup PrOSIam............cceerieeeeeeeeeeeeeeeeeeeeese et sese et s sesesesessssssssssssssassesesesesesessssssssssans 28
2.2.1. Sample of SEArtup PrOGIam.........cccciiiieicieieieeie s s st b et s s sas s s s sa s sa s sasenes 28
2.2.2. Customizing the Startup Program...........cccseieeeeeeesssssssssssssssssssssesesesesesesssssssssssssnes 33
2.2.3. Customizing for NC30 Memory IMAPPINGccccoceeeeeeerereresesssssssssssssssssssssssssssssssesesesesssessssssssssssssess 37

Chapter3 Programming TeChNIQUE...........ccuecvieiiieiieiieeeereetececeeeeere et eeve et esre s ese e sseneenee 48

3.1. INOEES ...ttt ettt e et e b e b e st et et e e as e et e besese st et e b e s eRa et e et e R e aeAeas At et e b ese A st et et eseas bt e bese st tesesenen 48
3.1.1. Notes about Version-up Of COMIPILETccveeereerererererererererereeesesseesesesseetesesesesesesesesesesesesssssssssesesesenes 48
3.1.2. Notes about the M16C's Type Dependent Part.............ccoveveeeeieiieeeeeeereverereetevesesesessesssessesesenes 48
3.1.3. ADOUL OPEIMIZATION.......cvcveveveverererererereeeeeeeeeeeesse e et sesesesesesesesesesesesesesesessesssasesasssasassstesesesesesnssasasasasasasaees 49
3.14. Precautions on Using register VAriables...........eeieeereeeeeereeeeseesesessesesesesssssesesesesssesssesesesesenes 51
3.1.5. About Startup HANAING..........c.coveeeeeeeeeeeetceretetcte ettt se s s s st sesesenasssasesnsesasasaees 51

3.2. For Greater Code EffICIEIICYccovviveeeeeeeeeeeeeeeeetetetesesese e sesesesess s s s s s s ssssssssesesesesesesssssssasssasassssssssesesesesenes 52
3.2.1. Programming Techniques for Greater Code EffiCiencyccooeeeveeeeeeeeeeeeieeeesssessesssssssssenns 52
3.2.2. Speeding Up Startup ProCeSSING ...ttt ssssssssssssssssssssssssssesese s ssssssssssssssnes 54

3.3. Linking Assembly Language Programs with C Programs............cccceveeeveeneeeieeeseeeeeiesesssssssssssssssnnes 55
3.3.1. Calling Assembler Functions from C Programs.........cccceeeeeiecennenssrsinsssessssssssssssesssssssssssssssssesssssssns 55
3.3.2. Writing ASSEMDIEr FUNCEIONScvvveririierieieiicieiccieteices ettt et s sesssss e ssssssesessssssesssssssssssesssssssens 57
3.3.3. Notes on Coding ASSembIer FUNCEIONSccvvveieriririeieieiceieieseseessiessstesessesssssssssessssssssssssssssssssessssens 60

B, DR ettt ettt bttt et Re et b ARttt et st b e e bt nan st nas 61
3.4.1. Precautions on Transporting between NC-Series COMPIIETS..........cocvuevererererererererererereeesesessessseeesenes 61
3.4.2. Precautions on Transporting between NC308 and NC30c.ceveeeereeeeeeererererererererereseresesesesssessens 61

-3-

AppendixA Command Option Reference.............oceoeeveieieieieieieieeeceeeee e 62

Al 1NC30 CommMEANd FOPMALc.cvueveiicieiicieieieciet ettt ss st ess s bbb ssss s sss s sas s sessssssessassnsasanes 62
A2, 1nc30 Command LINE OPtIONS........coceueeerererereeereeerereeeeeeeeeeesssessssssssssesesesesesesesesesessssssssssssssssssssssesssssssssssesnsasases 63
A21. Options for Controlling Compile DIIVET............c.ccevveeiieeeererceerererere e sessrssssssssesesesesesesesssnsssnsasases 63
A22. Options SPecifying OULPUL FILESc.ccveveveeeeeeeeeee ettt s s s ses s sas s nens 66
A2.3. Version Information DiSplay OPtIOncccceueueieieieirieeiieseecessesesee et sesesesessssssssssssssssssssssssesesessssssens 67
A24. Options for DEDUGEZING.......ccciieieieieietee ettt b e b bbbt et s bbb sasssasanasananes 68
A25. OPtIMIZALION OPEIONIS.....ecuieverererieiierereterieeererereeeretere et et sesesssesesesesssesesesessassesesessassesesesessnseseseseseasaseseseseaen 70
A.2.6. Generated Code Modification OPtIONS.........ccccereeeeeieisesieisesesiessssssssssssssessssssesssssssssssssssesssssssssssssessssssessns 81
A2.7. Library SPecifying OPTION.......ccevcveureeeereiriseeisissietsssstesssssessssssssessssssssesssssssssssssssessssssessssssssssessssssssesssssss 93
A.2.8. WATTING OPLIONIS. ... eviereeieiierieiesceeieieeee ettt sesssse s sssssssssssssessssssesessssssessssssesassssssessssssessssesessssssessssssesessssesns 94
A209. Assemble and LINK OPtIONS........coueveeieeieeeeeteetererereresesesesesesesessssssesssssesesesesesesesesesesesesessnsassssssesesesens 100
A.3. Notes on Command LiNe OPLIONSccceevererererererereeeeeeeeeeeeeseseseseesesesesesesesesesesesesesesesssssssseseseseseseseseseses 101
A3.1. Coding Command Line OPtIONS...........ceeeveeereeeeeereererererereresesesesesesesssssssssssesesesesesesesesesesesessssssssesesesens 101
A3.2. Priority of Options fOr CONEIOIINGc.ceveveveeeeeeieeeeeeeeeeeretererese e rese s sesesessss s sesesssssssesnsasnes 101
AppendixB Extended Functions Reference.............cccoevveieiniecieeniecicisciseseeeeeeeese e 102
B.1. Near and far IMOMIEESccoceeieeeeeeieeeeeeetseesisssssssssssss e te e tesesetesesesese bt ssssssssssstesesesesesesessssssssssssssasans 104
B.1.1. Overview of near and far MOIIEIS........ccccceeeeeieieeeieeeeeess s s ettt s s ss s sssssssaste s sesenanes 104
B.1.2. Format of Variable DeClaration.............cccceeeeeieieieieieisiesicessesssesietsiesesesesesesesesssssssssssssssesesesesesssesnns 104
B.1.3. Format of Pointer type VATIADIE..........cccicceieiriniieieirecieieiesieseesestsssssssssssssssssssssessssssssssssssssssssesssssssses 105
B.14. Format of Function Declaration... ...t ereetetesesesessesssessessassssesesesesesesenes 107
B.1.5. near and far Control by nc30 Command Line OPtions...........ccceeueeerreeseersisesrsssesssesessesssssssssesssssssseses 107
B.1.6. Function of Type conversion from Near t0 FArc.oveeveeeeereereeerererererereresese s esesesenes 108
B.1.7. Checking Function for Assigning far Pointer to near POINEr..............ccocvveeveverererererererereeeeeeeseeeeeene 108
B.1.8. DeClarINg fUNCEIONScveveveveveverieeeeeeeeeee ettt v s sesesesesesesesese s s sesesessasasasasassesesesesesesasesasasasasans 109
B.1.9. Function for Specifying near and far in Multiple Declarations.............ccceeeeeeeeeeeeeeeeeereereererenenenes 109
B.1.10. Notes on near and far AtEITDULES............cccceeerereieeese et sses et s s s s sssasse s ssssesssassesans 110
B2, ASIN FUNCHION........coiii ettt es s s s ettt et et s et s e b b ensssasesasesesesesesessesssesasssssnsnen 111
B.2.1. OVErview 0f aSIM FUNCEIONcciuiieieieieieieee s ettt bbb b s s s s s s s s st bbb ebesebesesenes 111
B.2.2. Specifying FB Offset Value of auto Variablecceeeeeeeeeeieeieseeeeessssssssssssssssesesesesenns 112
B.2.3. Specifying Register Name of register Variable.............cceeeeeeeeeeeeeesssssssssssssssesesesesenns 114
B.2.4. Specifying Symbol Name of extern and static VAriableccccveeceinereeinineseiessesesseseesssssssessssens 115
B.2.5. Specification Not Dependent on Storage CLASSccccveueeeieirieeisinississssieissssiesssssssssssssssssssssssssssses 118
B.2.6. Selectively SUPPressing OPLIMIZATIONc.c.cuevevevereieiierrereeeeeeesesesesesesesesesesesesssssssesssassssssssssesesesesesesenes 119
B.2.7. Notes 0n the aSm FUNCHIONc.cccciiiiiiieiicceccetece et s s sss s b sss e s e s s sassssesans 119
B.3. Description of Japanese CRATACTELS...........cccevevereveveeereeeeeeeeeee e eesesesesesesesesesesesessssessesssssesesesesesesssnsasase 122
B.3.1. Overview of JAPANESE CRATACLELSccevevererereeeeeeeeeeeeeee et esesesesesesesesesessessessassasassesesesenesenes 122
B.3.2. Settings Required for Using Japanese CRaracCters............weeeveeeeeeeerereeereeereeresesesesesesssessssssssssesenes 122
B.3.3. Japanese Characters in Character STIINGS.........c.ovoveeeeieeeeeeeeererereeerete e sessees s esesesesesesesesssasns 123
B.3.4. sing Japanese Characters as Character CONSLANTS..........c.ovveeiereveereererereeeeee e esesesesenes 124
B.4. Default Argument Declaration of FUNCEIONccvoeiieiiieececeeee et sssasasases 125
B4.1. Overview of Default Argument Declaration of FUNCHIONcccceeveieieicieicieieeieeceee e 125
B.4.2. Format of Default Argument Declaration of FUNCHION...........ccccceeeeeeieieieeeitseeess e evesenes 125
B.4.3. Restrictions on Default Argument Declaration of FUnction..............cccoeeveeveeereeeeereeeeee e 127
B.5. Inline FUNCEION DECIATATIONccueeieieieciitetetetetctetetee et ettt v v bbb bbb s b bbb s b s sesesasesasasans 128
B.5.1. Overview 0f INHNE StOTAZE ClASScccvvuriereiririeieirieisinissiesstsesssessstesssssssssssssssessssssesssssssesssssssssssessssseses 128
B.5.2. Declaration Format of iInine Storage CLASSoceeeerevevererererererererereeessessesessesssssssesesesesesesesesssasans 128
B.5.3. Restrictions on INHNE SOrage CLASS........cvieeeeeererererererererereeesesesesesssesssesessesssssssesesesesesesesesssssesasasans 129
B.6. EXtension Of COMIMENLSccccceeieieirerereiisiesessessesssssesesssssessssssssessssssesessssssessssssssessssssesessessssssssessssssesssssesesses 132

B.6.1. OVETVIEW Of "//" COMIMIEIIES........eceieeviveeeeieeeetctceeeeeteteseet et sess st ssesese st sesesssssesssensasesesessnsasasasasssesssensasssesn 132

B.6.2. COMMENE "M/ FOTINALcvveecieieececieieeeteesete ettt ssss st s s s et s e b sas s s ssssssesssssessssssessnsnsasananes 132
B.6.3. PrIOTIEY OF /™ QN /5" ...ttt bbb s st ss et s s s b bbb sassebesssasse s sasaesenaes 132
B.7. #pragma EXtended FUNCEIONSccouiviiieerereeeceereeeeeee ettt bbb s s s sesassesesesesasesesesenens 133
B.7.1. Index of #pragma Extended FUNCEIONS. ..o sesesesesesesesssesnsasnns 133
B.7.2. Using Memory Mapping Extended FUNCEIONSccoeeveriiieereteeeereeeeerete e esese s senesene 137
B.7.3. Using Extended Functions for Target DEVICESccceeeeeeeeiesietiscesssssssss s sseseseeseesesesensnens 146
B.7.4. Using MR30 Extended FUNCLIONSccccceviiiiiieeceeeeeeeieie ettt sssssssssssssssssssssssssesesesesssssssssssses 155
B.7.5. The Other EXEENSIONS.c.ccciieieieieiiieeeeeeese s e ete e e e e te e te et e s s s bbb ss s s sas s ss s sasasasasessesssesssssssasssssses 159
B.8. assembler Macro FUNCEION.c.coiiiieericieeeeieet et ettt et bbb bbb s s a st ebebebes b s sasesasasasanans 164
B.&.1. Outline of Assembler Macro FUNCEIONcccoeveveieieiiiiieeeeeiee ettt v vt ses s s esasaesesesenenes 164
B.8.2. Description Example of Assembler Macro FUNCEIONcceeveieiiieieiiceceecee e 164
B.8.3. Commands that Can be Written by Assembler Macro Functioncceeeeeeveeeeeeeeeeeeeeecenenenen. 165
AppendixC Overview of C Language Specifications...........ccceeueeeereeeeeeeeeeeeeeeeeeeeee e 172
C.1. Performance SPECIICAIONS.ccovveeereerererererererereresesesesesessssssssessssssssssssssesesesesesesesesssssssssssssssssssesesesesssssessssnes 172
C.1.1. Overview of Standard SPECIICATIONS.c.cevveveeeeeeeeeeeeeeeeeeseeesese e esesesesesesesesssesssssssssssssssssesesesessssnes 172
C.1.2. Introduction to NC30 PerfOrmAance..........cccceueeeeieveerieieicciessesesesses s s sesssssessesssassesssssessssssesans 172
C.2. Standard Language SPeCIfICAtIONS..........cccccieeieeiereeieietsisisissssssssessssssetetesesesesesesessssssssssssssssasesasesesesesesessnes 175
C2.1. STTILAX .. cvevetereiereieesttssessssssssss s s ss s besabatabetasesebesesesesesssbssssssasssasssasssssassssesasabatatesasesesssassssesesabatatatatatesesesasesanes 175
C.2.2. Ty erreeeeeeseeseeeeseeesssseeeseeeesseeees e eeee e eeee e ee e e e e et s e see e seenee e 178
C.2.3. FIXPIESSIONS.....cueviererieiiecieieesisieieses ettt sss et ses st st sss st ssssss s et essssssessssssesesssssssssssssesssssssssssesessssasessssssesassssnse 180
C.24. DIECLATALION ...ttt et ettt b bbb b bbb b b e bbb b s asast et et ebesesesebasesasesasasasasans 181
C.2.5. SEALEITIEINE ...ttt ettt ettt et bbb b bbb es s e asasasesasesas e sebebebebesebesebenssansesesetesetebetesesesesesenes 183
C.3. Preprocess COMIMANASccceveveierieeeeeeeceeteeseseseresesesesesesesessesssesssasssssssssssesesesesesesesesesssssssesesesesesesesesesesenns 186
C.3.1. List of Preprocess Commands AVAilable..............oceeveerererererererereeeeeeeieeeseeeeeseseseseesesesesesesesesssssasans 186
C.3.2. Preprocess Commands RefErenCe.ouveeeieeieeeeeeeeetereveeeretesetese e esesesesesesssessanans 186
C.3.3. PredefiNed IMACIOS.........ccveveerieieiccieeeece ettt s st s s s s ss et eb e st s s asse s sasassassssesssassesssasassanans 194
C.3.4. Usage of PredefINed IMACTOS. ... esesesesesesesesesesssesssesssssssssssssssssssssssssssssessssssnsasnsasnes 194
AppendixD C Language Specification RUlEScccccevueieirieiieinieiceteeeeeeeeeeeee e 195
D.1. Internal Representation Of DAta...........iiriiieieereeieereteseeeeteseseseese et sesesssesesesesesessassesesesensaseseses 195
D.1.1. TNEEETAL TYPE ottt sttt ettt b bbb bbb e a e s e s s s bbb ebebebebsbenssenasasasasasanans 195
D.1.2. FIOAEING TYPE...o ettt ettt ettt et bbbt ebe bbb se s s asassssesetebetebebebesesesebenes 196
D.1.3. ENUMETAtOT THPE ..ottt ettt ettt b et et ebaseasasesesesensasesesas 197
D.1.4. POINEEY TYPE .ttt ettt ettt b bbb bbb as sttt bebebebesesasesasasasanans 197
D.1.5. ATTAY TYPES .ottt ettt s s esesesesese s s s s s s s s s e s s asasasassesasesasesasasasasasasastssesene 197
D.1.6. SEIUCEULTE EYPES... .. vvereeeieeeeeeeeeteeteeteteteseseseseseseseseseseseseses s sasasas s s asssassssesesesesesesesesessesesassssssesesesesesesesesesesnes 198
D.1.7. TUTIIONIS ..ottt sttt ettt e e as e s s e e s e e s e sesessbessbeses et st et nbtasssssssssssssesssesnsesasnssnsssssnesesesesenes 198
D.18. BItFIEIA THPES ...ttt e e s s s s s s s sesesesesesesesesesesssassssesesesesetesesessnesennas 199
D2, Sign EXtenSIon RUIESc.coeviveeeeeeeeeeee ettt sttt sese s s s s s s sasssass s ssasasasssasasassessssaesens 200
D.3. FUunction Call RUIES.........c.coiiuiiicieiicteicecte ettt bss e bbb es s b sas b sesas et sasassenesanes 201
D.3.1. Rules of REEUITI VAIUEcvoveee ettt ettt s as st s bbb sa s sasasasanans 201
D.3.2. Rules on Argument TanSTEr ...ttt bbb s s s sasasanes 201
D.3.3. Rules for Converting Functions into Assembly Language Symbols..........cccceveeeeeereeereseseeseennennns 202
D.3.4. Interface DetwWeen FUNCEIONS ..ottt s beb s s asasanans 207
D4, Securing AUt VATIADIE ATEa........cccvviririeeeceeieiieisieseeieses e sssssse st sss st ssssssessssssssesssssssssssssessssssesessssssesssnns 212
D.5. Rules of Escaping of the REZISLETccovviiireeieeeereeeteteteteteteeeesses e e be s s be s ses s s st sesene 213
AppendixE Standard LADTary ...t sa et aeanen 214
E.1. Standard HEAdEr FILESc.cccieecieieceieeccietestetessie sttt esssss st sssssssesssassssesssssssssssessssssssessssssassssssases 214

E1.1. Contents of Standard Header FIIES ...t eetesessesesesesssssssssessssssssnssesesessnens 214

E.1.2. Standard Header Files RefErenCe..........ccceuieieieerieiriceieicsieteesetessstsssseseesess s tessssssssesssssssssssesssssseses 215
E.2. Standard Function REfEIeNCe..........ccceiriieeieiirieiseccieics ettt ssssss s st sessssssessssessssssssessssssessssssnses 222
E2.1. Overview of Standard LADTATY ... sesesesesesesesesesesssssssssssesesesssssessnes 222
E.2.2. List of Standard Library Functions by FUNCEIONceevevevieereeeeeeeee et sese s senenennens 223
E.2.3. Standard Function REfErenCe............cccvuiveieieceteeeeees ettt ettt sas bbb ssssesssassesenasenses 229
E.2.4. Using the Standard LADTATYcccceeeieiiieeieeceeee e e e te et ssse s sesssssssssssssssssssssssssesssssssssssssses 296
E.3. Modifying Standard LIDIATY..........cccceeeiveieeeeeseeeieeesesesesesesssssssssssssssssssssssssssesssesesesesesessssssesasesesssesssesssesnns 297
E.3.1. Structure of I/O FUNCHIONSccceieeiieieieee et s s st be et be s st se bbb s sssstasesebesesesesesenanns 297
E.3.2. Sequence of Modifying I/O FUNCHIONS.........ccvuieirireieririieieisissseeseststssssessssssssessssssesssssssssssssssssssssssssssses 298
ApPPendixFE Error MESSAZES. ...ccvvcviereiieetieetecetecr et cteee et v eteesseeteeeteeseeseesseesseeseeseessenseesessseseens 307
F1. MESSAZE FOTINAL ...ttt a et ettt as bbbt as b s e b e e e seas s esebeseanesesesesensassesesas 307
F2. NC30 EXTOT IMIESSAZES.eeverereteeeietereeeetete ettt b s st b e e st b ss s s b b essasesebeseseasasssesesebessssesesesessasesesesas 308
E3. CPP30 EXTOE MESSAZES......cvcveeeeererereeeieteteteetete ettt se s stesese e st s ebe e sseseseseseasssesesesasssssasssesesesessesesesesensassesesas 310
F4. CPP30 WATNING IMESSALESoevevevereeeeerereretiieeereteeseesesesessssesesese s ssesesesssssesesessssesesesessssasssesesesessnsesesesesessasseseses 313
F5. CCOMB0 EXTOE MESSAZESveeverrerereeeeetereteieeetere e ets e s es st s s sesebe s s sesesessssesesesesessessesesesesesensessesesessasseresas 314
Fe. € €COM30 WATTING IMESSALESvcveueeererereeiieeerereeeeereeteees et s s sese e ssesesesessasesesesessssassesesesssessssesesesesessasseseses 326
Appendix G The SBDATA declaration & SPECIAL page Function declaration Utility (utl30) 335
G.1. Introduction Of UEIB0cocieieieieieiceeeetee et ettt be bbb bbb bbbt ebebebebebesesssesssasasasasanas 335
G.1.1. INtroduction Of U130 PrOCESSES......cccvvuirrririieririisieseisestetessessstssssssssssessssssssesssssssssssssssesssssssssssessssssesesses 335
G2, SEATTING ULLB0 .. ceoieiieieeeceieieiccteteece ettt ettt s sttt ss s s ssss et sssssssesesssssssssssessssssssessssssessssssesasnssesasaes 337
G.2.1. utl30 Command Line FOXMAL ...ttt st ese bbb s sasasasanas 337
G.2.2. Selecting Output INfOrMATIONS.........ceevererererereeeeeeieeeeeeeeee et sese s sesesesesesesssessssssssssssesesesesesenenenes 338
G.2.3. utl30 Command LiNe OPtIONS..........cvevveeeeeereeeeeeteeeteereresesesesesesesesesesssessssesssssassssssesesesesesesesesssnsesssasans 339
B3, NOLES ittt st ettt b st s s et et a st et e e s e st e b s s s s et et s s e et e b sas s e b e ba s A et e b en b et s s s ee s e b s e e s et s as e et ebssen s e b sanaetesaes 342
G.4. Conditions to establish SBDATA declaration & SPECIAL Page Function declaration...........ccccoevevveeeee. 342
G.4.1. Conditions to establish SBDATA deClarationcccceeeeererreerereessesessesessssssesssessesesssssssssssessssssesases 342
G.4.2. Conditions to establish SPECIAL Page Function declaration...............cceveeeveveeeeereeeeeeeeeeeeeeesesenes 342
G.5. EXAMPIE OF ULIB0 USE....covevieieiecretetieeeetctetieeteeteteee ettt ettt et s bbb s s s b ebessasesesssesesesensasesesessasaseseresesens 343
G.5.1. Generating a SBDATA declaration flle...........cceeiieeieceeceseeee et sssssssssssasssssssssesesesesnns 343
G.5.2. Generating a SPECIAL Page Function declaration fileccceeeeeieieicieiceieeeeeeeeeeeeeesesenenns 344
G.6. ULIB0 EXTOE IMESSAZEScueveveereririeiesieisessesissessessessssssessessessssssssssssssssssssssssssessssssesessssssesssssssssssesassssssessssssesssssesesnes 347
G.6.1. BXTOT MIESSAZES «..cucueueeineniieeieeieeieeieie ettt sttt sttt e s e a e e bbb bbbt et st et st sesesesesebesesetetetstttanns 347
G.6.2. WATTING MESSAZESvuvveveiereeiriierieieisesisssesseesesessasssssssssssssssssessssssesessssssessssssssessssssesesssssesssesssssesessssssssssess 347
AppendixH Using gensni or the .sni File Creation Tool for Call Walker-.............ccccocevevennnenen. 348
H.1. Starting Call WALKELcoeeeeeeeeeeeveterererererereteseeeeeesess s et sesesesesesesesesesesesasssasassesesesesesesesesessssnsesasasass 348
H.2. OULHNE OF GENSIIL.....ceeeeeeeeeeeececeetctceretcte et ae s bt ettt ses s senasesasasassesesesesetesesessssesasasasasnsasaes 348
H.2.1. Processing OULINE Of ENSIILL.........c.ceveveveveereeeeeeeeeeese et sesesesesessse s s ses s s ssssssssssssesesesssssssssnsasnsasaes 348
H.3. SEAITING GOINSIIL.....vveeeeeeeceeeeeeeeectetetete ettt sss s ss s st eaesesesesesesenesssssssssesesesesetesesessssssnsasasasnsasaes 349
H.3.1. TIPUL FOLTNAL ..ottt ettt e b bbbt et essbessasesetebesensesesesesensasene 349
H.3.2. OPLION RELEIEIICES.vvveeeeereteeetetete ettt ettt b et es e s bbb e s s s ebet et esessasasesesessnsasesenan 351

Chapter 1 Introduction to NC30

Chapter 1 Introduction to NC30

1.1.

This chapter introduces the processing of compiling performed by NC30, and provides an example of
program development using NC30.

NC30 Components

NC30 consists of the following eight executable files:

(1) 1E30.eeeeeeeeeerne Compile driver

(2) cPP30..ceaeeeerereerene Preprocessor

(3) ccom30.....oereerrrrene. Compiler

(4) 20pt30 ..cveeeereerrrrenen Assembler Optimizer

(5) SbaULO ..o SB register automatic changeover utility

(6) StkViewer & stk........... STK viewer & Stack size calculation Utility

(D) Utl30..coeeeereerreerreenene SBDATA declaration & SPECIAL page Function declaration Utility
(8) MapViewer.................... Map viewer

1.2. NC30 Processing Flow

Chapter 1 Introduction to NC30

Figure 1.1 illustrates the NC30 processing flow.

Absolute
module
file

| nc30 | Compile driver
| Cpp30 | Preprocessor
| ccom30 | Compiler
| aopt30 | Assembler Optimizer
|
| sbauto | SB register automatic changeover
SBDATA definition &
SPECIAL Page
gsnzelggley _ Function definition
source file | stack analysis tool y ity MAP Viewer
stk | | utl30 | | Map viewer
Assembler P
v Stk viewer
stk Viewer
SBDATA SPECIAL Page
Linker definition file Function
| | definition file
Motorola S format file
or
_’I Imc30 Intel HEX format file

: Software in NC30 package
S : File processed by NC30

Figure 1.1 NC30 Processing Flow

12.1.

1.2.2.

123

1.24.

1.2.5.

12.6.

12.7.

Chapter 1 Introduction to NC30

NC30

NC30 is the executable file of the compile driver.

By specifying options, NC30 can perform the series of operations from compiling to linking. You can also
specify for the as30 relocatable macro assembler and four for the In30 linkage editor by including the -as30
and -In30 command line options when you start NC30.

cpp30

cpp30 1s the executable file for the preprocessor.
cpp30 processes macros starting with # (#define, #include, etc.) and performs conditional compiling
(#Hif-#else#endif, ete.).

ccom30

ccom30 is the executable file of the compiler itself.
C source programs processed by cpp30 are converted to assembly language source programs that can be
processed by AS30.

aopt30

aopt30 is the assembler optimizer.
It optimizes the assembler codes output by ccom30.

sbauto

sbauto analyzes the number of times external variables are referenced in a function based on the inspector
information that was output by the compiler, and outputs optimum SB relative.

StkViewer & stk

StkViewer is the execution file for the utility that graphically shows the stack size and the relationship of
function calls needed for program operation. Also, stk is the execution file for the utility that analyzes the
information required for StkViewer.

StkViewer calls stk to process the Inspector! information added to the absolute module file (x30), find the
stack size and the relationship of function calls needed for program operation, and displays the result.

Also, by specifying information, if any, that could not be fully analyzed with only the Inspector information,
StkViewer recalculates the stack size and the relationship of function calls and displays the result.

To use StkViewer & stk, specify the compile driver startup option -finfo when compiling, so that the
Inspector information will be added to the absolute module file (x30).

utl30

utl30 is the execution file for the SBDATA declaration utility and SPECIAL page Function declaration
Utility.

By processing the absolute module file (x30), utl30 generates a file that contains SBDATA declarations
(Iocated in the SB area beginning with the most frequently used one) and a file that contains SPECIAL page
function declarations (located in the SPECIAL page area beginning with the most frequently used one).

To use utl30, specify the compile driver startup option -finfo when compiling, so that the absolute module file
(x30) will be generated.

1 The inspector information refers to one that is generated by NC30 when the compile option "-finfo" is specified.

-9-

Chapter 1 Introduction to NC30

1.2.8. MapViewer

MapViewer is the execution file for the map viewer.
By processing the absolute module file (x30), MapViewer graphically shows a post-link memory mapping.

To use MapViewer, specify the compile driver startup option -finfo when compiling, so that the absolute
module file (x30) will be generated.

-10 -

1.3.

13.1.

1.3.2.

Chapter 1 Introduction to NC30

Notes

Renesas Technology Corp. are not designed or manufactured for use in a device or system that is used under
circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp.,
Renesas Solutions Corp., or an authorized Renesas Semiconductor product distributor when considering the
use of a product contained herein for any specific purposes, such as apparatus orsystems for transportation,
vehicular, medical, aerospace, nuclear, or undersea repeater use.

Notes about Version-up of compiler

The machine-language instructions (assembly language) generated by NC30 vary in contents depending on
the startup options specified when compiling, contents of version-up, etc. Therefore, when you have changed
the startup options or upgraded the compiler version, be sure to reevaluate the operation of your application
program.

Furthermore, when the same RAM data is referenced (and its contents changed) between interrupt
handling and non-interrupt handling routines or between tasks under realtime OS, always be sure to use
exclusive control such as volatile specification. Also, use exclusive control for bit field structures which have
different member names but are mapped into the same RAM.

Notes about the M16C's Type Dependent Part

When writing to or reading a register in the SFR area, it may sometimes be necessary to use a specific
instruction. Because this specific instruction varies with each type of MCU, consult the user's manual of
your MCU for details. In this case, write the instruction directly in the program using the ASM function.

In this compiler, the instructions which cannot be used may be generated for writing and read-out to the
register of SFR area. When accessing registers in the SFR area in C language, make sure that the same
correct instructions are generated as done by using asm functions, regardless of the compiler's version and of
whether optimizing options are used or not.

When you describe like the following examples as C language description to a SFR area, in this compiler
may generate the assembler code which carries out operation which is not assumed since the interrupt
request bit is not normal.

#pragma ADDRESS TAOIC 006Ch *M16C/60 MCU's Timer AQ interrupt control register */
struct {

char ILVL: 3;

char IR:1; [* An interrupt request bit */

char dmy: 4,
} TAQIC;
void wait_until_IR_is_ON(void)
{

while (TAOIC.IR ==0) /*Waits for TAOIC.IR to become 1 */

{

}

TAOIC.IR=0; * Returns 0 to TAOIC.IR when it becomes 1 */
}

Figure1.2 Clanguage description to SFR area

-11 -

Chapter 1 Introduction to NC30

1.4. Example Program Development

Figure 1.3 shows the flow for the example program development using NC30. The program is described
below.
(Ttems [1] to [4] correspond to the same numbers in Figure 1.3)

(1) The C source program AA.c is compiled using NC30, then assembled using as30 to create
the re-locatable object file AA.r30.

(2) The startup program ncrt0.a30 and the include file sect30.inc, which contains information
on the sections, are matched to the system by altering the section mapping, section size, and
interrupt vector table settings.

(3 The modified startup program is assembled to create the relocatable object file ncrt0.a30.

(4) The two relocatable object files AA.r30 and ncrt0.a30 are linked by the linkage editor In30,
which is run from nc30, to create the absolute module file AA.x30.

@

S
nc30
sect30.inc

AA.a30

as30 as30
©)
AAI30 4) nert0.r30
Y A 4
In30
— Vv

Figure 1.3 Program Development Flow

Figure 1.3 is an example make file containing the series of operations shown in Figure 1.4.

-12 -

Chapter 1 Introduction to NC30

AA.X30 : ncrt0.a30 AA.r30
nc30 -0AA ncrt0.r30 AA.r30

ncrt0.r30 : ncrt0.a30
as30 ncrt0.a30

AA.r30:AAC
nc30-cAA.C

Figure 1.4 Example make File

Figure 1.5 shows the command line required for NC30 to perform the same operations as in the make file
shown in Figure 1.4.

% nc30 -0AA ncrt0.a30 AA.c<RET>

%: Indicates the prompt
<RET>: Indicates the Return key

*Specify ncrt0.a30 first ,when linking.

Figure1.5 Example NC30 Command Line

-13-

Chapter 1 Introduction to NC30

1.5. NC30 Output Files

This chapter introduces the preprocess result C source program output when the sample program sample.c
is compiled using NC30 and the assembly language source program.

15.1. Introduction to Output Files

With the specified command line options, the NC30 compile driver outputs the files shown in Figure 1.6.
Below, we show the contents of the files output when the C source file smp.c shown in Figure 1.7 is compiled,
assembled, and linked.

See the AS30 User Manual for the relocatable object files (extension .r30), print files (extension .st),and map
files (extension .map) output by as30 and In30.

C language

source file

cpp30
nc30
command
option
p C source file
- from
preprocesser
ccom30
nc30
command
option
s Assembly
h language source
file
as30
nc30
command
option Relocatable
- object
file

In30

: output file of nc30
Absolute

module file

Figure 1.6 Relationship of NC30 Command Line Options and Output Files

-14 -

Chapter 1 Introduction to NC30

#include <stdio.h>
#defineCLR 0
#define PRN 1

void main(void)
{
int flag;
flag =CLR;
#ifdef PRN
printf("flag = %d¥n", flag);
#endif
}

Figure 1.7 Example C Source File (sample.c)

15.2. Preprocessed C Source Files

The cpp30 processes preprocess commands starting with #. Such operations include header file contents,
macro expansion, and judgements on conditional compiling.

The C source files output by the preprocessor include the results of cpp30 processing of the C source files.
Therefore, do not contain preprocess lines other than #pragma and #line. You can refer to these files to check

the contents of programs processed by the compiler. The file extension is .i.

Figure 1.8 and Figure 1.9 are examples of file output.

| ypedefstruct_iobuf{ T @ |
I char _buff; I
| int _cnt; |
[int _flag; :
: int _mod, |
I int (*_func_in)(void); I
I int (*_func_out)(int); I
: }FILE; :
I (omitted) l
| : |
: typedef long fpos_t; :
: typedef unsigned int size t; :
I I
{ extern FILE _iobl[; :

Figure 1.8 Example Preprocessed C Source File (1)

-15-

Chapter 1 Introduction to NC30

[extern int getc(FILE _far ®); @)
externint getchar(void);

externint putc(int, FILE _far *);

externint putchar(int);

externint feof(FILE _far *);

externint ferror(FILE _far *);

externint fgetc(FILE _far *);

extern char _far *fgets(char _far *, int, FILE _far *);

externint fputc(int, FILE _far *);

externint fputs(const char _far *, FILE _far *);

extern size_t fread(void _far *, size_t, size t, FILE _far *);

(omitted)

externint printf(const char _far *, ...);
externint fprintf(FILE _far *, const char _far *, ...);
externint sprintf(char _far *, const char _far*, ...);

(omitted)

externint init_dev(FILE _far *, int);

externint speed(int, int, int, int);

externint init_prn(void);

externint _sget(void);

externint _sput(int);

externint _pput(int);

extern const char _far*_print(int(*)(), const char _far *,int_far* _far*, int_far *);

R S
i{ int flag; i
| fag=0; €O |
i printf("flag = %d¥n", flag); <@ i
) |

Figure 1.9 Example Preprocessed C Source File (2)

Let's look at the contents of the preprocessed C source file.
Items (1) to (4) correspond to (1) to (4) in Figure 1.8 and Figure 1.9.
(1) Shows the expansion of header file stdio.h specified in #include.
(2) Shows the C source program resulting from expanding the macro.
(3) Shows that CLR specified in #define is expanded as 0.
(4) Shows that, because PRN specified in #define is 1, the compile condition is satisfied and the
printf function is output.

15.3. Assembly Language Source Files

The assembly language source file is a file that can be processed by AS30 as a result of the compiler
ccom30 converting the preprocess result C source file. The output files are assembly language source
files with the extension .a30.

Figure 1.10 and Figure 1.11 are examples of the output files. When the NC30 command line option

"-dsource (-dS) " is specified, the assembly language source files contain the contents of the C source
file as comments.

-16 -

Chapter 1 Introduction to NC30

_LANG

'CXXXXX XXX, REV.X!

NC30 C Compiler OUTPUT

ccom30 Version X XX XX XXX

Copyright(C) XXXX(XXXX). Renesas Technology Corp.
and Renesas Solutions Corp., All Rights Reserved.

Compile Start Time XXX XXX XX XX:XX:XX XXXX

COMMAND_LINE: ccom30 C:¥Renesas¥nc30wa¥v521r00TMP¥sample.i -0 .¥sample.a30 -dS

r
| ## Normal Optimize OFF
| -## ROM size Optimize OFF
| ;# Speed Optimize OFF
| ## Default ROM is far
| ## Default RAM is near
.GLB _SB
.SB _SB
.FB 0
HH FUNCTION main
HEH FRAME AUTO (flag) size 2, offset-2
HtH ARG Size(0) Auto Size(2)
.SECTION program,CODE,ALIGN
._file 'sample.c’
.align
._line 6
#it#C _SRC: {
glb _main
_main:
enter #02H
._line 9
##C SRC: flag = CLR;
mov.w #0000H,-2[FB] ; flag
_line 1n
###C_SRC: printf("flag = %d¥n", flag);
pushw -2[FB] ; flag
push.| # T0O
jsr _printf
add.| #06H,SP
._line 13
###C_SRC: }
exitd
(omitted)
: gb _puts
gb $ungetc
.glb _printf
.glb _fprintf
glb _sprintf
(omitted)

Context Size(5)

<@

Figure 1.10 Example Assembly Language Source File (1) "sample.a30"

-17 -

Chapter 1 Introduction to NC30

SECTION rom_FO,ROMDATA

___T0:
byte 66H ; f
Dbyte 6¢cH T
Dbyte 61H Y
byte 67H ;g
byte 20H o
Dbyte 3dH ;o=
byte 20H :
byte 25H D%
byte 64H ;o d
byte OaH
byte 00H
.END

Compile End Time XX XXX XX XX XX XX XXXX

Figure 1.11 Example Assembly Language Source File (2) "sample.a30"

Let's look at the contents of the assembly language source files. Items (1) to (2) correspond to (1) to (2) in
Figure 1.10.
(1) Shows status of optimization option, and information on the initial settings of the near and
far attribute for ROM and RAM.
(20 When the NC30 command line option "-dsource (-dS)" is specified, shows the contents of the
C source file(s) as commen

-18 -

Chapter 2 Basic Method for Using the Compiler

Chapter 2 Basic Method for Using the Compiler

2.1.

21.1.

This chapter describes how to start the compile driver nc30 and the command line options.

Starting Up the Compiler

nc30 Command Format

The nc30 compile driver starts the compiler commands (cpp30 and ccom30), the assemble command as30
and the link command In30 to create a absolute module file. The following information (input parameters) is
needed in order to start nc30:

(1) C source file(s)

(2) Assembly language source file(s)

(3 Relocatable object file(s)

(4) Command line options (optional)
These items are specified on the command line.

Figure 2.1 shows the command line format. Figure 2.2 is an example. In the example, the following is
performed:

(1) Startup program ncrt0.a30 is assembled.

(2) C source program sample.c is compiled and assembled.

(3 Relocatable object files nert0.r30 and sample.r30 are linked.

The absolute module file sample.x30 is also created. The following command line options are used:

® Specifies machine language data file sample.x30....................... option -0
® Specifies output of list file (extension .Ist) at assembling........... option -as30 "-1"
] Specifies output of map file (extension .map) at linking............ option -In30 "-ms"

% nc30A[command-line-optionjAfassembly-language-source-file-name]A
[relocatable-object-file-name]A<C-source-file-name>

% : Prompt

<>: Mandatory item
[1: Optional item

A : Space

Figure2.1 nc30 Command Line Format

%nc30 -osample -as30 "' -In30 "-ms" ncrt0.a30 sample.c<RET>

<RET>: Return key
* Always specify the startup program first when linking.

Figure 2.2 Example nc30 Command Line

-19 -

Chapter 2 Basic Method for Using the Compiler

2.1.2. Command File

The compile driver can compile a file which has multiple command options written in it (i.e., a command file)
after loading it into the machine.

Use of a command file helps to overcome the limitations on the number of command line characters imposed
by PC, etc.

a. Command file input format

% nc30A[command-line-optionjA<@file-name>[command-line-option]

% : Prompt

<> Mandatory item
[]: Optional item

A': Space

Figure2.3 Command File Command Line Format

%nc30 -¢c @testemd -g<RET>

<RET>: Return key
* Always specify the startup program first when linking.

Figure 24 Example Command File Command Line

Command files are written in the manner described below.

ncrt0.a30<CR>
Command File description samplel.c sample2.r30<CR>
» g -as30 -I<CR>
-0<CR>
<CR>: Denotes carriage return. sample<CR>

Figure2.5 Example Command File description

-20 -

2.1.3.

Chapter 2 Basic Method for Using the Compiler

b. Rules on command file description

The following rules apply for command file description:
° Only one command file can be specified at a time. You cannot specify multiple command
files simultaneously.
No command file can be specified in another command file.
Multiple command lines can be written in a command file.
New-line characters in a command file are replaced with space characters.
The maximum number of characters that can be written in one line of a command file is
2,048. An error results when this limit is exceeded.

c. Precautions to be observed when using a command file

A directory path can be specified for command file names. An error results if the file does not exist in the
specified directory path.

Command files for In30 whose file name extension is ".cm$" are automatically generated in order for
specifying files when linking. Therefore, existing files with the file name extension ".cm$", if any, will be
overwritten. Do not use files which bear the file name extension ".cm$" along with this compiler. You cannot
specify two or more command files simultaneously.

If multiple files are specified, the compiler displays an error message "Too many command files".

Notes on NC30 Command Line Options

a. Notes on Coding nc30 Command Line Options

The nc30 command line options differ according to whether they are written in uppercase or lowercase
letters. Some options will not work if they are specified in the wrong case.

b. Priority of Options for Controlling Compile driver

Priority of Options for Controlling Compile driver.

-E -P -S -C
< High Priority low >

Therefore, if the following two options are specified at the same time, for example,
® "-¢": Finish processing after creating a relocatable module file (extension .r30)
° "-S" Finish processing after creating an assembly language source file (extension .a30) the
-S option has priority. That is to say, the compile driver does not perform any further
processing after assembling.

In this case, it only generates an assembly language source file. If you want to create a re-locatable file
simultaneously with an assembly language source file, use the option "-dsource(shortcut -dS)".

-21 -

Chapter 2 Basic Method for Using the Compiler

214,

nc30 Command Line Options

a. Options for Controlling Compile Driver

Table 2.1 shows the command line options for controlling the compile driver. The details of each optional

notes please refer to Appendix A.

Table 2.1 Options for Controlling Compile Driver
Option Function
-C Creates a relocatable module file (extension .r30) and ends processing.!
- Didentifier Defines an identifier. Same function as #define.
-dsource Generates an assembly language source file (extension ".a30") with a C

(Short form -dS)

language source list output as a comment. (Not deleted even after
assembling.)

-dsource_in_list
(Short form -dSL)

In addition to the "-dsource" function, generates an assembly language
list file (lst).

E Invokes only preprocess commands and outputs result to standard

output.

-Idirectory Specifies the directory containing the file(s) specified in #include. You can
specify up to 50 directories.

-P nvokes only preprocess commands and creates a file (extension .1).

-S Creates an assembly language source file (extension .a30) and ends
processing.

-silent Suppresses the copyright message display at startup.

-Upredefined macro Undefines the specified predefined macro.

b. Options Specifying Output Files

Table 2.2 shows the command line option that specifies the name of the output machine language data file.

Table 2.2 Options for Specifying Output Files
Option Function
-dirdirectory-name Specifies the destination directory of the file(s) (absolute module file, map
file, etc.) generated by In30.
-ofile-name Specifies the name(s) of the file(s) (absolute module file, map file, etc.)

generated by In30. This option can also be used to specify the destination
directory.
Do not specify the filename extension.

1 Tf you do not specify command line options -c, -E, -P, or -S, nc30 finishes at In30 and output files up to the absolute load module file (extension .x30)

are created.

-22 -

Chapter 2 Basic Method for Using the Compiler

c. Version and command line Information Display Option

Table 2.3 shows the command line options that display the cross-tool version data and the command line
informations.

Table 2.3 Options for Displaying Version Data and Command line informations

Option Function
v Displays the name of the command program and the command line
during execution.
-V Displays the startup messages of the compiler programs, then finishes
processing .(without compiling)

d. Options for Debugging
Table 2.4 shows the command line options for outputting the symbol file for the C source file.

Table 2.4 Options for Debugging

Option Function

g Outputs debugging information to an assembler source file
(extension .a30).Therefore you can perform C language- level debugging.

-genter Always outputs an enter instruction when calling a function.
Be sure to specify this option when using the debugger's stack trace
function.

-gno_reg Suppresses the output of debugging information for register variables.

-gold This option outputs debugging information in Rev.E format.
When this option specifies, the “-gno_reg” option and the “fauto_128"
option are automatically specified.

-23-

Chapter 2 Basic Method for Using the Compiler

e. Optimization Options

Table 2.5 shows the command line options for optimizing program execution speed and ROM capacity.

Table 2.5 Optimization Options
Option Short form Function

-Ol1-5] None Optimization of speed and ROM size.

-OR None Optimization of ROM size.

-0S None Optimization of speed.

-OR_MAX -ORM Places priority on ROM size for the optimization performed.

-0OS_MAX -OSM Places priority on speed for the optimization performed.

-Ocompare_byte_to_word -OCBTW | Compares consecutive bytes of data at contiguous addresses
in words.

-Oconst -0C Performs optimization by replacing references to the
const-qualified external variables with constants.

-Ofloat_to_inline -OFTI Expands floating-point runtime libraries in-line to speed up
the processing of floating-point arithmetic.

(only for comparison and multiplication)

-Oforward_function_to_inline | -OFFTI Expands all inline functions in-line.

-Oglb_jmp -0OGd Global jump is optimized.

-Oloop_unroll[=/oop count] -OLU Unrolls code as many times as the loop count without
revolving the loop statement. The "loop count” can be
omitted. When omitted, this option is applied to a loop count
of up to 5.

-Ono_asmopt -ONA Inhibits starting the assembler optimizer "aopt30".

-Ono_bit -ONB Suppresses optimization based on grouping of bit
manipulations.

-Ono_break_source_debug -ONBSD Suppresses optimization that affects source line data.

-Ono_float_const_fold -ONFCF Suppresses the constant folding processing of floating point
numbers.

-Ono_logical_or_combine -ONLOC | Suppresses the optimization that puts consecutive OR
together.

-Ono_stdlib -ONS Inhibits inline padding of standard library functions and
modification of library functions.

-Osp_adjust -OSA Optimizes removal of stack correction code. This allows the
necessary ROM capacity to be reduced.

However, this may result in an increased amount of stack
being used.

-Ostack_frame_align -OSFA Aligns the stack frame on an every boundary.

-Ostatic_to_inline -OSTI A static function is treated as an inline function.

-050A None Inhibits code generation based on bit-manipulating

instructions when the optimization option “-05” is selected.

=24 -

Chapter 2 Basic Method for Using the Compiler

f. Generated Code Modification Options

Table 2.6 to 0 shows the command line options for controlling nc30-generated assembly code.

Table 2.6 Generated Code Modification Options (1)
Option Short form Function

-fansi None Makes "-fhot_reserve far and near", "-fnot_reserve_asm",
and "-fextend_to_int" valid.

-fchar_enumerator -fCE Handles the enumerator type as an unsigned char type, not
as an int type.

-fconst_not. ROM -f{CNR Does not handle the types specified by const as ROM data.

-fdouble_32 -fD32 This option specifies that the double type be handled in
32-bit data length as is the float type.

-fenable_register -fER Make register storage class available.

-fextend_to_int -fETI Performs operation after extending char-type data to the int
type. (Extended according to ANSI standards.) 2

-ffar RAM -fFRAM Changes the default attribute of RAM data to far.

-finfo None Outputs the information required for the "STK Viewer",
"Map Viewer", and "utl30" to the absolute module file (x30).

-fJSRW None Changes the default instruction for calling functions to
JSR.W.

-fbit -fB Generates code assuming that bitwise manipulating
instructions can be executed using absolute addressing for
all external variables mapped into the near area.

-fno_carry -NC Suppresses carry flag addition when data is indirectly
accessed using far-type pointers.

-fauto_128 -fA1 Limits the usable stack frame to 128 bytes.

-ffar_pointer -fFP Change the default attribute of pointer-type variable to far.

-fhear ROM -fNROM Change the default attribute of ROM data to near.

-fno_align -INA Does not align the start address of the function.

-fno_even -NE Allocate all data to the odd section, with no separating odd
data from even data when outputting .

-fho_switch_table -INST When this option is specified, the code which branches since
it compares is generated to a switch statement.

-fnot_address_volatile -INAV Does not regard the variables specified by #pragma
ADDRESS #pragma EQU) as those specified by volatile.

-fnot_reserve_asm -fNRA Exclude asm from reserved words. (Only _asm is valid.)

-fnot_reserve_far and_near | -fNRFAN | Exclude far and near from reserved words. (Only _far and
_near are valid.)

-fnot_reserve_inline -INRI Exclude far and near from reserved words. (Only _inline is
made a reserved word.)

-fsmall_array -fSA When referencing a fartype array whose total size is
unknown when compiling, this option calculates subscripts
in 16 bits assuming that the array's total size is within 64
Kbytes.

-fswitch_other_section -£S0OS This option outputs a ROM table for a 'switch' statement to
some other section than a program section.

-fchange_bank_always -fCBA This option allows you to write multiple variables to an
extended area.

-fauto_over 255 -fAO2 Changes the stack frame size per function that can be
reserved to 64K bytes.

2 char-type data or signed char-type data evaluated under ANSI rules is always extended to inttype data.
This is because operations on char types (c1=c2*2/c3; for example) would otherwise result in an overflow and failure to obtain the intended result.

-25-

Chapter 2 Basic Method for Using the Compiler

Table 2.7 Generated Code Modification Options (2)

Option Short form Function

-fsizet_16 -£516 Change the type definition size_t from type unsigned long to
type unsigned int

-fptrdifft_16 -fP16 Change the type definition ptrdiff_t from type signed long to
type signed int

-fuse_DIV -flUD This option changes generated code for divide operation.

-fuse. MUL -fUM This option changes generated code multiple operation.

-R8C None Generates object code for R8C/Tiny Series.

-R8CE None Generates code suitable for the R8C/Tiny 2X series.

g. Library Specifying Option

Table 2.8 lists the startup options you can use to specify a library file.

Table 2.8 Library Specifying Option

Option

Function

-Uibraryfilename

Specifies a library file that is used by In30 when linking files.

-26 -

Chapter 2 Basic Method for Using the Compiler

h. Warning Options

Table 2.9 shows the command line options for outputting warning messages for contraventions of nc30
language specifications.

Table 2.9 Warning Options

Option Short form Function
-Wall None Displays message for all detectable warnings.
(however, not including alarms output by -Wlarge_to_small
and "-Wno_used_argument")

-Weecom_max_warnings -WCMW This option allows you to specify an upper limit for the

= Warning Count number of warnings output by ccom30.

-Werror_file<file name> -WEF Outputs error messages to the specified file.

-Wlarge_to_small -WLTS Outputs a warning about the tacit transfer of variables in
descending sequence of size.

-Wmake_tagfile -WMT Outputs error messages to the tag file of source file by
source file.

-Wnesting_comment -WNC Outputs a warning for a comment including "*/" .

-Wno_stop -WNS Prevents the compiler stopping when an error occurs.

-Wno_used_argument -WNUA Outputs a warning for unused argument of functions.

-Wno_used_function -WNUF Displays unused global functions when linking.

-Wno_used_static_function -WNUSF For one of the following reasons, a static function name is
output that does not require code generation.

-Wno_warning_stdlib -WNWS Specifying this option while "-Wnon_prototype" or "-Wall" is

specified inhibits "Alarm for standard libraries which do not
have prototype declaration.

-Wnon_prototype -WNP Outputs warning messages for functions without prototype
declarations.

-Wstdout None Outputs error messages to the host machine's standard
output (stdout).

-Wstop_at_link -WSAL Stops linking the source files if a warning occurs during

linking to suppress generation of absolute module files. Also,
a return value "10" is returned to the host OS.

-Wstop_at_warning -WSAW Stops compiling the source files if a warning occurs during
compiling and returns the compiler end code "10".

-Wundefined_macro -WUM Warns you that undefined macros are used in #if.

-Wuninitialize_variable -WUV Outputs a warning about auto variables that have not been
initialized.

-Wunknown_pragma -WUP Outputs warning messages for non-supported #pragma.

i. Assemble and Link Options

Table 2.10 shows the command line options for specifying as30 and In30 options.

Table 2.10 Assemble and Link Options

Option Function
-as30A< Option> Specifies options for the as30 link command. If you specify two or more
options, enclose them in double quotes.
-In30A< Option> Specifies options for the In30 assemble command. If you specify two or
more options, enclose them in double quotes.

-27-

Chapter 2 Basic Method for Using the Compiler

2.2. Preparing the Startup Program

For C-language programs to be "burned" into ROM, NC30 comes with a sample startup program written in
the assembly language to initial set the hardware (M16C/60), locate sections, and set up interrupt vector
address tables, etc. This startup program needs to be modified to suit the system in which it will be installed.
The following explains about the startup program and describes how to customize it.

2.2.1. Sample of Startup Program

The NC30 startup program consists of the following two files:
) ncrt0.a30
Write a program which is executed immediately after reset.
® sect30.inc
Included from ncrt0.a30, this file defines section locations (memory mapping).

Figure 2.6 to Figure 2.10 show the ncrt0.a30 source program list.

" HEEP SIZE definition “@

iif __HEAP__ == ; for HEW
HEAPSIZE .equ Oh

else
if__HEAPSIZE ==

HEAPSIZE .equ 300h
.else ; for HEW
HEAPSIZE .equ __HEAPSIZE

.endif
.endif

(1) defines the heap size.

Figure 2.6 Startup Program List (1) (ncrt0.a30)

-28 -

Chapter 2 Basic Method for Using the Compiler

; STACK SIZE definition < (2

if __USTACKSIZE__ ==0

STACKSIZE equ 300h

.else ; for HEW

STACKSIZE .equ __USTACKSIZE _

.endif

INTERRUPT STACK SIZE definition < (3)
if_ISTACKSIZE ==

ISTACKSIZE .equ 300h

£else ; for HEW

ISTACKSIZE .equ __ISTACKSIZE__

.endif

INTERRUPT VECTOR ADDRESS definition <4
,\/ECTOR_ADR .equ 0ffdOOh

SVECTOR_ADR equ 0ffe00h

special page definition

; macro define for special page

;Format:
; SPECIAL number

SPECIAL .macro NUM

.org OFFFFEH-(NUM*2)
glb __SPECIAL_@NUM
.word __SPECIAL_@NUM & OFFFFH
.endm
Section allocation
, list OFF
.nclude sect30.inc < (5)
list ON

(2) defines the user stack size.

(3) defines the interrupt stack size.

(4) defines the start address of interrupt vector table.
(5) Includes sect30.inc

Figure 2.7 Startup Program List (2) (ncrt0.a30)

-29 -

Chapter 2 Basic Method for Using the Compiler

; Interrupt section start
’ .insf start,S,0
.glb start
.section interrupt
start: < (6)
; after reset,this program will start
Idc #istack_top,isp ;set istack pointer
mov.b #02h,0ah
mov.b #00h,04h ;set processer mode < (7)
mov.b #00h,0ah
Idc #0080h, fig < (8)
Idc #stack_top, sp ;set stack pointer
Idc #data_SE_top, sb ;set sb register
fset b ;switch to bank 1
ldc #data SE_top, sb ;set sb register
felr b ;switch to bank O
Idc #VECTOR_ADR,intb
NEAR area initialize.
; bss zero clear < (9
N_BZERO bss_SE _top,bss SE
N_BZERO bss_SO_top,bss_SO
N_BZERO bhss_NE_top,bss_NE
N_BZERO bss_NO_top,bss_NO
; initialize data section < (10)

N_BCOPY data_SEI_top,data_SE_top,data_SE
N_BCOPY data_SOI_top,data_SO_top,data_SO
N_BCOPY data_NEI_top,data_NE_top,data_NE
N_BCOPY data_NOI_top,data NO_top,data_NO

(6) After a reset, execution starts from this label (start)

(7) Sets processor operating mode

(8) Sets IPL and each flags.

(9) Clears the near bss section (to zeros).

(10) Moves the initial values of the near and SBDATA data section to RAM.

Figure 2.8 Startup Program List (3) (ncrt0.a30)

-30 -

Chapter 2 Basic Method for Using the Compiler

; FAR area initialize.

bss zero clear < 1)

BZERO bss_FE top,bss FE
BZERO bss_FO top,bss FO

Copy edata_E(O) section from edata_EI(Ol) section < (12

BCOPY data FEI top,data_FE top,data FE
BCOPY data FOI top,data FO_top,data FO

Idc #stack_top,sp
: stk -40
: heap area initialize <13
if_HEAP 1=1

gb __mnext

.glb __msize

mov.w #(heap_top&OFFFFH), _mnext
mov.w #(heap_top>>16), __mnext+2
mov.w #HEAPSIZE&OFFFFH), __msize
mov.w #(HEAPSIZE>>16), __msize+2

.endif
* Initialize standard /O <14
if __STANDARD |0 ==1

.glb __init

.call __init,G

jsra __init
.endif
; Call main() function < (15)
’ Idc #0h,fb ; for debuger

glb _main

jsra _main

(11) Clears the far bss section (to zeros).

