To our customers,

Old Company Name in Catalogs and Other Documents

On April 1!, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

8.

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

USER'S MANUAL . ——

CLICE
VERSION 1.6

Document No. EEU~1467
(0.D.No. EEU~929)
Date Published January 1994 P

Printed in Japan

USER'S MANUAL

© NEC Corporation 1994

CLICE
VERSION 1.6

SIMPLEHOST is a trademark of NEC Corporation.
Windows is a trademark of MicroSoft Corporation.

PC/AT is a trademark of IBM Corporation.

The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device, No license, either express, implied or otherwise, is granted under any patents, copyrights
or other intellectual property rights of NEC Corporation or of others.

PREFACE
Intended Readers :

This manual is intended for engineers who use the 4-bit single-
chip microcomputer 17K series and are responsible for using the
IE-17K and designing and developing application system.

Purpose

This purpose of this manual is to describe the IE-17K in-circuit
emulator that is used when designing and developing 17K series
application systems and its interpreter CLICE (Command Language
for In-Cichit Emulator) and to provide the user with an

understanding of the various functions of this IE.
Organization :
This manual consists primarily of the following:

General

Specifications

Installation

Starting

Description of commands

Editor

Programmable pattern generator (PPG)
Program execution

SE board PROM creation

Error messages
Requirements

Readers of this manual must have a general understanding of

electric and logic circuits and microcomputers.

To gain an understanding of the functions of the IE-17K

+ Read this manual in accordance with the table of contents.

To study the functions of a specific command in detail

+ Read Chapter 5 "Description of Commands".

Legend :

The following symbols are used in this manual:

“ : Line feed input

Indicate. that one of the character strings

{3

inside the braces should be selected.

[] : Indicates that omission is possible.

: Indicates console input.

(under bar)
| : Indicates control key input.

i : Indicates space key input.

Terminology

The terms used in this manual are defined below.

Term

Meaning

Target device

Device to be emulated (this chip)

User program

Program to be debugged (program written
by the user).

Target system

System to be debugged (system created by
the user).

The target system includes the target
program and user hardware.

In the narrow sense, it indicates the

hardware only.

- iii -

CHAPTER 1.

1.1

1.2

1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.2.7
1.2.8

1.2.9
1.3

1.3.1
1.3.2

CHAPTER 2.

3.1
3.2
3.2.1

CONTENTS

GENERAL¢cteveneean s e o e es e s s e s st eeeeenes
Generalcciiiiiiiiicneann N .o
Features e e s s s s s n e e n s ee s e

Interface with Target System
Program MemOLYeeeeeeeeeeeeeesossnnsasess
Emulation Method et e e e
Break Functions e et
Real-Time Trace Functioncceeeeu..
Data Memory Coverage Function “emee
Program Memory Coverage Function
Programmable Pattern Generator (PPG)
FUNCEION &t en ettt iieeennsennaoconsnaanes
Other Featurescceeeee.. e e e e
(0] 113 ¢ T ¥ s R o3 1 @) o Nt
System Diagramcecceeeeeeeees Ceae e
Block Diagramceeeiieeeoeeneeenaoanenns

SPECIFICATIONS s e e s e sas s e e cesen
= T S U
Console Interface ... eeiiiit it eeneenoeesenas
Environmental Conditions 000,
Power Requirementceeteeeeeeen. N
Internal POWeTr SUPPLY «ttiineretieroncesconnosns
Power Requirement of Each Board e
Dimensions et et e e e e e
EXterior Viewsc.e ittt irerteonnnnnonennns
Yoo = = = o = U

INSTALLATION & it ittt ittt eannnssasasasosans .
Memory Board and Supervisor Board Removal
Switch Settingsceceeieenenenn. e e

Memory Board Switch Settings

2-1
2-1
2-2
2-2
2-2
2-2
2-2
2-3
2-5

3.2.

3.3

3.3.
3.3.

3.4
3.5
3.6
3.7

CHAPTER

4.1

4.1.
4.1.
4.1.

CHAPTER

5.1
5.2
5.3
5.4

5.4.
5.4.
5.4.

5.5
5.6
5.7

5.7.
5.7.

5.8

5.8.
5.8.
5.8.
5.8.
5.8.
5.8.

2 Supervisor Board Switch Settings 3-6
Connector Connectionscceeiieiveenneenn. 3-8
1 Memory Board Internal Connectors 3-8
2 Supervisor Board Internal Connectors 3-9
SE Board Installationcuiiiieevunennnnn 3-10
Connection to Host Machine00..... 3-12
Connection to PROM Programmereceeeoes. 3-13
Connection to Targef Systemiiiiiiiinenean 3-14
4., START-UP ...t itiienencannns ettt e 4-1
Communications Using Windows (Version 3.1) 4-1
1 Terminal Start-Up c e ettt e 4-2
2 Settings ...t i i i it i i i i e . 4-5
3 Downloading a Program to IE-17Kc.c.... 4-9
5. DESCRIPTION OF COMMANDS D 5-1
Prompt «..veeeeveceons c et e e e c e e e e 5-2
Command Line Formaticceieieenenrnnsnns 5-4
Command Buffercciiitiiitineeeccnncesonnss 5-6
Character Set c ettt e et se s res s 5-7
1 Special Control Characterscce00eeee. 5-7
2 Special Characters e e 5-10
3 Dummy Characteriiiiiiierencennonseaan 5-12
0514 ¢ 3 Al =37 e K) o S 5-14
Constantc.cc0ian e e 5-16
Variables ...iiiiieiieirtresreescnsnassans et e 5-17
1 ATTay «oeoeen. et e ettt ettt 5-17
2 Q-Register ittt nnoans 5-17
Built-In Macro CommandsS eeeeneeneennnen 5-19
1 Program Memory Control Commands......... ee.. 5-19
2 Data Memory Control CommandScoevveeee 5-40
3 Peripheral Circuit Control Commands 5-47
4 Emulation Commandsveveeveesoceenceens 5-53
5 Break/Trace Condition Control Commands 5-62
6 Coverage Display Commandceoeoeeuoean 5-98

5.8.7 Program Pattern Generator (PPG) Control

Commands ... ittt ittt eeassccansoanaeanenns 5-101
5.8.8 Help Command iiiteeeeeseneenoossocceess 5-111
CHAPTER 6. PROGRAMMABLE PATTERN GENERATOR (PPG) 6-1
6.1 PPG Data Display and Modification 6-1
6.2 PPG Probe Valid Bits and Step Rate Setting 6-1
6.3 PPG Starting and Stoppingcciiiiiune... 6-2
6.4 PPG Usage Precautionsiiiiiiieennenn. 6-3
6.5 PPG EXAMDLES v ittt it ateenneeeeeneeneenneenneens 6-4
CHAPTER 7. PROGRAM EXECUTION ittt tect ittt etnennaneees 7-1
7.1 Real~-Time Emulationceeeireeinreneeannenn 7-1
7.2 Break Point Setting iiiiiiieaa 7-2
7.2 Break by Program AddressS ...vovevoeeteeeonns 7-4
7.2 Break by Data Memory Modification 7-8
7.2.3 Break by Multiple Break Condition 7-12
7.3 1-Step Emulationi.iiiiiineineeeeneonannnnnns 7-14
CHAPTER 8. SE BOARD PROM CREATIONt itiieennsnnnsacnas 8-1
CHAPTER 9. ERROR MESSAGES ...t ittt it ietneeeensnnnonean 9-1
Command ErXrOrS .. c.eeeeonieessoosososacsonsansos 9-1
Hardware EXrOrS .. viivteettoeoossonosasssnaneas 9-8
APPENDIX A. PRIMITIVE COMMANDS ..ttt ittt isoonosnoanssens A-1
A.l Primitive Commands Tablecciieetneonnonns A-2
Array Table ...ttt ittt et e A-5
Condition Register Offset Address A-8
Condition Unit Register Offset Address A-10

- vi -

A.5 Primitive Commands Descriptions A-13
A.5.1 Pointer et et e e ettt e A-13
A.5.2 FUNCEION .ttt iiieeitineeesenenossnanoennsnsss A-17
A.5.3 Assignmént C et e s e et ceeees. A-25
A.5.4 Argument StacCK ...ttt iiiiieens A-32
A.5.5 O-StACK ittt ittt ieeeeeneensocacsnenenns A-35
A.5.6 MBCTO ¢ eveeeeensenenasosccssesannsccsnns A-38
A.5.7) o' o o 1 . A-44
A.5.8 Display ...ceveiiennnn et et eee. A-51
A.5.9 10 8 ol o= o = A-58
A.6 EDITOR 4t v et teeeeeenseasssoscsasnsscsscsscssaos A-65
A.6.1 Command Buffer Editing et A-65
A.6.2 O-Register Editingceeeeeenn. e A-65
A.6.3 Editor Commands Ceeeos cee ettt A-66
APPENDIX B. BUILT-IN MACRO COMMANDSi 0 teveeeeennasns B-1
.1 Program Memory Control Commands¢.0000... B-1
B. Data Memory Control Commandsceeeeeeeeencs B-2
.3 Peripheral Circuit Control Commands B=3
Emulation Commands e e et B-4
B.5 Break/Trace Condition Control Commands B-5
. Coverage Display Commandceceeeevecocas ... B-5
Program Pattern Generator (PPG) Control
Commands et et e ettt et e e e B-6
B.8 Help Commandceeveeeeneenannss ettt B-6

- vii -

List of Figures

Figure
No. Title Page
- IE-17K System Diagramcoeeeeteeneneennenns 1-7
- IE-17K Block Diagramcecieeeereseecnnncnns 1-8
- IE-17K Exterior Viewsiiiiiieeiniinneeeennnns 2-3
- NOMENCLatUTLE ..ttt ittt ettt ittt it anasecnesns 2-4
3-1 Board Layout Cee e C et e e e e .. 3-2
3-2 Memory Board Switches Layout0... 3-3
3-3 RS-232-C Interface Circuit Diagram 3-5
3-4 Accessory Cable Connection e et 3-6
3-5 Supervisor Board Switches Positions 3-6
3-6 DIP Switch Settingsciiii ittt eennens 3-7
3-7 Connectors Layout (Memory Board)ceoeoe... 3-8
3-8 Connectors Layout (Supervisor Board) 3-9
3-9 SE Board Installation et e et 3-11
3-10 IE-17K and PC-9800 Series Connection 3-12
3-11 IE-17K and PROM Programmer Connection 3-13
3-12 1IE-17K and Target System Connection 3-14
- Terminal Start-Up .. it ettt it teeeeeeoooooaonss 4-3
Setting of Communication Conditions 4-6
Terminal Settings ...ttt ittt enanssns 4-8
- Loading Wait Status it iiiiiiiinnnnarenanss 4-10
4-5 Sending of Text Fileieiiiieiieneeeionnnnns 4-12
File Transfereeeeieeeietneeersosnnsnesencenans 4-13
4-7 File Transfer Endc.ceoiii ittt eneneeneacenns 4-15
5-1 CLICE POS1itioning ..o tiiieiieinietneeennscosns 5-1
-1 Break Condition Settingcciieieiienennn 7-3
- Break by Break Condition Sequence e e e e 7-3

- viii -

List of Tables

Table
No. Title Page
1-1 Combination of CLICE and SIMPLEHOST Versions 1-2
- Break/Trace Conditions Table et ... 5-82
- Trace State Transitionc.ouit i ieinenenennns 5-88
A-1 Commands Table ...t inen ettt eteeeeeeeesoenenens A-2
- Array Table ...ttt ittt ittt tnneceatonnnneen A-5
- Condition Register Offset Address A-9
- Condition Unit Register Offset Address A-10

- ix -

CHAPTER 1. GENERAL

This chapter describes the features and system configuration of
the IE-17K.

1.1

GENERAL

The IE-17K is a software development tool for the 4-bit
single-chip microcontroller 17K Series.

The IE-17K supports all the models in the 17K Series. A
dedicated SE board is available for each model. The
IE-17K is used in conjunction with these boards. The SE
board has an emulation function of the hardware unique to
each model and can also be used alone for program

evaluation.

The IE-17K consists of two boards, memory board and

supervisor board.

The IE-17K can be operated alone by connecting it to a
terminal. A more advanced debugging environment can also
be realized by connecting the IE-17K to the host machine
and operating SIMPLEHOSTTM, which acts as the man-machine
interface software between the IE-17K and the operator.

The combination of IE-17K interpreter CLICE (Command

Language for In-Circuit Emulator) and SIMPLEHOST versions

which can be used together is shown below.

