
 

To our customers, 
 

Old Company Name in Catalogs and Other Documents 

 
On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology 

Corporation, and Renesas Electronics Corporation took over all the business of both 
companies. Therefore, although the old company name remains in this document, it is a valid 
Renesas Electronics document. We appreciate your understanding. 
 

Renesas Electronics website: http://www.renesas.com 
 
 
 
 

April 1st, 2010 
Renesas Electronics Corporation 

 
 
 
 
 
Issued by: Renesas Electronics Corporation (http://www.renesas.com) 

Send any inquiries to http://www.renesas.com/inquiry. 

 



Notice 
1. All information included in this document is current as of the date this document is issued. Such information, however, is 

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please 
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to 
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. 

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights 
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.  
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights 
of Renesas Electronics or others. 

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. 
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of 

semiconductor products and application examples.  You are fully responsible for the incorporation of these circuits, software, 
and information in the design of your equipment.  Renesas Electronics assumes no responsibility for any losses incurred by 
you or third parties arising from the use of these circuits, software, or information. 

5. When exporting the products or technology described in this document, you should comply with the applicable export control 
laws and regulations and follow the procedures required by such laws and regulations.  You should not use Renesas 
Electronics products or the technology described in this document for any purpose relating to military applications or use by 
the military, including but not limited to the development of weapons of mass destruction.  Renesas Electronics products and 
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited 
under any applicable domestic or foreign laws or regulations. 

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics 
does not warrant that such information is error free.  Renesas Electronics assumes no liability whatsoever for any damages 
incurred by you resulting from errors in or omissions from the information included herein. 

7. Renesas Electronics products are classified according to the following three quality grades:  “Standard”, “High Quality”, and 
“Specific”.  The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as 
indicated below.  You must check the quality grade of each Renesas Electronics product before using it in a particular 
application.  You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior 
written consent of Renesas Electronics.  Further, you may not use any Renesas Electronics product for any application for 
which it is not intended without the prior written consent of Renesas Electronics.  Renesas Electronics shall not be in any way 
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an 
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written 
consent of Renesas Electronics.  The quality grade of each Renesas Electronics product is “Standard” unless otherwise 
expressly specified in a Renesas Electronics data sheets or data books, etc. 

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual 
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots. 

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support. 

“Specific”:  Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or 
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare 
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life. 

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, 
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation 
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or 
damages arising out of the use of Renesas Electronics products beyond such specified ranges. 

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have 
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, 
Renesas Electronics products are not subject to radiation resistance design.  Please be sure to implement safety measures to 
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a 
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire 
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures.  Because 
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system 
manufactured by you. 

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental 
compatibility of each Renesas Electronics product.  Please use Renesas Electronics products in compliance with all applicable 
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS 
Directive.  Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with 
applicable laws and regulations. 

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas 
Electronics. 

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this 
document or Renesas Electronics products, or if you have any other inquiries. 

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries. 

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. 



M16C/6S DATA LINK LAYER 
LIBRARY
D2DL USER’S MANUAL

U
ser’s M

anual

RENESAS SINGLE-CHIP MICROCOMPUTER
M16C Family /M16C/6S Group
Rev 1.02   2006.06



D2DL USER’S MANUAL 

 
[Contents] 
1. Introduction........................................................................................................................................ 3 
2. D2DL Overview ................................................................................................................................. 4 

2.1 D2DL feature .............................................................................................................................. 4 
2.2 Compartmentalization between the Single Task Edition and the Multi Task Edition........................... 4 
2.3 The Internal Block Diagram ......................................................................................................... 4 

2.3.1 The Internal Block Diagram of the D2DL Single Task Edition ................................................. 4 
2.3.2 The Internal Block Diagram of the D2DL Multi Task Edition................................................... 5 

2.4 The resources for the D2DL ......................................................................................................... 6 
3. Description of the D2DL ..................................................................................................................... 7 

3.1 API ............................................................................................................................................ 7 
3.2 PLC communication feature ......................................................................................................... 7 

3.2.1 Packet delivery service ......................................................................................................... 7 
3.2.1.1 ACK/UNACK service....................................................................................................... 7 
3.2.1.2 Broadcast service.............................................................................................................. 7 
3.2.1.3 Multi hop feature .............................................................................................................. 7 
3.2.1.4 Fragmentation and Reassembly.......................................................................................... 8 
3.2.1.5 Transmission rate.............................................................................................................. 8 

3.2.2 Addressing........................................................................................................................... 8 
3.2.2.1 Network ID and Node ID .................................................................................................. 8 
3.2.2.2 Device Serial Number (DSN) ............................................................................................ 9 
3.2.2.3 Port ID (Application registration)....................................................................................... 9 
3.2.2.4 Protocol number ............................................................................................................... 9 

3.2.3 Media Access Control ........................................................................................................... 9 
3.2.4 Virtual Jamming (Imposter node detection feature).................................................................. 9 

3.3 EEPROM Control feature........................................................................................................... 10 
4. API overview ................................................................................................................................... 11 

4.1 Initialization and termination function API................................................................................... 11 
4.2 Transmission function API ......................................................................................................... 12 
4.3 Reception function API .............................................................................................................. 13 
4.4 EEPROM access API ................................................................................................................. 15 
4.5 Parameter Control API ............................................................................................................... 15 
4.6 Error Code ................................................................................................................................ 17 

5. Development of the User Application (For both edition)....................................................................... 18 
5.1 Initialize Sequence..................................................................................................................... 18 
5.2 Handling the internal parameters for the D2DL ............................................................................ 19 
5.3 EEPROM interface process ........................................................................................................ 22 
5.4 Configuration of the protocol number.......................................................................................... 22 
5.5 Notes on using the CNC service.................................................................................................. 22 
5.6 LED port assignment ................................................................................................................. 23 

6. Development the User Application (Single Task Edition) ..................................................................... 24 
6.1 Example program organization ................................................................................................... 24 
6.2 Implementation method.............................................................................................................. 25 

6.2.1 Transmission and Reception Sequence ................................................................................. 25 
6.2.1.1 Getting the packet transmission result............................................................................... 25 
6.2.1.2 Getting the received packet.............................................................................................. 26 
6.2.1.3 Restrictions on using the reception function ...................................................................... 28 

6.2.2 Addition of the Interrupt Handler......................................................................................... 28 
6.2.3 Configuration of the D2DL Heap Area ................................................................................. 30 
6.2.4 Configuration of the stack size............................................................................................. 32 

6.3 Notes ........................................................................................................................................ 33 
6.3.1 Influence of the D2DL task and its interrupt process on the user application ............................ 33 
6.3.2 Notes on the interrupt ......................................................................................................... 33 
6.3.3 Notes on the debug ............................................................................................................. 33 

7. Development of the User Application (Multi Task Edition)................................................................... 34 
7.1 Example program organization ................................................................................................... 34 

  1



D2DL USER’S MANUAL 

7.2 Implementation method.............................................................................................................. 35 
7.2.1 Transmission and Reception Sequence ................................................................................. 35 

7.2.1.1 Getting the packet transmission result............................................................................... 35 
7.2.1.2 Getting the received packet.............................................................................................. 37 
7.2.1.3 Restrictions on using the reception function ...................................................................... 38 
7.2.1.4 The example of using the callback function....................................................................... 39 
7.2.1.5 Example of the action by the multiple user tasks................................................................ 40 

7.2.2 Addition of the Interrupt Handler......................................................................................... 43 
7.2.3 Configuration of the D2DLHeap Area .................................................................................. 43 
7.2.4 Modification of the MR30 Configuration File ....................................................................... 46 

7.3 Notes ........................................................................................................................................ 51 
7.3.1 Influence of the D2DL task and its interrupt process on the user application ............................ 51 
7.3.2 Notes on the interrupt ......................................................................................................... 51 
7.3.3 Notes on the debug ............................................................................................................. 51 
7.3.4 Notes on the multi task ....................................................................................................... 51 

8. Description of the example program ................................................................................................... 53 
8.1 Overview .................................................................................................................................. 53 
8.2 General flowchart ...................................................................................................................... 53 
8.3 Details of the program................................................................................................................ 54 

8.3.1 Main function - Main_WorkerThread()................................................................................. 54 
8.3.1.1 Flowchart....................................................................................................................... 54 
8.3.1.2 Details of the function ..................................................................................................... 54 

8.3.2 UserApplication function .................................................................................................... 56 
8.3.2.1 Flowchart....................................................................................................................... 56 
8.3.2.2 Details of the function ..................................................................................................... 57 

8.3.3 It_User_Send function ........................................................................................................ 58 
8.3.3.1 Flowchart....................................................................................................................... 58 
8.3.3.2 Details of the function ..................................................................................................... 58 

8.3.4 User_SendResult_CB function ............................................................................................ 59 
8.3.4.1 Details of the function ..................................................................................................... 59 

8.3.5 It_User_recept function....................................................................................................... 60 
8.3.5.1  Flowchart ...................................................................................................................... 60 
8.3.5.2 Details of the function ..................................................................................................... 60 

8.3.6 User_Receive_CB function ................................................................................................. 61 
8.3.6.1 Details of the function ..................................................................................................... 61 

8.3.7 D2DLL_CB_RxLEDon function ......................................................................................... 61 
8.3.7.1 Details of the function ..................................................................................................... 61 

8.3.8 D2DLL_CB_RxLEDoff function......................................................................................... 61 
8.3.8.1 Details of the function ..................................................................................................... 61 

9. Development environment................................................................................................................. 62 
9.1 Development for using the simple debugger KD30 ....................................................................... 62 
9.2 Development for using the emulator debugger PD30F .................................................................. 63 

 
 

  2



D2DL USER’S MANUAL 

1. Introduction 
 

This document is the User’s Manual of communication interface library (hereafter called the D2DL) for Renesas 
Technology’s PLC (Power Line Communication) microcomputer M16C/6S. The D2DL achieves the function of 
the Physical Layer (the first layer) and the Data Link Layer (the second layer) in the OSI network reference 
model. This document provides the necessary information which helps you understand and use the D2DL. From 
section 1 to 3, it describes the D2DL overview and the basic information. After section 4, it describes the 
necessary information when you develop some programs with the D2DL. 
 
The M16C/6S integrates IT800 PLC modem technology developed by Yitran Communications Ltd., which 
enables extremely robust PLC communication. The D2DL is a communication library which optimized for 
IT800. 
The D2DL provides some API functions for the interface with the upper layer. You can make some PLC 
communication programs easily to use these API functions. 
 
The D2DL runs on the real-time OS (hereafter called the RTOS), and we provide two types of edition, “Single 
Task Edition” and “Multi Task Edition” for each user’s usage. 
You can use the Single Task Edition for your system development that needs only one task ( i.e. it doesn’t need 
multiple tasks). 
If you develop a system that needs multiple tasks, you have to use the Multi Task Edition. 
This document gives a description both of “Single Task Edition” and “Multi Task Edition”. 

 
The following table shows some documents about the D2DL and their descriptions. 
Document Name Description 
D2DL USER’S MANUAL This document has information which helps you understand 

and use the D2DL. 
We recommend you read this document first.

D2DL QUICK START GUIDE It describes the operation to run the example program attached 
to the D2DL.  

D2DL API SPECIFICATION It gives a detailed description of the API functions for D2DL. 
D2DL EEPROM I/F 
SPECIFICATION 

The D2DL provides the basic function, which accesses the 
microcomputer hardware and controls the EEPROM, for 
EEPROM I/F, therefore you can use any EEPROM. 
The document describes the specification about the functions 
and the example program attached to the D2DL. 

D2DL SPECIFICATION It describes the communication feature of the D2DL. 
 
 

  3



D2DL USER’S MANUAL 

2. D2DL Overview 
 

2.1 D2DL feature 
The D2DL features are described as follows. 

 
 IT800 PLC modem technology developed by Yitran Communications Ltd. enables extremely robust PLC 

communication. The D2DL is a communication library which optimized for IT800. If you use the D2DL, 
you can get the communication which uses the IT800 feature and the unique identity at a maximum and 
also keep the coexistence with the other IT800 module. 

 It is all achieved by the interfaces with the upper layer (user application), such as the transmit/receive 
packet passing and the parameter setting, by the API functions (and callback functions). You can develop 
the communication application program easily by these API functions. 

 The D2DL runs on RTOS. We provide two types of edition, “Single Task Edition” and “Multi Task Edition”. 
For more details, please refer to the next section. 

 You can achieve one-chip solution using the available resource area of microcomputer, which the D2DL 
does not use, and create the system at low cost. 

 You can create the debug environment at once and debug efficiently using the project format of the 
RENESAS HEW (High-performance Embedded Workshop) 

 
2.2 Compartmentalization between the Single Task Edition and the Multi 
Task Edition 
The D2DL consists of the following three tasks. Therefore the software is the Multi-Task based program. 

 Work Task 
It is the main process for PLC communication. This task is invoked periodically. 

 Reception Task 
It processes the received PLC data. 

 Transmission Task 
It processes the transmitting PLC data from the user application. 

 
To operate the three tasks mentioned above independently, the RTOS is required. If you use the RTOS, you can 
get not only these communication processes but also your application program as Multi-Task based program. 
This means you can divide your application program into some tasks (if you want). 
However some users don't want to divide their application program into some tasks, because they prefer 
Single-Task based programming. In the Single-Task based programming, the users only create one main 
loop, some sub-functions which is called from main loop, and some interrupt service routines. For such 
users, providing RTOS is not welcome, because it causes additional costs and time for the RTOS which is needed 
only for the D2DL. 
This "D2DL Single Task Edition" is provided to solve this problem. If you use "D2DL Single Task Edition", you 
do not need to get the RTOS because the edition includes the dedicated mini RTOS (hereafter called MiniRTOS ), 
and you can program your application as Single-Task based program. 
To get a Multi-Task based application, you should use the "D2DL Multi Task Edition". In this case, you have to 
prepare our recommended RTOS (MR30 developed by RENESAS) because "D2DL Multi Task Edition" does 
not include the RTOS. 

 
 

2.3 The Internal Block Diagram 
This section describes the internal block diagram of the D2DL Single Task Edition and the D2DL Multi Task 
Edition. The meshed blocks indicate the block the user has to make or prepare. 

 
2.3.1 The Internal Block Diagram of the D2DL Single Task Edition 

The Internal Block Diagram of the D2DL Single Task Edition is as follows. 
 
 
 
 
 
 

  4



D2DL USER’S MANUAL 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mini 
RTOS 

D2DL 

D2DL API Layer 

Reception 
Task 

Transmission 
Task 

Work 
Task 

D2DL Communication Process 

EEPROM I/F  

User Application Program (Main Task) 

The "User Application Program" block is a task in the D2DL Single Task Edition. But user does not need to care 
about Multi-Task based programming with the RTOS. Therefore, the user can program the User Application 
which includes a main loop, some interrupt service routines and some sub-functions which are called by 
them. 
The user cannot use the features of MiniRTOS from "User Application Program". 

 
2.3.2 The Internal Block Diagram of the D2DL Multi Task Edition 
The Internal Block Diagram of the D2DL Multi Task Edition is as follows. 

 

EEPROM I/F 

RTOS 

 

D2DL 

D2DL API Layer 

Task3Task2Task1 
User Application 
Program 

DLL Communication Process 

Work 
Task 

Transmission 
Task 

Reception 
Task 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The user can develop the “User Application Program” by the Multi-Task based programming technique with 
RTOS feature. 
 
[Note] 
Please refer to the section 5.3 for the EEPROM interface. 

 

  5



D2DL USER’S MANUAL 

2.4 The resources for the D2DL 
The following table shows the microcomputer resources for the D2DL. 

 
 D2DL Single Task Edition D2DL Multi Task Edition 
ROM 41Kbytes (including RTOS) 41Kbytes (including RTOS) 
RAM The user application can set the RAM usage 

(i.e. the size of the buffer for the 
transmission and reception packets) 

The sample program are using 6.5KB 
RAM. 

The user application can set the RAM usage 
(i.e. the size of the buffer for the 
transmission and reception packets) 

The sample program are using 6.5KB 
RAM. 

Timer TA0,TA1,TA2 TA0,TA1,TA2 
(The RTOS uses the TA2) 

Serial I/O SI/O4 
(Using for the internal interfaces between 
the D2DL and the IT800PHY) 

SI/O4 
(Using for the internal interfaces between 
the D2DL and the IT800PHY) 

DMA DMA1 
(Using for the internal interfaces between 
the D2DL and the IT800PHY) 

DMA1 
(Using for the internal interfaces between 
the D2DL and the IT800PHY) 

I/O Port P4, P5 
(Using for the internal interfaces between 
the D2DL and the IT800PHY) 

P4, P5 
(Using for the internal interfaces between 
the D2DL and the IT800PHY) 

Interrupt Refer the next table. Refer the next table. 
 

