User Manual

Industrial Ethernet PHY

Dual PHY ASSP

uPD60620 uPD60620A uPD60621A

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Technology Corp. website (http://www.renesas.com).

Renesas Electronics www.renesas.com R19UH0083ED0100 March 19, 2013

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
- "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti- crime systems; safety equipment; and medical equipment not specifically designed for life support.
- "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems;medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority- owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

R19UH0083ED0100 User Manual

General Precautions in the Handling of ASSP Products

The following usage notes are applicable to all ASSP products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of ASSP Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

The characteristics of ASSP in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

6. Patent for IEEE1588

A number of patents exist for systems related to IEEE1588. Renesas would request that customers ensure they comply with the relevant rights for these patents. Renesas does not accept any responsibility for infringement of any patent rights by the customer.

How to Use This Manual

(1) Purpose and Target Readers

This manual is designed to provide the user with an understanding of the hardware functions and electrical characteristics of the PHY. It is intended for users designing application systems incorporating the PHY. A basic knowledge of electric circuits, logical circuits, and PHYs is necessary in order to use this manual. The manual comprises an overview of the product; descriptions of the PHY, system control functions, peripheral functions, and electrical characteristics; and usage notes.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of the manual for details.

The following documents apply to the Ethernet PHY products . Make sure to refer to the latest versions of these documents. The newest versions of the documents listed may be obtained from the Renesas Electronics Web site.

Document Type	Description	Document Title	Document No.
User's manual for Hardware	Hardware specifications (pin assignments, memory maps, peripheral function specifications, electrical characteristics, timing charts) and operation description. Note: Refer to the application notes for details on using peripheral functions.	User's manual Industrial Ethernet PHY Dual PHY ASSP	This User's manual R19UH0083ED0100
Application Note	Information on using peripheral functions and application examples. Sample programs. Information on writing programs in assembly language and C.	Application Note industrial Ethernet Dual PHY ASSP Layout recommendation and design rule	R19AN0015ED0100
Renesas Technical Update	Product specifications, updates on documents, etc.	Customer Notification Ethernet PHY Operating Precautions	R19TU0004ED0100

(2) Notation of Numbers and Symbols

Abbreviation	Full Form
Register p.n	Register n at PHY address p
Register p.n.b	Bit 'b' in register address n at PHY address p
Register PHY.n	PHY stands for PHY address "0" or "1" so this would mean register n in any of the two PHYs, can by PHY address 0 or PHY address 1.

(3) Register Notation

Abbreviation	Full Form
RW	Readable or writeable
SC	Self Clearing
RO	Read Only
WO	Write Only
LH	Latch High, when the device sets the register it stays high until actively written to 0 even if the condition that set it disappears
LL	Latch Low, the register stays low until actively written to 1
WC	Cleared by hardware after writing
RC	Cleared after reading by hardware
NASR	Not affected by software reset

(4) List of Abbreviations and Acronyms

Abbreviation	Full Form
ACIA	Asynchronous Communication Interface Adapter
bps	bits per second
CRC	Cyclic Redundancy Check
DMA	Direct Memory Access
DMAC	Direct Memory Access Controller
GSM	Global System for Mobile Communications
Hi-Z	High Impedance
IEBus	Inter Equipment Bus
I/O	Input/Output
IrDA	Infrared Data Association
LSB	Least Significant Bit
MSB	Most Significant Bit
NC	Non-Connect
PLL	Phase Locked Loop
PU	Pull Up
PD	Pull Down
PWM	Pulse Width Modulation
SFR	Special Function Register
SIM	Subscriber Identity Module
UART	Universal Asynchronous Receiver/Transmitter
PTP	Precision Timer Protocol
VCO	Voltage Controlled Oscillator

All trademarks and registered trademarks are the property of their respective owners.

Table of Contents

		General Description	12
1.1	Ove	erview of product features	12
1.2	Spe	ecial product features	13
1.3	Apr	blications	13
		Pin Functions	
2.1	Pin	-out Information	14
	2.1.1	Pin Layout	
	2.1.2	Port Pins	15
		System Diagram	17
3.1	Dev	<i>v</i> ice block diagram	
0.1	201		
		Global Hardware Description	19
4.1	Reg	jister Access	19
4.2	Ger	neral SMI Control Register 7.31	20
4.3	Pov	ver Control Register 7.30	21
4.4	PH	Y Status Register 7.28	22
4.5		ap option Register 7.27	
4.6		Y LED Status Register 7.24	
4.7		errupt Status register 7.20	
4.8		errupt Mask register 7.21	
4.9		0	
	4.9.1	GPIO_CONFIG_0 Register 7.0	
	4.9.2	GPIO_CONFIG_1 Register 7.1	
	4.9.3	GPIO_CONFIG_2 Register 7.2	
1	4.9.4	GPIO_CONFIG_3 Register 7.3	28
	4.9.5	GPIO_CONFIG_4 Register 7.4	29
4.1	0 S	trap Options	
		PHY	22
- 4	0		
5.1		neral Description	
5.2		ck Generator PLL	
5.3		alog Frontend	
	5.3.1	Adaptive Equalizing	
	5.3.2	100Base TX Receiver ADC	
5.4	•	ital Signal Handling	
	5.4.1	DSP	
	5.4.2 5.4.3	Baseline Wander Correction NRZI/MLT-3 Encoding / Decoding	
	J.4.J		

5.	4.4 Scrambler / Descrambler	34
5.	4.5 5B/4B Encoding / Decoding	34
5.5	Functional Description	36
5.	5.1 Collision detection	36
5.	5.2 Carrier Sense detection	36
5.	5.3 Auto Crossover (MDI/MDI-X)	36
5.	5.4 Auto-Polarity	37
5.	5.5 Auto-Negotiation	37
5.	5.6 Bad Line recognition	40
5.	5.7 Latency	45
5.	5.8 Special Isolation Mode	45
5.	5.9 Repeater / Media converter	46
5.6	PHY Register List	47
5.	6.1 Register PHY.0 - Basic Control	47
5.	6.2 Register PHY.1 - Basic Control	48
5.	6.3 Register PHY.2 - PHY Identifier	48
5.	6.4 Register PHY.3 - PHY Identifier	49
5.	6.5 Register PHY.4 - Auto-Negotiation Advertisement	49
5.	6.6 Register PHY.5 - Auto-Negotiation Link Partner Ability (Base Page	e)50
5.	6.7 Register PHY.5 - Auto-Negotiation Link Partner Ability (Next Page	ə)51
5.	6.8 Register PHY.6 - Auto-Negotiation Expansion	51
5.	6.9 Register PHY.7 - Auto-Negotiation Next Page Transmit	52
5.	6.10 Register PHY.16 - Silicon Revision	52
5.	6.11 Register PHY.17 - Mode Control/Status	53
5.	6.12 Register PHY.18 - Special Modes	
5.	6.13 Register PHY.19 - Elastic Buffer Status register (Loopback Mod	de only)55
5.	6.14 Register PHY.20 – Reserved	
5.	6.15 Register PHY.21 – Reserved	56
5.	6.16 Register PHY.22 – Reserved (TSTREAD2 / TSTWRT)	56
5.	6.17 Register PHY.23 – BER Counter	
5.	6.18 Register PHY.24 – FEQ monitor Register	58
5.	6.19 Register PHY.25 – Diagnosis Control/Status Register	59
5.	6.20 Register PHY.26 – Diagnosis Counter Register	
5.	6.21 Register PHY.27 - Special Control/Status Indications	60
5.	6.22 Register PHY.28 - Reserved	61
5.	6.23 Register PHY.29 - Interrupt Source Flags	61
5.	6.24 Register PHY.30 - Interrupt Enable	61
5.	6.25 Register PHY.31 - PHY Special Control/Status	62
	External Components	63
6.1	Clock	
6.2	Internal Switching Regulator	
٥.	2.1 Power-Up Sequence	63
	Support of IEEE1588 (uPD60621A only)	64
7.1	IEEE1588	
7.2	Register access to PTP	65

7.3 [·]	1588 Clock Control	65
7.3.	1 CLOCK_STATUS Register 6.0	66
7.3.	2 CLOCK_READ Register 6.1	66
7.3.	3 CLOCK_WRITE Register 6.2	66
7.3.	4 CLOCK_OFFSET Register 6.3	67
7.3.	5 CLOCK_DRIFT Register 6.4	68
7.4 I	Frame Handling Unit	68
7.4.	1 One step mode	69
7.4.	2 Two step mode	69
7.4.	3 Transparent Clock Mode	69
7.4.	4 Timestamp Status Register 6.6	71
7.4.	5 Timestamp Config Register 6.7	72
7.4.	1 TIMESTAMP_LINE_EVENT Register 6.8	72
7.4.	2 PTP_CONFIG_n Register 6.9 / 6.13	74
7.4.	3 PHY_DELAY_TX_n Register 6.11 / 6.15	76
7.4.	4 PHY_DELAY_RX_n Register 6.12 / 6.16	76
7.5 I	nput Capture Unit	78
7.5.	1 Input Event Control Register 7.12	79
7.5.	2 Input Capture Pin Control register 7.8	80
7.5.		
7.5.		
7.5.	5 INPUT_EVENT_DATA_READ_WORD Register 7.15	83
7.5.	6 INPUT_EVENT_DATA_BLOCK_READ Register 7.14	84
7.5.		
7.6 I	Pulse Generator Unit	85
7.6.		
7.6.		
7.6.		
7.6.		
	Electrical Characteristics	
8.1	AC Timing	89
8.1.	1 Serial Management Interface (SMI) Timing	89
8.1.	2 Reset Timing	90
8.1.	3 Clock Timing	91
8.1.	4 100Base-TX Timings	92
8.1.	5 10Base-T Timings	94
8.1.	6 RMII 10/100Base-TX Timings	96
8.1.	7 Sequence for turn on	98
8.10	DC Characteristics	99
8.10	0.1 Absolute Maximum Ratings	99
8.10	0.2 Recommended Operating Conditions	100
8.10	D.3 DC Electrical Characteristics	101
8.10	0.4 Differential Parameters on Secondary Side of Transformer	101
8.10	-	

Physical dimensions	103
Revision history	104

General Description

The extended dual-channel 10/100 Ethernet PHYs uPD60620 uPD60620A and uPD60621A are fully integrated Physical layer devices to connect to standard IEEE802.3 Ethernet networks. Today's industrial networking standards often implement daisy-chain or ring structures, in which a dual-channel PHY configuration makes a perfect fit.

These devices specifically focus on low latency and low jitter to support today's industrial Ethernet standards. In addition, the uPD60621A features hardware support for IEEE1588 V2. Renesas Electronics' specific enhanced diagnosis features allow permanent cable quality monitoring for easy maintenance in factory automation applications.

The PHY can connect to unshielded twisted-pair (UTP) cable via external magnetics or to optical fiber via fiber PMD modules. It interfaces to an Ethernet MAC layer through the IEEE 802.3 Standard Media Independent Interface (MII) or reduced MII (RMII) interface.

The uPD60621A also includes support for PTP according to IEEE1588 Version 1 and 2. To support this, an 80-bit clock is included in the PHY. Timestamps with a resolution of as low as 1ns can be taken from received and transmitted frames and events on external pins. The device also supports one-step and two-step timestamp insertion and supports transparent mode.

1.1 Overview of product features

- Two channel PHY
- Fully standard compliant with IEEE 802.3i/802.3u for 100BASE-TX, 100BASE-FX and 10BASE-T
- Integrated PMD sub-layer featuring adaptive equalization and baseline wander correction
- IEEE 802.3u auto-negotiation and parallel detection
- Full and half duplex operation
- Supports automatic polarity detection and correction
- Supports automatic MDI/MDI-X crossover
- Supports IEEE1588 V1 and V2 (uPD60621A only)
- Up to 20 programmable GPIO's for trigger and capture (uPD60621A only)
- 2.5V and 3.3V MAC interface
- Flexible MAC interface: MII and RMII (uPD60620 only)
- Serial management port (MDC/MDIO)
- Supports user programmable interrupts

- Enables software power-up/down and automatic power up/down by energy detection
- Single 3.3 V power supply with optional separated 1.5V
- Operating temperature: $T_{ambient} = -40$ to $+85^{\circ}C$ ($T_{junction}$ from -40 to $+125^{\circ}C$)
- LQFP80 package (7 mm x 7 mm)

1.2 Special product features

- Low latency and low jitter for industrial networking
- Fast link-up option in auto-negotiation
- Fast link-loss detection
- Cable monitoring and error detection
- Permanent cable quality tracking
- Enhanced system testability (such as bypass, loopback and cable length measurement by TDR)
- 1 ns resolution timer for hardware support of IEEE1588 (uPD60621A only)
- Timestamping function to timestamp incoming and outgoing frames and pin activity (uPD60621A only)
- Output pins controllable by internal clock (uPD60621A only)
- 100BASE-TX, 100BASE-FX Repeater (uPD60620A, uPD60621A only)
- 100BASE-TX to 100BASE-FX Media converter (uPD60620A, uPD60621A only)

1.3 Applications

- Industrial networking such as Profinet, Ethernet/IP, CIPsync, ModbusTCP, EtherCAT and SercosIII
- 10/100 Mbps LAN on motherboard (LOM) and network interface card (NIC)
- Switches, routers and repeaters with 10/100 Mbps capable ports
- Mobile base stations
- Test and measurement applications
- Home servers, broadband routers, printers, and IP phones
- Telecom base stations
- Real-time networking

Pin Functions

2.1 Pin-out Information

2.1.1 Pin Layout

2.1.2 Port Pins

Power Supply	Pins	Comment	
REGBVDD	70, 71	3.3V voltage regulator input	
REGBGND	74, 75	GND for voltage regulator	
VDDIO	32, 50, 66	3.3V/2.5V IO power supply	
VDD33ESD	20	3,3V input	
P1AGND, P0AGND	8, 14	Analog GND for PHY	
REGAGND	76	Analog GND for regulator	
REGAVDD	77	Analog 3.3V power supply for regulator	
GNDIO	31	GND for I/O	
GND15	51	GND for digital core	
VDD15	30, 52	1.5V Digital VDD	
VSSAPLL	9	Analog GND for PLL	
VDDAPLL	11	Analog 1.5V power supply for PLL	
VDDACB	10	Analog 3.3V power supply (common for both channels)	
P1VDDMEDIA, P0VDDMEDIA	3, 19	Analog 1.5V power supply for PHY	
REGLX	72, 73	Output voltage regulator, connect to external coil	
REGFB	78	Feedback to voltage regulator, connect to external capacitor	
		Regulator disable,	
REGOFF	80	Hi: Regulator disabled	
		Low: Regulator enabled	

Pin Name	I/O	Function	Alternate Function	Pin Number	Comment
RESETB	Ι	RESET		1	
TEST	Ι	TEST		2	Connect to GND
P1RXN	Ι			4	
P1RXP	Ι			5	
P1TXN	0			6	
P1TXP	0	Media		7	
PORXN	Ι	Interface		18	
PORXP	Ι			17	
P0TXN	0			16	
P0TXP	0			15	
EXTRES		Resistor		12	Connect to GND via 12.4kΩ resistor
ATP		Test		13	Pull Down (5k Ω)
P0COL	0	P0COL	P0SD/GPIO19	21	
P1COL	0	P1COL	P1SD/GPIO18	22	

P1TXD0	I			23	
P1TXD1	Ι			24	
P1TXD2	Ι		GPIO17	25	
P1TXD3	I	PHY1MII	GPIO16	26	
P1TXERR	I		GPIO15	27	
P1TXEN	I			28	
P1TXCLK	0			29	
XCLK0	I	XCLK0	50MHz (RMII)	33	Clock input in external clock mode
XCLK1	0	XCLK1		34	Open in external clock mode
P1RXD0	0			35	
P1RXD1	0			36	
P1RXD2	0]	GPIO14	37	
P1RXD3	0		GPIO13	38	
P1RXDV	0	PHY1MII	P1CRS_DV	39	
P1RXERR	0			40	
P1RXCLK	0			41	
P1CRS	0		GPIO12	42	
P0TXD0	I			43	
P0TXD1	I			44	
P0TXD2	I		GPIO11	45	
P0TXD3	I	PHY0MII	GPIO10	46	
P0TXERR	I		GPIO9	47	
P0TXEN	I			48	
P0TXCLK	0			49	
P0RXD0	0			53	
P0RXD1	0			54	
P0RXD2	0		GPIO8	55	
P0RXD3	0		GPIO7	56	
PORXDV	0	PHY0MII	POCRS DV	57	
PORXERR	0			58	
PORXCLK	0			59	
P0CRS	0		GPIO6	60	
P1100BTLED	0	LED	GPIO5/INT	61	
MDC	I			62	
MDIO	I/O	SMI		63	
P0100BTLED	0		GPIO4/INT	64	
P1ACTLED	0]	GPIO3/INT	65	
P1LINKLED	0	LED	GPIO2/INT	67	
P0ACTLED	0		GPIO1/INT	68	
P0LINKLED	0		GPIO0/INT	69	
DR	0	Device Ready		79	

System Diagram

The picture below shows the system diagram. The PHY is connected to the MAC through a MII or RMII interface. On the other side it is connected either to a CAT5 cable through magnetics or to a fibre cable.

