Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

JUSER'S MANUAL

IE-70742-BX

IN-CIRCUIT EMULATOR

TARGET DEVICE V820™

Document No. U10630EJ1V0UM00 (1st edition) Date Published January 1997 N Printed in Japan

V30, V820, and EEPROM are trademarks of NEC Corporation. MS-DOS is a trademark of Microsoft Corporation. PC/AT, PC/XT, and PC DOS are trademarks of IBM Corporation. UNIX is a registered trademark licensed by X/Open Company Limited in the US and other countries. Ethernet is a trademark of Xerox Corporation.

ł

-

-

-

-

-

-

~

This equipment is classified as class one data processing equipment (equipment to be used in commercial and industrial areas) and conforms to the Voluntary Control Council for Interference from Data Processing Equipment and Electronic Office Machines (VCCI) intended to prohibit electromagnetic wave interference in commercial and industrial areas.

Therefore, if this equipment is used in a residential area or its vicinity, it may interfere with radio and television reception.

Please read the User's Manual in order to correctly handle this equipment.

The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or of others.

M7A 96.10

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Mountain View, California Tel: 800-366-9782 Fax: 800-729-9288

NEC Electronics (Germany) GmbH Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd. Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1. Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99 NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A. Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH Scandinavia Office Taeby Sweden Tel: 8-63 80 820 Fax: 8-63 80 388 NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore 1130 Tel: 253-8311 Fax: 250-3583

NEC Electronics Talwan Ltd. Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A. Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689

PREFACE

-

~

-

~

~

-

-

Readers	This manual is intended for user engineers who wish to design and develop application
	systems for the μ PD70742 (V820).
Organization	This manual consists of the following chapters:
	Overview
	Installation
	Starting
	Notes on Hardware Design
	Notes on Correct Use
Purpose	This manual explains the functions of the IE-70742-BX which is used to design and
	develop application systems for the μ PD70742.
How to Read This Manual	It is assumed that the readers of this manual have a general knowledge of electricity,
	logic circuits, and microcontrollers.
	To understand the basic specifications
	→ Read CHAPTER 1 OVERVIEW.
	To perform setting and connections
	\rightarrow Read CHAPTER 2 INSTALLATION.
	To understand the power-up and power-down sequence, how to connect and disconnect
	the emulation probe, and operation
	\rightarrow Read CHAPTER 3 STARTING.
	To understand the points to be noted in designing hardware and using this in-circuit
	emulator
	→ Read CHAPTER 4 NOTES ON HARDWARE DESIGN and CHAPTER 5 NOTES ON CORRECT USE.
	To understand the overall functions of this in-circuit emulator
	\rightarrow Read this manual in the order of Table of Contents.

Related documents Some of the related documents listed below are preliminary editions but are not so specified here.

Documents related to network interface board for BX series in-circuit emulator

~

~

Part Number	Document Name	Document Number
IE-70000-BX-SV1	User's Manual	

Documents related to V820

Part Number	Document Name Document Num	
V820	User's Manual	U10077E
	Data Sheet	U11678E

Documents related to development tools

Part Number	[C	Document Name	Document Number
C compiler (CA732)	User's Manual	Operation, UNIX based	U11013E
		Operation, MS-DOS™ based PC DOS™ based	U11066E
		ANSI C language	U11010E
		Assembly language	U11016E
Source debugger	User's Manual	Operation, UNIX based	—
(ID732)		Installation, UNIX based	—
		Operation, MS-DOS based PC DOS based	_
	1	Installation, MS-DOS based PC DOS based	

TABLE OF CONTENTS

-

-

-

_

.

CHAPTE	R1 OVE	RVIEW	1
1.1	Function	nal Outline	1
1.2	Features	3	1
1.3	Dimensi	ONS	4
1.4		Configuration	5
1.5	Hardwar	e Configuration	8
1.6		and Related Products	8
CHAPTI	ER 2 INS	TALLATION	9
2.1	Unpacki	ng	9
2.2	Connect	ling IE	10
		Connecting power cable	10
	2.2.2	Connecting external logic probe (option)	10
	2.2.3 0	Connecting trigger out probe (general-purpose)	11
	2.2.4 0	Connecting expansion emulation memory (option)	11
2.3		of Host Machine (when using personal computer)	12
	2.3.1 0	Connecting PC-9800 series and IE-70742-BX	12
	2.3.2 5	Setting of interface board	15
	2.3.3 5	Setting environmental variables	17
2.4	Setting of	of Host Machine (when using workstation)	18
	2.4.1 0	Operational outline of system	18
	2.4.2 0	Connection to network	20
	2.4.3 S	Setting of IE	20
	2.4.4 S	Setting of jumper switches	21
	2.4.5 li	nstalling SV1 board	25
	2.4.6 \$	Setting network information	28
	2.4.7 S	Starting initialization program	29
	2.4.8 C	Dperation check	42
	2.4.9 C	Connecting RS-232C cable	43
	2.4.10 C	Connecting network cable	45
2.5	Connect	ing Target System	47
СНАРТЕ	R 3 STA	RTING	49
3.1	-	Procedure	50
3.2		On/Off Power	51
3.3	Connect	ing/Disconnecting Emulation Probe	51
CHAPTE	R 4 NOT	ES ON HARDWARE DESIGN	53
4.1	Timing D	Designing	53
4.2	Emulatio	on CPU Interface Circuit	54
4.3	I/O Signa	als of Emulator	58

CHAPTE	ER 5 NOTES ON CORRECT USE	63
5.1	Notes on DMAU Guard Area Break	63
5.2	Operation on Turning off Power to Target System	63
	Logic Mode Error	63
5.4	Wait Control of IE-70742-BX	64

.

