

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

M3T-MR100/4 V.1.00
User’s Manual

U
ser’s M

anual

Rev.1.00 2007.09

Real-time OS for R32C/100 Series

 Active X, Microsoft, MS-DOS, Visual Basic, Visual C++, Windows and Windows NT are either registered trademarks or trademarks of
Microsoft Corporation in the United States and other countries.
 IBM and AT are registered trademarks of International Business Machines Corporation.
 Intel and Pentium are registered trademarks of Intel Corporation.
 Adobe, Acrobat, and Acrobat Reader are trademarks of Adobe Systems Incorporated.
 TRON is an abbreviation of "The Real-time Operating system Nucleus."
 ITRON is an abbreviation of "Industrial TRON."
 μITRON is an abbreviation of "Micro Industrial TRON."
 TRON, ITRON, and μITRON do not refer to any specific product or products.
 All other brand and product names are trademarks, registered trademarks or service marks of their respective holders.

Keep safety first in your circuit designs!

 Renesas Technology Corporation and Renesas Solutions Corporation put the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to
personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appro-
priate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any
malfunction or mishap.

Notes regarding these materials

 These materials are intended as a reference to assist our customers in the selection of the Renesas Technology product best suited
to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corporation, Renesas Solutions Corporation or a third party.
 Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage, or infringement of
any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application exam-
ples contained in these materials.
 All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information
on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation and Rene-
sas Solutions Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers
contact Renesas Technology Corporation, Renesas Solutions Corporation or an authorized Renesas Technology product distributor
for the latest product information before purchasing a product listed herein. The information described here may contain technical in-
accuracies or typographical errors. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility
for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by
Renesas Technology Corporation and Renesas Solutions Corporation by various means, including the Renesas home page
(http://www.renesas.com).
 When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algo-
rithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the informa-
tion and products. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage,
liability or other loss resulting from the information contained herein.
 Renesas Technology semiconductors are not designed or manufactured for use in a device or system that is used under circum-
stances in which human life is potentially at stake. Please contact Renesas Technology Corporation, Renesas Solutions Corporation
or an authorized Renesas Technology product distributor when considering the use of a product contained herein for any specific pur-
poses, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
 The prior written approval of Renesas Technology Corporation and Renesas Solutions Corporation is necessary to reprint or repro-
duce in whole or in part these materials.
 If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from
the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport con-
trary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
 Please contact Renesas Technology Corporation or Renesas Solutions Corporation for further details on these materials or the prod-
ucts contained therein.

For inquiries about the contents of this document or product, fill in the text file the installer generates in the following
directory and email to your local distributor.

\SUPPORT\Product-name\SUPPORT.TXT

Renesas Tools Homepage http://www.renesas.com/en/tools

i

Preface
The M3T-MR100/4(abbreviated as MR100) is a real-time operating system1 for the R32C/100 series microcomputers. The
MR100 conforms to the μITRON Specification.2

This manual describes the procedures and precautions to observe when you use the MR100 for programming purposes. For
the detailed information on individual service call procedures, refer to the MR100 Reference Manual.

Requirements for MR100 Use
When creating programs based on the MR100, it is necessary to purchase the following product of Renesas.

• C-compiler package for R32C/100 series microcomputers (abbreviated as NC100)

Document List
The following sets of documents are supplied with the MR100.

• Release Note
Presents a software overview and describes the corrections to the Users Manual and Reference Manual.

• Users Manual (PDF file)
Describes the procedures and precautions to observe when using the MR100 for programming purposes.

Right of Software Use
The right of software use conforms to the software license agreement. You can use the MR100 for your product develop-
ment purposes only, and are not allowed to use it for the other purposes. You should also note that this manual does not
guarantee or permit the exercise of the right of software use.

1 Hereinafter abbreviated "real-time OS"
2 μITRON4.0 Specification is the open real-time kernel specification upon which the TRON association decided
 The specification document of μITRON4.0 specification can come to hand from a TRON association homepage
(http://www.assoc.tron.org/).

 The copyright of μITRON4.0 specification belongs to the TRON association.

iii

Contents

Requirements for MR100 Use ..i
Document List...i
Right of Software Use...i

Contents... iii

List of Figures ... viii

List of Tables ... xi

1. User’s Manual Organization... - 1 -

2. General Information ... - 3 -
2.1 Objective of MR100 Development.. - 3 -
2.2 Relationship between TRON Specification and MR100... - 5 -
2.3 MR100 Features ... - 6 -

3. Introduction to Kernel .. - 7 -
3.1 Concept of Real-time OS .. - 7 -

3.1.1 Why Real-time OS is Necessary ... - 7 -
3.1.2 Operating Principles of Kernel... - 10 -

3.2 Service Call ... - 14 -
3.2.1 Service Call Processing ... - 15 -
3.2.2 Processing Procedures for Service Calls from Handlers... - 16 -

Service Calls from a Handler That Caused an Interrupt during Task Execution... - 17 -
Service Calls from a Handler That Caused an Interrupt during Service Call Processing................................ - 18 -
Service Calls from a Handler That Caused an Interrupt during Handler Execution - 19 -

3.3 Object... - 20 -
3.3.1 The specification method of the object in a service call .. - 20 -

3.4 Task ... - 21 -
3.4.1 Task Status .. - 21 -
3.4.2 Task Priority and Ready Queue ... - 25 -
3.4.3 Task Priority and Waiting Queue... - 26 -
3.4.4 Task Control Block(TCB) .. - 27 -

3.5 System States.. - 28 -
3.5.1 Task Context and Non-task Context .. - 28 -
3.5.2 Dispatch Enabled/Disabled States ... - 30 -
3.5.3 CPU Locked/Unlocked States ... - 30 -
3.5.4 Dispatch Disabled and CPU Locked States... - 30 -

3.6 Regarding Interrupts.. - 31 -
3.6.1 Types of Interrupt Handlers ... - 31 -
3.6.2 The Use of Non-maskable Interrupt .. - 31 -
3.6.3 Controlling Interrupts... - 32 -

3.7 Stacks .. - 34 -
3.7.1 System Stack and User Stack... - 34 -

4. Kernel .. - 35 -
4.1.1 Module Structure... - 35 -
4.1.2 Module Overview... - 36 -
4.1.3 Task Management Function ... - 37 -
4.1.4 Synchronization functions attached to task .. - 39 -
4.1.5 Synchronization and Communication Function (Semaphore).. - 43 -
4.1.6 Synchronization and Communication Function (Eventflag) .. - 45 -
4.1.7 Synchronization and Communication Function (Data Queue) .. - 47 -

iv

4.1.8 Synchronization and Communication Function (Mailbox) ... - 48 -
4.1.9 Memory pool Management Function(Fixed-size Memory pool) ... - 50 -
4.1.10 Variable-size Memory Pool Management Function .. - 51 -
4.1.11 Time Management Function... - 54 -
4.1.12 Cyclic Handler Function ... - 56 -
4.1.13 Alarm Handler Function... - 57 -
4.1.14 System Status Management Function... - 58 -
4.1.15 Interrupt Management Function ... - 59 -
4.1.16 System Configuration Management Function .. - 60 -
4.1.17 Extended Function (Short Data Queue) .. - 60 -
4.1.18 Extended Function (Reset Function) ... - 61 -

5. Service call reffernce ... - 63 -
5.1 Task Management Function .. - 63 -

act_tsk Activate task .. - 65 -
iact_tsk Activate task (handler only).. - 65 -
can_act Cancel task activation request.. - 67 -
ican_act Cancel task activation request (handler only) ... - 67 -
sta_tsk Activate task with a start code ... - 69 -
ista_tsk Activate task with a start code (handler only)... - 69 -
ext_tsk Terminate invoking task ... - 71 -
ter_tsk Terminate task ... - 73 -
chg_pri Change task priority.. - 75 -
ichg_pri Change task priority(handler only) .. - 75 -
get_pri Reference task priority .. - 77 -
iget_pri Reference task priority(handler only) .. - 77 -
ref_tsk Reference task status .. - 79 -
iref_tsk Reference task status (handler only).. - 79 -
ref_tst Reference task status (simplified version) ... - 82 -
iref_tst Reference task status (simplified version, handler only) .. - 82 -

5.2 Task Dependent Synchronization Function.. - 84 -
slp_tsk Put task to sleep... - 85 -
tslp_tsk Put task to sleep (with timeout).. - 85 -
wup_tsk Wakeup task... - 88 -
iwup_tsk Wakeup task (handler only)... - 88 -
can_wup Cancel wakeup request .. - 90 -
ican_wup Cancel wakeup request (handler only) ... - 90 -
rel_wai Release task from waiting... - 92 -
irel_wai Release task from waiting (handler only) .. - 92 -
sus_tsk Suspend task .. - 94 -
isus_tsk Suspend task (handler only) ... - 94 -
rsm_tsk Resume suspended task .. - 96 -
irsm_tsk Resume suspended task(handler only) ... - 96 -
frsm_tsk Forcibly resume suspended task ... - 96 -
ifrsm_tsk Forcibly resume suspended task(handler only) ... - 96 -
dly_tsk Delay task... - 98 -

5.3 Synchronization & Communication Function (Semaphore) .. - 100 -
sig_sem Release semaphore resource ... - 101 -
isig_sem Release semaphore resource (handler only) ... - 101 -
wai_sem Acquire semaphore resource.. - 103 -
pol_sem Acquire semaphore resource (polling) .. - 103 -
ipol_sem Acquire semaphore resource (polling, handler only) ... - 103 -
twai_sem Acquire semaphore resource(with timeout).. - 103 -
ref_sem Reference semaphore status ... - 106 -
iref_sem Reference semaphore status (handler only)... - 106 -

5.4 Synchronization & Communication Function (Eventflag)... - 108 -
set_flg Set eventflag... - 109 -
iset_flg Set eventflag (handler only) .. - 109 -
clr_flg Clear eventflag..- 111 -
iclr_flg Clear eventflag (handler only) ...- 111 -

v

wai_flg Wait for eventflag... - 113 -
pol_flg Wait for eventflag(polling)... - 113 -
ipol_flg Wait for eventflag(polling, handler only).. - 113 -
twai_flg Wait for eventflag(with timeout)... - 113 -
ref_flg Reference eventflag status .. - 116 -
iref_flg Reference eventflag status (handler only).. - 116 -

5.5 Synchronization & Communication Function (Data Queue) ... - 118 -
snd_dtq Send to data queue .. - 119 -
psnd_dtq Send to data queue (polling).. - 119 -
ipsnd_dtq Send to data queue (polling, handler only)... - 119 -
tsnd_dtq Send to data queue (with timeout).. - 119 -
fsnd_dtq Forced send to data queue ... - 119 -
ifsnd_dtq Forced send to data queue (handler only) .. - 119 -
rcv_dtq Receive from data queue ... - 122 -
prcv_dtq Receive from data queue (polling)... - 122 -
iprcv_dtq Receive from data queue (polling, handler only).. - 122 -
trcv_dtq Receive from data queue (with timeout) .. - 122 -
ref_dtq Reference data queue status ... - 125 -
iref_dtq Reference data queue status (handler only) .. - 125 -

5.6 Synchronization & Communication Function (Mailbox).. - 127 -
snd_mbx Send to mailbox .. - 128 -
isnd_mbx Send to mailbox (handler only) ... - 128 -
rcv_mbx Receive from mailbox... - 130 -
prcv_mbx Receive from mailbox (polling) .. - 130 -
iprcv_mbx Receive from mailbox (polling, handler only) ... - 130 -
trcv_mbx Receive from mailbox (with timeout) .. - 130 -
ref_mbx Reference mailbox status .. - 133 -
iref_mbx Reference mailbox status (handler only) .. - 133 -

5.7 Memory Pool Management Function (Fixed-size Memory Pool) ... - 135 -
get_mpf Aquire fixed-size memory block .. - 136 -
pget_mpf Aquire fixed-size memory block (polling).. - 136 -
ipget_mpf Aquire fixed-size memory block (polling, handler only) .. - 136 -
tget_mpf Aquire fixed-size memory block (with timeout) ... - 136 -
rel_mpf Release fixed-size memory block... - 139 -
irel_mpf Release fixed-size memory block (handler only) .. - 139 -
ref_mpf Reference fixed-size memory pool status ... - 141 -
iref_mpf Reference fixed-size memory pool status (handler only)... - 141 -

5.8 Memory Pool Management Function (Variable-size Memory Pool) .. - 143 -
pget_mpl Aquire variable-size memory block (polling) .. - 144 -
rel_mpl Release variable-size memory block ... - 146 -
ref_mpl Reference variable-size memory pool status.. - 148 -
iref_mpl Reference variable-size memory pool status (handler only) ... - 148 -

5.9 Time Management Function.. - 150 -
set_tim Set system time.. - 151 -
iset_tim Set system time (handler only) ... - 151 -
get_tim Reference system time... - 153 -
iget_tim Reference system time (handler only) .. - 153 -
isig_tim Supply a time tick.. - 155 -

5.10 Time Management Function (Cyclic Handler).. - 156 -
sta_cyc Start cyclic handler operation... - 157 -
ista_cyc Start cyclic handler operation (handler only) .. - 157 -
stp_cyc Stops cyclic handler operation .. - 159 -
istp_cyc Stops cyclic handler operation (handler only).. - 159 -
ref_cyc Reference cyclic handler status... - 160 -
iref_cyc Reference cyclic handler status (handler only) .. - 160 -

5.11 Time Management Function (Alarm Handler) ... - 162 -
sta_alm Start alarm handler operation.. - 163 -
ista_alm Start alarm handler operation (handler only).. - 163 -
stp_alm Stop alarm handler operation ... - 165 -
istp_alm Stop alarm handler operation (handler only)... - 165 -

vi

ref_alm Reference alarm handler status.. - 166 -
iref_alm Reference alarm handler status (handler only) ... - 166 -

5.12 System Status Management Function.. - 168 -
rot_rdq Rotate task precedence.. - 169 -
irot_rdq Rotate task precedence (handler only) ... - 169 -
get_tid Reference task ID in the RUNNING state... - 171 -
iget_tid Reference task ID in the RUNNING state (handler only) .. - 171 -
loc_cpu Lock the CPU ... - 172 -
iloc_cpu Lock the CPU (handler only)... - 172 -
unl_cpu Unlock the CPU ... - 174 -
iunl_cpu Unlock the CPU (handler only) ... - 174 -
dis_dsp Disable dispatching ... - 175 -
ena_dsp Enables dispatching... - 177 -
sns_ctx Reference context... - 178 -
sns_loc Reference CPU state.. - 179 -
sns_dsp Reference dispatching state .. - 180 -
sns_dpn Reference dispatching pending state.. - 181 -

5.13 Interrupt Management Function... - 182 -
ret_int Returns from an interrupt handler (when written in assembly language).................. - 183 -

5.14 System Configuration Management Function.. - 184 -
ref_ver Reference version information .. - 185 -
iref_ver Reference version information (handler only) ... - 185 -

5.15 Extended Function (Short Data Queue).. - 187 -
vsnd_dtq Send to Short data queue .. - 188 -
vpsnd_dtq Send to Short data queue (polling).. - 188 -
vipsnd_dtq Send to Short data queue (polling, handler only).. - 188 -
vtsnd_dtq Send to Short data queue (with timeout) ... - 188 -
vfsnd_dtq Forced send to Short data queue... - 188 -
vifsnd_dtq Forced send to Short data queue (handler only) .. - 188 -
vrcv_dtq Receive from Short data queue ... - 191 -
vprcv_dtq Receive from Short data queue (polling)... - 191 -
viprcv_dtq Receive from Short data queue (polling,handler only) .. - 191 -
vtrcv_dtq Receive from Short data queue (with timeout) .. - 191 -
vref_dtq Reference Short data queue status... - 194 -
viref_dtq Reference Short data queue status (handler only)... - 194 -

5.16 Extended Function (Reset Function)... - 196 -
vrst_dtq Clear data queue area ... - 197 -
vrst_vdtq Clear Short data queue area ... - 199 -
vrst_mbx Clear mailbox area ... - 201 -
vrst_mpf Clear fixed-size memory pool area .. - 203 -
vrst_mpl Clear variable-size memory pool area... - 204 -

6. Applications Development Procedure Overview.. - 205 -
6.1 Overview.. - 205 -
6.2 Development Procedure Example.. - 207 -

6.2.1 Applications Program Coding... - 207 -
6.2.2 Configuration File Preparation .. - 208 -
6.2.3 Configurator Execution... - 209 -
6.2.4 System generation... - 209 -
6.2.5 Writing ROM.. - 210 -

7. Detailed Applications .. - 211 -
7.1 Program Coding Procedure in C Language... - 211 -

7.1.1 Task Description Procedure.. - 211 -
7.1.2 Writing a Kernel (OS Dependent) Interrupt Handler .. - 212 -
7.1.3 Writing Non-kernel Interrupt Handler.. - 213 -
7.1.4 Writing Cyclic Handler/Alarm Handler ... - 213 -

7.2 Program Coding Procedure in Assembly Language ... - 215 -
7.2.1 Writing Task .. - 215 -
7.2.2 Writing Kernel Interrupt Handler ... - 216 -

vii

7.2.3 Writing Non-kernel Interrupt Handler.. - 216 -
7.2.4 Writing Cyclic Handler/Alarm Handler ... - 216 -

7.3 Modifying MR100 Startup Program.. - 218 -
7.3.1 C Language Startup Program (crt0mr.a30)... - 219 -

7.4 Memory Allocation.. - 224 -
7.4.1 Section used by the MR100... - 225 -

8. Using Configurator ... 227
8.1 Configuration File Creation Procedure ..227

8.1.1 Configuration File Data Entry Format...227
Operator ...228
Direction of computation ...228

8.1.2 Configuration File Definition Items..229
[(System Definition Procedure)]..229
[(System Clock Definition Procedure)]..231
[(Definition respective maximum numbers of items)]..232
[(Task definition)]...234
[(Eventflag definition)] ..236
[(Semaphore definition)]..237
[(Data queue definition)] ..238
[(Short data queue definition)] ..239
[(Mailbox definition)] ...240
[(Fixed-size memory pool definition)]..241
[(Variable-size memory pool definition)] ...242
[(Cyclic handler definition)]...244
[(Alarm handler definition)] ..245
[(Interrupt vector definition)]..246
[(Fixed interrupt vector definition)]..247

8.1.3 Configuration File Example...250
8.2 Configurator Execution Procedures ...254

8.2.1 Configurator Overview...254
Executing the configurator requires the following input files: ..254
When the configurator is executed, the files listed below are output. ..254

8.2.2 Setting Configurator Environment ...255
8.2.3 Configurator Start Procedure..256
8.2.4 Precautions on Executing Configurator..256
8.2.5 Configurator Error Indications and Remedies ...257

Error messages ..257
Warning messages ...259

9. Sample Program Description.. 260
9.1 Overview of Sample Program ...260
9.2 Program Source Listing...261
9.3 Configuration File..262

10. Stack Size Calculation Method ... 264
10.1 Stack Size Calculation Method...264

10.1.1 User Stack Calculation Method...266
10.1.2 System Stack Calculation Method ..268

10.2 Necessary Stack Size...272
11. Note .. - 275 -

11.1 The Use of INT Instruction.. - 275 -
11.2 The Use of registers of bank .. - 275 -
11.3 Regarding Delay Dispatching .. - 276 -
11.4 Regarding Initially Activated Task.. - 277 -

12. Appendix .. - 279 -
12.1 Data Type .. - 279 -
12.2 Common Constants and Packet Format of Structure .. - 280 -
12.3 Assembly Language Interface.. - 282 -

viii

List of Figures

Figure 3.1 Relationship between Program Size and Development Period.....................................- 7 -
Figure 3.2 Microcomputer-based System Example(Audio Equipment) ...- 8 -
Figure 3.3 Example System Configuration with Real-time OS(Audio Equipment)- 9 -
Figure 3.4 Time-division Task Operation ...- 10 -
Figure 3.5 Task Execution Interruption and Resumption .. - 11 -
Figure 3.6 Task Switching ... - 11 -
Figure 3.7 Task Register Area...- 12 -
Figure 3.8 Actual Register and Stack Area Management ...- 13 -
Figure 3.9 Service call..- 14 -
Figure 3.10 Service Call Processing Flowchart..- 15 -
Figure 3.11 Processing Procedure for a Service Call a Handler that caused an interrupt during Task

Execution - 17 -
Figure 3.12 Processing Procedure for a Service Call from a Handler that caused an interrupt during

Service Call Processing...- 18 -
Figure 3.13 Processing Procedure for a service call from a Multiplex interrupt Handler- 19 -
Figure 3.14 Task Identification ...- 20 -
Figure 3.15 Task Status...- 21 -
Figure 3.16 MR100 Task Status Transition ...- 22 -
Figure 3.17 Ready Queue (Execution Queue) ..- 25 -
Figure 3.18 Waiting queue of the TA_TPRI attribute ...- 26 -
Figure 3.19 Waiting queue of the TA_TFIFO attribute...- 26 -
Figure 3.20 Task control block ..- 27 -
Figure 3.21 Cyclic Handler/Alarm Handler Activation ...- 29 -
Figure 3.22 Interrupt handler IPLs..- 31 -
Figure 3.23 Interrupt control in a Service Call that can be Issued from only a Task- 32 -
Figure 3.24 Interrupt control in a Service Call that can be Issued from a Task-independent ...- 33 -
Figure 3.25 System Stack and User Stack ...- 34 -
Figure 4.1 MR100 Structure..- 35 -
Figure 4.2 Task Resetting..- 37 -
Figure 4.3 Alteration of task priority..- 38 -
Figure 4.4 Task rearrangement in a waiting queue ..- 38 -
Figure 4.5 Wakeup Request Storage...- 39 -
Figure 4.6 Wakeup Request Cancellation...- 39 -
Figure 4.7 Forcible wait of a task and resume...- 40 -
Figure 4.8 Forcible wait of a task and forcible resume..- 41 -
Figure 4.9 dly_tsk service call ...- 42 -
Figure 4.10 Exclusive Control by Semaphore ..- 43 -
Figure 4.11 Semaphore Counter ...- 43 -
Figure 4.12 Task Execution Control by Semaphore...- 44 -
Figure 4.13 Task Execution Control by the Eventflag...- 46 -
Figure 4.14 Data queue ...- 47 -
Figure 4.15 Mailbox ...- 48 -
Figure 4.16 Message queue ...- 49 -
Figure 4.17 Memory Pool Management..- 50 -
Figure 4.18 pget_mpl processing...- 52 -
Figure 4.19 rel_mpl processing ...- 53 -
Figure 4.20 Timeout Processing..- 54 -
Figure 4.21 Cyclic handler operation in cases where the activation phase is saved...................- 56 -
Figure 4.22 Cyclic handler operation in cases where the activation phase is not saved.............- 56 -
Figure 4.23 Typical operation of the alarm handler ..- 57 -
Figure 4.24 Ready Queue Management by rot_rdq Service Call ..- 58 -
Figure 4.25 Interrupt process flow..- 59 -
Figure 6.1 MR100 System Generation Detail Flowchart ..- 206 -
Figure 6.2 Program Example ..- 208 -

ix

Figure 6.3 Configuration File Example ..- 209 -
Figure 6.4 Configurator Execution ...- 209 -
Figure 6.5 System Generation...- 210 -
Figure 7.1 Example Infinite Loop Task Described in C Language ... - 211 -
Figure 7.2 Example Task Terminating with ext_tsk() Described in C Language......................- 212 -
Figure 7.3 Example of Kernel Interrupt Handler..- 213 -
Figure 7.4 Example of Non-kernel Interrupt Handler ..- 213 -
Figure 7.5 Example Cyclic Handler Written in C Language ..- 214 -
Figure 7.6 Example Infinite Loop Task Described in Assembly Language................................- 215 -
Figure 7.7 Example Task Terminating with ext_tsk Described in Assembly Language...........- 215 -
Figure 7.8 Example of kernel(OS-depend) interrupt handler...- 216 -
Figure 7.9 Example of Non-kernel Interrupt Handler of Specific Level- 216 -
Figure 7.10 Example Handler Written in Assembly Language ..- 217 -
Figure 7.11 C Language Startup Program (crt0mr.a30) ...- 222 -
Figure 8.1 The operation of the Configurator .. 255

xi

List of Tables

Table 3.1 Task Context and Non-task Context ..- 28 -
Table 3.2 Invocable Service Calls in a CPU Locked State...- 30 -
Table 3.3 CPU Locked and Dispatch Disabled State Transitions Relating to dis_dsp and loc_cpu- 30 -
Table 5.1 Specifications of the Task Management Function...- 63 -
Table 5.2 List of Task Management Function Service Call...- 63 -
Table 5.3 Specifications of the Task Dependent Synchronization Function- 84 -
Table 5.4 List of Task Dependent Synchronization Service Call ..- 84 -
Table 5.5 Specifications of the Semaphore Function ...- 100 -
Table 5.6 List of Semaphore Function Service Call ...- 100 -
Table 5.7 Specifications of the Eventflag Function..- 108 -
Table 5.8 List of Eventflag Function Service Call ...- 108 -
Table 5.9 Specifications of the Data Queue Function.. - 118 -
Table 5.10 List of Dataqueue Function Service Call.. - 118 -
Table 5.11 Specifications of the Mailbox Function...- 127 -
Table 5.12 List of Mailbox Function Service Call ..- 127 -
Table 5.13 Specifications of the Fixed-size memory pool Function...- 135 -
Table 5.14 List of Fixed-size memory pool Function Service Call ..- 135 -
Table 5.15 Specifications of the Variable-size memory Pool Function..- 143 -
Table 5.16 List of Variable -size memory pool Function Service Call...- 143 -
Table 5.17 Specifications of the Time Management Function ..- 150 -
Table 5.18 List of Time Management Function Service Call ..- 150 -
Table 5.19 Specifications of the Cyclic Handler Function...- 156 -
Table 5.20 List of Cyclic Handler Function Service Call ...- 156 -
Table 5.21 Specifications of the Alarm Handler Function...- 162 -
Table 5.22 List of Alarm Handler Function Service Call...- 162 -
Table 5.23 List of System Status Management Function Service Call- 168 -
Table 5.24 List of Interrupt Management Function Service Call ...- 182 -
Table 5.25 List of System Configuration Management Function Service Call- 184 -
Table 5.26 Specifications of the Short Data Queue Function..- 187 -
Table 5.27 List of Long Dataqueue Function Service Call ..- 187 -
Table 5.28 List of Reset Function Service Call...- 196 -
Table 7.1 C Language Variable Treatment...- 212 -
Table 8.1 Numerical Value Entry Examples .. 227
Table 8.2 Operators.. 228
Table 8.3 List of vector number and vector address .. 248
Table 9.1 Functions in the Sample Program .. 260
Table 10.1 Stack Sizes Used by Service Calls Issued from Tasks (in bytes) 272
Table 10.2 Stack Sizes Used by Service Calls Issued from Handlers (in bytes) 273
Table 10.3 Stack Sizes Used by Service Calls Issued from Tasks and Handlers (in bytes) 273
Table 11.1 Interrupt Number Assignment..- 275 -

xii

- 1 -

1. User’s Manual Organization

The MR100 User’s Manual consists of nine chapters and thee appendix.

• 2 General Information
Outlines the objective of MR100 development and the function and position of the MR100.

• 3 Introduction to Kernel
Explains about the ideas involved in MR100 operations and defines some relevant terms.

• 4 Kernel
Outlines the applications program development procedure for the MR100.

• 5 Service call reffernce
Details MR100 service call API

• 6 Applications Development Procedure Overview
Details the applications program development procedure for the MR100.

• 7 Detailed Applications
Presents useful information and precautions concerning applications program development with MR100.

• 8 Using Configurator
Describes the method for writing a configuration file and the method for using the configurator in detail.

• 9 Sample Program Description
Describes the MR100 sample applications program which is included in the product in the form of a source file.

• 10 Stack Size Calculation Method
Describes the calculation method of the task stack size and the system stack size.

• 11 Note
Presents useful information and precautions concerning applications program development with MR100.

• 12 Appendix
Data type and assembly language interface.

- 3 -

2. General Information

2.1 Objective of MR100 Development
In line with recent rapid technological advances in microcomputers, the functions of microcomputer-based products have
become complicated. In addition, the microcomputer program size has increased. Further, as product development competi-
tion has been intensified, manufacturers are compelled to develop their microcomputer-based products within a short period
of time.

In other words, engineers engaged in microcomputer software development are now required to develop larger-size pro-
grams within a shorter period of time. To meet such stringent requirements, it is necessary to take the following considera-
tions into account.

1. To enhance software recyclability to decrease the volume of software to be developed.

One way to provide for software recyclability is to divide software into a number of functional modules wherever
possible. This may be accomplished by accumulating a number of general-purpose subroutines and other program
segments and using them for program development. In this method, however, it is difficult to reuse programs that
are dependent on time or timing. In reality, the greater part of application programs are dependent on time or tim-
ing. Therefore, the above recycling method is applicable to only a limited number of programs.

2. To promote team programming so that a number of engineers are engaged in the development
of one software package
There are various problems with team programming. One major problem is that debugging can be initiated only
when all the software program segments created individually by team members are ready for debugging. It is es-
sential that communication be properly maintained among the team members.

3. To enhance software production efficiency so as to increase the volume of possible software
development per engineer.
One way to achieve this target would be to educate engineers to raise their level of skill. Another way would be to
make use of a structured descriptive assembler, C-compiler, or the like with a view toward facilitating program-
ming. It is also possible to enhance debugging efficiency by promoting modular software development.

However, the conventional methods are not adequate for the purpose of solving the problems. Under these circumstances, it
is necessary to introduce a new system named real-time OS 3

To answer the above-mentioned demand, Renesas has developed a real-time operating system, tradenamed MR100, for use
with the R32C/100 series of 32-bit microcomputers .

When the MR100 is introduced, the following advantages are offered.

1. Software recycling is facilitated.
When the real-time OS is introduced, timing signals are furnished via the real-time OS so that programs depend-
ent on timing can be reused. Further, as programs are divided into modules called tasks, structured programming
will be spontaneously provided.
That is, recyclable programs are automatically prepared.

2. Ease of team programming is provided.

When the real-time OS is put to use, programs are divided into functional modules called tasks. Therefore, engi-
neers can be allocated to individual tasks so that all steps from development to debugging can be conducted inde-
pendently for each task.
Further, the introduction of the real-time OS makes it easy to start debugging some already finished tasks even if
the entire program is not completed yet. Since engineers can be allocated to individual tasks, work assignment is
easy.

3. Software independence is enhanced to provide ease of program debugging.

As the use of the real-time OS makes it possible to divide programs into small independent modules called tasks,

3 OS:Operating System

- 4 -

the greater part of program debugging can be initiated simply by observing the small modules.

4. Timer control is made easier.

To perform processing at 10 ms intervals, the microcomputer timer function was formerly used to periodically in-
itiate an interrupt. However, as the number of usable microcomputer timers was limited, timer insufficiency was
compensated for by, for instance, using one timer for a number of different processing operations.
When the real-time OS is introduced, however, it is possible to create programs for performing processing at fixed
time intervals making use of the real-time OS time management function without paying special attention to the
microcomputer timer function. At the same time, programming can also be done in such a manner as to let the
programmer take that numerous timers are provided for the microcomputer.

5. Software maintainability is enhanced
When the real-time OS is put to use, the developed software consists of small program modules called tasks.
Therefore, increased software maintainability is provided because developed software maintenance can be carried
out simply by maintaining small tasks.

6. Increased software reliability is assured.
The introduction of the real-time OS makes it possible to carry out program evaluation and testing in the unit of a
small module called task. This feature facilitates evaluation and testing and increases software reliability.

7. The microcomputer performance can be optimized to improve the performance of microcom-
puter-based products.

With the real-time OS, it is possible to decrease the number of unnecessary microcomputer operations such as I/O
waiting. It means that the optimum capabilities can be obtained from microcomputers, and this will lead to mi-
crocomputer-based product performance improvement.

- 5 -

2.2 Relationship between TRON Specification and MR100
MR100 is the real-time operating system developed for use with the R32C/10 series of 32-bit microcomputers compliant
with µITRON 4.0 Specification. µITRON 4.0 Specification stipulates standard profiles as an attempt to ensure software
portability. Of these standard profiles, MR100 has implemented in it all service calls except for static APIs and task excep-
tion APIs

- 6 -

2.3 MR100 Features
The MR100 offers the following features.

1. Real-time operating system conforming to the μITORN Specification.

The MR100 is designed in compliance with the μITRON Specification which incorporates a minimum of the
ITRON Specification functions so that such functions can be incorporated into a one-chip microcomputer. As the
μITRON Specification is a subset of the ITRON Specification, most of the knowledge obtained from published
ITRON textbooks and ITRON seminars can be used as is.
Further, the application programs developed using the real-time operating systems conforming to the ITRON
Specification can be transferred to the MR100 with comparative ease.

2. High-speed processing is achieved.

MR100 enables high-speed processing by taking full advantage of the microcomputer architecture.

3. Only necessary modules are automatically selected to constantly build up a system of the
minimum size.

MR100 is supplied in the object library format of the R32C/100 series.
Therefore, the Linkage Editor functions are activated so that only necessary modules are automatically selected
from numerous MR100 functional modules to generate a system.
Thanks to this feature, a system of the minimum size is automatically generated at all times.

4. With the C-compiler NC100, it is possible to develop application programs in C language.

Application programs of MR100 can be developed in C language by using the C compiler NC100. Furthermore,
the interface library necessary to call the MR100 functions from C language is included with the software pack-
age.

5. An upstream process tool named "Configurator" is provided to simplify development proce-
dures

A configurator is furnished so that various items including a ROM write form file can be created by giving simple
definitions.
Therefore, there is no particular need to care what libraries must be linked.
In addition, a GUI version of the configurator is available. It helps the user to create a configuration file without
the need to learn how to write it.

- 7 -

3. Introduction to Kernel

3.1 Concept of Real-time OS
This section explains the basic concept of real-time OS.

3.1.1 Why Real-time OS is Necessary
In line with the recent advances in semiconductor technologies, the single-chip microcomputer ROM capacity has in-
creased. ROM capacity of 32K bytes.

As such large ROM capacity microcomputers are introduced, their program development is not easily carried out by con-
ventional methods. Figure 3.1 shows the relationship between the program size and required development time (program
development difficulty).

This figure is nothing more than a schematic diagram. However, it indicates that the development period increases expo-
nentially with an increase in program size.

For example, the development of four 8K byte programs is easier than the development of one 32K byte program.4

Program Size

Kbyte4 8 16 32

Development Period

Figure 3.1 Relationship between Program Size and Development Period

Under these circumstances, it is necessary to adopt a method by which large-size programs can be developed within a short
period of time. One way to achieve this purpose is to use a large number of microcomputers having a small ROM capacity.
Figure 3.2 presents an example in which a number of microcomputers are used to build up an audio equipment system.

4 On condition that the ROM program burning step need not be performed.

- 8 -

Key input
microcomputer

Remote control
microcomputer

LED illumination
microcomputer

Arbiter
microcomputer

Volume control
microcomputer

Monitor
microcomputer

Mechanical
control

microcomputer

Figure 3.2 Microcomputer-based System Example(Audio Equipment)

Using independent microcomputers for various functions as indicated in the above example offers the following advan-
tages.

1. Individual programs are small so that program development is easy.

2. It is very easy to use previously developed software.

3. Completely independent programs are provided for various functions so that program devel-
opment can easily be conducted by a number of engineers.

On the other hand, there are the following disadvantages.

1. The number of parts used increases, thereby raising the product cost.

2. Hardware design is complicated.

3. Product physical size is enlarged.

Therefore, if you employ the real-time OS in which a number of programs to be operated by a number of microcomputers
are placed under software control of one microcomputer, making it appear that the programs run on separate microcomput-
ers, you can obviate all the above disadvantages while retaining the above-mentioned advantages.

Figure 3.3 shows an example system that will be obtained if the real-time OS is incorporated in the system indicated in
Figure 3.2.

- 9 -

Key input
Task

Remote control
Task

LED illumination
Task

real-time
OS

Volume control
Task

Monitor
Task

Mechanical
control
Task

Figure 3.3 Example System Configuration with Real-time OS(Audio Equipment)

In other words, the real-time OS is the software that makes a one-microcomputer system look like operating a number of
microcomputers.

In the real-time OS, the individual programs, which correspond to a number of microcomputers used in a conventional sys-
tem, are called tasks.

- 10 -

3.1.2 Operating Principles of Kernel
A kernel is the core program of real-time OS. The kernel is the software that makes a one-microcomputer system look like
operating a number of microcomputers. You should be wondering how the kernel makes a one-microcomputer system
function like a number of microcomputers.

As shown in Figure 3.4 the kernel runs a number of tasks according to the time-division system. That is, it changes the task
to execute at fixed time intervals so that a number of tasks appear to be executed simultaneously.

Time

Key input
Task

Monitor
Task

Mechanical
control
Task

Volume control
Task

LED
illumination

Task

Remote control
Task

Figure 3.4 Time-division Task Operation

As indicated above, the kernel changes the task to execute at fixed time intervals. This task switching may also be referred
to as dispatching. The factors causing task switching (dispatching) are as follows.

• Task switching occurs upon request from a task.

• Task switching occurs due to an external factor such as interrupt.

When a certain task is to be executed again upon task switching, the system resumes its execution at the point of last inter-
ruption (See Figure 3.5).

- 11 -

During this interval, it
appears that the key input
microcomputer is haled.

Key input
Task

Remote control
Task

Program execution
interrupt

Program execution
resumed

Figure 3.5 Task Execution Interruption and Resumption

In the state shown in Figure 3.5, it appears to the programmer that the key input task or its microcomputer is halted while
another task assumes execution control.

Task execution restarts at the point of last interruption as the register contents prevailing at the time of the last interruption
are recovered. In other words, task switching refers to the action performed to save the currently executed task register
contents into the associated task management memory area and recover the register contents for the task to switch to.

To establish the kernel, therefore, it is only necessary to manage the register for each task and change the register contents
upon each task switching so that it looks as if a number of microcomputers exist (See Figure 3.6).

Remote control
Task

Actual
Register

R0

R1

PC

Kernel

Register Register

Key input
Task

R0

R1

PC

R0

R1

PC

Figure 3.6 Task Switching

The example presented in Figure 3.7 5 indicates how the individual task registers are managed. In reality, it is necessary
to provide not only a register but also a stack area for each task.

5 It is figure where all the stack areas of the task were arranged in the same section.

- 12 -

R0

PC

SP

Register

Key input
Task

Remote control
Task

Memory map

Stack
section

SFR

R0

PC

SP

R0

PC

SP

SP

LED illumination
Task

Real-time
OS

Figure 3.7 Task Register Area

- 13 -

Figure 3.8 shows the register and stack area of one task in detail. In the MR100, the register of each task is stored in a stack
area as shown in Figure 3.8. This figure shows the state prevailing after register storage.

Key input
Task SP

FLG

R7R5

R6R4

A0

A1

PC

SB

FB

R3R1

R2R0

SFR

Key input task
stack

Register stored

Register not stored

SP

A3

A2

Figure 3.8 Actual Register and Stack Area Management

- 14 -

3.2 Service Call
How does the programmer use the kernel functions in a program?

First, it is necessary to call up kernel function from the program in some way or other. Calling a kernel function is referred
to as a service call. Task activation and other processing operations can be initiated by such a service call (See Figure 3.9).

Key input

Task
Kernel Remote control

task

Service call Task switching

Figure 3.9 Service call

This service call is realized by a function call when the application program is written in C language, as shown below.

act_tsk(ID_main,3);

Furthermore, if the application program is written in assembly language, it is realized by an assembler macro call, as shown
below.

act_tsk #ID_main

- 15 -

3.2.1 Service Call Processing
When a service call is issued, processing takes place in the following sequence.6

1. The current register contents are saved.

2. The stack pointer is changed from the task type to the real-time OS (system) type.

3. Processing is performed in compliance with the request made by the service call.

4. The task to be executed next is selected.

5. The stack pointer is changed to the task type.

6. The register contents are recovered to resume task execution.

The flowchart in Figure 3.10 shows the process between service call generation and task switching.

Key input Task

Service call issuance

Register Save

SP <= OS

Processing

Task Selection

Task => SP

Register Restore

LED illumination Task

Figure 3.10 Service Call Processing Flowchart

6 A different sequence is followed if the issued service call does not evoke task switching.

- 16 -

3.2.2 Processing Procedures for Service Calls from Handlers
When a service call is issued from a handler, task switching does not occur unlike in the case of a service call from a task.
However, task switching occurs when a return from a handler 7 is made.

The processing procedures for service calls from handlers are roughly classified into the following three types.

1. A service call from a handler that caused an interrupt during task execution

2. A service call from a handler that caused an interrupt during service call processing

3. A service call from a handler that caused an interrupt (multiplex interrupt) during handler exe-
cution

7 The service call can't be issued from non-kernel handler. Therefore, The handler described here does not include the non-kernel interrupt
handler.

- 17 -

Service Calls from a Handler That Caused an Interrupt during Task Execution
Scheduling (task switching) is initiated by the ret_int service call 8(See Figure 3.11).

Scheduler

Interrupt

ret_int

iset_flg

TaskA Interrupt handler

Save Registers

Service call processing

OS

Restore Registers

SP <= User

Restore Registers

Task selection

TaskB

Figure 3.11 Processing Procedure for a Service Call a Handler that caused an interrupt during Task
Execution

8 The ret_int service call is issued automatically when kernel interrupt handler is written in C language (when #pragma INTHANDLER speci-
fied)

- 18 -

Service Calls from a Handler That Caused an Interrupt during Service Call Processing
Scheduling (task switching) is initiated after the system returns to the interrupted service call processing (See Figure 3.12).

wup_tsk

ret_int

iset_flg
Interrupt

TaskA

Interrupt handler

Save

Service call processing

OS

Restore Registers

SP <= User

Restore Registers

Task selection

TaskB

Save Registers

SP <= System

Figure 3.12 Processing Procedure for a Service Call from a Handler that caused an interrupt during
Service Call Processing

- 19 -

Service Calls from a Handler That Caused an Interrupt during Handler Execution
Let us think of a situation in which an interrupt occurs during handler execution (this handler is hereinafter referred to as
handler A for explanation purposes). When task switching is called for as a handler (hereinafter referred to as handler B)
that caused an interrupt during handler A execution issued a service call, task switching does not take place during the exe-
cution of the service call (ret_int service call) returned from handler B, but is effected by the ret_int service call from han-
dler A (See Figure 3.13).

ret_int

ret_int

iset_flg

Interrupt

Interrupt

TaskA

Interrupt handler A

Save Registers

Service call processing

OS

Restore Register

SP <= User

Restore Registers

Task selection

TaskB

Save Registers

SP <= System

Interrupt handler A

Restore Register

Figure 3.13 Processing Procedure for a service call from a Multiplex interrupt Handler

- 20 -

3.3 Object
The object operated by the service call of a semaphore, a task, etc. is called an "object." An object is identified by the ID
number

3.3.1 The specification method of the object in a service call
Each task is identified by the ID number internally in MR100.

For example, the system says, "Start the task having the task ID number 1."

However, if a task number is directly written in a program, the resultant program would be very low in readability. If, for
instance, the following is entered in a program, the programmer is constantly required to know what the No. 2 task is.

act_tsk(2);

Further, if this program is viewed by another person, he/she does not understand at a glance what the No. 2 task is. To avoid
such inconvenience, the MR100 provides means of specifying the task by name (function or symbol name).

The program named "configurator cfg100 ,"which is supplied with the MR100, then automatically converts the task name
to the task ID number. This task identification system is schematized in Figure 3.14.

ID numberName

Real-time OSProgram

Configurator

sta_tsk(Task name) Starting the task
having the designated
ID number

Figure 3.14 Task Identification

act_tsk(ID_task);

This example specifies that a task corresponding to "ID_task" be invoked.

It should also be noted that task name-to-ID number conversion is effected at the time of program generation. Therefore,
the processing speed does not decrease due to this conversion feature.

- 21 -

3.4 Task
This section describes how tasks are managed by MR100.

3.4.1 Task Status
The real-time OS monitors the task status to determine whether or not to execute the tasks.

Figure 3.15 shows the relationship between key input task execution control and task status. When there is a key input, the
key input task must be executed. That is, the key input task is placed in the execution (RUNNING) state. While the system
waits for key input, task execution is not needed. In that situation, the key input task in the WAITING state.

Key input
Task

RUNNIG state WAITING state RUNNING state

Waiting for
key input

Key input
processing

Key input
processing

Figure 3.15 Task Status

The MR100 controls the following six different states including the RUNNING and WAITING states.

