Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

User's Manual

Phase-out/Discontinued

IE-V850E-MC-EM1-B, IE-V850E-MC-MM2 (Sold separately)

In-Circuit Emulator Option Boards

Target Device V850E1 (NB85E Core)

Document No. U14482EJ2V0UM00 (2nd edition) Date Published November 2000 N CP(K)

© NEC Corporation 2000 Printed in Japan

Phase-out/Discontinued

[MEMO]

Phase-out/Discontinued

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

Ethernet is a trademark of Xerox Corporation.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited.

- The information in this document is current as of August, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)	NEC Electronics (Germany) GmbH	NEC Electronics Hong Kong Ltd.
Santa Clara, California	Benelux Office	Hong Kong
Tel: 408-588-6000	Eindhoven, The Netherlands	Tel: 2886-9318
800-366-9782	Tel: 040-2445845	Fax: 2886-9022/9044
Fax: 408-588-6130	Fax: 040-2444580	
800-729-9288		NEC Electronics Hong Kong Ltd.
	NEC Electronics (France) S.A.	Seoul Branch
NEC Electronics (Germany) GmbH	Velizy-Villacoublay, France	Seoul, Korea
Duesseldorf, Germany	Tel: 01-30-67 58 00	Tel: 02-528-0303
Tel: 0211-65 03 02	Fax: 01-30-67 58 99	Fax: 02-528-4411
Fax: 0211-65 03 490		
	NEC Electronics (France) S.A.	NEC Electronics Singapore Pte. Ltd.
NEC Electronics (UK) Ltd.	Madrid Office	United Square, Singapore
Milton Keynes, UK	Madrid Snain	Tel: 65-253-8311
Tel: 01908-691-133	Tel: 91-504-2787	Fax: 65-250-3583
Fax: 01908-670-290	Fax: 91-504-2860	
	T ax. 91-304-2000	NEC Electronics Taiwan Ltd.
NEC Electronics Italiana s r l	NEC Electronics (Gormany) GmbH	Taipei. Taiwan
Milano, Italy	Soondinovio Office	Tel: 02-2719-2377
Tel: 02-66 75 41		Fax: 02-2719-5951
Fax: 02-66 75 47 00		
T ax. 02-00 73 42 33	Tel. 08-63-80-820	NEC do Brasil S A
	Fax: 08-63 80 388	Electron Devices Division
		Guarulhos SP Brasil
		Tal: 55 11 6/62 6910
		Fox: 55 11 6462 6920
		Fax. 55-11-0402-0029

J00.7

Phase-out/Discontinued

Phase-out/Discontinued

[MEMO]

INTRODUCTION

Target Readers	This manual is intended for users who wish to design and develop application systems using the V850E1 (NB85E core).	
Purpose	This manual is intended to give users an understanding of the basic specifications of the IE-V850E-MC-EM1-B and its correct usage method.	
Organization	The contents of this n	nanual are broadly divided into the following sections.
	Outline	
	 Parts and functions 	
	 Cautions 	
How to Use This Manual	It is assumed that the readers of this manual have general knowledge in the fields of electrical circuits, logic circuits, and microcontrollers. The IE-V850E-MC-EM1-B is used connected to the IE-V850E-MC-A in-circuit emulator. This manual describes the basic setup procedure and the IE-V850E-MC-EM1-B switch settings. For the parts and functions of the IE-V850E-MC-A and details about the connection of component parts, refer to the IE-V850E-MC-A User's Manual (U14487E) .	
	To learn about the ba $ ightarrow$ Read in the order I	sic specifications and usage method: isted in CONTENTS .
	To learn about softw	vare-related settings for the IE-V850-MC-A and IE-V850E-MC-
	EM1-B, including the	operation procedure and command functions
	\rightarrow Refer to the user's	manual of the debugger (sold separately) to be used.
Conventions	Note:	Footnote for item marked with Note in the text
	Caution:	Information requiring particular attention
	Remark:	Supplementary information
	Numerical representa	tion: Binaryxxxx or xxxxB
		Decimalxxxx
		HexadecimalxxxxH
	Prefixes representing	a power of 2 (address space, memory capacity)
		K (Kilo): $2^{10} = 1024$
		M (Mega): 2 ²⁰ = 1024 ²
Terms	The meanings of terms used in this manual are listed below.	
	Target device	This is the device to be emulated.
	Target system	The system to be debugged (system created by user). This includes the target program and hardware created by the user.

Related Documents

When using this manual, refer to the following manuals. The related documents listed below may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Development Tools (User's Manuals)

Document Name		Document No.
IE-V850E-MC, IE-V850E-MC-A (In-Circuit Emulator)		U14487E
IE-V850E-MC-EM1-B, IE-V850E-MC-MM2 (sold sepa	rately) (In-Circuit Emulator Option Boards)	This manual
CA830, CA850 (C compiler package)	Operation	U13998E
	C Language	U13997E
	Project Manager	U13996E
CA850 (C Compiler Package)	Assembly Language	U13828E
ID850 (Ver. 2.00 or later) (Integrated Debugger)	Operation Windows Based	U14217E
SM850 (Ver. 2.00 or later) (System Simulator)	Operation Windows Based	U13759E
RX850 (Real-Time OS)	Basics	U13430E
	Installations	U13410E
RX850 Pro (Real-Time OS)	Fundamental	U13773E
	Installations	U13774E
RD850 (Ver. 3.0) (Task Debugger)		U13737E
RD850 Pro (Ver. 3.0) (Task Debugger)		U13916E
AZ850 (System Performance Analyzer)		U14410E

CONTENTS

CHAPTE	R 1 OVERVIEW	13
1.1 1.2 1.3 1.4 1.5 1.6	Hardware Configuration Features Function Specifications (When Connected to IE-V850E-MC-A) System Configuration Contents in Carton Connection of IE-V850E-MC-A and IE-V850E-MC-EM1-B	14 15 16 17 18 19
CHAPTE	R 2 PART NAMES AND FUNCTIONS	21
2.1	IE-V850E-MC-EM1-B Part Names and Functions	21
CHAPTE	R 3 LIST OF SETTINGS AT SHIPMENT	25
СНАРТЕ	R 4 CAUTIONS	27
4.1	Reset Signal	27
4.2	Clock	28
	4.2.1 Clock supply method	28
	4.2.2 Main clock tuning	29
4.3	Emulation Memory	31
	4.3.1 Standard emulation memory function	31
	4.3.2 Target substitution memory function	32
	4.3.3 Emulation memory operation timing differences	33
СНАРТЕ	R 5 IE-V850E-MC-MM2	35
5.1	IE-V850E-MC-MM2 Parts and Functions	35
5.2	JP1 to JP3 Setting Examples	37
5.3	List of Settings at Product Shipment	40
5.4	Connection of IE-V850E-MC-EM1-B and IE-V850E-MC-MM2	41
5.5	Contents in Carton	42
APPEND	DIX A PRODUCT DRAWING	43
APPEND	DIX B UDL BOARD INTERFACE CONNECTOR LOCATIONS	45
APPEND	DIX C UDL INTERFACE CONNECTOR SIGNAL TABLE (VIEWED FROM IE-V850E-MC-EM1-B)	47
C.1	CON1 to CON3 Pin Assignment	47
	C.1.1 Cautions	

Phase-out/Discontinued

C.2	Signal List	48
C.3	NB85E Pin and UDL Connector Correspondence Tables	56
C.4	NB85E500 Pins and CON1 to CON3 Correspondence Tables	62
C.5	NU85E502 Pins and CON1 to CON3 Correspondence Tables	65
APPEND	DIX D ELECTRICAL SPECIFICATIONS OF UDL INTERFACE	67
APPEND	DIX E RESTRICTIONS	87

LIST OF FIGURES

Figure	e No. Title	Page
1-1	System Configuration	
1-2	Contents in Carton	
1-3	Connection of IE-V850E-MC-A and IE-V850E-MC-EM1-B	19
2-1	IE-V850E-MC-EM1-B	21
4-1	Reset Signal	
4-2	Oscillator IC Socket	
4-3	IE-V850E-MC-A and IE-V850-MC-EM1-B Clock Circuit Diagram	
4-4	Delay Circuit Diagram (IE-V850E-MC-A)	
4-5	Emulation Memory Equivalent Circuit	
5-1	IE-V850E-MC-MM2	
5-2	IE-V850E-MC-EM1-B and IE-V850E-MC-MM2 Connection Diagram	
5-3	Contents in Carton	

LIST OF TABLES

Table N	0.	Title	Page
5-1	JP2 Setting Method		35
5-2	Bits 23 to 25 Setting Method Using JP3		36

CHAPTER 1 OVERVIEW

The IE-V850E-MC-EM1-B is an option board for the IE-V850E-MC-A in-circuit emulator. Efficient hardware and software debugging can be performed during system development using the V850E1 by connecting the IE-V850E-MC-EM1-B to the IE-V850E-MC-A.

This manual describes the basic setup procedure, the switch settings for the IE-V850E-MC-EM1-B when it is connected to the IE-V850E-MC-A, and the IE-V850E-MC-MM2 (sold separately) settings. For the parts and functions of the IE-V850E-MC-A and details about the connection of component parts, refer to the **IE-V850E-MC-A User's Manual (U14487E)**.

1.1 Hardware Configuration

1.2 Features

○ System-on-chip emulation is possible by connecting the IE-V850E-MC-A, IE-V850E-MC-EM1-B, and UDL (User Design Logic) board.

○ Operating frequency: 40 MHz (MAX.)^{Note}

A 20 MHz oscillator is mounted at shipment.

O Extremely lightweight and compact

 \bigcirc The following pins can be masked:

WAITZ, DCRESZ, HLDDRQZ, DCNMI0 to 2

Note The electrical specifications of the UDL interface must be considered during UDL/target board design. For the electrical specifications of the UDL interface, refer to APPENDIX D ELECTRICAL SPECIFICATIONS OF UDL INTERFACE.

1.3 Function Specifications (When Connected to IE-V850E-MC-A)

Item			Specifications
Emulation memory capacity Internal ROM		ОМ	1 MB
	External n	nemory	4 MB (standard) + 8 MB (option) ^{Note}
Execution/pass detection	Internal R	OM	1 MB
coverage memory capacity	External	In ROM-less mode	2 MB
	memory	When using internal ROM	1 MB
Trace memory capacity			168 bits × 32 Kframes
Time measurement function			Measurement enabled with time tag and timer (3 channels)
External logic probe			8-bit external trace possible
			Trace/break event setting possible
Break function			Event break
			Step execution break
			Forced break
			Fail-safe break
			Illegal access to peripheral I/O
			Access to guard space Write to ROM space

Note If the IE-V850E-MC-MM2 (sold separately) is mounted, an additional 8 MB can be substituted as target memory. However, the IE-V850E-MC-MM2 can be used only when a UDL board is connected.

Caution Some of the functions may not be supported, depending on the debugger used.

Phase-out/Discontinued

1.4 System Configuration

The system configuration when connecting the IE-V850E-MC-A to the IE-V850E-MC-EM1-B, which is then connected to a PC (PC-9800 series, PC/AT or compatibles) is illustrated below.

1.5 Contents in Carton

The IE-V850E-MC-EM1-B carton contains the main unit, an external logic probe, UDL board connectors, spacers, screws, this manual, a guarantee card, and a packing list.