LIST OF FIGURES

-

-

-

-

-

_

-

Figure No.	Title	Page
- 1-1	Head of Emulation Probe	. 4
1-2	Dimensions of Conversion Adapter (reference)	. 4
1-3	Recommended Mounting Pattern on Printed Circuit Board (reference)	
1-4	Personal Computer-Based System Configuration	
1-5	Workstation-Based System Configuration (Ethernet™)	
1-6	Workstation-Based System Configuration (Cheapernet)	
2-1	Connecting Power Cable	. 10
2-2	Connecting External Logic Probe	. 10
2-3	Connecting Trigger Out Probe	. 11
2-4	Connecting Expansion Emulation Memory	. 11
2-5	Rear View of PC-9800 Series	. 12
2-6	Inserting Interface Board	13
2-7	Connecting Interface Cable	13
2-8	Connecting Interface Cable to Emulator	14
2-9	Setting of DIP Switch 1 (PC-9800 series)	
2-10	Setting of DIP Switch 2 (PC-9800 series)	
2-11	Setting of Jumper Switch (PC-9800 series)	
2-12	Setting of DIP Switch 1 (IBM PC series)	
2-13	Setting of DIP Switch 2 (IBM PC series)	
2-14	Setting of Jumper Switch (IBM PC series)	
2-15	Operational Outline	
2-16	Factory-Set Conditions of SV1 Board (on board)	
2-17	Factory-Set Conditions of SV1 Board (on front panel)	
2-18	Removing Back Panel	
2-19	Inserting SV1 Board	
2-20	Securing Panel with Screws	
2-21	Start Messages	
2-22	Setting Menu	
2-23	Operation Screen	42
2-24	Connecting RS-232C Cable	43
2-25	Pin Connections of RS-232C Cable	44
2-26	Connection to Cheapernet (10BASE2)	44 45
2-27	Connection to Ethernet (10BASE5)	45
2-28	Connecting Target System	40 47
3-1	- Starting Procedure	50
4-1	Generation of Bus Strobe Signal	53
4-2	Interface Circuit between Emulation CPU and Target System	54
4-3	Delay of Target System Clock and Emulator's Internal Clock	58
4-4	Output Delay to Target System When Only the Target Memory Is Used	59
4-5	Output Delay to Target System When Emulation Memory or Guard Area Is Used	61
5-1	Bus Cycle Output of Target System When Emulation Memory or Guard Area Is Used	65

LIST OF TABLES

_

-

~

Table No.	Title	Page
1-1	Functional Specifications	2
1-2	Hardware Configuration	8
1-3	Options	8
1-4	Options	8
2-1	Functions of Jumper Switches	21
2-2	Setting of JP2	24
2-3	Setting of JP3 through JP8	24
2-4	Setting of Switches on Front Panel	24
2-5	RS-232C Setting	44
4-1	Delay Value of Target System Clock and Emulator's Internal Clock	58
4-2	Output Delay Value to Target System When Only Target Memory Is Used	60
4-3	Output Delay Value to Target System When Emulation Memory or Guard Area Is Used	62
5-1	Number of Inserted Wait Cycles of IE-70742-BX	64

CHAPTER 1 OVERVIEW

This chapter explains the system configuration and function specifications of the IE-70742-BX.

1.1 Functional Outline

.

The IE-70742-BX is an in-circuit emulator for efficiently debugging the hardware and software of a system under development using the V820.

The IE-70742-BX is connected to a host machine and operates under control of the host machine.

A workstation (UNIX operating system) or a personal computer (PC-9800 series or IBM PC series) can be connected as the host machine.

When a workstation is used as the host machine, connect the IE-70742-BX to the host machine via a network. When a personal computer is used, insert a dedicated interface board to the expansion slot of the computer, and connect the in-circuit emulator to the computer via this board.

An optional debugger is necessary for actually executing debugging. For details, refer to the ID732 User's Manual.

Remark The in-circuit emulator may sometimes referred to as IE in this manual.

1.2 Features

- Operates with source debugger (ID732)
- Two operation modes: real mode and logic mode

Real mode Mode in which only the memory of the target system is accessed without the emulation memory or guard area specified.

Real-time emulation with 25-MHz user wait.

Logic mode Mode in which the program is executed with the emulation memory or guard area specified. Emulation with 1 wait + user wait.

- CPU status indication by LEDs RUN, NORDY, HOLD, HALT
- Event break
 [Event condition] Fetch/read/write of address and memory, read/write of I/O
 [Number of events] 16 MAX.
- Real-time trace at 25 MHz
- Step execution
 Step execution of up to 65,535 instructions at one time
 Emulation memory: 1M bytes (standard)

2M bytes (expanded)

Emulation with 2 waits + user wait

Table 1-1 shows the functional specifications of the IE-70742-BX.

Parameter	Specifications	Description
Target CPU	μPD70742 (V820)	208-pin QFP supported
Operating clock	External	Internal or external clock selectable by command
	Input frequency: 4.16 MHz MAX.	External cannot be oscillated by crystal oscillator
	Operating frequency: 25 MHz MAX.	Internal clock can be changed by changing the oscillator.
	Internal	
	Input frequency: 4.16 MHz	
	Operating frequency: 25 MHz	
CPU status indication	Indicated by LEDs on front panel	
	<1> RUN	<1> Lights while user program is executed (green)
		Lights if bus cycle cannot be terminated because
		READY signal is not input from target system (red)
	<⇒ HOLD	<3> Lights during bus hold (red)
	<4> HALT	<4> Lights during HALT instruction execution (red)
		All statuses <1> to <4> can also be read from host computer.
Mask function	Set by command	
	<1> HLDRQ	Can mask control signals from target system
	RESET	Masked by software even when unmasked unless power is
	<3> NMI	supplied to target system
	<4> READY	
	<5> SZRQ	
	<6> SIZ16B	
	<7> ICHEEN	
Emulation memory	1M bytes (standard)	- 960K bytes (of which 64K bytes are used as monitor area)
	(Can be divided into 15 blocks)	1 operation
		Expansion emulation memory (option) expandable by 2M
		bytes
Memory mapping	Emulation memory : 1 block	Can be allocated to real memory space of 4G bytes with
function	Can be allocated with 64K-byte	64K-byte boundary
		Target memory area, emulation memory area, and guard area can be mapped
I/O mapping function	None (external)	Mapping of I/O space is not managed.