(12) Moves the initial values of the far data section to RAM.

(13) Initializes the heap area. Comment out this line if no memory management function is used.

(14) Calls the init function, which initializes standard 1/0. Comment out this line if no I/O function is used.

(15) Calls the 'main'’ function.

* Interrupt is not enable, when calls 'main’ function. Therefore, permits interrupt by FSET command,
when uses interrupt function.

Figure 2.9 Startup Program List (4) (ncrt0.a30)

-31-

Chapter 2 Basic Method for Using the Compiler

- exit() function < (16)
' gb exit
.ghb $exit
_exit: ; End program
$exit:
jmp _exit
.einsf
dummy interrupt function < (17)
glb dummy_int
dummy_int:
reit
.end
’(16) exit function.

(17) Dummy interrupt processing function.

Figure 2.10 Startup Program List (5) (ncrt0.a30)

-32 -

222

Chapter 2 Basic Method for Using the Compiler

Customizing the Startup Program

a. Overview of Startup Program Processing

(1) Aboutncrt0.a30

This program is run at the start of the program or immediately after a reset. It performs the following
process mainly:
[) Sets the top address (_ SB_) of the SBDATA area (it is accessing area to used the SB
relative addressing mode).
Sets the processor's operating mode.
Initializes the stack pointer ISP Register and USP Register).
Initializes SB register.
Initializes INTB register.
Initializes the data near area.
bss_NE bss_NO bss_SE and bss_SO sections are cleared (to 0).
Also, the initial values in the ROM area (data_NEIL data_NOI, data_SEI data_SOI) are
transferred to RAM (data_NE ,data NO, data_SE and data_SO).
) Initializes the data far area.
bss_FE and bss_FO sections are cleared (to 0).
Also, the initial values in the ROM area (data_FEI, data_FOI) storing them are
transferred to RAM (data_FE, data_FO).
Initializes the heap area.
Initializes the standard I/O function library.
Initializes FB register .
Calls the 'main' function.

-33-

Chapter 2 Basic Method for Using the Compiler

b. Modifying the Startup Program

Figure 2.11 summarizes the steps required to modify the startup programs to match the target system.

d. / Set the size of stack sections. \

v

e. Set the size of heap sections.

v

f. Set the interrupt base register.

g. \ Set the processor operating mode. /

v

[2.2.3 Customizing Memory Allocations]

oge ouou

2UI'goE1NaS

Figure 2.11 Example Sequence for Modifying Startup Programs

c. Examples of startup modifications that require caution

(1) Settings When Not Using Standard 1/O Functions

The 1nit function3 initializes the M16C/80 Series I/O. It is called before main in nert0.a30.
Figure 2.12 shows the part where the init function is called.

If your application program does not use standard I/O, comment out the init function call from ncrt0.a30.

" Initialize standard /O

if_STANDARD_IO__ ==

gb __init
.call __initG
jsra __init

.endif

Figure 2.12 Part of ncrt0.a30 Where init Function is Called

If you are using only sprintf and sscanf, the init function does not need to be called.

3 The init function also initializes the microcomputer (hardware) for standard in-put/output functions. By default, the M16C/60 and the R8C/Tiny is
assumed to be the microcomputer that it initializes.

When using standard input/output functions, the init function, etc. may need to be modified depending on the system in which the microcomputer is
to be used.

-34 -

Chapter 2 Basic Method for Using the Compiler

(2) Settings When Not Using Memory Management Functions

To use the memory management functions calloc and malloc, etc., not only is an area allocated in the heap
section but the following settings are also made in necrt0.a30.

(1) Initialization of external variable char * mnext

Initializes the heap_top label, which is the starting address of the heap section.
(2) Initialization of external variable unsigned_msize

Initializes the "HEAPSIZE" expression, which sets at "2.2.2 e heap section size".

Figure 2.13 shows the initialization performed in ncrt0.a30.

; heap area initialize

if__HEAP_ =1
.glb __mnext
gb __msize
mov.w #(heap_top&OFFFFH), _ mnext
mov.w #(heap_top>>16) __mnext+2
mov.W #(HEAPSIZE&OFFFFH), _ msize
mov.w #HEAPSIZE>>16), __msize+2
.endif

Figure 2.13 Initialization When Using Memory Management Functions (ncrt0.a30)

If you are not using the memory management functions, comment out the whole initialization section. This
saves the ROM size by stopping unwanted library items from being linked.

(3) Notes on Writing Initialization Programs

Note the following when writing your own initialization programs to be added to the startup program.

(1) If your initialization program changes the U, or B flags, return these flags to the original
state where you exit the initialization program. Do not change the contents of the SB
register.

(2) Ifyour initialization program calls a subroutine written in C, note the following two points:

® Call the C subroutine only after clearing them, B and D flags.
® Call the C subroutine only after setting the U flag.

d. Setting the Stack Section Size

A stack section has the domain used for user stacks, and the domain used for interruption stacks. Since
stack 1s surely used, please surely secure a domain. stack size should set up the greatest size to be used.4
Stack size is calculated to use the stack size calculation utility STK Viewer & stk.

4 The stack is used within the startup program as well. Although the initial values are reloaded before calling the main() function, consideration is
required if the stack size used by the main() function, etc. is insufficient.

-35-

Chapter 2 Basic Method for Using the Compiler

e. Heap Section Size

Set the heap to the maximum amount of memory allocated using the memory management functions calloc
and malloc in the program. Set the heap to 0 if you do not use these memory management functions. Make
sure that the heap section does not exceed the physical RAM area.

' HEEP SIZE definition

if _HEAP == : for HEW

HEAPSIZE .equ Oh

.else
if __HEAPSIZE ==

HEAPSIZE .equ 300h
.else ; for HEW
HEAPSIZE .equ __HEAPSIZE__

.endif
.endif

Figure 2.14 Example of Setting Heap Section Size (ncrt0.a30)

f. Setting the interrupt vector table

Set the top address of the interrupt vector table to the part of Figure 2.15 in ncrt0.a30. The INTB Register is
initialized by the top address of the interrupt vector table.

; INTERRUPT VECTOR ADDRESS definition

VECTOR_ADR equ Offdooh
SVECTOR_ADR equ Offe00h

Figure 2.15 Example of Setting Top Address of Interrupt Vector Table (ncrt0.a30)

The sample startup program has had values set for the tables listed below.

OFFDOOH - OFFDFFH: Interrupt vector table
OFFEOOH - OFFFFFH: Special page vector table and fixed vector table

Normally, these set values do not need to be modified.

-36 -

Chapter 2 Basic Method for Using the Compiler

g. Setting the Processor Mode Register

Set the processor operating mode to match the target system at address 04H (Processor mode register) in
the part of ncrt0.a30 shown in Figure 2.16.

; after reset this program will start

(omitted)
mov.b #00h,04h ;set processer mode

(omitted)

Figure 2.16 Example Setting of Processor Mode Register (ncrt0.a30)

See the User’s Manual of microcomputer you are using for details of the Processor Mode Register.

2.2.3. Customizing for NC30 Memory Mapping

a. Structure of Sections

In the case of a native environment compiler, the executable files generated by the compiler are mapped to
memory by the operating system, such as UNIX. However, with crossenvironment compilers such as this

compiler, the user must determine the memory mapping.

With this compiler, storage class variables, variables with initial values, variables without initial values,
character string data, interrupt processing programs, and interrupt vector address tables, etc., are mapped
to Micoro Processor series memory as independent sections according to their function.

The names of sections consist of a base name and attribute as shown below:

Section Base Name | Attribute

Figure 2.17 Section Names

Table 2.11 shows Section Base Name and Table 2.12 shows Attributes.

Table 211 Section Base Names
Section base name Content
data Stores data with initial values
bss Stores data without initial values
rom Stores character strings, and data specified in #pragma ROM or with the const
modifier

-37-

Chapter 2 Basic Method for Using the Compiler

Table 2.12 Section Naming Rules

Attribute Meaning Target section base hame
I Section containing initial values of data data
N/F/S N near attributed data, bss, rom
F far attribute
S SBDATA attribute data, bss
E/O E Even data size data, bss, rom
0] 0dd data size

Table 2.13 shows the contents of sections other than those based on the naming rules described above.

Table 2.13 Section Names

Section name

Contents

fvector This section stores the contents of the Micro Processor's fixed vector.

heap This memory area is dynamically allocated during program execution by
memory management functions (e.g., malloc).
This section can be allocated at any desired location of the Micro Processor
RAM area.

program Stores programs

program_S Stores programs for which #pragma SPECIAL has been specified.

stack This area is used as a stack. Allocate this area at addresses between 0400H to
OFFFFH.

switch_table The section to which the branch table for switch statements is allocated. This
section is generated only with the "-fSOS" option.

vector This section stores the contents of the Micro Processor's interrupt vector table.

The interrupt vector table can be allocated at any desired location of the Micro
Processor's entire memory space by intb register relative addressing.
For more information, refer to the Micro Processor User's Manual.

These sections are mapped to memory according to the settings in the startup program include file
sect30.inc. You can modify the include file to change the mapping.
Figure 2.18 shows the how the sections are mapped according to the sample startup program's include file

sect30.1nc.

5 near and far are NC30 modifiers, used to clarify the addressing mode.
near......... accessible from 000000H to 00OFFFFH
far........ ... accessible from 000000H to OFFFFFH

-38 -

Chapter 2 Basic Method for Using the Compiler

000000H

SB

000400H

010000H

020000H

OEFO000H

| OFE0000H rom_FE section
ﬁ rom_FO section
§ data_SEIl section
| data_SOI section
data_SE section ' data_NEI section
bss SE section 4 data NOI section
data_ SO section § data_FEI section
bss SO section N % data_FOI section
data NE section 2 interrupt section
bss NE section % OF0000H program section
data_NO section % | INTB program_S section
bss NO section OFFDOOH vector section
stack section (_NC_vector)
heap section OFFDFFH
rom_NE section |
rom_NO section m
g fvector section
data_FE section § (Include special page)
bss FE section 5
data FO section 8
bss FO section OFFFFFH

Bale NOY [eula|

Figure 2.18 Example Section Mapping

b. Outline of memory mapping setup file

(1) About sect30.inc

This program is included from ncrt0.a30. It performs the following process mainly:

Maps each section (in sequence)

Sets the starting addresses of the sections
Defines the size of the stack and heap sections
Sets the interrupt vector table

Sets the fixed vector table

-39 -

Chapter 2 Basic Method for Using the Compiler

c. Modifying the sect30.inc

Figure 2.19 summarizes the steps required to modify the startup programs to match the target system.

[2.2.2 Customizing the Startup Program }

d. / Map (order) each section and set starting addresses. \

v

e. Set the interrupt vector table.

v

f. k Set the special page vector table. J

oge"gHou

2UI'goEgdas

Figure 2.19 Example Sequence for Modifying Startup Programs

d. Mapping and Order Sections and Specifying Starting Address

Map and order the sections to memory and specify their starting addresses (mapping programs and data to
ROM and RAM) in the sect30.inc include file of the startup program.

The sections are mapped to memory in the order they are defined in sect30.inc. Use the assembler pseudo
instruction .ORG to specify their starting addresses.
Figure 2.20 is an example of these settings.

.section program
.org OFOO00H < Specifies the starting address of the program section

Figure 2.20 Example Setting of Section Starting Address

If no starting address is specified for a section, that section is mapped immediately after the previously
defined section.

(1) Rules for Mapping Sections to Memory

Because of the effect on the memory attributes (RAM and ROM) of Micro Processor memory, some sections
can only be mapped to specific areas. Apply the following rules when mapping sections to memory.

(1) Sections mapped to RAM

® stack section

data_SE section
data_NE section
bss_SE section
bss_NE section
bss_FE section

heap section
data_SO section
data_NO section
bss_SO section
bss_NO section
bss_FO section

- 40 -

Chapter 2 Basic Method for Using the Compiler

(2) Sections mapped to ROM

Note also that some sections can only be mapped to specific memory areas in the Micro Processor memory

space.

(1) Sections mapped only to OH - OFFFFH(near area)

(2) Sections mapped only to 0FO000H - OFFFFFH

(3) Sections mapped to any area for the M16C/60 series.

program section
fvector section
rom_NO section
rom_FO section
data_SOI section
data_NOI section
data_FOI section

data_NE section
data_SE section
bss_NE section
bss_SE section
rom_NE section
stack section

program_S section

program section
data_NEI section
data_FE section
data_FEI section
data_SEI section
bss_FE section
rom_FE section

Interrupt section
rom_NE section
rom_FE section
data_SEI section
data_NEI section
data_FEI section

data_NO section
data_SO section
bss_NO section
bss_SO section
rom_NO section

fvector section

vector section
data_NOI section
data_FO section
data_FOI section
data_SOI section
bss_FO section
rom_FO section

If any of the following data sections have a size of 0, they need not be defined.

data_SE section
data_SO section
data_NE section
data_NO section
data_FE section
data_FO section
bss_NE section

bss_FE section

bss_SE section

rom_NE section
rom _FE section

(2 Example Section Mapping in Single-Chip Mode

Figure 2.21 to Figure 2.24 are examples of the sect30.inc include file which is used for mapping sections to

memory in single-chip mode.

-41 -

data_SEI section
data_SOI section
data_NEI section
data_NOI section
data_FEI section
data_FOI section
bss_NO section
bss_FO section
bss_SO section
rom _NO section
rom_FO section

Chapter 2 Basic Method for Using the Compiler

; Arrangement of section
: Near RAM data area
: SBDATA area

section data_SE,DATA

.org 400H
data_SE_top:

.section bss_SE,DATAALIGN
bss_SE_top:

section data_SO,DATA
data_SO_top:

.section bss_SO,DATA
bss_SO_top:

: near RAM area

section data NE,DATA,ALIGN
data_NE_top:

section bss_NE,DATAALIGN
bss_NE_top:

.section data_NO,DATA
data_NO_top:

section bss_NO,DATA
bss_NO_top:
; Stack area
, .section stack, DATA,ALIGN

blkb STACKSIZE

align
stack_top:

blkb ISTACKSIZE

align
istack_top:
Figure 2.21 Listing of sect30.inc in Single-Chip Mode (1)

-42 -

Chapter 2 Basic Method for Using the Compiler

; heap section
if_HEAP 1=1
section heap,DATA
heap_top:
.blkb HEAPSIZE

.endif
—
: ; Near ROM data area
| s
I section rom_NE,ROMDATA,ALIGN
: rom_NE_top:
: section rom_NO,ROMDATA
| rom_NO_top:
|
|
: ; Far RAM data area
| ¢
I)
: .section data_FE,DATA
I .org XXXXO0H
: data_FE_top:
: section bss FE,DATAALIGN
| bss_FE top:
|
: section data_FO,DATA
| data_FO_top:
|
| .section bss FO,DATA
: bss_FO_top:
|
|
|

< You can remove this part, because it is
unnecessary.

In this case,you need to remove the
initialize program in the far area of
ncrt0.a30.

Figure 2.22 Listing of sect30.inc in Single-Chip Mode (2)

-43 -

Chapter 2 Basic Method for Using the Compiler

: Far ROM data area

.section rom_FE,ROMDATA

.org FOOOOH
rom_FE_top:

.section rom_FO,ROMDATA
rom_FO_top:

; Initial data of 'data’ section

.section data_NEI,ROMDATA
data_NEI_top:

.section data NOI,ROMDATA
data_NOI_top:

section data FEI,ROMDATA
data_FEI_top:

.section data_FOI,ROMDATA
data_FOI_top:
; code area

.section interrupt, ALIGN

.section program,ALIGN

.section program_S
Jif _ MVT__ ==
; variable vector section

.section vector,ROMDATA ; variable vector table

.0rg VECTOR_ADR

(omitted)

Jword dummy_int ; software int 63
else i MVT__

section __NC_rvector,ROMDATA

.0rg VECTOR_ADR
.endif i MVT

Figure 2.23 Listing of sect30.inc in Single-Chip Mode (3)

- 44 -

Chapter 2 Basic Method for Using the Compiler

Jif __MST_ ==

: fixed vector section
section svector,ROMDATA ; specialpage vector table
.org SVECTOR_ADR

special page defination

macro is defined in ncrt0.a30
; Format: SPECIAL number

; SPECIAL 255
(omitted)
SPECIAL 18
:else i MST__
section __ NC_svector,ROMDATA

.org SVECTOR_ADR
.endif i MST__

; fixed vector section

.section fvector,ROMDATA

.org OFFFDCH
UDiI:

Jword dummy_int
OVER_FLOW:

Jword dummy_int
BRKI:

Jword dummy_int
ADDRESS_MATCH:

Jword dummy_int
SINGLE_STEP:

Iword dummy_int
WDT.

Jword dummy_int
DBC:

Jword dummy_int
NMI:

Jword dummy_int
RESET:

Jword start

Figure 2.24 Listing of sect30.inc in Single-Chip Mode (4)

e. Setting Interrupt Vector Table

For programs that use interrupt processing, set up the interrupt vector table by one of the following two
methods:
(1) Setup the interrupt vector table for the vector section in sect30.inc.

The content of the interrupt vector varies with each type of microcomputer, and must therefore be set up to
suit the type of microcomputer used.

For details, refer to the user's manual included with your microcomputer.

.45 -

Chapter 2 Basic Method for Using the Compiler

(1) When setting up the interrupt vector table in sect30.inc

For programs that use interrupt processing, change the interrupt vector table for the vector section in
sect30.inc.
Figure 2.25 shows an example interrupt vector table.

; variable vector section
.section vector,ROMDATA ; variable vector table
.0rg VECTOR_ADR
Jword dummy_int ; BRK (software int 0)
(omitted)
Jword dummy_int ; DMAQO (software int 8)
JIword dummy_int ; DMAL (software int 9)
JIword dummy_int ; DMA2 (software int 10)
(omitted)
Jword dummy_int ; uartl trance (software int 19)
Jword dummy_int ; uartl receive (software int 20)
Jword dummy_int ; TIMER BO (software int 21)
(omitted)
Jword dummy_int ; INTS (software int 26)
JIword dummy_int ; INT4 (software int 27)
(omitted)
Jword dummy_int ; uart2 trance/NACK (software int 33)
Jword dummy_int ; uart2 receive/ACK (software int 34)
(omitted)
.derd dummy_int ; software int 63

* dummy_int is a dummy interrupt processing function.

Figure 2.25 Interrupt Vector Address Table

The contents of the interrupt vectors varies according to the machine in the M16C/60 series and R8C/Tiny
series. See the User Manual for your machine for details.

Change the interrupt vector address table as follows:

(1) Externally declare the interrupt processing function in the .GLB as30 pseudo instruction.
The labels of functions created by NC30 are preceded by the underscore (). Therefore, the
names of interrupt processing functions declared here should also be preceded by the
underscore.

(2) Replace the names of the interrupt processing functions with the names of interrupt
processing functions that use the dummy interrupt function name dummy_int
corresponding to the appropriate interrupt table in the vector address table.

Figure 2.26 is an example of registering the UART1 send interrupt processing function uarttrn.

- 46 -

Chapter 2 Basic Method for Using the Compiler

Jword dummy_int ; uartO receive (for user)

.glb _Uarttrn < Process (1) above
Jword _Uarttrn ; uartl trance (for user) < Process (2) above
(omitted)

Figure 2.26 Example Setting of Interrupt Vector Addresses

-47 -

Chapter 3 Programming Technique

Chapter 3 Programming Technique

3.1.

3.1.1.

3.1.2.

This chapter describes precautions to be observed when programming with the C compiler, NC30.

Notes

Renesas Technology Corp. are not designed or manufactured for use in a device or system that is used under
circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp.,
Renesas Solutions Corp., or an authorized Renesas Semiconductor product distributor when considering the
use of a product contained herein for any specific purposes, such as apparatus orsystems for transportation,
vehicular, medical, aerospace, nuclear, or undersea repeater use.

Notes about Version-up of compiler

The machine-language instructions (assembly language) generated by NC30 vary in contents depending on
the startup options specified when compiling, contents of version changes, etc. Therefore, when you have
changed the startup options or upgraded the compiler version, be sure to reevaluate the operation of your
application program.

Furthermore, when the same RAM data is referenced (and its contents changed) between interrupt
handling and non-interrupt handling routines or between tasks under realtime OS, always be sure to use
exclusive control such as volatile specification. Also, use exclusive control for bit field structures which have
different member names but are mapped into the same RAM.

Notes about the M16C's Type Dependent Part

Notes about the M16C's Type Dependent Part

When writing to or reading a register in the SFR area, it may sometimes be necessary to use a specific
instruction. Because this specific instruction varies with each type of MCU, consult the user's manual of
your MCU for details. In this case, write the instruction directly in the program using the ASM function.

In this compiler, the instructions which cannot be used may be generated for writing and read-out to the
register of SFR area.

When accessing registers in the SFR area in C language, make sure that the same correct instructions are
generated as done by using asm functions, regardless of the compiler's version and of whether optimizing
options are used or not.

When you describe like the following examples as C language description to a SFR area, in this compiler

may generate the assembler code which carries out operation which is not assumed since the interrupt
request bit is not normal.

-48 -

Chapter 3 Programming Technique

#pragma ADDRESS TAOIC 006Ch f*M16C/60 MCU's Timer AQ interrupt control register */
struct {
char ILVL: 3;
char IR:1; [* An interrupt request bit */
char dmy: 4,
} TAQIC;
void wait_until_IR_is_ ON(void)
{
while(TAOIC.IR == 0) F* Waits for TAOIC.IR to become 1%/
{
}
TAOIC.IR=0; /¥ Returns 0 to TAOIC.IR when it becomes 1 */
}
Figure 3.1 C language description to SFR area

3.1.3. About Optimization

a. Regular optimization

The following are always optimized regardless of whether optimization options are specified or not.

(1) Meaningless variable access

For example, the variable port shown below does not use the readout results, so that readout
operations are deleted.

externint port;
void func(void)
{
port;
}
Figure 3.2 Example of a Meaningless Variable Access (Optimized)

Although the intended operation in this example is only to read out port, the readout code actually is
not optimized before being output. To suppress optimization, add the volatile qualifier as shown in
Figure 3.2.

extern int volatile port;

void func(void)
{

}

port;

Figure 3.3 Example of a Meaningless Variable Access (Optimization Suppressed)

- 49 -

Chapter 3 Programming Technique

(2) Meaningless comparison

int func(char c)
{ . _
int I;
if(c 1= -1)
i=1;
else
i=0;
return i;
}
Figure 3.4 meaningless Comparison

In the case of this example, because the variable c is written as char, the compiler treats it as the
unsigned char type. Since the range of values re-presentable by the unsigned char type is 0 to 255,
the variable ¢ will never take on the value -1.

Accordingly, if there is any statement which logically has no effect like this example, the compiler
does not generate assembler code.

(3) Programs not executed

No assembler codes are generated for programs which logically are not executed.

void func(int i)
{
func2(j);
return;
i=10; < Fragment not executed
1
Figure 3.5 Program Not Executed

(4) Operation between constants

Operation between constants is performed when compiling.

int func(void)
{
int i=1+2; < Operation on this part is performed when compiling
retun ;
}
Figure 3.6 Program Not Executed

-50 -

3.1.4.

3.15.

Chapter 3 Programming Technique

(5) Selection of optimum instructions

Selection of optimum instructions as when using the STZ instruction or outputting shift instructions
for division/multiplications, is always performed regardless of whether optimization options are
specified or not.

b. About the volatile qualifier

Use of the volatile qualifier helps to prevent the referencing of variables, the order in which they are

referenced, the number of times they are referenced, etc. from being affected by optimization.

However, avoid writing statements like those shown below which will be interpreted ambiguously.

int a;
int volatile b, c;

a=b=c; *whethera=cora=b?*
a=++h; *whethera=bora=(b+1)?*

Figure 3.7 Example of Ambiguously Interpreted volatile qualifier

For successive bit manipulations, if optimized, the compiler generates codes to perform bit manipulations
collectively, even when the volatile qualifier is specified. (Bit manipulations are performed simultaneously by
overriding the order of references.)

To inhibit collective bit manipulations, use the compile option "-Ono_bit(shortcut -ONB)".

Precautions on Using register Variables

a. register qualification and compile option "-fenable_register(-fER)"

If the compile option "-fenable_register(-fER)" is specified, the variables that are register-qualified so as to
satisfy specific conditions can be forcibly assigned to registers. This facility is provided for improving
generated codes without relying on optimization.

Because improper use of this facility produces negative effects, always be sure to examine generated codes
before deciding to use it.

b. About register qualification and optimization options

When optimization options are specified, variables are assigned to registers as one optimization feature.
This assignment feature is not affected by whether the variables are register-qualified.

About Startup Handling

Startup may need to be modified depending on the type of microcomputer you are using or depending on
your application system. For modifications pertinent to the type of microcomputer, consult the data book, etc.
for your microcomputer and correct the startup file included with the compiler package before use.

-51-

3.2.

3.2.1

Chapter 3 Programming Technique

For Greater Code Efficiency

Programming Techniques for Greater Code Efficiency

a. Regarding Integers and Variables

(1) Unless required, use unsigned integers. If there is no sign specifier for int, short, or long types, they
are processed as signed integers. Unless required, add the 'unsigned' sign specifier for operations on
integers with these data types.!

(2) If possible, do not use >= or ¢ for comparing signed variables. Use != and = = for conditional
judgments.

b. fartype array

The far type array is referenced differently at machine language level depending on its size.
(1) When the array size is within 64K bytes
Subscripts are calculated in 16-bit width. This ensures efficient access for arrays of 64K
bytes or less in size.
(2) When the array size is greater than 64K bytes or unknown
Subscripts are calculated in 32-bit width.

Therefore, when it is known that the array size does not exceed 64K bytes, explicitly state the size in extern
declaration of far type array as shown in Figure 3.8 or add the compile option "-fsmall_array(-fSA)"2 before
compiling. This helps to increase the code efficiency of the program.

extern int far array[]; < Size is unknown, so subscripts are calculated as 32-bit values.
extern int far array[10]; < Size is within 64KB, so access is more efficient.

Figure 3.8 Example extern-Declaration of far Array

1 If there is no sign specifier for char-type or bitfield structure members, they are processed as unsigned.
2 When the compile option “fsmall_array (-fSA)” is specified, the compiler assumes an array of an unknown size to be within 64K bytes as it
generates code. In the entry version, this option cannot be specified.

-52 -

Chapter 3 Programming Technique

c. Using Prototype declaration Efficiently

NC30 allows you to accomplish an efficient function call by declaring the prototype of a function.
This means that unless a function is declared of its prototype in NC30, arguments of that function are saved
on the stack following the rules listed in Table 3.1 when calling the function.

Table 3.1 Rules for Using Stack for Parameters

Data type(s) Rules for saving on stack
char Expanded into the int type when stacked.
signed char
float Expanded into the double type when stacked.
otherwise Not expanded when stacked.

For this reason, NC30 may require redundant type expansion unless you declare the prototype of a function.

Prototype declaration of functions helps to suppress such redundant type expansion and also makes it
possible to assign arguments to registers. All this allows you to accomplish an efficient function call.

d. Using SB Register Efficiently

Using the SB register-based addressing mode, you can reduce the size of your application program (ROM
size). NC30 allows you to declare variables that use the SB register- based addressing mode by writing the
description shown in Figure 3.9.

#pragma SBDATA val

int val;

Figure 3.9 Example of variable declaration using SB-based addressing mode

e. Compressing ROM Size Using Compile Option -fJSRW

When calling a function defined outside the file in NC30, the function is called with the JSR.A instruction.
However, if the program is not too large, most functions can be called with the "JSR.W" instruction.

In this case, ROM size will be reduced by doing as follows :

First, Compile with the -fJSRW option and check functions which are indicated as errors at link-time. Then
change declarations for the error functions only into declarations using "#pragma JSRA function-name".
When you use the OGd option, the JMP instruction at the time of a link is chosen.

f. Other methods

In addition to the above,the ROM capacity can be compressed by changing program description s as shown
below.
(1) Chabge a relatively small function that is called only once to an inline function.
(20 Replace an if-else statement with a switch statement. (This is effective unless the variable
concerned is a simple variable such as an array,pointer,or structure.)
(3 For bit comparison, use '& or'|'in place of '&&' or'| |".
(4) For a function which returns a value in only the range of char type, declare its return value
type with char.
(5) For variables used overlapping a function call, do not use a register variable.

-B3-

Chapter 3 Programming Technique

3.2.2. Speeding Up Startup Processing

The ncrt0.a30 startup program includes routines for clearing the bss area. This routine ensures that
variables that are not initialized have an initial value of 0, as per the C language specifications.

For example, the code shown in Figure 3.10 does not initialize the variable, which must therefore be
initialized to O (by clearing the bss? area) during the startup routine.

staticint i

Figure 3.10 Example Declaration of Variable Without Initial Value

In some instances, it is not necessary for a variable with no initial value to be cleared to 0. In such cases, you
can comment out the routine for clearing the bss area in the startup program to increase the speed of
startup processing.

: NEAR area initialize.

; bss zero clear

; BZERO bss_SE top,bss_SE

; BZERO bss_SO_top,bss_SO

; BZERO hss_NE_top,bss NE
BZERO bss_NO_top,bss NO

(omitted)

; FAR area initialize.

: bss zero clear

; BZERO bss SE top,bss_SE
; BZERO bss_SO_top,bss_SO

Figure 3.11 Commenting Out Routine to Clear bss Area

3 The external variables in RAM which do not have initial values are referred to as "bss".

-54 -

Chapter 3 Programming Technique

3.3. Linking Assembly Language Programs with C Programs

3.3.1. Calling Assembler Functions from C Programs

a. Calling Assembler Functions

Assembler functions are called from C programs using the name of the assembler function in the same way
that functions written in C would be.

The first label in an assembler function must be preceded by an underscore (). However, when calling the
assembly function from the C program, the underscore is omitted. The calling C program must include a

prototype declaration for the assembler function.

Figure 3.12 is an example of calling assembler function asm_func.

extern void asm_func(void); < Assembler function prototype declaration
void main()
{ .
(omitted)
} asrﬁ_funco; < Calls assembler function

Figure 3.12 Example of Calling Assembler Function Without Parameters(sample.c)

.glb _main
_main:
(omitted)
jsr - _asm_func < Calls assembler function(preceded by ')
rns

Figure 3.13 Compiled result of sample.c(sample.a30)

b. When assigning arguments to assembler functions

When passing arguments to assembler functions, use the extended function "#pragma PARAMETER". This
#pragma PARAMETER passes arguments to assembler functions via 32-bit general-purpose registers
(R2R0, R3R1), 16-bit general-purpose registers (R0, R1, R2, R3), or 8bit general-purpose registers (ROL,
ROH, R1L, R1H) and address registers(A0, Al).
The following shows the sequence of operations for calling an assembler function using #pragma
PARAMETER:
(1) Write a prototype declaration for the assembler function before the #pragma PARAMETER
declaration. You must also declare the parameter type(s).
(2) Declare the name of the register used by #pragma PARAMETER in the assembler
function's parameter list.

-B5 .-

Figure 3.14 is an example of using #pragma PARAMETER when calling the assembler function asm_func.

Chapter 3 Programming Technique

extern unsigned int asm_func(unsigned int, unsigned int);
#pragma PARAMETER asm_func(RO, R1) & Parameters are passed via the RO and R1
registers to the assembler function.
void main(void)
{
int i=0x02;
int j=0x05;
asm_func(i, j);
}
Figure 3.14 Example of Calling Assembler Function With Parameters (sample2.c)
.SECTION program,CODE,ALIGN
._file 'sample2.c'
align
_line 5
##C_SRC: {
glb _main
_main:
enter #04H
pushm R1
_line 6
#HE#C_SRC: int i=0x02;
mov.w #0002H,-4[FB] Do
._line 7
HH#C_SRC: int j=0x05;
mov.w #0005H,-2[FB] D
._line 9
#E#C SRC: asm_func(j, j);
mov.w 2[FBJR1 ; | & Parameters are passed via the RO and R1
mov.w -4[FBLRO ; i registers to the assembler function.
jsr _asm_func
._line 10
###C_SRC: }
popm R1
exitd
El:
glb _asm_func < Calls assembler function(preceded by ')
.END < As for the output assembler name of the function specified by
#pragma PARAMETER, the _(underscore) is added always previously.

Figure 3.15 Compiled result of sample2.c(sample2.a30)

c. Limits on Parameters in #pragma PARAMETER Declaration

The following parameter types cannot be declared in a #pragma PARAMETER declaration.
) structure types and union type parameters
° 64bit integer type (flong longparameters
® Floating point type (float and double) parameters

Furthermore, return values of structure or union types cannot be defined as the return values of assembler

functions.

-56 -

Chapter 3 Programming Technique

3.3.2. Writing Assembler Functions

a. Method for writing the called assembler functions

The following shows a procedure for writing the entry processing of assembler functions.
(1) Specify section names using the assembler pseudo-command .SECTION.
(2) Global specify function name labels using the assembler pseudo-command .GLB.
(8 Add the underscore () to the function name to write it as label.
(4) When modifying the B and U flags within the function, save the flag register to the stack
beforehand.4

The following shows a procedure for writing the exit processing of assembler functions.
(1) If you modified the B and U flags within the function, restore the flag register from the
stack.
(2) Write the RTS instruction.

Do not change the contents of the SB and FB registers in the assembler function. If the contents of the SB
and FB registers are changed, save them to the stack at the entry to the function, then restore their values
from the stack at the exit of the function.

Figure 3.16 is an example of how to code an assembler function. In this example, the section name is
program, which is the same as the section name output by NC30.

.section program <
.glb _asm_func <2
_asm_func: <3
pushc FLG <4
pushm R3, R1 < (5)

mov.w SYM1, R1
mov.w SYM1+2, R3

popm R3, R1 < (6)
popc FLG <« (@)
rns < (8)
END

Figure 3.16 Example Coding of Assembler Function

4 Do not change the contents of B and U flags in the assembler function.

-57-

Chapter 3 Programming Technique

b. Returning Return Values from Assembler Functions

When returning values from an assembler function to a C language program, registers can be used through
which to return the values for the integer, pointer, and floating- point types. Table 3.2 lists the rules on calls
regarding return values. Figure 3.17 shows an example of how to write an assembler function to return a
value.

Table 3.2 Calling Rules for Return Values

Return value type Rules

_Bool type ROL register

char type

int type RO register

near pointer type

float type The 16 low-order bits are stored in the RO register and the 16 high-order

long type bits are stored in the R2 register as the value is returned.

far pointer type

double type The value is stored in 16 bits each beginning with the MSB in order of

long double type registers R3, R2, R1, and RO as it is returned.

long long type The value is stored in 16 bits each beginning with the MSB in order of
registers R3, R2, R1, and RO as it is returned.

Compound type Immediately before calling the function, the far address indicating the area
for storing the return value is pushed to the stack. Before the return to the
calling program, the called function writes the return value to the area
indicated by the far address pushed to the stack.

.section program
.glb _asm_func
_asm_func:

(omitted)

mov.w #0A000H, RO
mov.w #0001H, R2
s

.END

Figure 3.17 Example of Coding Assembler Function to Return long-type Return Value

c. Referencing C Variables

Because assembler functions are written in different files from the C program, only the C global variables
can be referenced.

When including the names of C variables in an assembler function, precede them with an underscore ().
Also, in assembler language programs, external variables must be declared using the assembler pseudo
instruction .GLB.

Figure 3.18 is an example of referencing the C program's global variable counter from the assembler
function asm_func.

-B58 -

Chapter 3 Programming Technique

C program:
unsigned int counter; < C program global variable
void main(void)
{ .

(omitted)
} :
Assembler function:

glb _counter < External declaration of C program's global variable
_asm_func:

(omitted)

m0\'/.w _counter, RO < Reference

Figure 3.18 Referencing a C Global Variable

d. Notes on Coding Interrupt Handing in Assembler Function

If you are writing a program (function) for interrupt processing, the following processing must be performed

at the entry and exit.
(1) Save the registers (R0, R1, R2, R3, A0, Al and FB) at the entry point.
(2) Restore the registers (RO, R1, R2, R3, A0, Al and FB) at the exit point.
(3 Use the REIT instruction to return from the function.

Figure 3.19 is an example of coding an assembler function for interrupt processing.

.section program

glb _func
_int_func:
pushm RO,R1,R2,R3,A0,A1,FB < Save registers
mov.b #01H, ROL
(omitted)
popm RO,R1,R2,R3,A0,A1,FB < Pull registers
reit < Return to C program
.END

Figure 3.19 Example Coding of Interrupt Processing Assembler Function

-59 -

Chapter 3 Programming Technique

e. Notes on Calling C Functions from Assembler Functions

Note the following when calling a function written in C from an assembly language program.
(1) Call the C function using a label preceded by the underscore () or the dollar ($).
(2 When calling C language function, RO register and register which used for return value are
not saved in the C language function. Therefor, when calling C language function from
Assemble language function, save RO register and register which used for return value befor
calling C language function.

3.3.3. Notes on Coding Assembler Functions

Note the following when writing assembly language functions (subroutines) that are called from a C
program.
a. Notes on Handling B and U flags

When returning from an assembler function to a C language program, always make sure that the B and U
flags are in the same condition as they were when the function was called.

b. Notes on Handling FB Register

If you modified the FB (frame base) register in an assembler function, you may not be able to return
normally to the C language program from which the function was called.

c. Notes on Handling General-purpose and Address Registers

The general-purpose registers (RO, R1, R2, R3) and address registers (A0, A1) can
have their contents modified in assembler functions without a problem.

d. Passing Parameters to an Assembler Function

Use the #pragma PARAMETER function if you need to pass parameters to a function written in assembly
language. The parameters are passed via registers.

Figure 3.20 shows the format (asm_func in the figure is the name of an assembler function).

unsigned int near asm_func(unsigned int, unsigned int); < Prototype declaration of assembler function

#pragma PARAMETER asm_func(RO, R1)

Figure 3.20 Prototype declaration of assembler function

-60 -

Chapter 3 Programming Technique

#pragma PARAMETER passes arguments to assembler functions via 16-bit generalpurpose registers (RO,
R1, R2, R3), 8bit general-purpose registers (ROL, ROH, R1L, R1H), and address registers (A0, Al). In
addition, the 16-bit general-purpose registers are combined to form 32-bit registers (R3R1 and R2R0) for the
parameters to be passed to the Note that an assembler function's prototype must always be declared before
the #pragma PARAMETER declaration.
However, you cannot declare the following parameter types in a #pragma PARAMETER declaration:

® struct or union types

o 64bit integer type (flong longparameters

® floating point type(double) argument
You also cannot declare the functions returning structure or union types as the function's return values.

3.4. Other

3.4.1. Precautions on Transporting between NC-Series Compilers

NC30 basically is compatible with Renesas C compilers "NCxx" at the language specification level (including
extended functions). However, there are some differences between the compiler (this manual) and other
NC-series compilers as described below.

a. Difference in default near/far

The default " near/far" in the NC series are shown in Table 3.3 . Therefore, when transporting the compiler
(this manual) to other NC-series compilers, the near/far specification needs to be adjusted.

Table 3.3 Default near/far in the NC Series

Compiler RAM data ROM data Program
NC308 near far far Fixed
(However, pointer type is far)
NC30 near far far Fixed
NC30 (R8C) near far far Fixed
NC79 near near far
NC77 near near far

3.4.2. Precautions on Transporting between NC308 and NC30
a. Differences in calling convention

In NC30, the operation to save registers when calling a function is performed on the function calling side
whereas this operation in NC30 is performed on the called side (body) of the function.

-61 -

Appendix A Command Option Reference

Appendix A Command Option Reference

Al

This appendix describes how to start the compile driver nc30 and the command line options. The description

of the command line options includes those for the as30 assembler and In30 linkage editor, which can be
started from nc30.

nc30 Command Format

% nc30A[command-line-option]A[assembly-language-source-file-name]A
[relocatable-module-file-name]A<C-source-file-name>

% : Prompt
<>:Mandatory item
[]: Optional item

A : Space

Figure A1 nc30 Command Line Format

%nc30 -osample -as30 "' -In30 "-ms" ncrt0.a30 sample.c<RET>

<RET>: Return key
* Always specify the startup program first when linking.

Figure A2 Example nc30 Command Line

-62 -

Appendix A Command Option Reference

A.2. nc30 Command Line Options

A.2.1. Options for Controlling Compile Driver

Table A.1 shows the command line options for controlling the compile driver.

Table A1 Options for Controlling Compile Driver

Option Function

C Creates a relocatable module file (extension .r30) and ends processing !

-Ddentifier Defines an identifier. Same function as #define.

-dsource Generates an assembly language source file (extension ".a30") with a C

(Short form -dS) language source list output as a comment. (Not deleted even after
assembling.)

-dsource_in_list In addition to the "-dsource(-dS)" function, generates an assembly

(Short form -dSL) language list file (Ist).

-E Invokes only preprocess commands and outputs result to standard
output.

-Idirectory Specifies the directory containing the file(s) specified in #include.
You can specify up to 50 directories.

-P Invokes only preprocess commands and creates a file (extension .i).

-S Creates an assembly language source file (extension .a30) and ends
processing.

-silent Suppresses the copyright message display at startup.

-Upredefined macro Undefines the specified predefined macro.

1
|

Compile driver control

Function: Creates a relocatable module file (extension .r30) and finishes processing.

Notes: If this option is specified, no absolute module file (extension .x30) or other file output by
In30 is created.

-Ddentifier

Compile driver control

Function: The function is the same as the preprocess command #define.
Delimit multiple identifiers with spaces.

Syntax: nc30A-Didentified=constand A<C source file>
[= constand is optional.
Notes: The number of identifiers that can be defined may be limited by the maximum number

of characters that can be specified on the command line of the operating system of the
host machine.

1 If you do not specify command line options -c, -E, -P, or -S, nc30 finishes at and output files up to the absolute load module file (extension .x30) are
created.

-63-

Appendix A Command Option Reference

-dsource -dS
Comment option
Function: Generates an assembly language source file (extension ".a30") with a C language source

list output as a comment (Not deleted even after assembling).

Supplement: (1) -When the -S option is used, the option "-dsouce(-dS)" is automatically enabled.
(2) The generated files ".a30" and ".r30" are not deleted. Use this option when you
want to output C-language source lists to the assembly list file.

-dsource in list -dSL
List File option
Function: In addition to the "-dsource(-dS)" function, generates an assembly language list file

(filename extension "lst").

-E
Compile driver control

Function: Invokes only preprocess commands and outputs results to standard output.

Notes: When this option is specified, no assembly source file (extensions .a30), relocatable
module files (extension .r30), absolute module files (extension .x30), or other files output
by ccom30, as30, or In30 are generated.

-ldirecto
Compile driver control

Function: Specifies the directory name in which to search for files to be referenced by the
preprocess command #include.
Max specified 50 directory.

Syntax: nc30A-IdirectoryA<C source file>
Notes: The number of directories that can be defined may be limited by the maximum number

of characters that can be specified on the command line of the operating system of the
host machine.

-64 -

Appendix A Command Option Reference

-P
Compile driver control
Function: Invokes only preprocess commands, creates a file (extension .i) and stops processing.

Notes: (1) When this option is specified, no assembly source file (extensions .a30), relocatable
module files (extension .r30), absolute module files (extension .x30) or other files
output by ccom30, as30, or In30 are generated.

(2) The file (extension .i) generated by this option does not include the #line command
generated by the preprocessor. To get a result that includes #line, try again with
the -E option.

-S

Compile driver control
Function: Creates assembly language source files (extension .a30 and .ext) and stops processing.
Notes: When this option is specified, no relocatable module files (extension.r30), absolute

module files (extension .x30) or other files output by as30 or In30 are generated.

-silent

Compile driver control
Function: Suppresses the display of copyright notices at startup.
-U predefined macro

Compile driver control
Function: Undefines predefined macro constants.
Syntax: nc30A-Upredefined macroA<C source file>
Notes: The maximum number of macros that can be undefined may be limited by the

maximum number of characters that can be specified on the command line of the
operating system of the host machine.
STDC, _LINE_, _FILE_ ,_DATE_, and _TIME _ cannot be undefined.

- 65 -

Appendix A Command Option Reference

A.2.2. Options Specifying Output Files

Table A.2 shows the command line option that specifies the name of the output machine language data file.

Table A2 Options for Specifying Output Files

Option Function

-dirdirectory-name Specifies the destination directory of the file(s) (absolute module file, map
file, etc.) generated by In30.
-ofile-name Specifies the name(s) of the file(s) (absolute module file, map file, etc.)
generated by In30. This option can also be used to specify the destination
directory.
This option can also be used to specify the file name includes the path. Do
not specify the filename extension.

-dir directory-name
Output file specification

Function: This option allows you to specify an output destination directory for the output file.
Syntax: nc30A-dirdirectory-name
Notes: The source file information used for debugging is generated starting from the directory

from which the compiler was invoked (the current directory).
Therefore, if output files were generated in different directories, the debugger, etc. must
be notified of the directory from which the compiler was invoked.

-0 file-name
Output file specification

Function: Specifies the name(s) of the file(s) (absolute module file, map file, etc.) generated by In30.
This option can also be used to specify the file name includes the path.
You must not specify the filename extension.

Syntax: nc30A-ofile-nameA<C source file>

-66 -

Appendix A Command Option Reference

A.2.3. Version Information Display Option

Table A.3 shows the command line options that display the cross-tool version data.

Table A3 Options for Displaying Version Data

Option Function
v Displays the name of the command program and the command line
during execution.
-V Displays the startup messages of the compiler programs, then finishes
processing (without compiling).

1
| <

Display command program name

Function: Compiles the files while displaying the name of the command program that is being
executed.
Notes: Use lowercase v for this option.

|<

Display version data

Function: Displays version data for the command programs executed by the compiler, then
finishes processing.

Supplement: Use this option to check that the compiler has been installed correctly. The "M16C
Family C Compiler package Release Notes" list the correct version numbers of the
commands executed internally by the compiler.

If the version numbers in the Release Notes do not match those displayed using this
option, the package may not have been installed correctly. See the "M16C Family C
Compiler package Release Notes" for details of how to install the NC30 package.

Notes: (1) Use uppercase V for this option.
(2) If you specify this option, all other options are ignored.

-67 -

Appendix A Command Option Reference

A.2.4. Options for Debugging

Table A.4 shows the command line options for outputting the symbol file for the C source file.

Table A4 Options for Debugging

Option Function

g Outputs debugging information to an assembler source file
(extension.a30). Therefore you can perform C language-level debugging.

-genter Always outputs an enter instruction when calling a function.
Be sure to specify this option when using the debugger's stack trace
function.

-gno_reg Suppresses the output of debugging information for register variables.

-gold This option outputs debugging information in Rev. E format.
When this option specifies, the “-gno_reg” option and the “fauto_128"
option are automatically specified.

1
|

Outputting debugging information
Function: Outputs debugging information to an assembler source file (extension .a30).
Notes: When debugging your program at the C language level, always specify this option.

Specification of this option does not affect the code generated by the compiler.
When “finfo” option is specified, this option becomes effective.

-genter

Outputting enter instruction
Function: Always output an enter instruction when calling a function.
Notes: (1) When using the debugger's stack trace function, always specify this option.

Without this option, you cannot obtain the correct result.

(2) When this option is specified, the compiler generates code to reconstruct the stack
frame using the enter command at entry of the function regardless of whether or
not it is necessary. Consequently, the ROM size and the amount of stack used may
increase.

Suppresses debugging information about register variables

Function: Suppresses the output of debugging information for register variables.
Supplement: Use this option to suppress the output of debugging information about register variables

when you do not require that information. Suppressing the output of debugging
information about the register variables will speed up downloading to the debugger.

- 68 -

Appendix A Command Option Reference

-gold
Outputs debugging information in previous format
Function: This option outputs debugging information in Rev.E format.
When this option specifies, the “gno_reg” option and the “fauto 128" option are
automatically specified.
Supplement: With the increase in the maximum number of auto variables, starting with NC30 V.2.00,

the format of debugging information has changed(from xxx.r30 and xxx.x30 format).
The new format is known as the Rev. F format. the executable objects in the new
format(xxx.x30) are compatible with the following debuggers:

(1) PDB30 V.2.00 and later

(20 PDB30SIM V.2.00 and later

(3 High-performance Embedded Workshop V.4.00 and later

Use the -gold option when compiling if you are using a debugger that cannot load
executable objects in the new format (xxx.x30).

- 69 -

A2.5.

Appendix A Command Option Reference

Optimization Options

Table A.5 shows the command line options for optimizing program execution speed and ROM capacity.

Table A5 Optimization Options
Option Short form Function

-Ol1-5] None Optimization of speed and ROM size.

-OR None Optimization of ROM size.

-0S None Optimization of speed.

-OR_MAX -ORM Places priority on ROM size for the optimization performed.

-0OS_MAX -OSM Places priority on for the optimization performed.

-Ocompare_byte_to_word -OCBTW | Compares consecutive bytes of data at contiguous addresses
in words.

-Oconst -0C Performs optimization by replacing references to the
const-qualified external variables with constants.

-Ofloat_to_inline -OFTI Expands floating-point runtime libraries in-line to speed up
the processing of floating-point arithmetic.

(only for comparison and multiplication)

-Oforward_function_to_inline | -OFFTI Expands all inline functions in-line.

-Oglb_jmp -0OGd Global jump is optimized.

-Oloop_unroll[=/oop count] -OLU Unrolls code as many times as the loop count without
revolving the loop statement. The "loop count” can be
omitted. When omitted, this option is applied to a loop count
of up to 5.

-Ono_asmopt -ONA Inhibits starting the assembler optimizer "aopt30".

-Ono_bit -ONB Suppresses optimization based on grouping of bit
manipulations.

-Ono_break_source_debug -ONBSD Suppresses optimization that affects source line data.

-Ono_float_const_fold -ONFCF Suppresses the constant folding processing of floating point
numbers.

-Ono_logical_or_combine -ONLOC | Suppresses the optimization that puts consecutive OR
together.

-Ono_stdlib -ONS Inhibits inline padding of standard library functions and
modification of library functions.

-Osp_adjust -OSA Optimizes removal of stack correction code. This allows the
necessary ROM capacity to be reduced.

However, this may result in an increased amount of stack
being used. Please specify this option with —O[1-5].

-Ostack_frame_align -OSFA Aligns the stack frame on an even boundary.

-Ostatic_to_inline -OSTI A static function is treated as an inline function.

-050A None Inhibits code generation based on bit-manipulating

instructions when the optimization option “-05” is selected.

The effects of main optimization options are shown in Table A.6.

Table A6 Effect of each Optimization Options
Option -O -OR -0S -OSA -OSFA
SPEED faster lower faster faster faster
ROM size decrease decrease Increase decrease Same!
usage of stack decrease same same increase increase

1 -OSFA adjust address of stacks of each function entry to an even-numbered address. Therefore, if a function has no auto variable declaration,
because enter #00H is always added, the processing

-70 -

Appendix A Command Option Reference

_O[1-5]
Function: Optimizes speed and ROM size. This option can be specified with -g options.-O3 is

assumed if you specify no numeric (no level).

-01: Some representative optimization items executed by this option are the
following.
® Allocate the register the variable.
® Delete a meaningless conditional expression.
® Deletion of statement not logically executed.

-02: Makes no difference with "-O1".

-03: Execute some optimization items addition to "-O1".
Some representative optimization items executed by this option are the
following.

® Grouping of bit manipulations.
® Constant folding processing of floating point numbers.
® Inline padding of standard library functions.

-04: Execute some optimization items addition to "-O3".
Some representative optimization items executed by this option are the
following.
® Replace the reference to the variable declared in the const-qualifier with
constants.

-05: Execute some optimization items addition to "-O4".
Some representative optimization items executed by this option are the
following.
® Optimization of address computations such as pointers and structures(f
the option "-OR" is concurrently specified).
® Strengthen the optimization of the pointerGf the option "-OS" is
concurrently specified).

However, a normal code may be unable to be outputted when fulfilling the following
conditions.

® With a different variable points out the same memory position

simultaneously within a single function and they point to an-identical

address.
Example:
int a=3;
int *p=&a;
void test1(void)
{
int b;
*p - 9’
a=10;
b ="*p; * By applying optimization, "p" will be transposed to "9". */
printf("b = %d (expect b = 10)¥n"b);
}
result:
b =9 (expect =10)

-71 -

Appendix A Command Option Reference

-O[1-5]

Notes:

Optimization

When the "-O5" optimizing options is used, the compiler generates in some cases
"BTSTC" or "BTSTS" bit manipulation instructions. In M16C, the "BTSTC" and
"BTSTS" bit manipulation instructions are prohibited from rewriting the contents of the
interrupt control registers.

However, the compiler does not recognize the type of any register, so, should "BTSTC" or
"BTSTS" instructions be generated for interrupt control registers, the assembled
program will be different from the one you intend to develop.

When the "-O5" optimizing options is used in the program shown below, a "BTSTC"
instruction is generated at compilation, which prevents an interrupt request bit from
being processed correctly, resulting in the assembled program performing improper
operations.

C sauce which must not use an optimization option at the time of compile:
#ipragma ADDRESS TAOIC 006Ch /M16C/60 MCU's Timer AO interrupt control register */
struct {
charILVL: 3;
chariR:1; /* An interrupt request bit */
chardmy : 4;
} TAOIC;
void wait_until_IR_is_ ON(void)
{
while (TAOIC.IR == 0) F*Waits for TAOIC.IR to become 1 */
{
} .
TAOIC.IR=0; ¥ Returns 0 to TAOIC.IR when it becomes 1 */
}

Please compile after taking the following measures, if the manipulation instructions is
generated to bit operation of SFR area. Make sure that no "BTSTC" and "BTSTS"
instructions are generated after these side-steppings.

® Optimization options other than "-O5" are used.

® Aninstruction is directly described in a program using an ASM function.

l.
pu)

Function:

Notes:

Optimization

Optimizes ROM size in preference to speed. This option can be specified with "-g" and
"-O" options.

When this option is used, the source line information may partly be modified in the
course of optimization. Therefore, if this options is specified, when your program is
running on the debugger, your program is a possibility of different actions.

If you do not want the source line information to be modified, use the
"-One_break_source_debug(-ONBSD)" option to suppress optimization.

-72 -

Appendix A Command Option Reference

|.
wn

Optimization

Function: Although the ROM size may somewhat increase, optimization is performed to obtain the
fastest speed possible.
This option can be specified along with the "-g" option.

-OR_MAX -ORM
Optimization

Function: Places priority on ROM size for the optimization performed.

Notes: (1) The compile options listed below are enabled.
o -05
-OR
-O50A
-Oglb_jmp (-OGJ)
-fchar_enumerator (-fCE)
-fdouble_32 (-fD32)
-fno_align (-fNA)
-fno_carry (-fNC)
-fsmall_array (-fSA)
° -fuse_DIV (-fUD)
(20 If this option is used in the integrated development environment or
High-performance Embeded Workshop, be sure to enable “Size or speed:” on the C
tab of the Renesas M16C Standard Toolchain and then select “ROM size to the

minimum.”

-OS MAX -OSM
Function: Places priority on speed for the optimization performed.
Notes: (1) The compile options listed below are enabled.

o 04

® -OS

® -Oglb_jmp (-OGJ)

[) -Oloop_unroll=10 (-OLU=10)

® -Ostatic_to_inline (-OSTT)

® -fchar enumerator (fCE)

® -fdouble 32 (-fD32)

® -fno carry (-fNC)

[) -fsmall_array (-fSA)

o -fuse_DIV (-fUD)
(20 If this option is used in the integrated development environment or
High-performance Embedded Workshop, be sure to enable “Size or speed:” on the
C tab of the Renesas M16C Standard Toolchain and then select “Speed to the
maximum.”

-73-

Appendix A Command Option Reference

-Ocompare byte to word -OCBTW
Function: Compares consecutive bytes of data at contiguous addresses in words.
-Oconst -OC

Optimization

Function: Optimizes code generation by replacing reference to variables to declared by the
const-qualifier with constants.
This is effective even when other than the "-O4" option is specified.

Supplement: Optimization is performed when all of the following conditions are met:
(1) Variables not including bit-fields and unions.
(2) Variables for which the const-qualifier is specified but are not specified to be
volatile.
(3) Variables that are subject to initialization in the same C language soirce file.
(4) Variablew that are initialized by constant or const-qualified variables.

-Ofloat to inline -OFTI

Optimization

Function: Expands a floating-point runtime library in-line to speed up floating-point arithmetic
operations (comparison and multiplication only).

-Oforward function to inline -OFFTI
Optimization

Function: Expands all inline functions in-line.

Supplement: Although inline functions require that an inline function be called after its entity
definition can be made, use of this option allows the entity definition of an inline
function to be made after calling it.

Notes: (1) When specifying inline storage class for a function, be sure that inline storage class

and this body definition is written in the same file as the function is written.

(2) The parameter of an in line function cannot be used by “structure” and "union" .It
becomes a compile error.

(3 The indirect call of an in line function cannot be carried out. It becomes a compile
error when a indirect call is described.

(4) The recursive call of an in line function cannot be carried out. It becomes a compile
error when a recursive call is described.

-Oglb jmp -0OGJ
Optimization

Function: Global jump is optimized.

