
 Software Manual

R16US0018EU0101 Rev.1.01 Page 1
Jul 24, 2025 © 2025 Renesas Electronics

Introduction
The manual provides an overview of the ISO-DONGLE-EV1Z Rev.D communications dongle bootloader and
application software, and it describes the bootloader structure, operation, and programming. The manual contains
a step-by-step guide for the application software post-processing and the updating of the device memory without
using any external hardware tools. The description of the communication protocol facilitates communication with a
Battery Front End (BFE) using the isolated dongle and a custom software that sends commands over a serial port.

Contents
1. Communications Dongle Overview . 2

1.1 Assumptions and Advisory Notes . 2

2. Bootloader . 2

2.1 Structure and Operation . 2

2.2 Bootloader Programming . 5

3. Software Image Update . 9

4. Generation of Software Image . 12

5. Communication Protocol . 20

5.1 Connect Command . 21

5.2 Read/Write Commands . 21

5.3 Configuration Commands . 26

5.4 Examples . 31

6. Revision History . 32

ISO-DONGLE-EV1Z Rev.D
Communications Dongle

R16US0018EU0101 Rev.1.01 Page 2
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

1. Communications Dongle Overview
The ISO-DONGLE-EV1Z Rev.D isolated dongle serves primarily as a communications dongle between a BFE

evaluation board and a Graphical User Interface (GUI) available on a workstation (Figure 1). It supports USB, I2C,
and SPI communications and is compatible with multiple BFEs and GUIs. The dongle uses a powerful Renesas
advanced family RA4 ARM-based microcontroller.

1.1 Assumptions and Advisory Notes
▪ A basic understanding of microcontrollers, embedded systems hardware, battery management systems, and

secondary battery cells is assumed.

▪ A prior experience working with Integrated Development Environments (IDEs) such as e2 studio, Flexible
Software Package (FSP), and terminal emulation programs such as Tera Term is assumed.

▪ Renesas recommends reviewing the ISO-DONGLE-EV1Z Rev.D Hardware Manual before changing or
developing any software for the dongle.

▪ Be familiar with the MCU in use, Renesas recommends reviewing the Renesas RA4E1 Group 32-Bit MCU
Datasheet (see the RA4E1 product page).

▪ More information about the bootloader operation is provided in the Renesas RA Family Secure Bootloader for
RA2 MCU Series Application Note.

2. Bootloader

2.1 Structure and Operation
The bootloader of the ISO-DONGLE-EV1Z Rev.D Isolated Communications Dongle enables upgrading or
modifying the MCU firmware without requiring specialized programming hardware or tools. It features the
MCUboot secure bootloader from the Renesas Flexible Software Package (FSP) to receive a binary file over the
USB interface, verify its content integrity, and write the program memory with the application program. The
bootloader uses the whole code flash memory of the MCU. Figure 2 shows the flash memory map. It is separated
into three major parts: Bootloader, Primary, and Secondary Application Image Slot. The bootloader occupies
64KB of the code flash memory or the first eight blocks (8KB size), containing the MCUboot module, USB driver,
HP Flash driver and GPIO driver for the LED indication. Each image slot is 96KB long or 3 blocks (32KB size),
which is the maximum memory space available for the application software.

Figure 1. GUI, Communications Dongle, and Battery Front End Connection

Isolated Communications
Dongle

SPI/
I2C

USB

Host (Workstation)BFE Board

https://www.renesas.com/ra4e1

R16US0018EU0101 Rev.1.01 Page 3
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

Figure 3 shows the operation flowchart of the bootloader. When the CPU is released from reset, a low-level
initialization is performed. All three user LEDs activate simultaneously, ON for 500ms and OFF to both perform a
LED test and indicate the beginning of the bootloader code execution. Next, the digital input corresponding to the
BOOT Test Point is tested for low level. If this condition is true, the USB interface initializes to create a virtual COM
port and activates the software image download process. The MCU waits for a connection with terminal emulator
software and receives the start of download command, Carriage return' (Enter). The bootloader starts to store
every byte received by the virtual serial connection in the Secondary Image Slot by portions of 32KB (1 block),
and if the transferred image size is different than 96KB or any unexpected behavior is encountered, the operation
is terminated and LED D4 is illuminated.

When the image download completes successfully, LED D3 is illuminated, and the MCU halts operation and waits
for manual restart. This is also the moment when the level of the digital input (BOOT TP) must be changed to high
(remove the jumper wire). Table 1 shows the various states indicated by the LEDs, and Table 4 shows the virtual
COMM port settings.

Important: Do not set a higher baud rate because this can lead to buffer overrun and compromise the image
transfer.

After a successful bootloader startup, and LED test and if the level of the digital input corresponding to the BOOT
Test Point is high (default), the MCU proceeds to software image boot up. The bootloader checks the Secondary
Image Slot memory space. If an image is available there, it is validated by checking integrity and authenticity. After
successful authentication, the bootloader copies the new image using the overwrite update method where the
entire content of the Primary Image Slot is overwritten with the contents of the Secondary Image Slot. The active
image is always executed from the Primary Image Slot. This method is fail-safe, resistant to power-cut failures,
and with less memory overhead compared to the other available update methods. Conversely, it does not support
image pre-testing and automatic fallback mechanism. When the Primary Image Slot memory space is
successfully overwritten, the bootloader executes the new image. If no new image is detected in the Secondary
Image Slot, the bootloader directly authenticates and boots up the Primary Software Image.