The following table shows the details of the interrupts for the D2DL. 
Causes of 
interrupts 

Function name Usage Priority 

SI/O4 D2dll_PhyRx_PhyUsartISR The communication between the D2DL 
and the IT800PHY 

4 

INT0 D2dll_Phy_ISR The event from the IT800PHY 6 
TA0 D2dll_Timer_ISR The timer for the PHY layer 5 
TA1 D2dll_Timer1_ISR The timer for the DLL layer 3 

 
 

  6



D2DL USER’S MANUAL 

3. Description of the D2DL 
 

3.1 API 
The API functions are defined in the D2DL as the interface with the upper layer (the user application). The next 
table shows the main features of the API functions and their descriptions. 

 
Feature Description 
Initialization It initializes and starts the D2DL. 
Register an application It registers an application. On multiple application system, the D2DL can 

identify each upper application and communicate with each application. 
Transmission It sends a packet. When you check the transmission result, you can select 

between two methods. One is the method using the callback function. The 
other is the method that the application waits for the determined 
transmission result in the transmission function and refers the return value. 

Reception It receives a packet. When you get the received packet, you can select 
between two methods. The first method is using the callback function and 
the second one initates the upper layer to call the reception function. 

EEPROM access It accesses the user area of the EEPROM. 
Parameter control It accesses the parameter that the D2DL use.  

 
For details, please refer to the section 4 and the”D2DL API SPECIFICATION”. 
 
 

3.2 PLC communication feature 
This section describes the PLC communication feature of the D2DL. 
 

3.2.1 Packet delivery service 
This section describes the D2DL feature about the packet delivery. 
 

3.2.1.1 ACK/UNACK service 

The ACK service allows for checking the accession of the transmitted packet at the target node (the destination 
node). The target node which receives the ACK service packet sends an ACK packet which shows the successful 
reception. The source node recognizes the transmission success by the reception of the ACK packet. If the source 
node cannot receive the ACK packet, it retransmits the packet predefined times. If the retransmission failed in 
the predefined times, an error is returned to the user application. 
The UNACK service does not check the ACK packet. It can transmit a packet predefined times to improve the 
reliability. In this case, the D2DL transfers a received packet only once to the user application regardless of 
whether the destination node receives the same packet a number of times. 
The retransmission times of each service can be set by the API function “D2DLL_SendOption”. 

 
3.2.1.2 Broadcast service 

The single network broadcast service can transmit a packet to all nodes in the same logical network (which 
node has the same network ID). 
The CNC (Control Network Channel) service can transmit a packet to all nodes in the physical network 
regardless of the network ID (even if the node does not have any network ID). It is useful when it assigns an 
address to a new node. The CNC packet has a DSN (Device Serial Number) of the source node. When the D2DL 
on the received side node receives a CNC packet, it passes the received information which includes the source 
DSN to the user application. 

 
 

3.2.1.3 Multi hop feature 

The D2DL has a multi hop feature which repeats (hops) the received broadcast packets. When the distance 
between nodes is too far (or the communication environment is bad) and the signal does not reach directly, this 
feature is effective. The router nodes relay the packet, so the packet can be reached to the destination node. 
The number of times of relay (hop count) is set by the user application of the source node, and included in the 
packet. The relay node decrements the hop count, set it in the packet and transmit it. If the hop count is 1, the 

  7



D2DL USER’S MANUAL 

received node does not relay it. 
When a node which relays a packet does receive the same packet again (i.e. it receives the packet which is 
relayed by the other node,) it doesn’t relay it again.  
The D2DL relays the packet internally, so the user application does not need to care about it. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NodeA 
Step4: 
Receive the 
packet 3 and not 
send because the 
hop count is 1. 

NodeD

Packet 3 Packet 2

Step3: 
Receive the 
packet 2, 
decrement the 
hop count and 
send the packet 3.

NodeC

Packet 3 1

Hop count 

3 Packet 1 

Packet 1 

2Packet 2 

It doesn’t send 
if it receives 
the packet 2 

Step1: 
Send the multi hop 
packet 1(hop count 
= 3) 

Step2: 
Receive the 
packet 1, 
decrement the 
hop count and 
send the packet 2.

NodeB

 
3.2.1.4 Fragmentation and Reassembly 

The D2DL implements a mechanism of fragmentation and reassembly. The maximum D2DL payload is 110 
bytes. When the user application requests the transmission of a packet which size is above 110 bytes, the D2DL 
fragments it and sends the fragmented data. The D2DL in the receiving node reassembles the received 
fragmented packets and passes it on to the user application. 
The D2DL supports 16 fragments of 110 bytes for a message length of 1760 bytes as a maximum of a long 
packet. 

 
3.2.1.5 Transmission rate 

The IT800PHY supports three transmission modes as follows: 
(Note: In Europe, it supports two modes.) 
 

 N. America and 
Japanese regional 
settings 

Europe regional 
settings 

Standard Mode (SM) 7.5Kbps - 
Robust Mode (RM) 5.0Kbps 2.5Kbps 
Extremely Robust Mode (ERM) 1.25Kbps 0.625Kbps 

 
Additionally, the D2DL has the data rate control algorithm which can monitor the communication status of each 
destination node and select optimal transmission mode automatically. You can select the fixed three mode 
transmission, mentioned above, or the auto rate control mode transmission. 
 
3.2.2 Addressing 

 
3.2.2.1 Network ID and Node ID 

The D2DL uses the network ID (10 bit) and the node ID (11 bit) for the address of each node for general 
communication. The network ID is assigned to each logical network. It assigns the common network ID to the 
node in the same logical network. The node ID is assigned to each node and it should be unique in the logical 
network. 
For example, if each house has the different network ID, interference between the houses can be avoided. 

  8



D2DL USER’S MANUAL 

 

Logical Network 
(NetworkID:5) 

NodeID 
:2 

Logical Network 
(NetworkID:8) 

NodeID 
:3 

NodeID 
:25 

NodeID 
:7 

NodeID 
:12 

NodeID 
:7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2.2.2 Device Serial Number (DSN) 

The device serial number (DSN) is used as the address in case of the CNC service. The DSN is a unique 16 bytes 
value which should be assigned to each node, and is stored in the EEPROM of each node. The user application 
in the node that receives a CNC packet can recognize the source device by the source DSN that is included in the 
received packet. 
The DSN should be assigned to avoid CNC packet overlappings between each user’s products. To achieve this 
necessity, a customer number is assigned to each user which is included in the DSN, whereby DSN overlappings 
in the D2DL are avoided. For details, please refer to 5.5. 

 
3.2.2.3 Port ID (Application registration) 

Multiple processes/works (applications) can share a D2DL. Therefore you can lay out multiple applications on a 
chip. You can make the number of application up to 16, and identify each application by the port ID (from 0 to 
15). This method is useful when you want to identify the processes/works of the destination node, for example 
when you want to send the packet to the specific process in the specific node. 
In the case of using the packet receive callback function (for details, please refer to the section 6 and 7), the 
D2DL sorts the received packet to the destination application. 

 
3.2.2.4 Protocol number 

The D2DL keeps the coexistence of any products which implement different upper protocol by using the 
protocol number. The nodes which use the same protocol number can communicate with each other, but the 
nodes which use different protocol number cannot. For example, when there are two nodes which have the same 
address (network ID and node ID) on the line, they can keep the coexistence if each of them uses the different 
protocol number. 
If you want to use this feature, you should set up the protocol number according to your protocol. For details, 
please refer to section 5.4. 

 
3.2.3 Media Access Control 
The D2DL supports the channel access control based on the CSMA/CA(Carrier Sense Multiple Access with 
Collision Avoidance). It implements an adaptive back-off algorithm. The algorithm estimates the number of 
nodes which contend the channel priority, and optimizes the packet transmission interval. 
The transmission priority of the packet can be set up to 4 different priority levels 
(High/Normal/AboveLow/Low). But the user application can only set 3 priority levels “High/Normal/Low” for 
the transmission packet. The priority “AboveLow” is assigned automatically to the fragmented packets, so this 
cannot be set by the user application. 

 
3.2.4 Virtual Jamming (Imposter node detection feature) 
The D2DL supports a feature to detect the packet from the imposter node attempting to get into the network 
using the address of a valid node. The D2DL passes the received packet from the imposter node as the imposter 
packet to the user application if you have set the received packet type as the imposter packet by the 
D2DLL_Start function. 

  9



D2DL USER’S MANUAL 

  10

 
3.3 EEPROM Control feature 
The D2DL can store internal parameters to the EEPROM. Therefore, it enables keeping the value of various 
parameters even if the power is shut down and managing the dedicated serial number per each device, etc. 
Additionally, the user application can use available areas, which is not used by the D2DL. The D2DL uses the 
top of 672 bytes of EEPROM area, so the application can use the subsequent area. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The D2DL provides the API for the user area access; therefore the user application can access the user area 
easily. 
Please refer to section 5.2 about the data to write to the area for the D2DL. 

 

EEPROM 

The area for the user 
 (Rest of the area) 

The area for the 
D2DL(672bytes) 



D2DL USER’S MANUAL 

4. API overview 
Developers of application software can develop the program using the D2DL APIs. The application can access to the D2DL via the dedicated API functions. The API 
functions for the D2DL and the structures used as the arguments for the API functions are described in this section. 
 
4.1 Initialization and termination function API 
API name Parameter Return value Description 

Normal D2DLL_E_OK 
D2DLL_E_PARAM 
D2DLL_E_TIMING 

D2DLL_Init( void *rsc ) *rsc Resource information in the 
D2DL  Error 

D2DLL_E_SYS 

This function initializes the RTOS function for the 
D2DL with information specified by the argument 
“rsc”. 
Please set “rsc” to NULL regardless of the single 
task edition or the multi task edition. 
This function has to be called once after power is 
on. Other functions can not be used until this 
function is called. 

netId Network ID for my device Normal D2DLL_E_OK 
nodeId Node ID for my device D2DLL_E_PARAM 
rxPktType Receive data type D2DLL_E_TIMING 
region Area configuration 
*dsn Device Serial Number (16byte 

value) for my device 

D2DLL_Start( 
uint16 netId, 
uint16 nodeId, 
sint16 rxPktType, 
sint16 region, 
uchar *dsn, 
sint16 enableRep 

) 
enableRep Enable/Disable repeater function

Error 

D2DLL_E_SYS 

This function initializes and starts the D2DL. 
Each valid value which is set by the argument of 
this function is saved to EEPROM in this function. 
This function can be called after the D2DLL_Init 
function and the D2DLL_RegApp function, and 
before the D2DLL_Online function. 

portId Port ID of the application Normal D2DLL_E_OK 
D2DLL_E_PARAM 
D2DLL_E_TIMING 

fpOnReceiv
ed 

Pointer to the function which 
will be called back when the 
D2DL receive a packet 

D2DLL_RegApp( 
 uint16 portId, 
 d2dll_fpOnRxPktCb_t 

fpOnReceived, 
 d2dll_fpOnTxResCb_t 

fpOnTransmitted 
) 

fpOnTrans
mitted 

Pointer to the function which 
will be called back when the 
D2DL has transmitted a packet 
for this application 

Error 

D2DLL_E_SYS 

This function registers the current application. 
Each application has a different port ID. 
This function can be called after the D2DLL_Init 
function and has to be called at least once before 
the D2DLL_Start function. After calling the 
D2DLL_Start function, you can call this function 
at any time. 

Normal  D2DLL_E_OK
D2DLL_E_TIMING 

D2DLL_Online( void ) void - 
Error 

D2DLL_E_SYS  

This function enables the use of the PLC 
communication. 
This function can be called after calling the 
D2DLL_Start function or the D2DLL_Offline 
function, and has to be called before starting the 
PLC communication. 

D2DLL_Offline( void ) void - Normal D2DLL_E_OK This function terminates the PLC communication. 

  11



D2DL USER’S MANUAL 

D2DLL_E_TIMING Error 
D2DLL_E_SYS 

All functions in transmit waiting state and receive 
waiting state will be terminated compellingly with 
the retun value “D2DLL_E_SYS”. 
This function can be called when the PLC 
communication is enabled by the D2DLL_Online 
function. 
If you want to enable the PLC communication 
again, the D2DLL_Online function must be 
called. 

 
4.2 Transmission function API 
API name Parameter Return value Description 

Normal D2DLL_E_OK 
D2DLL_E_PARAM 

srcPortId   PortID of
 source 
application D2DLL_E_TIMING 

dstNodeId   Destination
Node ID 

D2DLL_E_SYS 

D2DLL_E_NOACK 
D2DLL_E_BLCKD 

dstPortId Port ID of the 
destination  
application 

*sndData  Transmission
data 

sndDataLen  Length of
transmission  
data 

sessionTag  Packet ID
sndPrty   Transmission

priority 
sndAck  ACK/UNACK

setting 

D2DLL_Send( 
 d2dll_sndParam 

*sndParam 
) 

*sndParam 

*s_extnsn   Reserved
for future 

Error 

D2DLL_E_NORESRC

This function transmits the data. 
[Notes] In the case of the Multi Task Edition, each 
task can call this function at the same time. 
However the function called later is set to WAIT 
state internally by the semaphore function. 
The argument ”fpOnTransmitted” of the 
D2DLL_RegApp function defines the pointer of 
the function to get the result of transmission. 
If it is set to NULL, the result of transmission is 
passed as a return value of the D2DLL_Send 
function, therefore, the D2DLL_Send function 
does not return until the transmission sequence is 
completed. 
If the argument is not set to NULL (i.e. it is set to 
the pointer to the callback function), the result of 
transmission is passed by the callback function. In 
this case, the D2DLL_Send function returns soon 
after issuing the transmission request to lower 
layer. 
This function can be called when the PLC 
communication is enabled by the D2DLL_Online 
function. 

*sndParam ---The same as 
D2DLL_Send

---The same as 
D2DLL_Send

D2DLL_Send_MH( d2
dll_sndParam 

*sndParam, 
  uint16 sndMHcnt 

sndMHcnt
  

Hop counter 

---The same 
as 
D2DLL_Se
nd 

---The same as 
D2DLL_Send 

This function enables the multiple hop broadcast 
packet transmission. The multiple hop feature 
allows for repeating (hopping) of the received 
multihop broadcast packet. 

  12



D2DL USER’S MANUAL 

) [Note] The same as D2DLL_Send 
*sndParam ---The same as 

D2DLL_Send
---The same as 
D2DLL_Send

D2DLL_Send_CNC(d
2dll_sndParam 

*sndParam, 
  uint16 sndMHcnt 
) 

sndMHcnt
  

Hop counter 

---The same 
as 
D2DLL_Se
nd 

---The same as 
D2DLL_Send 

This function enables the CNC (Control Network 
Channel packet type) packet broadcast 
transmission. This type of the packet is used to 
broadcast messages to all the connected nodes 
regardless of their network ID (if they don’t have 
their network ID). The CNC service is useful for 
introducing a new node to a network. The CNC 
packet contains the DSN of the source node. 
[Note] The same as D2DLL_Send 

sessionTag Packet ID - - (*d2dll_fpOnTxResCb
_t)( 

sint16 sessionTag, 
sint16 sndResult 

) 

sndResult Result of Transmission - - 
This function is a callback function, so this 
function has to be implemented in a user 
application. 
When the D2DL completed the transmission 
sequence, this function will be called for giving 
the result of transmission to the user application. If 
you do not want to use this callback function, set 
the argument “fpOnTransmitted” of 
D2DLL_RegApp function to NULL and get the 
result as the return value of packet transmission 
function. 
This function is enabled when the PLC 
communication is enabled by the D2DLL_Online 
function. 

 
4.3 Reception function API 
API name Parameter Return value Description 

rcvPcktType Type of the 
received packet 

Normal Positive value: Size of 
the receive data 
0: There is no data 
D2DLL_E_PARAM srcNetId   Source Network ID
D2DLL_E_TIMING 

srcNodeId Source Node ID D2DLL_E_SYS 
srcPortId Port ID of the source 

application 
dstNodeId   Destination

Node ID 

D2DLL_Recv( 
d2dll_rcvParam 

*rcvParam 
) 

*rcvParam 

dstPortId Port ID of the 

Error 

D2DLL_E_TMOUT 

This function is for data reception. If you get 
the received data using the callback function, 
this function is unnecessary for you. The return 
timing from this function depends on the 
specified receive time-out. In the case of the 
Multi Task Edition, multiple tasks can call this 
function at the same time. However when a task 
(function) is running to receive, the function 
called later is set to WAIT state internally by the 
semaphore function. 
This function can be called when the PLC 

  13



D2DL USER’S MANUAL 

destination application
Start address of the 
user receive buffer(for 
the D2DLL_Recv 
function) 

*rcvData 

Start address of 
the D2DL receive 
buffer (for the 
receive callback  
function) 
Size of the user receive 
buffer(for the 
D2DLL_Recv 
function) 

rcvDataLen 

Size of the receive 
buffer(for the receive 
callback function) 

rcvTimeout Setting receive
time-out(Unit:1msec) 

 

rcvSQuality Signal Quality 
r_option Option parameter 
*r_extnsn  Future reserved

communication is enabled by the 
D2DLL_Online function. 