1. RUNNING state

2. READY state

3. WAITING state

4. SUSPENDED state

5. WAITING-SUSPENDED state

6. DORMANT state
Every task is in one of the above six different states. Figure 3.16 shows task status transition.

- 22 -

Forced
termination
request
from other
task

SUSPENDED state clear
request from other task

SUSPEND request
from other task

READY state RUNNING state

WAITING state

WAITING-SUSPENDED
state

DORMANT
state

SUSPENDED
state

WAITING state
clear

tSUSPEND request
from other task

SUSPENDED state
clear request

MPU execlusive right relinquishment

MPU execlusive right acquisition

Entering the
WAITING state

Task activation

Forced termination
request from other task

WAITING state
l

Figure 3.16 MR100 Task Status Transition

1. RUNNING state

In this state, the task is being executed. Since only one microcomputer is used, it is natural that only one task is
being executed.
The currently executed task changes into a different state when any of the following conditions occurs.

♦ The task has normally terminated itself by ext_tsk service call.
♦ The task has placed itself in the WAITING. 9
♦ Since the service call was issued from the RUNNING state task, the WAITING state of another

task with a priority higher than the RUNNING state task is cleared.
♦ Due to interruption or other event occurrence, the interrupt handler has placed a different task

having a higher priority in the READY state.
♦ The priority assigned to the task has been changed by chg_pri or ichg_pri service call so that the

priority of another READY task is rendered higher.
♦ When the ready queue of the issuing task priority is rotated by the rot_rdq or irot_rdq service call

and control of execution is thereby abandoned

When any of the above conditions occurs, rescheduling takes place so that the task having the highest priority
among those in the RUNNING or READY state is placed in the RUNNING state, and the execution of that task
starts.

2. READY state

The READY state refers to the situation in which the task that meets the task execution conditions is still waiting
for execution because a different task having a higher priority is currently being executed.
When any of the following conditions occurs, the READY task that can be executed second according to the
ready queue is placed in the RUNNING state.

♦ A currently executed task has normally terminated itself by ext_tsk service call.

9 By issuing dly_tsk, slp_tsk, tslp_tsk, wai_flg, twai_flg, wai_sem, twai_sem, rcv_mbx, trcv_mbx,snd_dtq,tsnd_dtq,rcv_dtq, trcv_dtq,
vtsnd_dtq, vsnd_dtq,vtrcv_dtq,vrcv_dtq, get_mpf, and tget_mpf service call.

- 23 -

♦ A currently executed task has placed itself in the WAITING state.10
♦ A currently executed task has changed its own priority by chg_pri or ichg_pri service call so that

the priority of a different READY task is rendered higher.
♦ Due to interruption or other event occurrence, the priority of a currently executed task has been

changed so that the priority of a different READY task is rendered higher.
♦ When the ready queue of the issuing task priority is rotated by the rot_rdq or irot_rdq service call

and control of execution is thereby abandoned

3. WAITING state

When a task in the RUNNING state requests to be placed in the WAITING state, it exits the RUNNING state and
enters the WAITING state. The WAITING state is usually used as the condition in which the completion of I/O
device I/O operation or the processing of some other task is awaited.
The task goes into the WAITING state in one of the following ways.

♦ The task enters the WAITING state simply when the slp_tsk service call is issued. In this case, the

task does not go into the READY state until its WAITING state is cleared explicitly by some other
task.

♦ The task enters and remains in the WAITING state for a specified time period when the dly_tsk
service call is issued. In this case, the task goes into the READY state when the specified time has
elapsed or its WAITING state is cleared explicitly by some other task.

♦ The task is placed into WAITING state for a wait request by the wai_flg, wai_sem, rcv_mbx,
snd_dtq, rcv_dtq, vsnd_dtq, vrcv_dtq, or get_mpf service call. In this case, the task goes from
WAITING state to READY state when the request is met or WAITING state is explicitly canceled
by another task.

♦ The tslp_tsk, twai_flg, twai_sem, trcv_mbx, tsnd_dtq, trcv_dtq, vtsnd_dtq, vtrcv_dtq and tget_mpf
service calls are the timeout-specified versions of the slp_tsk, wai_flg, wai_sem, rcv_mbx, snd_dtq,
rcv_dtq, vsnd_dtq, vrcv_dtq and get_mpf service calls. The task is placed into WAITING state for a
wait request by one of these service calls. In this case, the task goes from WAITING state to
READY state when the request is met or the specified time has elapsed.

♦ If the task is placed into WAITING state for a wait request by the wai_flg, wai_sem, rcv_mbx,
snd_dtq, rcv_dtq, vsnd_dtq, vrcv_dtq, get_mpf, twai_flg, twai_sem, trcv_mbx, tsnd_dtq, trcv_dtq,
vtsnd_dtq, vtrcv_dtq and tget_mpf service call, the task is queued to one of the following waiting
queues depending on the request.

 Event flag waiting queue
 Semaphore waiting queue
 Mailbox message reception waiting queue
 Data queue data transmission waiting queue
 Data queue data reception waiting queue
 Short data queue data transmission waiting queue
 Short data queue data reception waiting queue
 Fixed-size memory pool acquisition waiting queue

4. SUSPENDED state

When the sus_tsk service call is issued from a task in the RUNNING state or the isus_tsk service call is issued
from a handler, the READY task designated by the service call or the currently executed task enters the SUS-
PENDED state. If a task in the WAITING state is placed in this situation, it goes into the WAIT-
ING-SUSPENDED state.

The SUSPENDED state is the condition in which a READY task or currently executed task11 is excluded from
scheduling to halt processing due to I/O or other error occurrence. That is, when the suspend request is made to a
READY task, that task is excluded from the execution queue.

Note that no queue is formed for the suspend request. Therefore, the suspend request can only be made to the

10 Depends on the dly_tsk, slp_tsk, tslp_tsk, wai_flg, twai_flg, wai_sem, twai_sem, rcv_mbx, trcv_mbx,snd_dtq,tsnd_dtq,rcv_dtq, trcv_dtq,
vtsnd_dtq, vsnd_dtq,vtrcv_dtq,tget_mpf, get_mpf and vrcv_dtq service call.
11 If the task under execution is placed into a forcible wait state by the isus_tsk service call from the handler, the task goes from an execut-
ing state directly to a forcible wait state. Please note that in only this case exceptionally, it is possible that a task will go from an executing
state directly to a forcible wait state.

- 24 -

tasks in the RUNNING, READY, or WAITING state.12 If the suspend request is made to a task in the SUS-
PENDED state, an error code is returned.

5. WAITING-SUSPENDED
If a suspend request is issued to a task currently in a WAITING state, the task goes to a WAITING-SUSPENDED
state. If a suspend request is issued to a task that has been placed into a WAITING state for a wait request by the
slp_tsk, wai_flg, wai_sem, rcv_mbx, snd_dtq, rcv_dtq, vsnd_dtq, vrcv_dtq, get_mpf, tslp_tsk, twai_flg, twai_sem,
trcv_mbx, tsnd_dtq, trcv_dtq, vtsnd_dtq, vtrcv_dtq or tget_mpf service call, the task goes to a WAIT-
ING-SUSPENDED state.

When the wait condition for a task in the WAITING-SUSPENDED state is cleared, that task goes into the SUS-
PENDED state. It is conceivable that the wait condition may be cleared, when any of the following conditions
occurs.

♦ The task wakes up upon wup_tsk, or iwup_tsk service call issuance.
♦ The task placed in the WAITING state by the dly_tsk or tslp_tsk service call wakes up after the

specified time elapse.
♦ The request of the task placed in the WAITING state by the wai_flg , wai_sem, rcv_mbx, snd_dtq,

rcv_dtq, vsnd_dtq, vrcv_dtq, get_mpf, tslp_tsk, twai_flg, twai_sem, trcv_mbx, tsnd_dtq, trcv_dtq,
vtsnd_dtq, vtrcv_dtq or tget_mpf service call is fulfilled.

♦ The WAITING state is forcibly cleared by the rel_wai or irel_wai service call

When the SUSPENDED state clear request by rsm_tsk or irsm_tsk is made to a task in the WAIT-
ING-SUSPENDED state, that task goes into the WAITING state. Since a task in the SUSPENDED state cannot
request to be placed in the WAITING state, status change from SUSPENDED to WAITING-SUSPENDED does
not possibly occur.

6. DORMANT

This state refers to the condition in which a task is registered in the MR100 system but not activated. This task
state prevails when either of the following two conditions occurs.

♦ The task is waiting to be activated.
♦ The task is normally terminated by ext_tsk service call or forcibly terminated by ter_tsk service

call.

12 If a forcible wait request is issued to a task currently in a wait state, the task goes to a WAITING-SUSPENDED state.

- 25 -

3.4.2 Task Priority and Ready Queue
In the kernel, several tasks may simultaneously request to be executed. In such a case, it is necessary to determine which
task the system should execute first. To properly handle this kind of situation, the system organizes the tasks into proper
execution priority and starts execution with a task having the highest priority. To complete task execution quickly, tasks
related to processing operations that need to be performed immediately should be given higher priorities.

The MR100 permits giving the same priority to several tasks. To provide proper control over the READY task execution
order, the kernel generates a task execution queue called "ready queue." The ready queue structure is shown in Figure
3.1713 The ready queue is provided and controlled for each priority level. The first task in the ready queue having the
highest priority is placed in the RUNNING state.14

1 TCB

Priority

2

TCBTCB

TCBTCB

TCB3

n

Figure 3.17 Ready Queue (Execution Queue)

13 The TCB(task control block is described in the next chapter.)
14 The task in the RUNNING state remains in the ready queue.

- 26 -

3.4.3 Task Priority and Waiting Queue
In The standard profiles in µITRON 4.0 Specification support two waiting methods for each object. In one method, tasks
are placed in a waiting queue in order of priority (TA_TPRI attribute); in another, tasks are placed in a waiting queue in
order of FIFO (TA_TFIFO).

Figure 3.18 and Figure 3.19 depict the manner in which tasks are placed in a waiting queue in order of "taskD," "taskC,"
"taskA," and "taskB."

n
Priority 1 Priority 5 Priority 6

taskB

1

ID No.

2 taskA taskC taskD

Priority 9

Figure 3.18 Waiting queue of the TA_TPRI attribute

n
Priority 9 Priority 6 Priority 1

taskC

1

ID No.

2 taskD taskA taskB

Priority 5

Figure 3.19 Waiting queue of the TA_TFIFO attribute

- 27 -

3.4.4 Task Control Block(TCB)
The task control block (TCB) refers to the data block that the real-time OS uses for individual task status, priority, and oth-
er control purposes.

The MR100 manages the following task information as the task control block

• Task connection pointer
Task connection pointer used for ready queue formation or other purposes.

• Task status

• Task priority

• Task register information and other data15 storage stack area pointer(current SP value)

• Wake-up counter
Task wake-up request storage area.

• Flag wait mode
This is a wait mode during eventflag wait.

• Flag wait pattern
This area stores the flag wait pattern when using the eventflag wait service call (wai_flg, twai_flg). No flag wait
pattern area is allocated when the eventflag is not used.

• Startup request counter
This is the area in which task startup requests are accumulated.

The task control block is schematized in Figure 3.20.

TCB TCB TCB

Task Connection pointer

Status

Priority

Wake-up counter

Flag wait mode

Flag wait pattern

Activation counter

This area is allocated only when
the timeout function is used.

SP

Figure 3.20 Task control block

15 Called the task context

- 28 -

3.5 System States

3.5.1 Task Context and Non-task Context
The system runs in either context state, "task context" or "non-task context." The differences between the task content and
non-task context are shown in Table 3-1. Task Context and Non-task Context.

Table 3.1 Task Context and Non-task Context

 Task context Non-task context

Invocable service call Those that can be invoked from
task context

Those that can be invoked from
non-task context

Task scheduling Occurs when the queue state has
changed to other than dispatch dis-
abled and CPU locked states.

It does not occur.

Stack User stack System stack

The processes executed in non-task context include the following.

1. Interrupt Handler
A program that starts upon hardware interruption is called the interrupt handler. The MR100 is not concerned in interrupt
handler activation. Therefore, the interrupt handler entry address is to be directly written into the interrupt vector table.

There are two interrupt handlers: Non-kernel interrupts (OS independent interrupts) and kernel interrupts (OS dependent
interrupts). For details about each type of interrupt, refer to Section 3.6.

The system clock interrupt handler (isig_tim) is one of these interrupt handlers.

2. Cyclic Handler
The cyclic handler is a program that is started cyclically every preset time. The set cyclic handler may be started or stopped
by the sta_cyc(ista_cyc) or stp_cyc(istp_cyc) service call.

The cyclic handler startup time of day is unaffected by a change in the time of day by set_tim(iset_tim).

3. Alarm Handler
The alarm handler is a handler that is started after the lapse of a specified relative time of day. The alarm handler startup
time of day is determined by a time of day relative to the time of day set by sta_alm(ista_alm), and is unaffected by a
change in the time of day by set_tim(iset_tim).

The cyclic and alarm handlers are invoked by a subroutine call from the system clock interrupt (timer interrupt) handler.
Therefore, cyclic and alarm handlers operate as part of the system clock interrupt handler. Note that when the cyclic or
alarm handler is invoked, it is executed in the interrupt priority level of the system clock interrupt.

- 29 -

Subroutine call

Timer interrupt
RTS

Cyclic handler
Alarm handler

System clock
interrupt handler

Task

Figure 3.21 Cyclic Handler/Alarm Handler Activation

- 30 -

3.5.2 Dispatch Enabled/Disabled States
The system assumes either a dispatch enabled state or a dispatch disabled state. In a dispatch disabled state, no task sched-
uling is performed. Nor can service calls be invoked that may cause the service call issuing task to enter a wait state.16

The system can be placed into a dispatch disabled state or a dispatch enabled state by the dis_dsp or ena_dsp service call,
respectively. Whether the system is in a dispatch disabled state can be known by the sns_dsp service call.

3.5.3 CPU Locked/Unlocked States
The system assumes either a CPU locked state or a CPU unlocked state. In a CPU locked state, all external interrupts are
disabled against acceptance, and task scheduling is not performed either.

The system can be placed into a CPU locked state or a CPU unlocked state by the loc_cpu(iloc_cpu) or unl_cpu(iunl_cpu)
service call, respectively. Whether the system is in a CPU locked state can be known by the sns_loc service call.

The service calls that can be issued from a CPU locked state are limited to those that are listed in Table 3-2.17

Table 3.2 Invocable Service Calls in a CPU Locked State

loc_cpu iloc_cpu unl_cpu iunl_cpu
ext_tsk exd_tsk sns_tex sns_ctx
sns_loc sns_dsp sns_dpn

3.5.4 Dispatch Disabled and CPU Locked States
In µITRON 4.0 Specification, the dispatch disabled and the CPU locked states are clearly discriminated. Therefore, if the
unl_cpu service call is issued in a dispatch disabled state, the dispatch disabled state remains intact and no task scheduling
is performed. State transitions are summarized in Table 3.3.

Table 3.3 CPU Locked and Dispatch Disabled State Transitions Relating to dis_dsp and loc_cpu

Content of state State
number CPU locked

state
Dispatch disabled

state

dis_dsp
executed

ena_dsp
executed

loc_cpu
executed

unl_cpu
executed

1 O X X X => 1 => 3
2 O O X X => 2 => 4
3 X X => 4 => 3 => 1 => 3
4 X O => 4 => 3 => 2 => 4

16 If a service call not issuable is issued when dispatch disabled, MR100 doesn't return the error and doesn't guarantee the operation.
17 MR100 does not return an error even when an uninvocable service call is issued from a CPU locked state, in which case, however, its
operation cannot be guaranteed.

- 31 -

3.6 Regarding Interrupts

3.6.1 Types of Interrupt Handlers
MR100's interrupt handlers consist of kernel interrupt handlers and non-kernel interrupt handlers.

The following shows the definition of each type of interrupt handler.

• Kernel interrupt handler
An interrupt handler whose interrupt priority level is lower than a kernel interruption mask level is called kernel
interrupt handler. That is, interruption priority level is from 1 to system_IPL.
A service call can be issued within a kernel interrupt handler. However, interrupt is delayed until it becomes re-
ceivable the kernel interrupt handler generated during service call processing.

• Non-kernel interrupt handler
An interrupt handler whose interrupt priority level is higher than a kernel interrupt mask level is called non-kernel
interrupt handler. That is, interruption priority level is from system_IPL+1 to 7.
A service call cannot be issued within non-kernel interrupt handler. However, the non-kernel interrupt handler is
able to be recieved during service call processing, even if it is the section where it is not able to receive a kernel
interrupt handler:

Figure 3.22 shows the relationship between the non-kernel interrupt handlers and kernel interrupt handlers where the kernel
mask level is set to 3.

High Low

0 1 2 3 4 5 6 7

Kernel
Interrupt handler

Non-kernel
Interrupt handler

Kernel mask level

Figure 3.22 Interrupt handler IPLs

3.6.2 The Use of Non-maskable Interrupt
Non-maskable interrupt (ex. NMI interrupt ,Watchdog Timer interrupt) are treated as a non-kernel interrupt handler.

- 32 -

3.6.3 Controlling Interrupts
Interrupt enable/disable control in a service call is accomplished by IPL manipulation. The IPL value in a service call is set
to the kernel mask level(OS interrupt disable level = system.IPL) in order to disable interrupts for the kernel interrupt han-
dler. In sections where all interrupts can be enabled, it is returned to the initial IPL value when the service call was invoked.

• For service calls that can be issued from only task context.

Task Service call issued Service call processing

I flag

IPL

1

0 system.IPL system.IPL

1 0

0

1

0

Task Service call issued Service call processing

I flag

IPL

0

0 system.IPL system.IPL

1 0

0

0

0

When the I flag before issuing a service call is 1.

When the I flag before issuing a service call is 0.

Figure 3.23 Interrupt control in a Service Call that can be Issued from only a Task

- 33 -

• For service calls that can be issued from only non-task context or from both task context and non-task
context.

When the I flag before issuing a service call is 1

When the I flag before issuing a service call is 0

Service call issued service call processing

I flag

IPL

1

4 system.IPL system.IPL

1 0

4

1

4

Service call issued service call processing

I flag

IPL

0

4 system.IPL system.IPL

0 0

4

Task or
Handler

Task or
Handler

Task or
Handler

Task or
Handler

4

Figure 3.24 Interrupt control in a Service Call that can be Issued from a Task-independent

As shown in Figure 3.23 and Figure 3.24, the interrupt enable flag and IPL change in a service call. For this reason, if you
want to disable interrupts in a user application, Renesas does not recommend using the method for manipulating the inter-
rupt disable flag and IPL to disable the interrupts.

The following two methods for interrupt control are recommended:

1. Modify the interrupt control register (SFR) for the interrupt you want to be disabled.
2. Use service calls loc_cpu(iloc_cpu) and unl_cpu(iunl_cpu).

The interrupts that can be controlled by the loc_cpu service call are only the kernel interrupt. Use method 1 to control the
non-kernel interrupts.

- 34 -

3.7 Stacks

3.7.1 System Stack and User Stack
The MR100 provides two types of stacks: system stack and user stack.

• User Stack
One user stack is provided for each task. Therefore, when writing applications with the MR100, it is necessary to
furnish the stack area for each task.

• System Stack
This stack is used within the MR100 (during service call processing). When a service call is issued from a task,
the MR100 switches the stack from the user stack to the system stack (See Figure 3.25).
The system stack use the interrupt stack(ISP).

Task MR100 service call processing

User Stack

User Stack

System Stack

Save Registers
Stack switching

Service call
processing

Task selection

Stack switching
Restore Registers

XXX_XXX()

Figure 3.25 System Stack and User Stack

Switchover from user stack to system stack occurs when an interrupt of vector numbers 0 to 127 is generated. Consequently,
all stacks used by the interrupt handler are the system stack.

- 35 -

4. Kernel

4.1.1 Module Structure
The MR100 kernel consists of the modules shown in Figure 4.1. Each of these modules is composed of functions that exer-
cise individual module features.

The MR100 kernel is supplied in the form of a library, and only necessary features are linked at the time of system genera-
tion. More specifically, only the functions used are chosen from those which comprise these modules and linked by means
of the Linkage Editor. However, the scheduler module, part of the task management module, and part of the time manage-
ment module are linked at all times because they are essential feature functions.

The applications program is a program created by the user. It consists of tasks, interrupt handler, alarm handler, and cyclic
handler.18

Task-dependent
synchronization

Eventflag

R32C/100 Microcomputer

Data queue

Mailbox Semaphore

Task
Management

Application Program

Hardware

MR100 kernel

User Module

Time
Management

System stae
Management

Memorypool
Management

short
Data queue

System configuration
Management

Interrupt
Management

SchedulerAlarm/Cyclic handler

Figure 4.1 MR100 Structure

18 For details, See 4.1.11.

- 36 -

4.1.2 Module Overview
The MR100 kernel modules are outlined below.

• Scheduler
Forms a task processing queue based on task priority and controls operation so that the high-priority task at the
beginning in that queue (task with small priority value) is executed.

• Task Management Module
Exercises the management of various task states such as the RUNNING, READY, WAITING, and SUSPENDED
state.

• Task Synchronization Module
Accomplishes inter-task synchronization by changing the task status from a different task.

• Interrupt Management Module
Makes a return from the interrupt handler.

• Time Management Module
Sets up the system timer used by the MR100 kernel and starts the user-created alarm handler19 and cyclic han-
dler.20.

• System Status Management Module
Gets the system status of MR100.

• System Configuration Management Module
Reports the MR100 kernel version number or other information.

• Synchronization and Communication Module
This is the function for synchronization and communication among the tasks. The following four functional mod-
ules are offered.

♦ Eventflag

Checks whether the flag controlled within the MR100 is set up and then determines whether or not to initi-
ate task execution. This results in accomplishing synchronization between tasks.

♦ Semaphore
Reads the semaphore counter value controlled within the MR100 and then determines whether or not to ini-
tiate task execution. This also results in accomplishing synchronization between tasks.

♦ Mailbox
Provides inter-task data communication by delivering the first data address.

♦ Data queue
Performs 32-bit data communication between tasks.

• Memory pool Management Module
Provides dynamic allocation or release of a memory area used by a task or a handler.

• Extended Function Module
Outside the scope of µITRON 4.0 Specification , this function performs reset processing on objects and short data
queue function.

19 This handler actuates once only at preselected times.
20 This handler periodically actuates.

- 37 -

4.1.3 Task Management Function
The task management function is used to perform task operations such as task start/stop and task priority updating. The
MR100 kernel offers the following task management function service calls.

• Activate Task (act_tsk, iact_tsk)
Activates the task, changing its status from DORMANT to either READY or RUNNING. In this service call, un-
like in sta_tsk(ista_tsk), startup requests are accumulated, but startup code cannot be specified.

• Activate Task (sta_tsk, ista_tsk)
Activates the task, changing its status from DORMANT to either READY or RUNNING. In this service call, un-
like in act_tsk(iact_tsk), startup requests are not accumulated, but startup code can be specified.

• Terminate Invoking Task (ext_tsk)
When the issuing task is terminated, its state changes to DORMANT state. The task is therefore not executed until
it is restarted. If startup requests are accumulated, task startup processing is performed again. In that case, the is-
suing task behaves as if it were reset.
If written in C language, this service call is automatically invoked at return from the task regardless of whether it
is explicitly written when terminated.

• Terminate Task (ter_tsk)
Other tasks in other than DORMANT state are forcibly terminated and placed into DORMANT state. If startup
requests are accumulated, task startup processing is performed again. In that case, the task behaves as if it was re-
set. (See Figure 4.2).

TaskA
TaskB

ter_tsk(B)

Task B reset

Terminated

Startup request count > 0

Figure 4.2 Task Resetting

• Change Task Priority (chg_pri, ichg_pri)
If the priority of a task is changed while the task is in READY or RUNNING state, the ready queue also is up-
dated. (See Figure 4.3).
Furthermore, if the target task is placed in a waiting queue of objects with TA_TPRI attribute, the waiting queue
also is updated. (See Figure 4.4).

- 38 -

1 Task A

Priority

2

Task C

Task FTask E

Task D 3

n

Task B

Task B

When the priority of task B has been changed from 3 to 1

Figure 4.3 Alteration of task priority

ｎ

Priority 1 Priority 2 Priority 3 Priority 4

When the priority of Task B is changed into 4

１

ID Number

２

taskA ３ taskB taskC taskB

Figure 4.4 Task rearrangement in a waiting queue

• Reference task priority (get_pri, iget_pri)
Gets the priority of a task.

• Reference task status (simple version) (ref_tst, iref_tst)
Refers to the state of the target task.

• Reference task status (ref_tsk, iref_tsk)
Refers to the state of the target task and its priority, etc.

- 39 -

4.1.4 Synchronization functions attached to task
The task-dependent synchronization functions attached to task is used to accomplish synchronization between tasks by
placing a task in the WAIT, SUSPENDED, or WAIT-SUSPENDED state or waking up a WAIT state task.

The MR100 offers the following task incorporated synchronization service calls.

• Put Task to sleep (slp_tsk,tslp_tsk)

• Wakeup task (wup_tsk, iwup_tsk)
Wakeups a task that has been placed in a WAIT state by the slp_tsk or tslp_tsk service call.
No task can be waked up unless they have been placed in a WAITING state by.21
If a wakeup request is issued to a task that has been kept waiting for conditions other than the slp_tsk or tslp_tsk
service call or a task in other than DORMANT state by the wup_tsk or iwup_tsk service call, that wakeup re-
quest only will be accumulated.
Therefore, if a wakeup request is issued to a task RUNNING state, for example, this wakeup request is temporar-
ily stored in memory. Then, when the task in RUNNING state is going to be placed into WAITING state by the
slp_tsk or tslp_tsk service call, the accumulated wakeup request becomes effective, so that the task continues ex-
ecuting again without going to WAITING state. (See Figure 4.5).

• Cancel Task Wakeup Requests (can_wup)
Clears the stored wakeup request.(See Figure 4.6).

slp_tsk slp_tsk

wup_tsk wup_tsk wup_tsk

0 0 1 2 1 Wakeup request count

Task

Figure 4.5 Wakeup Request Storage

slp_tsk slp_tsk

wup_tsk wup_tsk can_wup

0 0 1 0 0 Wakeup request count

Task

Figure 4.6 Wakeup Request Cancellation

21 Note that tasks in WAITING state, but kept waiting for the following conditions are not awaken.

Eventflag wait state, semaphore wait state, data transmission wait state, data reception wait state, timeout wait state, fixed length
memory pool acquisition wait, short data transmission wait, or short data reception wait

- 40 -

• Suspend task (sus_tsk, isus_tsk)

• Resume suspended task (rsm_tsk, irsm_tsk)
These service calls forcibly keep a task suspended for execution or resume execution of a task. If a suspend re-
quest is issued to a task in READY state, the task is placed into SUSPENDED state; if issued to a task in WAIT
ING state, the task is placed into WAITING-SUSPENDED state. Since MR100 allows only one forcible wait re-
quest to be nested, if sus_tsk is issued to a task in a forcible wait state, the error E_QOVR is returned. (See
Figure 4.7).

READY state

rsm_tsk sus_tsk

0 1 1 0
Number of
suspension

request

Task

sus_tsk

RUNNING
state

SUSPENDED
state

WAITING stateWAITING state
WAITING-

SUSPENDED
state

E_QOVR

Figure 4.7 Forcible wait of a task and resume

- 41 -

• Forcibly resume suspended task (frsm_tsk, ifrsm_tsk)
Clears the number of suspension requests nested to 0 and forcibly resumes execution of a task. Since MR100 al-
lows only one suspension request to be nested, this service call behaves the same way as rsm_tsk and
irsm_tsk..(See Figure 4.8).

READYstate

frsm_tsk

0 1 0
Number of
suspension

requests

Task

sus_tsk

READY state SUSPENDED
state

WAITING
state WAITING state

WAITING –
SUSPENDED

state

Figure 4.8 Forcible wait of a task and forcible resume

• Release task from waiting (rel_wai, irel_wai)
Forcibly frees a task from WAITING state. A task is freed from WAITING state by this service call when it is in
one of the following wait states.

♦ Timeout wait state
♦ Wait state entered by slp_tsk service call (+ timeout included)
♦ Event flag (+ timeout included) wait state
♦ Semaphore (+ timeout included) wait state
♦ Message (+ timeout included) wait state
♦ Data transmission (+ timeout included) wait state
♦ Data reception (+ timeout included) wait state
♦ Fixed–size memory block (+ timeout included) acquisition wait state
♦ Short data transmission (+ timeout included) wait state
♦ Short data reception (+ timeout included) wait state

- 42 -

• Delay task (dly_tsk)
Keeps a task waiting for a finite length of time. Figure 4.9 shows an example in which execution of a task is kept
waiting for 10 ms by the dly_tsk service call. The timeout value should be specified in ms units, and not in time
tick units.

10msec

dly_tsk(10)
Task

Figure 4.9 dly_tsk service call

- 43 -

4.1.5 Synchronization and Communication Function (Semaphore)
The semaphore is a function executed to coordinate the use of devices and other resources to be shared by several tasks in
cases where the tasks simultaneously require the use of them. When, for instance, four tasks simultaneously try to acquire a
total of only three communication lines as shown in Figure 4.10, communication line-to-task connections can be made
without incurring contention.

Semaphore

Communication
Line

Task

Task

Task

Task

Communication
Line

Communication
Line

Figure 4.10 Exclusive Control by Semaphore

The semaphore has an internal semaphore counter. In accordance with this counter, the semaphore is acquired or released to
prevent competition for use of the same resource.(See Figure 4.11).

Task
Acquired

Returned after use

Figure 4.11 Semaphore Counter

The MR100 kernel offers the following semaphore synchronization service calls.

• Release Semaphore Resource(sig_sem, isig_sem)
Releases one resource to the semaphore. This service call wakes up a task that is waiting for the semaphores ser-
vice, or increments the semaphore counter by 1 if no task is waiting for the semaphores service.

• Acquire Semaphore Resource(wai_sem, twai_sem)
Waits for the semaphores service. If the semaphore counter value is 0 (zero), the semaphore cannot be acquired.
Therefore, the WAITING state prevails.

• Acquire Semaphore Resource(pol_sem, ipol_sem)
Acquires the semaphore resource. If there is no semaphore resource to acquire, an error code is returned and the
WAITING state does not prevail.

- 44 -

• Reference Semaphore Status (ref_sem, iref_sem)
Refers the status of the target semaphore. Checks the count value and existence of the wait task for the target se-
maphore.
Figure 4.12 shows example task execution control provided by the wai_sem and sig_sem service calls.

Task

Task

Task

Task

Semaphore
Counter

wai_sem sig_sem

3 2 1 0 0x

wai_sem

wai_sem

wai_sem

WAIT state

Figure 4.12 Task Execution Control by Semaphore

- 45 -

4.1.6 Synchronization and Communication Function (Eventflag)
The eventflag is an internal facility of MR100 that is used to synchronize the execution of multiple tasks. The eventflag
uses a flag wait pattern and a 32-bit pattern to control task execution. A task is kept waiting until the flag wait conditions
set are met.

It is possible to determine whether multiple waiting tasks can be enqueued in one eventflag waiting queue by specifying the
eventflag attribute TA_WSGL or TA_WMUL.

Furthermore, it is possible to clear the eventflag bit pattern to 0 when the eventflag meets wait conditions by specifying
TA_CLR for the eventflag attribute.

There are following eventflag service calls that are provided by the MR100 kernel.

• Set Eventflag (set_flg, iset_flg)
Sets the eventflag so that a task waiting the eventflag is released from the WAITING state.

• Clear Eventflag (clr_flg, iclr_flg)
Clears the Eventflag.

• Wait for Eventflag (wai_flg, twai_flg)
Waits until the eventflag is set to a certain pattern. There are two modes as listed below in which the eventflag is
waited for.

♦ AND wait

Waits until all specified bits are set.

♦ OR wait
Waits until any one of the specified bits is set

• Wait for Eventflag (polling)(pol_flg, ipol_flg)
Examines whether the eventflag is in a certain pattern. In this service call, tasks are not placed in WAITING state.

• Reference Eventflag Status (ref_flg, iref_flg)
Checks the existence of the bit pattern and wait task for the target eventflag.

- 46 -

Figure 4.13 shows an example of task execution control by the eventflag using the wai_flg and set_flg service calls.

The eventflag has a feature that it can wake up multiple tasks collectively at a time.

In Figure 4.13, there are six tasks linked one to another, task A to task F. When the flag pattern is set to 0xF by the set_flg
service call, the tasks that meet the wait conditions are removed sequentially from the top of the queue. In this diagram, the
tasks that meet the wait conditions are task A, task C, and task E. Out of these tasks, task A, task C, and task E are removed
from the queue.

If this event flag has a TA_CLR attribute, when the waiting of Task A is canceled, the bit pattern of the event flag will be
set to 0, and Task C and Task E will not be removed from queue.

TaskF TaskD TaskB

Flag pattern
0x0F

Flag pattern
0

Flag queue TaskA TaskB TaskC TaskD TaskE TaskF

0xFF
AND

0x0F
AND

0xFF
AND

0xFF
OR

0x10
OR

0x0F
OR

Wait pattern
Wait mode

set_flg

Figure 4.13 Task Execution Control by the Eventflag

- 47 -

4.1.7 Synchronization and Communication Function (Data Queue)
The data queue is a mechanism to perform data communication between tasks. In Figure 4.14, for example, task A can
transmit data to the data queue and task B can receive the transmitted data from the data queue.

D
ata

D
ata

D
ata

Data Data

Task B Task A

Figure 4.14 Data queue

Data in width of 32 bits can be transmitted to this data queue.

The data queue has the function to accumulate data. The accumulated data is retrieved in order of FIFO22. However, the
number of data that can be accumulated in the data queue is limited. If data is transmitted to the data queue that is full of
data, the service call issuing task goes to a data transmission wait state.

There are following data queue service calls that are provided by the MR100 kernel.

• Send to Data Queue(snd_dtq, tsnd_dtq)
The data is transmitted to the data queue. If the data queue is full of data, the task goes to a data transmission wait
state.

• Send to Data Queue (psnd_dtq, ipsnd_dtq)
The data is transmitted to the data queue. If the data queue is full of data, the task returns error code without going
to a data transmission wait state.

• Forced Send to Data Queue (fsnd_dtq, ifsnd_dtq)
The data is transmitted to the data queue. If the data queue is full of data, the data at the top of the data queue or
the oldest data is removed, and the transmitted data is stored at the tail of the data queue.

• Receive from Data Queue (rcv_dtq, trcv_dtq)
The data is retrieved from the data queue. If the data queue has no data in it, the task is kept waiting until data is
transmitted to the data queue.

• Receive from Data Queue (prcv_dtq,iprcv_dtq)
The data is received from the data queue. If the data queue has no data in it, the task returns error code without
going to a data reception wait state.

• Reference Data Queue Status (ref_dtq,iref_dtq)
Checks to see if there are any tasks waiting for data to be entered in the target data queue and refers to the number
of the data in the data queue.

22 First In First Out

- 48 -

4.1.8 Synchronization and Communication Function (Mailbox)
The mailbox is a mechanism to perform data communication between tasks. In Figure 4.15, for example, task A can drop a
message into the mailbox and task B can retrieve the message from the mailbox. Since mailbox-based communication is
achieved by transferring the start address of a message from a task to another, this mode of communication is performed at
high speed independently of the message size.

The kernel manages the message queue by means of a link list. The application should prepare a header area that is to be
used for a link list. This is called the message header. The message header and the area actually used by the application to
store a message are called the message packet. The kernel rewrites the content of the message header as it manages the
message queue. The message header cannot be rewritten from the application. The structure of the message queue is shown
in Figure 4.16. The message header has its data types defined as shown below.

T_MSG: Mailbox message header
T_MSG_PRI: Mailbox message header with priority included

Messages in any size can be enqueued in the message queue because the header area is reserved on the application side. In
no event will tasks be kept waiting for transmission.

Messages can be assigned priority, so that messages will be received in order of priority beginning with the highest. In this
case, TA_MPRI should be added to the mailbox attribute. If messages need to be received in order of FIFO, add
TA_MFIFO to the mailbox attribute.23 Furthermore, if tasks in a message wait state are to receive a message, the tasks can
be prioritized in which order they can receive a message, beginning with one that has the highest priority. In this case, add
TA_TPRI to the mailbox attribute. If tasks are to receive a message in order of FIFO, add TA_TFIFO to the mailbox attrib-
ute.24

Message Message

TaskB TaskA

Figure 4.15 Mailbox

23 It is in the mailbox definition "message_queue" of the configuration file that the TA_MPRI or TA_MFIFO attribute should be added.
24 It is in the mailbox definition "wait_queue" of the configuration file that the TA_TPRI or TA_TFIFO attribute should be added.

- 49 -

 T_MSG
header

T_MSG
header

T_MSG
header

Message
queue

Message A Message B Message C

Figure 4.16 Message queue

There are following data queue service calls that are provided by the MR100 kernel.

• Send to Mailbox (snd_mbx, isnd_mbx)
Transmits a message. Namely, a message is dropped into the mailbox.

• Receive from Mailbox (rcv_mbx, trcv_mbx)
Receives a message. Namely, a message is retrieved from the mailbox. At this time, if the mailbox has no mes-
sages in it, the task is kept waiting until a message is sent to the mailbox.

• Receive from Mailbox (polling) (prcv_mbx, iprcv_mbx)
Receives a message. The difference from the rcv_mbx service call is that if the mailbox has no messages in it, the
task returns error code without going to a wait state.

• Reference Mailbox Status (ref_mbx, iref_mbx)
Checks to see if there are any tasks waiting for a message to be put into the target mailbox and refers to the mes-
sage present at the top of the mailbox.

- 50 -

4.1.9 Memory pool Management Function(Fixed-size Memory pool)
A fixed-size memory pool is the memory of a certain decided size. The memory block size is specified at the time of a con-
figuration. Figure 4.17 is a figure about the example of a fixed-size memory pool of operation.

• Acquire Fixed-size Memory Block (get_mpf, tget_mpf)
Acquires a memory block from the fixed-size memory pool that has the specified ID. If there are no blank mem-
ory blocks in the specified fixed-size memory pool, the task that issued this service call goes to WAITING state
and is enqueued in a waiting queue.

• Acquire Fixed-size Memory Block (polling) (pget_mpf, ipget_mpf)
Acquires a memory block from the fixed-size memory pool that has the specified ID. The difference from the
get_mpf and tget_mpf service calls is that if there are no blank memory blocks in the memory pool, the task re-
turns error code without going to WAITING state.

Fixed Length Memorypool

Memory Block 1:

Memory Block 2:

Memory Block 3:

Used by TaskA

Used by TaskB

Memory block acquisition
request

Memory block acquisition

TaskC

Memory block acquisition
request

No blank memory
blocks available

TaskD

Goes to a
wait state

Figure 4.17 Memory Pool Management

• Release Fixed-size Memory Block (rel_mpf, irel_mpf)
Frees the acquired memory block. If there are any tasks in a wait state for the specified fixed-size memory pool,
the task enqueued at the top of the waiting queue is assigned the freed memory block. In this case, the task
changes its state from WAITING state to READY state. If there are no tasks in a wait state, the memory block is
returned to the memory pool.

• Reference Fixed-size Memory Pool Status (ref_mpf, iref_mpf)
Checks the number and the size of blank blocks available in the target memory pool.

- 51 -

4.1.10 Variable-size Memory Pool Management Function
A variable-size memory pool refers to the one in which a memory block of any desired size can be acquired from the mem-
ory pool. The MR100 permits one of the following two memory pool management methods to be selected before the mem-
ory pool is used.

1. Normal block method
2. Small block method

Each of these methods are explained below.

[[Normal Block Method]]

The technique that allows you to arbitrary define the size of memory block acquirable from the memory pool is termed Va-
riable-size scheme. The MR100 manages memory in terms of four fixed-size memory block sizes.

The MR100 calculates the size of individual blocks based on the maximum memory block size to be acquired. You specify
the maximum memory block size using the configuration file.

• Equation for calculating four kinds of block sizes

a = (((max_memsize+(X-1))/ X × 8)+1) × 8
b = a × 2
c = a × 4
d = a × 8

max_memsize: the value specified in the configuration file
X: data size for block control (8 byte)

• Example of a configuration file

 variable_memorypool[]{

 max_memsize = 400; <---- Maximum size

 heap_size = 5000;

 };

If a variable-size memory pool is defined as shown above, the four kinds of fixed length block sizes are obtained from the
define value of max_memsize as 56, 112, 224 and 448, respectively. Furthermore, the MR100 calculates the memory re-
quested by the user based on a specified size to select the appropriate size from the four kinds of fixed length block sizes as
it allocates the requested memory. In no event will a memory block other than these four kinds of size be allocated.

[[Small block method]]
Unlike the normal block method where memory is managed in four kinds of fixed length block sizes, the small block me-
thod manages memory in 12 kinds of fixed length block sizes. Since the block sizes in this method are prefixed as shown
below, there is no need to specify a maximum size during configuration as in the normal block method.

The block sizes managed by the small block method are the following 12, beginning with the smallest:

24 bytes, 56 bytes, 120 bytes, 248 bytes, 504 bytes, 1,016 bytes, 2,040 bytes, 4,088 bytes, 8,184 byte, 16,376 bytes, 32,760
bytes and 65,528 bytes.

- 52 -

[[Comparison of Two Management Methods]]

• Processing speed
Generally speaking, the normal block method is faster in memory allocation/deallocation processing than the
small block method.

• Memory usage efficiency
If the difference between the maximum and minimum sizes of memory to be acquired is 8 times or more, the
small block method is higher in memory usage efficiency than the other method.

• Ease of configuration
For the normal block method, it is necessary that the maximum memory size to be acquired be known to the
MR100. However, this is unnecessary for the small block method..

The variable-length memory pool management service calls provided by the MR100 include the following.

• Get a memory block (pget_mpl)
The block size specified by the user is acquired by first rounding it to the optimum block size among the four
kinds of block sizes and then acquiring a memory block of the rounded size from the memory pool
For example, if the user requests 200 bytes of memory, the requested size is rounded to 224 bytes, so that 224
bytes of memory is acquired. If a requested block of memory is successfully acquired, the start address of the ac-
quired memory block and error code E_OK are returned. If memory acquisition fails, error code E_TMOUT is
returned.

.

200 bytes

224 bytes

Rounding Memorypool
TaskA

pget_mpl
200 bytes

Figure 4.18 pget_mpl processing

• Release Acquire Variable-size Memory Block (rel_mpl)25
Releases a acquired memory block by pget_mpl service call.

25 The validity of the address of the memory block to which MR100 is passed as an argument and to release is not judged. Therefore, op-
eration at the time of releasing the memory block which is already released or releasing the memory block which has not been gained is not
guaranteed.

- 53 -

Memorypool
TaskA

rel_mpl
top of

address

Memorypool

Figure 4.19 rel_mpl processing

• Reference Acquire Variable-size Memory Pool Status (ref_mpl, iref_mpl)
Checks the total free area of the memory pool, and the size of the maximum free area that can immediately be
acquired.

- 54 -

4.1.11 Time Management Function
The time management function provides system time management, time reading26, time setup27, and the functions of the
alarm handler, which actuates at preselected times, and the cyclic handler, which actuates at preselected time intervals.

The MR100 kernel requires one timer for use as the system clock. There are following time management service calls that
are provided by the MR100 kernel. Note, however, that the system clock is not an essential function of MR100. Therefore,
if the service calls described below and the time management function of the MR100 are unused, a timer does not need to
be occupied for use by MR100.

• Place a task in a finite time wait state by specifying a timeout value
A timeout can be specified in a service call that places the issuing task into WAITING state.28 This service call
includes tslp_tsk, twai_flg, twai_sem, tsnd_dtq, trcv_dtq, trcv_mbx, tget_mpf, vtsnd_dtq, and vtrcv_dtq. If the
wait cancel condition is not met before the specified timeout time elapses, the error code E_TMOUT is returned,
and the task is freed from the waiting state. If the wait cancel condition is met, the error code E_OK is returned.
The timeout time should be specified in ms units.

50

tslp_tsk(50)
READY state

tslp_tsk(50)

iwup_tsk

E_OK

E_TMOUT

WAITING state

WAITING state

RUNNING state

Timeout value

Figure 4.20 Timeout Processing

MR100 guarantees that as stipulated in µITRON specification, timeout processing is not performed until a time
equal to or greater than the specified timeout value elapses. More specifically, timeout processing is performed
with the following timing.