The spacers and screws are contained in the same envelope. If there are any missing or damaged items, contact an NEC sales representative or an NEC distributor.

Figure 1-2. Contents in Carton

1.6 Connection of IE-V850E-MC-A and IE-V850E-MC-EM1-B

The procedure for connecting the IE-V850E-MC-A and IE-V850E-MC-EM1-B is described below.

Caution Be careful not to break or bend the connector pins when connecting.

- <1> Remove the (upper and lower) pod covers of the IE-V850E-MC-A.
- <2> Set the PGA socket lever of the IE-V850E-MC-EM1-B to the OPEN position shown in Figure 1-3 (b).
- <3> Connect the PGA socket on the underside of the pod to the IE-V850E-MC-EM1-B. (Refer to **Figure 1-3 (c)**.) Keep the IE-V850E-MC-A and IE-V850E-MC-EM1-B in a horizontal position during connection.
- <4> Set the PGA socket lever of the IE-V850E-MC-EM1-B to the CLOSE position shown in Figure 1-3 (b).
- <5> Fix the rear of the pod cover (upper part) with the nylon rivets.

Phase-out/Discontinued

Figure 1-3. Connection of IE-V850E-MC-A and IE-V850E-MC-EM1-B (2/2)

CHAPTER 2 PART NAMES AND FUNCTIONS

This chapter describes the name and functions of each part of the IE-V850E-MC-EM1-B, as well as the switch settings.

For more information about the pod, jumper, and switch positions, refer to the **IE-V850E-MC-A User's Manual** (U14487E).

2.1 IE-V850E-MC-EM1-B Part Names and Functions

Phase-out/Discontinued

(1) JP1

This pin is used for testing before shipment. Do not change this setting.

(2) JP2

1-2 shorted: Enables use of the internal memory controller.1-2 open: Enables use of the VSB bus.

(3) JP3

This pin is used for testing before shipment. Do not change this setting.

(4) JP4

This pin is used for testing before shipment. Do not change this setting.

(5) JP5

This pin is used for testing before shipment. Do not change this setting.

(6) JP6

This pin is used for testing before shipment. Do not change this setting.

(7) JP7

This pin is used for testing before shipment. Do not change this setting.

(8) JP8

This pin is used for testing before shipment. Do not change this setting.

(9) JP9

1-2 shorted: Interrupt edge detection.1-2 open: Interrupt level detection.

(10) JP10

1-2 shorted: Enables STBC circuit operation.1-2 open: Stops STBC circuit operation.

(11) TP4

This pin enables measurement of the CLKOUT output signal of the evaluation chip.

(12) D1

This LED is used for testing before shipment, and is therefore always off.

(13) CON1 to CON3

UDL board connectors

(14) CON4

This connector is used to connect the external sense probe to monitor signals on the UDL board, record them as trace data, and incorporate them in event sources.

Signals can be received at the 3.3 V CMOS level, but up to 5 V is tolerated.

The timing used to fetch signals is the program fetch timing.

Signals monitored with the external logic probe can also be fetched from the UDL interface connectors (CON3, CON093 to CON100).

(15) CON5

Connector used to mount the target substitution memory board (IE-V850E-MC-MM2)

(16) IC3

Socket used to connect the IE-V850E-MC-A

(17) IC23

Socket used to mount an oscillator

Phase-out/Discontinued

Phase-out/Discontinued

[MEMO]

CHAPTER 3 LIST OF SETTINGS AT SHIPMENT

Item	Setting	Remark
JP1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Setting other than shipment default setting prohibited
JP2	1 • • 2	Internal memory controller used
JP3	1 0 0 2	Setting other than shipment default setting prohibited
JP4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Setting other than shipment default setting prohibited
JP5	$\begin{array}{c c}3\\4\\\hline \end{array} \begin{array}{c}0\\\hline \end{array} \begin{array}{c}1\\2\\\hline \end{array}$	Setting other than shipment default setting prohibited
JP6	$\begin{array}{c c}3 & \bigcirc & & 1\\4 & \bigcirc & & 2\\\end{array}$	Setting other than shipment default setting prohibited
JP7	$\begin{array}{c c}3 & \bigcirc & & 1\\4 & \bigcirc & & 2\end{array}$	Setting other than shipment default setting prohibited
JP8	$\begin{array}{c c}3 & \bigcirc & & \bigcirc & 1\\4 & \bigcirc & & \bigcirc & 1\\2\end{array}$	Setting other than shipment default setting prohibited
JP9	1 2	Interrupt edge detection
JP10	1 2	STBC circuit operation enabled

Phase-out/Discontinued

[MEMO]

CHAPTER 4 CAUTIONS

4.1 Reset Signal

Be sure to use the emulator output signal ERESETZ as the reset signal for circuits on the UDL board. If the ERESETZ signal is not used, software reset from the debugger is not enabled for the UDL board.

UDL board/target	IE-V850E-MC-EM1-B	IE-V850E-MC-A
Reset circuit on UDL board/target ERESETZ (CON3 to CON11) CON3 to CON11)	INTC-Evachip	Reset from debugger

Figure 4-1. Reset Signal

4.2 Clock

4.2.1 Clock supply method

The clock used by the emulator can be supplied using one of two methods, selectable by the debugger.

(1) Supply VBCLK to emulator from UDL board

Be sure to use the oscillator output clock for VBCLK.

(2) Supply clock from oscillator mounted on emulator

A 20 MHz oscillator (8-pin type) is mounted on the emulator at shipment.

The output clock of this oscillator can be used as the main clock.

The emulator can be operated at the desired frequency by removing the already mounted 20 MHz oscillator and installing an oscillator of the desired frequency (40 MHz MAX.).

Caution If supplying the emulator clock from the UDL board, do not stop the clock supply even when going into the standby mode. If the clock supply stops, the emulator and debugger become deadlocked.

Figure 4-2. Oscillator IC Socket

Remark The emulator uses either one of the above clocks as the main clock and outputs it to the UDL board as VBCLKI.

Use VBCLKI for the clock distributed on the UDL board.

Figure 4-3. IE-V850E-MC-A and IE-V850-MC-EM1-B Clock Circuit Diagram

4.2.2 Main clock tuning

As the effect of an excessive load and two or more buffering stages on the UDL board, a timing delay may occur for the CPUCKIN and CLKEM1 signals in relation to VBCLKI. In such a case, the timing of the CPUCKIN and CLKEM1 signals can be delayed by setting JP2 of the IE-V850E-MC-A so as to tune the phase with VBCLKI. There are three types of tuning.

- (a) 1-2 shorted and 7-8 shorted: Shipment default setting
- (b) 3-4 shorted and 9-10 shorted: 6 ns (TYP.) phase delay in relation to shipment default setting
- (c) 5-6 shorted and 11-12 shorted: 12 ns (TYP.) phase delay in relation to shipment default setting

When tuning the main clock, monitor the clock at the following two points and adjust the phase difference.

- Point serving as reference on UDL board
- TP4 on IE-V850E-MC-EM1-B (not output during reset)

Cautions 1. When manipulating JP2 of the IE-V850E-MC-A, ensure that the same number of buffering stages is inserted for CPUCKIN and CLKEM1.

2. The evaluation chip operation clock (CLKOUT) is approximately 10 ns later than VBCLKI. Therefore, when distributing VBCLKI on the UDL board, it is recommended to do so after the first buffer stage.

Moreover, as long as there is no excessive load and no more than one buffer stage, use the shipment default setting of JP2 of the IE-850E-MC-A.

Phase-out/Discontinued

Figure 4-4. Delay Circuit Diagram (IE-V850E-MC-A)

4.3 Emulation Memory

A standard emulation memory that can always be used as well as a target substitution memory that can be used by mounting the IE-V850E-MC-MM2 (sold separately) are available for the IE-V850E-MC-EM1-B.

The emulation memory can only be used only when the memory controller is selected; it cannot be used when the VSB bus is selected.

4.3.1 Standard emulation memory function

Memory capacity:	4 MB		
Mapping unit:	1 MB (mapping of 1 MB \times 4 banks MAX. is possible.)		
Bus size:	16 bits or 32 bits (8-bit bus size is not supported.)		
Mapping method:	Specify the area to be mapped with the debugger as "Emulation RAM/ROM". (There is no		
	jumper setting.)		
Wait insertion:	If the operating frequency is 25 MHz or higher, insertion of 1 wait or more is required.		
	The number of waits for the emulation memory is not influenced by the _WAIT signal; it is		
	determined by debugger setting or wait control register setting. (0 WAIT/1		
	WAIT/PROGRAMMABLE WAIT (1 to 7 WAITS).)		

• For ID850

The following three selections are available on the configuration screen.

- (a) WAIT MASK \rightarrow Access is performed with 0 waits.
- (b) 1 WAIT (DEFAULT) \rightarrow Access is performed with 1 wait.
- (c) TARGET WAIT \rightarrow Access is performed with the number of waits set with the DWC0/1 register. However, the number of waits is always 1 wait if 0/1 WAIT is set.

For MULTI

The following three selections are available using the PINMASK command.

(a)	WAIT mask	\rightarrow Access is performed with 0 waits.
	EMWAIT mask	(Wait signals to the external memory are masked)
(b)	WAIT mask	\rightarrow Access is performed with 1 wait.
	EMWAIT unmask	(Wait signals to the external memory are masked)
	WAIT unmask	\rightarrow Access is performed with 1 wait.
	EMWAIT mask	(Wait signals to the external memory are enabled)
(c)	WAIT unmask	\rightarrow Access is performed with the number of waits set by the DWC0/1 register.
	EMWAIT unmask	However, the number of waits is always 1 wait if 0/1 WAIT is set.
		(Wait signals to the external memory are enabled)

4.3.2 Target substitution memory function

Memory capacity:	8 MB
Mapping specifications:	Emulation can be performed by selecting the mapping area using one of the chip select
	signals of the memory controller. The start address mapped in the memory block is
	determined by JP3 of the IE-V850E-MC-MM2.
Bus size:	16 bits or 32 bits (8-bit bus size is not supported.)
Mapping method:	Set JP2 and JP3 ^{№re} of the IE-V850E-MC-MM2.
	Specify the area to be mapped with the debugger as "TARGET MEMORY".

Note For how to set JP2 and JP3, refer to Chapter 5 IE-V850E-MC-MM2.

- Cautions 1. If the target substitution memory is mapped to an area overlapping the standard emulation memory, the standard emulation memory has priority.
 - 2. To access the target memory when the IE-V850E-MC-MM2 (sold separately) is mounted, make sure that the memory blocks to which the target memory is allocated and the memory blocks specified by setting JP2 and JP3 of the IE-V850E-MC-MM2 do not match.
 - 3. The target substitution memory can used only when the UDL board is connected.

4.3.3 Emulation memory operation timing differences

When the DRAM, SDRAM, and page ROM areas in the target system are allocated to the emulation memory, the access timing used is that of the SRAM.

When measuring the performance using emulation memory, perform wait settings so as to match the access timing of the memory actually used.

Figure 4-5. Emulation Memory Equivalent Circuit

Phase-out/Discontinued

[MEMO]

CHAPTER 5 IE-V850E-MC-MM2

This chapter describes the parts and functions of the IE-V850E-MC-MM2 (sold separately) as well as the jumper settings.