(*d2dll_fpOnRxPkt
Cb_t) ( 

d2dll_rcvParam 
    *rcvParam 

) 

*rcvParam ---The same 
as 
D2DLL_Recv

---The same as 
D2DLL_Recv 

- - This function is a callback function, so this 
function has to be implemented in a user 
program. 
When the D2DL has received the packet from 
the power line, this function will be called for 
the data reception. If you do not want to use this 
callback function, set the argument 
“fpOnReceived” of the D2DLL_RegApp 
function to NULL and get the received data 
using the D2DLL_Recv function. 
This function is enabled when the PLC 
communication is enabled by the 
D2DLL_Online function. 

 
 

  14



D2DL USER’S MANUAL 

4.4 EEPROM access API 
API name Parameter Return value Description 

Normal D2DLL_E_OK D2DLL_SizeEep ( 
uint16 size 

) 

size Memory size of your EEPROM 
(byte) Error  D2DLL_E_PARAM

This function passes the size of your EEPROM to 
the D2DL. 
Please refer to “D2DL EEPROM I/F 
SPECIFICATION” for details. 
This function can be called at any time after power 
on. 

addr Address to write in EEPROM Normal D2DLL_E_OK 
size Size of the data to write D2DLL_E_PARAM 

D2DLL_E_TIMING 

D2DLL_WriteEep( 
uint16 addr, 
uint16 size, 
uchar *buff 

) 

*buff Pointer to the buffer which stores 
the data to write 

Error 

D2DLL_E_SYS 

This function enables to write the data to the user 
area in EEPROM. 
Please refer to “D2DL EEPROM I/F 
SPECIFICATION” for details. 
This function can be called when the PLC 
communication is enabled by the D2DLL_Online 
function. 

addr Address to read in EEPROM Normal D2DLL_E_OK 
size Size of the data to read D2DLL_E_PARAM 

D2DLL_E_TIMING 

D2DLL_ReadEep( 
uint16 addr, 

  uint16 size, 
  uchar *buff 
) 

*buff Pointer to the buffer which stores 
the data to read 

Error 

D2DLL_E_SYS 

This function enables to read the data from the 
user area in EEPROM. 
Please refer to “D2DL EEPROM I/F 
SPECIFICATION” for details. 
This function can be called after calling the 
D2DLL_SizeEep function. 

Normal  D2DLL_E_OK
D2DLL_E_TIMING 

D2DLL_SaveParam 
(void ) 

void  -
Error 

D2DLL_E_SYS  

This function copies all D2DL parameters from 
RAM to EEPROM.  
The D2DL parameter means the parameters which 
are set by the following functions. 

- D2DLL_SetParam 
- D2DLL_SetAddrs 
- D2DLL_SendOption 

This function can be called after calling the 
D2DLL_Init function. 

 
4.5 Parameter Control API 
API name Parameter Return value Description 

ackRetry Numbers of retransmission in 
ACK mode 

Normal D2DLL_E_OK D2DLL_SendOption( 
uint16 ackRetry, 
uint16 repCnt, 
sint16 sndRate 

repCnt Numbers of retransmission in 
UNACK mode 

Error  D2DLL_E_PARAM

This function sets the transmission parameter. The 
D2DL has a capability to store the argument 
values to EEPROM. But this function does not 
store these values to EEPROM. It changes only 

  15



D2DL USER’S MANUAL 

D2DLL_E_TIMING ) sndRate Transmit rate (Rates are different 
for each area) D2DLL_E_SYS 

data in RAM. If you want to store them to 
EEPROM, you have to call the 
D2DLL_SaveParam function after calling this 
function. 
This function can be called when the PLC 
communication is enabled by the D2DLL_Online 
function. 

index Index of the entry Normal D2DLL_E_OK 
D2DLL_E_PARAM 
D2DLL_E_TIMING 

D2DLL_SetParam( 
sint16 index, 

  uint16 value 
) 

value Entry value Error 

D2DLL_E_SYS 

This function sets one entry in the D2DL 
parameter table. 
Please use only our recommend index values. 
- D2DLL_IDX_PROTOCOL_VER(70) 

Protocol number 
- D2DLL_IDX_DLL_MEMORY (71) 

The size of the sent/received buffer(byte) 
- D2DLL_IDX_RXRES_MEMORY (77) 

The size of the special area for the received 
packet(byte) 
This function can be called after calling the 
D2DLL_Init function. 

index Index of the entry Normal D2DLL_E_OK 
D2DLL_E_PARAM 
D2DLL_E_TIMING 

D2DLL_GetParam( 
sint16 index, 

  uint16 *value 
) 

*value Entry value Error 

D2DLL_E_SYS 

This function reads one entry in the D2DL 
parameter table. 
Please use only our recommend value of the index. 
This function can be called after calling the 
D2DLL_RegApp function. 

Normal  D2DLL_E_OK
D2DLL_E_PARAM 
D2DLL_E_TIMING 

D2DLL_GetVer( 
uint32 *version 

) 

*version Version of the D2DL 
Error 

D2DLL_E_SYS 

This function returns the version of the D2DL. 
This function can be called when the PLC 
communication is enabled by the D2DLL_Online 
function. 

netId  Network ID for my device Normal D2DLL_E_OK 
D2DLL_E_PARAM 
D2DLL_E_TIMING 

D2DLL_SetAddrs( 
uint16 netId, 

  uint16 nodeId 
) 

nodeId Node ID for my device Error 

D2DLL_E_SYS 

This function sets own network ID and own node 
ID. 
The address is also able to be set by the 
D2DLL_Start function. 
The D2DL has a capability to store the network ID 
and the node ID to EEPROM. But this function 
does not store these values to EEPROM. It 
changes only the data in RAM. If you want to 
store them to EEPROM, you have to call the 
D2DLL_SaveParam function after calling this 
function. 

  16



D2DL USER’S MANUAL 

  17

This function can be called when the PLC 
communication is enabled by the D2DLL_Online 
function. 

netId  Network ID for my device Normal D2DLL_E_OK 
D2DLL_E_PARAM 
D2DLL_E_TIMING 

D2DLL_GetAddrs( 
uint16 *netId, 

  uint16 *nodeId 
) 

nodeId Node ID for my device Error 

D2DLL_E_SYS 

This function returns own network ID and own 
node ID. 
This function can be called after calling the 
D2DLL_RegApp function. 

 
4.6 Error Code 

Error codes in the API functions for the D2DL are shown as follows. 

Name Value Description 

D2DLL_E_OK   0 Normal end

D2DLL_E_PARAM   -1 Parametric error

D2DLL_E_TIMING   -2 Invalid call

D2DLL_E_SYS -3 System error (i.e. internal system error in OS etc.) 

D2DLL_E_NOACK  -10 No ACK response

D2DLL_E_BLCKD -11 Outgoing packet is blocked for congestion 

D2DLL_E_NORESRC -12 No resource (currently, not enough available memory 

to accept packet) 

D2DLL_E_TMOUT  -20 Time-out



D2DL USER’S MANUAL 

5. Development of the User Application (For both edition) 
This section describes the necessary information that is common to the Single Task Edition and the Multi Task 
Edition to develop the user application. 

 
5.1 Initialize Sequence 

The following 6 API functions are used for the D2DL initialize and startup sequence. 
Function name Description 
D2DLL_Init Initialize the RTOS parameter for the D2DL 
D2DLL_Start Start the D2DL (for setting the address and the received packet 

type, etc). 
D2DLL_RegApp Register the application 
D2DLL_Online Enable the PLC communication function 
D2DLL_SizeEep Notify the size of your EEPROM 
D2DLL_SetParam Set the D2DL parameter 

 
Please call functions above in the given order to initialize and to start the D2DL. 
 

D2DLL_Init  
 
 The D2DLL_RegApp can be called after the D2DLL_Init 

and has to be called at least once before the D2DLL_Start. 
After calling the D2DLL_Start, you can call 
D2DLL_RegApp at any time if you want register several 
applications. 

D2DLL_RegApp  
 
 
 D2DLL_Start 
 
 

Please make sure to do the following steps between the 
D2DLL_Start and the D2DLL_Online. 
- Call the D2DLL_SizeEep to notify the EEPROM size to the 

D2DL 
- Call the D2DLL_SetParam to notify the RAM area size 

which available for the D2DL. (Please refer 6.2.3 and 7.2.3 
for details.) 

 D2DLL_SizeEep  
 
 

D2DLL_SetParam  
 
 

D2DLL_Online  
 
 
After calling the D2DLL_Online, the PLC communication (transmission and reception) is available. 

 

  18



D2DL USER’S MANUAL 

5.2 Handling the internal parameters for the D2DL 
The D2DL stores the internal main parameter to EEPROM and manages them. When the D2DL starts up, it lays 
out these data to the table on the RAM. If the D2DL refers them, it accesses the data on the RAM table. The use 
application can access the following 12 disclosed parameters. (The disclosed parameters may be added for the 
future.) 

 
 

Parameter Default value 
Network ID 0 
Node ID 1 
Received packet type All packet types are 

disabled (it does not 
receive any packets). 

Region FCC (N.America) 
Device Serial Number All zero 
Selection of the repeater function ON/OFF ON 
The retransmission number of ACK service 3 
The retransmission number of UNACK service 0 
Protocol number 1 
Transmission rate AUTO 
Buffer size of the transmission and reception packet. (Please refer 6.2.3 and 
7.2.3 for details.) 

3584 

The size of the specific area for the received packet. (Please refer 6.2.3 and 
7.2.3 for details.)  

512 

 
The handling of the internal parameters for the D2DL is as follows. 
 

 Calling the D2DLL_Init 
The D2DL accesses the parameter area of the EEPROM. If there are valid data, (they are checked with 
checksum etc.), the D2DL copies them to the RAM table. If there are no valid data, (for example the 
EEPROM is blank), the D2DL copies the default data which is stored in the ROM to the table of the 
RAM and the EEPROM. In this case the default values are the parameters for FCC (U.S.A). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RAM 

There aren’t any 
valid data in the 
EEPROM 

There are valid data 
in the EEPROM 

Parameter 
default area 

Parameter 
table area 

Parameter 
storage area ROM 

EEPROM 

 Calling the D2DLL_Start 
The D2DL sets the parameters which are indicated by the arguments (i.e. selecting network ID, node ID, 
received packet type, region, device serial number and repeater function ON/OFF) to the RAM table and 
the EEPROM. If the region is set from 0 to 3, the default values of the region are loaded and then the 
other parameters are set. 

  19



D2DL USER’S MANUAL 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

When the 
region is 
from 0 to 3 

The setting values of 
the arguments of the 
D2DLL_Start 

Parameter 
default values 

Parameter 
table area 

Parameter 
storage area 

ROM 

RAM EEPROM 

 Calling the D2DLL_SetAddrs, the D2DLL_SendOption and the D2DLL_SetParam 
The parameter values of the RAM can be changed. 
These functions don’t change the data of the EEPROM. If you want to store the data of the RAM table, 
please call the D2DLL_SaveParam as follows. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Setting values of the arguments for 
the D2DLL_SetAddrs,  
the D2DLL_SendOption  
and the D2DLL_SetParam 

Parameter 
table area 

Parameter 
storage area 

RAM 
EEPROM 

 Calling the D2DLL_ SaveParam 
It copies the data of the RAM table to the EEPROM. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parameter 
storage area Parameter 

table area 

EEPROM RAM 

  20



D2DL USER’S MANUAL 

If you want to judge whether you load the default data to the EEPROM or use the valid data of the EEPROM 
before calling the D2DLL_Start, you can judge it by the address values (node ID and network ID).  

 

 Is network ID (or node ID) 
the default value? 

Yes 
Set the specific data (from 0 to 3) to the 
argument “region”, and call the 
D2DLL_Start (i.e. It lays out each region 
default configuration to the RAM table.).

Set -1 to the argument “region”, and call 
the D2DLL_Start (i.e. It uses the 
EEPROM data.). 

D2DLL_GetAddrs 

D2DLL_Init 

D2DLL_RegApp 

START 
 
 
 
 
 
 
 
 
 
 

No  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If you have any cases except the address, just feel free to contact us. 
 

  21



D2DL USER’S MANUAL 

5.3 EEPROM interface process 
 

The D2DL opens the source code for EEPROM I/F, therefore you can use any EEPROM. By default an example 
program which supports the ATMEL AT24C128 and AT24C16 EEPROM is included. It uses SCL2 (pin no.18) 
and SDA2 (pin no.19) for communication between EEPROM and M16C/6S. Therefore if you use the same 
specific hardware, you will be able to use the example EEPROM I/F without modification. (Note: Please set the 
compile option _EEP_128K/ _EEP_16K according to your EEPROM. For more details, please follow the 
specification described in “D2DL EEPROM I/F SPECIFICATION”.) 
In other cases, if you use the different hardware, please modify the EEPROM I/F to be fitted to your EEPROM 
and the communication I/O specification of M16C/6S following the "D2DL EEPROM I/F Specification". 

 
5.4 Configuration of the protocol number 

 
The D2DL keeps the coexistence of any products which implements different upper protocols by using the 
protocol number. The nodes using the same protocol number can communicate with each other, but the nodes 
which use different protocol number cannot. For example, when there are two nodes which have the same 
address (network ID and node ID) on the line, they can keep the coexistence if each of them uses a different 
protocol number. If you want to use this feature, you should set the following protocol number according to your 
protocol. 

 
 

Upper protocol Protocol number 
Echonet 0x01 
User specific protocol 0x3B 

 
Please contact the following address if you want to use other standard protocol. 

 
E-mail address:  plcsupport@renesas.com

 
You can set the protocol number by calling the D2DLL_SetParam function with the following arguments. 

 
The first argument The second argument 
D2DLL_IDX_PROTOCOL_VER(70) Protocol number 

 
The example description is as follows. 

 
d2dllResult = D2DLL_SetParam(D2DLL_IDX_PROTOCOL_VER, 0x3B ); 
if( d2dllResult != D2DLL_E_OK  ){ 

while(1); 
} 

[Note] Do not set the protocol number except 0x01 and 0x3B in current version. 
 

If you use the user specific protocol number, each product of the different company can communicate with each 
other because the same protocol number (0x3B) is set. Therefore it is recommended that you implement your 
measures for avoiding the interference between each product in the user application. 
The default value of the protocol number is 0x01. Please refer to the section 5.2 about the handling of the 
initialization values. 

 
5.5 Notes on using the CNC service 

 
The device serial number (DSN) is used as the address in the CNC service. The DSN is the unique 16bytes value 
which should be assigned to each node, and it is stored in the EEPROM of each node. The user application in the 
node that receives a CNC packet can recognize the source device by the source DSN that is included in the 
received packet. 
The DSN should be assigned by the user to avoid overlappings between the CNC packet of the user products. To 
achieve this necessity, a customer number is assigned to each user which is included in the DSN. 
 

  22

mailto:plcsupport@renesas.com


D2DL USER’S MANUAL 

The customer numbers are managed in Renesas Solutions Corp. Please contact to the following e-mail address 
if you want to use the CNC service. Then you will receive an e-mail in response which includes your customer 
number and its information of implementation. 

 
Email address: plcsupport@renesas.com

 
5.6 LED port assignment 
The control signal of LED which indicates the packet reception can be assigned to any I/O port. If you 
implement the following functions in the user application, you can activate the LED on receiving the packet. 

 
 

void D2DLL_CB_RxLEDon (void)  : LED ON for receiving 
void D2DLL_CB_RxLEDoff (void) : LED OFF for receiving 

 
Please do not write any process to go through quickly except the process of the LED ON/OFF because these 
functions are called by the interrupt handler. If you do not need the LED for receiving, please make the functions 
empty. 
 
For the LED transmission control, you can use the “TS” (Pin31) of M16C/6S, so it needs not to be controlled by 
software. The example circuit for LED control using the TS is shown as follows. 