Notes: When you use this function, please make sure to specify link option “JOPT”

-74 -

Appendix A Command Option Reference

-Oloop_unroll[=loop count] -OLU[=loop count]
Unrolls a loop
Function: Unrolls code as many times as the loop count without revolving the loop statement.
The "loop count" can be omitted. When omitted, this option is applied to a loop count of
up to 5.
Supplement: Unrolled code is output for only the "for" statements where the number of times they are

executed is known. Specify the upper-limit count for which times for is revolved in the
target for statement to be unrolled.
By default, this option is applied to the for statements where for is revolved up to five

times.
Notes: The ROM size increases for reasons that the for statement is revolved.
-Ono asmopt -ONA
Inhibits starting the assembler optimizer
Function: Inhibits starting the assembler optimizer "aopt30".
-Ono_bit -ONB

Suppression of optimization
Function: Suppresses optimization based on grouping of bit manipulations.

Supplement: When you specify -O (or -OR or -OS), optimization is based on grouping manipulations
that assign constants to a bit field mapped to the same memory area into one routine.
Because it is not suitable to perform this operation when there is an order to the
consecutive bit operations, as in I/O bit fields, use this option to suppress optimization.

Notes: (1) This optimization is performed, The variables is specified regardless volatile
qualified.
(2) This option is only valid if you specify option " -O[3 to 5] " (or " -OR " or " -OS ").

-Ono_break source debug -ONBSD
Suppression of optimization

Function: Suppresses optimization that affects source line data.

Supplement: Specifying the " -OR" or "-O" option performs the following optimization, which may
affect source line data. This option (-ONBSD") is used to suppress such optimization.

Notes: This option is valid only when the "-OR" or "-O" option is specified.

-75 -

Appendix A Command Option Reference

-Ono _float const fold -ONFCF
Suppression of optimization

Function: Suppresses the constant folding processing of floating point numbers.

Supplement: By default, NC30 folds constants. Following is an example.

before optimization:
(val/1000e250)*50.0

after optimization:
val/20e250

In this case, if the application uses the full dynamic range of floating points, the results
of calculation differ as the order of calculation is changed. This option suppresses the
constant folding in floating point numbers so that the calculation sequence in the C
source file is preserved.

-Ono _logical or combine -ONLOC
Suppression of optimization

Function: Suppresses the optinization that puts consective ORs together.

Supplement: If one of three options "-O3 or greater, -OR, or -OS" is specified when compiling as in the
example shown below, the compiler optimizes code generation by combining logical ORs.

Example:
if(a&0x01 |} a & 0x02 |} a & 0x04)

(Optimized)

if(a & 0x07)

In this case, the variable a is referenced up to three times, but after optimization it is
referenced only once.

However, if the variable a has any effect on /O references, etc., the program may
become unable to operate correctly due to optimization. In such a case, specify this
option to suppress the optimization to combine logical ORs. Note, however, that if the
variable is declared with volatile, logical ORs are not combined

for optimization.

-76 -

Appendix A Command Option Reference

-Ono_stdlib -ONS
Suppression of optimization

Function: Suppresses inline padding of standard library functions, modification of lLibrary
functions, and similar other optimization processing.

Supplement: This option suppresses the following optimization.
® Optimization for replacing the standard library functions such as "strcpy()"
and "memcpy()" with the SMOVF instructions, etc.
® Optimization for changing to the library functions that conform to the
arguments near and far.

Notes: Specify this option, when make a function which name is same as standard library
function.
-Osp_adjust -OSA
Removing stack correction code after calling a function
Function: Optimizes code generation by combining stack correction codes after function calls.
Supplement: Because the area for arguments to a function normally is deallocated for each function

call made, processing is performed to correct the stack pointer.
If this option is specified, processing to correct the stack pointer is performed collectively,
rather than for each function call made.

Example:
In the example shown below, the stack pointer is corrected each time funcl() and
then func2() is called, so that the stack pointer is corrected twice. If this option is
specified, the stack pointer is corrected only once.
long func1(long, long);
long func2(long);
void main(void) {
long i=1;
long j=2;
long k,n;
k=funcl(i,j):
' n="func2(k); <
R Rn TR L
Notes: Use of the option "-Osp_adjust" helps to reduce the ROM capacity and at the same time,

to speed up the processing. However, the amount of stack used may increase.
Please specify this option with —O[1-5]

-77 -

Appendix A Command Option Reference

-Ostack frame align -OSFA
Aligns stack frame

Function: Aligns the stack frame on an even boundary
In the entry version, this option cannot be specified.

Supplement: When even-sized auto variables are mapped to odd addresses, memory access requires
one more cycle than when they are mapped to even addresses. This option maps
even-sized auto variables to even addresses, thereby speeding up memory access.

Notes: (1) The following functions specified in #pragma are not aligned.
® #Hpragma INTHANDLER
® #Hpragma HANDLER
® #Hpragma ALMHANDLER
® #Hpragma CYCHANDLER
® #pragma INTERRUPT!

(2) Be sure that the stack point is initialized to an even address in the startup
program. Also, be sure to compile all programs using this option.

1 In order that there may be no guarantee the number of whose values of the stack pointer in the timing which interruption generated is even,
alignment is not performed to an interruption function. For this reason, processing speed may become slow when "-Ostack_frame_align" option is
specified to the function called from an interruption function.

-78 -

Appendix A Command Option Reference

-Ostatic_to inline -OSTI
A static function is treated as an inline function

Function: A static function is treated as an inline function and the assembling code which carried
out inline deployment is generated.

Supplement: When the following conditions are fulfilled, a static function is treated as an inline
function and the assembling code which carried out inline deployment is generated.
) Substance is described before the function call. It is aimed at a static

function.
® A function call and the body of that function must be written in the same
source file.
® When you specify "-Oforward_function_to_inline" option, ignore this
condition.

(20 When address acquisition is omitted in the program to the static function.

(3 When the recursive call of the static function has not been carried out.

(4) When construction of a frame (reservation of an auto variable etc.) is not
performed in the assembling code output of a compiler.

) The situation of the existence of frame construction changes with
combined use with the contents of description of the target function, and
another optimization option.

® When you specify "-Oforward_function_to_inline" option, ignore this

condition.
Below, inline deployment is carried out. The example of description of a static function is
shown.
externint i; Function func() is a function.
inline deployment is carried out in each place
| atatic intfINe(vo N T T ! tly called withi in().
! ?tatlc intfunc(void) currently caledwitin main()
! 1
1
: return i++; E—
) |
void main(void)
{ -
int s;
s=func(); <
s=func(); <
}
Notes: (1) The assembler code to description of substance of the static function which became

inline function treatment is always generated.
(2) About a function, it is compulsorily. In treating as an inline function, it is in a
function. Please make an inline declaration.

-79 -

Appendix A Command Option Reference

-O50A

Inhibit code generation

Function: Inhibits code generation based on bit-manipulating instructions (BTSTC and BTSTS)
when the optimization option ““O5” is selected.

Notes: The bit-manipulating instructions (BTSTC and BTSTS) cannot be used to read or write
to the registers in the SFR area. Select this option if when the optimization option “-O5”
is selected codes are generated using bit-manipulating instructions for read or write to
the registers in the SFR area.

-80 -

A.2.6.

Appendix A Command Option Reference

Generated Code Modification Options

Table A.7 to Table A.1 shows the command line options for controlling nc30-generated assembly code.

Table A7 Generated Code Modification Options (1)
Option Short form Function

-fansi None Makes "-fhot_reserve far and near", "-fnot_reserve_asm",
and "-fextend_to_int" valid.

-fchar_enumerator -fCE Handles the enumerator type as an unsigned char type, not
as an int type.

-fconst_not. ROM -f{CNR Does not handle the types specified by const as ROM data.

-fdouble_32 -fD32 This option specifies that the double type be handled in
32-bit data length as is the float type.

-fenable_register -fER Make register storage class available.

-fextend_to_int -fETI Performs operation after extending char-type data to the int
type. (Extended according to ANSI standards.) !

-ffar RAM -fFRAM Changes the default attribute of RAM data to far.

-finfo None Outputs the information required for the "STK Viewer",
"Map Viewer", and "utl30" to the absolute module file (x30).

-fJSRW None Changes the default instruction for calling functions to
JSR.W. When specify —OGed,do not necessary to specify this
option.

-fhit -fB Generates code assuming that bitwise manipulating
instructions can be executed using absolute addressing for
all external variables mapped into the near area.

-fno_carry -fno_carry | Suppresses carry flag addition when data is indirectly
accessed using far-type pointers.

-fauto_128 -fA1 Limits the usable stack frame to 128 byte.

-ffar_pointer -fFP Change the default attribute of pointer-type variable to far.

-fhear ROM -fNROM Change the default attribute of ROM data to near.

-fno_align -INA Does not align the start address of the function.

-fno_even -INE Allocate all data to the odd section, with no separating odd
data from even data when outputting.

-fho_switch_table -INST When this option is specified, the code which branches since
it compares is generated to a switch statement.

-fnot_address_volatile -INAV Does not regard the variables specified by #pragma
ADDRESS #pragma EQU) as those specified by volatile.

-fnot_reserve_asm -INRA Exclude asm from reserved words. (Only _asm is valid.)

-fnot_reserve_far and_near | -fNRFAN | Exclude far and near from reserved words. (Only _far and
_near are valid.)

-fnot_reserve_inline -INRI Exclude far and near from reserved words. (Only _inline is
made a reserved word.)

-fsmall_array -fSA When referencing a fartype array whose total size is
unknown when compiling, this option calculates subscripts
in 16 bits assuming that the array's total size is within 64
Kbytes.

-fswitch_other_section -£S0OS This option outputs a ROM table for a 'switch' statement to
some other section than a program section.

-fchange_bank_always -fCBA This option allows you to write multiple variables to an
extended area.

-fauto_over 255 -fAO2 Changes the stack frame size per function that can be
reserved to 64 Kbytes.

1 char-type data or signed char-type data evaluated under ANSI rules is always extended to inttype data.
This is because operations on char types (c1=c2*2/c3; for example) would otherwise result in an overflow and failure to obtain the intended result.

-81 -

Appendix A Command Option Reference

Table A8 Generated Code Modification Options (2)

Option Short form Function

-fsizet_16 -£516 Change the type definition size_t from type unsigned long to
type unsigned int

-fptrdifft_16 -fP16 Change the type definition ptrdiff_t from type signed long to
type signed int

-fuse_DIV -flUD This option changes generated code for divide operation.

-fuse. MUL -fUM This option changes generated code for multiplication
operation.

-fSB_auto -fSBA Changes SB registers from one to another before generating
SB relative, one function at a time.

-R8C None Generates code suitable for the R8C/Tiny series.

-R8CE None Generates code suitable for the R8C/Tiny 2X series.

-fansi

Function: Validates the following command line options:
-fhot_reserve_asm: Removes asm from reserved words
-fnot_reserve_far and_near: Removes far and near from reserved words
-fnot_reserve_inline: Removes inline from reserved words

-fextend_to_int:

Supplement: When this option is specified, the compiler generates code in conformity with ANSI
standards.

-fchar _enumerator -fCE
Modify generated code

Function: Processes enumerator types not as int types but as unsigned char types.

Notes: The type debug information does not include information on type sizes.
Therefore, if this option is specified, the enum type may not be referenced correctly in
some debugger.

-fconst not ROM -fCNR
Modify generated code

Function: Does not handle the types specified by const as ROM data.

Supplement: The const-specified data by default is located in the ROM area. Take a look at the
example below.

int const array[10] ={1,2,3,4,5,6,7,8,9,10};

In this case, the array "array" is located as ROM area. By specifying this option, you can
locate the "array" in the RAM area.
You do not normally need to use this option.

-82 -

Appendix A Command Option Reference

-fdouble 32 -fD32

Modify generated code

Function: This option specifies that the double type be handled in 32-bit data length as is the float
type.

Supplement: (1) For this option to be used, a function prototype must always be expressly written.
Without a prototype declaration, the compiler may not be able to generate the
correct code.

(2) When you specify this option, the debug information of the type double is processed
as the type float. So, the data of the type double is displayed as the type float on C
watch window and global window of Debug tool.

-fenable register -fER
Register storage class

Function: Allocates variables with a specified register storage class to registers.

Supplement: When optimizing register assignments of auto variables, it may not always be possible
to obtain the optimum solution. This option is provided as a means of increasing the
efficiency of optimization by instructing register assignments in the program under the
above situation.

When this option is specified, the following register-specified variables are forcibly
assigned to registers:

® Integral type variable

® Pointer variable

Notes: Because register specification in some cases has an adverse effect that the efficiency

decreases, be sure to verify the generated assembly language before using this
specification.

-83-

Appendix A Command Option Reference

-fextend to int -fETI
Modify generated code

Function: Extends char type or signed char type data to int type data to perform operation
(extension as per ANSI rules).

Supplement: In ANSI standards, the char-type or singed char-type data is always extended into the
int type when evaluated. This extension is provided to prevent a problem in char-type
arithmetic operations, e.g., c1 =c2 * 2/ ¢3; that the char type overflows in the middle of
operation, and that the result takes on an unexpected value. An example is shown

below.

void main(void)

{
char cl:
char c2 =200;
char c3=2;
cl=c2*2/c3;

}

In this case, the char type overflows when calculating [c2 * 2], so that the correct result
may not be obtained.

Specification of this option helps to obtain the correct result. The reason why extension
into the int type is disabled by default is because it is conducive to increasing the ROM
efficiency any further.

-ffar RAM -fFRAM
Modify generated code

Function: Change the default attribute of RAM data to far.

Supplement: The RAM data (variables) are located in the near area by default. Use this option when
you want the RAM data to be located in other areas than the near area (64K bytes area).

-finfo
Modify generated code
Function: Outputs the information required for the "TM", "STK Viewer", "Map Viewer", and
"utl30".

Supplement: When using "STK Viewer", "Map Viewer", or "utl30", the absolute module file ".x30"
output by this option is needed.

Notes: No check is made for the use of global variables in the asm function. For this reason, use

of the asm function even in "utl30" is ignored.
-finfo includes -g.

-84 -

Appendix A Command Option Reference

-fJISRW

Function:

Supplement:

Notes:

Modify generated code
Changes the default instruction for calling functions to JSR.W.

When calling a function that has been defined external to the source file, the "JSR.A"
command is used by default. This option allows it to be changed to the "JSR.W"
command. Change to the "JSR.W" command helps to compress the generated code size.
This option is useful when the program is relatively small not exceeding 32K bytes in
size or ROM compression is desired.

Conversely, if a function is called that is located 32K bytes or more forward or backward
from the calling position, the "JSR.W" command causes an error when linking. This
error can be avoided by a combined use with "#pragma JSRA".

-fhit

-fB

Function:

Supplement:

Modify generated code

Generates code assuming that bitwise manipulating instructions can be executed using
absolute addressing for all external variables mapped into the near area.

If the near external variables subject to bit manipulations are located in the M16C
memory space 0000h through 1FFFh, specification of this option helps to increase the
code efficiency generated by the compiler.

If in single-chip applications the RAM is located in the above memory space, specifying
this option should prove effective. If an attempt is made to operate on variables that are
located in any other memory space, an error will result when linking.

-fno_car

-INC
Modify generated code

Function:

Supplement:

Notes:

Suppresses carry flag addition when data is indirectly accessed using far-type pointers

When accessing structures or 32-bit data indirectly using far-type pointers, this option
generates code that does not perform carry addition to the high 16 bits of fartype
pointers (32-bit pointer), assuming that the data is not mapped across the 64K bytes
boundary. As a result, the code will be more efficient.

When fartype pointers are used to indirectly access memory dynamically allocated
using the malloc function, etc., or ROM data mapped to the far area, be sure that the
data is not accessed spanning a 64K bytes boundary.

This option cannot used simultaneously with the ““R8C* option. This option cannot used
simultaneously with the ““R8C* option.

-85 -

Appendix A Command Option Reference

-fauto 128 -fAl
Modify generated code
Function: Limits the usable stack frame to 128 bytes
-ffar_pointer -fFP
Changes generated code
Function: Change the default attribute of pointer-type variable to far.

This option sets the default pointer size to 32-bits.

Supplement: (1) The pointer type variable in this compiler is a near attribute as a default attribute.
This option is used when changing the default attribute of a pointer type variable
into a far attribute.

(2) The pointer variable which described the near qualifier is not influenced of this
option. It always becomes a near attribute.

Example)

char near *p; // It processes as a near pointer.

-fnear ROM -INROM
Modify generated code
Function: Change the default attribute of ROM data to near.

Supplement: The ROM data (const-specified variables, etc.) are located in the far area by default. By
specifying this option you can locate the ROM data in the near area.
You do not normally need to use this option.

-fno_align -INA

Function: Does not align the start address of the function.

- 86 -

Appendix A Command Option Reference

-fno_even

-INE

Modify generated code

Function: When outputting data, does not separate odd and even data. That is, all data is mapped
to the odd sections (data_NO, data FO, data INO, data IFO, bss NO, bss FO,
rom_NO, rom_FO).

Supplement: By default, the odd-size and the even-size data are output to separate sections.

Take a look at the example below.

char c

int i;
In this case, variable "c¢" and variable "i" are output to separate sections. This is because
the even-size variable "" is located at an even address. This allows for fast access when
accessing in 16-bit bus width.
Use this option only when you are using the compiler in 8-bit bus width and when you
want to reduce the number of sections.

Notes: When "#pragma SECTION" is used to change the name of a section, data is mapped to
the newly named section.

-fno_switch table -INST

Function:

Supplement:

Modify generated code

When this option is specified, the code which branches since it compares is generated to
a switch statement.

Only when code size becomes smaller when not specifying this option, the code which
used the jump table is generated.

-fnot_address_volatile -INAV

Function:

Supplement:

Notes:

Modify generated code

Does not handle the global variables specified by "#pragma ADDRESS" or "#pragma
EQU" or the static variables declared outside a function as those that are specified by
volatile.

If /O variables are optimized in the same way as for variables in RAM, the compiler
may not operate as expected. This can be avoided by specifying volatile for the I/O
variables.

Normally #pragma ADDRESS or #pragma EQU operates on I/O variables, so that even
though volatile may not actually be specified, the compiler processes them assuming
volatile is specified. This option suppresses such processing.

You do not normally need to use this option.

-87-

Appendix A Command Option Reference

-fnot_reserve_asm -INRA

Modify generated code

Function: Removes asm from the list of reserved words.

Supplement: "_asm" that has the same function is handled as a reserved word.

-fnot_reserve far and near -INRFAN

Modify generated code

Function: Removes far and near from list of reserved words.

Supplement: "_far" and "_near" that has the same function is handled as a reserved word.

-fnot_reserve inline -INRI

Modify generated code

Function: Does not handle inline as a reserved word.

Supplement: "_inline" that has the same function is handled as a reserved word.

-fsmall_array -fSA

Modify generated code

Function: When referencing a far-type array whose total size is unknown when compiling, this
option calculates subscripts in 16 bits assuming that the array's total size is within 64K

bytes.

Supplement: If when referencing array elements in a far-type array such as array data in ROM, the
total size of the far-type array is uncertain, the compiler calculates subscripts in 32 bits
in order that arrays of 64K bytes or more in size can be handled.

Take a look at the example below.

extern int arrayf]:
int i = array(j;

In this case, because the total size of the array array is not known to the compiler, the
subscript)" is calculated in 32 bits.

When this option is specified, the compiler assumes the total size of the array array is 64
K bytes or less and calculates the subscript "j" in 16 bits. As a result, the processing
speed can be increased and code size can be reduced.

Renesas recommends using this option whenever the size of one array does not exceed
64K bytes.

- 88 -

Appendix A Command Option Reference

-fswitch_other section -fSOS
Modify generated code

Function: This option outputs a ROM table for a 'switch' statement to some other section than a
program section.

Supplement: Section name is 'switch_table'

Notes: This option does not normally need to be used.

-fchange bank always -fCBA
Modify generated code

Function: This option allows you to write multiple variables to an extended area.(with #pragma
EXT4MPTR)

Supplement: Specify this option when you declare multiple pointer variables to a 4M bytes space
while at the same time using the #pragma EXT4MPTR feature.

Notes: This option cannot used simultaneously with the ““R8C* option.

-fauto_over 255 -fAO2
Modify generated code

Function: Changes the stack frame size per function that can be reserved to 64K bytes.
(The maximum value in the default of the stack frame is 255 bytes.)

Notes: 1. This option cannot be used in combination with #pragma SBDATA. If a file that
contains a description of #pragma SBDATA is compiled, the warning shown below is
output, with the description of #pragma SBDATA ignored.

[Warning(ccom):XX.c,line XX] compile option —fauto_over_255 is specified, #pragma
SBDATA was ignored.
=> #pragma SBDATA xxx;

2. Specify this option for the files described below.
a. When a function exists that requires a stack frame of 255 bytes or more (hereafter
referred to as function A)
==> Files in which function A is written

b. When an interrupt occurs while processing function A (hereafter referred to as
interrupt A) and a variable declared by #pragma SBDATA is accessed from
interrupt A

==> Files in which interrupt A is written

-89 -

Appendix A Command Option Reference

-fsizet 16 -fS16
Change the bit size of type definition
Function: Change the type definition size_t from type unsigned long to type unsigned int
Notes: If this option is selected,be sure to use one of the standard function libraries listed below
when linking.
® M16C/60series
nc30s16.1ib
® R8C/Tiny series
r8cs16.1ib
-fptrdifft 16 -fP16
Change the bit size of type definition
Function: Change the type definition ptrdiff_t from type signed long to type signed int
Notes: If this option is selected, be sure to use one of the standard function libraries listed below
when linking
® M16C/60 series
nc30s16.1ib
® R8CC/Tiny series
r8cs16.1ib
-fuse DIV -fuD

Modify generated code
Function: This option changes generated code for divide operation.

Supplement: For divide operations where the dividend is a 4-byte value, the divisor is a 2-byte value,
and the result is a 2-byte value or when the dividend is a 2-byte value, the divisor is a
1-byte value, and the result is a 1-byte value, the compiler generates div.w (divu.w) and
divb (divu.b) microcomputer instructions.

Notes: (1) If the divide operation results in an overflow when this option is specified, the
compiler may operate differently than stipulated in ANSI.

(2) The div instruction of the M16C has such a characteristic that when the operation
resulted in an overflow, the result becomes indeterminate. Therefore, when the
program is compiled in default settings by NC30, it calls a runtime library to
correct the result for this problem even in cases where the dividend is 4-byte, the
divisor is 2-byte, and the result is 2-byte.

-90 -

Appendix A Command Option Reference

-fuse MUL -flUM
Modify generated code

Function: This option changes generated code for multiplication operation.

Supplement: When 16 bitsx16 bits is stored in 32 bits, it should be Cast in 32 bits of the multiplier or
the multiplicand because it obtains the result of high rank 16 bits.
The result of 32bit can be obtained by specifying the option Cast.

-R8C

Modify generated code
Function: Generates code suitable for the R8C/Tiny series.
Supplement: The _fnear ROM (-fNROM) option is set by default.
Notes: This option cannot be used in combination with the following options.

If one of these options is specified, the option is ignored.
-ffar RAM(- fFRAM), -fno_carry(- fNC), -fchange_bank_always(- f{CBA)

-R8CE

Modify generated code
Function: Generates code suitable for the R8C/Tiny 2X series.
Notes: (1) This option cannot be used in combination with the following options. If one of

these options is specified, the option is ignored.
-fchange_bank_always(- f{CBA)
(20 When ROM area exceeds 64K boundary, it uses it.

-91-

Appendix A Command Option Reference

-fSB_auto -fSBA

Modify generated code

Function: Changes SB registers from one to another before generating SB relative, one function at
a time.

Supplement: Analyzes the number of times external variables are referenced in a function to generate

optimum SB relative addressing, one function at a time.

int sym;
nt a;
int data;
int b;
int func(void){
a :X;_) The address of _sym is made
Sym = XX, / the base point for SB relative.
sym=a *b;
if(sym '=0)
sym = sub0;
return sym;
§
int datal,data2;
1t sub(voi
]{n sub(void) / The address of _datal is
. made the base point for SB
datal = syml; relative
data2 = datal/2;)
datal = subl(data2);
}

(1) The address of the symbol that was made the base point for SB relative is stored in
the SB register.

(2) At the entry and exit to and from the function, code is generated for saving/restoring
the SB register.

(3) Only external variables are effective.

(4) This option cannot be used in combination with —OR, -OS, -OR_MAX, and
-OS_MAX.

-02 -

Appendix A Command Option Reference

A.2.7. Library Specifying Option
Table A.9 lists the startup options you can use to specify a library file.

Table A9 Library Specifying Option

Option Function
-libraryfilename Specifies a library file that is used by In30 when linking files.
-llibrary-file-name
pecifying a library file
Function: Specifies a library file that is used by In30 when linking files. The file extension can be
omitted.
Syntax: nc30A-1filenameA< C source file name>
Notes: (1) In file specification, the extension can be omitted. If the extension of a file is

omitted, it is processed assuming an extension ".lib".

(2) Ifyou specify a file extension, be sure to specify "lib".

(3 NC30 links by default a library "nc30lib.lib" in the directory that is specified in
environment variable LIB30. (If you specify multiple libraries, nc30lib.lib is given
the lowest priority as it is referenced.)

(4) If multiple libraries are specified, references to “nc30lib.lib” are assigned the lowest
priority.

-03 -

Appendix A Command Option Reference

A.2.8. Warning Options

Table A.10 shows the command line options for outputting warning messages for contraventions of nc30
language specifications.

Table A10 Warning Options

Option Short form Function

-Wall None Displays message for all detectable warnings.
(however, not including alarms output by -Wlarge_to_small
and "-Wno_used_argument")

-Weecom_max_warnings -WCMW This option allows you to specify an upper limit for the

= Warning Count number of warnings output by ccom30.

-Werror_file<file name> -WEF Outputs error messages to the specified file.

-Wlarge_to_small -WLTS Outputs a warning about the tacit transfer of variables in
descending sequence of size.

-Wmake_tagfile -WMT Outputs error messages to the tag file of source file by
source file.

-Wnesting_comment -WNC Outputs a warning for a comment including "*/" .

-Wno_stop -WNS Prevents the compiler stopping when an error occurs.

-Wno_used_argument -WNUA Outputs a warning for unused argument of functions.

-Wno_used_function -WNUF Displays unused global functions when linking.

-Wno_used_static_function -WNUSF For one of the following reasons, a static function name is
output that does not require code generation.

-Wno_warning_stdlib -WNWS Specifying this option while "-Wnon_prototype" or "-Wall" is
specified inhibits "Alarm for standard libraries which do not
have prototype declaration.

-Wnon_prototype -WNP Outputs warning messages for functions without prototype
declarations.

-Wstdout None Outputs error messages to the host machine's standard
output (stdout).

-Wstop_at_link -WSAL Stops linking the source files if a warning occurs during
linking to suppress generation of absolute module files. Also,
a return value "10" is returned to the host OS.

-Wstop_at_warning -WSAW Stops compiling the source files if a warning occurs during
compiling and returns the compiler end code "10".

-Wundefined_macro -WUM Warns you that undefined macros are used in #if.

-Wuninitialize_variable -WUV Outputs a warning about auto variables that have not been
initialized.

-Wunknown_pragma -WUP Outputs warning messages for non-supported #pragma.

-94 -

Appendix A Command Option Reference

-Wall

Warning Options
Function: Indicates all detectable alarms.
Supplement: (1) The alarms indicated here do not include those that may be generated when

“Wlarge_to_small(-WLTS)” and “Wno_used_argument(-WNUA)” and
“Wno_used_static_function(WNUSF)” are used.

(20 The alarms indicated here are equivalent to those of the options
“Wnon_prototype(-WNP),” “Wunknown_pragma(-WUP),”
“Wnesting comment(-WNC),” and “Wuninitialize_variable(WUV).”

(3 Alarms are indicated in the following cases too:
® When the assignment operator = is used in the if statement, the for

statement or a comparison statement with the && or | | operator.
® When "=="is written to which '=' should be specified.
® When function is defined in old format.

Notes: These alarms are detected within the scope that the compiler assumes on its judgment
that description is erroneous. Therefore, not all errors can be alarmed.

-Wccom max_warnings= Warning Count -WCMW= Warning Count
Warning Options

Function: This option allows you to specify an upper limit for the number of warnings output by
ccom30.

Supplement: By default, there is no upper limit to warning outputs.
Use this option to adjust the screen as it scrolls for many warnings that are output.

Notes: For the upper-limit count of warning outputs, specify a number equal to or greater than
0. Specification of this count cannot be omitted. When you specify 0, warning outputs are
completely suppressed inhibited.

-Werror _file <file-name>
Warning Options

Function: Outputs error messages to the specified file.
Syntax: nc30A-Werror_fileA<output error message file name>
Notes: The format in which error messages are output to a file differs from one in which error

messages are displayed on the screen. When error messages are output to a file, they are
output in the format suitable for the "tag jump function" that some editors have.

-05 -

Appendix A Command Option Reference

-Wlarge to small -WLTS
Warning Options

Function: Outputs a warning about the substitution of variables in descending sequence of size.

Supplement: A warning may be output for negative boundary values of any type even when they fit in
the type. This is because negative values are considered under language conventions to
be an integer combined with the unary operator (-).

For example, the value 32768 fits in the signed int type, but when broken into "?" and
"32768," the value 32768 does not fit in the signed int type and, consequently, becomes
the signed long type.

Therefore, the immediate value 32768 is the signed long type. For this reason, any
statement like "int 1 = 32768;" gives rise to a warning.

Notes: Because this option outputs a large amount of warnings, warning output is suppressed
for the type conversions listed below.
® Assignment from char type variables to char type variables
® Assignment of immediate values to char type variables
® Assignment of immediate values to float type variables

-Wmake tagfile -WMT
Warning Options

Function: Outputs error messages to the tag file of source-file by source-file, when an error or
warning occurs.

Supplement: This option with "-Werror_file (WEF)" option can’t specify.

-Wnesting comment -WNC
Warning Options

Function: Generates a warning when comments include "/*",

Supplement: By using this option, it is possible to detect nesting of comments.

-Wno_stop -WNS
Warning Options

Function: Prevents the compiler stopping when an error occurs.

Supplement: The compiler compiles the program one function at a time. If an error occurs when

compiling, the compiler by default does not compile the next function.

Also, another error may be induced by an error, giving rise to multiple errors. In such a
case, the compiler stops compiling.

When this option is specified, the compiler continues compiling as far as possible.

Notes: A system error may occur due to erroneous description in the program. In such a case,
the compiler stops compiling even when this option is specified.

-96-

Appendix A Command Option Reference

-Wno used argument -WNUA
Warning Options

Function: Outputs a warning for unused arguments function.

-Wno used function -WNUF
Warning Options

Function: Displays unused global functions when linking.

Notes: When selecting this option, be sure to specify the “finfo” option at the same time.

When -U option is specified when linking, this option is unnecessary.

-Wno used_static_function -WNUSF
Warning Options

Function: For one of the following reasons, a static function name is output that does not require
code generation.
® static functions are made inline by use of the "-Ostatic_to_inline(-OSTD"
option.
® The static function is not referenced from anywhere in the file.

Notes: (1) If any function name is written in an array initialize in the manner shown below,
the compiler will process the function assuming that it will be referenced, even
though it may not actually be referenced during program execution.

Example:
void (*a[5])(void) = {f1,f2,f3,f4,f5};

for(i=0; i< 3; i++) (*ali])(;

* In the above example, although functions 4 and f5 are not referenced, the compiler processes
these functions assuming that they will be referenced.

-Wno_ warning_stdlib -WNWS
Warning Options
Function: Specifying this option while "-Wnon_prototype" or "-Wall" is specified inhibits "Alarm for

standard libraries which do not have prototype declarations".

-97-

Appendix A Command Option Reference

-Wnon_prototype -WNP
Warning Options

Function: Outputs warning messages for functions without prototype declarations or if the
prototype declaration is not performed for any function.

Supplement: Function arguments can be passed via a register by writing a prototype declaration.
Increased speed and reduced code size can be expected by passing arguments via a
register. Also, the prototype declaration causes the compiler to check function
arguments. Increased program reliability can be expected from this.

Therefore, Renesas recommends using this option whenever possible.

-Wstdout
Warning Options

Function: Outputs error messages to the host machine's standard output (stdout).
Supplement: Use this option to save error output, etc. to a file by using Redirect.

Notes: In this Compiler, errors from assembler and linkage editor invoked by the
compile-driver are output to the standard output regardless of this option.

-Wstop_at link -WSAL
Warning Options

Function: Stops linking the source files if a warning occurs during linking to suppress generation
of absolute module files. Also, a return value "10" is returned to the host OS.

-Wstop at warning -WSAW

Warning Options

Function: Stops compiling the source files if a warning occurs during compiling and returns the
compiler end code "10."

Supplement: If a warning occurs when compiling, the compilation by default is terminated with the
end code "0" (terminated normally).
Use this option when you are using the make utility, etc. and want to stop compile
processing when a warning occurs.

-Wundefined macro -WUM
Warning Options

Function: Warns you that undefined macros are used in #if.

-08 -

Appendix A Command Option Reference

-Wuninitialize variable -WUV

Function:

Supplement:

Warning Options

Outputs a warning for uninitialized auto variables.
This option is effective even when "-Wall" is specified.

If an auto variable is initialized in conditional jump by, for example, a if or a for
statement in the user application, the compiler assumes it is not initialized.
Therefore, when this option is used, the compiler outputs a warning for it.

-Wunknown pragma -WUP

Function:

Supplement:

Notes:

Warning Options
Outputs warning messages for non-supported #pragma.
By default, no alarm is generated even when an unsupported, unknown "#pragma" is
uWSIi(eiil you are using only the NC-series compilers, use of this option helps to find

misspellings in "#pragma’.

When you are using only the NC-series compilers, Renesas recommends that this option
be always used when compiling.

-99 -

Appendix A Command Option Reference

A.2.9. Assemble and Link Options

Table A.11 shows the command line options for specifying as30 and In30 options.

Table A11 Assemble and Link Options

Option Function
-as30A< Option> Specifies options for the as30 link command. If you specify two or more
options, enclose them in double quotes.
-In30A< Option> Specifies options for the In30 assemble command. If you specify two or
more options, enclose them in double quotes.

-as30 "Option”

Assemble/link option

Function: Specifies as30 assemble command options
If you specify two or more options, enclose them in double quotes.

Syntax: nc30A-as30A" option1Aoption2' A< C source file>

Notes: DO not Specif}’ the aSSO OptiOnS U_‘"’ H_C", H_M"’ H_O"’ "_P", H_TH’ H_VN or H_X"‘

-In30 "Option"
Assembile/link option

Function: Specifies options for the In30 link command. You can specify a maximum of four options.
If you specify two or more options, enclose them in double quotes.

Syntax: nc30A-In30A" option 1Aoption2' A< C source file name>

Notes: Do not specify the In30 options "-.", "-G", "-O", "-ORDER", "-L", "-T", "-V" or '@ file".

- 100 -

Appendix A Command Option Reference

A.3. Notes on Command Line Options

A.3.1. Coding Command Line Options

The NC30 command line options differ according to whether they are written in uppercase or lowercase
letters.
Some options will not work if they are specified in the wrong case.

A.3.2. Priority of Options for Controlling

If you specify both the following options in the NC30 command line, the -S option takes precedence and only
the assembly language source files will be generated.

) "-c":Stop after creating relocatable module files.

) "-S":Stop after creating assembly language source files.

-101 -

Appendix B Extended Functions Reference

Appendix B Extended Functions Reference

To facilitate its use in systems using the M16C/60, M16C/30, M16C/Tiny, M16C/20, M16C/10 R8C/Tiny
series, NC30 has a number of additional (extended) functions.
This appendix B describes how to use these extended functions, excluding those related to language
specifications, which are only described in outline.

TableB.1 Extended Functions (1)

Extended feature

Description

near/far qualifiers

Specifies the addressing mode to access data.
near..... Access to an area within 64K bytes (0H to OFFFFH)
far....... Access to an area beyond 64K bytes (all memory areas).
* All functions take on far attributes.

asm function

(1) Assembly language can be directly included in C programs.
It can also be included outside functions.
Example: asm(" MOV.W #0, R0");
(2) You can specify variable names (within functions only).
Examplel:
asm(" MOV.W RO, $$[FB]"f);
Example2:
asm(" MOV.W RO, $$",s);
Example3:
asm("MOV.W R0, $@" f);
(3 You can include dummy asm functions as a means of partially
suppressing optimization (within functions only).
Example: asm();

Japanese characters

(1) Permits you to use Japanese characters in character strings.
Example:
" EF o
(2) Permits you to use Japanese characters for character constants.
Example:
L #
(3) Permits you to write Japanese characters in comments.
Example:
|* BEF
* Shift-JIS and EUC code are supported ,but can't use the half size
character of Japanese-KATA-KANA

Default argument declaration
for function

Default value can be defined for the argument of a function.
Examplel:
extern int func(int=1, char=0);
Example2:
extern int func(int=a, char=0);
* When writing a variable as a default value, be sure to declare the
variable used as a default value before declaring the function.
* Write default values sequentially beginning immediately after the
argument.

Inline storage class

Functions can be inline developed by using the inline storage class
specifier.inline.
Example:
inline func(int 1);
* Always be sure to define the body of an inline function before using the
inline function.

-102-

Appendix B Extended Functions Reference

TableB.2 Extended Functions (2)

Extended feature Description
Extension of Comments You can include C++like comments ("//").
Example:
/I This is a comment.
#pragma Extended functions | You can use extended functions for which the hardware of M16C/60,

M16C/30, M16C/Tiny, M16C/20, M16C/10 R8C/Tiny series in C
language.

macro assebler function

You can describe some assembler command as the function of C
Example:
char dadd_b(char vall, char val2);
Example:
int dadd_w(char vall, char val2);

-103-

B.1.

B.1.1.

B.1.2.

Appendix B Extended Functions Reference

Near and far Modifiers

For the M16C/60 series microcomputers, the addressing modes used for referencing and locating data vary
around the boundary address OFFFFH. NC30 allows you to control addressing mode switching by near and
far qualifiers.

Overview of near and far Modifiers
The near and far qualifiers select an addressing mode used for variables or functions.
* near modifier..........coeeeeererererennnens Area of 000000H to OOFFFFH
* far modifier.......c.coevveeeerererrnennnns Area of 000000H to OFFFFFH

The near and far modifiers are added to a type specifier when declaring a variable or function.If you do not
specify the near or far modifiers when declaring variables and functions, NC30 interprets their attributes as

follows:
*Variablesccoeeeeereerereineniennns near attribute
* const-qualified constants........... far attribute
* FUNCHIONS.....ovveevereeieneeieesienesienanees far attribute

Furthermore, NC30 allows you to modify these default attributes by using the startup options of compile
driver nc30.

Format of Variable Declaration

The near and far modifiers are included in declarations using the same syntactical format as the const and
volatile type modifiers. Figure B.1 is a format of variable declaration.

type specifier. near or far. variable;

Figure B.1 Format of Variable added near / far modifier

Figure B.2 is an example of variable declaration. Figure B.3 is a memory map for that variable

int near in_data;

int far if_data;
void func(void)
{

(remainder omitted)

Figure B.2 Example of Variable Declaration

-104-

Appendix B Extended Functions Reference

in_data T
- :| 2 bytes

near area
|

far area

_if data] |
2 bytes

Figure B.3 Memory Location of Variable

B.1.3. Format of Pointer type Variable

Pointer-type variables by default are the near-type (2-byte) variable. A declaration example of pointer-type
variables i1s shown in Figure B.4.

Example:

int *ptr;

Figure B.4 Example of Declarning a Pointer Type Variable (1)

Because the variables are located near and take on the pointer variable type near, the description in Figure
B.4 1s interpreted as in Figure B.5.

Example:

int near* near pitr;

Figure B5 Example of Declaring a Pointer Type Variable (2)
The variable ptr is a 2-byte variable that indicates the int-type variable located in the near area. The ptr
itself is located in the near area.

Memory mapping for the above example is shown in Figure B.6.

Figure B.6 shows memory maps for abobe example.

-105-

Appendix B Extended Functions Reference

int *ptr |

:| 2 bTytes
_ptr |

near area

|
:| 2 bytes

far area

I ptr

v

Figure B.6 Memory Location of Pointer type Variable

When "near and far" is explicitly specified, determine the size of the address at which to store the "variable
and function" that is written on the right side. A declaration of pointer-type variables that handle addresses

is shown in Figure B.7.

Examplel:
int far * ptrl;
Example2:

int *far ptr2;

Figure B.7 Example of Declarning a Pointer Type Variable (1)

As explained earlier, unless "near and far" is specified, the compiler handles the variable location as "near"
and the variable type as "far." Therefore, Examples 1 and 2 respectively are interpreted as shown in Figure

Bs.

Examplel:
int far*near ptrl;
Example2:

int near*far ptr2;

Figure B.8 Example of Declaring a Pointer Type Variable (2)

In Example 1, the variable ptrl is a 4-byte variable that indicates the int-type variable located in the far
area. The variable itself is located in the near area. In Example 2, the variable ptr2 is a 4-byte variable that
indicates the int-type variable located in the far area. The variable itself is located in the far area.

Memory mappings for Examples 1 and 2 are shown in Figure B.9.

-106-

Appendix B Extended Functions Reference

int far *ptrl | int near *far ptr2 |

A T
I *ptr2 :| 2 bytes

_ptrl 4 bytes |

near area
near area
far area
far area

*ptrl :| 2 bytes _ptr2 :| 2 bytes

Figure B.9 Memory Location of Pointer type Variable

B.1.4. Format of Function Declaration

A function's near and far allocation attributes are always far. If you specify the near attribute in function
declaration, the system outputs a warning message (function must be far) with your near declaration
ignored.

B.1.5. near and far Control by nc30 Command Line Options

NC30 handles the attribute of far and the variable as near with the attribute of the function if you do not
specify the near and far attributes. NC30's command line options allow you to modify the default attributes
of functions and variables (data). These are listed in the table below.

TableB.3 Command Line Options

Command Line Options Function
-fnear ROM(-fNROM) Assumes near as the default attribute of ROM data
-ffar RAM(-fFRAM) Assumes far as the default attribute of RAM data.

-107-

Appendix B Extended Functions Reference

B.1.6. Function of Type conversion from near to far

The program in Figure B.10 performs a type conversion from near to far.

int func(intfar *);
int far *f_ptr;
int near *n_ptr;
void main(void)
{
f_ptr=n_ptr; * assigns the near pointer to the far pointer */
(abbreviated)
funé (n_ptr); I* prototype declaration for function with far pointer to parameter */
[* specifies near pointer parameter at the function call */
}

Figure B.10 Type conversion from near to far

When converting type into far, 0 (zero) is expanded as high-order address.
B.1.7. Checking Function for Assigning far Pointer to near Pointer

When compiling, the warning message "assign far pointer to near pointer, bank value ignored" is output for
the code shown in Figure B.11 to show that the high part of the address (the bank value) has been lost.

int func(int near *);
int far *f_ptr;
int near *n_ptr;
void main(void)
{
n_ptr=f_ptr; * Assigns a far pointer to a near pointer */
(abbreviated)
func (f_pyr); I* prototype declaration of function */
[* with near pointer in parameter */
[* far pointer implicitly cast as near type */
n_ptr = (near *)f_ptr; [* far pointer explicitly cast */
[* as near type */
}

Figure B.11 Type conversion from far to near

The warning message "far pointer (implicitly) casted by near pointer" is also output when a far pointer is
explicitly cast as a near pointer, then assigned to a near pointer.

-108-

Appendix B Extended Functions Reference

B.1.8. Declaring functions

In NC30, functions are always located in the far area. Therefore, do not write a near declaration for
functions.

If a function is declared to take on a near attribute, NC30 outputss a warning and contin—ues processing by
assuming the attribute of that function is far. Figure B.12 shows a dis—play example where a function is
declared to be near.

%nc30 -S smp.c

M16C/60 Series NC30 COMPILER V.X.XX Release XX
Copyright(C) XXXX(XXXX-XXXX). Renesas Technology Corp.
and Renesas Solutions Corp., All rights reserved.

smp.c

[Warning(ccom):smp.c,line 3] function must be far

=_—==> {

func

%

Figure B.12 Example Declaration of Function

B.1.9. Function for Specifying near and far in Multiple Declarations

As shown in Figure B.13, if there are multiple declarations of the same variable, the type information for the
variable is interpreted as indicating a combined type.

externint faridata;

int idata;
int idata = 10;
void func(void)
{
(remainder omitted)

This Declaration is interpreted as the following:
externint far idata=10;

void func(void)

{

(remainder omitted)

Figure B.13 Integrated Function of Variable Declaration

As shown in this example, if there are many declarations, the type can be declared by specifying "near or
far" in one of those declarations. However, an error occurs if there is any contention between near and far
specifications in two or more of those declarations.

You can ensure consistency among source files by declaring "near or far" using a com—mon header file.

-109-

Appendix B Extended Functions Reference

common header file
common.h

I externint far data; I

C source file C source file
a.c b.c

#include “"common.h" #include "common.h"

| | | |
I | | [
I void main(void) : : . :
I { | I int data = 10; |
! data = 1; ! ! !
| | | |

Figure B.14 Example of Common header file Declaration

B.1.10. Notes on near and far Attributes

a. Notes on near and far Attributes of Functions

Functions always assume the far attribute. Do not declare functions with near. NC30 will output a warning
when you declare the near attribute for a function.

b. Notes on near and far Modifier Syntax

Syntactically, the near and far modifiers are identical to the const modifier.The following code therefore
results in an error.

int i, far j; < This is not permitted
v

int i;

int farj;

Figure B.15 Example of Variable Declaration

-110-

Appendix B Extended Functions Reference

B.2. asm Function

NC30 allows you to include assembly language routines (asm functions)! in your C source programs.
B.2.1. Overview of asm Function

The asm function is used for including assembly language code in a C source program. As shown in Figure
B.16, the format of the asm function is asm(" ");, where an assembly language instruction that conforms to
the AS30 language specifications is included between the double quote marks.

#pragma ADDRESS ta0_int 55H

char ta0_int;

void func(void)

{
(abbreviated)
ta0_int = 0x07; < Permits timer AQ interrupt
asm(" FSET I); < Setinterrupt enable flag

}

Figure B.16 Example of Description of asm Function (1/2)

Compiler optimization based on the positional relationship of the statements can be partially suppressed
using the code shown in Figure B.17.

asm();

Figure B.17 Example of Coding asm Function(2/2)

The asm function used in NC30 not only allows you to include assembly language code but also has the
following extended functions:
) Specifying the FB offset of storage class auto variables in the C program using the names of
the variables in C
) Specifying the register name of storage class register variables in the C program using the
names of the variables in C
° Specifying the symbol name of storage class extern and static variables in the C program
using the names of the variables in C
The following shows precautions to be observed when using the asm function.
® Do not destroy register contents in the asm function.
The compiler does not check the inside of the asm function. If registers are going to be
destroyed, write push and pop instructions using the asm function to save and restore the
registers.

1 For the purpose of expression in this user's manual, the subroutines written in the assembly language are referred to as assembler functions.
Those written with asm() in a C language program are referred to as asm functions or inline assemble description.

-111-

Appendix B Extended Functions Reference

B.2.2. Specifying FB Offset Value of auto Variable

The storage class auto and register variables (including arguments) written in the C language are
referenced and located as being offset from the Frame Base Register (FB). (They may be mapped to registers
as a result of optimization.)

The auto variables which are mapped to the stack can be used in the asm function by writing the program
as shown in Figure B.18 below.

asm(" op-code R1,$$[FB]", variable name);

Figure B.18 Descroption Format for Specifying FB Offset

Only two variable name can be specified by using this description format. The following types are supported
for variable names:

® Variable name

® Array name [integer]

® Struct name, member name (not including bit-field members)

void func(void)
{
int idata;
int a3
struct TAG{
int i;
int k;
}s;

asm MOVW RO, $$[FBJ', idata);
asmt MOVW RO, S$[FB", a2)):

asm" MOVW RO, $$[FBJ" s
(Remainder omitted)

asm(" MOVW $$[FBI, $$[FBT’ si, al2]);

Figure B.19 Description example for specifying

Figure B.20 shows an example for referencing an auto variable and its compile result.

-112-

Appendix B Extended Functions Reference

® C source file;

void func(void)

{
intidata = 1; < auto variable(FB offset value =-2)

asm(" MOVW $$[FB], RO", idata);

asm(" CMPW #00001H ,RO");
(remainder omitted)

® Assembly language source file (compile result):

FUNCTION func

FRAME AUTO (idata) size 2, offset -2
(abbreviated)

###C_SRC:asm(" MOVW $$[FB], R0", idata);

i ASM START
MOVW -2[FB], RO < Transfer FB offset value-2 to RO register
.line5

C_SRC : asm(" CMPW #00001H,R0");
CMPW #00001H ,RO

#HiH# ASM END
(remainder omitted)

Figure B.20 Example for Referencing an auto Variables

You can also use the format show in Figure B.21 so that auto variables in an asm function use a 1-bit field.
(Can not operate bit-fields og greater than 2-bits.)

asm(" op-code $b[FB]", bit field name);

Figure B.21 Format for Specifying FB Offset Bit Position.

You can only specify one variable name using this format. Figure B.22 is an example.

void func(void)
{
struct TAG{
char hit0:1;
char bitl:1;
char hit2:1;
char bit3:1;
}s;
asm(" bset $b[FB]",s.bit1);
}

Figure B.22 Example for Specifying FB Offset Position

Figure B.23 shows examples of referencing auto area bit fields and the result of compiling.

-113-

Appendix B Extended Functions Reference

® C source file;

void func(void)
{
struct TAG{
char bit0:1;
char bit1:1;
char bit2:1;
char bit3:1;
}s;
asm(" bset $b[FB]",s.bit1);
}

® Assembly language source file(compile result):

FUNCTION func
FRAME AUTO (__PAD1) size 1, offset -1
FRAME AUTO (s) size 1, offset -2
#i# # ARG Size(0) Auto Size(2) Context Size(8)
.section program,CODE,ALIGN
._file bit.c'
align
_line3
.glb _func
_func:
enter #02H
._line 10
A ASM START
bset 1,-2[FB];s
i ASM END
_line 11
exitd

Figure B.23 Example of Referencing auto Area Bit Field

When referencing a bit field in the auto area,you must confirm that it is located within the range that can be
referenced using bit operation instructions(within 32 bytes of the FB register value).

B.2.3. Specifying Register Name of register Variable

The storage class auto and register variables (including arguments) may be mapped to registers by the

compiler.

The variables mapped to registers can be used in the asm function by writing the program as shown in
Figure B.24 below.!

asm(" op-code $$", Variable name);

Figure B.24 Description Format for Register Variables

You can only specify two variable name using this format.Figure B.25 shows examples of referencing
register variables and the results of compiling.

1 *1 If the variables need to be forcibly mapped to registers using the register qualifier, specify the option -fenable_register (-fER) when compiling.

-114-

Appendix B Extended Functions Reference

® C Source file:

void func(void)

{
register int i=1; < Variable” i” is a register variable
asm(" mov.w $$,A10);

}

® Assembly language source file (compile result):
FUNCTION func
ARG Size(0) Auto Size(0) Context Size(4)

.section program,CODE,ALIGN

._file 'reg.c’
align
_line3
###C_SRC: {
glb _func
_func:
_line 4
C_SRC : register int i=1;
mov.w #0001H,RO ;i
._line 6
###C SRC:asm(" mov.w $$,A1");
A ASM START
mov.w RO,A1 < RO register is transferred to Al register
7 ASM END

Figure B.25 An Example for Referencing a Register Variable and its Compile Result

In NC30, register variables used within functions are managed dynamically. At anyone position, the register
used for a register variable is not necessarily always the same one. Therefore, if a register is specified
directly in an asm function, it may after compiling operate differently. We therefore strongly suggest using
this function to check the register variables.

B.2.4. Specifying Symbol Name of extern and static Variable

extern and static storage class variables written in C are referenced as symbols.
You can use the format shown in Figure B.26 to use extern and static variables in asm functions.

asm(" op-code R1,$", variable name);

Figure B.26 Description Format for Specifying Symbol Name

Only two variable name can be specified by using this description format. The following types are supported
for variable names:

® Variable name

® Array name [integer]

® Struct name, member name (not including bit-field members)

-115-

Appendix B Extended Functions Reference

int idata;

int a[3;

struct TAG{
int i;
int k;

}s;

void func(void)

{

asm MOVW RO, $%" idata);
asm MOVW RO, $$" a[2))

asm(" MOVW RO, $%", s.i);
(remainder omitted)

Figure B.27 Description example for specifying

See Figure B.28 for examples of referencing extern and static variables.

e C source file:
externint ext val; <extern variable

void func(void)

{
staticint s val; < static variable
asm(" movw #O1H$$"ext val);
asm(" movw #01H,$$"s_val);

}

e Assembly language source file(compile result):

_func:
_line 7
###C _SRC:asm(" mov.w #01H,$$" ext_val);
i ASM START
mov.w #01H,_ext val < Move to_ext val
. line 8
C_SRC : asm(" mov.w #01H,$$",s_val);
mov.w #01H, SO s val < Moveto SO e val
i ASM END
_line 9
##C SRC:}
rns
El:
glb _ext_val

section bss_NE,DATA
S0 _s val: ### C'snameis s_val

blkb 2

.END

Figure B.28 Example of Referencing extern and static Variables

You can use the format shown in Figure B.29 to use 1-bit bit fields of extern and static variables in asm
functions.(Can not operate bit-fields og greater than 2-bits.)

-116-

Appendix B Extended Functions Reference

asm(" op-code $b[FBY", hit field name);

Figure B.29 Format for Specifying Symbol Names

You can specify one variable name using this format. See Figure B.30 for an example.

struct TAG{
char bit0:1;
char bit1:1;
char hit2:1;
char bit3:1;
}s;
void func(void)
{
asm(" bset $b" s.bitl);
}

Figure B.30 Example of Specifying Symbol Bit Position

Figure B.31 shows the results of compiling the C source file shown in Figure B.30.

FUNCTION func
ARG Size(0) Auto Size(0) Context Size(4)
.section program,CODE,ALIGN
._file 'kk.c'
.align
._line 10
#t#C_SRC:{
.gb _func
_func:
_line11
#t# C_SRC : asm("bset $b",s.bitl);
HHHH# ASM START
bset 1, s < Reference to bitfield bit0 of structure s
HHH# ASM END
_line 12
###C_SRC:}
s
El:
.section bss_NO,DATA
gb _Ss
_s:
blkb 1
.END

Figure B.31 Example of Referencing Bit Field of Symbol

When referencing the bit fields of extern or static variables, you must confirm that they are located within
the range that can be referenced directly using bit operation instructions (within 0000H and 1FFFH).

-117-

Appendix B Extended Functions Reference

B.2.5. Specification Not Dependent on Storage Class

The variables written in C language can be used in the asm function without relying on the storage class of
that variable (auto, register!, extern, or static variable).

Consequently, any variable written in C language can be used in the asm function by writing it in the format
shown in Figure B.322

asm(" op-code RO, $@", variable name);

Figure B.32 Description Format Not Dependent on Variable's Storage Class

You can only specify one variable name using this format. Figure B.33 shows examples of referencing
register variables and the results of compiling.

® C source file:

externint e_val; <extern variable

void func(void)

{

int f val; . < auto variable

register int r_val; <register variable
staticint s _val; <static variable
asm(" mov.w #1, $@", e_val); < Reference to external variable
asm(" mov.w #2,$@", f_val); < Reference to auto variable
asm(" mov.w #3,$@", r_val); < Reference to register variable
asm(" mov.w #4,3@", s_val); < Reference to static variable
asm(" mov.w $@, $@", f val,r_val);

}

® Assembly language source file(compile result)
glb _func

_func:
enter #02H
pushm R1
.line 9

##C _SRC:asm(" mov.w #1, 3@", e_val);

At ASM START
mov.w #1, e val:1l6 < Reference to external variable
._line 10

###C SRC:asm(" mov.w #2,$@", f_val);
mov.w #2, -2[FB] < Reference to auto variable
_line 11

###C SRC:asm(" mov.w #3,$@", r_val);
mov.w #3,R1 < Reference to register variable
._line 12

###C _SRC:asm(" mov.w #4,$@", s_val);
mov.w #4, SO _s valllé < Reference to static variable
_line 13

###C _SRC:asm(" movw $@, $@", f_val,r_val),
mov.w -2[FB], R1
#HiHH ASM END

Figure B.33 Example for Referencing Variables of Each Storage Class

1 It does not restrict being assigned to a register, even if it specifies a register qualified.
2 Whether it is arranged at which storage class should actually compile, and please check it.

-118-

Appendix B Extended Functions Reference

B.2.6. Selectively suppressing optimization

In Figure B.34, the dummy asm function is used to selectively suppress a part of optimization.

#pragma ADDRESS port 02H
struct port{

char bit0:1;

char bit1:1;

char bit2:1;

char bit3:1;

char bit4:1;

char bit5:1;

char bit6:1;

char bit7:1; Optimization results in any steps to set
}port; . .

the two port bits separately being

void func(void) combined as one step.
{

port.bit0 = 0x01; L or.b #03H,_port

porthitl = 0x0L: Optimization >
}

port.bit0 = 0x01, S

[asm(); Fdummy?/_| Optimization > bset 00H, port
port.bitl = 0x01; bset 01H,_port
Optimization is suppressed.

Figure B.34 Example of Suppressing Optimization by Dummy asm

B.2.7. Notes on the asm Function

a. Extended Features Concerning asm functions
When using the asm function for the following processing, be sure to use the format shown in the coding

examples.