Table 1-1 Combination of CLICE and SIMPLEHOST Versions

CLICE
Ver. 1.5 Ver. 1.6
SIMPLEHOST
Ver. 1.10 e} X
Ver. 1.11 X o

1.2

FEATURES

INTERFACE WITH TARGET SYSTEM

The actual product is used as the interface with the
target system so that the electrical specifications as the
same as those of the target product.

PROGRAM MEMORY

A CMOS static RAM mounted on the SE board is used as the

program memory.
EMULATION METHOD

Two user program emulation methods are available, real-
time emulation and 1 step emulation.

BREAK FUNCTIONS
(1) Programmable break function

The following four steps can be set.

(@D Break when single condition established.

(@ Multiple conditions of (I) above are set and
break is generated when one, or all, of these
conditions are established.

@ Multiple conditions (up to 4) of (2 above are
set and break is generated when one of these

conditions is established.

(@ Break is generated when the conditions of (@

above are established in the set order.

1-3

The following can be set as break conditions.

. Program memory address

. Data memory address

. Data memory contents

. Register file address

. Register file contents

. Stack level

. State of external pin (logic analyzer)
. Interrupt

. DMA

. Operation code

. Instruction execution count

. Condition established count
(2) Error detection function

This function aborts the program or issues a warning
when the program accessed a resource not allowed by

the software development target product, etc.
It detects the following errors.

. Access to an illegal data memory

. Access to an illegal system register

. Stack level overflow/underflow

. Read or test of memory to which data was not

written even once
1.2.5 REAL-TIME TRACE FUNCTION

This function stores the program executed result in real

time. The trace memory size is 32K steps.

1

.2.6

2.7

(1) The trace data are as follows.

. Program memory address
. Executed instruction code
. Skipped instructions
Written data memory address
. Written data memory contents
. IE-17K logic analyzer terminal status

. Relative time of each execution instruction
(2) Trace on/off condition can be specified.
DATA MEMORY COVERAGE FUNCTION

This function stores the data memory addresses which were

written.

The following information can be obtained with this

function.

Unwritten bits
. Bits written "1"
. Bits written "O"

. Bits written "0" and "1"
PROGRAM MEMORY COVERAGE FUNCTION

This function stores the number of times each program

memory address is executed.

The maximum value of each address counter is 255, and
becomes 255 when an address is executed 255 times or more.
This counter is counted up when the instruction of that
address is not skipped but is executed, or when that
address is referenced by table reference instruction

(MOVT, etc.) and is not counted up when the instruction is

skipped.

PROGRAMMABLE PATTERN GENERATOR (PPG) FUNCTION

The IE-17K has an on-chip programmable l4-channel pattern

generator. The number of programmable steps is 8K steps.

The execution speed per step can be set from approximately
1 us/STEP to 13333 us/STEP in 1 us steps.

OTHER FEATURES

(1)

(2)

(3)

(4)

(5)

The IE-17K has two RS$S-232-C serial channels. Channel
0 is for console use and channel 1 is for PROM
programmer, etc. use. A more advanced debugging
environment can be realized by connecting channel 0O
to a host machine PC-9800 Series and operating the
man-machine interface software SIMPLEHOST.

EMI countermeasures are incorporated and VCCI
Standards are satisfied.

A4 size (21 cm x 30 cm x 10 cm) is extremely compact

and easy to carry.

Internal switching regulator allows use with

commercial power.

IE-17K has a space for storing probes, etc.

1.3 COMPOSITION

1.3.1 SYSTEM DIAGRAM

Figure 1-1 IE-17K System Diagram

IE-17K
Main Body

|
I
|
SE Board > Target System
<t::?::::::
I
!
!
|
|
|
|
i
|
!
|
|

PROM
Programmer

Host Machine
(PC-9800 Series,
etc.)

1.3.2 BLOCK DIAGRAM

The IE-17K consists of a mainframe and accessories. The

mainframe consists of the following parts.

. Cabinet (including connectors, switches, etc.)
. Internal power supply
. Supervisor (SV) board
. Memory board
Mother board

Figure 1-2 1IE-17K Block Diagram

]
SE Board* § > To Target System

=z Legic Analyzer

0 Memory Board

; } RS-232-C

0

H

os

0

ﬂ Pulse Generator (Connector A)

3 Supervisor

? Y Board Parallel I/0 Port (Connector B)

2] Parallel I/0 Port (Connector C)
ooty AC 100V

* : An SE board (optional) is available for each

model.

1-8

2.1

CHAPTER 2.

MAIN LSI
<Supervisor Board>

Supervisor CPU
Supervisor periphera
Supervisor periphera
Supervisor periphera
Monitor ROM

RAM

RAM

<Memory board>

Memory

Memory

Interrupt controller
Timer/counter

Serial controller
8-bit latch

CONSOLE INTERFACE

RS-232-C x 2ch (CHO, CH

SPECIFICATIONS

1
1
1

1)

uPD70116D
uPD71011Cx1
uPD71086C
uPD71055G
uPD27C512D
uPD41256V
uPD4364G

uPD43256G
uPD4364G

uPD71059G
uPD71054G
uPD71051G
uPD71082C

x1
xl
x2
x2
x2
x16
X2

x15
x1
x1
X2
X2
x2

, 1200, 2400, 4800, 9600, 19200,
38400, 76800

8 bits
2 bits

even, odd

Baud rate (bps) : 600
Character length : 7,
Stop bit length : 1,
Parity : None,

ENVIRONMENTAL CONDITIONS
Operating temperature range : +10 to +40°C
Storage temperature range : -10 to +50°c

(no condensation)
POWER REQUIREMENT
AC 85 to 220 V

INTERNAL POWER SUPPLY

DC +5 V 2.0 A (MAX.)
DC +12 V 0.2 A (MAX.)

POWER REQUIREMENT OF EACH BOARD
<Memory board>

DC +5 V 110.0 mA (TYP.)
DC +12 Vv 32.5 mA (TYP.)

<Supervisor board>
DC +5 vV 1140.0 mA (TYP.)
DIMENSIONS

Cabinet dimensions 210 mm x 300 mm x 100 mm (excluding

projecting parts)

2.8 EXTERIOR VIEWS

Figure 2-1 1IE-17K Exterior Views

2-3

Figure 2-2 Nomenclature

Top

Top Cover Latches Top Outside Cover

A / .
POWER LED

/ \\ // ’
A A

\\\ Logic analyzer

o

. — . Connector
// —— \- PPG Connector
o — @
P p— ~
\
N N
Rubber Feet Ventilation gjde Outside Rubber Feet
Holes Panel
Power Switch
a1 Ventilation /
Hanl e HOlej / Power Connector
| / Reset Switch
Front p——
Smm— [] —
E E pumn——— < %~7 RS-232-C
JEm—— :::3’ Cable Connector
@®____ ®
- Y
[] \ »
Rubber Feet Ventilation Rubber Feet
Holes
Bottom

ACCESSORIES

Wwhen the IE-17K is shipped, the following parts are packed
in the same carton as IE-17K accessories.

(1)

(2). PPG probe (in cabinet)

(3) 100 V power Cableeceeeeenveiuenenennananaas 1

(4) 200 V power cable

e

(5) RS-232-C cable (cross cable)0 e 1

(6) Others

. User's manual (English, Japanese)

.... 1 each
. Warranty 1 copy
. Packing list «... 1 copy

CHAPTER 3. INSTALLATION

MEMORY BOARD AND SUPERVISOR BOARD REMOVAL

The IE-17K consists of two boards, memory board and
supervisor board. Usually these boards do not have to be

removed.

If these boards must be removed for IC replacement, switch
setting, etc., proceed as follows.

() Remove the side outside panel. (Remove the mounting

screws.)

C) Remove the screws holding the side inside panel and

remove the side inside panel from the IE-17K.

() When an SE board is mounted at the memory board,

first remove it from the memory board.

() Disconnect all the cables connected to the memory

board and supervisor board connectors.

() Remove the supervisor board at the bottom slot.
The supervisor board can be easily removed by pulling
the card pullers installed to the supervisor board

forward.

() Remove the memory board at the top slot.
The memory board can be removed easily by pulling the

card puller installed to the memory board forward.

[Removal and installation precautions]
Always begin removal from the supervisor board and

installation from the memory board.

Figure 3-1 Board Layout

SE Board

LY P2 Memory Board

AN L2

I

Supervisor Board
. Card Plug Hpervis

3.2 SWITCH SETTINGS
Set the switches on each board as described below.

3.2.1 MEMORY BOARD SWITCH SETTINGS

Figure 3-2 Memory Board Switches Layout

CN5

Mother Board Connector

Jumper Switches

5P3 Sw2 JP4 SW3
333| | 333 = |

DPN MOD ~ — TERM DPN MOD — — TERM

CN1 CN2 CN6
RS-232-C ° RS-232-C i
Channel O Chammel 1 Logic Analyzer Use

The switches on the memory board are for RS-232-C setting.

JP3 and SW2 are for channel 0 and JP4 and SW3 are for

channel 1.

JP3 and JP4 switch the RTS signal. Set them to match the

host machine used.

SW2 and SW3 switch the terminal mode and modem mode.

The switches set at the factory are as follows.

JP3, JP4cv.0n. Open
SW2, SW3 .. vnees Terminal mode

When the IE-17K is connected to a PC-9800 Series with the
accessory RS-232-C cable, it can be used in the factory

setting state above.

Figure 3-3 RS-232-C Interface Circuit Diagram

DTRO
DSR[C

DSR

Lo}

»
-

Q

T

353
<o

T.D

R\D

-

w

-2V

7;
B

-
[3™)

RTSy |4

6

Il
;

R.RDY

CLK

CLK

DTR O
DSR O

i

RTS, |11
RTS, |21

-

—_————— e — -

-
i l

Modem Mocde;
/

N

S\VZ[

Terminal Mode

CTS {5

w
(9]
~1

DSR |6

DTR

H
©~
=)

RD

z
lw]
w

R
!
{
|
i
H
-12V E 1;7 : ™

R.RDY

#PDT71051

by
o
[+

RTS. |4
RTS;

i

RTS, {21

77

Modem Mode

!

~
<

/

S\VJT
|

Terminal Mcde

GTS

w

SG

~

—

FG

CN1

RS-232-C
Channel 0

CN2

RS-232-C
Channel 1

Figure 3-4

Accessory Cable Connection

[RS-232-C Cable (cross cable)]

Pin No. Pin No.

[T AN S
Ul e W D

PC

3.2.2 SUPERVISOR BOARD

Side IE-17K Sice

SWITCH SETTINGS

Figure 3-5 Supervisor Board Switches Positions

Mother Board Connector

CN5

DIP Switch

Jumper Switch

DSW
Reset Switch
SW1 JP1
CNY CN3
PPG Output Use General-Purpose
Port Use

RS-232-C setting

is performed by DIP switch.

Use JP1l in the factory setting state.

©~

[S1)

Figure 3-6 DIP Switch Settings

OF

o
z

Control Method

F
‘:} 1 Setting Contents
ON Flow control
.j OFF Line control
E. Parity Bit
[. 2 3 Setting Contents
. ON | ON 0dd
E. ON | OFF Not allowed
E. OFF| ON Even
OFF | OFF None
- Stop Bit
4 Setting Contents
ON 2 bits
OFF 1 bit
- Character Length
5 Setting Contents
ON 8 bits
OFF 7 bits
Baud Rate
6 7 t 8 | Setting Contents
OFF OFF | ON 76800 bps
OFF | OFF | OFF 38400 bps
ON | ON | ON 19200 bps
ON | ON | OFF 9600 bps
ON |OFF| ON 4800 bps
ON | OFF | OFF 2400 bps
OFF| ON | ON 1200 bps
OFF| ON | OFF 600 bps

Remarks : The shaded area is factory setting

3.3

3.3.1

CONNECTOR CONNECTIONS
MEMORY BOARD INTERNAL CONNECTORS
The layout of the three connectors CN7, CN8, and CN9 of

the SE board and memory board connection section and

connector CN5 for mother board connection is shown below.

Figure 3-7 Connectors Layout (Memory Board)

CN3

Ykt

CN7T

CN1 CN2 CNb

The connectors are connected as follows.

CNl Connects to cable connector stamped CN1
CN2c00en.. Connects to cable connector stamped CN2
CNE6 ...ovevene Connects to 15-pin cable connector

CN7

CN8 |....... . Mounts SE boards

CN9

CNS ... Connects to mother board

3.3.2 SUPERVISOR BOARD INTERNAL CONNECTORS

The layout of the supervisor board connectors is shown
below.

Figure 3-8 Connectors Layout (Supervisor Board)

CNH

Mother Board Connector

CN4 ‘ CN3

The connectors are connected as follows.