Figure 2. Bootloader Flash Memory Map

R16US0018EU0101 Rev.1.01 Page 4
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

Figure 3. Bootloader Flowchart Diagram

Is the Jumper Wire
Installed?

Yes

No

Test LEDs

MCU Reset

Low Level Initialization

Image Available on
Secondary Slot?

Validate Primary Image

Boot Image from Primary Slot

Validate Secondary Image

Copy Image from Secondary to
Primary Slot

No

Yes

Initialize USB Interface

Start Image Download
Command Received?

Receive New Image and Store
into Code Flash

Yes

No

Halt and Wait for Jumper Removal
and Reset

R16US0018EU0101 Rev.1.01 Page 5
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

2.2 Bootloader Programming
The ISO-DONGLE-EV1Z Rev.D Isolated Communications Dongle is programmed by default with the bootloader
software. However, if using any external debugging tools during custom software development, it is erased or
overwritten in the code flash memory. This section describes how to restore the bootloader in the MCU memory.

Renesas E2 Emulator/ E2 Emulator Lite with 10-pin Cortex® Debug Connector and the following software
available on a workstation running Windows 10 are required:

▪ Renesas Flash Programmer V3.11.00 or later

▪ ra4e1_iso_dongle_mcuboot_v_1_0.srec binary file v1.0 or later

Complete the following bootloader programming process steps:

1. On the dongle, ensure that jumper JP1 is installed.

2. Connect the Renesas E2 Emulator or E2 Emulator Lite to the JTAG connector J4 of the dongle board
(Figure 4).

Table 1. Bootloader LED States Description

Condition
LED States

D3 (Red) D4 (Red)

LEDs blink test on startup. ON ON

Proceeding to normal software image boot. OFF OFF

Software image download mode is entered. Blinking slow OFF

Waiting to receive the software image by the virtual serial
connection.

Blinking fast OFF

Receiving software image in process. Blinking fast Blinking fast (antiphase with D3)

Software image download is completed. ON OFF

An error has occurred during image download. OFF ON

Table 2. Serial Connection (Terminal) Settings

Parameter Value

New Line (Receive) CR

New Line (Transmit) CR

Terminal ID VT100

Baud Rate 9600

Data Bits 8 bits

Parity none

Stop Bits 1 bit

Flow Control none

R16US0018EU0101 Rev.1.01 Page 6
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

3. Connect the USB cable between the PC and the USB Type-B connector of the board. Ensure the power ON
indicator LED D1 is illuminated.

4. Run the Renesas Flash Programmer, and on the top menu, select File > New Project... from the
Microcontroller dropdown menu select RA (Figure 5). In the Project Name field, enter RA4E1_Dongle. From
the Tool dropdown menu, select E2 emulator or E2 emulator Lite and click the Connect button.

Figure 4. Isolated Communications Dongle with Attached Renesas E2 Emulator

Figure 5. Creating a New Project in Renesas Flash Programmer

JP11J4

Ribbon Cable to Renesas® E2
Emulator

USB Type-B
Connector

Reset Button

R16US0018EU0101 Rev.1.01 Page 7
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

5. In the main window, select the Operation Settings tab and verify that in Command section that Erase,
Program, and Verify are selected (Figure 6).

6. Select the Connect Settings tab and click on the Tool Details... button (Figure 7). In the pop-up window, verify
that option None is selected in the Power Supply section. Click on the OK button to close the pop-up window.

Figure 6. Operation Settings in Renesas Flash Programmer

Figure 7. Connection Settings in Renesas Flash Programmer

R16US0018EU0101 Rev.1.01 Page 8
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

7. Select the Operation tab and click on the Browse… button (Figure 8). In File Explorer, navigate to the location
of the bootloader binary file (.srec), select it, and click the Open button. Click the Start button to download the
file into the code flash memory.

8. When the process completes successfully, a green OK message in a rectangular window appears next to the
Start button (Figure 9). Disconnect the USB cable. Disconnect the Renesas E2 Emulator or E2 Emulator Lite
from the dongle and close the Renesas Flash programmer. The bootloader programming process is completed.
Important: Always first unplug the USB cable and after unplug the Renesas E2 Emulator or E2 Emulator Lite
from the dongle.

Figure 8. Selection of the Program File

Figure 9. Successful Programming Win

R16US0018EU0101 Rev.1.01 Page 9
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

3. Software Image Update
The software image (referred to as image) in the communication dongle can be updated or modified without using
any additional external software programmers. To initiate the software image update process, first ensure that the
required image is available on the PC and the terminal emulator program Tera Term is installed. Tera Term can be
downloaded from the Tera Term Home Page.

The image update process must follow these steps:

1. Connect the BOOT Test Point to the TP1 (GND ISO) using a jumper wire as shown in Figure 10.

2. Connect the USB cable between the PC and the USB Type-B connector of the board. Verify that LED D3 is
blinking slowly indicating that the bootloader is in Image Update mode.

3. Open Tera Term. A new connection should automatically open (Figure 11), if not, select File > New
Connection. From the window, select Serial and verify that the USB Serial Device COM port is selected from
the dropdown list. Click the OK button to open the connection.

