
 

To our customers, 
 

Old Company Name in Catalogs and Other Documents 

 
On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology 

Corporation, and Renesas Electronics Corporation took over all the business of both 
companies. Therefore, although the old company name remains in this document, it is a valid 
Renesas Electronics document. We appreciate your understanding. 
 

Renesas Electronics website: http://www.renesas.com 
 
 
 
 

April 1st, 2010 
Renesas Electronics Corporation 

 
 
 
 
 
Issued by: Renesas Electronics Corporation (http://www.renesas.com) 

Send any inquiries to http://www.renesas.com/inquiry. 

 



Notice 
1. All information included in this document is current as of the date this document is issued. Such information, however, is 

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please 
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to 
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. 

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights 
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.  
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights 
of Renesas Electronics or others. 

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. 
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of 

semiconductor products and application examples.  You are fully responsible for the incorporation of these circuits, software, 
and information in the design of your equipment.  Renesas Electronics assumes no responsibility for any losses incurred by 
you or third parties arising from the use of these circuits, software, or information. 

5. When exporting the products or technology described in this document, you should comply with the applicable export control 
laws and regulations and follow the procedures required by such laws and regulations.  You should not use Renesas 
Electronics products or the technology described in this document for any purpose relating to military applications or use by 
the military, including but not limited to the development of weapons of mass destruction.  Renesas Electronics products and 
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited 
under any applicable domestic or foreign laws or regulations. 

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics 
does not warrant that such information is error free.  Renesas Electronics assumes no liability whatsoever for any damages 
incurred by you resulting from errors in or omissions from the information included herein. 

7. Renesas Electronics products are classified according to the following three quality grades:  “Standard”, “High Quality”, and 
“Specific”.  The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as 
indicated below.  You must check the quality grade of each Renesas Electronics product before using it in a particular 
application.  You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior 
written consent of Renesas Electronics.  Further, you may not use any Renesas Electronics product for any application for 
which it is not intended without the prior written consent of Renesas Electronics.  Renesas Electronics shall not be in any way 
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an 
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written 
consent of Renesas Electronics.  The quality grade of each Renesas Electronics product is “Standard” unless otherwise 
expressly specified in a Renesas Electronics data sheets or data books, etc. 

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual 
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots. 

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support. 

“Specific”:  Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or 
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare 
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life. 

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, 
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation 
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or 
damages arising out of the use of Renesas Electronics products beyond such specified ranges. 

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have 
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, 
Renesas Electronics products are not subject to radiation resistance design.  Please be sure to implement safety measures to 
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a 
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire 
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures.  Because 
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system 
manufactured by you. 

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental 
compatibility of each Renesas Electronics product.  Please use Renesas Electronics products in compliance with all applicable 
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS 
Directive.  Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with 
applicable laws and regulations. 

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas 
Electronics. 

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this 
document or Renesas Electronics products, or if you have any other inquiries. 

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries. 

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. 



M3T-CC32R V.4.30
User’s Manual <Assembler>

U
ser’s M

anual

Rev.1.00   2004.09

Cross Tool Kit for M32R Family



 
 Microsoft, MS-DOS, Windows, and Windows NT are registered trademarks of Microsoft Corporation in the U.S. and other countries. 
 Sun, Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. or 
other countries, and are used under license. 
 Linux is a trademark of Linus Torvalds. 
 Turbolinux and its logo are trademarks of Turbolinux, Inc. 
 IBM and AT are registered trademarks of International Business Machines Corporation. 
 Intel and Pentium are registered trademarks of Intel Corporation. 
 Adobe, Acrobat, and Acrobat Reader are trademarks of Adobe Systems Incorporated. 
 All other brand and product names are trademarks, registered trademarks or service marks of their respective holders. 

 
 

Keep safety first in your circuit designs! 
 Renesas Technology Corporation and Renesas Solutions Corporation put the maximum effort into making semiconductor products 
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to 
personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with 
appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention 
against any malfunction or mishap. 

 
 

Notes regarding these materials 
 These materials are intended as a reference to assist our customers in the selection of the Renesas Technology product best suited 
to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to 
Renesas Technology Corporation, Renesas Solutions Corporation or a third party. 
 Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage, or infringement of 
any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application 
examples contained in these materials. 
 All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information 
on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation and 
Renesas Solutions Corporation without notice due to product improvements or other reasons. It is therefore recommended that 
customers contact Renesas Technology Corporation, Renesas Solutions Corporation or an authorized Renesas Technology product 
distributor for the latest product information before purchasing a product listed herein. The information described here may contain 
technical inaccuracies or typographical errors. Renesas Technology Corporation and Renesas Solutions Corporation assume no 
responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information 
published by Renesas Technology Corporation and Renesas Solutions Corporation by various means, including the Renesas home 
page (http://www.renesas.com). 
 When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and 
algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the 
information and products. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any 
damage, liability or other loss resulting from the information contained herein. 
 Renesas Technology semiconductors are not designed or manufactured for use in a device or system that is used under 
circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation, Renesas Solutions 
Corporation or an authorized Renesas Technology product distributor when considering the use of a product contained herein for any 
specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 
 The prior written approval of Renesas Technology Corporation and Renesas Solutions Corporation is necessary to reprint or 
reproduce in whole or in part these materials. 
 If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from 
the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport 
contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 
 Please contact Renesas Technology Corporation or Renesas Solutions Corporation for further details on these materials or the 
products contained therein. 

 
 
For inquiries about the contents of this document or product, fill in the text file the installer generates in the following directory and email 
to your local distributor. 
 

¥SUPPORT¥Product-name¥SUPPORT.TXT 
 

Renesas Tools Homepage  http://www.renesas.com/ 
 



Assembler  - iii

Contents

Contents

Preface xiv
Audience .............................................................................................................................. xiv

References ........................................................................................................................... xiv

Conventions ..........................................................................................................................xv

Organization of This Manual ............................................................................................... xvii

Part  1   Part 1   Assembler   as32RAssembler   as32R II

Chapter 1 Overview of as32R 1
1.1 About the Assembler as32R .................................................................................... 1

1.1.1 as32R Functions ....................................................................................................... 1

1.1.2 as32R Features ........................................................................................................ 1

Chapter 2 Invoking the Assembler 2
2.1 How to Invoke the Assembler .................................................................................. 2

2.1.1 Invoking Procedure ................................................................................................... 2

2.1.2 Setting Environment Variables ................................................................................. 2

2.1.3 Command Line Syntax and Rules ............................................................................ 3

2.1.4 Input File Conditions ................................................................................................. 4

2.1.5 Output File Naming ................................................................................................... 4

2.1.6 List File Naming ........................................................................................................ 4

2.2 Command Options ................................................................................................... 5

2.2.1 Command Options .................................................................................................... 5

2.2.2 About M32Rx Instructions ......................................................................................... 7

Chapter 3 Assembly Language Specifications 8
3.1 Line Format .............................................................................................................. 8

3.1.1 Symbol Field ............................................................................................................. 9

3.1.2 Operation Field ....................................................................................................... 11

3.1.3 Operand Field ......................................................................................................... 12

3.1.4 Comment Field ....................................................................................................... 13

3.2 Line Types ............................................................................................................. 14

3.3 Character Set ......................................................................................................... 15



Assembler  - iv

Contents

3.4 Reserved Words .................................................................................................... 16

3.4.1 Register Names ...................................................................................................... 16

3.4.2 Special Symbols ..................................................................................................... 17

3.4.3 Mnemonics ............................................................................................................. 17

3.5 Names ................................................................................................................... 18

3.6 Symbols ................................................................................................................. 19

3.7 Preprocessing Variables ........................................................................................ 21

3.8 Expressions ........................................................................................................... 22

3.8.1 Constants in an Expression .................................................................................... 24

3.8.2 Specifying a Value Using a Symbol Name ............................................................. 25

3.8.3 Specifying a Value Using a Section Name ............................................................. 25

3.8.4 Operators ................................................................................................................ 25

Chapter 4 Coding General Instructions 27
4.1 General Instructions (M32R Instructions) .............................................................. 27

4.2 General Instruction Line......................................................................................... 28

4.3 General Instruction Operand ................................................................................. 29

4.4 Specifying the Operation Size ............................................................................... 30

4.5 How to Use a Correction Option ............................................................................ 31

4.6 Addressing Modes ................................................................................................. 35

4.7 How to Write Operands (depending on the addressing mode) ............................. 37

4.7.1 Register Direct ........................................................................................................ 37

4.7.2 Register Indirect ...................................................................................................... 37

4.7.3 Register Relative Indirect ........................................................................................ 38

4.7.4 Immediate Integer (immediate) ............................................................................... 39

4.7.5 Register Indirect with Pre-increment ....................................................................... 40

4.7.6 Register Indirect with Pre-decrement ..................................................................... 40

4.7.7 Register Indirect with Post-increment ..................................................................... 41

4.7.8 PC Relative ............................................................................................................. 42

4.8 About M32Rx Instructions...................................................................................... 43

Chapter 5 Coding Pseudo-instructions 45
5.1 Pseudo-instructions ............................................................................................... 45

5.2 Pseudo-instruction Line ......................................................................................... 46

5.3 Pseudo-instruction Operand .................................................................................. 47

5.4 Size Specifier ......................................................................................................... 48



Assembler  - v

Contents

Chapter 6 Coding Macro-instructions 49
6.1 Macro-instructions ................................................................................................. 49

6.2 Macro-instruction Line ........................................................................................... 51

6.3 Preprocessing Variables and Expressions ............................................................ 52

6.3.1 Preprocessing Variables ......................................................................................... 52

6.3.1.1 Formal Parameters .............................................................................................. 53

6.3.1.2 Arithmetic Variables ............................................................................................. 54

6.3.1.3 Character Variables ............................................................................................. 55

6.3.2 Expressions for Macro-instructions ......................................................................... 56

6.3.2.1 Arithmetic Expressions ........................................................................................ 56

6.3.2.2 Character Expressions ......................................................................................... 59

6.3.2.3 Logical Expressions ............................................................................................. 61

6.4 Macro Definition and Expansion ............................................................................ 65

6.4.1 About Macro Processes .......................................................................................... 65

6.4.2 How to Define Macros ............................................................................................ 67

6.4.3 How to write a macro body and its expansion ........................................................ 68

6.4.3.1  Substituting Preprocessing Variables ................................................................. 69

6.4.3.2 Excluding Substitutes ........................................................................................... 70

6.4.3.3 Handling Ordinal Numbers ................................................................................... 71

6.4.3.4 Deciding Comments ............................................................................................. 72

6.4.4 Macro Call ............................................................................................................... 73

6.5 Nested Structure for Processing Macros ............................................................... 76

6.6 Sample Programming ............................................................................................ 77

6.7 Limitations.............................................................................................................. 79

Chapter 7 Messages from the Assembler 80
7.1 Getting Execution Result of the Assembler ........................................................... 80

7.1.1 Message Format ..................................................................................................... 80

7.1.2 Message Types ...................................................................................................... 81

7.1.3 Exit Status ............................................................................................................... 81

7.2 Message Lists ........................................................................................................ 82

7.2.1 Warning Messages ................................................................................................. 82

7.2.2 Error Messages ...................................................................................................... 84

7.2.3 Fatal Error Messages ............................................................................................. 94



Assembler  - vi

Contents

Appendix A   M32R Instruction Set Summary 95
A.1 M32R Instruction Set ............................................................................................. 97

■   Load/Store Instructions ........................................................................ 97

■   Transfer Instructions ............................................................................ 98

■   Arithmetic/logic Operation Instructions ................................................ 98

■   Branch Instructions ............................................................................ 100

■   EIT-related Instructions ...................................................................... 100

■   DSP Function Instructions ................................................................. 101

A.2 Extended Instructions of M32Rx/D Series ........................................................... 102

A.2.1 New Extended Instructions of M32Rx ................................................................... 102

■   New Extended Instructions of M32Rx................................................ 102

A.2.2 Specification Extended Instructions of M32Rx ..................................................... 103

■   Specification Extended Instructions of M32Rx .................................. 103

Appendix B   Pseudo-instruction Reference 104

Appendix C   Macro-instruction Reference 124

Appendix D   Assembler List File 140

Appendix E   M32R/ECU#5 Extension Instruction 148
E.1 Option designation ............................................................................................... 148

E.2 M32R/ECU#5 extension instruction ..................................................................... 149

Appendix F   Floating Point Compatible Function 150
F.1 Floating-point constant ........................................................................................ 150

F.1.1 Description format ................................................................................................. 150

F.1.2 Available place ...................................................................................................... 151

F.1.3 Compatibility ......................................................................................................... 151

F.1.4 Non-normalized numeral handling ........................................................................ 151

F.2 Extended pseudo instruction ............................................................................... 152

F.2.1 Format .................................................................................................................. 152

F.2.2 Function of pseudo instruction .............................................................................. 152

F.2.3 Common items ...................................................................................................... 153

F.3 Utilization of floating point in general instruction line ........................................... 153



Assembler  - vii

Contents

Appendix G   Restrictions on Usage 154
■   How to get files that is not included the debug-informatio ............................................ 154

■  Cautions on using the base register function with standard library for C ...................... 155

■  Avoiding the integral zero-division problem of M32R/ECU series ................................. 155

■  On indirect calling a function that has variable arguments ............................................ 157

■  Data definition within the code section .......................................................................... 157

■  Use of preprocessor variables inside a macro body ...................................................... 157

■  About compiling the functions of 500 or more lines ....................................................... 158

■  Precautions about changing C Calling Convention ....................................................... 158



Assembler  - viii

Contents

Part 2   Part 2   Linker   lnk32RLinker   lnk32R II

Chapter 1 Overview of the Linker lnk32R 1
1.1 Overview .................................................................................................................. 1

1.2 Functions ................................................................................................................. 1

1.3 Compatibility with an old version ............................................................................. 2

1.3.1 About inputting old CC32R's object (V.2.10 Release 1 or older) to new linker ......... 2

1.3.2 About error processing of lnk32R ............................................................................. 3

1.3.3 About error processing of lnk32R(CC32R V.4.30 Release 1 or subsequent one) .... 5

Chapter 2 Invoke the Linker 6
2.1 How to Invoke the Linker ......................................................................................... 6

2.1.1 Invoking Procedure ................................................................................................... 6

2.1.2 Setting Environment Variables ................................................................................. 6

2.1.3 Command Line Format ............................................................................................. 7

2.1.3.1 Command Line Rules ............................................................................................ 7

2.1.3.2 Invocation Using Command File ............................................................................ 8

2.1.4 Input File Conditions ................................................................................................. 9

2.1.5 Output File Conditions .............................................................................................. 9

2.1.6 Output File Naming ................................................................................................... 9

2.2 Command Options ................................................................................................. 10

2.3 Command Line Examples...................................................................................... 14

Chapter 3 Creating load modules 15
3.1 Creating absolute load modules ............................................................................ 15

3.1.1 Linking Object modules  (Linking Sections) ............................................................ 15

3.1.2 Locating Sections ................................................................................................... 15

3.2 Creating Relocatable Load Module ....................................................................... 16

3.3 Linking Library Files ............................................................................................... 16

Chapter 4 Section 18
4.1 Section Types ........................................................................................................ 18

4.2 Section Definitions (Section Information)............................................................... 18

4.3 Link Functions........................................................................................................ 19

4.3.1 Automatic Link of Sections ..................................................................................... 19

4.3.2 Specifying Linking Order of Sections ...................................................................... 19

4.3.3 Specifying Location Address of Section ................................................................. 20



Assembler  - ix

Contents

4.4 Linking Methods (Specified by section attribute) ................................................... 21

4.5 Locating Methods (Specified by location attribute) ................................................ 22

Chapter 5 For ROM Writing 23
5.1 Processing Sections for ROM Writing ................................................................... 23

5.1.1 Specifying Location Area of Section (by the linker) ................................................ 23

5.1.2 Specifying Output Area of Data (by the linker) ....................................................... 24

5.1.3 Initializing the Data Sections (in Start-up File) ........................................................ 24

5.2 Committing Applications to ROM ........................................................................... 25

5.2.1 Initial Data Elimination ............................................................................................ 25

5.2.2 Initial Data Extraction .............................................................................................. 26

5.2.3 Reserved Labels Generation .................................................................................. 27

Chapter 6 Messages from the  Linker 29
6.1 Getting Execution Result of the Linker .................................................................. 29

6.1.1 Message Format ..................................................................................................... 29

6.1.2 Message Types ...................................................................................................... 29

6.1.3 Exit Status ............................................................................................................... 30

6.2 Message Lists ........................................................................................................ 31

6.2.1 Warning Messages ................................................................................................. 31

6.2.2 Error Messages ...................................................................................................... 31

6.2.3 Fatal Error Messages ............................................................................................. 34



Assembler  - x

Contents

Part 3   Part 3   Map Generator map32RMap Generator map32R II

Chapter 1 Overview of the Map Generator map32R 1
1.1 Overview .................................................................................................................. 1

Chapter 2 Invoke the Map Generator 2
2.1 How to Invoke the Map Generator ........................................................................... 2

2.1.1 Invoking Procedure ................................................................................................... 2

2.1.2 Setting Environment Variables ................................................................................. 2

2.1.3 Command Line Format ............................................................................................. 3

2.1.4 Input File Conditions ................................................................................................. 4

2.1.5 Output File Naming ................................................................................................... 4

2.2 Command Options ................................................................................................... 5

2.3 Command Line Examples........................................................................................ 7

Chapter 3 Link Map File 8
3.1 Contents of Link Map File ........................................................................................ 8

3.2 Contents of Map List ................................................................................................ 9

3.3 Contents of Global Symbol List ............................................................................. 10

3.3 About extended output forms of map32R .............................................................. 11

Chapter 4 The Access Control File Generation Function 14
4.1 Details of the Access Control File Generation Function ........................................ 14

4.2 Example of Using the Access Control File Generation Function ........................... 15

4.3 Notes ..................................................................................................................... 16

Chapter 5 Csv symbol map file output 17
5.1 Details of the Csv symbol map file ......................................................................... 17

5.1.1 Generation of the csv symbol map file .................................................................... 17

5.1.2 Form of the csv symbol map file ............................................................................. 17

5.2 Example of output the Csv symbol map file........................................................... 18

5.2.1 Example of “-c” option ............................................................................................. 18

5.2.2 Example of “-c16” option ......................................................................................... 19

5.3 Notes ..................................................................................................................... 19



Assembler  - xi

Contents

Chapter 6 Messages from the Map Generator 20
6.1 Getting Execution Result of the Map Generator .................................................... 20

6.1.1 Message Format ..................................................................................................... 20

6.1.2 Message Types ...................................................................................................... 20

6.1.3 Exit Status ............................................................................................................... 21

6.2 Message Lists ........................................................................................................ 21

6.2.1 Error Messages ...................................................................................................... 21

6.2.2 Fatal Error Messages ............................................................................................. 22



Assembler  - xii

Contents

Part 4   Part 4   Librarian l ib32RLibrarian l ib32R II

Chapter 1 Overview of the Librarian lib32R 1
1.1 Overview .................................................................................................................. 1

1.2 Functions ................................................................................................................. 1

Chapter 2 Invoke the Librarian 3
2.1 How to Invoke the Librarian ..................................................................................... 3

2.1.1 Invoking Procedure ................................................................................................... 3

2.1.2 Setting Environment Variables ................................................................................. 3

2.1.3 Command Line Format ............................................................................................. 4

2.1.3.1 Command Line Rules ............................................................................................ 4

2.1.3.2 Invocation Using Command File ............................................................................ 5

2.1.4 Input File Conditions ................................................................................................. 6

2.1.5 Generated Library Conditions ................................................................................... 6

2.1.6 Output File Naming ................................................................................................... 6

2.2 Command Options ................................................................................................... 7

2.3 Command Line Examples........................................................................................ 9

Chapter 3 Outputs from the Librarian 11
3.1 Library .................................................................................................................... 11

3.2 Librarian List .......................................................................................................... 11

3.3 Library Information ................................................................................................. 12

Chapter 4 Messages from the Librarian 14
4.1 Getting Execution Result of the Librarian .............................................................. 14

4.1.1 Message Format ..................................................................................................... 14

4.1.2 Message Types ...................................................................................................... 15

4.1.3 Exit Status ............................................................................................................... 15

4.2 Message Lists ........................................................................................................ 16

4.2.1 Warning Messages ................................................................................................. 16

4.2.2 Error Messages ...................................................................................................... 16

4.2.3 Fatal Error Messages ............................................................................................. 18



Assembler  - xiii

Contents

Part  5   Part  5   Load Module Converter lmc32RLoad Module Converter lmc32R II

Chapter 1 Overview of the Load Module Converter lmc32R 1
1.1 Overview .................................................................................................................. 1

1.2 Functions ................................................................................................................. 1

Chapter 2 Invoke the Load Module Converter 2
2.1 How to Invoke the Load Module Converter ............................................................. 2

2.1.1 Invoking Procedure ................................................................................................... 2

2.1.2 Setting Environment Variables ................................................................................. 2

2.1.3 Command Line Format ............................................................................................. 3

2.1.4 Input File Conditions ................................................................................................. 3

2.1.5 Output File Naming ................................................................................................... 4

2.2 Command Options ................................................................................................... 5

Chapter 3 Usage and Command Line Examples 7
3.1 Converting into Divided S-format Files  (Object Division Function) ......................... 7

3.2 Converting a part of the Load Module into S-format (Convert Area Select Function) .... 8

3.3 Changing Addresses of Load Module(Change Load Address Function) ................ 9

Chapter 4 S-format 10
4.1 Motorola S-format File Structure............................................................................ 10

4.2 Record Structure.................................................................................................... 11

4.2.1 Header Record ....................................................................................................... 11

4.2.2 Data Record ............................................................................................................ 11

4.2.3 End Record ............................................................................................................. 13



AS32R MANUAL - xiv

Preface

Preface

M3T-CC32R(abbreviated as CC32R) is a cross tool kit which supports software

development for the Renesas M32R family of 32-bit RISC architecture

microcomputers.  It provides many functions suitable for development of

embedded systems for the M32R family.  The CC32R manual set provides

information for programming by use of CC32R, targeting an M32R system.

Audience

The CC32R manual set assumes that the readers are developers programming

for the M32R system using the C or assembly language.  Accordingly, it also

assumes that the readers are familiar with programming languages (C or

assembly) and their development environment (a host machine and its

operating system etc.), and have basic knowledge of the target M32R systems.

References

A manual related to development for the M32R family is :

• M32R Family User's Manual

• M32R Family Software Manual

Refer to the WWW site of the "Renesas Microcomputers" for the details of the

information about development of M32R Family.

The URL is : http://www.renesas.com/

For details about the ANSI-C language, refer to :

• ANSI/ISO 9899-1990   American National Standard for Programming

Languages - C (American National Standards Institute, Inc. )

http://www.infomicom.maec.co.jp/indexe.htm


AS32R MANUAL - xv

Preface

Conventions

The CC32R manual set uses the following conventions :

• Symbols

Symbol Meaning

Italics Represents a generic description that should be
replaced with a specific.

a |b Represents alternative items.  a|b represents either a
or b.

[ ] Encloses optional elements that can be included or
omitted.

... Indicates to repeat the preceding item zero or more
times.

: Represents omission of a or more lines.

<RET> Represents to enter the return key.

• Terms(1/2)

Term Meaning

ANSI-C American National Standard for Programming
Languages-C (ANSI/ISO 9899-1990)

Assembler (as32R) The assembler in CC32R.

Assembly program A program written in the assembly language.

CC32R The cross tool kit for an M32R system.

C compiler (cc32R) The C compiler in CC32R.

C program A program written in the C language.

CRx Any control register of M32R.

C standard library The CC32R-supplied ANSI-C conforming library.

Default A value (or values) or the process provided
automatically if there is none specified by the user.

EWS An engineering work station.

Librarian (lib32R) The librarian in CC32R.

Library (file) A C library file for an M32R system.  It is an output
file from lib32R.

Linker (lnk32R) The linker in CC32R.



AS32R MANUAL - xvi

Preface

• Terms(2/2)

Term Meaning

Link map A list have information on sections and global
symbols in an object module or a load module.  It is
generated by map32R.

Load module (file) A linked object module, which is an executable file for
an M32R system.  It is an output file from lnk32R  or
lmc32R.

Load module converter (lmc32R) The load module converter in CC32R.

Local variable This variable is only effective in a function.

M32R A Renesas 32-bit RISC architecture microcomputer.
M32Rx

M32R system A system using the M32R.

Map generator (map32R) The map generator in CC32R.

Object module (file) An object file which is translated from the C or
assembly code into the object code of machine
instructions for M32R.  It is an output file from the C
compiler or the assembler.

OS An operating system.

Release notes The document related to the release of the CC32R in a
CC32R package (Please read it at first.).

Return value A function value returned as an operation result from
a called function to a calling function.

Rx Any general register of M32R.

Source file A text file written source code in the C language or the
assembly language.

Space (character) A blank which is entered by the space key or the tab
key.

User library A library file made by a user using the librarian.

Windows Any of Microsoft Windows3.1 or Microsoft
Windows95.



AS32R MANUAL - xvii

Preface

Organization of This Manual

This manual consists of :

■  Part 1 Assembler   as32R

Chapter 1 Overview of as32R
Chapter 2 Invoking the Assembler
Chapter 3 Assembly Language Specifications
Chapter 4 Coding General Instructions
Chapter 5 Coding Pseudo-instructions
Chapter 6 Coding Macro-instructions
Chapter 7 Messages from the Assembler
AppendixA M32R Instruction Set Summary
Appendix B Pseudo-instruction Reference
Appendix C Macro-instruction Reference
Appendix D Assembler List File
Appendix E M32R/ECU#5 Extension Instruction
Appendix F Floating Point Compatible Function
Appendix G Restrictions on Usage

■  Part 2 Linker   lnk32R

Chapter 1 Overview of the Linker lnk32R
Chapter 2 Invoke the Linker
Chapter 3 Creating load modules
Chapter 4 Section
Chapter 5 For ROM Writing
Chapter 6 Messages from the  Linker

■  Part 3 Map Generator map32R

Chapter 1 Overview of the Map Generator map32R
Chapter 2 Invoke the Map Generator
Chapter 3 Link Map File
Chapter 4 The Access Control File Generation Function
Chapter 5 Csv symbol map file output
Chapter 6 Messages from the Map Generator

■  Part 4 Librarian lib32R

Chapter 1 Overview of the Librarian lib32R
Chapter 2 Invoke the Librarian
Chapter 3 Outputs from the Librarian
Chapter 4 Messages from the Librarian

■  Part 5 Load Module Converter lmc32R

Chapter 1 Overview of the Load Module Converter lmc32R
Chapter 2 Invoke the Load Module Converter
Chapter 3 Usage and Command Line Examples
Chapter 4 S-format
Chapter 5 Messages from the Load Module Converter



Assembler   as32R

Part 1



AS32R MANUAL  - 1

Chapter 1 Overview of as32R

Chapter 1

Overview of as32R

1.1 About the Assembler as32R

1.1.1 as32R Functions

The as32R is the assembler contained in the cross tool kit M3T-CC32R, and has

the following functions :

• Generates an object module by assembling each assembly source file.

• as32R calls :

•  a032R (macro processor)

•  a132R (assemble processor)

•  alis32R (list processor)

To obtain load modules from the object modules that the assembler generates,

use the linker (lnk32R) contained in the cross tool kit M3T-CC32R.

1.1.2 as32R Features

The assembler provides the following features :

• Optimizing the operand size

Chooses the shortest-length instruction if an instruction can have

two or more lengths, depending on the operand size.

• Automatic adjusting the instruction position

Automatically adjusts the position of an instruction that must be

located at a word boundary.

• Numerical correction for dealing with a 32-bit immediate data

Provides a means to carry out numerical correction that enables

you to easily describe a 32-bit constant or address.

• Macro processing

Handles macros.  You can define macros by using macro-

instructions of the assembler and call the macros.



AS32R MANUAL - 2

Chapter 2 Invoking the Assembler

Chapter 2

Invoking the Assembler

2.1 How to Invoke the Assembler

2.1.1 Invoking Procedure

To invoke the assembler, set environment variables (see 2.1.2), then enter the

“as32R” command in line with the applicable rule to execute it (see 2.1.3).

2.1.2 Setting Environment Variables

Set the valid directories for the environment variables M32RBIN, M32RINC,

M32RLIB, and M32RTMP.  For the setting procedure, refer to ““M3T-CC32R

Cross Tool-Kit V.x.xx Release x Release Note“.  If you do not set them, the

directories (see Table 2.1) are selected automatically.

Table 2.1  Environment Variables

Environment variable Default

M32RBIN /usr/local/M32R/bin

M32RINC /usr/local/M32R/include

M32RLIB /usr/local/M32R/lib

M32RTMP /tmp



AS32R MANUAL - 3

Chapter 2 Invoking the Assembler

2.1.3 Command Line Syntax and Rules

The command line syntax and rules for the command, “as32R”, which invokes

the assembler are as follows (For details on the command options and input/

output files, see 2.1.4 through 2.2. )  :

as32R  [-g] [-V] [-w] [-o output_filename] [-l list_filename]

       [-I dir] [-D[= def]] [-m32r] [-m32rx] [input_filename]

<RET>

where :

• Without [ ] : Indispensable

• In [ ] : Optional

• Prefixed by - : A command option ( and its parameter(s) )  (See 2.2.)

• <RET> : Enter the return key

Figure 2.1  as32R Command Line Syntax

• Each of the items (i.e., the command name, an option, an input file name)

must be separated from adjacent items by at least one space character.

• Between an option and its parameter(s), one or more spaces may be inserted.

If conflicting options are specified in the same command line, the rightmost

option is used.

• You can enter up to 255 characters in a command line (excluding the Return

key).

• input_filename represents specifying one input file name.

• To link object modules, use the linker lnk32R contained in CC32R. (as32R

have no functions of linking .)



AS32R MANUAL - 4

Chapter 2 Invoking the Assembler

2.1.4 Input File Conditions

Conditions for input files to be assembled are given in Table 2.2.  You cannot

assemble files that don’t satisfy these conditions.

Table 2.2  Input File Conditions

Item Condition

A file that can be input A source file written in assembly language.

Its file extension, “.ms” or otherwise, is

allowed.

Instructions described You must write an assembly-language source

file to input using only the general instructions

of M32R instructions, pseudo-instructions, and

macro-instructions of the assembler.

Maximum length of a name Module name : Up to 206 characters

Symbol name : Up to 243 characters

Section name : Up to 243 characters

Preprocessor variable : Up to 32 characters

Macro name : Up to 32 characters

Maximum number of names Up to 65535 names can be processed at a time.

The number may be limited by the capacity of

development environment system memory.

2.1.5 Output File Naming

The output file name becomes what you specify under -o output_filename.  If

you omit this, by default, the file is named as given in Table 2.3 .

Table 2.3  Output File Name (Default)

File name Description

file.mo An object module file output as a result of assembling.

A file name in which the extension of the source file name is

replaced by “.mo”. (If a source file has no extension, “.mo” is

suffixed to the source file name.)

2.1.6 List File Naming

The list file name becomes what you specify under -l list_filename .



AS32R MANUAL - 5

Chapter 2 Invoking the Assembler

2.2 Command Options

2.2.1 Command Options

Table 2.4 shows the functions of the command options available for the as32R

command that are valid for starting the assembler.

Table 2.4  Command Options for the Assembler(1/2)

Option Description

-g Outputs information necessary for debugging

(debugging information) to the object module file.

-I dir Adds dir to the directory under which a header file is

to be searched.

The header file search is performed in the order

shown :

(1) Within the directory containing the file in which

the .INCLUDE instruction is written.

(2) Within the directory specified by this option.

(3) Within the directory for which the environment

variable M32RINC is set  ( If not set, in the order

/usr/local/M32R/include.).

This option can be specified more than once (up to 10)

in a command line, as in -I dir1 -I dir2.  In this case,

header files are searched for in the directory shown

above (1), dir1, dir2, and the directory shown above

(3), in that order.  Spaces between "-I" and "dir" are

optional.

-l list_filename Creates a list file named “list_filename”.  Spaces

between “-l” and “list_filename” are optional.  If this

option is not specified, a list file is not created (see

Appendix D, “Assemble list file” for a list file).

-o output_filename Generates an object module named “output_filename”.

Omitting this option generates an object module using

a file name resulting from changing the extension of

input file name to “.mo”.

If an input file name has no its extension, the output

file name is named by resulting from suffixing “.mo”

to the input file name.

('o' is a lower case)



AS32R MANUAL - 6

Chapter 2 Invoking the Assembler

Table 2.4  Command Options for the Assembler(2/2)

Option Description

-V (upper case) Outputs the invoking message to the standard error

output.  The other options are ignored.  No processing

actually takes place.

-w Suppresses warning messages.

-D name[=def] Associates the character variable name with the

character sequence def. Assumes that name=1 if “=def”

is omitted. This option has the same function as

macro-instruction .ASSIGNC.

You may omit a space character between -D and

name.

-m32r Assembles M32R instructions. Parallel instructions

and the instructions inherent in M32Rx cannot be

processed. If no option is used in the assembler that

specifies a specific CPU, the assembler by default

assumes this option as it assembles instructions.

-m32rx Assembles instructions that have been added to or

changed in M32Rx, in addition to M32R instructions.

Furthermore, parallel instructions of M32Rx can be

processed. Accumulator specification in MULHI or

other instructions to specify an accumulator can be

omitted. (When no accumulator is specified, the

assembler by default assumes A0 as it processes

instructions.)

Also refer to Section 2.2.2 for more information about

his option.

-m32re5 This option makes M32R/ECU#5 extension

instruction valid.Also, the floating-point constant,

which is not normalized,is reduced to "0.0".

-zdiv For avoiding the integral zero-division problem of

M32R/ECU series, to insert NOP instructions each

after the all of this DIV-instructions.



AS32R MANUAL - 7

Chapter 2 Invoking the Assembler

2.2.2 About M32Rx Instructions

The assembler supports parallel instructions of M32Rx. For details about

parallel instructions of M32Rx, refer to "M32Rx Software Manual."

•   Precautions to be observed when writing parallel instructions

O   Instructions that can be written in parallel

Instructions that can be written in parallel are limited to combinations

of instruction categories. (Refer to “Chapter 4 M32Rx Instructions”

and "M32Rx Software Manual.")

If any other instruction statement is written, the assembler outputs the

error message shown below and stops processing the instructions that

follow.

   (Error message)

a132R: “xxx”, line 1: error: invalid parallel category

O  About operand interference

If when executing parallel instructions the same resource is

simultaneously accessed for write (operand interference), assembler

operation in M32Rx is not guaranteed. The same dependency

relationship as this operand interference also applies to control

registers such as PSW and CBR that include the condition bit (C), in

which case assembler operation is not guaranteed either.

The assembler has a facility to check for operand interference. If an

operand interference is committed, the assembler outputs an error

message like the one shown below:

   (Error message)

a132R: “xxx”, line 1: error: write to the same destination register

For details about operand interference, refer to the "M32Rx Software

Manual."



AS32R MANUAL - 8

Chapter 3 Assembly Language Specifications

Chapter 3

Assembly Language Specifications

This chapter describes the basic specifications of the assembly language for

M32R which is processed by the assembler.  “Source” as used in this chapter

refers to a source program written in assembly language.

3.1 Line Format

A source program written in assembly language is made on a line-by-line basis

(you write one instruction in one line).  The range of a line is defined as follows:

• From the beginning of a source file to the first new-line character.

• From the character immediately subsequent to a new-line character either to

the next new-line character or to the end of a source file.

The range of a new-line character finishes one line.  The number of characters in

a line is unlimited.  A line is made up of four fields given in Figure 3.1.  A field

may be omitted if it is not necessary.

LABEL:        LDI       R0,#0      ; comment

Symbol
Field

Operation
Field

Operand
Field

Comment 
Field

<CR>

Symbol Operation Operands Comment

  • Symbol field A field in which you write a symbol.

  • Operation field A field in which you write an operation.

  • Operand field A field in which you write instruction operands.

  • Comment field A field in which you write comments.

Figure 3.1  One Line of a Source Program



AS32R MANUAL - 9

Chapter 3 Assembly Language Specifications

One or more space characters are required between the symbol field and the

operation field and between the operation field and the operand field.

Section 3.1.1 and subsequent sections explain the individual fields.  The

following notation is used :

: One or more optional space characters

(you enter space character(s) or tab character(s))

: One or more required space characters

(you enter space character(s) or tab character(s))

<CR> : A new-line character

3.1.1 Symbol Field

A symbol field is a field in which you write a symbol or a preprocessing

variable for macro-instructions in a line of a source program (see 3.6

“Symbols”).

Usually you put a symbol from the first column, but you can write it from the

second or subsequent column.  Be careful about the following in writing a

symbol :

• To write a symbol from the first column :

The syntax are :

symbol;comment

symbol  ;comment<CR>

symbol<CR>

symbol;comment<CR>
↑
first column

Either a field extending from the first column to a colon (:) or a

field extending from the first column to the column immediately

before a space, new-line character, or semicolon (;) forms a

symbol field.  A string in the field turns to a symbol.

You can omit a colon (:) only when you put a symbol from the

first column.

What you write from the first column is recognized as a symbol

even if it matches a reserved word (see 3.4 “Reserved Words”).



AS32R MANUAL - 10

Chapter 3 Assembly Language Specifications

• To write a symbol from the second or subsequent column :

The syntax are :

 symbol:;comment<CR>

 symbol ;comment<CR>
          ↑
    first column

This is to enter blank characters at the beginning of a line (from

the first column to the column immediately before the symbol's

first character).  In this instance, be sure to place a colon (:) at the

end of the symbol.

Columns from the first column to the colon (:) form a symbol

field.  The part excluding the colon (:) and the space characters

forms the symbol.

If the symbol you put from the second or subsequent column

matches a reserved word, an error occurs.

Examples of writing symbols in the symbol field are given in Figure 3.2.

(Symbols are shown in boldface.)

first column
↓
SYM1   LDI       R1,#0 ; Defines a label symbol.

SYM0:  .EQU      10 ; Defines a value symbol.

  SYM2: ; colon (:) is required at the end

; if you put a symbol from

; the second or subsequent column.