CN3 Connects to 50-pin cable connector
CN4d Connects to 25-pin cable connector
CNS Connects to mother board

SE BOARD INSTALLATION

When the IE-17K is shipped, the memory board and
supervisor board are installed to the IE-17K as control
boards. However, the SE board corresponding to the 17K
Series model is not installed. Therefore, when develop-
ment the 17K Series, the SE board corresponding to the
model must be installed to the IE-17K separately from the
IE-17K.

For a detailed description of the SE boards, refer to the
user's manual for each SE board. Then installing an SE
board to the IE-17K, proceed as follows.

@ Pull the cover latches at the top of the IE-17K and

remove the top outsider cover.

@ Remove the top inside cover mounting screws and
remove the top inside cover.

® Remove the screws attached to the spacers on the

memory board.

(@ Connect the connector on the memory board and the
connector at the rear top of the SE board.

The SE board is installed by pushing it in
perpendicularly to the memory board and is removed by
pulling it out perpendicularly.

Figure 3-9 SE Board Installation

Connector

Connector

Memory Board

g 8

Spacer

() Fasten the SE board and the memory board with the

screws removed at step (2 .

C) Reinstall the top inside and outside covers.

3.5

CONNECTION TO HOST MACHINE

This section describes an example of connection when the
PC-9800 Series is used as the host machine.

Turn OFF the IE-17K and PC-9800 Series power switch and
connect the RS-232-C channel O connector of the IE-17K to
the standard serial interface (RS-232-C) connector of the
PC-9800 Series with the RS-232-C cable supplied with the
IE-17K.

Figure 3-10 1IE-17K and PC-9800 Series Connection

“/’ Connect to
standarad
serial
interface
(RS-232-C)
connector.

///ge—9800 Series (Host Machine)

~——— RS-232-C Cable

RS-232-C
Channel O

ﬂd

I

IE-17K

3-12

3.6 CONNECTION TO PROM PROGRAMMER

To load the program from the IE-17K body to the PROM
programmer, in the state in which the IE-17K body is
connected to the host machine (PC-9800 Series), connect
the RS-232-C channel connector of the IE-17K body to the
PROM programmer with the PROM programmer RS-232-C cable.

Figure 3-11 IE-17K and PROM Programmer Connection

Connect to
standard
serial

/// 4:________// interface

(RS§-232-C)

C 9800 Series (Host Machine)

RS-232-C Cable

RS-232-C
Channel 0

!

(]
fj RS-232-C
Channel 1

|

PROM Programmer

E-17K

CONNECTION TO TARGET SYSTEM

Connect the emulation probe to the SE board and the target
system.

For more information, refer to the user's manual for each
SE board.

Figure 3-12 IE-17K and Target System Connection

/ Connect to
standard
serial
interface
(RS-232-C)
connector.

///;E—QBOO Series (Host Machine)

RS-232-C Cable ——

Emulation Probe-
SE Board RS-232-C

Channel O

LI
D

//Eigyersion Socket [csmmn o]
//////ﬁ =4 AJ////d IE-17K

Target System

CHAPTER 4. START-UP

The IE-17K is used by connecting it to a PC-9800 series or IBM
PC/ATTM host machine using a dedicated IE-17K RS-232-C cable
(supplied with the IE-17K).

Communication and start-up of the IE-17K is performed using

commercially sold software that is RS-232-C compatible.

This chapter introduces the method of communication using a
WindowsTM (version 3.1) terminal. If communication is performed
using commercially sold communications software, this chapter

_should be used as a reference when starting up the IE-17K.

NEC has prepared special communications software, called
SIMPLEHOST, which is to be used with the IE~17K (man-machine

interface software) and that operates using Windows.

Besides having communications functions for use‘with the IE-17K,
in order to smoothly perform debugging, SIMPLEHOST has a command
menu that is aimed at making operation manual free, and because
the execution results are graphical, there is no need to read
this chapter when SIMPLEHOST is used.

4.1 COMMUNICATIONS USING Windows (Version 3.1)

The description below will center around using Windows
(Version 3.1) for the PC-9800 series, and how to connect
the IE-17K to the PC-9800 series.

Before starting up Windows, check to make sure that the SE
board is installed in the IE-17K and PC-9800 series, and
that they are connected using the dedicated IE-17K RS-232-
C cable, and that the IE-17K power has been turned ON (see
Chapter 3 "Installation").

TERMINAL START-UP

First, starting from the Windows opening screen,

(double click) the "Accessory" group icon,

select

and select the

"Terminal" icon, and then execute it (double click). An

example selection screen is given below.

Figure 4-1 Terminal Start-Up

(a) PC-9800 Series

(b)) IBM PC/AT

Program Manager

Accessories

Write Paintbrush |'r-mun3 Notepad

m o o@ [

Carcfile Calenda Calculator Object

R I

Character Media Sound
Map Player Recorder

Packager

The "Terminal" window is opened after double clicking on

the the "Terminal" icon of the "Accessory" group.

Figure 4-1 Terminal Start-Up (cont'd)

(a) PC-9800 Series

= IHE B vla

J740(E) WEE) BEG) FEBE) XD ~L7MH

-

(b) IBM PC/AT

Terminal = (Untitted)
File Edit Sefhngs Phone Transfers Help

.1.2

SETTINGS

In order to exchange data and commands with the IE-17K,

the "Communication Condition Settings", which specify the

communication speed, etc., and the "Terminal Preferences",

which specify the operation of the terminal during

communication, are set.

(1)

Communication condition settings

The communication settings for the IE-17K at the time
of shipping are: 9600 baud communication speed, 8-bit
data length, 2 stop bits, no parity, and Xon/Xoff
flow control. Therefore, the Windows settings must
be set to match these conditions.

Select "Communication Conditions" from the menu bar
item "Settings" in the "Terminal" window. After
doing this, the "Communications" aialog box will
appear, and the conditions should be set as shown in

Figure 4-2.

(a)

(b)

Figure 4-2

IBM PC/AT

PC-9800 Series

Setting of Communication Conditions

BISRIBTIE

0150 ©300 O 600
1200 ©2400 © 4800 @{F&00

F— R E(D)
o5 06 07

@8

(7\ Fyd Ev MO
01 015 @2

NIF 4P
ON S

O T
O |B&x

oL

Z0a-#RKH —
® Xonfoff
oONnN—-FJz7?

P = FO:
3L

COMZ
COM3:

0iUF 4 Fz 95K
O %+ U7 OHER

- Communications

~Baud Hate

O110 ©300 Oso0 O 1200

QH |
3
:3

" Data Bits
Oy O O7 @8

f

Stop Bits
O1 O15 @2

Connector

[None

COM2:

COM3:

"OK" button to end

~Parity 7] " Flow Contiol
® None ® Xan/Xolf
O 0dd O Hardware
O Even O None
O Mark
O Space| [Paiity Check

[Cairier Detect

After all settings have been completed, click the

"Communications".

Next, select "Terminal Preferences" from the menu
bar item "Settihgs" in the "Terminal" window, to
specify the operation of the terminal during
communication. The "Terminal Preferences" dialog
box shown in Figure 4-3 will be displayed. Except
for "Sound" and "Cursor", the settings should be

as shown in Figure 4-3.

(a)

(b)

Figure 4-3

PC-9800 Series

FIRRE-

®: 8 #hir LR LW
OQ[-7L a—(E
B EEHEB/STO

- CRECR+LIATIR T [®Ts T A1
O BEDE0D

O #{F0E F(0)

® BXD)
0 131)

RN DA L MO

ouner New

XFI—- FORREED —

2
FoI=2/0z2— [

O BMO— FMAANIAA)

Terminal Settings

CK

=" IWDFfE

© P
o FW
Y

- RFLT O F(D)
@yAIS OJS
ONECET ©ACOSEF

0 TSXD
O 1BS

0 fuC 39 TP OFTREL:

B’ 73737 -, Al-. b

IBM PC/AT

-ERRMTRAC

Terminal Fraterences

B 270-L 1 —-DETR

| [Terminal Mades™ -cR . CR/LF |
| | XiLne Wrap [{nbound :
O Local Echo] Qutbound Iﬁaia.
X Sound
" Cursor
| [Columns @® Block O Underline
|| ®g0 O 132 X Blink

 Terminal Font

United Kingdom
Dapm_lklﬂway

FY7 18M to ANSI

After all settings have been completed, click the

Xl Show Scroll Bars
XI Uze Funclion Arrow_and Ctil Kays for Windows

Bufler Lines:

"OK" button to end "Terminal Preferences”.

4-8

4.1.3 DOWNLOADING A PROGRAM TO IE-17K

After the "Communications Settings " and "Terminal
Preferences" have been completed, it is possible to
communicate with the IE-17K. After pressing the reset
switch on the "Terminal" window screen, an opening message
and @@E@> prompt are sent from the IE-17K to the "Terminal"
window screen. If the @RE@> prompt is not returned, the
following problems may exist and should be checked:

(D The SE board is not installed properly.

(2 Power is not being supplied to the SE board. (There
are some SE boards that require two power supplies.)

(@ The special IE-17K RS-232-C cable is not connected.

When the @EE@> prompt has been returned properly, use the
keyboard to input .LP0OSS after the @G@@> prompt, to set the
IE-17K to wait for loading. This condition is shown in
Figure 4-4.

(a)

(b)

Figure 4-4 Loading Wait Status

PC-9800 Series

| Lo e =2yl - TERPTRM
27D RED HFEQ FTEP EHEOD AVIH)

UPD-17% SUPERYISOR [1992 §/19]
READY!

CLICE YERSION ¥1.8 (17 MAR "93)
COPYRIGHT (C) NEC CORPORATION 1388 -~ 1393

888>, LP0S3
LOADING...R

[I+

|am

I

IBM PC/AT

SN : Jerminal — TEMP.IREY -

Fle Edit Sefhngs Phone Transfers Help

+
UPD-17K SUPERVISOR [1992 6/19]]
READY |
CLICE VERSION V1.6 (17 MAR '83)
COPYRIGHT (C) NEC CORPORATION 1986 - 1993
@Q@> .LP0SS
LOADING...J

0
I T [+

Next, select "Transfers" item from the menu bar in the
"Terminal" window, and then select "Send Text File". From
the "Send Text File" screen, ihput * ICE in the "File
Name". Search for the drive or directory having that file
using "Drives" or "Directories", then select the file form
the "File Name" list, or input the file name directly in
the text box. After the file has been selected, click the
"OK" button to start sending the file.

Figure 4-5 shows the "Send Text File" screen, and Figure

4-6 shows the screen during file transfer.

Figure 4-5

(a) PC-9800 series

Sending of Text File

F4 L2 D
f:¥%ie1 7k

2k D7 A NATnEE

T BN
[]
[demo.ice n
example.ica

print.ice

tesalld.ice

testice

n

> ¢ LoD

¥
= ie17k

.

L (TROBE:

k54

O LFE I B(A)

3|

¥ [520 XD

(b) IBM PC/AY

=t

O

i Texd Fils

]I] & LFFERLYBR (D)

| | Following CR:
* | O Append LF

[X] Strip LF

Directories:
- | dNel7k

demo.ice # > &N

exampla.ice - B 17k -
print.ice

tezalidice

teztine

v
!f}? F_iiﬁ-s of Type: Drives:
[Text files(*. TXT] [¢] [=e [+]
st .

]

Figure 4-6 File Transfer

(a) PC-9800 Series

2= . - TEP.TRRS
274D RED RES) WEP XD ~LIH

UPD-17K SUPERYISOR [1992 6/19]
READY!

CLICE YERSION ¥1.68 (17 MAR "33)
COPYRIGHT (C) NEC CORPGRATICON 1985 - 1993

888>, P03
LOADING. . .1

i |15 TE T T8 L 25 CRAMPLEICE

*]

1 B
(b) IBM PC/AT
File Edit Settings Phone Iransfers Help
+
UPD-17K SUPERVISOR [1992 6/19] .
READY !
CLICE VERSION V1.6 (17 MAR '93)
COPYRIGHT (C) NEC CORPORATION 1986 - 1993
@e@> .LP0SS
LOADING. . .H
Stop | Pause |IFETIEY111 (Sending: EXAMPLE.ICE [+]
T — 1

After the file has been transferred, the BRK> prompt is
returned together with "OK" and the "Device Name". After
this happens, press the ESC key two times or input $$, and
make sure that the IE-17K is set to be able to receive
commands. If the BRK> prompt is returned when the ESC key
is pressed twice or when $$ is input, it means that the
built-in IE-17K macro commands such as .R, or .RN can be
used. For details about the built-in macro commands, see

5.8 "Built-In Macro Commands".