Figure 10. Connection of the ISO-DONGLE-EV1Z Rev.D Isolated Communications Dongle

for the Software Image Update

Figure 11. Tera Term New Connection Window

Jumper wire

USB Type-B Cable

User
LEDs

Power
LED

Reset
Button

https://teratermproject.github.io/index-en.html

R16US0018EU0101 Rev.1.01 Page 10
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

4. In the top menu of Tera Term, select Setup > Serial Port. In the window (Figure 12), verfiy that the connection
settings match the values from Table 5 and click on the New setting button.

5. Press Enter to activate Image Download Mode. LED D3 starts blinking fast and a READY! message is
displayed on the console screen (Figure 13). The bootloader waits to receive the image file by the USB serial
interface. Each subsequent byte is interpreted as a part of the Image. Warning!: Be careful not to press any
other buttons or the process compromises and must be restarted.

Figure 12. Tera Term Serial Port Setup and Connection Window

Figure 13. Console Screen ‒ Ready for Software Image Download

R16US0018EU0101 Rev.1.01 Page 11
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

6. Select File > Send file... from the menu. On the opened window (Figure 14), select Binary, navigate to the
location of the software image file, select it, and click the Open button. Now the terminal emulator program
sends the whole file. LEDs D3 and D4 blink in antiphase, and a pop-up window displays the transfer progress,
which takes approximately 10 seconds.

7. When the software image download has finished, D3 remains illuminated and a DOWNLOAD COMPLETE!
message is printed in the console screen (Figure 15). The USB cable must be unplugged and the jumper wire
removed. Next time the MCU powers up, it copies the new software image, and boots from it. This completes
the software image update process. If the red LED D4 is illuminated, either the bootloader becomes
irresponsive or the image transfer sticks conveying that there is something wrong with the image update
process. Unplug the USB cable and restart the process from Step 1.

Figure 14. Selection of Software Image

Figure 15. Console Screen ‒ Software Image Download has Finished

R16US0018EU0101 Rev.1.01 Page 12
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

4. Generation of Software Image
Developing and running customized software (application) on the dongle using the bootloader to avoid the need of
any debugger tools requires the generation of a software image that meets the bootloader size and verification
requirements. This section describes the process of generation of a software image from a conventional project in

e2 studio. Initially, the following development tools and software running on Windows® 10 are required:

▪ e2 studio Development Environment (IDE) 2022-07 or greater with GCC Arm® Embedded toolchain.

▪ Renesas Flexible Software Package (FSP) 5.1.0 or later.

▪ Python 3.11.0 or later.

▪ ra4e1_iso_dongle_mcuboot_v_1_0.zip bootloader software project v1.0 or later.

Important: Ensure that Python is installed to all users and it is added to Windows PATH (Control Panel > System
> Advanced System Settings > Advanced > Environment Variables). Otherwise, python scripts cannot run

through e2 studio IDE.

If this procedure has already been completed and the MCU boot software project and python environment are
already set up, go directly to Step 10.

The image generation process must follow these steps:

1. Import the MCUboot software project that contains the python script and is used in the image generation
process. Note: This is the bootloader project not the application software that runs from the target image. Verify
that the ra4e1_iso_dongle_mcuboot_v_1_0.zip project archive file is already available. Right-click in the e2
studio Project Explorer view and select Import from the menu to open the Import Wizard (Figure 16).

2. From the Import Wizard window, select Existing Project into Workspace and click the Next > button
(Figure 17).

Figure 16. Right-Click Menu to Import the Bootloader Project

R16US0018EU0101 Rev.1.01 Page 13
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

3. In the Import Projects window, select the Select archive file option and click on the Browse… button
(Figure 18).

a. In the File Explorer that appears, navigate to the location of the bootloader project archive file (.zip), select
it, and click on the Open button.

b. Click the Finish button to complete the import process and close the Import Wizard.

Figure 17. Selection of the Import Wizard Option

Figure 18. Selection of the Bootloader Project

R16US0018EU0101 Rev.1.01 Page 14
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

4. The project is now imported into the e2 studio workspace. Double-click on configuration.xml to open the FSP
Configurator and click the Generate Project Content button to generate the hardware specific project files that
are required to run the project on the selected hardware (Figure 19).

5. Configure the Python Signing Environment. Signing the application image is done using a post-build step in
e2 studio using the image signing tool Imgtool.py, which is included with MCUboot.

c. In the e2 studio Project Explorer, navigate to the ra4e1_iso_dongle_mcuboot_v_1_0\ra\mcu-
tools\MCUboot folder (Figure 20).

d. Right-click the MCUboot folder and select Command Prompt. This opens a command window with the
path set to the \mcu-tools\MCUboot folder.

Figure 19. Generation of Hardware Specific Project Files

Figure 20. Opening Command Prompt in the MCUboot Folder

R16US0018EU0101 Rev.1.01 Page 15
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

6. Enter the following command to update pip:

python -m pip install --upgrade pip

7. Next, in the command window, enter the following command line to verify and install all the MCUboot
dependencies (Figure 21):

pip3 install --user -r scripts/requirements.txt

8. Close the Command Prompt.

9. Ensure that the ra4e1_iso_dongle_mcuboot_v_1_0 project is active (selected in Project Explorer) and on the
top menu, select Project > Build Project and wait until the process completes.