Figure 3.2  Writing Symbols in the Symbol Field



AS32R MANUAL - 11

Chapter 3 Assembly Language Specifications

3.1.2 Operation Field

An operation field is a field in which you put an operation in a line of the

source program.  An operation can be either an instruction code or a pseudo-

instruction code or a macro-instruction code.  You must write an operation

from the second or subsequent column.  Separate the operation field from the

symbol field and following operand fields using one or more space characters

as delimiters.

The syntax are :

operation <CR>

operation ;comment <CR>

operation operand <CR>

operation operand ;comment <CR>

symbol: operation

symbol: operation ;comment <CR>

symbol: operation operand ;comment <CR>
   ↑

first column

Examples of operations put in the operation field are given in Figure 3.3.

(Operations are shown in boldface.)

     MV   R0,R1 ; Be sure to put an operation from

; the second or subsequent column even if

; no symbol is present.

SYM1 LDI   R1,#0 ; A blank is required between the symbol

 ↑          ↑ ; field and the operation field.

Space characters input

Figure 3.3  Operations Put in the Operation Field



AS32R MANUAL - 12

Chapter 3 Assembly Language Specifications

3.1.3 Operand Field

An operand field is a field in which you specify an operand or operands in a

line of a source program.

Operands for an operand field are :

• operands for general instructions

• operands for pseudo-instructions

• correction options (HIGH, SHIGH, LOW) for general instructions

The syntax are :

operation operand<CR>

operation operand1,operand2<CR>

operation operand ;comment <CR>

Symbol: operation operand ;comment <CR>

↑
first column

To specify two or more operands, delimit them with a comma (,).  Separate the

operation field from the operand field with one or more spaces.  No operand

field is present in a line comprising an instruction that requires no operand.

Examples of operands put in the operand field are given in Figure 3.4

(Operands are shown in boldface.).

          Space characters input
                           ↓

SYM1  LDI   R1,#0 ; Delimit two or more operands with

; a comma (,). A blank is required between

; the operation field and the operand field.

      NOP ; There can be an instruction line in which

; no operand field is present.

      SETH  R0,#HIGH(H'ffffffff)

; A correction option (underlined) is

; specified in the operand field.

Figure 3.4  Operands Put in the Operand Field



AS32R MANUAL - 13

Chapter 3 Assembly Language Specifications

3.1.4 Comment Field

A comment field is a field in which you write a comment in a line of a source

program.  A comment is an optional description of user's information and is not

to be subjected to assembling.

The syntax are :

;comment <CR>

expect comment field ;comment <CR>
   ↑
   first column

Be sure to start a comment with a semicolon (;).  The assembler recognizes the

characters from the semicolon (;) to the column immediately preceding the next

new-line character as a comment field, but does not regard a semicolon (;)

enclosed in a pair of double quotation marks (") as the first character of a

comment field.

You can write a comment in any line (or can omit it as intended).  You can use

any character of the applicable character set except the new-line character.

Examples of comments put in the comment field are given in Figure 3.5

(Comments are shown in boldface.).

LDI R0,#10  ;Loads 10 into R0

;LDI R0,#10  ;Loads 10 into R0

;placing a semicolon in the first

;column makes the whole line a comment.

;comment

Figure 3.5  Comments Put in the Comment Field

In a macro definition with the macro-instruction .MACRO ~.END, a comment,

which will not be expanded, can be put.  See Chapter 6 “Coding Macro

Instructions” for details.



AS32R MANUAL - 14

Chapter 3 Assembly Language Specifications

3.2 Line Types

A source program consists of the following types of lines :

• General instruction line

Specifies an M32R instruction.  The assembler

translates this line into object code that target on the

M32R family.

• Pseudo-instruction line

Specifies a pseudo-instruction for the assembler.  This

line gives the assembler directive(s) involved in

assembly.

• Macro-instruction line

define a macro by use of macro-instruction.

• Comment line Consists of comment(s) only.  This line is not

processed by the assembler.

• Blank line Specifies nothing (lines containing optional spaces

and a new-line character only).  This line is not

processed by the assembler similarly to a comment

line.

• Symbol line Specifies a symbol only.  This line consists of only a

symbol field or consists of a symbol field and a

comment field.  The specified symbol is assigned the

location counter of that line.



AS32R MANUAL - 15

Chapter 3 Assembly Language Specifications

3.3 Character Set

Table 3.1 gives characters that can be used in assembly language source

programs.

Table 3.1  Character Set (1/2)

Class Character(s) ASCII Code Name (Note)

Alphabetic letters A - Z H'41 - H'5A Uppercase alphabetic letters

a - z H'61 - H'7A Lowercase alphabetic letters

Digits 0 - 9 H'30 - H'39 Digits

Alphanumerics Nomenclature for combination of alphabetic letters and digits

Special characters " H'22 Double quotation

# H'23 Number sign

$ H'24 Dollar sign (may be used as a symbol)

& H'26 Ampersand

' H'27 Single quotation

 ( H'28 Left parenthesis

 ) H'29 Right parenthesis

* H'2A Asterisk

+ H'2B Plus

, H'2C Comma

- H'2D Minus

. H'2E Period

/ H'2F Slash

: H'3A Colon

; H'3B Semicolon

< H'3C Less than

= H'3D Equal

> H'3E Greater than

@ H'40 At mark

\ H'5C Yen or backslash

_ H'5F Underscore

| H'7C Logical disjunction (Vertical line)

~ H'7E Tilde



AS32R MANUAL - 16

Chapter 3 Assembly Language Specifications

Table 3.1  Character Set (2/2)

Class Character ASCII Code Name (Note)

Blank character (SP) H'20 Space

(HT) H'09 Horizontal tab

New-line character (CR) H'0D Carriage return

(LF) H'0A Line feed

(FF) H'0C Form feed

Others Characters other than the above, if available on your computer, may be used in

comment only.

3.4 Reserved Words

The assembler interprets the following identifiers as reserved words.  No

distinction is drawn between uppercase and lowercase letters :

• Register names

• Special symbols

• Mnemonics

3.4.1 Register Names

A register name is a reserved word that stands for a register of the M32R

family, and includes the following :

• General register names

Rx (R0 to R15),  SP

Note)    R15 (stack pointer) can be specified by either R15 or SP.

• Control register names

CRx (CR0 to CR15),  PSW,  CBR,  SPI,  SPU
Note)   These are used only for the operand of the general

             instructions MVFC and MVTC.

• Accumulator names (Case of M32Rx )

A0,  A1

Note)   The accumulators are also used for the multiplication

    instruction "MUL". Therefore take note that when this

    instruction is executed, the values in the accumulators, A0

    and A1 are erased.
Note)   These are used only for the operand of the specification

    Extended Instructions of M32Rx MVTACHI, MVTACLO,

    MVFACHI, MVFACLO and MVFACMI.



AS32R MANUAL - 17

Chapter 3 Assembly Language Specifications

3.4.2 Special Symbols

A special symbol is a reserved symbol specified by an operand, and includes

the following :

SIZEOF   SHIGH   HIGH   LOW

3.4.3 Mnemonics

A mnemonic is a reserved word that represents either an instruction (e.g., LD,

.PROGRAM).

• Mnemonics for general instructions :

LD ST MV ADD  etc.

• Mnemonics for pseudo-instructions :

.ALIGN .PROGRAM .SECTION .END

.EXPORT .IMPORT .GLOBAL .EQU

.ASSIGN .DATA .DATAB .SDATA

.SDATAB .RES

• Mnemonics for macro-instructions :

.AIF .AELSE .AENDI .AREPEAT .AENDR

.ASSINGA .ASSIGNC .AWHILE .AENDW .EXITM

.INCLUDE .INSTR .LEN .SUBSTR

.MACRO .ENDM



AS32R MANUAL - 18

Chapter 3 Assembly Language Specifications

3.5 Names

Names are character strings that represent the following :

• Names the user can define

• Module name ( It can be defined by the .PROGRAM pseudo-

instruction.  A reserved word is available.)

• Symbol name ( A reserved word is not available.  See 3.6

“Symbols”.)

• Section name ( It can be defined by the .SECTION pseudo-

instruction.  A reserved word is not available.)

• Preprocessing variable

• Macro name

• Names the user cannot define

Reserved words (register names, special symbols, mnemonics)

Rules for names are given below :

• Characters you can use for the leading character

One of alphabetic letters, dollar sign ($), and underscore (_).

You cannot use a digit for the leading character.

• Characters you can use for the second and subsequent characters

One of alphanumeric characters, dollar sign ($), and

underscore ( _ )

• The number of characters you can use in a name

• Module name : 206 characters

• Symbol name : 243 characters

• Section name : 243 characters

• Preprocessing name : 32 characters

• Macro name : 32 characters

• Distinction between uppercase and lowercase letters

Distinction is made for names the user can define.

No distinction is made for names the user cannot define.

You define a name according to the preceding rules.  Be careful about the

following in that instance :



AS32R MANUAL - 19

Chapter 3 Assembly Language Specifications

• You cannot use a name identical to a reserved word for an entity other than

a module name.

• Names the user defines, such as symbol names, section names, cannot be

duplicated.

3.6 Symbols

A symbol is a result effected by replacing the value of either an address or an

expression with a symbolic name.  Symbols include the following :

• Value symbol A symbol assigned the value of an expression.  It is

defined by the pseudo-instruction .EQU or .ASSIGN.

You can re-define a value symbol previously defined

by a pseudo-instruction .ASSIGN by use of another

pseudo-instruction .ASSIGN.

• Label symbol A symbol assigned the location counter of the line in

which you declare a symbol.  A label symbol within

an absolute addressing section is assigned an absolute

address, and a label symbol within a relative

addressing section is assigned a relative address.

Rules for symbols are given below (For how to give a symbol name, follow the

rules for describing names) :

• Where to specify Either in a symbol field or in an operand field.

• How to define To define a symbol, specify it in a symbol field.  If

either the pseudo-instruction .EQU or .ASSIGN is

presented in the operation field in the line, the value

specified by the operand is assigned to the symbol

(value symbol).  Otherwise, the location counter

corresponding to the line is assigned to the symbol

(label symbol).

• How to reference You can reference a defined symbol in an operand of

an instruction.  You can specify either an address or

immediate data by use of a symbol within an

expression representing an operand.

Examples of defining and referencing symbols are given in Figure 3.6.



AS32R MANUAL - 20

Chapter 3 Assembly Language Specifications

.SECTION program

;

VAL_SYM0: .EQU 10 ; Defining a symbol

VAL_SYM1: .ASSIGN 20 ; Defining a symbol

VAL_SYM1: .ASSIGN 30 ; Re-defining a symbol that has been

; defined under .ASSIGN

SETH R0,#VAL_SYM0

; Referencing a defining symbol

SETH R1,#VAL_SYM1

; Referencing a defining symbol

;

LABEL0: ; Defining a label symbol in a line

; in which no instruction is present

;

LABEL1: MV R5,R0 ; Defining a label symbol in a line

; in which instruction is present

BL LABEL0 ; Referencing a label symbol

;

.END

Figure 3.6  Defining and Referencing Symbols



AS32R MANUAL - 21

Chapter 3 Assembly Language Specifications

3.7 Preprocessing Variables

Preprocessing variables available as operands of macro-instructions.

Otherwise, unavailable.  The two kinds of preprocessing variable are

“arithmetic variable” and “character variable” :

• Arithmetic variable

A variable assigned to the value of an arithmetic expression

specified as an operand of the macro-instruction .ASSIGNA.

For details about arithmetic expressions, refer to Chapter 6.

• Character variable

A variable assigned to the value of a character expression

specified as an operand of the macro-instruction .ASSIGNC.

For details about character expressions, refer to Chapter 6.

The following example shows declarations and references of the variables.

.SECTION program

;

V_VAL: .ASSIGNA 10 ; defining an arithmetic variable
;

.AREPEAT \&V_VAL ; referencing an arithmetic variable
NOP

.AENDR

;

C_VAL: .ASSIGNC "ABC" ; defining a character variable
;

.AIF \&C_VAL EQ "ABC" ; referencing a character variable
MV R0,R2

.AELSE

MV R0,R3

.AENDI

;

.END

Figure 3.7  Definition and Reference of Preprocessing Variables

||||| Note |||||

To refer a preprocessing variable in an operand, prefix “\&” to the preprocess-

ing variable name.



AS32R MANUAL - 22

Chapter 3 Assembly Language Specifications

3.8 Expressions

An expression is to represent immediate data, a relative address, or an absolute

address.  An expression is a group of one or more terms combined by operators

according to the algebraic rules.  Terms and operators that make up an

expression are as follows :

• Term A constant, a symbol name, or a section name

(An expression containing only operations on

constants or on symbols assigned respective constants

is specially referred to as a constant expression.)

• Operator An arithmetic operator, a logical operator, or a shift

operator

The following are coding rules :

• Which field to specify in

You specify an expression in the operand field.

• Data type The assembler regards an expression as a signed 32-

bit integer.

• Limitation Neither a relative value (a label symbol defined

within the relative addressing section) nor an external

reference symbol (a symbol defined by using the

.IMPORT pseudo-instruction) can be used as a term of

multiplication, division, shift operation, or logical

operation.

Be careful about the result of an operation :

• Subtraction performed on two relative values within a single section results

in an absolute value.  However, if subtraction is performed on relative

values representing respective section names, the result turns to a relative

value.

• An overflow, if occurring as a result of an operation, is ignored.  But if the

result of operation exceeds a data size permissible in individual instructions,

an error results at that moment.

• Even if the result of an operation turns meaningless due to an overflow, the

result is used (within a 32-bit range).  In the following example, in which the



AS32R MANUAL - 23

Chapter 3 Assembly Language Specifications

LOW correction option is used, no error occurs at the assemble time :

Example : DATA1: .equ H'7FFFFFFF

LD R0,@( LOW(DATA1+DATA1+DATA1), R1)

In the previous example, the result of the operation

(DATA1+DATA1+DATA1) overflows the 32-bit range, but only the 16-bit

lower-order bits of the result of operation are subjected to processing, so that

no error occurs.  By contrast, an error occurs in the following example :

Example : DATA2: .equ H'7FFF

LD R0,@(DATA2+DATA2, R1)

The LOW correction option is not present in the previous example and the

result of DATA2+DATA2 exceeds the 16-bit displacement the LD instruction

permits, so an error occurs.

||||| Note |||||

An expression in a macro-instruction must follow the rules in 6.3.2 “Expressions

for macro-instructions”



AS32R MANUAL - 24

Chapter 3 Assembly Language Specifications

3.8.1 Constants in an Expression

How to represent constants within an expression is given in Table 3.2.

Table 3.2  Constants

Class Example Rules

Binary B'10010001 Prefix : Either B' or b'

Digits you can use : Either 0 or 1

Octal Q'6072 Prefix : Either Q' or q'

Digits you can use : 0 - 7

01234 A constant starting with a 0 and comprising digits 0 through 7 is

also regarded as octal.

Decimal D'9423 Prefix : Either D' or d'

Digits you can use : 0 - 9

1234 A constant starting with a digit other than 0 and comprising digits

0 through 9 is also regarded as decimal.

Hexadecimal H'A05 Prefix : H', h', 0X, or 0x

0XaA84 Digits you can use : 0 - 9, a - f, A - F

Character constant "CNST" • You describe an ASCII string by enclosing it in a pair of double

quotations (").

• The maximum number of characters of a string must be four (32-

bit length).

• A character constant represents ASCII code. For example, the

character constant “ABC” is a constant that takes on H'414243.

• To write one double quotation as a character, repeat it twice

(i.e., "").

||||| Note |||||

A point to note in dealing with negative numbers :

The assembler does not deal with two's complement as a negative number in

evaluating an expression.  So the following are dealt with as two different

values :

-1

H'FFFF FFFF



AS32R MANUAL - 25

Chapter 3 Assembly Language Specifications

3.8.2 Specifying a Value Using a Symbol Name

You can specify immediate data as a value symbol and a location counter

(either a relative address or an absolute address) as a label symbol respectively.

If a symbol is present in an expression, the assembler references the value

defined for that symbol.  For details of referencing symbols, see “3.6 Rules for

Describing Symbols”.

3.8.3 Specifying a Value Using a Section Name

A section name indicates the first address of its section.  A section name in the

relative addressing section indicates the first address of one whole section after

linkage.  A section name in the absolute addressing section indicates the first

address of the section described first within a single source file.  Either defining

SIZEOF(section_name)

or

sizeof section_name

allows you to show the size of whole section after linkage.

3.8.4 Operators

The operators in an expression include arithmetic operators, logical operators,

and shift operators are shown in Table 3.3, 3.4, and 3.5.

• Arithmetic operators

Table 3.3  Arithmetic Operators

Operator Name Example

+ Unary positive +6

- Unary negative -7

+ Binary addition 9+6

- Binary subtraction 8-3

* Binary multiplication 4*7

/ Binary division 5/2

% Binary remainder 17%5



AS32R MANUAL - 26

Chapter 3 Assembly Language Specifications

• Logical operators

Table 3.4  Logical Operators

Operator Name Example

~ Bitwise complement ~1

& Bitwise AND H'F3 & H'31

| Bitwise OR H'FFFF | H'1356

~ Bitwise exclusive OR B'1111 ~B'0110

Note:  ~ (tilde) is used both for unary logical negation and for binary exclusive logical disjunction.

• Shift operators

Table 3.5  Shift Operators

Operator Name Example

<< Bitwise left shift operator 0x400 << 2

>> Bitwise right shift operator 0x800 >> 1

Usually a bitwise right shift operation performs a logical

shift, and it performs arithmetic right shift only when the

left term is explicitly negative.

The precedence of operators is as given in Table 3.6.

Table 3.6  Precedence of Operators

Precedence Operator Name

1 () Parentheses

2 +, -, ~ Unary positive, unary negative, unary

logical negation

3 *, /, % Binary multiplication, binary division,

binary remainder

4 +, - Binary addition, binary subtraction

5 << , >> Left shift, right shift

5 & Bitwise AND

6 | Bitwise OR

7 ~ Bitwise exclusive OR



AS32R MANUAL - 27

Chapter 4 Coding General Instructions

Chapter 4

Coding General Instructions

This chapter explains how to write instructions of the M32R family

microprocessors.

4.1 General Instructions (M32R Instructions)

The M32R instructions can be classified into six function groups are :

• Load/store instructions

• Transfer instructions

• Arithmetic/logic operation instructions (Compare, arithmetic operation,

logical operation, and shift instructions)

• Branch instructions

• EIT-related instructions

• DSP function Instructions

Appendix B shows summaries of instructions, separated by function group.

For details of individual instructions, see “M32R Software Manual”.



AS32R MANUAL - 28

Chapter 4 Coding General Instructions

4.2 General Instruction Line

In a general instruction line, you describe the mnemonic of an M32R instruction

in the operation field, and its operand in the operand field.

The syntax of general instruction line and its examples are shown as follows :

• Syntax

M32R_instruction_mnemonic [operand[,operand...]] <CR>

symbol: M32R_instruction_mnemonic [operand[,operand...]]  <CR>

•An item enclosed in [ ] : May be omitted

• : A required space

• : An optional space

• <CR> : A newline character

• Examples

  LABEL0:  LD       R1,@R1      ; memory to register

           LD24     R0,#h'FF0000

           ST       R1,@R0

           JMP      R14
↑ ↑ ↑ ↑

Symbol General Operand(s) Comment
 instruction
 mnemonic

||||| Note |||||

You cannot place an instruction mnemonic at the first column of a line.  If the

beginning of a line is a mnemonic, be sure to put a space before the mnemonic.



AS32R MANUAL - 29

Chapter 4 Coding General Instructions

4.3 General Instruction Operand

Syntax of operands of the M32R instructions are as follows :

• Operand (imm stands for an immediate integer, and label stands for a

label)

Rn | CRn | @Rn | @(Rn) | @(disp,Rn) |

#imm[:8|:16] | #imm[:24] |

@+Rn | @-Rn | @Rn+ | @Rn+ |

label[:8|:24] | label[:16]

• Rn (a general-purpose register name)

R0 | R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 |

R9 | R10 | R11 | R12 | R13 | R14 | R15 | SP

• CRn (a control register name)

CR0 | CR1 | CR2 | CR3 | CR4 | CR5 | CR6 |

CR7 | CR8 | CR9 | CR10 | CR11 | CR12 |

CR13 | CR14 | CR15 |

CBR | SPI |  SPU | PSW

• An (an accumulator name)

A0 | A1

There are some instructions in which you can specify a correction option

(HIGH, SHIGH, or LOW) on an operand which is an immediate integer.  Check

the M32R Software Manual for the symbolic convention of operands of

individual instructions.



AS32R MANUAL - 30

Chapter 4 Coding General Instructions

4.4 Specifying the Operation Size

You have variation among instructions that perform the same operation

depending on the operation size (the size of data to process).  Choose an

appropriate instruction suited for the operation size.

Example : Variation of instructions for transferring data from the register to

memory.

• The ST instruction : Transfers 32-bit data from the register to

memory

• The STB instruction : Transfers 8-bit data from the register to

memory

• The STH instruction : Transfers 16-bit data from the register to

memory

In dealing with an immediate integer, you need not specify an operation size.

The assembler chooses a minimum size (either 8-bit or 16-bit) that can take on a

specified value.  An error occurs, however, if the specified value cannot be

taken on.

Example : LDI   Rdst, #imm

If the immediate value, imm, can be represented by an 8-bit

integer, the value will be encoded as 8-bit data.  Otherwise, it

will be encoded as 16-bit data.



AS32R MANUAL - 31

Chapter 4 Coding General Instructions

4.5 How to Use a Correction Option

In the M32R instruction set, you can deal with immediate data using a single

instruction which cannot exceed 24 bits.  To deal with an immediate data item

that exceeds 24 bits, you use two instructions by dividing the data into 16

higher-order bits and 16 lower-order bits.  To describe such operation, the

assembler is provided with the correction options, HIGH, SHIGH and LOW, to

be used as special symbols.  Instructions in which you can use a correction

option include the following :

• The instruction which can use HIGH and SHIGH :

SETH

• The instructions which can use LOW :

LD  LDB  LDH  LDUB  LDUH  ST  STB  STH  OR3

Table 4.1 (see the following page) shows rules for using the correction options .



AS32R MANUAL - 32

Chapter 4 Coding General Instructions

Table 4.1  Syntax of Correction Options

Correction Option Syntax and Explanation

HIGH SETH Rdst,#HIGH(imm)

This option deals with only the 16 higher-order bits of the

immediate data, imm, as an immediate operand of the

SETH instruction.  Execution of the SETH instruction

transfers to Rdst a value effected by assigning 0s to the 16

lower-order bits of imm.

SHIGH SETH Rdst,#SHIGH(imm)

This option turns 16 higher-order bits of the immediate

data,imm, together with a value that corrects the sign

extension of the 16 lower-order bits of the immediate

data, imm, into the immediate operand of the SETH

instruction.

LOW OR3 Rdst,Rsrc,#LOW(imm)

This option deals with only the 16 lower-order bits of the

immediate data, imm, as the immediate operand of the

OR3 instruction.  Describing SETH Rsrc,#HIGH(imm)

before this instruction allows you to set a 32-bit

immediate data item to Rdst.

mnemonic Rdst,@(LOW(imm),Rsrc)

(mnemonic : LD|LDB|LDH|LDUB|LDUH|ST|STB|STH)

This option deals with the 16 lower-order bits of imm as

the displacement of the instruction mnemonic.  This

displacement is sign-extended.  Thus describing

SETH Rsrc,#SHIGH(imm) before this instruction

transfers the content of the address imm to Rdst.



AS32R MANUAL - 33

Chapter 4 Coding General Instructions

Examples of describing correction options are given below (example 1 to

example 6).

Example 1 : SETH   Rdst, #HIGH(imm)

Stores the 16 higher-order bits of the immediate data, imm, in the

16 higher-order bits of Rdst.  The 16 lower-order bits of Rdst are

changed to 0's.

Example 2 : SETH   Rdst, #SHIGH(imm)

Stores the 16 higher-order bits of the immediate data, imm, in the

16 higher-order bits of Rdst.  The 16 lower-order bits of Rdst are

changed to 0's.  In this instance, Rdst is corrected so that the result

effected by adding the 16 lower-order bits of #imm to Rdst as a

signed integer becomes #imm.

Example 3 : LD     Rdst, @(LOW(disp), Rsrc)

Sign-extends the 16 lower-order bits of the displacement disp to

32 bits, and adds this 32-bit value to the content of Rsrc, reads the

32-bit data from the memory (address) the value after the addition

points to, and stores it in Rdst.  Since only the 16 lower-order bits

of disp are used, the value of the displacement does not fall outside

the adequate range.

Example 4 : To store a 32-bit immediate data item in the register

SETH Rdst, #HIGH(imm_32)

OR3 Rdst, Rdst, #LOW(imm_32)

Note)  #LOW(imm_32) is zero-extended under the OR3 instruction.

Example 5 : To load the content of 32-bit-addressed memory in the register

SETH Rwork, #SHIGH(imm_32)

LD Rdst, @(LOW(imm_32), Rwork)

Note)  LOW(imm_32) is sign-extended under the LD instruction.

|||| Supplementary Note to the SHIGH Correction Option |||||

The SHIGH correction option is used to set the higher-order half word of the

content of a 32-bit-mode address by use of the SETH instruction.  In Example 6,

suppose the value of imm_32 is address H'FC008000 :

Example 6 : SETH R1,#SHIGH(imm_32)

LD R2,@(LOW(imm_32),R1)

The displacement of the LD instruction shown in the second line is sign-

extended as LOW(imm_32)=H'FFFF8000.  Thus, if you use the correction



AS32R MANUAL - 34

Chapter 4 Coding General Instructions

option HIGH, the address expressed by imm_32 cannot be properly obtained as

shown here :

R1 = #HIGH(imm_32) = H'FC000000

#LOW(imm_32)+R1 = H'FFFF8000+H'FC000000

                = H'FBFF8000

So the definition of the correction option SHIGH is given here :

• If the most significant bit of the lower-order halfword of imm_32 is one,

#SHIGH(imm_32) = #HIGH(imm_32)+1

• If the most significant bit of the lower-order halfword of imm_32 is zero,

#SHIGH(imm_32) = #HIGH(imm_32)

Therefore, in Example 6, because  #SHIGH(imm_32)=H'FC01, using the

correction option SHIGH allows you to obtain the proper address.

R1 = #SHIGH(imm_32) = H'FC010000

LOW(imm_32)+R1 = H'FFFF8000+H'FC010000

               = H'FC008000



AS32R MANUAL - 35

Chapter 4 Coding General Instructions

4.6 Addressing Modes

The M32R family supports the following addressing modes as a means to

specify data to be processed :

• Register direct

• Register indirect

• Register relative indirect

• Register indirect + register update

(register indirect with pre-increment, register indirect with pre-decrement,

register indirect with post-increment)

• Immediate integer

• PC relative

In describing an operand of a general instruction, you use one of these

addressing modes.  The addressing modes you can use vary from instruction to

instruction, so check the “M32R User's Manual”.

Table 4.2 shows the notation of operands in individual addressing modes

together with data to be processed under this notation.



AS32R MANUAL - 36

Chapter 4 Coding General Instructions

Table 4.2  Operand Notation by Addressing Mode

Addressing Mode Operand Notation What is Processed (Object)

Register direct Either Rn or CRn Content of the register Rn or the content of the
or An control register CRn or the content of the

accumulator

Register indirect @Rn The content of the memory addressed by “the

content of the register Rn”

Register relative indirect @(disp,Rn) The content of the memory addressed by “the

content of the register Rn + displacement”

Immediate integer #imm[:8|:16]  or  #imm[:24]

The value of an expression

Register indirect @+Rn The content of the memory addressed by “the

with pre-increment content of the “register Rn + 4”

Register indirect @-Rn The content of the memory addressed by “the

with pre-decrement content of the “register Rn - 4”

Register indirect @Rn+ The content of the memory addressed by “the

with post-increment content of the  register Rn”.  The content of Rn

is increased by 4 after being referenced so as

to be updated.

PC relative label[:8|:24]  or  label[:16]

The difference between the address where the

instruction is located and the address to which

the expression (label) points.  Usually in

assembley, you describe the label located at the

branch target.

Note)  Rn stands for an arbitrary register, CRn for an arbitrary control register, An for an accumulator, disp for a displacement, and

imm for an immediate integer.



AS32R MANUAL - 37

Chapter 4 Coding General Instructions

4.7 How to Write Operands (depending on the addressing mode)

4.7.1 Register Direct

Object The value of a specified register

Syntax Rn or CRn or An

Rn : General register (R0 to R15, SP)

CRn : Control register

An : Accumulator

• You write a general register name, a control register name or an accumulator

name for a register direct operand.  You can write a control register only for

the operand of the instruction, MVTC or MVFC. You can write an

accumulator only for the operand of the instruction, MVTACHI,

MVTACLO, MVFACHI, MVFACLO or MVFACMI.

• R15, a general register name, may be written as SP.  A name such as PSW

may be written for a control register.  For correspondence of registers, see

the M32R Software Manual.

• Coding this operand references the content of the register and the

accumulator.

Example R5

4.7.2 Register Indirect

Object The content of the memory to which the specified register points

Syntax @Rn

Rn : General register (R0 to 15, SP)

• You write a general register name preceded by @ for a register indirect

operand.

• Coding this operand references the content of the memory area to which the

general register points.

Example @R5



AS32R MANUAL - 38

Chapter 4 Coding General Instructions

4.7.3 Register Relative Indirect

Object The content of the memory area whose address is the result effected by adding

the displacement to the value of the specified register

Syntax @(disp,Rn)

disp : Displacement

Rn : General register (R0 to R15,SP)

• You write a displacement, a comma (,), and a general register name in this

sequence preceded by @ for a register relative indirect operand.

• You write an expression for a displacement.

• Coding this operand adds a displacement to the value (address) of a

specified register, and references the content of the memory indicated by the

resulting (address) of the addition.

Example @(data,R7)

@(label,R8)

@(-4, R9)

@(H'FEDC,R5)



AS32R MANUAL - 39

Chapter 4 Coding General Instructions

4.7.4 Immediate Integer (immediate)

Object The value of imm (an expression)

Syntax #imm[:8|:16]    or          #imm[:24]

imm : Expression

:8|:16 : The size of the expression (the smallest number of bits that can

represent the expression)

:24 : The size of expression

• You write an expression imm in succession to # for an immediate integer.

• If you have two alternatives of displacement in one instruction, putting

either :8 or :16 in succession to an expression allows you to specify which to

use.  If you omit this, the assembler chooses the preferable one.

• You can use : 24 only in the LD24 instruction.

• Limitations in dealing with the trap instruction and the shift instruction are

as follows :

Limitations • You must not include an external reference symbol in an

expression.

• The value of an expression must be an absolute value.

• You must not include a symbol defined by the pseudo-

instruction, ASSIGN, used for forward addressing.

• The range of an expression is limited : 0 through 15 for the

TRAP instruction,  and 0 through 31 for the shift

instruction.

• Coding this operand references the value of the expression.

Example #B'1010

#(symbol + H'1)

#-7



AS32R MANUAL - 40

Chapter 4 Coding General Instructions

4.7.5 Register Indirect with Pre-increment

Object The content of the memory area indicated to by a general register value

(address) which has been increased by the operand size (4).

Syntax @+Rn

Rn : General register (R0 to 15, SP)

• You write a plus sign (+) and a general register name in this sequence

preceded by @ for an operand of register indirect with pre-increment.

• Cording this operand increments the value of the general register by the

operand size (4), then references the content of the memory area which the

value of the general register indicates.

Example @+R11

4.7.6 Register Indirect with Pre-decrement

Object The content of the memory area indicated to by a general register value

(address) which has been decreased by the operand size (4).

Syntax @-Rn

Rn : General register (R0 to 15, SP)

• You write a minus sign (-) and a general register name in this sequence

preceded by @ for an operand of register indirect with pre-decrement.

• Cording this operand decrements the value of the general register by the

operand size (4), then references the content of the memory area which the

value of the general register indicates.

Example @-R13



AS32R MANUAL - 41

Chapter 4 Coding General Instructions

4.7.7 Register Indirect with Post-increment

Object The content of the address a general register indicates.

Syntax @Rn+

Rn : General register (R0 to R15,SP)

• You write a general register name and a plus sign (+) in this sequence

preceded by @ for an operand of register indirect with post-increment.

• Coding this operand references the content of the memory area which the

value (address) of the general register indicates.  After referencing, the value

of the general register is increased by the operand size (4) so as to be

updated.

Example @R1+



AS32R MANUAL - 42

Chapter 4 Coding General Instructions

4.7.8 PC Relative

Object The difference (displacement size) between the address in which the current

instruction is located and the branch address

Syntax label[:8|:24] or label[:16]

label : Branch target

:8|:24 : Displacement size

:16 : Displacement size

• label is used in a branch instruction in PC relative addressing mode.

• The displacement is available in three sizes, 8 bits, 16 bits and 24 bits.

• The displacement is the value after being sign-extended to 32 bits and left-

shifted by 2 bits.  However, in assembly-level programming, you need not

worry about this.

By giving a label symbol as the operand of a branch instruction, the

displacement is computed by the assembler.

By specifying an expression as the operand, the displacement from the

current PC to the address of the branch target indicated by the expression is

calculated.

• If an instruction has two alternatives for the displacement, putting either :8

or :24 preceded by an expression allows you to specify which to use.  If you

omit this, the assembler chooses the preferable one.

Example BL  DstSymbol:8

BEQ R1,R2, 1000



AS32R MANUAL - 43

Chapter 4 Coding General Instructions

4.8 About M32Rx Instructions

The assembler supports parallel instructions of M32Rx. For details about

parallel instructions of M32Rx, refer to "M32Rx Software Manual".

•   To write parallel instructions in the assembler, specify the

parallelspecification symbol "||" between instructions to be

processed in parallel. (A label can be written at the beginning of

the line. No labels can be written between "||" and instruction B.

(Example 1) label: instruction A || instruction B

The parallel specification symbol "||" only specifies parallel

processing to the assembler; it does not specify piplined

processing of M32Rx. Which instruction is executed in pipe O or

pipe S is automatically determined by the assembler. The

instruction statement in Example 2 is a reverse of the instruction

statement in Example 1 (reversed between left and right), but

operates the same way as in Example 1.

(Example 2) label: instruction B || instruction A

Instructions that can be written in parallel are limited to four

combinations of instruction categories shown below. (Refer to

"M32Rx Software Manual.")

O  Left-side instruction and right-side instruction (O-, -S)

O  Left-side instruction and both-side instructions (O-, OS)

O  Both-side instructions and right-side instruction (OS, -S)

O  Both-side instructions and both-side instructions (OS, OS)

If any other instruction statement is written, the assembler

outputs the error message shown below and stops processing the

instructions that follow.

(Error message)

a132R: “xxx”, line 1: error: invalid parallel category

Figure 4.1 shows a description example of parallel instructions

(assemble source) and its assembled result (assemble list).



AS32R MANUAL - 44

Chapter 4 Coding General Instructions

$ type sample.ms

.section P,code,align=4

label: MACHI R0,R3,A0  || LD R2,@R4

LDI R9,#10 || OR R1,R2

.end

$ as32R -m32rx -l sample.lis -o sample.mo sample.ms

$ type sample.lis

* ASSEMBLER * SOURCE LIST *

 LST#  SRC# LOCATION OBJ_CODE            SOURCE_STATEMENT

[sample.ms]

    1     1                              .section P,code,align=4

    2     2                      label: MACHI R0,R3,A0  || LD R2,@R4

    3     2 00000000 22C4

    4     2 00000002 B043

    5     3                             LDI R9,#10 || OR R1,R2

    6     3 00000004 690A

    7     3 00000006 81E2

    8     4                             .end

The LD instruction on the second line is located as code 22C4 at address
00000000. Furthermore, the MACHI instruction is located as code B043 at
address 00000002. Because the MACHI instruction has its most significant

bit (MSB) set, it is executed in parallel with the LD instruction.

The LDI instruction on the third line is located as code 690A at address
00000004. Furthermore, the OR instruction is located as code 81E2 at address
00000006. Because the OR instruction has its most significant bit (MSB) set, it

is executed in parallel with the LDI instruction.

Figure 4.1  Description example of parallel instructions

Assembler source file

Assembler List File



AS32R MANAUAL - 45

Chapter 5 Coding Pseudo-instructions

Chapter 5

Coding Pseudo-instructions

This chapter describes how to use the pseudo-instructions and their operands in

the assembly language.

5.1 Pseudo-instructions

A pseudo-instruction is an instruction which gives directives to the assembler.

The assembler is provided with the pseudo-instructions given in Table 5.1.

Table 5.1  Pseudo-instructions

Group Pseudo-instruction Function

Address Control .ALIGN Adjusts the location counter to a boundary.

Program Structure Definition .PROGRAM Specifies a module name.

.SECTION Declares a section.

.END Marks the end of a source program.

Symbol External Definition/External Reference

.EXPORT Declares an external definition symbol.

.IMPORT Declares an external reference symbol.

.GLOBAL Declares an external definition/external

reference symbol.

Set Symbol .EQU Declares a value symbol.

.ASSIGN Declares a value symbol (possible to reassign).

Set Data .DATA Sets integer data.

.DATAB Sets integer data (data block).

.SDATA Sets character string data.

.SDATAB Sets character string data (data block).

Reserve Memory .RES Reserves a data area.

For details of the individual pseudo-instructions, see Appendix B, “Pseudo-

instruction Reference”.



AS32R MANAUAL - 46

Chapter 5 Coding Pseudo-instructions

5.2 Pseudo-instruction Line

A pseudo-instruction line is composed of a pseudo-instruction mnemonic in the

operation field the operand(s) in the operand field.

Syntax and examples of the macro instruction line :

• Syntax

pseudo-instruction mnemonic [operand[,operand...]] <CR>

symbol: pseudo-instruction mnemonic [operand[,operand...]]  <CR>

•An item enclosed in [ ] : May be omitted

• : A required space

• : An optional space

• <CR> : A newline character

• Examples

.SECTION   P,CODE,ALIGN=4      ;Section P

           .END

↑ ↑ ↑
Pseudo-instruction Operands Comment

mnemonic

||||| Note |||||

You cannot use a symbol in dealing with an instruction that cannot specify a

symbol.



AS32R MANAUAL - 47

Chapter 5 Coding Pseudo-instructions

5.3 Pseudo-instruction Operand

Operands of the pseudo-instructions are shown below.  For convention of

operands of individual instructions, refer to Appendix B.