If the BRK> prompt is not returned, it is possible that
power is not being supplied to this chip on the SE board,
or the SE board may be reset. Therefore, refer to the SE

board user's manual and check the settings.

4-14

(a)

(b)

Figure 4-7 File Transfer End

PC-9800 Series

' S~ T - TERP.TEM

TS0 BED REO TED KD~ I
UPD-17K SUPERYISOR [1392 §/19]

[]~

READY!

CLICE YERSION ¥1.8 (17 MAR "93)
COPYRIGHT (C) NEC CORPORATION 1385 - 1393

888>.LP03S
LOADING. .. 0K
D17010

“Z

BRK>

33

BRK>

=]

«[[=

™

IBM PC/AT

— -

File Edit Settings Phone Transfers Help
UPD-17K SUPERVISOR [1992 6/19] *

READY |]

CLICE VERSION V1.6 (17 MAR '93)
COPYRIGHT (C) NEC CORPORATION 1986 - 1993

@@@> .LP0SS
LOADING. . .OK
D17010

~Z

BRK>

~Z2$3

BRK>J

« | E

CHAPTER 5. DESCRIPTION OF COMMANDS

The IE-17K contains a command processing system known as CLICE
(Command Language for In-Circuit Emulator).

This chapter explains the description, special characters, etc.

usage conditions, and the detailed functions for all.the

commands supported by CLICE.

Figure 5-1 CLICE Positioning

{ Man

i

Keybocard, Display

RS-232-C

AT

SE Board, PPG, Logic Analyzer, etc.

There are two kinds of command, built-in macro commands and

primitive commands.

Built-in macro commands are described by a period and two upper
case alphabetic characters, such as [.AP]. Built-in macro

commands are used when using the basic functions of the I1E-17K.

Primitive commands are a group of commands which offer a more
advanced debugging method for those with experience in program
development using the basic functions of the IE-17K (see Appendix

A "Primitive Commands").

When the IE-17K power is turned on and CLICE is started, the

CLICE title, version No., etc. are displayed at the console as

shown below.

UPD-17K SUPERVISOR [**%% %% /%% 7]

READY!

CLICE VERSION V* * (%% k& &k¥kk)
COPYRIGHT (C) NEC CORPORATION **%*%* . *%%%

Qe@>

*(asterisk) indicates version No. and date.
PROMPT
The CLICE prompts show the status of the IE-17K target

device. It also shows that key input is possible.
The prompts indicate the following states.

() @ee> ... Waiting to load HEX file at IE-17K
starting

() BRK> ... Target device stopped

C@ RUN> ... Target device running

() STP> ... Target device executed a STOP instruction

() HLT> ... Target device executed a HALT instruction

(® DMA> ... Target device is running in the DMA mode

() DSP>DS command is executing

‘D RES> ... Reset signal is input to target device

[Note]

(1)

(2)

(3)

When prompt () is displayed, that is, when the IE-
17K is started, the model used is set at the IE-17K,
therefore, the program must be loaded by restarting
the IE-17K by .Q command or by entering an .LPO or
.LP1 command.

When the status of the target device changes during
command input (prompt changes from RUN to BRK, etc.),
the command string input up to that point is output

and command input is accepted after the new prompt.

(Example) When prompt changes from RUN to BRK
while [0,100.DPS] is being input

RUN> 0,100 Prompt changes
from RUN to BRK
here.

BRK> 0,100.DPSS .. CLICE outputs 100.

In the example above, since the status of the target
device changes from RUN to BRK when 0,100 is input,
line feed is performed automatically and the prompt
shows the new state and the command string 0,100 is

output and the system waits for key input.

Once the prompt changes from RUN> to STP>, HLT»>,
DMA>, or RES>, the prompt does not automatically
return to the original prompt even if that state is
reset. In this case, the prompt changes the next

time $$ is input.

5.2 COMMAND LINE FORMAT

Commands are input in the following format.

xxx> command $3

Xxx> part is called "prompt" and shows the IE-17K

operation.

A command is executed by entering the command after the
prompt and striking the [ESC| or [$]| key two times.
(When the |ESC| key is input, "$" is echoed back.)

The two ¢ symbols input after the command indicate the end
of the command and are called "terminator". When the
terminator is input, the IE-17K starts execution of that

command .

Multiple commands can be input consecutively by separating

them from each other by a delimiter ($) as shown below.

xxx> commandlScommand2$ Scommandn$$

Some commands require a delimiter as a delimiting symbol
and other commands do not. $ (ESC code) is used as the

command delimiter.

One $ input after a command that does not require a

delimiter has no affect on execution of the command.

When multiple commands which do not require a delimiter
are described, $ can be inserted between the commands to

facilitate reading of the command string.

A command string is executed by input of two consecutive
$. In short, input of two consecutive $ ends the command
lines and starts command execution.

A command string can be corrected before it is terminated.

There are commands with arguments and commands without

arguments.
The basic command formats are shown below.

<numeric argument><command name>

<numeric argument><command name><Q-register
identifier>

<command name><Q-register identifier><character
string>$

<command name><Q-register identifier>

<command name>

QU @ O

<numeric argument><command name><character string>$

An expression can also be described where a numeric

argument is described in all commands.

COMMAND BUFFER

CLICE has a command buffer which stores the command input

from the console.

In most cases, the input characters are stored in the

command buffer directly.

However, in the following cases, the input characters are

not stored directly.

(D special control characters

(See 5.4.1 "Special Control Characters".)

() * and ? input immediately after the prompt
(See "* command (assignment to Q-register)", "?
command (error display)" in Appendix A.5.9 "Others".)

When command execution ends normally and the prompt is

displayed, the command buffer is cleared.

.4.

CHARACTER SET
The ASCII character set can be used with CLICE.

The control characters (ASCII codes 00 to 1FH) from
control A (+A) to control _ (4°) are displayed by ~ and
an alphabetic character.

CLICE interprets the two characters -~ and A as if control

A (*A) were input even if they are input consecutively.
(Example) Pressing the A key while pressing the control
key is called control A (abbreviated 4 A). At this time,
ASCII code O1lH is input at CLICE and the two characters
(ASCII code 5EH) and A (ASCII code 41H) are displayed as
“A.

SPECIAL CONTROL CHARACTERS

CLICE has the following special control characters.

(1) DEL

When the DEL (ASCII code 7FH) is input, the previous

character is deleted.

When the previous character is a control character,
the two characters ~ and alphabetic character are
deleted.

(2) ESC

When the ESC (ASCII code 1BH) key is input, $ (ASCII
code 24H) is displayed.

1BH is stored in the command buffer.

(3)

(4)

Control C

Control C (4 C)(ASCII code 03H) is a special control
character for interrupt command execution. The two

characters -~ and C are displayed in that order.

When +C is input before a command string is
terminated, the entire input command string becomes
invalid and the prompts displayed and the system

wailts for command input.

However, in this case, the data in the command buffer
is not cleared. (See "* command (assignment to
Q-register)" in Appendix A.5.9 "Others".)

To interrupt execution after a command is terminated
(i.e., after command execution starts), 4C is input

twice.

When execution of a command string is interrupted,

the following message is displayed.

ABORTED!

At this time, the interrupted command string is saved

in the command buffer.

Control X

The control X (4 X)(ASCII code 18H) key deletes the

line containing the cursor.

The command string deleted by +4 X is not saved in

the command buffer.

(5)

(6)

(7)

(8)

(9)

Control H

The control H (4+ H) and BS keys (ASCII code 08H)
perform the same operation as the DEL key.

Control U

Control U (* U)(ASC code 15H) is functionally the
same as *tX, but displays "U and line feed.

4U is the command deletion control character for TTY
type consoles other than CRT.

Control G

When control G (+ G)(ASCII code 07H) is input, the
contents of the current line are displayed.

Similar to 4+U, 4G this is a control character for
a TTY type console.

Control E

When control E (*E)(ASCII code O5H) is input before
a command string is terminated, the IE-17K enters the
edit mode (See Appendix A.6 "Editor".)

Control S

When control S (4+ S)(ASCII code 13H) is input,
character display of the command executing at that

time is temporarily interrupted.

Execution is resumed by entering control Q (+ Q)
(ASCII code 11H).

5.4.2 SPECIAL CHARACTERS

CLICE has the following special characters.

(1)

(2)

(3)

" (ASCII code 5EH) is always followed by a character.

-

For the character following ~, the same character as

a control character is stored to the command buffer.

(Example) When B is input from the cusor following
“, the same code as when 4B is input (ASCII code 02H)

’

is stored to the command buffer.

When 8 (ASCII code 24H) is input, ESC (ASCII code
1BH) is stored to the command buffer.

Control R

For control R (+R)(ASCII code 12H), the character
following +R is stored to the command buffer

unchanged.

This is used when you want to store a character which
only performs special control character, control

character, etc. operation to the command buffer.

(Example) "R 4R ... 4R (ASCII code 12H) is stored
as one character.

"R"R ... The two characters ~ (ASCII
code 5EH) and R (ASCII code
52H) are stored.

(4)

4R 4R ... +R (ASCII code 12H) is stored
as one character.

+R°R ... The two characters -~ (ASCII
code 5EH) and R (ASCII code
52H) are stores.

However, 4+ R does not apply to +C and DEL. These

characters can only be stored by editor command.
Other special control characters

Besides the special control characters, CLICE has the
following characters.

Control B (+B), control D (4D), control P (+ P),
(period).

Of these, +B, 4D, and +P are prefixes which show
the type of constant to be described later.

. (period) is a prefix which identifies a built-in
command.

.4.3

DUMMY CHARACTER

"Dummy character" is a character which is not defined as a

command itself, but does not generate an error even if

executed.

There are dummy characters that perform a special

operation when they are output to the console.

Therefore, dummy characters can be inserted into a

character string to simplify reading of the character

string.

(1)

(2)

(3)

(4)

CR

When CR (4 M)(ASCII code ODH) is output to the

console, line feed is performed.

LF

LF (4J)(ASCII code 0OAH) is not stored to the

command buffer unchanged.

To store LF to the command buffer, input 4J after
+R.

Blank

When blank (ASCII code 20H) is output to the console,

a one character blank is displayed.

NULL

NULL (4@)(ASCII code OOH) is not stored to the

command buffer.

To store NULL to the command buffer, input 4@ after
+R.

(5) TAB

TAB (4+ I)(ASCII code 09H) displays 8 columns of
blanks.

4I (ASCII code 09H) is stored to the command
buffer.

EXPRESSION

The operators that can be used in expressions by CLICE are

shown below.

+ ... + sign or addition symbol

- sign or subtraction symbol

* Multiplication symbol
/ Division symbol

o Remainder symbol

& AND symbol

... OR symbol

| ... Exclusive-OR symbol
~ ... Negate symbol
Left shift symbol
Right shift symbol

Expressions are all evaluated not in expression operation

priority order, but from left to right.

However, when desiring to change the priority, () can be

used.

Constants, variables, and functions can be used as the

component element o0f each item of an expression.

(Example) The evaluated value (right side of =+) of the

examples shown below are all shown in decimal.

@O xxx>3+4 > 7
(@ =xxx>10+ +D10* +B10O > 52
@ xxx>10+ (4D10* 4B10) > 36
(@ xxx> +B1010} 1 >

(® xxx> +B1011} 1& {B1000 =~ 8
(6 =xxx> ~FFFFFFFC > 3
() xxx>57 "3+ (5/3) > 3
xxx>5""3+5/3 > 2

(:) XXX>Q1l+@ +FDTM 4V >

@0 =xxx>_ 4+ FPRM+ (100%2) 4+ V »

Sum of contents of Q-
register 1 and array
assigned to top address of
data memory (that is,
contents of data memory
address 0)

Contents (16 bits) of
program memory address
100H

CONSTANT

Hexadecimal, decimal, and binary integers and 17K series
instruction identifiers (1-4-3-4-4 bit format) can be used
with CLICE to represent constants.

The range of values which can be represented is,

decimal : --231 to (+23l—1)

hexadecimal : O to FFFFFFFFH

Two's complement representation is used as negative
representation.

The constants representation method is shown below.

Binary constant: Represented by adding 4B in front of -

the binary number
(Example) 4B1010 represents the decimal number 10.

Decimal constant : Represented by adding 4D in front of

the decimal number.
(Example) +D324 represents the decimal number 324.
Hexadecimal constant : Represented by decimal number only.
(Example) F1l represents the decimal number 241.
1-4-3-4-4 bit format constant : Represented by adding tP
in front of the

hexadecimal number.

