RENESAS System Interconnect
Software Programming Interface

By Steve Shih and Alex Chan
Notes y 9

Overview

This document describes the programming interface of the system interconnect software components.
Specifically, it describes the programming interfaces between the system interconnect software compo-
nents of the Intel 1A32 Root Processor (RP) and the Endpoint Processor (EP) running Linux. EP can be
IOP80333 or x86 CPU with non-transparent bridging (NTB) enabled in IDT's 89HPES24NT3 PCle® switch.
Please refer to the PCI Express System Interconnect Software Architecture document (see below) for a
description of the system interconnect system architecture and components.

References
89HPES24NT3 User Manual
PCI Express Base Specification Revision 1.0a
Linux source code (linux-2.6.x)
pci.txt under Linux source tree

Enabling Multi-peer Support with a Standard-Based PCI Express Multi-ported Switch. Kwok Kong,
IDT White Paper.

PCI Express System Interconnect Software Architecture. Kwok Kong, IDT Application Note 531.

Development Environment

Iintel IOP80333 Endpoint Processor

All software development of the system interconnect system is done on Fedora Core 6 i386 systems.
The testing was done on an Intel Lindenhurst system with multiple Intel IOP80333 Customer Reference
boards as the root processor and the endpoint processors, respectively. The root processor runs Fedora
Core 6 i386 Linux distribution. The endpoint processors run RedBoot 2.1 and Linux kernel 2.6.14.3.

i386 Linux kemel 2.6.18.1 is built with:
- GCC4.1.1
— GNU Binutils 2.17.50.0.3
IOP80333 RedBoot 2.1 is built with:
- GCC33.1
— GNU Binutils 2.14.90
|OP80333 Linux kernel 2.6.14.3 i built with:
- GCC345
~ GNU Binutils 2.16.1
%86 CPU with NTB

All software development of the system interconnect system is done on Fedora Core 6 i386 systems.

The testing was done on an MSI K8N NEO4 motherboard with AMD Athlon64 3800 CPU as the root
processor and the endpoint processors. Both root processor and endpoint processor run Fedora Core 6
i386 Linux distribution.

1 of 26 June 26, 2008

© 2019 Renesas Electronics Corporation

IDT System Interconnect Software Programming Interface

1386 Linux kernel 2.6.18.1 is built with:
-GCC4.1.1
- GNU Binutils 2.17.50.0.3

Notes

Source Directory Structure

All system interconnect system software source files are in the mp directory with the following subdirec-
tories:

include: contains the public header files

function: contains all the function service source and header files
There is a subdirectory for each of the function service, such as ether for the virtual Ethernet
function service.

message: contains the message frame service source and header files

device: contains the device specific source and header files

There are 2 subdirectories, called ep and rp, under the device directory. All software modules installed in
RP are included under the rp subdirectory. Currently, IDT only supports x86-based RP. Under the ep subdi-
rectory, all software modules installed in the IOP80333 EP are included in the iop333 directory, and all soft-
ware modules installed in the x86/NTB EP are included in the i386ntb directory

Local Processor

Address Conversion
The following functions are provided by the local processor for converting address types:

mp_in_phys_to_pci: converts inbound physical address to PCI address
u64 mp_in_phys_to_pci(unsigned long address);
Parameters:
address: the inbound physical address
Returns: the inbound PCI address

- mp_in_pci_to_phys: converts inbound PCl address to physical address
unsigned long mp_in_pci_to_phys(u64 address);
Parameters:
address: the inbound PCI address
Returns: the inbound physical address

— mp_in_virt_to_pci: converts inbound virtual address to PCl address
u64 mp_in_virt_to_pci(void* address);
Parameters:
address: the inbound virtual address
Returns: the inbound PCI address

— mp_in_pci_to_virt: converts inbound PCI address to virtual address
void* mp_in_pci_to_virt(u64 address);
Parameters:
address: the inbound PCl address
Returns: the inbound virtual address

- mp_out_phys_to_pci: converts outbound physical address to PCI address
u64 mp_out_phys_to_pci(unsigned long address);

2 of 26 June 26, 2008

© 2019 Renesas Electronics Corporation

IDT System Interconnect Software Programming Interface

Notes

Parameters:
address: the outbound physical address
Returns: the outbound PCI address

— mp_out_pci_to_phys: converts outbound PCl address to physical address
unsigned long mp_out_pci_to_phys(u64 address);
Parameters:
address: the outbound PCl address
Returns: the outbound physical address