5.1 IE-V850E-MC-MM2 Parts and Functions

Figure 5-1. IE-V850E-MC-MM2

(1) JP1

Jumper for bus size selection 1-2 shorted: 32 bits 1-2 open: 16 bits

(2) JP2

Jumper for target substitution memory mapping setting The setting method is as follows.

Table 5-1. JP2 Setting Method

JP2 Setting	Target Substitution Memory Mapping Area
1-2 shorted	Memory block 0 (select CSZ0)
3-4 shorted	Memory block 1 (select CSZ1)
5-6 shorted	Memory block 2 (select CSZ2)
7-8 shorted	Memory block 3 (select CSZ3)
9-10 shorted	Memory block 4 (select CSZ4)
11-12 shorted	Memory block 5 (select CSZ5)
13-14 shorted	Memory block 6 (select CSZ6)
15-16 shorted	Memory block 7 (select CSZ7)
All pins open	Target substitution memory cannot be mapped.

(3) JP3

This jumper is used to specify bits 23 to 25 of the memory block addresses to be mapped to the target substitution memory.

	JP3 Setting		Va	alue of A25 to A2	23
1-2	3-4	5-6	A25	A24	A23
Open	Open	Open	Н	Н	Н
Open	Open	Shorted	Н	Н	L
Open	Shorted	Open	Н	L	Н
Open	Shorted	Shorted	Н	L	L
Shorted	Open	Open	L	Н	Н
Shorted	Open	Shorted	L	Н	L
Shorted	Shorted	Open	L	L	Н
Shorted	Shorted	Shorted	L	L	L

Table 5-2. Bits 23 to 25 Setting Method Using JP3

(4) JP4

Pin block for testing before shipment. Use the shipment default settings.

(5) TP1

Ground pin

(6) TP2

Pin used for testing before shipment

(7) CON1

Connector for interface with IE-V850E-MC-EM1-B

Phase-out/Discontinued

5.2 JP1 to JP3 Setting Examples

Setting examples of JP1 to JP3 in the 64 MB mode are described below.

Example 1

- Area 1. The jumper settings when substituting this area are as follows.
 - JP1: Open
 - JP2: 9-10 open
 - JP3: 1-2 open
 - 3-4 shorted
 - 5-6 open

Phase-out/Discontinued

Example 2.

- Area 2. The jumper settings when substituting this area are as follows.
 - JP1: Shorted
 - JP2: 3-4 shorted
 - JP3: 1-2 shorted
 - 3-4 shorted
 - 5-6 shorted

A JP1 to JP3 setting example when the 256 MB mode is used is described below.

- Area 3. The jumper settings when substituting this area are as follows.
 - JP1: Shorted
 - JP2: 7-8 shorted
 - JP3: 1-2 shorted
 - 3-4 shorted
 - 5-6 shorted

5.3 List of Settings at Product Shipment

Item	Setting	Remark
JP1	1 2	Sets bus size to 32 bits.
JP2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Maps memory block 0 to expanded emulation memory.
JP3	5 6 1 2	A25 = 1, A24 = A23 = 0
JP4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Use of settings other than the shipment default setting is prohibited.

Phase-out/Discontinued

5.4 Connection of IE-V850E-MC-EM1-B and IE-V850E-MC-MM2

- <1> Set JP1, JP2, and JP3 of the IE-V850E-MC-MM2 as desired.
- <2> Connect the screws and spacers to the IE-V850E-MC-MM2.
- <3> Connect CON1 of the IE-V850E-MC-MM2 and CON5 of the IE-V850E-MC-EM1-B.
- <4> Secure the IE-V850E-MC-MM2 with the screws from the back of the IE-V850E-MC-EM1-B.

Figure 5-2. IE-V850E-MC-EM1-B and IE-V850E-MC-MM2 Connection Diagram

5.5 Contents in Carton

The IE-V850E-MC-MM2 box contains the IE-V850E-MC-MM2 in-circuit emulator board, spacers, screws, a guarantee card, and a packing list.

The spacers and screws are contained in the same envelope. If there are any missing or damaged items, contact an NEC sales representative or an NEC distributor.

APPENDIX A PRODUCT DRAWING

The drawing of the IE-V850E-MC-EM1-B is shown below. (Unit: mm)

Remark The UDL board is connected by CON1 to CON3, but the stacking height is 12 mm. Do not place parts with a height of 8 mm or more on the part where the UDL board and IE-V850E-MC-EM1-B overlap.

Phase-out/Discontinued

[MEMO]

Phase-out/Discontinued

APPENDIX B UDL BOARD INTERFACE CONNECTOR LOCATIONS

The following figure shows the top view of the UDL board.

The following part is used for the connector.

• XH3A-0141-A (made by Omron)

(The emulator is on this side.)

Caution When an option board is connected, the spacing with the UDL board becomes 12 mm. Therefore, do not place parts with a height of 8 mm or more on the connection part.

Phase-out/Discontinued

[MEMO]

Phase-out/Discontinued

APPENDIX C UDL INTERFACE CONNECTOR SIGNAL TABLE (VIEWED FROM IE-V850E-MC-EM1-B)

C.1 CON1 to CON3 Pin Assignment

The UDL interface connector signal table is shown from the next page.

C.1.1 Cautions

(1) The I/O attributes are as follows.

- I/O: Bidirectional
- I: Input signal to emulator.
- O: Output signal from emulator.

(2) Signals assigned to connector

The signals assigned to the connector can be of two groups, as shown below.

(a) When VSB bus is selected

Pins for VSB, pins for NPB, pins for system control, pins for DMAC, pins for INTC

(b) When memory controller is selected

Pins for NB85E500, pins for NU85E502, pins for NPB, pins for system control, pins for DMAC, pins for INTC

(3) Handling of unused pins

No special handling of unused pins is required on the UDL board side, but to achieve greater pin status stability, perform the following processing on the UDL board.

- Input pin to UDL board: Leave open
- Output pin from UDL board: Fix to inactive
- I/O pin to UDL board: Leave open
- (4) Since the emulator and UDL board interfaces are all performed using 3.3 V, to perform an interface at a voltage other than 3.3 V, convert the signal level on the UDL board side.

Since the emulator input pins support 5 V, inputting 5 V signals does not represent a problem.

C.2 Signal List

Signal List (1/8)

Phase-out/Discontinued

PIN No.	When VSB Bus	B Bus When Memory Controller Is Used		I/O	Processing on
	Is Used	SRAM	SDRAM		Emulator Side
CON1-CON001		3 Vcc ^{Note 1}			
CON1-CON002		3 Vcc ^{Note 1}			
CON1-CON003		DMACTV2		0	
CON1-CON004		DMACTV0		0	
CON1-CON005		Vcc ^{Note 2}			
CON1-CON006		Vcc ^{Note 2}			
CON1-CON007	VBD30	D	30	I/O	5.1 K pull-up
CON1-CON008	VBD28	D.	28	I/O	5.1 K pull-up
CON1-CON009	VBD26	D	26	I/O	5.1 K pull-up
CON1-CON010	VBD24	D	24	I/O	5.1 K pull-up
CON1-CON011	VBD22	D	22	I/O	5.1 K pull-up
CON1-CON012	VBD20	D.	20	I/O	5.1 K pull-up
CON1-CON013	VBD18	D	18	I/O	5.1 K pull-up
CON1-CON014	VBD16	D	16	I/O	5.1 K pull-up
CON1-CON015	GND				
CON1-CON016	GND				
CON1-CON017	VBD14	D	14	I/O	5.1 K pull-up
CON1-CON018	VBD12	D12		I/O	5.1 K pull-up
CON1-CON019	VBD10	VBD10 D10		I/O	5.1 K pull-up
CON1-CON020	VBD8	VBD8 D8		I/O	5.1 K pull-up
CON1-CON021	VBD6	D6 D6		I/O	5.1 K pull-up
CON1-CON022	VBD4	VBD4 D4		I/O	5.1 K pull-up
CON1-CON023	VBD2 D2		I/O	5.1 K pull-up	
CON1-CON024	VBD0	C	0	I/O	5.1 K pull-up
CON1-CON025		GND			
CON1-CON026		GND			
CON1-CON027		GND			
CON1-CON028		GND			
CON1-CON029	VBBSTR	_Note 3	_Note 3	0	
CON1-CON030	VBDC	RDZ		0	
CON1-CON031	VBBENZ2	WRZ2	DQM2	0	
CON1-CON032	VBBENZ0	WRZ0	DQM0	0	
CON1-CON033		GND			
CON1-CON034		GND			
CON1-CON035	PCM4	Note 3	REFRQZ	0	33 K pull-down
CON1-CON036	PCM2	HLD	AKZ	0	33 K pull-down
CON1-CON037	PCM0	WA	ITZ	Ι	5.1 K pull-up

Notes 1. 3.3 V power supply of emulator

- 2. 5 V power supply of emulator
- 3. Leave open or perform pin processing according to (3) Handling of unused pins in C.1.1 Cautions

PIN No.	When VSB Bus	When Memory C	controller Is Used	I/O	Processing on
	Is Used	SRAM	SDRAM		Emulator Side
CON1-CON038		GND			
CON1-CON039		GND			
CON1-CON040	VBA26		ote 1	0	
CON1-CON041	VBA24	A	24	0	
CON1-CON042	VBA22	A	22	0	
CON1-CON043	VBA20	A	20	0	
CON1-CON044	VBA18	A	18	0	
CON1-CON045	VBA16	A	16	0	
CON1-CON046	VBA14	A	14	0	
CON1-CON047		GND			
CON1-CON048		GND			
CON1-CON049	VBA12	A	12	0	
CON1-CON050	VBA10	A	10	0	
CON1-CON051	VBA8	A	8	0	
CON1-CON052	VBA6	A	6	0	
CON1-CON053	VBA4	A	Α4		
CON1-CON054	VBA2	A2		0	
CON1-CON055	VBA0	A0		0	
CON1-CON056	GND				
CON1-CON057	GND				
CON1-CON058	GND				
CON1-CON059		GND			
CON1-CON060	VDCSZ6	CSZ6	CSZ6	0	
CON1-CON061	VDCSZ4	CSZ4	CSZ4	0	
CON1-CON062	VDCSZ2	CSZ2/IOWRZ	CSZ2/IOWRZ	0	
CON1-CON063	VDCSZ0	CSZ0	CSZ0	0	
CON1-CON064	PCD2	Note 1	SDCASZ	0	33 K pull-down
CON1-CON065	PCD0	Note 1	CKE	0	33 K pull-down
CON1-CON066	VBCTYP2	N	ote 1	0	
CON1-CON067	VBCTYP0	N	ote 1	0	
CON1-CON068	VAACK	N	ote 1	0	
CON1-CON069	VBAHLD	N	ote 1	I	33 K pull-down
CON1-CON070	VBLOCK	N	ote 1	0	
CON1-CON071	VBSIZE1	N	ote 1	0	
CON1-CON072	VBTTYP1	Note 1		0	
CON1-CON073	VBWRITE	_Note 1		0	
CON1-CON074		GND			
CON1-CON075		GND			
CON1-CON076		VBCLKI ^{Note 2}		0	
CON1-CON077	GND				

Signal List (2/8)

Notes 1. Leave open or perform pin processing according to (3) Handling of unused pins in C.1.1 Cautions