10. Configure the existing application to use the bootloader project. The software project that runs on the dongle
is duplicated and renamed so that the original can remain debugged using an external debugging tool during
code development. Caution: The binary size must be smaller or equal to 96KB. This is the fixed image size
and dedicated memory space in the code flash. The binary size cannot be exceeded.
Next, right-click in the e2 studio Project Explorer and select Import from the menu to open the Import Wizard
(Figure 16).

11. From the Import Wizard window, select Rename & Import Existing C/C++ Project into Workspace and click
on the Next > button (Figure 22).

Figure 21. Installing the MCUboot Dependencies

Figure 22. Selection of the Import Wizard Option

R16US0018EU0101 Rev.1.01 Page 16
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

12. In the Rename & Import Project window, enter a project name (Figure 23). Renesas recommends using the
same name as the original project with a suffix *_app.

a. Select the Select root directory option and click on the Browse… button.

b. In the File Explorer, navigate to the location of the existing application project, select it, click the Select
Folder button, and select the desired project in the Projects section.

c. Click the Finish button to complete the import process and close the Import Wizard.

13. The project is now duplicated into the e2 studio workspace and must be configured. In the Project Explorer,
right-click on the application project folder and select Properties to open the project properties window
(Figure 24).

Figure 23. Selection of the Sample Project

R16US0018EU0101 Rev.1.01 Page 17
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

14. Select C/C++ Build > Build Variables and click on the Add... button.

a. In the Variable name field, enter BootloaderDataFile.

b. Check the Apply to all configurations box (Figure 25).

c. Change the Type to File, and for Value, enter the following relative path to the *.bld file:
${workspace_loc:ra4e1_iso_dongle_mcuboot_v_1_0}/Debug/ra4e1_iso_dongle_mcuboot_v_1_0.
bld
Note: If the bootloader project name or location are different, the value format is as follows:
${workspace_loc:<boot_project_name>}/Debug/<boot_project_name>.bld.

d. Click the OK button and the Apply button to save the change of the properties.

Figure 24. Opening Project Properties

Figure 25. Adding a Build Variable to Use the Bootloader

R16US0018EU0101 Rev.1.01 Page 18
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

15. Select C/C++ Build > Environment, click on the Add... button.

a. In the Name field, enter MCUBOOT_IMAGE_VERSION and set Value to the actual application project
version number (Figure 26).

b. Click the OK button and the Apply button to save the change of the properties.

16. Select C/C++ Build > Settings and select the Build Steps tab (Figure 27).

a. In the Command(s) field, enter the following pre-build command: del ${ProjName}.elf to always delete
the *.elf file.

b. Click the Apply and Close button to save the change of properties and close the window.

Figure 26. Adding a Project Version Number

Figure 27. Adding a Pre-Build Command

R16US0018EU0101 Rev.1.01 Page 19
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

17. Verify the project is active (selected in the Project Explorer). From the top menu, select Project > Build Project
and wait until the process completes (Figure 28). In the Project Explorer, expand the Debug folder. The
generated application image binary file is under the name format <app_project_name>.bin.signed. From this
location, it can be directly copied to a known location.

For more information about the image generation process, refer to the Renesas RA Family Secure Bootloader for
RA2 MCU Series Application Note.

Figure 28. Generating the Application Image

R16US0018EU0101 Rev.1.01 Page 20
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

5. Communication Protocol
The following section describes the communication protocol supported by the firmware of the
ISO-DONGLE-EV1Z Rev. D (ra4e1_iso_dongle_ev1z_rev_d_fw_v_2_1_app.bin.signed version 2.1 or later). The
communication protocol runs across a serial port and allows sending direct commands to the BFE and receiving
responses, but it also reconfigures the dongle peripherals. This communication protocol is used by the GUI
software. It can also be used to develop custom applications that communicate with the BFE using the isolated
dongle. Each transmission follows the same sequence: the application software on the PC sends a command and
the dongle sends back a response. The length of the command and response packets vary, and the packet
contains obligatory elements like begin indicator (0x0A), command code, end indicator (0x0D), error code, and
others. The maximum transmission length is limited to 64B and the maximum payload inside a response is 32B.
Longer responses are divided into several response packets but by no more than eight. Every incorrect or
unrecognized command results in an error response (Table 3). Table 4 provides more information about the
reason for the errors and facilitates the debugging.

The following sections describe all supported commands in detail. For practical examples how to use the
commands, refer to the Examples section.

Table 3. Description of a Command Error

Command Packet Structure

Byte 0 1 2 3 4 5 6 7 8

Filed Name - - - - - - - - -

Value
Range

Any unrecognized command or incorrect packet!

Response Packet Structure

Byte 0 1 2 - - - - - -

Filed Name Begin Error Code End - - - - - -

Value
Range

\n
[0x0A]

0x02, 0x03
\r

[0x0D]
- - - - - -

Table 4. List of Error Codes

Error Code Error Name Description

0x00 Success (no error) No error was detected during execution

0x01 Communication Error in communication with the BMIC

0x02 Command The command is incorrect.

0x03 Configuration Error in configuration

0x04 Pins Error in GPIO and special pins control

R16US0018EU0101 Rev.1.01 Page 21
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

5.1 Connect Command
The connect command tests the communication between the application software on the PC and the ISO-
DONGLE-EV1Z Rev.D dongle. It does not have any effect on the BFE. This is the command that must always be
sent first to the dongle after power on and before any other. Without it you will not be able to communicate with the
BFE. List of ALERT Pin States shows the content of the connect command and the expected response.