- mp_out_virt_to_pci: converts outbound virtual address to PCI address
u64 mp_out_virt_to_pci(void* address);
Parameters:
address: the outbound virtual address
Returns: the outbound PCl address

— mp_out_pci_to_virt: converts outbound PCI address to virtual address
void* mp_out_pci_to_virt(u64 address);
Parameters:
address: the outbound PCI address
Returns: the outbound virtual address

DMA Transfer

The local processor also provides the following DMA abstractions:
J
* DMA transfer direction
Vi
typedef enum MP_DMA_DIR {
MP_DMA_DIR_L2L,
MP_DMA_DIR_L2P,
MP_DMA_DIR_P2L,
MP_DMA_DIR_P2P
} MP_DMA_DIR;

« MP_DMA_DIR_L2L: specifies local address space to local address space transfer
+ MP_DMA_DIR_L2P: specifies local address space to PCI address space transfer
+ MP_DMA_DIR_P2L: specifies PCI address space to local address space transfer
+ MP_DMA_DIR_P2P: specifies PCI address space to PCl address space transfer

Ve
* DMA fragment
Y
typedef struct mp_dma_frag {
u64 dst;
u64 src;
u32 len;
} mp_dma_frag;

+ dst: specifies the destination address
+ src: specifies the source address

3 of 26 June 26, 2008

© 2019 Renesas Electronics Corporation

IDT System Interconnect Software Programming Interface

Notes

* len: specifies the length of the data fragment

Ve
* DMA termination callback function
* status:
* zero if DMA transfer completed without error

* non-zero if DMA transfer terminated with error
i

typedef void (*mp_dma_cb)(int status, void* cb_data);

« mp_dma_cb: specifies DMA callback function prototype

- mp_dma_start: start a DMA transfer

int mp_dma_start(MP_DMA_DIR dir, u32 num_frags, mp_dma_frag* frags, mp_dma_cb cb,
void* cb_data, u32 virt_base, u32 phys_base);

Parameters:
dir: specifies the DMA transfer type
num_frags: specifies the number of data fragments for the DMA transfer
frags: array of mp_dma_frag specifies the DMA fragments
cb: specifies the DMA callback function when done
cb_data: specifies the parameter to be passed to the DMA callback function
virt_base: virtual address base of DMA destination
phys_base: physical address base of DMA destination

Returns: zero for success and non-zero for errors

Note that a specific local processor may not support all the DMA transfer types defined above.

Peer Data Structure

Each peer in the system interconnect system is represented by the mp_peer data structure defined
below:

#define MP_PEER_ID(b,d,f) ((((b) &0xff)<<8) | (((c)&0x1f)<<3) | ((f)&0x7)
#define MP_PEER_SELFO0 x80000000 /* self peer ID ¥/

#define MP_PEER_RP 0 /*the RP peer ID ¥/

#define MP_PEER_BCAST ~0 /*broadcast peer ID */

Ve
* statistics data structure
i

typedef struct mp_stats {

u64 tx_frames;
ub4 tx_bytes;

4 of 26 June 26, 2008

© 2019 Renesas Electronics Corporation

IDT System Interconnect Software Programming Interface

u64 tx_errors;

u64 rx_frames;

ub4 rx_bytes;

u64 rx_errors;
} mp_stats;

Notes

+ tx_frames: number of data frames transmitted
+ X_bytes: number of bytes transmitted

+ tx_errors: number of transmit errors

+ rx_frames: number of data frames received

+ rx_bytes: number of bytes received

* rx_errors: number of receive errors

J
* definition of peer data structure
i

typedef struct mp_peer {
struct list_head list;
atomic_t ref;
void* trans;
u32 type;
u32id;
u32 data_len;
wait_queue_head_t statsq;
int status;
mp_stats stats;
struct kobject kobyj;
struct work_struct work_kobj_add;
struct work_struct work_kobj_del;
struct work_struct work_peer;
int index;
int transportLayerUnloading;

} mp_peer;

+ list: for linking the mp_peer

+ ref: for reference counting the mp_peer

+ trans: points to the transport service associated with this peer
+ type: the transport service ID

* id: the peer ID

+ data_len: length of the peer specific data embedded in this peer
+ statsq: statistics request wait queue

+ status: statistics request wait status

+ stats: statistics

+ kobj: kobject for the sysfs entries

+work_kobj: work queue for sysfs kobject adding
+work_kobj: work queue for sysfs kobject deleting

+ work_peer: work queue for peer notification processing

* index: Peer index, 0 for the RP

5 of 26 June 26, 2008

© 2019 Renesas Electronics Corporation

IDT System Interconnect Software Programming Interface

Notes

+ transportLayerUnloading: Set by the transport layer when it unloads. When set on the RP it
prevents removal messages being sent to the other peers.