(1) Do not specify auto variables or parameters, or 1-bit bit fields using the offset from the frame base
register (FB). Use the format shown in Figure B.35 to specify auto variables and parameters.

asm(" MOVW #01H$$[FB]", i); < Format for referencing auto variables
asm(" BSET $H[FB]", s.hit0); < Format for checking auto bit fields

Figure B.35 Example Coding of asm Function (1/2)

(2) You can specify the register storage class in NC30. When register class variables are compiled with
option -fenable_register (-fER), use the format shown in Figure B.36 for register variables in asm
functions.

asm(" MOVW #0,$%", i); < Format for checking register variables

Figure B.36 Example Coding of asm Function (2/2)

-119-

Appendix B Extended Functions Reference

Note that, when you specify option -O[1-5], -OR, -OS, -OR_MAX, or -OS_MAX, parameters passed via the
registers may, to improve code efficiency, be processed as register variables rather than being moved to the
auto area. In this case, when parameters are specified in an asm function, the assembly language is output
using the register names instead of the variable's FB offset.

(3) When referencing arguments in the asm function
The compiler analyzes program flow in the interval in which variables (including arguments and auto
variables) are effective, as it processes the program. For this reason, if arguments or auto variables are
referenced directly in the asm function, management of such effective interval is destroyed and the compiler
cannot output codes correctly.
Therefore, to reference arguments or auto variables in the asm function you are writing, always be sure to
use the "3, $b, $@" features of the asm function.

void func(inti,intj)
{

asm (" mov.w 2[FB]A[FB]"); Fj=i*
}

Figure B.37 Example cannot be referred to correctly

In the above case, because the compiler determines that "i" and "j" are not used within the function func, it
does not output codes necessary to construct the frame in which to reference the arguments. For this reason,
the arguments cannot be referenced correctly.

(4) About branching within the asm function

The compiler analyzes program flow in the intervals in which registers and variables respectively are
effective, as it processes the program. Do not write statements for branching (including conditional
branching) in the asm function that may affect the program flow.

-120-

Appendix B Extended Functions Reference

b. About Register

° Do not destroy registers within the asm function. If registers are going to be destroyed, use push and

pop instructions to save and restore the registers.
° NC30 is premised on condition that the SB register is used in fixed mode after being initialized by

the startup program. If you modified the SB register, write a statement to restore it at the end of
consecutive asm functions as shown in Figure B.38.

asm(" .SB 0);
asm(" LDC #0H, SB"); < SB changed
asm(" MOVW RO, _port[SB]");
(abbreviated)
asm(" .SB. _SB)
asm(" LDC #_ SB__,SBY); <SB returned to original state

Figure B.38 Restoring Modified Static Base (SB) register
° Do not modified the FB register by the asm functions, because which use for the stack flame pointer.

c. Notes on Labels

The assembler source files generated by NC30 include internal labels in the format shown inFigure B.39.
Therefore, you should avoid using labels in an asm function that might result in duplicate names.

® |abels consisting of one uppercase letter and one or more numerals

Examples: Al:
C9830:

® | abels consisting of two or more characters preceded by the underscore ()

Examples: __ LABEL:
___START

Figure B.39 Label Format Prohibited in asm Function

-121-

B.3.

B.3.1.

B.3.2.

Appendix B Extended Functions Reference

Description of Japanese Characters

NC30 allows you to include Japanese characters in your C source programs. This chapter describes how to
do so.

Overview of Japanese Characters

In contrast to the letters in the alphabet and other characters represented using one byte, Japanese
characters require two bytes. NC30 allows such 2-byte characters to be used in character strings, character
constants, and comments. The following character types can be included:

) kanji

[hiragana

) full-size katakana
) half-size katakana

Only the following kanji code systems can be used for Japanese characters in NC30.
° EUC (excluding user-defined characters made up of 3-byte code)
® Shift JIS (SJIS)

Settings Required for Using Japanese Characters
The following environment variables must be set in order to use kanji codes. default specifies:
) Environment variable specifying input code system NCKIN
) Environment variable specifying output code system NCKOUT

Figure B.40 is an example of setting the environment variables.

Include the following in your autoexec.bat file:

set NCKIN=SJIS
set NCKOUT=SJIS

Figure B.40 Example Setting of Environment Variables NCKIN and NCKOUT
In NC30, the input kanji codes are processed by the cpp30 preprocessor. cpp30 changes the codes to EUC

codes. In the last stage of token analysis in the ccom30 compiler, the EUC codes are then converted for
output as specified in the environment variable.

-122-

B.3.3.

Appendix B Extended Functions Reference

Japanese Characters in Character Strings

Figure B.41 shows the format for including Japanese characters in character strings.

L"EFXFH"

Figure B.41 Format of Kanji code Description in Character Strings

If you write Japanese using the format L"#EF I F ¥||* as with normal character strings, it is processed
as a pointer type to a char type when manipulating the character string. You therefore cannot manipulate

them as 2-byte characters.
To process the Japanese as 2-byte characters, precede the character string with L and process it as a pointer

type to a wchar_t type. wehar_t types are defined (typedef) as unsigned short types in the standard header
file stdlib.h.

Figure B.42 shows an example of a Japanese character string.

#include <stdlib.h>

void func(void)

{
wchar_t JC[4]=L" ZFF| " <[
(remainder omitted)

Figure B.42 Example of Japanese Character Strings Description

Figure B.43 is a memory map of the character string initialized in (1) in Figure B.42.

Jc[o] i
JC[1] =
8bytes
2] |
JC[3] NULL
address
higher

Figure B.43 Memory Location of wchar_t Type Character Strings

-123-

Appendix B Extended Functions Reference

B.3.4. sing Japanese Characters as Character Constants

Figure B.44 shows the format for using Japanese characters as character constants.

L E

Figure B.44 Format of Kanji code Description in Character Strings

As with character strings, precede the character constant with L and process it as a wchar_t type. If, as in
"#=F ', you use two or more characters as the character constant, only the first character " 2 " becomes
the character constant. Figure B.45 shows examples of how to write Japanese character constants.

#include <stdlib.n>

void func(void)

{
wchar_t JC[5];

Jojoj=L' X
=L =
R =L =
JCE|=L &

=

(remainder omitted)

Figure B.45 Format of Kanji Character Constant Description

Figure B.46 is a memory map of the array to which the character constant in Figure B.45 has been assigned.

JC[o] <
Jcy s
JC2] = 10bytes
JC3 £
JCH4] NULL
|
address
higher

Figure B.46 Memory Location of wchar_t Type Character Constant Assigned Array

-124-

Appendix B Extended Functions Reference

B.4. Default Argument Declaration of Function
NC30 allows you to define default values for the arguments of functions in the same way as with the C++
facility. This chapter describes NC30's facility to declare the default arguments of functions.

B.4.1. Overview of Default Argument Declaration of Function

NC30 allows you to use implicit arguments by assigning parameter default values when declaring a
function's prototype. By using this facility you can save the time and labor that would otherwise be required
for writing frequently used values when calling a function.

B.4.2. Format of Default Argument Declaration of Function

Figure B.47 shows the format used to declare the default arguments of a function.

Storage class specifier. Type declarator. Declarator(([Dummy argument[=Default value or variable],...]);

Figure B.47 Format for declaring the default arguments of a function

Figure B.48 shows an example of declaration of a function, and Figure B.49 shows a result of compiling of
sample program which shows atFigure B.48.

int func(inti=1, intj=2); < Declares the default values of parameters in the arguments to
the function func as first argument: 1 and second argument: 2.

void main(void)

{
func(); < The actual argument consists of the first argument: 1 and the second argument: 2.
func(3); < The actual argument consists of the first argument: 3 and the second argument: 2.
func(3,5); < The actual argument consists of the first argument: 3 and the second argument: 5.

}

Figure B.48 Example for declaring the default arguments of a function

-125-

Appendix B Extended Functions Reference

##C_SRC: {
glb _main

_main:
_line 5

#HH#C_SRC: func();
mov.w #0002H,R2 < second argument :2
mov.w #0001H,R1 & firstargument 1
jsr $func
._line 6

#HH#C_SRC: func(3);
mov.w #0002H,R2 < second argument :2
mov.w #0003H,R1 < firstargument :3
jsr $func
._line 7

###C_SRC: func(3,5);
mov.w #0005H,R2 < second argument :5
mov.w #0003H,R1 < firstargument 3
jsr $func
._line 8

###C _SRC: }
ns
(omitted)

Note) In NC30, arguments are stacked in revere order beginning with the argument that is declared last in the function.
In this example, arguments are passed via registers as they are processed.

Figure B.49 Compiling Result of smpl.c(smp1.a30)

A variable can be written for the argument of a function.Figure B.50 shows an example where default
arguments are specified with variables. Figure B.51 shows a compile result of the sample program shown
inFigure B.50.

int near sym;
int func(inti=sym); < Default argument is specified with a variable.
void main(void)
{
func(); < Function is called using variable (sym) as argument.
}
(omitted)

Figure B.50 Example for specifying default argument with a variable (smp2.c)

_main:
._line 6
mov.w _sym,R1 < Function is called using variable (Sym) as argument.
jsr $func
_line 7
rns

Figure B.51 Compile Result of smp2.c (smp2.a30)

-126-

Appendix B Extended Functions Reference

B.4.3. Restrictions on Default Argument Declaration of Function

The default argument declaration of a function is subject to some restrictions as listed below. These

restrictions must be observed.

a. When specifying a default value for multiple arguments

When specifying a default value in a function that has multiple arguments, always be sure to write values
beginning with the last argument. Figure B.52 shows examples of incorrect description.

void
void
void
void

funcl(inti, int j=1, int k=2);
func2(int i, int j, int k=2);
func3(inti=0, intj, int k);
func4(inti=0, intj, intk = 1);

FFFF

correct */
correct ¥/
incorrect */
incorrect */

Figure B.52 Examples of Prototype Declaration

b. When specifying a variable for a default value

When specifying a variable for a default value, write the prototype declaration of a function after declaring
the variable you specify. If a variable is specified for the default value of an argument that is not declared
before the prototype declaration of a function, it is processes as an error.

-127-

Appendix B Extended Functions Reference

B.5. inline Function Declaration

NC30 allows you to specify the inline storage class in the similar manner as in C++. By specifying the inline
storage class for a function, you can expand the function inline.This chapter describes specifications of the
inline storage class.

B.5.1. Overview of inline Storage Class

The inline storage class specifier declares that the specified function is a function to be expanded inline. The
inline storage-class specifier indicates to a function that the function declared with it is to be expanded
in-line. The functions specified as inline storage class have codes embedded directly in them at the assembly
level.

B.5.2. Declaration Format of inline Storage Class

The inline storage class specifier must be written in a syntactically similar format to that of the static and
extern-type storage class specifiers when declaring the inline storage class. Figure B.53 shows the format
used to declare the inline storage class.

inline. type specifier. function;

Figure B.53 Declaration Format of inline Storage Class

Figure B.54 shows an example of declaration of a function.

inlineint func(int i) < Prototype declaration of function
{
return i++;
}
void main(void)
{
int S;
s =func(s); < Definition of body of function
}

Figure B.54 Example for Declaring inline Storage Class

-128-

Appendix B Extended Functions Reference

.SECTION program,CODE,ALIGN
._file 'sample.c’
align
_line 7
#H#C_SRC: {
.glb _main
_main:
enter #02H
pushm R1
[—————— ne___10__ _ _ ___ _________ |
| ###C_SRC: s =func(s); |
| mov.w 2[FBLR1 ; s |
I ._line 3 |
: ###C_SRC: return i++; : < Inline storage class have codes
| mov.w RO,R1 | embedded directly
| add.w #0001H,R1 |
I ._line 10 I
l ###C_SRC: s =func(s); :
LT movw _ RO2FB] ; s ____ ____ _]
_line i
###C_SRC: }
popm R1
exitd
El:
.END

Figure B.55 Compile Result of sample program (smp.a30)

B.5.3. Restrictions on inline Storage Class
When specifying the inline storage class, pay attention to the following :
(1) Regarding the parameter of inline functions
The parameter of an in line function cannot be used by “structure” and “union”.It becomes a compile error.
(2) Regarding the indirect call of inline functions
The indirect call of an in line function cannot be carried out.It becomes a compile error when a indirect call is
described.
(3) Regarding the recursive call of inline functions
The recursive call of an in line function cannot be carried out.It becomes a compile error when a recursive
call is described.
(4) Regarding the definition of an inline function

When specifying inline storage class for a function, be sure to define the body of the function before calling it.
Make sure that this body definition is written in the same file as the function is written . The description in
Figure B.56 is processed as an error in NC30.

-129-

Appendix B Extended Functions Reference

inline void func(int i);
void main(void)

func(1);

[Error Message]

[Error(ccom):sample.c,line 5] inline function's body is not declared previously
===> func(1);

Sorry, compilation terminated because of these errors in main().

Figure B.56 Example of inappropriate code of inline function (1)

Furthermore, after using some function as an ordinary function if you define that function as an inline
function later, NC30 becomes an error. (See Figure B.57.)

int func(int i);
void main(void)
{

func(1);
}
inlineint func(int i)
{

return i;
}
[Error Message]
[Error(ccom):in.c,line 9] inline function is called as normal function before

Figure B.57 Example of inappropriate code of inline function (2)

(5) Regarding the address of an inline function

The inline function itself does not have an address. Therefore, if the & operator is used for an inline function,
the software assumes an error. Figure B.58

-130-

Appendix B Extended Functions Reference

inlineint func(int i)

{
retuni;

}

void main(void)

{
int (*H(int);
f = &func;

}

[Error Message]

[Error(ccom):sample.c,line 10] can't get inline function's address by '&' operator
===>f=&func;

Sorry, compilation terminated because of these errors in main().

Figure B.58 Example of inappropriate code of inline function (3)

(6) Declaration of static data

If static data is declared in an inline function, the body of the declared static data is allocated in units of files.
For this reason, if an inline function consists of two or more files, this results in accessing different areas.
Therefore, if there is static data you want to be used in an inline function, declare it outside the function. If a
static declaration is found in an inline function, NC30 generates a warning. Renesas does not recommend

entering static declarations in an inline function. Figure B.59

inlineint func(intj)

{
staticint i=0;
i+
return i+ j;

}

[Warning Message]
[Warning(ccom):smp.c,line 3] static valuable in inline function
===> static int i=0;

Figure B.59 Example of inappropriate code of inline function (4)

(7) Regarding debug information

NC30 does not output C language-level debug information for inline functions. Therefore, you need to debug

inline functions at the assembly language level.

-131-

Appendix B Extended Functions Reference

B.6. Extension of Comments

NC30 allows comments enclosed between "/*" and "*/" as well as C++-like comments starting with "//".
B.6.1. Overview of "//" Comments

In C, comments must be written between "/*" and "*/". In C++, anything following "//"
B.6.2. Comment"//" Format

When you include "//" on a line, anything after the "//" is treated as a comment.
Figure B.60 shows comment format.

/I comments

Figure B.60 Comment Format

Figure B.61 shows example comments.

void func(void)

{ inti; f* This is commentes *//
int j; /l This is commentes
(omitted)

} :

Figure B.61 Example Comments

B.6.3. Priority of "//" and "/*"

The priority of "/" and "/*" is such that the one that appears first has priority.

Therefore, a "/*" written between a "/" to the new-line code does not have an effect as signifying the
beginning of a comment. Also, a "//" written between "/*" and "*/" does not have an effect as signifying the
beginning of a comment.

-132-

Appendix B Extended Functions Reference

B.7. #pragma Extended Functions

B.7.1. Index of #pragma Extended Functions

Following index tables show contents and formation for #pragma! extended functions.

a. Using Memory Mapping Extended Functions

TableB4 Memory Mapping Extended Functions

Extented function Description

#pragma ROM Maps the specified variable to rom
Syntax : #pragma ROM variable_name
Example : #pragma ROM val
® This facility is provided to maintain compatibility with NC77 and

NC79.
® The variable normally must be located in the rom section using the
const qualifier.
#pragma BIT Declares that the external variable resides in an area where a 1-

bit manipulate instruction can be used in 16-bit absolute ad-dressing
mode (.e., a variable residing in addresses from
00000H to 01FFFH).

Syntax : #pragma BIT variable name

Example : #pragma BIT bit_data

#pragma SBDATA Declares that the data uses SB relative addressing.
Syntax : #pragma SBDATA variable name
Example : #pragma SECTION bss nonval_data

#pragma SECTION Changes the section name generated by NC30
Syntax : #pragma SECTION section_name new_section_name
Example : #pragma SECTION bss nonval_data

#pragma STRUCT (1) Inhibits the packing of structures with the specified tag
Syntax : #pragma STRUCT structure_tag unpack
Example : #pragma STRUCT TAG1 unpack
(2) Arranges members of structures with the specified tag and maps
even sized members first
Syntax : #pragma STRUCT structure_tag arrange
Example : #pragma STRUCT TAG1 arrange

#pragma EXT4MPTR A functional extension which shows a variable is a pointer accessing
4-Mbyte expanded space ROM.

Syntax : #pragma EXT4MPTR variable name

Example : #pragma EXT4MPTR sym

_ext4mptr A functional extension which shows a variable is a pointer accessing
4-Mbyte expanded space ROM.

Syntax : _ext4mptr variable name

Example : _ext4mptr sym

1 In the previous versions, words following #pragma (For example, ADDRESS, INTERRUPT, ASM ,etc.)specifying a directive function (abbreviate
as subcommand) needed to be described in uppercase. Inthis version, subcommand are case-independence, in which uppercase and lowercase are
considered to be equivalent.

-133-

Appendix B Extended Functions Reference

b. Using Extended Functions for Target Devices

TableB.5 Extended Functions for Use with Target Devices (1)

Extended function Description
#pragma ADDRESS Specifies the absolute address of a variable. For near variables, this
specifies the address within the bank.
Syntax : #pragma ADDRESS variable-name absolute-address
Example : #pragma ADDRESS port0 2H
#pragma BITADDRESS A variable is assigned to the bit position which the specified absolute
address specified.
Syntax: #pragma BITADDRESS variablename bit-position,
absolute-address
Example : #pragma BITADDRESS 10 1,100H
#pragma INTCALL Declares a function written in assembler called in a software interrupt
(int instruction).
By specifying switch [/c] it is possible to generate code to need the register
to saving it to a stack at entry when calling the function.(only for
NC308WA)
Syntax : #pragma INTCALL [/C] INT-No.. functionname(registe-
name)
Example : #pragma INTCALL 25 func(R0, R1)
Example : #pragma INTCALL /C 25 func(RO, R1)
Syntax : #pragma INTCALL INT-No. function-name()
Example : #pragma INTCALL 25 func(
Example : #pragma INTCALL /C 25 func()
® Always be sure to declare the prototype of the function before entering
this declaration.
#pragma INTERRUPT Declares an interrupt handling function written in C language. This

declaration causes code to perform a procedure for the interrupt handling
function to be generated at the entry or exit to and from the function.
Furthermore, by specifying switch /B it is possible to switch the register to
a back register instead of saving it to a stack when calling the function.
Syntax :

#pragma INTERRUPT [/B|/E | /V] interrupt-handling-function-name
#pragma INTERRUPT [/B|/E] interrupt-vector-number.
interrupt-handlingfunction-name

Example :

#pragma INTERRUPT int_func
#pragma INTERRUPT /B int_func
#pragma INTERRUPT 10 int func
#pragma INTERRUPT /E 10 int_func
#pragma INTERRUPT int_func (vect=10)
#pragma INTERRUPT /V int_func(

-134-

Appendix B Extended Functions Reference

TableB.6 Extended Functions for Use with Target Devices (2)

Extended function Description
#pragma PARAMETER Declares that, when calling an assembler function, the parameters are
passed via specified registers.
By specifying switch [/c] it is possible to generate code to need the register
to saving it to a stack at entry when calling the function.(only for
NC308WA)
Syntax : #pragma PARAMETER [/C] function name
(register_name)
Example : #pragma PARAMETER asm_func(RO,R1)
Example : #pragma PARAMETER /C asm_func(R0O,R1)
® Always be sure to declare the prototype of the function before entering
this declaration.
#pragma SPECIAL Declares special page subroutine call functions.

By specifying switch [/c] it is possible to generate code to need the register
to saving it to a stack at entry when calling the function.(only for
NC308WA)
Syntax :
#pragma SPECIAL [/C] number. function-name()
#pragma SPECIAL [/C] function-name(vect=number)
Example :
#pragma SPECIAL 30 func(
#pragma SPECIAL /C 30 func(
#pragma SPECIAL func() (vect=30)
#pragma SPECIAL /C func) (vect=30)

c. Using MR30 Extended Functions

Table B.7 Extended Functions for MR30

Extended function

Description

#pragma ALMHANDLER

Declares the name of the Realtime Operating System for M16C series
alarm handler function

Syntax : #pragma ALMHANDLER function-name

Example : #pragma ALMHANDLER alm_func

#pragma CYCHANDLER

Declares the name of the Realtime Operating System for M16C series cycle
start handler function

Syntax : #pragma CYCHANDLER function-name

Example : #pragma CYCHANDLER cyc_func

#pragma INTHANDLER
#pragma HANDLER

Declares the name of the Realtime Operating System for M16C series
interrupt handler function
Syntax1 : #pragma INTHANDLER function-name
#pragma INTHANDLER [/E] function-name
Syntax2 : #pragma HANDLER function-name
#pragma HANDLER [/E] function-name
Example : #pragma INTHANDLER int_func

#pragma TASK

Declares the name of the Realtime Operating System for M16C series task
start function

Syntax : #pragma TASK task-start-function-name

Example : #pragma TASK task1

Supplement: The above extended function normally is generated by the configurator, so that the user
need not be concerned with it.

-135-

Appendix B Extended Functions Reference

d. The Other Extensions

Table B.8 Using Inline Assembler Description Function

Extended feature Description
#pragma ASM Specifies an area in which statements are written in assembly language.
#pragma ENDASM Syntax #pragma ASM

#pragma ENDASM
Example : #pragma ASM
mov.iw RO,R1
addw R1,02H
#pragma ENDASM

#pragma JSRA Calls functions using JSR.A as the JSR instruction.
Syntax : #pragma JSRA function-name
Example : #pragma JSRA func

#pragma JSRW Calls functions using JSR.W as the JSR instruction.
Syntax : #pragma JSRW function-name
Example : #pragma JSRW func

#pragma PAGE Indicates a new-page point in the assembler listing file.
Syntax : #pragma PAGE
Example : #pragma PAGE

#pragma _ ASMMACRO Declares defined a function by assembler macro.
Syntax : #pragma _ ASMMACRO. function-name(register name,

Example : #pragma _ ASMMACRO mul(RO,R1)

-136-

Appendix B Extended Functions Reference

B.7.2. Using Memory Mapping Extended Functions

NC30 includes the following memory mapping extended functions.

#pragma ROM

Function: Maps specified data (variable) to rom section
Syntax: #pragma ROM. variable_name
Description: This extended function is valid only for variables that satisfy one or other of the
following conditions:
® Non-extern variables defined outside a function (Variables for which an area
is secured)

® Variables declared as static within the function

Rules: (1) Ifyou specify other than a variable, it will be ignored.
(2) No error occurs if you specify #pragma ROM more than once.
(3 The data is mapped to a rom section with initial value 0 if you do not include
aninitialization expression.

Example: [C language source program]
#ipragma ROM i
unsigned int i; < Variable i, which satisfies condition[1]
void func(void)
{ staticint i=20; < Variable i, which satisfies condition[2]
(rerﬁainder omitted)

[Assembly language source program]

SECTION rom_NE,ROMDATA

__ SO i Csnameisi < Variable i, which satisfies condition[2]
.word 0014H
.ghb i

i < Variable i, which satisfies condition[1]
.byte O0H
byte OOH

Figure B.62 Example Use of #pragma ROM Declaration

Note: This facility is provided to maintain compatibility with NC77 and NC79. The variable
normally must be located in the rom section using the const modifier.

-137-

Appendix B Extended Functions Reference

#pragma BIT

SB Relative Addressing Using Variable Description Function

Function: Declares an external variable that exists in an area where a one-bit manipulate
Instruc-tion can be used in 16-bit absolute addressing mode.

Syntax: #pragma BIT variable_name

Description: The M16C/60 series allows you to use a one-bit manipulate instruction for external
vari-ables located in an area of addresses 00000H to 0O1FFFH in a ROM efficient, 16-bit
absolute addressing mode.

The variable declared by #pragma BIT is assumed to be present in an area where a
one-bit manipulate instruction can be operated on it directly.

Rules: (1) If#pragma BIT is used for anything other than an external variable, it is ignored
as invalid.
(2) When an external variable is declared in #pragma BIT and also has a bit width of
1 bit, always directly output 1-bit instructions.
It is therefore the user's responsibility to ensure that, when #pragma BIT
declarations are included, the variables are mapped between 0 and O1FFFH.

Example: #pragma BIT bit_data

struct bit_data{
char bit0:1;
char bit1:1;
char bit2:1;
char bit3:1;
char bit4:1;
char bit5:1;
char bit6:1;
char bit7:1;

Jbit_data;

func(void)

{
bit_data.bitl =0;

Figure B.63 Example Use of #pragma BIT Declaration

Note: 1-bit instructions are generated under the following either conditions:

(1) When a -fbit(-fB) option is specified and the object to be operated on is a near-type
variable

(22When the object to be operated on is a variable declared by #pragma SBDATA

(3)When the object to be operated on is a variable declared by #pragma ADDRESS and
the variable is located somewhere between address 0000H to address 01FFFH

(49\When the object to be operated on is a variable declared by #pragma BIT

(5)Variables mapped to areas within 32 bytes of the value of the FB register.

-138-

Appendix B Extended Functions Reference

#pragma SBDATA
SB Relative Addressing Using Variable Description Function
Function: Declares that the data uses SB relative addressing.
Syntax: #pragma SBDATA. valuable-name
Description: The M16C/60 series allows you to choose instructions that can be executed efficiently by

using SB relative addressing. #pragma SBDATA declares that SB relative addressing
can be used for the variable when referencing data. This facility helps to generate
ROM-efficient code.

Rules: (3) The variable declared to be #pragma SBDATA is declared by the assembler's

pseudo-instruction .SBSYM.

(4) If#pragma SBDATA is specified for anything other than a variable, it is ignored as
invalid.

(5) If the specified variable is a static variable declared in a function, the #pragma
SBDATA declaration is ignored as invalid.

(6) The variable declared to be #pragma SBDATA is placed in a SBDATA attribute
section when allocating memory for it.

(7) As opposed to the same variable #pragma SBDATA cannot be specified
simultaneously.

(8 If#fpragma SBDATA is declared for ROM data, the data is not placed in a SBDATA
attribute section!

Example: #pragma SBDATA sym_data

struct sym_data{
char bit0:1;
char bitl:1;
char bit2:1;
char bit3:1;
char bit4:1;
char bits:1;
char hit6:1;
char bit7:1;

}sym_data;

void func(void)

{
sym_data.bitl = 0;
(omitted)

Figure B.64 Example Use of #pragma SBDATA Declaration

Note: NC30 is premised on an assumption that the SB register will be initialized after reset
and will thereafter be used as a fixed quantity.

1 Do not write a #pragma SBDATA declaration for ROM data.

-139-

Appendix B Extended Functions Reference

#pragma SECTION

Change section name
Function : Changes the names of sections generated by NC30
Syntax : #pragma SECTION. section name. new section nam

Description : Specifying the program section, data section and rom section in a #pragma SECTION

declaration changes the section names of all subsequent functions.
Specifying a bss section in a #pragma SECTION declaration changes the names of all
data sections defined in that file.
If you need to add or change section names after using this function to change section
names, change initialization, etc., in the startup program for the respective sections.

® You can specify “#pragma SECTION data” and ‘“#pragma section program”

two or more times in one file.
® All other sections cannot have their names changed twice or more.

Example : [C source program]

#pragma SECTION program prol < Changes name of program section to prol
void func(void);

(remainder omitted)

[Assembly language source program]

##Ht FUNCTION func
.section prol < Maps to prol section
.file 'smp.c'
._line 9
glb _func
func:

[Change name of data section from data to datal]

#pragma SECTION data datal

int i < Maps to datal_NE section
void func(void)
{
(remainder omitted)
}
#ipragma SECTION data data2
int i < Maps to data2_NE section */
void sub(void)
{
(remainder omitted)}
}

Figure B.65 Example Use of #pragma SECTION Declaration

Supplement: When modifying the name of a section, note that the section's location attribute (e.g.,
_NE or NE is added after the section name.

-140-

Appendix B Extended Functions Reference

#pragma SECTION

Note :

Change section name

In this compiler V.3.10 or earlier, the data and rom sections, as with the bss section,
could only have their names altered in file units. For this reason, the programs created
with V.3.10 or earlier require paying attention to the position where #PRAGMA
SECTION is written. String data is output with the rom section name that is last
declared.

-141-

Appendix B Extended Functions Reference

#pragma STRUCT
Control structure mapping
Function : (1) Inhibits packing of structures
(2) Arranges structure members
Syntax : (1) #pragma STRUCT. structure_tag. unpack
(2) #pragma STRUCT. structure_tag. arrange
Description In NC30, structures are packed. For example, the members of the structure in Figure
and B.66 are arranged in the order declared without any padding.
Examples :
struct s { Member Type Size Mapped
int i; name location
char ¢; (offset)
int j; i int 16hits 0
kh c char 8bits 2
i int 16bits 3

Figure B.66 Example Mapping of Structure Members (1)

Rules : (1) Inhibiting packing
This NC30 extended function allows you to control the mapping of structure
members.Figure B.67 is an example of mapping the members of the structure in
Figure B.66 using #pragma STRUCT to inhibit packing.

struct s { Member Type Size Mapped
int i; name location
char c; (offset)
int j; i int 16hits 0
3 c char 8bits 2
i int 16bits 3
Padding (char) 8hits -

Figure B.67 Example Mapping of Structure Members (2)

As shown Figure B.67,if the total size of the structure members is an odd number of
bytes, #pragma STRUCT adds 1 byte as packing after the last member. Therefore, if you
use #pragma STRUCT to inhibit padding, all structures have an even byte size.

-142-

Appendix B Extended Functions Reference

#pragma STRUCT
Description : (2) Arranging members
This NC30 extended function allows you to map the all odd-sized structure
members first, followed by even-sized members.Figure B.68 shows the offsets
when the structure shown in Figure B.67 is arranged using #pragma STRUCT.
struct s { Member Type Size Mapped
int i; name location
char c; (offset)
int j; i int 16hits 0
2 i int 16bits 2
[char 8hits 4

Figure B.68 Example Mapping of Structure Members (3)

You must declare #pragma STRUCT for inhibiting packing and arranging the structure
members before defining the structure members.

Examples : #pragma STRUCT TAG unpack
struct TAG {
int i;
char C,
}si;

Figure B.69 Example of #pragma STRUCT Declaration

-143-

Appendix B Extended Functions Reference

#pragma EXTAMPTR
denition a data allocated on 4 Mbyte extension space ROM area
Function : A functional extension which shows a variable is a pointer accessing 4-Mbyte expanded
space ROM.
Syntax : #pragma EXT4MPTR pointer_name
Description : His feature is provided for extension mode 2(4M bytes extension mode) which is

available with some products in the M16C/62 group.

Declare a pointer variable for accessing a 4M bytes space. When so declared, the
compiler generates code for switching banks as necessary to access a 4M bytes space.
This bank-switching code is generated one for each function in the place where the
pointer is used first. In successive operations, therefore, the banks are set only once.
When using multiple pointer variables, use the "-fchange bank_always (-fCBA)" option
which sets the banks each time the program accesses the 4M bytes space.

Examples :

[C source program]
struct tagh{
int bitmap;
char code;
Mar *pointer;
#pragma EXTAMPTR pointer
main()
{
int data;
data = pointer->bitmap;
}
mov.w _pointer, AO
mov.w _pointer+2, A1
mov.wAl, BankSelect < Change the bank
bclr 3,A1
bset 2,A1
Ide.w [A1AQ],-2[FB]
Figure B.70 Example Use of #pragma EXTAMPTR Declaration
Note : (1) Before using this feature, check to see if the microcomputer and the system

(hardware) support 4M bytes extension space mode.
(2) Ifthe option -R8C is used, this declaration is ignored.

-144-

Appendix B Extended Functions Reference

_ext4dmptr
denition a data allocated on 4 Mbyte extension space ROM area
Function : A functional extension which shows a variable is a pointer accessing 4-Mbyte expanded
space ROM.
Syntax : _ext4mptr far pointer_name
Description : His feature is provided for extension mode 2 (4M byte extension mode) which is
available with some products in the M16C/62 group.
Declare a pointer variable for accessing a 4M-byte space. When so declared, the compiler
generates code for switching banks as necessary to access a 4M-byte space.
This bank-switching code is generated one for each function in the place where the
pointer is used first. In successive operations, therefore, the banks are set only once.
When using multiple pointer variables, use the "-fchange bank_always (-fCBA)" option
which sets the banks each time the program accesses the 4M-byte space.
Examples : [C source program]
struct tagh{
int bitmayp;
char code;
%
struct tagh _extAmptr *pointer;
main()
{
int data;
data = pointer->bitmap;
}
mov.w _pointer,AQ
mov.w _pointer+2,A1
mov.w A1, BankSelect < Change the bank
bclr 3,A1
bset 2,A1
Ide.w [A1AQ],-2[FB]
Figure B.71 Example Use of #pragma _ext4mptr Declaration
Note : (1) Before using this feature, check to see if the microcomputer and the system

(hardware) support 4M-byte extension space mode.
(2) Ifthe option -R8C is used, this declaration is ignored.

-145-

Appendix B Extended Functions Reference

B.7.3. Using Extended Functions for Target Devices

NC30 includes the following extended functions for target devices.

#pragma ADDRESS
Specify absolute address of I/O variable

Function : Specifies the absolute address of a variable. For near variables, the specified address is
within the bank.

Syntax : #pragma ADDRESSAvariable-nameAabsolute-address

Description : The absolute address specified in this declaration is expanded as a character string in an

assembler file and defined in pseudo instruction .EQU. The format for writing the
numerical values therefore depends on the assembler, as follows:

® Append 'B'or 'b' to binary numbers
Append 'O’ or '0' to octal numbers
Write decimal integers only.
Append 'H' or 'h' to hexadecimal numbers. If the number starts with letters A
to F, precede it with 0.

Rules : (1) Al storage classes such as extern and static for variables specified in #pragma

ADDRESS are invalid.

(2) Variables specified in #pragma ADDRESS are valid only for variables defined
outside the function.

(3) #pragma ADDRESS is valid for previously declared variables.

(4) #pragma ADDRESS is invalid if you specify other than a variable.

(5) No error occurs if a #pragma ADDRESS declaration is duplicated, but the last
declared address is valid.

(6) A warning occurs if you include an initialization expression and an initialization
expression is invalid.

(7) Normally #pragma ADDRESS operates on I/O variables, so that even though
volatile may not actually be specified, the compiler processes them assuming

volatile is specified.
(8) The variable declared in #pragma ADDRESS declaration, external reference is
impossible.
Examples : #pragma. ADDRESS port 24H
int io;
void func(void)
{
io =10;
}

Figure B.72 #pragma ADDRESS Declaration

-146-

Appendix B Extended Functions Reference

#pragma ADDRESS
Specify absolute address of I/O variable
Examples : However, as follows, when the variable is used before specification of #pragma
ADDRESS, specification of #pragma ADDRESS is invalid.

char port;

void func(void)

{

port=0; * Uses a variable before specifying #pragma ADDRESS */
}
#pragma ADDRESS port 100H

Figure B.73 Cases where the specification of #pragma ADDRESS has no effect

-147-

Appendix B Extended Functions Reference

#pragma BITADDRESS

Function :
Syntax :

Description :

Rules :

Example :

The bit position specification absolute address allotment function of an input-and-output variable

A variable is assigned to the bit position which the specified absolute address specified.

#pragma BITADDRESSAvariable-nameAbit-position,absolute-address

The absolute address specified in this declaration is expanded as a character string in an
assembler file and defined in pseudo instruction .BITEQU. The format for writing the
numerical values therefore depends on the assembler, as follows:

)
@

(1
@
3
4
5
)]

@)

The bit position

® Itis the range of 0-65535.0nly the decimal digit.

The Address

® Append 'B'or 'b' to binary numbers

Append 'O’ or '0' to octal numbers

Write decimal integers only.

Append H' or 'h' to hexadecimal numbers. If the number starts with letters
A to F,precede it with 0.

Only a _Bool type variable can be specified to be a variable name. It becomes an
error when variables other than _Bool type are specified.

All storage classes such as extern and static for variables specified in #pragma
BITADDRESS are invalid.

Variables specified in #pragma BITADDRESS are valid only for variables defined
outside the function.

#pragma BITADDRESS is valid for previously declared variables.

#pragma BITADDRESS is invalid if you specify other than a variable.

No error occurs if a #pragma BITADDRESS declaration is duplicated, but the last
declared address is valid.

An error occurs if you include an initialization expression.

Normally #pragma BITADDRESS operates on I/O variables, so that even though
volatile may not actually be specified, the compiler processes them assuming
volatile is specified.

#ipragma BITADDRESS io 1, 100H
_Bool io;
void func(void)
{
io=1;
}

Figure B.74 #pragma BITADDRESS Declaration

-148-

Appendix B Extended Functions Reference

#pragma INTCALL
Declare a function called by the INT instruction

Function : Declares a function called by a software interrupt (by the int instruction)

Syntax : (1) #pragma INTCALLA[/CJAINTNo.Aassembler-functionname (register-name,
registername,...)
(2) #pragma INTCALLA[/CJAINT-No.AC-function-name ()

Description : This extended function declares the assembler function called by a software interrupt
with the INT number.
When calling an assembler function, its parameters are passed via registers.
o [(]
By specifying switch [/c] it is possible to generate code to need the register to saving
it to a stack at entry when calling the function.(only for NC308WA)

Rules : ® Declaring assembler functions
(1) Before a #pragma INTCALL declaration, be sure to include an assembler
function prototype declaration. If there is no prototype declaration, a
warning is output and the #pragma INTCALL declaration is ignored.
(2) Observe the following in the prototype declaration:
(@ Make sure that the number of parameters in the prototype declaration
matches those in the #pragma INTCALL declaration.
(b) You cannot declare the following types in the parameters in the
assembler function:
® Structure types and union types
® double types
o long long types
(© You cannot declare the following functions as the return values of
assembler functions:
o Functions that return structures or unions
(3 You can use the following registers for parameters when calling:
) float types, long types (32-bit registers)
R2R0 and R3R1
® far pointer types (24-bit registers)
A0,A1,R2R0, and R3R1
® near pointer types (16-bit registers)
A0,A1,RO,R1,R2, and R3
® char types and _Bool types (8-bit registers)
ROL, ROH, R1L, and R1H
*There is no differentiation between uppercase and lowercase letters in
register names.
(4) You can only use decimals for the INT Numbers.
® Declaring functions of which the body is written in C
(1) Before a #pragma INTCALL declaration, be sure to include a prototype
declaration. If there is no prototype declaration, a warning is output and the
#pragma INTCALL declaration is ignored.
(20 You cannot specify register names in the parameters of functions that
include the #pragma INTCALL declaration.
(3 Observe the following in the prototype declaration:
(@ In the prototype declaration, you can only declare functions in which all
parameters are passed via registers, as in the function calling rules.
(d You cannot declare the following functions as the return values of
functions:
° Functions that return structures or unions
(4) You can only use decimals for the INT Numbers.

-149-

Appendix B Extended Functions Reference

#pragma INTCALL
Declare a function called by the INT instruction

Examples : int asm_func(unsigned long, unsigned int); & Prototype declaration for
#pragma INTCALL 25 asm_func(R2R0, R1) the assembler function
void main(void)
{
int i;
long I;
i = OX7FFD;
| = Ox007F;
asm_func(|,i); < Calling the assembler function
}
Figure B.75 Example of #pragma INTCALL Declaration(asm function) (1)
int ¢_func(unsigned int, unsigned int); < Prototype declaration for the C function
#ipragma INTCALL 25 c func(); < You may NOT specify registers.
void main(void)
{
int i J;
i=O0X7FFD;
j=O0x007F;
c_func(i,j); < Calling the C function
}
Figure B.76 Example of #pragma INTCALL Declaration(C language functuion) (2)
Note: To use the startup file included with the product, alter the content of the vector section
before use. For details on how to alter it, refer to “ Chapter 2 Preparing the Startup
Program.”

-150-

Appendix B Extended Functions Reference

#pragma INTERRUPT

Function :

Syntax :

Description :

Rules :

Declare interrupt function

Declares an interrupt handler

)
@
®

)

@

®
)
@
®
@
®)

®)
@)

#pragma INTERRUPTAI/B | /E | /V]Ainterrupt-handlername
#pragmaINTERRUPTA[/B | /E] Ainterrupt-vectornumberAinterrupt-handler-name
#pragmaINTERRUPTA[/B | /E]Ainterrupt-handler-name(vect=interrupt-vectornumber)

By using the above format to declare interrupt processing functions written in C, NC30
generates the code for performing the following interrupt processing at the entry and exit
points of the function.
® In entry processing, all registers of the Micro Procesor are saved to the stack.
® In exit processing, the saved registers are restored and control is returned to the
calling function by the REIT instruction.
You may specify either /B or /E of /V in this declaration:
e [B]
Instead of saving the registers to the stack when calling the function, you can
switch to the alternate registers. This allows for faster interrupt processing.
e [El
‘Multiple interrupts are enabled immediately after entering the interrupt. This
Improves interrupt response.
o [V]
‘Generate vector table for fixed vector.
An interrupt vector number can be specified when declaring.

A warning is output when compiling if you declare interrupt processing functions that take
parameters

A warning is output when compiling if you declare interrupt processing functions that
return a value. Be sure to declare that any return value of the function has the void type.
Only functions for which the function is defined after a #pragma INTERRUPT declaration
are valid.

No processing occurs if you specify other than a function name.

No error occurs if you duplicate #pragma INTERRUPT declarations.

You cannot specify both switch /E and switch /B at the same time.

If different interrupt vector numbers are written in the same interrupt handling function,
the vector number declared later is effective.

#ipragma INTTERUPT intr(vect=10)
#pragma INTTERUPT intr(vect=20) * The interrupt vector number 20 is effective. */

Figure B.77 Example for writing different interrupt vector numbers

-151-

Appendix B Extended Functions Reference

#pragma INTERRUPT

Rules : (8 A compile warining occurs if you use any function specified in one of the following
declarations in #pragma INTERRUPT:
® #Hpragma ALMHANDLER

® #pragma INTHANDLER
® #pragma HANDLER
® #pragma CYCHANDLER
® fpragma TASK

Example : extenint int_counter;

#ipragma INTERRUPT /B i_func

void i_func(void)
{
int_counter +=1;
}
Figure B.78 Example of #pragma INTERRUPT Declaration
Note : (1) To use the startup file included with the product, alter the content of the vector

section before use. For details on how to alter it, refer to “Chapter 2 Preparing the
Startup Program.”

-152-

Appendix B Extended Functions Reference

#pragma PARAMETER
Declare assembler function that passed arguments via register

Function : Declares an assembler function that passes parameters via registers
Syntax : #pragma PARAMETERA [/C]Aassembler-function-name(register-name,register-name,...)

Description : This extended function declares that, when calling an assembler function, its parameters
are passed via registers.
® float types, long types (32-bit registers) : R2R0 and R3R1

far pointer types (24-bit registers) : R2R0, R3R1, A1 and AQ
near pointer types (16-bit registers) : A0, A1, RO, R1, R2, and R3, SB
char types and _Bool types (8-bit registers) : ROL, ROH, R1L, and R1H
Register names are NOT case-sensitive.
The long long type (64-bit integer type) and double type, as well as structure and
union types cannot be declared. Furthermore, the following switch can be
specified during declaration.
e [(]

By specifying switch [/c] it is possible to generate code to need the register to

saving it to a stack at entry when calling the function. (only for NC308WA)

Rules : (1) Always put the prototype declaration for the assembler function before the #pragma
PARAMETER declaration. If you fail to make the prototype declaration, a warning is
output and #pragma PARAMETER is ignored.

(2) Follow the following rules in the prototype declaration:
(@ Note also that the number of parameters specified in the prototype declaration
must match that in the #pragma PARAMETER declaration.
(b) The following types cannot be declared as parameters for an assembler function in
a#pragma PARAMETER declaration:
) structure-type and union-type
) double-type long- long-types
(¢ The assembler functions shown below cannot be declared:
) Functions returning structure or union type
(3) As for the output assembler name of the function specified by #pragma PARAMETER,
the _(underscore) is added always previously.

Example : int asm_func(unsigned int, unsigned int); < Prototype declaration for the
#ipragma PARAMETER asm_func(RO, R1) assembler function
void main(void)
{
int i
i=O0X7FFD;
j=0x007F,;
asm_func(i, j); < Calling the assembler function
}

Figure B.79 # Example of #pragma PARAMETER Declaration

-153-

Appendix B Extended Functions Reference

#pragma SPECIAL
Declare a special page subroutine call function

Function : Declares a special page subroutine call (JSRS instruction) function

Syntax : (1) #pragma SPECIA Al/C]A numberA function-name()
(2) #pragma SPECIALA[/C]AfunctionnameQA(mumber)

Description : (1) Functions declared using #pragma SPECIAL are mapped to addresses created by
adding OFO0O00H to the address set in the special page vector tables, and are
therefore subject to special page subroutine calls.

(2) You may specify either /C in this declaration:
By specifying switch [/c] it is possible to generate code to need the register to saving
it to a stack at entry when calling the function. (only for NC308WA)

Rules : (1) Functions declared using #pragma SPECIAL are mapped to the program_S
section. Be sure to map the program_S section between OFOO00H and OFFFFFH.

(2) Calls are numbered between 18 and 255 in decimal only.

(3 As a label, "_SPECIAL_calling-number:" is output to the starting address of
functions declared using #pragma SPECIAL. Set this label in the special page
subroutine table in the startup file.

Note that when the option -fmake_special table (-fMST) is specified, the above

setting is unnecessary.

(4) If different call numbers are written in the function, the call number declared later
is effective.

#pragma SPECIAL func(vect=20)

#pragma SPECIAL func(vect=30) /I Call number 30 is effective

Figure B.80 Example for writing different call numbers

(5) If functions are defined in one file and function calls are defined in another file, be
sure to write this declaration in both files.

Example : #pragma SPECIAL 20 func()
void func(unsigned int, unsigned int);
void main(void)
{
inti, j;
i=0x7FFD;
j=0x007F;
func(i,j); < special page subroutine call
}

Figure B.81 Example of #pragma SPECIAL Declaration

1 If you are using the supplied startup file, modify the contents of the fvector section. For details of how to modify the startup file, see Chapter 2.2
"Modifying the Startup Program" in the Operation part of the NC30 User's Manual.

-154-

Appendix B Extended Functions Reference

B.7.4. Using MR30 Extended Functions

NC30 has the following extended functions which support the real-time operating system MR30.

#pragma ALMHANDLER

Function : Declares an Realtime Operating System for M16C series alarm handler

Syntax : #pragma ALMHANDLERAalarm-handler-name

Description : By using the above format to declare an alarm handler (a function) written in C, NC30
generates the code for the alarm handler to be used at the entry and exit points of the
function.

® The alarm handler is called from the system clock interrupt by the JSR
instruction and returns by the RTS or EXITD instruction.

Rules : (1) You canNOT write alarm handlers that take parameters.

(2) The return value from the alarm handler must be type void in the declaration.

(3) Only the function definition put after #pragma ALMHANDLER are valid.

(4) No processing occurs if you specify other than a function name.

(5) No error occurs if you duplicate #pragma ALMHANDLER declarations.

(6) A compile warining occurs if you use any function specified in one of the following
declarations in #pragma ALMHANDLER:
® #Hpragma INTERRUPT

® #pragma INTHANDLER
® #pragma HANDLER
® f#pragma CYCHANDLER
® fHpragma TASK
Example : #include <mrXXX.h>
#include "id.h"
#pragma ALMHANDLER alm
void alm(void) < Be sure to declare as type void.
{
(omitted)
}

Figure B.82 Example of #pragma ALMHANDLER Declaration

-155-

Appendix B Extended Functions Reference

#pragma CYCHANDLER

Function :
Syntax :

Description :

Rules :

Example :

Cyclic handler declaration

Declares an Realtime Operating System for M16C series cyclic handler

#pragma CYCHANDLERAcyclic-handler-name

By using the above format to declare a cyclic handler (a function) written in C, NC30
generates the code for the cyclic handler to be used at the entry and exit points of the
function.

)
@
®
@
®)
®

® The cyclic handler is called from the system clock interrupt by the JSR
instruction and returns by the RTS or EXITD instruction.

You canNOT write cyclic handlers that take parameters.

The return value from the cyclic handler must be type void in the declaration.
Only the function definition put after #pragma CYCHANDLER are valid.

No processing occurs if you specify other than a function name.

No error occurs if you duplicate #pragma CYCHANDLER declarations.

A compile warning occurs if you use any function specified in one of the following
declarations in #pragma CYCHANDLER:

® #Hpragma INTERRUPT

#pragma INTHANDLER

#pragma HANDLER

#pragma ALMHANDLER

[J
([J
[J
® #Hpragma TASK

{

#include <mrXXX.h>
#include "id.h"
#pragma CYCHANDLER cyc

void

cyc(void) < Be sure to declare as type void.

(omitted)

Figure B.83 Example of #pragma CYCHANDLER Declaration

-156-

Appendix B Extended Functions Reference

#pragma INTHANDLER(#pragma HANDLER)

Function :

Syntax :

Description :

Rules :

Example :

Interrupt handler declaration

Declares an Realtime Operating System for M16C series OS-dependent interrupt
handler

6y
@

)

@

®

)
@
)
@
®)
®)
)

#pragma INTHANDLERAinterrupt-handler-name
#pragma HANDLERAinterrupt-handler-name

By using the above format to declare an interrupt handler (a function) written in
C,NC30 generates the code for the handling shown below to be used at the entry
and exit points of the function :
® At the entry point:
Push (.e., save) the registers onto the current stack.
® At the exit point :
Returns from the interrupt with the ret_int system call. Also returns from
the interrupt by the ret_int system call when returning at a return
statement partway through the function.
The following switch can be specified when declaring.
e [E]
Multiple interrupts are enabled immediately after control is switched over
to the interrupt handler declared by this function.
To declare an MR30 OS-independent interrupt handler, use #pragma
INTERRUPT.

You canNOT write interrupt handlers that take parameters.

The return value from the interrupt handler must be type void in the declaration.
Do NOT use the ret_int system calls from C.

Only the function definition put after #pragma INTHANDLER are valid.

No processing occurs if you specify other than a function name.

No error occurs if you duplicate #pragma INTHANDLER declarations.

A compile warning occurs if you use any function specified in one of the following
declarations in #pragma INTHANDLER:

® #pragma INTERRUPT

® #Hpragma HANDLER

® #Hpragma ALMHANDLER

® #pragma CYCHANDLER

® #pragma TASK

#include <mrXXX.h>
#include "id.h"
#pragma INTHANDLER hand

void

{

hand(void)

(omitted)

P ret.int(); */

Figure B.84 Example of #pragma INTHANDLER Declaration

-157-

Appendix B Extended Functions Reference

#pragma TASK
Task start function declaration
Function : Declares an Realtime Operating System for M16C series task start function
Syntax : #pragma TASKAtask-start-function-name
Description : By using the above format to declare a task start function written in C, NC30 generates
the code for processing for the task shown below to be used at the exit points of the
function.
® At the exit point :
Ends by the ext_tsk system call. Also returns using the ext_tsk system call
even when returning at a return statement part way through function.
Rules: (1) Youneed not put the ext_tsk system call to return from the task.

(2) The return value from the task must be type void in the declaration.

(3 Only the function definition put after #pragma TASK are valid.

(4) No processing occurs if you specify other than a function name.

(5) No error occurs if you duplicate #pragma TASK declarations.

(6) A compile warning occurs if you use any function specified in one of the following

declarations in #pragma TASK:
® #Hpragma INTERRUPT
® #pragma INTHANDLER
® #Hpragma HANDLER
® #pragma ALMHANDLER
® f#Hpragma CYCHANDLER
Example : #include <mrxXx.h>
#include "id.h"
#pragma TASK main
#pragma TASK tskl
void main(void) < Be sure to declare as type void.
{
(omitted)
sta_tsk(ID_idle);
sta_tsk(ID_tsk1);
[*ext_tsk(); */ < You need not use ext_tsk.
}
void tsk1(void)
(reméinder omitted)

Figure B.85 Example of #pragma TASK Declaration

-158-

Appendix B Extended Functions Reference

B.7.5. The Other Extensions

NC30 includes the following extended function for embedding assembler description inline.

#pragma ASMMACRO

Function : Declares defined a function by assembler macro.
Syntax : #pragma _ ASMMACRO . function-name(register name, ...)
Rules : (1) Always put the prototype declaration before the #pragma _ ASMMACRO

declaration.Assembler macro function be sure to declare “static”.

(2) Can't declare the function of no parameter. Parameter is passed via register.Please
specify the register matching the parameter type.

(3) Please append the underscore (“ ”) to the head of the definition assembler macro
name.

(4) The following is a return value-related calling rules. You can’t declare structure
and union type as the return value. char and _Bool types: ROL float types : R2R0
int and short types: RO double types : RSR2R1R0 long types: R2R0 long-long type:
R3R1R2RO.

(5) If you change the register’s data, save the register to the stack in entry processing
of assembler macro function and the saved register restore in exit processing.

Example : static long mul(int, int); * Be sure to declare “static” */

#ipragma __ ASMMACRO mul(RO, R2)

#pragma ASM

—mul .macro

mul.w R2,RO ; The return-value is set to R2R0 register
.endm

#pragma ENDASM

long l;
void test_func(void)
{
I=mul(2, 3);
}

Figure B.86 Example of #pragma __ AMMACRO

-159-

Appendix B Extended Functions Reference

#pragma ASM, #pragma ENDASM

Function :

Syntax :

Description :

Rules :

Example :

Suppliment :

Specifies assembly code in C.

#pragma ASM
assembly statements
#pragma ENDASM

Inline assembling

The line(s) between #pragma ASM and #pragma ENDASM are output without
modifying anything to the generated assembly source file.

Writing #pragma ASM, be sure to use it in combination with #pragma ENDASM. this
compiler suspends processing if no #pragma ENDASM is found the corresponding

#pragma ASM.

(1) In assembly language description, do not write statements which will cause the
register contents to be destroyed. When writing such statements, be sure to use the
push and pop instructions to save and restore the register contents.

(2) Within the "#pragma ASM" to "#pragma ENDASM" section, do not reference

arguments and auto variables.

(3) Within the "#pragma ASM" to "#pragma ENDASM" section, do not write a branch
statement (including conditional branch) which may affect the program flow.

void func(void)
{

int

iy J;

for(i=0; i < 10;i++){

func2();
}
#pragma ASM
FCLR |
LOOPL:
MOVW #0FFH,RO
(omitted)
FSET |

#pragma ENDASM

This area is output directly to an
assembly language file.

Figure B.87 Example of #pragma ASM(ENDASM)

It is this assembly language program written between #pragma ASM and #pragma

ENDASM that is processed by the C preprocessor.

-160-

Appendix B Extended Functions Reference

#pragma JSRA
Calls a function with JSR.A

Function : Calls a function using the JSR.A instruction.

Syntax : #pragma JSRA. function-name

Description : Calls all functions declared using #pragma JSRA using the JSR.A instruction. #pragma
JSRA can be specified to avoid errors in the case of functions that include code generated

using the -fJSRW option and that cause errors during linking.

Rules : This preprocessing directive has no effect when the -fJSRW option not specified.

Example : extern void func(int i);
#pragma JSRA func()

void main(void)

func(l);

Figure B.88 Example of #pragma JSRA

-161-

Appendix B Extended Functions Reference

#pragma JSSRW
Calls a function with JSR.W

Function : Calls a function using the JSR.W instruction.
Syntax : #pragma JSRW. function-name

Rules : By default, the JSR.A instruction is used when calling a function that, in the same file,
has no body definition. However, the #pragma JSRW-declared function are always
called using JSR.W. This directive helps reduce ROM size.

Rules : (1) You may NOT specify #pragma JSRW for static functions.
(20 When function call with the JSR.W instruction does not reach #pragma
JSRW-declared function, an error occurs at link-time. In this case, you may not use
#pragma JSRW.

Example : extern void func(int i);
#ipragma JSRW func()

void main(void)

func(1);

Figure B.89 Example of #pragma JSSRW

Note : The #pragma JSRW is valid only when directly calling a function. It has no effect when
calling indirectly.

-162-

Appendix B Extended Functions Reference

#pragma PAGE

Output .PAGE
Function : Declares new-page position in the assembler-generated list file.
Syntax : #pragma PAGE

Description : Putting the line #pragma PAGE in C source code, the .PAGE pseudo-instruction is
output at the corresponding line in the compiler-generated assembly source. This
Instruction causes page ejection asesmbler-output assembly list file.

Rules : (1) You cannot specify the character string specified in the header of the assembler
pseudo-instruction .PAGE.
(2) You cannot write a #pragma PAGE in an auto variable declaration.

Example : void func(void)
{
int i j;
for(i=0; i < 10;i++){
func2();

}
#pragma PAGE

i++;
}

Figure B.90 Example of #pragma PAGE

-163-

Appendix B Extended Functions Reference

B.8. assembler Macro Function

B.8.1. Outline of Assembler Macro Function

NC30 allows part of assembler commands to be written as C-language functions. Because specific assembler
commands can be written directly in a C-language program, you can easily tune up the program.

B.8.2. Description Example of Assembler Macro Function

Assembler macro functions can be written in a C-language program in the same format as C-language

functions, as shown below.