5.2 Read/Write Commands
The communication protocol supports three different types of read/write commands:

▪ I2C commands (Table 6 and Table 7)

▪ SPI commands without CRC (Table 9 and Table 10)

▪ SPI commands with CRC (Table 11 and Table 12)

All these commands share the same structure with small differences. The read commands include a slave
address, register address, and byte length fields.

Important: The LSB of the slave address in a read command must always be set to 1 (which is 0x34 | 0x01 for

I2C) according to the device specifics.

When the target register is longer than 1B, this must be considered in the requested Length byte. This protocol
also supports reading multiple consecutive registers. The number of the register is controlled using the Length
byte, and the first register is the one indicated by the Register Address byte. When using SPI with CRC, there are
two additional bytes before the packet-end indicator that contains the checksum (Table 11). It is not automatically
calculated by the dongle and the PC application must take care. The response to the read command contains
Error Code, ALERT pin state, and packet number. The ALERT pin state byte indicates the logic state of the
ALERT pin (Table 7). When the Length byte exceeds 32B, the payload is divided into multiple response packets.
The number of the register is denoted by the packet byte number. When using SPI with CRC, the last response
packet contains two additional bytes with the total checksum (Table 11).

The write commands include a slave address, register address, byte length, and (data) Byte 1. These commands
support writing of only one byte at a time. Therefore, the Length byte must always be set to 0x01. If the target
register is longer, each byte must be addressed in a separate transmission.

Important: The LSB of the slave address in a write command must always be set to 0 (which is 0x34 for I2C)
according to the device specifics.

When using SPI with CRC, the write command contains two more bytes before the end indicator with the
checksum. The response of a write command always contains the Error code and ALERT pin status.

Table 5. Description of the Connect Command

Command Packet Structure

Byte 0 1 2 - - - - - -

Filed
Name

Begin Command End - - - - - -

Value
Range

\n
[0x0A]

c
[0x63]

\r
[0x0D]

- - - - - -

Response Packet Structure

Byte 0 1 2 3 4 5 6 7 8

Filed
Name

Begin - - - - Version number (might differ) End

Value
Range

\n
[0x0A]

B
[0x49]

M
[0x53]

S
[0x4F]

v
[0x76]

2
[0x32]

.
[0x2E]

1
[0x31]

\r
[0x0D]

R16US0018EU0101 Rev.1.01 Page 22
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

Table 6. Description of the I2C Register Read Command

Command Packet Structure

Byte # 0 1 2 3 4 5 - - -

Filed
Name

Begin Command
Slave

Address
Register
Address

Length End - - -

Value
Range

\n
[0x0A] 0x06

0x00…
0xFF

0x00…
0xFF

0x01...
0xFF

\r
[0x0D]

- - -

Response Packet Structure

Byte # 0 1 2 3 4 5 …
(Length + 3)

or 35
(Length + 4)

or 36

Filed
Name

Begin Error Code
ALERT pin

state
Packet # Byte 1 Byte 2 …

Byte
(Length)

End

Value
Range

\n
[0x0A]

0x00, 0x01 0x00, 0x01
0x00…
0x07

0x00…
0xFF

0x00…
0xFF

…
0x00…
0xFF

\r
[0x0D]

Table 7. List of ALERT Pin States

Value Pin State Description

0x00 De-asserted The ALERT pin is de-asserted (HIGH level)

0x01 Asserted The ALERT pin is asserted (LOW level)

Table 8. Description of the I2C Register Write Command

Command Packet Structure

Byte # 0 1 2 3 4 5 6 - -

Filed
Name

Begin Command
Slave

Address
Register
Address

Length Byte 1 End - -

Value
Range

\n
[0x0A] 0x07

0x00…
0xFF

0x00…
0xFF

0x01
0x00…
0xFF

\r
[0x0D]

- -

Response Packet Structure

Byte # 0 1 2 3 - - - - -

Filed
Name

Begin Error Code
ALERT pin

state
End - - - - -

Value
Range

\n
[0x0A]

0x00, 0x01 0x00, 0x01
\r

[0x0D]
- - - - -

R16US0018EU0101 Rev.1.01 Page 23
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

Table 9. Description of the SPI without CRC Register Read Command

Command Packet Structure

Byte # 0 1 2 3 4 5 - - -

Filed
Name

Begin Command
Slave

Address
Register
Address

Length End - - -

Value
Range

\n
[0x0A] 0x08

0x00…
0xFF

0x00…
0xFF

0x01...
0xFF

\r
[0x0D]

- - -

Response Packet Structure

Byte # 0 1 2 3 4 5 …
(Length + 3)

or 35
(Length + 4)

or 36

Filed
Name

Begin Error Code
ALERT pin

state
Packet # Byte 1 Byte 2 …

Byte
(Length)

End

Value
Range

\n
[0x0A]

0x00, 0x01 0x00, 0x01
0x00…
0x07

0x00…
0xFF

0x00…
0xFF

…
0x00…
0xFF

\r
[0x0D]

Table 10. Description of the SPI without CRC Register Write Command

Command Packet Structure

Byte # 0 1 2 3 4 5 6 - -

Filed
Name

Begin Command
Slave

Address
Register
Address

Length Byte 1 End - -

Value
Range

\n
[0x0A] 0x09

0x00…
0xFF

0x00…
0xFF

0x01
0x00…
0xFF

\r
[0x0D]