1. If the timeout value is 0 (for only dly_tsk)29
The task times out at the first time tick after the service call is issued.30

2. If the timeout value is a multiple of time tick interval
The timer times out at the (timeout value / time tick interval) + first time tick. For example, if the time
tick interval is 10 ms and the specified timeout value is 40 ms, then the timer times out at the fifth oc-
currence of the time tick. Similarly, if the time tick interval is 5 ms and the specified timeout value is 15
ms, then the timer times out at the fourth occurrence of the time tick.

26 get_tim service call
27 set_tim service call
28 SUSPENDED state is not included.
29 Strictly, in a dly_tsk service call, the "timeout value" is not correct. "delay time" is correct.
30 Strictly, in a dly_tsk service call, a timeout is not carried out, but the waiting for delay is canceled and the service call carries out the nor-
mal end.

- 55 -

3. If the timeout value is not a multiple of time tick interval
The timer times out at the (timeout value / time tick interval) + second time tick. For example, if the time
tick interval is 10 ms and the specified timeout value is 35 ms, then the timer times out at the fifth oc-
currence of the time tick.

• Set System Time (set_tim)

• Reference System Time (get_tim)
The system time indicates an elapsed time from when the system was reset by using 48-bit data. The time is ex-
pressed in ms units.

- 56 -

4.1.12 Cyclic Handler Function
The cyclic handler is a time event handler that is started every startup cycle after a specified startup phase has elapsed.

The cyclic handler may be started with or without saving the startup phase. In the former case, the cyclic handler is started
relative to the point in time at which it was generated. In the latter case, the cyclic handler is started relative to the point in
time at which it started operating. Figure 4.21 and Figure 4.22 show typical operations of the cyclic handler.

If the startup cycle is shorter than the time tick interval, the cyclic handler is started only once every time tick supplied
(processing equivalent to isig_tim). For example, if the time tick interval is 10 ms and the startup cycle is 3 ms and the cy-
clic handler has started operating when a time tick is supplied, then the cyclic handler is started every time tick.

Cyclic handler
created

Activation
phase

Activation
cycle

Activation
cycle

Activation
cycle

Activation
cycle

Handler does
not start

Handler does
not start

Start operating Stop operating

Handler does
not start

Handler starts Handler starts

Figure 4.21 Cyclic handler operation in cases where the activation phase is saved

Cyclic handler
created

Activation
phase

Activation
cycle

Activation
cycle

Activation
cycle

Activation
cycle

Handler does
not start

Handler does
not start

Start operating Stop operating

Handler does
not start

Handler starts Handler starts

Figure 4.22 Cyclic handler operation in cases where the activation phase is not saved

• Start Cyclic Handler Operation (sta_cyc, ista_cyc)
Causes the cyclic handler with the specified ID to operational state.

• Stop Cyclic Handler Operation (stp_cyc, istp_cyc)
Causes the cyclic handler with the specified ID to non-operational state.

• Reference Cyclic Handler Status (ref_cyc, iref_cyc)
Refers to the status of the cyclic handler. The operating status of the target cyclic handler and the remaining time
before it starts next time are inspected.

- 57 -

4.1.13 Alarm Handler Function
The alarm handler is a time event handler that is started only once at a specified time.

Use of the alarm handler makes it possible to perform time-dependent processing. The time of day is specified by a relative
time. Figure 4.23 shows a typical operation of the alarm handler.

Alarm handler
created

Activation
time

Start
operating

Stop
operating

Handler does
not start

Handler starts

Start
operating

Activation
time

Figure 4.23 Typical operation of the alarm handler

• Start Alarm Handler Operation (sta_alm, ista_alm)
Causes the alarm handler with the specified ID to operational state.

• Stop alarm Handler Operation (stp_alm, istp_alm)
Causes the alarm handler with the specified ID to non-operational state.

• Reference Alarm Handler Status (ref_alm, iref_alm)
Refers to the status of the alarm handler. The operating status of the target alarm handler and the remaining time
before it starts are inspected.

- 58 -

4.1.14 System Status Management Function

• Rotate Task Precedence (rot_rdq, irot_rdq)
This service call establishes the TSS (time-sharing system). That is, if the ready queue is rotated at regular inter-
vals, round robin scheduling required for the TSS is accomplished (See Figure 4.24)

Move the end of the queue

１ taskA

Priority

２

３

ｎ

taskB taskC

taskD taskE taskF

Figure 4.24 Ready Queue Management by rot_rdq Service Call

• Reference task ID in the RUNNING state(get_tid, iget_tid)
References the ID number of the task in the RUNNING state. If issued from the handler, TSK_NONE(=0) is ob-
tained instead of the ID number.

• Lock the CPU (loc_cpu, iloc_cpu)
Places the system into a CPU locked state.

• Unlock the CPU (unl_cpu, iunl_cpu)
Frees the system from a CPU locked state.

• Disable dispatching (dis_dsp)
Places the system into a dispatching disabled state.

• Enable dispatching (ena_dsp)
Frees the system from a dispatching disabled state.

• Reference context (sns_ctx)
Gets the context status of the system.

• Reference CPU state (sns_loc)
Gets the CPU lock status of the system.

• Reference dispatching state (sns_dsp)
Gets the dispatching disable status of the system.

• Reference dispatching pending state (sns_dpn)
Gets the dispatching pending status of the system.

- 59 -

4.1.15 Interrupt Management Function
The interrupt management function provides a function to process requested external interrupts in real time.

The interrupt management service calls provided by the MR100 kernel include the following:

• Returns from interrupt handler (ret_int)
The ret_int service call activates the scheduler to switch over tasks as necessary when returning from the interrupt
handler.
When using the C language,31, this function is automatically called at completion of the handler function. In this
case, therefore, there is no need to invoke this service call.

Figure 4.25 shows an interrupt processing flow. Processing a series of operations from task selection to register restoration
is called a "scheduler.".

Interrupt

TaskA

Save Registers

Handler Processing

iwup_tsk

ret_int

Task Selection

Restore Registers

TaskB

#pragma INTHANDLER Declare
(C language)

Figure 4.25 Interrupt process flow

31 In the case that the interruput handler is specified by "#pragma INTHANDLER".

- 60 -

4.1.16 System Configuration Management Function
This function inspects the version information of MR100.

• References Version Information(ref_ver, iref_ver)
The ref_ver service call permits the user to get the version information of MR100. This version information can
be obtained in the standardized format of µITRON specification.

4.1.17 Extended Function (Short Data Queue)
The short data queue is a function outside the scope of µITRON 4.0 Specification. The data queue function handles data as
consisting of 32 bits, whereas the short data queue handles data as consisting of 16 bits. Both behave the same way except
only that the data sizes they handle are different.

• Send to Short Data Queue (vsnd_dtq, vtsnd_dtq)
The data is transmitted to the short data queue. If the short data queue is full of data, the task goes to a data trans-
mission wait state.

• Send to Short Data Queue (vpsnd_dtq, vipsnd_dtq)
The data is transmitted to the short data queue. If the short data queue is full of data, the task returns error code
without going to a data transmission wait state.

• Forced Send to Short Data Queue (vfsnd_dtq, vifsnd_dtq)
The data is transmitted to the short data queue. If the short data queue is full of data, the data at the top of the
short data queue or the oldest data is removed, and the transmitted data is stored at the tail of the short data queue.

• Receive from Short Data Queue(vrcv_dtq, vtrcv_dtq)
The data is retrieved from the short data queue. If the short data queue has no data in it, the task is kept waiting
until data is transmitted to the short data queue.

• Receive from Short Data Queue (vprcv_dtq, viprcv_dtq)
The data is received from the short data queue. If the short data queue has no data in it, the task returns error code
without going to a data reception wait state.

• Reference Short Data Queue Status (vref_dtq, viref_dtq)
Checks to see if there are any tasks waiting for data to be entered in the target short data queue and refers to the
number of the data in the short data queue.

- 61 -

4.1.18 Extended Function (Reset Function)
The reset function is a function outside the scope of µITRON 4.0 Specification. It initializes the mailbox, data queue, and
memory pool, etc.

• Clear Data Queue Area (vrst_dtq)
Initializes the data queue. If there are any tasks waiting for transmission, they are freed from WAITING state and
the error code EV_RST is returned.

• Clear Mailbox Area (vrst_mbx)
Initializes the mailbox.

• Clear Fixed-size Memory Pool Area (vrst_mpf)
Initializes the fixed-size memory pool. If there are any tasks in WAITING state, they are freed from the WAIT-
ING state and the error code EV_RST is returned.

• Clear Variable-size Memory Pool Area (vrst_mpl)
Initializes the variable length memory pool.

• Clear Short Data Queue Area (vrst_vdtq)
Initializes the short data queue. If there are any tasks waiting for transmission, they are freed from WAITING
state and the error code EV_RST is returned.

- 63 -

5. Service call reffernce

5.1 Task Management Function
Specifications of the task management function of MR100 are listed in Table 5.1 below. The task description languages in
item No. 4 are those specified in the GUI configurator. They are not output to a configuration file, nor are the MR100 ker-
nel concerned with them.

The task stack permits a section name to be specified for each task individually.

Table 5.1 Specifications of the Task Management Function

No. Item Content
1 Task ID 1-255
2 Task priority 1-255
3 Maximum number of activation request count 255

TA_HLNG : Tasks written in high-level language
TA_ASM : Tasks written in assem-bly language4 Task attribute
TA_ACT： Startup attribute

5 Task stack Section specifiable

Table 5.2 List of Task Management Function Service Call

System State No. Service Call Function

T N E D U L

1 act_tsk [S] Activates task O O O O
2 iact_tsk [S] O O O O
3 can_act [S] O O O O
4 ican_act

Cancels task activation request
 O O O O

5 sta_tsk [B] O O O O
6 ista_tsk

Starts task and specifies start code
 O O O O

7 ext_tsk [S][B] Exits current task O O O O O
8 ter_tsk [S][B] Forcibly terminates a task O O O O
9 chg_pri [S][B] O O O O

10 ichg_pri
Changes task priority

 O O O O
11 get_pri [S] O O O O
12 iget_pri

Refers to task priority
 O O O O

13 ref_tsk O O O O
14 iref_tsk

Refers to task state
 O O O O

15 ref_tst O O O O
16 iref_tst

Refers to task state (simple ver-
sion) O O O O

- 64 -

 Notes:

• [S]: Standard profile service calls
[B]: Basic profile service calls

• Each sign within " System State " is a following meaning.
♦ T: Can be called from task context
♦ N: Can be called from non-task context
♦ E: Can be called from dispatch-enabled state
♦ D: Can be called from dispatch-disabled state
♦ U: Can be called from CPU-unlocked state
♦ L: Can be called from CPU-locked state

- 65 -

act_tsk Activate task
iact_tsk Activate task (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = act_tsk(ID tskid);
ER ercd = iact_tsk(ID tskid);

 PPaarraammeetteerrss
ID ｔskid ID number of the task to be started

 RReettuurrnn ppaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
act_tsk TSKID
iact_tsk TSKID

 PPaarraammeetteerrss
TSKID ID number of the task to be started

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 Task ID

[[[[EErrrroorr CCooddee]]]]

E_QOVR Queuing overflow

- 66 -

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call starts the task indicated by tskid. The started task goes from DORMANT state to READY state or RUN-
NING state.

The following lists the processing performed on startup.

1. Initializes the current priority of the task.

2. Clears the number of queued wakeup requests.

3. Clears the number of suspension requests.

Specifying tskid=TSK_SELF(0) specifies the issuing task itself. The task has passed to it as parameter the extended infor-
mation of it that was specified when the task was created. If TSK_SELF is specified for tskid in non-task context, operation
of this service call cannot be guaranteed.

If the target task is not in DORMANT state, a task activation request by this service call is enqueued. In other words, the
activation request count is incremented by 1. The maximum value of the task activation request is 255. If this limit is ex-
ceeded, the error code E_QOVR is returned.

If TSK_SELF is specified for tskid, the issuing task itself is made the target task.

If this service call is to be issued from task context, use act_tsk; if issued from non-task context, use iact_tsk.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task1(VP_INT stacd)
{
 ER ercd;
 :
 ercd = act_tsk(ID_task2);
 :
}
void task2(VP_INT stacd)
{
 :
 ext_tsk();
}

<<Example statement in assembly language>>
 .INCLUDE mr100.inc
 .GLB task
task:
 :
 PUSH.W R2
 act_tsk #ID_TASK3
 :

- 67 -

can_act Cancel task activation request
ican_act Cancel task activation request (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER_UINT actcnt = can_act(ID tskid);
ER_UINT actcnt = ican_act(ID tskid);

 PPaarraammeetteerrss
ID tskid ID number of the task to cancel

 RReettuurrnn PPaarraammeetteerrss
ER_UINT actcnt > 0 Canceled activation request count
 actcnt < 0 Error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
can_act TSKID
ican_act TSKID

 PPaarraammeetteerrss
TSKID ID number of the task to cancel

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register
name

Content after service call is issued

R2R0 Canceled startup request count or error code

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call finds the number of task activation requests enqueued for the task indicated by tskid, returns the result as a
return parameter, and at the same time invalidates all of the task’s activation requests.

Specifying tskid=TSK_SELF(0) specifies the issuing task itself. If TSK_SELF is specified for tskid in non-task context,
operation of this service call cannot be guaranteed.

This service call can be invoked for a task in DORMANT state as the target task. In that case, the return parameter is 0.

If this service call is to be issued from task context, use can_act; if issued from non-task context, use ican_act.

- 68 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task1()
{
 ER_UINT actcnt;
 :
 actcnt = can_act(ID_task2);
 :
}
void task2()
{
 :
 ext_tsk();
}

<<Example statement in assembly language>>
 .INCLUDE mr100.inc
 .GLB task
task:
 :
 can_act #ID_TASK2
 :

- 69 -

sta_tsk Activate task with a start code
ista_tsk Activate task with a start code (handler only)
[[[[CC LLaanngguuaaggee AAPPII]]]]

ER ercd = sta_tsk(ID tskid,VP_INT stacd);
ER ercd = ista_tsk (ID tskid,VP_INT stacd);

 PPaarraammeetteerrss
ID tskid ID number of the target task

VP_INT stacd Task start code

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
sta_tsk TSKID,STACD
ista_tsk TSKID,STACD

 PPaarraammeetteerrss
TSKID ID number of the target task

STATCD Task start code

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R3R1 Task start code

R2 ID number of the target task

[[[[EErrrroorr ccooddee]]]]

E_OBJ Object status invalid (task indicated by tskid is not DOMANT state)

- 70 -

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call starts the task indicated by tskid. In other words, it places the specified task from DORMANT state into
READY state or RUNNING state. This service call does not enqueue task activation requests. Therefore, if a task activa-
tion request is issued while the target task is not DORMANT state, the error code E_OBJ is returned to the service call is-
suing task. This service call is effective only when the specified task is in DORMANT state. The task start code stacd is 32
bits long. This task start code is passed as parameter to the activated task.

If a task is restarted that was once terminated by ter_tsk or ext_tsk, the task performs the following as it starts up.

1. Initializes the current priority of the task.

2. Clears the number of queued wakeup requests.

3. Clears the number of nested forcible wait requests.

If this service call is to be issued from task context, use sta_tsk; if issued from non-task context, use ista_tsk.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 ER ercd;
 VP_INT stacd = 0;
 ercd = sta_tsk(ID_task2, stacd);
 :
}
void task2(VP_INT msg)
{
 if(msg == 0)
 :
}

<<Example statement in assembly language>>
 .INCLUDE mr100.inc
 .GLB task
task:
 :
 PUSHM R3R1
 PUSH.W R2
 sta_tsk #ID_TASK4,#100
 :

- 71 -

ext_tsk Terminate invoking task

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = ext_tsk();

 PPaarraammeetteerrss
None

 RReettuurrnn PPaarraammeetteerrss
Not return from this service call

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
ext_tsk

 PPaarraammeetteerrss
None

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Not return from this service call

[[[[EErrrroorr ccooddee]]]]

Not return from this service call

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call terminates the invoking task. In other words, it places the issuing task from RUNNING state into DOR-
MANT state. However, if the activation request count for the issuing task is 1 or more, the activation request count is
decremented by 1, and processing similar to that of act_tsk or iact_tsk is performed. In that case, the task is placed from
DORMANT state into READY state. The task has its extended information passed to it as parameter when the task starts
up.

This service call is designed to be issued automatically at return from a task.

In the invocation of this service call, the resources the issuing task had acquired previously (e.g., semaphore) are not re-
leased.

This service call can only be used in task context. This service call can be used even in a CPU locked state, but cannot be
used in non-task context.

- 72 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task(void)
{
 :
 ext_tsk();
}

<<Example statement in assembly language>>
 .INCLUDE mr100.inc
 .GLB task
task:
 :
 ext_tsk

- 73 -

ter_tsk Terminate task

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = ter_tsk(ID tskid);

 PPaarraammeetteerrss
ID tskid ID number of the forcibly terminated task

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
ter_tsk TSKID

 PPaarraammeetteerrss
TSKID ID number of the forcibly terminated task

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 ID number of the target task

[[[[EErrrroorr ccooddee]]]]
E_OBJ Object status invalid(task indicated by tskid is an inactive state)
E_ILUSE Service call improperly used task indicated by tskid is the issuing task itself)

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call terminates the task indicated by tskid. If the activation request count of the target task is equal to or greater
than 1, the activation request count is decremented by 1, and processing similar to that of act_tsk or iact_tsk is performed.
In that case, the task is placed from DORMANT state into READY state. The task has its extended information passed to it
as parameter when the task starts up.

If a task specifies its own task ID or TSK_SELF, an E_ILUSE error is returned.

If the specified task was placed into WAITING state and has been enqueued in some waiting queue, the task is dequeued
from it by execution of this service call. However, the semaphore and other resources the specified task had acquired pre-
viously are not released.

If the task indicated by tskid is in DORMANT state, it returns the error code E_OBJ as a return value for the service call.

This service call can only be used in task context, and cannot be used in non-task context.

- 74 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{

 :
ter_tsk(ID_main);
 :

}
<<Example statement in assembly language>>
 .INCLUDE mr100.inc
 .GLB task
task:
 :
 PUSH.W R2
 ter_tsk #ID_TASK3
 :

- 75 -

chg_pri Change task priority
ichg_pri Change task priority(handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = chg_pri(ID tskid, PRI tskpri);
ER ercd = ichg_pri(ID tskid, PRI tskpri);

 PPaarraammeetteerrss
ID tskid ID number of the target task

PRI tskpri Priority of the target task

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
chg_pri TSKID,TSKPRI
ichg_pri TSKID,TSKPRI

 PPaarraammeetteerrss
TSKID ID number of the target task

TSKPRI Priority of the target task

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R3 Priority of the target task

R2 ID number of the target task

[[[[EErrrroorr ccooddee]]]]

E_OBJ Object status invalid(task indicated by tskid is an inactive state)

- 76 -

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
The priority (base priority) of the task specified by tskid is changed to the value indicated by tskpri, and tasks are resched-
uled based on the result of change.

If this service call is executed on a task queued in a ready queue (including a task under execution) or a task in a wait queue
in which tasks are queued in order of priority, the object task is moved to the tail end of the tasks of relevant priority in the
queue. When the same priority as before is specified, the object task is moved to the tail end of that queue also.

The smaller the number, the higher the task priority, with numeral 1 assigned the highest priority. The minimum numeric
value specifiable as priority is 1. Furthermore, the maximum value of priority is the one specified in a configuration file,
and the specifiable range of priority is 1 to 255. For example, if the following statement is written in a configuration file,

system{
stack_size = 0x100;

 priority = 13;
};

then the specifiable range of priority is 1 to 13.
If TSK_SELF is specified, the priority (base priority) of the issuing task is changed. If TSK_SELF is specified for tskid in a
non-task context, the program operation cannot be guaranteed. If TPRI_INI is specified, the priority of a task is changed to
its startup priority specified when it is generated. The changed task priority (base priority) remains effective until the task
terminates or this service call is reexecuted.
If the task indicated by tskid is in an inactive (DORMANT) state, error code E_OBJ is returned as the service call's return
value.
To use these service calls from task contexts, be sure to use chg_pri; to use them from non-task contexts, be sure to use
ichg_pri.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{

 :
chg_pri(ID_task2, 2);
 :

}
<<Example statement in assembly language>>
 .INCLUDE mr100.inc
 .GLB task
task:
 :
 PUSH.W R2
 PUSH.W R3
 chg_pri #ID_TASK3,#1
 :

- 77 -

get_pri Reference task priority
iget_pri Reference task priority(handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = get_pri(ID tskid, PRI *p_tskpri);
ER ercd = iget_pri(ID tskid, PRI *p_tskpri);

 PPaarraammeetteerrss
ID tskid ID number of the target task

PRI *p_tskpri Pointer to the area to which task priority is returned

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
get_pri TSKID
iget_pri TSKID

 PPaarraammeetteerrss
TSKID ID number of the target task

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 Acquired task priority

[[[[EErrrroorr ccooddee]]]]

E_OBJ Object status invalid(task indicated by tskid is an inactive state)

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call returns the priority of the task indicated by tskid to the area indicated by p_tskpri. If TSK_SELF is speci-
fied, the priority of the issuing task itself is acquired. If TSK_SELF is specified for tskid in non-task context, operation of
the service call cannot be guaranteed.

If the task indicated by tskid is in DORMANT state, it returns the error code E_OBJ as a return value for the service call.

If this service call is to be issued from task context, use get_pri; if issued from non-task context, use iget_pri.

- 78 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 PRI p_tskpri;
 ER ercd;

 :
 ercd = get_pri(ID_task2, &p_tskpri);

 :
}

<<Example statement in assembly language>>
 .INCLUDE mr100.inc
 .GLB task
task:
 :
 get_pri #ID_TASK2
 :

- 79 -

ref_tsk Reference task status
iref_tsk Reference task status (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = ref_tsk(ID tskid, T_RTSK *pk_rtsk);
ER ercd = iref_tsk(ID tskid, T_RTSK *pk_rtsk);

 PPaarraammeetteerrss
ID tskid ID number of the target task

T_RTSK *pk_rtsk Pointer to the packet to which task status is returned

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)

Contents of pk_rtsk
typedef struct t_rtsk{

STAT tskstat +0 2 Task status
PRI tskpri +2 2 Current priority of task
PRI tskbpri +4 2 Base priority of task
STAT tskwait +6 2 Cause of wait
ID wobjid +8 2 Waiting object ID
TMO lefttmo +10 4 Left time before timeout
UINT actcnt +14 4 Number of queued activation request counts
UINT wupcnt +18 4 Number of queued wakeup request counts
UINT suscnt +22 4 Number of nested suspension request counts

} T_RTSK;

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
ref_tsk TSKID, PK_RTSK
iref_tsk TSKID, PK_RTSK

 PPaarraammeetteerrss
TSKID ID number of the target task

PK_RTSK Pointer to the packet to which task status is returned

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 ID number of the target task

A1 Pointer to the packet to which task status is returned

[[[[EErrrroorr ccooddee]]]]

None

- 80 -

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call inspects the status of the task indicated by tskid and returns the current information on that task to the area
pointed to by pk_rtsk as a return parameter. If TSK_SELF is specified, the status of the issuing task itself is inspected. If
TSK_SELF is specified for tskid in non-task context, operation of the service call cannot be guaranteed.

 tskstat (task status)
tskstat has one of the following values returned to it depending on the status of the specified task.
• TTS_RUN(0x0001) RUNNING state
• TTS_RDY(0x0002) READY state
• TTS_WAI(0x0004) WAITING state
• TTS_SUS(0x0008) SUSPENDED state
• TTS_WAS(0x000C) WAITING-SUSPENDED state
• TTS_DMT(0x0010) DORMANT state

 tskpri (current priority of task)
tskpri has the current priority of the specified task returned to it. If the task is in DOMANT state, tskpri is
indeterminate.
 tskbpri (base priority of task)
tskbpri has the base priority of the specified task returned to it. If the task is in DOMANT state, tskbpri
is indeterminate.
 tskwait (cause of wait)
If the target task is in a wait state, one of the following causes of wait is returned. The values of the re-
spective causes of wait are listed below. If the task status is other than a wait state (TTS_WAI or
TTS_WAS), tskwait is indeterminate.
• TTW_SLP (0x0001) Kept waiting by slp_tsk or tslp_tsk
• TTW_DLY (0x0002) Kept waiting by dly_tsk
• TTW_SEM (0x0004) Kept waiting by wai_sem or twai_sem
• TTW_FLG (0x0008) Kept waiting by wai_flg or twai_flg
• TTW_SDTQ(0x0010) Kept waiting by snd_dtq or tsnd_dtq
• TTW_RDTQ(0x0020) Kept waiting by rcv_dtq or trcv_dtq
• TTW_MBX (0x0040) Kept waiting by rcv_mbx or trcv_mbx
• TTW_MPF (0x2000) Kept waiting by get_mpf or tget_mpf
• TTW_VSDTQ (0x4000) Kept waiting by vsnd_dtq or vtsnd_dtq32
• TTW_VRDTQ(0x8000) Kept waiting by vrcv_dtq or vtrcv_dtq

 wobjid (waiting object ID)
If the target task is in a wait state (TTS_WAI or TTS_WAS), the ID of the waiting target object is re-
turned. Otherwise, wobjid is indeterminate.
 lefttmo(left time before timeout)
If the target task has been placed in WAITING state (TTS_WAI or TTS_WAS) by other than dly_tsk,
the left time before it times out is returned. If the task is kept waiting perpetually, TMO_FEVR is re-
turned. Otherwise, lefttmo is indeterminate.
 actcnt(task activation request)
The number of currently queued task activation request is returned.
 wupcnt (wakeup request count)
The number of currently queued wakeup requests is returned. If the task is in DORMANT state, wupcnt
is indeterminate.
 suscnt (suspension request count)
The number of currently nested suspension requests is returned. If the task is in DORMANT state,
suscnt is indeterminate.

If this service call is to be issued from task context, use ref_tsk; if issued from non-task context, use iref_tsk.

32 TTW_VSDTQ and TTW_VRDTQ are the causes of wait outside the scope of µITRON 4.0 Specification.

- 81 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
 #include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{

T_RTSK rtsk;
ER ercd;
 :
ercd = ref_tsk(ID_main, &rtsk);
 :

}
<<Example statement in assembly language>>
_refdata: .blkb 26
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R2
 PUSH.L A1
 ref_tsk #TSK_SELF,#_refdata

 :

- 82 -

ref_tst Reference task status (simplified version)
iref_tst Reference task status (simplified version, handler

only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = ref_tst(ID tskid, T_RTST *pk_rtst);
ER ercd = iref_tst(ID tskid, T_RTST *pk_rtst);

 PPaarraammeetteerrss
ID tskid ID number of the target task

T_RTST *pk_rtst Pointer to the packet to which task status is returned

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)

Contents of pk_rtsk
typedef struct t_rtst{

STAT tskstat +0 2 Task status
STAT tskwait +2 2 Cause of wait

} T_RTST;

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
ref_tst TSKID, PK_RTST
iref_tst TSKID, PK_RTST

 PPaarraammeetteerrss
TSKID ID number of the target task

PK_RTST Pointer to the packet to which task status is returned

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

A0 ID number of the target task

A1 Pointer to the packet to which task status is returned

[[[[EErrrroorr ccooddee]]]]

None

- 83 -

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call inspects the status of the task indicated by tskid and returns the current information on that task to the area
pointed to by pk_rtst as a return value. If TSK_SELF is specified, the status of the issuing task itself is inspected. If
TSK_SELF is specified for tskid in non-task context, operation of the service call cannot be guaranteed.

 tskstat (task status)
tskstat has one of the following values returned to it depending on the status of the specified task.
• TTS_RUN(0x0001) RUNNING state
• TTS_RDY(0x0002) READY state
• TTS_WAI(0x0004) WAITING state
• TTS_SUS(0x0008) SUSPENDED state
• TTS_WAS(0x000C) WAITING-SUSPENDED state
• TTS_DMT(0x0010) DORMANT state

 tskwait (cause of wait)
If the target task is in a wait state, one of the following causes of wait is returned. The values of the respective
causes of wait are listed below. If the task status is other than a wait state (TTS_WAI or TTS_WAS), tskwait is
indeterminate.
• TTW_SLP (0x0001) Kept waiting by slp_tsk or tslp_tsk
• TTW_DLY (0x0002) Kept waiting by dly_tsk
• TTW_SEM (0x0004) Kept waiting by wai_sem or twai_sem
• TTW_FLG (0x0008) Kept waiting by wai_flg or twai_flg
• TTW_SDTQ(0x0010) Kept waiting by snd_dtq or tsnd_dtq
• TTW_RDTQ(0x0020) Kept waiting by rcv_dtq or trcv_dtq
• TTW_MBX (0x0040) Kept waiting by rcv_mbx or trcv_mbx
• TTW_MPF (0x2000) Kept waiting by get_mpf or tget_mpf
• TTW_VSDTQ (0x4000) Kept waiting by vsnd_dtq or vtsnd_dtq33
• TTW_VRDTQ(0x8000) Kept waiting by vrcv_dtq or vtrcv_dtq

If this service call is to be issued from task context, use ref_tst; if issued from non-task context, use iref_tst.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>

#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{

T_RTST rtst;
ER ercd;
 :
ercd = ref_tst(ID_main, &rtst);
 :

}
<<Example statement in assembly language>>
_refdata: .blkb 4
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R2
 PUSH.L A1
 ref_tst #ID_TASK2,#_refdata

 :

33 TTW_VSDTQ and TTW_VRDTQ are the causes of wait outside the scope of µITRON 4.0 Specification.

- 84 -

5.2 Task Dependent Synchronization Function
Specifications of the task-dependent synchronization function are listed in below.

Table 5.3 Specifications of the Task Dependent Synchronization Function

No. Item Content
1 Maximum value of task wakeup request count 255
2 Maximum number of nested forcible task wait requests count 1

Table 5.4 List of Task Dependent Synchronization Service Call

System State No. Service Call Function
T N E D U L

1 slp_tsk [S][B] Puts task to sleep O O O
2 tslp_tsk [S] Puts task to sleep (with timeout) O O O
3 wup_tsk [S][B] O O O O
4 iwup_tsk [S][B]

 O O O O

5 can_wup [B] O O O O
6 ican_wup

 O O O O

7 rel_wai [S][B] O O O O
8 irel_wai [S][B]

Releases task from waiting
 O O O O

9 sus_tsk [S][B] O O O O
10 isus_tsk

Suspends task
 O O O O

11 rsm_tsk [S][B] O O O O
12 irsm_tsk

Wakes up task
 O O O O

13 frsm_tsk [S] O O O O
14 ifrsm_tsk

Cancels wakeup request
 O O O O

15 dly_tsk [S][B] Delays task O O O

 Notes:

• [S]: Standard profile service calls
[B]: Basic profile service calls

• Each sign within " System State " is a following meaning.
♦ T: Can be called from task context
♦ N: Can be called from non-task context
♦ E: Can be called from dispatch-enabled state
♦ D: Can be called from dispatch-disabled state
♦ U: Can be called from CPU-unlocked state
♦ L: Can be called from CPU-locked state

- 85 -

slp_tsk Put task to sleep
tslp_tsk Put task to sleep (with timeout)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = slp_tsk();
ER ercd = tslp_tsk(TMO tmout);

 PPaarraammeetteerrss
 slp_tsk

None
 tslp_tsk

TMO tmout Timeout value

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
slp_tsk
tslp_tsk TMO

 PPaarraammeetteerrss
TMO Timeout value

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
tslp_tsk

Register name Content after service call is issued

R0 Error code

R6R4 Timeout value

slp_tsk
Register name Content after service call is issued

R0 Error code

[[[[EErrrroorr ccooddee]]]]

E_TMOUT Timeout
E_RLWAI Forced release from waiting

- 86 -

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call places the issuing task itself from RUNNING state into sleeping wait state. The task placed into WAIT-
ING state by execution of this service call is released from the wait state in the following cases:

 When a task wakeup service call is issued from another task or an interrupt
The error code returned in this case is E_OK.
 When a forcible awaking service call is issued from another task or an interrupt
The error code returned in this case is E_RLWAI.
 When the first time tick occurred after tmout elapsed (for tslp_tsk)
The error code returned in this case is E_TMOUT.

If the task receives sus_tsk issued from another task while it has been placed into WAITING state by this service call, it
goes to WAITING-SUSPENDED state. In this case, even when the task is released from WAITING state by a task wakeup
service call, it still remains in SUSPENDED state, and its execution cannot be resumed until rsm_tsk is issued.

The service call tslp_tsk may be used to place the issuing task into sleeping state for a given length of time by specifying
tmout in a parameter to it. The parameter tmout is expressed in ms units. For example, if this service call is written as
tslp_tsk(10);, then the issuing task is placed from RUNNING state into WAITING state for a period of 10 ms. If specified
as tmout =TMO_FEVR(–1), the task will be kept waiting perpetually, with the service call operating the same way as
slp_tsk.

The values specified for tmout must be within (0x7FFFFFFF-time tick value). If any value exceeding this limit is specified,
operation of the service call cannot be guaranteed.

This service call can only be issued from task context, and cannot be issued from non-task context.

- 87 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :

if(slp_tsk() != E_OK)
error(“Forced wakeup\n”);

 :
if(tslp_tsk(10) == E_TMOUT)

error(“time out\n”);
 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 slp_tsk
 :
 PUSHM R6R4
 tslp_tsk #TMO_FEVR

 :
 PUSHM R6R4
 tslp_tsk #100

 :

- 88 -

wup_tsk Wakeup task
iwup_tsk Wakeup task (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = wup_tsk(ID tskid);
ER ercd = iwup_tsk(ID tskid);

 PPaarraammeetteerrss
ID tskid ID number of the target task

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
wup_tsk TSKID
iwup_tsk TSKID

 PPaarraammeetteerrss
TSKID ID number of the target task

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 ID number of the target task

[[[[EErrrroorr ccooddee]]]]

E_OBJ Object status invalid(task indicated by tskid is an inactive state)
E_QOVR Queuing overflow

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
If the task specified by tskid has been placed into WAITING state by slp_tsk or tslp_tsk, this service call wakes up the task
from WAITING state to place it into READY or RUNNING state. Or if the task specified by tskid is in WAIT-
ING-SUSPENDED state, this service call awakes the task from only the sleeping state so that the task goes to SUS-
PENDED state.

If a wakeup request is issued while the target task remains in DORMANT state, the error code E_OBJ is returned to the
service call issuing task. If TSK_SELF is specified for tskid, it means specifying the issuing task itself. If TSK_SELF is
specified for tskid in non-task context, operation of the service call cannot be guaranteed.

If this service call is issued to a task that has not been placed in WAITING state or in WAITING-SUSPENDED state by
execution of slp_tsk or tslp_tsk, the wakeup request is accumulated. More specifically, the wakeup request count for the
target task to be awakened is incremented by 1, in which way wakeup requests are accumulated.

The maximum value of the wakeup request count is 255. If while the wakeup request count = 255 a new wakeup request is
generated exceeding this limit, the error code E_QOVR is returned to the task that issued the service call, with the wakeup
request count left intact.

If this service call is to be issued from task context, use wup_tsk; if issued from non-task context, use iwup_tsk.

- 89 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :
 if(wup_tsk(ID_main) != E_OK)
 printf(“Can’t wakeup main()\n”);
 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R2
 wup_tsk #ID_TASK1
 :

- 90 -

can_wup Cancel wakeup request
ican_wup Cancel wakeup request (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER_UINT wupcnt = can_wup(ID tskid);
ER_UINT wupcnt = icaｎ_wup(ID tskid);

 PPaarraammeetteerrss
ID tskid ID number of the target task

 RReettuurrnn PPaarraammeetteerrss
ER_UINT wupcnt > 0 Canceled wakeup request count
 wupcnt <0 Error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
can_wup TSKID
ican_wup TSKID

 PPaarraammeetteerrss
TSKID ID number of the target task

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R2R0 Error code,Canceled wakeup request count

[[[[EErrrroorr ccooddee]]]]

E_OBJ Object status invalid(task indicated by tskid is an inactive state)

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call clears the wakeup request count of the target task indicated by tskid to 0. This means that because the tar-
get task was in either WAITING state nor WAITING-SUSPENDED state when an attempt was made to wake it up by
wup_tsk or iwup_tsk before this service call was issued, the attempt resulted in only accumulating wakeup requests and this
service call clears all of those accumulated wakeup requests.

Furthermore, the wakeup request count before being cleared to 0 by this service call, i.e., the number of wakeup requests
that were issued in vain (wupcnt) is returned to the issuing task. If a wakeup request is issued while the target task is in
DORMANT state, the error code E_OBJ is returned. If TSK_SELF is specified for tskid, it means specifying the issuing
task itself. If TSK_SELF is specified for tskid in non-task context, operation of this service call cannot be guaranteed.

If this service call is to be issued from task context, use can_wup; if issued from non-task context, use ican_wup.

- 91 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 ER_UINT wupcnt;
 :

wupcnt = can_wup(ID_main);
if(wup_cnt > 0)

printf(“wupcnt = %d\n”,wupcnt);
 :

}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 can_wup #ID_TASK3
 :

- 92 -

rel_wai Release task from waiting
irel_wai Release task from waiting (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = rel_wai(ID tskid);
ER ercd = irel_wai(ID tskid);

 PPaarraammeetteerrss
ID tskid ID number of the target task

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
rel_wai TSKID
irel_wai TSKID

 PPaarraammeetteerrss
TSKID ID number of the target task

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 ID number of the target task

[[[[EErrrroorr ccooddee]]]]

E_OBJ Object status invalid(task indicated by tskid is not an wait state)

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call forcibly release the task indicated by tskid from waiting (except SUSPENDED state) to place it into
READY or RUNNING state. The forcibly released task returns the error code E_RLWAI. If the target task has been en-
queued in some waiting queue, the task is dequeued from it by execution of this service call.

If this service call is issued to a task in WAITING-SUSPENDED state, the target task is released from WAITING state and
goes to SUSPENDED state.34

If the target task is not in WAITING state, the error code E_OBJ is returned. This service call forbids specifying the issuing
task itself for tskid.

If this service call is to be issued from task context, use rel_wai; if issued from non-task context, use irel_wai.

34 This means that tasks cannot be resumed from SUSPENDED state by this service call. Only the rsm_tsk, irsm_tsk, frsm_tsk, and
ifrsm_tsk service calls can release them from SUSPENDED state.

- 93 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :

if(rel_wai(ID_main) != E_OK)
error(“Can’t rel_wai main()\n”);

 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R2
 rel_wai #ID_TASK2
 :

- 94 -

sus_tsk Suspend task
isus_tsk Suspend task (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = sus_tsk(ID tskid);
ER ercd = isus_tsk(ID tskid);

 PPaarraammeetteerrss
ID tskid ID number of the target task

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
sus_tsk TSKID
isus_tsk TSKID

 PPaarraammeetteerrss
TSKID ID number of the target task

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 ID number of the target task

[[[[EErrrroorr ccooddee]]]]

E_OBJ Object status invalid(task indicated by tskid is an inactive state)
E_QOVR Queuing overflow

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call aborts execution of the task indicated by tskid and places it into SUSPENDED state. Tasks are resumed
from this SUSPENDED state by the rsm_tsk, irsm_tsk, frsm_tsk, or ifrsm_tsk service call. If the task indicated by tskid is
in DORMANT state, it returns the error code E_OBJ as a return value for the service call.

The maximum number of suspension requests by this service call that can be nested is 1. If this service call is issued to a
task which is already in SUSPENDED state, the error code E_QOVR is returned.

This service call forbids specifying the issuing task itself for tskid.

If this service call is to be issued from task context, use sus_tsk; if issued from non-task context, use isus_tsk.

- 95 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{

 :
if(sus_tsk(ID_main) != E_OK)

printf(“Can’t suspend task main()\n”);
 :

}
<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R2
 sus_tsk #ID_TASK2
 :

- 96 -

rsm_tsk Resume suspended task
irsm_tsk Resume suspended task(handler only)
frsm_tsk Forcibly resume suspended task
ifrsm_tsk Forcibly resume suspended task(handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = rsm_tsk(ID tskid);
ER ercd = irsm_tsk(ID tskid);
ER ercd = frsm_tsk(ID tskid);
ER ercd = ifrsm_tsk(ID tskid);

 PPaarraammeetteerrss
ID tskid ID number of the target task

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
rsm_tsk TSKID
irsm_tsk TSKID
frsm_tsk TSKID
ifrsm_tsk TSKID

 PPaarraammeetteerrss
TSKID ID number of the target task

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 ID number of the target task

[[[[EErrrroorr ccooddee]]]]

E_OBJ Object status invalid(task indicated by tskid is not a forcible wait state)

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
If the task indicated by tskid has been aborted by sus_tsk, this service call resumes the target task from SUSPENDED state.
In this case, the target task is linked to behind the tail of the ready queue. In the case of frsm_tsk and ifrsm_tsk, the task is
forcibly resumed from SUSPENDED state.

If a request is issued while the target task is not in SUSPENDED state (including DORMANT state), the error code E_OBJ
is returned to the service call issuing task.

The rsm_tsk, irsm_tsk, frsm_tsk, and ifrsm_tsk service calls each operate the same way, because the maximum number of
forcible wait requests that can be nested is 1.

If this service call is to be issued from task context, use rsm_tsk/frsm_tsk; if issued from non-task context, use
irsm_tsk/ifrsm_tsk.

- 97 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task1()
{

 :
if(rsm_tsk(ID_main) != E_OK)

printf(“Can’t resume main()\n”);
 :
 :
if(frsm_tsk(ID_task2) != E_OK)

printf(“Can’t forced resume task2()\n”);
 :

}
<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R2
 rsm_tsk #ID_TASK2
 :
 PUSH.W R2
 frsm_tsk #ID_TASK1
 :

- 98 -

dly_tsk Delay task

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = dly_tsk(RELTIM dlytim);

 PPaarraammeetteerrss
RELTIM dlytim Delay time

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
dly_tsk RELTIM

 PPaarraammeetteerrss
RELTIM Delay time

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R6R4 Delay time

[[[[EErrrroorr ccooddee]]]]

E_RLWAI Forced release from waiting

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call temporarily stops execution of the issuing task itself for a duration of time specified by dlytim to place the
task from RUNNING state into WAITING state. In this case, the task is released from the WAITING state at the first time
tick after the time specified by dlytim has elapsed. Therefore, if specified dlytim = 0, the task is placed into WAITING state
briefly and then released from the WAITING state at the first time tick.

The task placed into WAITING state by invocation of this service call is released from the WAITING state in the following
cases. Note that when released from WAITING state, the task that issued the service call is removed from the timeout
waiting queue and linked to a ready queue.

 When the first time tick occurred after dlytim elapsed
The error code returned in this case is E_OK.
 When the rel_wai or irel_wai service call is issued before dlytim elapses
The error code returned in this case is E_RLWAI.

Note that even when the wup_tsk or iwup_tsk service call is issued during the delay time, the task is not released from
WAITING state.

The delay time dlytim is expressed in ms units. Therefore, if specified as dly_tsk(50);, the issuing task is placed from
RUNNING state into a delayed wait state for a period of 50 ms.

The values specified for dlytim must be within (0x7FFFFFFF- time tick value). If any value exceeding this limit is speci-
fied, the service call may not operate correctly.

This service call can be issued only from task context. It cannot be issued from non-task context.

- 99 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :

if(dly_tsk() != E_OK)
error(“Forced wakeup\n”);

 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 PUSHM R6R4
 dly_tsk #500

 :

- 100 -

5.3 Synchronization & Communication Function (Semaphore)
Specifications of the semaphore function of MR100 are listed in Table 5.5.

Table 5.5 Specifications of the Semaphore Function

No. Item Content
1 Semaphore ID 1-255
2 Maximum number of resources 1-65535

TA_FIFO: Tasks enqueued in order of FIFO 3 Semaphore attribute
TA_TPRI: Tasks enqueued in order of priority

Table 5.6 List of Semaphore Function Service Call

System State No. Service Call Function
T N E D U L

1 sig_sem [S][B] O O O O
2 isig_sem [S][B]

Releases semaphore resource
 O O O O

3 wai_sem [S][B] Acquires semaphore resource O O O
4 pol_sem [S][B] O O O O
5 ipol_sem

Acquires semaphore resource(polling)
 O O O O

6 twai_sem [S] Acquires semaphore resource(with timeout) O O O
7 ref_sem O O O O
8 iref_sem

References semaphore status
 O O O O

 Notes:

• [S]: Standard profile service calls
[B]: Basic profile service calls

• Each sign within " System State " is a following meaning.
♦ T: Can be called from task context
♦ N: Can be called from non-task context
♦ E: Can be called from dispatch-enabled state
♦ D: Can be called from dispatch-disabled state
♦ U: Can be called from CPU-unlocked state
♦ L: Can be called from CPU-locked state

- 101 -

sig_sem Release semaphore resource
isig_sem Release semaphore resource (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = sig_sem(ID semid);
ER ercd = isig_sem(ID semid);

 PPaarraammeetteerrss
ID semid Semaphore ID number to which returned

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
sig_sem SEMID
isig_sem SEMID

 PPaarraammeetteerrss
SEMID Semaphore ID number to which returned

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 Semaphore ID number to which returned

[[[[EErrrroorr ccooddee]]]]

E_QOVR Queuing overflow

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call releases one resource to the semaphore indicated by semid.