#include <asmmacro.h> * Includes the assembler macro function definition file */
l(?r?agr !';1[20];

char b[20];

void func(void)

i | =rmpa_b(0,19,a,b); f* asm Macro Function(rmpa command) */

Figure B.91 Description Example of Assembler Macro Function

-164-

Appendix B Extended Functions Reference

B.8.3. Commands that Can be Written by Assembler Macro Function

The following shows the assembler commands that can be written using assembler macro functions and
their functionality and format as assembler macro functions.

ABS
Function : absolute
Syntax : #include <asmmacro.h>

static signed char abs_b(signed charval); /¥ When calculated in 8 bits */
static signed int abs_w(signed int val); /* When calculated in 16 bits */

DADC
Function : Returns the result of decimal addition with carry on vall plus val2.
Syntax : #include <asmmacro.h>

static char dadc_b(char vall, char val2); /* When calculated in 8 bits */
static int dade_w{ unsigned int vall, unsigned int val2); /¥ When calculated in 16 bits */

DADD
Function : Returns the result of decimal addition with no carry on vall plus val2.
Syntax : #include <asmmacro.h>

static char dadd_b(char vall, char val2); /¥ When calculated in 8 bits */
static int dade_w(int vall, int val2); /* When calculated in 16 bits */

-165-

Appendix B Extended Functions Reference

DIV

Function :

Syntax :

Returns the quotient of a division where the dividend val2 is divided by the divisor vall
with the sign included.

#include <asmmacro.h>

static signed char div_b(signed int vall, signed int val2);
[* calculated in 8 bits with signed*/

/ static signed int div_w(signed int vall, signed long val2);
[* calculated in 16 bits with signed*/

DIVU

Function: Returns the quotient of a division where the dividend val2 is divided by the divisor vall
with the sign not included.

Syntax : #include <asmmacro.h>
unsigned char divu_b(unsigned char vall, unsigned int val2);
*calculated in 8 bits with unsigned */
unsigned int divu_w(unsigned int vall, unsigned long val2);
[*calculated in 16 bits with unsigned */

DIVX

Function: Returns the quotient of a division where the dividend val2 is divided by the divisor vall
with the sign not included.

Syntax : #include <asmmacro.h>

static unsigned char divx_b(unsugned char vall, unsigned int val2);
[*calculated in 8 bits with unsigned */

static unsigned int divx_w(unsigned int vall, unsigned long val2);
[*calculated in 16 bits with unsigned */

|z
©)
O

Function:

Syntax :

Devide vall by val2 and get mod.
#include <asmmacro.h>

signed char mod_b(int vall,char val2); /* When calculated in 8 bits*/

signed int mod_w{long vall,int val2); /* When calculated in 16 bits*/

unsigned char modu_b(int vall,char val2); /* When calculated in unsigned 8 bits*/
unsigned int modu_w(unsigned long vall,unsigned int val2);

/*When calculated in unsigned 16 bits*/

-166-

Appendix B Extended Functions Reference

DSBB

Function : Returns the result of decimal subtraction with borrow on vall minus val2.
Syntax : #include <asmmacro.h>
static char dsbb_b(char vall, char val2); /* When calculated in 8 bits */
static int dsbb_w(int vall, int val2); /* When calculated in 16 bits */
DSUB

Function : Returns the result of decimal subtraction with no borrow on vall minus val2.
Syntax : #include <asmmacro.h>
static char dsub_b(char vall, char val2); /* When calculated in 8 bits*/
static int dsub_w(int vall, int val2); /* When calculated in 16 bits */
MOVdir
Function : transfer to val2 from vall by nibble
Syntax : #include <asmmacro.h>

static unsigned char movll(unsigned char vall,unsigned char val2);
I* to low of val2 from high of vall */

static unsigned char movlh(unsigned char vall,unsigned char val2);
/* to high of val2 from low of vall*/

static unsigned char movhl(unsigned char vall, unsigned char val2);
/* to low of val2 from high of vall */

static unsigned char movhh(unsigned char vall,unsigned char val2);
/* to high of val2 from high of vall */

-167-

Appendix B Extended Functions Reference

RMPA

Function : Initial value: init; Number of times: count. The result is returned after performing a
sum-of-products operation assuming pl and P2 as the start addresses where multipliers
are stored.

Syntax : #include <asmmacro.h>
static long rmpa_b(singed int init, int count, char *p1, char *p2);
/* When calculated in 8 bits */
static long rmpa_w(long init, int count, int *p1, int *p2);
/* When calculated in 16 bits*/

SMOVF

Function : Strings are transferred from the source address indicated by pl to the destination
address indicated by p2 as many times as indicated by count in the
address-incrementing direction.

There is no return value.

Syntax : #include <asmmacro.h>
void smovf_b(char *p1,char *p2 unsigned int count); /*calculated in 8 bits */
void smovf_w{int *p1,int *p2,unsigned int count); /*calculated in 16 bits*/

SHA

Function : The value of val is returned after arithmetically shifting it as many times as indicated
by count.

Syntax : #include <asmmacro.h>

/ static unsigned char sha_b(signed char count, unsigned char val);
/* When calculated in 8 bits */

static unsigned int sha_w(signed char count, unsigned int val);

* When calculated in 16 bits */

static unsigned long sha_l(signed char count, unsigned long val);
/* When calculated in 24 bits */

-168-

Appendix B Extended Functions Reference

SHL

Function : The value of val is returned after logically shifting it as many times as indicated by
count.

Syntax : #include <asmmacro.h>

static unsigned char shl_b(signed char count, unsigned char val);
/* When calculated in 8 bits */

static unsigned int shl_w(signed char count, unsigned int val);

/* When calculated in 16 bits */

static unsigned long shl_l(signed char count, unsigned long val);
/* When calculated in 24 bits */

SMOVB

Function : Strings are transferred from the source address indicated by pl to the destination
address indicated by p2 as many times as indicated by count in the
addressdecrementing direction. There is no return value.

Syntax : #include <asmmacro.h>

static void smovb_b(char _far *p1, char _far *p2, unsigned int count);
[*calculated in 8 bits */

static void smovb_w(int _far *p1, int _far *p2, unsigned int count);

/* When calculated in 16 bits*/

SSTR

Function : Strings are stored using val as the data to store, p as the address to from val address
which to transfer, and count as the number of times to transfer data. There is no return
value.

Syntax : #include <asmmacro.h>
static void sstr_b(char val, char _far *p, unsigned int count);
[*calculated in 8 bits */

static void sstr_w(int val, int _far *p, unsigned int count);
calculated in 16 bits/

-169-

Appendix B Extended Functions Reference

ROLC

Function : The value of val is returned after rotating it left by 1 bit including the C flag.
Syntax : #include <asmmacro.h>

static unsigned char rolc_b(unsigned char vall);

/* When calculated in 8 bits */

static unsigned int rolc_w(unsigned int vall);

/* When calculated in 16 bits*/
RORC
Function : The value of val is returned after rotating it right by 1 bit including the C flag.
Syntax : #include <asmmacro.h>

static unsigned char rorc_b(unsigned char val);
/* When calculated in 8 bits */

static unsigned int rorc_w(unsigned int val);

/* When calculated in 16 bits */

pY)
|.
3

Function : The value of val is returned after rotating it as many times as indicated by count.
Syntax : #include <asmmacro.h>
static unsigned char rot_b(signed char count, unsigned char val);
/* When calculated in 8 bits */
static unsigned int rot_w(signed char count, unsigned int val);
/* When calculated in 16 bits */
static unsigned char rot_b(signed char count, unsigned char val);
NEG
Function : negate
Syntax : #include <asmmacro.h>

signed char neg_b(signed char val); /* When calculated in 8 bits */
signed int neg_w(signed int val); /¥ When calculated in 16 bits */

-170-

Appendix B Extended Functions Reference

NEG
Function : not
Syntax : #include <asmmacro.h>

#include <asmmacro.h>
signed char not_b(signed char val); /* When calculated in 8 bits */
signed int not_wf(signed int val); /* When calculated in 16 bits */

-171-

Appendix C Overview of C Language Specifications

Appendix C Overview of C Language Specifications

In addition to the standard versions of C available on the market, C language specifications include
extended functions for embedded system.

C.1. Performance Specifications

C.1.1. Overview of Standard Specifications

This compiler is a cross C compiler targeting the M16C/60, M16C/30, M16C/20, M16C/10, R8C/Tiny series.
In terms of language specifications, it is virtually identical to the standard full-set C language, but also has
specifications to the hardware in the M16C/60, M16C/30, M16C/20, M16C/10, R8C/Tiny series and extended
functions for embedded system.
[) Extended functions for embedded system(near/far modifiers, and asm function, etc.)
) Floating point library and host machine-dependent functions are contained in the standard
library.

C.1.2. Introduction to NC30 Performance

This section provides an overview of NC30 performance.
a. Test Environment

TableC.1 shows the standard PC environment.

TableC.1 Standard PC Environment

ltem Type of PC OS Version
PC environment IBM PC/AT or compatible Windows XP
Type of CPU Pentium IV
Memory 128MB min.(Without High-performance Embedded Workshop)

b. C Source File Coding Specifications

TableC.2 shows the specifications for coding NC30 C source files. Note that estimates are provided for items
for which actual measurements could not be achieved.

TableC.2 Specifications for Coding C Source Files

Item Specification
Number of characters per line of source file 512 bytes (characters) including the new line code
Number of lines in source file 65535 max.

-172-

Appendix C Overview of C Language Specifications

c. NC30 Specifications

TableC.3 to TableC.4 lists the NC30 specifications. Note that estimates are provided for items for which

actual measurements could not be achieved.

TableC.3 NC30 Specifications (1)

Item

Specification

Maximum number of files that can be specified in NC30

No limit (Memory capacity dependence)

Maximum length of filename

Depends on operating system

Maximum number of macros that can be specified in nc30
command line option -D

No limit (Memory capacity dependence)

Maximum number of directories that can be specified in
nc30 command line option -1

50max

Maximum number of parameters that can be specified in
nc30 command line option -as30

No limit (Memory capacity dependence)

Maximum number of parameters that can be specified in
nc30 command line option -In30

No limit (Memory capacity dependence)

Maximum nesting levels of compound statements, iteration
control structures, and selection control structures

No limit (Memory capacity dependence)

Maximum nesting levels in conditional compiling

No limit (Memory capacity dependence)

Number of pointers modifying declared basic types, arrays,
and function declarators

No limit (Memory capacity dependence)

Number of function definitions

No limit (Memory capacity dependence)

Number of identifiers with block scope in one block

No limit (Memory capacity dependence)

Maximum number of macro identifiers that can be
simultaneously defined in one source file

No limit (Memory capacity dependence)

Maximum number of macro name replacements

No limit (Memory capacity dependence)

Number of logical source lines in input program

No limit (Memory capacity dependence)

Maximum number of levels of nesting #include files

40max

Maximum number of case names in one switch statement
(with no nesting of switch statement)

No limit (Memory capacity dependence)

Total number of operators and operands that can be defined
in #if and #elif

No limit (Memory capacity dependence)

Size of stack frame that can be secured per function(in

bytes)

64K bytes max

Number of variables that can be defined in #pragma
ADDRESS

No limit (Memory capacity dependence)

Maximum number of levels of nesting parentheses

No limit (Memory capacity dependence)

Number of initial values that can be defined when defining
variables with initialization expressions

No limit (Memory capacity dependence)

Maximum number of levels of nesting modifier declarators

Depends on stack size of YACC

Maximum number of levels of nesting declarator
parentheses

Depends on stack size of YACC

Maximum number of levels of nesting operator parentheses

Depends on stack size of YACC

Maximum number of valid characters per internal identifier
Or Macro name

No limit (Memory capacity dependence)

Maximum number of valid characters per external
identifier

No limit (Memory capacity dependence)

Maximum number of external identifiers per source file

No limit (Memory capacity dependence)

-173-

Appendix C Overview of C Language Specifications

TableC.4 NC30 Specifications (2)

Item

Specification

Maximum number of identifiers with block scope per block

No limit (Memory capacity dependence)

Maximum number of macros per source file

No limit (Memory capacity dependence)

Maximum number of parameters per function call and per
function

No limit (Memory capacity dependence)

Maximum number of parameters or macro call parameters
per macro

31max

Maximum number of characters in character string literals
after concatenation

No limit (Memory capacity dependence)

Maximum size (in bytes) of object

No limit (Memory capacity dependence)

Maximum number of members per structure/union

No limit (Memory capacity dependence)

Maximum number of enumerator constants
enumerator

per

No limit (Memory capacity dependence)

Maximum number of levels of nesting of structures or
unions per struct declaration list

No limit (Memory capacity dependence)

Maximum number of characters per character string

Depends on operating system

Maximum number of lines per file

No limit (Memory capacity dependence)

-174-

Appendix C Overview of C Language Specifications

C.2. Standard Language Specifications

The chapter discusses the NC30 language specifications with the standard language specifications.

C.2.1. Syntax
This section describes the syntactical token elements. In NC30, the following are processed as tokens:
® Keywords ® Identifiers
® (Constants ® Character literals
® Operators ® Punctuators

® Comment
a. Key Words
NC30 interprets the followings as key words.

TableC.5 Key Words List

_asm _far _hear asm auto
_Bool break case char const
continue default do double else
enum extern far float For
goto if inline int long
near register restrict return short
signed sizeof static struct switch
union unsigned void volatile while
typedef - - - -

b. Identifiers

Identifiers consist of the following elements:
® The 1st character is a letter or the underscore (Ato Z, ato z, or _)
® The 2nd and subsequent characters are alphanumerics or the underscore
(AtoZ atoz 0to9,or)

Identifiers can consist of up to 200 characters. However, you cannot specify Japanese characters in
identifiers.

c. Constants

Constants consists of the followings.
) Integer constants
° Floating point constants
o Character constants

-175-

Appendix C Overview of C Language Specifications

(1) Integer constants

In addition to decimals, you can also specify octal and hexadecimal integer constants. TableC.6 shows the
format of each base (decimal, octal, and hexadecimal).

TableC.6 Specifying Integer Constants

Base Notation Structure Example
Decimal None 0123456789 15
Octal Start with 0 (zero) 01234567 017
Hexadecimal Start with 0X or Ox 0123456789ABCDEF O0XF or Oxf
0123456789abedef
Binary number Start with Ob or 0B 01 0b1 or OB1

Determine the type of the integer constant in the following order according to the value.
) Octal and hexadecimal and Binary number:
signed int = unsigned int = signed long = unsigned long - signed long long
- unsigned long long
o Decimal:
signed int = signed long = signed long long
Adding the suffix U or u, or Lor 1, or LL or 11, results in the integer constant being processed as follows:
(1) Unsigned constants
Specify unsigned constants by appending the letter U or u after the value. The type is
determined from the value in the following order:
unsigned int - unsigned long - unsigned long long
(2) long-type constants
Specify long-type constants by appending the letter L or 1. The type is determined from the
value in the following order:
® Octal and hexadecimal and Binary number:
signed long - unsigned long - signed long long - unsigned long long
o Decimal :
signed long long = unsigned long long
(3 longlong-type constants
Specify long long-type constants by appending the letter LL or 1. The type is determined
from the value in the following order:
® Octal and hexadecimal Binary number:
signed long long = unsigned long long
® Decimal:
signed long long

(2) Floating point constants

If nothing is appended to the value, floating point constants are handled as double types. To have them
processed as float types, append the letter F or f after the value. If you append L or 1, they are treated as long
double types.

(3) Character constants

Character constants are normally written in single quote marks, as in 'character'. You can also include the
following extended notation (escape sequences and trigraph sequences). Hexadecimal values are indicated
by preceding the value with ¥x. Octal values are indicated by preceding the value with ¥.

-176-

Appendix C Overview of C Language Specifications

TableC.7 Extended Notation List
Notation Escape sequence Notation Trigraph sequence

¥ single quote ¥constant | octal
¥" quotation mark ¥xconstant | hexadecimal
¥¥Y backslash 272(express "[" character
¥? question mark e express "¥" character
¥a bell 2?) express "|" character
¥b backspace 7?7 express """ character
¥f form feed 27< express "{" character
¥n line feed 2! express "{" character
¥r return 77> express "}" character
¥t horizontal tab 77— express "~" character
¥v vertical tab 7= express "#' character

d. Character Literals

Character literals are written in double quote marks, as in "character string". The extended notation shown
in TableC.7 for character constants can also be used for character literals.

e. Operators

NC30 can interpret the operators shown in TableC.8.

TableC.8 Operators List
monadic operator ++ logical operator &&
— !I I
binary operator + conditional operator g
- comma operator ,
* address operator &
/ pointer operator *
% bitwise operator <<
assignment operators = >>
+= &
— |
*= A
%= &=
relational operators > =
< A=
>= <<=
<= >>=
== sizeof operator sizeof
1=

-177-

Appendix C Overview of C Language Specifications

f. Punctuators

NC30 interprets the followings as punctuators.

o | o |
[] . o ;
°

’

g. Comment

Comments are enclosed between / * and */ . They cannot be nested.
Comments are enclosed between “//” and the end of line.

Type
a. Data Type
NC30 supports the following data type.
® character type ® integral type
® structure ® union
® enumerator type ® void

® floating type
b. Qualified Type
NC30 interprets the following as qualified type.

® const ® volatile
® restrict ® near
® far

-178-

Appendix C Overview of C Language Specifications

c. DataType and Size

TableC.9 shows the size corresponding to data type.

TableC.9 Data Type and Bit Size

Type Existence of sign Bit size Range of values
_Bool No 8 0,1
char No 8 0 to 255
unsigned char
signed char Yes 8 -128 to 127
int Yes 16 -32768 to 32767
short
signed int
signed short
unsigned int No 16 0 to 65535
unsigned short
long Yes 32 -2147483648 to 2147483647
signed long
unsigned long No 32 0 to 4294967295
long long Yes 64 -9223372036854775808 to
signed long long 9223372036854775807
unsigned long long No 64 18446744073709551615
float Yes 32 1.17549435e-38F to 3.40282347e+38F
double Yes 64 2.2250738585072014¢e-30 to
long double 1.7976931348623157e+30
near pointer No 16 0 to OxFFFF
far pointer No 32 0 to OxFFFFFFFF

® The _Bool type can not specify to sign.

) If a char type is specified with no sign, it is processed as an unsigned char type.

® If an int or short type is specified with no sign, it is processed as a signed int or signed short
type.

) If a long type is specified with no sign, it is processed as a sign long type.

) If a long long type is specified with no sign, it is processed as a sign long long type.

) If the bit field members of a structure are specified with no sign, they are processed as
unsigned.

® Can not specifies bit-fields of long long type.

-179-

Appendix C Overview of C Language Specifications

C.2.3. Expressions

TableC.10 and TableC.11 show the relationship between types of expressions and their elements.

TableC.10 Types of Expressions and Their Elements (1)

Type of expression Elements of expression
Primary expression identifier
constant
character literal
(expression)
primary expression

Postpositional expression | Postpositional expression [expression]

Postpositional expression (list of parameters, ...)

Postpositional expression. identifier

Postpositional expression —> identifier

Postpositional expression ++

Postpositional expression —

Postpositional expression

Monadic expression ++ monadic expression

— monadic expression

monadic operator cast expression

sizeof monadic expression

sizeof (type name)

Monadic expression

Cast expression (type name) cast expression
cast expression
Expression expression * expression

expression / expression

expression % expression

Additional and expression + expression

subtraction expressions expression — expression

Bitwise shift expression expression << expression

expression >> expression

Relational expressions expression

expression < expression

expression > expression

expression <= expression

expression >= expression

Equivalence expression expression = = expression
expression != expression

Bitwise AND expression & expression

Bitwise XOR expression * expression

Bitwise OR expression | expression

Logical AND expression && expression

Logical OR expression | | expression

Conditional expression expression ? expression: expression

-180-

Appendix C Overview of C Language Specifications

TableC.11 Types of Expressions and Their Elements (2)

Type of expression Elements of expression

Assign expression monadic expression += expression

monadic expression —= expression

monadic expression *= expression

monadic expression /= expression

monadic expression %= expression

monadic expression <<= expression

monadic expression >>= expression

monadic expression &= expression

monadic expression ;= expression

monadic expression = expression

assignment expression

Comma operator expression, monadic expression

C.2.4. Declaration

There are two types of declaration:
® Variable Declaration
) Function Declaration

a. Variable Declaration

Use the format shown in Figure C.1 to declare variables.

storage class specifier. type declarator. declaration specifier. initialization_expression;

Figure C.1 Declaration Format of Variable

(1) Storage-class Specifiers

NC30 supports the following storage-class specifiers.

® extern ® auto
® static ® register
® typedef

(2) Type Declarator

NC30 supports the type declarators.

® Bool ® char

® int ® short

® long ® longlong
® float ® double

® unsigned ® signed

® struct ® union

® cnum

-181-

Appendix C Overview of C Language Specifications

(3) Declaration Specifier

Use the format of declaration specifier shown in Figure C.2 in NC30.

Declarator : Pointer ot declarator2
Declarator2 : identifiex(declarator)
declarator2| constant expression op]
declarator2(list of dummy arguments opt)
* Only the first array can be omitted from constant expressions showing the number of arrays.
* opt indicates optional items.

Figure C.2 Format of Declaration Specifier

(4) Initialization expressions

NC30 allows the initial values shown in Figure C.3 in initialization expressions.

integral types : constant

integral types array : constant, constant ...
character types : constant

character types array : character literal, constant ...
pointer types : character literal

pointer array : character literal, character literal

Figure C.3 Initial Values Specifiable in Initialization Expressions

b. Function Declaration

Use the format shown in Figure C.4 to declare functions.

o function declaration (definition)
storage-class specifier. type declarator. declaration specifier. main program

o function declaration (prototype declaration)
storage-class specifier. type declarator. declaration specifier;

Figure C4 Declaration Format of Function

(1) Storage-class Specifier

NC30 supports the following storage-class specifier.
® extern
o static

-182-

Appendix C Overview of C Language Specifications

(2) Type Declarators

NC30 supports the following type declarators.

® Bool ® char

® int ® short

® long ® longlong
® float ® double

® unsigned ® signed

® struct ® union

® enum

(3) Declaration Specifier

Use the format of declaration specifier shown in Figure C.5 in NC30

Declarator : Pointer ot declarator2

Declarator2 : identifier(list of dummy argument g)
(declarator)
declarator| constant expressiono opt
declarator(list of dummy argument o)

* Only the first array can be omitted from constant expressions showing the number of arrays.
* opt indicates optional items.
* The list of dummy arguments is replaced by a list of type declarators in a prototype declaration.

Figure C.5 Format of Declaration Specifier

(4) Body of the Program
Use the format of body of the program shown in Figure C.6

List of Variable Declaratoropt Compound Statement

*There is no body of the program in a prototype declaration, which ends with a semicolon.
*opt indicates optional items.

Figure C.6 Format of Body of the Program

C.25. Statement

NC30 supports the following.
® Labelled Statement ® Compound Statement
® Expression/Null Statement ® Selection Statement
® Iteration Statement ® Jump Statement
® Assembly Language Statement

-183-

Appendix C Overview of C Language Specifications

a. Labelled Statement

Use the format of labelled statement shown in Figure C.7

Identifier : statement
case constant : statement
default : statement

Figure C.7 Format of Labelled Statement

b. Compound Statement

Use the format of compound statement shown in Figure C.8

{list of declarationsoptlist of statementsopt oot }
* opt indicates optional items.

Figure C.8 Format of Compound Statement

c. Expression / Null Statement

Use the format of expression and null statement shown in Figure C.9

expression:
expression;
null statement:

’

Figure C.9 Format of Expression and Null Statement

d. Selection Statement

Use the format of selection statement shown in Figure C.10

if(expression)statement
if(expression)statement else statement
switch(expression)statement

Figure C.10 Format of Selection Statement

-184-

Appendix C Overview of C Language Specifications

e. lteration Statement

Use the format of iteration statement shown in Figure C.11

while(expression)statement
do statement while (expression);
for(expression g eXpression ox;eXpression o)statement;

* opt indicates optional items.

Figure C.11 Format of Iteration Statement

f. Jump statement

Use the format of jump statement shown in Figure C.12

goto identifier;
continue;

break;

return expression op;

*opt indicates optional items.

Figure C.12 Format of Jump Statement

g. Assembly Language Statement
Use the format of assembly language shown in Figure C.13

asm("Literals");
literals : assembly language statement

Figure C.13 Format of Assembly Language Statement

-185-

Appendix C Overview of C Language Specifications

C.3. Preprocess Commands

Preprocess commands start with the pound sign # and are processed by the cpp30 preprocessor. This
chapter provides the specifications of the preprocess commands.

C.3.1. List of Preprocess Commands Available

TableC.12 lists the preprocess commands available in NC30.

TableC.12 List of Preprocess Commands

Command Function
#assert Outputs a warning when a constant expression is false.
#define Defines macros.
#elif Performs conditional compilation.
#else Performs conditional compilation.
#endif Performs conditional compilation.
#error Outputs messages to the standard output device and terminates processing.
#if Performs conditional compilation.
#ifdef Performs conditional compilation.
#ifndef Performs conditional compilation.
#include Takes in the specified file.
#line Specifies file's line numbers.
#pragma Instructs processing for this compiler extended function.
#undef Undefines macros.

C.3.2. Preprocess Commands Reference

The NC30 preprocess commands are described in more detail below. They are listed in the order shown in

TableC.12.
#assert
Function: Issues a warning if a constant expression results in zero (0).
Format: #assert constant expression
Description: Issues a warning if a constant expression results in zero (0). Compile is continued,

however.

[Warning(cpp30.82):x.c, line xxJassertion warning

-186-

Appendix C Overview of C Language Specifications

#define
Function: Defines macros.
Format: (1) #define identifier lexical string opt
(2) #define identifier (identifier list opt) lexical string opt
Description: (1) Defines an identifier as macro.

(2) Defines an identifier as macro. In this format, do not insert any space or tab
between the first identifier and the left parenthesis '

® The identifier in the following code is replaced by blanks.
#define SYMBOL

® When a macro is used to define a function, you can insert a backslash so that the
code can span two or more lines.
® The following four identifiers are reserved words for the compiler.

__FILE Name of source file
_LINE__ Current source file line No.
DATE _ e Date compiled (mm dd yyyy)
_ _TIME__ e Time compiled (hh:mm:ss)

The following are predefined macros in NC30.
M16C (As for the time of “-R8C" option use, __R8C_ _is defined instead.) NC30

® You can use the token string operator # and token concatenated operator ## with
tokens, as shown below.
#define debug(s,t) printf("X'#s" = %d X"#t" = Y%d" x ## s, X ## 1)

When parameters are specified for this macro debug (s, t) as debug (1, 2), they are interpreted as
follows:

#define debug(s,t) printf("x1 = %d x2 = %d", x1,x2)

® Macro definitions can be nested (to a maximum of 20 levels) as shown below.

#define XYZ1 100
#define XYZ2 XYZ1

(abbreviated)

#define XYZZb XYZ19

-187-

Appendix C Overview of C Language Specifications

#error
Function: Suspends compilation and outputs the message to the standard output device.
Format: #error character string
Description: ® Suspends compilation.
® lexical string is found, this command outputs that character string to the standard
output device.

H#if - #elif - #else - #endif

Function: Performs conditional compilation. (Examines the expression true or false.)
Format: #if constant expression

#eh'f constant expression

#else

#endjf

Description: ® If the value of the constant is true (not 0), the commands #if and #elif process the

program that follows.

#elif is used in a pair with #if, #ifdef, or #ifndef.

® #else is used in a pair with #if. Do not specify any tokens between #else and the
line feed. You can, however, insert a comment.

® #endif indicates the end of the range controlled by #if. Always be sure to enter
#endif when using command #if.

® Combinations of #if - #elif - #else - #endif can be nested. There is no set limit to the
number of levels of nesting (but it depends on the amount of available memory).

-188-

Appendix C Overview of C Language Specifications

#ifdef - #elif - #else - #endif
e

Function: Performs conditional compilation. (Examines the macro defined or not.)
Format: #ifdef identifier
#eh'f constant expression
#else
#endjf
Description: ® If an identifier is defined, #ifdef processes the program that follows. You can also

describe the following.

#if defined identifier
#if defined (identifier)

® #else is used in a pair with #ifdef. Do not specify any tokens between #else and the
line feed. You can, however, insert a comment.

® #elif is used in a pair with #if, #ifdef, or #ifndef.

® #endif indicates the end of the range controlled by #ifdef. Always be sure to enter
#endif when using command #ifdef.

® Combinations of #ifdef - #else - #endif can be nested. There is no set limit to the
number of levels of nesting (but it depends on the amount of available memory).

#ifndef - #elif - #else - #endif
e

Function: Performs conditional compilation. (Examines the macro defined or not.)
Format: #ifndef identifier

#eh'f constant expression

#else

#endjf

Description: ® If an identifier isn’t defined, #ifndef processes the program that follows. You can
also describe the followings.

#if Idefined identifier
#if !defined (identifier)

® #else is used in a pair with #ifndef. Do not specify any tokens between #else and
the line feed. You can, however, insert a comment.

® #elif is used in a pair with #if, #ifdef, or #ifndef.

® #endif indicates the end of the range controlled by #ifndef. Always be sure to enter
#endif when using command #ifndef.

® Combinations of #ifndef - #else - #endif can be nested. There is no set limit to the
number of levels of nesting (but it depends on the amount of available memory).

® You cannot use the sizeof operator, cast operator, or variables in a constant
expression.

-189-

Appendix C Overview of C Language Specifications

#include
Function: Takes in the specified file.
Format: (1) #include <file name>
(2 #include "file name"
(3) #include identifier
Description: (1) Takes in <file name> from the directory specified by nc30's command line option -I.
Searches <file name> from the directory specified by environment variable
"INC30" if it's not found.
(2) Takes in "file name" from the current directory. Searches "file name" from the
following directory in sequence if it's not found.
(1) The directory specified by nc30's startup option -I.
(2) The directory specified by environment variable "INC30"
(3) If the macro-expanded identifier is <file name> or "file name" this command takes
in that file from the directory according to rules of search [1] or [2].
® The maximum number of levels of nesting is 40.
® Aninclude error results if the specified file does not exist.
#line
Function: Changes the line number in the file.
Format: #line integer "file name"
Description: ® Specify the line number in the file and the file name.

® You can change the name of the source file and the line No.

-190-

Appendix C Overview of C Language Specifications

#pragma
Function: Instructs the system to process NC30's extended functions.
Format: (1) #pragma ROM variable name

(2) #pragma SBDATA variable name

(3) #pragma SECTION predetermined section name. altered section name

(4) #pragma STRUCT tag name of structure unpack

(5) #pragma STRUCT tag name of structure arrange

6) #pragma EXT4MPTR name of pointer

(7) #pragma ADDRESS variable name absolute address

(8) #pragma BITADDRESS variable name bit position, absolute address

(9) #pragma INTCALL [/C] int No.. assembler function name(register name, register
name, ..)

(10) #pragma INTCALL [/C] int No.. C language function name()

(11) #pragma INTERRUPT [/B|/E] interrupt handling function name

(12) #pragma PARAMETER [/C] assembler function name(register name, register
name, ..)

(13) #pragma SPECIAL [/C] special No.. function name

(14) #pragma ALMHANDLER alarm handler function name

(15) #pragma CYCHANDLER cyclic handler function name

(16) #pragma INTHANDLER interrupt handler function name

(17) #pragma HANDLER interrupt handler function name

(18) #pragma TASK task start function name

(19) #pragma ASM

(20) #pragma ENDASM

(21) #pragma JSRA function name

(22) #pragma JARW function name

(23) #pragma PAGE

(24) #pragma _ ASMMACRO function name(register name)

-191-

Appendix C Overview of C Language Specifications

#pragma
Description:; (1) Facility to arrange in the rom section

(2) Facility to describe variables using SB relative addressing
(3) Facility to alter the section base name

(4) Facility to control the array of structures

(5) Facility to control the array of structures

(6) Facility to declare pointer for access 4M-byte ROM area

(7) Facility to specify absolute addresses for input/output variables
(8) Tacility to specify absolute-with bit position addresses for input/output variables
(9) Facility to declare functions using software interrupts

(10) Facility to declare functions using software interrupts

(11) Facility to write interrupt functions

(12) Facility to declare assembler functions passed via register
(13) Facility to declare special page subroutine call functions
(14) Facility to describe alarm handler functions

(15) Facility to describe cyclic handler functions

(16) Facility to describe interrupt handler functions

(17) Facility to describe interrupt handler functions

(18) Facility to describe task start functions

(19) Facility to describe inline assembler

(20) Facility to describe inline assembler

(21) Facility to declare functions calling with JSR.A instruction
(22) Facility to declare functions calling with JSR.W instruction
(23) Facility to output .PAGE

(24) Facility to declare Assembler macro function

® You can only specify the above 24 processing functions with #pragma. If you specify
a character string or identifier other than the above after #pragma, it will be
ignored.

® By default, no warning is output if you specify an unsupported #pragma function.
Warnings are only output if you specify the nc30 command line option -
Wunknown_pragma (-WUP).

-192-

Appendix C Overview of C Language Specifications

#undef

Function: Nullifies an identifier that is defined as macro.
Format: #undef 1dentifier

Description: ® Nullifies an identifier that is defined as macro.

® The following four identifiers are compiler reserved words. Because these
identifiers must be permanently valid, do not undefine them with #undef.

_ _FILE e Name of source file
__LINE__Current source file line No.
__DATE__ e Date compiled (mm dd yyyy)

_ _TIME__ e Time compiled (hh:mm:ss)

-193-

Appendix C Overview of C Language Specifications

C.3.3. Predefined Macros

The following macros are predefined in NC30:
® M16C (As for the time of ““R8C” option use, __R8C_ _ is defined instead.)

) NC30

C.3.4. Usage of predefined Macros

The predefined macros are used to, for example, use preprocess commands to switch machine-dependent

code in non-NC30 C programs.

#ifdef NC30

#pragma ADDRESS port0 2H
#pragma ADDRESS portl 3H
#else

#pragma AD portA = Ox5F
#pragma AD portA = 0x60
#endif

Figure C.14 Usage Example of Predefined Macros

-194-

Appendix D C Language Specification Rules

Appendix D C Language Specification Rules

This appendix describes the internal structure and mapping of data processed by NC30, the extended rules
for signs in operations, etc., and the rules for calling functions and the values returned by functions.

D.1. Internal Representation of Data

D.1.1. Integral Type

Table D.1 shows the number of bytes used by integral type data

Table D.1 Data Size of Integral Type

Type Existence of sign Bit size Range of values
_Bool No 8 0,1
char No 8 0 to 255
unsigned char
signed char Yes 8 -128 to 127
int Yes 16 -32768 to 32767
short
signed int
signed short
unsigned int No 16 0 to 65535
unsigned short
long Yes 32 -2147483648 to 2147483647
signed long
unsigned long No 32 0 to 4294967295
long long Yes 64 -9223372036854775808 to 9223372036854775807
signed long long
unsigned long long No 64 18446744073709551615
float Yes 32 1.17549435e-38F to 3.40282347e+38F
double Yes 64 2.2250738585072014¢-30 to 1.7976931348623157e+30
long double
near pointer No 16 0 to OxFFFF
far pointer No 32 0 to OxFFFFFFFF

® The _Bool type can not specify to sign.

) If a char type is specified with no sign, it is processed as an unsigned char type.

® If an int or short type is specified with no sign, it is processed as a signed int or signed short
type.

) If a long type is specified with no sign, it is processed as a sign long type.

) If a long long type is specified with no sign, it is processed as a sign long long type.

) If the bit field members of a structure are specified with no sign, they are processed as
unsigned.

® Can not specifies bit-fields of long long type.

-195-

Appendix D C Language Specification Rules

D.1.2. Floating Type

Table D.2 shows the number of bytes used by floating type data.

Table D.2 Data Size of Floating Type

Type Existence of sign Bit Size Range of values
float Yes 32 1.17549435e-38F to 3.40282347e+38F
double Yes 64 2.2250738585072014e-30 to
long double 1.7976931348623157e+30

NC30's floating-point format conforms to the format of IEEE (Institute of Electrical and Electronics
Engineers) standards. The following shows the single precision and double precision floating-point formats.

(1) Single-precision floating point data format

Figure D.1 shows the format for binary floating point (float) data.

31 23 16 8

Fixed-point location

s:fixed-point part sign(1 bit)
e:characteristic part(8 bits)
m:fixed-point part(23 bits)

Figure D.1 Single-precision floating point data format

(2) Double-precision floating point data format

Figure D.2 shows the format for binary floating point (double and long double) data.

63 52 48 40 32 24 16 8

Fixed-point location

s:fixed-point part sign(1 bit)
e:characteristic part(11 bits)
m:fixed-point part(52 bits)

Figure D.2 Double-precision floating point data format

-196-

Appendix D C Language Specification Rules

D.1.3. Enumerator Type

Enumerator types have the same internal representation as unsigned int types. Unless otherwise specified,
integers 0, 1, 2, are applied in the order in which the members appear.

Note that you can also use the nc30 command line option -fchar enumerator (-fCE) to force enumerator
types to have the same internal representation as unsigned char types.

D.1.4. Pointer Type

Table D.3 shows the number of bytes used by pointer type data.

Table D.3 Data Size of Pointer Types

Type Existence of Sign Bit Size Range
near pointers None 16 0 to OxFFFF
far pointers None 32 0 to OxFFFFF

Note that only the least significant 24 bits of the 32 bits of far pointers are valid.
D.1.5. Array Types

Array types are mapped contiguously to an area equal to the product of the size of the elements (in bytes)
and the number of elements. They are mapped to memory in the order in which the elements appear. Figure
D.3 is an example of mapping.

(Example)

char c[5]={0, 1, 2,3, 4}; c[0]
cfl]
c[2] 5 bytes
cf3]

l cl4]

address higher

Figure D.3 Example of Placement of Array

-197-

Appendix D C Language Specification Rules

D.1.6. Structure types

Structure types are mapped contiguously in the order of their member data. Figure D.4 is an example of

mapping.
(Example)
struct TAG { s.C |
char C;
int i; si 3bytes
}s; |

!

address higher

Figure D.4 Example of Placement of Structure(1)

Normally, there is no word alignment with structures. The members of structures aremapped contiguously.
To use word alignment, use the #pragma STRUCT extended function. #pragma STRUCT adds a byte of
padding if the total size of the members is odd. Figure D.5 is an example of mapping.

(Example)

#pragma STRUCT TAG unpac s.c

struct TAG { X 4 bytes
char (o
int i; padding
}s; l

address higher

Figure D.5 Example of Placement of Structure(2)

D.1.7. Unions

Unions occupy an area equal to the maximum data size of their members. Figure D.6 is an example of

mapping.
(Example)
union TAG { c
char o i
int i; 4 bytes (size of lo)
long lo; o
}s;

address higher

Figure D.6 Example of Placement of Union

-198-

Appendix D C Language Specification Rules

D.1.8. Bitfield Types

Bitfield types are mapped from the least significant bit. Figure D.7 is an example of mapping.

(Example) bit7? i
struct BTAG { | sh7 | sh6 | sb5 | sba | sb3 | sh2 | sbl | sb0 | :|lbyte

char b0:1;

char bl:1;

char b2:1;

char b3:1;

char b4:1;

char b5:1;

char b6:1;

char b7:1;

}s;

Figure D.7 Example of Placement of Bitfield(1)

If a bitfield member is of a different data type, it is mapped to the next address. Thus, members of the same
data type are mapped contiguously from the lowest address to which that data type is mapped.

| |
(Example) bit7 bitd
struct BTAG { sb7 | sb4 | sb3 | sb2 | sbl | sbo 1byte
char b0:1; Sb56
char bl:1; 2 byte
char b2:1; |
char b3:1; l
char b4:1;
int b56 :2; address higherr
char b7:1;
}s;

Figure D.8 Example of Placement of Bitfield(2)
[Note :

(1) Ifno sign is specified, the default bitfield member type is unsigned.
(2) Can not specifies bit-fields of long long type.

-199-

Appendix D C Language Specification Rules

D.2. Sign Extension Rules

Under the ANSI and other standard C language specifications, char type data is sign extended to int type
data for calculations, etc. This specification prevents the maximum value for char types being exceeded with
unexpected results when performing the char type calculation shown in Figure D.9

void func(void)

{
char cl,c2,c3;
cl=c2*2/c3;

}

Figure D.9 Example of C Program

To generate code that maximizes code efficiency and maximizes speed, NC30 does not, by default, extend
char types to int types. The default can, however, be overridden using the nc30 compile driver command line
option -fansi or -fextend_to_int (-fETI) to achieve the same sign extension as in standard C.

If you do not use the -fansi or -fextend_to_int (-fETI) option and your program assigns the result of a
calculation to a char type, as in Figure D.9 make sure that the maximum or minimum! value for a char type
does not result in an overflow in the calculation.

1 The ranges of values that can be expressed as char types in NC30 are as follows:
* unsigned char typecccoeveevvennee 0. 255,
* signed char type -128. 127

-200-

Appendix D C Language Specification Rules

D.3. Function Call Rules

D.3.1. Rules of Return Value
When returning a return value from a function, the system uses a register to return that value for the
integer, pointer, and floating-point types. Table D.4 shows rules on calls regarding return values.
Table D.4 Return Value-related Calling Rules
Type of Return Value Rules
_Boll ROL Register
char
int RO Register
near pointer
float Least significant 16 bits returned by storing in RO register. Most significant 16
long bits returned by storing in R2 register.
far pointer
double Values are stored in 16 bits beginning with the high-order bits sequentially in
long double order of registers R3, R2, R1, and RO as they are returned.
long long Values are stored in 16 bits beginning with the high-order bits sequentially in
order of registers R3, R2, R1, and RO as they are returned.
Structure Type Immediately before the function call, save the far address for the area for storing
Union Type the return value to the stack. Before execution returns from the called function,
that function writes the return value to the area indicated by the far address
saved to the stack.
D.3.2. Rules on Argument Transfer

NC30 uses registers or stack to pass arguments to a function.

(1) Passing arguments via register

When the conditions below are met, the system uses the corresponding "Registers Used" listed in Table
D.5 and Table D.6 to pass arguments.
) Function is prototype declared! and the type of argument is known when calling the
function.
® Variable argument "..." is not used in prototype declaration.
® For the type of the argument of a function, the Argument and Type of Argument in Table

D.5 and Table D.6 are matched.
TableD.5 Rules on Argument Transfer via Register (NC308)
Argument First Argument Registers Used
First argument char type, _Bool type ROL register
int type RO register
near pointer type

1 NC30 uses a via-register transfer only when entering prototype declaration (i.e., when writing a new format). Consequently, all arguments are
passed via stack when description of K&R format is entered (description of old format).

Note also that if a description format where prototype declaration is entered for the function (new format) and a description of the K&R format (old
format) coexist in given statement, the system may fail to pass arguments to the function correctly, for reasons of language specifications of the C
language.

Therefore, we recommends using a prototype- declaring description format as the standard format to write the C language source files for NC30.

-201-

Appendix D C Language Specification Rules

TableD.6 Rules on Argument Transfer via Register (NC30)
Argument First Argument Registers Used
First argument char type, _Bool type R1L register
int type R1 register
near pointer type
Second argument int type R2 register
near pointer type

(2) Passing arguments via stack

All arguments that do not satisfy the register transfer requirements are passed via stack. The Table D.7 and

Table D.8 summarize the methods used to pass arguments.

Table D.7 Rules on Passing Arguments to Function (NC308)
Type of Argument First Argument Second Argument Third and Following Arguments
char type ROL register Stack Stack
_Bool type
int type RO register Stack Stack
near pointer type
Other types Stack Stack Stack
Table D.8 Rules on Passing Arguments to Function (NC30)
Type of Argument First Argument Second Argument Third and Following Arguments
char type R1L register Stack Stack
_Bool type
int type R1 register R2 registe Stack
near pointer type
Other types Stack Stack Stack
D.3.3. Rules for Converting Functions into Assembly Language Symbols

The function names in which functions are defined in a C language source file are used as the start labels of

functions in an assemble

T source file.

The start label of a function in an assembler source file consists of the function name in the C language
source file prefixed by _ (underbar) or $ (dollar).
The table below lists the character strings that are added to a function name and the conditions under

which they are added.
Table D.9 Conditions Under Which Character Strings Are Added to Function
Added character string Condition
$ (dollar) Functions where any one of arguments is passed via register
_ (underbar) Functions that do not belong to the above!

Shown in Figure D.10 is a sample program where a function has register arguments and where a function

has its arguments passed via only a stack.

1 However, function names are not output for the functions that are specified by #pragma INTCALL.

-202-

Appendix D C Language Specification Rules

int func_proto(int, int, int); [1]
Vit func_proto(inti,intj,intk) 12
I { '

I returni+j+k; :
E |
it func_no_proto(ijk | B3l
| int i; I
| int I8 I
: int k; :
B . |
I returni+j+k; I

|
I‘ }—_J
fvod main(void) | [l
I { |
: int sum; I

|
: sum = func_proto(1,2,3); l [5]
I sum = func_no_proto(1,2,3); | [6]
I} |

[1] This is the prototype declaration of function func_proto.

[2] This is the body of function func_proto. (Prototype declaration is entered, so this is a new format.)

[3] This is the body of function func_no_proto. (This is a description in K&R format, that is, an old format.)
[4]This is the body of function main.

[5] This calls function func_proto.

[6] This calls function func_no_proto.

Figure D.10 Sample Program for Calling a Function (sample.c)

The compile result of the above sample program is shown in the next page. Figure D.11 shows the compile
result of program part[2]that defines function func_proto. Figure D.12 shows the compile result of program
part[3]that defines function func_no_proto.Figure D.13 shows the compile result of program part[4]that calls
function func_proto and function func_no_proto.

-203-

Appendix D C Language Specification Rules

HEH FUNCTION func_proto

At FRAME AUTO (j) size 2, offset-4

HEH FRAME AUTO (i) size 2, offset-2

#t# FRAME ARG (k) size 2, offsetb <7
REGISTERARG (i) size 2, REGISTERR1 <8
REGISTERARG () size 2, REGISTERR2 <9
HH ARG Size(2) Auto Size(2) Context Size(5)

.SECTION program,CODE,ALIGN

._file 'sample.c’
.align
._line 4
###C _SRC: {
glb $func_proto
$func_proto: < [10]
enter #04H
mov.w R1-2[FB] ; i i
mov.w R2,-4[FB] ; j |
_line 5
###C_SRC: returni+j+k;
mov.w -2[FBLRO ; i
add.w -4[FBLRO ; j
add.w 5[FBLRO ; k
exitd
El:

[7]1 This passes the third argument k via stack.
[8] This passes the secondargument i via register.
[9] This passes the first argument j via register.
[10] This is the start address of function func proto.

Figure D.11 Compile Result of Sample Program (sample.c) (1)

In the compile result (1) of the sample program (sample.c) listed inFigure D.10, the first and second
arguments are passed via a register since function func_proto is prototype declared. The third argument is
passed via a stack since it is not subject to via-register transfer.

Furthermore, since the arguments of the function are passed via register, the symbol name of the function's
start address is derived from "func_proto" described in the C language source file by prefixing it with
$ (dollar), hence, "$func_proto."

-204-

Appendix D C Language Specification Rules

T FUNCTION func_no_proto
M## FRAME “ARG (™ ~ " 0) size 2, ofsetb~ ~ ~ ~ T T T 1| [11]
: ## FRAME ARG () size 2, offset7 |
| ## FRAME_ ARG(__ K) size 2 _ofset9 ________ | |
HH ARG Size(6) Auto Size(0) Context Size(5)
.align
_line 12
###C_SRC: {
.glb _func_no_proto <[12]
_func_no_proto:
enter #00H
._line 13
#t#C _SRC: retuni+j+Kk;

mov.w 5[FBLRO ; i
add.w 7[FBLRO ;]
add.w 9[FBLRO ; k
exitd

E2:

[11] This passes all arguments via a stack.
[12] This is the start address of function func_no_proto.

Figure D.12 Compile Result of Sample Program (sample.c) (2)

In the compile result (2) of the sample program (sample.c) listed inFigure D.10, all arguments are passed via
a stack since function func_no_proto is written in K&R format.

Furthermore, since the arguments of the function are not passed via register, the symbol name of the
function's start address is derived from "func_no_proto" described in the C language source file by prefixing
it with _ (underbar), hence, "_func_no_proto."

-205-

Appendix D C Language Specification Rules

HHEH FUNCTION main
HH# FRAME AUTO (sum)size 2, offset-2
HitH ARG Size(0) Auto Size(2) Context Size(5)
align
_line 17
###C_SRC: {
glb _main
_main:
enter #02H
_line 20
##C SRC: S sum =func_proto(1,2,3); _ _ _ _ __ __ _
r pushw ~ #0003H |
: movw #0002H,R2 |
| movw #0001H,R1 :
I jsr $func_proto |
I add.l #02H,SP |
| _____mow _RO2FB ; sm_______ |
line
M#HC SRC: ¢ sum=func no_proto(1,23); _ _ _ _ _ _ _
IF pushw #0003H |
| pushw #0002H |
| pushw #00O1H :
I jsr _func_no_proto I
: add.| #06H,SP |
L_____movw__ RO-2FB] ;_sum__ _ __ ___________/|
_line 22
###C SRC: }
exitd
E3:
.END

(14]

Figure D.13 Compile Result of Sample Program (sample.c) (3)

Figure D.13 ,part[13]calls func_proto and part[14]calls func_no_proto.

-206-

Appendix D C Language Specification Rules

D.3.4. Interface between Functions

Figure D.16 to D.18 show the stack frame structuring and release processing for the program shown in
Figure D.14. Figure D.15 shows the assembly language program that is produced when the program shown
in Figure D.14 is compiled.

int func(int, int ,int);
void main(void)
{
int i =0x1234; < Argument to func
int j=0x5678; < Argument to func
int k = 0x9abc; < Argument to func
k=func(i, j K);
}
int func(int x,intyjint z))
{
int sum;
SUM=x+y+2z;
return sum; < Return value to main
}

Figure D.14 Example of C Language Sample Program

-207-

Appendix D C Language Specification Rules

HHEH FUNCTION main

HEH FRAME AUTO (i) size 2, offset-6

HHEH FRAME AUTO (j) size 2, offset-4

H# FRAME AUTO (k) size 2, offset-2

Nisidid ARG Size(0) Auto Size(6) Context Size(5)

.SECTION program,CODE,ALIGN

.file 'sample.c’
align
_line 4

##t#C_SRC: {
glb _main

_main: < [1]
enter #06H <[2]
._line 5

#E#C SRC: int i=0x1234;
mov.w #1234H,-2[FB] D
._line 6

###C_SRC: int j=0x5678;
mov.w #5678H,-4[FB] v
._line 7

#E#C SRC: int k = 0x9abc;
mov.w #9abcH,-6[FB] ok
_line 9

###C_SRC: k =func(i, ,Kk);
pushw -6[FB] ik < [3]
mov.w AFBLR2 ;] < [4]
mov.w 2[FBLR1 ; i < [5]
jsr $func < [6]
add.l #02H,SP < [10]
mov.w RO,-2[FB] ; k <1
._line 10

###C_SRC: }
exitd

El:

Figure D.15 Assembly language sample program (1/2)

-208-

Appendix D C Language Specification Rules

—n.

offset -4
offset -4
offset -2

2, REGISTERR1
2, REGISTERR2

HEH FUNCTION func
HEH FRAME AUTO (sum)size 2,
S FRAME AUTO (y) size 2,
HHH# FRAME AUTO (X) size 2,
#t# FRAME ARG (z) size 2, offsets
##t# REGISTER ARG (X) size
REGISTERARG (y) size
A ARG Size(2) Auto Size(4)
align
_line 13
#t#C _SRC: {
gb $func
$func:
enter #04H
mov.w R1,-2[FB] ; x x
mov.w R2-4[FB] ; vy vy
_line 16
#HE#C_SRC: sum=x+y+2z;
mov.w -2[FBLRO ; X
add.w 4[FBLRO ; vy
add.w 5[FBRO ; z
mov.w RO,-4[FB] ; sum
_line 17
#HE#C_SRC: return sum;
mov.w -4[FBLRO ; sum
exitd

Context Size(5)

<[

<[8]
<9

Figure D.16 Assembly language sample program (2/2)

Figure D.16 to D.18 below show stack and register transitions in each processing in Figure D.15. Processing
in[1]. [2](entry processing of function main) is shown in Figure D.16. Processing[3]. [4]. [5]. [6]. [7](processing
to call function func and construct stack frames used in function func) is shown in Figure D.17.

Processing[8]. [9]. [10]. [11](processing to return from function func to function main) is shown in Figure

D.18.

Stack usage state for
start of [1]-main

€sP

— Variablei —f

— \Variablej —

— Variablek —

— OLDFB —]

Stack usage state of [2]

€sp

<FB

Figure D.17 Entry processing of function main

-209-

Appendix D C Language Specification Rules

€SP
- Argument Z(k)
push
— Variablei —
— Variablej —
— Variablek —
<FB
| OldFB
Stack usage state of [3][4]
(When PUSH instruction
completed)

I Argument Z(k) —

€sP

R1

— Variablei —

— Variablej —

— Variablek —

| OldFB

Stack usage state off5]

<FB

— Return —
— address —

- Argument Z(K) -

— Variablei —f

— \Variablej —

— Variablek —

|l OldFB _|

Stack usage state of [6]
(When JSR instruction
completed)

B om0

. <SP
| Variable sum —|

€spP

<FB

. Argumenty(j)

A 4

Argument x(i) —

FB of

main

<FB

— Return —
— address —

- ArgumentZ(k) -

— Variablei —f

— Variable] —

— Variablek —

— OldFB —

Stack usage state of [7]
(When ENTER instruction
completed)

Figure D.18 Calling Function func and Entry Processing

-210-

Appendix D C Language Specification Rules

. Variable sum

€sp

RO

Ll
> Return value of func Ii

- Argumenty() -

Argument X() —

FBof

main

— Return
— address

I Argument Z(k) -

— Variablei

— Variablej

— Variable k

L OldFB

«FB

Stack uage state of [8]

<SP
- Argument z (k)
— Variablei —
— Variablej —
— Variablek —
<FB
L OldFB —]

Stack usage state of [9]
(When EXITD instruction
completed)

€SP
— Variablei —
— Variablej —|
=— Variable k —
 odFB |
Stack usage state of [10][11]

Figure D.19 Exit Processing of Function func

-211-

Appendix D C Language Specification Rules

D.4. Securing auto Variable Area

Variables of storage class auto are placed in the stack of the micro processor. For a C language source file like

the one shown in Figure D.20, if the areas where variables of storage class auto are valid do not overlap each

other, the system allocates only one area which is then shared between multiple variables.

void func(void)
{
int i, K
for(i=0;i<=0; i++ ¥
process scope of i
}
(abbreviated)
for(J=OXFF ; j<=0: |-)
process scope of j
}
(abbreviated)
for(k=0; k<=0 ; k++){
process scope of k
}
}

Figure D.20 Example of C Program

In this example, the effective ranges of three auto variables 1, j, and k do not overlap, so that a two-byte area
(offset 1 from FB) is shared . Figure D.21 shows an assembly language source file generated by compiling
the program in Figure D.20.

HHHE
HHHE
HHHE

_func:

FUNCTION func
FRAME AUTO (
FRAME AUTO (

FRAME AUTO
.section program
._file ‘testl.c'
._line 3

glb _func

enter #02H

(remainder omitted)

k) size 2, offset -2 <[]
)] size 2, offset -2 <2
i) size 2, offset -2 < [3]

* As shown by [1],[2], and [3],the three auto variables share the FB offset -2 area.

Figure D.21 Example of Assembly Language Source Program

-212-

Appendix D C Language Specification Rules

D.5. Rules of Escaping of the Register

The rules of Escaping of the register when call C function as follows:
(1) The rules of Escaping of the register when call C function as follows:
] Register which use in called C function
(2) Register which should escaping in the entrance procedure of the called function.
(] None

-213-

Appendix E Standard Library

Appendix E Standard Library

E.1. Standard Header Files

When using the NC30 standard library, you must include the header file that defines that function.
This appendix details the functions and specifications of the standard NC30 header files.

E.1.1. Contents of Standard Header Files

NC30 includes the 15 standard header files shown in Table E.1.

Table E.1 List of Standard Header Files

Header File Name

Contents

assert.h Outputs the program's diagnostic information.
ctype.h Declares character determination function as macro.
errno.h Defines an error number.
float.h Defines various limit values concerning the internal representation of floating
points.
limits.h Defines various limit values concerning the internal processing of compiler.
locale.h Defines/declares macros and functions that manipulate program localization.
math.h Declares arithmetic/logic functions for internal processing.
mathfh Declares arithmetic/logic functions for internal processing.(for float type)
setjmp.h Defines the structures used in branch functions.
signal.h Defines/declares necessary for processing asynchronous interrupts.
stdarg.h Defines/declares the functions which have a variable number of real arguments.
stddef h Defines the macro names which are shared among standard include files.
stdio.h (1) Defines the FILE structure.
(2) Defines a stream name.
(3) Declares the prototype of input/output functions.
stdlib.h Declares the prototypes of memory management and terminate functions.
string.h Declares the prototypes of character string and memory handling functions.
time.h Declares the functions necessary to indicate the current calendar time and defines

the type.

-214-

Appendix E Standard Library

E.1.2. Standard Header Files Reference

Following are detailed descriptions of the standard header files supplied with NC30. The header files are
presented in alphabetical order.