 
 

TS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  23

mailto:plcsupport@renesas.com


D2DL USER’S MANUAL 

6. Development the User Application (Single Task Edition) 
This section describes about the necessary information to develop the user application with the D2DL of the 
single task edition. 

 
6.1 Example program organization 
It is recommended that you develop the user application program based on the D2DL example program. 
The project of the example program corresponds with the RENESAS HEW (High-performance Embedded 
Workshop). When you execute the D2DL setup file, the following folders are created on your PC. 
Folder Name Description 
d2dllApp_s This is a work space folder. There is a HEW work space file ( *.hws). If you 

open and use this file on HEW, you can develop your program based one the 
example program. 

 D2dllApp_Vxxxs(- Note) This is a project folder. The information about this project is stored under 
this folder.  

  Debug There is debug configuration information. The configuration includes build 
option information, etc. Output file is also stored here after build process. 

  Release Not used. 
  src There are some source files of the example program. 
   app 
   eeprom 
   inc 
   lib 

See below. 

[Note:] ”xxx” is a version number. 
 

Following table shows each file in the src folder. Please develop your application by modifying “UserMain.c”. 
Folder 
Name 

File Name Description Langu
age 

Modifi
able 

app UserMain.c This is an example source file for the User Application Program. 
The function named Main_WorkerThread is like a function “main()” in a C 
program. In your application programming, please modify this function 
and add your sub-functions. 

C Yes 

 dll_heap.a30 This is a file for the heap area which is used by D2DL library. 
When you change the size of the heap area, please change this file. 

ASM Yes 

 mrtable.a30 This is a file for interrupt vector table.  
When you add your own interrupt service routine, please add the interrupt 
vectors in this file. 

ASM Yes 

 stack.a30 This is a file for the stack. Please define stack size for user application (i.e. 
main routine and interrupt). 

ASM Yes 

 startup.r30 This is a module file for starting up. -- No 

eeprom eeprom16C.c This is a file for EEPROM I/F which includes the function to access to 
EEPROM. 
If you use the different hardware with the example program, please modify 
this file to be fitted to your EEPROM and the communication I/O 
specification of M16C/6S. (For details, please refer 5.3.) 

C Yes 

Inc D2Dll.h This is a header file which contains declarations for prototype of D2DL APIs 
and data types.  
Please include this file into your C source files for the User Application 
Program. 

C No 

 valType.h This is a header file which contains declarations for basic data types of each 
API function. Please include this file before including D2Dll.h into your C 
source files for User Application. 

C No 

lib d2dll.lib This is a library file for D2DL. -- No 
 kernel1.lib This is a library file for MiniRTOS of D2DL. -- No 
 kernel2.lib This is a library file for MiniRTOS of D2DL. -- No 

 

  24



D2DL USER’S MANUAL 

6.2 Implementation method 
This section describes the necessary information when you develop the program using the D2DL.  

 
6.2.1 Transmission and Reception Sequence 
The user application may need the following features. 

- Getting the transmission result of the requested packet 
- Getting the received packet 
 

The D2DL provides the next two methods to support above features. 
 The user application can get the information via callback function that is called by D2DL. 
 The user application can get the information by calling the API function. 

 
The user application can get the information from the D2DL by using either one of both methods. 
This section describes each method. 

 
[Notes] 
When you use the single task edition, we recommend using the callback functions. If the user application does 
not use the callback function and it calls the API function by the method which takes wait time, the process 
waits in the function, and it does not return until when the communication is completed.  
 
 

6.2.1.1 Getting the packet transmission result 

The method to get the transmission result is determined by the 3rd argument of the D2DLL_RegApp function. 
 

 Case: The 3rd argument of the D2DLL_RegApp is NULL 
The transmission result is passed by the return value of the packet transmission request API function 
(i.e. the D2DLL_Send etc.). Therefore the transmission function does not return until the 
transmission result has determined. It takes dozens of milliseconds up to several seconds to determine 
the transmission result, according to the condition of the line and the destination node. The task 
which calls the D2DLL_Send function has been in the sleep status until the transmission result has 
determined. In this period, the other task runs in the Multi Task Edition, but in the Single Task 
Edition the user task stops. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Receive the transmission request

Wait the transmission result 

Execute the transmission process 

Wait in the condition of 
task sleep 

From dozens of 
milliseconds to several 
seconds 

return 

Get the transmission result

D2DL User 
Application 

 

D2DLL_Send 

  25



D2DL USER’S MANUAL 

 Case: The 3rd argument of the D2DLL_RegApp is not NULL 
The API transmission function (i.e. the D2DLL_Send etc.) terminates as soon as the transmission 
request is received in the D2DL. (The wait time does not occur.) After that, when the transmission 
result is determined, the D2DL calls the callback function which start address is the value of the 3rd 
argument of the D2DLL_RegApp, and passes the transmission result to the user application. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

return 
Get the transmission result 

return 
Receive the transmission request

Callback function 

From dozens of 
milliseconds to s
seconds 

everal Execute the transmission process 

Wait the transmission result 

D2DL User 
Application  

D2DLL_Send 

6.2.1.2 Getting the received packet 

The method to get the received packet is determined by the 2nd argument of the D2DLL_RegApp function. 
 

 Case: The 2nd argument of the D2DLL_RegApp is NULL 
The reception API function D2DLL_Recv gets the received packet. The reception waiting time can 
be set by the argument “rcvTimeout” of the D2DLL_Recv function. 

 
- If the rcvTimeout is D2DLL_NOWAIT(0x0000), 

The D2DLL_Recv function is terminated whether there is a received packet or not 
when it is called. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

return 

Get the reception result 

D2DL User 
Application 

 

D2DLL_Recv 

- If the rcvTimeout is D2DLL_INFINITE (0xFFFF), 
If there is not a received packet, the D2DLL_Recv waits of the packet reception 
internally forever. When the packet is received, the function is terminated. If there is a 
received packet when the function is called, it is terminated immediatley. While waiting 
for the received packet, the task which calls the D2DLL_Recv function has been in the 

  26



D2DL USER’S MANUAL 

sleep status. In this period, the other task runs in the Multi Task Edition, but in the 
Single Task Edition the user task stops. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Get the reception result 

return 

D2DL 

Wait forever until the 
packet reception. 

If there is already a 
received packet when the 
function is called, it returns 
directly. 

Packet reception 

User 
Application 

 

D2DLL_Recv 

- If the rcvTimeout is neither D2DLL_NOWAIT(0x0000) nor D2DLL_INFINITE (0xFFFF), 
If there is a packet when the D2DLL_Recv is called, it is terminated immediatley. If there is 
not a received packet, it waits of the packet reception for the specific period which is set in 
rcvTimeout (Unit: msec), and it is terminated on the packet reception. If it does not receive a 
packet until the specific time is expired, then the function is terminated. While waiting for the 
received packet, the task which calls the D2DLL_Recv function has been in the sleep status. 
In this period, the other task is running in the Multi Task Edition, but in the Single Task 
Edition the user task stops. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

D2DLL_Recv 

 D2DL 

return  
(time out)

The specific time period which 
is set in rcvTimeout. 

It returns if there is a received 
packet in this period. 

If there is already a received 
packet when the function is called, 
it returns directly. 

User 
Application 

Get the reception result 

 Case: The 2nd argument of the D2DLL_RegApp is not NULL 
The received packet is passed to the user application by the callback function from the D2DL. 
In this case, the D2DLL_Recv function is not needed. 
 

 
 
 
 
 

  27



D2DL USER’S MANUAL 

 
 
 
 
 
 
 
 
 
 
 
 
 

User 
Application 

return 

When the packet is 
received, the D2DLL 
calls the callback 
function. Get the reception result 

Callback function 

Packet reception 

D2DL  

In the environment in which there are some application (port) on the D2DL, the function which is registered in 
each application is called back in case of the packet reception callback function. However in case of the 
D2DLL_Recv function, it cannot assign the received packet to each destination application. If you use the 
D2DLL_Recv function in the multiple application environment, please implement the assignment process for 
each application by checking the dstPortId (destination port ID) in the received data. 

 
 

6.2.1.3 Restrictions on using the reception function 

When the user application receives the packet by the packet reception function D2DLL_Recv, not the callback 
function, the D2DLL_Recv function should be called at short intervals as the following. 

 
Region Maximum call interval 
U.S.A (FCC) 50ms 
Japan (ARIB) 90ms 
Europe (CENELEC A/B) 120ms 

 
The timeout interval which is set in the argument “rcvTimeout” of the D2DLL_Recv function is not included in 
times shown above. An example when timeout is one second is shown as below. Please implement the 
following (A) interval not to exceed the maximum call interval which is shown in the table above. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Calling the 
D2DLL_Recv 

function 

1s 

Calling the 
D2DLL_Recv 

function 

1s 

Calling the 
D2DLL_Recv 

function 

Calling the 
D2DLL_Recv 

function 

The function exits 
by the timeout. 

The function exits 
by the timeout. 

 

(A)(A)(A) 

1s time 

The function exits 
by the packet 
reception 

The function exits 
by the timeout. 

 

 
 

6.2.2 Addition of the Interrupt Handler 
The function for interrupt service routine can be written in C. The method of addition is different between 
Watchdog Timer (hereafter called WDT) interrupt and others. So please refer to the following. 
Note that it is not available to use the D2DL API in the interrupt process function. 

 
 Addition of the interrupt process function 

Please declare the return value and the argument as “void”. Do not declare as static. 
Please describe the following at top of the file which defines the interrupt function. 

 
 

  28



D2DL USER’S MANUAL 

 
[In case of interrupt excluding WDT:] 

_asm("__MR_IntEntry    .MACRO    ¥n.ENDM "); 
#pragma INTHANDLER     Interrupt Function Name 

 
[In case of WDT:] 

 #pragma INTERRUPT  Interrupt Function Name 
 

Example of description for interrupt excluding WDT: 
_asm("__MR_IntEntry  .MACRO  ¥n.ENDM "); 
#pragma  INTHANDLER  inthand 
void inthand(void) 
{ 

/* process*/ 
} 

 
If you enable the multiple interrupt, please add “/E” after INTHANDLER or INTERRUPT. 

 
 Addition to “mrtable.a30”  

Add your interrupt process function to the interrupt vector. It can be set below line number 171 of 
“mrtable.a30”. 

 
[In case of interrupt excluding WDT] 
Please set each vector as the same as the following gray shaded lines <<1>> and <<2>>. 
 
<<1>>Please add the following 3 lines. Add the vector number to [Vector Number], and the interrupt 

function name to [Interrupt Function Name](“[]” is not necessary).  
The “()” is not necessary for function name, and please attach “_” at top of the name. 

<<2>>Please change the dummy function name “__SYS_DMY_INH” to the [Interrupt Function Name] 
(“[]” is not necessary). 

 
; +-------------------------------------------------------------+ 
; |  mr30 vector table    | 
; +-------------------------------------------------------------+ 
  .SECTION INTERRUPT_VECTOR 
; 
 .GLB __INTOS_8  ;D2dll_PhyRx_PhyUsartISR() 
__INTOS_8 .  EQU 1 
  .GLB _D2dll_PhyRx_PhyUsartISR 
 .GLB __INTOS_[ Vector Number] ; [Interrupt Function Name]  << 1 >> 
__INTOS_[ Vector Number] .EQU 1 
  .GLB [Interrupt Function Name] 
   : 
   : 
  .LWORD  __SYS_DMY_INH  ;vector7 
  .LWORD  _D2dll_PhyRx_PhyUsartISR ;vector8 
  .LWORD  __SYS_DMY_INH  ;vector9 
  .LWORD  [Interrupt Function Name] ;vector[Vector Number]<< 2 >> 
  .LWORD  __SYS_DMY_INH  ;vector11 
   : 
   : 

 
 

[In case of WDT interrupt] 
Please set each interrupt function as the same as the following gray shaded lines <<1>> and <<2>>. 
<<1>> Please define the interrupt function name to [Interrupt Function Name] (“[]” is not necessary).  

The “()” is not necessary for the function name, and please attach “_” at top of the name. 
<<2>> Please change the dummy function name “__SYS_DMY_INH” on line for vector 252 to the 

[Interrupt Function Name] (“[]” is not necessary). 
 
 

  29



D2DL USER’S MANUAL 

 
; +-------------------------------------------------------------+ 
; |  mr30 vector table    | 
; +-------------------------------------------------------------+ 
  .SECTION INTERRUPT_VECTOR 
; 
 .GLB __INTOS_8  ;D2dll_PhyRx_PhyUsartISR() 
__INTOS_8 .  EQU 1 
  .GLB _D2dll_PhyRx_PhyUsartISR 
   : 
  .GLB [Interrupt Function Name]       << 1 >> 
   : 
   : 
  .LWORD  __SYS_DMY_INH  ;vector250 
  .LWORD  __SYS_DMY_INH  ;vector251 
  .LWORD  [Interrupt Function Name]  ;vector252  << 2 >> 
  .LWORD  __SYS_DMY_INH  ;vector253 
   : 
   : 

 
 

6.2.3 Configuration of the D2DL Heap Area 
The D2DL uses RAM area for the transmission and reception packet buffer, and other usages. (This area is called “the heap 
area” in this document.) The size of the heap area is configurable by the user and the allocation is as follows: 

 
 

Transmission and 
reception packet buffer 

Area only for 
received p
 

acket 

RAM 

Mapping data area for the 
transmission and reception 
packet buffer 

 
 
 
 
 
 
 D2DL Heap Area 
 
 
 
 

For other usage  
 
 

The packets which are requested to be transmitted by the user application and the packets which are received by 
PHY are temporarily stored in the ”transmission and reception packet buffer”. If the upper layer requests 
transmission continuously, for example, the transmission waiting packet occupies the buffer, so the user 
application cannot receive any packets. Therefore the “area only for received packet” is the area which is always 
allocated in the transmission and reception packet buffer for the received packet usage to avoid this condition. 
“Mapping data area for the transmission and reception packet buffer” is the area which tracks the data location 
on the transmission and reception packet buffer. 
 
Please set the size of these areas according to your system because they depend on the target system 
specification, such as the maximum payload size of the transmission and reception packet and the transmission 
and reception frequency. 
 
The following calculated value gives an indication of the size which area used by one packet (transmission and 
reception packet) in the transmission and reception packet buffer. 
 
   “The payload size of the packet” + 17( header size) + 101  (byte) 

[Notes] You do not need to consider about the packet fragmentation on this calculation. For 
example, the 400 bytes payload packet occupies “400 + 17 + 101 = 518 bytes”. 

 
The size of the data area for the transmission and reception packet buffer mapping is calculated as follows. 
  The transmission and reception packet buffer size (bytes) / 32  

  30



D2DL USER’S MANUAL 

  [Note] Round up the remainder. 
 
“For other usage” area is fixed 284 bytes. 
 
 
You should allocate the total size of the area which is added to each RAM area, and set the size to the D2DL. 
The method of setting is as follows. 
 
The heap area size is set by the following two methods. 

- The parameter which is written in “dll_heap.a30” 
- The parameters which are set by the function “D2DLL_SetParam” 

Both of them should be set. First, it describes the configuration by “dll_heap.a30”. 
 
Please set the size of your heap area to the following gray shaded line in “dll_heap.a30” in hexadecimal. Do not 
change other item except this value in this file. 
 

 .GLB D2DLL_HEAP_AREA, __d2dll_heap_top 
D2DLL_HEAP_AREA .EQU 600H  ; 1.5K 
;--------------------------------------------------------------- 
; heap section (to be used by d2dll) 
;--------------------------------------------------------------- 
 .GLB _g_d2dll_StartOfHeap 
 .GLB _g_d2dll_EndOfHeap 
 .section d2dll_heap,DATA,ALIGN 
 _g_d2dll_StartOfHeap:  .BLKW   1 
 _g_d2dll_EndOfHeap:  .BLKW   1 
__d2dll_heap_top: 
 .BLKB  D2DLL_HEAP_AREA 
 .END 

 
In the start up file “startup.r30”, the “_g_d2dll_StartOfHeap” is set to the top address of the heap area and the 
“_g_d2dll_EndOfHeap” is set to the end address of the heap area automatically. These values are passed to the 
D2DL as the return value of the function “HALMemMngS_GetFreeRAMStart” and 
“HALMemMngS_GetFreeRAMEnd”. Therefore you should implement these functions in the user application. 
(You can use the source code of the example program without any changes.) 

 
 

[The function for getting the start point]  
unsigned HALMemMngS_GetFreeRAMStart( void ) 

 
[The function for getting the end point] 

unsigned HALMemMngS_GetFreeRAMEnd( void ) 
 

Next, it describes the configuration by the function “D2DLL_SetParam”. 
 