If tasks are enqueued in a waiting queue for the target semaphore, the task at the top of the queue is placed into READY
state. Conversely, if no tasks are enqueued in that waiting queue, the semaphore resource count is incremented by 1. If an
attempt is made to return resources (sig_sem or isig_sem service call) causing the semaphore resource count value to ex-
ceed the maximum value specified in a configuration file (maxsem), the error code E_QOVR is returned to the service call
issuing task, with the semaphore count value left intact.

If this service call is to be issued from task context, use sig_sem; if issued from non-task context, use isig_sem.

- 102 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :

if(sig_sem(ID_sem) == E_QOVR)
 error(“Overflow\n”);

 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R2
 sig_sem #ID_SEM2

 :

- 103 -

wai_sem Acquire semaphore resource
pol_sem Acquire semaphore resource (polling)
ipol_sem Acquire semaphore resource (polling, handler only)
twai_sem Acquire semaphore resource(with timeout)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = wai_sem(ID semid);
ER ercd = pol_sem(ID semid);
ER ercd = ipol_sem(ID semid);
ER ercd = twai_sem(ID semid, TMO tmout);

 PPaarraammeetteerrss
ID semid Semaphore ID number to be acquired

TMO tmout Timeout value (for twai_sem)

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
wai_sem SEMID
pol_sem SEMID
ipol_sem SEMID
twai_sem SEMID,TMO

 PPaarraammeetteerrss
SEMID Semaphore ID number to be acquired

TMO Timeout value(twai_sem)

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
wai_sem,pol_sem,ipol_sem

Register name Content after service call is issued

R0 Error code

R2 Semaphore ID number to be acquired

twai_sem
Register
name

Content after service call is issued

R0 Error code

R2 Semaphore ID number to be acquired

R6R4 Timeout value

[[[[EErrrroorr ccooddee]]]]

E_RLWAI Forced release from waiting
E_TMOUT Polling failure or timeout

- 104 -

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call acquires one semaphore resource from the semaphore indicated by semid.

If the semaphore resource count is equal to or greater than 1, the semaphore resource count is decremented by 1, and the
service call issuing task continues execution. On the other hand, if the semaphore count value is 0, the wai_sem or
twai_sem service call invoking task is enqueued in a waiting queue for that semaphore. If the attribute of the semaphore
semid is TA_TFIFO, the task is enqueued in order of FIFO; if TA_TPRI, the task is enqueued in order of priority. For the
pol_sem and ipol_sem service calls, the task returns immediately and responds to the call with the error code E_TMOUT.

For the twai_sem service call, specify a wait time for tmout in ms units. The values specified for tmout must be within
(0x7FFFFFFF-time tick value). If any value exceeding this limit is specified, operation of the service call cannot be guar-
anteed. If TMO_POL=0 is specified for tmout, it means specifying 0 as a timeout value, in which case the service call op-
erates the same way as pol_sem. Furthermore, if specified as tmout=TMO_FEVR(–1), it means specifying an infinite wait,
in which case the service call operates the same way as wai_sem.

The task placed into WAITING state by execution of the wai_sem or twai_sem service call is released from the WAITING
state in the following cases:

 When the sig_sem or isig_sem service call is issued before the tmout time elapses, with
task-awaking conditions thereby satisfied
The error code returned in this case is E_OK.
 When the first time tick occurred after tmout elapsed while task-awaking conditions remain un-
satisfied
The error code returned in this case is E_TMOUT.
 When the task is forcibly released from WAITING state by the rel_wai or irel_wai service call is-
sued from another task or a handler
The error code returned in this case is E_RLWAI.

If this service call is to be issued from task context, use wai_sem, twai_sem, or pol_sem; ; if issued from non-task context,
use ipol_sem.

- 105 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :
 if(wai_sem(ID_sem) != E_OK)
 printf(“Forced wakeup\n”);
 :
 if(pol_sem(ID_sem) != E_OK)
 printf(“Timeout\n”);
 :

if(twai_sem(ID_sem, 10) != E_OK)
printf(“Forced wakeup or Timeout”n”);

 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R2
 pol_sem #ID_SEM1

 :
 PUSH.W R2
 wai_sem #ID_SEM2

 :
 PUSH.W R2
 PUSH.L R6R4
 twai_sem #ID_SEM3,300

 :

- 106 -

ref_sem Reference semaphore status
iref_sem Reference semaphore status (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = ref_sem(ID semid, T_RSEM *pk_rsem);
ER ercd = iref_sem(ID semid, T_RSEM *pk_rsem);

 PPaarraammeetteerrss
ID semid ID number of the target semaphore

T_RSEM *pk_rsem Pointer to the packet to which semaphore status is returned

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)
T_RSEM *pk_rsem Pointer to the packet to which semaphore status is returned

Contents of pk_rsem
typedef struct t_rsem{

ID wtskid +0 2 ID number of the task at the head of the semaphore’s wait queue
UINT semcnt +2 4 Current semaphore resource count

} T_RSEM;

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]
.include mr100.inc
ref_sem SEMID, PK_RSEM
iref_sem SEMID, PK_RSEM

 PPaarraammeetteerrss
SEMID ID number of the target semaphore

PK_RSEM Pointer to the packet to which semaphore status is returned

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 ID number of the target semaphore

A1 Pointer to the packet to which semaphore status is returned

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call returns various statuses of the semaphore indicated by semid.

 wtskid
Returned to wtskid is the ID number of the task at the head of the semaphore’s wait queue (the next task to be
dequeued). If no tasks are kept waiting, TSK_NONE is returned.
 semcnt
Returned to semcnt is the current semaphore resource count.
If this service call is to be issued from task context, use ref_sem; if issued from non-task context, use iref_sem.

- 107 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
 #include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{

T_RSEM rsem;
ER ercd;
 :
ercd = ref_sem(ID_sem1, &rsem);
 :

}
<<Example statement in assembly language>>
_ refsem: .blkb 6
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R2
 PUSH.L A1
 ref_sem #ID_SEM1,#_refsem
 :

- 108 -

5.4 Synchronization & Communication Function (Eventflag)
Specifications of the eventflag function of MR100 are listed in Table 5.7.

Table 5.7 Specifications of the Eventflag Function

No. Item Content
1 Event0flag ID 1-255
2 Number of bits comprising eventflag 32 bits

TA_TFIFO: Waiting tasks enqueued in order of FIFO
TA_TPRI: Waiting tasks enqueued in order of priority
TA_WSGL: Multiple tasks cannot be kept waiting
TA_WMUL: Multiple tasks can be kept waiting

3 Eventflag attribute

TA_CLR: Bit pattern cleared when waiting task is released

Table 5.8 List of Eventflag Function Service Call

System State No. Service Call Function
T N E D U L

1 set_flg [S][B] O O O O
2 iset_flg [S][B]

Sets eventflag
 O O O O

3 clr_flg [S][B] O O O O
4 iclr_flg

Clears eventflag
 O O O O

5 wai_flg [S][B] Waits for eventflag O O O
6 pol_flg [S][B] O O O O
7 ipol_flg [S]

Waits for eventflag (polling)
 O O O O

8 twai_flg [S] Waits for eventflag (with timeout) O O O
9 ref_flg O O O O

10 iref_flg
References eventflag status

 O O O O

 Notes:

• [S]: Standard profile service calls
[B]: Basic profile service calls

• Each sign within " System State " is a following meaning.
♦ T: Can be called from task context
♦ N: Can be called from non-task context
♦ E: Can be called from dispatch-enabled state
♦ D: Can be called from dispatch-disabled state
♦ U: Can be called from CPU-unlocked state
♦ L: Can be called from CPU-locked state

- 109 -

set_flg Set eventflag
iset_flg Set eventflag (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = set_flg(ID flgid, FLGPTN setptn);
ER ercd = iset_flg(ID flgid, FLGPTN setptn);

 PPaarraammeetteerrss
ID flgid ID number of the eventflag to be set

FLGPTN setptn Bit pattern to be set

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
set_flg FLGID,SETPTN
iset_flg FLGID,SETPTN

 PPaarraammeetteerrss
FLGID ID number of the eventflag to be set

SETPTN Bit pattern to be set

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 Eventflag ID number

A1 Bit pattern to be set

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
Of the 32-bit eventflag indicated by flgid, this service call sets the bits indicated by setptn. In other words, the value of the
eventflag indicated by flgid is OR’d with setptn. If the alteration of the eventflag value results in task-awaking conditions
for a task that has been kept waiting for the eventflag by the wai_flg or twai_flg service call becoming satisfied, the task is
released from WAITING state and placed into READY or RUNNING state.

Task-awaking conditions are evaluated sequentially beginning with the top of the waiting queue. If TA_WMUL is specified
as an eventflag attribute, multiple tasks kept waiting for the eventflag can be released from WAITING state at the same
time by one set_flg or iset_flg service call issued. Furthermore, if TA_CLR is specified for the attribute of the target event-
flag, all bit patterns of the eventflag are cleared, with which processing of the service call is terminated.

If all bits specified in setptn are 0, no operation will be performed for the target eventflag, in which case no errors are as-
sumed, however.

If this service call is to be issued from task context, use set_flg; if issued from non-task context, use iset_flg.

- 110 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task(void)
{
 :
 set_flg(ID_flg,(FLGPTN)0xff000000);
 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R2
 PUSH.L A1
 set_flg #ID_FLG3,#0ff000000H

 :

- 111 -

clr_flg Clear eventflag
iclr_flg Clear eventflag (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = clr_flg(ID flgid, FLGPTN clrptn);
ER ercd = iclr_flg(ID flgid, FLGPTN clrptn);

 PPaarraammeetteerrss
ID flgid ID number of the eventflag to be cleared

FLGPTN clrptn Bit pattern to be cleared

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
clr_flg FLGID,CLRPTN
iclr_flg FLGID,CLRPTN

 PPaarraammeetteerrss
FLGID ID number of the eventflag to be cleared

CLRPTN Bit pattern to be cleared

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 ID number of the eventflag to be cleared

A1 Bit pattern to be cleared

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
Of the 32-bit eventflag indicated by flgid, this service call clears the bits whose corresponding values in clrptn are 0. In
other words, the eventflag bit pattern indicated by flgid is updated by AND’ing it with clrptn. If all bits specified in clrptn
are 1, no operation will be performed for the target eventflag, in which case no errors are assumed, however.

If this service call is to be issued from task context, use clr_flg; if issued from non-task context, use iclr_flg.35

35 When iclr_flg is issued from interruption generated during set_flg or iset_flg service call execution, the indivisibility of a service call is not
guaranteed. That is, if there are two or more tasks which are waiting by the same bit pattern in the waiting queue, some tasks are released
and some tasks are not released by the timing of interruption generating.

- 112 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task(void)
{
 :
 clr_flg(ID_flg,(FLGPTN) 0xf0f0f0f0);
 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R2
 PUSH.L A1
 clr_flg #ID_FLG1,#0f0f0f0f0H

 :

- 113 -

wai_flg Wait for eventflag
pol_flg Wait for eventflag(polling)
ipol_flg Wait for eventflag(polling, handler only)
twai_flg Wait for eventflag(with timeout)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = wai_flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);
ER ercd = pol_flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);
ER ercd = ipol_flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);
ER ercd = twai_flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn,

 TMO tmout);

 PPaarraammeetteerrss
ID flgid ID number of the eventflag waited for

FLGPTN waiptn Wait bit pattern

MODE wfmode Wait mode

FLGPTN *p_flgptn Pointer to the area to which bit pattern is returned when released from wait

TMO tmout Timeout value (for twai_flg)

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code
FLGPTN *p_flgptn Pointer to the area to which bit pattern is returned when released from wait

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]
.include mr100.inc
wai_flg FLGID, WAIPTN, WFMODE
pol_flg FLGID, WAIPTN, WFMODE
ipol_flg FLGID, WAIPTN, WFMODE
twai_flg FLGID, WAIPTN, WFMODE, TMO

 PPaarraammeetteerrss
FLGID ID number of the eventflag waited for

WAIPTN Wait bit pattern

WFMODE Wait mode

TMO Timeout value (for twai_flg)

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
wai_sem,pol_sem,ipol_sem

Register name Content after service call is issued

R0 Error code

R3R1 bit pattern is returned when released from wait

R2 ID number of the eventflag waited for

A1 Wait bit pattern

twai_sem
Register name Content after service call is issued

R0 Error code

R3R1 bit pattern is returned when released from wait

R2 ID number of the eventflag waited for

R6R4 Timeout value

A1 Wait bit pattern

- 114 -

[[[[EErrrroorr ccooddee]]]]

E_RLWAI Forced release from waiting
E_TMOUT Polling failure or timeout or timed out
E_ILUSE Service call improperly used (Tasks present waiting for TA_WSGL attribute eventflag)

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]

This service call waits until the eventflag indicated by flgid has its bits specified by waiptn set according to
task-awaking conditions indicated by wfmode. Returned to the area pointed to by p_flgptn is the eventflag bit pat-
tern at the time the task is released from WAITING state.
If the target eventflag has the TA_WSGL attribute and there are already other tasks waiting for the eventflag, the
error code E_ILUSE is returned.
If task-awaking conditions have already been met when this service call is invoked, the task returns immediately and
responds to the call with E_OK. If task-awaking conditions are not met and the invoked service call is wai_flg or
twai_flg, the task is enqueued in an eventflag waiting queue. In that case, if the attribute of the specified eventflag is
TA_TFIFO, the task is enqueued in order of FIFO; if TA_TPRI, the task is enqueued in order of priority. For the
pol_flg and ipol_flg service calls, the task returns immediately and responds to the call with the error code
E_TMOUT.
For the twai_flg service call, specify a wait time for tmout in ms units. The values specified for tmout must be with-
in (0x7FFFFFFF-time tick value). If any value exceeding this limit is specified, the service call may not operate
correctly. If TMO_POL=0 is specified for tmout, it means specifying 0 as a timeout value, in which case the service
call operates the same way as pol_flg. Furthermore, if specified as tmout=TMO_FEVR(–1), it means specifying an
infinite wait, in which case the service call operates the same way as wai_flg.

The task placed into a wait state by execution of the wai_flg or twai_flg service call is released from WAITING
state in the following cases:

 When task-awaking conditions are met before the tmout time elapses
The error code returned in this case is E_OK.
 When the first time tick occurred after tmout elapsed while task-awaking conditions remain

unsatisfied
The error code returned in this case is E_TMOUT.
 When the task is forcibly released from WAITING state by the rel_wai or irel_wai service call

issued from another task or a handler
The error code returned in this case is E_RLWAI.

The following shows how wfmode is specified and the meaning of each mode.
wfmdoe (wait mode) Meaning
TWF_ANDW Wait until all bits specified by waiptn are set (wait for the bits AND’ed)
TWF_ORW Wait until one of the bits specified by waiptn is set (wait for the bits OR’ed)

If this service call is to be issued from task context, use wai_flg,twai_flg,pol_flg; if issued from non-task context,
use ipol_flg.

- 115 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 UINT flgptn;

 :
if(wai_flg(ID_flg2, (FLGPTN)0x00000ff0, TWF_ANDW, &flgptn)!=E_OK)

 error(“Wait Released\n”);
 :
 :
if(pol_flg(ID_flg2, (FLGPTN)0x00000ff0, TWF_ORW, &flgptn)!=E_OK)
 printf(“Not set EventFlag\n”);
 :
 :
if(twai_flg(ID_flg2, (FLGPTN)0x00000ff0, TWF_ANDW, &flgptn, 5) != E_OK)

 error(“Wait Released\n”);
 :

}
<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R2
 PUSH.L A1
 wai_flg #ID_FLG1,#00000003H,#TWF_ANDW

 :
 PUSH.W R2
 PUSH.L A1
 pol_flg #ID_FLG2,#00000008H,#TWF_ORW

 :
 PUSH.W R2
 PUSH.L A1
 PUSHM R6R4
 wai_flg #ID_FLG3,#00000003H,#TWF_ANDW,20

 :

- 116 -

ref_flg Reference eventflag status
iref_flg Reference eventflag status (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = ref_flg(ID flgid, T_RFLG *pk_rflg);
ER ercd = iref_flg(ID flgid, T_RFLG *pk_rflg);

 PPaarraammeetteerrss
ID flgid ID number of the target eventflag

T_RFLG *pk_rflg Pointer to the packet to which eventflag status is returned

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)
T_RFLG *pk_rflg Pointer to the packet to which eventflag status is returned

Contents of pk_rflg
typedef struct t_rflg{

ID wtskid +0 2 Reception waiting task ID
FLGPTN flgptn +2 4 Current eventflag bit pattern

} T_RFLG;

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
ref_flg FLGID, PK_RFLG
iref_flg FLGID, PK_RFLG

 PPaarraammeetteerrss
FLGID ID number of the target eventflag

PK_RFLG Pointer to the packet to which eventflag status is returned

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 ID number of the target eventflag

A1 Pointer to the packet to which eventflag status is returned

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call returns various statuses of the eventflag indicated by flgid.

 wtskid
Returned to wtskid is the ID number of the task at the top of a waiting queue (the next task to be dequeued). If no
tasks are kept waiting, TSK_NONE is returned.
 flgptn
Returned to flgptn is the current eventflag bit pattern.

If this service call is to be issued from task context, use ref_flg; if issued from non-task context, use iref_flg.

- 117 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
 #include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{

T_RFLG rflg;
ER ercd;
 :
ercd = ref_flg(ID_FLG1, &rflg);
 :

}
<<Example statement in assembly language>>
_ refflg: .blkb 6
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R2
 PUSH.L A1
 ref_flg #ID_FLG1,#_refflg
 :

- 118 -

5.5 Synchronization & Communication Function (Data Queue)
Specifications of the data queue function of MR100 are listed in Table 5.9.

Table 5.9 Specifications of the Data Queue Function

No. Item Content
1 Data queue ID 1-255
2 Capacity (data bytes) in data queue area 0-8191
3 Data size 32 bits

TA_TFIFO: Waiting tasks enqueued in order of FIFO 4 Data queue attribute

TA_TPRI: Waiting tasks enqueued in order of priority

Table 5.10 List of Dataqueue Function Service Call

System State No. Service Call Function
T N E D U L

1 snd_dtq [S] Sends to data queue O O O
2 psnd_dtq [S] O O O O
3 ipsnd_dtq [S]

Sends to data queue (polling)
O O O O

4 tsnd_dtq [S] Sends to data queue (with timeout) O O O
5 fsnd_dtq [S] O O O O
6 ifsnd_dtq [S]

Forced sends to data queue
O O O O

7 rcv_dtq [S] Receives from data queue O O O
8 prcv_dtq [S] O O O O
9 iprcv_dtq

Receives from data queue (polling)
O O O O

10 trcv_dtq [S] Receives from data queue (with timeout) O O O
11 ref_dtq O O O O
12 iref_dtq

References data queue status
 O O O O

 Notes:

• [S]: Standard profile service calls
[B]: Basic profile service calls

• Each sign within " System State " is a following meaning.
♦ T: Can be called from task context
♦ N: Can be called from non-task context
♦ E: Can be called from dispatch-enabled state
♦ D: Can be called from dispatch-disabled state
♦ U: Can be called from CPU-unlocked state
♦ L: Can be called from CPU-locked state

- 119 -

snd_dtq Send to data queue
psnd_dtq Send to data queue (polling)
ipsnd_dtq Send to data queue (polling, handler only)
tsnd_dtq Send to data queue (with timeout)
fsnd_dtq Forced send to data queue
ifsnd_dtq Forced send to data queue (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = snd_dtq(ID dtqid, VP_INT data);
ER ercd = psnd_dtq(ID dtqid, VP_INT data);
ER ercd = ipsnd_dtq(ID dtqid, VP_INT data);
ER ercd = tsnd_dtq(ID dtqid, VP_INT data, TMO tmout);
ER ercd = fsnd_dtq(ID dtqid, VP_INT data);
ER ercd = ifsnd_dtq(ID dtqid, VP_INT data);

 PPaarraammeetteerrss
ID dtqid ID number of the data queue to which transmitted

TMO tmout Timeout value(tsnd_dtq)

VP_INT data Data to be transmitted

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
snd_dtq DTQID, DTQDATA
isnd_dtq DTQID, DTQDATA
psnd_dtq DTQID, DTQDATA
ipsnd_dtq DTQID, DTQDATA
tsnd_dtq DTQID, DTQDATA,TMO
fsnd_dtq DTQID, DTQDATA
ifsnd_dtq DTQID, DTQDATA

 PPaarraammeetteerrss
DTQID ID number of the data queue to which transmitted

DTQDATA Data to be transmitted

TMO Timeout value (tsnd_dtq)

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
snd_dtq,psnd_dtq,ipsnd_dtq,fsnd_dtq,ifsnd_dtq

Register name Content after service call is issued

R0 Error code

R3R1 Data to be transmitted

R2 ID number of the data queue to which transmitted

tsnd_dtq
Register name Content after service call is issued

R0 Error code

R3R1 Data to be transmitted

R2 ID number of the data queue to which transmitted

R6R4 Timeout value

- 120 -

[[[[EErrrroorr ccooddee]]]]
E_RLWAI Forced release from waiting

E_TMOUT Polling failure or timeout or timed out
E_ILUSE Service call improperly used

(fsnd_dtq or ifsnd_dtq is issued for a data queue whose dtqcnt = 0)
EV_RST Released from WAITING state by clearing of the data queue area

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call sends the 4-byte data indicated by data to the data queue indicated by dtqid. If any task is kept waiting for
reception in the target data queue, the data is not stored in the data queue and instead sent to the task at the top of the recep-
tion waiting queue, with which the task is released from the reception wait state.

On the other hand, if snd_dtq or tsnd_dtq is issued for a data queue that is full of data, the task that issued the service call
goes from RUNNING state to a data transmission wait state, and is enqueued in transmission waiting queue, kept waiting
for the data queue to become available. In that case, if the attribute of the specified data queue is TA_TFIFO, the task is
enqueued in order of FIFO; if TA_TPRI, the task is enqueued in order of priority. For psnd_dtq and ipsnd_dtq, the task re-
turns immediately and responds to the call with the error code E_TMOUT.

For the tsnd_dtq service call, specify a wait time for tmout in ms units. The values specified for tmout must be within
(0x7FFFFFFF-time tick value). If any value exceeding this limit is specified, the service call may not operate correctly. If
TMO_POL=0 is specified for tmout, it means specifying 0 as a timeout value, in which case the service call operates the
same way as psnd_dtq. Furthermore, if specified as tmout=TMO_FEVR(–1), it means specifying an infinite wait, in which
case the service call operates the same way as snd_dtq.

If there are no tasks waiting for reception, nor is the data queue area filled, the transmitted data is stored in the data queue.

The task placed into WAITING state by execution of the snd_dtq or tsnd_dtq service call is released from WAITING state
in the following cases:

 When the rcv_dtq, trcv_dtq, prcv_dtq, or iprcv_dtq service call is issued before the tmout time
elapses, with task-awaking conditions thereby satisfied
The error code returned in this case is E_OK.
 When the first time tick occurred after tmout elapsed while task-awaking conditions remain un-
satisfied
The error code returned in this case is E_TMOUT.
 When the task is forcibly released from WAITING state by the rel_wai or irel_wai service call is-
sued from another task or a handler
The error code returned in this case is E_RLWAI.
 When the target data queue being waited for is initialized by the vrst_dtq service call issued
from another task

The error code returned in this case is EV_RST.

For fsnd_dtq and ifsnd_dtq, the data at the top of the data queue or the oldest data is removed, and the transmitted data is
stored at the tail of the data queue. If the data queue area is not filled with data, fsnd_dtq and ifsnd_dtq operate the same
way as snd_dtq. If dtqcnt = 0 ,there is no task in the wait queue and fsnd_dtq or ifsnd_dtq service call is issued, error code
E_ILUSE will be returned.

If this service call is to be issued from task context, use snd_dtq,tsnd_dtq,psnd_dtq,fsnd_dtq; if issued from non-task con-
text, use ipsnd_dtq,ifsnd_dtq.

- 121 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
VP_INT data[10];
void task(void)
{
 :

if(snd_dtq(ID_dtq, data[0]) == E_RLWAI){
 error(“Forced released\n”);
 }
 :

if(psnd_dtq(ID_dtq, data[1])== E_TMOUT){
 error(“Timeout\n”);
 }
 :

if(tsnd_dtq(ID_dtq, data[2], 10) != E_ TMOUT){
 error(“Timeout \n”);
 }
 :

if(fsnd_dtq(ID_dtq, data[3]) != E_OK){
 error(“error\n”);
 }
 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
_g_dtq: .LWORD 12345678H
task:

 :
 PUSH.W R2
 PUSHM R6R4,R3R1
 tsnd_dtq #ID_DTQ1,_g_dtq,#100
 :
 PUSH.W R2
 PUSHM R3R1
 psnd_dtq #ID_DTQ2,#0FFFFFFFFH
 :
 PUSH.W R2
 PUSHM R3R1
 fsnd_dtq #ID_DTQ3,#0ABCDH
 :

- 122 -

rcv_dtq Receive from data queue
prcv_dtq Receive from data queue (polling)
iprcv_dtq Receive from data queue (polling, handler only)
trcv_dtq Receive from data queue (with timeout)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = rcv_dtq(ID dtqid, VP_INT *p_data);
ER ercd = prcv_dtq(ID dtqid, VP_INT *p_data);
ER ercd = iprcv_dtq(ID dtqid, VP_INT *p_data);
ER ercd = trcv_dtq(ID dtqid, VP_INT *p_data, TMO tmout);

 PPaarraammeetteerrss
ID dtqid ID number of the data queue from which to receive

TMO tmout Timeout value (trcv_dtq)

VP_INT *p_data Pointer to the start of the area in which received data is stored

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code
VP_INT *p_data Pointer to the start of the area in which received data is stored

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
rcv_dtq DTQID
prcv_dtq DTQID
iprcv_dtq DTQID
trcv_dtq DTQID,TMO

 PPaarraammeetteerrss
DTQID ID number of the data queue from which to receive

TMO Timeout value (trcv_dtq)

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
rcv_dtq,prcv_dtq,iprcv_dtq

Register name Content after service call is issued

R0 Error code

R3R1 Received data

R2 Data queue ID number

trcv_dtq
Register name Content after service call is issued

R0 Error code

R3R1 Received data

R2 ID number of the data queue from which to receive

R6R4 Timeout value

[[[[EErrrroorr ccooddee]]]]

E_RLWAI Forced release from waiting
E_TMOUT Polling failure or timeout or timed out

- 123 -

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call receives data from the data queue indicated by dtqid and stores the received data in the area pointed to by
p_data. If data is present in the target data queue, the data at the top of the queue or the oldest data is received. This results
in creating a free space in the data queue area, so that a task enqueued in a transmission waiting queue is released from
WAITING state, and starts sending data to the data queue area.

If no data exist in the data queue and there is any task waiting to send data (i.e., data bytes in the data queue area = 0), data
for the task at the top of the data transmission waiting queue is received. As a result, the task kept waiting to send that data
is released from WAITING state.

On the other hand, if rcv_dtq or trcv_dtq is issued for the data queue which has no data stored in it, the task that issued the
service call goes from RUNNING state to a data reception wait state, and is enqueued in a data reception waiting queue. At
this time, the task is enqueued in order of FIFO. For the prcv_dtq and iprcv_dtq service calls, the task returns immediately
and responds to the call with the error code E_TMOUT.

For the trcv_dtq service call, specify a wait time for tmout in ms units. The values specified for tmout must be within
(0x7FFFFFFF-time tick value). If any value exceeding this limit is specified, the service call may not operate correctly. If
TMO_POL=0 is specified for tmout, it means specifying 0 as a timeout value, in which case the service call operates the
same way as prcv_dtq. Furthermore, if specified as tmout=TMO_FEVR(–1), it means specifying an infinite wait, in which
case the service call operates the same way as rcv_dtq.

The task placed into a wait state by execution of the rcv_dtq or trcv_dtq service call is released from the wait state in the
following cases:

 When the rcv_dtq, trcv_dtq, prcv_dtq, or iprcv_dtq service call is issued before the tmout time
elapses, with task-awaking conditions thereby satisfied
The error code returned in this case is E_OK.
 When the first time tick occurred after tmout elapsed while task-awaking conditions remain un-
satisfied
The error code returned in this case is E_TMOUT.
 When the task is forcibly released from WAITING state by the rel_wai or irel_wai service call is-
sued from another task or a handler
The error code returned in this case is E_RLWAI.

If this service call is to be issued from task context, use rcv_dtq,trcv_dtq,prcv_dtq; if issued from non-task context, use
iprcv_dtq.

- 124 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”

void task()
{
 VP_INT data;

 :
if(rcv_dtq(ID_dtq, &data) != E_RLWAI)

error(“forced wakeup\n”);
 :
if(prcv_dtq(ID_dtq, &data) != E_TMOUT)

error(“Timeout\n”);
 :
if(trcv_dtq(ID_dtq, &data, 10) != E_TMOUT)

error(“Timeout \n”);
 :

}
<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R2
 PUSHM R6R4
 trcv_dtq #ID_DTQ1,#TMO_POL
 :
 PUSH.W R2
 prcv_dtq #ID_DTQ2
 :
 PUSH.W R2
 rcv_dtq #ID_DTQ2
 :

- 125 -

ref_dtq Reference data queue status
iref_dtq Reference data queue status (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = ref_dtq(ID dtqid, T_RDTQ *pk_rdtq);
ER ercd = iref_dtq(ID dtqid, T_RDTQ *pk_rdtq);

 PPaarraammeetteerrss
ID dtqid ID number of the target data queue

T_RDTQ *pk_rdtq Pointer to the packet to which data queue status is returned

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)
T_RDTQ *pk_rdtq Pointer to the packet to which data queue status is returned

Contents of pk_rdtq
typedef struct t_rdtq{

ID stskid +0 2 Transmission waiting task ID
ID wtskid +2 2 Reception waiting task ID
UINT sdtqcnt +4 4 Data bytes contained in data queue

} T_RDTQ;

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
ref_dtq DTQID, PK_RDTQ
iref_dtq DTQID, PK_RDTQ

 PPaarraammeetteerrss
DTQID ID number of the target data queue

PK_RDTQ Pointer to the packet to which data queue status is returned

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 ID number of the target data queue

A1 Pointer to the packet to which data queue status is returned

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call returns various statuses of the data queue indicated by dtqid.

 stskid
Returned to stskid is the ID number of the task at the top of a transmission waiting queue (the next task to be de-
queued). If no tasks are kept waiting, TSK_NONE is returned.
 wtskid
Returned to wtskid is the ID number of the task at the top of a reception waiting queue (the next task to be de-
queued). If no tasks are kept waiting, TSK_NONE is returned.
 sdtqcnt
Returned to sdtqcnt is the number of data bytes stored in the data queue area.

If this service call is to be issued from task context, use ref_dtq; if issued from non-task context, use iref_dtq.

- 126 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
 #include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{

T_RDTQ rdtq;
ER ercd;
 :
ercd = ref_dtq(ID_DTQ1, &rdtq);
 :

}
<<Example statement in assembly language>>
_ refdtq: .blkb 8
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R2
 PUSH.L A1
 ref_dtq #ID_DTQ1,#_refdtq
 :

- 127 -

5.6 Synchronization & Communication Function (Mailbox)
Specifications of the mailbox function of MR100 are listed in Table 5.11.

Table 5.11 Specifications of the Mailbox Function

No. Item Content
1 Mailbox ID 1-255

2 Mailbox priority 1-255

TA_TFIFO: Waiting tasks enqueued in order of FIFO
TA_TPRI: Waiting tasks enqueued in order of priority
TA_MFIFO: Messages enqueued in order of FIFO

3 Mailbox attribute

TA_MPRI: Messages enqueued in order of priority

Table 5.12 List of Mailbox Function Service Call

System State No
.

Service Call Function
T N E D U L

1 snd_mbx [S][B] O O O O
2 isnd_mbx

Send to mailbox
 O O O O

3 rcv_mbx [S][B] Receive from mailbox O O O
4 prcv_mbx [S][B] O O O O
5 iprcv_mbx

Receive from mailbox(polling)
 O O O O

6 trcv_mbx [S] Receive from mailbox(with timeout) O O O
7 ref_mbx O O O O
8 iref_mbx

Reference mailbox status
 O O O O

 Notes:

• [S]: Standard profile service calls
[B]: Basic profile service calls

• Each sign within " System State " is a following meaning.
♦ T: Can be called from task context
♦ N: Can be called from non-task context
♦ E: Can be called from dispatch-enabled state
♦ D: Can be called from dispatch-disabled state
♦ U: Can be called from CPU-unlocked state
♦ L: Can be called from CPU-locked state

- 128 -

snd_mbx Send to mailbox
isnd_mbx Send to mailbox (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = snd_mbx(ID mbxid, T_MSG *pk_msg);
ER ercd = isnd_mbx(ID mbxid, T_MSG *pk_msg);

 PPaarraammeetteerrss
ID mbxid ID number of the mailbox to which transmitted

T_MSG *pk_msg Message to be transmitted

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]
.include mr100.inc
snd_mbx MBXID,PK_MBX
isnd_mbx MBXID,PK_MBX

 PPaarraammeetteerrss
MBXID ID number of the mailbox to which transmitted

PK_MBX Message to be transmitted (address)

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 ID number of the mailbox to which transmitted

A1 Message to be transmitted (address)

[[[[SSttrruuccttuurree ooff tthhee mmeessssaaggee ppaacckkeett]]]]

<<Mailbox message header>>
typedef struct t_msg{

VP msghead +0 4 Kernel managed area
} T_MSG;
<<Mailbox message header with priority included>>
typedef struct t_msg{

T_MSG msgque +0 4 Message header
PRI msgpri +2 2 Message priority

} T_MSG;

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call sends the message indicated by pk_msg to the mailbox indicated by mbxid. T_MSG* should be specified
with a 32-bit address. If there is any task waiting to receive a message in the target mailbox, the transmitted message is
passed to the task at the top of the waiting queue, and the task is released from WAITING state.

To send a message to a mailbox whose attribute is TA_MFIFO, add a T_MSG structure at the beginning of the message
when creating it, as shown in the example below.

To send a message to a mailbox whose attribute is TA_MPRI, add a T_MSG_PRI structure at the beginning of the message
when creating it, as shown in the example below.

Messages should always be created in a RAM area regardless of whether its attribute is TA_MFIFO or TA_MPRI.

The T_MSG area is used by the kernel, so that it cannot be rewritten after a message has been sent. If this area is rewritten
before the message is received after it was sent, operation of the service call cannot be guaranteed.

If this service call is to be issued from task context, use snd_mbx; if issued from non-task context, use isnd_mbx.

- 129 -

<<Example format of a message>>

typedef struct user_msg{
 T_MSG t_msg; /* T_MSG structure */
 B data[16]; /* User message data */
} USER_MSG;

<<Example format of a message with priority included>>

typedef struct user_msg{
 T_MSG_PRI t_msg; /* T_MSG_PRI structure */
 B data[16]; /* User message data */
} USER_MSG;

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
typedef struct pri_message
{
 T_MSG_PRI msgheader;
 char body[12];
} PRI_MSG;

void task(void)
{
 PRI_MSG msg;
 :
 msg.msgpri = 5;

 snd_mbx(ID_msg,(T_MSG *)&msg);
 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
_g_userMsg: .blkb 6 ; Header
 .blkb 12 ; Body
task:

 :
 PUSH.W R2
 PUSH.L A1
 snd_mbx #ID_MBX1,#_g_userMsg
 :

- 130 -

rcv_mbx Receive from mailbox
prcv_mbx Receive from mailbox (polling)
iprcv_mbx Receive from mailbox (polling, handler only)
trcv_mbx Receive from mailbox (with timeout)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = rcv_mbx(ID mbxid, T_MSG **ppk_msg);
ER ercd = prcv_mbx(ID mbxid, T_MSG **ppk_msg);
ER ercd = iprcv_mbx(ID mbxid, T_MSG **ppk_msg);
ER ercd = trcv_mbx(ID mbxid, T_MSG **ppk_msg, TMO tmout);

 PPaarraammeetteerrss
ID mbxid ID number of the mailbox from which to receive

TMO tmout Timeout value (for trcv_mbx)

T_MSG **ppk_msg Pointer to the start of the area in which received message is
stored

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code
T_MSG **ppk_msg Pointer to the start of the area in which received message is

stored

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
rcv_mbx MBXID
prcv_mbx MBXID
iprcv_mbx MBXID
trcv_mbx MBXID, TMO

 PPaarraammeetteerrss
MBXID ID number of the mailbox from which to receive

TMO Timeout value (for trcv_mbx)

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
rcv_mbx,prcv_mbx,iprcv_mbx

Register name Content after service call is issued

R0 Error code

R2 ID number of the mailbox from which to receive

A1 Received message

trcv_mbx
Register name Content after service call is issued

R0 Error code

R2 ID number of the mailbox from which to receive

R6R4 Timeout value

A1 Received message

[[[[EErrrroorr ccooddee]]]]

E_RLWAI Forced release from waiting
E_TMOUT Polling failure or timeout or timed out

- 131 -

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call receives a message from the mailbox indicated by mbxid and stores the start address of the received mes-
sage in the area pointed to by ppk_msg. T_MSG** should be specified with a 32-bit address. If data is present in the tar-
get mailbox, the data at the top of the mailbox is received.

On the other hand, if rcv_mbx or trcv_mbx is issued for a mailbox that has no messages in it, the task that issued the ser-
vice call goes from RUNNING state to a message reception wait state, and is enqueued in a message reception waiting
queue. In that case, if the attribute of the specified mailbox is TA_TFIFO, the task is enqueued in order of FIFO; if
TA_TPRI, the task is enqueued in order of priority. For prcv_mbx and iprcv_mbx, the task returns immediately and re-
sponds to the call with the error code E_TMOUT.

For the trcv_mbx service call, specify a wait time for tmout in ms units. The values specified for tmout must be within
0x7FFFFFFF. If any value exceeding this limit is specified, the service call may not operate correctly. If TMO_POL=0 is
specified for tmout, it means specifying 0 as a timeout value, in which case the service call operates the same way as
prcv_mbx. Furthermore, if specified as tmout=TMO_FEVR(–1), it means specifying an infinite wait, in which case the
service call operates the same way as rcv_mbx.

The task placed into WAITING state by execution of the rcv_mbx or trcv_mbx service call is released from WAITING state
in the following cases:

 When the rcv_mbx, trcv_mbx, prcv_mbx, or iprcv_mbx service call is issued before the tmout
time elapses, with task-awaking conditions thereby satisfied
The error code returned in this case is E_OK.
 When the first time tick occurred after tmout elapsed while task-awaking conditions remain un-
satisfied
The error code returned in this case is E_TMOUT.
 When the task is forcibly released from WAITING state by the rel_wai or irel_wai service call is-
sued from another task or a handler
The error code returned in this case is E_RLWAI.

If this service call is to be issued from task context, use rcv_mbx,trcv_mbx,prcv_mbx; if issued from non-task context, use
iprcv_mbx.

- 132 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”

typedef struct fifo_message
{
 T_MSG head;
 char body[12];
} FIFO_MSG;
void task()
{
 FIFO_MSG *msg;

 :
if(rcv_mbx((T_MSG **)&msg, ID_mbx) == E_RLWAI)

error(“forced wakeup\n”);
 :
 :
if(prcv_mbx((T_MSG **)&msg, ID_mbx) != E_TMOUT)

error(“Timeout\n”);
 :
 :
if(trcv_mbx((T_MSG **)&msg, ID_mbx,10) != E_TMOUT)

error(“Timeout\n”);
 :

}
<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R2
 PUSHM R6R4
 trcv_mbx #ID_MBX1,#100
 :
 PUSH.W R2
 rcv_mbx #ID_MBX1
 :
 PUSH.W R2
 prcv_mbx #ID_MBX1
 :

- 133 -

ref_mbx Reference mailbox status
iref_mbx Reference mailbox status (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = ref_mbx(ID mbxid, T_RMBX *pk_rmbx);
ER ercd = iref_mbx(ID mbxid, T_RMBX *pk_rmbx);

 PPaarraammeetteerrss
ID mbxid ID number of the target mailbox

T_RMBX *pk_rmbx Pointer to the packet to which mailbox status is returned

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)
T_RMBX *pk_rmbx Pointer to the packet to which mailbox status is returned

Contents of pk_rmbx
typedef struct t_rmbx{

ID wtskid +0 2 Reception waiting task ID
T_MSG *pk_msg +4 4 Next message packet to be received

} T_RMBX;

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
ref_mbx MBXID, PK_RMBX
iref_mbx MBXID, PK_RMBX

 PPaarraammeetteerrss
MBXID ID number of the target mailbox

PK_RMBX Pointer to the packet to which mailbox status is returned

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 ID number of the target mailbox

A1 Pointer to the packet to which mailbox status is returned

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call returns various statuses of the mailbox indicated by mbxid.

 wtskid
Returned to wtskid is the ID number of the task at the top of a reception waiting queue (the next task to be de-
queued). If no tasks are kept waiting, TSK_NONE is returned.
 *pk_msg
Returned to *pk_msg is the start address of the next message to be received. If there are no messages to be re-
ceived next, NULL is returned. T_MSG* should be specified with a 32-bit address.

If this service call is to be issued from task context, use ref_mbx; if issued from non-task context, use iref_mbx.

- 134 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
 #include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{

T_RMBX rmbx;
ER ercd;
 :
ercd = ref_mbx(ID_MBX1, &rmbx);
 :

}
<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
_ refmbx: .blkb 6
task:

 :
 PUSH.W R2
 PUSH.L A1
 ref_mbx #ID_MBX1,#_refmbx
 :

- 135 -

5.7 Memory Pool Management Function (Fixed-size Memory Pool)
Specifications of the fixed-size memory pool function of MR100 are listed in Table 5.13.

The memory pool area to be acquired can be specified by a section name for each memory pool during configuration.

Table 5.13 Specifications of the Fixed-size memory pool Function

No. Item Content
1 Fixed-size memory pool ID 1-255
2 Number of fixed-size memory block 1-65535
3 Size of fixed-size memory block ４-65535

TA_TFIFO: Waiting tasks enqueued in order of FIFO 4 Supported attributes

TA_TPRI: Waiting tasks enqueued in order of priority

5 Specification of memory pool area Area to be acquired specifiable by a section

Table 5.14 List of Fixed-size memory pool Function Service Call

System State No. Service Call Function
T N E D U L

1 get_mpf [S][B] Aquires fixed-size memory block O O O
2 pget_mpf [S][B] O O O O
3 ipget_mpf

Aquires fixed-size memory block
(polling) O O O O

4 tget_mpf [S] Aquires fixed-size memory block
(with timeout)

O O O

5 rel_mpf [S][B] O O O O
6 irel_mpf

Releases fixed-size memory block
 O O O O

7 ref_mpf O O O O
8 iref_mpf

References fixed-size memory pool status
 O O O O

 Notes:

• [S]: Standard profile service calls
[B]: Basic profile service calls

• Each sign within " System State " is a following meaning.
♦ T: Can be called from task context
♦ N: Can be called from non-task context
♦ E: Can be called from dispatch-enabled state
♦ D: Can be called from dispatch-disabled state
♦ U: Can be called from CPU-unlocked state
♦ L: Can be called from CPU-locked state

- 136 -

get_mpf Aquire fixed-size memory block
pget_mpf Aquire fixed-size memory block (polling)
ipget_mpf Aquire fixed-size memory block (polling, handler

only)
tget_mpf Aquire fixed-size memory block (with timeout)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = get_mpf(ID mpfid, VP *p_blk);
ER ercd = pget_mpf(ID mpfid, VP *p_blk);
ER ercd = ipget_mpf(ID mpfid, VP *p_blk);
ER ercd = tget_mpf(ID mpfid, VP *p_blk,TMO tmout);

 PPaarraammeetteerrss
ID mpfid ID number of the target fixed-size memory pool to be acquired

VP *p_blk Pointer to the start address of the acquired memory block

TMO tmout Timeout value(tget_mpf)

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code
VP *p_blk Pointer to the start address of the acquired memory block

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
get_mpf MPFID
pget_mpf MPFID
ipget_mpf MPFID
tget_mpf MPFID,TMO

 PPaarraammeetteerrss
MPFID ID number of the target fixed-size memory pool to be acquired

TMO Timeout value(tget_mpf)

- 137 -

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd

get_mpf,pget_mpf,ipget_mpf
Register name Content after service call is issued

R0 Error code

R3R1 Start address of the acquired memory block

R2 ID number of the target fixed-size memory pool to be acquired

tget_mpf
Register name Content after service call is issued

R0 Error code

R3R1 Start address of the acquired memory block

R2 ID number of the target fixed-size memory pool to be acquired

R6R4 Timeout value

[[[[EErrrroorr ccooddee]]]]

E_RLWAI Forced release from waiting
E_TMOUT Polling failure or timeout or timed out
EV_RST Released from WAITING state by clearing of the memory pool area

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call acquires a memory block from the fixed-size memory pool indicated by mpfid and stores the start address
of the acquired memory block in the variable p_blk. The content of the acquired memory block is indeterminate.