The NC30 standard functions declared in the header files and the macros defining the limits of numerical
expression of data types are described with the respective header files.

assert.h

Function: Defines assert function.

caﬁe.h

Function: Defines/declares string handling function.The following lists string handling functions.

Function Contents

isalnum Checks whether the character is an alphabet or numeral.
isalpha Checks whether the character is an alphabet.
iscntrl Checks whether the character is a control character.
isdigit Checks whether the character is a numeral.
isgraph Checks whether the character is printable (except a blank).
islower Checks whether the character is a lower-case letter.
isprint Checks whether the character is printable (including a blank).
ispunct Checks whether the character is a punctuation character.
isspace Checks whether the character is a blank, tab, or new line.
isupper Checks whether the character is an upper-case letter.
isxdigit Checks whether the character is a hexadecimal character.
tolower Converts the character from an upper-case to a lower-case.
toupper Converts the character from a lower-case to an upper-case.

errno.h

Function: Defines error number.

-215-

Appendix E Standard Library

float.h

Function:

Defines the limits of internal representation of floating point values. The following lists
the macros that define the limits of floating point values.
In NC30, long double types are processed as double types. Therefore, the limits applying
to double types also apply to long double types.

Macro name Contents Defined value
DBL_DIG Maximum number of digits of double-type | 15
decimal precision
DBL_EPSILON Minimum positive ~ value where | 2.2204460492503131e-16
1.0+DBL,_EPSILON is found not to be 1.0
DBL_MANT _DIG Maximum number of digits in the | 53
mantissa part when a double-type
floating-point value is matched to the radix
in its representation
DBL_MAX Maximum value that a doubletype | 1.7976931348623157e+30

variable can take on as value

DBL_MAX 10_EXP

Maximum value of the power of 10 that
can be represented as a double-type
floating-point numeric value

30

DBL_MAX_EXP

Maximum value of the power of the radix
that can be represented as a double-type
floating-point numeric value

1024

DBL_MIN

Minimum value that a double-type
variable can take on as value

2.2250738585072014e-30

DBL_MIN_10_EXP

Minimum value of the power of 10 that can
be represented as a doubletype
floating-point numeric value

-307

DBL_MIN_EXP

Minimum value of the power of the radix
that can be represented as a double-type
floating-point numeric value

-1021

FLT DIG

Maximum number of digits of float-type
decimal precision

6

FLT_EPSILON

Minimum positive value where
1.0+FLT_EPSILON is found not to be 1.0

1.19209290e-07F

FLT MANT _DIG

Maximum number of digits in the
mantissa part when a floattype
floating-point value is matched to the radix
in its representation

24

FLT MAX

Maximum value that a float-type variable
can take on as value

3.40282347e+38F

FLT MAX 10_EXP

Maximum value of the power of 10 that
can be represented as a float-type
floating-point numeric value

38

FLT MAX EXP

Maximum value of the power of the radix
that can be represented as a float-type
floating-point numeric value

128

FLT_MIN

Minimum value that a float-type variable
can take on as value

1.17549435e-38F

FLT MIN_10_EXP

Minimum value of the power of 10 that can
be represented as a float-type floating-point
numeric value

-37

FLT MIN_EXP

Maximum value of the power of the radix
that can be represented as a float-type
floating-point numeric value

-125

FLT RADIX

Radix of exponent in floating-point
representation

2

FLT_ROUNDS

Method of rounding off a floating-point number

1(Rounded to the nearest whole

number)

-216-

Appendix E Standard Library

limits.h

Function: Defines the limitations applying to the internal processing of the compiler. The following
lists the macros that define these limits.
Macro name Contents Defined value
MB_LEN_MAX Maximum value of the number of | 1
multibyte character- type bytes
CHAR_BIT Number of char-type bits 8
CHAR_MAX Maximum value that a chartype variable | 255
can take on as value
CHAR_MIN Minimum value that a char-type variable | 0
can take on as value
SCHAR_MAX Maximum value that a signed chartype | 127
variable can take on as value
SCHAR_MIN Minimum value that a signed chartype | -128
variable can take on as value
INT_MAX Maximum value that a int-type variable | 32767
can take on as valueMaximum value that
a int-type variable can take on as value
INT_MIN Minimum value that a int-type variable | -32768
can take on as value
SHRT MAX Maximum value that a short int-type | 32767
variable can take on as value
SHRT MIN Minimum value that a short int-type | -32768
variable can take on as value
LONG_MAX Maximum value that a long-type variable | 2147483647
can take on as value
LONG_MIN Minimum value that a long-type variable -2147483648
can take on as value
LLONG_MAX Maximum value that a signed long | 9223372036854775807
long-type variable can take on as value
LLONG_MIN Minimum value that a signed long | -9223372036854775808
longtype variable can take on as value
UCHAR_MAX Maximum value that an unsigned | 255
char-type variable can take on as value
UINT_MAX Maximum value that an unsigned int-type | 65535
variable can take on as value
USHRT MAX Maximum value that an unsigned short | 65535
int-type variable can take on as value
ULONG_MAX Maximum value that an unsigned long | 4294967295
int-type variable can take on as value
ULLONG_MAX Maximum value that an unsigned long | 18446744073709551615
long inttype variable can take on as value
locale.h

Function:

Defines/declares macros and functions that manipulate program localization.The
following lists locale functions.

Function Contents
localeconv Initializes struct lconv.
setlocale Sets and searches the locale information of a program.

-217-

Appendix E Standard Library

math.h

Function: Declares prototype of mathematical function.The following lists mathematical functions.
Function Contents
acos Calculates arc cosine.
asin Calculates arc sine.
atan Calculates arc tangent.
atan2 Calculates arc tangent.
ceil Calculates an integer carry value.
cos Calculates cosine.
cosh Calculates hyperbolic cosine.
exp Calculates exponential function.
fabs Calculates the absolute value of a double-precision floating-point
number.
floor Calculates an integer borrow value.
fmod Calculates the remainder.
frexp Divides floating-point number into mantissa and exponent parts.
labs Calculates the absolute value of a long-type integer.
ldexp Calculates the power of a floating-point number.
log Calculates natural logarithm.
log10 Calculates common logarithm.
modf Calculates the division of a real number into the mantissa and
exponent parts.

pow Calculates the power of a number.
sin Calculates sine.
sinh Calculates hyperbolic sine.
sqrt Calculates the square root of a numeric value.
tan Calculates tangent.
tanh Calculates hyperbolic tangent.

setimp.h

Function:

Defines the structures used in branch functions.

Function Contents
longjmp Performs a global jump.
setjmp Sets a stack environment for a global jump.

si('JnaI.h

Function:

Defines/declares necessary for processing asynchronous interrupts.

-218-

Appendix E Standard Library

stdarg.h
-]

Function: Defines/declares the functions which have a variable number of real arguments.

stddef.h
-]

Function: Defines the macro names which are shared among standard include files.

stdio.h

Function: Defines the FILE structure,stream name, and declares I/O function prototypes.
Prototype declarations are made for the following functions.

Type Function Function
Initialize | init Initializes M16C/80 family input/outputs.
clearerr Initializes (clears) error status specifiers.
Input fgetc Inputs one character from the stream.
getc Inputs one character from the stream.
getchar Inputs one character from stdin.
fgets Inputs one line from the stream.
gets Inputs one line from stdin.
fread Inputs the specified items of data from the stream.
scanf Inputs characters with format from stdin.
fscanf Inputs characters with format from the stream.
sscanf Inputs data with format from a character string.
Output | fputc Outputs one character to the stream.
putc QOutputs one character to the stream.
putchar Outputs one character to stdout.
fputs Outputs one line to the stream.
puts Outputs one line to stdout.
fwrite Outputs the specified items of data to the stream.
perror Outputs an error message to stdout.
printf Outputs characters with format to stdout.
fflush Flushes the stream of an output buffer.
Fprintf Outputs characters with format to the stream.
sprintf Writes text with format to a character string.
viprintf Output to a stream with format.
vprintf Output to stdout with format.
vsprintf Output to a buffer with format.
Return | ungetc Sends one character back to the input stream.
Deter- | ferror Checks input/output errors.
mination | feof Checks EOF (End of File).

-219-

Appendix E Standard Library

stdlib.h
- 00__00000000__]
Function: Declares the prototypes of memory management and terminate functions.
Function Contents
abort Terminates the execution of the program.
abs Calculates the absolute value of an integer.
atof Converts a character string into a double-type floating- point
number.

atoi Converts a character string into an int-type integer.
atol Converts a character string into a long-type integer.
bsearch Performs binary search in an array.
calloc Allocates a memory area and initializes it to zero (0).
div Divides an int-type integer and calculates the remainder.
free Frees the allocated memory area.
labs Calculates the absolute value of a long-type integer.
Idiv Divides a long-type integer and calculates the remainder.
malloc Allocates a memory area.
mblen Calculates the length of a multibyte character string.
mbstowcs Converts a multibyte character string into a wide character string.
mbtowc Converts a multibyte character into a wide character.
qgsort Sorts elements in an array.
realloc Changes the size of an allocated memory area.
strtod Converts a character string into a double-type integer.
strtol Converts a character string into a long-type integer.
strtoul Converts a character string into an unsigned long-type integer.
westombs Converts a wide character string into a multibyte character string.
wetomb Converts a wide character into a multibyte character.

-220-

Appendix E Standard Library

string.h

Function: Declares the prototypes of string handling functions and memory handling functions.
Type Type Contents
Copy strcpy Copies a character string.
strncpy Copies a character string (n' characters).
Concatenate | strcat Concatenates character strings.
strncat Concatenates character strings (n' characters).
Compare strcmp Compares character strings .
strcoll Compares character strings (using locale information).
stricmp Compares character strings. (All alphabets are handled as
upper-case letters.)
strnemp Compares character strings (n' characters).
strnicmp Compares character strings (n' characters). (All alphabets
are handled as upper-case letters.)
Search strchr Searches the specified character beginning with the top of the
character string.
strespn Calculates the length (number) of unspecified characters that
are not found in the other character string.
strpbrk Searches the specified character in a character string from the
other character string.
strrchr Searches the specified character from the end of a character
string.
strspn Calculates the length (number) of specified characters that
are found in the other character string.
strstr Searches the specified character from a character string.
strtok Divides some character string from a character string into
tokens.
Length strlen Calculates the number of characters in a character string.
Convert strerror Converts an error number into a character string.
strxfrm Converts a character string (using locale information).
Initialize bzero Initializes a memory area (by clearing it to zero).
Copy beopy Copies characters from a memory area to another.
memcpy Copies characters (n' bytes) from a memory area to another.
memset Set a memory area by filling with characters.
Compare memcmp Compares memory areas (‘n' bytes).
memicmp Compares memory areas (with alphabets handled as
uppercase letters).
Search memchr Searches a character from a memory area.
time.h

Function:

Declares the functions necessary to indicate the current calendar time and defines the

type.

-221-

Appendix E Standard Library

E.2. Standard Function Reference

Describes the features and detailed specifications of the standard function library of the compiler.
E.2.1. Overview of Standard Library

NC30 has 119 Standard Library items. Each function can be classified into one of the following 11 categories
according to its function.
(1) String Handling Functions
Functions to copy and compare character strings, etc.
(2) Character Handling Functions
Functions to judge letters and decimal characters, etc., and to covert uppercase to lowercase
and vice-versa.
(3 IO Functions
Functions to input and output characters and character strings. These include functions for
formatted I/O and character string manipulation.
(4) Memory Management Functions
Functions for dynamically securing and releasing memory areas.
(5) Memory Manipulation Functions
Functions to copy, set, and compare memory areas.
(6) Execution Control Functions
Functions to execute and terminate programs, and for jumping from the currently executing
function to another function.
(7) Mathematical Functions
* These functions require time.
) Therefore, pay attention to the use of the watchdog timer.
(8 Integer Arithmetic Functions
Functions for performing calculations on integer values.
(9) Character String Value Convert Functions
Functions for converting character strings to numerical values.
(10) Multi-byte Character and Multi-byte Character String Manipulate Functions
Functions for processing multi-byte characters and multi-byte character strings.
(11) Locale Functions
Locale-related functions.

-222-

E22.

Appendix E Standard Library

List of Standard Library Functions by Function

a. String Handling Functions

The following lists String Handling Functions.

TableE.2 String Handling Functions
Type Function Contents Reentrant
Copy strcpy Copies a character string. o
strncpy Copies a character string ('n' characters). o
Concatenate | strcat Concatenates character strings. o
strncat Concatenates character strings (n' characters). o
Compare stremp Compares character strings . o)
strcoll Compares character strings (using locale information). o
stricmp Compares character strings. (All alphabets are handled as o)
upper-case letters.)
strncmp Compares character strings (n' characters). o
strnicmp Compares character strings (n' characters). (All alphabets are o
handled as upper-case letters.)
Search strchr Searches the specified character beginning with the top of the o)
character string.
strcspn Calculates the length (number) of unspecified characters that o
are not found in the other character string.
strpbrk Searches the specified character in a character string from the o)
other character string.
strrchr Searches the specified character from the end of a character o)
string.
strspn Calculates the length (number) of specified characters that o)
are found in the other character string.
strstr Searches the specified character from a character string. o
strtok Divides some character string from a character string into X
tokens.
Length strlen Calculates the number of characters in a character string. (0]
Convert strerror Converts an error number into a character string. X
strxfrm Converts a character string (using locale information). (6]

* Several standard functions use global variables that are specific to that function. If, while that function is called and
is being executed, an interrupt occurs and that same function is called by the interrupt processing program, the global
variables used by the function when first called may be overwritten.

This does not occur to global variables of functions with reentrancy (indicated by a O in the table). However, if the
function does not have reentrancy (indicated by a X in the table), care must be taken if the function is also used by an

interrupt processing program.

-223-

Appendix E Standard Library

b. Character Handling Functions

The following lists character handling functions.

Table E3 Character Handling Functions

Function Contents Reentrant
isalnum Checks whether the character is an alphabet or numeral. o
isalpha Checks whether the character is an alphabet. o)
isentrl Checks whether the character is a control character. o
1sdigit Checks whether the character is a numeral. o
isgraph Checks whether the character is printable (except a blank). o)
islower Checks whether the character is a lower-case letter. o
isprint Checks whether the character is printable (including a blank). o
ispunct Checks whether the character is a punctuation character. o
isspace Checks whether the character is a blank, tab, or new line. o)
isupper Checks whether the character is an upper-case letter. o
isxdigit Checks whether the character is a hexadecimal character. o
tolower Converts the character from an upper-case to a lowercase. o
toupper Converts the character from a lower-case to an uppercase. o

-224-

Appendix E Standard Library

C. Input/Output Functions

The following lists Input/Output functions.

Table E4 Input/Output Functions

Type Function Contents Reentrant
Initialize init Initializes M16C series's input/outputs. X
clearerror Initializes (clears) error status specifiers. X
Initialize foetc Inputs one character from the stream. X
getc Inputs one character from the stream. X
getchar Inputs one character from stdin. X
foets Inputs one line from the stream. X
gets Inputs one line from stdin. X
fread Inputs the specified items of data from the stream. X
scanf Inputs characters with format from stdin. X
fscanf Inputs characters with format from the stream. X
sscanf Inputs data with format from a character string. X
Output fpute Outputs one character to the stream. X
putc Outputs one character to the stream. X
putchar Outputs one character to stdout. X
fputs Outputs one line to the stream. X
puts Outputs one line to stdout. X
fwrite Outputs the specified items of data to the stream. X
perror Outputs an error message to stdout. X
printf Outputs characters with format to stdout. X
fflush Flushes the stream of an output buffer. X
fprintf Outputs characters with format to the stream. X
sprintf Writes text with format to a character string. X
viprintf Output to a stream with format. X
vprintf Output to stdout with format. X
vsprintf Output to a buffer with format. X
Return ungetc Sends one character back to the input stream. X
Determination | ferror Checks input/output errors. X
feof Checks EOF (End of File). X

d. Memory Management Functions

The following lists memory management functions.

TableE5 Memory Management Functions

Function Contents Reentrant
calloc Allocates a memory area and initializes it to zero (0). X
free Frees the allocated memory area. X
malloc Allocates a memory area. X
realloc Changes the size of an allocated memory area. X

-225-

Appendix E Standard Library

e. Memory Handling Functions

The following lists memory handling functions.

TableE.6 Memory Handling Functions
Type Function Contents Reentrant
Initialize bzero Initializes a memory area (by clearing it to zero). o)
Copy bcopy Copies characters from a memory area to another. o
memcpy Copies characters (n' bytes) from a memory area to another. o
memset Set a memory area by filling with characters. o
Compare mememp Compares memory areas (n' bytes). o)
memicmp Compares memory areas (with alphabets handled as o
upper-case letters).
Move memmove Moves the area of a character string. o)
Search memchr Searches a character from a memory area. o
f. Execution Control Functions
The following lists execution control functions.
Table E.7 Execution Control Functions
Function Contents Reentrant
abort Terminates the execution of the program. o)
longymp Performs a global jump. o)
setjmp Sets a stack environment for a global jump. o)

-226-

Appendix E Standard Library

g. Mathematical Functions

The following lists mathematical functions.

Table E8 Mathematical Functions
Function Contents Reentrant
acos Calculates arc cosine. o
asin Calculates arc sine. o
atan Calculates arc tangent. o)
atan2 Calculates arc tangent. o
ceil Calculates an integer carry value. o
cos Calculates cosine. o
cosh Calculates hyperbolic cosine. o
exp Calculates exponential function. o
fabs Calculates the absolute value of a double-precision floating- point o
number.
floor Calculates an integer borrow value. o
fmod Calculates the remainder. o)
frexp Divides floating-point number into mantissa and exponent parts. o
labs Calculates the absolute value of a long-type integer. o
Idexp Calculates the power of a floating-point number. o
log Calculates natural logarithm. o
log10 Calculates common logarithm. o
modf Calculates the division of a real number into the mantissa and exponent o)
parts.

pow Calculates the power of a number. o)
sin Calculates sine. o
sinh Calculates hyperbolic sine. o)
sqrt Calculates the square root of a numeric value. o
tan Calculates tangent. o
tanh Calculates hyperbolic tangent. o

h. Integer Arithmetic Functions

The following lists integer arithmetic functions.

Table E.9 Integer Arithmetic Functions

Function Contents Reentrant

abs Calculates the absolute value of an integer. o)
bsearch Performs binary search in an array. o
div Divides an int-type integer and calculates the remainder. o
labs Calculates the absolute value of a long-type integer. o
1div Divides a long-type integer and calculates the remainder. o
gsort Sorts elements in an array. o)
rand Generates a pseudo-random number. o)
srand Imparts seed to a pseudo-random number generating routine. o

-227-

Appendix E Standard Library

i. Character String Value Convert Functions

The following lists character string value convert functions.

Table E.10 Character String Value Convert Functions

Function Contents Reentrant
atof Converts a character string into a double-type floatingpoint number. o
atol Converts a character string into an int o
atol Converts a character string into a long o
strtod Converts a character string into a double o
strtol Converts a character string into a long o)
strtou Converts a character string into an unsigned long-type integer. o
j- Multi-byte Character and Multi-byte Character String Manipulate Functions
The following lists Multibyte Character and Multibyte Character string Manipulate Functions.
Table E.11 Multibyte Character and Multibyte Character String Manipulate Functions
Function Contents Reentrant
mblen Calculates the length of a multibyte character string. o)
mbstowcs Converts a multibyte character string into a wide character string. o
mbtowc Converts a multibyte character into a wide character. o)
westombs Converts a wide character string into a multibyte character string. o
wctomb Converts a wide character into a multibyte character. o
k. Localization Functions
The following lists localization functions.
Table E.12 Localization Functions
Function Contents Reentrant
localeconv Initializes struct lconv. o
setlocale Sets and searches the locale information of a program. o

-228-

Appendix E Standard Library

E.2.3. Standard Function Reference

The following describes the detailed specifications of the standard functions provided in NC30. The functions
are listed in alphabetical order.
Note that the standard header file (extension .h) shown under "Format" must be included when that

function is used.
abort
Function: Terminates the execution of the program abnormally.
Format: #include <stdlib.h>
void abort(void);
Method: function
Variable: No argument used.

ReturnValue: No value is returned.

Description: Terminates the execution of the program abnormally.
Note: Actually, the program loops in the abort function.
abs
Function: Calculates the absolute value of an integer.
Format: #include <stdlib.h>
int abs(n);
Method: function
Variable: int n; Integer

RetumnValue: Returns the absolute value of integer n (distance from 0).

-229-

Appendix E Standard Library

acos

Mathematical Functions
Function: Calculates arc cosine.
Format: thinclude <math.h>

double acos(x);

Method: function
Variable: double x; arbitrary real number
ReturnValue: ® Assumes an error and returns 0 if the value of given real number x is outside

therange of -1.0 to 1.0.
® Otherwise, returns a value in the range from 0 to p radian.

asin

Mathematical Functions
Function: Calculates arc sine.
Format: thAnclude <math.h>

double asin(x);

Method: function
Variable: double x; arbitrary real number
ReturnValue: ® Assumes an error and returns O if the value of given real number x is outside the

range of -1.0 to 1.0.
® Otherwise, returns a value in the range from -p/2 to p/2 radian.

atan
Function: Calculates arc tangent.
Format: #include <math h>
double atan(x);
Method: function
Variable: double x; arbitrary real number

ReturnValue: Returns a value in the range from -1/2 to /2 radian.

-230-

Appendix E Standard Library

atan?2
Mathematical Functions

Function: Calculates arc tangent.
Format: #include <math.h>

double atan2(x , y);

Method: function
Variable: double x; arbitrary real number
double y; arbitrary real number
ReturnValue: Returns a value in the range from -m to t radian.
atof
Function: Converts a character string into a double-type floating- point number.
Format: #include <stdlib.h>
double atof(s);
Method: function
Variable: const char _far *s; Pointer to the converted character string
ReturnValue: Returns the value derived by converting a character string into a double-precision

floating-point number.

atoi
Function: Converts a character string into an int-type integer.
Format: #include <stdlib.h>
int atoi(s);
Method: function
Variable: const char _far *s; Pointer to the converted character string
ReturnValue: Returns the value derived by converting a character string into an int-type integer.

-231-

Appendix E Standard Library

atol
Function: Converts a character string into a long-type integer.
Format: #include <stdlib.h>
long atol(s);
Method: function
Variable: const char _far *s; Pointer to the converted character string
ReturnValue: Returns the value derived by converting a character string into a long-type integer.

-232-

Appendix E Standard Library

bcop
Memory Handling Functions

Function: Copies characters from a memory area to another.
Format: #include <string.h>

void beopy(src, dtop, size);

Method: function

Variable: char _far *src; Start address of the memory area to be copied from
char _far *dtop; Start address of the memory area to be copied to
unsigned long size; Number of bytes to be copied

ReturnValue: No value 1s returned.

Function:
Copies the number of bytes specified in size from the beginning of the area specified in
src to the area specified in dtop.
bsearch
Integer Arithmetic Functions
Function: Performs binary search in an array.
Format: #include <stdlib.h>
void _far *bsearch(key, base, nelem, size, cmp);
Method: function
Variable: const void _far *key; Search key
const void _far *base; Start address of array
size_t nelem; Element number
size_t size; Element size
int cmp(); Compare function
ReturnValue: ® Returns a pointer to an array element that equals the search key.
® Returns a NULL pointer if no elements matched.
Note: The specified item is searched from the array after it has been sorted in ascending order.

-233-

Appendix E Standard Library

bzero
Function: Initializes a memory area (by clearing it to zero).
Format: #include <string.h>
void bzero(top, size);
Method: function
Variable: char _far *top; Start address of the memory area to be cleared to zero

unsigned long size; Number of bytes to be cleared to zero
ReturnValue: No value is returned.

Description: Initializes (to 0) the number of bytes specified in size from the starting address of the
area specified 1n top.

-234-

Appendix E Standard Library

calloc

Memory Management Functions

Function: Allocates a memory area and initializes it to zero (0).
Format: #include <stdlib.h>

void _far * calloc(n, size);
Method: function
Variable: size_tn; Number of elements

size_t size; Value indicating the element size in bytes
ReturnValue: Returns NULL if a memory area of the specified size could not be allocated.
Description: ® After allocating the specified memory, it is cleared to zero.

® The size of the memory area is the product of the two parameters.
Rule: The rules for securing memory are the same as for malloc.
ceil

Function:

Format:

Method:

Argument:

ReturnValue:

Mathematical Functions
Calculates an integer carry value.
#include <math.h>
double ceil(x);
function
double x;

arbitrary real number

Returns the minimum integer value from among integers larger than given real
number x.

-235-

Appendix E Standard Library

clearerr

Input/Output Functions
Function: Initializes (clears) error status specifiers.
Format: #include <stdio.h>

void clearerr(stream);

Method: function

Argument: FILE _far *stream; Pointer of stream

ReturnValue: No value is returned.

Description: Resets the error designator and end of file designator to their normal values.
COos

Mathematical Functions

Function: Calculates cosine.
Format: #include <math h>
double cos(x);
Method: function
Argument: double x; arbitrary real number
ReturnValue: Returns the cosine of given real number x handled in units of radian.
cosh
Function: Calculates hyperbolic cosine.
Format: #include <math.h>
double cosh(x);
Method: function
Argument: double x; arbitrary real number
ReturnValue: Returns the hyperbolic cosine of given real number x.

-236-

Appendix E Standard Library

div

Function:

Format:

Method:

Argument:

ReturnValue:

Description:

Integer Arithmetic Functions
Divides an int-type integer and calculates the remainder.
#include <stdlib.h>

div_t div(number, denom);

function
int number; Dividend
int denom; Divisor

Returns the quotient derived by dividing "number" by "denom" and the remainder of the
division.

® Returns the quotient derived by dividing "number" by "denom" and the remainder
of the division in structure div_t.

® div_t is defined in stdlib.h. This structure consists of members int quot and int
rem.

I

exp

Function:

Format:

Method:

Argument:

ReturnValue:

Mathematical Functions
Calculates exponential function.
#include <math.h>
double exp(x);
function
double x;

arbitrary real number

Returns the calculation result of an exponential function of given real number x.

-237-

Appendix E Standard Library

fabs
Function: Calculates the absolute value of a double-precision floating-point number.
Format: #include <math h>
double fabs(x);
Method: function
Argument: double x; arbitrary real number
ReturnValue: Returns the absolute value of a double-precision floating-point number.
feof
Function: Checks EOF (End of File).
Format: #include <stdio.h>
int feof(stream);
Method: macro
Argument: FILE _far *stream; Pointer of stream

ReturnValue: ® Returns "true" (other than 0) if the stream is EOF.
® Otherwise, returns NULL (0).

Description: ® Determines if the stream has been read to the EOF.
® Interprets code Ox1A as the end code and ignores any subsequent data.

-238-

Appendix E Standard Library

ferror
Function: Checks input/output errors.
Format: #include <stdio.h>
int ferror(stream);
Method: macro
Argument: FILE _far *stream; Pointer of stream
ReturnValue: ® Returns "true" (other than 0) if the stream is in error.
® Otherwise, returns NULL (0).
Description: ® Determines errors in the stream.
® Interprets code Ox1A as the end code and ignores any subsequent data.
fflush
Function: Flushes the stream of an output buffer.
Format: #include <stdio.h>
int fflush(stream);
Method: function
Argument: FILE _far *stream; Pointer of stream

ReturnValue: Always returns 0.

-239-

Appendix E Standard Library

fgetc

Input/Output Functions

Function: Reads one character from the stream.
Format: #include <stdio.h>
int fgete(stream);
Method: function
Argument: FILE far *stream; Pointer of stream
ReturnValue: ® Returns the one input character.
® Returns EOF if an error or the end of the stream is encountered.
Description: ® Reads one character from the stream.
® Interprets code Ox1A as the end code and ignores any subsequent data.
fgets
Input/Output Functions
Function: Reads one line from the stream.
Format: #include <stdio.h>
char _far * fgets(buffer, n, stream);
Method: function
Argument: char _far *buffer; Pointer of the location to be stored in
int n; Maximum number of characters
FILE _far *stream; Pointer of stream
ReturnValue: ® Returns the pointer of the location to be stored (the same pointer as given by the
argument) if normally input.
® Returns the NULL pointer if an error or the end of the stream is encountered.
Description: ® Reads character string from the specified stream and stores it in the buffer

® Input ends at the input of any of the following:
(1) new line character (\n)
(2) n-1characters
(3) end of stream
® Anull character (\0" is appended to the end of the input character string.
The new line character (\n') is stored as-is.
® Interprets code Ox1A as the end code and ignores any subsequent data.

-240-

Appendix E Standard Library

floor

Mathematical Functions

Function: Calculates an integer borrow value.
Format: #include <math.h>
double floor(x);
Method: function
Argument: double x; arbitrary real number
ReturnValue: The real value is truncated to form an integer, which is returned as a double type.
fmod

Mathematical Functions
Function: Calculates the remainder.
Format: thinclude <math.h>

double fmod(x ,y);

Method: function
Argument: double x; dividend
double y; divisor

ReturnValue: Returns a remainder that derives when dividend x is divided by divisor y.

fprintf
D D
Function: Outputs characters with format to the stream.

Format: #include <stdio.h>

int fprintf(stream, format, argument...);

Method: function
Argument: FILE _far *stream; Pointer of stream

const char _far *format; Pointer of the format specifying character string
ReturnValue: ® Returns the number of characters output.

® Returns EOF if a hardware error occurs.

Description: ® Argument is converted to a character string according to format and output to the
stream.
® Interprets code Ox1A as the end code and ignores any subsequent data.
® Format is specified in the same way as in printf.

-241-

Appendix E Standard Library

fputc

Input/Output Functions

Function: Outputs one character to the stream.
Format: #include <stdio.h>
int fputc(c, stream);
Method: function
Argument: int ¢; Character to be output
FILE _far *stream; Pointer of the stream
ReturnValue: ® Returns the output character if output normally.
® Returns EOF if an error occurs.
Description: Outputs one character to the stream.
fputs
Input/Output Functions
Function: Outputs one line to the stream.
Format: #include <stdio.h>
int fputs (str, stream);
Method: function
Argument: const char _far *str; Pointer of the character string to be output
FILE _far *stream; Pointer of the stream
ReturnValue: ® Returns 0 if output normally.
® Returns any value other than 0 (EOF) if an error occurs.
Description: Outputs one line to the stream.

-242-

Appendix E Standard Library

fread

Input/Output Functions

Function: Reads fixed-length data from the stream
Format: #include <stdio.h>
size_t fread(buffer, size, count, stream);
Method: function
Argument: void _far *buffer; Pointer of the location to be stored in
size_t size; Number of bytes in one data item
size_t count; Maximum number of data items
FILE _far *stream; Pointer of stream
ReturnValue: Returns the number of data items input.
Description: ® Reads data of the size specified in size from the stream and stores it in the buffer.
This is repeated by the number of times specified in count.
® If the end of the stream is encountered before the data specified in count has been
input, this function returns the number of data items read up to the end of the
stream.
® Interprets code Ox1A as the end code and ignores any subsequent data.
free

Memory Management Function

Function:

Format:

Method:

Argument:

ReturnValue:

Description:

Frees the allocated memory area.
#include <stdlib.h>
void free(cp);
function

void _far *cp; Pointer to the memory area to be freed

No value is returned.

® Frees memory areas previously allocated with malloc or calloc.
® No processing is performed if you specify NULL in the parameter.

-243-

Appendix E Standard Library

frexp

Mathematical Functions

Function: Divides floating-point number into mantissa and exponent parts.
Format: #include <math.h>
double frexp(x,prexp);
Method: function
Argument: double x; float-point number
int _far *prexp; Pointer to an area for storing a 2-based exponent
[ReturnValue] Returns the floating-point number x mantissa part.
fscanf

Function:

Format:

Method:

Argument:

ReturnValue:

Description:

Input/Output Function
Reads characters with format from the stream.
thAnclude <stdio.h>

int fscanf(stream, format, argument...);

function
FILE far *stream; Pointer of stream
const char _far *format; Pointer of the input character string

® Returns the number of data entries stored in each argument.
® Returns EOF if EOF is input from the stream as data.

® Converts the characters input from the stream as specified in format and stores
them in the variables shown in the arguments.

® Argument must be a pointer to the respective variable.

Interprets code 0x1A as the end code and ignores any subsequent data.

® Format is specified in the same way as in scanf.

-244-

Appendix E Standard Library

fwrite

Input/Output Functions
Function: Outputs the specified items of data to the stream.
Format: #include <stdio.h>

size_t fwrite(buffer, size, count, stream);

Method: function
Argument: const void _far *buffer; Pointer of the output data
size_t size; Number of bytes in one data item
size_t count; Maximum number of data items
FILE _far *stream; Pointer of the stream
ReturnValue: Returns the number of data items output
Description: ® Outputs data with the size specified in size to the stream. Data is output by the

number of times specified in count.
® If an error occurs before the amount of data specified in count has been input, this
function returns the number of data items output to that point.

-245-

Appendix E Standard Library

getc
Input/Output Functions

Function: Reads one character from the stream.
Format: #include <stdio.h>
int getc(stream);
Method: macro
Argument: FILE _far *stream; Pointer of stream
ReturnValue: ® Returns the one input character.

® Returns EOF if an error or the end of the stream is encountered.

Description: ® Reads one character from the stream.
® Interprets code Ox1A as the end code and ignores any subsequent data.

getchar
Function: Reads one character from stdin.
Format: #include <stdio.h>
int getchar(void);
Method: macro
Argument: No argument used.
ReturnValue: ® Returns the one input character.

® Returns EOF if an error or the end of the file is encountered.

Description: ® Reads one character from stream(stdin).
® Interprets code Ox1A as the end code and ignores any subsequent data.

-246-

Appendix E Standard Library

gets
Input/Output Functions
Function: Reads one line from stdin.
Format: #include <stdio.h>
char _far * gets(buffer);
Method: function
Argument: char _far *buffer; Pointer of the location to be stored in
ReturnValue: ® Returns the pointer of the location to be stored (the same pointer as given by the
argument) if normally input.
® Returns the NULL pointer if an error or the end of the file is encountered.
Description: ® Reads character string from stdin and stores it in the buffer.
® The new line character (\n") at the end of the line is replaced with the null
character (\0).
® Interprets code Ox1A as the end code and ignores any subsequent data.

-247-

Appendix E Standard Library

init

Input/Output Functions

Function: Initializes the stream.

Format: #include <stdio.h>
void init(void);

Method: function

Argument: No argument used.

ReturnValue: No value is returned.

Description: ® Initializes the stream. Also calls speed and init_prn in the function to make the
initial settings of the UART and Centronics output device.
® initis normally used by calling it from the startup program.

isalnum

Character Handling Functions

Function: Checks whether the character is an alphabet or numeral(A-Z,a - z,0 - 9).
Format: #include <ctype.h>
int isalnum(c);
Method: macro
Argument: int ¢ Character to be checked
ReturnValue: ® Returns any value other than 0 if an alphabet or numeral.

® Returns 0 if not an alphabet nor numeral.

Description: Determines the type of character in the parameter.

-248-

Appendix E Standard Library

isalpha
Function: Checks whether the character is an alphabet(A - Z,a - z).
Format: #include <ctype.h>
int isalpha(c);
Method: macro
Argument: int ¢ Character to be checked

ReturnValue: ® Returns any value other than 0 if an alphabet.
® Returns 0 if not an alphabet.

Description: Determines the type of character in the parameter.
iscntrl
Function: Checks whether the character is a control character(0x00 - 0x1f,0x75).
Format: #include <ctype.h>
int isentrl(c);
Method: macro
Argument: int ¢ Character to be checked
ReturnValue: ® Returns any value other than 0 if a numeral.

® Returns 0 if not a control character.

Description: Determines the type of character in the parameter.

-249-

Appendix E Standard Library

isdigit
Function: Checks whether the character is a numeral(0 - 9).
Format: #include <ctype.h>

int isdigit(c);
Method: macro
Argument: int ¢ Character to be checked
ReturnValue: ® Returns any value other than 0 if a numeral.

® Returns 0 if not a numeral.
Description: Determines the type of character in the parameter.
isgraph
Function: Checks whether the character is printable (except a blank)(0x21 - 0x7e).
Format: #include <ctype.h>

int isgraph(c);
Method: macro
Argument: int ¢ Character to be checked

ReturnValue: ® Returns any value other than 0 if printable.
® Returns 0 if not printable.

Description: Determines the type of character in the parameter.

-250-

Appendix E Standard Library

islower
Function: Checks whether the character is a lower-case letter(a - z).
Format: #include <ctype.h>
int islower(c);
Method: macro
Argument: int ¢ Character to be checked
ReturnValue: ® Returns any value other than 0 if a lower-case letter.
® Returns 0 if not a lower-case letter.
Description: Determines the type of character in the parameter.
isprint
Function: Checks whether the character is printable (including a blank)(0x20 - 0x7e).
Format: #include <ctype.h>
int isprint(c);
Method: macro
Argument: int ¢ Character to be checked

ReturnValue: ® Returns any value other than 0 if printable.
® Returns 0 if not printable.

Description: Determines the type of character in the parameter.

-251-

Appendix E Standard Library

ispunct
Function: Checks whether the character is a punctuation character.
Format: #include <ctype.h>
int ispunct(¢);
Method: macro
Argument: int ¢ Character to be checked
ReturnValue: ® Returns any value other than 0 if a punctuation character.
® Returns 0 if not a punctuation character.
Description: Determines the type of character in the parameter.
isspace
Function: Checks whether the character is a blank, tab, or new line.
Format: #include <ctype.h>
int isspace(¢);
Method: macro
Argument: int ¢ Character to be checked

ReturnValue: ® Returns any value other than 0 if a blank, tab, or new line.
® Returns 0 if not a blank, tab, or new line.

Description: Determines the type of character in the parameter.

-252-

Appendix E Standard Library

isupper
Function: Checks whether the character is an upper-case letter(A - 7).
Format: #include <ctype.h>
int isupper(c);
Method: macro
Argument: int ¢ Character to be checked
ReturnValue: ® Returns any value other than 0 if an upper-case letter.
® Returns 0 if not an upper-case letter.
Description: Determines the type of character in the parameter.
isxdigit
Function: Checks whether the character is a hexadecimal character(0 - 9,A - Fa - f).
Format: #include <ctype.h>
int isxdigit(c);
Method: macro
Argument: int ¢ Character to be checked
ReturnValue: ® Returns any value other than 0 if a hexadecimal character.
® Returns 0 if not a hexadecimal character.
Description: Determines the type of character in the parameter.

-253-

Appendix E Standard Library

I

labs
Function: Calculates the absolute value of a long-type integer.
Format: #include <stdlib.h>
long labs(n);
Method: function
Argument: long n; Long integer

ReturnValue: Returns the absolute value of a long-type integer (distance from 0).

Idexp
Localization Functions

Function: Calculates the power of a floating-point number.
Format: #include <math.h>
double ldexp(x,exp);
Method: function
Argument: double x; Float-point number
int exp; Power of number

RetunValue: Returns x *(exp power of 2).

-254-

Appendix E Standard Library

div

Integer Arithmetic Functions

Function: Divides a long-type integer and calculates the remainder.
Format: #include <stdlib.h>
1div_t 1div(number, denom);
Method: function
Argument: long number; Dividend
long denom; Divisor
ReturnValue: Returns the quotient derived by dividing "number" by "denom" and the remainder of the
division.
Description: ® Returns the quotient derived by dividing "number" by "denom" and the remainder
of the division in the structure 1div_t.
® 1div_t is defined in stdlib.h. This structure consists of members long quot and long
rem.
localeconv

Localization Functions

Function:

Format:

Method:

Argument:

ReturnValue:

Initializes struct lconv.

#include <locale.h>

struct lconv _far *localeconv(void);
function

No argument used.

Returns a pointer to the initialized struct lconv.

-255-

Appendix E Standard Library

log
Mathematical Functions

Function: Calculates natural logarithm.

Format: #include <math.h>
double log(x);
Method: function
Argument: double x; arbitrary real number

ReturnValue: Returns the natural logarithm of given real number x.

Description: This is the reverse function of exp.
log10
Function: Calculates common logarithm.
Format: #include <math h>
double log10(x);
Method: function
Argument: double x; arbitrary real number
ReturnValue: Returns the common logarithm of given real number

-256-

Appendix E Standard Library

longimp
Function: Restores the environment when making a function call
Format: #include <setjmp.h>
void longjmp(env, val);
Method: function
Argument: jmp_buf env; Pointer to the area where environment is restored

int val; Value returned as a result of setjmp

ReturnValue: No value is returned.

Description: ® Restores the environment from the area indicated in "env".
® Program control is passed to the statement following that from which setjmp was
called.

® The value specified in "val" is returned as the result of setjmp. However, if "val" is
"0", 1t is converted to "1".

-257-

Appendix E Standard Library

malloc

Memory Management Functions
Function: Allocates a memory area.
Format: #include <stdlib.h>
void _far * malloc(nbytes);
Method: function
Argument: size_t nbytes; Size of memory area (in bytes) to be allocated
ReturnValue: Returns NULL if a memory area of the specified size could not be allocated.
Description: Dynamically allocates memory areas
Rule: malloc performs the following two checks to secure memory in the appropriate location.
(1) If memory areas have been freed with free

® If the amount of memory to be secured is smaller than that freed, the area is
secured from the high address of the contiguously empty area created by free

toward the low address.
Heap area
Low
free malloc
A
Freed area
h 4
A A A
y Unusedarea wy Unused area y Unused area
High

-258-

Appendix E Standard Library

malloc
Memory Management Functions
Rule: ® If the amount of memory to be secured is larger than that freed, the area is
secured from the lowest address of the unused memory toward the high
address.
Heap area
Low
free malloc
= [foem | O [
Freed area Freed area
\ 4 v
A A
v Unused area w Unused area
High
(2) Ifno memory area has been freed with free
® If there is any unused area that can be secured, the area is secured from the
lowest address of the unused memory toward the high address.
Heap area
Low
A
malloc malloc
= |1 —
Unused area
Unused area 7'y
Unused area
v v
High
® Ifthere is no unused area that can be secured, malloc returns NULL without
any memory being secured.
Note: No garbage collection is performed. Therefore, even if there are lots of small unused

portions of memory, no memory is secured and malloc returns NULL unless there is an
unused portion of memory that is larger than the specified size.

-259-

Appendix E Standard Library

mblen

Multi-byte Character Multi-byte Character String Manipulate Functions

Function: Calculates the length of a multibyte character string.
Format: #include <stdlib.h>
int mblen (s,n);
Method: function
Argument: const char _far *s; Pointer to a multibyte character string
size_tn; Number of searched byte
ReturnValue: ® Returns the number of bytes in the character string if 's' configures a correct
multibyte character string.
® Returns -1if's' does not configure a correct multibyte character string.
Description: ® Returns 0if 's' indicates a NULL character.
mbstowcs

Function:

Format:

Method:

Argument:

ReturnValue:

Multi-byte Character Multi-byte Character String Manipulate Functions

Converts a multibyte character string into a wide character string.
#include <stdlib.h>

size_t mbstowes(wes,s,n);

function

wchar_t _far *wecs; Pointer to an area for storing conversion wide character
string

const char _far *s; Pointer to a multibyte character string

size_t n; Number of wide characters stored

® Returns the number of characters in the converted multibyte character string.
® Returns -1if's' does not configure a correct multibyte character string.

-260-

Appendix E Standard Library

mbtowc

Multi-byte Character Multi-byte Character String Manipulate Functions

Function: Converts a multibyte character into a wide character.

Format: #include <stdlib.h>

int mbtowc(wes,s,n);

Method: function
Argument: wchar t_far *wecs; Pointer to an area for storing conversion wide character
string
const char _far *s; Pointer to a multibyte character string
size_t n; Number of wide characters stored
ReturnValue: ® Returns the number of wide characters converted if 's' configure a correct
multibyte character string.

® Returns -1if's' does not configure a correct multibyte character string.
® Returns 0if 's' indicates a NULL character.

memchr

Memory Handling Functions
Function: Searches a character from a memory area.
Format: #include <string.h>

void _far * memchr(s, ¢, n);

Method: function
Argument: const void _far *s; Pointer to the memory area to be searched from
nt ¢; Character to be searched
size_t n; Size of the memory area to be searched
ReturnValue: ® Returns the position (pointer) of the specified character "¢" where it is found.

® Returns NULL if the character "c¢" could not be found in the memory area.

Description: ® Searches for the characters shown in "¢" in the amount of memory specified in "n"
starting at the address specified in "s".
® When you specify options -O[3 to 5], -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

-261-

Appendix E Standard Library

memcmp

Function:

Format:

Method:

Argument:

ReturnValue:

Description:

Memory Handling Functions
Compares memory areas (n' bytes).
#include <string.h>
int mememp(sl, s2,n);
function
const void _far *s1;

const void _far *s2;
size_tn;

Pointer to the first memory area to be compared
Pointer to the second memory area to be compared
Number of bytes to be compared

® Return Value==
® Return Value>0
® Return Value<0

The two memory areas are equal.
The first memory area (s1) is greater than the other.
The second memory area (s2) is greater than the other.

® Compares each of n bytes of two memory areas
® When you specify options -O[3 to 5], -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

memcp
Memory Handling Functions

Function:

Format:

Method:

Argument:

ReturnValue:

Description:

Copies n bytes of memory
#include <string.h>
void _far * memepy(s1, s2,n);

macro(default) or function

void _far *s1; Pointer to the memory area to be copied to
const void _far *s2; Pointer to the memory area to be copied from
size tn; Number of bytes to be copied

Returns the pointer to the memory area to which the characters have been copied.

® Usually, the program code described by macro is used for this function. In using the
function in a library, please describe it as #undef memcpy after description of
#include <string.h>.

® (Copies "n" bytes from memory "S2" to memory "S1".

® When you specify options O[3 to 5], -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

-262-

Appendix E Standard Library

memicmp

Memory Handling Functions

Function: Compares memory areas (with alphabets handled as upper-case letters).
Format: #include <string.h>
int memicmp(s1, s2, n);
Method: function
Argument: char _far *s1; Pointer to the first memory area to be compared
char _far *s2; Pointer to the second memory area to be compared
size_t n; Number of bytes to be compared
ReturnValue: ® Return Value== The two memory areas are equal.
® Return Value>0 The first memory area (s1) is greater than the other.
® Return Value<0 The second memory area (s2) is greater than the other.
Description: ® Compares memory areas (with alphabets handled as upper-case letters).
® When you specify options -O[3 to 5], -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.
memmove

Function:

Format:

Method:

Argument:

ReturnValue:

Description:

Memory Handling Functions
Moves the area of a character string.
#include <string.h>

void _far * memmove(sl, s2, n);

function

void *s1; Pointer to be moved to

const void *s2; Pointer to be moved from
size tn; Number of bytes to be moved

Returns a pointer to the destination of movement.

When you specify options -O[3 to 5], -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

-263-

Appendix E Standard Library

memset

Memory Handling Functions

Function: Set a memory area.
Format: #include <string.h>
void _far * memset(s, ¢, n);
Method: macro or function
Argument: void _far *s; Pointer to the memory area to be set at
int ¢ Data to be set
size_t n; Number of bytes to be set
ReturnValue: Returns the pointer to the memory area which has been set.
Description: ® Usually, the program code described by macro is used for this function. In using the
function in a library, please describe it as #undef memset after description of
#include <string.h>.
® Sets"n" bytes of data "c¢" in memory "s".
® When you specify options -O[3 to 5], -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.
modf

Mathematical Functions

Function:

Format:

Method:

Argument:

ReturnValue:

Calculates the division of a real number into the mantissa and exponent parts.

#include <math.h>

double modf (val,pd);

function

double val; arbitrary real number

double *pd; Pointer to an area for storing an integer

Returns the decimal part of a real number.

-264-

Appendix E Standard Library

perror
Input/Output Functions
Function: Outputs an error message to stderr.
Format: #include <stdio.h>
void perror(s);
Method: function
Argument: const char _far *s; Pointer to a character string attached before a message.

ReturnValue: No value is returned.

DOW
Mathematical Functions

Function: Calculates the power of a number.
Format: #include <math.h>

double pow(x,y)
Method: function
Argument: double x; multiplicand

double y; power of a numbe

ReturnValue: Returns the multiplicand x raised to the power of y.

-265-

Appendix E Standard Library

printf
Input/Output Functions
Function: Outputs characters with format to stdout.
Format: #include <stdio.h>
int printf(format, argument...);
Method: function
Argument: const char _far *format; Pointer of the format specifying character string
The part after the percent (%) sign in the character string given in format has the
following meaning. The part between [and] is optional. Details of the format are shown
below.
Format: %[flag][minimum field width][precision][modifier (I, L, or h)] conversion
specification character
Example format: %-05.8ld
ReturnValue: ® Returns the number of characters output.
® Returns EOF if a hardware error occurs.
Description: ® Converts argument to a character string as specified in format and outputs the

character string to stdout.
® When giving a pointer to argument, it is necessary to be a far type pointer.
(1) Conversion specification symbol

o d, I
Converts the integer in the parameter to a signed decimal.
[J u
Converts the integer in the parameter to an unsigned decimal.
® 0
Converts the integer in the parameter to an unsigned octal.
[X

Converts the integer in the parameter to an unsigned hexadecimal.
Lowercase "abcdef" are equivalent to 0AH to OFH.

o X
Converts the integer in the parameter to an unsigned hexadecimal.
Uppercase "ABCDEF" are equivalent to 0AH to OFH.

[J c
Outputs the parameter as an ASCII character.
L]

Converts the parameter after the string far pointer (char *) (and up to a
null character '/0' or the precision) to a character string. Note that wchar_t
type character strings cannot be processed.!

® »p
Outputs the parameter pointer (all types) in the format 24 bits address.
[J n

Stores the number of characters output in the integer pointer of the
parameter. The parameter is not converted.

1 In the standard library included with your product, the character string pointer is a far pointer. (All printf functions handle %s with a far pointer.)
Note that scanf functions use a near pointer by default.

-266-

Appendix E Standard Library

printf

Description:

@

®)

Input/Output Functions

e

Converts a double-type parameter to the exponent format. The format is
[-]d.dddddde+dd.

E

Same as e, except that E is used in place of e for the exponent.

f

Converts double parameters to [-]d.dddddd format.

g

Converts double parameters to the format specified in e or f. Normally, f
conversion, but conversion to e type when the exponent is -4 or less or the
precision is less than the value of the exponent.

G

Same as g except that E is used in place of e for the exponent.
Left-aligns the result of conversion in the minimum field width. The
default is right alignment.

+
Adds + or — to the result of signed conversion. By default, only the - is
added to negative numbers.

Blank''

By default, a blank is added before the value if the result of signed
conversion has no sign.

#
Adds 0 to the beginning of o conversion.
Adds 0x or 0X to the beginning when other than 0 in x or X conversion.
Always adds the decimal point in e, E, and f conversion.
Always adds the decimal point in g and G conversion and also outputs any
0Os in the decimal place.

Minimum field width
Specifies the minimum field width of positive decimal integers.
When the result of conversion has fewer characters than the specified
field width, the left of the field is padded.
The default padding character is the blank. However, '0' is the padding
character if you specified the field with using an integer preceded by '0'.
If you specified the — flag, the result of conversion is left aligned and
padding characters (always blanks) inserted to the right.
If you specified the asterisk (*) for the minimum field width, the integer in
the parameter specifies the field width. If the value of the parameter is
negative, the value after the —flag is the positive field width.

Precision
Specify a positive integer after '.. If you specify only .| with no value, it is
interpreted as zero. The function and default value differs according to the
conversion type.
Floating point type data is output with a precision of 6 by default.
However, no decimal places are output if you specify a precision of 0.
) d, 1, 0, u, X, and X conversion
(1) If the number of columns in the result of conversion is less
than the specified number, the beginning is padded with
ZEros.
(2) If the specified number of columns exceeds the minimum
field width, the specified number of columns takes
precedence.

-267-

Appendix E Standard Library

printf

Description: 6

@)
®)

Input/Output Functions

If the number of columns in the specified precision is less
than the minimum field width the field width is processed
after the minimum number of columns have bee
processed.

The default is 1

Nothing is output if zero with converted by zero minimum
columns.

) S conversion

@
@

®3)
@)
(5)

Represents the maximum number of characters.

If the result of conversion exceeds the specified number of
characters, the remainder is discarded.

There is no limit to the number of characters in the
default.

If you specify an asterisk (*) for the precision, the integer
of the parameter specifies the precision.

If the parameter is a negative value, specification of the
precision is invalid.

® e, E, and f conversion
n (where n is the precision) numerals are output after the
decimal point.
(] g and G conversion
Valid characters in excess of n (where n is the precision) are not

output.
@) LLorh
® I: d, i, 0, u, %, X, and n conversion is performed on long int and unsigned
long int parameters.
) h: d, 1, o, u, x, and X conversion is performed on short int and unsigned
short int parameters.

) If T or h are specified in other than d, 1, o, u, X, X, or n conversion, they are

ignored.

® L:e, E, £, g, and G conversion is performed on double parameters.!

1In the standard C specifications,variables e,E.f, and g conversions are performed in the case of L on long double parameters .In NC30 ,long double
types are processed as double types.Threfore, if you specify L, the parameters are processed as double types.

-268-

Appendix E Standard Library

putc

Input/Output Functions

Function: Outputs one character to the stream.

Format: #include <stdio.h>
int putc(¢, stream);

Method: macro

Argument: int ¢; Character to be output
FILE _far *stream; Pointer of the stream

ReturnValue: ® Returns the output character if output normally.
® Returns EOF if an error occurs.

Description: Outputs one character to the stream.

putchar

Function: Outputs one character to stdout.

Format: #include <stdio.h>
int putchar(c);

Method: macro

Argument: int ¢; Character to be output

ReturnValue: ® Returns the output character if output normally.
® Returns EOF if an error occurs.

Description: Outputs one character to stdout.

-269-

Appendix E Standard Library

puts
Function: Outputs one line to stdout.
Format: #include <stdio.h>
int puts(str);
Method: macro
Argument: char _far *str; Pointer of the character string to be output

ReturnValue: ® Returns 0 if output normally.
® Returns -1 (EOF) if an error occurs.

Description: ® Qutputs one line to stdout.
® The null character (\0) at the end of the character string is replaced with the new
line character(/n).

-270-

Appendix E Standard Library

gsort
Integer Arithmetic Functions

Function: Sorts elements in an array.

Format: #include <stdlib.h>

void gsort(base,nelen,size,cmp(el,e2));

Method: function

Argument: void _far *base; Start address of array
size_t nelen; Element number
size_t size; Element size
int cmp(); Compare function

ReturnValue: No value is returned.

Description: Sorts elements in an array.

-271-

Appendix E Standard Library

rand

Integer Arithmetic Functions

Function: Generates a pseudo-random number.
Format: #include <stdlib.h>
int rand(void);
Method: function
Argument: No argument used.
ReturnValue: ® Returns the seed random number series specified in srand.

® The generated random number is a value between 0 and RAND_MAX.

realloc
Memory Management Functions

Function: Changes the size of an allocated memory area.
Format: #include <stdlib.h>

void _far * realloc(cp, nbytes);
Method: function
Argument: void _far *cp; Pointer to the memory area before change

size_t nbytes; Size of memory area (in bytes) to be changed
ReturnValue: ® Returns the pointer of the memory area which has had its size changed.

® Returns NULL if a memory area of the specified size could not be secured.
Description: ® Changes the size of an area already secured using malloc or calloc.

® Specify a previously secured pointer in parameter "cp" and specify the number of
bytes to change in "nbytes".

-272-

Appendix E Standard Library

scanf

Input/Output Functions

Function: Reads characters with format from stdin.
Format: #include <stdio.h>
#include <ctype.h>

int scanf(format, argument...);
Method: function
Argument: const char _far *format; Pointer of format specifying character string
The part after the percent (%) sign in the character string given in format has the

following meaning. The part between [and | is optional. Details of the format are shown
below.

Format:
%[*|lmaximum field width] [modifier (I, L, or h)lconversion specification
character

Example format: %*51d

ReturnValue: ® Returns the number of data entries stored in each argument.
® Returns EOF if EOF is input from stdin as data.
Description: ® Converts the characters read from stdin as specified in format and stores them in
the variables shown in the arguments.
® Argument must be a far pointer to the respective variable.

® The first space character is ignored except in ¢ and [] conversion.
Interprets code 0x1A as the end code and ignores any subsequent data.

-273-

Appendix E Standard Library

scanf

Description: 1)
°

Input/Output Functions

Conversion specification symbol

d
Converts a signed decimal. The target parameter must be a pointer to an integer.

i

Converts signed decimal, octal, and hexadecimal input. Octals start with 0.
Hexadecimals start with Ox or 0X. The target parameter must be a pointer
to an integer.

u

Converts an unsigned decimal. The target parameter must be a pointer to
an unsigned integer.

)

Converts a signed octal. The target parameter must be a pointer to an
integer.

x,X

Converts a signed hexadecimal. Uppercase or lowercase can be used for
0AH to OFH. The leading Ox is not included. The target parameter must be
a pointer to an integer.

s
Stores character strings ending with the null character \0'. The target
parameter must be a pointer to a character array of sufficient size to store
the character string including the null character "\0'.
If input stops when the maximum field width is reached, the character
string stored consists of the characters to that point plus the ending null
character.

c
Stores a character. Space characters are not skipped. If you specify 2 or
more for the maximum field width, multiple characters are stored.
However, the null character "\0' is not included. The target parameter
must be a pointer to a character array of sufficient size to store the
character string.

p

Converts input in the format data bank register plus offset (Example:
00:1205). The target parameter is a pointer to all types.