• Syntax

[ expression[,expression | ,character_string] ]

[ expression[,expression]... ]

symbol_name[,symbol_name]

symbol_name[,symbol_name]...

module_name

section_name[,attribute_a][,attribute_b]

character_string[,character_string]

• Rules

To write an expression, follow the rules described in 3.8 “Expressions”.  To

specify a module name, a section name, and a symbol name, refer to the rules in

3.5 “Names”.  To specify a character string, see Figure 5.3 and the following.

Syntax "ASCII_character_string" | <character_code>

Examples "MOJI" ; H'4D, H'4F, H'4A, H'49

"MOJ"<49>

<4D><4F>"JI"

"char""acter"

Figure 5.1  Syntax of Character String

A character string can be represented by ASCII character string, character codes

(the numeric values of the characters in the ASCII character set), or their

combination.

An ASCII character string is a sequence of characters enclosed in double

quotations (as in "abc").

A character code (ASCII value) is an expression enclosed in  '<' and '>' .

An expression that specifies a character code cannot include a forward

addressing symbol.  Moreover, the expression must be a constant expression,

and can take on values from -128 up to 255.

Up to 255 characters can be specified in a string, except up to 242 characters for

the .SDATAB pseudo-instruction .



AS32R MANAUAL - 48

Chapter 5 Coding Pseudo-instructions

5.4 Size Specifier

For some instructions, you can specify the size of the data processed by the

instruction using a size specifier.  Sizes specifiers that can be used for pseudo-

instructions are given in Table 5.2.

Table 5.2  Sizes Specified Using Pseudo-instructions

Size Specifier Explanation

.B Byte (8 bits)

.H Halfword (16 bits)

.W Word (32 bits)

Default (a word is assumed if you do not specify

operation size).

A size specifier,.size,  is preceded by mnemonic in the operation field as

follows :

Syntax mnemonic[.B|.H|.W]

Example WORK:    .RES.B    20

No distinction is made between uppercase letters and lowercase letters in a size

specifier.  Put no space character between the mnemonic and the size specifier.



AS32R MANAUAL - 49

Chapter 6 Coding Macro-instructions

Chapter 6

Coding Macro-instructions

6.1 Macro-instructions

The assembler supports the following macro-instruction (Table 6.1) and string

handling functions to handle user-defined macros.

Table 6.1  Macro-instructions

Macro-instruction Description

 .MACRO-block (.MACRO~.ENDM) Defines one or more lines consist of instruction(s) and/or

pseudo-instruction(s) as one macro body
Note1)

(This is

called “macro definition”).   A defined macro body can

be expanded on the source program by a macro call
Note2)

.

.ASSIGNA Defines the value of an arithmetic expression as an

arithmetic variable.

.ASSIGNC Defines the value of a character expression as a character

variable.

.INCLUDE Reads the file specified by its operand.

.AIF-block  (.AIF~.AELSE~.AENDI) Selects macro expansion on condition.

.AWHILE-block  (.AWHILE~.AENDW) Iterates macro expansion on condition.

.AREPEAT-block (.AREPEAT~.AENDR) Repeats macro expansion n times.

.EXITM Ends macro expansion.

Note1) Macro body

: The part  following a .MACRO macro-instruction and preceding the corresponding .ENDM.

  This is a macro definition can be called with the macro name defined by .MACRO.  See 6.4.

Note2) Macro call

: Using a user-defined macro name.  a032R expands the macro name.

 ( i.e., the macro name  is replaced with the corresponding macro body.)  See 6.4.



AS32R MANAUAL - 50

Chapter 6 Coding Macro-instructions

Table 6.2  String Handling Functions

String Handling Function Description

.LEN Counts the number of characters in a string.

.INSTR Locates a string in another string.

.SUBSTR Gets a string.

Refer to Appendix C, “Macro-instruction Reference” for more information on

the macro-instructions and the string handling functions.



AS32R MANAUAL - 51

Chapter 6 Coding Macro-instructions

6.2 Macro-instruction Line

A macro-instruction line is composed of a symbol or a macro-defined symbol

( i.e., a preprocessing variable)  in the symbol field, a macro-instruction

mnemonic in the operation field, and the operand in the operand field.

Syntax and examples of the macro instruction line :

• Syntax

macro-instruction_mnemonic [operand] <CR>

symbol: macro-instruction_mnemonic [operand] <CR>

To call a macro,

macro_name [argument] <CR>

symbol: macro_name [argument] <CR>

•An item enclosed in [ ] : May be omitted

• : A required space

• : An optional space

• <CR> : A newline character

• Examples

  .INCLUDE     "DATAB.H"  ;sample

AVAR_1:   .ASSIGNA   10

↑ ↑ ↑ ↑
Symbol Macro-instruction Operand Comment

(Preprocessing mnemonic
variable)

MCR: R7,r7
         ↑ ↑

Macro name Arguments

For information on how you write macro-instruction lines, see 6.3.



AS32R MANUAL - 52

Chapter 6 Coding Macro-instructions

6.3 Preprocessing Variables and Expressions

You can write any of the following in an macro instruction line :

• Preprocessing variables : Formal parameter

Arithmetic variable

Character variable

• Expressions : Arithmetic expression

Character expression

Logical expression

(Make sure the expressions are dealt with

differently from those used in the M32R

instructions.)

For details of respective items, see 6.3.1 “Preprocessing Variables” and 6.3.2

“Expressions for Macro-instructions”.

6.3.1 Preprocessing Variables

A preprocessing variable is a parameter inside a macro body to which you can

pass an actual argument when the macro is expanded.  A preprocessing

variables are classified into three types as given below depending on the way of

definition :

• Formal parameter : Defined in the operand field of the .MACRO

instruction.

• Arithmetic variable : Defined by the .ASSIGNA instruction.

• Character variable : Defined by the .ASSIGNC instruction.

The makeup of these variables is explained below.



AS32R MANUAL - 53

Chapter 6 Coding Macro-instructions

6.3.1.1 Formal Parameters

Syntax \formal_parameter_ name

Description A  formal parameter is defined in the .MACRO statement.

Preceding a formal parameter name with a backslash (\) allows you to

reference a formal parameter under macro definition.

The value of formal parameter is set by a macro call, but you can set an initial

value to a formal parameter in the .MACRO statement too.

You can reference a formal parameter within the macro body in which the

formal parameter is defined.

A formal parameter name must be described according to the name rule.

Example .MACRO MCR ARG_1 ; .MACRO statement

MV R5,\ARG_1 ; macro body

ADD R6,\ARG_1 ;

.ENDM ; .ENDM statement •
•
•

MCR   R7 ; macro call

<Macro expansion results>

MV R5,R7

ADD R6,R7



AS32R MANUAL - 54

Chapter 6 Coding Macro-instructions

6.3.1.2 Arithmetic Variables

Syntax \&arithmetic_variable_name

Description You define an arithmetic variable by use of the .ASSIGNA instruction and set

its value.

Preceding an arithmetic variable name with a backslash (\) and & allows you to

reference the value of arithmetic variable.

You can reference an arithmetic variable within every macro body and in

arithmetic expressions, character expressions, and logical expressions outside

the macro body.

Example .MACRO MCR ; .MACRO statement

LDI    R5,#\&AVAR_1 ; inside a macro body

ENDM ; .ENDM statement

 
•
•
•

AVAR_1: .ASSIGNA    10

MCR ; macro call

 
•
•
•

AVAR_2: .ASSIGNA    \&AVAR_1 ; outside a macro body

<Macro expansion results>

LDI    R5,#10



AS32R MANUAL - 55

Chapter 6 Coding Macro-instructions

6.3.1.3 Character Variables

Syntax \&character_variable_name

Description You define a character variable by use of the .ASSIGNC instruction and set its

value.

Preceding a character variable name with a backslash (\) and & allows you to

reference the value of character variable.

You can reference a character variable within every macro body and in

arithmetic expressions, character expressions, and logical expressions outside

the macro body.

Example .MACRO MCR ; .MACRO statement

\&CVAR_1    R5,#1 ; inside a macro body

\&CVAR_2    R5,#2 ;

.ENDM ; .ENDM statement

•
•
•

CVAR_1: .ASSIGNC    "SLLI"

CVAR_2: .ASSIGNC    "\&CVAR_1" ; outside a macro body

MCR ; macro call

<Macro expansion results>

SLLI    R5,#1

SLLI    R5,#2



AS32R MANUAL - 56

Chapter 6 Coding Macro-instructions

6.3.2 Expressions for Macro-instructions

The three kinds of expressions which are available in a macro-instruction line

are shown below :

• Arithmetic expression : A group of one or more terms joined by use of

operators and parentheses according to the

algebraic rules.

• Character expression : A group of one or more terms joined.

• Logical expression : A group of one or more terms joined by use of

relational operators, logical operators, and

parentheses.

The makeup of these expressions is explained below.

6.3.2.1 Arithmetic Expressions

■  Coding rules for arithmetic expressions

An arithmetic expression is a sequence of one or more terms (operands) joined

by use of operators and parentheses according to algebraic rules.

An arithmetic expression is a signed 32-bit entity.

An overflow resulting from an arithmetic operation is ignored.

Division yields its quotient only, any remainder is discarded.

A 0, if assigned to the divisor, causes an error.

What you can use as terms in arithmetic expressions are available in three types

given below :

•  Constants

•  Preprocessing variables

•  String handling functions (.LEN, .INSTR)

■  Coding rules for constants

The four types of constants which are available as terms in arithmetic

expressions  ( Write with parenthesized prefixes such as B' or b'. )  :

•  Binary (B' or b')

•  Octal (Q' or q')

•  Decimal (D' or d')

•  Hexadecimal (H' or h')

Omitting a prefix ( B', Q', D', or H' etc. ) assumes decimal.



AS32R MANUAL - 57

Chapter 6 Coding Macro-instructions

Examples are given below.

B'01000101

Q'741

D'3209

H'B5F6

87905

■  Coding rules for preprocessing variables

You can use the following preprocessing variables as terms in arithmetic

expressions : formal parameters, arithmetic variables, and character variables.

The value of a formal parameter must be constant.

A character variable must represent a character string that denotes a constant

(Example : B'0101); otherwise an error occurs.

■  Coding rules for string handling functions (.LEN, .INSTR)

String handling functions you can use as terms in arithmetic expressions are

available in two types given below.

•  .LEN function : The function value is assigned the number of characters

in a string.

•  .INSTR function : The function value is assigned the position of any

character in a string.

Examples are given below.

.LEN("ABC")+3

.INSTR("DEF","E")*4

■  Operators and Precedence

Table 6.3 shows operators you can use in arithmetic expressions.



AS32R MANUAL - 58

Chapter 6 Coding Macro-instructions

Table 6.3  Arithmetic Operators

Operator Description

+ Unary plus

- Unary negation

+ Binary addition

- Binary subtraction

* Binary multiplication

/ Binary division

Table 6.4 shows precedence of operators.

Table 6.4  Precedence of Operators

Precedence Operators Description

1 ( ) Parentheses

2 + - Unary plus, Unary negation

3 * / Binary multiplication, binary division

4 + - Binary addition, binary subtraction

■  The form of an arithmetic expression

Figure 6.1 shows the makeup of arithmetic expressions.

arithmetic_expression

with a Binary Operator

Parenthesized
( arithmetic_expression )

with a Unary Operator
+arithmetic_
expression
-arithmetic_expression

Constants
Binary
Octal
Decimal
Hexadecimal

Preprocessing Variables
\formal_parameter
\&arithmetic_
variable
\&character_variable

String Handling Functions

.LEN

.INSTR 

arithmetic_expression + arithmetic_expression
arithmetic_expression - arithmetic_expression
arithmetic_expression * arithmetic_expression
arithmetic_expression / arithmetic_expression

arithmetic_expression

Figure 6.1  The Form of an Arithmetic Expression



AS32R MANUAL - 59

Chapter 6 Coding Macro-instructions

■  Examples of arithmetic expressions

Examples are given below.

\ARG_1 + 1 ––––– formal parameter

\&AVAR_1 - \&AVAR_2 ––––– arithmetic variable

(-\&CVAR * 2) ––––– character variable

6.3.2.2 Character Expressions

■  Coding rules for Character expressions

A character expression is a sequence of one or more terms joined.

To join terms, write them consecutively but put one or more space between

adjacent ones.

What you can use as terms in character expressions are available in three types

given below :

•  Character string

•  Preprocessing variables

•  String handling functions (.SUBSTR)

■  Coding rules for character strings

Character strings can be used as terms of character expressions.

A character strings must be enclosed in a pair of double quotation marks (as in

"abc")  .

You cannot use character codes as character strings.

To include a double quotation mark in a character string, repeat it twice as "".

The number of characters in a character string has to be within in a range from 0

to 255.

Examples are given below.

"MOJI"

"MO""JI" –––– represents MO"JI

"M" "O" "J" "I" –––– represents MO"JI



AS32R MANUAL - 60

Chapter 6 Coding Macro-instructions

■  Coding rules for preprocessing variables

You can use the following preprocessing variables as terms in character

expressions : formal parameters, arithmetic variables, and character variables.

You have to enclose a preprocessing variable in a pair of double quotation

marks (" ").

If you reference either a formal parameter or a character variable, its value is

replaced with the corresponding character string.

If you reference an arithmetic variable, the string showing a decimal integer

replaces its value (such as "1234").

■  Coding rules for string handling functions (.SUBSTR)

The .SUBSTR functhion, which is a string handling function is available as a

terms in a character expression.

Calling a .SUBSTR function, it is possible to refer the value of a certain string

from the specified string.

For example, you may write as follows.

.SUBSTR("AABCCD",1,3) "DEF"

■  The form of a character expression

Figure 6.2 shows the makeup of character expressions.

character_expression

Concatenated

Character String
"character_string"

Preprocessing Variables

\formal_parameter
\&arithmetic_variable
\&character_variable

String Handling Function

.SUBSTR 

character_expression    character_expression

character_expression

Figure 6.2  The Form of a Character Expression



AS32R MANUAL - 61

Chapter 6 Coding Macro-instructions

■  Examples of character expressions

Examples are given below.

"\ARG_1" "ABCD"

"\&AVAR_1" "\ARG_1"

"\&CVAR_1" "\&CVAR_2" "EFG"

6.3.2.3 Logical Expressions

■  Coding rules for logical expressions

A logical expression is a sequence of one or more terms joined by use of

relational operators, logical operators, and parentheses.

A logical expression yields either true of false.

■  Terms in logical expressions

What you can use as terms in logical expressions are available in three types

given below :

• Arithmetic relational expressions

• Character relational expressions

• Arithmetic expressions

■  Coding rules for arithmetic relational expressions

You can use arithmetic relational expressions as terms in logical expressions.

Putting a relational operator between one arithmetic expression and another

forms an arithmetic relational expression, and it yields either true or false.

Examples are given below.

\&AVAR_1  GT  5

\&AVAR_2  NE  \&AVAR_3

■  Coding rules for character relational expressions

You can use character relational expressions as terms in logical expressions.

Putting a relational operator between one character expression and another



AS32R MANUAL - 62

Chapter 6 Coding Macro-instructions

forms a character relational expression, and it yields either true of false.

Examples are given below.

 "\&CVAR_1"  EQ  "MOJI"

 "MOJI" "\&CVAR_2"  NE  "MOJISHIKI"

■  Coding rules for arithmetic expressions

You can use arithmetic expressions as terms in logical expressions.

If you directly give any numerical value other than 0 or if a value referenced is

any numerical value other than 0, then it is regarded as true.

If you directly give a 0 or if a value referenced is 0, then it is regarded as false.

Examples are shown below.

\&AVAR_1

5 ––––– true

0 ––––– false

■  Operators and precedence

Table 6.5, 6.6, and 6.7 show operators you can use in arithmetic expressions.

Table 6.5  Arithmetic Operators used in Logical Expressions

Operator Description

+ Unary plus

- Unary negation

+ Binary addition

- Binary subtraction

* Binary multiplication

/ Binary division



AS32R MANUAL - 63

Chapter 6 Coding Macro-instructions

Table 6.6  Relational Operators used in Logical Expressions

Operator Description

EQ Equal to (=)

NE Not equal to (≠)

LT Less than (<)

LE Less than or equal to (≤)

GT Greater than (>)

GE Greater than or equal to (≥)

Table 6.7  Logical Operators used in Logical Expressions

Operator Description

NOT Unary logical NOT

AND Binary logical AND

OR Binary logical OR

Table 6.8 shows operator precedence.

Table 6.8  Operator Precedence for Logical Expressions

Precedence Operators Description

1 ( ) Parentheses

2 + - Unary plus, unary negation

3 * / Binary multiplication, binary division

4 + - Binary addition, binary subtraction

5 EQ  NE  LT  LE  GT  GE Comparison operators

6 NOT Unary logical NOT

7 AND Binary logical AND

8 OR Binary logical OR

■  The form of a logical expression

Figure 6.3 shows the makeup of logical expressions.



AS32R MANUAL - 64

Chapter 6 Coding Macro-instructions

logical_expression

with a Logical Operator

Parenthesized
( arithmetic_expression )

Arithmetic Relational Expression

e rel_op e

Character Relational Expression

e rel_op e

Arithmetic Expression

arithmetic_expression

logical_expression OR logical_expression
logical_expression AND logical_expression
NOT logical_expression

logical_expression

   where :
   e is a character expression.
   rel_op is a relational operator.

   where : 
   e is an arithmetic expression.
   rel_op is a relational operator.

Figure 6.3  The Form of a Logical Expression



AS32R MANUAL - 65

Chapter 6 Coding Macro-instructions

6.4 Macro Definition and Expansion

6.4.1 About Macro Processes

A macro process is to defines a name (a macro name) for a series of M32R

instructions or pseudo-instructions in a source program and to replace the

macro name with what is defined using a macro instruction within the same

source program.  Macro processes include macro definition, macro call, and

macro expansion.

• Macro definition A sequence of steps to memorize M32R instructions,

pseudo-instructions, etc.  extending over one or more

lines as a single block.  This block is termed a macro

body.

• Macro call A sequence of steps to specify that a macro body

memorized at the time of defining a macro is to be

expanded into a source program.  Writing a macro

name given at the time of defining a macro in the

operation field achieves a macro call.

• Macro expansion A sequence of steps to expand a macro body in a

source program by means of a macro call.

The form of macro definition and macro-call is given in Figure 6.4.  And Figure

6.5 shows examples of macro expansion.

.MACRO   macro_name [formal_parameter[,formal_parameter]…  ;macro definition

…………………………………………………………………………

………………………………………………………………………………………………    inside  macro body

………………………………………………………………

.ENDM

•
•
•

macro_name  [argument]    ;macro call

Figure 6.4  Syntax of Macro Definition and Macro Call



AS32R MANUAL - 66

Chapter 6 Coding Macro-instructions

.MACRO MCR ARG_1,ARG_2 ; definition

MV R5,\ARG_1 ; macro body ;

ADD R6,\ARG_2 ; ;

.ENDM ;

    
•
•
•

MCR   R7,R7 ; macro call

<Macro expansion results>

MV R5,R7

ADD R6,R7

Figure 6.5  Macro Expansion

When a macro is expanded, you can give an argument from the operand of the

macro-call statement.

Here follow how to define macros, how to write macro bodies and the

expansion results, and how to call macros (6.4.2 through 6.4.4).



AS32R MANUAL - 67

Chapter 6 Coding Macro-instructions

6.4.2 How to Define Macros

Macro definition is to memorize as a single block (a macro body) instructions or

pseudo-instructions extending over one or more lines.  How to define a macro

and how it works are explained below.

Syntax .MACRO macro_name [formal_parameter[,formal_parameter]…]

.ENDM

formal_parameter : formal_parameter_name[=initial_value]

Description The .MACRO macro-instruction declares the start of macro definition.   You can

set a macro name, the formal parameters, and the formal parameter's initial

value to the operands of the .MACRO instruction.   The user-defined macro

name can be used as an object of macro call.

Macro definition is made up of the .MACRO instruction, a macro body, and

the .ENDM statement.    One or more spaces or tab is required between the

macro name and the formal parameter.  You cannot include different macro

definition in macro definition.  A formal parameter defined under the .MACRO

instruction is valid within the relevant macro definition alone.  You cannot use

same-named formal parameters in one .MACRO instruction line.  Either macro

names or formal parameter names must conform to the name rule.

To set an initial value, you write the value after putting an equal sign (=) in

succession to a formal parameter.

When you omit an argument in a macro call, if no initial value was defined

under the .MACRO instruction, an empty string turns to the formal parameter,

otherwise the initial value turns to the formal parameter.

To define what contains a space ( ), a comma (,), an equal sign (=), or a less-than

sign (<) as an initial value, the initial value must be enclosed either in angular

brackets as in <initial_value> or in double quotation marks as in "initial_value".

In this instance, the double quotation marks are assumed as parts of the initial

value, but the angular brackets are not.

The .ENDM instruction marks the end of macro definition.  The .ENDM

instruction must surely be present at the end of macro definition.

Here follow two examples of macro expansion.



AS32R MANUAL - 68

Chapter 6 Coding Macro-instructions

Macro Expansion Example 1

.MACRO MCR ARG_1,ARG_2 ; .MACRO statement

MV \ARG_1,\ARG_2 ; macro body

ADD \ARG_1,R7 ;

.ENDM ; .ENDM statement
•
•
•

MCR   R5,R6 ; macro call

<Macro expansion results>

MV R5,R6

ADD R5,R7

Macro Expansion Example 1

.MACRO  MCR  ARG_1=STR_DATA,ARG_2 ; .MACRO statemant

.SECTION   \ARG_1 ; macro body

.SDATA     "\ARG_2" ;

.ENDM ; .ENDM statemant
•
•
•

MCR   ,123 ; macro call

<Macro expansion results>

.SECTION   STR_DATA

.SDATA     "123"

6.4.3 How to write a macro body and its expansion

A macro body refers to statements lying between the .MACRO statement and

the corresponding .ENDM statement.  A “statement” here means a group of one

or more M32R instructions or pseudo-instructions (except other macro

definition).

A macro body is subjected to the following at expansion-time of the macro :

• Substituting preprocessing variables

• Excluding substitutes

• Handling ordinal numbers

• Deciding comments

Here follow explanations of them.



AS32R MANUAL - 69

Chapter 6 Coding Macro-instructions

6.4.3.1  Substituting Preprocessing Variables

Preprocessing variables in a macro body are, during macro expansion,

substituted with their corresponding values.  To discriminate a preprocessing

variable from the character string following it, delimit them with a single

quotation mark (').

A single quotation mark is not regarded as a formal parameter.  ( The ' is not

part of a name).  To use a single quotation mark ' as a character after a

preprocessing variable, repeat it twice as ''.  The ' used as a delimiter will not

appear after expansion.

.MACRO MCR ARG_1,ARG_2 ; .MACRO statement

MV \ARG_1'1,\ARG_1'2 ; macro body

.SDATA "\ARG_2''PROG" ;

.ENDM ; .ENDM statement

      
•
•
•

MCR    R,ASM ; macro call

<Macro expansion results>

MV     R1,R2

.SDATA    "ASM'PROG"

Figure 6.6  Example of Substituting Preprocessing Variables



AS32R MANUAL - 70

Chapter 6 Coding Macro-instructions

6.4.3.2 Excluding Substitutes

Syntax \(string)

Description A parenthesized character string preceded by a backslash (\) is not subjected to

substitution.  A backslash and a pair of parentheses ( ( and ) ) used for

excluding substitutes will not appear after expansion.

This character string to be excluded from substitution cannot exceed more than

one line.  The absence of right parenthesis ) in a line up to its end is dealt with

as an error, and the extent up to the end of line is excluded from substitution.

Example .MACRO  MCR     ARG_1 ; .MACRO statement

.SDATA "\ARG_1" ;  macro body

.SDATA "\(\ARG_1)" ;

.ENDM ;  .ENDM statement

     
•
•
•

 MCR   TEST ;  macro call

<Macro expansion results>

.SDATA    "TEST"

.SDATA    "\ARG_1"



AS32R MANUAL - 71

Chapter 6 Coding Macro-instructions

6.4.3.3 Handling Ordinal Numbers

Syntax \@

Description An ordinal number (\@) is increased every time a macro call is made.  This

number here is a five-digit decimal number whose value is from 00001 to 99999.

The number 00001 appears where the first expansion takes place.

Example .MACRO MCR ; .MACRO statement

A\@: MV R5,R6 ;  macro body

B\@: ADD R1,R5 ;

.ENDM ;  .ENDM statement

 
•
•
•

MCR ;  macro call

<Macro expansion results>

A00001:  MV    R5,R6

B00001:  ADD   R1,R5



AS32R MANUAL - 72

Chapter 6 Coding Macro-instructions

6.4.3.4 Deciding Comments

Syntax \;

Description A comment placed after a backslash and a semicolon (\;) will not be expanded.

If \; is present halfway in a line, then the subsequent segment will not be

expanded.

Example .MACRO MCR ; .MACRO statement

ADD R5,R6;TEST_1 ;  macro body

SLLI R5,#1\;TEST_2 ;

.ENDM ;  .ENDM statement

 
•
•
•

MCR ;  macro call

<Macro expansion results>

ADD     R5,R6;TEST_1

SLLI    R5,#1



AS32R MANUAL - 73

Chapter 6 Coding Macro-instructions

6.4.4 Macro Call

A macro call directs the assembler to expand a macro body memorized through

macro definition into the source program (to do macro expansion).  Here follow

explanations of macro call.

Syntax  [symbol]  macro_name  [arg[,arg]…]

arg: argument    –––– When position-specified

formal_parameter_name=argument  –––– When keyword-specified

Description Write a macro name you want executed as the operation to expand its macro

body.  The arguments can be specify as its operands by the following ways :

“position-specification”, “keyword-specification”, and “complex-specification”

(described at a later point in this section).

To assign two or more arguments, delimit one argument from another by

putting a comma (,) between them.  If you put commas consecutively,

arguments corresponding to the respective positions are regarded as omitted.

Values of arguments specified at the time of a macro call is given higher

precedence than the initial values defined at the time of macro definition.

When you omit an argument,  the initial value set at the time of macro

definition is used as the argument, and an empty character string is used if no

initial value was set.

To turn a string that contains a space ( ), a comma (,), an equal sign (=), or a less-

than sign (<) into an argument, enclose the string either in angular brackets as

in <arg> or in double quotation marks as in "arg".  For example, the argument

A<B is represented as <A<B> .  In this instance, the angular brackets will not be

included in the initial value, but double quotation marks will be included.

■  Position-specification of arguments

Assign arguments in sequence of formal parameters as defined in macro

definition.   If the number of arguments is less than that of the formal

parameters, the missing arguments are regarded as omitted.  If the number is

greater than that of the formal parameters, an error occurs and the excessive

arguments are ignored.

Here follows an example.



AS32R MANUAL - 74

Chapter 6 Coding Macro-instructions

.MACRO MCR A,B=R2,C,D=R10,E,F ; .MACRO statemant

MV \A,\B ; \C

ADD \D,\E ; \F

.ENDM ; .ENDM statement

•
•
•

MCR    R1,,<*TEST<1>>*,R5,R6      ; macro call

<Macro expansion results>

MV R1,R2;*TEST<1>*

ADD R5,R6;

■  Keyword-specification of arguments

You may assign arguments regardless of the sequence of arguments as defined

at the time of macro definition.  To do it, specify an argument immediately

preceded by a formal parameter name (defined in the macro definition) with an

assignment operator (formal_parameter_name=argument).

If you assign duplicate formal parameters in the same line, the last specified

formal parameter takes effect.  If some of the formal parameters are not

assigned as arguments in a macro call, they are regarded as omitted.  Assigning

what is not defined at the time of macro definition in making a macro call is

dealt with as an error, and the assignment is ignored.

Here follows an example.

 .MACRO MCR A=R1,B=R6,C,D ; .MACRO statemant

MV \A,\B ; \C

SLLI \D

 .ENDM ; .ENDM statement

•
•
•

 MCR    C=<*TEST<2>>*,A=R2,D=<R7,#2>,A=R5 ; macro call

<Macro expansion results>

MV R5,R6;*TEST<2>*

SLLI R7,#2



AS32R MANUAL - 75

Chapter 6 Coding Macro-instructions

■  Complex-specification of arguments

You can use position-specifications and keyword-specifications in combination.

If some position-specified argument and some keyword-specified argument are

one and the same formal parameter, the last specified argument is used.

Here follows an example.

.MACRO  MCR    A,B=R6,C,D=<R7,#1> ; .MACRO statement

ADD \A,\B ; \C

SLLI \D

.ENDM ; .ENDM statement

 
•
•
•

 MCR   R5,D=<R7,#2>,,C=TEST,<*TEST_3*> ; macro call

<Macro expansion results>

ADD R5,R6;*TEST_3*

SLLI R7,#2



AS32R MANUAL - 76

Chapter 6 Coding Macro-instructions

6.5 Nested Structure for Processing Macros

You can nest macro definitions, macro calls, and macro instructions etc., that is,

you can write macro definitions or macro instructions inside other macro

bodies or other control bodies using macro instructions.

Table 6.9 shows nesting in processing macros.  The marks 'Yes', 'No', and '?'

indicate whether or not the code shown in the column “What?” can be written

in “Where?” as follows :

Yes : You can write.

No : You can not write.

? : You can or cannot use depending on circumstances.

Table 6.9  Nesting of Macros

               Where? Outside Inside Inside Inside Inside Inside In
a Macro a Macro   a included File .AIF- .AWHILE- .AREPEAT- Expressions

What? Definition Body (by .INCLUDE) block block block Note1)

Macro Definition Yes No Yes Yes No No No

Macro call Yes Yes Yes Yes Yes Yes No

.ASSIGNA
Yes Yes Yes Yes Yes Yes Nostatement

.ASSIGNC
Yes Yes Yes Yes Yes Yes Nostatement

.INCLUDE
Yes Yes Yes Yes Yes Yes Nostatemant

.AIF-block Yes Yes Yes Yes Yes Yes No

.AWHILE-block Yes Yes Yes Yes Yes Yes No

.AREPEAT-block Yes Yes Yes Yes Yes Yes No

.EXITM
No Yes No ? Yes Yes Nostatement

.LEN,  .INSTR,
No No No ? ? ? Yes.SUBSTR

Preprocessing
No Yes No No No No Yesvariables

Note1) Expressions mean arithmetic expressions,  character expressions, and logical expressions in the following statement :

.ASSIGNA,  .ASSIGNC,  .AIF,  .AREPEAT, and  .AWHILE.



AS32R MANUAL - 77

Chapter 6 Coding Macro-instructions

The EXITM instruction can be put inside an .AIF-block only when the .AIF

construct is written inside a macro body or an .AWHILE-block  or an

.AREPEAT-block.  (You cannot write it elsewhere.)

A preprocessing variable can be used inside an .AIF-block or an .AWHILE-

block or an .AREPEAT-block, provided that they are inside the relevant macro

body (you cannot specify it outside macro definition).  Arithmetic expressions,

character expressions, and logical expressions are available regardless of the

inside and the outside of macro definition.

6.6 Sample Programming

Using macro-instructions allows you to substitute instructions lying over one or

more lines with a single instruction or to repeatedly expand instructions lying

over one or more lines.  In the example given below, .MACRO and .AREPEAT

are taken up to explain how to use the macro instructions.  Figure 6.7 shows an

example of coding macro instruction lines.

 1           .SECTION PROGRAM

 2  ;

 3  SYMBOL:  .ASSIGNA 10

 4  ;

 5           .MACRO ABC ARG1, ARG2

 6 LD24 \ARG1,#10

 7 ADD3 \ARG2,\ARG1,#\&SYMBOL

 8           .ENDM

 9  ;

10  ;

11           ABC             R6, R7

12           .AREPEAT        \&SYMBOL

13              NOP

14           .AENDR

15  ;

16           .END

Figure 6.7  Example of coding macro-instruction lines



AS32R MANUAL - 78

Chapter 6 Coding Macro-instructions

The segment to be subjected to macro substitution is termed a macro body.  A

macro body is declared by use of .MACRO and .ENDM (the segment lying

between .MACRO and .ENDM is the macro body).  In the .MACRO instruction

line, specify a macro name and its formal parameters after the mnemonic.  In

line 5 of Figure 6.7, ABC stands for the macro name, and ARG1 and ARG2 stand

for the formal parameters.  To refer a formal parameter within the macro body,

precede the formal parameter with a backslash (\).

The macro name is used in a macro call (line 11 of Figure 6.7).  The macro body

is expanded in the macro-calling line.  Character strings specified as actual

arguments of the macro call are passed as arguments of the macro body, just as

they are.

In using macro-instructions, arithmetic variables declared by the pseudo-

instruction .ASSIGNA are available.  An arithmetic variable is an entity effected

by assigning an arithmetic expression to an arbitrary name.  To refer an

arithmetic variable, precede the variable name with a backslash and an

ampersand (\&).  You can use arithmetic variables within macro bodies and

operands of macro-instructions (limited only to the cases in which you can

write arithmetic expressions).  For details of arithmetic expressions, see 6.3.2.1

“Arithmetic Expressions”.

||||| Note |||||

You cannot use symbols declared by the pseudo-instructions .EQU and

.ASSIGN for macro-instructions, so be careful.



AS32R MANUAL - 79

Chapter 6 Coding Macro-instructions

6.7 Limitations

Limitations in programming using macros are shown below :

• Nesting the .INCLUDE instructions

The .INCLUDE instructions up to eight levels can be nested.

• The number of macro definitions

Up to 1024 macros can be defined.

• The size of macro bodies

Up to 128 kilobytes for macro bodies in total can be used.

• Nesting macro calls

Macro calls up to 32 levels can be nested.

• Nesting .AREPEAT blocks or .AWHILE blocks.

Either .AREPEAT blocks or .AWHILE blocks up to 32 levels can

be nested.

• Statement size within an .AREPEAT-block or an .AWHILE-block

16 kilobytes per statement either in an .AREPEAT-block or in

an .AWHILE-block can be used.



AS32R MANUAL - 80

Chapter 7 Messages from the Assembler

Chapter 7

Messages from the Assembler

7.1 Getting Execution Result of the Assembler

The execution result of the assembler can be judged by the messages and the

exit status.

7.1.1 Message Format

Upon encountering an error condition, the assembler outputs the error message

describing the error status to the standard error output, in the following format :

• Syntax
tool_name : input_information : message_type: message

Note) “input_information :” is output only when necessary.

• Pattern a132R : file name  : message_type : message

a132R : file name,line number : message_type : message

a132R : <command line> : message_type : message

a132R : message_type : message

Note:  Underlined items are input_information (no the underline is output).

• Example a132R : "abc.ms",line5 : error : invalid character &

File name Message type Message

        Tool name Line number



AS32R MANUAL - 81

Chapter 7 Messages from the Assembler

7.1.2 Message Types

Messages are classfied into three types depending on their severity, as shown in

Table 7.1

Table 7.1  Message Type

Message Type When an Error Occurs

Warning Outputs a warning message and continues processing.

Error Outputs an error message and stops processing.

Fatal error Outputs an error message and stops processing.

For details of messages, see 7.2 “Message Lists”.

7.1.3 Exit Status

After execution, the assembler returns the exit status  (value showing the

execution result) as shown in Table 7.2.

Table 7.2  Exit Status

Exit Status Result

0 Complete successfully or warning occurs.

1 Error occurs.



AS32R MANUAL - 82

Chapter 7 Messages from the Assembler

7.2 Message Lists

7.2.1 Warning Messages

Table 7.3  Warning Messages (1/2)

Message Description

constant overflow, regard as value

A constant term specified has overflowed.  This is regarded as value.

entry point address is not in a code section

The address specified as an entry point is not in a code section.

entry point is not word aligned address

The address specified as an entry point is not word-aligned.

ignore allocation attribute of a dummy section

You cannot specify a location attribute (ALIGN=alignement or LOCATE= beginning-

address) for a dummy section, so it is ignored.

ignore sign bit at n-bit immediate data

There is a possibility that a 0-extended n-bit immediate data item doesn’t agree with a

specified value.

[Example]   OR3 R0,R0,#-1   ; generation of code “OR3 R0,R0,#0x0000ffff”

instruction out of a code section

An instruction is described in a section whose section attribute is not CODE.  If the

section attribute is not CODE, a label in that section is not necessarily word-aligned,

so there may be possibility in which the program does not execute correctly.

instruction’s behavior is undefined

With the specified combination of operands, an execution result of the instruction is

not guaranteed.

[Example]   LD R0,@R0+

“label”: ignore label declaration

A label is specified, but you cannot define a label in this line, so it is ignored.  You

cannot define a label in a line containing one of the pseudo-instructions given below:

.ALIGN, .PROGRAM, .SECTION, .END, .EXPORT, .IMPORT, .GLOBAL



AS32R MANUAL - 83

Chapter 7 Messages from the Assembler

Table 7.3  Warning Messages (2/2)

Message Description

“label”: not referenced import symbol

The label is not referenced in the assembly source program, but it is declared as an

externally referenced symbol.  In this instance, a132R does not output the reference

information to the object file.

no section directive, generate section P

Section declaration by use of the pseudo-instruction .SECTION has not appeared, so

the P section is automatically generated.  This P section is regarded as the

specification, .SECTION P,code,align=4 .

sign extension at n-bit displacement

There is a possibility that an n-bit displacement does not agree with the specified

value.

[Example]   LD  R0,@(65535,R1)            ; generation of code LD R0,@(-1,R1)

sign extension at n-bit immediate data

There is a possibility that a sign-extended n-bit immediate data item doesn’t agree

with the specified value.

[Example]   ADDI R0,#255                      ; generation of code ADDI R0,#-1

too long symbol, truncated

A symbol name is too long and truncated.

caution! there are some data in code section

Invalid data that is not an instruction (e.g., directive command .data) is written in the

code section. Although a warning message is output, data will be located correctly.



AS32R MANUAL - 84

Chapter 7 Messages from the Assembler

7.2.2 Error Messages

Table 7.4  Error Messages (1/10)

Message Description

addressing mode error in operand n

Operand n has been invalidly specified.

.AENDI directive is missing

The .AENDI statement corresponded to an .AIF statement is not found.

.AENDR directive is missing

The .AENDR statement corresponded to an .AREPEAT statement is not found.