2. Clock signal supplied to UDL board from emulator.

Signal List (3/8)

PIN No.	When VSB Bus	When Memory Controller Is Used		I/O	Processing on
	Is Used	SRAM	SDRAM		Emulator Side
CON1-CON078		GND			
CON1-CON079		VPD14		I/O	5.1 K pull-up
CON1-CON080		VPD12		I/O	5.1 K pull-up
CON1-CON081		VPD10		I/O	5.1 K pull-up
CON1-CON082		VPD8		I/O	5.1 K pull-up
CON1-CON083		VPD6		I/O	5.1 K pull-up
CON1-CON084		VPD4		I/O	5.1 K pull-up
CON1-CON085		VPD2		I/O	5.1 K pull-up
CON1-CON086		VPD0		I/O	5.1 K pull-up
CON1-CON087		GND			
CON1-CON088		GND			
CON1-CON089		GND			
CON1-CON090		GND			
CON1-CON091		VPA12		0	
CON1-CON092		VPA10		0	
CON1-CON093		VPA8		0	
CON1-CON094		VPA6		0	
CON1-CON095		VPA4		0	
CON1-CON096	VPA2		0		
CON1-CON097	VPA0		0		
CON1-CON098	VPUBENZ		0		
CON1-CON099	VPLOCK		0		
CON1-CON100	Note				
CON2-CON001		3 Vcc			
CON2-CON002	3 Vcc				
CON2-CON003		DMACTV3		0	
CON2-CON004		DMACTV1		0	
CON2-CON005		Vcc			
CON2-CON006		Vcc			
CON2-CON007	VBD31	D3	1	I/O	5.1 K pull-up
CON2-CON008	VBD29	D29	9	I/O	5.1 K pull-up
CON2-CON009	VBD27	D2	7	I/O	5.1 K pull-up
CON2-CON010	VBD25	D2	5	I/O	5.1 K pull-up
CON2-CON011	VBD23	D23	3	I/O	5.1 K pull-up
CON2-CON012	VBD21	D2	1	I/O	5.1 K pull-up
CON2-CON013	VBD19	D1	9	I/O	5.1 K pull-up
CON2-CON014	VBD17 D17		I/O	5.1 K pull-up	
CON2-CON015		GND			
CON2-CON016		GND			
CON2-CON017	VBD15	D1	5	I/O	5.1 K pull-up
CON2-CON018	VBD13	D1:	3	I/O	5.1 K pull-up

Note Leave open or perform pin processing according to (3) Handling of unused pins in C.1.1 Cautions

PIN No. When VSB Bus When Memory Controller Is Used I/O Processing on Is Used **Emulator Side** SRAM SDRAM CON2-CON019 VBD11 D11 I/O 5.1 K pull-up VBD9 I/O CON2-CON020 D9 5.1 K pull-up CON2-CON021 VBD7 D7 I/O 5.1 K pull-up VBD5 I/O CON2-CON022 D5 5.1 K pull-up CON2-CON023 VBD3 D3 I/O 5.1 K pull-up VBD1 CON2-CON024 D1 I/O 5.1 K pull-up CON2-CON025 GND CON2-CON026 GND CON2-CON027 GND CON2-CON028 GND CON2-CON029 VBSTZ BCYSTZ BCYSTZ Ο Note CON2-CON030 SDWEZ 0 VDSELPZ 0 CON2-CON031 VBBENZ3 WRZ3 DQM3 0 CON2-CON032 VBBENZ1 WRZ1 DQM1 CON2-CON033 GND CON2-CON034 GND Note CON2-CON035 PCM5 SELFREF I 33 K pull-down PCM3 HLDRQZ T CON2-CON036 5.1 K pull-up Note I/O CON2-CON037 PCM1 33 K pull-down CON2-CON038 GND CON2-CON039 GND Note CON2-CON040 VBA27 Ο CON2-CON041 VBA25 0 A25 CON2-CON042 VBA23 A23 0 0 VBA21 A21 CON2-CON043 CON2-CON044 VBA19 A19 0 CON2-CON045 VBA17 A17 0 0 VBA15 A15 CON2-CON046 CON2-CON047 GND CON2-CON048 GND CON2-CON049 VBA13 A13 0 CON2-CON050 VBA11 A11 0 VBA9 0 CON2-CON051 Α9 CON2-CON052 VBA7 0 Α7 0 CON2-CON053 VBA5 Α5 CON2-CON054 VBA3 A3 0 0 CON2-CON055 VBA1 A1 GND CON2-CON056 CON2-CON057 GND CON2-CON058 GND CON2-CON059 GND

Pin List (4/8)

Note Leave open or perform pin processing according to (3) Handling of unused pins in C.1.1 Cautions

Signal List (5/8)

PIN No.	When VSB Bus	When Memory Controller Is Used		I/O	Processing on
	Is Used	SRAM	SDRAM		Emulator Side
CON2-CON060	VDCSZ7	CSZ7	CSZ7	0	
CON2-CON061	VDCSZ5	CSZ5/IORDZ	CSZ5/IORDZ	0	
CON2-CON062	VDCSZ3	CSZ3	CSZ3	0	
CON2-CON063	VDCSZ1	CSZ1	CSZ1	0	
CON2-CON064	PCD3	_Note	SDRASZ	0	33 K pull-down
CON2-CON065	PCD1	_Note	SDCLK	0	33 K pull-down
CON2-CON066	PBS3		ote	I/O	33 K pull-down
CON2-CON067	VBCTYP1		ote	0	
CON2-CON068	VAREQ		ote	I	33 K pull-down
CON2-CON069	VBLAST	N	ote	I	33 K pull-down
CON2-CON070	VBSIZE0	N	ote	0	
CON2-CON071	VBTTYP0		ote	0	
CON2-CON072	VBWAIT		ote	I	33 K pull-down
CON2-CON073		GND			
CON2-CON074		GND			
CON2-CON075		GND			
CON2-CON076		VBCLK		I	
CON2-CON077	GND				
CON2-CON078	GND				
CON2-CON079	VPD15		I/O	5.1 K pull-up	
CON2-CON080	VPD13		I/O	5.1 K pull-up	
CON2-CON081	VPD11		I/O	5.1 K pull-up	
CON2-CON082	VPD9		I/O	5.1 K pull-up	
CON2-CON083	VPD7		I/O	5.1 K pull-up	
CON2-CON084	VPD5		I/O	5.1 K pull-up	
CON2-CON085		VPD3		I/O	5.1 K pull-up
CON2-CON086		VPD1		I/O	5.1 K pull-up
CON2-CON087		GND			
CON2-CON088		GND			
CON2-CON089		GND			
CON2-CON090		GND			
CON2-CON091		VPA13		0	
CON2-CON092		VPA11		0	
CON2-CON093	VPA9		0		
CON2-CON094	VPA7		0		
CON2-CON095		VPA5		0	
CON2-CON096	VPA3		0		
CON2-CON097	VPA1		0		
CON2-CON098		VPWRITE		0	
CON2-CON099		VPSTB		0	
CON2-CON100	VPRETR			I	500 pull-down

Note Leave open or perform pin processing according to (3) Handling of unused pins in C.1.1 Cautions

PIN No. When VSB Bus When Memory Controller Is Used I/O Processing on Is Used **Emulator Side** SRAM SDRAM CON3-CON001 DMARQ3 Т 33 K pull-down CON3-CON002 DMARQ2 I 33 K pull-down CON3-CON003 DMARQ1 I 33 K pull-down Т CON3-CON004 DMARQ0 33 K pull-down CON3-CON005 DMTCO3 0 CON3-CON006 0 DMTCO2 0 CON3-CON007 DMTCO1 0 CON3-CON008 DMTCO0 CON3-CON009 **IDMASTP** Т 33 K pull-down DCRESZ CON3-CON010 I 5.1 K pull-up ERESETZ 0 CON3-CON011 CON3-CON012 GND CON3-CON013 GND CON3-CON014 GND CON3-CON015 DCNMI2 Т 50 K pull-down CON3-CON016 DCNMI1 Т 50 K pull-down I CON3-CON017 DCNMI0 50 K pull-down CON3-CON018 INT63 T 50 K pull-down INT62 CON3-CON019 T 50 K pull-down CON3-CON020 INT61 I 50 K pull-down Т CON3-CON021 INT60 50 K pull-down CON3-CON022 INT59 I 50 K pull-down I CON3-CON023 INT58 50 K pull-down Т CON3-CON024 INT57 50 K pull-down CON3-CON025 INT56 Т 50 K pull-down CON3-CON026 INT55 L 50 K pull-down I CON3-CON027 INT54 50 K pull-down CON3-CON028 50 K pull-down INT53 I CON3-CON029 L INT52 50 K pull-down CON3-CON030 INT51 I 50 K pull-down Т CON3-CON031 INT50 50 K pull-down CON3-CON032 INT49 I 50 K pull-down CON3-CON033 INT48 L 50 K pull-down INT47 I CON3-CON034 50 K pull-down CON3-CON035 INT46 I 50 K pull-down INT45 CON3-CON036 Т 50 K pull-down I CON3-CON037 INT44 50 K pull-down 50 K pull-down CON3-CON038 INT43 Т CON3-CON039 INT42 T 50 K pull-down CON3-CON040 INT41 I 50 K pull-down Т CON3-CON041 INT40 50 K pull-down

Signal List (6/8)

Note Reset signal supplied to UDL board from emulator.

Signal List (7/8)

PIN No.	When VSB Bus	When Memory C	Controller Is Used	I/O	Processing on
	Is Used	SRAM	SDRAM		Emulator Side
CON3-CON042		INT39		I	50 K pull-down
CON3-CON043		INT38		Ι	50 K pull-down
CON3-CON044		INT37		I	50 K pull-down
CON3-CON045		INT36		I	50 K pull-down
CON3-CON046		INT35		I	50 K pull-down
CON3-CON047		INT34		I	50 K pull-down
CON3-CON048		INT33		I	50 K pull-down
CON3-CON049		INT32		I	50 K pull-down
CON3-CON050		INT31		I	50 K pull-down
CON3-CON051		INT30		I	50 K pull-down
CON3-CON052		INT29		I	50 K pull-down
CON3-CON053		INT28		I	50 K pull-down
CON3-CON054		INT27		I	50 K pull-down
CON3-CON055		INT26		I	50 K pull-down
CON3-CON056		INT25		I	50 K pull-down
CON3-CON057		INT24		I	50 K pull-down
CON3-CON058		INT23		I	50 K pull-down
CON3-CON059		INT22		I	50 K pull-down
CON3-CON060		INT21		I	50 K pull-down
CON3-CON061	INT20		I	50 K pull-down	
CON3-CON062	INT19		I	50 K pull-down	
CON3-CON063	INT18		I	50 K pull-down	
CON3-CON064	INT17		I	50 K pull-down	
CON3-CON065	INT16		I	50 K pull-down	
CON3-CON066		INT15		I	50 K pull-down
CON3-CON067		INT14		I	50 K pull-down
CON3-CON068		INT13		I	50 K pull-down
CON3-CON069		INT12		I	50 K pull-down
CON3-CON070		INT11		I	50 K pull-down
CON3-CON071		INT10		I	50 K pull-down
CON3-CON072		INT9		I	50 K pull-down
CON3-CON073		INT8		I	50 K pull-down
CON3-CON074		INT7		I	50 K pull-down
CON3-CON075		INT6		I	50 K pull-down
CON3-CON076		INT5		I	50 K pull-down
CON3-CON077		INT4		I	50 K pull-down
CON3-CON078		INT3			50 K pull-down
CON3-CON079		INT2			50 K pull-down
CON3-CON080	INT1		I	50 K pull-down	
CON3-CON081	INTO		I	50 K pull-down	
CON3-CON082		GND			
CON3-CON083		GND			
CON3-CON084	GND				