[]
Stores the input characters while the one or more characters between
[and | are input. Storing stops when a character other than those between
[and] is input. If you specify the circumflex () after [, only character other
than those between the circumflex and | are legal input characters. Storing
stops when one of the specified characters is input.
The target parameter must be a pointer to a character array of sufficient
size to store the character string including the null character \0', which is
automatically added.

n
Stores the number of characters already read in format conversion. The
target parameter must be a pointer to an integer.

e,EfgG

Convert to floating point format. If you specify modifier I, the target
parameter must be a pointer to a double type. The default is a pointer to a
float type.

-274-

Appendix E Standard Library

scanf

Description:

@

®3)
°

@)
°

Input/Output Functions

*(prevents data storage)

Specifying the asterisk (*) prevents the storage of converted data in the
parameter.

Maximum field width

Specify the maximum number of input characters as a positive decimal
integer. In any one format conversion, the number of characters read will
not exceed this number.

If, before the specified number of characters has been read, a space
character (a character that is true in function isspace()) or a character
other than in the specified format is input, reading stops at that character.

ILLorh

I: The results of d, 1, o, u, and x conversion are stored as long int and
unsigned long int. The results of e, E, f, g, and G conversion are stored as
double.

h: The results of d, 1, o, u, and x conversion are stored as short int and
unsigned short int.

If T or h are specified in other than d, i, o, u, or x conversion, they are
ignored.

L: The results of e, E, £, g, and G conversion are stored as float.

-275-

Appendix E Standard Library

setimp
Function: Saves the environment before a function call
Format: #include <setjmp.h>
int setjmp(env);
Method: function
Argument: jmp_buf env; Pointer to the area where environment is saved
ReturnValue: Returns the numeric value given by the argument of longjmp.
Description: Saves the environment to the area specified in "env".
setlocale
Function: Sets and searches the locale information of a program.
Format: #include <locale.h>
char _far *setlocale(category,locale);
Method: function
Argument: int category; Locale information, search section information
const char _far *locale; Pointer to a locale information character string
ReturnValue: ® Returns a pointer to a locale information character string.
® Returns NULL if information cannot be set or searched.
sin

Mathematical Functions

Function: Calculates sine.
Format: #include <math.h>

double sin(x);

Method: function
Argument: double x; arbitrary real number
ReturnValue: Returns the sine of given real number x handled in units of radian.

-276-

Appendix E Standard Library

sinh

Mathematical Functions

Function: Calculates hyperbolic sine.
Format: #include <math.h>
double sinh(x);
Method: function
Argument: double x; arbitrary real number
ReturnValue: Returns the hyperbolic sine of given real number x.

sprintf
D 0,
Function: Writes text with format to a character string.

Format: thAnclude <stdio.h>

int sprintf(pointer, format, argument...);

Method: function
Argument: char _far *pointer; Pointer of the location to be stored
const char _far *format; Pointer of the format specifying character string
ReturnValue: Returns the number of characters output.
Description:; ® Converts argument to a character string as specified in format and stores them
from the pointer.

® Format is specified in the same way as in printf.

sqrt
Function: Calculates the square root of a numeric value.
Format: #include <math.h>

double sqrt(x);
Method: function
Argument: double x; arbitrary real number
ReturnValue: Returns the square root of given real number x.

-277-

Appendix E Standard Library

srand
Function: Imparts seed to a pseudo-random number generating routine.
Format: #include <stdlib.h>
void srand(seed);
Method: function
Argument: unsigned int seed; Series value of random number

ReturnValue: No value is returned.

Description: Initializes (seeds) the pseudo random number series produced by rand using seed.

sscanf

Input/Output Functions
Function: Reads data with format from a character string.
Format: #include <stdio.h>

int sscanf(string, format, argument...);

Method: function
Argument: const char _far *string; Pointer of the input character string

const char _far *format; Pointer of the format specifying character string
ReturnValue: ® Returns the number of data entries stored in each argument.

® Returns EOF if null character (/0" is input as data.

Description: ® Converts the characters input as specified in format and stores them in the
variables shown in the arguments.
® Argument must be a far pointer to the respective variable.
® Format is specified in the same way as in scanf.

-278-

Appendix E Standard Library

strcat

String Handling Functions

Function: Concatenates character strings.
Format: #include <string.h>
char far * strcat(s1, s2);
Method: function
Argument: char _far *s1; Pointer to the character string to be concatenated to
const char _far *s2; Pointer to the character string to be concatenated from
ReturnValue: Returns a pointer to the concatenated character string area(s1).
Description: ® Concatenates character strings "s1" and "s2" in the sequence s1+s2!
® The concatenated string ends with NULL.
® When you specify options -O[3 to 5], -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.
strchr

Function:

Format:

Method:

Argument:

ReturnValue:

Description:

String Handling Functions
Searches the specified character beginning with the top of the character string.
#include <string.h>
char _far * strchr(s, ¢);
function

const char _far *s; Pointer to the character string to be searched in
int ¢ Character to be searched for

® Returns the position of character "c¢" that is first encountered in character string

s
® Returns NULL when character string "s" does not contain character "c'".

® Searches for character "¢" starting from the beginning of area "s".

You can also search for \O'.

® When you specify options -O[3 to 5], -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

1 There must be adequate space to accommodate s1 plus s2.

-279-

Appendix E Standard Library

strcmp

String Handling Functions
Function: Compares character strings.
Format: #include <string.h>

int stremp(s1, s2);

Method: macro,function
Argument: const char _far *s1; Pointer to the first character string to be compared
const char _far *s2; Pointer to the second character string to be compared
ReturnValue: ® ReturnValue==0 The two character strings are equal.
® ReturnValue>0 The first character string (s1) is greater than the other.
® ReturnValue<0 The second character string (s2) is greater than the other.
Description: ® Usually, the program code described by macro is used for this function. In using the
function in a library, please describe it as #undef stremp after description of
#include <string.h>.

® Compares each byte of two character strings ending with NULL
® When you specify options -O[3 to 5], -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

strcoll
String Handling Functions

Function: Compares character strings (using locale information).
Format: #include <string.h>

int streoll(s1, s2);
Method: function
Argument: const char _far *s1; Pointer to the first character string to be compared

const char _far *s2; Pointer to the second character string to be compared
ReturnValue: ® ReturnValue==0 The two character strings are equal

® ReturnValue>0 The first character string (s1) is greater than the other

® ReturnValue<0 The second character string (s2) is greater than the other
Description: When you specify options -O[3 to 5], -OR, or -OS, the system may selects another

functions with good code efficiency by optimization.

-280-

Appendix E Standard Library

strcpy

Function:

Format:

Method:

Argument:

ReturnValue:

Description:

String Handling Functions
Copies a character string.
#include <string.h>
char _far * strepy(s1, s2);
macro or function

char _far *s1;
const char _far *s2;

Pointer to the character string to be copied to
Pointer to the character string to be copied from

Returns a pointer to the character string at the destination of copy.

® Usually, the program code described by macro is used for this function. In using the
function in a library, please describe it as #undef strcpy after description of
#include <string.h>.

® Copies character string "s2" (ending with NULL) to area "s1"

After copying, the character string ends with NULL.

® When you specify options -O[3 to 5], -OR, or -OS, the system may selects functions
with good code efficiency by optimization.

strcspn
String Handling Functions

Function:

Format:

Method:

Argument:

ReturnValue:

Description:

Calculates the length (number) of unspecified characters that are not found in the other
character string

#include <string.h>
size_t strespn(sl, s2);
function

const char _far *s1;
const char _far *s2;

Pointer to the character string to be searched in
Pointer to the character string to be searched for

Returns the length (number) of unspecified characters.
® (Calculates the size of the first character string consisting of characters other than

those in 's2' from area 's1', and searches the characters from the beginning of 's1'.
® You cannot search for \0'.

-281-

Appendix E Standard Library

stricmp

String Handling Functions

Function: Compares character strings. (All alphabets are handled as upper-case letters.)
Format: #include <string.h>
int stricmp(s1, s2);
Method: function
Argument: char _far *s1; Pointer to the first character string to be compared
char _far *s2; Pointer to the second character string to be compared
ReturnValue: ® ReturnValue==0 The two character strings are equal.
® ReturnValue>0 The first character string (s1) is greater than the other.
® ReturnValue<0 The second character string (s2) is greater than the other.
Description: Compares each byte of two character strings ending with NULL. However, all letters are
treated as uppercase letters.
strerror

String Handling Functions

Function:

Format:

Method:

Argument:

ReturnValue:

Description:

Converts an error number into a character string.
#include <string.h>

char _far * strerror(errcode);
function

int errcode; error code

Returns a pointer to a message character string for the error code.

stderr returns the pointer for a static array.

-282-

Appendix E Standard Library

strlen

String Handling Functions

Function: Calculates the number of characters in a character string.
Format: #include <string.h>
size_t strlen(s);
Method: function
Argument: const char _far *s; Pointer to the character string to be operated on to
calculate length
ReturnValue: Returns the length of the character string.
Description: Determines the length of character string "s" (to NULL).
strncat

Function:

Format:

Method:

Argument:

ReturnValue:

Description:

String Handling Functions
Concatenates character strings (‘n' characters).
#include <string.h>

char _far * strncat(sl, s2, n);

function

char _far *s1; Pointer to the character string to be concatenated to
const char _far *s2; Pointer to the character string to be concatenated from
size_t n; Number of characters to be concatenated

Returns a pointer to the concatenated character string area.

® Concatenates character strings "s1" and "n" characters from character string "s2".

® The concatenated string ends with NULL.

® When you specify options -O[3 to 5], -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

-283-

Appendix E Standard Library

strncmp

Function:

Format:

Method:

Argument:

ReturnValue:

Description:

String Handling Function
Compares character strings (n' characters).
#include <string.h>
int strnemp(s1, s2,n);
function
const char _far *s1;

const char _far *s2;
size tn;

Pointer to the first character string to be compared
Pointer to the second character string to be compared
Number of characters to be compared

® ReturnValue==
® ReturnValue>0
® ReturnValue<O

The two character strings are equal.
The first character string (s1) is greater than the other.
The second character string (s2) is greater than the other.

® Compares each byte of n characters of two character strings ending with NULL.
® When you specify options -O[3 to 5], -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

strnep
String Handling Function

Function:

Format:

Method:

Argument:

ReturnValue:

Description:

Copies a character string (‘n' characters).
#include <string.h>

char _far * strncpy(s1, s2,n);
function

char _far *s1;

const char _far *s2;
size tn;

Pointer to the character string to be copied to
Pointer to the character string to be copied from
Number of characters to be copied

Returns a pointer to the character string at the destination of copy.

® Copies "n" characters from character string "s2" to area "s1". If character string
"s2" contains more characters than specified in "n", they are not copied and "\0' is
not appended. Conversely, if "s2" contains fewer characters than specified in "n",
"\0's are appended to the end of the copied character string to make up the number
specified in "n".

® When you specify options O[3 to 5], -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

-284-

Appendix E Standard Library

strnicmp

Function:

Format:

Method:

Argument:

ReturnValue:

Description:

String Handling Functions

Compares character strings (n' characters). (All alphabets are handled as uppercase
letters.)

#include <string.h>

int strnicmp(s1, s2, n);
function

char _far *s1;

char _far *s2;
size tn;

Pointer to the first character string to be compared
Pointer to the second character string to be compared
Number of characters to be compared

® ReturnValue==
® ReturnValue>0
® ReturnValue<0

The two character strings are equal.
The first character string (s1) is greater than the other.
The second character string (s2) is greater than the other.

® Compares each byte of n characters of two character strings ending with
NULL.However, all letters are treated as uppercase letters.

® When you specify options -O[3 to 5], -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

strpbrk
String Handling Functions

Function:

Format:

Method:

Argument:

ReturnValue:

Description:

Searches the specified character in a character string from the other character string.
#include <string.h>

char _far * strpbrk(s1, s2);

function

const char _far *s1;
const char _far *s2;

Pointer to the character string to be searched in
Pointer to the character string of the character to be
searched for

® Returns the position (pointer) where the specified character is found first.
® Returns NULL if the specified character cannot be found.

® Searches the specified character "s2" from the other character string in "s1" area.

® You cannot search for \0O'.

® When you specify options -O[3 to 5], -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

-285-

Appendix E Standard Library

strrchr

Function:

Format:

Method:

Argument:

ReturnValue:

Description:

String Handling Functions
Searches the specified character from the end of a character string.
#include <string.h>
char _far * strrchr(s, c);
function

const char _far *s; Pointer to the character string to be searched in
int ¢ Character to be searched for

® Returns the position of character "c¢" that is last encountered in character string "s."
® Returns NULL when character string "s" does not contain character "c".

® Searches for the character specified in "¢" from the end of area "s".

You can search for \0'.

® When you specify options -O[3 to 5], -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

strspn
String Handling Functions

Function:

Format:

Method:

Argument:

ReturnValue:

Description:

Calculates the length (number) of specified characters that are found in the character
string.

#include <string.h>
size_t strspn(s1, s2);
function

const char _far *s1;
const char _far *s2;

Pointer to the character string to be searched in
Pointer to the character string of the character to be
searched for

Returns the length (number) of specified characters.

® (Calculates the size of the first character string consisting of characters in 's2' from
area 's1', and searches the characters from the beginning of 's1".

® You cannot search for \0'.

® When you specify options -O[3 to 5], -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.

-286-

Appendix E Standard Library

strstr

String Handling Functions

Function: Searches the specified character from a character string.
Format: #include <string.h>
char far * strstr(sl, s2);
Method: function
Argument: const char _far *s1; Pointer to the character string to be searched in
const char _far *s2; Pointer to the character string of the character to be
searched for
ReturnValue: ® Returns the position (pointer) where the specified character is found.
® Returns NULL when the specified character cannot be found.
Description: ® Returns the location (pointer) of the first character string "s2" from the beginning
of area "s1".
® When you specify options -O[3 to 5], -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.
strtod
Character String Value Convert Functions
Function: Converts a character string into a double-type integer.
Format: #include <string.h>
double strtod(s,endptr);
Method: function
Argument: const char _far *s; Pointer to the converted character string
char _far * _far *endptr; Pointer to the remaining character strings that have not
been converted
ReturnValue: ® ReturnValue ==0L Does not constitute a number.
® ReturnValue != 0L Returns the configured number in double type.
Description: When you specify options -O[3 to 5], -OR, or -OS, the system may selects another

functions with good code efficiency by optimization.

-287-

Appendix E Standard Library

strtok

String Handling Functions

Function: Divides some character string from a character string into tokens.
Format: #include <string.h>
char _far * strtok(s1, s2);
Method: function
Argument: char _far *s1; Pointer to the character string to be divided up
const char _far *s2; Pointer to the punctuation character to be divided with
ReturnValue: ® Returns the pointer to the divided token when character is found.
® Returns NULL when character cannot be found.
Description: ® In the first call, returns a pointer to the first character of the first token. A NULL
character is written after the returned character. In subsequent calls (when "s1" is
NULL), this instruction returns each token as it is encountered. NULL is returned
when there are no more tokens in "s1".
® When you specify options -O[3 to 5], -OR, or -OS, the system may selects another
functions with good code efficiency by optimization.
strtol
Character String Value Convert Function
Function: Converts a character string into a long-type integer.
Format: #include <string.h>
long strtol(s,endptr,base);
Method: function
Argument: const char _far *s; Pointer to the converted character string
char _far * _far *endptr; Pointer to the remaining character strings that have not
been converted.
int base; Base of values to be read in (0 to 36)
Reads the format of integral constant if the base of value
18 zero
ReturnValue: ® ReturnValue==0L Does not constitute a number.
® ReturnValue != 0L Returns the configured number in long type.
Description: When you specify options -O[3 to 5], -OR, or -OS, the system may selects another

functions with good code efficiency by optimization.

-288-

Appendix E Standard Library

strtoul
Character String Value Convert Function
Function: Converts a character string into an unsigned long-type integer.
Format: #include <string.h>
unsigned long strtoul(s,endptr,base);
Method: function
Argument: const char _far *s; Pointer to the converted character string
char _far * _far *endptr; Pointer to the remaining character strings that have not
been converted.
int base; Base of values to be read in (0 to 36)
Reads the format of integral constant if the base of value
18 zero
ReturnValue: ® ReturnValue==0L Does not constitute a number.
® ReturnValue != 0L Returns the configured number in long type.
Description: When you specify options -O[3 to 5], OR, or -OS, the system may selects another
functions with good code efficiency by optimization.
strxfrm
Character String Value Convert Functions
Function: Converts a character string (using locale information).
Format: #include <string.h>
size_t strxfrm(s1,s2,n);
Method: function
Argument: char _far *s1; Pointer to an area for storing a conversion result
character string.
const char _far *s2; Pointer to the character string to be converted.
size tn; Number of bytes converted
ReturnValue: Returns the number of characters converted.
Description: When you specify options -O[3 to 5], -OR, or -OS, the system may selects another

functions with good code efficiency by optimization.

-289-

Appendix E Standard Library

tan
Function: Calculates tangent.
Format: #include <math.h>
double tan(x);
Method: function
Argument: double x; arbitrary real number
ReturnValue: Returns the tangent of given real number x handled in units of radian.
tanh

Mathematical Functions

Function: Calculates hyperbolic tangent.

Format: #include <math.h>
double tanh(x);
Method: function
Argument: double x; arbitrary real number

ReturnValue: Returns the hyperbolic tangent of given real number x.

-290-

Appendix E Standard Library

tolower

Character Handling Functions

Function: Converts the character from an upper-case to a lower-case.

Format: #include <ctype.h>
int tolower(c);

Method: macro

Argument: int ¢ Character to be converted

ReturnValue: ® Returns the lower-case letter if the argument is an upper-case letter.
® Otherwise, returns the passed argument as is.

Description: Converts the character from an upper-case to a lower-case.

toupper

Function: Converts the character from a lower-case to an upper-case.

Format: #include <ctype.h>
int toupper(c);

Method: macro

Argument: int ¢ Character to be converted

ReturnValue: ® Returns the upper-case letter if the argument is a lower-case letter.
® Otherwise, returns the passed argument as is.

Description: Converts the character from a lower-case to an upper-case.

-291-

Appendix E Standard Library

ungetc
Input/Output Functions

Function: Returns one character to the stream

Format: #include <stdio.h>

int ungetc(c, stream);

Method: macro

Argument: int ¢ Character to be returned
FILE far *stream; Pointer of stream

ReturnValue: ® Returns the returned one character if done normally.

® Returns EOF if the stream is in write mode, an error or EOF is encountered, or the
character to be sent back is EOF.

Description: Returns one character to the stream.

® Interprets code Ox1A as the end code and ignores any subsequent data.

-292-

Appendix E Standard Library

viprintf
Input/Output Functions

Function: Output to a stream with format.
Format: #include <stdarg.h>
#include <stdio.h>

int vfprintf(stream, format, ap...);

Method: function
Argument: FILE _far *stream; Pointer of stream
const char _far *format; Pointer of the format specifying character string
va_list ap; Pointer of argument list
ReturnValue: Returns the number of characters output.
Description: ® QOutput to a stream with format.
® When writing pointers in variable-length variables, make sure they are a fartype
pointer.
vprintf
Input/Output Functions
Function: Output to stdout with format.
Format: #include <stdarg.h>
#include <stdio.h>
int vprintf(format, ap...);
Method: function
Argument: const char _far *format; Pointer of the format specifying character string
va_list ap; Pointer of argument list
ReturnValue: Returns the number of characters output.
Description: ® Output to stdout with format.
® When writing pointers in variable-length variables, make sure they are a fartype
pointer.

-293-

Appendix E Standard Library

vsprintf
Input/Output Functions

Function: Output to a buffer with format.

Format: #include <stdarg.h>
#include <stdio.h>

int vfprintf(s, format, ap...);

Method: function

Argument: char _far *s; Pointer of the location to be store
const char _far *format; Pointer of the format specifying character string
va_list ap; Pointer of argument list

ReturnValue: Returns the number of characters output.

Description: When writing pointers in variable-length variables, make sure they are a far-type
pointer.

-294-

Appendix E Standard Library

wcstombs

Multi-byte Character Multi-byte Character String Manipulate Functions

Function: Converts a wide character string into a multibyte character string.
Format: #include <stdlib.h>

size_t _far westombs(S, WCS, .);

Method: function
Argument: char _far *s; Pointer to an area for storing conversion multibyte
character string
const wchar_t _far *wecs; Pointer to a wide character string
size_tn; Number of wide characters stored

ReturnValue: ® Returns the number of stored multibyte characters if the character string was
converted correctly.
® Returns -1 if the character string was not converted correctly.

wctomb

Multi-byte Character Multi-byte Character String Manipulate Functions

Function: Converts a wide character into a multibyte character.
Format: #include <stdlib.h>]
int wetomb(s,wchar);
Method: function
Argument: char _far *s; Pointer to an area for storing conversion multibyte
character string
wchar_t wchar; wide character

ReturnValue: ® Returns the number of bytes contained in the multibyte characters.
® Returns -1 if there is no corresponding multibyte character.
® Returns 0 if the wide character is 0.

-295-

E.24.

Appendix E Standard Library

Using the Standard Library

a. Notes on Regarding Standard Header File

When using functions in the standard library, always be sure to include the specified standard header file. If
this header file is not included, the integrity of arguments and return values will be lost, making the
program unable to operate normally.

b. Notes on Regarding Optimization of Standard Library

If you specify any of optimization options -O[3 to 5], -OS, or -OR, the system performs optimization for the
standard functions. This optimization can be suppressed by specifying -Ono_stdlib. Such suppression of
optimization is necessary when you use a user function that bear the same name as one of the standard
library functions.

(1) Inline padding of functions

Regarding functions strcpy and memcpy, the system performs inline padding of functions if the conditions
inTable E.13 are met.

Table E.13 Optimization Conditions for Standard Library Functions

Function Name Optimization Condition Description Example
strepy First argument:far pointer strepy(str, "sample');
Second argumentistring constant
memcpy First argument:far pointer memcpy(str ,"sample", 6);
Second argument: far pointer memcpy(str , fp, 6);
Third argument:constant

-296-

Appendix E Standard Library

E.3. Modifying Standard Library

The NC30 package includes a sophisticated function library which includes functions such as the scanf and
printf I/O functions. These functions are normally called high-level I/ O functions. These high-level I/O
functions are combinations of hardware-dependent lowlevel I/O functions.

In M16C/80 series application programs, the I/O functions may need to be modified according to the target
system's hardware. This is accomplished by modifying the source file for the standard library.

This chapter describes how to modify the NC30 standard library to match the target system.

The entry vedrsion does not come with source files for the standard function library. Therefore, the standard
function library cannot be customized for the entry version.

E.3.1. Structure of /O Functions

As shown in Figure E.1,the I/O functions work by calling lower-level functions (level 2 . level 3) from the
level 1 function. For example, fgets calls level 2 fgetc, and fgetc calls a level 3 function.

Only the lowest level 3 functions are hardware-dependent (I/O port dependent) in the Micro Processor. If
your application program uses an I/O function, you may need to modify the source files for the level 3
functions to match the system.

Input function

Level 1 Level 2 Level 3

|- | -

A 4
A\ 4

A 4
A 4
L

ke
©
H

Output function

Level 1 Level 2 Level 3
— o | >
fwrite

A 4

A 4

Figure E.1 Calling Relationship of I/O Functions

-297-

Appendix E Standard Library

E.3.2. Sequence of Modifying I/O Functions

Figure E.2 outlines how to modify the I/O functions to match the target system.

a. Modify the level 3 I/O function(s)
b. Set the stream
C. Compile the modified source program(s)

Figure E.2 Example Sequence of Modifying I/O Functions

a. Modifying Level 3 1/0 Function

The level 3 I/O functions perform 1-byte I/O via the M16C/60 series I/O ports. The level 3 I/O functions
include _sget and _sput, which perform I/O via the serial communications circuits (UART), and _pput, which
performs I/O via the Centronics communications circuit.

(1) Circuit settings

° Processor mode: Microprocessor mode
° Clock frequency: 20MHz
) External bus size: 16 bits

(2) Initial serial communications settings

® Use UART1

Baud rate: 9600bps
Data size: 8 bits
Parity: None

Stop bits: 2 bits

*The initial serial communications settings are made in the init function (init.c).

-298-

Appendix E Standard Library

The level 3 I/O functions are written in the C library source file device.c. Table E.14 lists the specifications of
these functions.

Table E.14 Specifications of Level 3 Functions

Input functions Parameters Return value (int type)
_sget None. If no error occurs, returns the input character Returns EOF if an
_sput €rror occurs
_pput
Outputunctions | Parameters(int type) Return value (int type)
_sput Character to If no error occurs, returns 1
_pput output Returns EOF if an error occurs

Serial communication is set to UART1 in the M16C/80 series's two UARTS. device.c is written so that the
UARTO can be selected using the conditional compile commands, as follows:

[) To use UARTO.......coevveererennee #define UARTO 1

Specify these commands at the beginning of device.c, or specify following option, when compiling.
® Touse UARTO.......cocovvrrereerrrnnnns -DUARTO

To use both UARTS, modify the file as follows:

(1) Delete the conditional compiling commands from the beginning of the device.c file.
(2) Change the UARTO special register name defined in #pragma EQU to a variable other than

UART1.
(3) Reproduce the level 3 functions _sget and _sput for UARTO and change them to different

variable names such as _sget0O and _sput0.
(4) Also reproduce the speed function for UARTO and change the function name to something

like speedO.
This completes modification of device.c.

Next, modify the init function (init.c), which makes the initial I/O function settings, then change the stream

settings (see below).

-299-

b. Stream Settings

Appendix E Standard Library

The NC30 standard library has five items of stream data (stdin, stdout, stderr, stdaux, and stdprn) as
external structures. These external structures are defined in the standard header file stdio.h and control the

mode information of each stream (flag indicating whether input or output stream) and status information

(flag indicating error or EOF).

Table E.15 Stream Information

Stream information Name
stdin Standard input
stdout Standard output
stderr Standard error output (error is output to stdout)
stdaux Standard auxiliary I/O
stdprn Standard printer output

The stream corresponding to the NC30 standard lLibrary functions shown shaded in Figure E.3 are fixed to
standard input (stdin) and standard output (stdout). The stream cannot be changed for these functions. The
output direction of stderr is defined as stdout in #define.

The stream can only be changed for functions that specify pointers to the stream as parameters such as fgetc

and fputc.

-300-

Appendix E Standard Library

!I(ﬂ
Q
gh

getchar <

U

printf

:

stdin

putchar

U

Ll Bl

> stdout

I

fscanf
sscanf

fgetc

P

gl

H

getc <

i

stdin

A

stream=?

puts

fwrite

e
putc y
fputs

Ll

viprintf

!“

[

stdaux

ﬁ

stdpm

|

stdout

> stream=?

stdaux

|

stdpm

Figure E.3

fRelationship of Functions and Streams

Figure E.4 shows the stream definition in stdio.h.

-301-

Appendix E Standard Library

I/
*

* standard I/O header file

(omitted)
typedef struct _iobuf {

char _buff; [* Store buffer for ungetc */ < [1]
int _cnt; [* Strings number in _buff(1 or 0) */ <[2]
int _flag; [* Flag */ <[3]
int _mod,; [Mode */ < [4]
int (*_func_in)(void); [* Pointer to one byte input function */ <[5
int (*_func_out)(int); * Pointer to one byte output function */ < [6]

}FILE;
#define _IOBUF_DEF

(omitted)

extern FILE _iob[J;

#define stdin (&_iob[0]) /* Fundamental input */

#define stdout (& _iob[1]) /* Fundamental output */

#define stdaux (&_iob[2]) /* Fundamental auxialiary input output */
#define stdpm (&_iob[3]) /* Fundamental printer output */

#define stderr stdout /*NC no-support */
I
*

/
#define ~ _IOREAD 1 /* Read only flag */
#define _IOWRT 2 [*Write only flag */
#define _IOEOF 4 [+ End of file flag */
#define _IOERR 8 [* Error flag */
#define _IORW 16 /* Read and write flag */
#define _NFILE 4 [* Stream number */
#define _TEXT 1 [*Text mode flag */
#define _BIN 2 /* Binary mode flag */

(remainder omitted)

Figure E4 Stream Definition in stdio.h

Let's look at the elements of the file structures shown in Figure E.4. Items [1] to [6] correspond to [1] to [6] in
Figure E4

-302-

Appendix E Standard Library

(1) char_buff
Functions scanf and fscanf read one character ahead during input. If the character is no use,
function ungetc is called and the character is stored in this variable.
If data exists in this variable, the input function uses this data as the input data.

(2) int_cnt
Stores the _buff data count (0 or 1)

(3 int_flag
Stores the read-only flag (IOREAD), the write-only flag (IOWRT), the read-write flag (IORW),
the end of file flag (IOEOF) and the error flag (IOERR).
® _[OREAD, IOWRT, IORW
These flags specify the stream operating mode. They are set during stream
initialization.
® JOEOF_IOERR
These flags are set according to whether an EOF is encountered or error occurs in the
T/O function.

(4) int_mod
Stores the flags indicating the text mode (TEXT) and binary mode (_BIN).
) Text mode
Echo-back of I/O data and conversion of characters. See the source programs (fgetc.c
and fputc.c) of the fgetc and fputc functions for details of echo back and character
conversion.
) Binary mode
No conversion of I/O data. These flags are set in the initialization block of the stream.

(5) int (*_func_in)()
When the stream is in read-only mode (IOREAD) or read/write mode (IORW), stores the level 3
input function pointer. Stores a NULL pointer in other cases.
This information is used for indirect calling of level 3 input functions by level 2 input functions.

(6) int (*_func_out))

When the stream is in write mode (IOWRT), stores the level 3 output function pointer. If the
stream can be input (IOREAD or _IORW), and is in text mode, it stores the level 3 output function
pointer for echo back. Stores a NULL pointer in other cases.

This information is used for indirect calling of level 3 output functions by level 2 output functions.

-303-

Appendix E Standard Library

Set values for all elements other than char_buff in the stream initialization block. The standard library file
supplied in the NC30 package initializes the stream in function init, which is called from the ncrt0.a30
startup program.

Figure E.5 shows the source program for the init function.

#include <stdio.h>
FILE _iob[4];

void init(void);
void init(void)

stdin->_cnt = stdout->_cnt = stdaux->_cnt = stdprn->_cnt =0;
stdin->_flag = _|IOREAD;
stdout->_flag = _IOWRT;
stdaux->_flag = _IORW;
stdprn->_flag = _IOWRT,

stdin->_mod = _TEXT,
stdout-> mod =_TEXT;
stdaux->_mod =_BIN,;
stdprn->_mod =_TEXT;

stdin->_func_in = _sget;

stdout->_func_in = NULL;
stdaux->_func_in=_sget;
stdprn->_func_in = NULL;

stdin->_func_out = _spult;

stdout->_func_out=_sput;
stdaux->_func_out=_sput;
stdprn->_func_out =_pput;

#ifdef UARTO
speed(_96, B8, PN, _S2);
#else / UART1 : default */
speed(_96, B8, PN, S2);
#endif
init_pm();
}

Figure E5 Source file of init function (init.c)

-304-

Appendix E Standard Library

In systems using the two M16C/60 series UARTSs, modify the init function as shown below. In the previous
subsection, we set the UARTO functions in the device.c source file temporarily as _sget0, _sput0, and speedO.

(1) Use the standard auxiliary /O (stdaux) for the UARTO stream.
(2) Set the flag (_flag) and mode (_mod) for standard auxiliary I/O to match the system.
(3) Set the level 3 function pointer for standard auxiliary I/O.

(4) Delete the conditional compile commands for the speed function and change to function
speedO for UARTO.

These settings allow both UARTS to be used. However, functions using the standard I/O stream cannot be
used for standard auxiliary I/O used by UARTO. Therefore, only use functions that take streams as
parameters. Figure E.6 shows how to change the init function.

void init(void)

{ .
(omitted)
stdaux->_ﬂég =_IORW; < [2](set read/write mode)
(omitted)
stdaux->_n.10d =_TEXT, < [2](set text mode)
(omitted)
stdaux—>_fﬁnc_in =_sget0; < [3](set UARTO level 3 input function)
(omitted)
stdaux->_fﬁnc_out =_sput0; < [3](set UARTO level 3 input function)
(omitted)
speed(_96; _B8, PN, _S2); < [4](set UARTO speed function)
} init_pm();

*[2] to [4] correspond to the items in the description of setting, above.

Figure E.6 Modifying the init Function

-305-

Appendix E Standard Library

c. Incorporating the Modified Source Program

There are two methods of incorporating the modified source program in the target system:

(1) Specify the object files of the modified function source files when linking.
(20 Use the makefile (under MS-Windows, makefile.dos) supplied in the NC30 package to
update the library file.

In method [1], the functions specified when linking become valid and functions with the same names in the
library file are excluded.
Figure E.7 shows method(1). Figure E.8 shows method(2).

%nc30 -c -g -osample ncrt0.a30 devicer30 initr30 sample.c<RET>

* This example shows the command line when device.c and init.c are modified.

Figure E.7 Method of Directly Linking Modified Source Programs

% make <RET>

Figure E.8 Method of Updating Library Using Modified Source Programs

-306-

Appendix F Error Messages

Appendix F Error Messages

This appendix describes the error messages and warning messages output by this compiler, and their
countermeasures.

F.1. Message Format

If, during processing, this compiler detects an error, it displays an error message on the screen and stops the
compiling process.
The following shows the format of error messages and warning messages.

nc30:[error-message]

Figure F.1 Format of Error Messages from the Compile Driver

[Error(cpp30.error-No.): flename, line-No.] error-message
[Error(ccom): flename, line-No.] error-message
[Fatal(ccom): filename, line-No.] error-message «*]

Figure F.2 Format of Command Error Messages

[Warning(cpp30. warning-No.): filename, line-No.] warning-message
[Warning(ccom): filename, line-No.] warning-message

Figure F.3 Format of Command Warning Messages

*1. Fatal error message
This error message is not normally output. Please contact nearest Renesas office. with details of the message
if displayed.

- 307 -

F.2. nc30 Error Messages

Appendix F Error Messages

Table F.1 and Table F.2 list the nc30 compile driver error messages and their countermeasures.

Table F.1 nc30 Error Messages (1)
Error message Description and countermeasure
Arg list too long e The command Lne for starting the respective

processingsystem 1is longer than the character string
defined bythe system.
Specify a NC30 option to ensure that the number
ofcharacters defined by the system is not exceeded.
Usethe -v option to check the command line used for
eachprocessing block.

Cannot analyze error

This error message is not normally displayed. (It is
aninternal error.)
Contact Renesas Solutions Corp.

command-file
2048.

line characters exceed | o

There are more than 2048 characters on one or more lines
in the command file.

Reduce the number of characters per line in the
commandfile to 2048 max.

Core dump(command_name)

The processing system (indicated in parentheses)caused a
core dump.

The processing system is not running correctly. Checkthe
environment variables and the directory containingthe
processing system. If the processing system stilldoes not
run correctly, Please contact Renesas SolutionsCorp.

Exec format error

Corrupted processing system executable file.
Reinstall the processing system.

Ignore option 7'

You specified an illegal option (-?).
Specify the correct option.

illegal option

.U.U.

You specified options greater than 100 characters for
-as30 or -In30.
Reduce the options to 99 characters or less.

Invalid argument

* U

It is an internal error. (This error message is not normally
displayed.)
Contact Renesas Solutions Corp.

Invalid option -?'

*u

The required parameter was not specified in option "-?".
"-?"Specify the required parameter after "-?".

You specified a space between the -? option and its
parameter.

Delete the space between the -? option and its parameter.

Invalid option '-o'

U

No output filename was specified after the -o option.
Specify the name of the output file. Do not specify the
filename extension.

Invalid suffix 'xxx'

You specified a filename extension not recognized by
NC30 (other than .c, ., .a30, .r30, .x30).
Specify the filename with the correct extension.

- 308 -

Appendix F Error Messages

Table F.2 nc30 Error Messages (2)

Error message Description and countermeasure
No such file or directory e The processing system will not run.
Check that the directory of the processing system is
correctly set in the environment variable.
Not enough core Insufficient swap area

Increase the swap area.

Permission denied

usi e

The processing system will not run.

Check access permission to the processing systems. Or, if
access permission is OK, check that the directory of the
processing system is correctly set in the environment
variable.

can't open command file

Can not open the command file specified by '@'.
Specify the correct input file.

too many options

.U.

This error message is not normally displayed. (It is an
internal error.)

Compile options cannot be specified exceeding 99
characters.

Result too large e Itis an internal error. (This error message is not normally
displayed.)
= Contact Renesas Solutions Corp.
Too many open files e Itis an internal error. (This error message is not normally

displayed.)
Contact Renesas Solutions Corp.

- 309 -

Appendix F Error Messages

F.3. cpp30 Error Messages

Table E.3 to Table F.5 list the error messages output by the cpp30 preprocessor and their countermeasures.

Table F.3

cpp30 Error Messages (1)

NO.

Error message

Description and countermeasure

1

illegal command option

Input filename specified twice.
Specify the input filename once only.

.U.

The same name was specified for both input and output
files.
Specify different names for input and output files.

Output filename specified twice.
Specify the output filename once only.

The command line ends with the -o option.
Specify the name of the output file after the —o option.

AR VR

The -I option specifying the include file path exceeds the
limit.
Specify the -I option 8 times or less.

The command line ends with the -I option.
Specify the name of an include file after the —I option.

‘U

The string following the -D option is not of a character
type (letter or underscore) that can be used in a macro
name. Illegal macro name definition.

Specify the macro name correctly and define the macro
correctly.

The command line ends with the -D option.
Specify a macro filename after the -D option.

.U.

The string following the -U option is not of a character
type (letter or underscore) that can be used in a macro
name.

Define the macro correctly.

You specified an illegal option on the cpp30 command line.
Specify only legal options.

cannot open input file.

Input file not found.
Specify the correct input file name.

12

cannot close input file.

Input file cannot be closed.
Check the input file name.

14

cannot open output file.

Cannot open output file.
Specify the correct output file name.

15

cannot close output file.

Cannot close output file.
Check the available space on disk.

16

cannot write output file

L R AR (R I RV

Error writing to output file.
Check the available space on disk.

- 310 -

Appendix F Error Messages

Table F.4 cpp30 Error Messages (2)
No. Error message Description and countermeasure
17 | input file name buffer overflow | ¢ The input filename buffer has overflowed. Note that the

filename includes the path.
Reduce the length of the filename and path (use the -I
option to specify the standard directory).

18 | not enough memory for macro | ¢ Insufficient memory for macro name and contents of
include file not found macro
= Increase the swap area
21 | include file not found e The include file could not be opened..
= The include files are in the current directory and that
specified in the -I option and environment variable. Check
these directories.
22 | illegal file name error o Illegal filename.
= Specify a correct filename.
23 | include file nesting over e Nesting of include files exceeds the limit (40).
= Reduce nesting of include files to a maximum of 8 levels.
25 | illegal identifier o Error in #define.
= Code the source file correctly.
26 | illegal operation e Error in preprocess commands #if - #elseif - #assert
operation expression.
= Rewrite operation expression correctly.
27 macro argument error e Error in number of macro parameters when expanding
macro.
= Check macro definition and reference and correct as
necessary.
28 | input buffer over flow e Input Line buffer overflow occurred when reading source
file(s). Or, buffer overflowed when converting macros.
= Reduce each line in the source file to a maximum of 1023
characters. If you anticipate macro conversion, modify the
code so that no line exceeds 1023 characters after
conversion.
29 EOF in comment ¢ End of file encountered in a comment.
= Correct the source file.
31 EOF in preprocess command e End of file encountered in a preprocess command
= Correct the source file.
32 unknown preprocess command | ¢ An unknown preprocess command has been specified.
= Only the following preprocess commands can be used in
CPP30:
#include, #define, #undef, #if, #ifdef, #ifndef, #else, #endif,
#elseif, #line, #assert, #pragma, #error
33 | new_line in string e A new-line code was included in a character constant or
character string constant.
= Correct the program.
34 | string literal out of range 509 | ¢ A character string exceeded 509 characters.
characters = Reduce the character string to 509 characters max.
35 macro replace nesting over e Macro nesting exceeded the limit (20).
= Reduce the nesting level to a maximum of 20.
41 | include file error e Error in #include instruction.
= Correct.

-311-

Appendix F Error Messages

Table F.5 cpp30 Error Messages (3)
No. Error message Description and countermeasure
43 | illegal id name e Error in following macro name or argument in #define
command:
_FILE _, LINE , DATE ,_ TIME__
= Correct the source file.
44 | token buffer over flow o Token character buffer of #define overflowed.
= Reduce the number of token characters.
45 | illegal undef command usage e Error in #undef.
= Correct the source file.
46 | undefid not found e The following macro names to be undefined in #undef
were not defined:
_FILE _, LINE , DATE_,_ TIME__
= Check the macro name.
52 | illegal ifdef / ifndef command | ¢ Error in#ifdef.
usage = Correct the source file.
53 | elseif/ else sequence erro o Helseif or #else were used without #if - #ifdef - #ifndef.
= Use #elseif or #else only after #if - #ifdef #ifndef.
54 | endif not exist e No#endif to match #if - #ifdef - #ifndef.
= Add #endif to the source file.
55 | endif sequence error o #Hendif was used without #f - #ifdef - #ifndef.
= Use #endif only after #if - #ifdef - #ifndef.
61 | illegal line command usage e Error in#line.
=

Correct the source file.

-312 -

Appendix F Error Messages

F.4. cpp30 Warning Messages

Table F.6 shows the warning messages output by cpp30 and their countermeasures.

Table F.6 cpp30 Warning Messages
No. Warning Messages Description and countermeasure
81 | reservedid used ¢ You attempted to define or undefine one of the following
macro names reserved by cpp30:
_FILE , LINE , DATE , TIME__
= Use a different macro name.
82 assertion warning e The result of an #assert operation expression was 0.
Check the operation expression.
83 garbage argument e Characters other than a comment exist after a preprocess

command.

= Specify characters as a comment (/* string */) after the
preprocess command.

84 escape sequence out of range for | ¢ An escape sequence in a character constant or character
character string constant exceeded 255 characters.
= Reduce the escape sequence to within 255 characters.
85 | redefined o A previously defined macro was redefined with different
contents.
= Check the contents against those in the previous
definition.
87 [* within comment e Acomment includes /*.
= Do not nest comments.
88 Environment variable NCKIN' | ¢ Environment variable NCKIN' is not valid.
must be 'SJIS' or 'EUC' = Set "SJIS" or "EUC" to NCKIN.
90 | Macro name in #if is not | ¢ Anundefined macro name in #if is used.
defined,so it’s tereated as 0 = Check the macro definition.

- 313 -

Appendix F Error Messages

F.5. ccom30 Error Messages

Table E.7 to Table F.18 list the ccom30 compiler error messages and their countermeasures.

Table F.7 ccom30 Error Messages (1)

Error message

Description and countermeasure

#pragma PRAGMA-name functionname
redefined

The same function is defined twice in #pragmaname.
Make sure that #pragma-name is declared only once.

#pragma PRAGMA-name
functionargument is long-long or double

The arguments used for the function specified with the
"#pragma program name function name" are the long
long type or the double type.

The long long type and double type cannot be used in the
functions specified with the "#pragma program name
function name." Use other types.

#pragma PRAGMA-name & function
prototype mismatched

The function specified by #pragma PRAGMAname does
not match the contents of argument in prototype
declaration.
Make sure it is matched to the argument in prototype
declaration.

#pragma PRAGMA-name's
argument is struct or union

function

The struct or union type is specified in the prototype
declaration for the function specified by #pragma
PRAGMA-name.

Specify the int or short type, 2-byte pointer type, or
enumeration type in the prototype declaration.

#pragma PRAGMA-name must be
declared before use

A function specified in the #pragma PRAGMAname
declaration is defined after call for that function.
Declare a function before calling it.

#pragma BITADDRESS variable is not
_Bool type

The variable spcified by #pragma BITADDRESS is not
_Bool type
Use the _Bool type to declare the variable.

#pragma INTCALL function's argument
on stack

When the body of functions declared in #pragma
INTCALL are written in C, the parameters are passed via
the stack.

When the body of functions declared in #pragma
INTCALL are written in C, specify the parameters are
being passed via the stack.

#pragma PARAMETER function's
register not allocated

A register which is specifed in the function decleared by
#pragma PARAMETER can not be allocated.
Use the correct register.

'const' is duplicate

const 1s described more than twice.
Write the type qualifier correctly.

'far' & ‘mear' conflict

far/mear 1s described more than twice.
Write near/far correctly.

'far' 1s duplicate

far 1s described more than twice.
Write far correctly.

'near’ is duplicate

near is described more than twice.
Write near correctly.

'static' 1s 1illegal
agument

storage class for

R U I I AV

An appropriate storage class is used in argument
declaration.
Use the correct storage class.

'volatile' is duplicate

volatile is described more than twice.
Write the type qualifier correctly.

- 314 -

Appendix F Error Messages

Table F.8 ccom30 Error Messages (2)

Error message

Description and countermeasure

(can't read C source from filename
line number for error message)

The source line is in error and cannot be displayed.

The file indicated by filename cannot be found or the line
number does not exist in the file.

Check whether the file actually exists.

(can't open C source filename for error
message)

The source file in error cannot be opened.
Check whether the file exists.

argument type given both places

*U

U

Argument declaration in function definition overlaps an
argument list separately given.

Choose the argument list or argument declaration for this
argument declaration.

array of functions declared

The array type in array declaration is defined as function.
Specify scalar type struct/union for the array type.

array size is not constant integer

.U.

The number of elements in array declaration is not a
constant.
Use a constant to describe the number of elements.

asm('s string must have only 1 $b

$b is described more than twice in asm statement.
Make sure that $b is described only once.

asm()'s string must not have more than

333 or 3@

$$ or $@ is described more than thrice in asm statement.
Make sure that $$ ($@)is described only twice.

auto variable's size is zero

B VR

An array with 0 elements or no elements was declared in
the auto area.
Correct the coding.

bitfield width exceeded

The bit-field width exceeds the bit width of the data type.
Make sure that the data type bit width declared in the
bit-field is not exceeded.

bitfield width is not constant integer

The bit width of the bit-field is not a constant.
Use a constant to write the bit width.

can't get bitfield address by '&' operator

The bit-field type is written with the & operator.
Do not use the & operator to write the bit-field type.

can't get inline function's address by '&'
operator

The & operator is written in an inline function.
Do not use the & operator in an inline function.

can't get size of bitfield

The bit-field type is written with the sizeof operator.
Do not use the sizeof operator to write the bitfield type.

can't get void value

.U.U.U.U.

An attempt is made to get void-type data as in cases
where the right side of an assignment expression is the
void type.

Check the permission of the file.

= Check the data type.
can't output to file-name e The file cannot be wrote

= Check the rest of disk capacity or access right of the file.
can't open file-name e The file cannot be opened.

=

[)

can't set argument

The type of an actual argument does not match prototype
declaration. The argument cannot be set in a register
(argument).

Correct mismatch of the type.

case value is duplicated

R

The value of case 1s used more than one time.
Make sure that the value of case that you used once is not
used again within one switch statement.

conflict declare of variable-name

The variable is defined twice with different storage
classes each time.
Use the same storage class to declare a variable twice.

-315-

Appendix F Error Messages

Table F.9 ccom30 Error Messages (3)

Error message

Description and countermeasure

conflict function argument type of
variable-name

The argument list contains the same variable name.
Change the variable name.

declared register parameter function's
body declared

The function body for the function declared with #pragma
PARAMETER is defined in C
Do not define , in C, the body for such function .

default function argument conflict

The default value of an argument is declared more than
once in prototype declaration.

Make sure that the default value of an argument is
declared only once.

default: 1s duplicated

The default value is used more than one time.
Use only one default within one switch statement.

do while(struct/union) statement

The struct or union type is used in the expression of the
do-while statement.

Use the scalar type for an expression in the dowhile
statement.

do while(void) statement

U

The void type is used in the expression of the dowhile
statement.
Use the scalar type for an expression in the dowhile
statement.

duplicate frame position defind Auto variable is described more than twice.
variable-name Write the type specifier correctly.
Empty declare Only storage class and type specifiers are found.

Write a declarator.

float and double not have sign

.U.U.

Specifiers signed/unsigned are described in float or
double.
Write the type specifier correctly.

floating point value overflow

* U

The floating-point immediate value exceeds the representable
range.
Make sure the value is within the range.

floating type's bitfield

Abit-field of an invalid type is declared.
Use the integer type to declare a bit-field.

for(; struct/union;) statement

*U

U

The struct or union type is used in the second expression
of the for statement.

Use the scalar type to describe the second expression of
the for statement.

for(; void ;) statement

U °

The 2nd expression of the for statement has void.
Use the scalar type as the 2nd expression of the for
statement.

function nitialized

An initialize expression is described for function declaration.
Delete the initialize expression.

function member declared

A member of struct or union is function type
Write the members correctly.

function returning a function declared

.U.U.

The type of the return value in function declaration is
function type.
Change the type to “pointer to function’etc.

function returning an array

The type of the return value in function declaration is an
array type.
Change the type to “pointer to function’etc.

handler function called

The function specified by #pragma HANDLER is called.
Be careful not to call a handler.

identifier (variable-name) is duplicated

bl

The variable is defined more than one time.
Specify variable definition correctly.

- 316 -

Appendix F Error Messages

Table F.10 ccom30 Error message (4)

Error message

Description and countermeasure

if(struct/union) statement

The struct or union type is used in the expression of the if
statement.
The expression must have scalar type.

if(void) statement

The void type is used in the expression of the if statement.
The expression must have scalar type.

illegal storage class for argument, 'inline'
ignored

*U

An inline function is declared in declaration statement
within a function.
Declare it outside a function.

illegal storage class for argument,
"interrupt’ ignored

An interrupt function is declared in declaration statement
within a function.
Declare it outside a function.

incomplete array access

An attempt is made to reference an array of incomplete.
Define size of array.

incomplete return type

‘U

An attempt is made to reference an return variable of
incomplete type.
Check return variable.

incomplete struct get by []

* U

An attempt 1s made to reference or initialize an array of
incomplete structs or unions that do not have defined
members.

Define complete structs or unions first.

incomplete struct member

An attempt is made to reference an struct member of
incomplete .
Define complete structs or unions first.

incomplete struct initialized

An attempt is made to initialize an array of incomplete
structs or unions that do not have defined members.
Define complete structs or unions first.

incomplete struct return function call

An attempt 1s made to call a function that has as a return
value the of incomplete struct or union that does not have
defined members.

Define a complete struct or union first.

incomplete struct / union's member
access

An attempt is made to reference members of an incomplete struct
or union that do not have defined members.
Define a complete struct or union first.

incomplete struct / union(tagname)' s
member access

An attempt is made to reference members of an incomplete struct
or union that do not have defined members.
Define a complete struct or union first.

inline function have invalid argument or
return code

inline function has an invalid argument or an invalid
return value.
Write the argument or an invalid return value correctly.

inline function i1s called as normal
function before

The function declared in storage class inline is called as
an ordinary function.
Always be sure to define an inline function before using it.

inline function's address used

An attempt is made to reference the address of an inline
function.
Do not use the address of an inline function.

inline function's body is not declared
previously

The body of an inline function is not defined.
Using an inline function, define the function body prior to
the function call.

inline function
recursion

(functionname) s

The recursive call of an in line function cannot be carried
out.
Using an inline function, No recursive.

- 317 -

Table F.11

Appendix F Error Messages

ccom30 Error message (5)

Error message

Description and countermeasure

interrupt function called

The function specified by #pragma INTERRUPT is called.
Be careful not to call an interrupt handling function.

invalid

environment
(environment variable -name)

variable:

The variable name specified in the environment variable
NCKIN/NCKOUT is specified by other than SJIS and
EUC.

Check the environment variables used.

invalid function default argument

The default argument to the function is incorrect.

This error occurs when the prototype declaration of the
function with default arguments and those in the function
definition section do not match. Make sure they match.

invalid push

An attempt is made to push void type in function
argument, etc.
The type void cannot be pushed.

invalid'? : ' operand

The ?: operation contains an error.
Check each expression. Also note that the expressions on
the left and right sides of : must be of the same type.

invalid "'=' operands

The != operation contains an error.
Check the expressions on the left and right sides of the
operator.

invalid '&&' operands

The && operation contains an error.
Check the expressions on the left and right sides of the
operator.

invalid '&' operands

The & operation contains an error.
Check the expression on the right side of the operator.

invalid '&=' operands

bl

The &= operation contains an error.
Check the expressions on the left and right sides of the
operator.

invalid '0' operand

U [}

The expression on the left side of () is not a function.
Write a function or a pointer to the function in the
left-side expression of ().

invalid "' operands

If multiplication, the * operation contains an error.

If * 1s the pointer operator, the right-side expressionis not
pointer type.

For a multiplication, check the expressions on the left and
right sides of the operator. For a pointer, check the type of
the right-side expression.

1t

invalid "*=' operands

The *= operation contains an error.
Check the expressions on the left and right sides of the
operator.

invalid '+ operands

The + operation contains an error.
Check the expressions on the left and right sides of the
operator.

invalid '+=' operands

The += operation contains an error.
Check the expressions on the left and right sides of the
operator.

invalid ' operands

The - operator contains an error.
Check the expressions on the left and right sides of the
operator.

invalid -=' operands

The -= operation contains an error.
Check the expressions on the left and right sides of the
operator.

- 318 -

Appendix F Error Messages

Table F.12 ccom30 Error message (6)

Error message

Description and countermeasure

invalid /=" operands

The /= operation contains an error.
Check the expressions on the left and right sides of the
operator.

invalid '<<' operands

The << operation contains an error.
Check the expressions on the left and right sides of the
operator.

invalid '<<=' operands

The <<= operation contains an error.
Check the expressions on the left and right sides of the
operator.

invalid '<=' operands

The <= operation contains an error.
Check the expressions on the left and right sides of the
operator.

invalid '=' operand

The = operation contains an error.
Check the expressions on the left and right sides of the
operator.

invalid '=='operands

The == operation contains an error.
Check the expressions on the left and right sides of the
operator.

invalid ">=' operands

The >= operation contains an error.
Check the expressions on the left and right sides of the
operator.

invalid >>' operands

The >> operation contains an error.
Check the expressions on the left and right sides of the
operator.

invalid >>=' operands

The >>= operation contains an error.
Check the expressions on the left and right sides of the
operator.

invalid '[]' operands

The left-side expression of [] is not array type or pointer
type.

Use an array or pointer type to write the left-side
expression of [].

invalid '"*=' operands

The = operation contains an error.
Check the expressions on the left and right sides of the
operator.

invalid '| = operands

The | = operation contains an error.
Check the expressions on the left and right sides of the
operator.

invalid'| |' operands

The | | operation contains an error.
Check the expressions on the left and right sides of the
operator.

invalid '%=' operands

The %= operation contains an error.
Check the expressions on the left and right sides of the
operator.

invalid ++ operands

The ++ unary operator or postfix operator contains an
error.

For the unary operator, check the right-side expression.
For the postfix operator, check the leftside expression.

invalid -- operands

The -- unary operation or postfix operation contains an
€rror.

For the unary operator, check the right-side expression.
For the postfix operator, check the leftside expression.

invalid -> used

The left-side expression of -> is not struct or union.
The left-side expression of -> must have struct or union.

- 319 -

Appendix F Error Messages

Table F.13 ccom30 Error message (7)

Error message

Description and countermeasure

invalid (? ;)'s condition

The ternary operator is erroneously written.
Check the ternary operator.

Invalid #pragma OS Extended
function interrupt number

The INT No. in #pragma OS Extended function is invalid.
Specify correctly.

Invalid #pragma INTCALL interrupt
number

The INT No. in #pragma INTCALL is invalid.
Specify correctly.

Invalid #pragma SPECIAL special page
number

The No. in #pragma SPECIAL is invalid.
Specify correctly.

invalid CAST operand

[)
=
[)
=
[)
=
[)
=
[]

The cast operation contains an error. The void type cannot
be cast to any other type; it can neither be cast from the
structure or union type nor can it be cast to the structure
or union type.

Write the expression correctly.

invalid asm()'s argument

* U

The variables that can be used in asm statements are
only the auto variable and argument.
Use the auto variable or argument for the statement.

invalid bitfield declare

The bit-field declaration contains an error.
Write the declaration correctly.

invalid break statements

bl

The break statement is put where it cannot be used.
Make sure that it is written in switch, while, dowhile, and
for.

invalid case statements The switch statement contains an error.

Write the switch statement correctly.
invalid case value The case value contains an error.

Write an integral-type or enumerated-type constant.
invalid cast operator Use of the cast operator is illegal.

Write the expression correctly.

invalid continue statements

The continue statement is put where it cannot be used.
Use it in a while, do-while, and for block.

invalid default statements

The switch statement contains an error.
Write the switch statement correctly.

invalid enumerator initialized

.U.U.U.U.U.

The initial value of the enumerator is incorrectly specified
by writing a variable name, for example.
Write the initial value of the enumerator correctly.

invalid function argument

U

An argument which is not included in the argument list is
declared in argument definition in function definition.

Declare arguments which are included in the argument
list.

invalid function's argument declaration

The argument of the function is erroneously declared.
Write it correctly.

invalid function declare

Ui

The function definition contains an error.
Check the line in error or the immediately preceding
function definition.

invalid initializer

The initialization expression contains an error.

This error includes excessive parentheses, many initialize
expressions, a static variable in the function initialized by an auto
variable, or a variable initialized by another variable.

Write the initialization expression correctly.

invalid initializer of variable-name

* U

The initialization expression contains an error.

This error includes a bit-field initialize expression
described with variables, for example.

Write the initialization expression correctly.