.AENDW directive is missing

The .AENDW statement corresponded to an .AWHILE statement is not found.

.AREPEAT buffer overflow

Text to be expanded in .AREPEAT-block is too much. (The maximum available space

to save the text is 16 Kbytes .)

argument buffer overflow

The space to buffer arguments of macros is not enough.

argument specification error

An argument in a macro call is malformed.

argument specification is too long

The argument specification is too long in a macro call.

.AWHILE buffer overflow

Text to be expanded in .AWHILE-block is too much. (The maximum available space to

save the text is 16 Kbytes .)

branch to invalid address

The address specified as a branch target is invalid.  The branch target must be word-

aligned.



AS32R MANUAL - 85

Chapter 7 Messages from the Assembler

Table 7.4  Error Messages (2/10)

Message Description

can’t evaluate expression value

The assembler cannot evaluate the expression.  In using the following pseudo-

instructions, the expression must allow evaluation by the assembler at the time the

relevant line is processed:

Expression        Specifiable?

Constant Relative
Address

A value to be assigned to a label by either .EQU or .ASSIGN. Yes Yes

An entry point address to be specified by .END expression Yes Yes

The number of repetitions to be specified by expression1

under  .DATAB[.{B|H|W}] expression1,expression2
Yes No

A reserved area to be specified under .RES[.{B|H|W}] expression Yes No

constant overflow

The value is more than the constant can be assigned.

division by zero in operand n

An operation has resulted in division by 0.

duplicate section attribute

The specification of attributes of a section under the pseudo-instruction .SECTION is a

duplicate.  You must specify one of CODE, DATA, COMMON, STACK, or DUMMY

as the section attribute; and you must specify either “ALIGN= alignment” or “LOCATE=

beginning-address” as a location attribute.

.ENDM directive is missing

A macro body is not closed with the .ENDM statement.

entry point should be in a code section

The address of an entry point has been invalidly specified.  The specified address is

not located anywhere in the sections assembled.

expression syntax error in operand n

A syntax error in an expression has been found in the operand n.

illegal label location

You can not put a symbol on the symbol field in the instruction line.



AS32R MANUAL - 86

Chapter 7 Messages from the Assembler

Table 7.4  Error Messages (3/10)

Message Description

illegal location for .AELSE

The .AIF statement corresponded to an .ELSE statement is not found.

illegal location for .AENDI

The .AIF statement corresponded to an .AENDI statement is not found.

illegal location for .AENDR

The .AREPEAT statement corresponded to an .AENDR statement is not found.

illegal location for .AENDW

The .AWHILE statement corresponded to an .AENDW statement is not found.

illegal location for .ENDM

The .MACRO statement corresponded to an .END statement is not found.

illegal location for .EXITM

You wrote an  .EXITM macro-instruction outside a macro.

illegal name

A character string of a preprocessing variable or a macro name etc. is illegal for the

naming rules.

illegal number

A numerical value is inappropriate.

illegal operand

An operand of a macro-instruction is malformed.

illegal placed source file

The source file name is specified in inappropriate position in the command line.

illegal redefinition

An arithmetic variable are defined as a character variable, and vise versa.

illegal suffix

There is unnecessary code in the macro-instruction line.

include nest over 8

The nesting levels of file inclusion overflowed the maximum level 8.



AS32R MANUAL - 87

Chapter 7 Messages from the Assembler

Table 7.4  Error Messages (4/10)

Message Description

invalid address addr

The specified start address addr is invalid.

invalid alignment value value

The specified boundary adjustment value is invalid.

invalid character ch

Character ch is not syntactically permitted.

invalid repeat times -num

The number of repetitions of -num is invalid.  The number of repetitions must be 0 or

greater.

invalid reserve area size -num

The size of the area to be reserved of -num is invalid.  The size of the area to be

reserved must be 0 or greater.

“label”: can’t assign

You cannot assign a value to label by use of the pseudo-instruction .ASSIGN.  There is

a possibility that this may be a section name, may already have been defined as a

label, or may already have been declared as an externally referenced label or

externally defined label.

“label”: symbol declared inconsistently

label has been declared inconsistently with a previous declaration.  An external symbol

has been declared with the .IMPORT pseudo-instruction.

“label”: symbol redeclared

The same label has been declared again.  No label can be re-defined except for labels

that are defined by .ASSIGN.

“label”: undefined symbol

label is an undefined symbol.

line too long

Too many characters have been written in a line.

loop nest is too deep

The nesting level of iterations ( by .AWHILE or .AREPEAT) overflowed the maximum

level 32.



AS32R MANUAL - 88

Chapter 7 Messages from the Assembler

Table 7.4  Error Messages (5/10)

Message Description

macro buffer overflow

The space to buffer macro bodies is not enough.

macro call nest is too deep

The nesting level of macro call is too large than macro calls can be nested (32 levels)

macro name is missing

No macro name is specified in a macro definition.

macro table overflow

You defined more macros than the maximum definable number (1024) of them.

"macro-instruction" : too many operands

Too many operands are specified for the macro-instruction macro-instruction.

missing ,

 A ’,’ is required.

missing =

An ’=’ is required.

missing >

A ’>’ is required.

missing ) in operand n

A ’)’ is required in the nth operand.

multiple definition of macro

There are two macros named the same name.

multiple definition of parameter

Two formal parameters in a macro definition are one and the same name.

n-bit displacement overflow in operand m

The n-bit displacement in operand m has overflowed.

n-bit immediate data overflow in operand m

The n-bit immediate data in operand m has overflowed.



AS32R MANUAL - 89

Chapter 7 Messages from the Assembler

Table 7.4  Error Messages (6/10)

Message Description

name is too long

A preprocessing variable name is too long.

negative loop counter

The operand of .AREPEAT can not be specified a negative value.

nesting of macro definition

There is macro definition inside a macro body.

non terminate string

The termination of a string has not been specified.  A string must be enclosed in a pair

of double quotation marks.

operator is not a permitted relative address operation

operator  is not allowed to use as an operation for a relative address.

“option” : illegal placed option

The option option  is specified in inappropriate position in the command line.

“option” : invalid option

Specifying the option option is inappropriate.

“option” : missing option argument

There is no parameter after the option option.

.PROGRAM module-name redefined

You can specify a module name only once under the pseudo-instruction .PROGRAM.

.PROGRAM module-name required

A module name is required under the pseudo-instruction .PROGRAM.

required a section name in operand n

A section name must be specified for sizeof in operand n.

required label declaration

A label to be assigned to a value must be declared on the line containing the pseudo-

instruction .EQU or .ASSIGN.



AS32R MANUAL - 90

Chapter 7 Messages from the Assembler

Table 7.4  Error Messages (7/10)

Message Description

required operand n

Operand n must be specified.

“section_name”: inconsistent section attribute

The specification of the section attribute of section_name is inconsistent with a previous

declaration.  Omitting the specification of all attributes causes a previous declaration

to be in effect.�

section name required

A section name must be specified under the pseudo-instruction .SECTION.

shift amount should be a constant

The amount of the shift must be specified by a constant expression.

sizeof(section_name): not a constant

sizeof (section_name) is not a constant.  This cannot be used as a constant expression.

string : constant syntax error

string has resulted in a syntax error.  Interpretation started by regarding it as a

constant term in an expression, but a syntax error has been detected.

:string : invalid displacement size in operand n

The displacement size “:string“ specified in the operand n is invalid.

:string: invalid immediate size in operand n

The immediate data size “:string“ specified in the operand n is invalid.

.string : invalid size in operand n

The operand size “.string” specified in the operand n is invalid.

string is too long

The character string string is too long.

“symbol”: can’t import/export

You cannot make symbol be either an externally referenced symbol or an externally

defined symbol.  There is a possibility that symbol may have been made to be a section

name or a label defined under .ASSIGN.



AS32R MANUAL - 91

Chapter 7 Messages from the Assembler

Table 7.4  Error Messages (8/10)

Message Description

“symbol”: inconsistent import/export declare

Specification of an external reference or external definition for symbol is inconsistent

with a previous definition.

“symbol”: not a section name in operand n

The symbol used in the expression sizeof (symbol) in the operand n is not a section

name.

“symbol”: not has constant value

symbol  is not a symbol to which a constant is assigned.  This cannot be used as a

constant expression.

syntax error at or near token in operand n

A syntax error has been found near token in operand n.

syntax error in constant expression

A syntax error has been found in a constant expression.  There is a possibility that a

label assigned to an address has been used.

syntax error in directive operand

An operand of a pseudo-instruction has been invalidly specified.

syntax error in expression

An expression is in syntax error.

syntax error in macro body

Specification for excluding substitutes is inappropriate.

syntax error in macro operand

A formal parameter or an initial values in a macro definition line are malformed.

too complex expression in operand n

This expression is too complex to process.

too large reserve area

A value specified as the size of the area to be reserved is too large.  It has exceeded the

32-bit logical address space.



AS32R MANUAL - 92

Chapter 7 Messages from the Assembler

Table 7.4  Error Messages (9/10)

Message Description

too long command line

There are too many characters in a command line.

too long string

The string is too long.  The number of characters for a character constant in an

expression must be equal to 4 or less; or equal to 242 or less under the pseudo-

instruction .SDATAB.

too many arguments

There are too many arguments in a macro call.

too many source files

You specified too many source files.

trap number should be a constant

A trap number must be specified by a constant expression.

unexpected end-of-file

A syntax error has been found.  An unexpected end of file has appeared.�

unexpected end-of-line

A syntax error has been found.  An unexpected end of line has appeared.

unexpected token, required symbol

token has appeared where a symbol must be specified.  The operand of .EXPORT,

.IMPORT, or .GLOBAL is a suite of symbols of which each is connected by a comma.

unknown directive .token

.token is an unknown pseudo-instruction.

unknown instruction token

.token is an unknown instruction.

unknown size .token

.token is an unknown operand size.

value : overflow for byte

The value of an expression has become value which cannot fit in a byte.



AS32R MANUAL - 93

Chapter 7 Messages from the Assembler

Table 7.4  Error Messages (10/10)

Message Description

value : overflow for halfword

The value of an expression has become value which cannot fit in a halfword.

value : overflow for word

The value of an expression has become value which cannot fit in a word.

“variable” : preprocess value is not defined

There is an undefined preprocessor variable variable inside a macro body or in an

expression.

zero division in the expression

An expression contains a division by zero.

instruction placed on odd location

The instruction written here will be located at an odd address (its location counter

shows an odd number).

floating point number overflow

There occurred floating-point number overflow. The maximum value that can be

expressed was set.

floating point number underflow

There occurred floating-point number underflow. The value was set to zero (0).

too many digits in floating point number; extra digits ignored

The floating-point number in the exponent part overflowed.  The maximum value that

can be expressed was set.



AS32R MANUAL - 94

Chapter 7 Messages from the Assembler

7.2.3 Fatal Error Messages

Table 7.5  Fatal Error Messages

Message Description

can’t create default section

A default section cannot be generated.  Assembling has been stopped.�

“file_name” : can’t close file

The file file_name could not be closed.

“file_name” : can’t open file

The file file_name could not be opened.

“file_name” : cannot delete file

The temporary file file_name could not be deleted.

out of heap space

Memory space is not enough.

out of memory

 Take measures such as increase available memory, divide files into secondary ones

etc.

too many errors ! Good bye !

Many errors have been detected.  Assembling has been stopped.

“tool” : can’t execute file

The assembler cannot invoke tool.



AS32R MANUAL - 95

Appendix A M32R Instruction Set Summary

Appendix A

M32R Instruction Set Summary

This appendix outlines general instructions (elements of the M32R instruction

set), function group by function group.  They are roughly classified into the

following six groups :

• Load/store instructions

• Transfer instructions

• Arithmetic/logic  operation instructions (Compare, arithmetic operation,

logical operation, and shift instructions)

• Branch instructions

• EIT-related instructions

• DSP function Instructions

Note) “Exception”, “interrupt”, and “trap” are collectively referred to as “EIT”.

This appendix uses the conventions in Table A.1 to indicates operands.

Table A.1  Appendix A Conventions (1/2)

Operand Meaning

Rn A general register (n=0-15).

CRn A control register.

An An accumulator (n=0, 1).

@Rn Content of memory indicated by the content of a general

register (address).

@Rn+ Indicates that the content of a general register Rn is

incremented by 4 (the register is updated) after Rn is

referenced (register indirect).

@+Rn Indicates that the content of a general register Rn is

incremented by 4 (the register is updated) before Rn is

referenced (register indirect).

@-Rn Indicates that the content of a general register Rn is

decremented by 4 (the register is updated) before Rn is

referenced (register indirect).



AS32R MANUAL - 96

Appendix A M32R Instruction Set Summary

Table A.1  Appendix A Conventions (2/2)

Operand(s) Meaning

Rsrc, Rsrcn A referenced general register.  (It has an address or a value

of an object.)

CRsrc A referenced control register.

Rdst, CRdest A destination register.

disp_n An n-bit displacement.

imm_n An n-bit signed immediate integer.

label_n A label put at the branch target (n represents a

displacement).

For details of individual instructions, see “M32R Software Manual”.



AS32R MANUAL - 97

Appendix A M32R Instruction Set Summary

A.1 M32R Instruction Set

■ Load/Store Instructions

Table A.2  Load/Store Instructions

Group Mnemonic Operand(s) Function

Load/Store LD Rdest, @Rsrc Load

LD Rdest, @(disp16, Rsrc)

LD Rdest, @(LOW(disp), Rsrc)

LD Rdest, @Rsrc+

LDB Rdest, @Rsrc Load byte

LDB Rdest, @(disp16, Rsrc)

LDB Rdest, @(LOW(disp), Rsrc)

LDH Rdest, @Rsrc Load halfword

LDH Rdest, @(disp16, Rsrc)

LDH Rdest, @(LOW(disp), Rsrc)

LDUB Rdest, @Rsrc Load byte unsigned

LDUB Rdest, @(disp16, Rsrc)

LDUB Rdest, @(LOW(disp), Rsrc)

LDUH Rdest, @Rsrc Load halfword unsigned

LDUH Rdest, @(disp16, Rsrc)

LDUH Rdest, @(LOW(disp), Rsrc)

LOCK Rdest, @Rsrc Load locked

ST Rsrc1, @Rsrc2 Store

ST Rsrc1, @(disp16, Rsrc2)

ST Rsrc1, @(LOW(disp), Rsrc2)

ST Rsrc1, @+Rsrc2

ST Rsrc1, @-Rsrc2

STB Rsrc1, @Rsrc2 Store byte

STB Rsrc1, @(disp16, Rsrc2)

STB Rsrc1, @(LOW(disp), Rsrc2)

STH Rsrc1, @Rsrc2 Store halfword

STH Rsrc1, @(disp16, Rsrc2)

STH Rsrc1, @(LOW(disp), Rsrc2)

UNLOCK Rsrc1, @Rsrc2 Store unlocked



AS32R MANUAL - 98

Appendix A M32R Instruction Set Summary

■ Transfer Instructions

Table A.3  Transfer Instructions

Group Mnemonic Operand(s) Function

Transfer LD24 Rdest, #imm24 Load 24-bit immediate

LDI Rdest, #imm8 Load immediate

LDI Rdest, #imm16

MV Rdest, Rsrc Move register

MVFC Rdest, CRsrc Move from the control register

MVTC Rdest, CRsrc Move to the control register

SETH Rdest, #imm16 Set high-order 16-bit

SETH Rdest, #HIGH(imm)

SETH Rdest, #SHIGH(imm)

■ Arithmetic/logic Operation Instructions

Table A.4  Arithmetic/Logic Operation Instructions (1/2)

Group Mnemonic Operand(s) Function

Compare CMP Rsrc1, Rsrc2 Compare

CMPI Rsrc, #imm16 Compare immediate

CMPU Rsrc1, Rsrc2 Compare unsigned

CMPUI Rsrc, #imm16 Compare unsigned immediate

Arithmetic operation ADD Rdest, Rsrc Add

ADD3 Rdest, Rsrc, #imm16 Add 3-operand

ADDI Rdest, #imm8 Add immediate

ADDV Rdest, Rsrc Add (with overflow checking)

ADDV3 Rdest, Rsrc, #imm16 Add 3-operand (with overflow checking)

ADDX Rdest, Rsrc Add with carry

NEG Rdest, Rsrc Negate

SUB Rdest, Rsrc Subtract

SUBV Rdest, Rsrc Subtract (with overflow checking)

SUBX Rdest, Rsrc Subtract with borrow

DIV Rdest, Rsrc Divide

DIVU Rdest, Rsrc Divide unsigned

MUL Rdest, Rsrc Multiply

REM Rdest, Rsrc Remainder

REMU Rdest, Rsrc Remainder unsigned



AS32R MANUAL - 99

Appendix A M32R Instruction Set Summary

Table A.4  Arithmetic/Logic Operation Instructions (2/2)

Group Mnemonic Operand(s) Function

Logic operation AND Rdest, Rsrc AND

AND3 Rdest, Rsrc, #imm16 AND 3-operand

NOT Rdest, Rsrc Logical NOT

OR Rdest, Rsrc OR

OR3 Rdest, Rsrc, #imm16 OR 3-operand

OR3 Rdest, Rsrc, #LOW(imm)

XOR Rdest, Rsrc Exclusive OR

XOR3 Rdest, Rsrc, #imm16 Exclusive OR 3-operand

Shift SLL Rdest, Rsrc Shift left logical

SLL3 Rdest, Rsrc, #imm16 Shift left logical 3-operand

SLLI Rdest, #imm5 Shift left logical immediate

SRA Rdest, Rsrc Shift right arithmetic

SRA3 Rdest, Rsrc, #imm16 Shift right arithmetic 3-operand

SRAI Rdest, #imm5 Shift right arithmetic immediate

SRL Rdest, Rsrc Shift right logical

SRL3 Rdest, Rsrc, #imm16 Shift right logical 3-operand

SRLI Rdest, #imm5 Shift right logical immediate



AS32R MANUAL - 100

Appendix A M32R Instruction Set Summary

■ Branch Instructions

Table A.5  Branch Instructions

Group Mnemonic Operand(s) Function

Branch BC label_8 Branch on C-bit

BC label_24

BEQ Rdest, Rsrc,label_16 Branch on equal

BEQZ Rsrc, label_16 Branch on equal zero

BGEZ Rsrc, label_16 Branch on greater than or equal to zero

BGTZ Rsrc, label_16 Branch on greater than zero

BL label_8 Branch and link

BL label_24

BLEZ Rsrc, label_16 Branch on less than or equal to zero

BLTZ Rsrc, label_16 Branch on less than zero

BNC label_8 Branch on not C-bit

BNC label_24

BNE Rdest, Rsrc, label_16 Branch on not equal

BNEZ Rsrc, label_16 Branch on not equal to zero

BRA label_8 Branch

BRA label_24

JL Rsrc Jump and link

JMP Rsrc Jump

NOP none No operation

■ EIT-related Instructions

Table A.6  EIT-related Instructions

Group Mnemonic Operand(s) Function

EIT-related RTE none Return from EIT

TRAP #imm_4 Trap

Note) “Exception”, “interrupt”, and “trap” are collectively referred to as “EIT”.



AS32R MANUAL - 101

Appendix A M32R Instruction Set Summary

■ DSP Function Instructions

Table A.7  DSP Function Instructions

Group Mnemonic Operand(s) Function

DSP Function MACHI Rsrc1, Rsrc2 Multiply-accumulate high-order halfwords

MACLO Rsrc1, Rsrc2 Multiply-accumulate low-order halfwords

MACWHI Rsrc1, Rsrc2 Multiply-accumulate word and high-order

halfword

MACWLO Rsrc1, Rsrc2 Multiply-accumulate word and low-order

halfword

MULHI Rsrc1, Rsrc2 Multiply high-order halfwords

MULLO Rsrc1, Rsrc2 Multiply low-order halfwords

MULWHI Rsrc1, Rsrc2 Multiply word and high-order halfword

MULWLO Rsrc1, Rsrc2 Multiply word and low-order halfword

MVFACHI Rdest Move from accumulator high-order word

MVFACLO Rdest Move from accumulator low-order word

MVFACMI Rdest Move from accumulator middle-order word

MVTACHI Rsrc Move to accumulator high-order word

MVTACLO Rsrc Move to accumulator low-order word

RAC none Round accumulator

RACH none Round accumulator halfword



AS32R MANUAL - 102

Appendix A M32R Instruction Set Summary

A.2 Extended Instructions of M32Rx/D Series

A.2.1 New Extended Instructions of M32Rx

The table below lists the new instructions that have been added in the M32Rx/

D series from the M32R family instruction set.

■ New Extended Instructions of M32Rx

Table A.8  New Extended Instructions of M32Rx

Group Mnemonic Operand(s) Function

Compare CMPEQ Rsrc1, Rsrc2 Compare (between registers)

CMPZ Rsrc Compare (register and immediate value 0

(zero))

Arithmetic operation DIVH Rdest, Rsrc Divide (16-bit signed integer)

Branch BCL pcdisp8 or pcdisp24 Branch when condition bit (C) = 1 and store

return address in R14

BNCL pcdisp8 or pcdisp24 Branch when condition bit (C) = 0 and store

return address in R14

DSP Function MACLH1 Rsrc1, Rsrc2 Multiply and accumulate (register x register

+ accumulator A1 -> accumulator A1)

MACWU1 Rsrc1, Rsrc2 Multiply and accumulate (register x register

+ accumulator A1 -> accumulator A1)

MSBLO Rsrc1, Rsrc2 Multiply and accumulate (register x register

- accumulator A1 -> accumulator A1)

MULWU1 Rsrc1, Rsrc2 Multiply (register x register -> accumulator

A1)

SADD Add (accumulator A0 + accumulator A1 ->

accumulator A0)

SATB Rdest, Rsrc Round off byte size for register data

SATH Rdest, Rsrc Round off halfword size for register data

Note: Because mnemonics for accumulators ACC0 and ACC1 are specified by A0 and A1, they are expressed by A0 and A1 in the

above table.



AS32R MANUAL - 103

Appendix A M32R Instruction Set Summary

A.2.2 Specification Extended Instructions of M32Rx

The table below lists the instructions whose specifications have been extended

in the M32Rx/D series from the M32R family instruction set.

■ Specification Extended Instructions of M32Rx

Table A.9  Specification Extended Instructions of M32Rx

Group Mnemonic Operand(s) Function

DSP Function MACHI Rsrc1, Rsrc2, Adest Pursuant to extension to two accumulators,

MACLO Rsrc1, Rsrc2, Adest accumulators A0 and A1 can be specified in

MULHI Rsrc1, Rsrc2, Adest  operand description.

MULLO Rsrc1, Rsrc2, Adest

MVFACHI Rdest, Asrc

MVFACLO Rdest, Asrc

MVFACMI Rdest, Asrc

MVTACHI Rsrc, Adest

MVTACLO Rsrc, Adest

RAC Adest, Asrc, #imml Pursuant to extension to two accumulators,

RACH Adest, Asrc, #imml accumulators A0 and A1 can be specified in

operand description. Also, the bitwise left-

shifted value where accumulator is specified

by immediate data (imm1) is reflected in

round-off operation.

Note: Because mnemonics for accumulators ACC0 and ACC1 are specified by A0 and A1, they are expressed by A0 and A1 in the

above table.



AS32R MANUAL - 104

Appendix B Pseudo-instruction Reference

Appendix B

Pseudo-instruction Reference

This appendix explains the pseudo-instructions of the assembler in an

alphabetical order.  The symbolic convention is as given in Figure B.1.

     Mnemonic  
               Group

Summary

       Syntax Indicates how to write the pseudo-instruction in a source program.

| Symbol | Pseudo-instruction |Operand(s) |
Symbol field Operation field Operand field

       Description Explains the pseudo-instruction's functions.

       Example Shows an example of coding the pseudo-instruction.

Figure B.1   Pseudo-instruction Reference Format

If a symbol is not written in the symbol field, you cannot specify a symbol in the

symbol field.  You need to separate one field from another by putting one or

more spaces (space characters) between them.

The notation given in Table B.1 is used throughout this appendix.

Table B.1  Appendix B Conventions

Symbol Meaning

[ ] Encloses an optional element

.size Represents a size specification such as “.B”



AS32R MANUAL - 105

Appendix B Pseudo-instruction Reference

.ALIGN Address Control

Adjusts the location counter to a boundary.

Syntax

| | .ALIGN | expression |

expression : Adjustment for location counter
expression=2

n  
(n=0,1,2,...,31)

Description

The pseudo-instruction .ALIGN advances the location counter to the boundary specified
by the expression expression, if the current location counter does not  lie at the boundary
specified by the pseudo-instruction .SECTION.   .ALIGN does nothing if the current
location counter lies at the boundary specified.

The rules for specifying the expression in this pseudo-instruction are as follows :

• A location counter adjustment value for the expression must satisfy the following
conditions :

An absolute value within a range from 1 through 2
31

, and nth power of 2

A value equal to or less than a location counter adjustment value declared by
the pseudo-instruction .SECTION

• The expression is a constant expression.
• A symbol to be used as a term in the expression must have been defined before this

pseudo-instruction.
• If the value of the location counter adjustment declared by the .ALIGN pseudo-

instruction is equal to or less than the value of the location counter adjustment
declared by ALIGN=expression in the .SECTION pseudo-instruction , an error occurs.

Example

.ALIGN 4



AS32R MANUAL - 106

Appendix B Pseudo-instruction Reference

.ASSIGN Set Symbol

Declares a value symbol (possible to reassign).

Syntax

| symbol | .ASSIGN | expression |

expression : Symbol value

Description

The pseudo-instruction .ASSIGN assigns the value of expression to the symbol symbol

specified in the symbol field.

A value symbol defined by this pseudo-instruction is termed a “changeable value
symbol”.  It is dealt with as follows :

• Its value can be changed by use of the pseudo-instruction .ASSIGN.
• It cannot be used as an externally defined symbol.
• No debugging information about it is output.

The rules for specifying the expression in this pseudo-instruction are as follows :

• One of  these values can be assigned to the expression :
An absolute value
A positive relative value (only one relative value)

• A symbol to be used as a term in the expression must have been defined before this
pseudo-instruction  appears.

Example

COUNT: .ASSIGN h'1084



AS32R MANUAL - 107

Appendix B Pseudo-instruction Reference

.DATA Set Data

Sets integer data.

Syntax

| [symbol] | .DATA[.size] | expression[,expression]… |

.size : Size specification .B (byte = 8 bits)
.H (halfword = 16 bits)
.W (word = 32 bits [default])

expression : An integer to be set

Description

The pseudo-instruction .DATA reserves the areas having the size specified by size, and
sets values (integers) assigned to the expressions expressions.  You specify the size of the
area using .B (byte = 8 bits), .H (halfword = 16 bits), or .W (word = 32 bits).  If no
specification is given, .W  is specified.

The rules for specifying the expression in this pseudo-instruction are as follows :

• Either an absolute value or a relative value can be assigned to the expression.  And a
signed integer or an unsigned integer can be assigned.

• The expression  must be assigned a value that can be expressed within the range
specified by size.

Example

TABLE: .DATA.H h'12, h'35A8



AS32R MANUAL - 108

Appendix B Pseudo-instruction Reference

.DATAB Set Data

Sets integer data (data block).

Syntax

| [symbol] | .DATAB[.size] | expression_a,expression_b |

.size : Size specification .B (byte = 8 bits)
.H (halfword = 16 bits)
.W (word = 32 bits [default])

expression_a : The number of blocks to reserve

expression_b : An integer to be set

Description

The pseudo-instruction .DATAB reserves data areas having the size specified by .size

with as many as expression_a indicates, and sets integers represented by expression_b in
the respective areas.  The size of the area is specified by using the size specifiers .B (byte
= 8 bits), .H (halfword = 16 bits), or .W (word = 32 bits).  If no specification is given, .W  is
specified.

The rules for specifying the expressions in this pseudo-instruction are as follows :

• expression_a must be a constant expression which is assigned to an absolute integer
equal to 0 or greater.  A symbol to be used as a term in expression_a must have been
defined before this pseudo-instruction.

• expression_b can be assigned to a signed integer or an unsigned integer.  The value of
expression_b must be within a range specified by .size.

Example

TABLE: .DATAB.W 10, h'48153CD



AS32R MANUAL - 109

Appendix B Pseudo-instruction Reference

.END Program Structure Definition

Marks the end of a source program.

Syntax

| | .END | [expression] |

expression : Specification for the start address of program (entry point)

Description

The pseudo-instruction .END marks the end of the source program.  Source programs, if
put after this pseudo-instruction, are ignored, but cause no error.

By writing an expression in the operand field, an entry point can be specified.  An entry
point indicates the program's start address.

The rules for specifying the expression in this pseudo-instruction are as follows :

• The value of the expression must be an address in the source program.
• One of  these values can be assigned to the expression :

An absolute value
A positive relative value (only one relative value)

• Omitting the expression sets no entry point.

The entry point must be an address within the CODE section.

||||| Note |||||

If two or more modules have entry point information, an error occurs at link-time.

Example

.END LABEL



AS32R MANUAL - 110

Appendix B Pseudo-instruction Reference

.EQU Set Symbol

Declares a value symbol.

Syntax

| symbol | .EQU | expression |

expression : Symbol value

Description

The pseudo-instruction .EQU assigns the value of the expression expression to the symbol
symbol specified in the symbol field.  You cannot define the same symbol more than once.

The rules for specifying the expression in this pseudo-instruction are as follows :

• One of  these values can be assigned to the expression :
A constant
A positive relative value (only one relative value)

• The symbol to be used as a term in the expression must have been defined before this
pseudo-instruction appears..

Example

SYMBOL: .EQU h'D51



AS32R MANUAL - 111

Appendix B Pseudo-instruction Reference

.EXPORT Symbol External Definition/External Reference

Declares an external definition symbol.

Syntax

| | .EXPORT | symbol[,symbol]… |

Description

The pseudo-instruction .EXPORT declares a symbol defined in a module to be referenced
by another module.

The symbol(s) must satisfy the conditions as follows :

• It has either an absolute value or an address in a source program.
• It is defined in a relevant module.
• It is other than those for which a value is defined by use of the pseudo-instruction

.ASSIGN.

This pseudo-instruction can be use in any line in a source program.

Example

.EXPORT LABEL0, SYMBOL0



AS32R MANUAL - 112

Appendix B Pseudo-instruction Reference

.GLOBAL Symbol External Definition/External Reference

Declares an external definition/external reference symbol.

Syntax

| | .GLOBAL | symbol[,symbol]… |

Description

The pseudo-instruction .GLOBAL has two functions :

• Declaration of externally defined symbols

Declares a symbol defined in a module to be referenced by another module.

• Declaration of externally referenced symbols

Declares that a symbol defined in another module is an externally referenced symbol
when referencing it.

The rules for specifying the symbol(s) in this pseudo-instruction are as follows :

• The symbol(s) must be either an absolute value or an address in a source program.
• A symbol defined by the pseudo-instruction .ASSIGN cannot be declared to be an

external defined symbol.
• A specified symbol is regarded as an externally defined symbol if defined in the

relevant module or as an externally referenced symbol if not defined.

This pseudo-instruction can be use in any line in the source program.
This pseudo-instruction can be use instead of the pseudo-instructions .IMPORT and
.EXPORT (.GLOBAL has functions similar to those of .IMPORT and .EXPORT.).

Example

.GLOBAL EXTLAB, IMPSYM



AS32R MANUAL - 113

Appendix B Pseudo-instruction Reference

.IMPORT Symbol External Definition/External Reference

Declares an external reference symbol.

Syntax

| | .IMPORT | symbol[,symbol] |

Description

The pseudo-instruction .IMPORT declares that a symbol defined elsewhere is an
externally referenced symbol when referencing it.

The rules for specifying the symbol(s) in this pseudo-instruction are as follows :

• A symbol to be declared must have been defined in another module by use of the
pseudo-instruction .EXPORT or .GLOBAL.

• A symbol already defined in the same module cannot be declared by this pseudo-
instruction.

This pseudo-instruction can be use in any line in the source program.

Example

.IMPORT EXTLAB, EXTSYM



AS32R MANUAL - 114

Appendix B Pseudo-instruction Reference

.PROGRAM Program Structure Definition

Specifies a module name.

Syntax

| | .PROGRAM | module_name |

Description

The pseudo-instruction .PROGRAM specifies a module name.  The module name
module_name specified by this pseudo-instruction is kept unchanged and is passed to the
load module.  A debugger uses the module name to load a load module to be debugged.

If this pseudo-instruction is omitted (a module name is not declared by this pseudo-
instruction), the name formed by deleting the extension (.mo) from the assembler-
generated object module name  becomes the module name.  If the object module name is
not in conformity with the naming rules, the portion up to the first occurrence of period
(.) becomes the module name.
(Example : For A.B.C.D, the module name becomes A )

The rules for specifying the module name in this pseudo-instruction are as follows :

• A module name must follow the naming rules.  For the naming rules, see 3.5 "Naming
Rules".

• A name used as a module name can be also used as a name other than a module
name.

This pseudo-instruction can be used only once in a source program.
This pseudo-instruction can be placed in any line in the source program.

Example

.PROGRAM MAIN



AS32R MANUAL - 115

Appendix B Pseudo-instruction Reference

.RES Reserve Memory

Reserves a data area.

Syntax

| [symbol] | .RES[.size] | expression |

.size : Size specification .B (byte = 8 bits)
.H (halfword = 16 bits)
.W (word = 32 bits [default])

expression : The number of blocks to reserve

Description

The pseudo-instruction .RES reserves areas having their size specified by .size as many
areas as the number expression indicates.  You specify the size of area by using .B (byte =
8 bit), .H (halfword = 16 bits), or .W (word = 32 bits).  If no specification is given, .W is
specified.

Rules for specifying expression in using this pseudo-instruction are given below.

• The value of expression must satisfy the conditions as follows :
An absolute value
An integer equal to 0 or greater

• A symbol to be used as a term in the expression must have been defined before this
pseudo-instruction appears.

Example

WORK: .RES.B 20



AS32R MANUAL - 116

Appendix B Pseudo-instruction Reference

.SDATA Set Data

Sets character string data.

Syntax

| [symbol] | .SDATA | string[,string] |

Description

The pseudo-instruction .SDATA reserves a data area and sets the strings in that area.

The rules for specifying the strings in this pseudo-instruction are as follows :

• A string consists of sequences of characters enclosed in double quotation marks (as in
"abc") and/or ASCII codes enclosed in angle brackets (as in <49>).

• To include a double quotation mark in a string, put it twice in succession, as in "".

Example

TABLE: .SDATA "HELLO", "WORLD"



AS32R MANUAL - 117

Appendix B Pseudo-instruction Reference

.SDATAB Set Data

Sets character string data (data block).

Syntax

| [symbol] | .SDATAB | expression,string |

expression : The number of blocks to reserve

Description

The pseudo-instruction .SDATAB reserves data areas for strings with as many areas as
the number expression indicates, and sets strings in the respective areas.

The rules for specifying the expression in this pseudo-instruction are as follows :

• The value of expression must satisfy the conditions as follows :
An absolute value
An integer equal to 0 or greater

• A symbol to be used as a term in the expression must have been defined before this
pseudo-instruction appears.

The rules for specifying the strings in this pseudo-instruction are as follows :

• A string consists of sequences of characters enclosed in double quotation marks (as in
"abc") and/or ASCII codes enclosed in angle brackets (as in <49>).

• To include a double quotation mark in a string, put it twice in succession, as in "".

Example

TABLE: .SDATAB 20, "HELLO"



AS32R MANUAL - 118

Appendix B Pseudo-instruction Reference

.SECTION Program Structure Definition

Declares a section.

Syntax

| | .SECTION | section_name[,attribute_a][,attribute_b] |

attribute_a : CODE | COMMON | DATA | DUMMY | STACK

Section attribute (default : CODE )

attribute_b : ALIGN= expression | LOCATE=expression

Location attribute (default : ALIGN=4 )

Description

The pseudo-instruction .SECTION issues a section declaration by specifying the
following :

• Specifying a section name
• Declaring whether or not a section may be executed and indicating the linking

method to the linker (specifying a section attribute)
• Specifying the locating method of a section (specifying a location attribute)

For details of linkage and location of sections, see “CC32R User's Manual  <Assembler>
lnk32R”.

<The default section>

The default section specifications are :

.SECTION P,CODE,ALIGN=4

The section name defaults to P, the section attribute defaults to CODE, and the location
attribute defaults to ALIGN=4).

The assembler generates a default section if one of the following instructions exist
between the beginning and the first .SECTION pseudo-instruction in a source program :

• An instruction to generate object code such as a general instruction or an area-
reserving pseudo-instruction, etc.

<Continuation of section>

If the pseudo-instructions .SECTION, which specifies the same section name, exists more



AS32R MANUAL - 119

Appendix B Pseudo-instruction Reference

than once within a source program, the sections having the same name are regarded as a
single contiguous section.  In this instance, the first .SECTION pseudo-instruction
represents the beginning of the section and others represent the continuation of sections.
The location counter, when sections continue, indicates :

the location counter of the end of the immediately preceding same-named section  + 1

<Section size>

The maximum location value among the same-named sections results in the section size.
Inconsistencies, for example specifying different attributes, must not exist among
.SECTION pseudo-instructions specifying the same section name in a program.

The rules for specifying the section name in this pseudo-instruction are as follows :

• The section name must follow the naming rules.

<Specification rules for the operands>

The rules for specifying the attributes in this pseudo-instruction are as follows :

• The section attribute attribute_a and the location attribute attribute_b can be put in an
optional sequence.

• The section attribute attribute_a and the location attribute attribute_b can be specified
single attribute respectively.

The following are details of attribute specifications :



AS32R MANUAL - 120

Appendix B Pseudo-instruction Reference

• About section attribute (attribute_a)

The section attribute declares whether or not a section may be executed and gives
directives as to the linking method of sections to the linker.  If the section attribute is
omitted, CODE is assumed by default.
The following shows section attributes which you can specify with their specifications.

Section Attribute (Meaning) Specifications

CODE (code section) The section is executable (The executable section is

limited to only CODE).

The linking method for this section is simple link.

DATA (data section) The section is non-executable.

The linking method for this section is simple link.

STACK (stack section) The section is non-executable.

The linking method for this section is simple link.

COMMON (common section) The section is non-executable.

The linking method for this section is common link.

DUMMY (dummy section) The section is non-executable.