3.1 Device block diagram

The device consists of two PHY's each connected to a PTP Framer block used to de-/encode the PTP frames and timestamp them, a PTP timer block containing the PTP clock, and an I/O block for general configuration and I/O handling. The PTP support is only available on the uPD60621A.

Global Hardware Description

The device consists of two Ethernet PHYs combined in a single package. In addition it includes a control block which is used to control shared resources such as LED outputs, interrupts, and low-power modes. All are accessible through a two wire bidirectional Serial Management Interface.

4.1 Register Access

All registers can be accessed through the MII / SMI interface. The SMI is a serial interface defined in IEEE802.3 for access to PHY registers. The following picture shows a typical access using the SMI interface:

Write Cycle								
MDC		nhn	أسمعت	huuu	իստի			
MDIO	32 1's 0		XA4XA3XA2XA1XA0	R4×R3×R2×R1×R0	×	5×D14×		
		tart of OP rame Code	PHY Address	Register Address	Turn Around	Data		

Read Cycle								
MDC			บบ	uuuu	uuuu		····	
MDIO	32 1's	0 1	1_0>	A4×A3×A2×A1×A0	R4×R3×R2×R1×R0	×>	D15 D14	XD1XD0X
		Start of Frame	OP Code	PHY Address	Register Address	Turn Around	Data	

The PHY address denotes the address of the PHY, while the register address is the address of the register within the addressed PHY. The device uses the PHY addresses to support access to the PTP block and the Global Configuration registers. The address table is as follows:

PHY Address (Binary)	Ressource	Comments
NM000	PHY0	
NM001	PHY1	
NM010	reserved	
NM011	Reserved	
NM100	Reserved	
NM101	Reserved	
NM110	PTP	uPD60621A only
NM111	GLOBAL_CONFIG PTP	

The values of the bits N and M can be configured as a strap option.

4.2 General SMI Control Register 7.31

Bit	Name	Description	Mode	Reset
15	RESET	1: Initiates a hardware reset of the complete device (stays active until cleared by software)	W	0
		0: Release Reset		
14	SMI_SHORT _PREAMBLE	1: Enable short preamble support. 0: Short Preamble mode for SMI interface not enabled	RW	0
13:9	Reserved	Write as 0	RW	0
8	Reserved	Write as 0	RW	1
7:2	Reserved	Write as 0	RW	0
1	PHY1_ DISREGARD _ADDRESS	1: PHY 1 ignores the PHY address when the device is being written 0: The PHY checks for the PHY address	RW	0
0	PHY0_ DISREGARD _ADDRESS	1: PHY 0 ignores the PHY address when the device is being written 0: The PHY checks for the PHY address	RW	0

The following register is used for configuration of the SMI:

4.3 Power Control Register 7.30

Bit	Name	Description	Mode	Reset
15:13	POWER_ST	100: Device ready.	RO	0
	ATUS	Other than 100: Device not ready		
12	Reserved		RW	0
11	STOP	1: Device is disabled; only access to registers 7.25-7.31 in the GLOBAL_CONFIG area is possible. 0: Device is enabled	RW	0
10	PULSE_ PWD	0: Pulse Output logic is enabled 1: Pulse Output logic for GPIO is powered down	RW	1
9	CAP_PWD	1: Capture logic is enabled 0: Capture logic for GPIO is powered down	RW	1
8	PTP_PWD	1: PTP is powered down 0: PTP is enabled	RW	1
7	Reserved	Write as 1	RW	1
6	Reserved	Write as 0	RW	0
5	C2C_STRAP _DIS	 Strap option for channel to channel loopback disable Strap option for channel to channel loopback enable 	RW	0
4	C2C_EN	if "C2C_STRAP_DIS" = 1, 1: channel to channel loopback enable (repeater mode) 0: channel to channel loopback disable (normal mode) if "C2C_STRAP_DIS" = 0, don't care (Strap option effective)	RW	0
3:2	Reserved		RW	0
1	PHY1PWD	1: The analog and digital part of the PHY1 is powered down. The PLL is powered down if all PHYs are powered down 0: PHY1 is enabled	RW	0
0	PHY0PWD	1: The analog and digital part of the PHY0 is powered down. The PLL is powered down if all PHYs are powered down 0: PHY0 is enabled	RW	0

The following register is used for configuration of the power options:

4.4 PHY Status Register 7.28

Bit	Name	Description	Mode	Reset
15:10	Reserved	Write as 0	RW	0
9	PHY1_LINK	0: PHY 1 has no link	RO	0
		1: PHY 1 has link		
8	PHY0_LINK	0: PHY 0 has no link	RO	0
		1: PHY 0 has link		
7:2	Reserved	Write as 0	RW	0
1	PHY1_ SYSRST	1: PHY is powered up and able to operate, Reset not active 0: PHY is still powering up	RO	0
0	PHY0_ SYSRST	1: PHY is powered up and able to operate, Reset not active 0: PHY is still powering up	RO	0

The following register shows the status of the PHYs.

The SYSRST registers are set by the PHY after the PLL has been powered up and has stabilized. They need to be 1 for the device to operate and to get access to all functions. Otherwise the internal 125 MHz clock is not available.

4.5 Strap option Register 7.27

The following register shows the strap option value latched after reset

Bit	Name	Description	Mode	Reset
15	QUICK_AUT ONEG	Autonegotiation strap setting	RO	Strap option
14	AUTO_NEG	Quick Autonegotiation strap setting	RO	Strap option
13	AUTO_MDIX	Auto MDIX strap setting	RO	Strap option
12	FAST_JK	Fast JK strap setting	RO	Strap option
11	DUPLEX	Duplex strap setting	RO	Strap option
10	ADDR4	PHY address bit 4 strap setting	RO	Strap option
9	ADDR3	PHY address bit 3 strap setting	RO	Strap option
8	ETHERCAT	MII timing strap setting	RO	Strap option
7	MII	MII/RMII strap setting	RO	Strap option
6:2	Reserved	Reserved	RO	0
1	PHY1 TX	100BASE-TX / 100BASE-FX strap setting for PHY1	RO	Strap option
0	PHY0 TX	100BASE-TX / 100BASE-FX strap setting for PHY0	RO	Strap option

4.6 PHY LED Status Register 7.24

The following register shows the status of the PHYs after power up. To read the LED status for the PHYs first PHY_SELECT must be written with the number of the required PHY and then the data for this PHY can be read from the register. The ACTIVE_LED_BLINK bit can be used to control the LED outputs of the device. If a GPIO is configured for link detection setting this register will cause the GPIO to blink while data transmission is ongoing.

Bit	Name	Description	Mode	Reset
15	Reserved	Write as 0	RO	0
14	P0SD	Signal Detect signal is active	RO	0
13	PHY_TXACT	 PHY had TX activity since last reading PHY had no TX activity since last reading Cleared when read 	R/LH	0
12	PHY_RXACT	1: PHY had RX activity since last reading 0: PHY had no RX activity since last reading Cleared when read	R/LH	0
11	PHY_FD	1: PHY runs on full duplex 0: PHY runs not on fill duplex	RO	1
10	PHY_LINK	1: PHY has LINK 0: PHY has no LINK	RO	0
9	PHY_100MB	1: PHY runs on 100 MBit 0: PHY runs not on 100 MBit	RO	1
8	PHY_10MB	1: PHY runs on 10 MBit 0: PHY runs not on 10 MBit	RO	0
7:4	Reserved		RO	0
3	ACTIVE_LED _BLINK	1: Link LED blinks if activity is detected and ON if link is up 0: Link LED does not blink on activity When written this is set for the PHY number in PHY_SELECT	RW	0
2:0	PHY_ SELECT	Select number of the PHY for which the other bits of this register will be read. 000: Write to PHY0 001: Write to PHY1 Others: Reserved	RW	0

4.7 Interrupt Status register 7.20

To have a centralized register to get a summary of all possible interrupt sources an interrupt status register is placed at the top level in addition to the specific interrupt registers. The bits in this register are only set if the corresponding interrupt is enabled in the interrupt source modules.

Bit	Name	Description	Mode	Reset
15	TIMESTAMP _RX1_INT	PHY1 has received a telegram which caused a timestamp to be taken (uPD60621A only)	RC	0
14	TIMESTAMP _TX1_INT	PHY1 has transmitted a telegram which caused a timestamp to be taken (uPD60621A only)	RC	0
13	CAP_TS_ST ORED	The PTP capture unit stored an event (uPD60621A only)	RC	0
12	CAP_MEM_F ULL_INT	PTP capture buffer is full (uPD60621A only)	R	0
11	RESERVED		R/LH	0
10	PTP_PERIO D_INT	Pulse generator started new period (uPD60621A only)	RC	0
9	TIMESTAMP _RX0_INT	PHY0 has received a telegram which caused a timestamp to be taken (uPD60621A only)	RC	0
8	TIMESTAMP _TX0_INT	PHY0 has transmitted a telegram which caused a timestamp to be taken (uPD60621A only)	RC	0
7	PHY1_LINK_ DOWN_INT	PHY1 has triggered a Link Down Interrupt	RC	0
6	PHY1_BER_ OVER_INT	PHY1 has triggered a BER Interrupt	RC	0
5	PHY1_FEQ_I NT	PHY1 has triggered a FEQ interrupt	RC	0
4	PHY1_GENE RAL_INT	PHY1 has triggered one of its internal interrupts except for Link Down, BER and FEQ interrupts	RC	0
3	PHY0_LINK_ DOWN_INT	PHY0 has triggered a Link Down Interrupt	RC	0
2	PHY0_BER_ OVER_INT	PHY0 has triggered a BER Interrupt	RC	0
1	PHY0_FEQ_I NT	PHY0 has triggered a FEQ interrupt	RC	0
0	PHY0_GENE RAL_INT	PHY0 has triggered one of its internal interrupts except for Link Down, BER and FEQ interrupts	RC	0

4.8 Interrupt Mask register 7.21

To provide a summary of all possible interrupt sources an interrupt mask register is placed at the top level in addition to the specific interrupt registers. Note that this is just an additional option to mask all interrupts at a central register; all Interrupts need to be enabled at their respective location within the PHY or PTP register set. Therefore the mask register is by default enabled while the interrupt sources are by default disabled.

Bit	Name	Description	Mode	Reset
15	TIMESTAMP_RX 1_INT_MASK	0: Interrupt is enabled 1: Interrupt is disabled (uPD60621A only)	R/W	0
14	TIMESTAMP_TX 1_INT_MASK	0: Interrupt is enabled 1: Interrupt is disabled (uPD60621A only)	R/W	0
13	CAP_TS_STORE D_MASK	0: Interrupt is enabled 1: Interrupt is disabled (uPD60621A only)	R/W	0
12	CAP_MEM_FUL L_INT_MASK	0: Interrupt is enabled 1: Interrupt is disabled (uPD60621A only)	R/W	0
11	RESERVED		R/LH	0
10	PTP_PERIOD_IN T_MASK	0: Interrupt is enabled 1: Interrupt is disabled (uPD60621A only)	R/W	0
9	TIMESTAMP_RX 0_INT_MASK	0: Interrupt is enabled 1: Interrupt is disabled (uPD60621A only)	R/W	0
8	TIMESTAMP_TX 0_INT_MASK	0: Interrupt is enabled 1: Interrupt is disabled (uPD60621A only)	R/W	0
7	PHY1_LINK_DO WN_INT_MASK	0: Interrupt is enabled 1: Interrupt is disabled	R/W	0
6	PHY1_BER_OVE R_INT_MASK	0: Interrupt is enabled 1: Interrupt is disabled	R/W	0
5	PHY1_FEQ_INT _MASK	0: Interrupt is enabled 1: Interrupt is disabled	R/W	0
4	PHY1_GENERA L_INT_MASK	0: Interrupt is enabled 1: Interrupt is disabled	R/W	0
3	PHY0_LINK_DO WN_INT_MASK	0: Interrupt is enabled 1: Interrupt is disabled	R/W	0
2	PHY0_BER_OVE R_INT_MASK	0: Interrupt is enabled 1: Interrupt is disabled	R/W	0
1	PHY0_FEQ_INT _MASK	0: Interrupt is enabled 1: Interrupt is disabled	R/W	0
0	PHY0_GENERA L_INT_MASK	0: Interrupt is enabled 1: Interrupt is disabled	R/W	0

4.9 GPIO

The GPIO pins can be configured depending on the application. Thus it is possible to repurpose unused pins for additional LEDs or PTP I/O. It is also possible to use the LED pins for PTP debug signals. The GPIO registers are located in the GLOBAL_CONFIG address range.

Each GPIO pin has a 4-bit configuration register assigned. The register configuration is only used if the pin is not used for Ethernet handling. So, for example, if MII is used many pins are used for MII. If RMII is used the unused pins can be configured for other purposes.

Note that if a GPIO is configured for LED usage, the polarity is reversed so a LED is always enabled if pulled down.

Bit	Pin	Description	Mode	Reset
15:12	GPIO3	Same as GPIO0:	RW	1100
				P1ACTIVELED
11:8	GPIO2	Same as GPIO0 except:	RW	1000
		0101: GPIO is Output for PTP Packet transmitted on PHY 1, If PTP is disabled on this PHY the start of any telegram will activate the pin. (uPD60621A only)		P1LINKLED
		0110: GPIO is Output for PTP packet received on PHY 1, If PTP is disabled on this PHY the start of any telegram will activate the pin. (uPD60621A only)		
7:4	GPIO1	Same as GPIO0	RW	1011
				P0ACTIVELED
3:0	GPIO0	0000: No change when written	RW	0111
		0001: GPIO is Output for PPS (Pulse per second) (uPD60621A only)		P0LINKLED
		0010: GPIO is Output for PTP-OUT1 (Output of Pulse Out unit 1) (uPD60621A only)		
		0011: GPIO is Output for PTP-OUT2 (Output of Pulse Out unit 2) (uPD60621A only)		
		0100: GPIO is Output for PTP-OUT3 (Output of Pulse Out unit 3) (uPD60621A only)		
		0101: GPIO is Output for PTP Packet transmitted on PHY0, If PTP is disabled on this PHY the start of any telegram will activate the pin. (uPD60621A only)		
		0110: GPIO is Output for PTP packet received on PHY 0. If PTP is disabled on this PHY the start of any telegram will activate the pin.		