Please set the size of your heap area by the following argument of the function “D2DLL_SetParam”. 

 
The first argument The second argument 
D2DLL_IDX_DLL_MEMORY(71) The size of the” transmission and reception 

packet buffer” (bytes) 
D2DLL_IDX_RXRES_MEMORY (77) The size of the “area only for received packet” 

(bytes) 
 

The example source code is as follows. 
 

d2dllResult = D2DLL_SetParam( D2DLL_IDX_DLL_MEMORY, 916 ); 
if( d2dllResult != D2DLL_E_OK  ){ 

while(1); 

  31



D2DL USER’S MANUAL 

} 
d2dllResult = D2DLL_SetParam( D2DLL_IDX_RXRES_MEMORY, 458 ); 
if( d2dllResult != D2DLL_E_OK  ){ 

while(1); 
} 

 
[Note] These configurations should be set between calling the “D2DLL_Start” and the “D2DLL_Online” in the 
D2DL initialization sequence. 
 
Please refer to the example program for more detailed implementations. 

 
 

6.2.4 Configuration of the stack size 
The default stack size of the D2DL is as follows. 

 The system stack (which is used by the MiniRTOS and the interrupt routine in the D2DL) is 330 bytes. 
 The stack of the user application main loop is 280 bytes. (It is used by the example program.) 

The method to change the stack size is as follows. 
 
The configuration of the stack size is in the “stack.a30” file. 
Please calculate each stack size for example, by the stack size calculation program “StkViewer” and set them to 
the following gray shaded lines<<1>><<2>>. 

<<1>>Set the system stack size in hexadecimal.  
The interrupt process of the user application also uses the system stack.  
Do not set smaller value than the default. 

<<2>>Set the stack size which is used by the main routine “Main_WorkerThread()”of the user application 
in hexadecimal. 

Do no changes except these values in this file. 
 .GLB __SYS_STACK_SIZ, __Main_stack, __Sys_Sp 
__SYS_STACK_SIZ .EQU  014aH   << 1 >> 
__Main_stack .EQU  0118H   << 2 >> 
; +-------------------------------------+ 
; |  Stack Area     | 
; +-------------------------------------+ 
 .section stack,DATA,ALIGN 
 .BLKB  __SYS_STACK_SIZ 
 .align 
__Sys_Sp: 
 .BLKB  __Main_stack 
 .BLKB  0208H 
 .END 

 

  32



D2DL USER’S MANUAL 

6.3 Notes 
 
6.3.1 Influence of the D2DL task and its interrupt process on the user application 
During the main function “Main_WorkerThread” of the user application or the new interrupt functions which are 
added by the user is running, the interrupt process for the D2DL may start up and then the tasks in the D2DL 
library run circumstantially. 
In this case, the user application pauses and the process of the D2DL library starts to run. The occurrence 
frequency of this D2DL interrupt process (which includes the D2DL task process) depends on the amount of 
PLC packets. 

 
6.3.2 Notes on the interrupt 

 If the processing time of the interrupt process of the user application meets one of the following conditions, 
we recommend enabling multiple interrupt with a priority level of 3 or more. Without enabling this, some 
packets might be lost.  

 
Condition 1 : the processing time of one interrupt process of the user application is 100 us or more, and its 

interrupt may occurs in a 2.4 ms interval or less 
 

Condition 2 : the processing time of one interrupt process of the user application is longer than 500 us 
 
 The interrupt processing time of the D2DL and its occurrence timing are as shown.  

Trigger of the 
Interrupt 

Function Name Processing Time Occurrence Timing 

SI/O4 D2dll_PhyRx_PhyUsartISR 20 us – 500 us 
INT0 D2dll_Phy_ISR 20 us – 120 us 
TA0 D2dll_Timer_ISR 30 us – 90 us 
TA1 D2dll_Timer1_ISR 10 us or less 

The transmission and reception 
on the PLC. (In other case, it 
may occur at random times by 
the reception of the noise.)  

[Notes] The SI/O4 interrupt process takes about 500 us only in case of the reception for the top byte of the 
packet. In other case, the process takes about 20 us. 

 
 To disable the interrupt in the user application, please select one of the following methods. 

I. Disable the interrupt by the operation of the interrupt enable flag (I flag) and the processor interrupt 
priority level (IPL). 
Please make sure to use the interrupt disabling and enabling in pairs.  

II. Change the interrupt priority level (from ILVL2 to 0) to disable.  
Please clear the I flag before and after the operation of the interrupt priority level (from ILVL2 to 
0).  

 
 The D2DL reserves the interrupt number from 32 to 47 of the INT instruction. Please use the interrupt 

number except from 32 to 47 when you use the software interrupt in the user application. 
 

 Register Bank Usage 
It is not available to change the register bank. 

 
6.3.3 Notes on the debug 

 You can set the breakpoints up to two at the same time (in case of using the KD30). 
 Do not use the DBC interrupt because it is the specific interrupt for the developer support tool. 
 It is not available to show the source code of the startup file (startup.r30) during debugging by means of the 

KD30 or the PD30 because it is provided only in r30 format.  
 

  33



D2DL USER’S MANUAL 

7. Development of the User Application (Multi Task Edition) 
This section describes the necessary information to develop the user application using the multi task edition of 
the D2DL. 

 
7.1 Example program organization 
It is recommended that to develop the user application program based on the D2DL example program. 
The project of the example program corresponds with the RENESAS HEW (High-performance Embedded 
Workshop). When executing the D2DL setup file, the following folders are created on the PC. 
Folder Name Description 
d2dllApp_m This is a work space folder where the HEW work space file ( *.hws) is located. 

The development of own programs should be based on the example program 
using this work space file in the HEW.  

 D2dllApp_Vxxxs(- Note) This is a project file where the project information are stored.  
  Debug The debug configuration information, including the build option information, 

etc. are stored here. After the build process the Output file is also located here.
  Release Not used. 
  src There are some source files of the example program. 
   app 
   eeprom 
   inc 
   lib 

See below. 

[Note:] ”xxx” is a version number. 
 

Following table shows each file in the src folder. Please develop your application by modifying “UserMain.c” 
and “D2DLLApp.cfg”. 
Folder 
Name 

File Name Description Langu
age 

Modifi
able 

app UserMain.c This is an example source file for the User Application Program. 
The function named Main_WorkerThread is like a function “main()” in a C 
program. Programming own application, please modify this function 
and add sub-functions here. 

C Yes 

 crt0mr.a30 This is a source file of the startup process and also for the heap area which 
is used by D2DL library. 
To change the size of the heap area, please change this file and do not 
change the other configurations. 

ASM Yes 

 c_sec.inc This is a section definition file. Do not change. ASM Yes 

 D2DLLApp.cfg This is a configuration file for the real time OS MR30.  
It defines the system, tasks, flags, semaphores and so on. Please add the 
definition for the user application after checking the notes. (Please refer to 
the section 7.2.4 for details.) 

-- Partly 
No 

eeprom eeprom16C.c This is a file for EEPROM I/F which includes the function to access the 
EEPROM. 
Use the example program in combination with different hardware, please 
modify this file to be fitted to the corresponding EEPROM and the 
communication I/O specification of the M16C/6S. (For details, please refer 
to 5.3.) 

C Yes 

Inc D2Dll.h This is a header file which contains prototype declarations of the D2DL 
APIs and data types. Please include this file into the C source files for the 
User Application Program. 

C No 

 valType.h This is a header file which contains basic data type declarations. Please 
include this file before including D2Dll.h into the C source files for the 
User Application. 

C No 

d2dll.lib This is a library file of D2DL. -- No lib 
d2dll.mrc This is a system call file which includes the RTOS system call used in the 

D2DL library. 
-- No 

  34



D2DL USER’S MANUAL 

 
7.2 Implementation method 
This section describes the necessary information required to develop programs using the D2DL.  

 
7.2.1 Transmission and Reception Sequence 
The user application may need the following features. 

- Getting the transmission result of the requested packet 
- Getting the received packet 

The D2DL provides the next two methods to support above features. 
 The user application can get the information via callback function that is called by the D2DL. 
 The user application can get the information by calling the API function. 

The user application can get the information from the D2DL by using either one of two methods. 
This section describes each method. 
When there is a user application task, it runs as the single task edition. 

 
7.2.1.1 Getting the packet transmission result 

The method to get the transmission result is determined by the 3rd argument of the D2DLL_RegApp function. 
 
 Case: The 3rd argument of the D2DLL_RegApp is NULL 

The transmission result is passed by the return value of the packet transmission request API function 
(i.e. the D2DLL_Send etc.). Therefore the transmission function does not return until the 
transmission result has been determined. It may take dozens of milliseconds up to several seconds to 
determine the transmission result, according to the condition of the line and the destination node. 
The task which calls the D2DLL_Send function has been in the sleep status until the transmission 
result has determined. In this period, the other task runs. When the transmission result is determined, 
the user task runs again. The priority of the user task should be lower than the internal tasks of the 
D2DL.  
Multiple tasks can call the packet transmission request API function at the same time. However, 
until the user task which calls the function first gets the transmission result, other tasks are set to the 
WAIT state by the semaphore function. Thus the other transmission process is not accepted or 
executed from the other task even if the first user task is in the sleep status waiting for the 
transmission result. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Case: The 3rd argument of the D2DLL_RegApp is not NULL 

The API function for transmission (i.e. the D2DLL_Send etc.) terminates as soon as the transmission 
request is received in the D2DL. (The wait time does not occur.) After the transmission result is 
determined, the D2DL calls the callback function which start address is the value of the 3rd argument 
of the D2DLL_RegApp, and passes the transmission result on to the user application. 
Multiple tasks can call the packet transmission request API function at the same time. In this case, the 
callback function should be devised because it is necessary which user task should be passed the 
transmission result. For example, you can identify which user task should be passed the transmission 

Receive the transmission request 

Wait the transmission result 

Dozens of m
up to several second

illiseconds 
s Execute the transmission process 

Wait in the task sleep 
status 

return 

Get the transmission result 

D2DL User 
Application 

 

D2DLL_Send 

  35



D2DL USER’S MANUAL 

result by using the member “sessionTag” in the transmission API structure. The example cases are as 
follows. 
 
Example 1: The multiple user tasks use the same port number for transmission. 
Example 2: The multiple user tasks use the different port number for transmission, but use the same 
callback function. 
 
In these cases, you can identify the task to pass the transmission result by setting the unique 
“sessionTag” to each user task, i.e. including the user task ID to a part of the “sessionTag” etc. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

return 
Get the transmission result 

return 
Receive the transmission request

Callback function 

Execute the transmission process 

Wait the transmission result 

From dozens of 
milliseconds to 
several seconds 

D2DL User 
Application 

 

D2DLL_Send 

  36



D2DL USER’S MANUAL 

7.2.1.2 Getting the received packet 

The method to get the received packet is determined by the 2nd argument of the D2DLL_RegApp function. 
 
 Case: The 2nd argument of the D2DLL_RegApp is NULL 

The reception API function D2DLL_Recv gets the received packet. The reception waiting time can 
be set by the argument “rcvTimeout” of the D2DLL_Recv function. 

 
- If the rcvTimeout is D2DLL_NOWAIT(0x0000), 

The D2DLL_Recv function is terminated whether there is a received packet or not 
when it is called. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

return 

Get the reception result 

D2DL User 
Application 

 

D2DLL_Recv 

- If the rcvTimeout is D2DLL_INFINITE (0xFFFF), 
If there is not a received packet, the D2DLL_Recv waits of the packet reception 
internally forever. When the packet is received, the function is terminated. If there is a 
received packet when the function is called, it is terminated soon. While waiting for the 
received packet, the task which calls the D2DLL_Recv function has been in the sleep 
status. In this period, the other task runs. When the packet is received, the user task runs 
again. The priority of the user task should be lower than the internal tasks of the D2DL.  
Multiple tasks can call the packet reception API function at the same time. However 
until the user task which calls the function first gets the reception result, and the other 
tasks are set to the WAIT state by the semaphore function. So the other reception 
process is not accepted or executed from the other task even if the first user task is in 
the sleep status waiting for the packet reception. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Get the reception result 

return 

D2DL 

Wait forever until the 
packet reception. 

If there is a received packet when 
the function is called, it returns 
soon. 

Packet reception 

User 
Application 

 

D2DLL_Recv 

  37



D2DL USER’S MANUAL 

- If the rcvTimeout is neither D2DLL_NOWAIT (0x0000) nor D2DLL_INFINITE (0xFFFF), 
If there is a packet when the D2DLL_Recv is called, it is terminated soon. If there is no 
received packet, it is waiting for the packet reception for the specific period which is set in 
rcvTimeout (Unit: msec). When the packet is received, the function is terminated. If it does 
not receive a packet while the specific time is expired, then the function is terminated. While 
waiting the received packet, the task which calls the D2DLL_Recv function has been in the 
sleep status. As mentioned above for D2DLL_INFINITE (0xFFFF), in this period, the other 
task runs. When the packet is received or the time-out is indicated, the user task runs again. 
The priority of the user task should be lower than the internal tasks of the D2DL.  
If the multiple tasks call the reception function at the same time, it is the same sequence. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

D2DLL_Recv 

 D2DL 

return  
(Time Out)

The specific period which is set 
in rcvTimeout 

It returns if there is a received packet 
in this period. 

If there is a received packet when 
the function is called, it returns 
soon. 

User 
Application 

Get the reception result 

 Case: The 2nd argument of the D2DLL_RegApp is not NULL 
The received packet is passed to the user application by the callback function from the D2DL. 
In this case, the D2DLL_Recv function is not needed. You can pass the reception result on to 
the multiple tasks by devising the packet reception callback function. For example, when a 
callback function is used by the different port numbers for the packet reception, you can 
identify the user task to pass the reception result by using the member “dstPortId” of the 
structure for the reception API. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Callback function 
When the packet is received, the 
D2DL calls the callback function 

User 
Application 

Packet reception 

return 
Get the reception result 

D2DL  

In the environment in which there are some application (port) on the D2DL, the function which is registered in 
each application is called back in case of the packet reception callback function. However in case of the 
D2DLL_Recv function, it cannot distribute the received packet to each destination application. If you use the 
D2DLL_Recv function in the multiple application environment, please implement the assignment process for 
each application by checking the dstPortId (destination port ID) in the received data. 

 
 
 

7.2.1.3 Restrictions on using the reception function 

  38



D2DL USER’S MANUAL 

When the user application receives the packet by the packet reception function D2DLL_Recv, not the callback 
function, the D2DLL_Recv function should be called at short intervals as the following. 

 
Region Maximum call interval 
U.S.A(FCC) 50ms 
Japan(ARIB) 90ms 
Europe(CENELEC A/B) 120ms 

 
The timeout interval which is set in the argument “rcvTimeout” of the D2DLL_Recv function is not included in 
times shown above. An example when timeout is one second is shown as below. Please implement the 
following (A) interval not to exceed the maximum call interval which is shown in the table above. 

 
 
 
 

Calling the 
D2DLL_Recv 

function 

1s 

Calling the 
D2DLL_Recv 

function 

1s 

Calling the 
D2DLL_Recv 

function 

Calling the 
D2DLL_Recv 

function 

The function exits 
by the timeout. 

The function exits 
by the timeout. 

 

(A) (A)(A) 

1s time 

The function exits 
by the packet 
reception 

The function exits 
by the timeout. 

 
 
 
 
 
 
 
 
 
 
 
 
 

7.2.1.4 The example of using the callback function 

There are two methods to pass the transmission and reception result to the user task by using the callback 
function. 

 
 By using the MR30 functions: 

The callback function passes the transmission and reception result on to the user task which is waiting for 
the indication by using the task feature (sleep and wake up), mail feature (waiting the reception and the 
transmission) or event flag feature (wait and set the flag). 
The following example uses the task operation (sleep and wake up). The sleep task feature can be replaced 
by the mail reception feature or the waiting for the event flag, and the wake up task feature can be replaced 
by the mail transmission feature or setting the event flag. 
 
[ User task process ] 
void UserTask1(void) 
{ 
  : 
 errStatus = D2DLL_Send( &sndParam ); /* Transmission request  

using the callback function */ 
 if( errStatus != D2DLL_E_OK ){ 
     : 
 } 
 /* wait CB */ 
 slp_tsk();       /* Waiting for the indication  

of the callback function */ 
  : 
 if (sendStatus != D2DLL_E_OK)   /* Check the result  

of the callback function */ 
   
  : 
} 
 

  39



D2DL USER’S MANUAL 

[ Callback function process ] 
void SendResult_CB( uint16 sessionTag, sint16 sndResult ) 
{ 
  : 
 sendStatus = sndResult;  /* Get the transmission result */ 
 wup_tsk(ID_UserTask1);  /* Wakeup the user task */ 
  : 
} 
 

 By using the global variable: 
The callback function passes the transmission and reception result on to the user task which is waiting for 
the indication by using the global variable. The callback function sets the value to the global variable, and 
the user task refers to it. 
The following example uses the global variable. 
 