You cannot specify the location attribute attribute_b

here.  A dummy section is assembled, but no object

code is output. The symbols defined within a dummy

section are given a location counter in relation to the

section's beginning, which is counted as 0, to be dealt

with as symbols having an absolute value.

Sections are linked in one of two linking methods, simple link or common link.  The
following are the linking methods :

Linking Method Linking and Handling by the Linker

Simple link Links all the same-named sections to regard them as a single

contiguous section.  The alignment (the boundary adjustment)

in locating sections complies with the respective location

attributes specified under the pseudo-instruction .SECTION.

Common link Shares same-named sections present in other modules and

memories as well.  Same-named sections to be linked must have

the same attributes.  The maximum size among the sections to

be linked becomes the section size after linkage.



AS32R MANUAL - 121

Appendix B Pseudo-instruction Reference

||||| Supplement about the dummy section |||||

A dummy section is a special section to be used in dealing with structure data.  It is
used to declare symbols representing the structure data members.  Examples of
declaration are :

.SECTION  ABC, DUMMY

DT0:.RES.W    1

DT1:.RES.H    1

DT2:.RES.H    1

An offset (an absolute value) from the section’s beginning is assigned to the label
symbols defined in a dummy section as shown before.  Thus the program above is
equivalent to an instance in which the following definition is given by use of the
pseudo-instruction .EQU :

DT0:.EQU     0

DT1:.EQU     4

DT2:.EQU     6

Using a dummy section allows you to easily reference, set, add, or delete a member of
a structure .  For example, to reference a member of the structure shown previous and
assign an integer to it, you write as follows (the first label of structure data is assumed
to be STRU) :

LD24 R0,#STRU

LDI R1,#10

ST R1,@( DT0, R0 )

LDI R1,#20

STH R1,@( DT1, R0 )

SDL R1,#30

STH R1,@( DT2, R0 )



AS32R MANUAL - 122

Appendix B Pseudo-instruction Reference

• About location attribute (attribute_b)

The location attribute declares whether the section is either in relocatable format or in
absolute format, and gives directives as to the locating method of the section to the
linker.  If you omit the location attribute, the default attribute, ALIGN=4 (bytes),
applies to a relocatable format section.
The location attributes which you can specify and their specifications are :

Location Attribute Description

ALIGN= expression Gives the following directives to the linker :

• The section involved is a relocatable format section.

• A location method on memory (how to adjust a

boundary)

The expression expression indicates the position for

adjusting a boundary.  The rules for specifying the

expression are  :

• This value must satisfy the following conditions :

An absolute value

A value effected by raising 2 to nth power

within a range from 1 through 2
31

.

But “CODE section” value must satisfy the

following conditions :

An absolute value

A value effected by raising 2 to nth power

within a range from 4 through 2
31

.

• A symbol to be used as a term in the expression

must have been defined before this pseudo-

instruction appears.

LOCATE= expression Gives the following directives to the linker :

• The section involved is an absolute format section.

Locates, after assembling, the section at the address

expression specified.  An absolute format section

again cannot be relocated by the linker.

Another section having the same section name must

not be present in other source programs when linked.

The expression expression indicates an absolute

address.  The rules for specifying the expression are :

• The expression must be assigned an absolute

value.

• A symbol to be used as a term in expression must

have been defined before this pseudo-instruction

appears.



AS32R MANUAL - 123

Appendix B Pseudo-instruction Reference

Example

.SECTION ABC, CODE, ALIGN=4

.SECTION ABC, COMMON,ALIGN=4

.SECTION P,CODE,ALIGN=4

.SECTION D,DATA,ALIGN=4



AS32R MANUAL - 124

Appendix C Macro-instruction Reference

Appendix C

Macro-instruction Reference

This appendix explains the macro-instructions and the string handling function

for macro processing of the assembler in an alphabetical order.  The symbolic

convention is as given in Figure C.1.

     Mnemonic (or Function name)  
               Group

      Summary

       Syntax Indicates how to write the macro-instruction in a source program.

| Symbol | Macro-instruction |Operand(s) |
Symbol field Operation field Operand field

When writing a string handling function, follow its syntax regardless of fields as

shown above.

       Description Gives the description of the macro-instruction's (or the string handling function's)

function.  In this column, “statements ” means any one or more instructions.

       Example Shows an example of coding the macro-instruction (or the string handling function).

Figure C.1  Macro-instruction Reference Format

If nothing is given in the symbol field, you cannot specify a symbol in the

symbol field.  You need to separate one field from another by putting one or

more spaces (white-space characters) between them.

The notation given in Table C.1 is used throughout this appendix.

Table C.1  Appendix C Conventions

Symbol Meaning

[ ] Encloses an optional element.



AS32R MANUAL - 125

Appendix C Macro-instruction Reference

.AIF .AELSE .AENDI Macro-instruction

Selects macro expansion on condition.

Syntax | | .AIF | logical_expression |

| | [.AELSE] | |

| | .AENDI | |

Description

The syntax .AIF – .AELSE – .AENDI chooses which to expand according to the evaluation
of a logical expression.  Write this .AIF-block as shown below to define a macro.

.AIF logical_expression

[statements1]

[.AELSE]

[statements2]

.AENDI ;an .AENDI instruction terminates the .AIF-block (not to be omitted).

First logical_expression is evaluated.  If the result is true, statements1 is expanded , if false,
statements2 is expanded, then the assember exits from this block.  You may omit
statements1 and statements2, and if omitted, nothing is expanded.  When the .AELSE
instruction is omitted, if the logical expression yields false, the assember expands nothing
and exits from this block.

If logical_expression is faulty, an error occurs and the logical expression is evaluated as
false.   Follow 6.3.2.3 “Logical Expressions” to use logical expressions.



AS32R MANUAL - 126

Appendix C Macro-instruction Reference

Example .MACRO  MCRIF ARG_1

.AIF .LEN("\ARG_1") EQ \&AVAR_1

ADDI R\&AVAR_1,#1

.AELSE

ADDI R\&AVAR_1,#2

.AENDI

.ENDM

•
•
•

AVAR_1: .ASSIGNA 5

MCRIF ABCDE

<After expansion>

ADDI R5,#1



AS32R MANUAL - 127

Appendix C Macro-instruction Reference

.AREPEAT .AENDR Macro-instruction

Repeats macro expansion n times.

Syntax | | .AREPEAT | arithmetic_expression |

| | .AENDR | |

Description

The syntax .AREPEAT – .AENDR repeats expansion according to the evaluation of an
arithmetic expression.  Write this .AREPEAT-block as shown below to define a macro.

.AREPEAT arithmetic_expression

[ statements ]

.AENDR ;an .AENDR instruction terminates the .AREPEAT-block (not to be omitted).

The assember calculates the value of arithmetic_expression, and expands statements

repeatedly as many times as the value indicates, and exits from this block.  You may omit
statements, and if omitted, the assember expands nothing.  If arithmetic_expression is 0,
as32R does nothing and exits from this block.

If arithmetic_expression is assigned a negative number or is faulty, an error occurs and
nothing is expanded.  Follow 6.3.2.1 “Arithmetic Expressions” to use arithmetic
expressions.



AS32R MANUAL - 128

Appendix C Macro-instruction Reference

Example .MACRO MCRRE

.AREPEAT \&AVAR_1

ADDI R5,#\&AVAR_2

AVAR_2: .ASSIGNA \&AVAR_2 + 1

.AENDR

.ENDM

•
•
•

AVAR_1: .ASSIGNA 3

AVAR_2: .ASSIGNA 5

MCRRE

<After expansion>

ADDI R5,#5

ADDI R5,#6

ADDI R5,#7



AS32R MANUAL - 129

Appendix C Macro-instruction Reference

.ASSIGNA Macro-instruction

Defines an arithmetic variable.

Syntax | arithmetic_variable_name |.ASSIGNA | arithmetic_expression |

Description

An arithmetic variable is an item to which the value of an arithmetic expression is
assigned.  You can reference an arithmetic variable only inside a macro body or within an
arithmetic expression given in the operand field of a macro instruction.  You can redefine
an arithmetic variable by use of the .ASSIGNA instruction. You cannot redefine by use of
the .ASSIGNC instruction an arithmetic variable that has been defined under this
.ASSIGNA instruction.

Set a signed decimal integer to the arithmetic expression arithmetic_expression.  A faulty
arithmetic expression results in an error, and arithmetic_variable_name is assigned a 0.
Follow 6.3.2.1 “Arithmetic Expressions” to write arithmetic expressions.

Example .MACRO MCRAA

ADDI R5,#\&AVAR_1

ADDI R6,#\&AVAR_2

.ENDM

•
•
•

AVAR_1: .ASSIGNA 10

AVAR_2: .ASSIGNA \&AVAR_1 + 5

MCRAA

<After expansion>

ADDI R5,#10

ADDI R6,#15



AS32R MANUAL - 130

Appendix C Macro-instruction Reference

.ASSIGNC Macro-instruction

Defines a character variable name.

Syntax | character_variable_name|.ASSIGNC | character_expression |

Description

This instruction defines a character expression specified by a character expression as the
value of character variable.  You can use a character variable only within a macro
instruction.  You can redefine a character variable by use of the .ASSIGNC instruction.
You cannot redefine by use of the .ASSIGNA instruction a character variable that has
been defined under this .ASSIGNC instruction.

The assembler sets a 0-character to 255-character character variable to a specified
character variable as a value.

A faulty character expression results in a error, and an empty character string is assigned
to the character variable character_variable_name as its value.  Follow 6.3.2.2 “Character
Expressions” to use character expressions.

Example .MACRO MCRAC

\&CVAR_1 R5,R6

.AIF "\&CVAR_1" NE "\&CVAR_2"

\&CVAR_2 R5,R7

.AENDI

.ENDM

•
•
•

CVAR_1: .ASSIGNC "ADD"

CVAR_2: .ASSIGNC "MV"

MCRAC

<After expansion>

ADD R5,R6

MV R5,R7



AS32R MANUAL - 131

Appendix C Macro-instruction Reference

.AWHILE .AENDW Macro-instruction

Iterates macro expansion on condition.

Syntax | | .AWHILE | logical_expression |

| | .AENDW | |

Description

The syntax .AWHILE – .AENDW repeats expansion according to the evaluation of a
logical expression.  Write this .AWHILE -block as shown below to define a macro.

.AWHILE logical_expression

[ statements ]

.AENDW ; an .AENDW instruction ends the .AWHILE-block (not to be
omitted).

First logical_expression is evaluated.  If the result is true, statements is expanded , if false,
logical_expression is evaluated again.  That is, the assember repeatedly expands statements

until logical_expression yields false, and exits from this block when logical_expression yields
false.  If the first evaluation result is false, the assembler expands nothing and gets out of
this block. You may omit statements, and if omitted, nothing is expanded.

A faulty logical expression results in an error  Follow 6.3.2.3 “Logical Expressions” to use
logical expressions.



AS32R MANUAL - 132

Appendix C Macro-instruction Reference

Example .MACRO MCRWHARG

.AWHILE \&AVAR GE \ARG

ADDI R\ARG,#\&AVAR

AVAR: .ASSIGNA \&AVAR / 2

.AENDW

.ENDM

•
•
•

AVAR: .ASSIGNA 20

MCRWH5

<After expansion>

ADDI R5,#20

ADDI R5,#10

ADDI R5,#5



AS32R MANUAL - 133

Appendix C Macro-instruction Reference

.EXITM Macro-instruction

Ends macro expansion.

Syntax | | .EXITM | |

Description

This instruction allows you to terminate the macro expansion.  This instruction, if put in
an .AWHILE- block or in an .AREPEAT-block, causes control to break out of that block.
If blocks are nested, control exits from the innermost loop that embodies this instruction.

You can put this instruction within an .AIF- block, provided that the .AIF-block is put
inside a macro body or within an .AWHILE-block or an .AREPEAT-block (see also 6.5
“Nested Structure for Processing Macros”).

Example .MACRO MCREX

.AWHILE 1

LDI R\&AVAR,#1

.AIF \&AVAR EQ 5

.EXITM

.AENDI

AVAR: .ASSIGNA \&AVAR-1

.AENDW

.ENDM

•
•
•

AVAR: .ASSIGNA 8

MCREX

<After expansion>

LDI R8,#1

LDI R7,#1

LDI R6,#1

LDI R5,#1



AS32R MANUAL - 134

Appendix C Macro-instruction Reference

.INCLUDE Macro-instruction

Reads a file into the source file.

Syntax | | .INCLUDE | "filename" |

Description

This instruction reads (includes) the file filename.  Specifying filename, you can use either
the relative path name or the absolute path (full path) name.

You can nest this instruction.  That is, you can write .INCLUDE instructions within a file
included by the .INCLUDE instruction.  This instruction can be nested up to 8 levels.

If the relative path name is specified, the file is searched for in the following order :

(1) In the directory containing the file in which the .INCLUDE instruction is written.
(2) In the directory specified with the -I option.
(3) In the directory specified by the environment variable M32RINC.  If M32RINC is not

defined, /usr/local/M32R/include will be searched.

If the file filename is not present, an error occurs.

Example .INCLUDE "DATAB.H" ; including DATAB.H



AS32R MANUAL - 135

Appendix C Macro-instruction Reference

.INSTR String Handling Function

Locates a string in another string.

Syntax | .INSTR(character_expression_a,character_expression_b[,arithmetic_expression]) |

character_expression_a :  A character string searched for the string character_expression_b

character_expression_b :  A character string to be searched for

arithmetic_expression :  The starting point to search

Description

The .INSTR function searches the string character_expression_a  for the string
character_expression_b, and calculates its position.  The position is measured relatively
from the first position of the string character_expression_a which is dealt with as position 0.

If character_expression_b is not found in character_expression_a, or if you make a mistake in
specifying the starting point arithmetic_expression, then the function value is assigned as
-1.

You assign the start position in the string character_expression_a to the arithmetic
expression arithmetic_expression.  If you omit arithmetic_expression, searching starts from
the position 0.  The value of arithmetic_expression must be an integer equal to 0 or greater.

You cannot use the .INSTR function elsewhere than in arithmetic expressions or in logical
expressions. For arithmetic expressions, character expression, and logical expressions, see
6.3.2 “Expressions for Macro-instructions”.

Example .MACRO MCR ARG_1,ARG_2

.AIF .INSTR("\ARG_1","\ARG_2",1) EQ 3

ADD R5,R6

.AELSE

MV R5,R6

.AENDI

.ENDM

•
•
•

MCR FUNCTION,CT

<After expansion>

ADD R5,R6



AS32R MANUAL - 136

Appendix C Macro-instruction Reference

.LEN String Handling Function

Counts the number of characters in a string.

Syntax | .LEN(character_expression) |

Description

The .LEN function calculates the number of characters of the string character_expression.
The number of characters of character_expression must be within the range from 0 to 255.

You cannot use the .LEN function elsewhere than in arithmetic expressions or in logical
expressions. For arithmetic expressions, character expression, and logical expressions, see
6.3.2 “Expressions for Macro-instructions”.

Example  .MACRO MCR

LDI R5,#\&AVAR

 .ENDM

•
•
•

CVAR: .ASSIGNC "FUNCTION"

AVAR: .ASSIGNA .LEN("\&CVAR")

 MCR

<After expansion>

 LDI R5,#8



AS32R MANUAL - 137

Appendix C Macro-instruction Reference

.SUBSTR String Handling Function

Gets a string.

Syntax | .SUBSTR(character_expression,arithmetic_expression_a,arithmetic_expression_b) |

character_expression :  A character string from which characters are extracted

arithmetic_expression_a :  The starting point to extract in character_expression

arithmetic_expression_b :  The number of characters to be extracted

Description

The .SUBSTR function extracts the segment of the string which consists of
arithmetic_expression_b characters from the character string character_expression.  You
indicate the start position to extract this by use of arithmetic_expression_a.  The position is
relatively indicated by dealing with the beginning of the string as 0.

The values of the arithmetic expressions must be integers equal to 0 or greater.  If
arithmetic_expression_b is 0, an empty character string is taken out.  If you fail to extract
the string having arithmetic_expression_b characters, an empty character string is taken
out.

You cannot use the .SUBSTR function elsewhere than in character expressions or in
logical expressions. For arithmetic expressions, character expression, and logical
expressions, see 6.3.2 “Expressions for Macro-instructions”.

Example .MACRO MCR ARG_1,ARG_2

.AIF .SUBSTR("\ARG_1",0,3) NE "\ARG_2"

MV R5,R6
.AELSE

\ARG_2 R5,R6
.AENDI

.ENDM

•
•
•

MCR ADDX,ADD

<After expansion>

ADD R5,R6



AS32R MANUAL - 138

Appendix C Macro-instruction Reference

.MACRO .ENDM Macro-Instruction

Defines one or more lines as one macro body.

Syntax | | .MACRO | macro_name[arg[,arg]...] |

| | .ENDM | |

arg :  formal_parameter_name[=initial_value]

Description

To define a macro, write .MACRO-block which consists of the .MACRO instruction, a
macro body, and the .ENDM instruction.

First declare the start of macro definition by the .MACRO instruction.  In this line, you
can define the macro name, the formal parameter(s), the initial value(s) of the
parameter(s).

The macro name defined under the .MACRO instruction is processed as a macro call in
the subsequent source program.  When you omit an actual argument in a macro call, the
initial value defined under the .MACRO instruction turns to the argument.  In this case, if
no the initial value is defined, an empty string turns to.

Follow the name rules (see 3.5 “Names”) and the rules given below in coding macro
names, formal parameter names, and initial values.

• One or more spaces or tabs is required between the macro name and the first formal
parameter.

• You cannot include a different macro definition in a macro definition.

• A formal parameter argument defined under the .MACRO instruction is available
inside the relevant macro definition alone.  You cannot use same-named formal
parameters in one .MACRO instruction line.

• To set an initial value to a formal argument, you put the assignment operator (=) in
succession to the formal argument.  You can assign an arbitrary string to the initial
value.  To define what contains a space ( ), a comma (,), an equal sign (=), or a less-
than sign (<) as an initial value, you must enclose the initial value either in angular
brackets (< >) or in double quotation marks (" ").  In this instance, the angular
brackets are not included in the initial value, but the double quotation marks are
included.

 Finally, declare the end of the macro definition with The .ENDM instruction.



AS32R MANUAL - 139

Appendix C Macro-instruction Reference

 The .ENDM instruction must surely be  present at the end of macro definition.

Example Example 1 :

.MACRO MCR ARG_1,ARG_2 ; .MACRO statement

MV \ARG_1,\ARG_2 ; macro body

ADD \ARG_1,R7 ;

.ENDM ; .ENDM statement

•
•
•

MCR R5,R6 ; macro call

<After expansion>

MV R5,R6

ADD R5,R7

Example 2 :

.MACRO MCR ARG_1=STR_SEC,ARG_2 ; .MACRO statement

.SECTION \ARG_1 ; macro body

.SDATA "123\ARG_2" ;

.ENDM ; .ENDM statement

•
•
•

 MCR ; macro call

<After expansion>

.SECTION STR_SEC

.SDATA "123"



AS32R MANUAL - 140

Appendix D Assembler List File

Appendix D

Assembler List File

This appendix illustrates examples of an input assembly source file and the

assembler list file (list file)  and explains the organization and the components.

By specifying the command option “-l list_filename”, the assembler generates

an assembler list file which shows the assembly source generated from the

input file, the object code (machine code) , location information (addresses)

and error messages etc.

The following pages shows the following lists as examples of input source

files:

• List D.1 Assembly source file j.ms (containing the .INCLUDE line)

• List D.2 Header file j.h (included into j.ms)

The list file j.lis (List D.3) is generated as the result of processing the input

source files by the assemble processor a132R invoked by the assembler driver

as32R.



AS32R MANUAL - 141

Appendix D Assembler List File

List D.1  Example of Input File j.ms

.SECTION P,CODE,ALIGN=4

.EXPORT $main

.macro jj arg1, arg2

ldi \arg1, \arg2

add \arg1, r0

.endm

$main:

.aif 1

ST r2,@-R15

.aelse

ST r1,@-R15

.aendi

MV r2,R15

.include "j.h"

bl $main0

$main0: ADDI R5,#-4

ST R14,@-R15

jj r3, #5

LDI R1,#20

ST R1,@(-4,r2)

bl _main0

LD R1,@(-4,r2)

ST R1,@-R15

.GLOBAL _bb

.SECTION S,DATA,LOCATE=0x200000

.datab.w 5,8

data0:

.data.h 0xF000

.datab.w 1, 0xF000

.SECTION T,DATA,ALIGN=4

rel_data:

.datab.w 20, 0x66668888

.sdata "This Line is SDATA"<0>

.sdata "F000"

.END



AS32R MANUAL - 142

Appendix D Assembler List File

List D.1  Example of Input File j.h (Header File)

_main1:

.aif 1

ST r3,@-R15

.aelse

ST r1,@-R15

.aendi

MV r3,R15

ADDI R5,#-4

ST R14,@-R15

LDI R1,#20

ST R1,@(-4,r3)

LD24 R1,#-4

ST R1,@-R15

.GLOBAL _refs



AS32R MANUAL - 143

Appendix D Assembler List File

List D.3  Example of List File (j.lis)

* ASSEMBLER * SOURCE LIST *

 LST#  SRC# LOCATION OBJ_CODE               SOURCE_STATEMENT

[j.ms] ✱1

    1     1                             .SECTION        P,CODE,ALIGN=4

    2     2                             .EXPORT $main

    3     3                             .macro jj arg1, arg2

    4     4                                     ldi \arg1, \arg2

    5     5                                     add \arg1, r0

    6     6                             .endm

    7     7                      $main:

    8     8                             .aif 1

    9     9 00000000 227F               ST      r2,@-R15

   10    10                             .aelse

   11    11                    X        ST      r1,@-R15

   12    12                             .aendi

   13    13 00000002 128F               MV      r2,R15

   14    14                             .include "j.h"

[j.h]

   15     1                   1  $main1:

   16     2                   1         .aif 1

   17     3 00000004 237F     1         ST      r3,@-R15

   18     4                   1         .aelse

   19     5                   1X        ST      r1,@-R15

   20     6                   1         .aendi

   21     7 00000006 138F     1         MV      r3,R15

   22     8 00000008 45FC     1         ADDI    R5,#-4

   23     9 0000000A 2E7F     1         ST      R14,@-R15

   24    10 0000000C 6114     1         LDI     R1,#20

                     F000 ✱2

   25    11 00000010 A143FFFC 1         ST      R1,@(-4,r3)

   26    12 00000014 E1FFFFFC 1         LD24    R1,#-4

# a132R: "j.h", line 12: warning: ignore sign bit at 24-bit immediate data ✱4

   27    13 00000018 217F     1         ST      R1,@-R15

   28    14                   1         .GLOBAL _refs

[j.ms]

   29    15 0000001A 7E01               bl      $main0

   30    16 0000001C 45FC        $main0:        ADDI    R5,#-4

   31    17 0000001E 2E7F               ST      R14,@-R15

   32    18                             jj      r3, #5

   33    18 00000020 6305      &                ldi r3, #5

   34    18 00000022 03A0      &                add r3, r0

   35    19 00000024 6114               LDI     R1,#20

                     F000

   36    20 00000028 A142FFFC           ST      R1,@(-4,r2)

   37    21 0000002C 7EFC               bl      $main0

                     F000



AS32R MANUAL - 144

Appendix D Assembler List File

   38    22 00000030 A1C2FFFC           LD      R1,@(-4,r2)

   39    23 00000034 217F               ST      R1,@-R15

                     F000

   40    24                             .GLOBAL _bb

   41    25                             .SECTION        S,DATA,LOCATE=0x200000

   42    26 00200000 [5]                  .datab.w 5,8
                     00000008

   43    27                      data0:

   44    28 00200014 F000               .data.h 0xF000

   45    29 00200016 0000F000           .datab.w 1, 0xF000

   46    30                             .SECTION        T,DATA,ALIGN=4

   47    31                      rel_data:

   48    32 00000000 [20]               .datab.w 20, 0x66668888

                     66668888

   49    33 00000050 54686973           .sdata "This Line is SDATA"<0>

                     204C696E ✱5

                     65206973

                     20534441

                     544100

   50    34 00000063 46303030           .sdata  "F000"

   51    35                             .END

Here follows the organization of assembler source list output to the list file

(explanations of the parts bearing ✱1 through ✱5 are also given).

The assembler source list is made up of items shown in Table D.1.  There may

be instances in which information of some items is not output. The headings

(LST#, and the like) are output at the beginning of the list.

✱3



AS32R MANUAL - 145

Appendix D Assembler List File

Table D.1  Lines in the Assembler Source List

Item Description

LST# A line number in the list (in decimal). There are lines

having no line number, so this doesn't agree with the

total number of lines in this list.

SRC# A source line number (in decimal). This indicates a

line number of the input source file.

LOCATION An address to locate code (in 8-digit hexadecimal).  If

less than eight digits, higher order digits are

indicated by 0's.  This indicates an offset in the case of

a relative section.

OBJ_CODE This chiefly indicates generated code.

SOURCE_STATEMENT The content of the corresponding line of source file.

There can be instances in which the type of line (Refer to Table D.2) is shown

between OBJ_CODE and SOURCE_LIST.

Table D.2  Line Types

Mark The line is ...

X A line which has been skipped inside the .AIF-block

(consists of macro-instructions) .

& A expanded line due to a macro call, an .AREPEAT-

bock or an .AWHILE-block.

number Nesting levels of the macro-instruction .INCLUDE (in

decimal).

none Otherwise.

Some other indications are given below. Explanations are given by taking up

the parts (labeled ✱1 through ✱5) in the assembler source list shown in the

example of list file (List D.3).



AS32R MANUAL - 146

Appendix D Assembler List File

• File name  (✱1)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

[j.ms]

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This indicates the input source file name.  A file name is indicated in the

form of [filename].  This is indicated in a point at which a file containing

what are given up to that point changes to another file containing the

subsequent lines, for example, the beginning of a list file, source files nested

by the .INCLUDE macro-instruction, or the like.

• NOP code  (✱2)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

F000

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

There are instances in which the assembler generates the NOP code so as to

adjust the alignment.  In these instances, the NOP code F000 is output in

the OBJ_CODE section.  No address is indicated in the LOCATION section.

“NOP” is not indicated in the SOURCE_STATEMENT section either.

• The number of iteration  (✱3)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

29    15 0000001A [5]      1 .datab.w 5,8

                     00000008

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

In the case of a pseudo-instruction that generates data repeatedly, such as

the .DATAB pseudo-instruction, the number of iterations is indicated in the

OBJ_CODE section.  The number of repetitions is in decimal and enclosed in

 [ ].  The value of data are successively given in the next and subsequent

lines.  No address is indicated in the LOCATION section.  If the number of

repetitions is 1, it is not indicated, and data are left indicated without being

changed.  Only the top address of the data is indicated in the LOCATION

section.



AS32R MANUAL - 147

Appendix D Assembler List File

• Errors/warnings  (✱4)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

# a132R: "j.ms", line 12: warning: ignore sign bit at 24-bit

immediate data

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Either a warning message or an error message is indicated in lines

subsequent to the line in which it occurs.  If the assembly process turns

impossible depending on the type of error, neither the LOCATION sections

nor the CODE sections are output at all.  The name of command tool that the

assembly driver as32R activates (either “a032R:” or “a132R:”) is

indicated at the beginning, which means the following :

• a032R: An error that occurred in the macro processor a032R

• a132R: An error that occurred in the assembly processor a132R

The line is preceded by '#'.

• Machine code  (✱5).

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

50    33 00000050 54686973 .sdata "This Line is SDATA"<0>

                     204C696E

                     65206973

                     20534441

                     544100

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Data code effected by a single pseudo-instruction is output, one word (4

bytes) per line in hexadecimal. If the code exceeds one word, it is

successively output to the next and subsequent lines. In this instance, no

address is indicated in the LOCATION section.



AS32R MANUAL - 148

Appendix E M32R/ECU#5 Extension Instruction

Appendix E

M32R/ECU#5 Extension

Instruction

A program including the instruction extended with M32R/ECU#5, such as

FPU instruction, can be assembled. To make this function effective, use the

following option.

E.1 Option designation

Where M32R/ECU#5 extension instruction is assembled, the following option

must be specified.

 -m32re5 This option makes M32R/ECU#5 extension instruction valid.

Also, the floating-point constant, which is not normalized, is reduced to "0.0".



AS32R MANUAL - 149

Appendix E M32R/ECU#5 Extension Instruction

E.2 M32R/ECU#5 extension instruction
This function is compatible with the instructions shown in Table 8 below. For

details, refer to M32R/ECU#5 Software Manual.

Table E.1 M32R/ECU#5 Extension Instruction List.

 Classification Opecode Operand Function Outline

 Store instruction STH Rsrc1,@Rsrc2+ The half-word value is stored in memory from
the register.  (with post increment)

 Bit-manipulation BSET #bitpos,@(disp16,Rsrc) Set ì1î to the designated bit.
 instruction BCLR #bitpos,@(disp16,Rsrc) Set ì0î to the designated bit.

BTST #bitpos,Rsrc Take out the designated bit of the register to
C flag.

SETPSW #imm8 Set ì1î to any bit of PSW SM, IE and C.

CLRPSW #imm8 S et ì0î to any bit of PSW SM, IE and C.

 Floating-point FADD Rdest,Rsrc1,Rsrc2 Floating point add. (Rdest = Rsrc1 + Rsrc2)
 instruction

FSUB Rdest,Rsrc1,Rsrc2 Floating point subtract.(Rdest = Rsrc1 - Rsrc2)

FMUL Rdest,Rsrc1,Rsrc2 Floating point multiply. (Rdest = Rsrc1 * Rsrc2)

FDIV Rdest,Rsrc1,Rsrc2 Floating point divide. (Rdest = Rsrc1/Rsrc2)

FMADD Rdest,Rsrc1,Rsrc2 Floating-point multiply and add operation
(Rdest = Rdest + Rsrc1*Rsrc2)

FMSUB Rdest,Rsrc1,Rsrc2 Floating-point multiply and substract operation
(Rdest = Rdest - Rsrc1*Rsrc2)

ITOF Rdest,Rsrc Transformation from integer to single precision
floating point numeral

UTOF Rdest,Rsrc Transformation from unsigned integer to single
precision floating point numeral

FTOI Rdest,Rsrc Transformation from single precision floating
point numeral to 32-bit integer

FTOS Rdest,Rsrc Transformation from single precision floating
point numeral to 16-bit integer

FCMP Rdest,Rsrc1,Rsrc2 Floating point comparison
(Rdest = Rsrc1 & Rsrc2 compare results)

FCMPE Rdest,Rsrc1,Rsrc2 Floating point comparison

(Rdest = Rsrc1 & Rsrc2 compared results)

Meaning of Notation

Rn [Rdest, Rsrc(1/2)] General register (n = 0 to 15)

@Rn + Indicates that the R n contents are incremented by 4 (register

updated) after general register R n reference (register indirect)

@(disp_nn,Rn) Indicates register indirect with added disp_nn

bitpos Bit position of specified data (bitpos = 0 to 7)

disp_nn Displacement value

imm_nn Ssigned integer immediate



AS32R MANUAL - 150

Appendix F Floating Point Compatible Function

Appendix F

Floating Point Compatible Function
A program including the instruction extended with M32R/ECU#5, such as FPU

instruction, can be

F.1 Floating-point constant

F.1.1 Description format

There are 2 types of formats:

[a] Normal notation

[(+|-)] <(f'|F')> <Floating decimal fraction value> [Precision designation] [(+|-)

    • Sign

The "+" & "-" at the head are the signs.  If omitted, it follows that the plus (+)

has been specified.

    • Precision designation

If this precision designation is omitted, single precision is selected.

Yet, if the normal notation is used on the pseudo instruction (see "F.2 Extended

pseudo instruction".) that has size-designation, the size of this pseudo instruct-

ion will be adopted.

s or S :    Single precision

d or D :    Double precision

    • Exponent

The exponent indicates the power of 10 with sign.

            Example)

 f'1.0s + 10  : (Single precision) 1.0 raised to 10th power

 -f'3.14159s + 10  :  (Single precision) -3.14159 raised to 10th power

+F'3.14159D - 10  : (Double precision) 3.14159 raised to -10th power

[b] C language compatible notation

        [(+|-)] <Floating decimal fraction value> [(e|E) (+|-) Exponent] [f|F]

• Sign

The "+" & "-" at the head are the signs. If omitted, it follows that the positive

(plus) has been specified.



AS32R MANUAL - 151

Appendix F Floating Point Compatible Function

• Precision designation

If this precision designation is omitted, double precision is selected.

Yet, if the C language compatible notation is used on the pseudo instruction

(see "F.2 Extended pseudo instruction".) that has small size-designation, the

size of this notation is small.

                f or F ... ... ... ... ... ... ... Single precision

(No designations) ...  Double precision (Case of that on the small-sized

    pseudo designation is eliminated.)

                Example)

1.0e + 10f : (Single precision)1.0 raised to 10th power

-3.14159F + 10f : (Double precision)-3.14159 raised to 10th

  power

+3.14159 - 10F : (Double precision)3.14159 raised to -10th

  power

• Exponent

This exponent indicates the power of 10 with sign posterior to "e" or "E".

F.1.2 Available place

If the floating-point constant is described in the following place, it is replaced with

the floating-point constant replaced with the format of single precision (4 bytes) or

double precision (8 bytes) conforming to IEEE-754.

    • Pseudo instruction

Both double precision and single precision can be described with

.FDATA & .FDATAB pseudo instruction parameters.

    • General instruction

 Only single precision can be described in correction option

 (HIGH, LOW, SHIGH).

F.1.3 Compatibility

Single precision and double precision of floating-point constant are compatible

with internal expression of float type and double type used in C-compiler

respectively.

F.1.4 Non-normalized numeral handling

When the -m32re5 option (Refer to "7.2") is designated for the assembler, the non-

normalized numeral is reduced to "0.0".



AS32R MANUAL - 152

Appendix F Floating Point Compatible Function

F.2 Extended pseudo instruction
3 pseudo instructions corresponding to the floating point can be utilized.

F.2.1 Format

.FDATA [.size] ConstantA [, ConstantA] Lays out the floating-point

constant.

.FDATAB [.size] ExpressionB, ConstantA Lays out the continuous floating

point constant.

.FRES [.size] ExpressionB Maintains the floating-point

constant area.

    * Meaning of Symbols

. size : Size designation

.s or .S : Single precision

.d or .D : Double precision

ConstantA : Floating-point constant

ExpressionB : Quantity

F.2.2 Function of pseudo instruction

• .FDATA pseudo instruction

This instruction secures the data area with precision designated with ".size",

and stores internal expression of constant a (floating point number) inside its

area.

Example)

.FDATA  F'1.0S+2, F'2.0S+2   ; 1.0e + 2f and 2.0e + 2f are laid out.

• .FDATAB pseudo instruction

This instruction secures the data area with precision designated by ".size" by

the quantity in Expression b, and stores internal expression of constant a value

(floating point number) inside its area continuously by the quantity in

expression b.

Example)

.FDATAB  8,  F1.0S+2   ; 1.0e + 2f are laid out continuously by 8.

• .FRES pseudo instruction

This instruction secures the data area with precision designated by ".size" by



AS32R MANUAL - 153

Appendix F Floating Point Compatible Function

the quantity in Expression b.

Example)

.FRES.S  4   ; 4 areas for single precision floating-point numeral

are secured.

F.2.3 Common items

• he size is designated by .s or .S (single precision) and .d or .D (double

precision).

• Requirements for constant a (floating-point constant)

Constant a must be within the range of size designation.

Only one constant can be described.  (The constant expression

<F'1.0 + F'2.0, etc.> cannot be described.)

• Requirements for expression b (Quantity)

The constant expression and positive value, that is, 0 or more integer are

required. When a symbol is included, the definition prior to this pseudo

instruction is required.

F.3 Utilization of floating point in general instruction line
For the instruction in which the correction option (HIGH, LOW, SHIGH) is

effective, the single precision floating-point constant can be described. (No double

precision is applicable to the correction option.

[Where normal notation is used]

SETH R0, #HIGH (f'1.0s + 2)

OR3 R0, R0, #LOW (f'1.0s + 2)

[Where C-language interchangeable notation is used]

SETH R0, #HIGH (1.0e + 2f)

OR3 R0, R0, #LOW (1.0e + 2f)

*Since the internal expression of 1.0 Å~ 10 raised to 2nd power is 42C80000

(hexadecimal), the above is equivalent to the following description.

SETH R0, #HIGH (0 Å~ 42C80000)

OR3 R0, R0, #LOW (0 Å~ 42C80000)



AS32R MANUAL - 154

Appendix G Restrictions on Usage

Appendix G

Restrictions on Usage
There are restrictions of the CC32R.

For other precautions of only this version, see the 'Precautions on using' of the next chapter.

■  How to get files that is not included the debug-informatio

C compiler cc32R, assembler as32R and linker lnk32R have come to be generating the

debugging information always. Namely, the object module and load module files that these

tools generate always include the debugging information.

Such a outputting debug-information is not possible to impede in those options.

The strip32R can process even the object module that compiler and assembler generated in

addition to the load module that the linker. The strip32R can process even the object module

that compiler and assembler generated in addition to the load module that generated the

linker. In other words, if each output files are processed with strip32R after cc32R, as32R or

lnk32R, these tools act as conventional CC32R (V.4.10 or before).

Example of using strip32R:  (% expresses a prompt)

Usually usage:

The strip32R is able to apply to each output file of the cc32R, as32R and lnk32R.

Strip32R is able to process both files of object-module (before the link) and load

module (after the link).

% cc32R -c -o sample1.mo sample1.c

% strip32R sample1.mo

% as32R sample2.ms

% strip32R sample2.mo

% lnk32R -o sample.abs sample1.mo sample2.mo

% strip32R sample.abs

To process two or more files at a time:

For example, after all the compiling and the assembling completed, the strip32R can

process all the files of them.

% cc32R -c sample1.c sample2.c sample3.c

% cc32R -c sample4.c

% as32R -c sample5.ms

% strip32R sample1.mo sample2.mo sample3.mo sample4.mo sample5.mo

Even the wild card can be designated.

% strip32R *.mo



AS32R MANUAL - 155

Appendix G Restrictions on Usage

■  Cautions on using the base register function with standard library for C

[The supplement of attention on using the base register function]

Combinations of the object file as follows are not recommended. (For more details, refer to

the "A.1.6 Base Register Function Limitations" of the M3T-CC32R User's Manual <C

Compiler>.)