4.9.1 GPIO_CONFIG_0 Register 7.0

(uPD60621A only)	
0111: GPIO is Output for P0LINKLED	
1000: GPIO is Output for P1LINKLED	
1001: GPIO is Output for P0_100BT- LED	
1010: GPIO is Output for P1_100BT- LED	
1011: GPIO is Output for P0ACTIVELED	
1100: GPIO is Output for P1ACTIVELED	
1101: GPIO is Output for INT	
1110: GPIO is Output for CHIP_SYNC(uPD60621A only)	
1111: GPIO is Input	

4.9.2 GPIO_CONFIG_1 Register 7.1

Bit	Name	Description	Mode	Reset
15:12	GPIO7	MII mode: always P0RXD3, regardless of setting. RMII mode: same coding as GPIO0 except for: 1110: CHIP_SYNC (uPD60621A only)	RW	1110 in RMII
11:8	GPIO6	RMII Mode: P0CRS_DV MII Mode: Same as GPIO0 except 1110: P0CRS	RW	0111 P0CRS
7:4	GPIO5	Same as GPIO0 except 1110: GPIO is output for P1COL	RW	1010 P1_100BT_L ED
3:0	GPIO4	Same as GPIO0 except: 1110: GPIO is output for P0COL	RW	1001 P0_100BT_L ED

4.9.3 GPIO_CONFIG_2 Register 7.2

D 14				
Bit	Name	Description	Mode	Reset
15:12	GPIO11	MII mode: always P0TXD2, regardless of setting.	RW	1111 in RMII
		RMII mode: coding is same as GPIO0		
		1110: SOF_TX0 Start of frame PHY0 TX path (uPD60621A only)		
11:8	GPIO10	MII mode: always P0TXD3, regardless of setting.	RW 1111 in RMII	
		RMII mode: coding is same as GPIO0		
		1110: SOF_TX0 Start of frame PHY0 TX path (uPD60621A only)		
7:4	GPIO9	Same as GPIO0 except	RW 0101	
		0101: Input for P0TXERR		
3:0	GPIO8	MII mode: always P0RXD2, regardless of setting.	RW 1111 in RMII	
		RMII mode coding is same as GPIO0		
		1110: SOF_RX0 Start of frame PHY0 RX path (uPD60621A only)		

4.9.4 GPIO_CONFIG_3 Register 7.3

Bit	Name	Description	Mode	Reset
15:12	GPIO15	GPIO15 Same as GPIO0 except		0101
		0101: Input for P1TXERR		
11:8	GPIO14	MII mode: always P1RXD2, RW regardless of setting.		0010 in RMII else P1RXD2
		RMII mode: coding is same as GPIO0 except		
		1110: SOF_RX1 Start of frame PHY1 RX path (uPD60621A only)		
7:4	GPIO13	MII mode: always P1RXD3, regardless of setting	RW	0001 in RMII else P1RXD3
		RMII mode: coding same as GPIO0 except		
		1110: GPIO is output for SOF_RX1 (uPD60621A only)		
3:0	GPIO12	RMII mode: always P1CRS_DV	RW	1110
		MII mode: Same as GPIO0 except		P1CRS
	0101: GPIO is output for PTP Packet transmitted on PHY 1 (uPD60621A only)			
		0110: GPIO is output for PTP packet received on PHY 1 (uPD60621A only)		
		1110: GPIO is output for P1CRS		

4.9.5 GPIO_CONFIG_4 Register 7.4

D'4	N	Description	NA1	D 4
Bit	Name	Description	Mode	Reset
15:12	GPIO19	PHY 0 in FX mode: always P0SD	RW	1110 P0COL
		PHY 0 in TX mode: coding is same as GPIO0 except		
		1110: P0COL		
11:8	GPIO18	PHY 1 in FX Mode: always P1SD	RW	1110 P1COL
		PHY 1 in TX mode: coding is same as GPIO0 except		
		1110: P1COL		
7:4	GPIO17	MII mode: always P1TXD2, RW 0100 in regardless of setting		0100 in RMII
		RMII mode: coding is same as GPIO0 except		
		0101: GPIO is output for PTP Packet transmitted on PHY 1 (uPD60621A only)		
		0110: GPIO is output for PTP packet received on PHY 1 (uPD60621A only)		
		1110: SOF_TX1 Start of frame PHY1 TX path (uPD60621A only)		
3:0	GPIO16	6 MII mode: always P1TXD3, RW 0011 i regardless of setting.		0011 in RMII
		RMII mode: coding is same as GPIO0 except		
		1110: SOF_TX1 Start of frame PHY1 TX path (uPD60621A only)		

4.10 Strap Options

The device offers several configurations which can be selected as strap options. The related I/Os have integrated 40 k Ω pull-up or pull-down resistors which configure the device as described below. To change this configuration an external resistor of maximum 5 k Ω must be connected to the pin. An external resistor supporting the internal resistor is also advisable in case the device is used in a very noisy environment.

The following table shows the possible configuration options and the related pins. Unless otherwise noted all configuration options apply to both PHYs.

Pin Name	Function	Default value	
P1RXD1	0: Autonegotiation disabled, 100BaseT	1, PU	
FIRADI	1: Autonegotiation enabled, 100BaseT	1, PU	
	If Autonegotiation disabled:		
	0: Half Duplex	1, PU	
	1: Full Duplex		
P1RXD0	If Autonegotiation enabled:		
	0: Parallel detect ends in half duplex mode		
	1: Forced Full Duplex in parallel detect		
	0: Disable Quick Autonegotiation		
	1: Quick Autonegotiation, shortest times		
P1RXCLK	(Autonegotiation required)	1, PU	
	See also special strap modes in table 4-2		
PORXERR	0: Configure RMII Interface	1, PU	
	1: Configure MII Interface	1,10	
	0: Standard Mode, "JK" required for Start of		
P1RXERR	Frame detection	1, PU	
	1: Fast Mode, Only "J" required for Start of Frame detection		
	0: AUTOMDI-X disabled.		
PORXCLK	1: AUTOMDI-X enabled	1, PU	
	0: FX Mode for PHY0, in this case the		
PORXDV	values of Autonegotiation, Duplex are	1, PU	
	ignored for this PHY.	1, PU	
	1: TX Mode for PHY0		
	0: FX Mode for PHY1, in this case the values of Autonegotiation, Duplex ignored		
P1RXDV	for this PHY.	1, PU	
	1: TX Mode for PHY1		
	Configures the upper two bits N and M of the PHY addresses		
PORXD0 /	00: device uses address 00xxx for SMI	00.55	
P0RXD1	01: device uses address 01xxx for SMI	00, PD	
	10: device uses address 10xxx for SMI		
	11: device uses address 11xxx for SMI		

	0: Synchronous mode for TXCLK. TXCLK is synchronous to XCLK0. This must be used for MACs that supply the MII TX data synchronously to the XCLK0 signal.	1, PU
P1TXCLK	1: Asynchronous mode for TXCLK. This mode reduces the TX Latency, but requires a MAC that handles the TXCLK signal to supply the MII TX data. This is the typical behavior.	

To configure the PHY via strap pins to special modes unusual combinations of the strap pins are used. The PHY modes are shown and described in table 4-2.

Mode Description Strap combination In this mode the PHYs will Autonegotiation OFF not set up a link unless → PD at P1RXD1 Special programmed and enabled Quick Autonegotiation ON Isolate Mode through the SMI → PU at P1RXCLK (default) Full Duplex → PU at P1RXD0 (default) In this mode a channel to Autonegotiation OFF channel loopback is enabled. →P1RXD1 Repeater The data from the RX ports Quick Autonegotiation ON Mode is forwarded to the TX port of ➔ PU at P1RXCLK (default) the other channel. PHY Half Duplex configuration in repeater → PD at P1RXD0 mode is 100BT FD.

Table 4-2 Special strap options

PHY

5.1 General Description

The device contains two PHYs. The block diagram for each is shown below:

5.2 Clock Generator PLL

The PLL is a 125 MHz PLL which generates the clock for the 125 MHz part. It generates 32 output phases. The DSP selects which of these phases is used to sample the incoming signal. A single PLL is used for both PHYs. Therefore a Power Down of a PHY will only power down the PLL if both PHYs are powered down.

5.3 Analog Frontend

The analog frontend consists of two Programmable Gain Amplifiers, a low pass filter and the ADC.

5.3.1 Adaptive Equalizing

The adaptive equalizer compensates for phase and amplitude distortion caused by the Physical channel consisting of magnetics, connectors, and CAT-5 cable. The equalizer can restore the signal for any good quality CAT-5 cable.

5.3.2 100Base TX Receiver ADC

The Receiver ADC is part of the analog block. It is clocked with a 125 MHz clock which can be selected by the DSP from one of 32 phases.

5.4 Digital Signal Handling

The following chapters describe how the signal is handled in the digital part of the PHY.

5.4.1 DSP

The DSP is re-shaping the received signal so it can be further processed. The ADC samples the signal at 125MHz. However the frequency of the signal is significantly lower than 125MHz due to the MLT-3 coding. Based on the received and decoded signal the DSP can measure the quality of the signal and either adjust internal filters or adjust the sampling phase of the ADC. One of the internal filters can be read to observe the cable quality.

5.4.2 Baseline Wander Correction

If the DC content of the signal is such that the low-frequency components fall below the low-frequency pole of the isolation transformer, then the drop characteristics of the transformer will become significant and baseline wander (BLW) on the received signal will result. To prevent corruption of the received data, the DSP corrects for baseline wander.

5.4.3 NRZI/MLT-3 Encoding / Decoding

MLT3 is a specific version of a NRZI coding using a tri-level code where a change in the logic level represents a code bit "1" and the logic output remaining at the same level represents a code bit "0". Basically it uses the NRZI coding as input but the '1' is flipped to '-1' every second time. The main advantage is that it reduces the effective frequency on the cable to 1/4 or 125/8 MHz. The decoder converts the MLT-3 data coming from the DSP to a NRZ data stream. The conversion of data to NRZI/ MLT-3 encoded data is shown in the following picture.

This code is used on the Ethernet data lines in 100TX mode.

5.4.4 Scrambler / Descrambler

To reduce EMI the data sent is scrambled before it goes on the line and descrambled in the receiver. This reduces the emission at specific frequencies and spreads the emissions over a wider frequency band.

Scrambling the data helps eliminate large narrow-band peaks for repeated data patterns, and spreads the signal power more uniformly over the entire channel bandwidth. The seed for the scrambler is generated from the PHY address, ensuring that in multiple-PHY applications each PHY will have its own scrambler sequence.

The descrambler descrambles the decoded NRZ cipher-text bit from the MLT-3 decoder. The cipher-text bit stream is decoded by addition (modulo 2) of a key stream to produce a plain-text bit stream.

During reception of IDLE symbols, the descrambler synchronizes its descrambler key to the incoming stream. Once synchronization is achieved, the descrambler locks on this key and is able to descramble incoming data.

5.4.5 5B/4B Encoding / Decoding

The data on the line is coded 4B/5B and decoded on the receive path. The main purpose is to remove repeated values, i. e. 0000 is replaced by 11110 to ensure there is a signal change after a certain period. In addition it allows detection of faulty transmissions and adds control data.

The following table shows the relationship between payload data and the 5B interpretation.

PCS code- group [4:0]	Name	MII (TXD/RXD) [3:0]	Interpretation
11110	0	0000	Data 0
01001	1	0001	Data 1
10100	2	0010	Data 2
10101	3	0011	Data 3
01010	4	0100	Data 4
01011	5	0101	Data 5
01110	6	0110	Data 6
01111	7	0111	Data 7
10010	8	1000	Data 8
10011	9	1001	Data 9
10110	А	1010	Data A
10111	В	1011	Data B
11010	С	1100	Data C
11011	D	1101	Data D
11100	E	1110	Data E
11101	F	1111	Data F
11111	I	Undefined	IDLE; Used as inter-stream fill code
	J	0101	Start-of-Stream Delimiter, Part 1 of 2;
11000			Always used in pairs with K
	к	0101	Start-of-Stream Delimiter, Part 2 of 2;
10001	IX.	0101	Always used in pairs with J
	т	Undefined	End-of-Stream Delimiter, Part 1 of 2;
01101	1	Undenned	Always used in pairs with R
	R	Undefined	End-of-Stream Delimiter, Part 2 of 2;
00111		Ondenned	Always used in pairs with T
	н	Undefined	Transmit Error;
00100		Ondenned	Used to force signaling errors
00000	V	Undefined	Invalid code
00001	V	Undefined	Invalid code
00010	V	Undefined	Invalid code
00011	V	Undefined	Invalid code
00101	V	Undefined	Invalid code
00110	V	Undefined	Invalid code
01000	V	Undefined	Invalid code
01100	V	Undefined	Invalid code
10000	V	Undefined	Invalid code
11001	V	Undefined	Invalid code

5.5 Functional Description

5.5.1 Collision detection

When transmissions from two stations overlap, the resulting contention is called a collision. Collisions occur only in half duplex mode, where a collision indicates that there is more than one station attempting to use the shared Physical medium.

5.5.2 Carrier Sense detection

Carrier Sense (CRS) is asserted by the PHY when either transmit or receive medium is non-idle. For half-duplex mode, Carrier Sense is asserted during transmission or reception. For full-duplex mode, Carrier Sense is asserted during reception.

5.5.3 Auto Crossover (MDI/MDI-X)

The PHY automatically detects and corrects for the MDI/MDI-X crossover in TX modes. Auto-Crossover is disabled in FX Mode. If this function is disabled, crossover may be corrected manually through the Serial Management Interface. The status of the crossover function can be read from a status register. The detection process is started whenever the PHY is turned on and Auto Crossover is activated. As soon as the partner PHY is transmitting it will immediately adjust the crossover as required.

5.5.3.1 Auto-Crossover when using 100BT Fix Mode

In 100BT manual mode the transmitter continuously transmits idles on the TX line. As the incoming echo from the transmitter path needs to be blocked there is no chance to listen on that line. Therefore a special non-standard implementation called 100BT idle burst mode is employed. The idle burst mode has two states, a period of idle burst and a period of random silence to detect incoming signals on the TX line. The time for the next transmission will be picked randomly. The decision to do a switchover will be made based on the reception of two signals within a specific time period.

The PHY will transmit bursts of 1 μ s after a waiting time of 0 - 63 μ s. In parallel it checks both lines for a signal. If a valid signal is received on the RX line, it will continue normal operation. If a valid signal is received on the TX line it will wait for 500 μ s and then reverse the setting (exchange TX and RX). Again after a time of 0 - 63 μ s it will send a burst of 1 us and in parallel check if there is a signal on one of the lines. This will continue until a valid signal is detected on the RX line.

The PHY will only do a crossover if it detects signals on the actual TX line. On an open line it will not exchange the RX/TX lines as it cannot receive any signals.

The duration of this process can be <1 μ s if the signal is initially recognized correctly and approximately 565 μ s if crossover is required.

5.5.3.2 Auto-Crossover when using Autonegotiation or 10BT Mode

Since the auto-negotiation's method of communication builds upon the link pulse mechanism employed by 10BASE-T MAUs to detect the status of the link, the energy detection upon FLPs bursts is the same as the NLPs. The NLP is a pulse transmitted every 16±8 ms. and its pulse width is 100ns. Typical burst width is 2 ms.

After reset the PHY will check for a signal on the incoming lines. As it is in its "Break_link_timer" state it will not start transmission before this timer is expired. If there is a signal detected in that period it will adjust the MDI/X accordingly and continue. If no signal is detected it will start transmitting the FL-Pulses to establish a connection. As the switchover is in general done during the duration of the Break_link_timer, there is no additional time required for Auto-Crossover in Autonegotiation Mode.

5.5.3.3 Auto-Crossover when connecting Autonegotiation and 100BT Mode

This is a situation in which one link partner A is in auto-negotiation mode and the other partner F is set to 100 Mb/s fix mode.

After power-up the forced PHY F will start sending FLP while the other link partner A is in Transmit disable state. So while PHY A will wait for its **break_link_timer** time (1200ms-1500ms) the forced PHY F will turn itself off randomly for every time period of **sample timer** (62±2us) to listen for a signal on its TX line. It will not change its transmit line pair unless it detects a contention. PHY A adjusts its Autocrossover state as it received a signal during its break_link_timer expiration time. When PHY A moves to ABILITY_DETECT mode and transmits FLP PHY F detects these pulses. As PHY A has already adjusted its autocrossover mechanism correctly, there is no need for PHY F to do so.

5.5.4 Auto-Polarity

The PHY automatically detects and corrects for polarity reversal in wiring in 10BASE-T mode. The result of polarity detection is indicated by the flag "XPOL", bit 4 in register PHY.27. Polarity is checked at end of packets in 10BASE-T.

5.5.5 Auto-Negotiation

The objective of the auto-negotiation function is to provide the means to exchange information between two devices that share a link segment and to automatically configure both devices to take maximum advantage of their abilities. Auto-negotiation protocol is a purely Physical layer activity and proceeds independently of the MAC controller.

Prior to the start of any kind of negotiation the PHY is required by the IEEE 802.3 Chapter 28 to wait the Break_Link_Timer time which is defined to be between 1200 ms and 1500 ms. This time is defined to make sure both PHYs are reset and reach a defined status prior to starting the negotiation process.