(Example) +PO074F0 represents NOP.

VARIABLES

CLICE has arrays and Q-registers as the variable concept.
ARRAY

"Array" represents all the resources managed by CLICE.

Each element of an array corresponds to a target device

resource.

Therefore, when a value is assigned to an array by CLICE,
data is written to the hardware in the térget device

corresponding to the element of that array.

When the contents of an array element are referenced, the
data (status) of the corresponding hardware at that array

element is read.

Each element of an array can be referenced by pointer and

data can be assigned by XB, XC, and XW command.
Q-REGISTER

CLICE has a registers (Q-registers) that can store a value
or character string. This register corresponds to the

variable concept of general programming languages.

The Q-registers are described by the character Q followed
by an upper case alphabetic character or numeric. (The
upper case alphabetic character is called the Q-register

identifier.)
(Examples) @Ql1, QA, Q8, QzZ, etc.

All the Q-registers can be used as numeric variable or

character wvariable.

The kind of variable a Q-register is used as is determined

by the contents stored in it.

When CLICE starts, all the Q-registers are cleared.

The range of values which can be stored in the Q-registers
is the same as the range of values of constants. When a
value is assigned to a Q-register, that value can be used

by an expression.

A character string is stored to the Q-registers by U
command and * command. When a character string is stored
to a Q-register, that character string can be executed as

a macro command.

.8.

BUILT-IN MACRO COMMANDS

This section describes the built-in macro commands which

are used when executing the basic functions of the IE-17K.

The symbols used in the formats described in this section

are defined below.

-~ : Line feed input
{ 3 : Indicates that one of the character
strings described in the { } is

to be selected.

(] : Input can be omitted

(Underline) : Console input

PROGRAM MEMORY CONTROL COMMANDS

The commands are listed in order of the actual procedures.

(1) Program memory load

.LP (Load Program Memory)

(2) Program memory verify

.VP (Verify Program Memory)

(3) Program memory initialize

.IP (Initialize Program Memory)

(4) Program memory modification

.CP (Change Program Memory)

(5) Assemble command

.AP (Assemble Program)

(6) Program memory dump

.DP (Dump Program Memory)

(7)

(8)

(9)

(10)

(11)

Disassemble command

.UP

Program memory search

.FP (Find Program Memory)

Program memory save

.SP (Save Program Memory)

PROM data output
. XS (Save PROM Date)

IE-17K restarting
.Q

.LPO .LP1 Load Program Memory

Format : .LPO
.LP1

RS-232-C channel 0: LPO
channel 1: LP1

[Function] Inputs the contents of an AS17K ICE file from
the RS-232-C channel specified by .LPO or .LPI1.

(Example) Load the program from channel O.

@RE@> .LPOSS

[Notes] . When the power is turned on, or when the
IE-17K is reset (prompt @@@>), load the AS17K
-ICE file by .LP.

. When the program loaded by this command
occupies only a part of the program memory,
the previous program remains at the unloaded

part of program memory.

The program coverage is cleared.

.VPO .VP1 Verify Program Memory

Format : .VPO
.VP1

RS-232-C channel 0: VPO
channel 1: VPl

[Function] Verifies the contents of program memory and
the data of the AS17K ICE file sent from the
RS-232-C channel specified by .VPO or .VP1.

When verifying, "Verify...NG" is always
displayed for areas outside the user program.
This is because in the memory where the ICE
file is stored, the IE-17K processes data in a
portion of the assembly environment
information area and in the SE board

environment information area.

Refer to Chapter 5 "Load Module File Format",
of the device file user's manual for details
about the assembly environment information
area and the SE board environment information
area, and check to make sure that the address
where the error occurred is outside the user

program area.

[Note]

(Example)

BRK>.VP0OSS

Verify ... OK

00

BRK>000000000030303231313011
:1007C40038303731441212FF073356202020F0F6
. 1007D4000OOOOOOO
:0407FC000100C11522

:00000001FF

When the data memory information is different,
"VERIFY NG DATA INITIAL VALUE" is displayed.

When EPA is different, "Verify NG EPA" is
displayed.

When IFL and DFL are different, "Verify NG IFL
DFL" is displayed.

.IP Initialize Program Memory

Format : [al]l, B, yv.IP

: Start address
: End address
(¢ B, o> B generates an error)

Initialize data (1-4-3-4-4 bit format)

[Function]

Initializes the contents of program memory

addresses @ to B to y.

When ¢ is 0O, ¢ can be omitted.

(Example 1) Initialize addresses 10H to 20H
to 074F0.

BRK>10,20,074F0.1IPSS

(Example 2) Initialize addresses OH to 20H
to 120FF.

BRK>, 20, 120FF.IPSS

.CP Change Program Memory

Format : [q]1.CP

a

: Program’memory address to be changed

[Function]

Changes the contents of program memory address

Q.

When ¢ is 0, @ can be omitted.

(Example)

Change the program contents

beginning from address 100.

BRK>100.CP$$
0100:074F0-120F5 074F0-14001
074F0-11000 074F0-06100
0104:074F0-

L~ $¢ also possible

in exchange for J

When a 14344 format value is input
up to 5 digits, the cursor
automatically moves to the next
address.

To end operation, input "« " or

"$8" instead of a value.

BRK>100.CP$$
0100:074F0- @

Space key pressed

0100:074F0-074F0 Q074F0O- M
Input wait of next

address

When the space key is input instead
of a value, the program contents
are not changed and the cursor

moves to the next address.

If the wrong value is input, it can
be corrected with the "DEL" key.
(This also applies to the "BS"
key.)

0100:120AF-120A1 074F0-120_

. "DEL" key pressed.

0100:120AF-120A1 074F0-12

"DEL" key pressed.
¥

0100:120AF-120A1 074F0-1_

' "DEL" key pressed.

0100:120AF-120AF 074F0-_

"DEL" key pressed.
¥

0100:120AF-_ "DEL" key pressed.

¥
OOFF:120C1-_

Remarks _: Cursor

.AP Assemble Command

Format : [a].AP[B]

Start address

Q-register name

[Function]

Assembles the mnemonic applied to Q-register 8
and stores it beginning from program memory

address «a.

When ¢ is 0, ¢ can be omitted.

When Q-register B8 is omitted, the code of
program memory address ¢ is reverse assembled
and displayed and the IE-17K enters the
mnemonic input mode. In this mnemonic input
mode, the program memory contents can be

changed in the mnemonic level.

(Example 1)

BRK>5.APSS
0005: MOV 05,#5 - SS Quits mnemonic
BRK> input mode by $$
input
BRK> .APSS

0000: MOV 00, #1 - MOV O1,#14
Assembles by d
input and goes to
next address (BS
key can be used)
0001: MOV 10,#2 - W
L~ Input wait

BRK> .APSS
0000: MOV 00, #1
ASSEMBLE ERROR

0000: MOV 00, #1 -
BRK> .APSS

0000: MOV 00, #1 -

0001: MOV 10,#2 -
BRK> . APSS

0000: MOV 00, #1 -

0001: MOV 10, #2

(Example 2)
BRK>USMOV 01, #05

ADD 1,78
$s
BRK>5.APSSS

BRK>5, 6.DPSS
0005:

1D015 00781

MOV O1,#1+

If assembly error
occurs, returns to
original address

and waits for input

L Input wait

e

Only « input results
in next address

input wait

L_, Input wait

MOV 01, #1

In input wait state,
{P input displays
string input for the
last time (MOV 01, #1)

- MOV Ol,#1 M
L . 4P (CTRL + P)

Assign character
string to Q-
register S by U

command.

Assemble contents
of Q-register S.
Dump assembled
result.

[Note]

(1)

(2)

(3)

(4)

(6)

Describe RF addresses by 40H to BFH.

However, OOH to 3FH, when written, it treated
the same as 80H to BFH. COOH to FFH is
treated as 40H to 7FH.

Use space or tab as the mnemonic and operand

separator.

Describe addresses in hexadecimal numbers.

Describe immediate data with the symbol #

followed by a hexadecimal number.

(Example): MOV 11, #0 STOP O
ADD 0,11 BR 005F
POKE 81,WR BR @AR
PUT 01,DBF MOV @5,00

When an error is generated during assembly,
the error line and its contents are displayed
and assembly stops. At this time, the codes
up to the line before the error line are
stored to program memory. The operand range

is not checked.

When the assembly contents exceed the last
program memory address, storage is continued
from address O.

To use EPA, specifies address 8000H or a

subsequent address.

(Example)
8000.APDSS
Assemble and store contents of
Q-register D at EPA.

.DP Dump Program Memory

Format : [o][, R].DP

Start address
End address (o< B, a>B8: error)

[Function]

Dumps the program contents of addresses a to
B .

When o is 0, ¢ can be omitted. If ", B" is
omitted, the end address becomes o +3FH.

(Example 1) Dump the contents of addressed
10H to 20H in 1-4-3-4-4 bit

format.

BRK>10, 20.DPSS

0010:074F0 074F0 074F0 074F0
074F0 074F0 074F0 074FO0
0018:074F0 074F0 074r0 074F0
074F0 074F0 074F0 074F0
0020:074F0

5-30

¥ Example 2)

(Example 3)

Dump the contents of addressed 0

to 10H.

BRK>, 10.DPSS

0000:074F0
074F0
0008:074F0
074F0
0010:074F0

Dump the contents beginning from

address 10H.

(Dump addresses 10H to 10H+3FH.)

BRK>10.DPSS

0010:1D790
074F0
0018:1D770
10771
0020:10771
10771
0028:10771
10771
0030:10771
10771
0038:1D000
074F0
0040:1D7F0
0B7DO
0048:0C050
0C171

5-31

074F0 074F0 074F0
074F0 074F0 074F0
074F0 074F0 074F0
074F0 074r0 074F0

1D7DO
074F0
08770
08772
08774
08776
08778
0877A
0877C
0877E
074F0
074F0
00000
097EOQ
097F2
18770

1D7EQ
074F0
10771
10771
10771
10771
10771
10771
10771
10771
074F0
074F0
074F0
0Cc049
0Cc170
09770

074F0
167E0
08771
08773
08775
08777
08779
08778
0877D
0877F
074F0
074F0
074F0
1C146
09000
0C172

.UP Reverse Assemble Command

Format : [oll, 81.UP [y]
a : Start address
B : End address (a<B, a>B: Error)
Y Q-register name

[Function]

When vy is omitted, this command reverse
assembles and displays the contents of program
memory addresses ¢ to 8. At this time, EPA
information is also output.

When vy is specified, this command reverse
assembles the contents of program memory
addresses a to 8 and stores the mnemonics to
Q-register vy.

When ¢ is 0, o can be omitted. When ", B" is

omitted, the end address becomes o +10.

(Example 1)
BRK>.UPSS When both start address and
end omitted.

EPA ADDR CODE MNEMONIC
0000 O070E0 RET
0001 O007F0 ADD 0,7F
0002 002A5 ADD 5,2A
0003 00558 ADD 8,55
0004 O000OF ADD F,00
0005 1000F ADD 00, #F
0006 102A5 ADD 2A, #5
0007 1055A ADD 55, #A
0008 107F0 ADD 7F, #0

5-32

0009
BRK>8.UPSS

EPA ADDR
0008
0009
000A
000B
000cC
000D
O00E
00O0F
O0QE
O00F

027F0

CODE

007F0
002A5
00558

'0000F

1000F
102A5
1055A
107F0
1055A
107F0

BRK>44,4B.UPSS

EPA "ADDR
0044
0045
0046
0047
0048
0049
004A
004B

(Example 2)

CODE

057F0
052A5
05558
0500F
1500F
152A5
1555A
157F0

BRK>10, 20.UPBSS

BRK>50.APBSS

ADDC O,7F
When only start address
specified.

MNEMONIC

ADD O,7F

ADD 5,2A

ADD 8,55

ADD F,00

ADD 00, #F

ADD 2A, #5

ADD 55, #A

ADD 7F, #0

ADD 55, #A

ADD 7F, #0

When both start address and
end address specified.

MNEMONIC

XOR 0,7F
XOR 5,2A
XOR 8,55
XOR F,00

XOR 00, #F
XOR 2A,#5
XOR 55, #A
XOR 7F,#0

Reverse assemble contents
of program memory addresses
10H to 20H and load result
into Q-register B.

Assemble contents of Q-
register B and expand at
program memory address 50H

and subsequent address.

(Example 3)
BRK>10,20.UPBSS Reverse assemble contents

of program memory addresses
10H to 20H and load result
into Q-register B.

BRK> .EDBSS Edit by edit command.