PIN No.	When VSB Bus	When Memory C	ontroller Is Used	I/O	Processing on
	Is Used	SRAM	SDRAM		Emulator Side
CON3-CON085		GND			
CON3-CON086		CGREL		I	50 K pull-down
CON3-CON087		HWSTOPRQ		0	
CON3-CON088		SWSTOPRQ		0	
CON3-CON089		STPRQ		0	
CON3-CON090		STPAK		I	4.7 K pull-up
CON3-CON091	DCSTOPZ		I	5.1 K pull-up	
CON3-CON092	TGTV _{DD} ^{Note 1}		I	33 K pull-down	
CON3-CON093	EXTD7 ^{Note 2}		I	33 K pull-down	
CON3-CON094		EXTD6 ^{Note 2}		I	33 K pull-down
CON3-CON095		EXTD5 ^{Note 2}		I	33 K pull-down
CON3-CON096		EXTD4 ^{Note 2}		I	33 K pull-down
CON3-CON097	EXTD3 ^{Note 2}		I	33 K pull-down	
CON3-CON098	EXTD2 ^{Note 2}		I	33 K pull-down	
CON3-CON099		EXTD1 Note 2		I	33 K pull-down
CON3-CON100		EXTD0 ^{Note 2}		I	33 K pull-down

Signal List (8/8)

Notes 1. UDL board power ON/OFF detection signal

2. External logic probe signal

C.3 NB85E Pin and UDL Connector Correspondence Tables

N	B85E Pins	Pin No.
Pins for NPB	VPA0	CON1-CON097
	VPA1	CON2-CON097
	VPA2	CON1-CON096
	VPA3	CON2-CON096
	VPA4	CON1-CON095
	VPA5	CON2-CON095
	VPA6	CON1-CON094
	VPA7	CON2-CON094
	VPA8	CON1-CON093
	VPA9	CON2-CON093
	VPA10	CON1-CON092
	VPA11	CON2-CON092
	VPA12	CON1-CON091
	VPA13	CON2-CON091
	VPD0	CON1-CON086
	VPD1	CON2-CON086
	VPD2	CON1-CON085
	VPD3	CON2-CON085
	VPD4	CON1-CON084
	VPD5	CON2-CON084
	VPD6	CON1-CON083
	VPD7	CON2-CON083
	VPD8	CON1-CON082
	VPD9	CON2-CON082
	VPD10	CON1-CON081
	VPD11	CON2-CON081
	VPD12	CON1-CON080
	VPD13	CON2-CON080
	VPD14	CON1-CON079
	VPD15	CON2-CON079
	VPWRITE	CON1-CON098
	VPSTB	CON2-CON099
	VPLOCK	CON1-CON099
	VPUBENZ	CON2-CON098
	VPRETR	CON1-CON100
	VPDACT	Note
Pins for VSB	VAREQ	CON2-CON068
	VAACK	CON1-CON068
	VBA0	CON1-CON055
	VBA1	CON2-CON055

Correspondence Between NB85E Pins and UDL Connectors (1/6)

Note Indicates that the corresponding pin does not exist in emulator.

NB85E Pins		Pin No.
Pins for VSB	VBA2	CON1-CON054
	VBA3	CON2-CON054
	VBA4	CON1-CON053
	VBA5	CON2-CON053
	VBA6	CON1-CON052
	VBA7	CON2-CON052
	VBA8	CON1-CON051
	VBA9	CON2-CON051
	VBA10	CON1-CON050
	VBA11	CON2-CON050
	VBA12	CON1-CON049
	VBA13	CON2-CON049
	VBA14	CON1-CON046
	VBA15	CON2-CON046
	VBA16	CON1-CON045
	VBA17	CON2-CON045
	VBA18	CON1-CON044
	VBA19	CON2-CON044
	VBA20	CON1-CON043
	VBA21	CON2-CON043
	VBA22	CON1-CON042
	VBA23	CON2-CON042
	VBA24	CON1-CON041
	VBA25	CON2-CON041
	VBA26 ^{Note}	CON1-CON040
	VBA27 ^{Note}	CON2-CON040
	VBD0	CON1-CON024
	VBD1	CON2-CON024
	VBD2	CON1-CON023
	VBD3	CON2-CON023
	VBD4	CON1-CON022
	VBD5	CON2-CON022
	VBD6	CON1-CON021
	VBD7	CON2-CON021
	VBD8	CON1-CON020
	VBD9	CON2-CON020
	VBD10	CON1-CON019
	VBD11	CON2-CON019
	VBD12	CON1-CON018
	VBD13	CON2-CON018
	VBD14	CON1-CON017
	VBD15	CON2-CON017

Correspondence Between NB85E Pins and UDL Connectors (2/6)

Note Undefined operation in the 64 MB mode. Only used in the 256 MB mode.

Ν	B85E Pins	Pin No.
Pins for VSB	VBD16	CON1-CON014
	VBD17	CON2-CON014
	VBD18	CON1-CON013
	VBD19	CON2-CON013
	VBD20	CON1-CON012
	VBD21	CON2-CON012
	VBD22	CON1-CON011
	VBD23	CON2-CON011
	VBD24	CON1-CON010
	VBD25	CON2-CON010
	VBD26	CON1-CON009
	VBD27	CON2-CON009
	VBD28	CON1-CON008
	VBD29	CON2-CON008
	VBD30	CON1-CON007
	VBD31	CON2-CON007
	VBTTYP0	CON2-CON071
	VBTTYP1	CON1-CON072
	VBSTZ	CON2-CON029
	VBBENZ0	CON1-CON032
	VBBENZ1	CON2-CON032
	VBBENZ2	CON1-CON031
	VBBENZ3	CON2-CON031
	VBSIZE0	CON2-CON070
	VBSIZE1	CON1-CON071
	VBWRITE	CON2-CON073
	VBLOCK	CON1-CON070
	VBCTYP0	CON2-CON067
	VBCTYP1	CON1-CON067
	VBCTYP2	CON2-CON066
	VBSEQ0	
	VBSEQ1	Note
	VBSEQ2	
	VBBSTR	CON1-CON029
	VBWAIT	CON2-CON072
	VBLAST	CON2-CON069
	VBAHLD	CON1-CON069
	VBDC	CON1-CON030
	VDCSZ0	CON1-CON063
	VDCSZ1	CON2-CON063
	VDCSZ2	CON1-CON062
	VDCSZ3	CON2-CON062

Correspondence Between NB85E Pins and UDL Connectors (3/6)

Note Indicates that the corresponding pin does not exist in emulator.

NE	85E Pins	Pin No.
Pins for VSB	VDCS74	CON1-CON061
	VDCSZ5	
-	VDCSZ6	CON1-CON060
-	VDCSZ7	
-		CON2-CON030
Pine for system control		CON3-CON030
-		
-		
-		
-	STRRO	
-	STERU	
-	STPAK	
	UGREL	
Pins for DMAC	IDMASTP	CON3-CON009
-	DMARQU	CON3-CON004
-	DMARQ1	CON3-CON003
-	DMARQ2	CON3-CON002
-	DMARQ3	CON3-CON001
-	DMTCO0	CON3-CON008
-	DMTCO1	CON3-CON007
-	DMTCO2	CON3-CON006
-	DMTCO3	CON3-CON005
-	DMACTV0	CON1-CON004
-	DMACTV1	CON2-CON004
-	DMACTV2	CON1-CON003
	DMACTV3	CON2-CON003
Pins for INTC	DCNMI0	CON3-CON017
-	DCNMI1	CON3-CON016
-	DCNMI2	CON3-CON015
	INT0	CON3-CON081
	INT1	CON3-CON080
	INT2	CON3-CON079
	INT3	CON3-CON078
	INT4	CON3-CON077
	INT5	CON3-CON076
	INT6	CON3-CON075
	INT7	CON3-CON074
	INT8	CON3-CON073
	INT9	CON3-CON072
F	INT10	CON3-CON071
F	INT11	CON3-CON070
-	INT12	CON3-CON069
	INT13	CON3-CON068
	INT14	CON3-CON067

Correspondence Between NB85E Pins and UDL Connectors (4/6)

N	385E Pins	Pin No.
Pins for INTC	INT15	CON3-CON066
	INT16	CON3-CON065
	INT17	CON3-CON064
	INT18	CON3-CON063
	INT19	CON3-CON062
	INT20	CON3-CON061
	INT21	CON3-CON060
	INT22	CON3-CON059
	INT23	CON3-CON058
	INT24	CON3-CON057
	INT25	CON3-CON056
	INT26	CON3-CON055
	INT27	CON3-CON054
	INT28	CON3-CON053
	INT29	CON3-CON052
	INT30	CON3-CON051
	INT31	CON3-CON050
	INT32	CON3-CON049
	INT33	CON3-CON048
	INT34	CON3-CON047
	INT35	CON3-CON046
	INT36	CON3-CON045
	INT37	CON3-CON044
	INT38	CON3-CON043
	INT39	CON3-CON042
	INT40	CON3-CON041
	INT41	CON3-CON040
	INT42	CON3-CON039
	INT43	CON3-CON038
	INT44	CON3-CON037
	INT45	CON3-CON036
	INT46	CON3-CON035
	INT47	CON3-CON034
	INT48	CON3-CON033
	INT49	CON3-CON032
	INT50	CON3-CON031
	INT51	CON3-CON030
	INT52	CON3-CON029
	INT53	CON3-CON028
	INT54	CON3-CON027
	INT55	CON3-CON026
	INT56	CON3-CON025
	INT57	CON3-CON024
	INT58	CON3-CON023

Correspondence Between NB85E Pins and UDL Connectors (5/6)

I	NB85E Pins	Pin No.
Pins for INTC	INT59	CON3-CON022
	INT60	CON3-CON021
	INT61	CON3-CON020
	INT62	CON3-CON019
	INT63	CON3-CON018

Correspondence Between NB85E Pins and UDL Connectors (6/6)

Caution The following pins are not supported by the emulator:

Pins for VFB, pins for VDB, pins for instruction cache, pins for data cache, pins for RCU, pins for peripheral evaluation chip mode, pins for operation mode settings, pins for test mode, pins for VSB (only when NB85E500/NU85E502 are used).