If the fixed-size memory pool indicated by mpfid has no memory blocks in it and the used service call is tget_mpf or
get_mpf, the task that issued it goes to a memory block wait state and is enqueued in a memory block waiting queue. In that
case, if the attribute of the specified fixed-size memory pool is TA_TFIFO, the task is enqueued in order of FIFO; if
TA_TPRI, the task is enqueued in order of priority. If the issued service call was pget_mpf or ipget_mpf, the task returns
immediately and responds to the call with the error code E_TMOUT.

For the tget_mpf service call, specify a wait time for tmout in ms units. The values specified for tmout must be within
(0x7FFFFFFF – time tick value). If any value exceeding this limit is specified, the service call may not operate correctly. If
TMO_POL=0 is specified for tmout, it means specifying 0 as a timeout value, in which case the service call operates the
same way as pget_mpf. Furthermore, if specified as tmout=TMO_FEVR(–1), it means specifying an infinite wait, in which
case the service call operates the same way as get_mpf.

The task placed into WAITING state by execution of the get_mpf or tget_mpf service call is released from WAITING state
in the following cases:

 When the rel_mpf or irel_mpf service call is issued before the tmout time elapses, with
task-awaking conditions thereby satisfied
The error code returned in this case is E_OK.
 When the first time tick occurred after tmout elapsed while task-awaking conditions remain un-
satisfied
The error code returned in this case is E_TMOUT.
 When the task is forcibly released from WAITING state by the rel_wai or irel_wai service call is-
sued from another task or a handler
The error code returned in this case is E_RLWAI.
 When the target memory pool being waited for is initialized by the vrst_mpf service call issued
from another task
The error code returned in this case is EV_RST.

If this service call is to be issued from task context, use get_mpf,pget_mpf,tget_mpf; if issued from non-task context, use
ipget_mpf.

- 138 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
VP p_blk;
void task()
{

 if(get_mpf(ID_mpf ,&p_blk) != E_OK){
error(“Not enough memory\n”);

 }
 :

 if(pget_mpf(ID_mpf ,&p_blk) != E_OK){
error(“Not enough memory\n”);

 }
 :

 if(tget_mpf(ID_mpf ,&p_blk, 10) != E_OK){
error(“Not enough memory\n”);

 }

}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R2
 get_mpf #ID_MPF1
 :
 PUSH.W R2
 pget_mpf #ID_MPF1
 :
 PUSH.W R2
 PUSHM R6R4
 tget_mpf #ID_MPF1,#200
 :

- 139 -

rel_mpf Release fixed-size memory block
irel_mpf Release fixed-size memory block (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = rel_mpf(ID mpfid, VP blk);
ER ercd = irel_mpf(ID mpfid, VP blk);

 PPaarraammeetteerrss
ID mpfid ID number of the fixed-size memory pool to be released

VP blk Start address of the memory block to be returned

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
rel_mpf MPFID,BLK
irel_mpf MPFID,BLK

 PPaarraammeetteerrss
MPFID ID number of the fixed-size memory pool to be released

BLK Start address of the memory block to be returned

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R3R1 Start address of the memory block to be returned

R2 ID number of the fixed-size memory pool to be released

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call releases a memory block whose start address is indicated by blk. The start address of the memory block to
be released that is specified here should always be that of the memory block acquired by get_mpf, tget_mpf, pget_mpf, or
ipget_mpf.

If tasks are enqueued in a waiting queue for the target memory pool, the task at the top of the waiting queue is dequeued
and linked to a ready queue, and is assigned a memory block. At this time, the task changes state from a memory block wait
state to RUNNING or READY state. This service call does not check the content of blk, so that if the address stored in blk
is incorrect, the service call may not operate correctly.

If this service call is to be issued from task context, use rel_mpf; if issued from non-task context, use irel_mpf.

- 140 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{

VP p_blf;
 if(get_mpf(ID_mpf1,&p_blf) != E_OK)

error(“Not enough memory \n”);
 :
rel_mpf(ID_mpf1,p_blf);

}
<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
_g_blk: .blkb 4
task:

 :
 PUSH.W R2
 get_mpf #ID_MPF1
 :
 MOV.L R3R1,_g_blk
 PUSH.W R2
 rel_mpf #ID_MPF1,_g_blk
 :

- 141 -

ref_mpf Reference fixed-size memory pool status
iref_mpf Reference fixed-size memory pool status

(handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = ref_mpf(ID mpfid, T_RMPF *pk_rmpf);
ER ercd = iref_mpf(ID mpfid, T_RMPF *pk_rmpf);

 PPaarraammeetteerrss
ID mpfid Task ID waiting for memory block to be acquired

T_RMPF *pk_rmpf Pointer to the packet to which fixed-size memory pool status is returned

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)
T_RMPF *pk_rmpf Pointer to the packet to which fixed-size memory pool status is returned

Contents of pk_rmpf
typedef struct t_rmpf{

ID wtskid +0 2 Task ID waiting for memory block to be acquired
UINT fblkcnt +2 4 Number of free memory blocks

} T_RMPF;

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
ref_mpf MPFID,PK_RMPF
iref_mpf MPFID,PK_RMPF

 PPaarraammeetteerrss
MPFID Task ID waiting for memory block to be acquired

PK_RMPF Pointer to the packet to which fixed-size memory pool status is returned

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 Task ID waiting for memory block to be acquired

A1 Pointer to the packet to which fixed-size memory pool status is returned

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call returns various statuses of the message buffer indicated by mpfid.

 wtskid
Returned to wtskid is the ID number of the task at the top of a memory block waiting queue (the first queued
task). If no tasks are kept waiting, TSK_NONE is returned.
 fblkcnt
The number of free memory blocks in the specified memory pool is returned.

If this service call is to be issued from task context, use rel_mpf; if issued from non-task context, use irel_mpf.

- 142 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
 #include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{

T_RMPF rmpf;
ER ercd;
 :
ercd = ref_mpf(ID_MPF1, &rmpf);
 :

}
<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
_ refmpf: .blkb 6
task:

 :
 PUSH.W R2
 PUSH.L A1
 ref_mpf #ID_MPF1,#_refmpf
 :

- 143 -

5.8 Memory Pool Management Function (Variable-size Memory Pool)
Specifications of the Variable-size Memory pool function of MR100 are listed in Table 5.15.

The memory pool area to be acquired can be specified by a section name for each memory pool during configuration.

Table 5.15 Specifications of the Variable-size memory Pool Function

No. Item Content
1 Variable-size memory pool ID 1-255
2 Size of Variable-size Memory pool 32-67108864
3 Maximum number of memory blocks to

be acquired
4-65504

4 Supported attributes When memory is insufficient, task-waiting APIs are not sup-
ported.

5 Specification of memory pool area Area to be acquired specifiable by a section

Table 5.16 List of Variable -size memory pool Function Service Call

System State No. Service Call Function
T N E D U L

1 pget_mpl Aquires variable-size memory block (polling) O O O O
2 rel_mpl Releases variable-size memory block O O O O
3 ref_mpl O O O O
4 iref_mpl

References variable-size memory pool status
 O O O O

 Notes:

• [S]: Standard profile service calls
[B]: Basic profile service calls

• Each sign within " System State " is a following meaning.
♦ T: Can be called from task context
♦ N: Can be called from non-task context
♦ E: Can be called from dispatch-enabled state
♦ D: Can be called from dispatch-disabled state
♦ U: Can be called from CPU-unlocked state
♦ L: Can be called from CPU-locked state

- 144 -

pget_mpl Aquire variable-size memory block (polling)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = pget_mpl(ID mplid, UINT blksz, VP *p_blk);

 PPaarraammeetteerrss
ID mplid ID number of the target Variable-size Memory pool to be acquired

UINT blksz Memory size to be acquired (in bytes)

VP *p_blk Pointer to the start address of the acquired variable memory

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code
VP *p_blk Pointer to the start address of the acquired variable memory

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
pget_mpl MPLID,BLKSZ

 PPaarraammeetteerrss
MPLID ID number of the target Variable-size Memory pool to be acquired

BLKSZ Memory size to be acquired (in bytes)

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R3R1 Memory size to be acquired

R2 ID number of the target Variable-size Memory pool to be acquired

[[[[EErrrroorr ccooddee]]]]

E_TMOUT No memory block

- 145 -

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]

This service call acquires a memory block from the variable-size memory pool indicated by mplid and stores the
start address of the acquired memory block in the variable p_blk. The content of the acquired memory block is in-
determinate.
If the specified variable-size memory pool has no memory blocks in it, the task returns immediately and responds to
the call with the error code E_TMOUT.
This service call can be issued only from task context. It cannot be issued from non-task context.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
VP p_blk;
void task()
{

 if(pget_mpl(ID_mpl , 200, &p_blk) != E_OK){
error(“Not enough memory\n”);

 }
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R2
 pget_mpl #ID_MPL1,#200
 :

- 146 -

rel_mpl Release variable-size memory block

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = rel_mpl(ID mplid, VP blk);

 PPaarraammeetteerrss
ID mplid ID number of Variable-size Memory pool of the memory block to be released

VP Blk Start address of the memory block to be returned

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]
.include mr100.inc
rel_mpl MPLID,BLK

 PPaarraammeetteerrss
MPLID ID number of Variable-size Memory pool of the memory block to be released

BLK Start address of the memory block to be returned

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R3R1 Start address of the memory block to be returned

R2 ID number of Variable-size Memory pool of the memory block to be released

[[[[EErrrroorr ccooddee]]]]
None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call releases a memory block whose start address is indicated by blk. The start address of the memory
block to be released that is specified here should always be that of the memory block acquired by pget_mpl.
This service call does not check the content of blk, so that if the address stored in blk is incorrect, the service call
may not operate correctly.

- 147 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{

VP p_blk;
 if(get_mpl(ID_mpl1, 200, &p_blk) != E_OK)

error(“Not enough memory \n”);
 :
rel_mpl(ID_mp1,p_blk);

}
<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
_g_blk: .blkb 4
task:

 :
 PUSH.W R2
 pget_mpl #ID_MPL1,#200
 :
 MOV.L R3R1,_g_blk
 PUSH.W R2
 rel_mpl #ID_MPL1,_g_blk
 :

- 148 -

ref_mpl Reference variable-size memory pool status
iref_mpl Reference variable-size memory pool status

(handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = ref_mpl(ID mplid, T_RMPL *pk_rmpl);
ER ercd = iref_mpl(ID mplid, T_RMPL *pk_rmpl);

 PPaarraammeetteerrss
ID mplid ID number of the target variable-size memory pool

T_RMPL *pk_rmpl Pointer to the packet to which variable-size memory pool status is returned

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)
T_RMPL *pk_rmpl Pointer to the packet to which variable-size memory pool status is returned

Contents of pk_rmpl
typedef struct t_rmpl{

ID wtskid +0 2 Task ID waiting for memory block to be acquired (unused)
SIZE fmplsz +4 4 Free memory size (in bytes)
UINT fblksz +8 4 Maximum size of memory that can be acquired immediately (in

bytes)
} T_RMPL;

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
ref_mpl MPLID,PK_RMPL
iref_mpl MPLID,PK_RMPL

 PPaarraammeetteerrss
MPLID ID number of the target variable-size memory pool

PK_RMPL Pointer to the packet to which variable-size memory pool status is returned

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 ID number of the target variable-size memory pool

A1 Pointer to the packet to which variable-size memory pool status is returned

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call returns various statuses of the message buffer indicated by mplid.

 wtskid
Unused.
 fmplsz
A free memory size is returned.
 fblksz
The maximum size of memory that can be acquired immediately is returned.

If this service call is to be issued from task context, use ref_mpl; if issued from non-task context, use iref_mpl.

- 149 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
 #include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{

T_RMPL rmpl;
ER ercd;
 :
ercd = ref_mpl(ID_MPL1, &rmpl);
 :

}
<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
_ refmpl: .blkb 10
task:

 :
 PUSH.W R2
 PUSH.L A1
 ref_mpl #ID_MPL1,_refmpl
 :

- 150 -

5.9 Time Management Function
Specifications of the time management function of MR100 are listed in Table 5.17.

Table 5.17 Specifications of the Time Management Function

No. Item Content
1 System time value Unsigned 48 bits
2 Unit of system time value 1[ms]
3 System time updating cycle User-specified time tick updating time [ms]
4 Initial value of system time (at initial startup) 000000000000H

Table 5.18 List of Time Management Function Service Call

System State No. Service Call Function
T N E D U L

1 get_tim [S] ○ ○ ○ ○
2 iget_tim

Reference system time
 ○ ○ ○ ○

3 set_tim [S] ○ ○ ○ ○
4 iset_tim

Set system time
 ○ ○ ○ ○

5 isig_tim [S] Supply a time tick ○ ○ ○ ○

 Notes:

• [S]: Standard profile service calls
[B]: Basic profile service calls

• Each sign within " System State " is a following meaning.
♦ T: Can be called from task context
♦ N: Can be called from non-task context
♦ E: Can be called from dispatch-enabled state
♦ D: Can be called from dispatch-disabled state
♦ U: Can be called from CPU-unlocked state
♦ L: Can be called from CPU-locked state

- 151 -

set_tim Set system time
iset_tim Set system time (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = set_tim(SYSTIM *p_systim);
ER ercd = iset_tim(SYSTIM *p_systim);

 PPaarraammeetteerrss
SYSTIM *p_systim Pointer to the packet that indicates the system time to be set

Contents of p_systim
typedef struct t_systim {

UH utime 0 2 (16 high-order bits)
UW ltime +4 4 (32 low-order bits)

} SYSTIM;
 RReettuurrnn PPaarraammeetteerrss

ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
set_tim PK_TIM
iset_tim PK_TIM

 PPaarraammeetteerrss
PK_TIM Pointer to the packet that indicates the system time to be set

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

A1 Pointer to the packet that indicates the system time to be set

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call updates the current value of the system time to the value indicated by p_systim. The time specified in
p_systim is expressed in ms units, and not by the number of time ticks.

The values specified for p_systim must be within 0x7FFF: FFFFFFFF. If any value exceeding this limit is specified, the
service call may not operate correctly.

If this service call is to be issued from task context, use set_tim; if issued from non-task context, use iset_tim.

- 152 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 SYSTIME time; /* Time data storing variable */
 time.utime = 0; /* Sets upper time data */
 time.ltime = 0; /* Sets lower time data */
 set_tim(&time); /* Sets the system time */
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
_g_systim:
 .WORD 1111H
 .LWORD 22223333H
task:

 :
 PUSHM A1
 set_tim #_g_systim
 :

- 153 -

get_tim Reference system time
iget_tim Reference system time (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = get_tim(SYSTIM *p_systim);
ER ercd = iget_tim(SYSTIM *p_systim);

 PPaarraammeetteerrss
SYSTIM *p_systim Pointer to the packet to which current system time is returned

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)
SYSTIM *p_systim Pointer to the packet to which current system time is returned

Contents of p_systim
typedef struct t_systim {

UH utime 0 2 (16 high-order bits)
UW ltime +4 4 (32 low-order bits)

} SYSTIM;

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
get_tim PK_TIM
iget_tim PK_TIM

 PPaarraammeetteerrss
PK_TIM Pointer to the packet to which current system time is returned

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

A1 Pointer to the packet to which current system time is returned

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call stores the current value of the system time in p_systim.

If this service call is to be issued from task context, use get_tim; if issued from non-task context, use iget_tim.

- 154 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 SYSTIME time; /* Time data storing variable */
 get_tim(&time); /* Refers to the system time */
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
_g_systim: .blkb 6
task:

 :
 PUSHM A1
 get_tim #_g_systim
 :

- 155 -

isig_tim Supply a time tick

 [[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call updates the system time.

The isig_tim is automatically started every tick_time interval(ms) if the system clock is defined by the configuration file.
The application cannot call this function because it is not implementing as service call.

When a time tick is supplied, the kernel is processed as follows:

(1) Updates the system time
(2) Starts an alarm handler
(3) Starts a cyclic handler
(4) Processes the timeout processing of the task put on WAITING state by service call with timeout such

as tslp_tsk.

- 156 -

5.10 Time Management Function (Cyclic Handler)
Specifications of the cyclic handler function of MR100 are listed in Table 5.19. The cyclic handler description languages in
item No. 4 are those specified in the GUI configurator. They are not output to a configuration file, nor are the MR100 ker-
nel concerned with them.

Table 5.19 Specifications of the Cyclic Handler Function

No. Item Content
1 Cyclic handler ID 1-255
2 Activation cycle 0-7fffffff[ms]
3 Activation phase 0-7fffffff[ms]
4 Extended information 32 bits

TA_HLNG: Handlers written in high-level language
TA_ASM: Handlers written in assembly language
TA_STA: Starts operation of cyclic handler

5 Cyclic handler attribute

TA_PHS: Saves activation phase

Table 5.20 List of Cyclic Handler Function Service Call

System State No. Service Call Function
T N E D U L

1 sta_cyc [S][B] O O O O
2 ista_cyc

Starts cyclic handler operation
 O O O O

3 stp_cyc [S][B] O O O O
4 istp_cyc

Stops cyclic handler operation
 O O O O

5 ref_cyc O O O O
6 iref_cyc

Reference cyclic handler status
 O O O O

 Notes:

• [S]: Standard profile service calls
[B]: Basic profile service calls

• Each sign within " System State " is a following meaning.
♦ T: Can be called from task context
♦ N: Can be called from non-task context
♦ E: Can be called from dispatch-enabled state
♦ D: Can be called from dispatch-disabled state
♦ U: Can be called from CPU-unlocked state
♦ L: Can be called from CPU-locked state

- 157 -

sta_cyc Start cyclic handler operation
ista_cyc Start cyclic handler operation (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = sta_cyc(ID cycid);
ER ercd = ista_cyc(ID cycid);

 PPaarraammeetteerrss
ID cycid ID number of the cyclic handler to be operated

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
sta_cyc CYCNO
ista_cyc CYCNO

 PPaarraammeetteerrss
CYCNO ID number of the cyclic handler to be operated

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 ID number of the cyclic handler to be operated

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call places the cyclic handler indicated by cycid into an operational state. If the cyclic handler attribute of
TA_PHS is not specified, the cyclic handler is started every time the activate cycle elapses, start with the time at which this
service call was invoked.

If while TA_PHS is not specified this service call is issued to a cyclic handler already in an operational state, it sets the time
at which the cyclic handler is to start next.

If while TA_PHS is specified this service call is issued to a cyclic handler already in an operational state, it does not set the
startup time.

If this service call is to be issued from task context, use sta_cyc; if issued from non-task context, use ista_cyc.

- 158 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :
 sta_cyc (ID_cyc1);
 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R2
 sta_cyc #ID_CYC1
 :

- 159 -

stp_cyc Stops cyclic handler operation
istp_cyc Stops cyclic handler operation (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = stp_cyc(ID cycid);
ER ercd = istp_cyc(ID cycid);

 PPaarraammeetteerrss
ID cycid ID number of the cyclic handler to be stopped

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
stp_cyc CYCNO
istp_cyc CYCNO

 PPaarraammeetteerrss
CYCNO ID number of the cyclic handler to be stopped

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 ID number of the cyclic handler to be stopped

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call places the cyclic handler indicated by cycid into a non-operational state.

If this service call is to be issued from task context, use stp_cyc; if issued from non-task context, use istp_cyc.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :
 stp_cyc (ID_cyc1);
 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R2
 stp_cyc #ID_CYC1
 :

- 160 -

ref_cyc Reference cyclic handler status
iref_cyc Reference cyclic handler status (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = ref_cyc(ID cycid, T_RCYC *pk_rcyc);
ER ercd = iref_cyc(ID cycid, T_RCYC *pk_rcyc);

 PPaarraammeetteerrss
ID cycid ID number of the target cyclic handler

T_RCYC *pk_rcyc Pointer to the packet to which cyclic handler status is returned

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)
T_RCYC *pk_rcyc Pointer to the packet to which cyclic handler status is returned

Contents of pk_rcyc
typedef struct t_rcyc{

STAT cycstat +0 2 Operating status of cyclic handler
RELTIM lefttim +2 4 Left time before cyclic handler starts up

} T_RCYC;

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
ref_cyc ID,PK_RCYC
iref_cyc ID,PK_RCYC

 PPaarraammeetteerrss
CYCNO ID number of the target cyclic handler

PK_RCYC Pointer to the packet to which cyclic handler status is returned

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 ID number of the target cyclic handler

A1 Pointer to the packet to which cyclic handler status is returned

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call returns various statuses of the cyclic handler indicated by cycid.

 cycstat
The status of the target cyclic handler is returned.

*TCYC_STA Cyclic handler is an operational state.
*TCYC_STP Cyclic handler is a non-operational state.

 lefttim
The remaining time before the target cyclic handler will start next is returned. This time is expressed in ms units.
If the target cyclic handler is non-operational state, the returned value is indeterminate.

If this service call is to be issued from task context, use ref_cyc; if issued from non-task context, use iref_cyc.

- 161 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
 #include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{

T_RCYC rcyc;
ER ercd;
 :
ercd = ref_cyc(ID_CYC1, &rcyc);
 :

}
<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
_ refcyc: .blkb 6
task:

 :
 PUSH.W R2
 PUSH.L A1
 ref_cyc #ID_CYC1,#_refcyc
 :

- 162 -

5.11 Time Management Function (Alarm Handler)
Specifications of the alarm handler function of MR100 are listed in Table 5.21. The alarm handler description languages in
item No. 4 are those specified in the GUI configurator. They are not output to a configuration file, nor are the MR100 ker-
nel concerned with them.

Table 5.21 Specifications of the Alarm Handler Function

No. Item Content
1 Alarm handler ID 1-255
2 Activation time 0-7fffffff [ms]
3 Extended information 16 bits

TA_HLNG: Handlers written in high-level language 4 Alarm handler attribute
TA_ASM: Handlers written in assembly language

Table 5.22 List of Alarm Handler Function Service Call

System State No. Service Call Function
T N E D U L

1 sta_alm ○ ○ ○ ○

2 ista_alm
Starts alarm handler operation

 ○ ○ ○ ○

3 stp_alm ○ ○ ○ ○

4 istp_alm
Stops alarm handler operation

 ○ ○ ○ ○

5 ref_alm ○ ○ ○ ○

6 iref_alm
References alarm handler status

 ○ ○ ○ ○

 Notes:

• [S]: Standard profile service calls
[B]: Basic profile service calls

• Each sign within " System State " is a following meaning.
♦ T: Can be called from task context
♦ N: Can be called from non-task context
♦ E: Can be called from dispatch-enabled state
♦ D: Can be called from dispatch-disabled state
♦ U: Can be called from CPU-unlocked state
♦ L: Can be called from CPU-locked state

- 163 -

sta_alm Start alarm handler operation
ista_alm Start alarm handler operation (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = sta_alm(ID almid, RELTIM almtim);
ER ercd = ista_alm(ID almid, RELTIM almtim);

 PPaarraammeetteerrss
ID almid ID number of the alarm handler to be operated

RELTIM almtim Alarm handler startup time (relative time)

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
sta_alm ALMID,ALMTIM
ista_alm ALMID,ALMTIM

 PPaarraammeetteerrss
ALMID ID number of the alarm handler to be operated

ALMTIM Alarm handler startup time (relative time)

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 ID number of the alarm handler to be operated

R6R4 Alarm handler startup time (relative time)

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call sets the activation time of the alarm handler indicated by almid as a relative time of day after the lapse of
the time specified by almtim from the time at which it is invoked, and places the alarm handler into an operational state.

If an already operating alarm handler is specified, the previously set activation time is cleared and updated to a new activa-
tion time. If almtim = 0 is specified, the alarm handler starts at the next time tick. The values specified for almtim must be
within (0x7FFFFFFF – time tick value). If any value exceeding this limit is specified, the service call may not operate cor-
rectly. If 0 is specified for almtim , the alarm handler is started at the next time tick.

If this service call is to be issued from task context, use sta_alm; if issued from non-task context, use ista_alm.

- 164 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :
 sta_alm (ID_alm1,100);
 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R2
 PUSHM R6R4
 sta_alm #ID_ALM1,#100
 :

- 165 -

stp_alm Stop alarm handler operation
istp_alm Stop alarm handler operation (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = stp_alm(ID almid);
ER ercd = istp_alm(ID almid);

 PPaarraammeetteerrss
ID almid ID number of the alarm handler to be stopped

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
stp_alm ALMID
istp_alm ALMID

 PPaarraammeetteerrss
ALMID ID number of the alarm handler to be stopped

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 ID number of the alarm handler to be stopped

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call places the alarm handler indicated by almid into a non-operational state.

If this service call is to be issued from task context, use stp_alm; if issued from non-task context, use istp_alm.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :
 stp_alm (ID_alm1);
 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R2
 stp_alm #ID_ALM1
 :

- 166 -

ref_alm Reference alarm handler status
iref_alm Reference alarm handler status (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = ref_alm(ID almid, T_RALM *pk_ralm);
ER ercd = iref_alm(ID almid, T_RALM *pk_ralm);

 PPaarraammeetteerrss
ID almid ID number of the target alarm handler

T_RALM *pk_ralm Pointer to the packet to which alarm handler status is returned

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)
T_RALM *pk_ralm Pointer to the packet to which alarm handler status is returned

Contents of pk_ralm
typedef struct t_ralm{

STAT almstat +0 2 Operating status of alarm handler
RELTIM lefttim +2 4 This service call returns various statuses of the alarm handler

indicat
} T_RALM;

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
ref_alm ALMID,PK_RALM
iref_alm ALMID,PK_RALM

 PPaarraammeetteerrss
ALMID ID number of the target alarm handler

PK_RALM Pointer to the packet to which alarm handler status is returned

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 ID number of the target alarm handler

A1 Pointer to the packet to which alarm handler status is returned

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call returns various statuses of the alarm handler indicated by almid.

 almstat
The status of the target alarm handler is returned.

*TALM_STA Alarm handler is an operational state.
*TALM_STP Alarm handler is a non-operational state.

 lefttim
The remaining time before the target alarm handler will start next is returned. This time is expressed in ms units.
If the target alarm handler is a non-operational state, the returned value is indeterminate.

If this service call is to be issued from task context, use ref_alm; if issued from non-task context, use iref_alm.

- 167 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
 #include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{

T_RALM ralm;
ER ercd;
 :
ercd = ref_alm(ID_ALM1, &ralm);
 :

}
<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
_ refalm: .blkb 6
task:

 :
 PUSH.W R2
 PUSH.L A1
 ref_alm #ID_ALM1,#_refalm
 :

- 168 -

5.12 System Status Management Function
Table 5.23 List of System Status Management Function Service Call

System State No. Service Call Function
T N E D U L

1 rot_rdq [S][B] O O O O
2 irot_rdq [S][B]

Rotates task precedence
 O O O O

3 get_tid [S][B] O O O O
4 iget_tid [S]

References task ID in the RUNNING state
 O O O O

5 loc_cpu [S][B] O O O O O
6 iloc_cpu [S]

Locks the CPU
 O O O O O

7 unl_cpu [S][B] O O O O O
8 iunl_cpu [S]

Unlocks the CPU
 O O O O O

9 dis_dsp [S][B] Disables dispatching O O O O
10 ena_dsp [S][B] Enables dispatching O O O O
11 sns_ctx [S] References context O O O O O
12 sns_loc [S] References CPU state O O O O O
13 sns_dsp [S] References dispatching state O O O O O
14 sns_dpn [S] References dispatching pending state O O O O O

 Notes:

• [S]: Standard profile service calls
[B]: Basic profile service calls

• Each sign within " System State " is a following meaning.
♦ T: Can be called from task context
♦ N: Can be called from non-task context
♦ E: Can be called from dispatch-enabled state
♦ D: Can be called from dispatch-disabled state
♦ U: Can be called from CPU-unlocked state
♦ L: Can be called from CPU-locked state

- 169 -

rot_rdq Rotate task precedence
irot_rdq Rotate task precedence (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = rot_rdq(PRI tskpri);
ER ercd = irot_rdq(PRI tskpri);

 PPaarraammeetteerrss
PRI tskpri Task priority to be rotated

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
rot_rdq TSKPRI
irot_rdq TSKPRI

 PPaarraammeetteerrss
TSKPRI Task priority to be rotated

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R3 Task priority to be rotated

[[[[EErrrroorr ccooddee]]]]

None

- 170 -

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call rotates the ready queue whose priority is indicated by tskpri. In other words, it relocates the task enqueued
at the top of the ready queue of the specified priority by linking it to behind the tail of the ready queue, thereby switching
over the executed tasks that have the same priority. Figure 5-1 depicts the manner of how this is performed.

 Proprity 1

 Priority 2

 Priority n

・

・

・

TCB

TCB TCB

TCB TCB TCB

Moved to behind the tail of the queue

Figure 5-1. Manipulation of the ready queue by the rot_rdq service call

By issuing this service call at given intervals, it is possible to perform round robin scheduling. If tskpri=TPRI_SELF is
specified when using the rot_rdq service call, the ready queue whose priority is that of the issuing task is rotated.
TPRI_SELF cannot be specified in the irot_rdq service call. TPRI_SELF cannot be specified by irot_rdq service call.
However, an error is not returned even if it is specified.

If the priority of the issuing task itself is specified in this service call, the issuing task is relocated to behind the tail of the
ready queue in which it is enqueued. Note that if the ready queue of the specified priority has no tasks in it, no operation is
performed.

If this service call is to be issued from task context, use rot_rdq; if issued from non-task context, use irot_rdq.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :

rot_rdq(2);
 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R3
 rot_rdq #2
 :

- 171 -

get_tid Reference task ID in the RUNNING state
iget_tid Reference task ID in the RUNNING state

(handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = get_tid(ID *p_tskid);
ER ercd = iget_tid(ID *p_tskid);

 PPaarraammeetteerrss
ID *p_tskid Pointer to task ID

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)
ID *p_tskid Pointer to task ID

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
get_tid
iget_tid

 PPaarraammeetteerrss
 None

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 Acquired task ID

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call returns the task ID currently in RUNNING state to the area pointed to by p_tskid. If this service call is
issued from a task, the ID number of the issuing task is returned. If this service call is issued from non-task context, the task
ID being executed at that point in time is returned. If there are no tasks currently in an executing state, TSK_NONE is re-
turned.

If this service call is to be issued from task context, use get_tid; if issued from non-task context, use iget_tid.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 ID tskid;
 :

get_tid(&tskid);
 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 get_tid
 :

- 172 -

loc_cpu Lock the CPU
iloc_cpu Lock the CPU (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = loc_cpu();
ER ercd = iloc_cpu();

 PPaarraammeetteerrss
None
 RReettuurrnn PPaarraammeetteerrss

ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
loc_cpu
iloc_cpu

 PPaarraammeetteerrss
None

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call places the system into a CPU locked state, thereby disabling interrupts and task dispatches. The features of
a CPU locked state are outlined below.

(1) No task scheduling is performed during a CPU locked state.
(2) No external interrupts are accepted unless their priority levels are higher than the kernel interrupt

mask level defined in the configurator.
(3) Only the following service calls can be invoked from a CPU locked state. If any other service calls

are invoked, operation of the service call cannot be guaranteed.
* ext_tsk
* loc_cpu, iloc_cpu
* unl_cpu, iunl_cpu
* sns_ctx
* sns_loc
* sns_dsp
* sns_dpn

The system is freed from a CPU locked state by one of the following operations.

(a) Invocation of the unl_cpu or iunl_cpu service call
(b) Invocation of the ext_tsk service call

Transitions between CPU locked and CPU unlocked states occur only when the loc_cpu, iloc_cpu, unl_cpu, iunl_cpu, or
ext_tsk service call is invoked. The system must always be in a CPU unlocked state when the interrupt handler or the time
event handler is terminated. If either handler terminates while the system is in a CPU locked state, handler operation cannot
be guaranteed. Note that the system is always in a CPU unlocked state when these handlers start.

Invoking this service call again while the system is already in a CPU locked state does not cause an error, in which case
task queuing is not performed, however.

If this service call is to be issued from task context, use loc_cpu; if issued from non-task context, use iloc_cpu.

- 173 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :

loc_cpu();
 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 loc_cpu
 :

- 174 -

unl_cpu Unlock the CPU
iunl_cpu Unlock the CPU (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = unl_cpu();
ER ercd = iunl_cpu();

 PPaarraammeetteerrss
None
 RReettuurrnn PPaarraammeetteerrss

ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
unl_cpu
iunl_cpu

 PPaarraammeetteerrss
None

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call frees the system from a CPU locked state that was set by the loc_cpu or iloc_cpu service call. If the
unl_cpu service call is issued from a dispatching enabled state, task scheduling is performed. If the system was put into a
CPU locked state by invoking iloc_cpu within an interrupt handler, the system must always be placed out of a CPU locked
state by invoking iunl_cpu before it returns from the interrupt handler.

The CPU locked state and the dispatching disabled state are managed independently of each other. Therefore, the system
cannot be freed from a dispatching disabled state by the unl_cpu or iunl_cpu service call unless the ena_dsp service call is
used.

If this service call is to be issued from task context, use unl_cpu; if issued from non-task context, use iunl_cpu.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :

unl_cpu();
 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 unl_cpu
 :

- 175 -

dis_dsp Disable dispatching

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = dis_dsp();

 PPaarraammeetteerrss
None
 RReettuurrnn PPaarraammeetteerrss

ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
dis_dsp

 PPaarraammeetteerrss
None

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call places the system into a dispatching disabled state. The features of a dispatching disabled state are outlined
below.

(1) Since task scheduling is not performed anymore, no tasks other than the issuing task itself will be

placed into RUNNING state.
(2) Interrupts are accepted.
(3) No service calls can be invoked that will place tasks into WAITING state.

If one of the following operations is performed during a dispatching disabled state, the system status returns to a task exe-
cution state.

(a) Invocation of the ena_dsp service call
(b) Invocation of the ext_tsk service call

Transitions between dispatching disabled and dispatching enabled states occur only when the dis_dsp, ena_dsp, or ext_tsk
service call is invoked.

Invoking this service call again while the system is already in a dispatching disabled state does not cause an error, in which
case task queuing is not performed, however.

This service call can be issued only from task context. It cannot be issued from non-task context.

- 176 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :

dis_dsp();
 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 dis_dsp
 :

- 177 -

ena_dsp Enables dispatching

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = ena_dsp();

 PPaarraammeetteerrss
None
 RReettuurrnn PPaarraammeetteerrss

ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
ena_dsp

 PPaarraammeetteerrss
None

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call frees the system from a dispatching disabled state that was set by the dis_dsp service call. As a result, task
scheduling is resumed when the system has entered a task execution state.

Invoking this service call from a task execution state does not cause an error, in which case task queuing is not performed,
however.

This service call can be issued only from task context. It cannot be issued from non-task context.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 :

ena_dsp();
 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 ena_dsp
 :

- 178 -

sns_ctx Reference context

[[[[CC LLaanngguuaaggee AAPPII]]]]
BOOL state = sns_ctx();

 PPaarraammeetteerrss
None
 RReettuurrnn PPaarraammeetteerrss

BOOL state TRUE: Non-task context
FALSE: Task context

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
sns_ctx

 PPaarraammeetteerrss
None

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 TRUE:Non-Task context
FALSE: Task context

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call returns TRUE when it is invoked from non-task context, or returns FALSE when invoked from task con-
text. This service call can also be invoked from a CPU locked state.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 BOOL stat;
 :

stat = sns_ctx();
 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 sns_ctx
 :

- 179 -

sns_loc Reference CPU state

[[[[CC LLaanngguuaaggee AAPPII]]]]
BOOL state = sns_loc();

 PPaarraammeetteerrss
None
 RReettuurrnn PPaarraammeetteerrss

BOOL state TRUE: CPU locked state
FALSE: CPU unlocked state

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
sns_loc

 PPaarraammeetteerrss
None

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 TRUE: CPU locked state
FALSE:CPUCPU unlocked state

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call returns TRUE when the system is in a CPU locked state, or returns FALSE when the system is in a CPU
unlocked state. This service call can also be invoked from a CPU locked state.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 BOOL stat;
 :

stat = sns_loc();
 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 sns_loc
 :

- 180 -

sns_dsp Reference dispatching state

[[[[CC LLaanngguuaaggee AAPPII]]]]
BOOL state = sns_dsp();

 PPaarraammeetteerrss
None
 RReettuurrnn PPaarraammeetteerrss

BOOL state TRUE: Dispatching disabled state
FALSE: Dispatching enabled state

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
sns_dsp

 PPaarraammeetteerrss
None

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 TRUE: Dispatching disabled state
FALSE: Dispatching enabled state

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call returns TRUE when the system is in a dispatching disabled state, or returns FALSE when the system is in
a dispatching enabled state. This service call can also be invoked from a CPU locked state.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 BOOL stat;
 :

stat = sns_dsp();
 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 sns_dsp
 :

- 181 -

sns_dpn Reference dispatching pending state

[[[[CC LLaanngguuaaggee AAPPII]]]]
BOOL state = sns_dpn();

 PPaarraammeetteerrss
None
 RReettuurrnn PPaarraammeetteerrss

BOOL state TRUE: Dispatching pending state
FALSE: Not dispatching pending state

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
sns_dpn

 PPaarraammeetteerrss
None

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 TRUE: Dispatching pending state
FALSE: Not dispatching pending state

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call returns TRUE when the system is in a dispatching pending state, or returns FALSE when the system is not
in a dispatching pending state. More specifically, FALSE is returned when all of the following conditions are met; other-
wise, TRUE is returned.

(1) The system is not in a dispatching pending state.
(2) The system is not in a CPU locked state.
(3) The object made pending is a task.

This service call can also be invoked from a CPU locked state. It returns TRUE when the system is in a dispatching dis-
abled state, or returns FALSE when the system is in a dispatching enabled state.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 BOOL stat;
 :

stat = sns_dpn();
 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 sns_dpn
 :

- 182 -

5.13 Interrupt Management Function

Table 5.24 List of Interrupt Management Function Service Call

System State No. Service Call Function
T N E D U L

1 ret_int Returns from an interrupt handler O O O O

 Notes:

• [S]: Standard profile service calls
[B]: Basic profile service calls

• Each sign within " System State " is a following meaning.
♦ T: Can be called from task context
♦ N: Can be called from non-task context
♦ E: Can be called from dispatch-enabled state
♦ D: Can be called from dispatch-disabled state
♦ U: Can be called from CPU-unlocked state
♦ L: Can be called from CPU-locked state

- 183 -

ret_int Returns from an interrupt handler
 (when written in assembly language)

[[[[CC LLaanngguuaaggee AAPPII]]]]
This service call cannot be written in C language.36

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
ret_int

 PPaarraammeetteerrss
None

[[[[EErrrroorr ccooddee]]]]

Not return to the interrupt handler that issued this service call.

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call performs the processing necessary to return from an interrupt handler. Depending on return processing, it
activates the scheduler to switch tasks from one to another.

If this service call is executed in an interrupt handler, task switching does not occur, and task switching is postponed until
the interrupt handler terminates.

However, if the ret_int service call is issued from an interrupt handler that was invoked from an interrupt that occurred
within another interrupt, the scheduler is not activated. The scheduler is activated for interrupts from a task only.

When writing this service call in assembly language, be aware that the service call cannot be issued from a subroutine that
is invoked from an interrupt handler entry routine. Always make sure this service call is executed in the entry routine or
entry function of an interrupt handler. For example, a program like the one shown below may not operate normally.

.include mr100.inc
/* NG */
.GLB intr
intr:

jsr.b func
:
func:

ret_int

Therefore, write the program as shown below.
.include mr100.inc
/* OK */
.GLB intr
intr:

jsr.b func
ret_int

func:
:

rts

Make sure this service call is issued from only an interrupt handler. If issued from a cyclic handler, alarm handler, or a task,
this service call may not operate normally.

36 If the starting function of an interrupt handler is declared by #pragma INTHANDLER, the ret_int service call is automatically issued at the
exit of the function.

- 184 -

5.14 System Configuration Management Function
Table 5.25 List of System Configuration Management Function Service Call

System State No. Service Call Function
T N E D U L

1 ref_ver [S] O O O O
2 iref_ver

References version information
O O O O

 Notes:

• [S]: Standard profile service calls
[B]: Basic profile service calls

• Each sign within " System State " is a following meaning.
♦ T: Can be called from task context
♦ N: Can be called from non-task context
♦ E: Can be called from dispatch-enabled state
♦ D: Can be called from dispatch-disabled state
♦ U: Can be called from CPU-unlocked state
♦ L: Can be called from CPU-locked state

- 185 -

ref_ver Reference version information
iref_ver Reference version information (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = ref_ver(T_RVER *pk_rver);
ER ercd = iref_ver(T_RVER *pk_rver);

 PPaarraammeetteerrss
T_RVER *pk_rver Pointer to the packet to which version information is returned

Contents of pk_rver
typedef struct t_rver {

UH maker 0 2 Kernel manufacturer code
UH prid +2 2 Kernel identification number
UH spver +4 2 ITRON specification version number
UH prver +6 2 Kernel version number
UH prno[4] +8 2 Kernel product management information

} T_RVER;
 RReettuurrnn PPaarraammeetteerrss

ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
ref_ver PK_VER
iref_ver PK_VER

 PPaarraammeetteerrss
PK_VER Pointer to the packet to which version information is returned

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

A1 Pointer to the packet to which version information is returned

[[[[EErrrroorr ccooddee]]]]
None

- 186 -

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call reads out information about the version of the currently executing kernel and returns the result to the area
pointed to by pk_rver.

The following information is returned to the packet pointed to by pk_rver.

 maker
The code H’0115 denoting Renesas Technology Corporation is returned.
 prid
The internal identification code IDH’0014 of the M3T-MR100 is returned.
 spver
The code H’5403 denoting that the kernel is compliant with µITRON Specification Ver 4.03.00 is returned.
 prver
The code H’0100 denoting the version of the M3T-MR100/4 is returned.
 prno
• prno[0]

Reserved for future extension.

• prno[1]
Reserved for future extension.

• prno[2]
Reserved for future extension.

• prno[3]
Reserved for future extension.

If this service call is to be issued from task context, use ref_ver; if issued from non-task context, use iref_ver.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{

T_RVER pk_rver;
ref_ver(&pk_rver);

}
<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
_ refver: .blkb 16
task:

 :
 PUSHM A1
 ref_ver #_refver
 :

- 187 -

5.15 Extended Function (Short Data Queue)
Specifications of the Short data queue function of MR100 are listed in Table 5.26. This function is outside the scope of
µITRON 4.0 Specification.

