

## **User's Manual**

# K0RE9418

EVALUATION PLATFORM FOR  $\mu PD78F9418$  MICROCONTROLLER

©October 2003. NEC Electronics America, Inc. Printed in USA. All rights reserved. Document no. 50960





## Contents

| 1. | Evaluation Platform for μPD78F9418 Microcontroller | i   |
|----|----------------------------------------------------|-----|
| 2. | Introduction                                       | . 1 |
|    | Connecting to the K232 Serial Adapter              |     |
|    | K232 Jumper Settings for the K0RE9418              |     |
|    | •                                                  | 5   |





#### 1. INTRODUCTION

To facilitate designing with the  $\mu$ PD78F9418 NEC Electronics flash microcontroller, the device, along with appropriate crystals and reset circuitry, is provided on a printed circuit board (K0RE9418-KB). All of the package pins are brought out to standard 0.1-inch headers that surround the microcontroller package on all four sides.

#### 1.1 µPD789418 Features

- 32 KB flash memory
- · Internal data memory
  - 512-byte high-speed RAM
  - 28 x 4-bit LCD display RAM
- Minimum instruction execution time can be changed from high-speed (0.4 µs at 5.0 MHz with main system clock) to ultra-low-speed (122 µs at 32.768 KHz with subsystem clock)
- I/O port: 43 pins
- Serial interface: 1 channel (3-wire serial I/O mode or UART mode selectable)
- Seven-channel A/D converter with 10-bit resolution
- Timer: 6 channels
  - One-channel, 16-bit timer
  - Two-channel, 8-bit timer/event counter
  - One-channel, 8-bit timer
  - One-channel watch timer
  - One-channel watchdog timer
  - LCD Controller/Driver
  - Segment signals: 28 pins max.
  - Common signals: 4 pins max.
- Supply voltage: VDD = 1.8 to 5.5V



All package pins brought out to surrounding headers on 0.1 centers

All package pins brought out to surrounding headers of the provided by the

Figure 1. Board Layout



Table 1. K0RE9418-KB (µPD78F9418) Header to Pin Configuration

|    | 14510 11         |    | 410-ND (ALDIO 3410) | <br>uo: tt | 7 i iii Goilligalation | <br> |         |
|----|------------------|----|---------------------|------------|------------------------|------|---------|
| 1  | $V_{DD1}$        | 21 | S10                 | 41         | P66/ANI6               | 61   | P03     |
| 2  | BIAS             | 22 | S11                 | 42         | P65//ANI5              | 62   | P02     |
| 3  | V <sub>LC0</sub> | 23 | S12                 | 43         | P64//ANI4              | 63   | P01     |
| 4  | V <sub>LC1</sub> | 24 | S13                 | 44         | P63//ANI3              | 64   | P00     |
| 5  | V <sub>LC2</sub> | 25 | S14                 | 45         | P62/ANI2               | 65   | P47     |
| 6  | V <sub>SS1</sub> | 26 | S15                 | 46         | P61/ANI1               | 66   | P46     |
| 7  | COM <sub>0</sub> | 27 | P93/S16             | 47         | P60/ANI0/CMPIN0        | 67   | /RESET  |
| 8  | COM <sub>1</sub> | 28 | P92/S17             | 48         | AVSS                   | 68   | X2      |
| 9  | COM <sub>2</sub> | 29 | P91/S18             | 49         | P27.INTP3/CPT5         | 69   | X1      |
| 10 | COM <sub>3</sub> | 30 | P90S19              | 50         | P26/INTP2/TO5          | 70   | VSS0    |
| 11 | S0               | 31 | P87/S20             | 51         | P25.INTP1/TI1          | 71   | VDD0    |
| 12 | S1               | 32 | P86/S21             | 52         | P24.INTP0/TI0          | 72   | XT2     |
| 13 | S2               | 33 | P85/S22             | 53         | P23/CMPTOUT0/TO2       | 73   | XT1     |
| 14 | S3               | 34 | P84/S23             | 54         | P22.SI/RxD             | 74   | VPP     |
| 15 | S4               | 35 | P83/S24             | 55         | P21/SO/TxD             | 75   | P45/KR5 |
| 16 | S5               | 36 | P82/S25             | 56         | P20 <b>//</b> SCK/ASCK | 76   | P44/KR4 |
| 17 | S6               | 37 | P81/S26             | 57         | P53                    | 77   | P43/KR3 |
| 18 | S7               | 38 | P80/S27             | 58         | P52                    | 78   | P42/KR2 |
| 19 | S8               | 39 | $AV_{DD}$           | 59         | P51                    | 79   | P41/KR1 |
| 20 | S9               | 40 | AV <sub>REF</sub>   | 60         | P50                    | 80   | P40/KR0 |

**Note**: Package pin numbers match the header pinout numbers.



#### 2. CONNECTING TO THE K232 SERIAL ADAPTER

There are two ways to connect to the K232. The first is via the 10-pin stackable J2 header. Figure 2 shows the board's orientation for stacking.