C.4 NB85E500 Pins and CON1 to CON3 Correspondence Tables

NB85E500 Pins Pin No. Pins for external A0 CON1-CON055 memory connection CON2-CON055 A1 A2 CON1-CON054 A3 CON2-CON054 A4 CON1-CON053 A5 CON2-CON053 A6 CON1-CON052 Α7 CON2-CON052 A8 CON1-CON051 A9 CON2-CON051 A10 CON1-CON050 A11 CON2-CON050 A12 CON1-CON049 A13 CON2-CON049 A14 CON1-CON046 A15 CON2-CON046 A16 CON1-CON045 A17 CON2-CON045 CON1-CON044 A18 A19 CON2-CON044 A20 CON1-CON043 CON2-CON043 A21 A22 CON1-CON042 A23 CON2-CON042 A24 CON1-CON041 A25 CON2-CON041 D0 CON1-CON024 CON2-CON024 D1 D2 CON1-CON023 D3 CON2-CON023 D4 CON1-CON022 D5 CON2-CON022 CON1-CON021 D6 D7 CON2-CON021 D8 CON1-CON020 D9 CON2-CON020 D10 CON1-CON019 CON2-CON019 D11 CON1-CON018 D12 D13 CON2-CON018 D14 CON1-CON017

Correspondence Between NB85E500 Pins and CON1 to CON3 (1/3)

NB8	35E500 Pins	Pin No.
Pins for external	D15	CON2-CON017
memory connection	D16	CON1-CON014
	D17	CON2-CON014
	D18	CON1-CON013
	D19	CON2-CON013
	D20	CON1-CON012
	D21	CON2-CON012
	D22	CON1-CON011
	D23	CON2-CON011
	D24	CON1-CON010
	D25	CON2-CON010
	D26	CON1-CON009
	D27	CON2-CON009
	D28	CON1-CON008
	D29	CON2-CON008
	D30	CON1-CON007
	D31	CON2-CON007
	RDZ	CON1-CON030
	WRZ0	CON1-CON032
	WRZ1	CON2-CON032
	WRZ2	CON1-CON031
	WRZ3	CON2-CON031
	IORDZ ^{Note 1}	CON2-CON061
	IOWRZ ^{Note 1}	CON1-CON062
	WAITZ	CON1-CON037
	HLDRQZ	CON2-CON036
	HLDAKZ	CON1-CON036
	DC0	_Note 2
	DC1	_Note 2
	DC2	_Note 2
	DC3	_Note 2
	CSZ0	CON1-CON063
	CSZ1	CON2-CON063
	CSZ2 ^{Note 1}	CON1-CON062
	CSZ3	CON2-CON062
	CSZ4	CON1-CON061
	CSZ5 ^{Note 1}	CON2-CON061
	CSZ6	CON1-CON060
	CSZ7	CON2-CON060
	BENZ0	Note 2
	BENZ1	Note 2

Correspondence Between NB85E500 Pins and CON1 to CON3 (2/3)

- **Notes 1.** CS5Z and IORDZ are mutually exclusive, as are CS2Z and IOWRZ i.e., only one pin in each pair can be used.
 - 2. Indicates that the corresponding pin does not exist in emulator.

Correspondence Between NB85E500 Pins and CON1 to CON3 (3/3)

NB8	Pin No.	
Pins for external	BENZ2	_Note
memory connection	BENZ3	Note _
	BCYSTZ	CON2-CON029
	REFRQZ	CON1-CON035
	SELFREF	CON2-CON035
	SDCLK	CON2-CON065

Note Indicates that the corresponding pin does not exist in emulator.

Caution The following pins are not supported by the emulator:

Pins for NB85E connection, pins for initial setting, pins for NU85E502 connection, pins for test mode

C.5 NU85E502 Pins and CON1 to CON3 Correspondence Tables

NU8	35E502 Pins	Pin No.		
Pins for external	A0	CON1-CON055		
memory connection	A1	CON2-CON055		
	A2	CON1-CON054		
	A3	CON2-CON054		
	A4	CON1-CON053		
	A5	CON2-CON053		
	A6	CON1-CON052		
	A7	CON2-CON052		
	A8	CON1-CON051		
	A9	CON2-CON051		
	A10	CON1-CON050		
	A11	CON2-CON050		
	A12	CON1-CON049		
	A13	CON2-CON049		
	A14	CON1-CON046		
	A15	CON2-CON046		
	A16	CON1-CON045		
	A17	CON2-CON045		
	A18	CON1-CON044		
	A19	CON2-CON044		
	A20	CON1-CON043		
	A21	CON2-CON043		
	A22	CON1-CON042		
	A23	CON2-CON042		
	A24	CON1-CON041		
	A25	CON2-CON041		
	D0	CON1-CON024		
	D1	CON2-CON024		
	D2	CON1-CON023		
	D3	CON2-CON023		
	D4	CON1-CON022		
	D5	CON2-CON022		
	D6	CON1-CON021		
	D7	CON2-CON021		
	D8	CON1-CON020		
	D9	CON2-CON020		
	D10	CON1-CON019		
	D11	CON2-CON019		
	D12	CON1-CON018		
	D13	CON2-CON018		
	D14	CON1-CON017		

Correspondence Between NU85E502 pins and CON1 to CON3 (1/2)

NU8	35E502 Pins	Pin No.
Pins for external	D15	CON2-CON017
memory connection	D16	CON1-CON014
	D17	CON2-CON014
	D18	CON1-CON013
	D19	CON2-CON013
	D20	CON1-CON012
	D21	CON2-CON012
	D22	CON1-CON011
	D23	CON2-CON011
	D24	CON1-CON010
	D25	CON2-CON010
	D26	CON1-CON009
	D27	CON2-CON009
	D28	CON1-CON008
	D29	CON2-CON008
	D30	CON1-CON007
	D31	CON2-CON007
	SDRASZ	CON2-CON064
	SDCASZ	CON1-CON064
	SDWEZ	CON2-CON030
	CKE	CON1-CON065
	DQM0	CON1-CON032
	DQM1	CON2-CON032
	DQM2	CON1-CON031
	DQM3	CON2-CON031

Correspondence Between NU85E502 pins and CON1 to CON3 (2/2)

Caution The following pins are not supported by the emulator:

Pins for NB85E connection, pins for NB85E500 connection, pins for test mode

APPENDIX D ELECTRICAL SPECIFICATIONS OF UDL INTERFACE

The electrical specifications of the UDL interface when this product is connected to the IE-V850E-MC-A are described below.

A voltage of 3.3 V \pm 10% is supplied from the emulator as V_{DD}.

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage (emulator)	Vdd		-0.5 to +4.6	V
Supply voltage (target pin)	TVDD		-0.5 to +4.6	V
Input voltage	VI1	V _{DD} = 3.0 V to 3.6 V	–0.5 to Vpp+0.5	V
Clock input voltage	Vк	V _{DD} = 3.0 V to 3.6 V	–0.5 to Vpp+1.0	V
Low-level output current	lol	Per pin	40	mA
		Total of all pins	400	mA
High-level output current	Іон	Per pin	-40	mA
		Total of all pins	-400	mA
Output voltage	Vo	V _{DD} = 3.0 V to 3.6 V	–0.5 to Vpp+0.5	V
Operating ambient temperature	TA		0 to +45	°C

Capacitance (TA = 25°C, VDD = VSS = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cı	fc = 1 MHz			10	pF
I/O capacitance	Сю	0 V for unmeasured pins			10	pF
Output capacitance	Co				10	pF

DC Characteristics (TA = -40°C to +85°C, VDD 3.0 V to 3.6 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
High-level input voltage	Vін		0.65 Vdd		Vdd+0.3	V
Low-level input voltage	VIL		-0.5		0.2 Vdd	V
High-level clock input voltage	Vхн	X1 pin	0.8 Vdd		Vdd+0.3	V
Low-level clock input voltage	VxL	X1 pin	-0.3		0.15 Vdd	V
High-level output voltage	Vон	Іон = –2 mA	Vdd - 0.2			V
Low-level output voltage	Vol	lo∟ = 10 mA			0.4	V
High-level input leak current	Іцн	Vi = Vdd			10	μA
Low-level input leak current	Luc	V1 = 0 V			-10	μA
High-level output leak current	Ігон	$V_0 = V_{DD} - 0.4 V$			10	μA
Low-level output leak current	ILOL	Vo = 0.4 V			-10	μA
High-level output current	Іон	$V_0 = V_{DD} - 0.4 V$			2	mA
Low-level output current	lo∟	Vo = 0.4 V			-12	mA

Remark TYP. values are reference values when $T_A = 25^{\circ}C$ and $V_{DD} = 3.3$ V.

AC Test Input Waveform (Other Than RESET)

AC Test Input Waveform (RESET)

AC Test Output Measurement Points

Load Conditions

Note DUT stands for device under test.

Caution If the load capacitance exceeds 50 pF due to the circuit configuration, the load capacitance of this device must be maintained at 50 pF or lower using buffers.

Clock Timing

Clock Timing (T_A = 0 to 40°C, Output Pin Load Capacitance C_L = 50 pF)

Parameter	Symbo	bl	MIN.	MAX.	Unit
VBCLK low-level width	t wkil	<1>	11		ns
VBCLK high-level width	twкiн	<2>	11		ns
VBCLKI low-level width	twкol	<3>	11		ns
VBCLKI high-level width	twкон	<4>	11		ns
VBCLKI delay time (from VBCLK \downarrow)	tcld1	<5>		18	ns
CPUCLK delay time (from VBCLKI \downarrow)	tCLD2	<6>		10	ns

Remark CPUCLK: Clock used inside evaluation chip

Reset Timing

ERESETZ Timing (T_A = 0 to 40°C, Output Pin Load Capacitance C_L = 50 pF)

Parameter	Symbol		Asynchronous		Synchronous		Unit
			MIN.	MAX.	In Relation	to VBCLKI	
					MIN.	MAX.	
DCRESZ setup (to VBCLKI ↑)	t skrst	<7>			12	17	ns
ERESETZ delay time (from VBCLKI ↑)	t dkerst	<8>			12	17	ns
ERESETZ delay time (from DCRESZ \downarrow)	t DRST	<9>	4T-5	17			ns

Phase-out/Discontinued

APPENDIX D ELECTRICAL SPECIFICATIONS OF UDL INTERFACE Phase-out/Discontinued

Target Interface

SRAM/page ROM cycle (other than bus mode)

Parameter	Symbol		Synchronous		Unit
			In Relation	n to VBCLKI	
			MIN.	MAX.	
A (25:0) delay time (from VBCLKI ↑)	tad	<10>		18	ns
CS (7:0) Z delay time (from VBCLKI ↑)	tcszd	<11>		18	ns
RDZ delay time (from VBCLKI)	trdzd	<12>		13	ns
D (31:0) setup time (to VBCLKI ↑)	tos	<13>	–15		ns
D (31:0) hold time (from VBCLKI ↑)	tон	<14>	11		ns
WR (3:0) Z delay time (from VBCLKI $\downarrow)$	twrzd	<15>		13	ns
D (31:0) delay time 1 (from VBCLKI 1)	tdd1	<16>		26	ns
D (31:0) delay time 2 (from VBCLKI 1)	tdd2	<17>		23	ns
BCYSTZ delay time (from VBCLKI ↑)	tвсур	<18>		13	ns
WAITZ setup time (to VBCLKI ↑)	twтs	<19>	-7		ns
WAITZ hold time (from VBCLKI ↑)	twтн	<20>	11		ns
IORDZ delay time (from VBCLKI \downarrow)	tiord	<21>		13	ns
IOWRZ delay time (from VBCLKI ↓)	tiowr	<22>		13	ns

SRAM/Page ROM Cycle (T_A = 0 to 40°C, Output Pin Load Capacitance C_L = 50 pF)