- 320 -

Appendix F Error Messages

Table F.14 ccom30 Error message (8)

Error message

Description and countermeasure

invalid initializer on array

The initialization expression contains an error.

Check to see if the number of initialize expressions in the
parentheses matches the number of array elements and
the number of structure members.

invalid initializer on char array

The initialization expression contains an error.

Check to see if the number of initialize expressions in the
parentheses matches the number of array elements and
the number of structure members.

invalid initializer on scalar

The initialization expression contains an error.

Check to see if the number of initialize expressions in the
parentheses matches the number of array elements and
the number of structure members.

invalid initializer on struct

The initialization expression contains an error.

Check to see if the number of initialization expressions in
the parentheses matches the number of array elements
and the number of structure members.

invalid initializer, too many brace

Too many braces 1} are used in a scalar-type initialization
expression of the auto storage class.
Reduce the number of braces { } used.

invalid Ivalue

Y

The left side of the assignment statement is not Ivalue.
Write a substitutable expression on the left side of the
statement.

invalid Ivalue at '=' operator

The left side of the assignment statement is not Ivalue.
Write a substitutable expression on the left side of the
statement.

Write the type specifier correctly.

invalid storage class for data

The storage class is erroneously specified.
Write it correctly.

invalid member e The member reference contains an error.
= Write correctly.
invalid member used o The member reference contains an error.
= Write correctly.
invalid redefined type name of |e The same identifier is defined more than once in typedef.
(identifier) = Write the identifier correctly.
invalid return type e The type of return value of the function is incorrect.
= Write it correctly.
invalid sign specifier e Specifiers signed/unsigned are described twice or more.
=
[)
=
[)

invalid struct or union type

Structure or union members are referenced for the
enumerated type of data.
Write it correctly.

invalid truth expression

The void, struct, or union type is used in the first
expression of a condition expression (?:).
Use scalar type to write this expression.

invalid type specifier

*

The same type specifier is described twice or more as in
"int int 1;" or an incompatible type specifier is described as
in "float int 1;."

Write the type specifier correctly.

invalid type's bitfield

Abit-field of an invalid type is declared.
Use the integer type for bit-fields.

invalid type specifier,Jong long long

bl

Specifiers “long” are described thrice or more.
Check the type.

-321-

Appendix F Error Messages

Table F.15

ccom30 Error message (9)

Error message

Description and countermeasure

invalid unary "' operands

Use of the ! unary operator is illegal.
Check the right-side expression of the operator.

invalid unary '+ operands

Use of the + unary operator is illegal.
Check the right-side expression of the operator.

invalid unary "' operands

Use of the - unary operator is illegal.
Check the right-side expression of the operator.

invalid unary '~ operands

Use of the ~ unary operator is illegal.
Check the right-side expression of the operator.

invalid void type

The void type specifier is used with long or singed.
Write the type specifier correctly.

invalid void type, int assumed

.U.U.U.U.U.

The void-type variable cannot be declared. Processing will
be continued by assuming it to be the int type.

Can not specifies bit-fields of long long type.

= Write the type specifier correctly.
invalid size of bitfield o Get the bitfield size.
= Not write bitfield on this decraration.
invalid switch statement e The switch statement is illegal.
= Write it correctly.
label label redefine e The same label is defined twice within one function.
= Change the name for either of the two labels.
long long type's bitfield e Specifies bitfield by long long type
-

mismatch prototyped parameter type

The argument type is not the type declared in prototype
declaration.
Check the argument type.

No #pragma ENDASM

#pragma ASM does not have matching #pragma
ENDASM.
Write #pragma ENDASM.

No declarator

The declaration statement is incomplete.
Write a complete declaration statement.

Not enough memory

The memory area is insufficient.
Increase the memory or virtual memory for Windows.

not have long char'

Type specifiers long and char are simultaneously used.
Write the type specifier correctly.

not have long float'

Type specifiers long and float are simultaneously used.
Write the type specifier correctly.

not have long short'

Type specifiers long and short are simultaneously used.
Write the type specifier correctly.

not static initializer for variablename

R LU LV L (R Y

The initialize expression of static variable contains an
error. This is because the initialize expression is a function
call, for example.

Write the initialize expression correctly.

not struct or union type

* U

U

The left-side expression of -> is not the structure or union
type.

Use the structure or union type to describe the left-side
expression of ->,

redeclare of variablename

An variable-name has been declared twice.
Change the name for either of the two variable name.

redeclare of enumerator

bl

An enumerator has been declared twice.
Change the name for either of the two enumerators.

- 322 -

Appendix F Error Messages

Table F.16 ccom30 Error message (10)

Error message

Description and countermeasure

redefine function function-name

The function indicated by function-name is defined twice.
The function can be defined only once. Change the name
for either of the two functions.

redefinition tag of enum tag-name

An enumeration is defined twice.
Make sure that enumeration is defined only once.

redefinition tag of struct tag-name

A structure is defined twice.
Make sure that a structure is defined only once.

redefinition tag of union tag-name

A union is defined twice.
Make sure that a union is defined only once.

reinitialized of variable-name

.U.U.U.

An 1nitialize expression is specified twice for the same
variable.
Specify the initializer only once.

restrict is duplicate

A restrict is defined twice.
Make sure that a restrict is defined only once.

size of incomplete array type

*U

An attempt is made to find sizeof of an array of unknown
size. This is an invalid size.
Specify the size of the array.

size of incomplete type

An undefined structure or union is used in the operand of
the sizeof operator.

Define the structure or union first.

The number of elements of an array defined as an
operand of the sizeof operator is unknown.

Define the structure or union first.

size of void

An attempt is made to find the size of void. This is an
invalid size.
The size of void cannot be found.

Sorry, stack frame memory exhaust,
max. 64(or 255) bytes but now nnn bytes

A maximum of 128 bytes of parameters can be secured on
the stack frame. Currently, nnn bytes have been used.
Reduce the size or number of parameters.

Sorry, compilation terminated because of
these errors in functionname.

An error occurred in some function indicated by function-name.
Compilation is terminated.
Correct the errors detected before this message is output.

Sorry, compilation terminated because of
too many errors.

Errors in the source file exceeded the upper limit (50
errors).
Correct the errors detected before this message is output.

struct or enum's tag used for union

The tag name for structure and enumerated type is used
as a tag name for union.
Change the tag name.

struct or union's tag used for enum

The tag name for structure and union is used as a tag
name for enumerated type.
Change the tag name.

struct or union,enum does not have long
or sign

Type specifiers long or signed are used for the struct/union/enum
type specifiers.
Write the type specifier correctly.

-323 -

Appendix F Error Messages

Table F.17 ccom30 Error message(11)

Error message

Description and countermeasure

switch's condition is floating

The float type is used for the expression of a switch
statement.
Use the integer type or enumerated type.

switch's condition 1s void

The void type is used for the expression of a switch
statement.
Use the integer type or enumerated type.

switch's condition must integer

U

Invalid types other than the integer and enumerated
types are used for the expression of a switch statement.
Use the integer type or enumerated type.

syntax error

This is a syntax error.
Write the description correctly.

System Error

U

This is an internal error. (It does not normally occur.) This
error may occur pursuant to one of errors that occurred
before it.

If this error occurs even after eliminating all errors that
occurred before it, please send the content of the error
message to Renesas Solutions Corp. as you contact.

too big data-length e An attempt is made to get an address exceeding the 32-bit
range.
= Make sure the set values are within the address range of
the microcomputer used.
too big address e An attempt is made to set an address exceeding the 32-bit

range.
Make sure the set values are within the address range of
the microcomputer used.

too many storage class of typedef

Storage class specifiers such as extern/typedef/
static/auto/register are described more than twice in
declaration.

Do not describe a storage class specifier more than twice.

type redeclaration of variable-name

The variable is defined with different types each time.

= Always use the same type when declaring a variable

twice.

typedef initialized

An initialize expression is described in the variable
declared with typedef.
Delete the initialize expression.

uncomplete array pointer operation

An incomplete multidimensional array has been accessed
to pointer.
Specify the size of the multidimensional array.

undefined label "label" used

The jump-address label for goto is not defined in the
function.
Define the jump-address label in the function.

union or enum's tag used for struct

The tag name for union and enumerated types is used as
a tag name for structure.
Change the tag name.

unknown function argument variable-
name

An argument is specified that is not included in the
argument list.
Check the argument.

unknown member "member-name"
used

A member is referenced that is not registered as any
structure or union members.
Check the member name.

- 324 -

Appendix F Error Messages

Table F.18 ccom30 Error message(12)
Error message Description and countermeasure
unknown pointer to structure | ¢ The left-side expression of -> is not the structure or union

identifier"variablename"

type.
Use struct or union as the left-side expression of ->.

unknown size of struct or union

A structure or union is used which has had its size not
determined.

Declare the structure or union before declaring a
structure or union variable.

unknown structure identifier "variable-
name"

The left-side expression of "." dose not have struct or
union.
Use the struct or union as it.

unknown variable "variable-name"
used in asm()

*

An undefined variable name is used in the asm
statement.

= Define the variable.
unknown variable variablename e An undefined variable name is used.
= Define the variable.
unknown variable variable-name ¢ An undefined variable name is used.
used = Define the variable.

void array is invalid type, int array
assumed

An array cannot be declared as void. Processing will be
continued, assuming it has type int.
Write the type specifier correctly.

void value can't return

* U

The value converted to void (by cast) is used as the return
from a function.
Write correctly.

while(struct/union) statement

* U

struct or union is used in the expression of a while
statement.
Use scalar type.

while(void) statement

void is used in the expression of a while statement.
Use scalar type.

multiple #pragma EXT4MPTR's
pointer, ignored (NC30 only)

pragma EXT4MPTR is declared more than two.
Do not declare #pragma EXT4MPTR more than two.

zero size array member

BRI I E U IV

U

the array which size is zero.

Declare the array size.

The structure members include an array whose size is
Z€ro.

Arrays whose size is zero cannot be members of a
structure.

'function-name’ is resursion, then inline
1s ignored

The inline-declared 'function name' is called recursively.
The inline declaration will be ignored.

Correct the statement not to call such a function name
recursively.

-325-

Appendix F Error Messages

F.6. cccom30 Warning Messages

Table F.19 to Table F.27 list the ccom30 compiler warning messages and their countermeasures.

Table F.19

ccom30 Warning Messages (1)

Warning message

Description and countermeasure

#pragma pragmaname & HANDLER
both specified

Both #pragma pragma-name and #pragma HANDLER
are specified in one function.

Specify #pragma pragma-name and #pragma HANDLER
exclusive to each other.

#pragma pragma-name & INTERRUPT
both specified

Both #pragma pragma-name and #pragma INTERRUPT
are specified in one function.

= Specify #pragma pragma-name and #pragma INTERRUPT
exclusive to each other.
#pragma pragma-name & TASK both | ¢ Both #pragma pragma-name and #pragma TASK are
specified specified in one function.
= Specify #pragma pragmaname and #pragma TASK
exclusive to each other.
#pragma pragma-name format error e The#pragma pragma-name is erroneously written.
Processing will be continued.
= Write it correctly.
#pragma pragmaname format error, | ¢ The #pragma pragma-name is erroneously written.
ignored This line will be ignored.
= Write it correctly.
#pragma pragma-name not function, | ¢ A name is written in the #pragma pragma-name that is
ignored not a function.
= Write it with a function name.
#pragma pragma-name's function must | ¢ A function specified in the #pragma pragma-name is not
be predeclared, ignored declared.
= For functions specified in a #pragma pragmaname, write
prototype declaration in advance.
#pragma pragma-name's function must | ¢ A function specified in the #pragma pragma-name is not
be prototyped, ignored prototype declared.
= For functions specified in a #pragma pragmaname, write
prototype declaration in advance.
#pragma pragmaname's function | ¢ The type of return value for a function specified in the
return type invalid,ignored #pragma pragma-name is invalid.
= Make sure the type of return value is any type other than
struct, union, or double.
#pragma pragmamname unknown | ¢ The switch specified in the #pragma pragma-name is
switch,ignored invalid.
= Write it correctly.
#pragma pragma-name variable | ¢ The variable specified in #pragma pragma-name is
initialized, initialization ignored initialized. The specification of #pragma pragma-name
will be nullified.
= Delete either #pragma pragma-name or the initialize
expression.
#pragma ASM line too long, then cut e The line in which #pragma ASM is written exceeds the
allowable number of characters = 1,024 bytes.
= Write it within 1,024 bytes.

- 326 -

Appendix F Error Messages

Table F.20 ccom30 Warning Messages (2)
Warning message Description and countermeasure
#pragma directive conflict o fHpragma of different functions is specified for one
function.

= Write it correctly.

#pragma DMAC duplicate e The same #pragma DMAC is defined twice.

(only NC308) = Do not define #pragma DMAC two times or more
[)

#pragma DMAC variable must be far
pointer for variable-name, ignored
(only NC308)

Variable declared by #pragma DMAC needs to be a far
pointer. DMAC declaration is ignored.

= Write it correctly.

#pragma DMAC variable must be
unsigned int for variable-name, ignored
(only NC308)

Variable declared by #pragma DMAC needs to be
unsigned int type. DMAC declaration is ignored.
Write it correctly.

#pragma DMAC’s variable must be
pre-declared,ignored
(only NC308)

*

Variable declared by #pragma DMAC needs a type
declaration.
Write it correctly.

#pragma DMAC, register conflict
(only NC308)

Multiple variables are allocated to the same register.
Write it correctly.

#pragma DMAC, unknown register
name used (only NC308)

Unknown register is used in #pragma DMAC declaration.
Write it correctly.

#pragma JSRA illegal location, ignored

Do not put #pragma JSRA inside function scope.
Write #pragma JSRA outside a function.

#pragma JSRW illegal location, ignored

R A R Lt

Do not put #pragma JSRW inside function scope.
Write #pragma JSRA outside a function.

#pragma PARAMETER function's address
used

The address of function specified #pragma PARAMETER
is assigned to the pointer variable.
As don't assign, write correctly.

#pragma control for function duplicate,
ignored

Two or more of INTERRUPT, TASK, HANDLER,
CYCHANDLER, or ALMHANDLER are specified for the
same function in #pragma.

Be sure to specify only one of INTERRUPT, TASK,HA
NDLER,CYCHANDLER, or ALMHANDLER.

#pragma unknown switch, ignored

Invalid switch 1is specified to #pragma#pragma
declaration is ignored.
Write switch correctly.

'auto' is illegal storage class

An incorrect storage class is used.
Specify the correct storage class.

‘register' is illegal storage class

An incorrect storage class is used.
Specify the correct storage class.

argument is define by 'typedef', 'typedef
ignored

B LV

Specifier typedef is used in argument declaration.
Specifier typedef will be ignored.

= Delete typedef.

assign far pointer to near pointer, bank
value ignored

The bank address will be nullified when substituting the
far pointer for the near pointer.
Check the data types, near or far.

assignment from const pointer to
non-const pointer

The const property is lost by assignment from const
pointer to non-const pointer.
Check the statement description. If the description is
correct, ignore this warning.

- 327 -

Appendix F Error Messages

Table F.21

ccom30 Warning Messages (3)

Warning message

Description and countermeasure

assignment from volatile pointer to
non-volatile pointer

The volatile property is lost by assignment from volatile
pointer to non-volatile pointer.

Check the statement description. If the description is
correct, ignore this warning.

assignment in comparison statement

You put an assignment expression In a comparison
statement.
You may confuse "= =" with '=". Check on it.

block level extern variable initialize
forbid,ignored

An initializer is written in extern variable declaration in a
function.
Delete the initializer or change the storage class.

can't get address from register storage
class variable

The & operator is written for a variable of the storage
class register.

Do not use the & operator to describe a variable of the
storage class register.

can't get size of bitfield

The bit-field is used for the operand of the sizeof operator.
Write the operand correctly.

can't get size of function

A function name is used for the operand of the sizeof
operator.
Write the operand correctly.

can't get size of function, unit size 1
assumed

U

The pointer to the function is incremented (++) or
decremented (). Processing will be continued by
assuming the increment or decrement value is 1.

Do not increment (++) or decrement (-) the pointer to a
function.

char array initialized by wchar_t string

The array of type char is initialized with type wchar_t .
Make sure that the types of initializer are matched.

case value is out of range

The value of case exceeds the switch parameter range.
Specify correctly.

character buffer overflow

The size of the string exceeded 512 characters.
Do not use more than 512 characters for a string.

character constant too long

.U.U.U.

There are too many characters in a character constant
(characters enclosed with single quotes).
Write it correctly.

constant variable assignment

In this assign statement, substitution is made for a
variable specified by the const qualifier.
Check the declaration part to be substituted for.

cyclic or alarm handler function has
argument

The function specified by #pragma CYCHANDLER or
ALMHANDLER is using an argument.

The function cannot use an argument. Delete the
argument.

enumerator value overflow size of
unsigned char

The enumerator value exceeded 255.
Do not use more than 255 for the enumerator; otherwise,
do not specify the startup function - fchar_enumerator.

enumerator value overflow size of The enumerator value exceeded 65535.
unsigned int Do not use more than 65535 to describe the enumerator.
enum's bitfield An enumeration is used as a bit field member.

Use a different type of member.

external variable initialized,change to
public

.U.U.

U

An initialization expression is specified for
extern-declared variable. extern will be ignored.
Delete extern.

an

- 328 -

Appendix F Error Messages

Table F.22

ccom30 Warning Messages (4)

Warning message

Description and countermeasure

far pointer (implicitly) casted by near The far pointer was converted into the near pointer.
pointer Check the data types, near or far.
function must be far The function is declared with the near type.

Write it correctly.

function function name has no-used
argument (variable-name)

.U.U.

The variable declared in the argument to the function is
not used.
Check the variables used.

handler function called

The function specified by #pragma HANDLER is called.
Be careful not to call a handler.

handler function can't return value

‘U

U

The function specified by #pragma HANDLER is using a
returned value.

The function specified by #pragma HANDLER cannot
use a returned value. Delete the return value.

handler function has argument

The function specified by #pragma HANDLER is using
an argument.

The function specified by #pragma HANDLER cannot
use an argument. Delete the argument.

hex character is out of range

The hex character in a character constant is excessively
long. Also, some character that is not a hex representation
is included after \.

Reduce the length of the hex character.

identifier (member-name) is duplicated,
this declare ignored

The member name is defined twice or more. This
declaration will be ignored.
Make sure that member names are declared only once.

identifier (variable-name) is duplicated

The variable name is defined twice or more. This
declaration will be ignored.
Make sure that variable names are declared only once.

identifier (variable-name) is shadowed

The auto variable which is the same as the name declared
as an argument is used.
Use any name not in use for arguments.

illegal storage class for argument,
'extern' ignore

* U

An invalid storage class is used in the argument list of
function definition.
Specify the correct storage class.

incomplete array access

An incomplete multidimensional array has been accessed.
Specify the size of the multidimensional array.

incompatible pointer types

The object type pointed to by the pointer is incorrect.
Check the pointer type.

incomplete return type

R VR

An attempt is made to reference an return variable of
incomplete type.
Check return variable.

incomplete struct member

An attempt is made to reference an struct member of
incomplete .
Define complete structs or unions first.

init elements overflow,ignored

The initialization expression exceeded the size of the
variable to be initialized.

Make sure that the number of initialize expressions does
not exceed the size of the variables to be initialized.

inline function is called as normal
function before, change to static function

The function declared in storage class inline is called as
an ordinary function.
Always be sure to define an inline function before using it.

- 329 -

Appendix F Error Messages

Table F.23

ccom30 Warning Messages (5)

Warning message

Description and countermeasure

integer constant is out of range

The value of the integer constant exceeded the value that
can be expressed by unsigned long.

Use a value that can be expressed by unsigned long to
describe the constant.

interrupt function called

The function specified by #pragma INTERRUPT is called.
Be careful not to call an interrupt handling function.

interrupt function can't return value

The interrupt handling function specified by #pragma
INTERRUPT is using a return value.

Return values cannot be used in an interrupt function.
Delete the return value.

interrupt function has argument

The interrupt handling function specified by #pragma
INTERRUPT is using an argument.

Arguments cannot be used in an interrupt function.
Delete the argument.

invalid #pragma EQU

The description of #pragma EQU contains an error. This
line will be ignored.
Write the description correctly.

invalid #pragma SECTION, unknown
section base name

The section name in #pragma SECTION contains an
error. The section names that can be specified are data,
bss, program, rom, interrupt, and bas. This line will be
ignored.

Write the description correctly.

invalid #pragma operand, ignored

An operand of #pragma contains an error. This line will
be ignored.

= Wirite the description correctly.
invalid function argument = The function argument is not correctly written.
e Write the function argument correctly.
invalid return type o The expression of the return statement does not match

the type of the function.

Make sure that the return value is matched to the type of
the function or that the type of the function is matched to
the return value.

invalid storage class for function, change
to extern

An invalid storage class is used in function declaration. It
will be handled as extern when processed.

= Change the storage class to extern.
Kanji in #pragma ADDRESS o The line of #pragma ADDRESS contains kanji code. This
line will be ignored.
= Do not use kanji code in this declaration.
Kanji in #pragma BITADDRESS o The line of #pragma BITADDRESS contains kanji code.

This line will be ignored.
Do not use kanji code in this declaration.

keyword (keyword) are reserved for
future

A reversed keyword is used.
Change it to a different name.

large type was implicitly cast to small
type

*U

U

The upper bytes (word) of the value may be lost by
assignment from large type to a smaller type.

Check the type. If the description is correct, ignore this
warning.

mismatch prototyped parameter type

The argument type is not the type declared in prototype
declaration.
Check the argument type.

- 330 -

Appendix F Error Messages

Table F.24

ccom30 Warning Messages (6)

Warning message

Description and countermeasure

meaningless statements deleted in

optimize phase

Meaningless statements deleted during

optimization.
Delete meaningless statements.

were

meaningless statement

The tail of a statement is "= ="
You may confuse "=" with '==". Check on it.

mismatch function pointer assignment

*U

The address of a function having a register argument is
substituted for a pointer to a function that does not have a
register argument (i.e., a nonprototyped function).

Change the declaration of a pointer variable for function
to a prototype declaration.

multi-character character constant

A character constant consisting of two characters or more
1s used.

Use a wide character (L'xx) when two or more characters
are required.

near/far is conflict beyond over typedef

The type defined by specifying near/far is again defined by
specifying near/far when referencing it.
Write the type specifier correctly.

No hex digit

The hex constant contains some character that cannot be
used 1n hex notation.

Use numerals 0 to 9 and alphabets A to F and a to f to
describe hex constants.

No initialized of variable name

It is probable that the register variables are used without
being initialized.

Make sure the register variables are assigned the
appropriate value.

No storage class & data type in declare,
global storage class & int type assumed

The variable is declared without storage-class and type
specifiers. It will be handled as int when processed.
Write the storage-class and type specifiers.

i

non-initialized variable “variable name’
1s used

It is probable that uninitialized variables are being
referenced.

Check the statement description. This warning can occur
in the last line of the function. In such a case, check the
description of the auto variables, etc. in the function. If the
description is correct, ignore this warning.

non-prototyped function used

A function is called that is not declared of the prototype.
This message is output only when you specified the
-Wnon_prototype option.

Write prototype declaration. Or delete the option
Wnon_prototype”.

_

non-prototyped function declared

A prototype declaration for the defined function cannot be
found. (Displayed only when the -Wnon_prototype option
is specified.)

Write a prototype declaration.

octal constant is out of range

The octal constant contains some character that cannot be
used 1n octal notation.

= Use numerals O to 7 to describe octal constants.
octal_character is out of range 1. The octal constant contains some character that cannot be
used 1n octal notation.
= Use numerals 0 to 7 to describe octal constants.
overflow in floating value converting to | ¢ A very large floating-point number that cannot be stored
integer 1n integer type is being assigned to the integer type.
= Reexamine the assignment expression.

-331-

Appendix F Error Messages

Table F.25 com30 Warning Messages (7)

Warning message

Description and countermeasure

old style function declaration

The function definition is written in format prior to ANSI
ISo) C.
Write the function definition in ANSI (ISO) format.

prototype function is defined as
non-prototype function before.

* U

The non-prototyped function is redefine prototype-
declaration.
Unite ways to declare function type.

redefined type

Redwfine typedef.
Check typedef.

redefined type name of (qualify)

The same identifier is defined twice or more in typedef.
Write identifier correctly.

register parameter function used before
as stack parameter function

R U IV IV

The function for register argument is used as a function
for stack argument before.
Write a prototype declaration before using the function.

RESTRICT qualifier can
pointer type.

set only

The RESTRICT qualifier is declared outside a pointer.
Declare it in only a pointer.

section name 'interrupt' no more used

*Uo

U

The section name specified by "pragma SECTION uses
"Interrupt’.

A section name 'interrupt' cannot be used. Change it to
another.

size of incomplete type

An undefined structure or union is used in the operand of
the size of operator.
Define the structure or union first.

The number of elements of an array defined as an
operand of the size of operator is unknown.
Define the structure or union first.

size of incomplete array type

An attempt is made to find size of of an array of unknown
size. This is an invalid size.
Specify the size of the array.

size of void

An attempt is made to find the size of void. This is an
invalid size.
The size of void cannot be found.

standard library “function-name()”
need “include-file name”

This standard library function is used without its header
file included.
Be sure to include the header file.

static variable in inline function

static data is declared within a function that is declared in
storage class inline.
Do not declare static data in an inline function.

string size bigger than array size

The size of the initialize expression is greater than that of
the variable to be initialized.

Make sure that the size of the initialize expression is
equal to or smaller than the variable.

string terminator not added

Since the variable to be initialized and the size of the
initialize expression are equal, "\0' cannot be affixed to the
character string.

Increase a element number of array.

struct (or union) member's address can't
has no near far information

near or far is used as arrangement position information of
members (variables) of a struct (or union).
Do not specify near and far for members.

- 332 -

Appendix F Error Messages

Table F.26

ccom30 Warning Messages (8)

Warning message

Description and countermeasure

task function called

The function specified by #pragma TASK is called.
Be careful not to call a task function.

task function can't return value

The function specified by #pragma TASK is using a
return value.

The function specified by #pragma TASK cannot use
return values. Delete the return value.

task function has invalid argument

U

The function specified with #pragma TASK uses
arguments.

Any function specified with #pragma TASK cannot use
arguments. Delete the arguments.

this comparison is always false

Comparison is made that always results in false.
Check the conditional expression.

this comparison is always true

Comparison is made that always results in true.
Check the conditional expression.

this feature not supported now, ignored

.U.U.

This is a syntax error. Do not this syntax because t is
reserved for extended use in the future.
Write the description correctly.

this function used before with non-default

argument

A function once used is declared as a function hat has a
default argument.
Declare the default argument before using a unction.

this interrupt function is called as

normal function before

J |

A function once used is declared in #pragma NTERRUPT.
An interrupt function cannot be called. Check the ontent

of #pragma.

too big octal character

The character constant or the octal constant in he
character string exceeded the limit value (255 n decimal).
Do not use a value greater than 255 to describe he
constant.

too few parameters

Arguments are insufficient compared to the number f
arguments declared in prototype declaration.
Check the number of arguments.

too many parameters

Arguments are excessive compared to the number f
arguments declared in prototype declaration.
Check the number of arguments.

unknown #pragma STRUCT xxx

* U

#pragma STRUCTxxx cannot be processed. his line will
be ignored.
Write correctly.

Unknown debug option (-dx)

The option -dx cannot be specified.
Specify the option correctly.

Unknown function option (-Wxxx)

The option -Wxxx cannot be specified.
Specify the option correctly.

Unknown function option (-fx)

The option -fx cannot be specified.
Specify the option correctly.

Unknown function option (-gx)

The option -gx cannot be specified.
Specify the option correctly.

Unknown optimize option (-mx)

The option -mx cannot be specified.
Specify the option correctly.

Unknown optimize option (-Ox)

The option -Ox cannot be specified.
Specify the option correctly.

Unknown option (-x)

L L R (R I R VR IV

The option -x cannot be specified.
Specify the option correctly.

- 333 -

Appendix F Error Messages

Table F.27 ccom30 Warning Messages (9)

Warning message

Description and countermeasure

unknown pragma pragma-specification
used

Unsupported #pragma is written.

Check the content of #pragma.

*This warning 1s displayed only when the
Wunknown_pragma (-WUP) option is specified.

wchar_t array initialized by char string

The initialize expression of the wchar_t type is nitialized
by a character string of the char type.

Make sure that the types of the initialize expression re
matched.

zero divide in constant folding

The divisor in the divide operator or remainder alculation
operator is 0.
Use any value other than O for the divisor.

zero divide,ignored

*

The divisor in the divide operator or remainder alculation
operator is 0.
Use any value other than O for the divisor.

zero width for bitfield

The bit-field width is 0.
Write a bit-field equal to or greater than 1.

no const in previous declaretion

U

U

The function or variable declaration without const
qualification is const-qualified on the entity definition side.
Make sure the function or variable declaration and the
const qualification on the entity definition side are
matched.

Code generation for static functions
(xxx) can be suppressed by using
ferase_static_function(-fESF) option.

Some static function may not be referenced.

Code generation for the static function (function name)
can be suppressed by specifying the -ferase_static
_function option.

-334-

Appendix G The SBDATA declaration & SPECIAL Page Function declaration Utility (utl30)

Appendix G The SBDATA declaration & SPECIAL page Function declaration Utility (utl30)

How to startup the SBDATA declaration & SPECIAL page function declaration utility (utl30) and how the
startup options works are described here.

G.1. Introduction of utl30

G.1.1. Introduction of utl30 processes

The SBDATA declaration & SPECIAL page Function declaration Utility utl30 precesses the absolute
module file (hanving the extension.x30).

The utl30 generates a file that contains SBDATA declarations (located in the SB area beginning with the
most frequently used one, #pragma SBDATA”) and a file that contains SPECIAL page function declarations
(located in the SPECIAL page area beginning with the most frequently used one, #pragma SPECIAL”).

To use utl30, specify the compile driver startup option -finfo when compiling, so that the absolute module file
(x30) will be generated.

Figure G.1 illustrates the NC30 processing flow.

-335-

Appendix G The SBDATA declaration & SPECIAL Page Function declaration Utility (utl30)

C language
source file
nc30 command option
| nc30 I: Compile driver finfo
| cpp30 | Preprosesser
I
| ccom30 | Compiler
I
| aopt30 | Assembler optimizer

— ¥V
Assembly

language

Assembler

as30

— ¥
Relocatable
object file

linker
| In30

!

This file is generated

Absolute nc30 command
module option -finfo
file
' SBDATA definition &
A SPECIAL Page
| utl30 Function definition

SBDATA SPECIAL Page SPECIAL Page
definition file Function Vector
definition file definition file

: Software in this package
S : output file of this compiler

Figure G.1 NC30 Processing Flow

- 336 -

Appendix G The SBDATA declaration & SPECIAL Page Function declaration Utility (utl30)

G.2. Starting utl30

G.2.1. utl30 Command Line Format

For starting utl30, you have to specify the information and parameter that required.

% uti30A[command-line-option]. <absolute-file-name>

%: Prompt

< >: Mandatory item

[]: Optional item

A\: Space

Delimit multiple command line options with spaces.

Figure G.2 utl30 Command Line Format

Before utl30 can be used, the following startup options of the compiler must both be specified in order to
generate an absolute module file (extension .x30):
° -finfo option to output an inspector information
® -g option to output debugging information
The following utl30 options are also specified:
® -0 option to output of information(SBDATA declaration or SPECIAL page Function
declaration)
(By default, information is output to the standard output device.)

- 337 -

Appendix G The SBDATA declaration & SPECIAL Page Function declaration Utility (utl30)

©® Qutput the absolute module file

%nc30 ncrt0.a30 -finfo sample.c<RET>

M16C/60, 30, 20, 10, Tiny, R8C/Tiny Series Compiler V.x.xx Release xx
Copyright(C) xox(xxxx). Renesas Technology Corp.

and Renesas Solutions Corp., All rights reserved.

ncrt0.a30

sample.c

%

©® Output SBDATA declaration

%uti30 -sb30 ncrt0.x30 -0 sample<RET>

M16C/60 UTILITY UTL30 for M16C/60 V.X.XX.XX

COPYRIGHT(C) XXXX(XXXX) RENESAS TECHNOLOGY CORPORATION ALL RIGHTS RESERVED
AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED

%

® QOutput SPECIAL page Function declaration

%utl30 -sp30 ncrt0.x30 -0 sample <RET>

COPYRIGHT(C) XXXX(XXXX) RENESAS TECHNOLOGY CORPORATION ALL RIGHTS RESERVED
AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED

<RET>: Means entering the return key.

Figure G.3 Example uti30 Command Line

G.2.2. Selecting Output Informations

To select outputs between "SBDATA declaration" and "SPECIAL page function declaration" in utl30, specify
the options described below. If neither option is specified, an error is assumed for utl30.
(1) Output SBDATA declaration
e Option "-sb30"
(2) Output SPECIAL page Function declaration
e Option "-sp30"

Figure G.3 shows the sbutl command line options.

- 338 -

Appendix G The SBDATA declaration & SPECIAL Page Function declaration Utility (utl30)

G.2.3. utl30 Command Line Options

The following information (input parameters) is needed in order to start utl30. Table G.1 shows the utl30
command line options.

TableG.1 utl30 Command Line Options
Option Short form Description

-all None. [When used simultaneously with the -sb30 option]Because
the usage frequency is low, SBDATA declaration is output in
the form of a comment for even the variables that are not
placed in the SB area.
[When used simultaneously with the -sp30 option] Because
the usage frequency is low, SPECIAL declaration is output
in the form of a comment for even the functions that are not
placed in the SPECIAL page area.

-fsection None. The variables and functions specified by #pragma
SECTION are also included among those to be processed.

-fover_write -fOW Forcibly writes over the output file name specified with the
-0 option.

-0 None. Outputs the result of SBDATA declaration or SPECIAL

Page Function declaration to a file. With this option not
specified, outputs the result to the host machine's(either
EWS or personal computer) standard output device. No
extensions can be specified.

If the specified file already exists, the result is written to the
standard output device.

-sb30 None. -sb30 -> Outputs SBDATA declaration.

-sp30 > Outputs SPECIAL page function declaration.

To use utl30, always specify one of the two options.

If neither option is specified, an error is assumed.

-sp=<number> None. Does not use the specified number(s) as SPECIAL Page
--sp=<number>,<number>,... Function numbers.

(two or more numbers) Use this option simultaneously with the -sb30 option.
-sp=<number>-<number>

-sp30 None. -sb30 -> Outputs SBDATA declaration.

-sp30 > Outputs SPECIAL page function declaration.

To use utl30, always specify one of the two options.

If neither option is specified, an error is assumed.

-Wstdout None. Output the warning and error messages to the host
machines standard output device.

- 339 -

Appendix G The SBDATA declaration & SPECIAL Page Function declaration Utility (utl30)

-all
Makes all gobal variables vaild
Function : ® When used simultaneously with the -sb30 option
Because the usage frequency is low, SBDATA declaration is output in the form of
a comment for even the variables that are not placed in the SB area.
® When used simultaneously with the -sp30 option
Because the usage frequency is low, SPECIAL declaration is output in the form of
a comment for even the functions that are not placed in the SPECIAL page area.
Supplement: Use of this option helps to find the functions which are not called, even for once in
program execution.
However, the functions which are called only indirectly require the user's attention,
because such functions are indicated to have been called O times.
-fover write -fOW

Outputs SBDATA declaration or SPECIAL function declaration to a file

Function : Does not check whether the output file specified by -o already exists. If such file exists, it
is overwritten.
This option must be specified along with the -o option.

-fsection

Outputs SBDATA declaration and SPECIAL page function declaration in #pragma SECTIONS

Function : The variables and functions located in areas whose section names have been altered by
#pragma SECTION are also included among those to be processed.

Notes: If #pragma SECTION is used for an explicit purpose of locating a particular variable or
function at a given address, do not specify this option, because the variable or function
may be located at an unintended different address by SBDATA or SPECIAL page

declaration.

-0
Outputs the declared SBDATA result display file

Function : Outputs the result of SBDATA declaration or SPECIAL Page Function declaration to a
file. With this option not specified, outputs the result to the host machine's(either EWS
or personal computer) standard output device. If the specified file already exists, the
result is written to the standard output device.

-sh30

Outputs SBDATA declaration

Function : Outputs SBDATA declaration. This option can be specified simultaneously with -sp30.

- 340 -

Appendix G The SBDATA declaration & SPECIAL Page Function declaration Utility (utl30)

-sp30
Outputs SPECIAL page function declaration
Function : Outputs SPECIAL page function declaration. This option can be specified

simultaneously with -sb30.

-Sp= <number>

Specifying numbers not be used as SPECIAL Page Function number option

Function : Specifies numbers not to be used as SPECIAL Page Function numbers.

-Wstdout

warning option

Function : Outputs error and warning messages to the host machine's standard output (stdout).

- 341 -

Appendix G The SBDATA declaration & SPECIAL Page Function declaration Utility (utl30)

G.3. Notes

(1) In using utl30, .sbsym declared in files described in assembler cannot be counted. For this reason,
you need to make adjustment, if a ".sbsym" declared in assembler is present, so that the results
effected after having executed utl30 are put in the SB area.

(2) In using utl30, SPECIAL Page Function declared in files described in assembler cannot be counted.
For this reason, you need to make adjustment, if a SPECIAL Page Function declared in assembler is
present, so that the results effected after having executed utl30 are put in the SPECIAL Page area.

G.4. Conditions to establish SBDATA declaration & SPECIAL Page Function declaration

G.4.1. Conditions to establish SBDATA declaration

Only global variables are valid in using utl30 Types of variables are as follows.
® variables of _Bool

variables of unsigned char and signed char type

variables of unsigned short and signed short type

variables of unsigned int and signed int type

variables of unsigned long and signed long type

variables of unsigned long long and signed long long type

Variables give below are excluded from SBDATA declaration.
® variables positioned in sections worked on by #pragma SECTION
) variables defined by #pragma ADDRESS
) variables defined by #pragma ROM

If variables declared by use #pragma SBDATA have already been present in a program, the declaration is
given a higher priority in using utl30, and variables to be allocated are picked out of the remainder of the SB
area.

G.4.2. Conditions to establish SPECIAL Page Function declaration

The functions to be processed by utl30 are only those external functions that are listed below.
® Functions which are not declared with static
® Functions which are called four times or more

Note, however, that even the above functions may not be processed if they belong to one of the following:
) functions positioned in sections worked on by #pragma SECTION
) functions defined by any #pragma

If variables declared by use #pragma SPECIAL have already been present in a program, the declaration is

given a higher priority in using ult30, and variables to be allocated are picked out of the remainder of the SB
area.

-342-

Appendix G The SBDATA declaration & SPECIAL Page Function declaration Utility (utl30)

G.5. Example of utl30 use

G.5.1. Generating a SBDATA declaration file

a. Generating a SBDATA declaration file

You can output a SBDATA declaration file by means of causing the SBDATA declaration utility utl30 to
process files holding information as to the state of using variables.

Figure G.4 shows an example of making entries in utl30 , and Figure G.5 shows an example of SBDATA
declaration file.

% utl30 -sb30 ncrt0.x30 -oshdata<RET>

%: Prompt
ncrt0.x30 : Name of absolute file

Figure G4 Example utl30 Command Line

I

* #pragma SBDATA Utility

*

* SBDATA Size [255] */ F—————= F-—————
#pragma SBDATA data3 | [rsize=(4) I(Iref =[2]% :
#pragma SBDATA data2 | Frsize=(1)fref=[1]% |
#pragma SBDATA datal | Fsize=@2)fref=[1]% |
I

*End of File

*

(1)Size=() is size of data
(2)ref =() is access count of the variables

Figure G.5 SBDATA declaration File (sbdata.h)

You include the SBDATA declaration file generated above in a program as a header file .Figure G.6 shows

an example of making setting in a SBDATA file.
Figure G.6 shows an example of making setting in a SBDATA file.

#include ‘"sbdata.h"

void func(void)
{

(ommit)

Figure G.6 Example of making settings in a SBDATA

- 343 -

G.5.2

Appendix G The SBDATA declaration & SPECIAL Page Function declaration Utility (utl30)

b. Adjustment in an instance in which SB declaration is made in assembler

If the SB area is used as a result of the .sbsym declaration in an assembler routine, you need to adjust the
file generated by utl30.

[assembler routine]
shsym _sym
(omitted)
.glb' _sym
_sym:
blkb 2
[generated file by uti30]
T
* #pragma SBDATA Utility
*f
/* SBDATA Size [255] */
#pragma SBDATA data3 [*size =(4) /ref=[2]%
#pragma SBDATA data2 [Fsize=(1)/ref=[1]%
(omitted)
#pragma SBDATA datal f*size=(2)/ref=[1]*
I
* End of File

*
Since 2-byte data are SB-declared in an assembler routine,you subtract 2 bytes of SBDATA declaration from the
file generated by utl30.
Example)
(omitted)

IHpragma SBDATA datal P size=(2) /ref=[1]*
F* Comments out*/

Figure G.7 Example of adjust the file generated by uti30

Generating a SPECIAL Page Function declaration file

a. Generating a SPECIAL Page Function declaration file

It is possible to output SPECIAL page function declaration and SPECIAL page vector definition files by
having the absolute module file (generated by using the option -finfo when compiling) processed by utl30,
the SBDATA Declaration & SPECIAL Page Function Declaration Utility.

Figure G.8 shows an example of input for utl30. Figure G.9 shows an example of a SPECIAL page function
declaration file. Figure G.10 shows an example of a SPECIAL page vector definition file.

- 344 -

Appendix G The SBDATA declaration & SPECIAL Page Function declaration Utility (utl30)

% utl30 -sp30 ncrt0.x30 -0 special<RET>

% : Prompt
ncrt0.x30 : Name of absolute file

Figure G.8 Example uti30 Command Line

I

* #pragma SPECIAL PAGE Utility

*
FSBDATASize [255)% o _____
#pragma. SPECIAL 255 funcl |/+size=(100) frref =[10]7 |
#ipragma SPECIAL 254 func2 | /* size = (100) Aref =[7
#ipragma SPECIA 253 func3 | size = (100) iref=[5]% |

@ @

/*

* End of File

*

(1) Indicates the function size.
(2) Indicates the reference frequency of function.

Figure G.9 SPECIAL Page Function declaration File (special.h)

; #pragma SPECIAL PAGE Utility
; special page definition

SPECIAL .macro NUM

.org OFFFFEH-(NUM*2)
glb __SPECIAL_@NUM
.word __SPECIAL_@NUM & OFFFFH
.endm
SPECIAL 255
SPECIAL 254
SPECIAL 253
; End of File

Figure G.10 SPECIAL Page vector declaration File (special.inc)

You include the SPECIAL Page Function declaration file generated above in a program as a header file.
Figure G.11 shows an example of making setting in a SPECIAL Page Function declaration File.

- 345 -

Appendix G The SBDATA declaration & SPECIAL Page Function declaration Utility (utl30)

#include “special.h"

void func(void)
{

(ommit)

Figure G.11 Example of making settings in a SPECIAL Page Function File

Includes, during startup, the SPECIAL Page vector definition file as a file to be included. Figure G.12 shows
an example of setting up a SPECIAL Page vector definition file.

(ommit)

.section vector
Jinclude “special.inc”

(ommit)

Figure G.12 Example of making settings in a SPECIAL Page Function File for sect30.inc

- 346 -

Appendix G The SBDATA declaration & SPECIAL Page Function declaration Utility (utl30)

G.6. utl30 Error Messages

G.6.1. Error Messages

Table G.2 lists the utl30 calculation utility error messages and their countermeasures.

Table G.2 sbutl Error Messages

Error message Contents of error and corrective action

ignore option '?" You specified an option that cannot be in used utl30.
Specify a proper option.

llegal file extension' XXX' Extension of input file is illegal.
Specify a proper file.

No input "x30" file specified No map file
Specify map file.

cannot open "x30" file 'file-name' Map file not found

Specify the correct input map file.

input file cannot be closed
Specify the correct input file-name.

cannot close file 'file-name'

Output file cannot be close
Specify the correct output file-name.

cannot open output file 'file-name’'

The extended memory is insufficient
Increase the extended memory

not enough memory

The 'file-name' specified with -o already exist.

Check the output file name.

The file can be overwritten by specifying -fover_write
simultaneously with the options.

since 'filename' file exist, it makes a
standard output

L e L L e e L

G.6.2. Warning Messages

Table G.3 Lists the sbutl utility warning messages and their countermeasures.

Table G.3 sbutl Warning Messages

Warning Message Contents of warning and corrective action

confllict declare of 'variable e The variable shown here is declared in multiple files with
different storage classes, types, etc.
= Check how this variable is declared.

confllict declare of 'function

The function shown here is declared in multiple files with
different storage classes, types, etc.
= Check how this function is declared.

- 347 -

Appendix H Using gensni or the .sni File Creation Tool for Call Walker

Appendix H Using gensni or the .sni File Creation Tool for Call Walker

Before Call Walker or the stack analysis tool of the High-performance Embedded Workshop can be used, you
must have .sni files as the input files for it.

You use gensni or the .sni file creation tool for Call Walker to create these .sni files from the absolute module
file.

H.1. Starting Call Walker

To start Call Walker, select “Call Walker” that is registered to the High-performance Embedded Workshop or
select the tool from the Tools menu of the High-performance Embedded Workshop.

After starting Call Walker, choose Import Stack File from the File menu and select a .sni file as the input file
for Call Walker.

H.2. Outline of gensni

H.2.1. Processing Outline of gensni

gensni is the tool to create .sni files for Call Walker.

gensni generates a .sni file by processing the absolute module file (extension .x30). Before gensni can be used,
there must be an absolute module file (extension .x30) available. Specify the compile option “finfo” , “g”
during compilation to generate that file.

The processing flow of NC30 is shown in Figure H.1.

- 348 -

Appendix H Using gensni or the .sni File Creation Tool for Call Walker

nc30 Command option

| 1C30 I4 Compile driver Afinfo
I

| Cpp30 | Preprocessor
I

| ccom30 | Compiler

Assembly

language

source file
Assembler Absolute module Specify the nc30 startup
file option “finfo” to
| as30 | generate this file

— 5
Relocatabale .) :
| gensni | .sni file creation tool for Call
Linker Walker.
— V¥ 5
| = | “
| I

| Call Walker | Stack analysis tool

: Indicates the software included in package
ﬁ : Files output by this compiler and gensni

Figure H1 Processing flow of NC30

H.3. Starting gensni

If Call Walker is started from the High-performance Embedded Workshop, gensni is automatically executed.
However, if Call Walker is started from other than the High-performance Embedded Workshop, gensni is
not automatically executed. In this case, start gensni from the Windows command prompt.

H.3.1. Inputformat

To start gensni, specify an input file name and startup option according to the input format shown below.

- 349 -

Appendix H Using gensni or the .sni File Creation Tool for Call Walker

% gensniA[Command option] AAbsolute module file(extension.x30)

% : Denotes the prompt

<>: Denotes the essential items.

[1: Denotes the items that need to be written when necessary.

A\ : Denotes a space.

When writing multiple startup options, separate each with a space.

Figure H.2 gensni command input format

To use gensni, specify both of the following in the startup options of this compiler
® Inspector INformation OULPUL...........oceveveveeereeeeeieeereeererereeerereve e eesenees -finfo option
) Debug Information OUEPUL..........c.cceeveieierceieieeee e e -g option
to generate absolute module files (extension “x30”).
An input example is shown below. In the input example here, the following option is specified in gensni.
° Information output to a specified file...........cooevererereeerevererereeeeererennes -0 option
(By default, the information is output to a file named after the input file by changing the file extension from
“x30” to “.sni.”

Generate an absolute module file :

% nc30 —g —fansi ncrt0.a30 sample.c <RET>

M16C/60,30,20,10, Tiny,R8C/Tiny Series Compiler V.X.XX Release XX
Copyright(C) XXXXXXXX,XXXXXXXX,XXXX). Renesas Technology Corp.
and Renesas Solutions Corp., All rights reserved.

ncrt0.a30
sample.c

%

Generate .sni file:

%gensni -0 sample ncrt0.x30<RET>
sample.sni is created.

%

Figure H.3 gensni command input example

- 350 -

Appendix H Using gensni or the .sni File Creation Tool for Call Walker

H.3.2. Option References

The startup options of gensni are listed in Table H.1.

TableH.1 gensni Command option

Option

short form

function

-0 file name

None

Specify a .sni file name.

® If this option is not specified, .sni file is named after the
input file by changing its file extension to “.sni.”

® If an extension is specified .sni file name, the specified
extension is changed to “sni” If no extensions are
specified, the extension “.sni” is assumed.

None

Shows the startup message of gensni and terminates
processing without performing anything.
No .sni files are generated.

-0 file

Specify a .sni file name

Function: ® If this option is not specified, .sni file is named after the input file by changing its

file extension to “.sni.”

® Ifno extensions are specified, the extension “.sni” is assumed.

Description: Use of this option permits you to change .sni file name as necessary.
The extension can also be changed.

Terminate processing after showing the startup message of gensni

Function: Shows the startup message of gensni and terminates processing without performing

anything.

® No .sni files are generated.

-351-

MEMO

M16C/60, 30, 20, 10, Tiny,R8C/Tiny Series
C Compiler Package V.5.43 C Compiler Users Manual

Publication Date: Mar. 1, 2007 Rev.1.00
)) Sales Strategic Planning Div.
Published by: Renesas Technology Corp.
Edited by: Microcomputer Tool Development Department

Renesas Solutions Corp.

© 2007. Renesas Technology Corp. and Renesas Solutions Corp., All rights reserved. Printed in Japan.

M16C/60,30,20,10,Tiny,R8C/Tiny Series
C Compiler Package V.5.43

C Compiler User’s Manual

LENESAS

Renesas Electronics Corporation
1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan REJ10J1575-0100

	Title

	Notes regarding these materials

	Preface

	Terminology
	Description of Symbols

	Contents

	Chapter 1 Introduction to NC30
	1.1. NC30 Components
	1.2. NC30 Processing Flow
	1.2.1. NC30
	1.2.2. cpp30
	1.2.3. ccom30
	1.2.4. aopt30
	1.2.5. sbauto
	1.2.6. StkViewer & stk
	1.2.7. utl30
	1.2.8. MapViewer

	1.3. Notes
	1.3.1. Notes about Version-up of compiler
	1.3.2. Notes about the M16C's Type Dependent Part

	1.4. Example Program Development
	1.5. NC30 Output Files
	1.5.1. Introduction to Output Files
	1.5.2. Preprocessed C Source Files
	1.5.3. Assembly Language Source Files

	Chapter 2 Basic Method for Using the Compiler
	2.1. Starting Up the Compiler
	2.1.1. nc30 Command Format
	2.1.2. Command File
	2.1.3. Notes on NC30 Command Line Options
	2.1.4. nc30 Command Line Options

	2.2. Preparing the Startup Program
	2.2.1. Sample of Startup Program
	2.2.2. Customizing the Startup Program
	2.2.3. Customizing for NC30 Memory Mapping

	Chapter 3 Programming Technique
	3.1. Notes
	3.1.1. Notes about Version-up of compiler
	3.1.2. Notes about the M16C's Type Dependent Part
	3.1.3. About Optimization
	3.1.4. Precautions on Using register Variables
	3.1.5. About Startup Handling

	3.2. For Greater Code Efficiency
	3.2.1. Programming Techniques for Greater Code Efficiency
	3.2.2. Speeding Up Startup Processing

	3.3. Linking Assembly Language Programs with C Programs
	3.3.1. Calling Assembler Functions from C Programs
	3.3.2. Writing Assembler Functions
	3.3.3. Notes on Coding Assembler Functions

	3.4. Other
	3.4.1. Precautions on Transporting between NC-Series Compilers
	3.4.2. Precautions on Transporting between NC308 and NC30

	Appendix A Command Option Reference
	A.1. nc30 Command Format
	A.2. nc30 Command Line Options
	A.2.1. Options for Controlling Compile Driver
	A.2.2. Options Specifying Output Files
	A.2.3. Version Information Display Option
	A.2.4. Options for Debugging
	A.2.5. Optimization Options
	A.2.6. Generated Code Modification Options
	A.2.7. Library Specifying Option
	A.2.8. Warning Options
	A.2.9. Assemble and Link Options

	A.3. Notes on Command Line Options
	A.3.1. Coding Command Line Options
	A.3.2. Priority of Options for Controlling

	Appendix BExtended Functions Reference
	B.1. Near and far Modifiers
	B.1.1. Overview of near and far Modifiers
	B.1.2. Format of Variable Declaration
	B.1.3. Format of Pointer type Variable
	B.1.4. Format of Function Declaration
	B.1.5. near and far Control by nc30 Command Line Options
	B.1.6. Function of Type conversion from near to far
	B.1.7. Checking Function for Assigning far Pointer to near Pointer
	B.1.8. Declaring functions
	B.1.9. Function for Specifying near and far in Multiple Declarations
	B.1.10. Notes on near and far Attributes

	B.2. asm Function
	B.2.1. Overview of asm Function
	B.2.2. Specifying FB Offset Value of auto Variable
	B.2.3. Specifying Register Name of register Variable
	B.2.4. Specifying Symbol Name of extern and static Variable
	B.2.5. Specification Not Dependent on Storage Class
	B.2.6. Selectively suppressing optimization
	B.2.7. Notes on the asm Function

	B.3. Description of Japanese Characters
	B.3.1. Overview of Japanese Characters
	B.3.2. Settings Required for Using Japanese Characters
	B.3.3. Japanese Characters in Character Strings
	B.3.4. sing Japanese Characters as Character Constants

	B.4. Default Argument Declaration of Function
	B.4.1. Overview of Default Argument Declaration of Function
	B.4.2. Format of Default Argument Declaration of Function
	B.4.3. Restrictions on Default Argument Declaration of Function

	B.5. inline Function Declaration
	B.5.1. Overview of inline Storage Class
	B.5.2. Declaration Format of inline Storage Class
	B.5.3. Restrictions on inline Storage Class

	B.6. Extension of Comments
	B.6.1. Overview of "//" Comments
	B.6.2. Comment "//" Format
	B.6.3. Priority of "//" and "/*"

	B.7. #pragma Extended Functions
	B.7.1. Index of #pragma Extended Functions
	B.7.2. Using Memory Mapping Extended Functions
	B.7.3. Using Extended Functions for Target Devices
	B.7.4. Using MR30 Extended Functions
	B.7.5. The Other Extensions

	B.8. assembler Macro Function
	B.8.1. Outline of Assembler Macro Function
	B.8.2. Description Example of Assembler Macro Function
	B.8.3. Commands that Can be Written by Assembler Macro Function

	Appendix C Overview of C Language Specifications
	C.1. Performance Specifications
	C.1.1. Overview of Standard Specifications
	C.1.2. Introduction to NC30 Performance

	C.2. Standard Language Specifications
	C.2.1. Syntax
	C.2.2. Type
	C.2.3. Expressions
	C.2.4. Declaration
	C.2.5. Statement

	C.3. Preprocess Commands
	C.3.1. List of Preprocess Commands Available
	C.3.2. Preprocess Commands Reference
	C.3.3. Predefined Macros
	C.3.4. Usage of predefined Macros

	Appendix D C Language Specification Rules
	D.1. Internal Representation of Data
	D.1.1. Integral Type
	D.1.2. Floating Type
	D.1.3. Enumerator Type
	D.1.4. Pointer Type
	D.1.5. Array Types
	D.1.6. Structure types
	D.1.7. Unions
	D.1.8. Bitfield Types

	D.2. Sign Extension Rules
	D.3. Function Call Rules
	D.3.1. Rules of Return Value
	D.3.2. Rules on Argument Transfer
	D.3.3. Rules for Converting Functions into Assembly Language Symbols
	D.3.4. Interface between Functions

	D.4. Securing auto Variable Area
	D.5. Rules of Escaping of the Register

	Appendix E Standard Library
	E.1. Standard Header Files
	E.1.1. Contents of Standard Header Files
	E.1.2. Standard Header Files Reference

	E.2. Standard Function Reference
	E.2.1. Overview of Standard Library
	E.2.2. List of Standard Library Functions by Function
	E.2.3. Standard Function Reference
	E.2.4. Using the Standard Library

	E.3. Modifying Standard Library
	E.3.1. Structure of I/O Functions
	E.3.2. Sequence of Modifying I/O Functions

	Appendix F Error Messages
	F.1. Message Format
	F.2. nc30 Error Messages
	F.3. cpp30 Error Messages
	F.4. cpp30 Warning Messages
	F.5. ccom30 Error Messages
	F.6. c ccom30 Warning Messages

	 Appendix G The SBDATA declaration & SPECIAL page Function declaration Utility (utl30)
	G.1. Introduction of utl30
	G.1.1. Introduction of utl30 processes

	G.2. Starting utl30
	G.2.1. utl30 Command Line Format
	G.2.2. Selecting Output Informations
	G.2.3. utl30 Command Line Options

	G.3. Notes
	G.4. Conditions to establish SBDATA declaration & SPECIAL Page Function declaration
	G.4.1. Conditions to establish SBDATA declaration
	G.4.2. Conditions to establish SPECIAL Page Function declaration

	G.5. Example of utl30 use
	G.5.1. Generating a SBDATA declaration file
	G.5.2. Generating a SPECIAL Page Function declaration file

	G.6. utl30 Error Messages
	G.6.1. Error Messages
	G.6.2. Warning Messages

	Appendix H Using gensni or the .sni File Creation Tool for Call Walker
	H.1. Starting Call Walker
	H.2. Outline of gensni
	H.2.1. Processing Outline of gensni

	H.3. Starting gensni
	H.3.1. Input format
	H.3.2. Option References

	Publisher's important