Table 5.26 Specifications of the Short Data Queue Function

No. Item Content
1 Data queue ID 1-255
2 Capacity (data bytes) in data queue area 0-16383
3 Data size 16 bits

TA_TFIFO: Waiting tasks enqueued in order of FIFO 4 Data queue attribute

TA_TPRI: Waiting tasks enqueued in order of priority

Table 5.27 List of Long Dataqueue Function Service Call

System State No. Service Call Function
T N E D U L

1 vsnd_dtq Sends to short data queue O O O
2 vpsnd_dtq O O O O
3 vipsnd_dtq

Sends to short data queue (polling)
O O O O

4 vtsnd_dtq Sends to short data queue (with timeout) O O O
5 vfsnd_dtq O O O O
6 vifsnd_dtq

Forced sends to short data queue
O O O O

7 vrcv_dtq Receives from short data queue O O O
8 vprcv_dtq O O O O
9 viprcv_dtq

Receives from short data queue (polling)
O O O O

10 vtrcv_dtq Receives from short data queue (with timeout) O O O
11 vref_dtq O O O O
12 viref_dtq

References short data queue status
 O O O O

 Notes:

• [S]: Standard profile service calls
[B]: Basic profile service calls

• Each sign within " System State " is a following meaning.
♦ T: Can be called from task context
♦ N: Can be called from non-task context
♦ E: Can be called from dispatch-enabled state
♦ D: Can be called from dispatch-disabled state
♦ U: Can be called from CPU-unlocked state
♦ L: Can be called from CPU-locked state

- 188 -

vsnd_dtq Send to Short data queue
vpsnd_dtq Send to Short data queue (polling)
vipsnd_dtq Send to Short data queue (polling, handler only)
vtsnd_dtq Send to Short data queue (with timeout)
vfsnd_dtq Forced send to Short data queue
vifsnd_dtq Forced send to Short data queue (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = vsnd_dtq(ID vdtqid, H data);
ER ercd = vpsnd_dtq(ID vdtqid, H data);
ER ercd = vipsnd_dtq(ID vdtqid, H data);
ER ercd = vtsnd_dtq(ID vdtqid, H data, TMO tmout);
ER ercd = vfsnd_dtq(ID vdtqid, H data);
ER ercd = vifsnd_dtq(ID vdtqid, H data);

 PPaarraammeetteerrss
ID vdtqid ID number of the Short data queue to which transmitted

TMO tmout Timeout value(tsnd_dtq)

H data Data to be transmitted

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
vsnd_dtq VDTQID, DTQDATA
visnd_dtq VDTQID, DTQDATA
vpsnd_dtq VDTQID, DTQDATA
vipsnd_dtq VDTQID, DTQDATA
vtsnd_dtq VDTQID, DTQDATA,TMO
vfsnd_dtq VDTQID, DTQDATA
vifsnd_dtq VDTQID, DTQDATA

 PPaarraammeetteerrss
VDTQID ID number of the Short data queue to which transmitted

DTQDATA Data to be transmitted

TMO Timeout value(tsnd_dtq)

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
vsnd_dtq,vpsnd_dtq,vipsnd_dtq,vfsnd_dtq,vifsnd_dtq

Register name Content after service call is issued

R0 Error code

R1 Data to be transmitted

R2 ID number of the Short data queue to which transmitted

vtsnd_dtq
Register name Content after service call is issued

R0 Error code

R1 Data to be transmitted

R2 ID number of the Short data queue to which transmitted

R6R4 Timeout value

- 189 -

[[[[EErrrroorr ccooddee]]]]

E_RLWAI Forced release from waiting
E_TMOUT Polling failure or timeout or timed out
E_ILUSE Service call improperly used (vfsnd_dtq or vifsnd_dtq is issued for a Short data

queue whose dtqcnt = 0)
EV_RST Released from a wait state by clearing of the Short data queue area

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call sends the signed 2-byte data indicated by data to the Short data queue indicated by vdtqid. If any task is
kept waiting for reception in the target Short data queue, the data is not stored in the Short data queue and instead sent to
the task at the top of the reception waiting queue, with which the task is released from the reception wait state.

On the other hand, if vsnd_dtq or vtsnd_dtq is issued for a Short data queue that is full of data, the task that issued the ser-
vice call goes from RUNNING state to a data transmission wait state, and is enqueued in a transmission waiting queue,
kept waiting for the Short data queue to become available. In that case, if the attribute of the specified Short data queue is
TA_TFIFO, the task is enqueued in order of FIFO; if TA_TPRI, the task is enqueued in order of priority. For vpsnd_dtq and
vipsnd_dtq, the task returns immediately and responds to the call with the error code E_TMOUT.

For the vtsnd_dtq service call, specify a wait time for tmout in ms units. The values specified for tmout must be within
(0x7FFFFFFF-time tick value). If any value exceeding this limit is specified, the service call may not operate correctly. If
TMO_POL=0 is specified for tmout, it means specifying 0 as a timeout value, in which case the service call operates the
same way as vpsnd_dtq. Furthermore, if specified as tmout=TMO_FEVR(–1), it means specifying an infinite wait, in
which case the service call operates the same way as vsnd_dtq.

If there are no tasks waiting for reception, nor is the Short data queue area filled, the transmitted data is stored in the Short
data queue.

The task placed into a wait state by execution of the vsnd_dtq or vtsnd_dtq service call is released from WAITING state in
the following cases:

 When the vrcv_dtq, vtrcv_dtq, vprcv_dtq, or viprcv_dtq service call is issued before the tmout
time elapses, with task-awaking conditions thereby satisfied
The error code returned in this case is E_OK.
 When the first time tick occurred after tmout elapsed while task-awaking conditions remain un-
satisfied
The error code returned in this case is E_TMOUT.
 When the task is forcibly released from WAITING state by the rel_wai or irel_wai service call is-
sued from another task or a handler
The error code returned in this case is E_RLWAI.
 When the target Short data queue being waited for is initialized by the vrst_vdtq service call is-
sued from another task
The error code returned in this case is EV_RST.

For vfsnd_dtq and vifsnd_dtq, the data at the top of the Short data queue or the oldest data is removed, and the transmitted
data is stored at the tail of the Short data queue. If the Short data queue area is not filled with data, vfsnd_dtq and
vifsnd_dtq operate the same way as vsnd_dtq. If dtqcnt = 0 ,there is no task in the wait queue and vfsnd_dtq or vifsnd_dtq
service call is issued, error code E_ILUSE will be returned.

If this service call is to be issued from task context, use vsnd_dtq,vtsnd_dtq,vpsnd_dtq,vfsnd_dtq; if issued from non-task
context, use vipsnd_dtq,vifsnd_dtq.

- 190 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
H data[10];
void task(void)
{
 :

if(vsnd_dtq(ID_dtq, data[0]) == E_RLWAI){
 error(“Forced released\n”);
 }
 :

if(vpsnd_dtq(ID_dtq, data[1])== E_TMOUT){
 error(“Timeout\n”);
 }
 :

if(vtsnd_dtq(ID_dtq, data[2], 10) != E_ TMOUT){
 error(“Timeout \n”);
 }
 :

if(vfsnd_dtq(ID_dtq, data[3]) != E_OK){
 error(“error\n”);
 }
 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
_g_dtq: .WORD 1234H
task:

 :
 PUSH.W R1
 PUSH.W R2
 PUSHM R6R4
 vtsnd_dtq #ID_DTQ1,_g_dtq,#100
 :
 PUSH.W R1
 PUSH.W R2
 vpsnd_dtq #ID_DTQ2,#0FFFFH
 :
 PUSH.W R1
 PUSH.W R2
 vfsnd_dtq #ID_DTQ3,#0ABCDH
 :

- 191 -

vrcv_dtq Receive from Short data queue
vprcv_dtq Receive from Short data queue (polling)
viprcv_dtq Receive from Short data queue (polling,handler only)
vtrcv_dtq Receive from Short data queue (with timeout)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = vrcv_dtq(ID dtqid, H *p_data);
ER ercd = vprcv_dtq(ID dtqid, H *p_data);
ER ercd = viprcv_dtq(ID dtqid, H *p_data);
ER ercd = vtrcv_dtq(ID dtqid, H *p_data, TMO tmout);

 PPaarraammeetteerrss
ID vdtqid ID number of the Short data queue from which to receive

TMO tmout Timeout value(vtrcv_dtq)

H *p_data Pointer to the start of the area in which received data is stored

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code
H *p_data Pointer to the start of the area in which received data is stored

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
vrcv_dtq VDTQID
vprcv_dtq VDTQID
viprcv_dtq VDTQID
vtrcv_dtq VDTQID,TMO

 PPaarraammeetteerrss
VDTQID ID number of the Short data queue from which to receive

TMO Timeout value(trcv_dtq)

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
vrcv_dtq,vprcv_dtq,viprcv_dtq

Register name Content after service call is issued

R0 Error code

R1 Received data

R2 ID number of the Short data queue from which to receive

vtrcv_dtq
Register name Content after service call is issued

R0 Error code

R1 Received data

R2 ID number of the Short data queue from which to receive

R6R4 Timeout value

[[[[EErrrroorr ccooddee]]]]

E_RLWAI Forced release from waiting
E_TMOUT Polling failure or timeout or timed out

- 192 -

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call receives data from the Short data queue indicated by vdtqid and stores the received data in the area pointed
to by p_data. If data is present in the target Short data queue, the data at the top of the queue or the oldest data is received.
This results in creating a free space in the Short data queue area, so that a task enqueued in a transmission waiting queue is
released from WAITING state, and starts sending data to the Short data queue area.

If no data exist in the Short data queue and there is any task waiting to send data (i.e., data bytes in the Short data queue
area = 0), data for the task at the top of the data transmission waiting queue is received. As a result, the task kept waiting to
send that data is released from WAITING state.

On the other hand, if vrcv_dtq or vtrcv_dtq is issued for the Short data queue which has no data stored in it, the task that
issued the service call goes from RUNNING state to a data reception wait state, and is enqueued in a data reception waiting
queue. At this time, the task is enqueued in order of FIFO. For the vprcv_dtq and viprcv_dtq service calls, the task returns
immediately and responds to the call with the error code E_TMOUT.

For the vtrcv_dtq service call, specify a wait time for tmout in ms units. The values specified for tmout must be within
0x7FFFFFFF. If any value exceeding this limit is specified, the service call may not operate correctly. If TMO_POL=0 is
specified for tmout, it means specifying 0 as a timeout value, in which case the service call operates the same way as
vprcv_dtq. Furthermore, if specified as tmout=TMO_FEVR(–1), it means specifying an infinite wait, in which case the
service call operates the same way as vrcv_dtq.

The task placed into a wait state by execution of the vrcv_dtq or vtrcv_dtq service call is released from the wait state in the
following cases:

 When the vrcv_dtq, vtrcv_dtq, vprcv_dtq, or viprcv_dtq service call is issued before the tmout
time elapses, with task-awaking conditions thereby satisfied
The error code returned in this case is E_OK.
 When the first time tick occurred after tmout elapsed while task-awaking conditions remain un-
satisfied
The error code returned in this case is E_TMOUT.
 When the task is forcibly released from WAITING state by the rel_wai or irel_wai service call is-
sued from another task or a handler
The error code returned in this case is E_RLWAI.

If this service call is to be issued from task context, use vrcv_dtq,vtrcv_dtq,vprcv_dtq; if issued from non-task context, use
viprcv_dtq.

- 193 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{
 H data;

 :
if(vrcv_dtq(ID_dtq, &data) != E_RLWAI)

error(“forced wakeup\n”);
 :
if(vprcv_dtq(ID_dtq, &data) != E_TMOUT)

error(“Timeout\n”);
 :
if(vtrcv_dtq(ID_dtq, &data, 10) != E_TMOUT)

error(“Timeout\n”);
 :

}
<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R2
 PUSHM R6R4
 vtrcv_dtq #ID_DTQ1,#TMO_POL
 :
 PUSH.W R2
 vprcv_dtq #ID_DTQ2
 :
 PUSH.W R2
 vrcv_dtq #ID_DTQ2
 :

- 194 -

vref_dtq Reference Short data queue status
viref_dtq Reference Short data queue status (handler only)

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = vref_dtq(ID vdtqid, T_RDTQ *pk_rdtq);
ER ercd = viref_dtq(ID vdtqid, T_RDTQ *pk_rdtq);

 PPaarraammeetteerrss
ID vdtqid ID number of the target Short data queue

T_RDTQ *pk_rdtq Pointer to the packet to which Short data queue status is returned

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK) or error code
T_RDTQ *pk_rdtq Pointer to the packet to which Short data queue status is returned

Contents of pk_rdtq
typedef struct t_rdtq{

ID stskid +0 2 Transmission waiting task ID
ID wtskid +2 2 Reception waiting task ID
UINT sdtqcnt +4 4 Data bytes contained in Short data queue

} T_RDTQ;

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
vref_dtq VDTQID, PK_RDTQ
viref_dtq VDTQID, PK_RDTQ

 PPaarraammeetteerrss
VDTQID ID number of the target Short data queue

PK_RDTQ Pointer to the packet to which Short data queue status is returned

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 ID number of the target Short data queue

A1 Pointer to the packet to which Short data queue status is returned

[[[[EErrrroorr ccooddee]]]]

None

- 195 -

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call returns various statuses of the Short data queue indicated by vdtqid.

 stskid
Returned to stskid is the ID number of the task at the top of a transmission waiting queue (the next task to be de-
queued). If no tasks are kept waiting, TSK_NONE is returned.
 wtskid
Returned to wtskid is the ID number of the task at the top of a reception waiting queue (the next task to be de-
queued). If no tasks are kept waiting, TSK_NONE is returned.
 sdtqcnt
Returned to sdtqcnt is the number of data bytes stored in the Short data queue area.

If this service call is to be issued from task context, use ref_dtq; if issued from non-task context, use iref_dtq.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
 #include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task()
{

T_RDTQ rdtq;
ER ercd;
 :
ercd = vref_dtq(ID_DTQ1, &rdtq);
 :

}
<<Example statement in assembly language>>
 .include mr100.inc
_ refdtq: .blkb 8
 .GLB task
task:

 :
 PUSH.W R2
 PUSH.L A1
 vref_dtq #ID_DTQ1,#_refdtq
 :

- 196 -

5.16 Extended Function (Reset Function)
This function initializes the content of an object. This function is outside the scope of µITRON 4.0 Specification.

Table 5.28 List of Reset Function Service Call

System State No. Service Call Function
T N E D U L

1 vrst_dtq Clear data queue area O O O O
2 vrst_vdtq Clear Short data queue area O O O O
3 vrst_mbx Clear mailbox area O O O O
4 vrst_mpf Clear fixed-size memory pool area O O O O
5 vrst_mpl Clear variable-size memory pool area O O O O

 Notes:

• [S]: Standard profile service calls
[B]: Basic profile service calls

• Each sign within " System State " is a following meaning.
♦ T: Can be called from task context
♦ N: Can be called from non-task context
♦ E: Can be called from dispatch-enabled state
♦ D: Can be called from dispatch-disabled state
♦ U: Can be called from CPU-unlocked state
♦ L: Can be called from CPU-locked state

- 197 -

vrst_dtq Clear data queue area

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = vrst_dtq(ID dtqid);

 PPaarraammeetteerrss
ID dtqid Data queue ID to be cleared

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
vrst_dtq DTQID

 PPaarraammeetteerrss
DTQID Data queue ID to be cleared

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 Data queue ID to be cleared

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call clears the data stored in the data queue indicated by dtqid. If the data queue area has no more areas to be
added and tasks are enqueued in a data transmission waiting queue, all of the tasks enqueued in the data transmission wait-
ing queue are released from WAITING state. Furthermore, the error code EV_RST is returned to the tasks that have been
released from WAITING state.

Even when the number of data queues defined is 0, all of the tasks enqueued in a data transmission waiting queue are re-
leased from WAITING state.

This service call can be issued only from task context. It cannot be issued from non-task context.

- 198 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task1(void)
{
 :

vrst_dtq(ID_dtq1);
 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R2
 vrst_dtq #ID_DTQ1
 :

- 199 -

vrst_vdtq Clear Short data queue area

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = vrst_vdtq(ID vdtqid);

 PPaarraammeetteerrss
ID vdtqid Short data queue ID to be cleared

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
vrst_vdtq VDTQID

 PPaarraammeetteerrss
VDTQID Short data queue ID to be cleared

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 Short data queue ID to be cleared

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call clears the data stored in the Short data queue indicated by vdtqid. If the Short data queue area has no more
areas to be added and tasks are enqueued in a data transmission waiting queue, all of the tasks enqueued in the data trans-
mission waiting queue are released from WAITING state. Furthermore, the error code EV_RST is returned to the tasks that
have been released from WAITING state.

Even when the number of Short data queues defined is 0, all of the tasks enqueued in a data transmission waiting queue are
released from WAITING state.

This service call can be issued only from task context. It cannot be issued from non-task context.

- 200 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task1(void)
{
 :

vrst_vdtq(ID_vdtq1);
 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R2
 vrst_vdtq #ID_VDTQ1
 :

- 201 -

vrst_mbx Clear mailbox area

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = vrst_mbx(ID mbxid);

 PPaarraammeetteerrss
ID mbxid Mailbox ID to be cleared

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]
.include mr100.inc
vrst_mbx MBXID

 PPaarraammeetteerrss
MBXID Mailbox ID to be cleared

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 Mailbox ID to be cleared

[[[[EErrrroorr ccooddee]]]]
None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call clears the messages stored in the mailbox indicated by mbxid.
This service call can be issued only from task context. It cannot be issued from non-task context.

- 202 -

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task1(void)
{
 :

vrst_mbx(ID_mbx1);
 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R2
 vrst_mbx #ID_MBX1
 :

- 203 -

vrst_mpf Clear fixed-size memory pool area

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = vrst_mpf(ID mpfid);

 PPaarraammeetteerrss
ID mpfid Fixed-size memory pool ID to be cleared

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
vrst_mpf MPFID

 PPaarraammeetteerrss
MPFID Fixed-size memory pool ID to be cleared

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 Fixed-size memory pool ID to be cleared

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call initializes the fixed-size memory pool indicated by mpfid. If tasks are enqueued in a memory block wait-
ing queue, all of the tasks enqueued in the memory block waiting queue are released from WAITING state. Furthermore,
the error code EV_RST is returned to the tasks that have been released from WAITING state.

This service call can be issued only from task context. It cannot be issued from non-task context.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task1(void)
{
 :

vrst_mpf(ID_mpf1);
 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R2
 vrst_mpf #ID_MPF1
 :

- 204 -

vrst_mpl Clear variable-size memory pool area

[[[[CC LLaanngguuaaggee AAPPII]]]]
ER ercd = vrst_mpl(ID mplid);

 PPaarraammeetteerrss
ID mplid Variable-size memory pool ID to be cleared

 RReettuurrnn PPaarraammeetteerrss
ER ercd Terminated normally (E_OK)

[[[[AAsssseemmbbllyy llaanngguuaaggee AAPPII]]]]

.include mr100.inc
vrst_mpl MPLID

 PPaarraammeetteerrss
MPLID Variable-size memory pool ID to be cleared

 RReeggiisstteerr ccoonntteennttss aafftteerr sseerrvviiccee ccaallll iiss iissssuueedd
Register name Content after service call is issued

R0 Error code

R2 Variable-size memory pool ID to be cleared

[[[[EErrrroorr ccooddee]]]]

None

[[[[FFuunnccttiioonnaall ddeessccrriippttiioonn]]]]
This service call initializes the variable-size memory pool indicated by mplid.

This service call can be issued only from task context. It cannot be issued from non-task context.

[[[[EExxaammppllee pprrooggrraamm ssttaatteemmeenntt]]]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel_id.h”
void task1(void)
{
 :

vrst_mpl(ID_mpl1);
 :
}

<<Example statement in assembly language>>
 .include mr100.inc
 .GLB task
task:

 :
 PUSH.W R2
 vrst_mpl #ID_MPL1
 :

- 205 -

6. Applications Development Procedure
Overview

6.1 Overview
Application programs for MR100 should generally be developed following the procedure described below.

1. Generating a project
When using HEW37, create a new project using MR100 on HEW.

2. Coding the application program
Write the application program in code form using C or assembly language. If necessary, correct the sample star-
tup program (crt0mr.a30) and section definition file (c_sec.inc or asm_sec.inc).

3. Creating a configuration file
Create a configuration file which has defined in it the task entry address, stack size, etc. by using an editor.

The GUI configurator available for MR100 may be used to create a configuration file.

4. Executing the configurator
From the configuration file, create system data definition files (sys_rom.inc, sys_ram.inc), include files
(mr100.inc, kernel_id.h).

5. System generation
Execute the make38 command or execute build on HEW to generate a system.

6. Writing to ROM
Using the ROM programming format file created, write the finished program file into the ROM. Or load it into
the debugger to debug.

Figure 6.1 shows a detailed flow of system generation.

37 It is abbreviation of High-performance Embedded Workshop.
38 The make command comes the UNIX standard and UNIX compatible.

- 206 -

MR100 include file
kernel.h

Configurator
cfg100

Application
object

ROM write format

Application
C source

Application
Assembler source

Jamp table file
mrtable.a30

Systemcall
file (.mrc)

Configuration file

Application
include file

C compiler
nc100

Relocatable Assembler
as100

Linkage Editor
ln100

Load module converter
lmc100

Create Jamp table utility
mr100tbl

Include file
kernel_id.h

Absolute
module

Startup program
start.a30, crt0mr.a30

MR100/4
Library

C standard
Library

C standard
header file

Include file
mr100.inc

System data definition file
sys_ram.inc, sys_rom.inc

HEW

Figure 6.1 MR100 System Generation Detail Flowchart

- 207 -

6.2 Development Procedure Example
This chapter outlines the development procedures on the basis of a typical MR100 application example.

6.2.1 Applications Program Coding
Figure 6.2 shows a program that simulates laser beam printer operations. Let us assume that the file describing the laser
beam printer simulation program is named lbp.c. This program consists of the following three tasks and one interrupt han-
dler.

• Main Task

• Image expansion task

• Printer engine task

• Centronics interface interrupt handler

This program uses the following MR100 library functions.

• sta_tsk()
Starts a task. Give the appropriate ID number as the argument to select the task to be activated. When the ker-
nel_id.h file, which is generated by the configurator, is included, it is possible to specify the task by name (char-
acter string).39

• wai_flg()
Waits until the eventflag is set up. In the example, this function is used to wait until one page of data is entered into the
buffer via the Centronics interface.

• wup_tsk()
Wakes up a specified task from the WAITING state. This function is used to start the printer engine task.

• slp_tsk()
Causes a task in the RUNNING state to enter the WAITING state. In the example, this function is used to make
the printer engine task wait for image expansion.

• iset_flg()
Sets the eventflag. In the example, this function is used to notify the image expansion task of the completion of
one-page data input.

39 The configurator converts the ID number to the associated name(character string) in accordance with the information entered int the con-
figuration file.

- 208 -

 #include <itron.h>
 #include <kernel.h>
 #include "kernel_id.h"

 void main() /* main task */
 {
 printf("LBP start simulation \n");
 sta_tsk(ID_idle,1); /* activate idle task */
 sta_tsk(ID_image,1); /* activate image expansion task */
 sta_tsk(ID_printer,1); /* activate printer engine task */
}
void image() /* activate image expansion task */
{
 while(1){
 wai_flg(ID_pagein,waiptn,TWF_ANDW, &flgptn);/* wait for 1-page input */

 printf(" bit map expansion processing \n");
 wup_tsk(ID_printer); /* wake up printer engine task */
 }
}
void printer() /* printer engine task */
{
 while(1){
 slp_tsk();
 printf(" printer engine operation \n");
 }
}
void sent_in() /* Centronics interface handler */
{

 /* Process input from Centronics interface */
 if (/* 1-page input completed */)
 iset_flg(ID_pagein,setptn);
}

Figure 6.2 Program Example

6.2.2 Configuration File Preparation
Create a configuration file which has defined in it the task entry address, stack size, etc. Use of the GUI configurator avail-
able for MR100 helps to create a configuration file easily without having to learn how to write it.

Figure 6.3 Configuration File Example

 shows an example configuration file for a laser beam printer simulation program (filename "lbp.cfg").

- 209 -

// System Definition
 system{
 stack_size = 1024;
 priority = 5;
 system_IPL = 4;
 tick_nume = 10;
 };
 //System Clock Definition
 clock{
 mpu_clock = 20MHz;
 timer = A0;
 IPL = 4;
};
 //Task Definition
 task[1]{
 name = ID_main;
 entry_address = main();
 stack_size = 512;
 priority = 1;
 initial_start = ON;
 };
 task[2]{
 name = ID_image;
 entry_address = image();
 stack_size = 512;
 priority = 2;
 };
 task[3]{
 name = ID_printer;
 entry_address = printer();
 stack_size = 512;
 priority = 4;
 };
 task[4]{
 name = ID_idle;
 entry_address = idle();
 stack_size = 256;
 priority = 5;
 };
//Eventflag Definition
 flag[1]{
 name = pagein;
 };
 //Interrupt Vector Definition
 interrupt_vector[0x23]{
 os_int = YES;
 entry_address = sent_in();
 };

Figure 6.3 Configuration File Example

6.2.3 Configurator Execution
When using HEW, select "Build all," which enables the user to execute the procedures described in 6.2.3, "Executing the
Configurator," and 6.2.4, "System Generation."

Execute the configurator cfg100 to generate system data definition files (sys_rom.inc, sys_ram.inc), include files
(mr100.inc, kernel_id.h), and a system generation procedure description file (makefile) from the configuration file.

 A> cfg100 -v lbp.cfg

MR100 system configurator V.1.00.18
Copyright 2003,2005 RENESAS TECHNOLOGY CORPORATION
AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED.

 MR100 version ==> V.1.01 Release 01

 A>

Figure 6.4 Configurator Execution

6.2.4 System generation
Execute the make command to generate the system.

- 210 -

 A> make -f makefile
 as100 -F -Dtest=1 crt0mr.a30
 nc100 -c task.c
 ln100 @ln100.sub

 A>

Figure 6.5 System Generation

6.2.5 Writing ROM
Using the lmc30 load module converter, convert the absolute module file into a ROM writable format and then write it into
ROM. Or read the file into the debugger and debug it.

- 211 -

7. Detailed Applications

7.1 Program Coding Procedure in C Language

7.1.1 Task Description Procedure

1. Describe the task as a function.
To register the task for the MR100, enter its function name in the configuration file. When, for instance, the
function name "task()" is to be registered as the task ID number 3, proceed as follows.

 task[3]{
 name = ID_task;

 entry_address = task();

 stack_size = 100;

 priority = 3;

 };

2. At the beginning of file, be sure to include "itron.h",”kernel.h” which is in system directory
as well as "kernel_id.h" which is in the current directory. That is, be sure to enter the fol-
lowing two lines at the beginning of file.

 #include <itron.h>
 #include <kernel.h>
 #include "kernel_id.h"

3. No return value is provided for the task start function. Therefore, declare the task start
function as a void function.

4. A function that is declared to be static cannot be registered as a task.
5. It isn't necessary to describe ext_tsk() at the exit of task start function.40If you exit the task

from the subroutine in task start function, please describe ext_tsk() in the subroutine.
6. It is also possible to describe the task startup function, using the infinite loop.

 #include <itron.h>
 #include <kernel.h>
 #include "kernel_id.h"

 void task(void)
 {

 /* process */

 }

Figure 7.1 Example Infinite Loop Task Described in C Language

40 The task is ended by ext_tsk() automatically if #pramga TASK is declared in the MR100. Similarly, it is ended by ext_tsk when returned
halfway of the function by return sentence.

- 212 -

 #include <itron.h>
 #include <kernel.h>
 #include "kernel_id.h"

 void task(void)
 {
 for(;;){
 /* process */

 }
 }

Figure 7.2 Example Task Terminating with ext_tsk() Described in C Language

7. To specify a task, use the string written in the task definition item “name” of the configura-
tion file.41

 wup_tsk(ID_main);

8. To specify an event flag, semaphore, or mailbox, use the respective strings defined in the
configuration file.

For example, if an event flag is defined in the configuration file as shown below,

 flag[1]{
 name = ID_abc;
 };

To designate this eventflag, proceed as follows.

 set_flg(ID_abc,&setptn);

9. To specify a cyclic or alarm handler, use the string written in the cyclic or alarm handler
definition item “name” of the configuration file.

 sta_cyc(ID_cyc);

10. When a task is reactivated by the sta_tsk() service call after it has been terminated by the
ter_tsk() service call, the task itself starts from its initial state.42 However, the external va-
riable and static variable are not automatically initialized when the task is started. The ex-
ternal and static variables are initialized only by the startup program (crt0mr.a30), which
actuates before MR100 startup.

11. The task executed when the MR100 system starts up is setup.
12. The variable storage classification is described below.

The MR100 treats the C language variables as indicated in Table 7.1 C Language Variable Treatment.

Table 7.1 C Language Variable Treatment

Variable storage class Treatment
Global Variable Variable shared by all tasks
Non-function static variable Variable shared by the tasks in the same file
Auto Variable
Register Variable
Static variable in function

Variable for specific task

7.1.2 Writing a Kernel (OS Dependent) Interrupt Handler
When describing the kernel interrupt handler in C language, observe the following precautions.

41 The configurator generates the file “kernel_id.h” that is used to convert the ID number of a task into the string to be specified. This means
that the #define declaration necessary to convert the string specified in the task definition item “name” into the ID number of the task is
made in “kernel_id.h.” The same applies to the cyclic and alarm handlers.
42 The task starts from its start function with the initial priority in a wakeup counter cleared state.

- 213 -

1. Describe the kernel interrupt handler as a function 43
2. Be sure to use the void type to declare the interrupt handler start function return value and

argument.
3. At the beginning of file, be sure to include "itron.h",”kernel.h” which is in the system di-

rectory as well as "kernel_id.h" which is in the current directory.
4. Do not use the ret_int service call in the interrupt handler.44
5. The static declared functions can not be registered as an interrupt handler.

 #include <itron.h>
 #include <kernel.h>
 #include "kernel_id.h"

 void inthand(void)

 {
 /* process */

 iwup_tsk(ID_main);
 }

Figure 7.3 Example of Kernel Interrupt Handler

7.1.3 Writing Non-kernel Interrupt Handler
When describing the non-kernel interrupt handler in C language, observe the following precautions.

1. Be sure to declare the return value and argument of the interrupt handler start function as
a void type.

2. No service call can be issued from a non-kernel interrupt handler.
NOTE: If this restriction is not observed, the software may malfunction.

3. A function that is declared to be static cannot be registered as an interrupt handler.
4. If you want multiple interrupts to be enabled in a non-kernel interrupt handler, always make

sure that the non-kernel interrupt handler is assigned a priority level higher than other
kernel interrupt handlers.45

 #include <itron.h>
 #include <kernel.h>
 #include "kernel_id.h"

 void inthand(void)
 {
 /* process */
 }

Figure 7.4 Example of Non-kernel Interrupt Handler

7.1.4 Writing Cyclic Handler/Alarm Handler
When describing the cyclic or alarm handler in C language, observe the following precautions.

43 A configuration file is used to define the relationship between handlers and functions.
44 When an kernel interrupt handler is declared with #pragma INTHANDLER ,code for the ret_int service call is automatically generated.
45 If you want the non-kernel interrupt handler to be assigned a priority level lower than kernel interrupt handlers, change the description of
the non-kernel interrupt handler to that of the kernel interrupt handler.

- 214 -

1. Describe the cyclic or alarm handler as a function.46
2. Be sure to declare the return value and argument of the interrupt handler start function as

a void type.
3. At the beginning of file, be sure to include "itron.h",”kernel.h” which is in the system di-

rectory as well as "kernel_id.h" which is in the current directory.
4. The static declared functions cannot be registered as a cyclic handler or alarm handler.
5. The cyclic handler and alarm handler are invoked by a subroutine call from a system clock

interrupt handler.

 #include <itron.h>
 #include <kernel.h>
 #include "kernel_id.h"

 void cychand(void)
 {
 /*process */
 }

Figure 7.5 Example Cyclic Handler Written in C Language

46 The handler-to-function name correlation is determined by the configuration file.

- 215 -

7.2 Program Coding Procedure in Assembly Language
This section describes how to write an application using the assembly language.

7.2.1 Writing Task
This section describes how to write an application using the assembly language.

1. Be sure to include "mr100.inc" at the beginning of file.
2. For the symbol indicating the task start address, make the external declaration.47
3. Be sure that an infinite loop is formed for the task or the task is terminated by the ext_tsk

service call.

 .INCLUDE mr100.inc ----- (1)
 .GLB task ----- (2)

 task:
 ; process
 jmp task ----- (3)

Figure 7.6 Example Infinite Loop Task Described in Assembly Language

 .INCLUDE mr100.inc
 .GLB task

 task:
 ; process
 ext_tsk

Figure 7.7 Example Task Terminating with ext_tsk Described in Assembly Language

4. The initial register values at task startup are indeterminate except the PC, SB, R0 and FLG
registers.

5. To specify a task, use the string written in the task definition item “name” of the configura-
tion file.

 wup_tsk #ID_task

6. To specify an event flag, semaphore, or mailbox, use the respective strings defined in the
configuration file.

For example, if a semaphore is defined in the configuration file as shown below,:

 semaphore[1]{
 name = abc;
 };

To specify this semaphore, write your specification as follows:

 sig_sem #ID_abc

7. To specify a cyclic or alarm handler, use the string written in the cyclic or alarm handler
definition item “name” of the configuration file

 For example, if you want to specify a cyclic handler "cyc," write your specification as follows:

 sta_cyc #ID_cyc

47 Use the .GLB pseudo-directive

- 216 -

8. Set a task that is activated at MR100 system startup in the configuration file 48

7.2.2 Writing Kernel Interrupt Handler
When describing the kernel interrupt handler in assembly language, observe the following precautions

1. At the beginning of file, be sure to include "mr100.inc" which is in the system directory.
2. For the symbol indicating the interrupt handler start address, make the external declara-

tion(Global declaration).49
3. Make sure that the registers used in a handler are saved at the entry and are restored after

use.
4. Return to the task by ret_int service call.

.INCLUDE mr100.inc ------(1)
.GLB inth ------(2)

 inth:

; Registers used are saved to a stack ------(3)
iwup_tsk #ID_task1

:
process
:

; Registers used are restored ------(3)

ret_int ------(4)

Figure 7.8 Example of kernel(OS-depend) interrupt handler

7.2.3 Writing Non-kernel Interrupt Handler

1. For the symbol indicating the interrupt handler start address, make the external declaration
(public declaration).

2. Make sure that the registers used in a handler are saved at the entry and are restored after
use.

3. Be sure to end the handler by REIT instruction.
4. No service calls can be issued from a non-kernel interrupt handler.

NOTE: If this restriction is not observed, the software may malfunction.

5. If you want multiple interrupts to be enabled in a non-kernel interrupt handler, always make
sure that the non-kernel interrupt handler is assigned a priority level higher than other
non-kernel interrupt handlers.50

.GLB inthand ----- (1)

inthand:
; Registers used are saved to a stack ----- (2)
; interrupt process
; Registers used are restored ----- (2)
REIT ----- (3)

Figure 7.9 Example of Non-kernel Interrupt Handler of Specific Level

7.2.4 Writing Cyclic Handler/Alarm Handler
When describing the cyclic or alarm handler in Assembly Language, observe the following precautions.

48 The relationship between task ID numbers and tasks(program) is defined in the configuration file.
49 Use the .GLB peudo-directive.
50 If you want the non-kernel interrupt handler to be assigned a priority level lower than kernel interrupt handlers, change the description of
the non-kernel interrupt handler to that of the kernel interrupt handler.

- 217 -

1. At the beginning of file, be sure to include "mr100.inc" which is in the system directory.
2. For the symbol indicating the handler start address, make the external declaration.51
3. Always use the RTS instruction (subroutine return instruction) to return from cyclic han-

dlers and alarm handlers.
For examples:

.INCLUDE mr100.inc ----- (1)
.GLB cychand ----- (2)

cychand:

:
; handler process

:

rts ----- (3)

Figure 7.10 Example Handler Written in Assembly Language

51 Use the .GLB pseudo-directive.

- 218 -

7.3 Modifying MR100 Startup Program
MR100 comes with two types of startup programs as described below.

• start.a30
This startup program is used when you created a program using the assembly language.

• crt0mr.a30
This startup program is used when you created a program using the C language.

This program is derived from "start.a30" by adding an initialization routine in C language.

The startup programs perform the following:

• Initialize the processor after a reset.

• Initialize C language variables (crt0mr.a30 only).

• Set the system timer.

• Initialize MR100's data area.

Copy these startup programs from the directory indicated by environment variable "LIB100" to the current directory.

If necessary, correct or add the sections below:

• Setting processor mode register
Set a processor mode matched to your system to the processor mode register. (58-60th line in crt0mr.a30)

• Adding user-required initialization program
When there is an initialization program that is required for your application, add it to the 140th line in the C
language startup program (crt0mr.a30).

• Enable the 138th – 139th line in the C language startup program (crt0mr.a30) if standard I/O function is
used.

- 219 -

7.3.1 C Language Startup Program (crt0mr.a30)
Figure 7.11 shows the C language startup program(crt0mr.a30).

1 ; **
2 ;
3 ; MR100 start up program for C language
4 ; COPYRIGHT(C) 2003,2006,2007 RENESAS TECHNOLOGY CORPORATION
5 ; AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED
6 ; MR100
7 ;
8 ; **
9 ; "$Id: crt0mr.a30 512 2007-07-09 10:11:36Z inui $"
10 ;*A1* 2005-02-28 for ES
11 ;*G0* 2006-06-15 for MR100/4
12 ;
13 .LIST OFF
14 .INCLUDE c_sec.inc
15 .INCLUDE mr100.inc
16 .INCLUDE sys_rom.inc
17 .INCLUDE sys_ram.inc
18 .LIST ON
19
20 .GLB __SYS_INITIAL
21 .GLB __END_INIT
22 .GLB __init_sys,__init_tsk
23
24 regoffset .EQU 0
25
26 ;---
27 ; SBDATA area definition
28 ;---
29 .GLB __SB__
30 .SB __SB__
31
32 ;===
33 ; Initialize Macro declaration
34 ;---
35 BZERO .macro TOP_,SECT_
36 XOR.B R0L,R0L
37 mov.l #TOP_,A1
38 mov.l #sizeof SECT_,R7R5
39 sstr.b
40 .endm
41 BCOPY .macro FROM_,TO_,SECT_
42 mov.l #FROM_,A0
43 mov.l #TO_,A1
44 mov.l #sizeof SECT_,R7R5
45 smovf.b
46 .endm
47 ;===
48 ; Interrupt section start
49 ;---
50 .SECTION MR_KERNEL,CODE,ALIGN
51
52 ;---
53 ; after reset,this program will start
54 ;---
55 __SYS_INITIAL:
56 LDC #__Sys_Sp,ISP ; set initial ISP
57
58 ; MOV.B #2,0AH
59 ; MOV.B #00,PMOD ; Set Processor Mode Register
60 ; MOV.B #0,0AH ;
61 LDC #00000010H,FLG
62 LDC #__SB__,SB
63 LDC #00000000H,FLG
64 LDC #__Sys_Sp,FB
65 LDC #__SB__,SB
66
67 ;===
68 ; MR_RAM zero clear
69 ;--
70 BZERO MR_RAM_top,MR_RAM
71
72 ;===
73 ; NEAR area initialize.
74 ; FAR area initialize.

- 220 -

75 ;--
76 ; bss zero clear
77 ;--
78 ;---;
79 ; zero clear BSS ;
80 ;---;
81 BZERO bss_SB8_top, bss_SB8
82 ; BZERO bss_SB16_top, bss_SB16
83 BZERO bss_NEAR_top, bss_NEAR
84 BZERO bss_FAR_top, bss_FAR
85 BZERO bss_EXT_top, bss_EXT
86 BZERO bss_MON1_top, bss_MON1
87 BZERO bss_MON2_top, bss_MON2
88 BZERO bss_MON3_top, bss_MON3
89 BZERO bss_MON4_top, bss_MON4
90
91 ;--
92 ; initialize data section
93 ;--
94 ;---;
95 ; initialize DATA ;
96 ;---;
97 BCOPY data_SB8_INIT_top, data_SB8_top, data_SB8
98 ; BCOPY data_SB16_INIT_top, data_SB16_top, data_SB16
99 BCOPY data_NEAR_INIT_top, data_NEAR_top, data_NEAR
100 BCOPY data_FAR_INIT_top, data_FAR_top, data_FAR
101 BCOPY data_EXT_INIT_top, data_EXT_top, data_EXT
102 BCOPY data_MON1_INIT_top, data_MON1_top, data_MON1
103 BCOPY data_MON2_INIT_top, data_MON2_top, data_MON2
104 BCOPY data_MON3_INIT_top, data_MON3_top, data_MON3
105 BCOPY data_MON4_INIT_top, data_MON4_top, data_MON4
106
107
108 ;---
109 ; Set System IPL and Set Interrupt Vector
110 ;---
111 __INI_IPL ;*G0*
112 LDC #__INT_VECTOR,INTB
113
114 ; +---+
115 ; | System timer interrupt setting |
116 ; +---+
117 .IF USE_TIMER
118 MOV.B #stmr_mod_val,stmr_mod_reg+regoffset ; set timer mode
119 MOV.W #stmr_cnt,stmr_ctr_reg+regoffset ; set interval count
120 MOV.B #stmr_int_IPL,stmr_int_reg ; set timer IPL
121 OR.B #stmr_bit+1,stmr_start+regoffset ; system timer start
122 .ENDIF
123
124 ; +---+
125 ; | System timer initialize |
126 ; +---+
127 .IF USE_SYSTEM_TIME
128 MOV.W #__D_Sys_TIME_L,__Sys_time+4
129 MOV.W #__D_Sys_TIME_M,__Sys_time+2
130 MOV.W #__D_Sys_TIME_H,__Sys_time
131 .ENDIF
132 MOV.L #0,__HEAP_TMR
133
134 ; +---+
135 ; | User Initial Routine (if there are) |
136 ; +---+
137 ; Initialize standard I/O
138 ; .GLB __init
139 ; JSR.A __init
140
141 ; +---+
142 ; | Initalization of System Data Area |
143 ; +---+
144 .GLB __init_heap
145 JSR.W __init_sys
146 JSR.W __init_tsk
147 JSR.W __init_heap
148 .IF __NUM_FLG
149 .GLB __init_flg
150 JSR.W __init_flg
151 .ENDIF
152
153 .IF __NUM_SEM
154 .GLB __init_sem

- 221 -

155 JSR.W __init_sem
156 .ENDIF
157
158 .IF __NUM_DTQ
159 .GLB __init_dtq
160 JSR.W __init_dtq
161 .ENDIF
162
163 .IF __NUM_VDTQ ;*A1*
164 .GLB __init_vdtq
165 JSR.W __init_vdtq
166 .ENDIF
167
168 .IF __NUM_MBX
169 .GLB __init_mbx
170 JSR.W __init_mbx
171 .ENDIF
172
173 .IF ALARM_HANDLER
174 .GLB __init_alh
175 JSR.W __init_alh
176 .ENDIF
177
178 .IF CYCLIC_HANDLER
179 .GLB __init_cyh
180 JSR.W __init_cyh
181 .ENDIF
182
183 .IF __NUM_MPF ;*A1*
184 ; Fixed Memory Pool
185 .GLB __init_mpf
186 JSR.W __init_mpf
187 .ENDIF
188
189 .IF __NUM_MPL ;*A1*
190 ; Variable Memory Pool
191 .GLB __init_mpl
192 JSR.W __init_mpl
193 .ENDIF
194
195
196 ; For PD100
197 __LAST_INITIAL
198
199 __END_INIT:
200
201 ; +---+
202 ; | Start initial active task |
203 ; +---+
204 __START_TASK
205
206 .GLB __rdyq_search
207 JMP.W __rdyq_search
208
209 ; +---+
210 ; | Define Dummy |
211 ; +---+
212 .GLB __SYS_DMY_INH
213 __SYS_DMY_INH:
214 REIT
215
216 .IF CUSTOM_SYS_END
217 ; +---+
218 ; | Syscall exit rouitne to customize
219 ; +---+
220 .GLB __sys_end
221 __sys_end:
222 ; Customize here.
223 REIT
224 .ENDIF
225
226 ; +---+
227 ; | exit() function |
228 ; +---+
229 .GLB _exit,$exit
230 _exit:
231 $exit:
232 JMP _exit
233
234 .IF USE_TIMER

- 222 -

235 ; +---+
236 ; | System clock interrupt handler |
237 ; +---+
238 .GLB __SYS_STMR_INH
239 .ALIGN
240 __SYS_STMR_INH:
241 ; process issue system call
242 ; For PD100
243 __ISSUE_SYSCALL
244
245 ; System timer interrupt handler
246 _STMR_hdr
247
248 ret_int
249 .ENDIF
250
251 .END
252
253 ; **
254 ; COPYRIGHT(C) 2003,2007 RENESAS TECHNOLOGY CORPORATION
255 ; AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED
; **

Figure 7.11 C Language Startup Program (crt0mr.a30)

- 223 -

The following explains the content of the C language startup program (crt0mr.a30).

4. Incorporate a section definition file [14 in Figure 7.11]
5. Incorporate an include file for MR100 [15 in Figure 7.11]
6. Incorporate a system ROM area definition file [16 in Figure 7.11]
7. Incorporate a system RAM area definition file [17 in Figure 7.11]
8. This is the initialization program __SYS_INITIAL that is activated immediately after a reset.