APPENDIX D ELECTRICAL SPECIFICATIONS OF UDL INTERFACE Phase-out/Discontinued

DRAM Cycle (Fast Page)

DRAM Cycle (Fast Page) (T_A = 0 to 40°C, Output Pin Load Capacitance C_L = 50 pF)

Parameter	Symbol		Synchronous		Unit
			In Relation	to VBCLKI	
			MIN.	MAX.	
Row address delay time (from VBCLKI ↑)	trad	<23>		17	ns
Column address delay time (from VBCLKI \uparrow)	tcad	<24>		17	ns
RAS (7:0) Z delay time (from VBCLKI \downarrow)	t RASD	<25>		13	ns
CAS (3:0) Z delay time (from VBCLKI \downarrow)	t CASD	<26>		14	ns
OEZ delay time (from VBCLKI \downarrow)	toed	<27>		13	ns
WE (3:0) Z delay time (from VBCLKI \downarrow)	twed	<28>		13	ns
D (31:0) setup time (to VBCLKI \downarrow)	t _{DS3}	<29>	–13		ns
D (31:0) hold time (from VBCLKI \downarrow)	tонз	<30>	11		ns
D (31:0) delay time 1 (from VBCLKI ↑)	t _{DD1}	<31>		26	ns
WAITZ setup time (to VBCLKI ↑)	twrs	<32>	-7		ns
WAITZ hold time (from VBCLKI ↑)	twтн	<33>	11		ns

APPENDIX D ELECTRICAL SPECIFICATIONS OF UDL INTE Phase-out/Discontinued

DRAM Cycle (Hyper Page (EDO))

DRAM Cycle (Hyper Page (EDO)) (T_A = 0 to 40°C, Output Pin Load Capacitance C_L = 50 pF)

Parameter	Symbol		Synchronous		Unit
			In Relation to VBCLKI		
			MIN.	MAX.	
Row-address delay time (from VBCLKI ↑)	t RAD	<23>		17	ns
Column address delay time (from VBCLKI ↑)	t CAD	<24>		17	ns
RAS (7:0) Z delay time (from VBCLKI \downarrow)	trasd	<25>		13	ns
CAS (3:0) Z delay time (from VBCLKI)	tcasd	<26>		14	ns
OEZ delay time (from VBCLKI \downarrow)	toed	<27>		13	ns
WE (3:0) Z delay time (from VBCLKI \downarrow)	twed	<28>		13	ns
D (31:0) setup time (to VBCLKI \downarrow)	t _{DS3}	<29>	-13		ns
D (31:0) hold time (from VBCLKI \downarrow)	tрнз	<30>	11		ns
D (31:0) delay time 1 (from VBCLKI ↑)	t _{DD1}	<31>		26	ns

SDRAM Cycle (Read)

SDRAM Cycle (Read) (T_A = 0 to 40°C, Output Pin Load Capacitance C_L = 50 pF)

Parameter	Symbol		Synchronous		Unit
			In Relation	to VBCLKI	
			MIN.	MAX.	
Row address delay time (from VBCLKI ↑)	t sdrad	<34>	14	21	ns
Column address delay time (from VBCLKI ↑)	tsdcad	<35>	14	21	ns
CS (7:0) Z delay time (from VBCLKI ↑)	tcszd	<11>		18	ns
SDRASZ delay time (from VBCLKI ↑)	tsrd	<36>	11.5	13	ns
SDCASZ delay time (from VBCLKI ↑)	tscD	<37>	11.5	13	ns
SDWEZ delay time (from VBCLKI ↑)	tswp	<38>	11.5	13	ns
DQM (3:0) delay time (from VBCLKI ↑)	tDQD	<39>	11.5	13	ns
D (31:0) setup time (to VBCLKI ↑)	t _{DS4}	<40>	0.5		ns
D (31:0) hold time (from VBCLKI ↑)	tDH4	<41>	11		ns
CKE delay time (from VBCLKI ↑)	t CKED	<42>	11.5	13	ns

TWRITE TWRITE TPREC TBCW TACT TBCW WEND VBCLKI <34> <34> <35> **-** <35> A (25:0) <11> <11> CS (7:0) Z <36> <36> <36> <36> SDRASZ -<37> -<37> SDCASZ <38> <38> <38> <38> SDWEZ <39> <39> <39> -<39> DQM (3:0) - <31> - <43> _ D (31:0) _ <42> - <42> CKE

SDRAM Cycle (Write)

Parameter	Symb	ol	Synchronous		Unit
			In Relation to VBCLKI		
			MIN.	MAX.	
Row address delay time (from VBCLKI ↑)	t sdrad	<34>	14	21	ns
Column address delay time (from (VBCLKI \uparrow)	t sdcad	<35>	14	21	ns
CS (7:0) Z delay time (from VBCLKI ↑)	tcszd	<11>		18	ns
SDRASZ delay time (from VBCLKI ↑)	tsrd	<36>	11.5	13	ns
SDCASZ delay time (from VBCLKI ↑)	tscd	<37>	11.5	13	ns
SDWEZ delay time (from VBCLKI ↑)	tswp	<38>	11.5	13	ns
DQM (3:0) delay time (from VBCLKI ↑)	tdqd	<39>	11.5	13	ns
D (31:0) delay time 1 (from VBCLKI ↑)	tdd1	<31>		26	ns
D (31:0) delay time 2 (from VBCLKI 1)	tDD2	<43>		23	ns
CKE delay time (from VBCLKI ↑)	tcked	<42>	11.5	13	ns

Bus Arbitration Interface

Bus Arbitration Interface (T_A = 0 to 40°C, Output Pin Load Capacitance C_L = 50 pF)

Parameter	Symbol		Synchronous		Unit
			In Relation to VBCLKI		
			MIN.	MAX.	
VAREQ delay time (from VBCLKI ↑)	tarqd	<44>		12	ns
VAACK setup time (to VBCLKI ↑)	t aks	<45>	-8		ns
VAACK hold time (from VBCLKI ↑)	tакн	<46>	11		ns
STPRQ setup time (to VBCLKI ↑)	t strqs	<47>	-8		ns
STPRQ hold time (from VBCLKI ↑)	t STRQH	<48>	11		ns
STPAK delay time (from VBCLKI \downarrow)	t stakd	<49>		12	ns
REFRQZ delay time (from VBCLKI \downarrow)	trerqd	<50>		12	ns
HLDRQZ setup time (to VBCLKI \downarrow)	thurqs	<51>	-8		ns
HLDRQZ hold time (from VBCLKI \downarrow)	t HLRQH	<52>	11		ns
HLDAKZ delay time (from VBCLKI ↑)	t HLAKD	<53>		12	ns
SELFREF setup time (to VBCLKI ↑)	t slrfs	<54>	-8		ns
SELFREF hold time (from VBCLKI ↑)	tslrfh	<55>	11		ns

SOC Interface VSB Arbitration Timing

SOC Interface VSB Arbitration Timing (T_A = 0 to 40°C, Output Pin Load Capacitance C_L = 50 pF)

Parameter	Symbol		Synchronous		Unit
			In Relation to VBCLKI		
			MIN.	MAX.	
VAREQ setup time (to VBCLKI \downarrow)	tsкq	<56>	-6		ns
VAREQ hold time (from VBCLKI ↑)	tнкq	<57>	13		ns
VAACK delay time (from VBCLK \downarrow)	t dkack	<58>	12	17	ns
VBLOCK delay time (from VBCLKI ↑)	t dkblock	<59>	12	17	ns

VSB Master Read Timing

Parameter	Symbol		Synch	ronous	Unit
			In Relation	to VBCLKI	
			MIN.	MAX.	
VBTTYP (1:0) delay time (from VBCLKI ↑)	tdkt1	<60>	12	17	ns
VBTTYP (1:0) hold time (from VBCLKI \downarrow)	thkt1	<61>	11		ns
VBSTZ delay time (from VBCLKI ↑)	tdkt2	<62>	12	17	ns
VBSTZ hold time (from VBCLKI ↑)	t нкт2	<63>	11		ns
VBA (27:26) delay time (from VBCLKI 1)	t DKA1	<64>	19.5	24.5	ns
VBA (27:26) hold time (from VBCLKI ↑)	thka1	<65>	18.5		ns
VBA (25:0) delay time (from VBCLKI ↑)	tdka2	<66>	12	17	ns
VBA (25:0) hold time (from VBCLKI ↑)	tнка2	<67>	11		ns
VBSIZE (1:0) delay time (from VBCLKI ↑)	tDKS1	<68>	12	17	ns
VBSIZE (1:0) hold time (from VBCLKI 1)	tHKS1	<69>	11		ns
VBWRITE delay time (from VBCLKI ↑)	tDKS2	<70>	12	17	ns
VBWRITE hold time (from VBCLKI ↑)	thks2	<71>	11		ns
VBBENZ (3:0) delay time (from VBCLKI ↑)	tdks3	<72>	12	17	ns
VBBENZ (3:0) hold time (from VBCLKI ↑)	tнкsз	<73>	11		ns
VBSEQ (2:0) delay time (from VBCLKI ↑)	tDKS4	<74>	12	17	ns
VBSEQ (2:0) hold time (from VBCLKI ↑)	tHKS4	<75>	11		ns
VBLOCK delay time (from VBCLKI ↑)	tdks5	<76>	12	17	ns
VBLOCK hold time (from VBCLKI 1)	tHKS5	<77>	11		ns
VBCTYP (2:0) delay time (from VBCLKI ↑)	tDKS6	<78>	12	17	ns
VBCTYP (2:0) hold time (from VBCLKI ↑)	tнкs6	<79>	11		ns
VDCSZ (7:0) delay time (from VBCLI ↑)	tdкc	<80>	12	17	ns
VDCSZ (7:0) hold time (from VBCLKI ↑)	tнкс	<81>	11		ns
VBD (31:0) setup time (to VBCLKI ↑)	t skd	<82>	2		ns
VBD (31:0) hold time (from VBCLKI \downarrow)	tнкdi	<83>	13		ns
VBWAIT setup time (to VBCLKI ↑)	tsкw	<84>	-6		ns
VBWAIT hold time (from VBCLKI ↑)	tнкw	<85>	13		ns
VBAHLD setup time (to VBCLKI ↑)	tsкw	<84>	-6		ns
VBAHLD hold time (from VBCLKI ↑)	tнкw	<85>	13		ns
VBLAST setup time (to VBCLKI ↑)	tsкw	<84>	-6		ns
VBLAST hold time (from VBCLKI ↑)	tнкw	<85>	13		ns
VBDC delay time (from VBCLKI \downarrow)	tDKS7	<86>		4.6	ns
VBDC hold time (from VBCLKI \downarrow)	tнкs7	<87>	0		ns

VSB Timer Read Timing (T_A = 0 to 40°C, Output Pin Load Capacitance C_L = 50 pF)