(1) The combination of object files that was created in using base register function and in

not using this function.

(2) The combination of object files that was created by using different access control files.

[Attention to use the base register function and C standard library in same time]

Attached C standard library was created when the base register function is ineffective.

Therefore, attached C standard library and the object file that used the base register function

correspond to above (1).

In such case, the base register does not have the base address when the standard library

function is executing. The base register will returns the base address after these standard

functions, although the base register will not have the base address when as follows:

(1) Interrupt processing routine

Because the interrupt process happens during execution of standard library functions,

you must think value of the base register is undefined.

(2) User function that is called from the particular standard library functions (qsort, bsea-

rch etc.)

[Solutions]

When the base register function and the C standard library are used in same time, please use

one of the solution methods following (1) and (2).

(1) Create a special standard library by using same access control file from the user progr-

am. And replace present standard library with it.

(2) Re-compile interrupt processing routine and user function that is called from the part-

cular standard library functions (qsort, bsearch etc.) by not using the base register fun-

ction.

■  Avoiding the integral zero-division problem of M32R/ECU series

In M32R/ECU Series Microcomputer, if zero division calculation (its divisor is equal zero) is

executed for integral division instructions (they are DIV, DIVU, REM and REMU. abbreviat-

ed as DIV-instructions), the result will be inaccurate calculations for some instructions that

are executed immediately after 0 division.

For more details, refer to the Technical News No.M32R-06-0301 “M32R/ECU series Usage

Notes for 0 Division Instruction”.

The correspondence in CC32R and explain about avoiding the zero-division problem by

-zdiv option below.



AS32R MANUAL - 156

Appendix G Restrictions on Usage

[Correspondence methods]

The case of C language program or assembly language program

(1) Please re-program so the zero-division does not occur in logical, following the teh-

nical news suggests. CC32R generates the DIV-instructions to the integral calculat-

ions both divisions (/ and also /=) and remainders (% and also %=) of C language,

please program so that the divisor do not become 0. Also, in assembly language,

please program so that the second parameter of DIV-instructions (it means divisor)

do not become 0.

(2) If you can not accomplish (1) completely, re-compile or re-assemble with -zdiv opt-

ion insted of (1).

The case of using standard libraries

Even if the DIV-instructions computes the zero-dividion in the standard library funct-

ons, the problem does not occur. It is because the standard library is already treated

about avoiding this problem.

Furthermore, The functions of the zero-division measurement libraries (m32RcRZ.lib,

m32RcRZM.lib, m32RcRZL.lib) that was prepared in CC32R V.4.10 Release 1, have be-

en incorporated to general standard libraries (m32RcR.lib, m32RcRM.lib, m32RcRL.lib).

Because of this, If you have been using CC32R V.4.10 Release 1 and use the zero-divis-

ion measurement libraries, please use general standard libraries instead of them.

The case of using non-standard libraries

In use the customer-made libraries or the re-build libraries from the standard library

sources set of attachment to CC32R, please re-build or re-compile with -zdiv option.

[Explanation of the -zdiv option]

When it uses in compiling with cc32R

Compiling with -zdiv option, it generates assembly source with inserting NOP instru-

ctions each after the all of created DIV-instructions. Also, it inserts NOP instructions

as same in asm functions too.

However, if you use -zdiv option with -S or -CS in same time, compiler generates asse-

mbly source with removing comment and coverting alphabetic letters to upper.

In the case of inputting assembly sources to cc32R, it performs same from assembling

by as32R.

When it uses in assembling with as32R

If assemble code includes DIV-instructions with -zdiv option, it inserts NOP instructi-

ons each after the all of this DIV-instructions. However, it except case of that NOP ins-

truction already exists after the DIV-instruction.

It means there is not following object between the DIV-instruction and the NOP-instr-

uction. In other words, the compiler inserts NOP instruction after the DIV-instruction,

if there is following object between the DIV-instruction and the NOP-instruction.

(1) Labels

(2) Generic M32R instructions except NOP instruction

(3) as32R pseudo-instructions influencing the code areas (as follows)

.ALIGN  .DATA  .DATAB  .END  .FDATA  .FDATAB  .FRES  .RES

.SDATA  .SDATAB  .SECTION



AS32R MANUAL - 157

Appendix G Restrictions on Usage

■  On indirect calling a function that has variable arguments

The program will not run correctly if a function having a variable argument is called indirec-

tly by using a pointer variable to a function without prototype declaration.

[Code Example]

        #include <stdio.h>
        int (*funcptr)() = printf;
        int main (void) {
            (*funcptr) ("calling printf with %d\n", 1);
        }

[Solution]

Include a prototype declaration for the pointer variable to the function. (Rewrite the above

code as follows.)

        #include <stdio.h>
        int (*funcptr) (const char *,...) = printf;
        int main(void) {
            (*funcptr) ("calling printf with %d\n", 1);

        }

■  Data definition within the code section

The assembler outputs a warning (warning: caution! there are some data in code section) so

as to alert you to data items (or space areas) present in the code section.

It is recommended to put data items in the data section.

You can suppress this warning by use of the option "-warn_suppress_code_data".

■  Use of preprocessor variables inside a macro body

If, as in the following example, a preprocessor variable appears starting in the first column of

the line immediately after a macro call in the macro body, the preprocessor variable may not

be correctly expanded when the macro call is effected.

[Code Example]

        .macro INST_MACRO
        MOV        #0,R0
        .endm
        .macro LABEL_MACRO label
        INST_MACRO
    \label:                    ; putting a preprocessor variable from the first column
        .endm
        .section P,code,align=2
        LABEL_MACRO L1         ; this expansion will be failed
        LABEL_MACRO L2         ; this expansion will be failed

        .end

[Solution]

Inside a macro body, write a preprocessor variable from the second column or the subseque-

nt.



AS32R MANUAL - 158

Appendix G Restrictions on Usage

■  About compiling the functions of 500 or more lines

When you compile a program that has the big functions of 500 or more lines by CC32R, a er-

ror "Out of memory" will occur.

In this case, divide this function so that its lines decrease.

■  Precautions about changing C Calling Convention

CC32R V.3.00 Release 1 (or newer) always generates code for function parameters by regist-

ers. Accordingly, objects of CC32R V.3.00 Release 1 (or newer) and V.2.10 Release 1 can't be

linked without measuring. Correspond in the following methods.

(1) C language program that passes the function argument by using stack

It means objects and libraries that was compiled by the CC32R V.2.10 Release 1 without

-RBPP option.

[How to adapt]

Compile them with CC32R V.3.00 Release 1 (or newer).

(2) Program of the assembly language that is handing over the function argument by stack

It is the program of the assembly language passing the argument of the function by using

stack, and that calls function of C language or is called from it. (They include start up pr-

ogram and low level library functions.)

[How to adapt]

* Change the assembly language program in accordance with the setting rule of the

function argument of V.3.00 Release 1. (Refer to the chapter of "the C calling rule" of

the M3T-CC32R user's manual <C Compiler>.)

* When function passes the argument by registers, this function name is not under score

(_) to the top but dollar mark ($) is added in object file. You need to change the functi-

on name in the assembly language that you have this to the name that complied with.

When you links these programs (above (1) and (2)) without this adaptation and program

made for CC32R V.3.00 Release 1 (or newer), the error "external symbol not defined" will

occur.



Linker   lnk32R

Part 2



lnk32R MANUAL - 1

Chapter 1 Overview of the Linker lnk32R

Chapter 1

Overview of the Linker lnk32R

1.1 Overview

The linker lnk32R is included in the cross tool kit M3T-CC32R and has the

following functions :

• Generates a load module file ( absolute load module file and relocatable load

module file)

The linker combines object module files (following , object

module), relocatable load module files (following ,  relocatable

load module) and library files (following ,  library) into an

absolute load module file(an executable load module file).

• Produces a link map

With the -M option, the linker outputs a link map.  A link map

consists of “map list” which lists location information about

sections and “global symbol list” which lists external symbol

information.  When the -M option is specified, the linker invokes

the map generator and a link map is produced.  Details on the

map generator are described in Part 3 ”Map Generator map32R”.

1.2 Functions

• Generation of two kinds of load modules

Either an absolute load module or relocatable load module may

be selected.

• Absolute load module
With the absolute load module, the start addresses (absolute
address) of all of the sections are specified and there is no
undefined symbol.  The module is executable.

• Relocatable load module

This module is generated when the command option -r is
selected.  With this relocatable load module, the start
addresses of the sections are not defined.  The relocatable load
module can be converted into an absolute load module when
it is input again into the linker without the command option
-r.



lnk32R MANUAL - 2

Chapter 1 Overview of the Linker lnk32R

• Creating ROMable programs is supported
To commit applications to ROM, the following functions are
supported :

• Initial Data Deletion
• Initial Data Extraction
• Reserved Labels Generation

Those are useful for creating an embedded application.

• Invoking by using a Command File

The parameters (specifying option and input file) of the invoking
command lnk32R can be supplied from a command file (see
2.1.3.2).

• Support for overlay facility
The linker supports what is called the "overlay facility" to allow
different sections to be located at the same address. Due to the
introduction of this facility, no sections are checked for overlap
at all, so be careful when using this facility.

1.3 Compatibility with an old version

1.3.1 About inputting old CC32R's object (V.2.10 Release 1 or older) to new linker

• About inputting old CC32R's object (V.2.10 Release 1 or older) to new linker

To correspond to the new function, a part of object format has

been changed.Accordingly, if you have the object that was made

with old CC32R (V.2.10 Release 1 or older), when you input them

to new linker (CC32R V.3.00 Release 1 or newer), this linker

displays a warning message like the following.

lnk32R: " filename": warning: old interface module: "revision:01"

In this case, please remake these objects by using the new

CC32R.

• Problems encountered when linking objects of V.1.00 Release 3 or earlier

An error "relocation out of range " may be encountered when

linking some objects generated by CC32R V.1.00 Release 3 or

earlier by the linker in V.1.00 Release 4 or later (including this

version). In such a case, regenerate the objects using the

assembler in V.1.00 Release 4 or later.



lnk32R MANUAL - 3

Chapter 1 Overview of the Linker lnk32R

1.3.2 About error processing of lnk32R

• Mitigation of the error processing of the -SEC option

Even if the sections specified by the -SEC options are not

included in the input files and libraries, the new linker processes

not as an error but as a warning.

In this case, if you'd like to let this linker to process an error,

please use the following option.

◆[Options]

-Werrsec
Processes as error if the sections specified by the -SEC options

are not included in the input files and libraries.

If there is no -Werrorsec option (that is the default), this linker

processes as a warning for that case.

• Displaying details of the relocation size overflow

In the linker processing, the attaching messages of the "relocation

size overflow (xx-bit)" message are only the section names, a

offset in the modules and the referenced symbols. The following

option enables display as the more detailed information.

◆[Options]

-Wreloc

Displays the "Position" information and the "Setting" informa-

tion, when the "relocation size overflow" error happens.

◆[Displaying forms]

(1) "Position" information

[Position: sect"SectionName"(Address)+Offset in module"ModuleName"]

Specifies belonging the section and the module names and al-

located address of the relocation address. Actual address of t-

he relocation can be leaded from an addition of displayed ad-

dress and the offset.

(* The address and offset is displayed with the hexadecimal n-

umber that begins from '0x'.)

(2) "Setting" information

[Setting: SettingValue (Referencing-Information)]]

This is the information regarding a setting value. This setting

value is displayed with the hexadecimal number.

The information such as the section and symbol that the ordi-

nariness used to the calculation of this setting value to, the R-



lnk32R MANUAL - 4

Chapter 1 Overview of the Linker lnk32R

eferencing-Information are output.

sect"SectionName"(top=Address), module"ModuleName"

This is the referenced section and the belonging mod-

ule information.

This Address is expressing the top address of the inte-

grated section from all same name sections.

(* The address is displayed with the hexadecimal nu-

mber that begins from '0x'.)

"SymbolName"

Referencing symbol name.

in sect"SectionName" module"ModuleName"

Displays this address belonging the section and mod-

ule name in the case of supposing that the "SettingVa-

lue" is an address.

◆[A sample of -Wreloc specified]

lnk32R: "c:\mtool\lib32R\m32RcR.lib": error: relocation size overflow (24-bit):
"P", 0x00000011, ""

[Position: sect"P"(0x2FCC)+0x11 in module"stdio_pw"]

[Setting: 0x800001E4 (sect"C"(top=0x80000198), module"stdio_pw")]

lnk32R: "c:\mtool\lib32R\m32RcR.lib": error: relocation size overflow (24-bit):
"P", 0x000001ED, "__100_ctype_tab"

[Position: sect"P"(0x388C)+0x1ED in module"locale"]

[Setting: 0x800001EE ("__100_ctype_tab", in sect"C" module"_C_ctype")]

• The number limitation of messages

If the message count of the linker is more than 20 times, the 21th

and the next messages are not displayed. By designating the

following options this limitation number can be changed, and all

messages can be displayed by invalidating this limit.

◆[Options]

-Wlimit=message_max

Setting up the number limitation of messages. If the message co-

unt of the linker is more than times specified by the 'message_m-

ax', the next messages are not displayed. In the case that 0 is desi-

gnated to the numerical value restriction has no effect and all the

message is displayed.

In the default (there is not -Wlimit), the linker behaves as

Wlimit=20  was specified.

-Wnolimit

Displays all messages.



lnk32R MANUAL - 5

Chapter 1 Overview of the Linker lnk32R

1.3.3 About error processing of lnk32R(CC32R V.4.30 Release 1 or subsequent one)

• Map output during link error

A change has been made so that if a link map file is specified in

the -M option of lnk32R (or the -MAP option of cc32R), even

when an error occurs during link processing, a link map will

always be output.

The link map that was made when an error occurred is including

incomplete information. But this link map can be used to identify

the causes of link errors, because the section allocation and

symbol addresses in each module can be known.



lnk32R MANUAL - 6

Chapter 2 Invoke the Linker

Chapter 2

Invoke the Linker

2.1 How to Invoke the Linker

2.1.1 Invoking Procedure

To invoke the linker, set the environment variables (see 2.1.2), enter the

“lnk32R” command according to the command line rules and execute it (see

2.1.3).

2.1.2 Setting Environment Variables

Set the valid directories for the environment variables M32RBIN, M32RINC,

M32RLIB and M32RTMP (This step may be skipped since these variables are

normally set during installation.).  For the setting procedure, refer to the “M3T-

CC32R Cross Tool-Kit V.x.xx Release x Release Note“. If you do not set them,

the default directories are selected automatically.

Table 2.1  Environment Variables

Environment Variable Default Directory

M32RBIN /usr/local/M32R/bin

M32RINC /usr/local/M32R/include

M32RLIB /usr/local/M32R/lib

M32RTMP /tmp



lnk32R MANUAL - 7

Chapter 2 Invoke the Linker

2.1.3 Command Line Format

Figure 1.1 and the following sections shows the format and rule for the linker's

invocation command line.  To specify options and input files, there are to ways :

inputting from a command line or using a command file.  Refer to 2.2 for

options and 2.1.4 to 2.1.6 for input/output files.

(1) To specify for invocation in the command line :

lnk32R [-o output_filename] [-r] [-g] [-V] [-w] [-eentrypoint]

       [-L dir] [-l lib] [-M map_filename ]

       [-SEC name[=addr],name[=addr]…] [-LOC addr1,addr2]

       [-overlap]

       [-Werrsec] [-Wreloc] [-Wlimit=message_max]

       [-Wnolimit]

  object_filenames <RET>

(2) To use a command file :

lnk32R  command_filename  <RET>

where :

• Without [ ] : Indispensable

• In [ ] : Optional

• Prefixed by - : A command option (see 1.3)

• <RET> : Enter the return key

Figure 2.1  lnk32R Command Line Format

2.1.3.1 Command Line Rules

To invoke the linker by using the information specified in the command line,

enter and execute the command by obeying the following rules :

• Write into the command line by following the format given in Figure 1.1 (1).

Each of the items (command name, option, input file name) must be

separated from adjacent items by at least one space character.  Pressing the

return key enables the linker to execute the command.

• An option must be separated from the associated parameter by a space

character.  If options conflict with each other, the last option has priority.

• Only addresses and numerical values specified in hexadecimal are valid.

• Specify one or more input file names in object_filenames.  One or more space

characters must be placed between file names.  The number of files allowed

is unlimited.



lnk32R MANUAL - 8

Chapter 2 Invoke the Linker

2.1.3.2 Invocation Using Command File

The linker invoking option and the name of the input file can be specified by

using a command file.  A command file is a text file containing specifying

information.  This is a convenient invoking method when the number of file

names is large or the processes for the linker are already defined.

In the command line, specify a command_filename as a parameter,

lnk32R command_filename <RET>

Describe the command file by following the following procedure :

• When writing parameters (option selection, input file name selection) in the

command line, follow the parameter input formats (see Figure 2.1 (1)).

• Adjacent parameters can be separated by a carriage return (return key).

• A command file can accommodate up to 255 characters (excluding the

carriage return character).

For example, to input 11 files, sin.mo, cos.mo, tan.mo, asin.mo, acos.mo,

atan.mo, hsin.mo, hcos.mo, htan.mo, log.mo and log10.mo and output the

absolute load module func.abs, prepare the command files shown in Figure 2.2.

-o func.abs

sin.mo  cos.mo   tan.mo   asin.mo acos.mo  atan.mo

hsin.mo hcos.mo  htan.mo  log.mo  log10.mo

Figure 2.2  Command File Description (Example)



lnk32R MANUAL - 9

Chapter 2 Invoke the Linker

2.1.4 Input File Conditions

Table 2.2 shows the conditions of the input files which can be processed on the

linker.  Do not input any file that cannot meet these conditions.

Table 2.2  Input File Conditions

Item Conditions

Valid input files Object module file(s)

Relocatable load module file(s)

Library(s)

Maximum number of names Section names : Up to 65535/file

Symbol names : Up to 65535/file

Module names : Up to 65535/file

The number may be limited by the capacity of

development environment system memory.

2.1.5 Output File Conditions

A load module file generated on the linker can contain up to 65535 file names

for each item (Note).  Do not link files which result in more than 65535 names of a

particular item to be contained in the load module.  The maximum number

65535 can be obtained only when the development environment memory has

enough space.

2.1.6 Output File Naming

The name of the output file is specified by the -o option.  If this option is not

used, the linker automatically gives name to the file as shown in Table 2.3.

Table 2.3  Output File Naming (Default)

File Name Description

am.out The load module file to be output as the result of linking.

a.mout The load module file to be output as the result of linking (for

EWS version).

Note ) Each item:  Section name, Symbol name and Module name



lnk32R MANUAL - 10

Chapter 2 Invoke the Linker

2.2 Command Options

Table 2.4 below shows the functions of the command options for the linker.

Table 2.4  Command Options for the Linker (1/4)

Option Description

-e entrypoint Sets the load module entry point to entrypoint

(symbol).  The entry point is used by the debugger to

automatically set the initial value of the program

counter and to perform some other functions.

-g Outputs the information (debug information) as

necessary for debugging, to the load module file.

-l lib Specifies a library named lib.  The library is searched

in the following order :

(1) The directory specified in the -L option.

(2) The directory set for the environment variable

     M32RLIB (If not set, /usr/local/M32R/lib.).

-L dir Specifies the library search directory.



lnk32R MANUAL - 11

Chapter 2 Invoke the Linker

Table 2.4  Command Options for the Linker (2/4)

Option Description

-LOC addr1,addr2 This option allows writing of the C program into the

ROM by assigning the sections to the appropriate

memory locations.  This option is a simplified version

of the -SEC option and is made effective when the

section is composed of P, D, B and/or C and cannot

be used if a user made section exists.

Specify the address in hexadecimal.  The hex. number

beginning with an alphabetical letter must have a 0

(zero) affixed before the letter.

The first addr1 must be assigned the start address of

the RAM area (locations for the D and B section).

Sections must be linked in the order of D and B.  The

RAM memory locations specified by addr1 are

reserved but they are not used to store the initial

value data.

The second addr2 must be assigned the start address

of the ROM area (locations for initial value data of the

P and C and D sections).  Sections must be linked in

the order of P, C and D.  The D section (initial value

data) is output as the section named ROM_D.

The -LOC option cannot be used together with the

-SEC or -r.

Each of the following options denotes the same

process.

-LOC 1000,8000

-SEC @D=1000,B,P=8000,C,D

-M map_filename Outputs the link map file named map_filename.

-o output_filename Gives the name output_filename to the output file. If

this option is not used,the name of the output file is

am.out (in the case of the EWS version, a.mout is used

instead of am.out).

-r Creates the load module file in the form of a

relocatable one.  If this option is not used, the module

file is generated as an absolute file.  The -r option

cannot be used together with -LOC or -SEC.



lnk32R MANUAL - 12

Chapter 2 Invoke the Linker

Table 2.4  Command Options for the Linker (3/4)

Option Description

-SEC name

-SEC name=addr

-SEC name=addr,name=addr...

Specifies the linking order of the sections and the start

address.  Enter the section name into name, and the

address of the location for the section into addr.

Next to the = , specify the start address in

hexadecimal.  Affix 0 (zero) to the first letter of the

hexadecimal if the number starts with an alphabetic

character.  If the start address is not specified, a

section is immediately followed by the next section.

If the symbol “@” is affixed to the top of the section

name, the memory reserve information for that

section is output without data (initial data elimination

function of the linker).

The initial data is not output because of the

elimination function of “@” can be output to another

area (initial data extraction function of the linker).  To

output, enter the section name without @ in the

command line.  The data is output under the section

name ROM_name.

Example : -SEC  @D=1000,B,P=0c000,C,D

This example assigns the address 100016 and

subsequent addresses for the D section and places the

D section initial data next to the C section.  The initial

data is output to the load module file under the

section name ROM_D.

The -SEC option cannot be used with -LOC or -r.

-V Outputs the invoking message to the standard error

output without performing any process.

-w Disables the warning message display.

-overlap Different sections are located at the same address

(overlay facility). Once this option is specified, no

sections are checked for overlap at all, so be careful

when using it.



lnk32R MANUAL - 13

Chapter 2 Invoke the Linker

Table 2.4  Command Options for the Linker (4/4)

Option Description

-Werrsec Processes as error if the sections specified by the -SEC

options are not included in the input files and

libraries.If there is no -Werrorsec option (that is the

default), this linker processes as a warning for that

case.

-Wreloc Displays the "Position" information and the "Setting"

information, when the "relocation size overflow" error

happens.

-Wlimit=message_max Setting up the number limitation of messages. If the

message count of the linker is more than times

specified by the 'message_max', the next messages are

not displayed. In the case that 0 is designated to the

numerical value restriction has no effect and all the

message is displayed.In the default (there is not -

Wlimit), the linker behaves as Wlimit=20 was

specified.

-Wnolimit Displays all messages.



lnk32R MANUAL - 14

Chapter 2 Invoke the Linker

2.3 Command Line Examples

The following are examples of the linker invoking procedure (% is prompt,

<RET> is return key) :

• Example 1 :

% lnk32R -o asmd.abs -e _main add.mo sub.mo

mul.mo div.mo <RET>

Four files, add.mo, sub.mo, mul.mo and div.mo, are used to

generate the absolute load module file asmd.abs.  The entry point

of the load module is the address of the global symbol _main.

The entry point is used to automatically initialize the program

counter when the debugger debugs asmd.abs.

• Example 2 :

% lnk32R -M map -r -g add.mo sub.mo mul.mo

div.mo <RET>

Four files add.mo, sub.mo, mul.mo and div.mo, are used to

generate the relocatable load module file a.mout.  The load

module contains debugging information.  The link map is output

to the file named map.

• Example 3 :

% lnk32R link.cmd <RET>

Parameters written in the command file link.cmd will be read

and executed.



lnk32R MANUAL - 15

Chapter 3 Generation of load modules

Chapter 3

Creating load modules

3.1 Creating absolute load modules

The linker regards the object modules as sections, links them and allocates them

to generate the load module.

3.1.1 Linking Object modules  (Linking Sections)

When an application is programmed by dividing the application into source

files, a section is divided into object modules.  When generating the load

module using these object modules, the linker links the object modules so that

the same sections continue.  Once linked, object codes are located in a section in

the order of input files specified in the command line.

3.1.2 Locating Sections

The linker can specify the location address of a section by using the command

option -SEC or -LOC (When the location attribute of a section is absolute, the

section is placed on the addresses defined by the section information.).

When generating an embedded application, some sections will be placed in

RAM and some sections will be placed in ROM.  For example, data to be

updated by execution of a program should be placed in RAM while the

program section and fixed data sections are placed in ROM (see Figure 3.1).

The next page is followed.



lnk32R MANUAL - 16

Chapter 3 Generation of load modules

Figure 3.1  Joint Sections and Their Locations

3.2 Creating Relocatable Load Module

Relocatable load modules without absolute addresses can be created as a result

of linking.  With a relocatable load module, addresses within a section can be

assigned with respect to the start address of that section.  To create a relocatable

load module, specify the invoking option -r. For example, if,

% lnk32R -r start.mo file1.mo file2.mo

is specified, the relocatable load module "am.out" (in the case of the EWS

version, a.mout is used instead of am.out) is output.

3.3 Linking Library Files

The linker performs a resolving process of external reference symbols of all the

specified input files.  If an external reference symbol exists but it is not defined

in any of the input files, the linker searches the specified library to locate the

module which defines the unresolved external reference symbol and extracts

the module which includes the symbol and links it.  If it cannot find such a

module, it issues the undefined error.

The library can be specified by using the options  -l and/or -L.  The library

specified by the -l option is searched in the following way and in the following

RAM 
Area

ROM 
Area

Load Module

Data
Section

Program
Section

Fixed Data
Section

sub1. mo

sub2. mo

main. mo

sub1. mo

sub2. mo

main. mo

sub2. mo

main. mo

Data
Section

Program
Section

Data Section

Program
Section

Fixed Data
Section

Data
Section

Program
Section

Fixed Data
Section

+ +

Object Modules

Link

main.mo sub1.mo sub2.mo



lnk32R MANUAL - 17

Chapter 3 Generation of load modules

order :

(1) Directory specified by the -L option

(2) Directory set by M32RLIB

Searching specified by -L option is effective on the libraries specified after the -L

option.  When plural -L options are made, they are used in the order they

specified.  For example, specifying

% lnk32R -l a.lib -L /usr -L /usr/lib -l b.lib file.mo

searches the modules contained in the libraries a.lib and b.lib.  The a.lib is

searched in “ the directory set by M32RLIB” .   The b.lib is searched in the order

/usr, /usr/lib  and “ the directory set by M32RLIB” .

A library can be directly specified in the command line as an input file :

% lnk32R test.mo c.lib d.lib

For the libraries specified as input files (e.g. c.lib and d.lib shown above) in the

command line, searching specifications (“ directory specified by the -L option”

and “ directory set by M32RLIB” ) cannot be applied.  These libraries are

searched before the libraries specified by -l option.  Extraction and link of

modules containing the external reference symbol are performed in the same

way as in the case of libraries specified by -l option.



lnk32R MANUAL - 18

Chapter 4 Section

Chapter 4

Section

4.1 Section Types

The contents of a program are classified into one or more sections.  The linker

supports the five types of sections as listed in Table 4.1.  Any program, code

and data will belong to one of the types.

Table 4.1  Types of Sections

Type Contents

CODE (Code Section) Program code.

DATA (Data Section) Data (const variables, non-const

variables, etc.)

STACK (Stack Section) The stack area.

COMMON (Common Section) Variables commonly used by more than one

module.

DUMMY (Dummy Section) Member definitions of structure data.

4.2 Section Definitions (Section Information)

A section is defined by the section name, section attribute and location attribute

which are called section information (Table 4.2).

Table 4.2  Section Information

Section Information Description

Section name Any name

Section attribute CODE, DATA, STACK, COMMON or DUMMY

Location attribute Absolute (specifies the start address) or relative

(specifies alignment)

The contents of the C language source program are automatically section

defined when being compiled by the C compiler cc32R.  When using an

assembly language source program, define the section of contents by using the

pseudo-directive .SECTION and describe the source codes.  For further



lnk32R MANUAL - 19

Chapter 4 Section

information on defining the method of the section, refer to the “M3T-CC32R

V.x.xx User's Manual < C Compiler >   Chapter 7   Embedded Applications

Programming“.

The linker judges the sections as the same section when information on these

section matches with each other.

4.3 Link Functions

The linker supports the following functions:

• Automatic link of sections

• Specifying linking order of sections

• Specifying location address of section

The descriptions of these functions follow.

||||| Note |||||

Sections of the same name but different section attribute or location attribute

cause the linker to issue an error message and stop the process.

4.3.1 Automatic Link of Sections

The linker automatically links sections based on section information (section

name, section attribute and location attribute).  The same sections distributed in

two or more input files are linked together in the form specified for the

attributes of these sections (see 4..4 Linking Methods).

Only those sections of relative location attribute are linked.  Those sections of

absolute location attribute are not linked because they are already assigned the

absolute addresses.

4.3.2 Specifying Linking Order of Sections

The linking order of the sections is specified by the invoking option -SEC

parameter.  The sections are linked in the order their names are written.  For

example, if they are specified in the order of

-SEC A,C,B

the sections are linked in the order of A, C and B.

The sections not specified upon invoking are linked after all the sections

specified to be linked are linked, in the order which they appear in the input

file.



lnk32R MANUAL - 20

Chapter 4 Section

Specification of the linking order of sections is effective only when the load

module to be generated is the absolute type.

Figure 4.1  Linking Sections

4.3.3 Specifying Location Address of Section

The location addresses (absolute) of the sections are specified by the invoking

option -SEC parameter.  The starting address (hexadecimal) of a section is

specified in the form of = XXXXXX following the section name.  For example,

specifying

 -SEC A=1000,C,B

assigns the start address 100016 to the section A.

If the section having no location address is the first to be linked, it is assigned

the start address 016.  The remaining sections are automatically assigned

absolute addresses.

Assigning the same absolute address to two or more sections causes an error.

+ +

file 1.mo file 2.mo file 3.mo

Section A

Section B

Section A

Section C

Section A

Section B

Section C

file1

file2

file1

file2

file3

file1

file3

Section B

Section B

Section A

Section A

Section A

Section C

Section C

When the Linking Order is Specified :

Section A

Section A

Section A

Section B

Section B

Section C

Section C

file1

file2

file3

file1

file2

file1

file3

When the Linking Order is not Specified (In the Order 
in which sections appeared, they are linked.) :

Example
% lnk32R -SEC B,A,C file1.mo file2.mo 
file3.mo<RET>

Result

Example
% lnk32R file.mo file2.mo File3.mo <RET>

Result

The next page is followed.



lnk32R MANUAL - 21

Chapter 4 Section

||||| Note |||||

The options that specify the absolute address are -SEC and -LOC (ROM

writing).  These options cannot be used together.

4.4 Linking Methods (Specified by section attribute)

The linker joints sections according to their attribute (Table 4.3).  Since sections

having dummy attribute have no real code, they are not covered by the joint

process.

Table 4.3  Section Attribute and Linking Methods

Section Attribute Linking Method

CODE, DATA, STACK Simple link

COMMON Common link

The following describe the linking methods :

• Simple Link (section attribute: CODE, DATA, STACK)

The same sections are allocated continuous addresses in the

order specified by the files input to the linker.

Figure 4.2  Simple Link

• Common Link (section attribute COMMON)

The same sections are placed at the same address.  The size of the

section of COMMON attribute is the size of the largest section of

these sections.

Figure 4.3  Common Link

Simple 
Link

Linked Section Afile 1

+
Section  A

file 2

Section  A Section  A 
in file 1

Section  A 
in file 2

→

Common
Link

file 2
file 1 

Linked Section Bfile 1

+
Section B

file 2

Section B Section B→



lnk32R MANUAL - 22

Chapter 4 Section

4.5 Locating Methods (Specified by location attribute)

The linker locates sections either in absolute format or relative format according

to the location attributes of individual sections (Table 4.4).

Table 4.4  Location Attribute and Locating Method

Location Attribute Locating Method

LOCATE=absolute address Absolute format

ALIGN=alignment Relocatable format

The following describe the locating methods :

• Absolute format (LOCATE = absolute address)

Sections whose location attributes are specified as absolute

address (LOCATE = absolute address) in object modules have the

defined location addresses.  The linker cannot change these

addresses.

• Relocatable format (ALIGN = alignment)

Sections whose location attributes are specified as alignment

(ALIGN = alignment) in an object module have the relocatable

relative addresses.  The actual address can be specified by the

linker command option(s).

The start address of a section is adjusted so that its value is a

multiple of the alignment value.  The alignment is an address

adjusting value used when allocating data, etc., to memory

locations.  For example, a section defined as ALIGN = 4 is always

given a start address which is a multiple of 4.

+ +

file 1 file 2 file 3

file 1

file 2

file 3

0
1
2
3

4
5
6
7

8

3-byte Size
Section 

ALIGN = 1

2-byte Size
Section 

ALIGN = 2

1-byte Size
Section 

ALIGN = 4

Figure 4.4  Alignment Process



lnk32R MANUAL - 23

Chapter 5 For ROM Writing

Chapter 5

For ROM Writing

5.1 Processing Sections for ROM Writing

The following describe how to process sections to write the C program into

ROM.  The C compiler automatically defines the following 4 sections.

Table 5.1  C Compiler Output Sections

Section name Section Location Description

attribute attribute

P CODE ALIGN=4 Program code area

C DATA ALIGN=4 Constant data (variable declared

const) area

D DATA ALIGN=4 Data area with initial value (global

variable area having initial value)

B DATA ALIGN=4 Data area without initial value (global

variable area having no initial value)

To write the C program into ROM, the following specifications and processes

are required :

• Specification of the location(s) area of the section(s) (by the linker)

• Specification of the output area of the D section content (by the linker)

• Initialization of the D and B section contents (in start-up file)

To write into ROM, use the load module converter to convert the load module

generated by the linker into Motorola S format (see Part 5 “ Load Module

Converter lmc32R” ).

5.1.1 Specifying Location Area of Section (by the linker)

When generating a load module, specify the location of memory in which the

contents of each section is to be stored, that is ROM area (read only) or RAM

area (read/write).  To specify the location area, use the -SEC or -LOC option.



lnk32R MANUAL - 24

Chapter 5 For ROM Writing

• Section P and C Store into ROM area since these sections are left as

they are during program run.

• Section D and B Store into RAM since the contents will be updated by

the program.

5.1.2 Specifying Output Area of Data (by the linker)

When creating a load module, in general, the contents (program code and data)

of each section are output to the specified area.  Because the contents of the D

section are the initial values which are used to initialize the D section , they

should be output to the ROM area.  To do so, use the linker’s “ initial data

elimination function”  and “ initial data extraction function”  (see 5.2).

5.1.3 Initializing the Data Sections (in Start-up File)

Data sections to be stored in the RAM area, such as the contents of sections D

and B must be initialized before they are used by running the C program.

These sections are initialized in the following way and normally by the

invoking program (to be executed first to perform initialization) :

• Section D The initial value of section D written in the ROM area

by the Initial data extraction function is transferred to

the section D area reserved in the RAM area.

• Section B Area of section B reserved in RAM area is cleared to

zero (all bytes in both areas are reset to zero).

D

 ROM_D

100016

800016

RAM Area

ROM Area

B

C

PTransfer the 
Initial Data for 
the Section D

Clear All 
to Zero

~~ ~~

Figure 5.1  Initialization of a Data Section

The next page is followed.



lnk32R MANUAL - 25

Chapter 5 For ROM Writing

For easier transfer of data for initialization, use the reserved labels generated by

the linker (see 5.2.3).

||||| Note |||||

The invoking program of a built-in application additionally needs processor

settings and library initialization.  For further information on the invoking pro-

gram, see the “M3T-CC32R V.3.10 User's Manual < C Compiler >   7.3 Pro-

gramming the Start-up Program“.

5.2 Committing Applications to ROM

5.2.1 Initial Data Elimination

This function inhibits the contents of the section from being output to the
section area reserved for it in memory.

When the location area is specified by the -SEC option, the linker, as a default
process, reserves the area for that section in the specified location area, and
outputs the contents (code and data) of that section to the reserved area.  For
example, if

-SEC P=8000

is specified, an area with size equal to that of the P section is reserved in the
section P area with the starting address 800016.  The contents of section P are
automatically transferred to this reserved area.

However, sections such as D and B, which are located in the RAM area and are
to be initialized before the program run requires reservation of its area which
will not require initial data to be loaded.  For these sections, apply the initial
data elimination function.

To keep the contents of a section from being output by using the initial data
elimination feature, place the symbol @ before the section name when
specifying the location area of the section by using the -SEC option.  By this
protection measure, none of data contained in that section will be output.  The
contents in the area for that section becomes unknown.  For example, if

-SEC @D=1000,B,P=8000

is specified, an area of D section whose size is equal to that of section D is
reserved with the starting address at 100016.  Nothing is output to this area
(contents are unknown).  The section B output by the C compiler contains no
initial data, so that the initial data elimination is not required (no need to use
the @ symbol when specifying with the -SEC option).

When it is necessary to output the output-inhibited initial data to an area

(normally, to the ROM area), use the initial data extraction function (see 5.2.2).



lnk32R MANUAL - 26

Chapter 5 For ROM Writing

5.2.2 Initial Data Extraction

The initial data extraction feature is to be used in conjunction with the initial

data elimination feature.  When it is necessary to output the contents of a

section previously inhibited from being output, use the initial data extraction to

output the contents to the specified area (normally the ROM area).

To write into ROM a program containing a section like section D whose section

area is to be located in RAM and whose initial data is to be loaded in ROM, the

initial data first must be transferred to the ROM area before writing the load

module into ROM.  By using the linker’s initial data extraction function, this

transferring process can be performed during the generation of the load

module.  This procedure simplifies the procedure necessary to write the

program into ROM.

To output the contents of a section to the specified area by using the initial data

extraction, use one of the following methods :

• To specify by using the -SEC option :

Use this option when it is necessary to output the section whose

initial data is protected by the initial data elimination function.

This option deletes the @ symbol and specifies the destination

area.

Example : -SEC @D=1000,B,P=8000,C,D

This function is not necessary for the B section defined by the C

compiler since the B section contains no initial data.