- -

Response Packet Structure

Byte # 0 1 2 3 - - - - -

Filed
Name

Begin Error Code
ALERT pin

state
End - - - - -

Value
Range

\n
[0x0A]

0x00, 0x01 0x00, 0x01
\r

[0x0D]
- - - - -

Table 11. Description of the SPI with CRC Register Read Command

Command Packet Structure

Byte # 0 1 2 3 4 5 6 7 - - -

Filed
Name

Begin
Comman

d
Slave

Address
Register
Address

Length
CRC
MSB

CRC
LSB

End - - -

Value
Range

\n
[0x0A] 0x11

0x00…
0xFF

0x00…
0xFF

0x01...
0xFF

0x00…
0xFF

0x00…
0xFF

\r
[0x0D]

- - -

Response Packet Structure

Byte # 0 1 2 3 4 5 … 35 36 - -

Filed
Name

Begin
Error
Code

ALERT
pin state

Packet # Byte 1 Byte 2 …
Byte

(Length)
End - -

Value
Range

\n
[0x0A]

0x00,
0x01

0x00,
0x01

0x00…
0x07

0x00…
0xFF

0x00…
0xFF

…
0x00…
0xFF

\r
[0x0D]

- -

Byte # 0 1 2 3 4 5 …
(Length+
3) or 35

(Length+
4) or 36

(Length+
5) or 37

(Length+
6) or 38

Filed
Name

Begin
Error
Code

ALERT
pin state

Packet # Byte 1 Byte 2 …
Byte

(Length)
CRC
MSB

CRC
LSB

End

Value
Range

\n
[0x0A]

0x00,
0x01

0x00,
0x01

0x00…
0x07

0x00…
0xFF

0x00…
0xFF

…
0x00…
0xFF

0x00…
0xFF

0x00…
0xFF

\r
[0x0D]

R16US0018EU0101 Rev.1.01 Page 24
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

Note: Switching from SPI to I2C and vice versa requires sending a configuration command to the dongle, which is
described in the following section.

The drivers for the SPI and I2C communication interfaces of the ISO-DONGLE-EV1Z Rev.D dongle are configured
to comply with the inter-byte timing requirements of the ISL94216A and RAA489206. During a read, there is more
than 7µs of delay between the data bytes (see Figure 29 and Figure 31. On other hand the write commands does
not have any additional delay (Figure 30 and Figure 32).

Table 12. Description of the SPI with CRC Register Write Command

Command Packet Structure

Byte 0 1 2 3 4 5 6 7 8

Filed
Name

Begin Command
Slave

Address
Register
Address

Length Byte 1 CRC MSB CRC LSB End

Value
Range

\n
[0x0A] 0x12

0x00…
0xFF

0x00…
0xFF

0x01
0x00…
0xFF

0x00…
0xFF

0x00…
0xFF

\r
[0x0D]

Response Packet Structure

Byte 0 1 2 3 - - - - -

Filed
Name

Begin Error Code
ALERT pin

state
End - - - - -

Value
Range

\n
[0x0A]

0x00, 0x01 0x00, 0x01
\r

[0x0D]
- - - - -

Figure 29. Inter-byte Timing of the SPI Read Command

R16US0018EU0101 Rev.1.01 Page 25
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

Figure 30. Inter-Byte Timing of the SPI Write Command

Figure 31. Inter-Byte Timing of the I2C Read Command

R16US0018EU0101 Rev.1.01 Page 26
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

5.3 Configuration Commands
The configuration commands affect directly the communications and indirectly the BFE. They can change the
communication interface, data rate or any pin state, or read back the state.

The serial communication interface can be changed using the Set Serial Interface Command (see Table 13). The
options for the Serial Interface byte are provided in Table 15. The SPI option works both for commands with or
without CRC. Sending a write/read command for the unselected serial protocol returns a non-zero error code. The
Read Serial Interface Command returns the currently selected interface (see Table 14).

Figure 32. Inter-Byte Timing of the I2C Write Command

Table 13. Description of the Set Serial Interface Command

Command Packet Structure

Byte 0 1 2 3 - - - - -

Filed
Name

Begin Command
Serial

Interface
End - - - - -

Value
Range

\n
[0x0A]

P
[0x50]

0x01, 0x02
\r

[0x0D]
- - - - -

Response Packet Structure

Byte 0 1 2 - - - - - -

Filed
Name

Begin Error Code End - - - - - -

Value
Range

\n
[0x0A]

0x00, 0x02,
0x03

\r
[0x0D]

- - - - - -

R16US0018EU0101 Rev.1.01 Page 27
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

Table 16 and Table 17 describe the commands for changing the I2C and SPI data rates. The supported data rates

for I2C can be 100kbps or 400kbps, and for SPI, they can vary between 100kbps and 2.5Mbps. The heximal
equivalent is written in the Data Rate Byte fields, which is 100kbps for 0x00 0x01 0x86 0xA0.