4

Table 1-1. Functional Specifications (1/2)

Parameter	Specifications	Description
Break function ^{Note}	<1> Event break	Combination of address, data, and bus status as condition
	16 events MAX.	of event break
	Event condition:	Address range can be specified (up to two ranges).
	Combination of A1 to A31, D0 to	Data and external sense data are selectable.
	D31, MRQ, BEO to BE3, ST0,	
	ST1, R/W, XST0, XST1, EXDAT0	
	to EXDAT7, ADRERR	
	Number of software breakpoints:	Break function using BRKRET instruction
	100 MAX.	
	<3> Forced break	Forced break can be accepted even during HALT
	<4> Break on guard area access	Break is executed when area specified as guard area is
	_	accessed or when fetched instruction is executed
	<5> Logical mode error	Break is executed if logical mode error occurs
	<6> Trace full break	Break is executed if trace memory is full
Trace functionNote	Width: 128 bits	Real-time trace of up to 25 MHz CPU clock
	Depth: 16K frames	Disassemble display of executed instructions
	}	Display of program execution time
	Stop condition setting	Up to 16 stop trigger conditions can be set
		Trace memory full stop
		Manual stop
	Trace content display during program	Trace contents can be displayed even during user program
	execution	execution.
	Trace result search function	Specific address can be searched and displayed from trace
		result.
Program execution	Execution can be started from any	Program can be executed from any address.
	address.	
	 Step can be executed. 	 Step execution of up to 65,535 instructions at one time
		 Traces instruction execution and displays result of
		disassemble
Supply voltage	AC100 V	Built-in power supply
	AC220 V	(with AC 100/220 V automatic select function)
Dimensions	Main enclosure:	 Common housing of BX series
	H327.5 × W122 × D320 [mm]	With built-in power supply
	Pod: H65 × W95 × D160 [mm]	Power is supplied from main enclosure.
Weight	Approx. 10 kg	With carrying handle
Power consumption	80 W MAX.	Forced cooling fan provided
Operating temperature	10 to 40 °C	Without condensation
	10 to 80 %RH	
Storage temperature	-15 to +45 °C	Without condensation
	10 to 80 %RH	

Table 1-1	Functional	Specifications	(2/2)
	1 ditettettet	opcomoations	(

-

٠

-

-

Note These contents are the hardware specifications of the emulator. For the details during operation, refer to ID732 User's Manual.

1.3 Dimensions

Figure 1-1 shows the dimensions of the head of the emulation probe.

Figure 1-2 shows the dimensions of the conversion adapter and Figure 1-3 shows the recommended mounting pattern on printed circuit board.

Figure 1-1. Head of Emulation Probe

Figure 1-2. Dimensions of Conversion Adapter (reference)

Figure 1-3. Recommended Mounting Pattern on Printed Circuit Board (reference)

For details of the conversion adapter, contact:

Daimaru Kogyo, Ltd. Tel: (03) 3820-7112 Tel: (06) 244-6672

1.4 System Configuration

Figures 1-4 through 1-6 show the system configuration of the IE-70742-BX.

Caution The interface board (IE-70000-98-IF-B/IE-70000-PC-IF-B) is sold separately but is necessary for system configuration.

5

Figure 1-5. Workstation-Based System Configuration (Ethernet™)

......

-

.

-

~

7

1.5 Hardware Configuration

Table 1-2 shows the hardware configuration of the IE-70742-BX.Table 1-3 lists the options necessary for system configuration.

Table 1-2. Hardware Configuration

No.	Name	Description
<1>	<1> Emulator • V820 emulation board (EM1 board) • Real-time trace board (TR board)	
Ø	Emulation pod	Mounts CPU, emulation probe, and internal clock oscillator
Ş	Interface cable	Connects emulator and interface board (length: approx. 2 m)
<4>	Emulation probe	Connects emulator and target system. • Supports TQSOCKET

Table 1-3. Options

No.	Name	Description
<1>	Personal computer interface board (IE-70000-98-IF-B: for PC-9800 series) (IE-70000-PC-IF-B: for IBM PC series)	Board connecting personal computer and IE (Inserted in expansion slot of personal computer)
< ک>	Network interface board (IE-70000-BX-SV1)	Board connecting Ethernet and IE (Inserted in expansion slot of IE)
<⊅>	Socket conversion adapter (TQSOCKET208SDW, TQPACK208SD)	Adapter converting head of emulation probe to QFP (Product of Daimaru Kogyo, Ltd.)

1.6 Options and Related Products

Table 1-4 shows the options that can be connected to the IE-70742-BX.

Table 1-4. Options

No.	Name	Description
<1>	External logic probe (IE-70000-BX-EP)	Consists of GND (one) and external input (eight), and can use external input as trigger and display trace result
⇒	Expansion emulation memory (IE-70000-BX-MM2)	 Inserted to expansion slot of IE High-speed 2M-byte SRAM Operation with 2 waits + user wait

CHAPTER 2 INSTALLATION

This chapter explains how to unpack the IE-70742-BX from the shipping box of and how to connect the respective parts of the IE-70742-BX.

2.1 Unpacking

-

-

-

-

Confirm that the following items are included in the carton of the IE-70742-BX.

			Qty
(1)	Mai	in enclosure	1
(2)	Oth	ners	
	(a)	User's Manual (this manual)	1
	(b)	Interface cable ^{Nom}	1
	(c)	Fuse	1
	(d)	Power cable	1
	(e)	Accessory list	1
	(f)	AC power cable adapter	1
	(g)	Packing list	1

Note The interface board is optional and must be purchased separately.

2.2 Connecting IE

2.2.1 Connecting power cable

Figure 2-1 shows connection between the power cable and emulator.

Figure 2-1. Connecting Power Cable

2.2.2 Connecting external logic probe (option)

When using the external logic probe, connect it to the emulator as shown in Figure 2-2. Be sure to connect the external logic probe with the power to the emulator tuned off.

2.2.3 Connecting trigger out probe (general-purpose)

The trigger out terminal is used to connect an external unit with a BNC coaxial cable with connector. To use a trigger out probe, connect it to the emulator as shown in Figure 2-3.

Because this product is not available from NEC, use the one supplied with a logic analyzer, etc.

The trigger out signal is an output signal of TTL level. It is low during break and high during user program execution.

Figure 2-3. Connecting Trigger Out Probe

2.2.4 Connecting expansion emulation memory (option)

When using an external emulation memory, connect it inside the emulator as shown in Figure 2-4.

Expansion emulation memory (option) (IE-70000-BX-MM2) Insert the connector of the expansion emulation memory in CN103.

Inside side panel

2.3 Setting of Host Machine (when using personal computer)

When using a personal computer as the host machine, an optional interface board is necessary.

No special setting of the hardware is necessary. If the I/O port that performs handshaking between the computer and IE-707.42-BX is already used for other expansion boards, however, either disconnect the board, or change the allocation to the vacant I/O address after changing the setting of the interface board.

• With PC-9800 series

PC-9800 series computers can operate in V30[™] mode and 80286/386 mode. Because the emulator operates in either of these modes, it is not necessary to set a specific mode.

With IBM PC series

The IBM PC series, including both the PC/AT™ and PC/XT™, do not have different modes.