[55 - 207 in Figure 7.11]
♦ Setting the System Stack pointer [56 in Figure 7.11]
♦ Setting the SB,FB register [61 - 65 in Figure 7.11]
♦ Initial set the C language. [72 - 105 in Figure 7.11]
♦ Setting kernel interrupt mask level [111 in Figure 7.11]
♦ Setting the address of interrupt vector table [112 in Figure 7.11]
♦ Set MR100's system clock interrupt [114-122 in Figure 7.11]
♦ Initial set MR100's system timer [124-132 in Figure 7.11]

9. Initial set parameters inherent in the application [140 in Figure 7.11]
10. Initialize the RAM data used by MR100 [141- 197 in Figure 7.11]
11. Activate the initial startup task. [201-207 in Figure 7.11]
12. This is a system clock interrupt handler [235-248 in Figure 7.11]

- 224 -

7.4 Memory Allocation
This section describes how memory is allocated for the application program data.

Use the section file provided by MR100 to set memory allocation.

MR100 comes with the following two types of section files:

• asm_sec.inc
This file is used when you developed your applications with the assembly language.

• c_sec.inc
This file is used when you developed your applications with the C language.

c_sec.inc is derived from "asm_sec.inc" by adding sections generated by C compiler NC100.

Modify the section allocation and start address settings in this file to suit your system.

The following shows how to modify the section file.

 e.g.

 If you want to change the rom_FAR section start address from FFE00000H to FFF00000H
;---;
; FAR ROM SECTIONS ;
;---;
 .section rom_FAR, romdata
 .org 0FFE00000H
rom_FAR_top:

 ↓

 .section rom_FAR, romdata
 .org 0FFF00000H
rom_FAR_top:

- 225 -

7.4.1 Section used by the MR100
The sample section file for the C language is "asm_sec.inc". The sample section file for the assembly language is
"asm_sec.inc". Edit these files if section reallocation is required.

The following explains each section that is used by the MR100.

• MR_RAM section
This section is where the RAM data, MR100's system management data, is stored that is referenced in absolute
addressing.

• stack section
This section is provided for each task's user stack and system stack.

• MR_HEAP section
This section stores the variable-size memorypool.

• MR_KERNEL section
This section is where the MR100 kernel program is stored.

• MR_CIF section
This section stores the MR100 C language interface library.

• MR_ROM section
This section stores data such as task start addresses that area referenced by the MR100 kernel.

• program section
This section stores user programs.

This section is not used by the MR100 kernel at all. Therefore, you can use this section as desired.

• INTERRUPT_VECTOR section

• FIX_INTERRUPT_VECTOR section
This section stores interrupt vectors. The start address of this section varies with the type of microcomputer used.

.

227

8. Using Configurator

8.1 Configuration File Creation Procedure
When applications program coding and startup program modification are completed, it is then necessary to register the ap-
plications program in the MR100 system.

This registration is accomplished by the configuration file.

8.1.1 Configuration File Data Entry Format
This chapter describes how the definition data are entered in the configuration file.

 Comment Statement
A statement from '//' to the end of a line is assumed to be a comment and not operated on.

 End of statement
Statements are terminated by ';'.

 Numerical Value
Numerical values can be entered in the following format.

• Hexadecimal Number
Add "0x" or "0X" to the beginning of a numerical value, or "h" or "H" to the end. If the value begins with an al-
phabetical letter between A and F with "h" or "H" attached to the end, be sure to add "0" to the beginning. Note
that the system does not distinguish between the upper- and lower-case alphabetical characters (A-F) used as
numerical values.52

• Decimal Number
Use an integer only as in '23'. However, it must not begin with '0'.

• Octal Numbers
Add '0' to the beginning of a numerical value of 'O' or 'o' to end.

• Binary Numbers
Add 'B' or 'b' to the end of a numerical value. It must not begin with '0'.

Table 8.1 Numerical Value Entry Examples

0xf12
0Xf12
0a12h
0a12H
12h

Hexadecimal

12H
Decimal 32

017
17o

Octal

17O
101110b Binary
101010B

52 The system distinguishes between the upper- and lower-case letters except for the numbers A-F and a-f.

228

It is also possible to enter operators in numerical values. Table 8.2 Operators lists the operators available.

Table 8.2 Operators

Operator Priority Direction of computation
() High From left to right
- (Unary_minus) From right to left
 ∗ / % From left to right
+ - (Binary_minus) Low From loft to right

13.
Numerical value examples are presented below.

• 123

• 123 + 0x23

• (23/4 + 3) ∗ 2

• 100B + 0aH

 Symbol
The symbols are indicated by a character string that consists of numerals, upper- and lower-case alphabetical let-
ters, _(underscore), and ?, and begins with a non-numeric character.

Example symbols are presented below.

• _TASK1

• IDLE3

 Function Name
The function names are indicated by a character string that consists of numerals, upper and lower-case alpha-
betical letters,'$'(dollar) and '_'(underscore), begins with a non-numeric character, and ends with '()'.

The following shows an example of a function name written in the C language.

• main()

• func()
When written in the assembly language, the start label of a module is assumed to be a function name.

 Frequency
The frequency is indicated by a character string that consist of numerals and . (period), and ends with MHz. The
numerical values are significant up to six decimal places. Also note that the frequency can be entered using de-
cimal numbers only.

Frequency entry examples are presented below.

• 16MHz

• 8.1234MHz
It is also well to remember that the frequency must not begin with . (period).

 Time
The time is indicated by a character string that consists of numerals and . (period), and ends with ms. The time
values are effective up to three decimal places when the character string is terminated with ms. Also note that the

229

time can be entered using decimal numbers only.

• 10ms

• 10.5ms
It is also well to remember that the time must not begin with . (period).

8.1.2 Configuration File Definition Items
The following definitions 53 are to be formulated in the configuration file

• System definition

• System clock definition

• Respective maximum number of items

• Task definition

• Eventflag definition

• Semaphore definition

• Mailbox definition

• Data queue definition

• Short data queue definition

• Fixed-size Memory Pool definition

• Variable-size Memory Pool definition

• Cyclic handler definition

• Alarm handler definition

• Interrupt vector definition

[(System Definition Procedure)]

<< Format >>

 // System Definition
 system{
 stack_size = System stack size ;
 priority = Maximum value of priority ;
 system_IPL = Kernel mask level;
 tic_deno = Time tick denominator ;
 tic_nume = Time tick numerator ;
 message_pri = Maximum message priority value ;
 };

53 All items except task definition can omitted. If omitted, definitions in the default configuration file are referenced.

230

<< Content >>

1. System stack size

[(Definition format)] Numeric value

[(Definition range)] 6 or more

[(Default value)] 400H

Define the total stack size used in service call and interrupt processing.

2. Maximum value of priority (value of lowest priority)
[(Definition format)] Numeric value

[(Definition range)] 1 to 255

[(Default value)] 32

Define the maximum value of priority used in MR100's application programs. This must be the value of the
highest priority used.

3. Kernel mask level

[(Definition format)] Numeric value

[(Definition range)] 1 to 7

[(Default value)] 7

Set the IPL value in service calls, that is, the OS interrupt disable level.

4. Time tick denominator

[(Definition format)] Numeric value

[(Definition range)] Fixed to 1

[(Default value)] 1

Set the denominator of the time tick.

5. Time tick numerator

[(Definition format)] Numeric value

[(Definition range)] 1 to 65,535

[(Default value)] 1

Set the numerator of the time tick. The system clock interrupt interval is determined by the time tick denomina-
tor and numerator that are set here. The interval is the time tick numerator divided by time tick denominator [ms].
That is, the time tick numerator [ms].

6. Maximum message priority value
[(Definition format)] Numeric value

[(Definition range)] 1 to 255

[(Default value)] None

Define the maximum value of message priority.

231

[(System Clock Definition Procedure)]

<< Format >>

 // System Clock Definition
 clock{
 timer_clock = MPU clock ;
 timer = Timers used for system clock ;
 IPL = System clock interrupt priority level ;
 };

<< Content >>

1. MPU clock

[(Definition format)] Frequency(in MHz)

[(Definition range)] None

[(Default value)] 15MHz

Define the MPU operating clock frequency of the microcomputer in MHz units.

2. Timers used for system clock
[(Definition format)] Symbol

[(Definition range)] A0, A1, A2, A3, A4, A5,A6,A7,B0, B1, B2, B3, B4, B5, OTHER, NOTIMER

[(Default value)] NOTIMER

The frequency of the circumference functional clock supplied to a system timer is defined per MHz. With this
product, f1 or f8 is chosen as count sauce, and a value is set as a timer Ai register and a timer Bi register. There-
fore, overflow may occur depending on the value of timer_clock, and the value of tick_nume of a system defini-
tion. In this case, OTHER must be set as the timer used for a system clock, and a system timer must be initial-
ized by the user side.

If you do not use a system clock, define "NOTIMER."

3. System clock interrupt priority level

[(Definition format)] Numeric value

[(Definition range)] 1 to Kernel mask level in system definition

[(Default value)] 4

Define the priority level of the system clock timer interrupt. The value set here must be smaller than the kernel
interrupt mask level.

Interrupts whose priority levels are below the interrupt level defined here are not accepted during system clock
interrupt handler processing.

232

[(Definition respective maximum numbers of items)]
Here, define respective maximum numbers of items to be used in two or more applications.

<< Format >>

 // Max Definition
 maxdefine{
 max_task = the maximum number of tasks defined ;
 max_flag = the maximum number of eventflags defined ;
 max_dtq = the maximum number of data queues defined ;
 max_mbx = the maximum number of mailboxes defined ;
 max_sem = the maximum number of semaphores defined ;
 max_mpf = the maximum number of fixed-size
 memory pools defined ;
 max_mpl = the maximum number of variable-size
 memory pools defined ;
 max_cyh = the maximum number of cyclic handlers
 defined ;
 max_alh = the maximum number of alarm handlers
 defined ;
 max_vdtq = the maximum number of short data queues defined ;
};

<< Contents >>

1. The maximum number of tasks defined

[(Definition format)] Numeric value

[(Definition range)] 1 to 255

[(Default value)] None

Define the maximum number of tasks defined.

2. The maximum number of eventflags defined
[(Definition format)] Numeric value

[(Definition range)] 1 to 255

[(Default value)] None

3. The maximum number of data queues defined.

[(Definition format)] Numeric value

[(Definition range)] 1 to 255

[(Default value)] None

Define the maximum number of data queues defined.

4. The maximum number of mailboxes defined
[(Definition format)] Numeric value

[(Definition range)] 1 to 255

[(Default value)] None

Define the maximum number of mailboxes defined.

233

5. The maximum number of semaphores defined

[(Definition format)] Numeric value

[(Definition range)] 1 to 255

[(Default value)] None

Define the maximum number of semaphores defined.

6. The maximum number of fixed-size memory pools defined
[(Definition format)] Numeric value

[(Definition range)] 1 to 255

[(Default value)] None

7. The maximum number of variable length memory blocks defined.
[(Definition format)] Numeric value

[(Definition range)] 1 to 255

[(Default value)] None

Define the maximum number of variable length memory blocks defined.

8. The maximum number of cyclic activation handlers defined

[(Definition format)] Numeric value

[(Definition range)] 1 to 255

[(Default value)] None

The maximum number of cyclic handler defined

9. The maximum number of alarm handler defined

[(Definition format)] Numeric value

[(Definition range)] 1 to 255

[(Default value)] None

Define the maximum number of alarm handlers defined.

10. The maximum number of short data queues defined.

[(Definition format)] Numeric value

[(Definition range)] 1 to 255

[(Default value)] None

Define the maximum number of short data queues defined.

234

[(Task definition)]

<< Format >>

 // Tasks Definition
task[ID No.]{
 name = ID name ;
 entry_address = Start task of address ;
 stack_size = User stack size of task ;
 priority = Initial priority of task ;
 context = Registers used ;
 stack_section = Section name in which the stack is located ;
 initial_start = TA_ACT attribute (initial startup state) ;
 exinf = Extended information ;
 };
 :
 :

The ID number must be in the range of 1 to 255. The ID number can be omitted.

If omitted, numbers are automatically assigned sequentially beginning with the smallest.

<< Content >>

Define the following for each task ID number.

1. Task ID name

[(Definition format)] Symbol

[(Definition range)] None

[(Default value)] None

Define the ID name of a task. Note that the function name defined here is output to the kernel_id.h file, as shown
below.

#define Task ID Name task ID

2. Start address of task
[(Definition format)] Symbol or function name

[(Definition range)] None

[(Default value)] None

Define the entry address of a task. When written in the C language, add () at the end or _at the beginning of the
function name you have defined.

The function name defined here causes the following declaration statement to be output in the kernel_id.h file:

 #pragma TASK /V4 Function Name

235

3. User stack size of task

[(Definition format)] Numeric value

[(Definition range)] 12 or more

[(Default value)] 256

Define the user stack size for each task. The user stack means a stack area used by each individual task. MR100
requires that a user stack area be allocated for each task, which amount to at least 12 bytes.

4. Initial priority of task
[(Definition format)] Numeric value

[(Definition range)] 1 to (maximum value of priority in system definition)

[(Default value)] 1

Define the priority of a task at startup time.

As for MR100's priority, the lower the value, the higher the priority.

5. Regisers Used

[(Definition format)] Symbol[,Symbol,....]

[(Definition range)] Selected from R2R0,R3R1,R6R4,R7R5,A0,A1,A2,A3,SB,FB

[(Default value)] All registers

Define the registers used in a task. MR100 handles the register defined here as a context. Specify the R2R0 reg-
ister because task startup code is set in it when the task starts.

However, the registers used can only be selected when the task is written in the assembly language. Select all
registers when the task is written in the C language. When selecting a register here, be sure to select all registers
that store service call parameters used in each task.

MR100 kernel does not change the registers of bank.

If this definition is omitted, it is assumed that all registers are selected.

6. Section name in which the stack is located

[(Definition format)] Symbol

[(Definition range)] None

[(Default value)] stack

Define the section name in which the stack is located. The section defined here must always have an area allo-
cated for it in the section file (asm_sec.inc or c_sec.inc).

If no section names are defined, the stack is located in the stack section.

7. TA_ACT attribute (initial startup state)
[(Definition format)] Symbol

[(Definition range)] ON or OFF

[(Default value)] OFF

Define the initial startup state of a task.

If this attribute is specified ON, the task goes to a READY state at the initial system startup time.

The task startup code of the initial startup task is the extended information.

236

8. Extended information

[(Definition format)] Numeric value

[(Definition range)] 0 to 0xFFFFFFFF

[(Default value)] 0

Define the extended information of a task. This information is passed to the task as argument when it is restarted
by a queued startup request, for example.

[(Eventflag definition)]
This definition is necessary to use Eventflag function.

<< Format >>

 // Eventflag Definition
 flag[ID No.]{
 name = Name ;
 wait_queue = Selecting an event flag waiting queue ;
 initial_pattern = Initial value of the event flag ;
 wait_multi = Multi-wait attribute ;
 clear_attribute = Clear attribute ;
 };
 :
 :

The ID number must be in the range of 1 to 255. The ID number can be omitted.

If omitted, numbers are automatically assigned sequentially beginning with the smallest.

<< Content >>

Define the following for each eventflag ID number.

1. ID Name
[(Definition format)] Symbol

[(Definition range)] None

[(Default value)] None

Define the name with which an eventflag is specified in a program.

2. Selecting an event flag waiting queue

[(Definition format)] Symbol

[(Definition range)] TA_TFIFO or TA_TPRI

[(Default value)] TA_TFIFO

Select a method in which tasks wait for the event flag. If TA_TFIFO is selected, tasks are enqueued in order of
FIFO. If TA_TPRI is selected, tasks are enqueued in order of priority beginning with the one that has the highest
priority.

3. Initial value of the event flag

[(Definition format)] Numeric value

[(Definition range)] 0 to 0xFFFFFFFF

[(Default value)] 0

Specify the initial bit pattern of the event flag.

237

4. Multi-wait attribute

[(Definition format)] Symbol

[(Definition range)] TA_WMUL or TA_WSGL

[(Default value)] TA_WSGL

Specify whether multiple tasks can be enqueued in the eventflag waiting queue. If TA_WMUL is selected, the
TA_WMUL attribute is added, permitting multiple tasks to be enqueued. If TA_WSGL is selected, the
TA_WSGL attribute is added, prohibiting multiple tasks from being enqueued.

5. Clear attribute

[(Definition format)] Symbol

[(Definition range)] YES or NO

[(Default value)] NO

Specify whether the TA_CLR attribute should be added as an eventflag attribute. If YES is selected, the
TA_CLR attribute is added. If NO is selected, the TA_CLR attribute is not added.

[(Semaphore definition)]
This definition is necessary to use Semaphore function.

<< Format >>

 // Semaphore Definition
 semaphore[ID No.]{
 name = ID name ;
 wait_queue = Selecting a semaphore waiting queue ;
 initial_count = Initial value of semaphore counter ;
 max_count = Maximum value of the semaphore counter ;
 };
 :
 :

The ID number must be in the range of 1 to 255. The ID number can be omitted.

If omitted, numbers are automatically assigned sequentially beginning with the smallest.

<< Content >>

Define the following for each semaphore ID number.

1. ID Name
[(Definition format)] Symbol

[(Definition range)] None

[(Default value)] None

Define the name with which a semaphore is specified in a program.

238

2. Selecting a semaphore waiting queue

[(Definition format)] Symbol

[(Definition range)] TA_TFIFO or TA_TPRI

[(Default value)] TA_TFIFO

Select a method in which tasks wait for the semaphore. If TA_TFIFO is selected, tasks are enqueued in order of
FIFO. If TA_TPRI is selected, tasks are enqueued in order of priority beginning with the one that has the highest
priority.

3. Initial value of semaphore counter
[(Definition format)] Numeric value

[(Definition range)] 0 to 65535

[(Default value)] 1

Define the initial value of the semaphore counter. This value must be less than the maximum value of the sema-
phore counter.

4. Maximum value of the semaphore counter
[(Definition format)] Numeric value

[(Definition range)] 1 to 65535

[(Default value)] 1

Define the maximum value of the semaphore counter.

[(Data queue definition)]
This definition must always be set when the data queue function is to be used.

<< Format >>

 // Dataqueue Definition
 dataqueue[ID No.]{
 name = ID name ;
 buffer_size = Number of data queues ;
 wait_queue = Select data queue waiting queue ;
 };
 :
 :

The ID number must be in the range 1 to 255. The ID number can be omitted. If omitted, ID numbers are automatically
assigned in order of numbers beginning with the smallest.

<< Content >>

For each data queue ID number, define the items described below.

1. ID name

[(Definition format)] Symbol

[(Definition range)] None

[(Default value)] None

Define the name by which the data queue is specified in a program.

239

2. Number of data

[(Definition format)] Numeric Value

[(Definition range)] 0 to 0x1FFF

[(Default value)] 0

Specify the number of data that can be transmitted. What should be specified here is the number of data, and not
a data size.

3. Selecting a data queue waiting queue

[(Definition format)] Symbol

[(Definition range)] TA_TFIFO or TA_TRPI

[(Default value)] TA_TFIFO

Select a method in which tasks wait for data queue transmission. If TA_TFIFO is selected, tasks are enqueued in
order of FIFO. If TA_TPRI is selected, tasks are enqueued in order of priority beginning with the one that has the
highest priority.

[(Short data queue definition)]
This definition must always be set when the short data queue function is to be used.

<< Format >>

 // Vdataqueue Definition
 vdataqueue [ID No.]{
 name = ID name ;
 buffer_size = Number of data queues ;
 wait_queue = Select data queue waiting queue ;
 };
 :
 :

The ID number must be in the range 1 to 255. The ID number can be omitted. If omitted, ID numbers are automatically
assigned in order of numbers beginning with the smallest.

<< Content >>

For each short data queue ID number, define the items described below.

1. ID name
[(Definition format)] Symbol

[(Definition range)] None

[(Default value)] None

Define the name by which the short data queue is specified in a program.

2. Number of data

[(Definition format)] Numeric Value

[(Definition range)] 0 to 0x3FFF

[(Default value)] 0

Specify the number of data that can be transmitted. What should be specified here is the number of data, and not
a data size.

240

3. Selecting a data queue waiting queue

[(Definition format)] Symbol

[(Definition range)] TA_TFIFO or TA_TRPI

[(Default value)] TA_TFIFO

Select a method in which tasks wait for short data queue transmission. If TA_TFIFO is selected, tasks are en-
queued in order of FIFO. If TA_TPRI is selected, tasks are enqueued in order of priority beginning with the one
that has the highest priority.

[(Mailbox definition)]
This definition must always be set when the mailbox function is to be used.

<< Format >>

 // Mailbox Definition
 mailbox[ID No.]{
 name = ID name ;
 wait_queue = Select mailbox waiting queue ;
 message_queue = Select message queue ;
 max_pri = Maximum message priority ;
 };
 :
 :

The ID number must be in the range 1 to 255. The ID number can be omitted. If omitted, ID numbers are automatically
assigned in order of numbers beginning with the smallest.

<< Content >>

For each mailbox ID number, define the items described below.

1. ID name

[(Definition format)] Symbol

[(Definition range)] None

[(Default value)] None

Define the name by which the mailbox is specified in a program.

2. Select mailbox waiting queue
[(Definition format)] Symbol

[(Definition range)] TA_TFIFO or TA_TPRI

[(Default value)] TA_TFIFO

Select a method in which tasks wait for the mailbox. If TA_TFIFO is selected, tasks are enqueued in order of
FIFO. If TA_TPRI is selected, tasks are enqueued in order of priority beginning with the one that has the highest
priority.

3. Select message queue

[(Definition format)] Symbol

[(Definition range)] TA_MFIFO or TA_MRPI

[(Default value)] TA_MFIFO

Select a method by which a message queue of the mailbox is selected. If TA_MFIFO is selected, messages are
enqueued in order of FIFO. If TA_MPRI is selected, messages are enqueued in order of priority beginning with
the one that has the highest priority.

241

4. Maximum message priority

[(Definition format)] Numeric Value

[(Definition range)] 1 to "maximum value of message priority" that was specified

in "definition of maximum number of items"

[(Default value)] 1

Specify the maximum priority of message in the mailbox.

[(Fixed-size memory pool definition)]
This definition must always be set when the fixed-size memory pool function is to be used.

<< Format >>

 // Fixed Memory pool Definition
 memorypool[ID No.]{
 name = ID name ;
 section = Section Name ;
 num_block = Number of blocks in memory pool ;
 siz_block = Block size of Memory pool ;
 wait_queue = Select memory pool waiting queue ;
 };

The ID number must be in the range 1 to 255. The ID number can be omitted. If omitted, ID numbers are automatically
assigned in order of numbers beginning with the smallest.

<< Content >>

For each memory pool ID number, define the items described below.

1. ID name

[(Definition format)] Symbol

[(Definition range)] None

[(Default value)] None

Define the name by which the memory pool is specified in a program.

2. Section name

[(Definition format)] Symbol

[(Definition range)] None

[(Default value)] MR_HEAP

Define the name of the section in which the memory pool is located. The section defined here must always have
an area allocated for it in the section file (asm_sec.inc or c_sec.inc).

If no section names are defined, the memory pool is located in the MR_HEAP section.

3. Number of block
[(Definition format)] Numeric value

[(Definition range)] 1 to 65,535

[(Default value)] 1

Define the total number of blocks that comprise the memory pool.

242

4. Size (in bytes)

[(Definition format)] Numeric value

[(Definition range)] 4 to 65,535

[(Default value)] 256

Define the size of the memory pool per block. The RAM size to be used as a memory pool is determined by this
definition: (number of blocks) x (size) in bytes.

5. Selecting a memory pool waiting queue
[(Definition format)] Symbol

[(Definition range)] TA_TFIFO or TA_TPRI

[(Default value)] TA_TFIFO

Select a method in which tasks wait for acquisition of the fixed-size memory pool. If TA_TFIFO is selected,
tasks are enqueued in order of FIFO. If TA_TPRI is selected, tasks are enqueued in order of priority beginning
with the one that has the highest priority.

[(Variable-size memory pool definition)]
This definition is necessary to use Variable-size memory pool function.

<< Format >>

 // Message buffer Definition
 message_buffer[ID No.]{
 name = ID Name ;
 mbf_section = Section name ;
 mbf_size = Message buffer size ;
 max_msgsz = Maximum message size ;
 wait_queue = Message buffer transmit wait queue selection ;
 };

The ID number must be in the range from 1 to 255. The ID number can be omitted. If omitted, ID numbers are automati-
cally assigned in order of magnitude beginning with the smallest.

<< Content >>

6. ID name

[(Definition format)] Symbol

[(Definition range)] None

[(Default value)] None

Define the name by which the memory pool is specified in a program.

7. The maximum memory block size to be allocated
[(Definition format)] Numeric value

[(Definition range)] 1 to 65520

[(Default value)] None

Specify, within an application program, the maximum memory block size to be allocated.

243

8. Section name

[(Definition format)] Symbol

[(Definition range)] None

[(Default value)] MR_HEAP

Define the name of the section in which the memory pool is located. The section defined here must always have
an area allocated for it in the section file (asm_sec.inc or c_sec.inc).

If no section names are defined, the memory pool is located in the MR_HEAP section.

9. Memory pool size
[(Definition format)] Numeric value

[(Definition range)] 16 to 0xFFFFFFFC

[(Default value)] None

Specify a memory pool size.

Round off a block size you specify to the optimal block size among the four block sizes, and acquires memory
having the rounded-off size from the memory pool.

The following equations define the block sizes:

a = (((max_memsize+(X-1))/ (X × 8))+1) × 8
b = a × 2
c = a × 4
d = a × 8

max_memsize: the value specified in the configuration file
X: data size for block control (8 byte per a block control)

Variable-size memory pool function needs 8 byte RAM area per a block control. Memory pool size needs a size
more than a, b, c or d that can be stored max_memsize + 8.

10. Select block usage

[(Definition format)] Symbol

[(Definition range)] ON,OFF

[(Default value)] OFF

This is an option to increase memory efficiency for even small-sized memory pools by means of small blocks.
Memory is managed in 12 fixed-length memory pools ranging in size from 24 bytes to 65,528 bytes. When this
option is turned on, the value of max_memsize has no effect.

244

[(Cyclic handler definition)]
This definition is necessary to use Cyclic handler function.

<< Format >>

// Cyclic Handlar Definition
 cyclic_hand[ID No.]{
 name = ID name ;
 interval_counter = Activation cycle ;
 start = TA_STA attribute ;
 phsatr = TA_PHS attribute ;
 phs_counter = Activation phase ;
 entry_address = Start address ;
 exitf = Extended information ;
 };
 :
 :

The ID number must be in the range of 1 to 255. The ID number can be omitted.

If omitted, numbers are automatically assigned sequentially beginning with the smallest.

<< Content >>

Define the following for each cyclic handler ID number.

1. ID name

[(Definition format)] Symbol

[(Definition range)] None

[(Default value)] None

Define the name by which the memory pool is specified in a program.

2. Activation cycle
[(Definition format)] Numeric value

[(Definition range)] 1 to 0x7FFFFFFF

[(Default value)] None

Define the activation cycle at which time the cyclic handler is activated periodically. The activation cycle here
must be defined in the same unit of time as the system clock's unit time that is defined in system clock definition
item. If you want the cyclic handler to be activated at 1-second intervals, for example, the activation cycle here
must be set to 1000.

3. TA_STA attribute
[(Definition format)] Symbol

[(Definition range)] ON or OFF

[(Default value)] OFF

Specify the TA_STA attribute of the cyclic handler. If ON is selected, the TA_STA attribute is added; if OFF is
selected, the TA_STA attribute is not added.

4. TA_PHS attribute

[(Definition format)] Symbol

[(Definition range)] ON or OFF

[(Default value)] OFF

Specify the TA_PHS attribute of the cyclic handler. If ON is selected, the TA_PHS attribute is added; if OFF is
selected, the TA_PHS attribute is not added.

245

5. Activation phase

[(Definition format)] Numeric value

[(Definition range)] 0 to 0x7FFFFFFF

[(Default value)] None

Define the activation phase of the cyclic handler. The time representing this startup phase must be defined in ms
units.

6. Start Address

[(Definition format)] Symbol or Function Name

[(Definition range)] None

[(Default value)] None

Define the start address of the cyclic handler.

Note that the function name defined here will have the declaration statement shown below output to the ker-
nel_id.h file.

 #pragma CYCHANDLER /V4 function name

7. Extended information

[(Definition format)] Numeric value

[(Definition range)] 0 to 0xFFFFFFFF

[(Default value)] 0

Define the extended information of the cyclic handler. This information is passed as argument to the cyclic han-
dler when it starts.

[(Alarm handler definition)]
This definition is necessary to use Alarm handler function.

<< Format >>

 // Alarm Handlar Definition
 alarm_hand[ID No.]{
 name = ID name ;
 entry_address = Start address ;
 exitf = Extended information ;
 };
 :
 :

The ID number must be in the range of 1 to 255. The ID number can be omitted.

If omitted, numbers are automatically assigned sequentially beginning with the smallest.

<< Content >>

Define the following for each alarm handler ID number.

1. ID name

[(Definition format)] Symbol

[(Definition range)] None

[(Default value)] None

Define the name by which the alarm handler is specified in a program.

246

2. Start address

[(Definition format)] Symbol or Function Name

[(Definition range)] None

Define the start address of the alarm handler. The function name defined here causes the following declaration
statement to be output in the kernel_id.h file.

3. Extended information
[(Definition format)] Numeric value

[(Definition range)] 0 to 0xFFFFFFFF

[(Default value)] 0

Define the extended information of the alarm handler. This information is passed as argument to the alarm han-
dler when it starts.

[(Interrupt vector definition)]
This definition is necessary to use Interrupt function.

<< Format >>

 // Interrupt Vector Definition
 interrupt_vector[Vector No.]{
 os_int = Kernel-managed (OS dependent) interrupt handler ;
 entry_address = Start address ;
 pragma_switch = Switch passed to PRAGMA extended function ;
 };
 :
 :

The vector number can be written in the range of 0 to 255. However, whether or not the defined vector number is valid de-
pends on the microcomputer used

Configurator can’t create an Initialize routine (interrupt control register, interrupt causes etc.) for this defined interrupt. You
need to create that.

<< Content >>

4. Kernel (OS dependent) interrupt handler
[(Definition format)] Symbol

[(Definition range)] YES or NO

Define whether the handler is a kernel(OS dependent) interrupt handler. If it is a kernel(OS dependent) interrupt
handler, specify YES; if it is a non-kernel(OS independent) interrupt handler, specify No.

If this item is defined as YES, the declaration statement shown below is output to the kernel_id.h file.
 #pragma INTHANDLER /V4 function name

If this item is defined as NO, the declaration statement shown below is output to the kernel_id.h file.
 #pragma INTERRUPT /V4 function name

5. Start address

[(Definition format)] Symbol or function name

[(Definition range)] None

[(Default value)] __SYS_DMY_INH

Define the entry address of the interrupt handler. When written in the C language, add () at the end or at the be-
ginning of the function name you have defined.

247

6. Switch passed to PRAGMA extended function

[(Definition format)] Symbol

[(Definition range)] E, F, B or R

[(Default value)] None

Specify the switch to be passed to #pragma INTHANDLER or #pragma INTERRUPT. If "E" is specified, a "/E"
switch is selected, in which case multiple interrupts are enabled. If "F" is specified, a "/F" switch is selected, in
which case a "FREIT" instruction is output at return from the interrupt handler. If "B" is specified, a "/B" switch
is selected, in which case register bank 1 is selected. If "R" is specified, a "/R" switch is selected, in which case
no codes are output that change the floating-number rounding mode of the FLG register to the "nearest value."

Multiple switches can be specified at the same time. However, if a kernel managed interrupt handler is con-
cerned, only the "E" or "R" switch can be specified. For non-kernel managed interrupt handlers, the "E", "F" and
"B" switches can be specified, providing that "E" and "B" are not specified at the same time.

[(Fixed interrupt vector definition)]
This definition needs to be set when interrupt handlers based on fixed vector table are used.

<< Format >>

 // Fixed Interrupt Vector Definition
 interrupt_fvector[Vector No.]{
 entry_address = Start address ;
 pragma_switch = Switch passed to PRAGMA extended function ;
 };
 :
 :

The interrupt vector number can be set in the range from 0 to 11. The relationship between the vector numbers and the in-
terrupts and vector addresses is shown below. All these interrupts are handled as non-kernel managed interrupt handlers.

248

Table 8.3 List of vector number and vector address

Vector number Vector address Interrupt

0 FFFFFFD0H Kernel reserved area

1 FFFFFFD4H Kernel reserved area

2 FFFFFFD8H Kernel reserved area

3 FFFFFFDCH Undefined instruction

4 FFFFFFE0H Overflow

5 FFFFFFE4H BRK instruction

6 FFFFFFE8H Reserved area

7 FFFFFFECH Reserved area

8 FFFFFFF0H Watchdog timer, voltage down detection, oscillation stop detection

9 FFFFFFF4H Reserved area

10 FFFFFFF8H NMI

11 FFFFFFFCH Reset

<< Content >>

1. Start address
[(Definition format)] Symbol or function name

[(Definition range)] None

[(Default value)] __SYS_DMY_INH

Define the entry address to the interrupt handler. When written in C language, add () at the end of the function
name or __ at the beginning of it.

2. Switch passed to PRAGMA extended function
[(Definition format)] Symbol

[(Definition range)] B or R

[(Default value)] None

Specify the switch to be passed to #pragma INTERRUPT. If "B" is specified, a "/B" switch is selected, in which
case register bank 1 is selected. If "R" is specified, a "/R" switch is selected, in which case no codes are output
that change the floating-number rounding mode of the FLG register to the "nearest value."

Both switches can be specified at the same time.

249

[Precautions]

1. Regarding the method for specifying a register bank

No kernel interrupt handlers that use the registers in register bank 1 can be written in C language. These handlers can only
be written in assembly language. When writing in assembly language, write the entry and exit to and from the interrupt
handler as shown below.

(Always be sure to clear the B flag before issuing ret_int service call.)

Example: interrupt;
 fset B
 fclr B
 ret_int

Internally in the MR100 kernel, register banks are not switched over.

2. Regarding the method for specifying a high-speed interrupt

To ensure the effective use of a high-speed interrupt, be sure that the registers in register bank 1 are used in the high-speed
interrupt. Also be aware that the high-speed interrupts used cannot be a kernel interrupt handler..

250

8.1.3 Configuration File Example
The following is the configuration file example.

1 //
2 //
3 // kernel.cfg : building file for MR100 Ver.1.00
4 //
5 // Generated by M3T-MR100 GUI Configurator at 2007/02/28 19:01:20
6 //
7 //
8
9 // system definition
10 system{
11 stack_size = 256;
12 sysﾃm_IPL = 4;
13 message_pri = 64;
14 timeout = NO;
15 task_pause = NO;
16 tick_nume = 10;
17 tick_deno = 1;
18 };
19
20 // max definition
21 maxdefine{
22 max_task = 3;
23 max_flag = 4;
24 max_sem = 3;
25 max_dtq = 3;
26 max_mbx = 4;
27 max_mpf = 3;
28 max_mpl = 3;
29 max_cyh = 4;
30 max_alh = 2;
31 };
32
33 // system clock definition
34 clock{
35 timer_clock = 20.000000MHz;
36 timer = A0;
37 IPL = 3;
38 };
39
40 task[]{
41 entry_address = task1();
42 name = ID_task1;
43 stack_size = 256;
44 priority = 1;
45 initial_start = OFF;
46 exinf = 0x0;
47 };
48 task[]{
49 entry_address = task2();
50 name = ID_task2;
51 stack_size = 256;
52 priority = 5;
53 initial_start = ON;
54 exinf = 0xFFFF;
55 };
56 task[3]{
57 entry_address = task3();
58 name = ID_task3;
59 stack_size = 256;
60 priority = 7;
61 initial_start = OFF;
62 exinf = 0x0;
63 };
64
65 flag[]{
66 name = ID_flg1;
67 initial_pattern = 0x00000000;
68 wait_queue = TA_TFIFO;
69 clear_attribute = NO;
70 wait_multi = TA_WSGL;
71 };
72 flag[1]{
73 name = ID_flg2;
74 initial_pattern = 0x00000001;

251

75 wait_queue = TA_TFIFO;
76 clear_attribute = NO;
77 wait_multi = TA_WMUL;
78 };
79 flag[2]{
80 name = ID_flg3;
81 initial_pattern = 0x0000ffff;
82 wait_queue = TA_TPRI;
83 clear_attribute = YES;
84 wait_multi = TA_WMUL;
85 };
86 flag[]{
87 name = ID_flg4;
88 initial_pattern = 0x00000008;
89 wait_queue = TA_TPRI;
90 clear_attribute = YES;
91 wait_multi = TA_WSGL;
92 };
93
94 semaphore[]{
95 name = ID_sem1;
96 wait_queue = TA_TFIFO;
97 initial_count = 0;
98 max_count = 10;
99 };
100 semaphore[2]{
101 name = ID_sem2;
102 wait_queue = TA_TFIFO;
103 initial_count = 5;
104 max_count = 10;
105 };
106 semaphore[]{
107 name = ID_sem3;
108 wait_queue = TA_TPRI;
109 initial_count = 255;
110 max_count = 255;
111 };
112
113 dataqueue[]{
114 name = ID_dtq1;
115 wait_queue = TA_TFIFO;
116 buffer_size = 10;
117 };
118 dataqueue[2]{
119 name = ID_dtq2;
120 wait_queue = TA_TPRI;
121 buffer_size = 5;
122 };
123 dataqueue[3]{
124 name = ID_dtq3;
125 wait_queue = TA_TFIFO;
126 buffer_size = 256;
127 };
128
129 mailbox[]{
130 name = ID_mbx1;
131 wait_queue = TA_TFIFO;
132 message_queue = TA_MFIFO;
133 max_pri = 4;
134 };
135 mailbox[]{
136 name = ID_mbx2;
137 wait_queue = TA_TPRI;
138 message_queue = TA_MPRI;
139 max_pri = 64;
140 };
141 mailbox[]{
142 name = ID_mbx3;
143 wait_queue = TA_TFIFO;
144 message_queue = TA_MPRI;
145 max_pri = 5;
146 };
147 mailbox[4]{
148 name = ID_mbx4;
149 wait_queue = TA_TPRI;
150 message_queue = TA_MFIFO;
151 max_pri = 6;
152 };
153
154 memorypool[]{

252

155 name = ID_mpf1;
156 wait_queue = TA_TFIFO;
157 section = MR_RAM;
158 siz_block = 16;
159 num_block = 5;
160 };
161 memorypool[2]{
162 name = ID_mpf2;
163 wait_queue = TA_TPRI;
164 section = MR_RAM;
165 siz_block = 32;
166 num_block = 4;
167 };
168 memorypool[3]{
169 name = ID_mpf3;
170 wait_queue = TA_TFIFO;
171 section = MPF3;
172 siz_block = 64;
173 num_block = 256;
174 };
175
176 variable_memorypool[]{
177 name = ID_mpl1;
178 max_memsize = 8;
179 heap_size = 16;
180 };
181 variable_memorypool[]{
182 name = ID_mpl2;
183 max_memsize = 64;
184 heap_size = 256;
185 };
186 variable_memorypool[3]{
187 name = ID_mpl3;
188 max_memsize = 256;
189 heap_size = 1024;
190 };
191
192 cyclic_hand[]{
193 entry_address = cyh1();
194 name = ID_cyh1;
195 exinf = 0x0;
196 start = ON;
197 phsatr = OFF;
198 interval_counter = 0x1;
199 phs_counter = 0x0;
200 };
201 cyclic_hand[]{
202 entry_address = cyh2();
203 name = ID_cyh2;
204 exinf = 0x1234;
205 start = OFF;
206 phsatr = ON;
207 interval_counter = 0x20;
208 phs_counter = 0x10;
209 };
210 cyclic_hand[]{
211 entry_address = cyh3;
212 name = ID_cyh3;
213 exinf = 0xFFFF;
214 start = ON;
215 phsatr = OFF;
216 interval_counter = 0x20;
217 phs_counter = 0x0;
218 };
219 cyclic_hand[4]{
220 entry_address = cyh4();
221 name = ID_cyh4;
222 exinf = 0x0;
223 start = ON;
224 phsatr = ON;
225 interval_counter = 0x100;
226 phs_counter = 0x80;
227 };
228
229 alarm_hand[]{
230 entry_address = alm1();
231 name = ID_alm1;
232 exinf = 0xFFFF;
233 };
234 alarm_hand[2]{

253

235 entry_address = alm2;
236 name = ID_alm2;
237 exinf = 0x12345678;
238 };
239
240
241 //
242 // End of Configuration
243 //

254

8.2 Configurator Execution Procedures

8.2.1 Configurator Overview
The configurator is a tool that converts the contents defined in the configuration file into the assembly language include file,
etc.Figure 8.1 outlines the operation of the configurator.

When used on HEW, the configurator is automatically started, and an application program is built.

Executing the configurator requires the following input files:

• Configuration file (XXXX.cfg)
This file contains description of the system's initial setup items. It is created in the current directory.

• Default configuration file (default.cfg)
This file contains default values that are referenced when settings in the configuration file are omitted. This file
is placed in the directory indicated by environment variable "LIB30" or the current directory. If this file exists in
both directories, the file in the current directory is prioritized over the other.

• include template file(mr100.inc, sys_ram.inc)
This file serves as the template file of include file "mr100.inc" and “sys_ram.inc”. It resides in the directory in-
dicated by environment variable "LIB100."

• MR100 version file (version)
This file contains description of MR100's version. It resides in the directory indicated by environment variable
"LIB100." The configurator reads in this file and outputs MR100's version information to the startup message.

• Service call definition file(kernel_sysint.h)
This file contains description of MR100 service call definition. It resides in the directory indicated by environ-
ment variable "LIB100." The configurator reads in this file and outputs to thecurrent directory.

When the configurator is executed, the files listed below are output.

Do not define user data in the files output by the configurator. Starting up the configurator after entering data definitions
may result in the user defined data being lost.

• System data definition file (sys_rom.inc, sys_ram.inc)
This file contains definition of system settings.

• Include file (mr100.inc)
This is an include file for the assembly language.

• Service call definition file(kernel_sysint.h)
This file contains description of MR100 service call definition

255

Configuration File
xxx.cfg

Default
Configuration File

default.cfg

Template File
sys_ram.inc, mr100.inc

MR100 Version File
version

System Data Difinition File
sys_ram.inc, sys_rom.inc

Include File
mr100.inc

cfg100

Service call Definition File
kernel_sysint.h

Service call Definition File
kernel_sysint.h

ID Number Definition File
kernel_id.h

Figure 8.1 The operation of the Configurator

8.2.2 Setting Configurator Environment
Before executing the configurator, check to see if the environment variable "LIB100" is set correctly.

The configurator cannot be executed normally unless the following files are present in the directory indicated by the envi-
ronment variable "LIB100":

• Default configuration file (default.cfg)
This file can be copied to the current directory for use. In this case, the file in the current directory is given priority.

• System RAM area definition database file (sys_ram.inc)

• mr100.inc template file (mr100.inc)

• Section definition file(c_sec.inc or asm_sec.inc)

• Startup file(crt0mr.a30 or start.a30)

• MR100 version file(version)

• Service call definition file(kernel_sysint.h)

256

8.2.3 Configurator Start Procedure
Start the configurator as indicated below.

 C:\> cfg100 [-vV] [-Eipl] [-Wipl] Configuration file name

Normally, use the extension .cfg for the configuration file name. The file name can includes space character with “”.

 Command Options

-v Option
Displays the command option descriptions and detailed information on the version.

-V Option
Displays the information on the files generated by the command.

-Eipl Option
Enable the check function of an IPL value. When System_IPL! = 7 in the con-figuration file, the error message "
system_IPL should be 7" is displayed and the execution of cfg100 is stpped.

-Wipl Option
Enable the check function of a IPL value. When System_IPL! = 7 in the con-figuration file, the error message "
system_IPL should be 7" is displayed..

8.2.4 Precautions on Executing Configurator
The following lists the precautions to be observed when executing the configurator:

• Do not modify the startup program name and the section definition file name. Otherwise, an error may
be encountered when executing the configurator.

257

8.2.5 Configurator Error Indications and Remedies
If any of the following messages is displayed, the configurator is not normally functioning. Therefore, correct the configu-
ration file as appropriate and the execute the configurator again.