Table 14. Description of the Read Serial Interface Command

Command Packet Structure

Byte 0 1 2 - - - - - -

Filed
Name

Begin Command End - - - - - -

Value
Range

\n
[0x0A]

p
[0x70]

\r
[0x0D]

- - - - - -

Response Packet Structure

Byte 0 1 2 3 - - - - -

Filed
Name

Begin Error Code
Serial

Protocol
End - - - - -

Value
Range

\n
[0x0A]

0x00
0x00, 0x01,

0x02
\r

[0x0D]
- - - - -

Table 15. List of Serial Interface Options

Value Direction Option Description

0x01 SPI SPI communication Interface (with or without CRC)

0x02 I2C I2C communication Interface

Table 16. Description of the Set I2C Data Rate Command

Command Packet Structure

Byte 0 1 2 3 4 5 6 - -

Filed
Name

Begin Command
Data Rate

Byte 3
Data Rate

Byte 1
Data Rate

Byte 2
Data Rate

Byte 0
End - -

Value
Range

\n
[0x0A]

f
[0x66]

0x00…
0xFF

0x00…
0xFF

0x00…
0xFF

0x00…
0xFF

\r
[0x0D]

- -

Response Packet Structure

Byte 0 1 2 - - - - - -

Filed
Name

Begin Error Code End - - - - - -

Value
Range

\n
[0x0A]

0x00, 0x03
\r

[0x0D]
- - - - - -

R16US0018EU0101 Rev.1.01 Page 28
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

The communications dongle has four GPIO pins that can be configured as digital inputs or open-drain outputs
(pull-up resistors are available on the board) using the Set MCU GPIO Direction Command (see Table 18). The
pin options can be selected from Table 19. Each pin can be individually configured.

The GPIO states can be read using the Read MCU GPIO Pins Command (see Table 20). This option works both
for the input and output configuration.

Table 17. Description of the Set SPI Data Rate Command

Command Packet Structure

Byte 0 1 2 3 4 5 6 - -

Filed
Name

Begin Command
Data Rate

Byte 3
Data Rate

Byte 1
Data Rate

Byte 2
Data Rate

Byte 0
End - -

Value
Range

\n
[0x0A]

F
[0x46]

0x00…
0xFF

0x00…
0xFF

0x00…
0xFF

0x00…
0xFF

\r
[0x0D]

- -

Response Packet Structure

Byte 0 1 2 - - - - - -

Filed
Name

Begin Error Code End - - - - - -

Value
Range

\n
[0x0A]

0x00, 0x03
\r

[0x0D]
- - - - - -

Table 18. Description of the Set MCU GPIO Pins Direction Command

Command Packet Structure

Byte 0 1 2 3 4 5 6 7 8 9 10

Filed
Name

Begin Command
GPIO3
Option

GPIO2
Option

GPIO1
Option

GPIO0
Option

End - - - -

Value
Range

\n
[0x0A]

D
[0x44]

0x00,
0x01

0x00,
0x01

0x00,
0x01

0x00,
0x01

\r
[0x0D]

- - - -

Response Packet Structure

Byte 0 1 2 3 4 5 6 7 8 9 10

Filed
Name

Begin
Error
Code

End - - - - - - - -

Value
Range

\n
[0x0A]

0x00,
0x03

\r
[0x0D]

- - - - - - - -

Table 19. List of GPIO Direction Options

Value Direction Option Description

0x00 Input The GPIO pin is an input.

0x01 Open Drain Output The GPIO pin is an open-drain output.

R16US0018EU0101 Rev.1.01 Page 29
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

The Write MCU GPIO Pins Command is used for changing the level of the open-drain outputs. When the pins are
configured as an input, the setting is ignored.

Similarly, the GPIO pins, the special-purpose pins of the isolated dongle, are controlled using the Read and Write
MCU Special Purpose Pins Commands (see Table 23 and Table 24).

Table 20. Description of the Read MCU GPIO Pins Command

Command Packet Structure

Byte 0 1 2 - - - - - -

Filed
Name

Begin Command End - - - - - -

Value
Range

\n
[0x0A]

g
[0x67]

\r
[0x0D]

- - - - - -

Response Packet Structure

Byte 0 1 2 3 4 5 6 - -

Filed
Name

Begin Error Code
GPIO3
Level

GPIO2
Level

GPIO1
Level

GPIO0
Level

End - -

Value
Range

\n
[0x0A]

0x00 0x00, 0x01 0x00, 0x01 0x00, 0x01 0x00, 0x01
\r

[0x0D]
- -

Table 21. List of MCU Pin Levels

Value MCU Pin Levels Description

0x00 Low The MCU pin level is high.

0x01 High The MCU pin level is low.

Table 22. Description of the Write MCU GPIO Pins Command

Command Packet Structure

Byte 0 1 2 3 4 5 6 - -

Filed
Name

Begin Command
GPIO3
Level

GPIO2
Level

GPIO1
Level

GPIO0
Level

End - -

Value
Range

\n
[0x0A]

G
[0x47]

0x00, 0x01 0x00, 0x01 0x00, 0x01 0x00, 0x01
\r

[0x0D]
- -

Response Packet Structure

Byte 0 1 2 - - - - - -

Filed
Name

Begin Error Code End - - - - - -

Value
Range

\n
[0x0A]

0x00, 0x04
\r

[0x0D]
- - - - - -

R16US0018EU0101 Rev.1.01 Page 30
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

Table 23. Description of the Read MCU Special Purpose Pins Command

Command Packet Structure

Byte 0 1 2 - - - - - -

Filed
Name

Begin Command End - - - - - -

Value
Range

\n
[0x0A]

s
[0x73]