2.3.1 Connecting PC-9800 series and IE-70742-BX

This section explains how to connect the IE-70742-BX to a PC-9800 series computer. When using an IBM PC series computer, refer to the subsequent explanation. Connect the PC-9800 series and IE-70742-BX as follows:

- (1) Turn off power to the PC-9800 series.
- (2) Remove the lid of the slot bus.

Figure 2-5. Rear View of PC-9800 Series

- (3) Insert the interface board.
- (4) Secure the interface board with screws.

Figure 2-6. Inserting Interface Board

(5) Connect the interface cable.

-

.

-

-

~

-

-

(6) Connect the interface cable to the emulator.

Figure 2-8. Connecting Interface Cable to Emulator

2.3.2 Setting of interface board

In order for the IE-70742-BX to handshake with a PC-9800 or IBM PC series computer as the host machine, an I/O address must be set by using the DIP switch on the interface board.

(1) With PC-9800 series (setting of IE-70000-98-IF-B)

The I/O address is set by using DIP switches 1 (SW1) and 2 (SW2) on the interface board. SW1 and SW2 set the handshake bus address.

Set Nos. 1 through 8 of SW1 as shown in Figure 2-9, and Nos. 5 through 8 of SW2 as shown in Figure 2-10 (addresses 00D0H through 00DBH are set).

Figure 2-9. Setting of DIP Switch 1 (PC-9800 series)

Figure 2-10. Setting of DIP Switch 2 (PC-9800 series)

(2) With IBM PC series (setting of IE-70000-PC-IF-B)

The I/O address is set by using DIP switches 1 (SW1) and 2 (SW2).

SW1 and SW2 set the handshake bus address.

Set Nos. 1 through 8 of SW1 as shown in Figure 2-12, and Nos. 1 through 4 of SW2 as shown in Figure 2-13 (addresses 0220H through 022DH are set).

Figure 2-13. Setting of DIP Switch 2 (IBM PC series)

Figure 2-14. Setting of Jumper Switch (IBM PC series)

2.3.3 Setting environmental variables

-

-

- Changing handshake bus address

The default value of the handshake address bus is as follows when the environmental variables are not set:

PC-9800 series : address 00DXH IBM PC series : address 022XH

If the above address cannot be used, the address can be changed by specifying a base address for environmental variable "IE-70742_BASE". At this time, also change the setting of the DIP switch (refer to 2.3.2 Setting of interface board).

Example A>SET IE70742_BASE=01D0

In this example, the base address is set to 01DX. The low-order 4 bits of the set value can be any value, but must be described.

Input the value in hexadecimal. If a character other than a hexadecimal number is input, the default value is assumed.

For the specific environment settings of the host machine, refer to ID732 User's Manual - Installation, MS-DOS Based, PC DOS Based.

2.4 Setting of Host Machine (when using workstation)

2.4.1 Operational outline of system

The IE has a TCP/IP program and programs for initialization, such as routing of a network, in ROM.

The emulator, when connected to a network, can send or receive debug commands and data with TCP/IP.

To start up the system or initialize the emulator, an emulator control program must be downloaded from the host machine.

Because all the other emulator control programs are downloaded from the host machine after the program that connects the emulator to the network has been started, they are not provided to the emulator in advance.

The programs downloaded to the emulator are lost when the power to the emulator is turned off. To turn on power again, restart the software of the host machine and reload the emulator control program again. Figure 2-15 outlines the operations of the emulator, including from starting the system and command acceptance.

.

.

-

-

-

•••

-

19

2.4.2 Connection to network

The IE-70742-BX is connected to a network with a network interface board (IE-70000-BX-SV1)Note.

The network interface board (hereafter referred to as "SV1 board") is equipped with two types of external interfaces (10BASE5 and 10BASE2) conforming to IEEE802.3, and can be connected to either Ethernet or Cheapernet. However, it cannot be connected to both at the same time.

10BASE5 or 10BASE2 is selected by the jumper on the SV1 board.

For specific connection of each network cable, refer to 2.4.10 Connecting network cable.

For the details of the SV1 board, refer to 2.4.4 Setting of jumper switches and 2.4.5 Installing SV1 board.

Note This is optional. For details, refer to IE-70000-BX-SV1 User's Manual.

2.4.3 Setting of IE

To connect the IE-70742-BX to a network, the emulator must be initialized. This section explains how to do this. Before initializing the emulator, the following are necessary:

<1> IE-70742-BX (main enclosure)

IE-70000-BX-SV1 (SV1 board)^{Note 1}

<3> Terminal (terminal having RS-232C terminals such as personal computer) Note 2

<4> RS-232C cable (For the details of the specifications and connections, refer to 2.4.9 Connecting RS-232C cable.)

- **Notes 1.** The transceiver, transceiver cable, coaxial cable, and RS-232C cable are not supplied. Prepare these as the system requires.
 - 2. The terminal and RS-232C cable are necessary for initializing the SV1 board.

2.4.4 Setting of jumper switches

~

It is not necessary to set the jumper switches of the emulator. This section explains only how to set the jumper switches of the SV1 board.

Figures 2-16 and 2-17 show the locations and factory-set conditions of the jumper switches on the SV1 board. Change the setting of these jumper switches as necessary.

Table 2-1 shows the functions of the jumper switches.

Jumper Switch		Function	Factory-Set Condition	
Board side	JP1	Selects SCSI terminal power supply (Do not change factory-set condition.)	1-2	
	JP2	Used to connect terminal necessary for initialization. Selects baud rate of RS-232C.	1-2 (9600 bps)	
	JP3-8	Selects network connection standard (Ethernet/Cheapernet).	1-2 (Cheapernet)	
	SW4	Reserved (Do not change factory-set condition.)	OFF	
Panel side	MASTER	Selects host connection. Selects whether host to be connected to emulator is connected to network (SV) or personal computer interface (EM).	SV (Network connection)	
	CONF.	Initialization switch Selects whether initialization mode or TCP/IP program start mode is set on power application.	1 (Initialization mode)	

Table 2-1. Functions of Jumper Switches

Figure 2-16. Factory-Set Conditions of SV1 Board (on board)

~

-

-

-

-

-

~

(1) Setting of Jumper switches on board

Set this jumper switch in accordance with the system used.

- JP1: This switch is not used for this system. Do not change the factory-set condition of this switch.
- JP2: Change the setting of this switch according to the baud rate of the terminal used when setting network information.

Table 2-2. Setting of JP2

Baud Rate	Description
9600 bps	1-2 short (factory-set condition)
4800 bps	2-3 short

JP3 through JP8: Change the setting of these switches according to the standard of the network cable connected.