For the auto-negotiation function, the two PHYs communicate by sending FLP (Fast link Pulse) bursts for exchanging information with its link partner. A FLP burst consists of 33 pulse positions. The 17 odd-numbered pulse positions

contain a link pulse and represent clock information. The 16 even-numbered pulse positions represent data information. The data transmitted by an FLP burst is known as a "Link Code Word". These are fully defined in clause 28 of the IEEE 802.3 specification.

After the Break Link Timer has expired, the link down status is achieved and, if auto-negotiation is enabled, the PHY starts to send FLP bursts while trying to receive signals on its receive path. If it detects signals according to 10BaseT, 100BaseTX or 100BaseT standard, it will wait for FLP bursts and check the received signals until the autoneg_wait_timer period (typically 500ms) has expired and then switch to fix mode according to the received signal.

The following picture shows the FLP burst.

These 33 pulses contain an acknowledge bit which is cleared at the start of the sequence. Each partner starts to send FLP bursts and tries to receive them from the other with the acknowledge bit cleared.

After one partner has successfully received three identical FLP bursts it continues sending FLP bursts with the acknowledge bit set. The other partner will wait until it has received this answer for three times. After that both partners will send 6-8 FLP bursts with the acknowledge bit set to ensure that they have understood each other successfully. After that both PHYs will resolve the information and decide on the optimum configuration.

Therefore it is required that at least 9 FLP bursts are sent to initiate a successful auto-negotiation. Thus a successful auto-negotiation will last at least 72 ms up to 216 ms depending on the burst length, if all transmissions are successful and the next page function is not used. In case a pulse is distorted the process will start over again.

To improve the linkup time for two Renesas PHYs the nominal 16ms frame rate is reduced to allowed 8 ms and shortening the frame transmission time. In this case two Renesas PHYs are able to negotiate within 72 ms without hurting the IEEE spec.

This PHY supports auto-negotiation and implements the "Base page", defined by IEEE 802.3. It also supports the optional "Next page" function to get the remote fault number code.

5.5.5.2 Disabling Auto-Negotiation

Auto-negotiation can be disabled by register setting or by setting the appropriate strap pins. When auto-negotiation is disabled, the speed and duplex modes are decided by setting management interface registers or Parallel Detection.

5.5.5.3 Priority Resolution

There are four possible operating modes. In the order of priority these are:

- 100M full duplex (highest priority)
- 100M half duplex
- 10M full duplex
- 10M half duplex

Since two devices (local device and remote device) may have multiple abilities in common, a prioritization scheme exists to ensure that the highest common denominator ability is chosen. Full duplex solutions are always higher in priority than their half duplex counterparts.

10BASE-T is the lowest common denominator and therefore has the lowest priority. If a link is formed via parallel detection, then bit 0 in Register PHY.6 is cleared to indicate that the link partner is not capable of auto-negotiation. The controller has access to this information via the management interface. If a fault occurs during parallel detection, bit 4 of register PHY.6 is set. Register PHY.5 is used to store the link partner ability information, which is coded in the received FLPs. If the link partner is not auto-negotiation capable, then register PHY.5 is updated after completion of parallel detection to reflect the speed capability of the link partner.

5.5.5.4 Next Page Function

Additional information beyond that required by base page exchange is also sent via "next pages". This PHY supports the optional "next page" function.

Next page exchange occurs after the base page has been exchanged. Next page exchange consists of using the normal auto-negotiation arbitration process to send next page messages. Two message encodings are defined: Message pages, which contain predefined 11 bit codes, and unformatted pages.

Next page transmission ends when both ends of a link segment set their next page bits to logic zero, indicating that neither has anything additional to transmit. It is possible for one device to have more pages to transmit than the other device. Once a device has completed transmission of its next page information, it shall transmit message pages with null message codes and the NP bit set to logic zero while its link partner continues to transmit valid next pages. Auto negotiation capable devices shall recognize reception of message pages with null message codes as the end of its link partner's next page information.

The default value of the next page support is disabled (bit 15 of register PHY.4). To enable next page support, bit 15 of Register PHY.4 should be set to "1". Autonegotiation should be restarted, and the message code should be written to bit [10:0] of register PHY.7.

5.5.5.5 Re-negotiation

When auto-negotiation is enabled, it may be re-started by one of the following events:

- 1. Link status is down.
- 2. Setting Auto-Negotiation Restart bit to high.

Auto-negotiation is started (not re-started) when 1) Hardware reset, 2) Software reset or 3) setting Auto-Negotiation Enable from low to high.

5.5.5.6 Parallel Detection

The parallel detection function allows detection of link partners that support 100BASE-TX and/or 10BASE-T, but do not support auto-negotiation or are set to fix mode. The PHY is able to determine the speed of the link based on either 100M MLT-3 symbols or 10M Link Pulses. If the PHY detects either mode, it automatically reverts to the corresponding operating mode.

In this case the link is always half duplex as defined in the IEEE spec. If a link is formed via parallel detection, then register PHY.6.0 is cleared to indicate that the link partner is not capable of auto-negotiation. The controller has access to this information via the management interface. If a fault occurs during parallel detection, register PHY.6.4 is set. register PHY.5 is used to store the link partner ability information, which is coded in the received FLPs. If the link partner is not auto-negotiation capable, then register PHY.5 is updated after completion of parallel detection to reflect the speed capability of the link partner.

Similar to the auto-negotiation process the PHY waits for the Break_Link_Timer duration before starting parallel detection. After reception of the first link signals, the parallel detection process waits for another 500 ms to check if FLP bursts are received.

5.5.5.7 Parallel Detection → Speculative Full Duplex

In modern Ethernet systems it is unlikely that a 100 MBit fix mode PHY is actually using half duplex. However if the IEEE 802.3 is fulfilled the PHY doing autonegotiation will revert to half duplex operation following the parallel detect operation. Thus the result of the parallel detect mode is one PHY running at 100 MBit full duplex and the other running at 100 MBit half duplex. Although communication is possible this will lead to many errors as the half duplex configured PHY will continuously detect collisions when the full duplex PHY is transmitting and receiving simultaneously.

To avoid this situation the PHY can be configured to go into full duplex instead of half duplex in parallel detection mode by means of a strap option.

5.5.6 Bad Line recognition

The PHY features a number of functions to control and observe the line to be able to ensure a reliable connection.

5.5.6.1 BER-Monitor

The PHY can continuously measure the bit error rate (BER) on the line and trigger an interrupt or put the link down if a configurable threshold is reached.

Bit errors are detected by checking the received symbols against the list of allowed symbols. There are two basic conditions for this check:

1. IDLE situation: When the PHY is in idle mode it should only receive IDLE symbols or the start of frame delimiter which is a J symbol. All other symbols indicate that a bit error has happened and are counted as errors.

2. Data transmission: During data transmission there are 32 possible symbols of which only 19 are valid symbols. The rest indicate a bit error and will be counted as such. Note that the /H/ symbol is also counted as an error symbol.

A pre-condition of the BER mechanism operation is the lock of the descrambler; it will try to adjust itself while receiving IDLE patterns and is considered locked if a reasonable number of IDLE patterns have been received and descrambled. Unless the descrambler is locked, the BER monitor is not operable, and no data can be received.

Bit	Name	Description	Mode	Default
23:15	BER_LNK_OK	Link quality indication – indicates state of link monitor.	R	0
		'0' – Not in 'Good Link' state		
		'1' – In 'Good Link' state		
		Will go up as soon as the counter is below the trigger level after start up. Can be used to detect link up after start up.		
23:14	BER_CNT_LNK_EN	1: A trigger on the BER or on the FEQ monitor will cause a link down.	RW	1
		0: A trigger on the BER/FEQ will just cause the state machine to leave "Good Link" state.		
23.13:11	BER_CNT_TRIG	Trigger level for BER Count to define link up/down	RW	2
		Counter in 2 ^(n -1) errors		
		0: >0 errors will trigger		
		1: >1 triggers		
		2: >2 triggers		
		3: >4 triggers		
		4: >8 triggers		
		5: > 16 triggers		
		6: >32 triggers		
		7: > 64 errors triggers		

Register PHY.23 – BER

aa 4a -				4 10 04
23.10:7	BER_WINDOW	Length of time for BER counter in 0.005 * 2 ⁿ ms	RW	1 (0.01 ms)
		0: BER counter functions disabled		
		1: 0.01 ms		
		2: 0.02 ms		
		3: 0.04 ms		
		14: 81.92 ms		
		15: unlimited run window.		
		Writing a 0 resets the BER counter and restarts the time window.		
23:6:0	BER_COUNT	Counter for bit errors, shows the amount of errors in the past time window. Is updated every 100 µs if BER_WINDOW = 15	R	0x0

5.5.6.2 FEQ-Monitor

In order to optimize the reception of the incoming data, the DSP continuously adapts its filters to the incoming signal. To be able to monitor the line quality, one of the DSP filter coefficients can be monitored and an interrupt or link down can be triggered if programmable limits are exceeded.

The FEQ2 coefficient changes as the DSP tries to re-adapt to match a changed line characteristic caused for example by a line break or increased resistance due to corrosion. This change is done within 1 to 9 μ s when the line condition changes depending on line length and cable quality. So by using the FEQ monitor, line changes can be safely detected within 9 μ s.

The FEQ2 value is latched at link up time. By programming the FEQ2_DELTA field in register PHY.24 the allowed deviation of this value can be set. Whenever the FEQ2 is outside of this border due to changes in line condition an interrupt or link down is initiated. Note that after a link down the FEQ2 value is relatched so then a link is established based on the then actual FEQ2 value. In this case the application needs to take control and decide how to continue.

Bit	Name	Description	Mode	Default
24.15:0	FEQ_DELTA	Minimum change of value (compared to the reference value latched when the monitor is enabled after link up) that will trigger the FEQ interrupt and link down. If the FEQ value differs by more than FEQ_DELTA the link goes down if the BER_CNT_LNK_EN is 1 and the BER monitor is enabled, The interrupt is also triggered if enabled. 'FFFF' – will disable monitor and cause the reference value to be re-latched continuously. 'FFFE' – will not change the FEQ_DELTA value but will instead allow read out the current reference value from FEQ_VAL. Writing any other value will disable this mode.	W	0xFFFF
24.15:0	FEQ_VAL	If FEQ_DELTA == FFFE Bit 17:2 of the reference value. Else	R	Undefined
		Bits 17:2 of the current FEQ2 coefficient.		

Register PHY.24: FEQ Monitor Control Register

The following picture gives an example of the value of the FEQ coefficient for several line lengths (in meters.)

The following picture gives an example of the dependency of the FEQ coefficient on the resistance of the line. The 0 Ohm resistance is the value for a 1 meter line, for the other values a resistor has been added to the RX line.

The blue circles indicate the typical variation of the FEQ2 value.

5.5.7 Latency

The latency is the length of time it takes for data to pass through the PHY from the line interface to the MII and also from the MII to the line interface on the TX side. For industrial real-time applications a short latency is very important as it has a significant influence on the cycle times that can be achieved and the accuracy at which a system can be operated. Both the latency itself and the variation in latency (jitter) should be as small as possible.

Although the Renesas PHY has already a very short latency, the PHY has a special mode that will reduce the latency even further. This mode is called "J-only mode" and is available on all devices of the PHY family.

A new telegram is initiated by two symbols "J" and "K" as shown in the picture below:

Before data is sent it is transformed from a 4-bit notation at the MII to a 5 bit notation on the line to ensure that enough transitions are available for the clock regeneration. In addition the 5-bit coding allows for transmission of additional control symbols to indicate start of frame and end of frame. A start of frame is indicated by the symbol 11000 or "J" followed by a 10001 or "K".

Standard devices (conforming to the Ethernet standard) must detect the leading "J"- and "K"- symbol of a telegram as start-of-frame, before they can start to output data on the MII interface. Thus two symbols have to be received before output can be started on the MII interface. The Renesas PHY offers a special mode to only decode the leading J-symbol and start receiving the data immediately. The PHY will thus output data on the MII following the first "J" symbol without waiting for the reception of the "K" symbol.

This reduces the roundtrip delay by 40ns. This PHY family is thus able to support a roundtrip delay <200ns. In the unlikely case that the "J" detection was due to a bit error and the next "K" symbol is not received the RX_ERR signal is asserted and reception resumes.

5.5.8 Special Isolation Mode

In many applications it is desirable to have a more flexible option to configure the PHY compared to strap options which need to be decided when the board is produced. Usually a PHY will read the configuration from the strap pins and try to connect immediately after power up. This does not leave time for a microcontroller to change the configuration before the communication and setup with the partner PHY has been started. In special isolation mode the PHY will not connect to its partner PHY but stay quiet on the line until enabled by software. This mode provides time for a microcontroller to configuration can be controlled by firmware instead of hardware.

5.5.9 Repeater / Media converter

This PHY supports channel to channel loopback mode and can be used as physical repeater. In this mode, the received frame at each port is directly forwarded to the other port. Channel to channel loopback mode is configured by strap option or register setting. (Refer to 4.10 Strap Options and 4.3 Power Control Register 7.30)

As an application of repeater function, this PHY works as media converter (100BASE-TX to 100BASE-FX) by setting each port as 100BASE-TX and 100BASE-FX respectively,

5.6 PHY Register List

The PHY registers can be accessed at PHY address 0 for PHY 0 or PHY address 1 for PHY 1. These registers control only the PHY they belong to. Some of these registers are duplicated on the PHY address 7 registers to ease software handling.

Bit	Name	Description	Mode	Default
15	RESET	1 = software reset	RW/SC	0
		0 = normal operation		
		When setting this bit do not set other bits in this register		
14	LOOPBACK	1 = enable internal loopback mode	RW	0
		0 = disable internal loopback mode		
13	SPEED_	1 = 100 Mb/s	RW	1
	SELECTION	0 = 10 Mb/s		
		This bit is ignored if auto- negotiation is enabled (0.12=1).		
12	AUTO- NEGOTIATION	1 = Enable auto-negotiation	RW	Strap
	ENABLE	process 0 = Disable auto-negotiation		option
		process		
11	POWERDOWN	1 = General Power down	RW	0
		0 = normal operation		
10	ISOLATE	1 = Electrically isolate PHY from MII	RW	0
		0 = Normal operation		
9	RESTART_ AUTONEGOTIATION	1 = restart auto-negotiation process	RW/SC	0
		0 = normal operation		
8	DUPLEX_MODE	1 = Full duplex	RW	Strap
		0 = Half Duplex		option
		This bit is ignored if auto- negotiation is enabled (0.12=1).		
7	COLLISION_TEST	1 = enable COL signal test	RW	0
		0 = disable COL signal test		
6:0	RESERVED	Write as 0, ignore on Read	RO	0

Writing to Register PHY.0 in order to change modes from 10BT to 100BT and vice versa (Autonegotiation disabled), will take approximately 2us. Mode changes from HD to FD and vice versa is instantaneous.

