inter_{sil}

ISL97671A, ISL97672A Evaluation Board Quick Start Guide

<u>_ | | × |</u>

Description

This quick start guide pertains to the ISL97671A, ISL97672A Evaluation Board Rev A-1 (Oct 2011). This board comes populated with 78 LED's in 6P13S configuration to simplify evaluation and testing. In the case of the ISL97671A evaluation board, please install the Sunlight ISL97670 GUI, which will be used to control these parts via I^2 C. Please note that the slave address on the ISL97671A is hexadecimal 58; see Figure 1. Please refer to respective the ISL97671A or ISL97672A section for jumper settings and power up instructions.

ISL97671A

- 1. ISL97671A LED strings can be configured in 6P13S, 6P12S, 6P11S, and 6P10S with different LED jumper settings, as shown in Table 1.
- 2. Connect WR, JP_OUTPUT, and JPCHO-JPCH5. Leave JP1 open to use external fault protection FET (Q1).
- 3. For current LED configuration, connect jumper JP1A to the left and connect the power supply on J99 (IC_VIN) to deliver VIN to the IC. When there is less LED in each string and VOUT is lower than 28V, IC_VIN can be configured as the

Sunlight ISL97670 U

Slave Address

bootstrap generated from the boost output by connecting the jumper JP1A to the right

- 4. IC Enable is shorted to VIN by connecting jumper JP2A to the right, thereby shorting jumper JP2A to the left so that the EN is driven by J98(EN)
- 5. VLOGIC level for I²C can be generated from VDC by connecting jumper JP3A to the right. VLOGIC can be driven from J97 (VLOGIC) by shorting jumper JP3A to the left.
- 6. The configuration of VIN (JP1A), EN (JP2A), and VLOGIC (JP3A) can be quickly found by referring to the table printed on the evaluation board, as shown in Figure 3.
- 7. There are 4 different operation modes for ISL97671A. The setting for each mode is shown on the other table printed on the evaluation board, as shown in Figure 3.
- 8. For I²C/SMBUS and DPST mode, connect the I²C interface board to the ISL97671A evaluation board, as shown in Figure 2.
- 9. For I²C/SMBUS and DPST mode, in order to enable the board, write a hex 58 for Slave Address and write a hex 05 in register 01; writing a hex 01 in register 01 will enable DPST (see data sheet for more details); writing a hex 03 in register 01 will allow PWM dimming only.

Slave Addless	58				
0x00 PWM Brightness	FF	Write		Read	Сору
0x01 Device Control	00	Write	0	Read	Сору
0x02 Fault/Status	00	Write		Read	Сору
0x03 Identification	88	Write	0	Read	Сору
0x04	00	Write	0	Read	Сору
0x05	00	Write	0	Read	Сору
0x06	00	Write	0	Read	Сору
0x07	00	Write	0	Read	Сору
0x08	00	Write	0	Read	Сору
0x09	00	Write	0	Read	Сору
0x0A GD	4D	Write	0	Read	Сору
0x0B GB	B3	Write	0	Read	Сору
0x0C DD	00	Write	0	Read	Сору
0x0D DM	00	Write	0	Read	Сору
0x0E DB	00	Write	0	Read	Сору
0x0F FD/DC/J	29	Write	0	Read	Сору
0x10 Max PWM 6-7	FF	Write	0	Read	Сору
0x11 Max PWM 7-8	FF	Write	0	Read	Сору
0x12 Max PWM 8-9	FF	Write	0	Read	Сору
0x13 Max PW/M 9-10	FF	Write	0	Read	Сору
0x14 Max PWM 10-11	FF	Write	0	Read	Сору
0x15 Max PWM 11-12	FF	Write	0	Read	Сору
Close		Write All		Read All	Copy All

1

📕 Sunlight ISL976	70 USB Interface		
File			
SIC CLK Frequency (I	KHz) (Desired)	50000 (Actual)	50000.0
SIC PW (CLKs) Re	peat 0 5 Pulse v		Enable
Copy SIC Re	peat 1 5 Pulse v	width 1 1 1 0	MI Enable Enable
Re	peat 2 <u>5</u> Pulse v	vidth 2 🔽 🔽 Seri	al Enable
PWMI CLK Frequenc	y (KHz) (Desired)	50000 (Actual)	50000.0
PWMI PW (CLKs)	5	PWMI PW (ns)	100
STV PW (CLKs)	1	STV PW (us)	2.560
STV Frequency (Hz)	(Desired)	295.928 (Actual)	295.928
SCLK/STV CLK Freq	uency (KHz) (Desired)	390.625 (Actual)	390.625
Copy Re	peat CH1 CH2 Cl	НЗ СН4 СН5 СН6 С	:H7 CH8
Serial Block 0	255 255 255 2	55 255 255 255 2	255 255
Serial Block 1	255 255 255 2	55 255 255 255 2	255 255
Serial Block 2	255 255 255 2	55 255 255 255 2	255 255
Show i2c		UTb 1 C 0 Write Setting	s Quit