Error messages

cfg100 Error : Syntax error near line xxx (xxxx.cfg)
There is an syntax error in the configuration file.

cfg100 Error : Not enough memory
Memory is insufficient.

cfg100 Error : Illegal option --> <x>
The configurator's command option is erroneous.

cfg100 Error : Illegal argument --> <xx>
The configurator's startup format is erroneous.

cfg100 Error : Can't write open <XXXX>
The XXXX file cannot be created. Check the directory attribute and the remaining disk capacity available.

cfg100 Error : Can't open <XXXX>
The XXXX file cannot be accessed. Check the attributes of the XXXX file and whether it actually exists.

cfg100 Error : Can't open version file
The MR100 version file "version" cannot be found in the directory indicated by the environment variable
"LIB30".

cfg100 Error : Can't open default configuration file
The default configuration file cannot be accessed. "default.cfg" is needed in the current directory or directory
"LIB100" specifying.

cfg100 Error : Can't open configuration file <xxxx.cfg>
The configuration file cannot be accessed. Check that the file name has been properly designated.

cfg100 Error : illegal XXXX --> <xx> near line xxx (xxxx.cfg)
The value or ID number in definition item XXXX is incorrect. Check the valid range of definition.

cfg100 Error : Unknown XXXX --> <xx> near line xx (xxxx.cfg)
The symbol definition in definition item XXXX is incorrect. Check the valid range of definition.

cfg100 Error : XXXX's ID number is too large.--> <xxx> (xxxx.cfg)
A value is set to the ID number in XXXX definition that exceeds the total number of objects defined.The ID
number must be smaller than the total number of objects.

cfg100 Error : Task[x]'s priority is too large.--> <xxx> near line xxx (xxxx.cfg)
The initial priority in task definition of ID number x exceeds the priority in system definition.

cfg100 Error : clock.IPL is too large.--> <xxx> near line xxx (xxxx.cfg)
The system clock interrupt priority level for system clock definition item exceeds the value of IPL within service
call of system definition item.

258

cfg100 Error : System timer's vector <x>conflict near line xxx
A different vector is defined for the system clock timer interrupt vector. Confirm the vector No.x for interrupt
vector definition.

cfg100 Error : XXXX is not defined (xxxx.cfg)
"XXXX" item must be set in your configuration file.

cfg100 Error : System's default is not defined
These items must be set int the default configuration file.

cfg100 Error : <XXXX> is already defined near line xxx (xxxx.cfg)
XXXX is already defined. Check and delete the extra definition.

cfg100 Error : XXXX[x] is already defined near line xxx (default.cfg)
cfg100 Error : XXXX[x] is already defined near line xxx (xxxx.cfg)

The ID number in item XXXX is already registered. Modify the ID number or delete the extra definition.

cfg100 Error : XXXX must be defined near line xxx (xxxx.cfg)
XXXX cannot be omitted.

cfg100 Error : SYMBOL must be defined near line xxx (xxxxcfg)
This symbol cannot be omitted.

cfg100 Error : Zero divide error near line xxx (xxxx.cfg)
A zero divide operation occurred in some arithmetic expression.

cfg100 Error : task[X].stack_size must set XX or more near line xxx (xxxx.cfg)
You must set more than XX bytes.in task[x].stack_size.

cfg100 Error : "R2R0" must be contained in task[x].context near line xxxx (xxxx.cfg)
 You must select R2R0 register in task[x].context.

cfg100 Error : Can't specify B or F switch when os_int=YES. (xxxx.cfg)
 "/B" and "/F" switch cannot be specified to a kernel interrupt handler.

cfg100 Error : Can't specify B and E switch at a time when os_int=NO. (xxxx.cfg)
 "/B" and "/E" switch cannot be specified to the non-kernel interrupt handler at a time.

cfg100 Error : interrupt_vector[%ld].os_int must be YES. (xxxx.cfg)
 When a kernel interrupt mask level is 7, an interrupt handler must be kernel interrupt handler..

cfg100 Error : system_IPL should be 7. (xxxx.cfg)
When "-Eipl" is specified as the command option of configurator, the value of sysrem_IPL of a system definition
must be 7.

cfg100 Error : Timer counter value is overflow. (xxxx.cfg)
Overflow occurred in the operation of a timer count. A timer cannot be initialized with the time tick cycle and
peripheral clock which were specified. Please initialize the timer and sets clock.timer to “OTHER”.

259

Warning messages
The following message are a warning. A warning can be ignored providing that its content is understood.

cfg100 Warning : system is not defined (xxxx.cfg)

cfg100 Warning : system.XXXX is not defined (xxxx.cfg)
System definition or system definition item XXXX is omitted in the configuration file.

cfg100 Warning : task[x].XXXX is not defined near line xxx (xxxx.cfg)
The task definition item XXXX in ID number is omitted.

cfg100 Warning : Already definition XXXX near line xxx (xxxx.cfg)
XXXX has already been defined.The defined content is ignored, check to delete the extra definition.

cfg100 Warning : interrupt_vector[x]'s default is not defined (default.cfg)
The interrupt vector definition of vector number x in the default configuration file is missing.

cfg100 Warning : interrupt_vector[x]'s default is not defined near line xxx (xxxx.cfg)
The interrupt vector of vector number x in the configuration file is not defined in the default configuration file.

cfg100 Warning : Initial start task is not defined
The task of task ID number 1 was defined as the initial startup task because no initial startup task is defined in
the configuration file.

cfg100 Warning : system.stack_size is an uneven number near line xxx
cfg100 Warning : task[x].stack_size is an uneven number near line xxx

 Please set even size in system.stack_size or task[x].stack_size.

cfg100 Warning : system_IPL should be 7
When "-Wipl" is specified as the command option of KONFIGYURETA, you should make the value of sys-
rem_IPL of a system definition 7.

cfg100 Warning : Timer counter value is less than your settimg time
The error occurred in the operation of a timer count. Please check whether an error is permitted.

cfg100 Warning : XXXX is specified as YYYY.
XXXX is specified as YYYY.

260

9. Sample Program Description

9.1 Overview of Sample Program
As an example application of MR100, the following shows a program that outputs a string to the standard output device
from one task and another alternately.

Table 9.1 Functions in the Sample Program

Function
Name

Type ID No. Priority Description

main() Task 1 1 Starts task1 and task2.

task1() Task 2 2 Outputs "task1 running."

task2() Task 3 3 Outputs "task2 running."

cyh1() Handler 1 Wakes up task1().

The content of processing is described below.

• The main task starts task1, task2, and cyh1, and then terminates itself.

• task1 operates in order of the following.
1. Gets a semaphore.

2. Goes to a wakeup wait state.

3. Outputs "task1 running."

4. Frees the semaphore.

• task2 operates in order of the following.
1. Gets a semaphore.

2. Outputs "task2 running."

3. Frees the semaphore.

cyh1 starts every 100 ms to wake up task1.

261

9.2 Program Source Listing

1 /***
2 * MR100 smaple program
3 *
4 * COPYRIGHT(C) 2003(2005) RENESAS TECHNOLOGY CORPORATION
5 * AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED
6 *
7 *
8 * $Id: demo.c,v 1.2 2005/06/15 05:29:02 inui Exp $
9 ***/
10
11 #include <itron.h>
12 #include <kernel.h>
13 #include "kernel_id.h"
14 #include <stdio.h>
15
16
17 void main(VP_INT stacd)
18 {
19 sta_tsk(ID_task1,0);
20 sta_tsk(ID_task2,0);
21 sta_cyc(ID_cyh1);
22 }
23 void task1(VP_INT stacd)
24 {
25 while(1){
26 wai_sem(ID_sem1);
27 slp_tsk();
28 printf("task1 running\n");
29 sig_sem(ID_sem1);
30 }
31 }
32
33 void task2(VP_INT stacd)
34 {
35 while(1){
36 wai_sem(ID_sem1);
37 printf("task2 running\n");
38 sig_sem(ID_sem1);
39 }
40 }
41
42 void cyh1(VP_INT exinf)
43 {
44 iwup_tsk(ID_task1);
45 }
46

262

9.3 Configuration File
1 //***
2 //
3 // COPYRIGHT(C) 2003,2005 RENESAS TECHNOLOGY CORPORATION
4 // AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED
5 //
6 // MR100 System Configuration File.
7 // "$Id: smp.cfg,v 1.5 2005/06/15 05:41:54 inui Exp $"
8 //
9 //***
10
11 // System Definition
12 system{
13 stack_size = 1024;
14 priority = 10;
15 system_IPL = 4;
16 tic_nume = 1;
17 tic_deno = 1;
18 message_pri = 255;
19 };
20 //System Clock Definition
21 clock{
22 mpu_clock = 20MHz;
23 timer = A0;
24 IPL = 4;
25 };
26 //Task Definition
27 //
28 task[]{
29 entry_address = main();
30 name = ID_main;
31 stack_size = 100;
32 priority = 1;
33 initial_start = ON;
34 };
35 task[]{
36 entry_address = task1();
37 name = ID_task1;
38 stack_size = 500;
39 priority = 2;
40 };
41 task[]{
42 entry_address = task2();
43 name = ID_task2;
44 stack_size = 500;
45 priority = 3;
46 };
47
48 semaphore[]{
49 name = ID_sem1;
50 max_count = 1;
51 initial_count = 1;
52 wait_queue = TA_TPRI;
53 };
54
55
56
57 cyclic_hand [1] {
58 name = ID_cyh1;
59 interval_counter = 100;
60 start = OFF;
61 phsatr = OFF;
62 phs_counter = 0;
63 entry_address = cyh1();
64 exinf = 1;
65 };

263

264

10. Stack Size Calculation Method

10.1 Stack Size Calculation Method
The MR100 provides two kinds of stacks: the system stack and the user stack. The stack size calculation method differ be-
tween the stacks.

 User stack

This stack is provided for each task. Therefore, writing an application by using the MR100 requires to allocate
the stack area for each stack.

 System stack

This stack is used inside the MR100 or during the execution of the handler.

When a task issues a service call, the MR100 switches the user stack to the system stack. (See Figure
10.1:System Stack and User Stack)

The system stack uses interrupt stack(ISP).

Register save
Stack switching

Service call
rocessing

Task Selection

Stack switching
Register return

XXX_XXX()

MR100 Service Call Processing Position

User Stack

User Stack

System Stack
(interruput stack)

Task

Figure 10.1:System Stack and User Stack

The sections of the system stack and user stack each are located in the manner shown below. However, the diagram shown
below applies to the case where the stack areas for all tasks are located in the stack section during configuration.

265

SFR

System Stack

User satck of

TaskID No.1

User satck of

TaskID No.2

User satck of

TaskID No.n

Stack Section

Figure 10.2: Layout of Stacks

266

10.1.1 User Stack Calculation Method
User stacks must be calculated for each task. The following shows an example for calculating user stacks in cases when an
application is written in the C language and when an application is written in the assembly language.

 When an application is written in the C language

Using the stack size calculation utility of NC100, calculate the stack size of each task. The necessary stack size
of a task is the sum of the stack size output by the stack size calculation utility plus a context storage area of 48
bytes54

 When an application is written in the assembly language

♦ Sections used in user program
The necessary stack size of a task is the sum of the stack size used by the task in subroutine call plus the size
used to save registers to a stack in that task.

♦ Sections used in MR100
The sections used in MR100 refer to a stack size that is used for the service calls issued.

MR100 requires that if you issue only the service calls that can be issued from tasks, 8bytes of area be allocated
for storing the PC and FLG registers. Also, if you issue the service calls that can be issued from both tasks and
handlers, see the stack sizes listed in Table 10.2 Stack Sizes Used by Service Calls Issued from Handlers (in
bytes) to ensure that the necessary stack area is allocated.

Furthermore, when issuing multiple service calls, include the maximum value of the stack sizes used by those
service calls as the sections used by MR100 as you calculate the necessary stack size.

Therefore,

User stack size =
 Sections used in user program + registers used + Sections used in MR100

(registers used is total size of used registers.)

Figure 2.3:Example of Use Stack Size Calculation shows an example for calculating a user stack. In the example below, the
registers used by the task are R2R0, R3R1, and A0.

54 If written in the C language, this size is fixed.

267

Stack growing direction

jsr sub1

4bytes
24byt es(PC+FL G+size of re gisters used

stack size used by sta_tsk)

36by tes(P C+F LG+size of registe rs used
stack size used by prcv _mbx)

sta_t sk

prcv_mbx

40bytes

When use reg ister R2R0,R3R1,A0(12by tes)

Figure 2.3:Example of Use Stack Size Calculation

268

10.1.2 System Stack Calculation Method
The system stack is most often consumed when an interrupt occurs during service call processing followed by the occur-
rence of multiple interrupts.55 The necessary size (the maximum size) of the system stack can be obtained from the fol-
lowing relation:

Necessary size of the system stack = αΣβi(γ)

 α

The maximum system stack size among the service calls to be used.56.

When sta_tsk, ext_tsk, and dly_tsk are used for example, according to the Table 10.1 Stack Sizes Used by Ser-
vice Calls Issued from Tasks (in bytes),each of system stack size is the following.

Service Call name System Stack Size
sta_tsk 4 bytes
ext_tsk 4 bytes
slp_tsk 4 bytes
dly_tsk 8 bytes

Therefore,the maximum system stack size among the service calls to be used is the 8 bytes of dly_tsk.

 βi

The stack size to be used by the interrupt handler.57 The details will be described later.

 γ

Stack size used by the system clock interrupt handler. This is detailed later.

55 After switchover from user stack to system stack
56 Refer from Table 10.1 Stack Sizes Used by Service Calls Issued from Tasks (in bytes) to Table 10.3 Stack Sizes Used by Service Calls
Issued from Tasks and Handlers (in bytes) for the system stack size used for each individual service call.
57 Kernel interrupt handler (not including the system clock interrupt handler here) and non-kernel interrupt handler.

269

α

β1

β2

βn

α:The maximum system stack size among the service calls to be used.

βι:The system stack size to be used by the interrupt handler.

The necessary system stack

Interrupt

Interrupt

Figure 10.4: System Stack Calculation Method

270

[(Stack size βi used by interrupt handlers)]
The stack size used by an interrupt handler that is invoked during a service call can be calculated by the equation below.

The stack size βi used by an interrupt handler is shown below.

C language

Using the stack size calculation utility of NC100, calculate the stack size of each interrupt handler.

Refer to the manual of for the stack size calculation utility detailed use of it.

Assembly language

The stack size to be used by kernel interrupt handler
 = register to be used + user size + stack size to be used by service call

The stack size to be used by non-kernel interrupt handler
 = register to be used + user size

User size is the stack size of the area written by user.

Context(48bytes)

4bytes

32bytes

ret_int

iset_flg

jsr func

Interrupt

84bytes

Figure 10.5: Stack size to be used by Kernel Interrupt Handler(Written in C language)

271

[(System stack size γ used by system clock interrupt handler)]
When you do not use a system timer, there is no need to add a system stack used by the system clock interrupt handler.

The system stack size γ used by the system clock interrupt handler is whichever larger of the two cases below:

48 + maximum size used by cyclic handler
48 + maximum size used by alarm handler
72 bytes

C language

Using the stack size calculation utility of NC100, calculate the stack size of each Alarm or Cyclic handler.

Refer to the manual of the stack size calculation utilityr for detailed use of it.

Assembly language
The stack size to be used by Alarm or Cyclic handler

= register to be used + user size + stack size to be used by service call

If neither cyclic handler nor alarm handler is used, then

γ = 72 bytes

When using the interrupt handler and system clock interrupt handler in combination, add the stack sizes used by both.

272

10.2 Necessary Stack Size

Table 10.1 Stack Sizes Used by Service Calls Issued from Tasks (in bytes) lists the stack sizes (system stack) used by
service calls that can be issued from tasks.

Table 10.1 Stack Sizes Used by Service Calls Issued from Tasks (in bytes)

Stack size Stack size Service call
User stack System

stack

Service call
User stack System

stack
act_tsk 0(4) 4 rcv_mbx 4 28
can_act 0(12) 0 prcv_mbx 0(16) 0
sta_tsk 0(4) 4 trcv_mbx 0(4) 28
ext_tsk 0 4 ref_mbx 0(8) 0
ter_tsk 0(4) 16 get_mpf 4 28
chg_pri 0(4) 16 pget_mpf 0(20) 0
get_pri 0(12) 0 tget_mpf 4 32
ref_tsk 0(32) 0 rel_mpf 0(4) 16
ref_tst 0(12) 0 ref_mpf 0(8) 0
slp_tsk 0(4) 4 pget_mpl 4 74
tslp_tsk 0(4) 8 rel_mpl 0(4) 38
wup_tsk 0(4) 16 ref_mpl 0(20) 0
can_wup 0(12) 0 set_tim 0(8) 0
rel_wai 0(4) 16 get_tim 0(8) 0
sus_tsk 0(4) 4 sta_cyc 0(12) 0
rsm_tsk 0(4) 4 stp_cyc 0(8) 0
frsm_tsk 0(4) 4 ref_cyc 0(16) 0
dly_tsk 0(4) 8 sta_alm 0(12) 0
sig_sem 0(4) 16 stp_alm 0(12) 0
wai_sem 0(4) 28 ref_alm 0(16) 0
pol_sem 0(8) 0 rot_rdq 0(4) 0
twai_sem 0(4) 28 get_tid 0(8) 0
ref_sem 0(12) 0 loc_cpu 0 0
set_flg 0(4) 24 unl_cpu 0(4) 0
clr_flg 0(8) 0 ref_ver 0(12) 0
wai_flg 4 28 vsnd_dtq 0(4) 28
pol_flg 0(8) 0 vpsnd_dtq 0(4) 16
twai_flg 4 28 vtsnd_dtq 0(4) 28
ref_flg 0(8) 0 vfsnd_dtq 0(4) 16
snd_dtq 0(4) 28 vrcv_dtq 4 16
psnd_dtq 0(4) 16 vprcv_dtq 4 16
tsnd_dtq 0(4) 28 vtrcv_dtq 4 16
fsnd_dtq 0(4) 16 vref_dtq 0(8) 0
rcv_dtq 4 16 vrst_dtq 0(4) 48
prcv_dtq 4 16 vrst_vdtq 0(4) 48
trcv_dtq 4 16 vrst_mbx 0(8) 0
ref_dtq 0(8) 0 vrst_mpf 0(4) 48
snd_mbx 0(4) 12 vrst_mpl 0 28(68)
dis_dsp 0 0 ena_dsp 0(4) 0

(): Stack sizes used by service call in Assembly programs.

273

Table 10.2 Stack Sizes Used by Service Calls Issued from Handlers (in bytes) lists the stack sizes (system
stack) used by service calls that can be issued from handlers.

Table 10.2 Stack Sizes Used by Service Calls Issued from Handlers (in bytes)

Service call Stack size Service call Stack size
iact_tsk 12(40) iprcv_mbx 16(28)
ican_act 12(24) iref_mbx 12(20)
ista_tsk 12(40) ipget_mpf 28(32)
ichg_pri 24(52) irel_mpf 32(64)
iget_pri 16(24) iref_mpf 12(20)
iref_tsk 12(44) iset_tim 12(20)
iref_tst 12(24) iget_tim 12(20)
iwup_tsk 24(56) ista_cyc 12(24)
ican_wup 12(24) istp_cyc 12(20)
irel_wai 24(56) iref_cyc 12(28)
isus_tsk 12(32) ista_alm 12(24)
irsm_tsk 12(40) istp_alm 12(24)
ifrsm_tsk 12(40) iref_alm 12(28)
isig_sem 28(60) irot_rdq 12(24)
ipol_sem 12(20) iget_tid 16(20)
iref_sem 12(20) iloc_cpu 12
iset_flg 32(68) iunl_cpu 12(20)
iclr_flg 12(20) ret_int 16
ipol_flg 16(24) iref_ver 12(24)
iref_flg 12(20) vipsnd_dtq 32(64)
ipsnd_dtq 28(60) vifsnd_dtq 32(64)
ifsnd_dtq 28(60) viprcv_dtq 36(64)
iprcv_dtq 40(64) viref_dtq 12(20)
iref_dtq 12(20) isnd_mbx 24(52)
iref_mpl 12(20)

(): Stack sizes used by service call in Assembly programs.

Table 10.3 Stack Sizes Used by Service Calls Issued from Tasks and Handlers (in bytes) lists the stack
sizes (system stack) used by service calls that can be issued from both tasks and handlers. If the service call
issued from task, system uses user stack. If the service call issued from handler, system uses system stack.

Table 10.3 Stack Sizes Used by Service Calls Issued from Tasks and Handlers (in bytes)

Service call Stack size Service call Stack size
sns_ctx 12(20) sns_loc 12(20)
sns_dsp 12(20) sns_dpn 12(20)

(): Stack sizes used by service call in Assembly programs.

- 275 -

11. Note

11.1 The Use of INT Instruction
MR100 has INT instruction interrupt numbers reserved for issuing service calls as listed in Table 11.1 Interrupt Number
Assignment. For this reason, when using software interrupts in a user application, do not use interrupt numbers 63 through
48 and be sure to use some other numbers.

Table 11.1 Interrupt Number Assignment

Interrupt No. Service calls Used
249 Service calls that can be issued from only task context
250 Service calls that can be issued from only non-task context.

Service calls that can be issued from both task context and non-task context.
251 ret_int service call
252 dis_dsp service call
253 loc_cpu, iloc_cpu service call
254 ext_tsk service call
255 Reserved for future extension

11.2 The Use of registers of bank
The registers of bank is 0, when a task starts on MR100.

MR100 does not change the registers of bank in processing kernel.

You must pay attention to the followings.

• Don’t change the regisers of bank in processing a task.

• If an interrupt handler with regisers of bank 1 have multiple interrupts of an interrupt handler with regis-
ers of bank 1 , the program can not execute normally.

- 276 -

11.3 Regarding Delay Dispatching
MR100 has four service calls related to delay dispatching.

• dis_dsp

• ena_dsp

• loc_cpu

• unl_cpu

The following describes task handling when dispatch is temporarily delayed by using these service calls.

14. When the execution task in delay dispatching should be preempted
While dispatch is disabled, even under conditions where the task under execution should be preempted, no time
is dispatched to new tasks that are in an executable state. Dispatching to the tasks to be executed is delayed until
the dispatch disabled state is cleared. When dispatch is being delayed.

• Task under execution is in a RUN state and is linked to the ready queue

• Task to be executed after the dispatch disabled state is cleared is in a READY state and is linked to the
highest priority ready queue (among the queued tasks).

15. isus_tsk,irsm_tsk during dispatch delay
In cases when isus_tsk is issued from an interrupt handler that has been invoked in a dispatch disabled state to
the task under execution (a task to which dis_dsp was issued) to place it in a SUSPEND state. During delay dis-
patching.

• The task under execution is handled inside the OS as having had its delay dispatching cleared. For this
reason, in isus_tsk that has been issued to the task under execution, the task is removed from the
ready queue and placed in a SUSPEND state. Error code E_OK is returned. Then, when irsm_tsk is
issued to the task under execution, the task is linked to the ready queue and error code E_OK is re-
turned. However, tasks are not switched over until delay dispatching is cleared.

• The task to be executed after disabled dispatching is re-enabled is linked to the ready queue.

16. rot_rdq, irot_rdq during dispatch delay
When rot_rdq (TPRI_RUN = 0) is issued during dispatch delay, the ready queue of the own task's priority is ro-
tated. Also, when irot_rdq (TPRI_RUN = 0) is issued, the ready queue of the executed task's priority is rotated.
In this case, the task under execution may not always be linked to the ready queue. (Such as when isus_tsk is is-
sued to the executed task during dispatch delay.)

17. Precautions

• No service call (e.g., slp_tsk, wai_sem) can be issued that may place the own task in a wait state while
in a state where dispatch is disabled by dis_dsp or loc_cpu.

• ena_dsp and dis_dsp cannot be issued while in a state where interrupts and dispatch are disabled by
loc_cpu.

• Disabled dispatch is re-enabled by issuing ena_dsp once after issuing dis_dsp several times.
The above status transition can be summarized in Table 3.3.

- 277 -

11.4 Regarding Initially Activated Task
MR100 allows you to specify a task that starts from a READY state at system startup. This specification is made by setting
the configuration file.

Refer to 8.1.2 for details on how to set.

- 279 -

12. Appendix

12.1 Data Type

typedef signed char B; /* Signed 8-bit integer */
typedef signed short H; /* Signed 16-bit integer */
typedef signed long W; /* Signed 32-bit integer */
typedef unsigned char UB; /* Unsigned 8-bit integer */
typedef unsigned short UH; /* Unsigned 16-bit integer */
typedef unsigned long UW; /* Unsigned 32-bit integer */
typedef char VB /* 8-bit value with unknown data type */
typedef short VH; /* 16-bit value with unknown data type */
typedef long VW; /* 32-bit value with unknown data type */
typedef void *VP; /* Pointer to unknown data type */
typedef void (*FP)(); /* Pointer to a function */
typedef W INT /* Signed 32-bit integer */
typedef UW UINT; /* Unsigned 32-bit integer */
typedef H ID; /* Object ID number */
typedef H PRI; /* Priority */
typedef W TMO; /* Timeout */
typedef H ER; /* Error code(Signed integer) */
typedef UH ATR; /* Object attribute(Unsigned integer) */
typedef UH STAT; /* Task status */
typedef UH MODE; /* Service call operation mode */
typedef UW SIZE; /* Memory area size */
typedef UW RELTIM /* Relative time */
typedef W VP_INT; /* Pointer to an unknown data type, or a signed in-

teger for the processor */
typedef struct systim{ /* System time */
 UH utime; /* Upper16bit of the system time */
 UW ltimer; /* Lower32bit of the system time */
} SYS-
TIM;

typedef W ER_UINT; /* Error code or unsigned integer */

- 280 -

12.2 Common Constants and Packet Format of Structure

----Common formats----
TRUE 1 /* True */
FALSE 0 /* False */
----Formats related to task management----
TSK_SELF 0 /* Specifies the issuing task itself */
TPRI_RUN 0 /* Specifies priority of task being executed then */
typedef struct t_rtsk {
 STAT tskstat; /* Task status */
 PRI tskpri; /* Current priority of task */
 PRI tskbpri; /* Base priority of task */
 STAT tskwait; /* Reason for which task is kept waiting */
 ID wid; /* Object ID for which task is kept waiting */
 TMO tskatr; /* Remaining time before task times out */
 UINT actcnt; /* Number of activation requests */
 UINT wupcnt; /* Number of wakeup requests */
 UINT suscnt; /* Number of suspension requests */
} T_RTSK;
typedef struct t_rtst {
 STAT tskstat; /* Task status */
 STAT tskwait; /* Reason for which task is kept waiting */
} T_RTST;
----Formats related to semaphore----
typedef struct t_rsem {
 ID wtskid; /* ID number of task at the top of waiting queue */
 INT semcnt; /* Current semaphore count value */
} T_RSEM;
----Formats related to eventflag----
wfmod:
TWF_ANDW H’0000 /* AND wait */
TWF_ORW H’0002 /* OR wait */
typedef struct t_rflg {
 ID wtskid; /* ID number of task at the top of waiting queue */
 UINT flgptn; /* Current bit pattern of eventflag */
} T_RFLG;
----Formats related to data queue and short data queue----
typedef struct t_rdtq {
 ID stskid; /* ID number of task at the top of transmission waiting queue */
 ID rtskid; /* ID number of task at the top of reception waiting queue */
 UINT sdtqcnt; /* Number of data bytes contained in data queue */
} T_RDTQ;
----Formats related to mailbox----
typedef struct t_msg {
 VP msghead; /* Message header */
} T_MSG;
typedef struct t_msg_pri {
 T_MSG msgque; /* Message header */
 PRI msgpri; /* Message priority */
} T_MSG_PRI;
typedef struct t_mbx {
 ID wtskid; /* ID number of task at the top of waiting queue */
 T_MSG *pk_msg; /* Next message to be received */
} T_RMBX;
----Formats related to fixed-size memory pool----
typedef struct t_rmpf {
 ID wtskid; /* ID number of task at the top of memory acquisition waiting queue

*/
 UINT frbcnt; /* Number of memory blocks */
} T_RMPF;

- 281 -

----Formats related to Variable-size Memory pool----
typedef struct t_rmpl {

ID wtskid; /* ID number of task at the top of memory acquisition waiting queue
*/
SIZE fmplsz; /* Total size of free areas */
UINT fblksz; /* Maximum memory block size that can be acquired immediately */

} T_RMPL;
----Formats related to cyclic handler----
typedef struct t_rcyc {
 STAT cycstat; /* Operating status of cyclic handler */
 RELTIM lefttim; /* Remaining time before cyclic handler starts */
} T_RCYC;
----Formats related to alarm handler----
typedef struct t_ralm {
 STAT almstat; /* Operating status of alarm handler */
 RELTIM lefttim; /* Remaining time before alarm handler starts */
} T_RALM;
----Formats related to system management----
typedef struct t_rver {

UH maker; /* Maker */
UH prid; /* Type number */
UH spver; /* Specification version */
UH prver; /* Product version */
UH prno[4]; /* Product management information */

} T_RVER;

- 282 -

12.3 Assembly Language Interface
When issuing a service call in the assembly language, you need to use macros prepared for invoking service
calls.
 Processing in a service call invocation macro involves setting each parameter to registers and starting ex-
ecution of a service call routine by a software interrupt. If you issue service calls directly without using a ser-
vice call invocation macro, your program may not be guaranteed of compatibility with future versions of
MR100.
The table below lists the assembly language interface parameters. The values set forth in μITRON specifica-
tions are not used for the function code.

Task Management Function

Parameter ReturnParameter
ServiceCall INTNo. FuncCode

A0 R1 R2 R3 A1 R0 R2

ista_tsk 250 8 stacd tskid stacd - ercd -
sta_tsk 249 6 stacd tskid stacd - ercd -
act_tsk 249 0 - tskid - - ercd -
iact_tsk 250 2 - tskid - - ercd -
ter_tsk 249 10 - tskid - - ercd -
can_act 250 4 - tskid - - actcnt -
ican_act 250 4 - tskid - - actcnt -
chg_pri 250 12 - tskid tskpri - ercd -
ichg_pri 250 14 - tskid tskpri - ercd -
rel_wai 249 32 - tskid - - ercd -
irel_wai 250 34 - tskid - - ercd -
ref_tst 250 20 - tskid - pk_rtst ercd -
iref_tst 250 20 - tskid - pk_rtst ercd -
ref_tsk 250 18 - tskid - pk_rtsk ercd -
iref_tsk 250 18 - tskid - pk_rtsk ercd -
ext_tsk 137 106 - - - - - -
get_pri 250 16 - tskid - - ercd tskpri
iget_pri 250 16 - tskid - - ercd tskpri

- 283 -

Task Dependent Synchronization Function

Parameter ReturnParameter
ServiceCall INTNo. FuncCode

A0 R2 R6R4 R0

slp_tsk 249 22 - - ercd
wup_tsk 249 26 tskid - ercd
iwup_tsk 250 28 tskid - ercd
can_wup 250 30 tskid - wupcnt
ican_wup 250 30 tskid - wupcnt
tslp_tsk 249 24 - tmout ercd
sus_tsk 249 36 tskid - ercd
isus_tsk 250 38 tskid - ercd
rsm_tsk 249 40 tskid - ercd
irsm_tsk 250 42 tskid - ercd
frsm_tsk 249 40 tskid - ercd
ifrsm_tsk 250 42 tskid - ercd

dly_tsk 249 44 - tmout ercd
rel_wai 249 32 tskid - ercd
irel_wai 250 34 tskid - ercd

Synchronization & Communication Function

Parameter ReturnParameter
ServiceCall INTNo. FuncCode

A0 R0 R3R1 R2 R6R4 A1 R0 R3R1

wai_sem 249 50 - - semid - - ercd -
pol_sem 250 52 - - semid - - ercd -
ipol_sem 250 52 - - semid - - ercd -
sig_sem 249 46 - - semid - - ercd -
isig_sem 250 48 - - semid - - ercd -
twai_sem 249 54 - - semid tmout - ercd -
ref_sem 250 56 - - semid - pk_rsem ercd -
iref_sem 250 56 - - semid - pk_rsem ercd -
wai_flg 249 64 wfmode waiptn flgid - - ercd flgptn
twai_flg 249 92 wfmode waiptn flgid tmout - ercd fgptn
pol_flg 250 66 wfmode waiptn flgid - - ercd flgptn
ipol_flg 250 66 wfmode waiptn flgid - - ercd flgptn
set_flg 249 58 - setptn flgid - - ercd -
iset_flg 250 60 - setptn flgid - - ercd -
ref_flg 250 70 - - flgid - pk_rflg ercd -
iref_flg 250 70 - - flgid - pk_rflg ercd -
clr_flg 250 62 - clrptn flgid - - ercd -
iclr_flg 250 62 - clrptn flgid - - ercd -
snd_dtq 249 72 - data dtqid - - ercd -
psnd_dtq 249 74 - data dtqid - - ercd -
ipsnd_dtq 250 76 - data dtqid - - ercd -
fsnd_dtq 249 80 - data dtqid - - ercd -
ifsnd_dtq 250 82 - data dtqid - - ercd -
tsnd_dtq 249 104 - data dtqid tmout - ercd -

- 284 -

Synchronization & Communication Function

Parameter ReturnParameter
ServiceCall INTNo. FuncCode

A0 R3R1 R2 R6R4 A1 R0 R3R1 A1

rcv_dtq 249 84 - dtqid - - ercd data -
prcv_dtq 249 86 - dtqid - - ercd data -
iprcv_dtq 250 88 - dtqid - - ercd data -
trcv_dtq 249 90 - dtqid tmout - ercd data -
ref_dtq 250 92 - dtqid - pk_rdtq ercd - -
iref_dtq 250 92 - dtqid - pk_rdtq ercd - -
snd_mbx 249 94 - mbxid - pk_msg ercd - -
isnd_mbx 250 96 - mbxid - pk_msg ercd - -
rcv_mbx 249 98 - mbxid - - ercd - pk_msg
prcv_mbx 250 100 - mbxid - - ercd - pk_msg
iprcv_mbx 250 100 - mbxid - - ercd - pk_msg
trcv_mbx 249 102 - mbxid tmout - ercd - pk_msg
ref_mbx 250 104 - mbxid - pk_rmbx ercd - -
iref_mbx 250 104 - mbxid - pk_rmbx ercd - -

- 285 -

Interrupt Management Functions

Parameter ReturnParameter
ServiceCall INTNo.

FuncCode
A0 R0

ret_int 251 -- --

System State Management Functions
Parameter ReturnParameter

ServiceCall INTNo. FuncCode
A0 R3 R0 R2

rot_rdq 249 140 tskpri ercd -
irot_rdq 250 142 tskpri ercd -
get_tid 250 144 - ercd tskid
iget_tid 250 144 - ercd tskid
loc_cpu 253 198 - ercd -
iloc_cpu 253 200 - ercd -
dis_dsp 252 206 - ercd -
ena_dsp 249 150 - ercd -
unl_cpu 249 146 - ercd -
iunl_cpu 250 148 - ercd -
sns_ctx 250 152 - ercd -
sns_loc 250 154 - ercd -
sns_dsp 250 156 - ercd -
sns_dpn 250 158 - ercd -

- 286 -

Memorypool Management Functions

Parameter ReturnParam-
eter Service-

Call
INT-
No. Func-

Code
A0

R1 R2 R3 R6R4 A1 R0 R3R1

get_mpf 249 108 - mpfid - - - ercd p_blk
pget_mpf 250 106 - mpfid - - - ercd p_blk
ipget_mpf 250 106 - mpfid - - - ercd p_blk
tget_mpf 249 110 - mpfid - tmout - ercd p_blk
rel_mpf 249 112 blk mpfid blk - - ercd -
irel_mpf 250 114 blk mpfid blk - - ercd -
ref_mpf 250 116 - mpfid - - pk_rmpf ercd -
iref_mpf 250 116 - mpfid - - pk_rmpf ercd -
pget_mpl 249 118 - mplid - - - ercd p_blk
rel_mpl 249 120 blk mplid blk - ercd -
ref_mpl 250 122 - mplid - - pk_rmpl ercd -
iref_mpl 250 122 - mplid - - pk_rmpl ercd -

Time Management Functions

Parameter ReturnParameter
ServiceCall INTNo. FuncCode

A0 R2 R6R4 A1 R0

set_tim 250 124 - - p_systim ercd
iset_tim 250 124 - - p_systim ercd
get_tim 250 126 - - p_systim ercd
iget_tim 250 126 - - p_systim ercd
sta_cyc 250 128 cycid - ercd
ista_cyc 250 128 cycid - ercd
stp_cyc 250 130 cycid - ercd
istp_cyc 250 130 cycid - ercd
ref_cyc 250 132 cycid pk_rcyc ercd
iref_cyc 250 132 cycid pk_rcyc ercd
sta_alm 250 134 almid almtim - ercd
ista_alm 250 134 almid almtim - ercd
stp_alm 250 136 almid - ercd
istp_alm 250 136 almid - ercd
ref_alm 250 138 almid pk_ralm ercd
iref_alm 250 138 almid pk_ralm ercd

- 287 -

System Configuration Management Functions

Parameter ReturnParameter
ServiceCall INTNo.

FuncCode
A0 A1 R0

ref_ver 250 160 pk_rver ercd
iref_ver 250 160 pk_rver ercd

Extenden Function(Reset Function)

Parameter ReturnParameter
ServiceCall INTNo.

FuncCode
A0 R2 R0

vrst_vdtq 249 192 vdtqid ercd
vrst_dtq 249 184 dtqid ercd
vrst_mbx 250 186 mbxid ercd
vrst_mpf 249 188 mpfid ercd
vrst_mpl 250 190 mplid ercd
vrst_mbf 249 218 mbfid ercd

Extenden Function(Short Data Queue Function)

Parameter ReturnParameter
ServiceCall INTNo. FuncCode

A0 R1 R2 R6R4 A1 R0 R1

vsnd_dtq 249 162 data vdtqid - - ercd -
vpsnd_dtq 249 164 data vdtqid - - ercd -
vipsnd_dtq 250 166 data vdtqid - - ercd -
vfsnd_dtq 249 170 data vdtqid - - ercd -
vifsnd_dtq 250 172 data vdtqid - - ercd -
vtsnd_dtq 249 228 data vdtqid tmout - ercd -
vrcv_dtq 249 174 - vdtqid - - ercd data
vprcv_dtq 249 176 - vdtqid - - ercd data
viprcv_dtq 250 178 - vdtqid - - ercd data
vtrcv_dtq 249 180 - vdtqid tmout - ercd data
vref_dtq 250 182 - vdtqid - pk_rdtq ercd -
viref_dtq 250 182 - vdtqid - pk_rdtq ercd -

- 288 -

Real-time OS for R32C/100 Series
M3T-MR100/4 User's Manual

Publication Date: September. 16, 2007 Rev.1.00

Published by: Sales Strategic Planning Div.
Renesas Technology Corp.

Edited by: Application Engineering Department 1
Renesas Solutions Corp.

© 2007. Renesas Technology Corp. and Renesas Solutions Corp.,

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

M3T-MR100/4 V.1.00

REJ10J1523-0100

User’s Manual

	Requirements for MR100 Use
	Document List
	Right of Software Use
	1. User’s Manual Organization
	2. General Information
	2.1 Objective of MR100 Development
	2.2 Relationship between TRON Specification and MR100
	2.3 MR100 Features

	3. Introduction to Kernel
	3.1 Concept of Real-time OS
	3.1.1 Why Real-time OS is Necessary
	3.1.2 Operating Principles of Kernel

	3.2 Service Call
	3.2.1 Service Call Processing
	3.2.2 Processing Procedures for Service Calls from Handlers
	Service Calls from a Handler That Caused an Interrupt during Task Execution
	Service Calls from a Handler That Caused an Interrupt during Service Call Processing
	Service Calls from a Handler That Caused an Interrupt during Handler Execution

	3.3 Object
	3.3.1 The specification method of the object in a service call

	3.4 Task
	3.4.1 Task Status
	3.4.2 Task Priority and Ready Queue
	3.4.3 Task Priority and Waiting Queue
	3.4.4 Task Control Block(TCB)

	3.5 System States
	3.5.1 Task Context and Non-task Context
	3.5.2 Dispatch Enabled/Disabled States
	3.5.3 CPU Locked/Unlocked States
	3.5.4 Dispatch Disabled and CPU Locked States

	3.6 Regarding Interrupts
	3.6.1 Types of Interrupt Handlers
	3.6.2 The Use of Non-maskable Interrupt
	3.6.3 Controlling Interrupts

	3.7 Stacks
	3.7.1 System Stack and User Stack

	4. Kernel
	4.1.1 Module Structure
	4.1.2 Module Overview
	4.1.3 Task Management Function
	4.1.4 Synchronization functions attached to task
	4.1.5 Synchronization and Communication Function (Semaphore)
	4.1.6 Synchronization and Communication Function (Eventflag)
	4.1.7 Synchronization and Communication Function (Data Queue)
	4.1.8 Synchronization and Communication Function (Mailbox)
	4.1.9 Memory pool Management Function(Fixed-size Memory pool)
	4.1.10 Variable-size Memory Pool Management Function
	4.1.11 Time Management Function
	4.1.12 Cyclic Handler Function
	4.1.13 Alarm Handler Function
	4.1.14 System Status Management Function
	4.1.15 Interrupt Management Function
	4.1.16 System Configuration Management Function
	4.1.17 Extended Function (Short Data Queue)
	4.1.18 Extended Function (Reset Function)

	5. Service call reffernce
	5.1 Task Management Function
	5.2 Task Dependent Synchronization Function
	5.3 Synchronization & Communication Function (Semaphore)
	5.4 Synchronization & Communication Function (Eventflag)
	5.5 Synchronization & Communication Function (Data Queue)
	5.6 Synchronization & Communication Function (Mailbox)
	5.7 Memory Pool Management Function (Fixed-size Memory Pool)
	5.8 Memory Pool Management Function (Variable-size Memory Pool)
	5.9 Time Management Function
	5.10 Time Management Function (Cyclic Handler)
	5.11 Time Management Function (Alarm Handler)
	5.12 System Status Management Function
	5.13 Interrupt Management Function
	5.14 System Configuration Management Function
	5.15 Extended Function (Short Data Queue)
	5.16 Extended Function (Reset Function)

	6. Applications Development Procedure Overview
	6.1 Overview
	6.2 Development Procedure Example
	6.2.1 Applications Program Coding
	6.2.2 Configuration File Preparation
	6.2.3 Configurator Execution
	6.2.4 System generation
	6.2.5 Writing ROM

	7. Detailed Applications
	7.1 Program Coding Procedure in C Language
	7.1.1 Task Description Procedure
	7.1.2 Writing a Kernel (OS Dependent) Interrupt Handler
	7.1.3 Writing Non-kernel Interrupt Handler
	7.1.4 Writing Cyclic Handler/Alarm Handler

	7.2 Program Coding Procedure in Assembly Language
	7.2.1 Writing Task
	7.2.2 Writing Kernel Interrupt Handler
	7.2.3 Writing Non-kernel Interrupt Handler
	7.2.4 Writing Cyclic Handler/Alarm Handler

	7.3 Modifying MR100 Startup Program
	7.3.1 C Language Startup Program (crt0mr.a30)

	7.4 Memory Allocation
	7.4.1 Section used by the MR100

	8. Using Configurator
	8.1 Configuration File Creation Procedure
	8.1.1 Configuration File Data Entry Format
	Operator
	Direction of computation

	8.1.2 Configuration File Definition Items
	[(System Definition Procedure)]
	[(System Clock Definition Procedure)]
	[(Definition respective maximum numbers of items)]
	[(Task definition)]
	[(Eventflag definition)]
	[(Semaphore definition)]
	[(Data queue definition)]
	[(Short data queue definition)]
	[(Mailbox definition)]
	[(Fixed-size memory pool definition)]
	[(Variable-size memory pool definition)]
	[(Cyclic handler definition)]
	[(Alarm handler definition)]
	[(Interrupt vector definition)]
	[(Fixed interrupt vector definition)]

	8.1.3 Configuration File Example

	8.2 Configurator Execution Procedures
	8.2.1 Configurator Overview
	Executing the configurator requires the following input files:
	When the configurator is executed, the files listed below are output.

	8.2.2 Setting Configurator Environment
	8.2.3 Configurator Start Procedure
	8.2.4 Precautions on Executing Configurator
	8.2.5 Configurator Error Indications and Remedies
	Error messages
	Warning messages

	9. Sample Program Description
	9.1 Overview of Sample Program
	9.2 Program Source Listing
	9.3 Configuration File

	10. Stack Size Calculation Method
	10.1 Stack Size Calculation Method
	10.1.1 User Stack Calculation Method
	10.1.2 System Stack Calculation Method

	10.2 Necessary Stack Size

	11. Note
	11.1 The Use of INT Instruction
	11.2 The Use of registers of bank
	11.3 Regarding Delay Dispatching
	11.4 Regarding Initially Activated Task

	12. Appendix
	12.1 Data Type
	12.2 Common Constants and Packet Format of Structure
	12.3 Assembly Language Interface