Table 2-3. Setting of JP3 through JP8

Network Standard	Description
Cheapernet (10BASE2)	1-2 short (factory-set condition)
Ethernet (10BASE5)	2-3 short

Caution Set JP3 through JP8 in the same manner.

Setting where 1 and 2 of one switch is short-circuited and 2 and 3 of another switch is shortcircuited may cause malfunction.

SW4: This switch is not used for this system. Do not change the factory-set condition of this switch.

(2) Setting of switches on front panel

Set the switches on the front panel as follows:

Table 2-4. Setting of Switches on Front Panel

Switch Name	Description	
MASTER	Set this switch to SV side (factory-set condition).	
CONF.	Set this switch to "1" side (factory-set condition) when no network information is set or when network	
	information is set again.	
	Set it to "0" side when setting of network information is completed.	
2.4.5 Installing SV1 board

The following paragraphs (1) through (3) explain the procedure to install the SV1 board.

- (1) Remove the back panel of the emulator. In doing so, keep in mind the following points.
 - Do not lose the mounting screws because they will be used again.
 - The emulator has four slots, and the slot to which the SV1 board is to be inserted is fixed. The board cannot be inserted to any other slots.

- (2) Install the SV1 board in the emulator. In doing so, keep in mind the following points.
 - · Confirm that the power to the emulator has been turned off.
 - · Confirm that the jumper switches are correctly set.
 - Insert the SV1 board in the correct direction (notice the direction of the component side of the board).
 - Make sure that the board is inserted along the guard rail.

Figure 2-19. Inserting SV1 Board

(3) Secure the back panel with the screws. In doing so, keep in mind the following points.

-

1

~

- Confirm that the connector of the board is connected to the connector of the chassis.
- · Secure the SV1 board to the chassis with the mounting screws of the back panel.

Figure 2-20. Securing Panel with Screws

2.4.6 Setting network information

To connect the emulator to the network, network information must be set on the host machine and in the emulator. For how to set the network information on the host machine, refer to **ID732 User's Manual**.

To set the network information, the information used when the environment was set up on the host machine is necessary.

This information is usually given by the manager of the UNIX operating system on the host machine, or by the network manager.

Confirm in advance the following network information necessary for environment setting.

• IP address (LOCAL IP ADDRESS)

Network-specific address allocated to emulator (This address is expressed in decimal numbers delimited with a period on the host machine. To set this address

to the emulator, express it as an 8-digit hexadecimal number.)

• Host name (LOCAL HOST NAME) Use the same name as on the host (alphanumeric character string of up to 16 characters).

Port number (LOCAL PORT NO.)

Set a 4-digit hexadecimal number (usually 0401H or higher) other than 0.

2.4.7 Starting initialization program

.

Set the network information by starting the network initialization program on the SV1 board. Before turning on power to the emulator, check the following points.

- Is the terminal of the RS-232C port of the emulator connected?
- Is the "CONF." switch on the back panel of the SV1 board set to "1" (if the "CONF." switch is set to "0", the network initialization program cannot be started).

When power to the emulator is turned on, or when reset is executed, the messages shown in Figure 2-21 are displayed on the terminal screen. Following these messages, a prompt is displayed, indicating that the SV1 board is waiting for input of a command.

Figure 2-21. Start Messages

```
8089/86 Modular BIOS Ver x.xx mm/dd/yy
Copyright (c) 1984-89 Award Software Inc.
IBM Compatible DSIF-BIOS (c) Digital Electronics Corp.
MEMORY-DISK BIOS VERSION x.xx
Copyright (c) 1990 Digital Electronics Corporation
MEMORY-DISK INSTALLED DRIVE A:
DSIF : VIDEO RESOURCES
                          < OPTIMIZING >
DSIF : KEYBOARD RESOURCES
                          < OPTIMIZING >
entry TCP/IP System Driver. < OPTIMIZING >
TCP/IP Driver Ver x.xx
A>BREAK ON
A>CONF
A>IF ERRORLEVEL 1 GOTO END
A>
A>
```

After confirming output of the prompt, input "ENET" to start the initialization program.

Correctly set the network information obtained in the preceding section in accordance with the setting menu. For the details of the initialization program, refer to **IE-70000-BX-SV1 User's Manual**.

SETUP NETWORK INFORMATION	
1. LOCAL ETHERNET ADDRESS	XXXXXXXXXXX
2. LOCAL IP ADDRESS	XXXXXXX
3. LOCAL HOST NAME	*****
4. LOCAL PORT NO.	XXXX
5. REMOTE ETHERNET ADDRESS	****
6. REMOTE IP ADDRESS	XXXXXXXX
7. REMOTE HOST NAME	*****
8. REMOTE PORT NO.	XXXX
9. ROUTER ADDRESS	XXXXXXX
10. SUBNET ADDRESS MASK	XXXXXXXX
11. EXIT	

(1) Setting of LOCAL ETHERNET ADDRESS

As the local Ethernet address (1: LOCAL ETHERNET ADDRESS), the universal address is set as a factory-set condition for shipment.

This universal address is a board-specific address and cannot be changed by the user. Therefore, function number "1" cannot be selected.

The values set in this menu is written to the EEPROM and therefore, is not lost even when the power is turned off.

(2) Setting of LOCAL IP ADDRESS

[Function]

...

~

Sets the IP address of the IE-70000-BX-SV1. One IP address is allocated to each node. Set the address given by the network manager.

[Input format]

Input the IP address as an 8-digit hexadecimal number.

[Example]

11. EXIT Select function No. 2. FUNCTION NO. >>2 The current IP address is displayed. >XXXXXXXXX LOCAL IP ADDRESS Input a new IP address. >12345678 🖵 NEW LOCAL IP ADDRESS --- SETUP NETWORK INFORMATION ----- The menu is displayed. The new IP address is displayed. 2. LOCAL IP ADDRESS 12345678 11. EXIT

(3) Setting of LOCAL HOST NAME

[Function]

Sets the host name (node name) of the IE-70000-BX-SV1.

[Input format]

Input the host name as an alphanumeric string of 16 characters or less. Set the host name given by the network manager.

[Example]

11. EXIT -----_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Select function No. 3. FUNCTION NO. >>3 The current host name is displayed. LOCAL HOST NAME >XXXXXXX NEW LOCAL HOST NAME >LOCALHOSTNAME Input a new host name. --- SETUP NETWORK INFORMATION ------ The menu is displayed. The new host name is displayed. 3. LOCAL HOST NAME LOCALHOSTNAME 11. EXIT _____ FUNCTION NO. >>

(4) Setting of LOCAL PORT NO.