• To specify by using the -LOC option:

Specify the start address of the RAM area and the ROM area.

Example: -LOC 1000,8000

The -LOC option is effective only when the program is composed

of sections which are automatically defined by the C compiler

and it is automatically used together with the initial data

elimination and initial data extraction functions.

The area for the data extracted by the initial data extraction is automatically

given the name, ROM_section name.  This area can be handled in the same as a

normal section.  For example, the area in which the initial data extracted from

the D section is to be stored is called ROM_D section.

The initial data extraction function can be applied to the sections processed by

the linker.  For example, this function can be used by an application which

sends sections P and C from the low speed ROM to the high speed RAM.



lnk32R MANUAL - 27

Chapter 5 For ROM Writing

The following examples show an application of the initial data extraction :

Example : % lnk32R -SEC @D=1000,B,P=8000,C,D file1.mo

file2.mo

or

% lnk32R -LOC 1000,8000 file1.mo file2.mo

Both of the above examples result in the same output.

In the area starting with address 100016 (RAM area), the D and B sections whose

initial data are not output are located.  In the area starting with address 800016

(ROM area), sections P, C and ROM_D whose initial data are output are

located.  To the ROM_D section, the initial data for the D section is output.

Again, in this example, the start address of the RAM area is 100016, and that of

the ROM area is 800016.

D

 ROM_D

100016

800016

RAM Area

ROM Area

B

C

P

~~ ~~

Figure 5.2  Result of initial data extraction

5.2.3 Reserved Labels Generation

The linker automatically generates the labels which indicate the start address

and end address of each section.  The label indicating the beginning of a section

has a name consisting of the symbol _ _TOP_ followed by the section name and

the label indicating the end of a section (the address following the last byte of

the section) has a name consisting of symbol _ _END_ followed by the section

name.  For example, the start address of section D is denoted as _ _TOP_D, and

the end address is  _ _END_D (see Figure 5.3).

The next page is followed.



lnk32R MANUAL - 28

Chapter 5 For ROM Writing

Section  D

_ _TOP_D

_ _END_D

Figure 1.10  Generation of Reserved Labels (Section D)

By using reserve labels, the initial data transfer operation (equivalent of

initializing section D) and the zero-clear operation (equivalent of initializing

section B) can be described in C language.  Reserved labels are automatically

output to the sections handled by the linker.



lnk32R MANUAL - 29

Chapter 6 Messages from the  Linker

Chapter 6

Messages from the  Linker

6.1 Getting Execution Result of the Linker

The execution result of the linker can be judged by checking the message(s) and

exit status code.

6.1.1 Message Format

Upon encountering an error condition, the linker outputs the message describing

the error status to the standard error output, in the following format  :

• Syntax
tool_name: input_information: message_type: message

Note) “input_information :” is output only when necessary.

• Pattern lnk32R: file_name: message_type: message

lnk32R: <command_line>: message_type message

lnk32R: message_type: message

Note) Underlined items are input_information (no the underline is output).

• Example lnk32R: error: cannot open file "abc.mo"

Tool name Message type Message

6.1.2 Message Types

Messages are classified into three types according to the effect.

Table 6.1  Message Types

Message Type Operation Upon Error

Warning Outputs a warning message and continues process.

Error Outputs an error message and stops current process.

Fatal error Outputs an error message and stops current process.



lnk32R MANUAL - 30

Chapter 6 Messages from the  Linker

For details of the messages, see 6.2 “ Message Lists” .

6.1.3 Exit Status

Upon completion of the execution, the linker returns the exit status  (value

showing the execution result) as shown in Table 1.11.

Table 6.2  Exit Status

Exit Status Result

0 Complete successfully or warning occurs

1 Error occurs



lnk32R MANUAL - 31

Chapter 6 Messages from the  Linker

6.2 Message Lists

6.2.1 Warning Messages

Table 6.3  Warning Messages

Message Meaning→→→→→Linker Action

external symbol not defined: “symbol”

An undefined external symbol is referenced (with -r option).

→The external reference is ignored and regarded as 0.

option option specified more than once, last setting taken

The same option (involving parameters) is specified more than once.

→The parameters of the last option are made effective.

6.2.2 Error Messages

Table 6.4  Error Messages (1/3)

Message Description→→→→→Action

cannot close file “filename”

The file cannot be closed.

→Check the disk space.

cannot create file “filename”

The file file_name cannot be created.

→Check the file name and disk space.

cannot execute command_name

The command is not found.

→Check the path of the command. Set the environment variable M32RBIN.

cannot open file “filename”

The file is not found.

→Check the file name.

duplicate symbol “symbol”

Same global symbol is defined more than once.

→Check the global symbols for duplication.



lnk32R MANUAL - 32

Chapter 6 Messages from the  Linker

Table 6.4  Error Messages (2/3)

Message Description→→→→→Action

external symbol not defined: “symbol”

Undefined global symbol is referenced.

→Give a definition to the undefined symbol.

illegal file format: ID=number

The format of the specified file is illegal.

→Check the format of the file.

illegal option “option”

An illegal option is specified.

→Specify a correct option.

illegal option parameter “parameter”

An illegal option parameter is specified.

→Specify a correct option parameter.

illegal section name “section_name”

An illegal section name is specified.

→Specify a correct section name.

illegal section start address: address

The section is assigned illegal start address.

→Specify the correct section start address.

illegal symbol name “symbol”

An illegal symbol name is specified.

→Specify a correct symbol name.

multiple entry points exist: address

More than one module having the execution start address is specified.

→Select only one module among modules having the execution start address.

option option and option cannot be specified together

The options specified must be specified independently.

→Select only one of the options.

option option requires parameter

The option option has no specified parameter which it must have.

→Specify the parameter.



lnk32R MANUAL - 33

Chapter 6 Messages from the  Linker

Table 6.4  Error Messages (3/3)

Message Description→→→→→Action

relocation size overflow: “section_name”, offset, “Symbol name”

The result of operation of undefined symbol exceeds the size specified by the user.

•Section name : Name of section causing the overflow.

•Offset value : The portion at which the overflow occurs (offset value from the top

  of the section).

•Symbol name : The name of the symbol, if any.

→Increase the size definition.

section address misaligned: “section_name”

Section start address does not match the boundary alignment value.

→Check the specified address and the boundary alignment value.

section attribute inconsistent: “section_name”

The sections have the same section name but different attribute.

→Use the same attribute or change one of the section names.

section address overflow: “section_name”

The number of addresses assigned to the section exceeds the allowable range

(0000000016-FFFFFFFF16).

→Reconfigure the program.

section form inconsistent: “section_name”

The sections have the same section name but they are of different type.

→Use the same type sections or change either of the section names.

section not found: “section_name”

The specified section is not found.

→Check the section name.

section overlap: “section_name”

The sections overlap.

→Change the location address of either section.

unsupported module type: version number

The type of the module is not supported.

→Check to see if the module is correctly generated.



lnk32R MANUAL - 34

Chapter 6 Messages from the  Linker

6.2.3 Fatal Error Messages

Table 6.5  Fatal Error Messages

Message Description→→→→→Action

file seek error

Cannot seek the file.

→Check the content of the disk.

internal error

An internal error occurs.

→Please contact us immediately.

out of disk space

Cannot output to the file.

→Check the disk space.

out of memory

The capacity of memory is not enough for the linker to operate.

→Expand memory space or change the program.



Map Generator map32R

Part 3



map32R MANUAL - 1

Chapter 1 Overview of the Map Generator map32R

Chapter 1

Overview of the Map Generator map32R

1.1 Overview

The map generator map32R is included in the cross tool kit M3T-CC32R.

The map generator generates a link map from an object module, an absolute

load module, or a relocatable load module which are generated by the C

compiler, assembler or linker.

”Link map” is a list which consists of “map list” and “global symbol list ”.  A

map list lists sections and their information.  A global symbol list shows global

(external) symbols and their information in alphabetical order or from lowest

address to highest.

“The Access Control File“contains the following information, which is re-

quired in order to use the base register function(see “M3T-CC32R V.x.xx User's

Manual < C Compiler >   Appendix A.1   Base Register Function“.):

(1) Base address for 16-bit register relative indirect addressing

(2) Register storing the base address

(3) Objects to which the base register function is applied (variables

and structures)



map32R MANUAL - 2

Chapter 2 Invoke the Map Generator

Chapter 2

Invoke the Map Generator

2.1 How to Invoke the Map Generator

2.1.1 Invoking Procedure

To invoke the map generator, set the environment variables (see 2.1.2), enter the

“map32R” command according to the command line rules and execute it (see

2.1.3).

2.1.2 Setting Environment Variables

Set the valid directory for the environment variables M32RBIN, M32RINC,

M32RLIB and M32RTMP (This step may be skipped since these variables are

normally set during installation.).  For the setting procedure, refer to the “M3T-

CC32R Cross Tool-Kit V.x.xx Release x Release Note“.  If you do not set them,

the default directories are selected automatically.

Table 2.1  Environment Variables

Environment Variable Default Directory

M32RBIN /usr/local/M32R/bin

M32RINC /usr/local/M32R/include

M32RLIB /usr/local/M32R/lib

M32RTMP /tmp



map32R MANUAL - 3

Chapter 2 Invoke the Map Generator

2.1.3 Command Line Format

The following shows the format and rule for the map generator's invocation

command line.  For further information on the command options and input and

output files, refer to 2.1.4 and the subsequent sections.

map32R [-o output_filename] [-V] [-s] [-n] [-Rn=Address]

[-Pd] [-Pn[=filename]] [-Ps[=filename]]

[-c] [-c16]

[-debug_no] [-debug_sort_name] [-debug_sort_addr]

[-debug_sort_attr] [-debug_no_func] [-debug_no_label]

[-debug_no_var] [-debug_no_global] [-debug_no_local]

[object_filename] <RET>

where :

• Without [ ] : Indispensable

• In [ ] : Optional

• Prefixed by - : A command option (see 2.3)

• <RET> : Enter the return key

Figure 2.1  map32R Command Line Format

• Write the command line in the format shown in Figure 2.1.  The items

(command name, option, input file name) must be separated from the

adjacent items by at least one space character.  Press the return key and the

map generator starts execution.

• Option and its parameter must be separated by a space character.  If

conflicting options are used together, the last specified option has the

priority.

• Specify only one input file name for object_filename. If the input file name is

omitted, am.out (in the case of the EWS version, a.mout is used instead of

am.out) is automatically selected as the input file name.

• The input files are recognized as object files (object module, load module)

regardless of their dot extension.

||||| Note |||||

If any name (module name, section name or symbol name) is composed of

more than 20 characters, it can cause disorder in the map list layout.



map32R MANUAL - 4

Chapter 2 Invoke the Map Generator

2.1.4 Input File Conditions

The Table 2.2 shows the conditions required for input files to be processed by

the map generator.  Do not input a file which cannot meet these conditions.

Table 2.2  Input File Conditions

Item Conditions

Valid input files Object module file(s)

Relocatable load module file(s)

Absolute load module file(s)

Maximum number of names Section names : Up to 65535/file

Symbol names : Up to 65535/file

Module names : Up to 65535/file

The number may be limited by the capacity of

the development environment system memory.

2.1.5 Output File Naming

The name of the output file is the name specified by the -o option.  If it is not

specified, it is output to the standard output.



map32R MANUAL - 5

Chapter 2 Invoke the Map Generator

2.2 Command Options

Table 2.3 shows the functions of the command options for the map generator .

Table 2.3(1/2)  Command Options for the Map Generator

Option Description

-n Outputs the global symbol list in the order of the

addresses following the map list.

-o output_filename Outputs a link map (a map list and a global symbol

list) to a file named output_filename (link map file).  If

this option is omitted, a link map is output to the

standard output.

-s Outputs the global symbol list in alphabetical order

following the map list.

-V Outputs the invoking message to the standard error

output without performing any process.

-Rn=Address Specifies base register (n=11 to 13) and the base

address (hex), and generates the Access Control File.

(No link map is generated.)

-Pd Does not display the total number of data symbols

and the number of hit symbols (those that are

determined as being able to use the base registers)

-Pn [=filename] Displays a list of symbols not covered by the base

registers (same format as -n option). If "=filename" is

specified after the option, the result is output to that

file. If not specified, the result is output to standard

output.

-Ps [=filename] Outputs a sample startup program based on the

structure of the specified base registers. If "=filename"

is specified after the option, the result is output to that

file. If not specified, the result is output to standard

output.

-c A csv symbol map is output in the single-address

format.

This map is output to the map file if the -o option

exists, or to the standard output device if the -o option

does not exist.

When -c is specified, no link map files are output.



map32R MANUAL - 6

Chapter 2 Invoke the Map Generator

Option Description

-c16 A csv symbol map is output in the 16-address format.

This map is output to the map file if the -o option

exists, or to the standard output device if the -o option

does not exist.

When -c16 is specified, no link map files are output.

-debug_no Does not output the DEBUG SOURCE LIST and

DEBUG SYMBOL LIST.

-debug_sort_name Outputs the DEBUG SYMBOL LIST in order the

symbol names.

-debug_sort_addr Outputs the DEBUG SYMBOL LIST in order the

symbol address.

-debug_sort_attr Outputs the DEBUG SYMBOL LIST in order the

symbol attributes.

-debug_no_func Does not output the function names to the DEBUG

SYMBOL LIST.

-debug_no_label Does not output the assembly labels to the DEBUG

SYMBOL LIST.

-debug_no_var Does not output the C source variables to the DEBUG

SYMBOL LIST.

-debug_no_global Does not output the global symbols to the DEBUG

SYMBOL LIST.

-debug_no_local Does not output the local symbols to the DEBUG

SYMBOL LIST.

Table 2.3(2/2)  Command Options for the Map Generator



map32R MANUAL - 7

Chapter 2 Invoke the Map Generator

2.3 Command Line Examples

The following are examples of the map generator invoking procedure (% is

prompt, <RET> is return key) :

• Example 1 :

% map32R -o sample.lst sample.abs <RET>

Outputs the map list of absolute load module sample.abs and

global symbol list to the sample.lst.

• Example 2 :

% map32R <RET>

Outputs the map list of the load module am.out (in the case of

the EWS version, a.mout is used instead of am.out) and global

symbol list to the standard output.

• Example 3 :

% map32R -R13=F78000 -R12=F88000 -R11=FC8000 -o

sample.acc -Ps=startsmp.ms sample.abs<RET>

This operation is for making files that utilize base registration

function from load module "sample.abs".

In this example, combination list of base registers and addresses

are following, access control file is made as "sample.acc",

a program for initializing base registers is made as

"startsmp.ms",and excluded (this means out of base registers)

symbols are output to standard output.

       0x00F78000 as R13

       0x00F88000 as R12

       0x00FC8000 as R11



map32R MANUAL - 8

Chapter 3 Link Map File

Chapter 3

Link Map File

3.1 Contents of Link Map File

“Map list” and “global symbol list” are output to a link map as shown in Figure

3.1 :

Input file:  filename

Module type: relocatable load module

MAP LIST

SECTION    TYPE JOINT  MODULE      ATR. START     LENGTH    ALIGN.

P          CODE NOSHR  test1       ABS  00000000  00000518       4

                       test3       ABS  00000518  00000718       4

D          DATA SHR    test2       REL  00000718  0000003f       4

B          DATA DUMMY  test3       REL  00000758  00000128       4

GLOBAL SYMBOL LIST

SYMBOL     ADDR.      TYPE   SEC.

_func1     00000012   DAT    P

LABEL1     00000d02   DAT    D

LABEL2     00000e12   DAT    D

SYMBOL1    000000ff   EQU    B

SYMBOL2    00000001   EQU    B

Figure 3.1  Example of a Link Map

A map list and a global symbol list are described in 3.2 and 3.3, respectively.



map32R MANUAL - 9

Chapter 3 Link Map File

3.2 Contents of Map List
The map list shows the information on section location in an input file.

Descriptions in the list are as follows :

Input file:  filename   (1)

Module type: relocatable load module     (2)

MAP LIST

SECTION    TYPE JOINT  MODULE      ATR. START     LENGTH    ALIGN.

P          CODE NOSHR  test1       ABS  00000000  00000518       4

                       test3       ABS  00000518  00000718       4

D          DATA SHR    test2       REL  00000718  0000003f       4

B          DATA DUMMY  test3       REL  00000758  00000128       4

(3) (4) (5) (6) (7) (8) (9) (10)

(1) Input file (Input file name)

(2) Module type (Input file attribute)

object module : Object module

relocatable load module : Relocatable load module

absolute load module : Absolute load module

(3) SECTION (Section name)

(4) TYPE (Section attribute)

DATA : Data

CODE : Code

DUMMY : Dummy

STACK : Stack

Character string “XXXXX” : Attribute unknown

(5) JOINT (Linking method)

SHR : Common link

NOSHR : Simple link

DUMMY : Dummy link

Character string “XXXXX” : Linking method unknown

(6) MODULE (Module name)

(7) ATR. (Location attribute)

REL : Relocatable format

ABS : Absolute format

Character string “XXX” : Attribute unknown

(8) START (Start address (hex.) of object)

(9) LENGTH (Address size (hex.) of object)

(10) ALIGN. (Location counter adjustment value (alignment) during linking)



map32R MANUAL - 10

Chapter 3 Link Map File

3.3 Contents of Global Symbol List
The global symbol list shows the name of the global systems and their value

and will be output only when the command option -s or -n is specified.  The

first portion of the list outputs label, name of function, name of variable (TYPE

= DAT) and the second portion outputs symbol (TYPE = EQU).  If the global

symbol is not present, a string, “no symbol”, is output.

Symbols are output in the alphabetical order of the symbol name if the -s option

is specified, and in the order of the symbol value when the -n option is

specified.  Symbol (TYPE = EQU) area is always in alphabetic order.

The descriptions in the global symbol list are as follows :

GLOBAL SYMBOL LIST

SYMBOL     ADDR.      TYPE   SEC.

_func1     00000012   DAT    P

LABEL1     00000d02   DAT    D

LABEL2     00000e12   DAT    D

SYMBOL1    000000ff   EQU    B

SYMBOL2    00000001   EQU    B

(1) (2) (3) (4)

(1) SYMBOL (External symbol name)

(2) ADDR. (Symbol value)

If the attribute of the input file is relative, the value of symbol is not

guaranteed.

(3) TYPE (Symbol type)

DAT : A function name, a variable name, or a label

EQU : A symbol

(4) SEC. (Name of section having defined symbol)



map32R MANUAL - 11

Chapter 3 Link Map File

3.3 About extended output forms of map32R

When the debugging information effective load module are inputted to

map32R, this tool outputs to the debug symbol list to the map file.

● Example:

   [Source file: sample1.c]

1
2 int global;
3
4 void foo1 (int arg)
5 {
6  static int static_local = 10;
7
8  for (global = 0; global < 10; global++)
9     static_local += glboal;

10 }

   [Source file: sample2.c]

1
2 static int static_global;
3
4 void foo2( int arg )
5 {
6   int local;
7
8   for (static_global=0; static_global < 10; static_global++)
9      local += static_global;

10 }

   [Command line:]

% cc32R -o sample.abs -SEC P=0FC0000,C,D=8000,B sample1.c sample2.c

% map32R -o sample.map sample.abs

The next page is followed.



map32R MANUAL - 12

Chapter 3 Link Map File

   [Generated map file: sample.map]

Input file:  filename

Module type: relocatable load module

Input file : sample.abs

Module type : absolute load module

MAP LIST

SECTION TYPE  JOINT MODULE ATR. START     LENGTH    ALIGN.

D DATA  NOSHR sample1 ABS  00008000  00000004       4

B DATA  NOSHR sample1 ABS  00008004  00000004       4

 sample2 ABS  00008008  00000004       4

P CODE  NOSHR sample1 ABS  00fc0000  00000044       4

 sample2 ABS  00fc0044  00000040       4

DEBUG SOURCE LIST

[1] sample1.c

[2] sample2.c

DEBUG SYMBOL LIST

SYMBOL ATTR. ADDR. SIZE SOURCE

static_local VAR|LOCAL 0x00008000 4 [1] 6

global VAR|GLOBAL 0x00008004 4 [1] 2

static_global VAR|LOCAL 0x00008008 4 [2] 2

foo1 FUN|GLOBAL 0x00FC0000 0 [1] 4

foo2 FUN|GLOBAL 0x00FC0044 0 [2] 4

Figure 3.2 Example:  extended output forms of map32R

   [Meaning of each items]

(1) DEBUG SOURCE LIST

This is a list of the source files that the load module file includes.

The [number] field means the identity number of a source file, that

specifies a source file at the DEBUG SYMBOL LIST.

(2) DEBUG SYMBOL LIST

This is a list of the debug symbols that the load module file

includes.

This list shows the symbol of the following attributes.

Attributes Notation at ATTR

Field Function Names FUN

Assembly Labels LAB

Variables of C source VAR

External Symbols GLOBAL

Local Symbols LOCAL



map32R MANUAL - 13

Chapter 3 Link Map File

Also, the following informations of each symbol are displayed, to

the fields of DEBUG SYMBOL LIST.

SYMBOL Symbol names

ATTR. Attributes

ADDR. Addresses

SIZE Size of the variables

SOURCE Source file identity numbers

(on DEBUG SOURCE LIST) and

 line numbers.

   [Options]

-debug_no Does not output the DEBUG SOURCE LIST and

DEBUG SYMBOL LIST.

-debug_sort_name Outputs the DEBUG SYMBOL LIST in order the

symbol names.

-debug_sort_addr Outputs the DEBUG SYMBOL LIST in order the

symbol address.

-debug_sort_attr Outputs the DEBUG SYMBOL LIST in order the

symbol attributes.

-debug_no_func Does not output the function names to the

DEBUG SYMBOL LIST.

-debug_no_label Does not output the assembly labels to the

DEBUG SYMBOL LIST.

-debug_no_var Does not output the C source variables to the

DEBUG SYMBOL LIST.

-debug_no_global Does not output the global symbols to the

DEBUG SYMBOL LIST.

-debug_no_local Does not output the local symbols to the

DEBUG SYMBOL LIST.



map32R MANUAL - 14

Chapter 4 The Access Control File Generation Function

Chapter 4

The Access Control File Generation Function
map32R is able to generate the Access Control File from the symbol information

in the load module file. See "M3T-CC32R V.x.xx User's Manual < C Compiler >

A.1.7 The Access Control File".

The generated the Access Control File can be specified in the cc32R -access

option.

4.1 Details of the Access Control File Generation Function

● When the "-Rn=Address" option is specified, the Access Control File is

generated from the data in the load module file. This Access Control File can

be input in the cc32R -access option. (Note that no map is output.)

● The name of the Access Control File is specified using "-o filename" (if

omitted, output is directed to standard output).

● The three types of base registers R11 to R13 can be specified. If the same

register is specified two or more times, the last specification is used.

● If there is an overlapping of the areas indicated by the base registers, a

warning similar to the following is output:

Base Register Area is Overlapped: R13 and R12.

● map32R lists the base register definitions as well as the data symbols that can

be covered by those base registers as variable names after deleting the

underbar prefix (_).

[Data symbol conditions:]

Any of the following is accepted as a data symbol:

(1) If it does not belong to any section;

(2) Constant labels defined by .EQU;

(3) Belonging to a section without the attribute 'code', and without

the name 'C'.

● By default, the total number of data symbols and the number of hit symbols

are displayed after processing.

● The -Pd, -Ps, and -Pn options are ignored unless specified along with -Rn= ..."

● The setup program output by -Ps consists of an assembler subroutine named

$_Set_Regbase. If this program is called from the startup routine using either

BL or JL instruction, the required base registers can be set up.



map32R MANUAL - 15

Chapter 4 The Access Control File Generation Function

● You can select lines with the comment "Must" from the program output using

-Ps.

4.2 Example of Using the Access Control File Generation Function

This operation is for making files that utilize base registration

function from load module "sample.abs".

In this example, combination list of base registers and addresses

are following, access control file is made as "sample.acc",

a program for initializing base registers is made as "startsmp.ms",and excluded

(this means out of base registers) symbols are output to standard output.

0x00F78000 as R13

0x00F88000 as R12

0x00FC8000 as R11

[Command line specification]

% map32R -R13=F78000 -R12=F88000 -R11=FC8000 -o sample.acc -

Ps=startsmp.ms sample.abs<RET>

[Example screen display:]

Count of Data Symbol(s): 10

Data Symbol(s) that hit: 6

(In this example display, there are 10 data symbols and six of these are in the

ranges of register relative indirect addressing from R13 to R11, and are

therefore output to the Access Control File.)

[Example output of The Access Control File sample.acc]

@R13 0xF78000
var1
var2
var3

@R12  0xF88000
var4
var5

@R11  0xFC8000

var6

The next page is followed.



map32R MANUAL - 16

Chapter 4 The Access Control File Generation Function

[Example output of base register setting program sample startsmp.ms]

.SECTION P,CODE,ALIGN=4

.EXPORT $_Set_Regbase
$_Set_Regbase:

SETH R13,#HIGH(__REL_BASE13) ; Must
OR3 R13,R13,#LOW(__REL_BASE13) ; Must
SETH R12,#HIGH(__REL_BASE12) ; Must
OR3 R12,R12,#LOW(__REL_BASE12) ; Must
SETH R11,#HIGH(__REL_BASE11) ; Must
OR3 R11,R11,#LOW(__REL_BASE11) ; Must
JMP R14

.EXPORT __REL_BASE13 ; Must

.EXPORT __REL_BASE12 ; Must

.EXPORT __REL_BASE11 ; Must
__REL_BASE13: .EQU 0x00F78000 ; Must
__REL_BASE12: .EQU 0x00F88000 ; Must
__REL_BASE11: .EQU 0x00FC8000 ; Must

4.3 Notes

● Access control files are created by using debugging information. Even when

access control files are created from a load module, no symbol names will be

output unless the load module has debugging information.

● Base symbols (__REL_BASExx, etc.) are not included in the data symbols.



map32R MANUAL - 17

Chapter 5 Csv symbol map file output

Chapter 5

Csv symbol map file output
map32R is able to generate the csv symbol map file from the symbol information

in the load module file.

A csv symbol map is produced in tabular form, showing addresses in the first

column and symbols in the second and subsequent columns. Because the map

file is in csv format, it can be input to Microsoft Excel or other spreadsheet

software.

5.1 Details of the Csv symbol map file

5.1.1 Generation of the csv symbol map file

If the option -c or -c16 is specified in map32R, a map of addresses and symbols

(variable or object and function names) is generated in csv format.

When you specify the -c option, select the "single-address format" that indicates

one symbol in one line.

This map is output to the map file if the -o option exists, or to the standard

output device if the -o option does not exist.

When -c is specified, no link map files are output.

When you specify the -c16 option, select the "16-address format" that indicates

the symbols belonging to a 16-byte area in one line.

This map is output to the map file if the -o option exists, or to the standard

output device if the -o option does not exist.

When -c16 is specified, no link map files are output.

5.1.2 Form of the csv symbol map file

[Indicated content of the single-address format]

* The first line indicates the heading "Address, Symbol".

* Indicated in order of addresses that are assigned symbols beginning with

the least significant (smallest) address.

* Indicates one symbol in one line.

* Indicates addresses in the first column and symbols in the second column.

* The address moved forward by a size equal to the indicated symbols is the

address for the next line.

* If there are contiguous addresses that are not assigned symbols, only one

line of a colon (:) is output collectively.



map32R MANUAL - 18

Chapter 5 Csv symbol map file output

[Indicated content of the 16-address format]

* First indicates the headline "Address, 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F".

* Each line indicates the beginning address after being aligned to a multiple of

16.

* Indicated in order of addresses that are assigned symbols beginning with the

least significant (smallest) address.

* Indicates addresses in the first column and symbols located at +0x0 to +0xF

from that address in the second to the 17th columns.

* The symbol is suffixed by size notation (parenthesized decimal).

* The next line starts from an address moved forward by 16 bytes. However, if

a symbol in sizes overlapping multiple lines is to be indicated, only one line

of a colon (:) is output, and the next line starts from an address moved

forward by a size equal to the symbol.

* If there are contiguous addresses that are not assigned symbols, only one

line of a colon (:) is output collectively.

[Symbol notation]
In csv symbol maps, a symbol is indicated in the form shown below.

Table 5.1 Symbol Notation in csv Symbol Maps

Global variables symbol

Variables that are not declared as static

Intrafile static variables File_name@symbol

static functions

Intrafunction static variables File_name@function_ name@symbol

5.2 Example of output the Csv symbol map file

5.2.1 Example of “-c” option

[Command line]

map32R -o sample.csv -c sample.abs

[Content of sample.csv]

Address,Symbol

0x00008000,sample1.c@foo1@static_local

0x00008004,global

0x00008008,sample2.c@static_global

0x0000800C,

:

0x00FC0000,foo1

0x00FC0044,foo2

0x00FC0084,



map32R MANUAL - 19

Chapter 5 Csv symbol map file output

5.2.2 Example of “-c16” option

[Command line]

map32R -o sample.csv -c16 sample.abs

[Content of sample.csv]

Address,0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

0x00008000,sample1.c@foo1@static_local(4),,,,

global(4),,,,sample2.c@static_global(4),,,,,,,

:

0x00FC0000,foo1(68),,,,,,,,,,,,,,,

:

0x00FC0040,,,,,foo2(64),,,,,,,,,,,

:

0x00FC0080,,,,,,,,,,,,,,,,

:

5.3 Notes

●  Csv symbol map fileare created by using debugging information. Even when

csv symbol map files are created from a load module, no symbol names will be

output unless the load module has debugging information.



map32R MANUAL - 20

Chapter 6 Messages from the Map Generator

Chapter 6

Messages from the Map Generator

6.1 Getting Execution Result of the Map Generator

The execution result of the map generator can be judged by checking the

message(s) and exit status code.

6.1.1 Message Format

Upon encountering an error condition, the map generator outputs the message

describing the error status to the standard error output, in the following format  :

• Syntax
tool_name: input_information: message_type: message

Note) “input_information :” is output only when necessary.

• Pattern map32R: file_name: message_type: message

map32R: <command_line>: message_type message

map32R: message type: message

Note) Underlined items are input_information (no the underline is output).

• Example map32R: error: cannot open file "abc.mo"

Tool name   Message type    Message

6.1.2 Message Types

Messages are classified into three types according to the effect.

Table 6.1  Message Types

Message Type Operation Upon Error

Error Outputs an error message and stops current process.

Fatal error Outputs an error message and stops current process.

For details of the messages, see 6.2 “Message Lists”.



map32R MANUAL - 21

Chapter 6 Messages from the Map Generator

6.1.3 Exit Status

Upon completion of the execution, the map generator returns the exit status

(value showing the execution result) as shown in Table 6.2 .

Table 6.2  Exit Status

Exit Status Result

0 Complete successfully or warning occurs

1 Error occurs

6.2 Message Lists

6.2.1 Error Messages

Table 6.3  Error Messages

Message Description→→→→→Action

cannot close file “filename”

The file filename cannot be closed.

→Check the disk space.

cannot create file “filename”

The file filename cannot be created.

→Check the disk space. Check the directory permission.

cannot open file “filename”

The file filename is not found.

→Check the file name.

illegal file format

The format of the specified file is illegal.

→Check the content of the file.

illegal option “option”

The specified option is illegal.

→Specify the correct option.

too many file names given

More than one input files are specified.

→Specify only one file.



map32R MANUAL - 22

Chapter 6 Messages from the Map Generator

6.2.2 Fatal Error Messages

Table 6.4  Fatal Error Massages

Message Description→→→→→Action

internal error

An internal error occurs.

→Please contact us immediately.

out of memory

There is not enough memory.

→Check available of memory.



Librarian lib32R

Part 4



lib32R MANUAL - 1

Chapter 1 Overview of the Librarian lib32R

Chapter 1

Overview of the Librarian lib32R

1.1 Overview

The librarian lib32R is included in the cross tool kit M3T-CC32R and has the

following functions :

• Generating a library

Generates a library from two or more object modules or

relocatable modules.  A library can contain up to 32767

modulesNote).

• Editing a library

A module can be added to or deleted from the existing library or

a module can be replaced.  Any module can be extracted from a

library and returned back to the pre-registered file (object

module).

• Outputting library information (librarian list)

Outputs the library information (module information and global

symbol information, etc.) as a librarian list (when the -l option is

specified).  Also outputs information on the specified module to

the standard output (when the -t option is specified).

1.2 Functions

• Up to 32767 modules can be registered in a library.

• Effective to improve module control

Two or more modules can be combined into a single library so

that these modules can be easily managed.

• Effective to improve the linking process

By specifying object modules  that are specified during linking as

a library the number of file operations can be decreased.  In this

way, the linking process can be effectively performed.

Note) A module is a component of a library.  A library module is an object module or a load module registered in that library.



lib32R MANUAL - 2

Chapter 1 Overview of the Librarian lib32R

• Can be invoked from a command file

The parameters (option specification and input file specification)

of the invoking command lib32R can be specified by using a

command file (see 2.1.3.2).



lib32R MANUAL - 3

Chapter 2 Invoke the Librarian

Chapter 2

Invoke the Librarian

2.1 How to Invoke the Librarian

2.1.1 Invoking Procedure

To invoke the librarian, set the environment variables (see 2.1.2), enter the

“lib32R” command according to the command line rules and execute it (see

2.1.3).

2.1.2 Setting Environment Variables

Set the valid directory for the environment variables M32RBIN, M32RINC,

M32RLIB and M32RTMP (This step may be skipped since these variables are

normally set during installation.).  For the setting procedure, refer to the “M3T-

CC32R Cross Tool-Kit V.x.xx Release x Release Note“. If you do not set them,

the default directories are selected automatically.

Table 2.1  Environment Variables

Environment Variable Default Directory

M32RBIN /usr/local/M32R/bin

M32RINC /usr/local/M32R/include

M32RLIB /usr/local/M32R/lib

M32RTMP /tmp



lib32R MANUAL - 4

Chapter 2 Invoke the Librarian

2.1.3 Command Line Format

Figure 3.1 and the following sections shows the format and rule for the

librarian's invocation command line.  To specify options and input files, there

are to ways : inputting from a command line or using a command file.  Refer to

2.2 for options and 2.1.4 to 2.1.6 for input/output files.

     (1) To specify for invocation in the command line :

   lib32R { -c | -m | -q | -r | -d | -x [-s suffix] } [-t]

          [-l list_name] [-v] [-V]

  lib_name [object_filenames | module_names] <RET>

     (2) To use a command file :

   lib32R command_filename <RET>

where :

• Without [ ] : Indispensable

• In [ ] : Optional

• In { } : Input at least one of the choices in { }

• Prefixed by - : A command option (see 3.3)

• <RET> : Enter the return key

Figure 2.1  lib32R Command Line Format

2.1.3.1 Command Line Rules

To invoke the librarian by the information given in the command line, enter and

execute the command the obeying to the following rules :

• Write the command in the format shown in Figure 3.1 (1).  The items

(command name, option, input file name and command file name) must be

separated from each other by at least one space character.  Upon pressing

the return key, the librarian starts executing the command.

• Insert a space character between an option and its parameter.  If options

conflict with each other, the last specified option takes effect.

• lib_name represents the name of the library to be output or edited.

• object_filenames represents one or more input file names (object module or

relocatable load module).  Insert at least one space character between file

names.  Up to 256 file names can be written in the command line unless an

overflow occurs.

• module_names represents the name of one or more modules to be processed.

Insert at least one space character between module names.  Up to 256

module names can be written in the command line unless an overflow

occurs.



lib32R MANUAL - 5

Chapter 2 Invoke the Librarian

• The name immediately following the option is recognized as a library name

(lib_name).  The next and subsequent names are recognized as object module

names (object_filenames) or module name (module_names).

||||| Note ||||

The file name first written into the command line is recognized as the library

name.  The file name immediately following the invoking option must be the

library name.

2.1.3.2 Invocation Using Command File

A command file can be used to specify the option or the name of the input file

which invokes the librarian.  The command file is a text file containing the

description of specified file names.  This is a convenient way to give the

librarian many defined instructions.

In the command line, specify the command file name as a parameter.

lib32R command_filename <RET>

Describe the command file in the following way :

• Describe the parameters (option, input file name, name of module to be

processed) in the format given in Figure 2.1 (1).

• Parameters can be separated from adjacent ones by carriage return (press

return key) only in the command file.

• A command line can hold up to 255 characters except for the carriage return.

For example, to create the library function.lib, and to register three object

modules sin.mo, cos.mo and tan.mo to this library, and then to output the

librarian list function.lis, prepare the file as shown in Figure 2.2.

-l function.lis

-c function.lib

sin.mo cos.mo tan.mo

Figure 2.2  Contents of a Command File (Example)



lib32R MANUAL - 6

Chapter 2 Invoke the Librarian

2.1.4 Input File Conditions

Table 2.2 shows the conditions of the input file which allow the librarian to

process.  Do not input a file which cannot meet these conditions.

Table 2.2  Input File Conditions

Item Conditions

Valid input files Object module file(s)

Relocatable load module file(s)

Library

Maximum number of name Section names : Up to 65535/file

Symbol names : Up to 65535/file

Module names : Up to 65535/file

The number may be limited by the capacity of

the development environment system memory.

2.1.5 Generated Library Conditions

A library generated by the librarian can have the following conditions :

• The number of modules in a library : Up to 32767 modules

• The number of symbols in a library : Up to 65535 symbols

2.1.6 Output File Naming

The name of output file depends on the option specified, as shown in Table 2.3.

Table 2.3  Option Specified and Output File

Option Output File Output File Name

-c,-m,-q,-r,-d Library Same as the input library name

-x Object module Same as the specified module

name, or module name with the

extension specified by the -s

option.

-l list_name List file list_name



lib32R MANUAL - 7

Chapter 2 Invoke the Librarian

2.2 Command Options

Table 2.4 describes functions of the command options for the librarian.

Table 2.4  Command Options for the Librarian (1/3)

Option Description

-c Creates a new library :  Creates a new library from

the specified object module.

-d Deletes a module :  Deletes the specified module

from the library.

-l list_name Creates a librarian list :  Creates a librarian list

called list_name and outputs to this list the module

name, registration date and time of the module and

global symbol in the module.  The library list is useful

to verify the modules contained in the library.

-m Adds or replaces module : Adds an object module

to the library if this object is not found in the library

(the same process with -q option).  When the specified

object module is found in the library replaces the

module (the same process with -r option).