In addition to the fields explicitly defined above, each mp_peer embeds the peer specific private data
defined and used by its corresponding transport service at the end of the mp_peer data structure.

The following functions are provided to facilitate the use of the mp_peer data structure:

- mp_peer_alloc: creates a new mp_peer

mp_peer* mp_peer_alloc(void* trans, u32 type, u32 id, u32 data_len, u32 priv_len);

Parameters:
trans: points to the transport service associated with this peer
type: the transport service ID
id: the peer ID
data_len: specifies the length of the peer specific data to be embedded
priv_len: specifies the length of the private data to be embedded

Returns: pointer to the newly created mp_peer

- mp_peer_free: releases a mp_peer
void mp_peer_free(mp_peer* peer);

Parameters:
peer: points to the mp_peer to be released

- mp_peer_inc: increments the mp_peer reference count
mp_peer* mp_peer_inc(mp_peer* peer);

Parameters:
peer: points to the mp_peer to increment the reference count

Returns: pointer to the mp_peer if reference count incremented or NULL if failed

- mp_peer_dec: decrements the mp_peer reference count and release mp_peer if reaches zero
void mp_peer_dec(mp_peer* peer);

Parameters:

6 of 26 June 26, 2008

© 2019 Renesas Electronics Corporation

IDT System Interconnect Software Programming Interface

Notes peer: points to the mp_peer to decrement the reference count

— mp_peer_data: retrieves the peer specific data embedded in the mp_peer
void* mp_peer_data(mp_peer* peer);

Parameters:
peer: points to the mp_peer

Returns: pointer to the peer specific data

— mp_peer_priv: retrieves the private data embedded in the mp_peer
void* mp_peer_priv(mp_peer* peer);

Parameters:
peer: points to the mp_peer

Returns: pointer to the private data

Frame Data Structure

The unit of data exchange between the peer processors is represented by the mp_frame data structure.
Each mp_frame is composed of one or more data fragments and the headers added by the system inter-
connect system architecture layers as it is passed down to be transferred out of the source system. When
the mp_frame is received and passed up on the destination system, the headers are extracted and
removed from the mp_frame by the corresponding system interconnect system architecture layers. For
broadcast traffic, the mp_frame may be duplicated by the message frame service layer and passed down to
one or more transport services.

mp_frag
Each data fragment of the mp_frame is represented by a mp_frag data structure defined below:

Ve
* definition of data fragment
i

typedef struct mp_frag {

u8* buf;
u32 len;

} mp_frag;

+ buf: points to the buffer holding the data fragment
+ len: indicates the length of the data fragment

7 of 26 June 26, 2008

© 2019 Renesas Electronics Corporation

IDT System Interconnect Software Programming Interface

Notes mp_frame
The mp_frame data structure is defined below:

Ve
* definition of data frame
i
typedef struct mp_frame {
struct list_head list;
atomic_t ref:
u32 frags;
u32 func_len;
void (*ds)(struct mp_frame* frame);
int status;
u32 flags;
struct mp_frame* from;
mp_peer* dst;
mp_peer* src;
void™* func_priv;
/* followed by
array of mp_frag
transport layer header
message header
function header
private data */
} mp_frame;

- list: for queuing the mp_frame
- ref: for reference counting the mp_frame
- frags: indicates the number of data fragments in the mp_frame
- func_len: indicates the length of the function service header
- ds: destructor to be called when ref reaches zero
— status: the status of the mp_frame to be passed to the destructor
- flags: indicate special case handling, such as MP_FRAME_PRIORITY for high priority handling
- from: points to the original frame where this mp_frame is cloned from
— dst: set to the destination mp_peer by the message frame service
- src: set to the source mp_peer by the message frame service
P
* data frame destructor
7/
typedef void (*mp_frame_ds)(mp_frame* frame);

« mp_frame_ds: specifies the mp_frame destructor function prototype

8 of 26 June 26, 2008

© 2019 Renesas Electronics Corporation

IDT System Interconnect Software Programming Interface

Notes

In addition to the fields explicitly defined above, each mp_frame embeds an array of mp_frag, the
message frame service header, the function service header, and the private data at the end of the
mp_frame data structure.