5.6.2 Register PHY.1 - Basic Control

Bit	Name	Description	Mode	Default
15	100BASE_T4	1 = 100BASE-T4 able	RO	0
		0 = no 100BASE-T4 ability		
14	100BASE_TX_ FULL_DUPLEX	1 = 100BASE-TX ability with full duplex	RO	1
		0 = no 100BASE-TX full duplex ability		
13	100BASE_TX_ HALF_DUPLEX	1 = 100BASE-TX ability with half duplex	RO	1
		0 = no 100BASE-TX half duplex ability		
12	10MB_FULL_ DUPLEX	1 = 10Mb/s ability with full duplex	RO	1
		0 = no 10M b/s full duplex ability		
11	10MB_HALF_ DUPLEX	1 = 10Mb/s ability with half duplex	RO	1
		0 = no 10Mb/s half duplex ability		
10:6	RESERVED	Ignore on read	RO	0
5	AUTO- NEGOTIATION	1 = auto-negotiation process completed	RO	0
	COMPLETE	0 = auto-negotiation process not completed		
4	REMOTE FAULT	1 = remote fault condition detected	RO/LH	0
		0 = no remote fault condition detected		
3	AUTO- NEGOTIATION	1 = able to perform auto- negotiation	RO	1
	ABILITY	0 = unable to perform auto- negotiation		
2	LINK STATUS	1 = link is up	RO/LL	0
		0 = link is down	DO (1.1.)	
1	JABBER DETECT	1 = jabber condition detected0 = no jabber condition detected	RO/LH	0
0	EXTENDED CAPABILITY	1 = extended register capabilities	RO	1
		0 = basic register set capabilities only		

5.6.3 Register PHY.2 - PHY Identifier

Bit	Name	Description	Mode	Default
15:0	PHY ID NUMBER	Assign to the 3rd through 18th bits of the Organizationally Unique Identifier (OUI)	RO	0xb824

5.6.4 Register PHY.3 - PHY Identifier

Bit	Name	Description	Mode	Default
15:10	PHY ID NUMBER	Assigned to the 19th through 24th bits of the OUI	RO	0x0a
9:4	MODEL NUMBER	Manufacturer's model number	RO	0x2
3:0	REVISION NUMBER	Manufacturer's revision number	RO	0x4

5.6.5 Register PHY.4 - Auto-Negotiation Advertisement

Bit	Name	Description	Mode	Default
15	NEXT PAGE	1 = next page capable	RW	0
		0 = no next page ability		
14	RESERVED	Write as "0", Ignore on read	RO	0
13	REMOTE	1 = remote fault detected	RW	0
	FAULT	0 = no remote fault detected		
12	RESERVED	Write as "0", ignore on read	RW	0
11:10	PAUSE	00 = no PAUSE	RW	00
	OPERATION	01 = asymmetric PAUSE toward link partner		
		10 = Symmetric PAUSE		
		11 = both symmetric PAUSE and asymmetric PAUSE toward local device		
9	100BASE-T4	1 = 100BASE-T4 capable	RO	0
		0 = no 100BASE-T4 ability		
		This PHY does not support 100BASE-T4		
8	100BASE-TX	1 = 100BASE-TX full duplex able	RW	1
	FULL DUPLEX	0 = no 100BASE-Tx ability		
7	100BASE-TX	1 = 100BASE-TX able	RW	1
		0 = no 100BASE-TX ability		
6	10BASE-T	1 = 10Mbps with full duplex	RW	1
	FULL DUPLEX	0 = no 10Mbps with full duplex ability		
5	10BASE-T	1 = 10Mbps able	RW	1
		0 = no 10Mbps ability		
4:0	SELECTOR FIELD	00001 : IEEE Std. 802.3	RW	00001

5.6.6 Register PHY.5 - Auto-Negotiation Link Partner Ability (Base Page)

Bit	Name	Description	Mode	Default
15	NEXT PAGE	1 = additional next page will follow	RO	0
		0 = last page		
14	ACKNOWLEDGE	1 = successfully received link partner's link code word	RO	0
		0 = not successfully received link partner's link code word		
13	REMOTE FAULT	1 = remote fault condition	RO	0
		0 = no remote fault condition		
12:11	RESERVED	Ignore on read	RO	0
10	PAUSE OPERATION	1 = pause operation is supported by remote MAC	RO	0
		0 = pause operation is not supported by remote MAC		
9	100BASE-T4	1 = 100BASE-T4 able	RO	0
		0 = no 100BASE-T4 ability		
8	100BASE-TX FULL DUPLEX	1 = 100BASE-TX with full duplex 0 = no 100BASE-TX full duplex ability	RO	0
7	100BASE-TX	1 = 100BASE-TX able	RO	0
		0 = no 100BASE-TX ability		
6	10BASE-T FULL	1 = 10Mbps with full duplex	RO	0
	DUPLEX	0 = no 10Mbps with full duplex ability		
5	10BASE-T	1 = 10Mbps able	RO	0
		0 = no 10Mbps ability		
4:0	SELECTOR FIELD	00001 : IEEE Std. 802.3	RO	00001

Bit	Name	Description	Mode	Default
15	NEXT PAGE	1 = additional next page will follow	RO	0
		0 = last page		
14	ACKNOWLEDGE	1 = successfully received link partner's link code word	RO	0
		0 = not successfully received link partner's link code word		
13	MESSAGE PAGE	0 = unformatted page 1 = message page	RO	0
12	ACKNOWLEDGE 2		RO	0
11	TOGGLE	0 = previous value of the transmitted link code word equaled logic one.	RO	0
		1 = previous value of the transmitted link code word equaled logic zero.		
10:0	MESSAGE/ UNFORMAT	11 bit code word received from link partner	RO	All 0
	TED CODE FIELD			

5.6.7 Register PHY.5 - Auto-Negotiation Link Partner Ability (Next Page)

5.6.8 Register PHY.6 - Auto-Negotiation Expansion

Bit	Name	Description	Mode	Default
15:5	RESERVED	Ignore on read	RO	0
4	PARALLEL DETECTION FAULT	1 = fault has been detected0 = no fault has been detected	RO/LH	0
3	LINK PARTNER NEXT PAGE ABLE	1 = link partner is next page able0 = link partner is not next page able	RO	0
2	NEXT PAGE ABLE	1 =local device is next page able0 = local device is not next page able	RO	1
1	PAGE RECEIVED	1 = a new page has been received 0 = a new page has not been received	RO/LH	0
0	LINK PARTNER AUTO- NEGOTIATION ABLE	 1 = link partner is auto- negotiation able 0 = link partner is not auto- negotiation able 	RO	0

Bit	Name	Description	Mode	Default
15	NEXT PAGE	1 = next page exists	RW	0
		0 = next page does not exist		
14	RESERVED	Write as "0", ignore on read	RO	0
13	MESSAGE PAGE	1 = message page	RW	1
		0 = unformatted page		
12	ACKNOWLEDGE2	0 = cannot comply with message	RW	0
		1 = will comply with message		
11	TOGGLE	1 = previous value equaled logic zero	RO	0
		0 = previous value equaled logic one		
10:0	MESSAGE/ UNFORMATTED CODE	11 bit code word to be transmitted to link partner	RW	0x001

5.6.9 Register PHY.7 - Auto-Negotiation Next Page Transmit

5.6.10 Register PHY.16 - Silicon Revision

Bit	Name	Description	Mode	Default
15:10	RESERVED	Ignore on read	RO	0
9:6	SILICON REVISION	Four bit silicon revision identifier	RO	0001
5:0	RESERVED	Ignore on read	RO	0

Bit	Name	Description	Mode	Default
15	RESERVED	Write as 0; ignore on read.	RW	0
14	FASTRIP	10BASE-T fast mode:	RW,	0
		0 = normal operation	NASR	
		1 = activates PHYT_10 test mode		
		Note: this bit can be used for simulation		
13	EDPWRDOWN	Enable the energy detect power- down mode:	RW	0
		0 = energy detect power-down is disabled		
		1 = energy detect power-down is enabled		
12	RESERVED	Write as 0; ignore on read.	RW	0
11	LOWSQEN	Low squelch signal	RW	0
		0 = imply a higher threshold (less sensitive)		
		1 = imply a lower threshold (more sensitive)		
10	RESERVED	Write as 0; ignore on read.	RW	0
9	FARLOOP BACK	Remote loopback enable All the received packets are sent back simultaneously (in 100BASE-TX/FX only).	RW	0
8	FASTEST	Auto-negotiation test mode 0 = normal operation	RW	0
		1 = activates test mode		
		Note: This bit can be used for simulation. In this mode, expanded time of S/W		
		reset becomes shorter,too.		
7	AUTOMDIX_EN	AutoMDIX enable bit	RW	Strap
		1 = Auto-detect MDI/MDIX mode		option
		0 = Manual set of MDI/MDIX mode		
		According to bit MDI mode (Register PHY.17.6). AutoMDIX is disabled in FX Mode.		
6	MDI MODE	MDI/MDIX mode control/status 1 = MDIX mode 0 = MDI mode When AutoMDIX_en (17.7) is disclored this bit is used for	RW	0
		disabled, this bit is used for manual control of MDI/MDIX mode. If AutoMDIX_en (Bit 17.7) is		
		enabled it shows the status and		

5.6.11 Register PHY.17 - Mode Control/Status

		will not be written to		
5	RESERVED	Write as 0, ignore on read	RW	0
4	DCD_PAT_GEN	When in test mode,	RW	0
		1 = Enables DCD measuring pattern generation		
3	RESERVED	Write as 0, ignore on read	RW	0
2	FORCE GOOD LINK	1 = Force 100BASE-X link active	RW	0
	STATUS	0 = normal operation		
		Note: this bit should be set only testing		
1	ENERGYON	Indicates whether energy is detected on the line. If no valid energy is detected within 256ms, this bit goes to 0.	RO	0
0	RESERVED	Write as 0, ignore on read	RW	0

Bit	Name	Description	Mode	Default
15:11	Reserved	Write as 0, ignore on read	RW NASR	0
10	FX_MODE	Enable 100BASE-FX mode 1 = FX mode enable When PHYMODE should be set to "0011" or "0010" only.	RW NASR	Strap option
9:	Reserved	Write as "0". Ignore on read	RW	0
8:5	PHYMODE	PHY mode of operation. Is set according to strap pin setting after reset. 0000: 10BT, HD, no autonegotiation 0001: 10BT, FD, no autonegotiation 0010: 100BT, HD, no autonegotiation 0011: 100BT, FD, no autonegotiation 0100: 100BT, HD advertised, autonegotiation 0101: 100BT, HD advertised, autonegotiation 0110: Reserved 0111: All speeds, FD or HD, Autoneg enabled 1000: All speeds, Forced Full duplex, 1100: All speeds, HD in parallel detect, 1111: Loopback	RW NASR	Indirect Strap option
4:3	PHY_ADD_DEV	PHY address upper two bits The PHY address is used to address the whole device and for the initialization of the Cipher (Scrambler) key.	RW NASR	Strap option
2:0	PHY_ADD_MOD	PHY address lower three bits The PHY address is used to address the PHY and for the initialization of the Cipher (Scrambler) key.	RW NASR	000

5.6.12 Register PHY.18 - Special Modes

5.6.13 Register PHY.19 - Elastic Buffer Status register (Loopback Mode only)

Bit	Name	Description	Mode	Default
15:8	reserved	Ignore on read	RO	0

7	T_EL_BUF_OVF	Transmitter elastic overflow	RO/LH	0
6	T_EL_BUF_UDF	Transmitter elastic underflow	RO/LH	0
5	R_EL_BUF_OVF	Receiver elastic overflow	RO/LH	0
4	R_EL_BUF_UDF	Receiver elastic underflow	RO/LH	0
3:0	reserved	Ignore on read	RO	0

5.6.14 Register PHY.20 – Reserved

Bit	Name	Description	Mode	Default
15:0	Reserved	Ignore on read	RW	0

5.6.15 Register PHY.21 – Reserved

Bit	Name	Description	Mode	Default
15:0	Reserved	Ignore on read	RO	0

5.6.16 Register PHY.22 – Reserved (TSTREAD2 / TSTWRT)

Bit	Name	Description	Mode	Default
15:0	Reserved	Ignore on read	RW	0

Bit	Name	Description	Mode	Default
15	BER_LNK_OK	Link quality indication – indicates state of link monitor FSM.	RO	0
		'0' – FSM is not in 'Good Link' state		
		'1' – indicates FSM in 'Good Link' state		
		Will go high as soon as the counter is below the trigger level after start up. Can be used to detect reliably link up after start up.		
14	BER_CNT_ LNK_EN	1: A trigger on the BER or on the FEQ monitor will cause a link down	RW	1
		0: A trigger on the BER/FEQ will just cause the state machine to leave "Good Link" state.		
13:11	BER_CNT_TRIG	Trigger level for BER Count to define link up/down	RW	2
		counter in 1 * 2 ^(n -1) errors		
		0: >0 errors will trigger		
		1: >1 error will trigger		
		2: >2 errors will trigger		
		3: >4 errors will trigger		
		4: >8 errors will trigger		
		5: >16 errors will trigger		
		6: >32 errors will trigger		
40.7		7: >64 errors will trigger		4 (0.04
10:7	BER_WINDOW	Length of time for BER Counter in 0.005 * 2 ⁿ ms	RW	1 (0.01 ms)
		0: BER Counter functions disabled		
		1: 0.01 ms		
		2: 0.02 ms		
		3: 0.04 ms		
		 14 · 91 02 ma		
		14 : 81.92 ms 15: unlimited run Writing a 0		
		resets the BER counter and restarts the time window.		
6:0	BER-COUNT	Counter for bit errors, shows the amount of errors in the past time window or every 100 µs if BER_WINDOW = 15. Writing 00 resets the RER counter and	RO	0x0
		00 resets the BER counter and restarts the time window.		

Bit	Name	Description	Mode	Default
15:0	FEQ_DELTA	Minimum change of value compared to the reference value latched when the monitor is enabled, which will trigger the FEQ interrupt and link down. If the FEQ value differs by more than that value, the link goes down, if the BER_CNT_LNK_EN is 1 and the BER Monitor is enabled, The interrupt is triggered if enabled. 'FFFF' – will disable monitor and cause the reference value to be relatched continuously 'FFFE' – will not change the FEQ_DELTA value but enable to read out the current reference value, when FEQ_VAL is read, instead of the current value. Writing any other value will disable this mode.	Y	0xFFFF
15:0	FEQ_VAL	If FEQ_DELTA == FFFE Bit 17:2 of the reference value. Else Bits 17:2 of the current FEQ2 coefficient.	RO	

5.6.18 Register PHY.24 – FEQ monitor Register

Bit	Name	Description	Mode	Default
15	Reserved	Write with 0; ignore on read	RW	0
14	DIAG_INIT	When set to '1' , create one cycle pulse - init TDR test	RW (self cleared)	0
13:8	ADC_MAX_ VALUE	Shows the signed maximum/minimum value of the reflected wave. After the TDR process has been started the PHY will send out a trigger pulse and wait for the reflected wave for 255 clock cycles of 8 ns. After the time has elapsed the DIAG_DONE bit is set. The ADC MAX_VALUE will indicate the maximum of the received wave if positive or the minimum if negative.	R	0
13:8	ADC_Trigger	Threshold for pulse detection. – should be 0.5V / 00111 for cable length detection or 1.5V / 01111 for no cable detection. MSB should always be 0.	W	0
7	DIAG_DONE	Indicates that the counter has been stopped either by counter overrun or by a ADC trigger. Cleared after reading	RO	0
6	DIAG_POL	0: Counter stopped by positive trigger level 1: Counter stopped by negative trigger level	RO	0
5	DIAG_SEL_LINE	1: perform diagnosis on TX line 0: perform diagnosis on RX line	RW	0
4:0	PW_DIAG	Pulse width for Diagnosis 0: Diagnosis turned off Other: Pulse width = value*8ns	RW	0

5.6.19 Register PHY.25 – Diagnosis Control/Status Register

Bit	Name	Description	Mode	Default
15:8	CNT_WINDOW	Minimum time after which the counter stops. Used to filter out any pulses or reflections generated from the local connector or similar sources.	RW	0
		One tick equals approximately 0.8m		
		Indicates the location of the received signal which exceeded the threshold ;		
		When DIAG_INIT is set to '1' - initiated by HW to '000000' .		
		'1111111' – indicates no reflection.		
7:0	DIAGCNT	Any value different from zero indicates a valid measurement.	RO	0
		When no cable is present, the value will be '000001' (assuming threshold		
		is set to the correct value).		
		One counter tick equals approximately 0.8 m		

5.6.20 Register PHY.26 – Diagnosis Counter Register

5.6.21 Register PHY.27 - Special Control/Status Indications

Bit	Name	Description	Mode	Default
15:13	Reserved	Write as "000". Ignore on read	RW	0
12	SWRST_FAST	SW reset counter testing	RW	0
		1 = accelerates SW reset counter from 256us to 10 us for production testing.		
11	SQEOFF	Disable the SQE test(Heartbeat)	RW	0
		1 = SQE test is disabled	NASR	
		0 = SQE test is enabled.		
		Set '1' when repeater mode		
10:6	Reserved	Write as 0, ignore on read.	RW	0
5	FEFIEN	Far End fault indication enable	RW	Strap
		1 = FEFI generation and detection are enabled		option
		0 = FEFI generation and detection are disabled (default when FXMODE configuration input is High during reset)		
4	XPOL	Polarity state of the 10BASE-T	RO	0
		1 = Reversed polarity		
		0 = normal polarity		
3:0	Reserved	Ignore on read.	RO	0001