When two or more modules are specified, adds or

replaces the modules in the order specified.

-q Adds a module : Adds the specified object module to

the library.  If the specified module already exists in

the library, outputs a warning message without doing

addition.

-r Replaces modules :  When a module whose name

matches the name of the specified module is found in

the library, replaces it with the specified module.  If

the specified module name is not found in the library,

outputs a warning message and stops the replacing

process.

-s suffix Effective only when the -x option is specified.  Adds

the extension suffix ( not “.suffix” ) to the name of the

output file containing extracted modules.  See also

“•Example 3” in Section 3.4.  This option is ignored if

-x is omitted.



lib32R MANUAL - 8

Chapter 2 Invoke the Librarian

Table 2.4  Command Options for the Librarian (2/3)

Option Description

-t Outputs library information :  When a module name

is specified, outputs the information on the specified

module registered in the library to the standard

output in the following format :

Module name     Data and time of registration

If no module name is specified, lists information on all

modules registered in the library.

-v Displays details of processing of options -c, -d, -m, -q,

-r, -t and -x on the standard output, in the following

format.  The -v option is effective only when these

options are specified.

• When options -c, -d, -m, -q, -r and -x are specified

Shows the name of the modules processed and the

name of the generated library.

Process Display Format

Add the module a: module_name

Replace the module r: module_name

Delete the module d: module_name

Extract the module x: module_name

Create a new library c: library_name

• When option -t is specified

Shows information on the library.  The contents of

information depend on whether a module is

specified or not.

Module Information on the Library

Specified Name of global symbols in

the modules

Not specified • Library name

• Creation date and time

• Date of last update

• Total number of registered

   modules and total number

   of registered global symbols

• Name of global symbols in

   each module



lib32R MANUAL - 9

Chapter 2 Invoke the Librarian

Table 2.4  Command Options for the Librarian (3/3)

Option Description

-V Outputs the invoking message to the standard error

output without performing any process.

-x Extracts module :  Extracts the specified module

from the library.  Outputs the extracted modules as

object module.  The object module name consists of

the module name and the extension specified by the -s

option.  If the -s option is not specified, the name of

the object module is the same as that of the module.

When no module is specified, it extracts all modules.

In any case, contents of the library remain unchanged.

2.3 Command Line Examples

The following are examples of the librarian invoking procedure (% is prompt,

<RET> is return key).

• Example 1 : Creating new library file

% lib32R -c syslib.lib prog1.mo prog2.mo <RET>

Creates a new library file syslib.lib. Registers the object modules

prog1.mo and prog2.mo in syslib.lib.

• Example 2 : Adding module

% lib32R -l syslib.lis -q syslib.lib prog3.mo

prog4.mo <RET>

Additionally registers modules prog3.mo and prog4.mo in the

existing library file syslib.lib.  Creates the librarian list syslib.lis

of the updated syslib.lib.

• Example 3 : Extracting module

% lib32R -x -s .mo syslib.lib prog1 prog3 <RET>

Extracts registered modules prog1 and prog3 from the existing

library syslib.lib and returns them back to the pre-registered

module files.  Because the dot extension of these files is specified

as .mo by the -s option, the names of the output files are



lib32R MANUAL - 10

Chapter 2 Invoke the Librarian

prog1.mo and prog3.mo, respectively.  The contents of the

library file remain unchanged.  If the extension without '.' is

specified by the -s option like “-s mo”, there is no '.' between

the file name and the extension in the output file name, for

example “prog1mo”.

• Example 4 : Adding or replacing modules

% lib32R -c syslib.lib prog1.mo prog2.mo <RET>

——(1)

% lib32R -m syslib.lib prog3.mo prog1.mo <RET>

——(2)

Creates a new library file syslib.lib and registers prog1.mo and

prog2.mo in the library (1).  Adds prog3.mo to syslib.lib and

replaces prog1.mo (2).

• Example 5:

% lib32R -m -v syslib.lib prog1.mo prog2.mo

<RET> ——(1)

a: prog1

a: prog2

c: syslib.lib

% lib32R -t syslib.lib——(2)

prog1 22-Jun-1995 14:59:23

prog2 22-Jun-1995 14:59:23

Creates a new library file, syslib.lib, and registers prog1.mo and

prog2.mo.  Because the -v option is specified at that time, shows

detailed information (1), and then shows information on the

library (2).



lib32R MANUAL - 11

Chapter 3 Outputs from the Librarian

Chapter 3

Outputs from the Librarian

The following describe the library output from the librarian, librarian list and

library information.

3.1 Library

A library is a file summarizing two or more object modules or relocatable load

modules and having index of global symbols.

3.2 Librarian List

When the librarian invoking option -l list_name is specified, outputs contents of

(librarian list) to the file list_name in the format shown in Figure 3.1.

M32R FAMILY Librarian V.1.00.00 * LIBRARIAN LIST *

Library file name:  sample.lib

Creation date:      18-May-1995  9:45:38

Revision date:      18-May-1995  9:47:16

Number of modules:  2

Number of symbols:  8

Module name:                            Entry date:

gettoken                                17-May-2000  9:45:38

     _gettoken

getvalue                           (a)  17-May-2000  9:47:16

     _chgbin

     _chgdigit

     _chghex

     _chgoct

     _getvalue

     _one

     _two

Figure 3.1  Example of Outputs from the Librarian

The next page is followed.



lib32R MANUAL - 12

Chapter 3 Outputs from the Librarian

Table 3.1 describes the list shown in Figure 3.1.

Table 3.1  Librarian List Contents

Item Contents

Library file name: Shows the library name.

Creation date: Shows the creation date and time of the library.

Revision date: Shows the date and time of the last updating.

Number of modules: Shows the total number (decimal) of modules

registered in the library.

Number of symbols: Shows the total number (decimal) of global

symbols registered in the library.

Module name: Lists the names of modules registered in the

library in alphabetical order.  The edited status of

each module is shown in the round brackets ( ).

The status is output only when the option -l is

used together with one of the options -c, -r, -q or

 -m.  Editing status is shown as follows :

•Blank : Module registered in the existing library

•(a) : Added module

•(r) : Replaced module

Entry date:  Shows date and time the module was registered in

the library.

Others The global symbols defined in that module are

listed in alphabetical order under a module name.

3.3 Library Information
When the -t option is specified, librarian information is output in the format, as

follows : (There are four formats, one of which is selected according to

conditions such as whether the module name is specified or not, and whether

the -v option is specified or not.)

• Case 1 : Module name is not specified. The -v option is not specified.

Outputs the name and registered date and time of each of the

modules registered in the library, in the following format :

Module name   Date and time of registration

Example : gettoken 17-May-1995  9:45:38

prog1 22-Jun-1995 13:17:50



lib32R MANUAL - 13

Chapter 3 Outputs from the Librarian

…

• Case 2 : Module name is not specified. Option -v is specified.

Outputs the same contents as in the case of the librarian list.

• Case 3 : Module name is specified. Option -v is not specified.

Outputs the name and registered date and time of the module

registered in the library, in the following format :

Module name   Date and time of registration

Example : gettoken 17-May-1995  9:45:38

• Case 4 : Module name is specified. Option -v is specified.

Outputs the name and registered date and time of the specified

module registered in the library and the symbols defined in that

module in alphabetical order and in the following format  :

Module name   Date and time of registration

Symbol name

Symbol name

Example: module1 22-Jun-2000 13:17:50

_symbol1

_symbol2

_symbol3



lib32R MANUAL - 14

Chapter 4 Messages from the Librarian

Chapter 4

Messages from the Librarian

4.1 Getting Execution Result of the Librarian

The execution result of the librarian can be judged by checking the message(s)

and exit status code.

4.1.1 Message Format

Upon encountering an error condition, the librarian outputs the message

describing the error status to the standard error output, in the following format  :

• Syntax
tool_name: input_information: message_type: message

Note) “input_information :” is output only when necessary.

• Pattern lib32R: file_name: message_type message

lib32R: <command_line>: message_type: message

lib32R: message_type: message

Note) Underlined items are input_information (no the underline is output).

• Example lib32R: "sample.mo": error: invalid file format

Tool name     Message type Message

Input information  (File name)



lib32R MANUAL - 15

Chapter 4 Messages from the Librarian

4.1.2 Message Types

Messages are classified into three types according to the effect.

Table 4.1  Message Types

Message Type Operation Upon Error

Warning Output a warning message and continues process.

Error Output an error message and stops current process.

Fatal error Output an error message and stops current process.

For details of the messages, see 4.2 “Message Lists”.

4.1.3 Exit Status

Upon completion of the execution, the librarian returns the exit status  (value

showing the execution result) as shown in Table 4.2.

Table 4.2  Exit Status

Exit Status Result

0 Complete successfully or warning occurs

1 Error occurs



lib32R MANUAL - 16

Chapter 4 Messages from the Librarian

4.2 Message Lists

4.2.1 Warning Messages

Table 4.3  Warning Messages

Message Meaning→→→→→Librarian Action

duplicate module “module_name”

The module is already registered.

→Skip the operation on this module.

duplicate symbol “symbol”

The symbol is already registered.

→Skip the operation on this symbol.

module not found “module_name”

The specified module is not found.

→Skip the operation on this module name.

4.2.2 Error Messages

Table 4.4  Error Messages (1/3)

Message Description→→→→→Action

cannot close file “filename”

The file cannot be closed.

→Check the disk space.

cannot create file “module_name”

The file cannot be created.

→Check the file name and disk space.

cannot open file “module_name”

The file is not found.

→Check the file name.

illegal file format

The format of the file is illegal.

→Check contents of the file.



lib32R MANUAL - 17

Chapter 4 Messages from the Librarian

Table 4.4  Error Messages (2/3)

Message Description→→→→→Action

illegal option “option”

An illegal option name is specified.

→Specify the correct option.

library file not specified

No library file is specified.

→Specify the library file.

only one of [-c,-r,-d,-q,-x,-m,-t] must be specified

None of the options -c, -r, -d, -q, -x, -m or -t is specified. Or two or more options are

specified simultaneously.

→Specify only one option among -c, -r, -d, -q, -x, -m or -t.

option  “option” requires parameter

No parameter is specified for the option which must have that parameter.

→Specify the necessary parameter.

too many modules given

The number of modules specified in the parameter exceeds the allowable maximum

number.

→Process a smaller number of modules at one time.

too many modules in library file

The number of modules to be registered exceeds the allowable maximum number for

the library.

→Allocate the modules over several libraries.

too many symbols in library file

The number of symbols included in the module to be registered exceeds the allowable

maximum number for the library.

→Allocate the symbols over several libraries.

unsupported module type: version number

The specified type of module is not supported.

→Check to see if the module is correctly created.

duplicate module “module_name”

The module has already been registered. Operation for this module will be skipped.

→Change either one of the duplicate module names.

duplicate symbol “symbol_name”

The symbol has already been registered. Processing for this symbol will be skipped.

→Change either one of the duplicate symbol names.



lib32R MANUAL - 18

Chapter 4 Messages from the Librarian

Table 4.4  Error Messages (3/3)

Message Description→→→→→Action

module not found “module_name”

The specified module cannot be found. Operation for this module will be skipped.

→Check to see if the specified module exists.

4.2.3 Fatal Error Messages

Table 4.5  Fatal Error Messages

Message Description→→→→→Action

internal error

An internal error occurs.

→Please contact us immediately.

out of memory

Memory space is not enough for the librarian to operate.

→Expand memory space or reduce the library size.



Load Module Converter lmc32R

Part 5



lmc32R MANUAL - 1

Chapter 1 Overview of the Load Module Converter lmc32R

Chapter 1

Overview of the Load Module Converter lmc32R

1.1 Overview

The lmc32R is the load module converter included n the cross tool kit M3T-

CC32R.  The lmc32R converts an absolute load module created by the linker to a

load module of a Motorola S-format (hereafter, S-format) which can be read by

general purpose ROM programmer.

1.2 Functions

• Object diving function

By following the rules specified in the command line, divides the

load module into more than one object data and creates S-format

files the number of which corresponds to the division number of

the data.  In typical target system, several ROMs are used

according to the data bus width.  Into these ROMs, the divided

object data are loaded.  By using this function, a file to be loaded

onto a specific ROM can be created independently.

• Address range specifying function

Outputs only the object data located within the specified address

range after converting the data into S-format.

• Load address change specifying function

The load address value of the object data can be changed by

specifying an offset value.  For example, an object data string

starting with address 800016 can be started at address 016.



lmc32R MANUAL - 2

Chapter 2 Invoke the Load Module Converter

Chapter 2

Invoke the Load Module Converter

2.1 How to Invoke the Load Module Converter

2.1.1 Invoking Procedure

To invoke the load module converter, set the environment variables (see 2.1.2),

enter the “lmc32R” command according to the command line rules and execute

it (see 2.1.3).

2.1.2 Setting Environment Variables

Set the valid directory for the environment variables M32RBIN, M32RINC,

M32RLIB and M32RTMP (This step may be skipped since these variables are

normally set during installation.).  For the setting procedure, refer to the “M3T-

CC32R Cross Tool-Kit V.x.xx Release x Release Note“. If you do not set them,

the default directories are selected automatically.

Table 2.1  Environment Variables

Environment Variable Default Directory

M32RBIN /usr/local/M32R/bin

M32RINC /usr/local/M32R/include

M32RLIB /usr/local/M32R/lib

M32RTMP /tmp



lmc32R MANUAL - 3

Chapter 2 Invoke the Load Module Converter

2.1.3 Command Line Format

Figure 4.1 and the following sections show the format and rule for the load

module converter's invocation command line.  Refer to 2.2 for options, and to

2.1.4 and 2.1.5 for input/output files.

lmc32R [-o output_filename ] [-d{1|2|4|8}] [-W{1|2}]

       [-r baddr[,eaddr]] [-c[{+|-}]naddr] [-w] [-V]

       filename <RET>

where :

• Without [ ] : Indispensable

• In [ ] : Optional

• Prefixed by - : A command option (see 4.3)

• <RET> : Enter the return key

Figure 2.1  lmc32R Command Line Format

• Write the command line by following the format given in Figure 2.1.  The

items (command name, option, input file name) must be separated from

each other by at least one space character.  After completing the writing,

press the return key and the load module converter starts execution.

• Insert a space character between an option and its parameter.  If options

conflict with each other, the last specified option takes effect.

• Only the addresses and values expressed in hexadecimal are valid.

• filename is an input file name and cannot be omitted.

2.1.4 Input File Conditions

Table 2.2 shows the requirement of the input file to be processed on the load

module converter.  Do not input a file which cannot meet this condition.

Table 2.2  Input File Condition

Item Condition

Valid input file Absolute load module file



lmc32R MANUAL - 4

Chapter 2 Invoke the Load Module Converter

2.1.5 Output File Naming

The name of an output file is determined according to the name specified in the

command line.  For the naming rule, see 2.2 “Load module converter invoking

option”, the -o option. If the command line does not specify the name, the

default naming described in Table 2.3 is applied.

Table 2.3  Output File Names (Default)

File name Description

filename.mAB One of the S-format load modules, if divided

filename : Input file name

A : Number of divisions (divisor)

  (1 digit number)

B : Figure showing an nth file (0, 1, 2…)

filename.mot S-format load module not divided

filename : Input file name



lmc32R MANUAL - 5

Chapter 2 Invoke the Load Module Converter

2.2 Command Options

Table 2.4 describes functions of the command options for the load module

converter.

Table 2.4  Command Option for the Load Module Converter (1/2)

Option Description

-c [{+|-}]naddr Changes the load address to naddr.  When naddr is

prefixed by the sign + or -, naddr  is recognized as an

offset value.  The naddr must be specified in

hexadecimal.

-d {1|2|4|8} Specifies the number of divisions of the object data.

The default value is 1.

-o output_filename Names the output file after the file name specified by

output_filename. The manner in which the output file is

named varies depending on whether or not the load

module is divided into multiple object data (by

specifying the -d option). For details on how output

files are named in the PC version, refer to Table 4.5.

• To divide a module (specify non-1 by the -d

option)

Suffixes the extension .mAB to the output file

name.  The A shows the single number divisor and

the B shows the order of the files.  The output file

name is an output_filename with the extension

.mAB.  For example, if -o a.mout is specified, the

output files are named a.mout.mAB.

If this option is omitted, the output files are named

as the input filename with the extension .mAB.

• Not to divide a module (specify 1 by the -d

option, or omit the -d option)

Suffixes the extension .mot to the output file

name.  The output file name is an output_filename

with the extension .mot.  For example, if -o

a.mout is specified, the output file is named

a.mout.mot.  If this option is omitted, the output

file is named the same as the input filename with

the extension .mot.



lmc32R MANUAL - 6

Chapter 2 Invoke the Load Module Converter

Table 2.4  Command Option for the Load Module Converter (2/2)

Option Description

-r baddr[,eaddr] Specifies the range of data to be converted.  This

option outputs the data located within the range from

the convert start address baddr to the convert end

address eaddr.  If the eaddr is not specified, all the data

located at the convert start address baddr and

subsequent addresses are output.  Specify baddr and

eaddr by using a hexadecimal number.

-V Output the invoking message to the standard error

output without performing any process.

-w Disables the warning message display.

-W {1|2} Specifies the data size (bytes) when the object data is

to be divided.  The default value is 1.

Table 2.5  Naming Rules for Output File in lmc32R (for PC version)

       Output object

       divided?  (by Not divided Divided

      the -d option) (With -d1 or without the -d option) (With -d  but the divisor is not 1)
Output file name Example : -d2
specified? (by the -o option)

Specified.

Examples of  -o : The output file is named as follows : The output file is named as follows :
Case 1) -o SMP.MOT In the case 1) SMP.MOT In the case 1) SMP.m20,   SMP.m21
Case 2) -o SMP In the case 2) SMP In the case 2) SMP.m20,   SMP.m21

Not specified.

Examples of input file name : The output file is named as follows : The output file is named as follows :
Case 3) am.out In the case 3) am.mot In the case 3) am.m20,  am.m21
Case 4) am In the case 4) am.mot In the case 4) am.m20,  am.m21

Note) The A in the suffix is actually a value indicating the number of divisions (specified with the option -d), and B is a number

starting with 0 that shows which position this divided object occurs at.   For example, “.m20” indicates the 1st of two

divided objects.

If the output file name is specified

with a suffix, the suffix is replaced

with .mAB 
Note5)

.

If the output file name is specified

without a suffix, the suffix .mAB is

added.

The output file name will be the same

as the name specified by the -o option.

( A suffix is not added freshly.)

If the input file name has a suffix, the

suffix is replaced with .mAB 
Note5)

.

If the input file name has no suffix,

.mAB is added as the suffix.

If the input file name has a suffix, the

suffix is replaced with .mot.

If the input file name has no suffix,

.mot is added as the suffix.



lmc32R MANUAL - 7

Chapter 3 Usage and Command Line Examples

Chapter 3

Usage and Command Line Examples

This section describes the invoking procedure of the load module converter.  %

is prompt, and  <RET>  is return key.

3.1 Converting into Divided S-format Files  (Object Division Function)

The object division function divides a load module converted into S-format into

several files and outputs these files.  This function is useful to load a load

module into two or more ROMs.  To divide the output file specify the division

process in the command line as follows :

(1) Specify the number of divisions

Using the -d option, specify the number of files into which the

divided data are to be loaded.  Select among numbers 1, 2, 4 and

8.  If the -d option is omitted, or if a value of 1 is selected, the file

is not divided.

(2) Specify the size (bytes) of the divided data

Using the  -W option, specify the size (1 byte or 2 bytes) of the

divided object data to be output to each output file. If this option

is omitted, 1 byte is automatically selected.

(3) Specify the output file name

Using the -o option, specify the name of each output file.  The

extension .mAB (A is the number of divisions and the B is the

division number (0, 1, 2…)) is automatically added to the file

name to show that the file is a divided S-format file.  For

example, if

% lmc32R -d4 -o file a.mout <RET>

the following files are created :

f i l e . m 4 0

f i l e . m 4 1

f i l e . m 4 2

f i l e . m 4 3

       Division number (0, 1, 2 and 3, if divisor is 4)

       Number of divisions (divisor is 4)

The next page is followed.



lmc32R MANUAL - 8

Chapter 3 Usage and Command Line Examples

Therefore, specify the file name without an extension.  If the

extension is specified, the output file name will have two

extensions (the second extension is .mAB).

The following is an example of file division.

Example : % lmc32R -d4 -W1 -o file a.mout <RET>

When this command is executed, the output file is divided as

shown in Figure 3.1. The absolute address after division is the

absolute address of the load module to be converted (a.mout in

this example) divided by the value of the divisor (H’400- in this

example).

Figure 3.1  Example of Divided Object Module

3.2 Converting a part of the Load Module into S-format
(Convert Area Select Function)

The convert area select function converts the specified part of object data in the

load module to be converted.  To specify this conversion use the -r option and

specify the convert area with the start and end addresses.

Example : % lmc32R -o test -r 2000,3000 test.abs <RET>

When this command is executed, the specified part of the input

file is converted and output as shown in Figure 3.2.

Figure 3.2  Conversion and Output a part of Module

0

1

2

3

4

5

6

7

a.mout
100016

100116

100216

100316

100416

100516

40016

40116

40016

40116

file. m41

1

5

40016

40116

file. m42

2

6

40016

40116

file. m43

3

7

file. m40

0

4

100616

100716

~~ ~~

~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~

200016

300016

FFFF16

200016

300016

test. abs

test. mot

~~ ~~

~~ ~~



lmc32R MANUAL - 9

Chapter 3 Usage and Command Line Examples

3.3 Changing Addresses of Load Module
(Change Load Address Function)

The load module to be converted is assigned an absolute address. If this address

differs from the address to be actually used when loading onto ROM or the like,

the address of the output load module can be adjusted by specifying the offset

value upon converting the module (load address change function). To specify

the offset, use the -c option, that is, -c {+|-}naddr.

Example : % lmc32R -c -8000 test.abs <RET>

By executing this command, the address is adjusted as shown in

Figure 3.4.

800016

800116

test. abs

0

1

2

3

800216

800316

016

116

0

1

2

3

216

316

~~ ~~ ~~ ~~

Figure 3.4  Example of Address Offset



lmc32R MANUAL - 10

Chapter 4 S-format

Chapter 4

S-format

4.1 Motorola S-format File Structure

The S-format object consists of the following 3 records :

• Header record

• Data record

• End record

Data records are classified into three types as shown in Table 4.1, depending on

the value of load address.

Table 4.1  Data Record Type

Address Range Data Record Type

 016 – FFFF16 S1

 016 – FFFFFF16 S2

 016 – FFFFFFFF16 S3

End records are classified into three types as shown in Table 4.2, depending on

the type of data record included in the load module.

Table 4.2  End Record Type

Type of End Record End Record Type

Consists of only S1 S9

Included S2 S8

Included S3 S7

The detail of each record structure is described in this section.



lmc32R MANUAL - 11

Chapter 4 S-format

4.2 Record Structure

4.2.1 Header Record

(1) (2) (3) (4) (5) (6) (7)

30 XX XX 30 30 30 30 XX XX XX XX XX XX XX XX XX XX 0A53

~
      ~

~
      ~

S 0 0 0 0 0

(1) Record mark

(2) Record type

(3) Record length ( The number of bytes in (4),(5),(6) )

(4) Unused

(5) Comment

(6) Check sum (1’s complement of sum of data value in bytes ( (3)+(4)+(5) ) )

(7) Line feed code

4.2.2 Data Record

The structure of data records differ depending on the load address.

• Load address : 016 – FFFF16

(1) (2) (3) (4) (5) (6) (7)

31 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 0A53

~
      ~

~
      ~

S 1

(1) Record mark

(2) Record type

(3) Record length ( The number of bytes in (4),(5),(6) )

(4) Load address (2 bytes)

(5) Object data (1 byte of object data expressed in two hexadecimal

characters.  Up to 16 bytes of data can be stored.)

(6) Check sum (1’s complement of sum of data value in bytes ( (3)+(4)+(5) ) )

(7) Line feed code

The next page is followed.



lmc32R MANUAL - 12

Chapter 4 S-format

• Load address : 016 – FFFFFF16

(1) (2) (3) (4) (5) (6) (7)

32 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 0A53

S 2

~
      ~

~
      ~

(1) Record mark

(2) Record type

(3) Record length (The number of bytes in (4),(5),(6) )

(4) Load address (3 bytes)

(5) Object data (1 byte of object data expressed in two hexadecimal

characters.  Up to 16 bytes of data can be stored.)

(6) Check sum (1’s complement of sum of data value in bytes ( (3)+(4)+(5) ) )

(7) Line feed code

• Load address : 016 – FFFFFFFF16

(1) (2) (3) (4) (5) (6) (7)

33 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 0A53

~
      ~

~
      ~

S 3

(1) Record mark

(2) Record type

(3) Record length (The number of bytes in (4),(5),(6) )

(4) Load address (4 bytes)

(5) Object data (1 byte of object data expressed in two hexadecimal

characters.  Up to 16 bytes of data can be stored.)

(6) Check sum (1’s complement of sum of data value in bytes  ( (3)+(4)+(5) ) )

(7) Line feed code



lmc32R MANUAL - 13

Chapter 4 S-format

4.2.3 End Record

The structure of end records differ depending on the way S1, S2 or S3 is

included in the data record.

• Data record : Consists of only S1

(1) (2) (3) (4) (5) (6)

39 30 33 XX XX XX XX XX XX53

S 9 0 3

0A

(1) Record mark

(2) Record type

(3) Record length (The number of bytes in (4),(5) )

(4) Start address (2 bytes)

(5) Check sum (1’s complement of sum of data value in bytes ( (3)+(4)+(5) ) )

(6) Line feed code

• Data record : Includes S2

(1) (2) (3) (4) (5) (6)

38 30 34 XX XX XX XX XX XX XX XX 0A53

S 8 0 4

(1) Record mark

(2) Record type

(3) Record length (The number of bytes in (4),(5) )

(4) Start address (3 bytes)

(5) Check sum (1’s complement of sum of data value in bytes ( (3)+(4)+(5) ) )

(6) Line feed code

The next page is followed.



lmc32R MANUAL - 14

Chapter 4 S-format

• Data record : Includes S3

(1) (2) (3) (4) (5) (6)

37 30 35 XX XX XX XX XX XX XX XX XX XX 0A53

S 7 0 5

(1) Record mark

(2) Record type

(3) Record length (The number of bytes in (4),(5) )

(4) Start address (4 bytes)

(5) Check sum (1’s complement of sum of data value in bytes ( (3)+(4)+(5) ) )

(6) Line feed code



 

 

M3T-CC32R V.4.30 User’s Manual <Assembler> 
 
Rev. 1.00 
September 01, 2004 
REJ10J0515-0100Z 
 
COPYRIGHT ©2004 RENESAS TECHNOLOGY CORPORATION 
AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED 



1753, Shimonumabe, Nakahara-ku, Kawasaki-shi,  Kanagawa 211-8668 Japan

M3T-CC32R V.4.30

REJ10J0515-0100Z

User’s Manual <Assembler>


	Title
	Keep safety first in your circuit designs!
	Contents
	Preface 
	Audience 
	References 
	Conventions 
	Organization of This Manual 

	Part 1   Assembler   as32R 
	Chapter 1 Overview of as32R 
	1.1 About the Assembler as32R 
	1.1.1 as32R Functions 
	1.1.2 as32R Features 


	Chapter 2 Invoking the Assembler 
	2.1 How to Invoke the Assembler 
	2.1.1 Invoking Procedure 
	2.1.2 Setting Environment Variables 
	2.1.3 Command Line Syntax and Rules 
	2.1.4 Input File Conditions 
	2.1.5 Output File Naming 
	2.1.6 List File Naming 

	2.2 Command Options 
	2.2.1 Command Options 
	2.2.2 About M32Rx Instructions 


	Chapter 3 Assembly Language Specifications 
	3.1 Line Format 
	3.1.1 Symbol Field 
	3.1.2 Operation Field 
	3.1.3 Operand Field 
	3.1.4 Comment Field 

	3.2 Line Types 
	3.3 Character Set 
	3.4 Reserved Words 
	3.4.1 Register Names 
	3.4.2 Special Symbols 
	3.4.3 Mnemonics 

	3.5 Names 
	3.6 Symbols 
	3.7 Preprocessing Variables 
	3.8 Expressions 
	3.8.1 Constants in an Expression 
	3.8.2 Specifying a Value Using a Symbol Name 
	3.8.3 Specifying a Value Using a Section Name 
	3.8.4 Operators 


	Chapter 4 Coding General Instructions 
	4.1 General Instructions (M32R Instructions) 
	4.2 General Instruction Line 
	4.3 General Instruction Operand 
	4.4 Specifying the Operation Size 
	4.5 How to Use a Correction Option 
	4.6 Addressing Modes 
	4.7 How to Write Operands (depending on the addressing mode) 
	4.7.8 PC Relative 
	4.7.7 Register Indirect with Post-increment 
	4.7.6 Register Indirect with Pre-decrement 
	4.7.5 Register Indirect with Pre-increment 
	4.7.4 Immediate Integer (immediate) 
	4.7.3 Register Relative Indirect 
	4.7.2 Register Indirect 
	4.7.1 Register Direct 

	4.8 About M32Rx Instructions 

	Chapter 5 Coding Pseudo-instructions 
	5.1 Pseudo-instructions 
	5.2 Pseudo-instruction Line 
	5.3 Pseudo-instruction Operand 
	5.4 Size Specifier 

	Chapter 6 Coding Macro-instructions 
	6.1 Macro-instructions 
	6.2 Macro-instruction Line 
	6.3 Preprocessing Variables and Expressions 
	6.3.1 Preprocessing Variables 
	6.3.1.1 Formal Parameters 
	6.3.1.2 Arithmetic Variables 
	6.3.1.3 Character Variables 

	6.3.2 Expressions for Macro-instructions 
	6.3.2.1 Arithmetic Expressions 
	6.3.2.2 Character Expressions 
	6.3.2.3 Logical Expressions 


	6.4 Macro Definition and Expansion 
	6.4.1 About Macro Processes 
	6.4.2 How to Define Macros 
	6.4.3 How to write a macro body and its expansion 
	6.4.3.1  Substituting Preprocessing Variables 
	6.4.3.2 Excluding Substitutes 
	6.4.3.3 Handling Ordinal Numbers 
	6.4.3.4 Deciding Comments 

	6.4.4 Macro Call 

	6.5 Nested Structure for Processing Macros 
	6.6 Sample Programming  
	6.7 Limitations 

	Chapter 7 Messages from the Assembler 
	7.1 Getting Execution Result of the Assembler 
	7.1.1 Message Format 
	7.1.2 Message Types 
	7.1.3 Exit Status 

	7.2 Message Lists 
	7.2.1 Warning Messages 
	7.2.2 Error Messages 
	7.2.3 Fatal Error Messages 


	Appendix A   M32R Instruction Set Summary 
	A.1 M32R Instruction Set 
	Load/Store Instructions 
	Transfer Instructions 
	Arithmetic/logic Operation Instructions 
	Branch Instructions 
	EIT-related Instructions 
	DSP Function Instructions 

	A.2 Extended Instructions of M32Rx/D Series 
	A.2.1 New Extended Instructions of M32Rx 
	New Extended Instructions of M32Rx 

	A.2.2 Specification Extended Instructions of M32Rx 
	Specification Extended Instructions of M32Rx 



	Appendix B   Pseudo-instruction Reference 
	Appendix C   Macro-instruction Reference 
	Appendix D  Assembler List File  
	Appendix E   M32R/ECU#5 Extension Instruction 
	E.1 Option designation 
	E.2 M32R/ECU#5 extension instruction 

	Appendix F   Floating Point Compatible Function 
	F.1 Floating-point constant 
	F.1.1 Description format 
	F.1.2 Available place 
	F.1.3 Compatibility 
	F.1.4 Non-normalized numeral handling 

	F.2 Extended pseudo instruction 
	F.2.1 Format 
	F.2.2 Function of pseudo instruction 
	F.2.3 Common items 

	F.3 Utilization of floating point in general instruction line 

	Appendix G   Restrictions on Usage 
	How to get files that is not included the debug-informatio
	Cautions on using the base register function with standard library for C 
	Avoiding the integral zero-division problem of M32R/ECU series  
	On indirect calling a function that has variable arguments 
	Data definition within the code section 
	Use of preprocessor variables inside a macro body 
	About compiling the functions of 500 or more lines 
	Precautions about changing C Calling Convention 


	Part 2   Linker   lnk32R 
	Chapter 1 Overview of the Linker lnk32R 
	1.1 Overview  
	1.2 Functions 
	1.3 Compatibility with an old version 
	1.3.1 About inputting old CC32R's object (V.2.10 Release 1 or older) to new linker 
	1.3.2 About error processing of lnk32R 
	1.3.3 About error processing of lnk32R(CC32R V.4.30 Release 1 or subsequent one) 


	Chapter 2 Invoke the Linker 
	2.1 How to Invoke the Linker 
	2.1.1 Invoking Procedure 
	2.1.2 Setting Environment Variables 
	2.1.3 Command Line Format 
	2.1.3.1 Command Line Rules 
	2.1.3.2 Invocation Using Command File 

	2.1.4 Input File Conditions 
	2.1.5 Output File Conditions 
	2.1.6 Output File Naming 

	2.2 Command Options 
	2.3 Command Line Examples 

	Chapter 3 Creating load modules 
	3.1 Creating absolute load modules 
	3.1.1 Linking Object modules  (Linking Sections) 
	3.1.2 Locating Sections 

	3.2 Creating Relocatable Load Module 
	3.3 Linking Library Files 

	Chapter 4 Section 
	4.1 Section Types 
	4.2 Section Definitions (Section Information) 
	4.3 Link Functions 
	4.3.1 Automatic Link of Sections 
	4.3.2 Specifying Linking Order of Sections 
	4.3.3 Specifying Location Address of Section 

	4.4 Linking Methods (Specified by section attribute) 
	4.5 Locating Methods (Specified by location attribute) 

	Chapter 5 For ROM Writing 
	5.1 Processing Sections for ROM Writing 
	5.1.1 Specifying Location Area of Section (by the linker) 
	5.1.2 Specifying Output Area of Data (by the linker) 
	5.1.3 Initializing the Data Sections (in Start-up File) 

	5.2 Committing Applications to ROM 
	5.2.1 Initial Data Elimination 
	5.2.2 Initial Data Extraction 
	5.2.3 Reserved Labels Generation 


	Chapter 6 Messages from the  Linker  
	6.1 Getting Execution Result of the Linker 
	6.1.1 Message Format 
	6.1.2 Message Types 
	6.1.3 Exit Status 

	6.2 Message Lists 
	6.2.1 Warning Messages 
	6.2.2 Error Messages 
	6.2.3 Fatal Error Messages 



	Part 3   Map Generator map32R 
	Chapter 1 Overview of the Map Generator map32R 
	1.1 Overview 

	Chapter 2 Invoke the Map Generator 
	2.3 Command Line Examples 
	2.2 Command Options 
	2.1 How to Invoke the Map Generator 
	2.1.1 Invoking Procedure 
	2.1.2 Setting Environment Variables 
	2.1.3 Command Line Format 
	2.1.4 Input File Conditions 
	2.1.5 Output File Naming 


	Chapter 3 Link Map File 
	3.1 Contents of Link Map File 
	3.2 Contents of Map List 
	3.3 Contents of Global Symbol List 
	3.3 About extended output forms of map32R 

	Chapter 4 The Access Control File Generation Function 
	4.1 Details of the Access Control File Generation Function 
	4.2 Example of Using the Access Control File Generation Function 
	4.3 Notes 

	Chapter 5 Csv symbol map file output 
	5.1 Details of the Csv symbol map file 
	5.1.1 Generation of the csv symbol map file 
	5.1.2 Form of the csv symbol map file 

	5.2 Example of output the Csv symbol map file 
	5.2.1 Example of "-c" option 
	5.2.2 Example of ﾒ-c16ﾓ option 

	5.3 Notes 

	Chapter 6 Messages from the Map Generator  
	6.1 Getting Execution Result of the Map Generator 
	6.1.1 Message Format 
	6.1.2 Message Types 
	6.1.3 Exit Status 

	6.2 Message Lists 
	6.2.1 Error Messages 
	6.2.2 Fatal Error Messages 



	Part 4   Librarian lib32R 
	Chapter 1 Overview of the Librarian lib32R 
	1.1 Overview 
	1.2 Functions 

	Chapter 2 Invoke the Librarian 
	2.1 How to Invoke the Librarian 
	2.1.1 Invoking Procedure 
	2.1.2 Setting Environment Variables 
	2.1.3 Command Line Format 
	2.1.3.1 Command Line Rules 
	2.1.3.2 Invocation Using Command File 

	2.1.4 Input File Conditions 
	2.1.5 Generated Library Conditions 
	2.1.6 Output File Naming 

	2.2 Command Options 
	2.3 Command Line Examples 

	Chapter 3 Outputs from the Librarian 
	3.1 Library 
	3.2  Librarian List 
	3.3 Library Information 

	Chapter 4 Messages from the Librarian 
	4.1 Getting Execution Result of the Librarian 
	4.1.1 Message Format 
	4.1.2 Message Types 
	4.1.3 Exit Status 

	4.2 Message Lists 
	4.2.1 Warning Messages 
	4.2.2 Error Messages 
	4.2.3 Fatal Error Messages 



	Part 5   Load Module Converter lmc32R 
	Chapter 1 Overview of the Load Module Converter lmc32R 
	1.1 Overview  
	1.2 Functions 

	Chapter 2 Invoke the Load Module Converter 
	2.1 How to Invoke the Load Module Converter 
	2.1.1 Invoking Procedure 
	2.1.2 Setting Environment Variables 
	2.1.3 Command Line Format 
	2.1.4 Input File Conditions 
	2.1.5 Output File Naming 

	2.2 Command Options 

	Chapter 3 Usage and Command Line Examples 
	3.1 Converting into Divided S-format Files  (Object Division Function) 
	3.2 Converting a part of the Load Module into S-format (Convert Area Select Function) 
	3.3 Changing Addresses of Load Module(Change Load Address Function) 

	Chapter 4 S-format 
	4.1 Motorola S-format File Structure 
	4.2 Record Structure 
	4.2.1 Header Record 
	4.2.2 Data Record 
	4.2.3 End Record 



	Publisher's imprint