The following functions are provided to facilitate the use of the mp_frame data structure:

- mp_frame_alloc: creates a new mp_frame
mp_frame* mp_frame_alloc(u32 frags, u32 func_len, u32 priv_len, mp_frame_ds ds);

Parameters:
frags: specifies the number of data fragments to be embedded
func_len: specifies the length of the function service header to be embedded
priv_len: specifies the length of the private data to be embedded
ds: the destructor to be called

Returns: pointer to the newly created mp_frame

- mp_frame_clone: clones an existing mp_frame
mp_frame* mp_frame_clone(mp_frame* frame, u32 priv_len, mp_frame_ds ds);

Parameters:
frame: points to the existing mp_frame to be cloned
priv_len: specifies the length of the private data to be embedded
ds: the destructor to be called

Returns: pointer to the newly cloned mp_frame

- mp_frame_free: releases a mp_frame
void mp_frame_free(mp_frame* frame);

Parameters:
frame: points to the mp_frame to be released

- mp_frame_inc: increments the mp_frame reference count
mp_frame* mp_frame_inc(mp_frame* frame);

Parameters:
frame: points to the mp_frame to increment the reference count

9 of 26 June 26, 2008

© 2019 Renesas Electronics Corporation

IDT System Interconnect Software Programming Interface

Notes
Returns: pointer to the mp_frame if reference count incremented or NULL if failed

- mp_frame_dec: decrements the mp_frame reference count and release mp_frame if reaches zero
void mp_frame_dec(mp_frame* frame);

Parameters:
frame: points to the mp_frame to decrement the reference count

- mp_frame_dst_set: get a reference of the peer specified and set the destination for the mp_frame
to it

mp_peer* mp_frame_dst_set(mp_frame* frame, mp_peer* peer);

Parameters:
frame: points to the mp_frame
peer: points to the mp_peer

Returns: pointer to the mp_peer if success or NULL if failed

- mp_frame_src_set: get a reference of the peer specified and set the source for the mp_frame to it
mp_peer* mp_frame_src_set(mp_frame* frame, mp_peer* peer);

Parameters:
frame: points to the mp_frame
peer: points to the mp_peer

Returns: pointer to the mp_peer if success or NULL if failed

- mp_frame_frag: retrieves the next mp_frag embedded in the mp_frame or the first mp_frag if frag
parameter is NULL

mp_frag™ mp_frame_frag(mp_frame* frame, mp_frag* frag);

Parameters:
frame: points to the mp_frame
frag: points to a mp_frag embedded

Returns: pointer to the next mp_frag

- mp_frame_msg: retrieves the message frame service header embedded in the mp_frame

10 of 26 June 26, 2008

© 2019 Renesas Electronics Corporation

IDT System Interconnect Software Programming Interface

Notes ,
void* mp_frame_msg(mp_frame* frame);

Parameters:
frame: points to the mp_frame

Returns: pointer to the message frame service header

- mp_frame_func: retrieves the function service header embedded in the mp_frame
void* mp_frame_func(mp_frame* frame);

Parameters:
frame: points to the mp_frame

Returns: pointer to the function service header

— mp_frame_priv: retrieves the private data embedded in the mp_frame
void* mp_frame_priv(mp_frame* frame);

Parameters:
frame: points to the mp_frame

Returns: pointer to the private data

- mp_frame_msg_len: retrieves the length of the message frame service header
u32 mp_frame_msg_len(void);

Returns: the length of the message frame service header

- mp_frame_func_len: retrieves the length of the function service header embedded in the
mp_frame

u32 mp_frame_func_len(mp_frame* frame);

Parameters:
frame: points to the mp_frame

Returns: the length of the function service header

11 of 26 June 26, 2008

© 2019 Renesas Electronics Corporation

IDT System Interconnect Software Programming Interface

Notes

- mp_frame_hdr_len: retrieves the length of the message frame and function header embedded in
the mp_frame

u32 mp_frame_hdr_len(mp_frame* frame);

Parameters:
frame: points to the mp_frame

Returns: the length of the message frame and function headers

- mp_frame_data_len: retrieves the length of the data embedded in the mp_frame
u32 mp_frame_data_len(mp_frame* frame);

Parameters:
frame: points to the mp_frame

Returns: the length of the data

- mp_frame_len: retrieves the length of the data and headers embedded in the mp_frame
u32 mp_frame_len(mp_frame* frame);

Parameters:
frame: points to the mp_frame

Returns: the length of the data and headers

Transport Service

Each transport service is represented by the mp_trans data structure defined below:

e
* multi peer transport service
Y
typedef struct mp_trans {
struct list_head list;
atomic_t ref;
u32id;
mp_stats stats;
mp_peer* (*peer_add)(u32 peer, void* data);
void (*peer_del)(mp_peer* peer);
int (*frame_send)(mp_frame* frame);