[Function]

-

/

~

-

-

-

-

Set the port number of the IE-70000-BX-SV1.

[Input format]

Input a port number as a 4-digit hexadecimal number other than 0. Usually, a port number of 0401 (1025 in decimal) or higher is set.

[Example]

:		
11. EXIT		
FUNCTION NO. >> <u>4</u>		Select function No. 4.
LOCAL HOST NO.	>XXXX	The current port number is displayed.
NEW LOCAL PORT NO.	>0401 🛄	Input a new port number.
SETUP NETWORK INFORMAT	ION	The menu is displayed.
1. LOCAL ETHERNET AD	DRESS XXXXXXXXXXXXX	
:		
4. LOCAL PORT NO.	0401	Input a new port number.
:		
•		
11. EXIT		

(5) Setting of REMOTE ETHERNET ADDRESS

[Function]

Sets the Ethernet address of the host machine through which the in-circuit emulator is manipulated.

[input format]

[Example]

11. EXIT _____ Select function No. 5. FUNCTION NO. >>5The current Ethernet address is displayed. Input a new Ethernet address. NEW REMOTE ETHERNET ADDRESS >0123456789AB --- SETUP NETWORK INFORMATION ----- The menu is displayed. 1. LOCAL ETHERNET ADDRESS XXXXXXXXXXX The new Ethernet address is 5. REMOTE ETHERNET ADDRESS 0123456789AB displayed. 11. EXIT _____ FUNCTION NO. >>

(6) Setting of REMOTE IP ADDRESS

[Function]

Sets the IP address of the host machine.

[Input format]

Input the address as an 8-digit hexadecimal number. If the host machine is not specified, set 0. Usually, input 0.

[Example]

-

11. EXIT -----FUNCTION NO. >>6 🗐 Select function No. 6. >XXXXXXXXX The current IP address is displayed. REMOTE IP ADDRESS >12345678 🖵 Input a new IP address. NEW REMOTE IP ADDRESS --- SETUP NETWORK INFORMATION ----- The menu is displayed. 1. LOCAL ETHERNET ADDRESS XXXXXXXXXXXXXXXXX 6. REMOTE IP ADDRESS 12345678 The new IP address is displayed. 11. EXIT

(7) Setting of REMOTE HOST NAME

[Function]

Sets the host name (node name) of the host machine.

[Input format]

Input the host name as an alphanumeric string of 16 characters or less. If the host machine is not specified, only input a carriage return. Usually, input only a carriage return.

[Example]

11. EXIT -----. FUNCTION NO. >>7 Select function No. 7. The current host name is displayed. REMOTE HOST NAME >XXXXXXX NEW REMOTE HOST NAME >REMOTEHOSTNAME Input a new host name. --- SETUP NETWORK INFORMATION ----- The menu is displayed. 1. LOCAL ETHERNET ADDRESS XXXXXXXXXXX The new host name is displayed. 7. REMOTE HOST NAME REMOTEHOSTNAME 11. EXIT _____ FUNCTION NO. >>

(8) Setting of REMOTE PORT NO.

[Function]

Sets the port number of the host machine.

[Input format]

Input the port number as a 4-digit hexadecimal number. If the host machine is not specified, input 0. Usually, input 0.

[Example]

-

11. EXIT FUNCTION NO. >>8 Select function No. 8. REMOTE PORT NO. >XXXX The current port number is displayed. NEW REMOTE PORT NO. >0123 🖵 Input a new port number. --- SETUP NETWORK INFORMATION ----- The menu is displayed. 1. LOCAL ETHERNET ADDRESS XXXXXXXXXXXXXXXXX 8. REMOTE PORT NO. 0123 The new port number is displayed. 11. EXIT

(9) Setting of ROUTER ADDRESS

[Function]

Sets the IP address of the router. Set this address when the emulator is connected to the host machine via the router.

[Input format]

Input the IP address as an 8-digit hexadecimal number. Input 0 if routing is not necessary.

[Example]

11. EXIT Select function No. 9. FUNCTION NO. >>9 The current router address is ROUTER ADDRESS >XXXXXXXXX displayed. >12345678 🖵 NEW ROUTER ADDRESS Input a new router address. --- SETUP NETWORK INFORMATION ----- The menu is displayed. 1. LOCAL ETHERNET ADDRESS XXXXXXXXXXXXXXXXX 9. ROUTER ADDRESS 12345678 The new router address is displayed. 11. EXIT -----

(10) Setting of SUBNET ADDRESS MASK

[Function]

.

-

.

1

-

-

Sets the subnet address mask field.

[input format]

Set the bit indicating the address position of the subnet to 1, and input the subnet address mask field as an 8digit hexadecimal number.

If subnet address mask is not set, input 0.

[Example]

To use the high-order 24 bits of the IP address to recognize the subnet, and the low-order 8 bits to recognize the host

11. EXIT	
FUNCTION NO. >> <u>10 교</u>	Select function No. 10.
SUBNET ADDRESS MASK >XXXXXXXX	The current subnet address mask is displayed.
NEW SUBNET ADDRESS MASK >FFFFFF00	Input a new subnet address mask.
SETUP NETWORK INFORMATION	The menu is displayed.
10. SUBNET ADDRESS MASK FFFFFF00	The new subnet address mask is displayed.
11. EXIT	

(11) EXIT

[Function]

Terminates the network information setting menu and updates the contents of the EEPROM[™] with the set values.

[Input format]

Input S, Q, or C.

- S : Writes the set network information to EEPROM and closes the menu.
- Q : Closes the menu without writing the set network information.
- ${\bf C}\,$: Continue setting of the network information. Returns to the menu.

[Example]

<1> When S is input

:	
11. EXIT	
FUNCTION NO. >>11	Select function No. 11.
Save & quit / Quit / Continue > <u>S</u>	Writes the network information to EEPROM and closes the menu.
A>	
<2> When Q is input	
11. EXIT	
FUNCTION NO. >> <u>11 []</u>	Select function No. 11.
Save & guit / Quit / Continue > <u>Q</u>]	Closes the menu without writing the network information to EEPROM.
A>	

٠

~

-

2.4.8 Operation check

When the initialization has been completed, check the operation. Check following points with the power to the emulator off.