[Global variable] 
unsigned int rcv_stat = 0;  /* Reception result indication flag */ 
 
[User task process] 
void UserTask2(void) 
{ 
   : 
  /* wait CB */ 
  while (rcv_stat == 0) {  /* Waiting for the indication  

of the callback function */ 
   tslp_tsk(1000);   /* Sleep for 1sec */ 
  } 
  rcv_stat = 0;    /* Clear the indication flag */ 
  if (rcvBuffSize == 0)  /* Check the result  

of the callback function */ 
   : 
} 
 
[ Callback function process ] 
void Receive_CB( d2dll_rcvParam *rcvParam ) 
{ 
   : 
  rcvBuffSize = rcvParam->rcvDataLen; /* Set the size  

of the received data */ 
  for ( i = 0; i < rcvBuffSize; i++ ) { /* Copy the received data */ 
      urbuf[i] = *(rcvParam->rcvData+i); 
  } 
   : 
  rcv_stat = 1;      /* Set the indication flag */ 
} 

 
[Notes for using the callback function] 
It takes dozens of milliseconds up to several seconds for the packet transmission and reception. If the callback 
process spends more than this time, the D2DL may fail the transmission and reception. 
Additionally, if multiple tasks share the buffer etc., you should take care to overwrite the data and to change 
the status of variable. 
 

7.2.1.5 Example of the action by the multiple user tasks 

 Case: There are two tasks for the packet transmission(or reception) 
It simply makes a diagram and describes how to show the action when it wakes up the tasks (User Task A 
and B) together which call the transmission function which does not use the callback 
It assumes the User Task A wakes up first and the User Task B is next. The task priorities assume the same. 
 
 

  40



D2DL USER’S MANUAL 

 
 
User Task A 
 
User Task B 
 
D2DL Process 
 
WAIT state 
 
 
 
 
 

Transmission Time  
From dozens of milliseconds  
to several seconds 

Transmission Time  
From dozens of milliseconds  
to several seconds 

1   2     3       4   5    6  7            8   9   10 

1. Wake up the User Task A. Call the transmission function, obtain one resource from the semaphore in 
the function, and then move to the D2DL process. 

2. Start the transmission process of the D2DL. Then move to the WAIT state to get the transmission 
result. 

3. Wake up the User Task B because the User Task A and the D2DL task moved to the WAIT state. It 
calls the transmission function, waiting for the semaphore in the function, and then moves to the WAIT 
state. 

4. Determine the transmission result, and the D2DL wakes up the User Task A. 
5. The User Task A gets the transmission result as the return value of the transmission function, its 

process has done, and exits. It has returned the resource to the semaphore which obtains at above 
process “1” at the end of the transmission function.  

6. The transmission function of the User Task B obtains one resource from the semaphore, and moves to 
the D2DL process. 

7. The transmission process of the D2DL starts, then it moves to the WAIT state to get the transmission 
result. 

8. The transmission result is determined, and the User Task B is waked up by means of the D2DL. 
9. The User Task B gets the transmission result by the return value of the transmission function, its 

process has done, and exits. It has returned the resource to the semaphore which obtains at above 
process “6” at the end of the transmission function. 

10. The processes of the User Task A and the User Task B are finished. 
 

Note: Do not release and exit the User Task WAIT state forcibly when it is triggered by the process steps “2”, 
“3” and “7”. 

 
When it wakes up the tasks (the User Task A and B) together which calls the reception function (D2DLL_Recv) 
and does not use the callback, it is the same sequence. However the D2DLL_Recv function cannot assign the 
received packet to each destination application (the port number). Therefore it is not recommended that the 
multiple tasks call the reception function (D2DLL_Recv) in the multiple application environment. 

 
 Case: There are two tasks using the callback for the packet transmission (or reception) 

It simply describes how to show the action the tasks (User Task C and D) which use the callback for packet 
transmission are waked up together. 
It assumes to implement different applications, the User Task C transmits via port 1 and the User Task D 
transmits via port 2. The task priorities assume the same. 

 
 
User Task C 
 
User Task D 
 
D2DL process 
 
WAIT state 
 
 

Transmission Time: From dozens of milliseconds  
to several seconds 

1  2   3  4    5         6   7   8        9   10   11 

  41



D2DL USER’S MANUAL 

 
 
 
1. Wake up the User Task C. Call the transmission function, and then move to the D2DL process. 
2. Start the transmission process of the D2DL (port 1). Return the function result to the User Task C 

because the transmission result will be passed by the callback function. The User Task C waits for the 
transmission result. 

3. Wake up the User Task D because the User Task C and the D2DL task are in the WAIT state. Call the 
transmission function and move the D2DL process. 

4. Start the transmission process of the D2DL (port 2). Return the function result to the User Task D 
because the transmission result will be passed by the callback function. The User Task D waits the 
transmission result. 

5. Both of the User Task C and D return from the D2DL transmission function. Wait the transmission 
result for port 1 and port 2. 

6. When the transmission result is determined form the port 1, the D2DL calls the callback function to 
indicate the User Task C. 

7. The User Task C gets the transmission result by callback function, its process has done, and exits. 
8. Wait the transmission result for the port 2. 
9. When the transmission result is determined form the port 2, the D2DL calls the callback function to 

indicate the User Task D. 
10. The User Task D gets the transmission result by callback function, its process has done, and exits. 
11. The process of the User Task C and the User Task D have done 
 

If it wakes up the tasks (User Task C and D) together which use the callback for reception, there is no action 
corresponding to the transmission function process from “1” to “5”. The timing of the User Task waking up and 
waiting and the action of the callback function are the same with the case of the transmission. 

 
Every port can use the same transmission callback function registered for each port. In this case, you should 
identify the User Task to pass the transmission result in the callback function. The “sessionTag” is used for 
identification, for example the port number is set in the low 8 bits of the “sessionTag”. 
It can be identified by the port ID “dstPortId” of the destination application in the received data for the reception 
callback function. 
 
 

 
 Case: there are the packet transmission task and the packet reception task 

It simply describes to show the action when it wakes up the reception task (User Task E) and the 
transmission task (User Task F) together. 
It assumes that both of the User Task E and the User Task F do not use the callback function. The User Task 
E calls the reception API with the wait setting (D2DLL_INFINITE). The task priorities assume the same. 
 
 
User TaskE 
 
User TaskF 
 
D2DL process 
 
WAIT state 
 
 
 
 
 

1   2     3  4   5         6   7           8  9    10 

Transmission Time:  
From dozens of milliseconds  
to several seconds

Packet Reception 

1. Wake up the User Task E. Call the reception function, obtain one resource from the semaphore for 
reception in the function, and then move to the D2DL process. 

2. Start the reception process of the D2DL. Then move to the WAIT state to get the reception result. 
3. Wake up the User Task F. It calls the transmission function, obtain one resource from the semaphore 

for transmission in the function, and then move to the D2DL process. 

  42



D2DL USER’S MANUAL 

4. Start the transmission process of the D2DL. Then move to the WAIT state to get the transmission 
result. 

5. Both of the User Task E and F are in the WAIT state in the D2DL function. They wait for the reception 
result or the transmission result. 

6. The transmission result is determined, and the D2DL wakes up the User Task F. 
7. The User Task F gets the transmission result as the return value of the transmission function, its 

process has done, and exits. It has returned the resource to the semaphore which obtains at above 
process “3” at the end of the transmission function. 

8. The D2DL receives the data, creates the reception information, and wakes up the User Task E. 
9. The User Task E gets the reception information by the argument of the reception function, its process 

has done, and exits. It has returned the resource to the semaphore which obtains at above process “1” 
at the end of the reception function. 

10. The process of the User Task E and the User Task F have done 
 

 
7.2.2 Addition of the Interrupt Handler 
The interrupt process function is written in C. It is registered in the configuration file (CFG file) for using on the 
RTOS MR30 system. Please refer to the MR30 manual for the method of the interrupt process function 
definition and CFG file definition. 
Note that it is not available to use the D2DL API in the interrupt process function. 
 
7.2.3 Configuration of the D2DLHeap Area 
The D2DL uses RAM area for the transmission and reception packet buffer, and other usages. (This area is called “the heap 
area” in this document.) The size of the heap area is configurable by the user and the allocation is as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The packets which are requested to be transmitted by the user application and the packets which are received by 
PHY are temporarily stored in the ”transmission and reception packet buffer”. If the upper layer requests 
transmission continuously, for example, the transmission waiting packet occupies the buffer, so the user 
application cannot receive any packets. Therefore the “area only for received packet” is the area which is always 
allocated in the “transmission and reception packet buffer” for the received packet usage to avoid this condition. 

Transmission and 
reception packet buffer 

Area only for 
received p
 

acket 

RAM 

Mapping data area for the 
transmission and reception 
packet buffer 

D2DL Heap Area 

For other usage 

“Mapping data area for the transmission and reception packet buffer” is the area which tracks the data location 
on the “transmission and reception packet buffer”. 

 
Please set the size of these areas according to your system because they depend on the target system 
specification, such as the maximum payload size of the transmission and reception packet and the frequency of 
the transmission and reception. 
The following calculated value gives an indication of the size which area used by one packet (transmission and 
reception packet) in the transmission and reception packet buffer. 
 
   “The payload size of the packet” + 17 (header size) + 101 (byte) 

[Notes] You do not need to consider about the packet fragmentation on this calculation. For 
example, the 400 bytes payload packet occupies “400 + 17 + 101 = 518 bytes”. 

 
The size of the data area for the transmission and reception packet buffer mapping is calculated as follows. 
  The transmission and reception packet buffer size (bytes) / 32  

  43



D2DL USER’S MANUAL 

  [Note] Round up the remainder. 
 
“For other usage” area is fixed 284bytes. 

 
You should allocate the total size of area which is added to each area in RAM, and set the size to the D2DL. The 
method of setting is as follows. 
 
The heap area size is set by the following two methods. 

 The parameter which is written in “crt0mr.a30” 
 The parameters which are set by the function “D2DLL_SetParam” 

Both of them should be set. First, the configuration by means of “crt0mr.a30” is described. 
 
Please set the size of your heap area to the following gray shaded line in “crt0mr.a30” in hexadecimal. Do not 
change other item except this value in this file. 

RAM_TOP_ADR          .EQU     400H 
RAM_END_ADR          .EQU     63FFH  ; 24KB + 400H 
ROM_TOP_ADR          .EQU     0E8000H  ; 96K ROM start   
 
D2DLL_HEAP_AREA  .EQU 600H  ; 1.5K 
 
;------------------------------------------------------------- 
; Section allocation 
;------------------------------------------------------------- 
 
     : 
 
;============================================================= 
; Define the global variable (to be used by d2dll) here -- GB 
;------------------------------------------------------------- 
 _g_d2dll_StartOfHeap:         .BLKW   1 
 _g_d2dll_EndOfHeap:          .BLKW   1 
 
    .glb _g_d2dll_StartOfHeap 
    .glb _g_d2dll_EndOfHeap 
 
     : 
 
;============================================================= 
; initialize the global variables (to be used by d2dll) here - GB 
;------------------------------------------------------------- 
 mov.w   #__d2dll_heap_top, _g_d2dll_StartOfHeap 
 mov.w   #__d2dll_heap_top + D2DLL_HEAP_AREA,_g_d2dll_EndOfHeap 
 cmp.w   #RAM_END_ADR, _g_d2dll_EndOfHeap 
 jgtu     _exit 
 

 
The “_g_d2dll_StartOfHeap” is set to the top address of the heap area and the “_g_d2dll_EndOfHeap” is set to 
the end address of the heap area. These values are passed to the D2DL as the return value of the function 
“HALMemMngS_GetFreeRAMStart” and “HALMemMngS_GetFreeRAMEnd”. Therefore you should 
implement these functions in the user application. (You can use the source code of the example program without 
any changes.) 

 
[The function for getting the start point]  

unsigned HALMemMngS_GetFreeRAMStart( void ) 
 

[The function for getting the end point] 
unsigned HALMemMngS_GetFreeRAMEnd( void ) 

 
 
 
 

Next step describes the configuration by the function “D2DLL_SetParam”. 

  44



D2DL USER’S MANUAL 

 
Please set the size of your heap area by the following argument of the function “D2DLL_SetParam”. 

 
The first argument The second argument 
D2DLL_IDX_DLL_MEMORY(71) The size of the” transmission and reception packet buffer” 

(bytes) 
D2DLL_IDX_RXRES_MEMORY (77) The size of the “area only for received packet” (byte) 

 
The example source code is as follows. 

 
d2dllResult = D2DLL_SetParam( D2DLL_IDX_DLL_MEMORY, 916 ); 
if( d2dllResult != D2DLL_E_OK  ){ 

while(1); 
} 
d2dllResult = D2DLL_SetParam( D2DLL_IDX_RXRES_MEMORY, 458 ); 
if( d2dllResult != D2DLL_E_OK  ){ 

while(1); 
} 

 
[Note] These configurations should be set between calling the “D2DLL_Start” and the “D2DLL_Online” in the  

D2DL initialization sequence. 
 
Please refer to the example program for more implementation details. 
 

  45



D2DL USER’S MANUAL 

7.2.4 Modification of the MR30 Configuration File 
When the user application uses the MR30 feature, you should modify the MR30 configuration file (CFG file). 
Please add the feature after referring under description because there are some items which are not available to 
change and have restriction to add. 
The following gray shaded lines in Figure 1 are the configurations for the D2DL. Do not change the lines which 
do not have any comments. 

 
[The description of the MR30 configuration file] 
//*********************************************************** 
// 
// COPYRIGHT(C) 2005 RENESAS TECHNOLOGY CORPORATION  
// AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED 
// OS Configuration File for M16C/6S DLL 
// 
//*********************************************************** 
 
//-------------------------------------------- 
//  System Configuration 
//-------------------------------------------- 
system{ 
 stack_size = 330; 
 priority  = 5;  
 system_IPL = 7; 
 message_size = 16; 
 timeout  = YES; 
 task_pause = NO; 
}; 
 
clock{ 
 mpu_clock  = 15.36MHz; 
 timer  = A2; 
 IPL   = 6; 
 unit_time  = 1ms; 
 initial_time = 0; 
}; 
 
//-------------------------------------------- 
//  Task Configuration 
//-------------------------------------------- 
task[]{ 
 entry_address = Main_WorkerThread(); 
 stack_size  = 280; 
 priority  = 4; 
 initial_start = ON; 
}; 
task[]{ 
 entry_address = D2dll_Work(); 
 stack_size  = 160; 
 priority  = 3; 
 initial_start = OFF; 
}; 
task[]{ 
 entry_address = D2dll_Recv(); 
 stack_size  = 180; 
 priority  = 1; 
 initial_start = OFF; 
}; 
task[]{ 
 entry_address = D2dll_Send(); 
 stack_size  = 180; 

The definition of the task for 
the D2DL 
Do not change the configuration 
and the order. 
Main_WorkerThread() is the 
user task(Main Task), so it is 
available to change the stack 
size. 
And maximum stack size of 
callback functions should be 
added to the stack size of 
D2dll_Work (160) because the 
callback functions are called by 
D2dll_Work Task. 

The definition about the system 
and the clock for the D2DL 
Do no changes except the system 
stack size “stack_size” and the 
maximum value of the task 
priority “priority”. 

  46



D2DL USER’S MANUAL 

 priority  = 2; 
 initial_start = OFF; 
}; 
 
task[]{ 
 entry_address = Stsk_port1(); 
 stack_size  = 180; 
 priority  = 5; 
 initial_start = OFF; 
}; 
task[]{ 
 entry_address = Stsk_port2(); 

The definition for the user 
application task 
If you add the task, please make 
sure to define it after the D2DL 
task definition. 

 stack_size  = 180; 
 priority  = 5; 
 initial_start = OFF; 
}; 
task[]{ 
 entry_address = RecvTask(); 
 stack_size  = 180; 
 priority  = 5; 
 initial_start = OFF; 
}; 
 
//-------------------------------------------- 
//  Flag Configuration 
//-------------------------------------------- 
flag[]{ 
 name  = _f1; 
}; 
flag[]{ 
 name  = _f2; 
}; 
flag[]{ 
 name  = _f3; 
}; 
flag[]{ 
 name  = _f4; 
}; 
flag[]{ 
 name  = _f5; 
}; 
flag[]{ 
 name  = _f6; 
}; 
flag[]{ 
 name  = _f7; 
}; 
flag[]{    // UART0 Receive 
 name  = Main_pEventIpcRequest; 
}; 
flag[] { 
 name  = UserTaskState; 
}; 
 
//-------------------------------------------- 
//  Semaphore Configuration 
//-------------------------------------------- 
semaphore[]{ 
 name  = _s1; 
 initial_count = 1; 

The definition of the event 
flag for the user application 
Please make sure to define 
after the D2DL event flag 
definition. 