FIGURE 1. EXAMPLE OF GUI INTERFACE

June 13, 2012 AN1634.1

TABLE 1. LED STRINGS CONFIGURATIONS WITH DIFFERENT JUMPER SETTINGS

LED CONFIGUATRION	6P13S	6P12S	6P11S	6P10S
JP_OUTPUT		Sh	ort	
JP_CH0				
JP_CH1				
JP_CH2	Short			
JP_CH3				
JP_CH4				
JP_CH5				
SH1_LED0	Open			
SH1_LED1				
SH1_LED2		Short	Open	Short
SH1_LED3		Short	Open	Short
SH1_LED4				
SH1_LED5				
SH2_LED0	Open			
SH2_LED1				
SH2_LED2		Onen	Short	Short
SH2_LED3		Open	Short	Short
SH2_LED4				
SH2_LED5				

10. The LED current can be programmed by varying POT R15 using the following equation:

$$ILED = 410.5/(R15 + R16) = 410.5/R13$$
 (EQ. 1)

The measured current divided by six is the LED current per channel. For example, 120mA measured current will correspond to 20mA/channel.

11. The PWM dimming frequency can be adjusted by varying pot R11 using the following equation:

$F_{PWM}^{=}$ 6.66 × 10 ⁷ /(R11 + R12)	(EQ. 2)
---	---------

ISL97672A

- 1. ISL 97672A LED strings can be configured in 6P13S, 6P12S, 6P11S, and 6P10S with different LED jumper settings, as shown in Table 1
- 2. Connect WR, JP_OUTPUT, and JPCH0-JPCH5. Leave JP1 open to use external fault protection FET (Q1).
- 3. For current LED configuration, connect jumper JP1A to the left and connect the power supply on J99 (IC_VIN) to deliver VIN to the IC. When there is less LED in each string and VOUT is lower than 28V, IC VIN can be configured as the bootstrap generated from the boost output by connecting the jumper JP1A to the right.
- 4. IC Enable is shorted to VIN by connecting jumper JP2A to the right, thereby shorting jumper JP2A to the left so that EN is driven by J98 (EN).
- 5. VLOGIC level can be generated from VDC by connecting jumper JP3A to the right. VLOGIC can be driven from J97 (VLOGIC) by shorting jumper JP3A to the left.
- 6. Configuration of VIN (JP1A), EN (JP2A), and VLOGIC (JP3A) can be quickly found by referring to the table printed on the evaluation board, as shown in Figure 3.
- 7. There is only one operation mode for ISL97672A, and the settings for JP4A, JP5A, J81, JP91, R10, and JP92 need to follow the table printed on the evaluation board, as shown in Figure 3.
- 8. The boost switching frequency can be adjusted by varying pot R11 using the following equation: $F_{sw} = (5 \times 10^{10}) / (R)$

FIGURE 2. I²C INTERFACE BOARD CONNECTED TO THE ISL97671A EVALUATION BOARD

FIGURE 3. SETTINGS OF IC VIN, ENABLE, AND VLOGIC ARE SHOWN ON PCB IN YELLOW RECTANGE ON THE LEFT-HAND SIDE. CONFIGURATIONS OF 4 DIFFERENT OPERATION MODES ARE LISTED ON PCB IN YELLOW RECTANGE ON THE RIGHT-HAND SIDE.

ω

FIGURE 4. TOP VIEW OF ISL97671A/ISL97672A EVALUATION BOARD

FIGURE 5. BOTTOM VIEW OF ISL97671A/ISL97672A EVALUATION BOARD

TABLE 1. BOM FOR ISL97671A/ISL97672A EVALUATION BOARD

PART TYPE	DESIGNATOR	FOOTPRINT
0	R14	402
0	R10	402
0.1uF	C19	402
0.1µF/50V	C2	402
1M	R15	VRES
1nF	C11	603
1nF	C14	603
1nF	C16	603
1nF	C13	603
1nF	C12	603
1nF	C15	603
1μF/10V	С7	402
2.21k	R12	402
3.3nF	C8	402
4.7k	R6	603
4.7k	R7	603
4.7µF/50V	C5	1210
4.7µF/50V	C6	1210
4.7µF/50V	С3	1210
4.7µF/50V	C4	1210
5k	R16	402
10k	R2A	402
10k	R2	402
10µF/50V	C1	1210
15µН (Coilcraft)	L1	XAL6060-153MEB
100pF/50V	С9	402
358К	R1	402
390pF	C20	402
750k	R11	VRES
FDMA530PZ	Q1	microFET2x2
INTERFACE	HDR1	MOLEX22-05-3101
ISL97671A/72A	U1	LPP20.3X4
LED-SMT	ALL LEDs	LW_Y87C
PMEG6030	D1	SOD-123W
nc	SH4-5	402
nc	C10	402
nc	R13	402
nc	C18	402
nc	R9	402
nc	SH3-4	402

PART TYPE	DESIGNATOR	FOOTPRINT
nc	SH5-6	402
nc	SH1-2	402
nc	SH2-3	402

TABLE 1. BOM FOR ISL97671A/ISL97672A EVALUATION BOARD (Continued)

Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that the Application Note or Technical Brief is current before proceeding.

For information regarding Intersil Corporation and its products, see www.intersil.com