5.6.22 Register PHY.28 - Reserved

Do not write or read this register

5.6.23 Register PHY.29 - Interrupt Source Flags

Bit	Name	Description	Mode	Default
15:11	Reserved	Ignore on Read		0
10	INT10	BER counter trigger	RO	0
9	INT9	FEQ trigger	RO	0
8	Reserved	Ignore on read	RO	0
7	INT7	1 = ENERGYON generated	RO	0
6	INT6	1 = auto-negotiation complete	RO	0
5	INT5	1 = remote fault detected	RO	0
4	INT4	1 = link down	RO	0
3	INT3	1 = auto-negotiation Last Page acknowledge	RO	0
2	INT2	1 = parallel detection fault	RO	0
1	INT1	1 = auto-negotiation page received	RO	0
0	Reserved		RO	0

5.6.24 Register PHY.30 - Interrupt Enable

Bit	Name	Description	Mode	Default
15.11	Reserved	Write as 0, Ignore on read	RO	0
10:9	Mask Bits	1 = interrupt source is enabled	RW	0
		0 = interrupt source is masked		
8	Reserved	Write as 0, Ignore on read	RO	0
7:0	Mask Bits	1 = interrupt source is enabled	RW	0
		0 = interrupt source is masked		

Bit	Name	Description	Mode	Default
15:14	Reserved	Write as 0. ignore on read.	RW	0
13	Reserved	Write as 0. ignore on read.	RW	0
12	AUTODONE	Auto-negotiation done indication	RO	0
		1 = auto-negotiation is done		
		0 = auto-negotiation is not done or		
		disabled (or not active)		
11:7	Reserved	Write as "00000". Ignore on read	RW	0
6	ENABLE 4B5B	1 = Enable 4B/5B Encoding/Decoding.	RW	1
	MII MODE	MAC interface must be configured in		
		0 = Bypass encoder/decoder		
5	Reserved	Write as 0, ignore on Read.	RW	0
4:2	SPEED	HCDSPEED value:	RO	000
	INDICATION	001 = 10Mbps half-duplex		
		101 = 10Mbps full-duplex		
		010 = 100BASE-TX half-duplex		
		110 = 100BASE-TX full-duplex		
1	RX_DV_J2T	'0' – rx_dv rises on "JK" delimiter falls on "TR" delimiter	RW	0
		'1' – J_ONLY_MODE, rx_dv rises on "J" delimiter falls on "T" delimiter		
0	SCRAMBLE DISABLE	1 = disable data scrambling0 = enable data scrambling	RW	0

5.6.25 Register PHY.31 - PHY Special Control/Status

External Components

6.1 Clock

The devices can be operated on an external 25 MHz clock in MII mode or an external 50 MHz clock in RMII mode. In addition for MII mode it contains an internal oscillator which may generate the required 25 MHz clock using an external 25 MHz crystal connected to the pins XCLK0 and XCLK1.

6.2 Internal Switching Regulator

The device contains an internal switching regulator which generates the internal 1.6V for the PHY from the external 3.3V power supply. It can be disabled by tying REGOF to 3.3V and connecting the pins mentioned below directly to a 1.6V power supply. Otherwise the REGOFF pin must be connected to GND.

Pin name	Pin number	Description
VDD15	30, 52	1.5V Digital VDD
VDDAPLL	11	Analog 1.5V power supply for PLL
P1VDDMEDIA,	0.40	
P0VDDMEDIA	3, 19	Analog 1.5V power supply for PHY

6.2.1 Power-Up Sequence

In case the internal voltage regulator is not used and the 1.5V supply is supplied form an external source a special power up sequence is not required. However both power supplies must be stable within 100ms.

Support of IEEE1588 (uPD60621A only)

Renesas Electronics' Ethernet PHY implements the precision time protocol (PTP) according to IEEE1588 to support the requirements of higher precision and faster production.

The PHY supports IEEE1588 V1 and V2 including transparent clock mode and one-step or two-step mode. Furthermore the PHY can timestamp incoming messages with a resolution of 1ns.

The following clock modes are supported:

- Ordinary clock
- Boundary clock
- Transparent clock

The PHY can timestamp events on any of the GPIO pins. Based on the internal synchronized clock it may generate up to three output signals which may generate single pulses or repetitive pulses with programmable pulse length. It is also possible to output a Pulse-Per-Second (PPS) signal. Resolution for the event time-stamping unit and the pulse generation unit is 8ns. Reception of a PTP message, transmission of a PTP message, an event on the event unit and the pulse generator can generate an interrupt.

7.1 IEEE1588

The basic purpose of IEEE1588 is to synchronize clocks in different nodes and have them run at the same phase and frequency. One clock in a node is selected as the master clock and all other clocks (called "slave clocks") in the system are synchronized to the master clock. Special PTP frames are exchanged between the nodes to distribute the time value of the master clock and measure the travel times. Based on the master clock time value and the travel times of the slave clocks can be adjusted and synchronized.

To measure the travel time, timestamps can be taken when frames leave the PHY or when they are received by the PHY. The more precise these timestamps, the more precise the calculations of the travel times are, and the better the synchronization of the clocks. For the transmit frames the data is always sent at the clock edge of the 125 MHz clock and therefore the time-stamping logic, which is running at the same clock as the transmit logic, has an optimal accuracy. However, receive frames can arrive at any time within the 125MHz/8ns clock period so the receive time-stamping logic has an error of up to 8ns depending on the actual arrival time of the data within the clock period.

To optimize the reception of the incoming data, the receive DSP continuously shifts the time at which the data is sampled. This is done by using one of the phases of the 125MHz clock from the PLL. Thus the selected phase of the PLL is a precise indicator for the exact sampling time at which the incoming data arrived at the PHY. As each of these phases represents a 1ns timeslot it can be used to define the exact arrival time within the 8ns clock period. This data is also stored together with the timestamp.

There are two ways in which timestamps can be transmitted between the nodes. One way is called "One Step". In this mode the timestamps for transmit frames are directly embedded in the telegram itself.. This approach reduces the software overhead at the expense of increased latency. The other method is called a "Two Step" approach. In this mode the timestamps are taken at the time of transmit, but sent afterward in a "follow up" telegram. This method provides lower latency but generates more traffic and requires more software overhead.

7.2 Register access to PTP

Many registers within the PTP block are 80 bits or 48 bits wide to control the whole width of the time representation. To read or write these registers they must be accessed 5 times (5 * 16 bits = 80 bits) or 3 times for the 48 bit wide registers in a row. Unless otherwise noted accesses are done with the least significant word (bits 15:0) first. The values are latched internally after the last value has been written.

7.3 1588 Clock Control

The clock keeps the time which is to be synchronized between the different nodes and it can bedirectly set, accelerated, decelerated, or adjusted over a defined period.

The accessible clock is 80 bits wide with the upper 48 bits counting the seconds and the lower 32 bit counting the nanoseconds. Thus the ns clock overflow is not at 0xFFFFFFF but at 10^9 ns (0x3B9ACA00). Internally, the clock also maintains 30 extra bits of sub-nanosecond resolution to handle drift correction.

As the clock is running at 125 MHz, the clock value is increased by 8ns with every clock cycle. This value can be adjusted to speed up or slow down the clock. So, although the clock is still incremented based on the 125 MHz clock, it can be fine-tuned so that the value reflects real time.

To access the clock, read the register five times to retrieve 16 bits each time.

7.3.1 CLOCK_STATUS Register 6.0

Bit	Name	Description	Mode	Default
14	EN_OFFSET_ CORR	 Enable offset correction Disable offset correction Automatically cleared after the offset correction is finished. 	RW	0
13	OFFSET_RUN	1: offset correction in process 0: offset correction done	R	0
12	EN_DRIFT_C ORR	1: enable drift correction 0: disable drift correction	R/W	0
11:9	CLOCK_READ _POS	Value of pointer pointing to the CLOCK_READ register. If 0 next read is from least significant word of clock latch.	R	0
8:6	CLOCK_WRIT E_POS	Value of pointer pointing to the CLOCK_WRITE register. If 0 next write goes toleast significant word of clock latch.	R	0
5:3	OFFSET_WRI TE_POS	Value of pointer pointing to the CLOCK_OFFSET register. If 0 next write goes toleast significant word off offset latch.	R	0
2:0	DRIFT_WRITE _POS	Value of pointer pointing to the CLOCK_DRIFT register. If 0 next write goes toleast significant word off offset latch.	R	0

7.3.2 CLOCK_READ Register 6.1

The CLOCK_READ register is used to read the actual value of the clock. It must be accessed five consecutive times to read the complete data. Any read to another register will reset the internal pointer and the next read will then again read the highest word. All accesses are done with the most significant word first.

Bit	Name	Description	Mode	Default
79:0	CLOCK_READ	Clock read register.	R	0

7.3.3 CLOCK_WRITE Register 6.2

This register can be used to set the clock to a value. It must be written five consecutive times. The data is latched into the clock when the 5th word is written. All accesses are done with the most significant word first.

Bits	Name	Description	Mode	Default
79:0	CLOCK_WRITE	Clock write register	W	

7.3.4 CLOCK_OFFSET Register 6.3

This register is used to adjust the clock to a new value. To avoid sudden jumps the offset is not added all at once; instead the "OFFSET" is added/subtracted to the clock value after "OFFSET_INTERVAL" for "OFFSET_COR_COUNT" times. Thus the clock is slowly adjusted to the new value value and jumps are avoided.

All values are latched internally when the offset correction is stopped either when it is finished or if it is manually disabled and reenabled with the EN_OFFSET_CORR register bit.

Bit	Name	Description	Mode	Default
47	OFFSET_SIGN	Sign,	W	0
		1: Subtract offset		
		0: Add offset		
46:44	OFFSET	Increase value in ns	W	0
43	Reserved	Write as 0	W	0
42:32	OFFSET_INTERVAL	Interval in steps	W	0
		0: No interval		
		1: No interval		
		2: add every 2 nd step		
		3: add every 3 rd step		
29:0	OFFSET_COR_COUNT	Count, how often the "step" value is added	W	0

7.3.5 CLOCK_DRIFT Register 6.4

This register contains a correction value, which can be used to continuously correct the clock value to compensate for oscillator drift. The value in the DELTA_VAL register is summed up every clock cycle (125MHz), as soon as the sum has exceeded 0x3fffffff a value of 1 an additional ns is depending on the DELTA_SIGN bit added/subtracted from the clock value. This register is latched internally when the EN_DRIFT_CORR register bit is set.

The value for the DELTA_VAL register is calculated based on the following formula:

$$DELTA_VAL = \frac{drift \cdot 10^3 \cdot 2^{30}}{125[MHz]/(1 \pm drift)}$$

where:

drift[s/s] is correction value for clock \pm : use + when DELTA_SIGN = 1, use - when DELTA_SIGN = 0

Bit	Name	Description	Mode	Default
31	DELTA_SIGN	Sign of the delta value.	RW	0
		1: Clock is slowed down		
		0: Clock is speeded up		
30	Reserved	Ignore on read, write as 0	RW	0
29:0	DELTA_VAL	Delta in fractions of ns, by which the increment value is corrected. So bit 29 represents $\frac{1}{2}$ ns, bit 28 1/4 th ns, bit 27 1/8 th ns, etc.	RW	0

7.4 Frame Handling Unit

The following picture shows the block diagram for the frame handling unit. The incoming telegram is time stamped as it arrives and the timestamp is then stored together with other related information in the timestamp SRAM. This data enables software to handle two-step PTP. When an event happens -- either due to transmission or reception of a PTP message -- an interrupt can be generated.

7.4.1 One step mode

For one-step PTP the timestamp is stored in the outgoing timestamp latch and is then integrated into the timestamp field of the frame before it is sent. The CRC is also corrected accordingly. Note that for one-step mode the latency through the PHY is increased as the insertion of the time stamp in the frame requires some processing of the frame.

7.4.2 Two step mode

For two-step PTP the timestamp of the Synch telegram is stored in the outgoing timestamp latch and is not integrated into the timestamp field of the frame before it is sent. It then needs to be read by software and is transmitted to the receiver in a separate FollowUp telegram.

7.4.3 Transparent Clock Mode

Transparent Clock is used to improve the accuracy of the time synchronization in long networks by eliminating the uncertainty it takes for synch telegrams to pass through switches. Depending on the load of the switch the residence time of a synch telegram in the switch varies. By measuring the time a synch frame stays in the switch and writing this value into the frame the accuracy is greatly improved as the slave clock can use this value to adjust its calculation of the master clock value.

To support Transparent Clock mode in hardware the PHY modifies the respective telegrams. When a PTP synch telegram is received in transparent clock mode, the lower 2(sec)+32(ns) bits of the timestamp value taken at reception are converted to ns and subtracted from the correction field. When a PTP telegram is sent, the transmit timestamp lower 2(sec)+32 (ns) bits are converted to ns and added to the correction field. Thus the correction field is incremented by the difference between transmit and reception time and the correction field correctly updated even if a telegram is received on one PHY and transmitted on the other. This handling can be enabled separately for each PHY and for transmit and receive.

The Transparent Clock function can only be used in one step mode. In two step mode the Transparent Clock function is not required but can be handled by using one of the Ordinary Clock modes for time stamping and handling the protocol in software based on the FollowUp telegrams. However even if the system typically uses two step mode it is still possible to use the one step mode setting.

For End to End Transparent clock the time a synch telegram takes to pass through the node is measured and either stored in the correction field of the telegram or the correction field of the FollowUp telegram. The correction field at the slave then contains the time that the telegram spend in the different switches etc. which act as a transparent clock. The PTP stack can use this value to calculate the raw line delay and eliminate the jitter that comes from the varying residence times in the switchesPeer to Peer Transparent Clock

For peer-to-peer transparent clock each node measures the delay to all surrounding nodes using the PdelayReq and Pdelay_Resp mechanism. Thus all line delays in a network are known. Each node through which a Synch message passes adds the own residence time plus the line delay of the incoming link to the correction field. When this synch telegram arrives at the slave node it contains the complete line delay plus the residence times in its correction field except for the very last link. The delay on the last link is known to the slave and

thus the complete line delay is known. Although this method is more complex than the End to end transparent clock it offers much faster reconfiguration in case of line breaks.

7.4.4 Timestamp Status Register 6.6

Bit	Name	Description	Mode	Default
15:12	Reserved write as 0, ignore on read		RW	
11	BUF_EMPTY_TX_PHY1	Buffer empty for TX bufferPHY1	RW	0
10	BUF_EMPTY_RX_PHY1	Buffer empty for RX buffer PHY1	RW	0
9	BUF_EMPTY_TX_PHY0	Buffer empty for TX buffer PHY0	RW	0
8	BUF_EMPTY_RX_PHY0	Buffer empty for RX buffer PHY0	RW	0
7:4	Reserved write as 0, ignore on read		RW	
3	OVERFLOW_BUF_TX_PHY1	Buffer overflow for TX buffer PHY1	RW	0
2	OVERFLOW_BUF_RX_PHY1	Buffer overflow for RX buffer PHY1	RW	0
1	OVERFLOW_BUF_TX_PHY0	Buffer overflow for TX buffer PHY0	RW	0
0	OVERFLOW_BUF_RX_PHY0	Buffer overflow for RX buffer PHY0	RW	0

The Timestamp Status register shows the status for each buffer:

7.4.5 Timestamp Config Register 6.7

The Timestamp Configuration register is used to configure the framer unit and is used to select which register of the timestamp memory is read.