- · Is the terminal connected to the RS-232C port of the emulator?
- Is the "CONF." switch on the back panel of the SV1 board set to "0" (if the "CONF." switch is set to "1", the TCP/IP program cannot be automatically executed).

Turn on power to the emulator, and confirm that the messages shown in Figure 2-23 are displayed on the terminal screen.

Figure 2-23. Operation Screen

```
8088/86 Modular BIOS Ver x.xx mm/dd/yy
Copyright (c) 1984-89 Award Software Inc.
IBM Compatible DSIF-BIOS (c) Digital Electronics Corp.
SIZING SYSTEM MEMORY.....640K FOUND
MEMORY-DISK BIOS VERSION x.xx
Copyright (c) 1990 Digital Electronics Corporation
MEMORY-DISK INSTALLED DRIVE A:
DSIF : VIDEO RESOURCES
                           < OPTIMIZING >
DSIF : KEYBOARD RESOURCES < OPTIMIZING >
entry TCP/IP System Driver. < OPTIMIZING >
TCP/IP Driver Ver x.xx
A>BREAK ON
A>CONF
A>IF ERRORLEVEL 1 GOTO END
A>EXELOAD -C
A>
```

This has completed setting of the emulator.

2.4.9 Connecting RS-232C cable

~

~

~

-

Connect the RS-232C cable to the emulator as shown in Figure 2-24. Table 2-5 shows the specifications of the RS-232C, and Figure 2-25 shows the pin connections.

Figure 2-24. Connecting RS-232C Cable

43

Table	2-5.	RS-232C	Setting
-------	------	---------	---------

Parameter	Description
Character length	8 bits
Parity check	None
Stop bit	2 bits
Baud rate ^{Note}	4800 or 9600 bps

Note The baud rate can be selected by using a jumper on the SV1 board.

Figure 2-25. Pin Connections of RS-232C Cable

IE-70000-BX-S	V1 side ^{Note 1}		Termina	al side ^{nione 2}
Signal Name	Pin No.		Pin No.	Signal Name
FG	1		1	FG
SG	7		7	SG
SD	2		2	SD
RD	3		3	RD
RS	4		4	RS
cs	5		5	CS
CD	8		8	CD
ER	20		20	ER
DR	6		6	DR

Notes 1. Connect the male-connector of the RS-232C cable to the SV1 board.

2. Match the connector of the terminal used.

2.4.10 Connecting network cable

.

1

.

.

Connect the network cable to the emulator as shown in Figures 2-26 and 2-27 according to the type of the network cable used.

Figure 2-26. Connection to Cheapernet (10BASE2)

Figure 2-27. Connection to Ethernet (10BASE5)

2.5 Connecting Target System

Connect the emulator and target system with the emulation probe attached to the pod.

When connecting, a QFP socket conversion adapter (TQSCKET208DW or TQPACK208SD) is necessary for matching the head of the probe with the shape of a 208-pin QFP package.

Figure 2-28. Connecting Target System

[MEMO]

.

۰.

~

~

CHAPTER 3 STARTING

.

/

-

-

-

-

-

This chapter explains how to turn on or off power to the emulator, connect or disconnect the emulation probe, and check the operation of the emulator.

3.1 Starting Procedure

Figure 3-1 illustrates the procedure to start up the emulator.

Figure 3-1. Starting Procedure

Note This step is necessary when the IE-70742-BX is used with a network.

3.2 Turning On/Off Power

After connecting the power cable, network cable, and target system, turn on power to the IE-70742-BX. Turn on or off power to the IE-70742-BX in the following sequence:

(1) Power-up sequence

<1> IE-70742-BX

Target system

(2) Power-down sequence

<1> Target system

3.3 Connecting/Disconnecting Emulation Probe

When connecting or disconnecting the emulation probe to or from the target system, be sure to turn off power to the target system.

However, because the emulator has a circuit that senses the supply voltage of the target system, all the output signals become inactive when power to the target system is turned off. Therefore, power to the emulator does not have to be turned off when attaching or detaching the emulation probe if power to the target system is turned off.

Confirm that the residual charge has been completely discharged immediately after the power to the target system has been turned off.

When connecting or disconnecting the target system, either terminate the operation of the debugger or issue the reset command or initialization command to prevent the emulator from deadlock because of changes in the environment.

[MEMO]

.

.

~

~

~

-

~

•

CHAPTER 4 NOTES ON HARDWARE DESIGN

This chapter explains the points to be noted in designing the hardware of a V820 system, assuming that the emulator is connected to the system.

4.1 Timing Designing

,

-

-

The AC characteristics of the emulator significantly differ from those of the real chip. For details, refer to **4.2 Emulation** CPU Interface Circuit.

In all, the delay time of the output signal in respect to the clock is considerably longer than that of the real chip. This delay time must be taken into consideration when designing the I/O access control circuit and bus control circuit.

In particular, make sure that generation of the READY signal, and generation of the bus strobe signals such as I/O select signal is performed in the handshaking procedure as shown below.

Figure 4-1. Generation of Bus Strobe Signal

4.2 Emulation CPU Interface Circuit

Figure 4-2 shows the interface circuit between the emulation CPU in the emulator and target system when the emulator is connected to the target system.

Figure 4-2. Interface Circuit between Emulation CPU and Target System (2/4)

-

,

.

1

-

-

-

Target system		Emulation CPU
		TOUT0-TOUT2
TOUT0-TOUT2		
TxD0, TxD1 -		TxD0, TxD1
TxRDY0, TxRDY1		TxRDY0, TxRDY1
TxEMP0, TxEMP1		TxEMP0, TxEMP1
RxRDY0, RxRDY1		RxRDY0, RxRDY1
DTRO, DTR1		DTRO, DTR1
RTSO, RTS1		RTSO, RTS1
DMAAKO-DMAAK3	· · · · · · · · · · · · · · · · · · ·	DMAAKO-DMAAK3
TCO-TC3	 ξ 10 kΩ	TC0-TC3
INTO-INT15		INTO-INT15
TCTL0-TCTL2	ξ 1 MΩ	TCTL0-TCTL2
ТСТК0-ТСТК2	777 ξ 1 MΩ	ТСТК0-ТСТК2
TxCTK0, TxCTK1	/// ξ 1 MΩ	TXCTKO, TXCTK1
RxD0, RxD1	777 ξ 1 MΩ	RxD0, RxD1
	///	L

~

~

~

~

_

Figure 4-2. Interface Circuit between Emulation CPU and Target System (3/4)

Figure 4-2. Interface Circuit between Emulation CPU and Target System (4/4)

-

,

-

-

1

-

-

4.3 I/O Signals of Emulator

(1) Figure 4-3 and Table 4-1 show the delay of the clock of the target system and internal clock of the emulator.