12 of 26 June 26, 2008

© 2019 Renesas Electronics Corporation

IDT System Interconnect Software Programming Interface

Notes

int (*frame_sync)(mp_frame* frame, u32 frags, mp_frag™ buffers, mp_dma_cb cb,
void* cb_data);
} mp_trans;

+ list: for linking the mp_trans

« ref: for reference counting the mp_trans
+ id: identifies the transport service

+ stats: statistics

* peer_add: notifies the transport service to add a new peer of its type

mp_peer* (*peer_add)(u32 peer, void* data);

Parameters:
peer: the peer ID
data: points to the peer specific data associated with the peer

Returns: pointer to the newly added mp_peer

+ peer_del: notifies the transport service to remove a peer of its type

void (*peer_del)(mp_peer* peer);

Parameters:
peer: points to the mp_peer

+ frame_send: to send the mp_frame to a peer

int (*frame_send)(mp_frame* frame);

Parameters:
frame: points to the mp_frame

Returns: zero for success and non-zero for errors

+ frame_sync: to synchronize the data fragments in the mp_frame

int (*frame_sync)(mp_frame* frame, u32 frags, mp_frag* buffers, mp_dma_cb cb,
void* cb_data);

Parameters:
frame: points to the mp_frame for synchronizing the data from
frags: specifies the number of elements in the buffers array
buffers: points to an array of mp_frag for synchronizing the data to
cb: specifies the DMA callback function when done

13 of 26 June 26, 2008

© 2019 Renesas Electronics Corporation

IDT System Interconnect Software Programming Interface

Notes cb_data: specifies the parameter to be passed to the DMA callback

Returns: zero for success and non-zero for errors

In addition to the fields explicitly defined above, the mp_trans may embed a transport service specific
private data at the end of the mp_trans structure.

The following functions are provided to facilitate the use of the mp_trans data structure:

- mp_trans_alloc: creates a new mp_trans
mp_trans* mp_trans_alloc(u32 id, u32 priv_len);

Parameters:
id: the transport service ID
priv_len: specifies the length of the private data to be embedded

Returns: pointer to the newly created mp_trans

- mp_trans_free: releases a mp_trans
void mp_trans_free(mp_trans* trans);

Parameters:
frans: points to the mp_trans to be released

- mp_trans_inc: increments the mp_trans reference count
mp_trans* mp_trans_inc(mp_trans* trans);

Parameters:
trans: points to the mp_trans to increment the reference count

Returns: pointer to the mp_trans if reference count incremented or NULL if failed

- mp_trans_dec: decrements the mp_trans reference count and release mp_trans if reaches zero
void mp_trans_dec(mp_trans* trans);

Parameters:
trans: points to the mp_trans to decrement the reference count

14 of 26 June 26, 2008

© 2019 Renesas Electronics Corporation

IDT System Interconnect Software Programming Interface

Notes
— mp_trans_priv: retrieves the private data embedded in the mp_trans

void* mp_trans_priv(mp_trans* trans);

Parameters:
trans: points to the mp_trans

Returns: pointer to the private data

Function Service
Each function service is represented by the mp_func data structure defined below:

Ve
* multi peer function service
i
typedef struct mp_func {
struct list_head list;
atomic_t ref;
u32id;
void (*peer_add)(mp_peer* peer);
void (*peer_del)(mp_peer* peer);
int (*frame_receive)(mp_frame* frame);
} mp_func;

+ list: for linking the mp_func
« ref: for reference counting the mp_func
+ id: identifies the function service

+ peer_add: notifies the function service of a new peer
void (*peer_add)(mp_peer* peer);

Parameters:
peer: pointers to mp_peer

+ peer_del: notifies the function service of a peer removal
void (*peer_del)(mp_peer* peer);

Parameters:
peer: points to the mp_peer

+ frame_receive: to receive the mp_frame

15 of 26 June 26, 2008

© 2019 Renesas Electronics Corporation

IDT System Interconnect Software Programming Interface

Notes
int (*frame_receive)(mp_frame* frame);

Parameters:
frame: points to the mp_frame

Returns: zero for success and non-zero for errors

In addition to the fields explicitly defined above, the mp_func may embed a function service specific
private data at the end of the mp_func structure.