Bit	Name	Description	Mode	Default
15:8		Reserved, write as 0, ignore on read	RW	0
7	DISREGARD_O LDEST_TIMES TAMP	0: Do not overwrite timestamp if buffer overruns / newest timestamp is lost	RW	0
		1: Overwrite oldest timestamp if buffer overruns / oldest timestamp is lost		
6:4	TIMESTAMP_ SELECT	Address at which timestamp buffer is read for the following access to the TIMESTAMP_LINE_EVENT register.	RW	0
		001: Next read will get TX timestamp on PHY0		
		000: Next read will get RX timestamp on PHY0		
		011: Next read will get TX timestamp on PHY1		
		010: Next read will get RX timestamp on PHY1		
		Others: Undefined		
3:2		Reserved, ignore on read, write as 0	RW	
1	TS_EN_PHY1	Enable timestamping for PHY1	RW	0
0	TS_EN_PHY0	Enable timestamping for PHY0	RW	0

7.4.1 TIMESTAMP_LINE_EVENT Register 6.8

The TIMESTAMP_LINE_EVENT register gives access to the timestamp memory which stores the time stamps generated by the framer logic when a PTP frame was transmitted or received. It stores transmit or receive timestamps separately for TX and RX frames. The TIMESTAMP_SELECT bits in the TIMESTAMP_CONGIGURATION register define if the TX or the RX buffer is accessed. The timestamp memory can hold up to four timestamps for RX and four timestamps for TX, A read will always retrieve the oldest valid dataset.

A timestamp set is combined of the timestamp itself, the source port identity and the sequence ID stored in a 192 bit wide register. This is organized as shown below:

Bit	Name	Description	Mode	Default
191:176	MESSAGE_ID	Message Type of the received message	RO	Undefined
		001: PTP Sync message		
		010: PDelayReq message		
		011: PDelayResp message		
		100 : Delay Req. message		
175:96	TIMESTAMP	Timestamp of the related event described in bits 95:0.	RO	Undefined
		Bits 175:128: seconds		
		Pits 127:96: ns		
95:16	SOURCEPORTIDENTITY	sourcePortIdentity extracted from the PTP telegram . If TS_ALL_FRAMES_nn is set and a NonPTPFrame is received this field is empty.	RO	Undefined
15:0	SEQUENCE_ID	Rolling number assigned by sending port and extracted from telegram.	RO	Undefined
		If TS_ALL_FRAMES is set, and also normal non-PTP telegrams are timestamped there may be no SEQUENCE_ID in the telegram, thus the SEQUENCE_ID is generated internally starting with 0.		

To read a data set the timestamp memory register has to be accessed 12 times. The least significant word is read first. The TIMESTAMP_SELECT register must be written prior to each individual access to the timestamp memory register.

7.4.2 PTP_CONFIG_n Register 6.9 / 6.13

The PTP Config register is used to configure the framer unit. There is one PTP config register for each PHY. The config register for PHY 0 is located at address 6.9, for PHY1 at 6.13.

Bit	Name	Description	Mode	Default
15:12		Reserved, ignore on read, write as 0	RW	
11	TS_ALL_ FRAMES_RX	 Enable timestamping for all received frames. The IPV4 and IPV6 filter bits are still used. Disable timestamping for all 	RW	0
10	TS_ALL_ FRAMES_TX	received frames 1: Enable timestamping for all transmitted frames. The IPV4 and IPV6 filter bits are still used. 0: Disable timestamping for all transmitted frames.	RW	0
9	L2	1: Timestamp all Layer 2 frames 0: Do not timestamp layer 2 frames	RW	0
8	IPV4	1: Timestamp frames containing IPV4 frames 0: Do not timestamp IPV4 frames	RW	0
7	IPV6	1: Timestamp frames containing IPV6 frames 0: Do not timestamp IPV6 frames	RW	0
6	ONE_STEP	1: Enable one step mode for the PHY. In this mode the taken transmit timestamp is integrated in the frame on the fly and the CRC corrected. 0: Selct two step mode, the transmit timestamp is not integrated in the outgoing frame.	RW	0
5:4	P2P_DELAY_ WRITE_POS	Current position of the PORT_DELAY_PHY_n register	R	0
3:2	MODE_TX	Set the PTP mode for TX 00: BC_PTP_V1 (boundary clock mode) 01: BC_PTP_V2 (boundary clock mode) 10: TC_E2E_PTP_V2 (transparent clock end-to-end mode) 11: TC_P2P_PTP_V2	RW	1

RENESAS

		(transparent clock peer-to- peer mode)		
1:0	MODE_RX	Set the PTP mode for RX 00: BC_PTP_V1 (boundary clock mode) 01: BC_PTP_V2 (boundary clock mode) 10: TC_E2E_PTP_V2 (transparent clock endto-end mode) 11: TC_P2P_PTP_V2 (transparent clock peer-to- peer mode)	RW	0

The following table gives an overview on how the different telegram types are handled depending on the configuration. An empty field means that nothing is done.

	OC/BC V1	OC/BC V1	OC/BC V2	OC/BC V2	TC E2E	TC P2P
Frame type	One Step	Two Step	E2E/P2P One Step	E2E/P2P Two Step	One Step	One Step
Sync	Store TS	Copy TS to TS field	Copy TS to TS field	Store TS	Add TS to Cor. field	Add TS to Cor. field
FollowUp	-	-				
DelayReq	Store TS	Store TS	Store TS	Store TS	Add TS to Cor. field	
DelayResp	-	-				
PeerDelayReq	-	-	Store TS	Store TS	Add TS to Cor. field	Store TS
PeerDelayResp	-	-	Add TS to TS field	Store TS	Add TS to Cor. field	Add TS to Cor. field
PeerDelayResp FollowUp	-	-				

TX Path:

RX Path:

	OC/BC V1	OC/BC V1	OC/BC V2	OC/BC V2	TC E2E	TC P2P
Frame type	One Step	Two Step	E2E/P2P One Step	E2E/P2P Two Step	One Step	One Step
Sync	Store TS	Store TS	Store TS	Store TS	Sub TS from Cor. field,	Sub TS from Cor. Field
					Store TS	Store TS
FollowUp	-	-				
DelayReq	Store TS	Store TS	Store TS	Store TS	Sub TS from Cor. field,	
DelayResp	-	-				
PeerDelayReq	-	-	Sub TS from Cor. field	Store TS	Sub TS from Cor. field,	Sub TS from Cor. field
PeerDelayResp	-	-	Store TS	Store TS	Sub TS from Cor. field	Store TS
PeerDelayResp FollowUp	-	-				

7.4.3 PHY_DELAY_TX_n Register 6.11 / 6.15

The PORT_DELAY_PORT_n register is used to adjust the timestamp by the latency of the PHY's TX path. This is by default set to 0 but may be corrected to also compensate for delays caused be the transformer. There is one register for each PHY. PTP assumes that the line delay including the PHY latency in both directions is identical, this may not be the case if PHYs from different vendors are used in a network. In this case the PHY_DELAY_TX_PORT and PHY_DELAY_RX_PORT values should be set. This value should be set to 40.

Bit	Name	Description	Mode	Default
15:0	PHY_DELAY_ TX_PORT_n	Value in ns by which timestamps taken for the PHYn on the TX side are corrected.	RW	0

7.4.4 PHY_DELAY_RX_n Register 6.12 / 6.16

The PORT_DELAY_PORT_n register is used to adjust the timestamp by the latency of the PHYs RX path. This is by default set to the actual value but may be corrected to also compensate for delays caused be the transformer. Typically this value should be 190 if Fast-JK mode is used, otherwise 230.

Bit	Name	Description	Mode	Default
15:0	PHY_DELAY_ RX_PORT_n	Value in ns by which timestamps taken for the PHYn on the RX side are corrected.	RW	0

7.5 Input Capture Unit

The input capture unit can be used to timestamp events on any of the GPIO pins. The timestamps are stored in a special memory area which can be accessed through the SMI via dedicated registers. The memory is configured as a FIFO structure; timestamps are written in consecutive addresses. To read out certain addresses can be selected. Up to 64 timestamps can be stored.

Each GPIO has its own edge detection unit which can be configured to react on a rising edge, falling edge, or both. If an event occurs, the value of the timer is latchedlocally. Each pin has its own counter to count the events that have occurred, The value of this counter is stored as a "rolling number" together with the timestamp. Thus it can be easily determined if an event has been missed by looking for gaps in the rolling number when the timestamp is read. The input capture unit also stores the GPIO number at which the event occurred and the edge that triggered the event together with the timestamp data. Each detection unit can store up to one event which needs to be stored before the next event occurs.

The input capture unit needs 4 clock cycles of 125 MHz to store an event, thus the maximum frequency at which the input edges can be captured is 31.25 MHz. If multiple events happen simultaneously they are stored in the order of the GPIO pin number, i.e. GPIO1 is stored before GPIO2. If a new event happens before the event is stored the old event data is lost. As the input capture unit is shared for all pins this frequency applies to all enabled pins together. In any case, the limiting factor for edges is the speed at which the data can be read through the SMI.

7.5.1 Input Event Control Register 7.12

Bit	Name	Description	Mode	Default
15	ALL_PTR_RES	Reset all pointers	WC	0
14		Reserved, ignore on read, write as 0	R	0
13	READ_WORD_NEXT	1: Reading next word, when accessing Read Register 0: No impact	RW	0
12	OVRRUN_ANY_GPIO	0: No overrun on any GPIO 1: One of the edge detection unit got a pulse before it could handle the previous one. This means that the frequency of pulses on the GPIO is too high.	RW	0
11	TIMEOUT_ANY_CHAN	0: No Timeout on any GPIO 1: An edge detection unit latched an event, but it could not be stored timely. This means that the frequency of all GPIO events together is too high.	RC	0
10	TIMESTAMP_ ENABLE	1: Enable time stamping unit 0: Disable time stamping unit	RW	0
9	TS_ OVWR_EN	 0: New timestamps can overwrite older ones when the buffer is full. 1: New timestamps are not stored if memory has not been read out (no overwrite) and then buffer is full 	RW	0
8	TS_RAM_ OVERFLOW	1: Timestamps were overwritten 0: Timestamps were not overwritten	R	0
6:0	TIMESTAMP_ WRITE_POS	Pointer to the timestamp for the next event (96 bit word pointer) incremented by the event manager after writing	R	0

The Input Event Control register is used to configure the input event unit.

7.5.2 Input Capture Pin Control register 7.8

The Input Capture Pin Control register is used to enable time-stamping for GPIO 0 to 7 and is used to configure the edge on which it should trigger.

Bit	Name	Description	Mode	Default
15:14	IN_CAP_GPIO7	00: Disable event timestamping for GPIO7	RW	0
		01: Timestamp on rising edge		
		10: Timestamp on falling edge		
		11: Timestamp on both edges		
13:12	IN_CAP_GPIO6	00: Disable event timestamping for GPIO6	RW	0
		01: Timestamp on rising edge		
		10: Timestamp on falling edge		
		11: Timestamp on both edges		
11:10	IN_CAP_GPIO5	00: Disable event timestamping for GPIO5	RW	0
		01: Timestamp on rising edge		
		10: Timestamp on falling edge		
		11: Timestamp on both edges		
9:8	IN_CAP_GPIO4	00: Disable event timestamping for GPIO4	RW	0
		01: Timestamp on rising edge		
		10: Timestamp on falling edge		
		11: Timestamp on both edges		
7:6	IN_CAP_GPIO3	00: Disable event timestamping for GPIO3	RW	0
		01: Timestamp on rising edge		
		10: Timestamp on falling edge		
		11: Timestamp on both edges		
5:4	IN_CAP_GPIO2	00: Disable event timestamping for GPIO2	RW	0
		01: Timestamp on rising edge		
		10: Timestamp on falling edge		
		11: Timestamp on both edges		
3:2	IN_CAP_GPIO1	00: Disable event timestamping for GPIO1	RW	0
		01: Timestamp on rising edge		
		10: Timestamp on falling edge		
		11: Timestamp on both edges		
1:0	IN_CAP_GPIO0	00: Disable event timestamping for GPIO0	RW	0
		01: Timestamp on rising edge		
		10: Timestamp on falling edge		
		11: Timestamp on both edges		

7.5.3 Input Capture Pin Control register 7.9

The Input Capture Pin Control register is used to enable timestamping GPIO 8 to 15and is used to configure the edge on which it should trigger.

Bit	Name	Description	Mode	Default
15:14	IN_CAP_GPIO15	00: Disable event timestamping for GPI015	RW	0
		01: Timestamp on rising edge		
		10: Timestamp on falling edge		
		11: Timestamp on both edges		
13:12	IN_CAP_GPIO14	00: Disable event timestamping for GPIO14	RW	0
		01: Timestamp on rising edge		
		10: Timestamp on falling edge		
		11: Timestamp on both edges		
11:10	IN_CAP_GPIO13	00: Disable event timestamping for GPIO13	RW	0
		01: Timestamp on rising edge		
		10: Timestamp on falling edge		
		11: Timestamp on both edges		
9:8	IN_CAP_GPIO12	00: Disable event timestamping for GPIO12	RW	0
		01: Timestamp on rising edge		
		10: Timestamp on falling edge		
		11: Timestamp on both edges		
7:6	IN_CAP_GPIO11	00: Disable event timestamping for GPIO11	RW	0
		01: Timestamp on rising edge		
		10: Timestamp on falling edge		
		11: Timestamp on both edges		
5:4	IN_CAP_GPIO10	00: Disable event timestamping for GPIO10	RW	0
		01: Timestamp on rising edge		
		10: Timestamp on falling edge		
		11: Timestamp on both edges		
3:2	IN_CAP_GPIO9	00: Disable event timestamping for GPIO9	RW	0
		01: Timestamp on rising edge		
		10: Timestamp on falling edge		
		11: Timestamp on both edges		
1:0	IN_CAP_GPIO8	00: Disable event timestamping for GPIO8	RW	0
		01: Timestamp on rising edge		
		10: Timestamp on falling edge		
		11: Timestamp on both edges		

7.5.4 Input Capture Pin Control register 7.10

The Input Capture Pin Control register is used to enable time-stamping for GPIO 16 to 19 and is used to configure the edge on which it should trigger.

Bit	Name	Description	Mode	Default
15:8		Reserved	RW	0
7:6	IN_CAP_GPIO19	00: Disable event timestamping for GPIO19	RW	0
		01: Timestamp on rising edge		
		10: Timestamp on falling edge		
		11: Timestamp on both edges		
5:4	IN_CAP_GPIO18	00: Disable event timestamping for GPIO18	RW	0
		01: Timestamp on rising edge		
		10: Timestamp on falling edge		
		11: Timestamp on both edges		
3:2	IN_CAP_GPIO17	00: Disable event timestamping for GPIO17	RW	0
		01: Timestamp on rising edge		
		10: Timestamp on falling edge		
		11: Timestamp on both edges		
1:0	IN_CAP_GPIO11	00: Disable event timestamping for GPIO16	RW	0
		01: Timestamp on rising edge		
		10: Timestamp on falling edge		
		11: Timestamp on both edges		

7.5.5 INPUT_EVENT_DATA_READ_WORD Register 7.15

The INPUT_EVENT_DATA_READ_WORD register gives access to the stored timestamps. To read the complete timestamp the register has to be accessed six times. The least significant word is read first. The location of the data is as follows:

Bit	Name	Description	Mode
95:16	TIMESTAMP	Timestamp of the related event described in bits 15:0.	R
15:14	BUFFER_	00: Timestamp buffer is empty	R
	STATUS	01: Next timestamp is available	
		10: Only two buffer for timestamp left	
		11: Buffer is full (immediate next read required or data will be lost)	
13	TIMESTAMP_ EDGE	1: Rising edge triggered the event	R
		0: Falling edge triggered the event	
12:8	TIMESTAMP_	GPIO number of the pin that	R
	GPIO	triggered the event	
		00000: GPIO0	
		00001: GPIO1	
		00010: GPIO2	
7	TIMER_ERROR	1: Timer overflow, the event has not been processed on time and the timestamp may be broken	R
		0: The timestamp is intact	
6	OVERRUN	1: An event was detected on the pin but could not be processed	R
		0: All events were processed on time	
5:0	TIMESTAMP_ NUMBER	Rolling number for events on that pin	R

It may not be required to read the complete timestamp since the first words usually do not change very often, so the PHY provides a direct access to the next timestamp: the INPUT_EVENT_DATA_READ_BLOCK register will always return the LSW of the next timestamp in memory.

To read a timestamp the INPUT_EVENT_DATA_BLOCK_READ is read once and will return bits 15:0 of the next timestamp data. Then the INPUT_EVENT_DATA_WORD_READ is read up to 5 times and will return bits 31:16, bits 47:32 and so on. To get bits 15:0 of the next timestamp, read the INPUT_EVENT_DATA_BLOCK_READ. It is not required to read the complete timestamp.