>

(Editing example omitted)

>

BRK>10.APBSS Assemble contents of Q-
register B and expand at
program memory address 10H

and subsequent addresses.

[Note] Codes which cannot be reverse assembled are

displayed at the mnemonic field as [DW].

5-34

.FP Find Program Memory

Format :

[al, B, y[,8].FP

Start address

: End address
. Data to be searched
Mask data
(y, §: 1-4-3-4-4 bit format)

o <X W R
.o

[Function] Searches the contents of y masked by § at the

[Note]

program memory contents from addresses a to B.
When ¢ is 0, ¢ can be omitted.

When § is omitted, the mask data becomes
1F7FF. ‘

(Example) Find if 12xxx is in addressed O to
300H.

BRK>0,300,12000, 1F000.FPSS

0110:12120 0120:12200
0140:12240 0152:12250
0160:12151 0180:12152

"Mask data" is 1-4-3-4-4 bit format data with 1
set in the bit to be searched and O set in bits

which can be 1 or O.

.SPO .SP1

Save Program Memory

.SP1

Format : {.SPO}

RS-232~C channel 0: SPO
channel 1: SP1l

[Function]

Outputs the contents of program memory to the
RS-232-C channel specified by .SPO or .SP1l.

The output format is the same as the AS17K ICE

file format.

(Example) Output the contents of program
memory to channel 1.

BRK>.SP1S$$
:1000000063A03CF061273CFOEFEQ040423CEOEFQ4AD
:10001000EF10EF20EF30EF91EFOOEF10EF20EF3017
:1000ZCOOEF9OEBCOE8DOE8DOE8F03CA138A538A6B9
:1000300038A738EQE820E8303CF0O3CF080219030F0
+10004000F7F4601C38EOB204E8EOEBF0O38A538EQES
:10005000E830E82038E08031902038ECF6F4605055

)

5-36

.XS0 .XS1 Save PROM Data

Format : . XS0
.XS1

RS-232-C channel 0: XSO
channel 1: XS1

[Function] Outputs the contents of program memory in
AS17K PROM file formal at the RS-232-C
channel specified by .XS0O or .XSl.

(Example) Output the contents of program

memory at channel 1.
BRK>.XS1S$$

:1000000063A03CF061273CFOEFE040423CEQOEF04AD
:10001000EF10EF20EF30EF91EFOOEF10EF20EF3017
:10002000EF90ESCOES8DOESEOE8FO3CA138A538A6B9
: 1000300038A738EQE820E8303CFO3CF080219030F0
:10004000F7F4601C38EOB204E8EOES8FO038A538EQEbL
: 10005000E830E82038E08031902038E0F6F4605055

)

.0 Restart IE-17K

Format

[Function] Restarts the IE-17K from the previous state

[Note]

when the IE-17K reset switch is pressed and
when the power is turned off and then turned
back on. When restarting is successful, the

same program as before need not be loaded.

(Example) @@Q@>.QS$S
17XXX
BRK>

. Product name is displayed 2 to
3 seconds after .Q command is

input.

If the product name is not displayed 2 to 3
seconds after the .Q command is executed, the
program will be lost. Therefore, after the IE-17K

is reset, reload the program.
Since the program is also lost when the message

Your program must be lost.
Please load it again!

is displayed instead of the product name, reload

the program after resetting the IE-17K.

Whether the program is preserved or lost is judged
by whether or not the program checksum is matched.

5-38

Therefore, part of the program may be lost even if

the product name is displayed.

The time at which the program is preserved after
the IE-17K power is turned off depends on the SE
board.

5.8.2 DATA MEMORY CONTROL COMMANDS

(1)

(2)

(3)

(4)

Data memory initialize

.ID (Initialize Data Memory)

Date memory change

.CD (Change Data Memory)

Data memory dump
.DD (Dump Data Memory)

All data memory dump
.D (Dump All Data Memory)

.ID 1Initialize Data Memory

Format : [a«], B, v.ID

Start address
End address (o< R, a> B : Error)

Contents

[Function]

Initializes the contents of data memory
address a to 8 to y.
When ¢ is 0, o can be omitted.

(Example 1) Initialize contents of addressed
10H to 20H to O.

BRK>10,20,0.IDS$S

(Example 2) Initialize contents of addressed
0 to 20H to 1.

BRK>,20,1.1IDS$S

5-41

.CD Change Data Memory

Format : [«].CD

a : Data Memory address to be changed

[Function] Change the contents of data memory address «.
When ¢ is 0, can be omitted.

(Example) Change the contents from data
address O.

BRK>.CDS$$
0000 0-0 1-0 2-0 3-0 4-0 5-0 6-0 7-0
0008 8-0 9-d

L~ s$ also possible in
exchange for

When one data is input, the cursor moves
address. To end operation, input " | " or "ssg"

instead of a wvalue.

BRK>100.CDS$S
0100 3-% Space key pressed

0100 3-3 2-H
Input wait of next

address

When the space key is input instead of a
value, the data contents are not changed and

the cursor moves to the next address.

5-42

If the wrong value is input, it can be
corrected with the "DEL" key. (This also
applies to the "BS" key.)

0010:2-3 4-5 6-_ "DEL" key pressed.
¥

0010:2-3 5-_ "DEL" key pressed.
¥

0010:3~_ "DEL" key pressed.
¥

O00F:4-_

Remarks : Cursor

.DD Dump Data Memory

Format : [«][, B].DD
@ : Start address
B : End address (o g B, a>p : Error)
Dumps the contents of data memory addresses ¢

[Function]

to B.

When o is O, a can be omitted.

(Example 1) Dump the contents of data memory
addressed 0 to 8O0H.
BRK>0,80.DD

0000:0
0010:0
0020:0
0030:0
0040:0
0050:0
0060:0
0070:0
0080:0

S = T = T = T = T
NONNNNNNN
W W wwwwwow
e R R S N
g oo e o a a a g
o N - N~ e N~ N~ o
9NN N NN NN
© ® M ® ®m ® ® ®
© O O O OV OV O
e s B S e
U U o o w o w
Q0O 0 0 0 0 00
U U o gy u g o g
M M M Mmom oo m
o> B e s > BLC M B |

(Example 2) Dump the contents of address 30H.
(Dump the contents from address 30H
to address 7FH.)

BRK>30.DDS$S

0030:0 0030507 8901460F
0040:0 1 2 3 4560 83ABCDETF
0050:0 O 2 DFFFO 49A0CO0O0F
0060:0 1 234560 89A00DOTF
0070:0 C 2B 4560 879BCO0O0O
[Note] . When ", B" is omitted, the data from address

¢ to the last address of the bank allocated
address a is dumped.

When address ¢ of a register file is specified,
the data from address ¢ to the end of the

register file is dumped.

The contents of uninstalled data memory are

indicated by "-".

Dump of addressed 0080 to OOBF dumps the
contents of the register file. If the register
file is not installed, the status of the

internal bus is displayed.

.D Dump All Data Memory

Format

[Function]

[Note]

(Example) BRK>.DS$S

0000:0
0010:0
0020:0
0030:0
0040:0
0050:0
0060:4
0070:5

O O O O O o o o
M ® O O O O O

0080:2 5
0090:0 O
00A0:0 1
00BO:0 O

Register file is also

Dumps all the data memory

O O O O O O o 0
O O O O O o o o
©C O O O O 0o o o

N N O N
w W w w
LA S S N
N O,

NN B e N e

dumped.

contents.

O O O O o o o o
O O O O O O o O
= O O O O O O O
O O O O O © O O

5 I N e T
O © O N
O v v ¥
A A
U O ww

O O O O O O O O

N O O 0 O O O o
O O O O ©O O O O
O O O O O © O O

O 0 Q0
U o oo
Mmoo mom

QO O O O © © O O

O O O O O O o O

N O O

5.8.3 PERIPHERAL CIRCUIT CONTROL COMMANDS

(1)

(2)

(3)

(4)

Peripheral register contents display
.GD (Get & Display)

Peripheral register contents read
.GE (GET)

Write to peripheral register
.PD (Put Direct)

Indirect write to peripheral register
.PU (PUT)

.GD Get & Display command

Format : a .GD

d@ : Peripheral address

[Function] Display the contents of peripheral address «

in hexadecimal.

(Example 1)

BRK>1.GDSS. Display contents of
00000002 peripheral address 1.

(Example 2)

BRK>UP1.GD"A TIME1l "A2.GD"A TIME2 "A3.GD"A SIO

"ASS Define macro P.
BRK>MPSS Execute macro P.

00000034 TIMEl
00000022 TIME2
00000004 sIO0

[Note] When peripheral address o is not this model,

following message is displayed.

?POS INVALID ADDRESS

the

.GE Get Command

Format

o .GESB

: Peripheral address

=

™

Q-register name

[Function] Assigns the value of peripheral address a to

[Note]

Q-register B by numeric.
(Example 1)

BRK>1.GEASS Assigns the value of peripheral
address 1 to Q-register A.

BRK>QA=HS$$10 Displays contents of Q-register
A in hexadecimal.

(Example 2)
BRK>UQ1.GEAZ2.GEB3.GEC"A SI0= "AQA=H"A
TM1l= "“AQB=H" A TM2= ~“AQC=HSS

Define macro Q.
BRK>MQSS SIO= 34 TMl= 66 TM2= 2
Execute macro Q.

BRK>

["A] in macro Q defined in Example 2 is an
instruction to display character strings directly.
If there is a character string you want to display
at macro-defined command execution, enclose that

character string in ["A].

When peripheral address o is not a value at this

model, the following message is displayed.

?P0OS INVALID ADDRESS

.PD Put Direct Command

Format : ¢, B8 .PD

: Peripheral address
: Data

[Function] Assigns numeric 8 to peripheral address ¢.

(Example) BRK>1,55.PDSS
Assign 55H to peripheral

address 1.

[Note] When peripheral address ¢ is a value not at this

model, the following message is displayed.

?POS INVALID ADDRESS

.PU Put Command

Format : ¢.PUS

R

: Peripheral address

>

O-register name

[Function] Assigns the contents (numeric) of Q-register
B to peripheral address «.

(Example) BRK>55UASS Assign 55H to
Q-register A.

BRK>1.PUASS Assign the value of Q-
register A to

peripheral address 1.

[Note] When peripheral address o is a value not at this
model, the following message is displayed.

?P0OS INVALID ADDRESS

5.8.4 EMULATION COMMANDS

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Reset
.R (Reset)

‘Program execution

.RN (Run)

Program execution (reset condition)

.BG (Run Beginning Condition)

Break
.BK (Break)

Program start address change
.CA (Change Start Address)

Step operation
.S (Step)

Display
.DS (Display)

.R Reset

Format : .R

[Function] Resets the SE board.
(Example) BRK>.RSS
[Note] . The register file and data memory contents
become the same as the reset contents of the
target product.

. The data coverage contents are cleared.

. The run start address becomes OH.

.RN Run

Format : .RN

[Function]

Executes the program from the current

specified program run state address.

The conditions used at break and trace do not
change.

(Example) BRK>.RNSS
RUN>

.BG Run Beginning Condition

Format : .BG

[Function]

Executes the program from the currently

specified program run start address.

However, the following conditions used at

break and trace are set.

<Reset contents>

Counter used at level 1 (reset value: 0)
Sequential stack used at level 2 (to
initial wvalue)

Trace on, tract one shot, and trace off
specification (all to trace state)

Level 1 condition

(Example) BRK>.BGSS

RUN>

.BK Break

Format : .BK

[Function] Stop program execution.

Display the contents of the system registers

and general registers at this time.

This command can be accepted in the break

state also.

(Example) RUN>.BKSS
ADDR INSTRUCTION

0002 074F0 BREAK Break processed
instruction

0003 074F0 OVERRUN Instruction
executed last

0004 0C004 NEXT Instruction to

be executed
next
PC SP AR WR BR MP IX
0004 3 0700 O 0 *%% 000 System
PSW: DB CP CY Z IXE MPE JG registers
0 0 0 0 0 0 0
RP 0123456789ABCDEF
000 0000000000000320 General

registers

.CA Change Start Address

Format : qo.CA

¢ : Run start address

[Function] Changes the program run start address.

(Example) Change the program run start
address to 100H.