The following functions are provided to facilitate the use of the mp_func data structure:
« mp_func_alloc: creates a new mp_func
mp_func* mp_func_alloc(u32 id, u32 priv_len);

Parameters:
id: the function service ID
priv_len: specifies the length of the private data to be embedded

Returns: pointer to the newly created mp_func
+ mp_func_free: releases a mp_func
void mp_func_free(mp_func* func);

Parameters:
func: points to the mp_func to be released

« mp_func_inc: increments the mp_func reference count
mp_func* mp_func_inc(mp_func* func);

Parameters:
func: points to the mp_func to increment the reference count

Returns: pointer to the mp_func if reference count incremented or NULL if failed

« mp_func_dec: decrements the mp_func reference count and release mp_func if reaches
zero

void mp_func_dec(mp_func* func);

16 of 26 June 26, 2008

© 2019 Renesas Electronics Corporation

IDT System Interconnect Software Programming Interface

Notes

Parameters:
func: points to the mp_func to decrement the reference count

« mp_func_priv: retrieves the private data embedded in the mp_func
void* mp_func_priv(mp_func* func);

Parameters:
func: points to the mp_func

Returns: pointer to the private data

Message Frame Service

Message Frame Header

The message frame service prepends its header to each mp_frame sent and extracts its header from
each mp_frame received. The message frame service header is defined as follows:

/¥
* multi peer message frame service header
Vi

typedef struct mp_msg {

u32 dst;
u32 src;
u32 len;
u32 func;

} mp_msg;
+ dst: the destination peer ID
+ src: the source peer ID

« len: the length of the function service header and data
+ func: the function service ID

The message frame header data structure above is in little-endian format.

Transport Service Management
Transport service management provides the following functions:

- mp_trans_register: to register transport service
int mp_trans_register(mp_trans* trans);

Parameters:
trans: points to the mp_trans

17 of 26 June 26, 2008

© 2019 Renesas Electronics Corporation

IDT System Interconnect Software Programming Interface

Notes
Returns: zero for success and non-zero for errors

- mp_trans_unregister: to unregister transport service
int mp_trans_unregister(mp_trans* trans);

Parameters:
trans: points to the mp_trans

Returns: zero for success and non-zero for errors

- mp_trans_next: retrieve the next transport service or the first one if trans parameter is NULL
mp_trans* mp_trans_next(mp_trans* trans);

Parameters:
trans: points to the mp_trans

Returns: pointer to the mp_trans

- mp_trans_get: retrieve the transport service by ID
mp_trans* mp_trans_get(u32 id);

Parameters:
id: the transport service ID

Returns: pointer to the mp_trans

Function Service Management
Function service management provides the following functions:

- mp_func_register: to register function service
int mp_func_register(mp_func* func);

Parameters:
func: points to the mp_func

Returns: zero for success and non-zero for errors

18 of 26 June 26, 2008

© 2019 Renesas Electronics Corporation

IDT System Interconnect Software Programming Interface

Notes
- mp_func_unregister: to unregister function service

int mp_func_unregister(mp_func* func);

Parameters:
func: points to the mp_func

Returns: zero for success and non-zero for errors

— mp_func_next: retrieve the next function service or the first one if func parameter is NULL
mp_func* mp_func_next(mp_func* func);

Parameters:
func: points to the mp_func

Returns: pointer to the mp_func

- mp_func_get: retrieve the function service by ID
mp_func* mp_func_get(u32 id);

Parameters:
id: the function service ID

Returns: pointer to the mp_func

Peer Management
Peer management provides the following functions:

— mp_peer_add: to add a new peer
int mp_peer_add(mp_peer* peer);

Parameters:
peer: points to the mp_peer

Returns: zero for success and non-zero for errors

— mp_peer_del: to remove an existing peer

19 of 26 June 26, 2008

© 2019 Renesas Electronics Corporation

IDT System Interconnect Software Programming Interface

Notes
int mp_peer_del(mp_peer* peer);

Parameters:
peer: points to the mp_peer

Returns: zero for success and non-zero for errors

— mp_peer_next: retrieve the next peer or the first one if peer parameter is NULL
mp_peer* mp_peer_next(mp_peer* peer);

Parameters:
peer: points to the mp_peer

Returns: pointer to the mp_peer

— mp_peer_get: retrieve a peer by ID
mp_peer* mp_peer_get(u32 id);

Parameters:
id: the peer ID

Returns: pointer to the mp_peer

- mp_self_add: adds self
int mp_self_add(mp_peer* self);

Parameters:
self: points to the mp_peer

Returns: zero for success and non-zero for failure

- mp_self_del: removes self
int mp_self_del(mp_peer* self);

Parameters:
self: points to the mp_peer

20 of 26 June 26, 2008

© 2019 Renesas Electronics Corporation

IDT System Interconnect Software Programming Interface

Returns: zero for success and non-zero for failure
Notes

— mp_self_get: retrieves the mp_peer data structure for itself
mp_peer* mp_self_get(void);