7.5.6 INPUT_EVENT_DATA_BLOCK_READ Register 7.14

Bit	Name	Description	Mode	Default
15:0	_	Returns the least significant word (bits 15:0) of the next timestamp	R	0

7.5.7 INPUT_CAPTURE_DATA_POINTER Register 7.13

Bit	Name	Description	Mode	Default
14:8	FILLING_LEVEL	Number of data sets in memory	R	0
		0: Event memory is empty 64: Event memory is full		
5:0	TIMESTAMP_ READ_POS_BL	Value of the pointer to the data sets event memory	R	0
	OCK	0: Next read will read from address 0 of timestamp memory		
		 63: Next read will read from address 63 of timestamp memory		

7.6 Pulse Generator Unit

The device has three pulse generator units which can generate pulses or events based on the PTP timer. Each can run in either of two different modes: single-shot or continuous pulse generation.

A pulse is triggered when the START_TIME exceeds the time from the PTP timer. Although the START_TIME has a resolution of 1/32 ns, the exact output time may be up to 8 ns later as the output signal is running on the 125 MHz clock. However, the start time is internally calculated with 1/32 ns accuracy so that the error does not accumulate.

To program a new pulse generation: disable the current pulse generation for the respective channel, write the values, and then re-enable the pulse generation by writing PULSE_GO with one and setting PULSE_CONFIG to the required value..

For continuous pulse the start times are calculated by taking the previous start time, adding the interval time, comparing the result to the timer, and generating the next pulse when the timer value exceeds the start time.

There are four registers which control the pulse generators. All registers are shadow registers that can be written first and are transferred to the pulse channel in PULSE_CHANNEL at the moment the PULSE_GO bit is set to '1'. After writing the PULSE_CHANNEL register, these registers are updated with the actual value for this channel and can subsequently be read.

7.6.1 Pulse Output Control Register 7.16

The Pulse Output Control register controls the pulse units. All data written is stored for the channel selected in PULSE_CHANNEL.

Bit	Name	Description	Mode	Default	
15:8		Reserved, write as 0, ignore on read	R/W		
9	LATCH_WIDTH	Latch newly-written data from PULSE_WIDTH register and use for the next pulse. This bit is set after the PULSE_WIDTH register has been written and the new values should be applied. Until this is done the old value is used. This is only valid for the pulse width and the interval data. The time unit must be stopped before updating the start time.	RW	0	
8	LATCH_INTERVAL	Latch newly-written latch interval data from the PULSE_INTERVAL register and use for the next pulse. All other values remain the same. This bit is set after the PULSE_INTERVAL register has been written and the new values should be applied. Until this is done the old value is used. This is only valid for the pulse width and the interval data. The time unit must be stopped before updating the start time.	RW	0	
7	PULSE_GO	Latch newly written data and use for next pulse. This bit is set after the PULSE_DATA register has been written and the new values should be used. Until this is done the old value is used. This is only valid for the pulse width and the interval data. The time unit must be stopped before updating the start time.	RW	0	
6	INT_EN	Enable interrupt for this channel An interrupt is triggered when the timer is larger than the current PULSE_STARTTIME (continuously updated according to PULSE_INTERVAL)	RW	0	
5	Channel_inv	Invert output of channel in 2:0	RW	0	
4:3	PULSE_ CONFIG	Configuration for pulse. 00: Off	RW	0	

		01: Single shot 10: Continuous 11: Reserved		
2:0	PULSE_ CHANNEL	000: Values in bits 9:3 and respective shadow registers PULSE_STARTTIME, PULSE_WIDTH and PULSE_INTERVAL will be written to channel 0 001: Values in bits 9:3 and respective shadow registers will be written to channel 1 010: Values in bits 9:3 will be written to channel 2	RW	0

7.6.2 PULSE_STARTTIME Register 7.17

The PULSE_STARTTIME register gives the start time for the next pulse. For continuous pulses it is incremented with the PULSE_INTERVAL value after the pulse has been triggered. The updated value can be read after writing the PULSE_CHANNEL value. . Do not set the PULSE_STARTTIME to a value in the past. This register has to be accessed five times with the most significant word first.

Word	Name	Description	Mode	Default
79:0	PULSE_ STARTTIME	Actual start time for pulse. Will be updated whenever a pulse was generated and a new start time is calculated based on PULSE_INTERVAL.	R	0
79:0	INITIAL_PULSE_ STARTTIME	Initial start time for pulse.	W	0

7.6.3 PULSE_WIDTH Register 7.19

Bit	Name	Description	Mode	Default
47:38	PULSE_ WIDTH_SEC	Pulse high width seconds for single and continuous pulse. The shortest pulse width value is 24 ns.	RW	0
37:5	PULSE_ WIDTH_NS	Pulse high width nanoseconds for single and continuous pulse. The shortest pulse width value	RW	0
		is 24 ns.		
4:0	PULSE_ WIDTH_FNS	Pulse high width fractions of nanoseconds for single and continuous pulse.	RW	0
		The shortest pulse width value is 24 ns.		

7.6.4 PULSE_INTERVAL Register 7.18

Bit	Name	Description	Mode	Default
47:35	PULSE_ INTERVAL_SEC	Pulse interval seconds after which the next pulse is generated (only for continuous pulse).	RW	0
		The shortest pulse interval value is 24 ns.		
Bits 34:5	PULSE_ INTERVAL_NS	Pulse interval nanoseconds after which the next pulse is generated (only for continuous pulse). The shortest pulse interval value is 24 ns.	RW	0
Bit 4:0	PULSE_ INTERVAL_FNS	Pulse interval fractions of nanoseconds after which the next pulse is generated (only for continuous pulse).	RW	0
		The shortest pulse interval value is 24 ns.		

Electrical Characteristics

8.1 AC Timing

8.1.1 Serial Management Interface (SMI) Timing

Figure 1: SMI Timing

ara- meter	Description	Min	Тур	Мах	Units	Notes
T1.1	MDC to MDIO delay	0		15	ns	Data output from PHY
T1.2	MDC to MDIO setup	10			ns	
T1.3	MDC to MDIO hold	10			ns	
	MDC frequency			25	MHz	

8.1.2 Reset Timing

Figure 2: Reset Timing

Para- meter	Description	Min	Тур	Мах	Units	Notes
T2.1	RESETB pulse width	100			us	
T2.2	Strap input setup to RESETB rising	200			ns	
T2.3	Strap input hold after RESETB rising	400			ns	
T2.4	Device Ready rising after RESETB rising		600		ns	
T2.5	Register access available after Device Ready rising			5	ms	

*1) Strap options are latched. (Refer to 4.9 Strap Options)

*2) PHY register access through SMI is available T2.5 after Device Ready rising

RENESAS

8.1.3 Clock Timing

Para- meter	Description	Min	Тур	Max	Units	Notes
-	Reference		25		MHz	MII
	clock frequency (25MHz / 50 MHz selectable)		50		MHz	RMII
-	Clock frequency tolerance *1)	-100		100	ppm	
-	Duty cycle	40	50	60	%	
-	Jitter tolerance		20		ps (rms)*1)	

*1) Root Mean Square

8.1.4 100Base-TX Timings

8.1.4.1 100M MII Receive Timing

Figure 3: 100BT MII receive timing

Para- meter	Description	Min	Тур	Мах	Units	Notes
T3.1	Received signals output delay after rising edge of PnRXCLK	15		27	ns	
T3.2	Start of RX-bit to PnRXDV valid		170		ns	RX_DV_J2T (Register PHY.31.1) set
			210		ns	RX_DV_J2T (Register PHY.31.1) cleared
	PnRXCLK frequency		25		MHz	
	PnRXCLK duty-cycle	45	50	55	%	

*1) Note that glitch may occur on output signals between min and max value of T3.1 after rising edge of P*RXCLK. However, it is compliant with IEEE802.3 standard because the setup time at the input of MAC is 13ns (=Period 40ns - max value > 10ns) and the hold time is 15ns (= min value > 10ns).

8.1.4.2 100M MII Transmit Timing

Figure 4: 100BT MII Transmit Timing

Para- meter	Description	Min	Тур	Мах	Units	Notes
T4.1	Transmit signals setup to PnTXCLK rising	13			ns	Normal MII timing *1)
T4.2	Transmit signals hold after PnTXCLK rising			0	ns	
T4.3	Transmit signals setup to XCLK0 rising	8			ns	EtherCAT MII timing *1
T4.4.	Transmit signals hold after XCLK0 rising			0	ns	
T4.5	PnTXD latch until start of		50		ns	Normal MII timing *1)
	TX-bit		90			EtherCAT MII timing *1
-	PnTXCLK frequency		25		MHz	
-	PnTXCLK duty- cycle	45	50	55	%	

*1) Note that the timing is configurable by strap option (P1TXCLK) Refer to 4.9 Strap Options.

RENESAS

8.1.5 10Base-T Timings

8.1.5.1 10M MII Receive Timing

Figure 5: 10BT MII receive timing

Para- meter	Description	Min	Тур	Мах	Units	Notes
T5.1	Received signals output delay after rising edge of P*RXCLK	100		300	ns	
	PnRXCLK frequency		2.5		MHz	
	PnRXCLK duty-cycle	45	50	55	%	

8.1.5.2 10M MII Transmit Timing

Para- meter	Description	Min	Тур	Мах	Units	Notes
T6.1	Transmit signals setup to falling edge of PnTXCLK	0			ns	
T6.2	Transmit signals hold to falling edge of PnTXCLK			100	ns	
	PnTXCLK frequency		2.5		MHz	
	PnTXCLK duty- cycle	45	50	55	%	

8.1.6 RMII 10/100Base-TX Timings

8.1.6.1 RMII Receive Timing

Figure 7: RMII receive timing

Para- meter	Description	Min	Тур	Мах	Units	Notes
T7.1	Receive signals output delay after rising edge of CLK50MHz	2		14	ns	
	CLK50MHz frequency		50		MHz	

*1) External 50MHz clock input

8.1.6.2 RMII Transmit Timing

Figure 8: RMII transmit timing

Para- meter	Description	Min	Тур	Мах	Units	Notes
T8.1	Transmit signals setup to rising edge of CLK50MHz	4			ns	
T8.2	Transmit signals hold after rising edge of CLK50MHz	2			ns	
	CLK50MHz frequency		50		MHz	

*1) External 50MHz clock input

8.1.7 Sequence for turn on

RESETB must be released after all external power is ready.

Figure 9: Reset timing

Paramet er	Description	Min	Тур	Max	Units	Notes
t _{POR}	Power on Reset	4			ms	
	timing					

8.10 DC Characteristics

8.10.1 Absolute Maximum Ratings

Parameter	Symbol	Conditions	Rating	Units
Analogue power supply voltage	P1VDDMEDIA, P2VDDMEDIA, VDDAPLL		-0.5 to +2.0	V
Digital Power Supply Voltage	VDD15		-0.5 to +2.0	V
I/O Voltage	VDDIO		-0.5 to +4.6	V
Analog 3.3V power supply	VDDACB		-0.5 to 4.6	V
Analog 3.3V power supply	REGAVDD REGBDD		-0.5 to 4.6	V
Analog 3.3V power supply	VDD33ESD		-0.5 to 4.6	V
Output Current	POLINKLED/GPI O0,P0ACTLED/G PIO1,P1LINKLED /GPIO2,P1ACTLE D/GPIO3,P0100B TLED/GPIO4,P11 00BTLED/GPIO5, P0TXERR/GPIO9 ,P0TXD3/GPIO10 ,P0TXD2/GPIO11 ,P0TXCLK,P1TX ERR/GPIO15,P1T XD3/GPIO16,P1T XD2/GPIO17,P1T XCLK,MDIO,P0T XD1,P1TXD1		21	mA
Output Current	P0CRS/P0CRS_ DV/GPIO6,P0RX D3/GPIO7,P0RX D2/GPIO8,P0RX D1,P0RXD0,P0R XCLK, P0RXERR,P0RX DV,P1CRS/P1CR S_DV/GPIO12,P1 RXD3/GPIO13,P1 RXD2/GPIO14,P1 RXD1,P1RXD0,P 1RXCLK,P1RXE RR,P1RXDV,P0C OL/GPIO18,P1C OL/GPIO19		11	mA
Storage temperature	Tstg		-65 to +150	°C

Parameter	Symbol	Conditions	Rating	Units
Analogue power supply voltage	P1VDDMEDIA, P2VDDMEDIA, VDDAPLL		1.425 to 1.575	V
Digital Power Supply Voltage	VDD15		1.425 to 1.575	V
I/O Voltage	VDDIO		2.25 to 2.75 3.0 to 3.6	V
Analog 3.3V power supply	VDDACB		3.0 to 3.6	V
Analog 3.3V power supply	REGAVDD REGBVDD		3.0 to 3.6	V
Analog 3.3V power supply	VDD33ESD		3.0 to 3.6	V
Output Current	POLINKLED/GPIO0 ,POACTLED/GPIO1 ,P1LINKLED/GPIO 2,P1ACTLED/GPIO 3,P0100BTLED/GP IO4,P1100BTLED/ GPIO5,P0TXERR/ GPIO9,P0TXD3/GP IO10,P0TXD2/GPI 011,P0TXCLK,P1T XERR/GPIO15,P1T XD3/GPIO16,P1TX D2/GPIO17,P1TXC LK,MDIO,P0TXD1, P1TXD1		6	mA
Output Current	P0CRS/P0CRS_D V/GPIO6,P0RXD3/ GPIO7,P0RXD2/G PIO8,P0RXD1,P0R XD0,P0RXCLK, P0RXERR,P0RXD V,P1CRS/P1CRS_ DV/GPIO12,P1RX D3/GPIO13,P1RXD 2/GPIO14,P1RXD1 ,P1RXD0,P1RXCL K,P1RXERR,P1RX DV,P0COL/GPIO18 ,P1COL/GPIO19		3	mA
Value for EXTRES	EXTRES		12.4±1%	kΩ
Operating ambient temperature	T _a		-40 to +85	°C

8.10.2 Recommended Operating Conditions

Parameter	Symbol	0	Conditions		Min	Тур	Max	Unit
Current	-	100B	External 1.5V	3.3V		140		mA
Consumption			supplied	1.5V		180		mA
			Internal Regulater	3.3V		240		mA
			used	1.5V		0		mA
		10B	External 1.5V	3.3V		240		mA
			supplied	1.5V		90		mA
			Internal	3.3V		290		mA
			Regulater used	1.5V		0		mA
Internal pull up strap resistor	R _{stru}				14.2	31.9	80.7	kΩ
Internal pull down strap resistor	R _{strd}				20.6	44.9	116.4	kΩ
Input voltage, low	-	VDDIO = 2.5V			0		0.7	V
Input voltage, high	-	VE	DDIO = 2.5	V	1.7		VDD	V
Input voltage, low	-	VE	DDIO = 3.3	/	0		0.8	V
Input voltage, high	-	VE	ODIO = 3.3	V	2.0		VDD	V
Output voltage low	Vol	V	DDIO=2.5∖ Iol=0mA	/			0.1	V
Output voltage high	Voh	VDDIO=2.5V loh=0mA			Vdd- 0.1			V
Output voltage	Vol	V	DDIO=3.3V	/				V
low			Iol=0mA				0.1	
Output voltage	Voh	V	DDIO=3.3∖	/	Vdd-			V
high			loh=0mA		0.1			

8.10.3 DC Electrical Characteristics

8.10.4 Differential Parameters on Secondary Side of Transformer.

Description	Min	Тур	Max	Units	Notes
100M TX output high	.95		1.05	V	
100M TX mid- level	-50		50	mV	
100M TX output low	95		-1.05	V	
10M TX output high	2.2		2.8	V	

Parameter	Symbol	Conditio ns	Min	Тур	Мах	Units
Output Voltage - Low [V] Vol-VDDIO	-	-	-1.81		-1.55	V
Output Voltage - High [V] Voh-VDDIO	-	-	-1.12		-0.88	V

8.10.5 100Base-FX Output Characteristics

Physical dimensions

80-PIN PLASTIC LQFP (FINE PITCH) (12x12)

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

Revision history

Date	Revision	Changes
March 19, 2013	1.00	Initial release

Industrial Ethernet PHY