Table 4-1. Delay Value of Target System Clock and Emulator's Internal Clock

		$(T_A = 25 \ ^{\circ}C, V_{DD} = 5 \ V)$
Querhal	Baramatar	f = 25 MHz
Symbol	Parameter	TYP. (ns)
tсүк	Clock cycle	40
toкн	Clock rising delay	26

(TA =	- 25	°C,	Vod	= 5	V)
				1.1	

(2) Figure 4-4 and Table 4-2 show the output delay to the target system when only target memory is used.

,

1

-

-

-

-

~

~

~

~

~

<u> </u>		· · · · · · · · · · · · · · · · · · ·	$(T_A = 25 ^{\circ}C, V_{DD} = 5 ^{\circ})$
Symbol	Parameter		f = 25 MHz (tсүк = 40 ns
Symbol			TYP. (ns)
toka	Output active delay	(A1 through A31)	6
1 нка	Output inactive delay	(A1 through A31)	6
toke	Output active delay	(BEO through BE3)	8
т нкв	Output inactive delay	(BE0 through BE3)	8
toks	Output active delay	(ST0, ST1)	13
tнкs	Output inactive delay	(ST0, ST1)	13
tokot	Output active delay	(D0 through D31)	
t нкот	Output inactive delay	(D0 through D31)	11
toke	Output active delay	(R/W)	8
t нкя	Output inactive delay	(R/W)	8
toквс	Output active delay	(BCYST)	14
рнкес	Output inactive delay	(BCYST)	14
tokoa	Output active delay	(DA)	12
ÎHKDA	Output inactive delay	(DA)	12

Table 4-2. O	Dutput Delay Value to Target System When Only Target Memory is Used

(3) Figure 4-5 and Table 4-3 show the output delay to target system when emulation memory or guard area is used (in write cycle)

Figure 4-5. Output Delay to Target System When Emulation Memory or Guard Area Is Used (in write cycle)

.

,

-

1

-

-

Table 4-3	. Output Delay Value to Target System When Emulation Memory or Guard Area is Used
	(in write cycle)

			$(T_A = 25 \ ^\circ C, \ V_{DD} = 5 \ V)$
	Parameter		f = 25 MHz (tсүк = 40 ns)
Symbol			TYP. (ns)
toka	Output active delay	(A1 through A31)	6
ъка	Output inactive delay	(A1 through A31)	6
toxe	Output active delay	(BE0 through BE3)	8
тнкв	Output inactive delay	(BEO through BE3)	8
toks	Output active delay	(ST0, ST1)	0 (leads 27 ns)
Ънка	Output inactive delay	(ST0, ST1)	0 (leads 27 ns)
tokdt	Output active delay	(D0 through D31)	0 (leads 7 ns)
1 нкрт	Output inactive delay	(D0 through D31)	0 (leads 7 ns)
toka.	Output active delay	(R/W)	8
ранка	Output inactive delay	(R/W)	8
tоквс '	Output active delay	(BCYST)	17
тнквс	Output inactive delay	(BCYST)	17
tokoa	Output active delay	(DA)	12
 Т нкра	Output inactive delay	(DA)	12

~

~

CHAPTER 5 NOTES ON CORRECT USE

This chapter explains the points to be noted when using the IE-70742-BX.

5.1 Notes on DMAU Guard Area Break

If a guard area break occurs as a result of data transfer by means of DMA, the emulator forcibly makes the EOP0 through EOP3 pins low, and ends DMA transfer.

When the auto initialize function of DMA is used, however, DMA transfer may be started again even if the emulator forcibly makes the EOP0 through EOP3 pins low. If a guard area access takes place due to DMA while the auto initialize function is used, stop DMA by accessing the internal I/O.

5.2 Operation on Turning off Power to Target System

If power to the target system is turned off while the emulator is being used, the reset and hold signals are forcibly input to the CPU and the pins are made to go into a high-impedance state to prevent the latchup of the target system.

When power to the target system is turned on again (power-ON emulation), the CPU starts operating in response to the reset input from the target system.

5.3 Logic Mode Error

The V820 has a memory wait control function and can control memory wait without using the READY pin.

Because the IE-70742-BX guarantees the normal emulation memory access when the logic mode is set, a logic mode error occurs and break takes place if the number of wait cycles in accessing the emulation memory falls short. For example, if the number of memory wait cycles of the internal I/O is set to none in the user program under execution and the emulation memory is used, a logic mode error occurs.

For the memory wait when the emulation memory is used, refer to 5.4 Wait Control of IE-70742-BX.

5.4 Wait Control of IE-70742-BX

This emulator has the following limitations on the wait cycles when it accesses the memory and I/O.

- (1) Limitations on the wait cycle due to CPU's operating frequency
- (2) Limitations on the wait cycle due to real mode/logic mode
- (3) Limitations on the wait cycle when memory or I/O is accessed on break

Table 5-1 shows the number of wait cycles inserted of the emulator, and Figure 5-1 shows the bus cycle output (in write cycle) to the target system when the emulation memory or guard area is used.

Subject to Access		Real Mode (1-wait mode, 25 MHz MAX.)	Logic Mode (1-wait mode, 25 MHz MAX.)	Access on Break (1-wait mode, 25 MHz MAX.)
Standard emulation memory		Cannot be set	1	1
Expansion emulation memory		Cannot be set	1	1
Guard area		Cannot be set	1	1
Target memory		User wait	User wait + 1	User wait + 1
Target I/O		User wait	User wait + 1	User wait + 1
Internal I/O		V820 wait	V820 wait	V820 wait
Machine fault/halt acknowledge cycle	User ready control mode	User wait	User wait + 1	User wait + 1
	Forced ready control mode	2	2	2

Table 5-1. Number of Inserted Wait Cycles of IE-70742-BX

Remark User wait: Number of wait cycles of external ready control by READY pin

Figure 5-1. Bus Cycle Output of Target System When Emulation Memory or Guard Area Is Used (in write cycle)

.

-

.

-

Because the BCYST and DA signals are delayed and output to the target system in the logic mode, it seems that an idle cycle is inserted at the beginning of the bus cycle on the target, and that the target wait cycle is inserted.