Returns: pointer to the mp_peer for itself

Frame Transfer
Frame transfer provides the following functions:

- mp_frame_send: to send a frame
int mp_frame_send(mp_frame* frame, u32 dst, u32 func);

Parameters:
Frame: points to the mp_frame to be sent
dst: specifies the destination peer ID
func: specifies the function ID

Returns: zero for success and non-zero for errors

- mp_frame_receive: to receive a frame
int mp_frame_receive(mp_frame* frame);

Parameters:
frame: points to the mp_frame received

Returns: zero for success and non-zero for errors

- mp_frame_sync: to synchronize data in a frame

int mp_frame_sync(mp_frame* frame, u32 frags, mp_frag* buffers, mp_dma_cb cb,
void* cb_data);

Parameters:
frame: points to the mp_frame from which data is to be transferred
frags: specifies the number of elements in the buffer array
buffers: points to an array of mp_frag to which data is to be transferred
cb: specified the DMA callback function when done
cb_data: specifies the parameter to be passed to the DMA callback function

21 of 26 June 26, 2008

© 2019 Renesas Electronics Corporation

IDT System Interconnect Software Programming Interface

Notes

Returns: zero for success and non-zero for errors

Endpoint-Specific Transport Service
The transport service defines the direction flags and data fragment format below. They are common to
the currently supported endpoints.
/*
* Transport direction lags
Y/
#define MP_DMA_DIR_MASK 0x00000003
#define MP_DMA_DIR_L2L 0x00000000
#define MP_DMA_DIR_L2P 0x00000001
#define MP_DMA_DIR_P2L 0x00000002

« MP_DMA_DIR_MASK: mask for transfer direction flags

« MP_DMA_DIR_L2L: specifies local address space to local address space transfer
« MP_DMA_DIR_L2P: specifies local address space to PCl address space transfer
« MP_DMA_DIR_P2L: specifies PCI address space to local address space transfer

Ve
* Transport data fragment
Y/
typedef struct mp_frag {
us* buf:
u32 len;
} mp_frag;

+ buf: pointer to the data fragment
+ len: specifies the length of the data fragment

1O0P80333 Endpoint

Each Intel IOP80333 message block contains a IOP80333 header defined below:
/*
* |OP 80333 header
Y/
typedef struct mp_iop_hdr {
u32 next;
u32 hdr_len;
u32 len;
u32 reserved,
} mp_iop_hdr;

* next: points to the address of the next message block

+ hdr_len: specifies the total length of the headers in this message block
+ len: specifies the length of the data in this message block

+ reserved: not used.

22 of 26 June 26, 2008

© 2019 Renesas Electronics Corporation

IDT System Interconnect Software Programming Interface

Notes

The Intel IOP80333 transport service associates each IOP80333 peer with a private data structure

defined below:
/¥
*I0OP 80333 peer
i
typedef struct iop_peer {
u64 base;

}iop_peer;

+ base: specifies the base address of the peer in the PCI address space

All the IOP80333 transport service data structures are in little-endian format.

x86/NTB Endpoint

Each message block contains an x86/NTB header defined below:
/¥
NTB header
Vi
typedef struct mp_x86_hdr {
u32 buffer_len;
u32 hdr_len;
u32 len;
u32 reserved;
} mp_x86_ hdr;

+ buffer_len: specifies the total length of the transport buffer in bytes

+ hdr_len: specifies the total length of the headers in this message block
+ len: specifies the length of the data in this message block

+ reserved: not used.

The transport service associates each x86/NTB peer with a private data structure defined below:
e
* x86/NTB peer
i
typedef struct __mp_x86_peer {
u32 inb_base;
u32 reg_base;
u32 peer_index
} mp_x86_peer;

+ inb_base: specifies the base address of the peer in the PCI address space
+ reg_base: specifies the base register address of the peer in the PCI address space
+ peer_index: specifies the peer index assigned by root complex.

23 of 26 June 26, 2008

© 2019 Renesas Electronics Corporation

IDT System Interconnect Software Programming Interface

Notes All x86/NTB transport service data structures are in little-endian format.