VSB Master Write Timing

Parameter	Symbol		Synch	ronous	Unit
			In Relation to VBCLKI		
			MIN.	MAX.	
VBTTYP (1:0) delay time (from VBCLKI ↑)	tdkt1	<60>	12	17	ns
VBTTYP (1:0) hold time (from VBCLKI ↑)	tнктı	<61>	11		ns
VBSTZ delay time (from VBCLKI ↑)	tdkt2	<62>	12	17	ns
VBSTZ hold time (from VBCLKI ↑)	t нкт2	<63>	11		ns
VBA (27:26) delay time (from VBCLKI ↑)	tdka1	<64>	19.5	24.5	ns
VBA (27:26) hold time (from VBCLKI ↑)	tнка1	<65>	18.5		ns
VBA (25:0) delay time (from VBCLKI ↑)	tdka2	<66>	12	17	ns
VBA (25:0) hold time (from VBCLKI ↑)	t нка2	<67>	11		ns
VBSIZE (1:0) delay time (from VBCLKI ↑)	tDKS1	<68>	12	17	ns
VBSIZE (1:0) hold time (from VBCLKI ↑)	tHKS1	<69>	11		ns
VBWRITE delay time (from VBCLKI ↑)	tDKS2	<70>	12	17	ns
VBWRITE hold time (from VBCLKI 1)	tHKS2	<71>	11		ns
VBBENZ (3:0) delay time (from VBCLKI ↑)	tdks3	<72>	12	17	ns
VBBENZ (3:0) hold time (from VBCLKI ↑)	tнкsз	<73>	11		ns
VBSEQ (2:0) delay time (from VBCLKI ↑)	tDKS4	<74>	12	17	ns
VBSEQ (2:0) hold time (from VBCLKI 1)	tHKS4	<75>	11		ns
VBLOCK delay time (from VBCLKI ↑)	tdks5	<76>	12	17	ns
VBLOCK hold time (from VBCLKI ↑)	tHKS5	<77>	11		ns
VBCTYP (2:0) delay time (from VBCLKI ↑)	tDKS6	<78>	12	17	ns
VBCTYP (2:0) hold time (from VBCLKI ↑)	tнкs6	<79>	11		ns
VDCSZ (7:0) delay time (from VBCLKI ↑)	tокс	<80>	12	17	ns
VDCSZ (7:0) hold time (from VBCLKI ↑)	tнкс	<81>	11		ns
VBD (31:0) delay time (from VBCLKI ↑)	tdkd0	<88>	12	25	ns
VBD (31:0) delay time (from VBCLKI \downarrow)		<89>	12	25	ns
VBWAIT setup time (to VBCLKI ↑)	tsкw	<84>	-6		ns
VBWAIT hold time (from VBCLKI ↑)	tнкw	<85>	13		ns
VBAHLD setup time (to VBCLKI 1)	tsкw	<84>	-6		ns
VBAHLD hold time (from VBCLKI 1)	tнкw	<85>	13		ns
VBLAST setup time (to VBCLKI ↑)	tsкw	<84>	-6		ns
VBLAST hold time (from VBCLKI ↑)	tнкw	<85>	13		ns
VBDC delay time (from VBCLK \downarrow)	tDKS7	<86>		4.6	ns
VBDC hold time (from VBCLKI ↓)	tнкs7	<87>	0		ns

VSB Master Write Timing (T_A = 0 to 40°C, Output Pin Load Capacitance C_L = 50 pF)

NPB Interface Timing

NPB interface write timing

NPB interface read timing

NPB Interface Timing (During Write) (T_A = 0 to 40°C, Output Pin Load Capacitance C_L = 50 pF)

Parameter	Symbol	MIN.	MAX.	Unit
Access time	tacc	T–5		ns
Address decoding time	tad	T+0.5T–5		ns
VPSTB high-level width	twsтв	nT+T–5 ^{Note}		ns
Write VPD setup time (to VPSTB ↑)	t sdsad	0.5T–2		ns
Write VPD hold time (from VPSTB \downarrow)	thwd	0		ns
VPRETR setup time (to VPSTB \downarrow)	t SRET	10		ns
VPRETR hold time (from VPSTB \downarrow)	thret	0		ns
Read VPD setup time	tsrd	10		ns
Read VPD hold time	thrd	0		ns

Notes n = 1 when the operating frequency is up to 25 MHz

- n = 2 when the operating frequency is 25 to 33 MHz
- n = 4 when the operating frequency is 33 to 50 MHz
- n = 5 when the operating frequency is 50 to 66 MHz

DMA Req/Ack Timing

DMA Req/Ack Timing (T_A = 0 to 40°C, Output Pin Load Capacitance C_L = 50 pF)

Parameter	Symbol	Synchronous		Unit
		In Relation to VBCLKI		
		MIN.	MAX.	
DMARQ setup time (to VBCLKI \downarrow)	t srqk	4		ns
DMARQ hold time (from VBCLKI \downarrow)	t hrok	3		ns
DMACTV/DMTCO delay time (from VBCLKI ↑)	tokd	12	17	ns

DMA Stop Request Timing

DMA Stop Request Timing (T_A = 0 to 40°C, Output Pin Load Capacitance C_L = 50 pF)

Parameter	Symbol	Synchronous		Unit
		In Relation to VBCLKI		
		MIN.	MAX.	
IDMASTP setup time (to VBCLKI ↑)	t skds	-6		ns
IDMASTP hold time (from VBCLKI ↑)	t HKDS	3		ns

INT/NMI Request Timing

INT/NMI Request Timing (T_A = 0 to 40°C, Output Pin Load Capacitance C_L = 50 pF)

Parameter	Symbol	Synchronous		Unit
		MIN.	MAX.	
INT/NMI high-level width	twiн	10		ns
INT/NMI low-level width	twi∟	10		ns
INT interval	tcyi	ЗТ		ns

APPENDIX D ELECTRICAL SPECIFICATIONS OF UDL INTE Phase-out/Discontinued

Software Stop Timing

Hardware Stop Timing

Software/Hardware Stop Timing (T_A = 0 to 40°C, Output Pin Load Capacitance C_L = 50 pF)

Parameter	Symbol		Asynchronous		Synchronous		Unit
			MIN. MAX.		In Relation to VBCLKI		
					MIN.	MAX.	
STPRQ delay time (from VBCLKI ↑)	t DKSQ	<90>			12	17	ns
STPAK setup time (to VBCLKI \downarrow)	t sksa	<91>			0		ns
STPAK hold time (from STPRQ \downarrow)	t HQSA	<92>	7				ns
STOP status delay time (from VBCLKI \downarrow)	t DKSS	<93>			12	17	ns
STOP release delay time	t DRSR	<94>	0	15			ns
CGREL setup time (to VBCLKI ↑)	tsкsg	<95>			Т		ns
CGREL hold time (from VBLCKI ↑)	tнкsg	<96>			13		ns
DCSTOPZ setup time (to VBCLKI ↑)	tskst	<97>			10		ns

External Probe Timing

• Operation sampling timing write/fetch

External Probe Timing (Operation Sampling Timing Write/Fetch)

(T_A = 0 to 40°C, Output Pin Load Capacitance C_L = 50 pF)

Parameter	Symbol	Synchronous		Unit
		In Relation to VBCLKI		
		MIN.	MAX.	
EXTD (7:0) setup time (to VBCLKI ↑)	t sked	4		ns
EXTD (7:0) hold time (from VBCLKI ↑)	tнкер	0		ns

Operation Sampling Timing Read

External Probe Timing (Operation Sampling Timing Read) (T_A = 0 to 40°C, Output Pin Load Capacitance C_L = 50 pF)

Parameter	Symbol	Asynchronous		Synchronous		Unit
		MIN.	MAX.	In Relation to VBCLKI		
				MIN.	MAX.	
EXTD (7:0) setup time (to VBCLKI 1)	t sked			4		ns
EXTD (7:0) hold time (from VBCLKI 1)	tнкеd			0		ns
RDZ setup time	tsred	6				ns

APPENDIX E RESTRICTIONS

(1) The VSB bus and memory controller bus cannot be used together.

The memory controller bus (equivalent to NB85E500/NU85E502) incorporated in the emulator and the VSB bus cannot be used together.

(2) When VPSTB is not enabled, an undefined signal is output to VPRETR.

Make VPRETR input to the emulator from the UDL board Hi-Z while the VPSTB signal is low level.

(3) When using the emulator in the 64 MB mode, do not use VBA (27:26).

When using the emulator in the 64 MB mode, VBA (27:26) becomes undefined and must therefore not be used.

(4) Not all the pins of the V850E1 can be emulated by the emulator.

The emulator cannot perform emulation of the following pins because they are not included in the emulator.

- VBSEQ (2:0) pin among pins for VSB (sequential status)
- VPDACT pin among pins for NPB (active level from external address decoder)
- Pins for VFB (pins for internal ROM access)
- Pins for VDB (pins for internal RAM access)
- Pins for instruction cache
- Pins for data cache
- Pins for RCU (pins for debugging circuit)
- · Pins for operation mode setting
- · Pins for test mode

(5) Not all the pins of the NB85E500/NU85E502 can be emulated by the emulator.

The emulator cannot perform emulation of the following pins because they are not included in the emulator.

- Pins for NB85E connection
- · Pins for initial setting
- DC0 to DC3 pins among pins for external memory connection (for data bus control)
- BENZ0 to BENZ3 pins among pins for external memory connection (byte enable)
- Pins for NB85E500/NU85E502 connection
- · Pins for test mode

(6) The IORDZ, IOWRZ pins are also used as the CSZ2, CSZ5 pins.

If the memory controller contained in the emulator is used, the IORDZ, IOWRZ pins and the CSZ2, CSZ5 pins provided for the NB85E500 cannot be used together. They must be exclusively switched. Since CSZ5/CSZ2 are set after reset, the following instruction must be executed on the program after each reset in order to use IORDZ, IOWRZ.

st.b 0xZZ, 0xFFFFF049

Remark ZZ = 00H: Use as CSZ5/CSZ2 (initial value after reset)

- = 20H: Use as IORDZ/CSZ2
- = 04H: Use as CSZ5/IOWRZ
- = 24H: Use as IORDZ/IOWRZ

(7) Emulation memory cannot be used with an 8-bit bus size.

The standard emulation memory provided in the IE-V850E-MC-EM1-B, and the target substitution memory provided in the IE-V850E-MC-MM2 (sold separately) cannot be used with an 8-bit bus size. Use a 16-bit or 32-bit bus.

Facsimile Message

Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free and up-to-date, we readily accept that errors may occur. Despite all the care and precautions we've taken, you may encounter problems in the documentation. Please complete this form whenever you'd like to report errors or suggest improvements to us.

Name			
Company	 	 	

FAX

Address

Tel.

From:

Thank you for your kind support.

North America NEC Electronics Inc. Corporate Communications Dept. Fax: 1-800-729-9288 1-408-588-6130	Hong Kong, Philippines, Oceania NEC Electronics Hong Kong Ltd. Fax: +852-2886-9022/9044	Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd. Fax: +65-250-3583
Europe NEC Electronics (Europe) GmbH Technical Documentation Dept. Fax: +49-211-6503-274	Korea NEC Electronics Hong Kong Ltd. Seoul Branch Fax: 02-528-4411	Japan NEC Semiconductor Technical Hotline Fax: 044-435-9608
South America NEC do Brasil S.A. Fax: +55-11-6462-6829	Taiwan NEC Electronics Taiwan Ltd. Fax: 02-2719-5951	

I would like to report the following error/make the following suggestion:

Document title: ___

Document number: ____

_____ Page number: ___

If possible, please fax the referenced page or drawing.

Document Rating	Excellent	ellent Good Acceptable		Poor
Clarity				
Technical Accuracy				
Organization				