Figure 2. Stacked Connection



The second is with an extension ribbon cable supplied with the K232 that plugs onto the P1 10-pin header on the circuit side of the K232. The other side plugs into the flash programmer header on the K0RE9418. These connections use keyed headers and can only be plugged in one way (Figure 3).



Figure 3. Ribbon Cable Connection

#### 3. K232 JUMPER SETTINGS FOR THE K0RE9418

- 1. Set a jumper to JP1 if you want the K0RE9418 to derive power from the K232 adapter.
- 2. Set a jumper to JP2 for 3.3-volt operation.
- 3. JP3 does not require a jumper.
- 4. Set JP4 jumper 2 to 3.
- 5. Set JP5 jumper 1 to 2.

#### 4. PRE-FLASHED SOFTWARE

The K0RE9418 was flash-programmed in manufacturing with the K0S mini-monitor program for testing and diagnostics. The K232 will work with the K0RE9418 right out of the box. Check the *K232 User's Manual* for communication port settings.



Table 2. Bill of Materials

| Item | Part Name   | Description                                  | Value           | Digi-Key Part No.  | Quantity |
|------|-------------|----------------------------------------------|-----------------|--------------------|----------|
| 1    | R2          | RES, SMT, 0805, 10k OHM, 5%                  | 1.0k            | P1.0KACT-ND        | 5        |
| 2    | R3          | RES, SMT, 0805, 100k OHM,5 %                 | 3.3k            | P3.3KACT-ND        | 1        |
| 3    | R4          | RES, SMT, 0805, 3.3k OHM, 5%                 | 10k             | P10KACT-ND         | 3        |
| 4    | R5,R6,R7,R8 | RES, SMT, 0805, Value                        | Defined by User |                    | 4        |
| 5    | R1          | RES, SMT, 0805, 220k OHM, 5%                 | 220k            | P220KACT-ND        | 1        |
| 6    | C1, C2      | CAP, MLC, COG, SMT, 0805, 33 pF, 50V, 5%     | 33 pF           | PCC330CGCT-ND      | 2        |
| 7    | СЗ          | CAP, MLC, C0G, SMT, 0805, 470 pF, 50V, 5%    | 470 pF          | PCC471CGCT-ND      | 1        |
| 8    | C4          | 10uF, 16V, TAN CAP, TANT, SMT, 3528          | 10 μF, 16V, 10% | PCS3106CT-ND       | 1        |
| 9    | C5,C6       | CAP, MLC, COG, SMT, 0805, 22pF, 50V, 5%      | 33 pF           | PCC220CGCT-ND      |          |
| 10   | C7,C8       | CAP, MLC, X7R, SMT, 1206, 100 nF, 50V, 10%   | 100 nF          | PCC104BCT-ND       | 1        |
| 11   | X1          | XTAL, 4.9152MHz, 8.2 mm,                     | 4.9152MHz       |                    | 1        |
| 12   | X2          | XTAL, 32 kHz, 8.2 mm, ECS-3X8                | 32 kHz          | X801-ND            | 1        |
| 13   | U2          | IC, LIN, VOLTAGE DETECTOR, 2.7V (SOT-23)     | TC54VN2702      | TC54V2702ECB71CT   | 1        |
| 14   | U1          | IC, MCU, SMT, FLASH, NEC µPD78F9418          | μPD78F9418      | Available from NEC | 1        |
| 15   | P1          | HDR, TWO-ROW, VERT, SHRD, 0.100", 10-Pin     | HDR, 10-Pin     | A26267-ND          | 1        |
| 16   | S1          | SWITCH, PUSHBUTTON, SPST, 6 mm x 3.5 mm, SMT | SW, EVQPP       | P8086SCT-ND        | 1        |
| 17   | T1, T2      | Terminal                                     | TERM            | N/A                | 2        |
| 18   | PCB         | Printed Circuit Board                        | PCB             | N/A                | 1        |



# These commodities, technology or software, must be exported from the U.S. in accordance with the export administration regulations. Diversion contrary to U.S. law prohibited.

The information in this document is current as of October 2003. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information. No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document. NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such NEC Electronics products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others. Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC Electronics no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.

While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.

NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact NEC Electronics sales representative in advance to determine NEC Electronics 's willingness to support a given application.

#### (Notes)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).