Example of Transferring a mp_frame

For example, if a function service wants to keep track of the number of success and fail transfers to the
RP and all other EPs, it embeds a pointer to its function specific statistics data structure in the mp_frame
and defines the mp_frame destructor as follows:

typedef struct func_stats {
u32 success;

u32 fail;

} func_stats;

func_stats my_stats[2]; /* index 0 for RP and 1 for EPs */

void func_frame_ds(mp_frame* frame)

{
func_stats* stat = *(func_stats**)mp_frame_priv(frame);
mp_frag* frag = mp_frame_frag(frame, NULL);

e
* free data fragment buffers
Vi
while (frag) {
kfree(frag->buf);
frag = mp_frame_frag(frame, frag);

e
* update statistics
i
if (frame->status) {
stat->fail++;
Jelse {
Stat->success++;

The procedure to construct a 2 data fragment frame to the RP is as follows:

typedef struct func_hdr {
u32anything;
} func_hdr;

mp_frame* frame = mp_frame_alloc(2, /* 2 data fragments */
sizeof(func_hdr), /* length of the function header */

24 of 26 June 26, 2008

© 2019 Renesas Electronics Corporation

IDT System Interconnect Software Programming Interface

sizeof(func_stats™), /* length of the private data */
func_frame_ds); /* destructor to be called */

Notes

/* setup the 1st data fragment */
frag = mp_frame_frag(frame, NULL);
frag->buf = buffer1;

frag->len = buffer1_len;

/* setup the 2nd data fragment */
frag = mp_frame_frag(frame, frag);
frag->buf = buffer2;

frag->len = buffer2_len;

/* setup the function header */
func_hdr* hdr = mp_frame_hdr(frame);
hdr->anything = something;

/* setup private data */
func_stats** stats = mp_frame_priv(frame);
stats = &my_stat[0]; / index O for RP */

Once the construction of the mp_frame is completed, it can be sent by calling mp_frame_send. The
code fragment for the mp_frame_send function is shown below:

int mp_frame_send(mp_frame* frame, u32 dst, u32 func)
{

int ret;

mp_msg* msg;

mp_trans* trans;

/* build the message frame service header */

msg = mp_frame_msg(frame);

msg->dst = dst;

msg->src = my_id;

msg->len = mp_frame_func_len(frame) + mp_frame_data_len(frame);
msg->func = func;

/* set the source and destination peer */
mp_frame_src_set(frame, mp_self_get());
mp_frame_dst_set(frame, mp_peer_get(dst));

/* pass the frame to the transport service */
trans = frame->dst->trans;

ret = trans->frame_send(frame);

return ret;

25 of 26 June 26, 2008

© 2019 Renesas Electronics Corporation

IDT System Interconnect Software Programming Interface

Notes
Once the frame is sent by the transport service, the transport service will call mp_frame_free, which will
call the frame->ds callback function when the frame->ref reaches zero.

The transport service on the RP will detect the arrival of the new frame and construct a new mp_frame
similar to what the function service did above. It copies the whole message frame header and function
service header as raw data directly into the space embedded in the mp_frame structure. After the construc-
tion of the mp_frame is completed, the transport service calls mp_frame_receive. The code fragment for the
mp_frame_receive function is shown below:

int mp_frame_receive(mp_frame* frame)
{

int ret;

mp_msg* msg;

mp_func* func;

/* get the message frame service header */
msg = mp_frame_msg(frame);

/* set the source and destination peer */
mp_frame_src_set(frame, mp_peer_get(msg->src));
mp_frame_dst_set(frame, mp_peer_get(msg->dst));

/* pass the frame to the function service */
func = mp_func_get(msg->func);
ret = func->frame_receive(frame);

return ret;

The function service would use mp_frame_frag function to determine the size of the buffer required, allo-
cate one or more buffers, construct an array of mp_frag to describe these destination buffers, and call
mp_frame_sync to copy data associated with the mp_frame into the newly allocated destination buffers.
After mp_frame_sync returns, it should call mp_frame_free to free the mp_frame and let the frame
destructor function do the cleanup.

26 of 26 June 26, 2008

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (‘RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters Contact Information

TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most
Koto-ku, Tokyo 135-0061, Japan up-to-date version of a document, or your nearest sales
www.renesas.com office, please visit www.renesas.com/contact-us/.
Trademarks

Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

© 2026 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

	Overview
	References
	Development Environment
	Intel IOP80333 Endpoint Processor
	x86 CPU with NTB

	Source Directory Structure
	Local Processor
	Address Conversion
	DMA Transfer

	Peer Data Structure
	Frame Data Structure
	mp_frag
	mp_frame

	Transport Service
	Function Service
	Message Frame Service
	Message Frame Header
	Transport Service Management
	Function Service Management
	Peer Management
	Frame Transfer

	Endpoint-Specific Transport Service
	IOP80333 Endpoint
	x86/NTB Endpoint

	Example of Transferring a mp_frame

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