\r
[0x0D]

- - - - - -

Response Packet Structure

Byte 0 1 2 3 4 5 6 7 8

Filed
Name

Begin Error Code
RESET
Level

WAKEUP
Level

ADDR
Level

CMS1
Level

CMS0
Level

ALERT
Level

End

Value
Range

\n
[0x0A]

0x00 0x00, 0x01 0x00, 0x01 0x00, 0x01 0x00, 0x01 0x00, 0x01 0x00, 0x01
\r

[0x0D]

Table 24. Description of the Write MCU Special Purpose Pins Command

Command Packet Structure

Byte 0 1 2 3 4 5 6 7 8

Filed
Name

Begin Command
RESET
Level

WAKEUP
Level

ADDR
Level

CMS1
Level

CMS0
Level

ALERT
Level

End

Value
Range

\n
[0x0A]

s
[0x53]

0x00, 0x01 0x00, 0x01 0x00, 0x01 0x00, 0x01 0x00, 0x01 0x00, 0x01
\r

[0x0D]

Response Packet Structure

Byte 0 1 2 - - - - - -

Filed
Name

Begin Error Code End - - - - - -

Value
Range

\n
[0x0A]

0x00, 0x04
\r

[0x0D]
- - - - - -

R16US0018EU0101 Rev.1.01 Page 31
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

5.4 Examples
The following examples demonstrate how to use the commands described in the previous section.

Table 25. Examples of the Communication Protocol Commands

Sent Received Description

1 0x0A 0x63 0x0D
0A 49 53 4F 76 32 2E 30 0D 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

Test Connection

2
0x0A 0x06 0x35 0x00
0x01 0x0D

0A 00 00 01 F2 0D 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

I2C Read (Slave Address: 0x34 | 0x01):
0x00 Product ID Register

3
0x0A 0x06 0x35 0x63
0x07 0x0D

0A 00 00 01 00 00 00 00 08 00 00 0D 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

I2C Read (Slave Address: 0x34 | 0x01):
0x63 – 0x69 Faults and Status Registers

4
0x0A 0x07 0x34 0x1F
0x01 0xC0 0x0D

0A 00 00 0D 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

I2C Write (Slave Address: 0x34):
0x1F Vbat1 Operation Register

5
0x0A 0x08 0x15 0x00
0x01 0x0D

0A 00 00 01 F2 0D 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

SPI Read w/o CRC (Address: 0x14 | 0x01):
0x00 Product ID Register

6
0x0A 0x08 0x15 0x63
0x07 0x0D

0A 00 00 01 00 00 00 00 08 00 00 0D 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

SPI Read w/o CRC (Address: 0x14 | 0x01):
0x63 – 0x69 Faults and Status

7
0x0A 0x11 0x9D 0x9F
0x07 0xCA 0x1C 0x0D

0A 00 00 01 00 00 00 00 08 00 00 4A B2 0D 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

SPI Read with CRC (Address: 0x9C | 0x01):
0x9F Faults Command

8
0x0A 0x09 0x14 0x1F
0x01 0xC0 0x0D

0A 00 00 0D 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

SPI Write w/o CRC (Address: 0x14):
0x1F Vbat1 Operation Register

9
0x0A 0x12 0x9C 0x02
0x01 0x81 0x4C 0x27
0x0D

0A 00 00 0D 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

SPI Write with CRC (Address: 0x9C):
0x02 Vcell Operation Register

10 0x0A 0x70 0x0D
0A 00 01 0D 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

Read the serial protocol

11 0x0A 0x50 0x02 0x0D
0A 00 0D 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

Set I2C as a serial protocol

12
0x0A 0x66 0x00 0x01
0x86 0xA0 0x0D

0A 00 0D 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

Change the I2C data rate to 100 kbps

13
0x0A 0x46 0x00 0x0F
0x42 0x40 0x0D

0A 00 0D 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

Change the SPI data rate to 1 Mbps

14
0x0A 0x44 0x01 0x01
0x01 0x01 0x0D

0A 00 0D 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

Set all GPIO pins of the MCU as outputs

15 0x0A 0x67 0x0D
0A 00 01 00 01 00 0D 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

Read the GPIO pins of the MCU

16 0x0A 0x73 0x0D
0A 00 01 00 01 00 01 01 0D 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

Read MCU Special Purpose Pins

17
0x0A 0x53 0x00 0x01
0x01 0x00 0x01 0x0D

0A 00 0D 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

Write MCU Special Purpose Pins: Select SPI
BFE configuration and Reset BFE

R16US0018EU0101 Rev.1.01 Page 32
Jul 24, 2025

ISO-DONGLE-EV1Z Rev.D Software Manual

6. Revision History

Revision Date Description

1.01 Jul 24, 2025 Corrected board number throughout.

1.00 May 22, 2025 Initial release.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

	Introduction
	Contents
	1. Communications Dongle Overview
	1.1 Assumptions and Advisory Notes

	2. Bootloader
	2.1 Structure and Operation
	2.2 Bootloader Programming

	3. Software Image Update
	4. Generation of Software Image
	5. Communication Protocol
	5.1 Connect Command
	5.2 Read/Write Commands
	5.3 Configuration Commands
	5.4 Examples

	6. Revision History