The definition of the event flag for 
the D2DL 
Do not change the configuration and 
the order. 

  47



D2DL USER’S MANUAL 

}; 
semaphore[]{ 
 name  = _s2; 
 initial_count = 1; 
}; 
semaphore[]{ 
 name  = _s3; 
 initial_count = 1; 
}; 
semaphore[]{ 
 name  = _s4; 
 initial_count = 1; 
}; 
semaphore[]{ 
 name  = _s5; 
 initial_count = 1; 
}; 
semaphore[]{ 
 name  = _s6; 
 initial_count = 1; 
}; 
semaphore[]{ 
 name  = _s7; 
 initial_count = 1; 
}; 
semaphore[]{ 
 name  = _s8; 
 initial_count = 1; 
}; 
semaphore[]{ 
 name  = _s9; 
 initial_count = 1; 
}; 
semaphore[]{ 
 name  = _s10; 
 initial_count = 1; 
}; 
semaphore[]{ 
 name  = _s11; 
 initial_count = 1; 
}; 
semaphore[]{ 
 name  = _s12; 
 initial_count = 1; 
}; 
semaphore[]{ 
 name  = _s13; 
 initial_count = 1; 
}; 
semaphore[]{ 
 name  = _s14; 
 initial_count = 1; 
}; 
semaphore[]{   // user 
 name  = uartTx_lock; 
 initial_count = 1; 
}; 
 
 
 

The definition of the semaphore for the 
user application 
Please make sure to define after the 
D2DL semaphore definition. 

The definition of the semaphore 
for the D2DL 
Do not change the configuration 
and the order. 

  48



D2DL USER’S MANUAL 

//-------------------------------------------- 
//  Interrupt Handler 
//-------------------------------------------- 
interrupt_vector[8]{    // (SI/O4) 
 entry_address  = D2dll_PhyRx_PhyUsartISR(); 
 os_int   = YES; 
}; 
interrupt_vector[18]{   // UART0 Rx // user 
 entry_address  = _DebugPort_ReadByte_a30; 
 os_int   = YES; 
}; 
interrupt_vector[21]{   // (TA0) 
 entry_address  = D2dll_Timer_ISR(); 
 os_int   = YES; 
}; 
interrupt_vector[22]{   // (TA1) 
 entry_address  = D2dll_Timer1_ISR(); 
 os_int   = YES; 
}; 

 The definition of the 
interrupt vector for the 
D2DL  
Do not change the 
configuration. 

interrupt_vector[29]{   // (INT0) 
 entry_address  = D2dll_Phy_ISR(); 
 os_int   = YES; 
}; 
 
interrupt_vector[10]{   // (BCN) 
 entry_address  = sis_int(); 
 os_int   = YES; 
}; 
interrupt_vector[15]{   // (S2T) 
 entry_address  = sit_int(); 
 os_int   = YES; 
}; 
interrupt_vector[16]{   // (S2R) 
 entry_address  = sir_int(); 
 os_int   = YES; 
}; 
 
// 
// End of Configuration 
// 

Figure 1 : The example of the MR30 configuration file 

 System Timer 
It isn’t available to change except the system stack size ”stack_size” and the maximum priority of the task 
“priority”. 
Please calculate the system stack size with the stack size calculation program “StkViewer”, for example. If 
you don’t add any interrupt handlers, the size is 330. 
Please set the maximum value of the priority for the user task to the maximum value of the task priority”. 
If you don’t add the user task, the value is 4. 

 
 System Clock 

All item cannot be changed. 
 

 Task 
The above gray shaded lines of the task[] {…} in Figure 1 are the definition of the task used in the D2DL 
and the main task (Main_WorkerThread()) of the user application. Do not change the line except the stack 
size of the user main task and D2dll_Work task and the priority of the user main task. Do not change the 
order of the configuration. 
The user main task “Main_WorkerThread()” is a task which is waked up at first after power on. Please 

  49



D2DL USER’S MANUAL 

define the D2DL initialization, the user application initialization and wake-up the other task, etc. Calculate 
the stack size ”stack_size” with the stack size calculation program “StkViewer”, for example, and set the 
task priority “priority” the value 4 and above. 
When you add the task used by the user application, add it after the definition of the task using in the 
D2DL and the user main task. The method of configuration of the stack size and the priority are the same 
as the method for the user main task. 
Do not set the ID number in “[]” of the task[]. 

 
 Event flag 

The gray shaded lines of the flag[] {…} in Figure 1 are the definition of the event flag used in the D2DL. 
Do not change all lines. When the user application uses the event flag feature, please add it after the 
definition of the event flag used in the D2DL. Do not set the ID number in “[]” of the flag[]. 

 
 Semaphore 

The above gray shaded lines of the semaphore [] {…} in Figure 1 are the definition of the semaphore used 
in the D2DL. Do not change all lines.  
When the user application uses the semaphore feature, please add it after the definition of the semaphore 
used in the D2DL. Do not set the ID number in “[]” of the semaphore []. 

 
 Interrupt Vector 

The above gray shaded lines of the interrupt_vector [ID number] {…} in Figure 1 are the definition of the 
interrupt vector used in the D2DL. Do not change all lines.  
Please define the interrupt vector used in the user application with setting the vector number. If it is the 
Watchdog Timer interrupt, you should set “NO” to the OS-dependent interrupt handler “os_int”, and if it 
is the other interrupt, you should set “YES”. Please note that it is not available to call the D2DL API in the 
interrupt handler. 

 
The configurator “cfg30” makes “id.h” with the configuration file. (The cfg30 is executed in the HEW.) Please 
verify the generated “id.h” with the following “define” definition when you add the tasks, event flags or 
semaphore for the user application. 

 
[id.h description] 
#define ID_Main_WorkerThread 1 
#define ID_D2dll_Work 2 
#define ID_D2dll_Recv 3 
#define ID_D2dll_Send 4 
<<Hereafter, your task IDs are defined. >> 

: 
#define ID__f1  1 
#define ID__f2  2 
#define ID__f3  3 
#define ID__f4  4 
#define ID__f5  5 
#define ID__f6  6 
#define ID__f7  7 
<<Hereafter, your flag IDs are defined. >> 

: 
#define ID__s1  1 
#define ID__s2  2 
#define ID__s3  3 
#define ID__s4  4 
#define ID__s5  5 
#define ID__s6  6 
#define ID__s7  7 
#define ID__s8  8 
#define ID__s9  9 
#define ID__s10  10 
#define ID__s11  11 
#define ID__s12  12 
#define ID__s13  13 

  50



D2DL USER’S MANUAL 

#define ID__s14  14 
<<Hereafter, your semaphore IDs are defined. >> 

: 
 

7.3 Notes 
7.3.1 Influence of the D2DL task and its interrupt process on the user application 
During the main function “Main_WorkerThread” of the user application or the new interrupt functions which are 
added by the user is running, the interrupt process for the D2DL may start up and then the tasks in the D2DL 
library run circumstantially. 
In this case, the user application pauses and the process of the D2DL library starts to run. The occurrence 
frequency of this D2DL interrupt process (which includes the D2DL task process) depends on the amount of the 
packets on the PLC. 

 
7.3.2 Notes on the interrupt 

 If the processing time of the interrupt process of the user application meets one of the following conditions, 
we recommend enabling the multiple interrupt which priority level is 3 or more. If you do not enable it, you 
may miss some packets. 

 
Condition: the processing time per one interrupt process of the user application is 100 us or more, and its 
interrupt may occurs 2.4 ms interval or less 

 
Condition 2 : the processing time of one interrupt process of the user application is longer than 500 us

 
 The interrupt processing time of the D2DL and its occurrence timing are as follows. 

Trigger of the 
interrupt 

Function name Processing time Occurrence timing 

SI/O4 D2dll_PhyRx_PhyUsartISR 20 us – 500 us 
INT0 D2dll_Phy_ISR 20 us – 120 us 
TA0 D2dll_Timer_ISR 30 us – 90 us 
TA1 D2dll_Timer1_ISR 10 us or less 

The transmission and reception 
on the PLC. (In other case, it 
may occur at random times by 
the reception of the noise.) 

[Notes] The SI/O4 interrupt process takes about 500 us only in case of the reception for the top byte of the 
packet. In other case, the process takes about 20 us. 

 
 To disable the interrupt in the user application, please select one of the following methods: 

I. Disable the interrupt by the operation of the interrupt enable flag (I flag) and the processor interrupt 
priority level (IPL). 
Please make sure to use the interrupt disabling and enabling in pairs.  

II. Change the interrupt priority level (from ILVL2 to 0) to disable  
Please clear the I flag before and after the operation of the interrupt priority level (from ILVL2 to 
0).  

 
 The D2DL reserves the interrupt number from 32 to 47 of the INT instruction. Please use the interrupt 

number except from 32 to 47 when you use the software interrupt in the user application. 
 

 Register Bank Usage 
It is not recommended to change the register bank. 

 
7.3.3 Notes on the debug 

 You can set up to two breakpoints at the same time (in case of using the KD30). 
 Do not use the DBC interrupt because it is the specific interrupt for the developer support tool.  
 

7.3.4 Notes on the multi task 
 The D2DL APIs can be called only in the task. They cannot be called in the interrupt handler. If you call the 

API in the interrupt handler, it becomes the indefinite semantics. 
 When you make the application program with this library, you should set the user task priority which is 

used by the application to value 4 or above, and lower than the internal tasks of the D2DL. 
 Do not wake up the user task, while the D2DL does it in sleep state, by the user application. If you wake it 

up, it causes illegal semantics. 

  51



D2DL USER’S MANUAL 

 You have to use the RENESAS RTOS MR30 for using the D2DL multi task edition library. Please install 
the MR30 in the same directory with the NC30WA. When you upgrade the NC30, you should install it in 
the same directory with the previous version and you should not install it in the default directory of the 
NC30 installer. If the install directory is different between NC30WA and MR30, it will cause build errors. 

 
 

  52



D2DL USER’S MANUAL 

8. Description of the example program 
This section describes the outline of the example program. 
8.1 Overview 

 It is a simple program for communication test. 
 Connect each node of the M16C/6S target board to your PC via RS-232C cable (crossover cable), and 

launch a terminal software (for example, HyperTerminal). 
 The following menu is shown on the terminal window. If you select the mode from 1 to 5, you can confirm 

the communication status between each node. 
 

 

------- D2DLL Test Program (V1.00) ------- 
Copyright Renesas Technology Corporation and 
                       Renesas Solutions Corporation 
 
 << note >>  Use Number key & Back space. 
 
Enter Network ID (1-1023) > 7 
Enter Source Node ID (1-2047) > 2 
Enter Destination Node ID (1-2047) > 5 
 
D2DLL Initialize.....   Successful. 
 
  ******** PLC TEST MENU ******** 
  1. Transmit 100packets by UniCast (40byte) 
  2. Transmit 100packets by BroadCast (40byte) 
  3. Transmit 500packets by UniCast (40byte) 
  4. Transmit 500packets by BroadCast (40byte) 
  5. Count Received Packets 
Select Mode > 

 
8.2 General flowchart 

 
 

Main_WorkerThread() 

Initialization process 

Start 

Transmission process 

Is any key 
pressed? 

Reception process 

Transmission ? 

Select the test item (Transmission/ Reception)

Transmission 
terminate ? 

Callback function 
Transmission result  
callback function 

Reception callback function 

UART initialization 

NetID/ NodeID selection 

D2DL RTOS initialization 

Main loop Apprication registration 

D2DL initialization 

D2DL memory size setting 
No

Enable the PLC communication 
Yes 

No No

Yes Yes 

  53



D2DL USER’S MANUAL 

8.3 Details of the program 
8.3.1 Main function - Main_WorkerThread() 

Start 

8.3.1.1 Flowchart 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UART initialization 

Output the initial message 

Input Network ID / Source Node ID / Destination Node ID 

D2DL RTOS initialization 

Application registration 

D2DL initialization 

Set the D2DL protocol number 

Set the D2DL memory size 

Enable the PLC communication 

Set the transmission parameter 

Main loop 

8.3.1.2 Details of the function 
void Main_WorkerThread ( void ) 
{ 
  : 
  : 
 //-------------------------------------------- 
 // Initialize Uart&LED 
 //-------------------------------------------- 
 _Uart_Init();            ---  1 
 
 //-------------------------------------------- 
 // Select NetID/NodeID 
 //-------------------------------------------- 
 printf("¥n¥n"); 
 printf("------- D2DLL Test Program (V1.00) -------¥n"); 
 printf("Copyright Renesas Technology Corporation and¥n");  ---  2 
 printf("                       Renesas Solutions Corporation¥n¥n");  
 printf(" << note >>  Use Number key & Back space.¥n¥n"); 
 
 // Input NetID/NodeID 
 printf("Enter Network ID (1-1023) > ");  // NetID 
 UartStrGet(str);           ---  3 
 src_LNetId = str2DN(str); 
 printf("¥n"); 
 printf("Enter Source Node ID (1-2047) > "); // Src NodeID   
 UartStrGet(str);           ---  4 
 src_NodeId = str2DN(str); 
 printf("¥n"); 
 printf("Enter Destination Node ID (1-2047) > ");// Dst NodeID 
 UartStrGet(str);           ---  5 
 dst_NodeId = str2DN(str); 
 printf("¥n¥n"); 
 printf("D2DLL Initialize.....   "); 
 

  54



D2DL USER’S MANUAL 

 //-------------------------------------------- 
 //  D2DLL initialize 
 //-------------------------------------------- 
 d2dllResult = D2DLL_Init( NULL );        ---  6 
 if( d2dllResult != D2DLL_E_OK ){ 
     while( TRUE ){ 
         printf("Failed.¥n¥n"); 
     } 
 } 
 //-------------------------------------------- 
 // Application Register 
 //-------------------------------------------- 
 d2dllResult = D2DLL_RegApp( 1, User_Receive_CB, User_SendResult_CB ); ---  7 
 if( d2dllResult != D2DLL_E_OK ){ 
     while( TRUE ){ 
         printf("Failed.¥n¥n"); 
     } 
 } 
 //-------------------------------------------- 
 // D2DLL Start 
 //-------------------------------------------- 
 dsn[0] = (uchar)src_NodeId; 
 dsn[1] = (uchar)(src_NodeId >> 8); 
 d2dllResult = D2DLL_Start( src_LNetId, src_NodeId, D2DLL_RXTP_MINE, 
        D2DLL_REGION_JPN, dsn, D2DLL_DIS_REP); ---  8 
 if( d2dllResult != D2DLL_E_OK  ){ 
     while( TRUE ){ 
         printf("Failed.¥n¥n"); 
     } 
 } 

//-------------------------------------------- 
 // Set the Protocol Version 
 //-------------------------------------------- 
 d2dllResult = D2DLL_SetParam(D2DLL_IDX_PROTOCOL_VER, 0x3B );   ---  9 
 if( d2dllResult != D2DLL_E_OK  ){ 
     while( TRUE ){ 
         printf("Failed.¥n¥n"); 
     } 
 } 
 //-------------------------------------------- 
 // Set the size of DLL Memory 
 //-------------------------------------------- 
 d2dllResult = D2DLL_SetParam( D2DLL_IDX_DLL_MEMORY, 916 );   ---  10 
 if( d2dllResult != D2DLL_E_OK  ){ 
     while( TRUE ){ 
         printf("Failed.¥n¥n"); 
     } 
 } 
 d2dllResult = D2DLL_SetParam( D2DLL_IDX_RXRES_MEMORY, 458 );   ---  11 
 if( d2dllResult != D2DLL_E_OK  ){ 
     while( TRUE ){ 
         printf("Failed.¥n¥n"); 
     } 
 } 
 //-------------------------------------------- 
 // Online 
 //-------------------------------------------- 
 d2dllResult = D2DLL_Online();         ---  12 
 if( d2dllResult != D2DLL_E_OK  ){ 
     while( TRUE ){ 
         printf("Failed.¥n¥n"); 
     } 
 } 
 //-------------------------------------------- 
 // Send Option Set 
 //-------------------------------------------- 
 d2dllResult = D2DLL_SendOption( 2, 0, D2DLL_SND_AUTO );    ---  13 

  55



D2DL USER’S MANUAL 

 if( d2dllResult != D2DLL_E_OK  ){ 
     while( TRUE ){ 
         printf("Failed.¥n¥n"); 
     } 
 } 
 printf("Successful.¥n"); 
 //-------------------------------------------- 
 // The main processing loop 
 //-------------------------------------------- 
 UserApplication();            ---  14 
} 
 

1. Initialize the UART. 
2. Output the initial menu. 
3. Get the network ID via the user input. 
4. Get the source node ID via the user input. 
5. Get the destination node ID via the user input. 
6. Initialize the D2DL RTOS by the D2DLL_Init API function. 
7. Register the application by the D2DLL_RegApp API function. It registers the User_Receive_CB function 

as a reception callback function, and User_SendResult_CB function as a transmission callback function. 
(It describes later about each callback function.) 