BRK>100.CASS

.S Step

Format : [a].S

@ : Number of times
[Function] Runs the program that specified number of
times.
(Example 1) Perform step operation.
BRK>. S$S
BR RP PC INST MNEMONIC
0 00 0000 074F0 NOP : Advance 1 step at space key input.
0 00 0001 1DOOO MOV 00,#0 :&@ Advance 1 step at space key input.
0 00 0002 IDO11 MOV 01, #1 : Advance 1 step at space key input.
0 00 0003 1000A ADD 00, #A :8S Terminate step operation at $$ input.
(Example 2) Perform 4 step operations.
BRK>4. S$$ Specify step number.
BR RP PC INST MNEMONIC
0 00 0000 074F0 NOP :
0 00 0001 1DOQO0 MOV 00,#0 : Zxecute 4 steps.
0 00 0002 (DOLl MOV OL, %I :
0 00 0003 {000A ADD 00, #A :
I Mnemonic
Instruction
Code
Program
Counter
Register
Pointer

Bank

[Note]

Step operation is ended by $$ or o~ (return)

input.

When a¢ is 0O or omitted, operation is performed

1 step at each instruction.

.DS Display

Format : .DS

[Function]

[Note]

Enables the liquid crystal display during
break (this function only applies to the
product with LCD controller).

Depending on the product, the liquid crystal
display may go off during break. This command
is used when desiring to view the liquid

crystal display during break.

(Example) BRK>.DSS$$
DSP>

Since a RUN state (BR instruction executed
repeatedly) is provided as an emulation state,
the trace and coverage contents are not

guaranteed after this command is used.

Input of any key returns to the original state
(break state).

5.8.5 BREAK/TRACE CONDITION CONTROL COMMANDS

(1) Break/trace condition change

.CC (Change Break/Trace Condition)

(2) Trace on/off condition change

.CT (Change Trace Condition)

(3) Break/trace condition dump
.DC (Dump Break Condition)

(4) Trace table dump
.DT (Dump Trace Table)

(5) Break/trace condition save

.SC (Save Break/Trace Condition)

(6) Break/trace condition load
.LC (Load Break/Trace Condition)

(7) Break/Trace condition verify
.VC (Verify Break/Trace Condition)

.CC Change Break/Trace Condition

Format : .CC

[Function] Sets and changes the break and trace

conditions.

[Explanation]

Four independent break/trace conditions can
be set simultaneously. In short, the
condition setting unit is 4 units. When
items are set in 4 units, .CC command level
1 is used. When each unit is set as a
break condition, .CC command level 2 is
used and when each unit is set as a trace

condition, the .CT command is used.

The .CC command sets the conditions

interactively.
The setting items are shown below.
< (return) is input when the predefined

value of items C) to L) is input and $ is

input when exiting from the setting.

<Break condition setting items (for level

1)>

. A) LEVEL (1,2): 2?2 1

Selects the level. There are two

levels: 1 and 2.

B) UNIT (O to 3): ?

Selects the unit. There are four
units: O to 3. For the items which

can be set at each unit, see Table 5-1.

CATG (C to L): ?

Specifies which setting item of C) to
L) from which condition setting is to
be performed. Depending on the unit,
there may be no setting items. When no
items are specified, setting becomes

possible from the item after that item.

C) CONDITION AND(1)/OR(0) : Predefined

Selects if the setting items from D) to
K) are ANDed or ORed. When the AND
condition is selected, the unit break
condition is established after all the
setting items in the unit are
satisfied. Therefore, when you want to
remove a condition from the AND
conditions, set the conditions so thét

that condition is always satisfied.

However, since the timing signal
contributes to establishment of
conditions E) and 1), to remove
from the AND conditions, set 1 at
RELEASE~FROM~AND-~.

D) PROG ADDR UPPER: Predefined value ?
Specifies the upper limit of the
program address break/trace

conditions range.

PRO ADDR LOWER: Predefined value ?

Specifies the lower limit of the
program address break/trace conditions

range.

MATCH(1l)/UNMATCH(O): Predefined value

?
When MATCH is specified, the above
program address range becomes the

break/trace condition.

When UNMATCH is specified, outside the
above program address range becomes the

break/trace condition.

. E) RELEASE DATAMEMORY FROM AND YES(1)/
NO(O): Predefined value ?

When releasing item E) related to data
memory from the AND condition of D) to
K) (when 1 selected at (C), 1 is input.
When the OR condition of D) to K) is
selected (when O is selected at (C)),
the contents of this setting are

ignored and can be either 1 or O.

The data memory condition becomes the
AND of the three conditions DATA ADDR,
CURRENT DATA, and PREVIQOUS DATA (may

not exist, depending on the unit).

DATA ADDR: Predefined value 7

Sets the break trace/trace condition
using the data memory address in which

data is written.

DATA ADDR MASK: Predefined value ?

Sets the mask data for the break/trace
condition data memory address. The
mask data is hexadecimal data with 1
set in the bit of the data memory
address to be made the break/trace
condition and 0 set in bits which may

be either 1 or O.

Since this item does not exist at unit
2, the data memory address break/trace

condition cannot be masked.

MATCH(1)/UNMATCH(Q): Predefined value

?

When MATCH is specified, the DATA ADDR
value above becomes the break/trace

conditions.
When UNMATCH is specified, a value
other than the DATA ADDR value above

becomes the break/trace condition.

CURRENT DATA: Predefined value ?

Sets the break/trace condition by

written data memory value.

CURRENT MASK: Predefined value ?

Sets the mask data for the value of the

break/trace condition data memory.

Since this item does not exist at unit
2, the data memory break/trace

condition cannot be masked.

MATCH(1)/UNMATCH(Q): Predefined value

?

When MATCH is specified, the CURRENT
DATA value above becomes the break/

trace condition.

When UNMATCH is specified, a value
other than the CURRENT DATA value above

becomes the break/trace condition.

PREVIQUS DATA DISABLE YES(1)/NO(0Q):

Predefined value ?

Since the DATA ADDR, CURRENT DATA, and
PREVIOUS DATA break/trace conditions

are AND conditions.
When you want to remove the PREVIOUS
DATA break/trace condition from the

item of E), input 1.

PREVIOQUS DATA: Predefined value ?

Sets the break/trace condition by value
of data memory to which data is

previously written.

MATCH(1)/UNMATCH(O): Predefined value

?

When MATCH is specified, the PREVIOUS
DATA value above becomes the break/

trace condition.
When UNMATCH is specified, a value
other than the PREVIOUS DATA value

becomes the break/trace condition.

F) SP LEVEL UPPER: Predefined value ?

Specifies the upper limit of the stack

pointer break/trace condition range.

SP LEVEL LOWER: Predefined value ?

Specifies the lower limit of the stack

pointer break/trace condition range.

5-68

MATCH(1)/UNMATCH(Q): Predefined value

?

When MATCH is specified, within the
stack pointer range above becomes the

break/trace condition.
When UNMATCH is specified, outside the
stack pointer above becomes the break/

trace condition.

G) INST CODE: Predefined value ?

Sets the break/trace condition by

instruction code to be executed.

The instruction code description is
1-4-3-4-4 bit format.

INST MASK: Predefined vaLue ?

Sets the break/trace condition by

instruction code to be executed.

MATCH(1)/UNMATCH(QO): Predefined wvalue

?

When match is specified, the above
instruction code becomes the break/

trace condition.

When UNMATCH is specified, codes other
than the above instruction code become

the break/trace condition.

H)

PORT DATA: Predefined wvalue ?

Sets the break/trace condition by input
value from the logic analyzer probe

connected to connector A.

The unit and logic analyzer probe pin

correspondence is

Unit logic analyzer

probe pin

STO
ST1
ST2
ST3

W N B O

PORT MASK: Predefined value ?

Sets the mask data for the break/trace

condition port data.

EDGE(1)/LEVEL(0O): Predefined value ?

When O is set at the port data, when
EDGE is gpecified, the falling edge is
made the break/trace condition and
when LEVEL is specified, pin low level

becomes the break/trace condition.

When 1 is set at the port data, when
EDGE is specified, the rising edge
becomes the break/trace condition and
when LEVEL is specified, pin high level

becomes the break/trace condition.

MATCH(1)/UNMATCH(O): Predefined value

?

When MATCH is spécified, the state of
the port data above becomes the break/

trace condition.
When UNMATCH is specified, other than
the port data state above becomes the

break/trace condition.

XREQ DATA: Predefined value ?

Sets the break/trace condition by input
value from the XREQ pin of the logic
analyzer probe connected to connector
A,

The logic analyzer probe XREQ pin is a
dedicated external break/trace signal

input pin.

XREQ MASK: Predefined wvalue ?

Sets the mask data for the break/trace
condition XREQ data.

EDGE(1)/LEVEL(0Q): Predefined value ?

When 0 is set at the XREQ data, when
EDGE is specified, the falling edge
is made the break/trace condition and
when LEVEL is specified, pin low level
becomes the break/trace condition and
when LEVEL is specified, pin low level

becomes the break/trace condition.

When 1 is set at the XREQ data, EDGE is
specified, the rising edge becomes thei
break/trace condition and when LEVEL is
specified, pin high level becomes the

break/trace condition.

MATCH(1)/UNMATCH(QO): Predefined value

?

When MATCH is specified, the state of
the XREQ data above becomes the break/

trace condition.

When UNMATCH is specified, other than
the state of the XREQ data above

becomes the break/trace condition.

Setting at this item becomes the OR
condition of the break/trace condition
by port data setting and break/trace
condition by XREQ setting.

I) Currently, this item is not supported.

Therefore, always mask the break/trace

condition of this item as follows:

[) RELEASE MAR FROM AND YES(1) / NOCO) : 0 ? 1
MAR DATA 0?0
MAR MASK 07?1

MATCH(1) / UNMATCH(0): 0 2 0

J) INTERRUPT ACKNOWLEDGE: Predefined

value ?

Sets the break/trace condition by

interrupt generation.

When 1 is set at this item, the
breék/trace condition is established
when an interrupt is generated during

program execution.
The address that starts break and trace
by interrupt generation is the

corresponding vector address.

INTERRUPT MASK: Predefined value ?

Sets the mask data for the predefined
value related to break/trace condition

interrupt.

MATCH(1)/UNMATCH(QO): Predefined value
2

When MATCH is specified, the set value
for the interrupt set above becomes the

break/trace condition.

When UNMATCH is specified, other than
the set value for the interrupt set
above becomes the break/trace condition

value.

K)

DMA: Predefined value ?

Sets the break/trace condition by DMA
(Direct Memory Access) generation.

When "DMA generated" is made the
break/trace condition, 1 is set and
when "DMA not generated" is made the

break/trace condition, 0O is set.

Note that when DMA is generated, break

is not generated.

DMA MASK: Predefined wvalue ?

Sets the mask data for the break/trace

condition DMA set value.

MATCH(1)/UNMATCH(O): Predefined value

?

When MATCH is specified, the set value
for DMA above becomes the break/trace

condition.

When UNMATCH is specified, other than
the set value for DMA above becomes the

break/trace value.

L) COUNTER SOURCE SELECT
NO(O)/INST(1)/CONDITION(2)/INST AFTER
CONDITION(3): 0 72

Sets the break/trace condition by

counter overflow.

The counter is initialized to O and
becomes an up counter that is

incremented by one.

. NO((O) ... Do not use counter.

. INST(1) ... Count number of
instruction execu-
tions uncondi-
tionally.

. CONDITION(2) ... Count number of
executions of
instructions that
satisfy break/trace
condition as unit
set at C) to K).

. INST AFTER CONDITION(3)

... Count number of
executions of
executed instruc-
tions after
conditions of items
C) to K) satisfied.

TERMINAL COUNTER: Predefined wvalue ?

Sets the counter final value.

COUNTER MASK: Predefined value ?

Sets the mask data value for the set
value of the break/trace condition

counter.

MATCH(1)/UNMATCH(Q): Predefined value
?

When MATCH is specified, the counter
value above becomes the break/trace

condition.

When UNMATCH is specified, a value
other than the counter value above

becomes the break/trace condition.

(Output example for each unit)

<Unit 0>
BRK>.CC$$
A) LEVELC1 , 2) : 2 1
B) UNIT (0 -3): 1?20
CATG(C-L) :?C
C) CONDITION ANDC1) / OR(O) : 0 ?