8. Initialize the D2DL by the D2DLL_Start API function. 
9. Set the dedicated protocol number by the D2DLL_SetParam API function (if you do not use the echonet). 
10. Set the size of the sent/received buffer of the D2DL by the D2DLL_SetParam API function. 
11. Set the size of the special area for the received packet of the D2DL. 
12. Enable the PLC communication by the D2DLL_Online API function. 
13. Set the transmission parameter by the D2DLL_SendOption API function. 
14. Call the UserApplication function for the main loop process. (It describes later.) 

 
8.3.2 UserApplication function 

1 or 3 

Start 

Select the mode 

Data transmission process (Unicast) 

Output the PLC TEST MENU 

The mode ? 

Data transmission process (Broadcast) 
2 or 4 

5 

8.3.2.1 Flowchart 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Data reception process 

  56



D2DL USER’S MANUAL 

8.3.2.2 Details of the function 
static bool_v UserApplication(void) 
{ 
 uchar str[17]; 
 uint16 command; 
 
 while ( TRUE ) { 
  printf("¥n"); 
  printf("  ******** PLC TEST MENU ********¥n"); 
  printf("  1. Transmit 100packets by UniCast (40byte)¥n"); 
  printf("  2. Transmit 100packets by BroadCast (40byte)¥n");   
  printf("  3. Transmit 500packets by UniCast (40byte)¥n");  ---  1 
  printf("  4. Transmit 500packets by BroadCast (40byte)¥n"); 
  printf("  5. Count Received Packets¥n"); 
  printf("Select Mode > "); 
  UartStrGet(str);           ---  2 
  printf("¥n"); 
  command = str2DN(str); 
  switch (command) {           ---  3 
   case 1: 
   case 3: 
    It_User_Send(dst_NodeId, command - 1);    ---  4 
    break; 
   case 2: 
   case 4: 
    It_User_Send(0, command - 1);      ---  5 
    break; 
   case 5: 
    It_User_recept();         ---  6 
    break; 
   default: 
    break; 
  } 
 } 
} 

1. Output the PLC TEST MENU. 
2. Get the user selected mode number. 
3. Branch each process by the mode number. 
4. Call the It_User_Send function for the unicast transmission. (It is described later.) 
5. Call the It_User_Send function for the broadcast function. (It is described later.) 
6. Call the It_User_recept function for the reception. (It is described later.) 

 

  57



D2DL USER’S MANUAL 

 
8.3.3 It_User_Send function 

Start 

Set the transmission parameter 

Output “Sending Packet….” 

Data transmission process for a packet 

Success ? 

Clear the transmission complete flag 

Failure ? 

YES 

No 

No 

YES 

Output the transmission failure message Output the count log of the transmission packet 

YES 

No 

No 

Output “Send Error” 
Complete the 
transmission ? 

YES 

Exit 

Is the data transmission process 
called specific times of the number 

of the packets?

Output the completion message 

8.3.3.1 Flowchart 

 
 
 
 
 
 

 
 
 

 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 

 
 
 

 
 

8.3.3.2 Details of the function 
static void It_User_Send(uint16 nodeId, uint16 parm) 
{ 
 uint16 i; 
 sint16 errStatus=0; 
 d2dll_sndParam sndParam; 
 
 sndParam.srcPortId = 1; 
 sndParam.dstNodeId = nodeId; 
 sndParam.dstPortId = 1; 
 sndParam.sndData = TxData; 
 sndParam.sndDataLen = tx_param[parm].lData;   ---  1 
 sndParam.sessionTag = 1; 
 sndParam.sndPrty = D2DLL_PRTY_LOW; 
 sndParam.sndAck = D2DLL_SND_ACKD; 
 

  58



D2DL USER’S MANUAL 

 printf("Sending Packet....  "); 
 for (i = 0; i < tx_param[parm].sndCnt; i++) {   ---  2 
     /* send */ 
     errStatus = D2DLL_Send( &sndParam );    ---  3 
     if( errStatus == D2DLL_E_OK ){     ---  4 
                 while( bIs_SendFinished != TRUE );  ---  5 
                 bIs_SendFinished = FALSE;    ---  6 
 
                 if (sendStatus != D2DLL_E_OK ) {    
                     printf("Failed(%d).¥n", sendStatus); ---  7 
                 } 
                 else { 
                     printf("%d", i % 10);    ---  8 
                 } 
     } 
     else{ 
         printf("Send Error.¥n");      ---  9 
     } 
 } 
 printf(" Complete!¥n");        ---  10 
} 
 
1. Set the transmission parameter. 
2. Loop iteration which is the specific times of the number of the packets. 
3. Send a packet with the D2DLL_Send API function. 
4. Check if the D2DLL_Send API function exits successfully or not. 
5. Loop iteration until it has transmitted. The transmission complete flag “bIs_SendFinished” is set to TRUE in 

the callback function because the User_SendResult_CB function is called when the D2DL finishes the 
transmission. 

6. The transmission complete flag “bIs_SendFinished” is set to FALSE to clear it. 
7. Output the error message if the transmission result is not normal. 
8. Output the count log of the transmission packet if the transmission result is not normal. 
9. Output the error message if the D2DLL_Send API function does not terminate normally. 
10. Output the completion message after loop iteration which is the specific times of the number of the packets. 
 
8.3.4 User_SendResult_CB function 

8.3.4.1 Details of the function 

This is a callback function. It is called when the D2DL finishes the transmission. 
 
static void User_SendResult_CB( uint16 sessionTag, sint16 sndResult ) 
{ 
    sendStatus = sndResult;         ---  1 
    bIs_SendFinished = TRUE;         ---  2 
} 
 
1. Store the transmission result to “sendStatus” 
2. Set the transmission complete flag “bIs_SendFinished” to TRUE 
 

  59



D2DL USER’S MANUAL 

 
8.3.5 It_User_recept function 

Output the initial message for reception 

YES 

No 

YES 

YES 

No 

No 

Start 

Clear the reception complete flag 

8.3.5.1  Flowchart 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Complete the reception? 

Is the received data normal ? 

Count up the number of the received packets 

Is any key pressed? 

Output the number of the received packets 

Exit

8.3.5.2 Details of the function 
static void It_User_recept( void ) 
{ 
 RxParam rx_param; 
 uint16 pren = n_uart_buff; 
 uchar str[8]; 
 
 printf("Counting Received Packet.... ¥n "); 
 printf("Enter any key to stop counting¥n¥n");    ---  1 
 rx_param.m_total_cnt = 0; 
 
 while (pren == n_uart_buff) {       ---  2 
     if( bIs_ReceiveFinished == TRUE ){     ---  3 
   bIs_ReceiveFinished = FALSE;      ---  4 
   if (0 == CmpRcvDat(TxData, urbuf, rcvBuffSize)) {  ---  5 
      if ( rcvBuffSize == SNDLEN ) { 
          rx_param.m_total_cnt++;      ---  6 
      } 
   } 
     } 
 } 
 Main_pEventIpcRequest = FALSE; 
 n_uart_buff = 0; 
 
 printf("¥n"); 
 printf("%d Packets Received¥n", rx_param.m_total_cnt);  ---  7 
 printf("¥n"); 
} 
 
1. Output the initial message for reception. 
2. Wait until any key is pressed. 
3. Check the reception complete flag “bIs_ReceiveFinished”. The reception complete flag 

“bIs_ReceiveFinished” is set to TRUE in the callback function because the User_Receive_CB function is 

  60



D2DL USER’S MANUAL 

called when the D2DL finishes the reception. 
4. The reception complete flag “bIs_ReceiveFinished” is set to FALSE to clear it. 
5. Verify the received data with the transmission data of this example program. 
6. Count up the number of received packets. 
7. Output the number of received packets. 
 
 
8.3.6 User_Receive_CB function 

8.3.6.1 Details of the function 

This is a reception callback function. It is called when the D2DL finishes the reception.  
 
static void User_Receive_CB( d2dll_rcvParam *rcvParam ) 
{ 
    sint16 i; 
 
    rcvBuffSize = rcvParam->rcvDataLen;    ---  1 
    //data transfer 
    for ( i = 0; i < rcvBuffSize; i++ ) {    ---  2 
        urbuf[i] = *(rcvParam->rcvData+i); 
    } 
    bIs_ReceiveFinished = TRUE;      ---  3 
} 
 
1. Store the size of the received packet in rcvBuffSize. 
2. Copy the received packet to the buffer. 
3. The reception complete flag “bIs_ReceiveFinished” is set to TRUE. 
 
 
8.3.7 D2DLL_CB_RxLEDon function 

8.3.7.1 Details of the function 

This function makes the LED on. 
 
void D2DLL_CB_RxLEDon(void) 
{ 
    PD8_1 = 1;          ---  1 
    P8_1 = 1;          ---  2 
} 
 
1. Set the port 81 direction register output. 
2. Set the port 81 on. 
 
8.3.8 D2DLL_CB_RxLEDoff function 

8.3.8.1 Details of the function 

This function makes the LED off. 
 
void D2DLL_CB_RxLEDoff(void) 
{ 
    P8_1 = 0;          ---  1 
} 
 
1. Set the port 81 off. 
 
 

  61



D2DL USER’S MANUAL 

9. Development environment 
9.1 Development for using the simple debugger KD30 

The following shows a list of essential item to develop the user application using the simple debugger KD30. 
 

Item Name Description Recommended
Ver. No. 

C Compiler Package 
M3T-NC30WA 

This package includes the C compiler, assembler and linker.  Ver 5.30 
Release 02 
   or 
Ver 5.40 
Release 00 

High-performance 
Embedded Workshop 
(HEW) 

The D2DL example program is provided as HEW project 
environment. The development based on this program is 
recommended. The HEW is included in the NC30WA package. 

Ver 4 

Simple Debugger 
KD30 

It communicates with the monitor program on the chip, so 
provides the debug environment on PC. You can download it 
from the RENESAS web site for free. 

V 4.10 

Monitor program for 
M16C/6S 

This program is written in the chip for debug by KD30. V 1.0 

Flash Programmer 
M3A-0806 

The included cable (Ten-Nine cable) is used for connecting for 
debug. 

-- 

D2DL Library This product. -- 
M16C/6S module This is the target board. -- 

[Note] You can also use the M3A-0665 FoUSB for writing to the flash memory. 
 
The development environment using the KD30 is shown as follows. 
 
 

Target board 

PC 

Ten-Nine cable 

M3T-NC30WA(HEW) 
KD30 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  62



D2DL USER’S MANUAL 

9.2 Development for using the emulator debugger PD30F 
The following shows a list of essential item to develop the user application using the simple debugger PD30. 
 

Item Name Description Recommended 
Ver. No. 

C Compiler Package 
M3T-NC30WA 

This package includes the C compiler, assembler and 
linker.  

Ver 5.30 
Release 02 
   or 
Ver 5.40 
Release 00 

High-performance Embedded 
Workshop 
(HEW) 

The D2DL example program is provided as HEW 
project environment. The development based on this 
program is recommended. The HEW is included in the 
NC30WA package. 

Ver 4 

Emulator Debugger 
PC7501 

-- 1 

Emulation Probe 
M3062PT2-EPB 

-- 

Emulator Debugger 
PC4701U 

-- 2 

Emulation Pod 
M3062PT3-RPD-E 

These are the emulator system. 
Please use a set either 1 or 2. 

-- 

Emulator Debugger PD30F This is attached to the emulator. -- 
Signal Converter Board for 
M16C/6S Group 
M306S0T-PRB 

This is connected to the tip of the pod or the probe. 
It converts the signal for M16C/6S. 

-- 

Flash Programmer 
M3A-0806 

It is used for writing to the flash memory. -- 

D2DL Library This product. -- 
M16C/6S module This is the target board. 

Notes: A socket should be set on the M16C/6S.
Please refer the M306S0T-PRB User’s Manual for 
details. (It can be downloaded from the RENESAS 
web site.) 

-- 

[Note] You can also use the M3A-0665 FoUSB for writing to the flash memory. 
 
The development environment using the Emulator Debugger is shown as follows. 
 
 

Target board 

PC 
M3T-NC30WA(HEW) 
PD30F  

 
 M306S0T-PRB 
 
 
 
 
 
 
 
 PC7501 

or 
PC4701U 

M3062PT2-EPB 
or 
M3062PT3-RPD-E 

 
 
 
 

  63



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

M16C/6S DATA LINK LAYER LIBRARY D2DL USER’S MANUAL 

Publication 
Date: Jun. 30, 2006 Rev.1.02 

Published by: Sales Strategic Planning Div. 
Renesas Technology Corp. 

Edited by: Application Engineering Department 3 
Renesas Solutions Corp.

© 2006. Renesas Technology Corp. and Renesas Solutions Corp., All rights reserved. 
Printed in Japan. 

 

  



1753, Shimonumabe, Nakahara-ku, Kawasaki-shi,  Kanagawa 211-8668 Japan

M16C/6S DATA LINK LAYER LIBRARY

REJ11B0006-0102

D2DL USER’S MANUAL


	Introduction
	D2DL Overview
	D2DL feature
	Compartmentalization between the Single Task Edition and the
	The Internal Block Diagram
	The Internal Block Diagram of the D2DL Single Task Edition
	The Internal Block Diagram of the D2DL Multi Task Edition

	The resources for the D2DL

	Description of the D2DL
	API
	PLC communication feature
	Packet delivery service
	ACK/UNACK service
	Broadcast service
	Multi hop feature
	Fragmentation and Reassembly
	Transmission rate

	Addressing
	Network ID and Node ID
	Device Serial Number (DSN)
	Port ID (Application registration)
	Protocol number

	Media Access Control
	Virtual Jamming (Imposter node detection feature)

	EEPROM Control feature

	API overview
	Initialization and termination function API
	Transmission function API
	Reception function API
	EEPROM access API
	Parameter Control API
	Error Code

	Development of the User Application (For both edition)
	Initialize Sequence
	Handling the internal parameters for the D2DL
	EEPROM interface process
	Configuration of the protocol number
	Notes on using the CNC service
	LED port assignment

	Development the User Application (Single Task Edition)
	Example program organization
	Implementation method
	Transmission and Reception Sequence
	Getting the packet transmission result
	Getting the received packet
	Restrictions on using the reception function

	Addition of the Interrupt Handler
	Configuration of the D2DL Heap Area
	Configuration of the stack size

	Notes
	Influence of the D2DL task and its interrupt process on the 
	Notes on the interrupt
	Notes on the debug


	Development of the User Application (Multi Task Edition)
	Example program organization
	Implementation method
	Transmission and Reception Sequence
	Getting the packet transmission result
	Getting the received packet
	Restrictions on using the reception function
	The example of using the callback function
	Example of the action by the multiple user tasks

	Addition of the Interrupt Handler
	Configuration of the D2DLHeap Area
	Modification of the MR30 Configuration File

	Notes
	Influence of the D2DL task and its interrupt process on the 
	Notes on the interrupt
	Notes on the debug
	Notes on the multi task


	Description of the example program
	Overview
	General flowchart
	Details of the program
	Main function - Main_WorkerThread()
	Flowchart
	Details of the function

	UserApplication function
	Flowchart
	Details of the function

	It_User_Send function
	Flowchart
	Details of the function

	User_SendResult_CB function
	Details of the function

	It_User_recept function
	Flowchart
	Details of the function

	User_Receive_CB function
	Details of the function

	D2DLL_CB_RxLEDon function
	Details of the function

	D2DLL_CB_RxLEDoff function
	Details of the function



	Development environment
	Development for using the simple debugger KD30
	Development for using the emulator debugger PD30F