D) PROG ADOR UPER . FFFF ?
PROG ADDR LOWER : 0000 ? } Program Memory
MATCH(1) / UNMATCH(O) : 0 ?
E) RELEASE DATAMEMORY FROM AND YES(1) / NG(O) : ?
- DATA ADDR : 000 ?
DATA ADDR MASK : 000
MATCH(1)/UNMATCH(O)-1 :
CURRENT DATA
CURRENT ~ MASK
MATCH(1) / UNMATCH(O) :
F) SP LEVEL UPER
SP LEVEL LOWER :
MATCH(1) / UNMATCH(O) :
H) PORT DATA
PORT MASK
EDGE(1) / LEVEL(0) :
MATCH(1) / UNMATCH(O) :
XREQ DATA
XREQ MASK
EDGE(1) / LAVEL(0) :
MATCH(1) / UNMATCH(O) :
J) INTERRUPT ACKNOWLEDGE :

Data Memory

Stack Pointer

Logic Analyzer Probe STO Pin

Logic Analyzer Probe XREQ Pin

INTERRUPT MASK : Interrupt
MATCH(1) / UNMATCH(O) : -

K) DMA : n
OMA MASK DNA

-

[ew N en I ew I e I en 3¥ e Y v B @ e B o I o I e JY oo I e I e B oo I o 3 oo I oo I o M oo)
N N 4N 2D D D 4D 4ND D D D D D WD 0D 0D D oD 4D oD oD D

MATCH(1) / UNMATCH(O) :
L) COUNTER SOURCE SELECT

NO(0) / INST(1) / CONDITION(2) / INST AFTER CONDITION(3) : 0 ? A

TERMINAL CONTER 1 0000 ? Counter

COUNTER -MASK : 0000 ?

MATCH(1) / UNMATCH(0) : 0 ?

<Unit 1>

BRK>,CC3$

A)
B)

C)
D

E)

H)

L)

LEVEL(1 , 2) : 2

UNIT (0 - 3) : ? 1_
CATG(C - L) :2C
CONDITION AND(1) /
PROG ADOR UPER : FFFF ?
PROG ADOR LOWER : 0000 2
MATCH(1) / UNMATCH(O) : 0 ?
RELEASE DATAMEMORY FROM AND
DATA ADOR © 000 2
DATA ADDR MASK © 000
MATCH(1) / UNMATCH(0) : 0
CURRENT DATA L 0
CURRENT ~ MASK L 0
MATCH(1) / UNMATCH(O) : O

-

OR(O) 1 07?

] Program Memory

YESCL) / NO(0) : 2

PREVIOUS DATA DISABLE YES()/ NOCO) :

PREVIOUS DATA : 0
MATCH(1) / UNMATCH(O) : 0
PORT DATA : 0
PORT MASK 10
EDGEC1) / LEVEL(Q) ¢ 0
MATCH(1) / UNMATCH(O) : 0
RELEASE MAR FROM AND YES(I
MAR DATA : 0
MAR MASK : 0
MATCH(1) / UNMATCH(Q) : 0
COUNTER SOURCE SELECT

‘)
f)
l)
9
1
()
t)
l)
9
()
()
)
9
9
l)

NO(0) / INST(1) / CONDITION(2) / INST AFTER CONDITION(3) : 0 ?

} Counter

TERMINAL CONTER 007
COUNTER MASK 007
NATCH(1) / UNMATCH(O) : 0 ?

¥ Not currently supported.

[

Data Memory

-

J Logic Analyzer Probe ST1 Pin

/ NOC0) : 0 ?

X
} MR

<Unit 2>

BRK>,CC3$$
A) LEVEL(1 , 2) 1 7 1
B) UNIT (0 -3) : 22
CATG(C-L):?2C
C) CONDITION AND(1) /
D) PROG ADDR UPER : FFFF ?
PROG ADDR LOWER : 0000 ?
MATCH(1) / UNMATCH(O) : 0 ?
E) RELEASE DATAMEMORY FROM AND
DATA ADOR : 000
MATCH(1) / UNMATCH(O) :
CURRENT DATA
MATCH(1) / UNMATCH(O) :
H) PORT DATA :
PORT MASK
EDGE(1) / LEVEL(0) :
MATCH(1) / UNMATCH(O) :
L) COUNTER SOURCE SELECT

OO OOOOOoO
D D N D oD D D D

TERMINAL CONTER : 00°?
COUNTER MASK 1007

0R(0) : 0 ?

9

] Program Memory

YES(1) / NO(0) : 0 ?

Data Memory

} Logic Analyzer Probe ST2 Pin

NOCO) / INST(1) / CONDITION(2) / INST AFTER CONDITION(3) : 0 ?
N } Counter

MATCH(1) / UNMATCH(O0) : € ?

<Unit 3>

BRK>.CC3$3
A) LEVEL(1 , 2) ¢ 2 1
B) UNIT (0 -3) :?3
CATG(C-L) :?2C
C) CONDITION AND(1) /
D) PROG ADDR-UPER : FFFF
PROG ADDR LOWER : 0000
NATCH(1) / UNMATCH(O) : O
G) INST CODE : 00000
INST MASK : 00000
MATCH(1) / UNMATCH(O) : 0
H) PORT DATA : 0
PORT MASK 10
EDGE(1) / LEVEL(0) : 0
MATCH(1) / UNMATCH(Q) : O

6D D 2ND D D D 0D D D oD

ORC(D) : O

?

Program Memory

Instruction Code

Logic Analyzer Probe ST3 Pin

<Break condition setting items (for
level 2)>

Level 2 is used when setting each unit
(units 0 to 3) set at level 1 as a

break condition.

Setting is divided into four layers
based on the DEPTH concept.

The OR condition of four units can be
set in one DEPTH. The units specified
1 becomes the target unit.

of the OR condition. Units specified O

are invalid.

When the OR condition in DEPTH is
satisfied, the program waits for the
next DEPTH condition and when the
DEPTH-0 condition is satisfied, break

is generated.

The condition order is DEPTH3 to DEPTHO.
DEPTH that starts at INITIAL DEPTH

setting can be specified.

(Example) BRK>.CC3$$

A) LEVEL(1 , 2) @ ?2

B) LEVEL2 © 0123
DEPTH-3 + 0101 0000
DEPTH-2 : 101 ? 1111
DEPTH-1 : 1101 ? 1010
DEPTH-0 : 1101 ? 0001

INITIAL DEPTH ¢ 0 ? 1

5-80

Set so that a break is generated if
the unit 3 condition set at level 1
is established after the unit 0 or
unit 2 condition set at level 1 is
established.

5-81

Table 5-1 Break/Trace Conditions Table
Item UNITO UNIT1 UNIT2 UNITR
C) CONDITION AND(1)/OR(0) o) o o] o)
D) PROG ADDR UPER
PROG ADDR LOWER o] o o) o)
MATCH(1)/UNMATCH(O)
E) RELEASE DATA MEMORY FROM AND o] o) o) X
YES(1)/NO(O) DATA ADDR
DATA ADDR MASK o) o) X X
MATCH(1) /UNMATCH(O) o) o o X
CURRENT DATA
CURRENT MASK o] o] X X
MATCH (1) /UNMATCH(O) o o) o) X
PREVIOUS DATA DISABLE YES{(1)/NO(O)
PREVIOUS DATA X o) X X
MATCH(1) UNMATCH(O)
F) SP LEVEL UPER
SP LEVEL LOWER o X X X
MATCH (1) /UNMATCH(Q)
G) INST CODE
INST MASK X X X o)
MATCH (1) /UNMATCH(O)
H) PORT DATA
PORT MASK e} e} e} fo!
EDGE(1)/LEVEL(O) (STO) (ST1) (ST2) (ST3)
MATCH(1)/UNMATCH(O)
XREQ DATA
XREQ MASK o) X X X
EDGE(1)/LEVEL(O)
MATCH(1)/UNMATCH(O)
I) RELEASE MAR FROM AND YES(1)/NO(0)
MAR DATA ' X o* X X
MAR MASK
MATCH (1) /UNMATCH(0Q)

(to be continued)

(cont'd)

Item

UNITO

UNITL

UNIT2

UNIT3

J)

INTERRUPT ACKNOWLEDGE
INTERRUPT MASK
MATCH(1) /UNMATCH(O)

K)

DMA
DMA MASK
MATCH(1)/UNMATCH(O)

COUNTER SOURCE SELECT

NO(0)/INST(1)/CONDITION(2)/
INST AFTER CONDITION(3)

TERMINAL COUNTER

COUNTER MASK

MATCH (1) /UNMATCH (0)

o ... Settable
X ... Not settable

*: Not currently supported

.CT Change Trace Condition

Format : .CT

[Function] Changes the trace on/off condition.

[Explanation]
Sets each unit set at .CC level 1 as the trace
condition. Trace on/off condition setting is

shown below.

BRK>.CT$$
TRACE CONDITICON MODE
D : TRACE DON'T CARE -==-D
T : TRACE ON ----@
U ¢ TRACE OFF @
S : TRACE ONE SHOT @
LEVEL 1 UNIT © 0123
: DDhD ?
S

Predefined Value

(D Trace is not affected even if the unit

trace condition is established.

() Wwhen the unit trace condition is

satisfied, trace starts.

() When the unit trace condition is

satisfied, trace ends.

(@ only the place where the unit trace
condition is established is traced.

(Trace one-shot)

[Note]

(Example) BRK>.CT$$

TRACE CONDITION MODE
D : TRACE DON'T CARE
T : TRACE ON
U : TRACE OFF
S : TRACE ONE SHOT
LEVEL 1 UNIT : 0123

- DDDD ? TUSS

When the unit O condition is established, trace

starts.

When the unit 1 condition is established, trace

ends.

When the unit 2 or 3 condition is established,

trace starts.

When the trace condition is satisfied by
multiple units at the same point, the trace

condition priority is

TRACE ON>TRACE ONE SHOT>TRACE OFF

There are two kinds of trace, address trace and
status trace.
Address trace is performed without regard to

this command.

For execution after .R input and when execution

is started by .BG, trace is turned on.
For execution after .R input and when execution

is started by .BG, the contents set by .CT are
not affected.

5-85

After TRACE ON and TRACE OFF, that state is
held even if set to TRACE DON'T CARE.

TRACE ONE SHOT is effective only in the trace
off state.

When TRACE ONE SHOT is specified in the trace
off state, only an address which satisfies the

condition is traced.

After TRACE ONE SHOT is specified, even if
TRACE DON'T CARE is specified, TRACE ONE SHOT
specification is not held, but the program
enters the trace off state before TRACE ONE
SHOT is specified.

When TRACE OFF is gpecified, trace is not
executed after trace off, but the execution
address that decides the start of trace off is
traced. In this case, the same operation as

TRACE ONE SHOT specification is performed.

5-86

(Example 1) When trace off continues after

trace off starts at address 5H.

Program Execution Trace Address
Address
0 0
1 1
2 2
3 3
4 4
5 5 o
6
7
8 Trace Off State
1
2
3
4
5 5] <+1— Traced
6
7

(Example 2) When TRACE DON'T CARE is specifies
at address 5H after trace off

starts at address 5H.

Program Execution Trace Address
Address :
0 0
1 1
2 2
3 3
4 4
5 5 B
5 Trace Off State
7

Specified TRACE DON'T CARE at unit address SH.

l— Not Traced

CEEE I @ U Y &2 BV SR JX N

Table 5-2

Trace State Transition

Current
Trace
tate Trace On Trace Off Trace One Shot
Condition
Trace on Trace conditions Trace starts Trace starts
Trace off Trace ends Trace off continues|Trace one shot ends
Trace one Trace continues Trace one shot Trace one shot

shot

(one short invalid)

starts

continues (newest
condition valid)

.DC Dump Break Condition

Format : .DC

[Function] Dumps the break/trace conditions.

(Example) Dump the units 0 to 3 break/trace

condition.
BRK>.DC$$
UNIT (0 -3) 7?80
CONDITION : OR

PROG ADDR @ FFFF - 0000 UNMATCH
DATA ADDR : 000 <000> UNMATCH
CRNT ¢ 0 < 0 > UNYATCH
SP LEVEL : F - O UNMATCH
PORT DATA : 0 <0> LEVEL UNMATCH XREQ : 0 <1> LEVEL UNMATCH
INTERRUPT * 0 <0> UNMATCH

OMA : 0 <0> UNMATCH

COUNT SEL : NO 0000 <0000> UNMATCH
TRACE SEL : TRACE ON

BRK>.D0C$$

UNIT (0 -3) 2?1

CONDITION : OR

PROG ADDR @ FFFF - 0000 UNMATCH

DATA ADDR *© 000 <000> UNMATCH
CRNT :© 0 < 0 > UNMATCH
PRYS © 0 UNMATCH

PORT DATA : O <0> LEVEL UNMATCH

MAR DATA @ O <0> UNMATCH

COUNT SEL : NO 00 < 00> UNMATCH
TRACE SEL : TRACE OFF
BRK>.DC$$

UNIT (0 -3) 7?2

CONDITION @ OR

PROG ADDR : FFFF - 0000 UNMATCH

DATA ADDR @ 000 <000> UNMATCH
CRNT © 0 < 0 > UNMATCH

PORT DATA @ 0 <0> LEVEL UNMATCH

COUNT SEL : NO 00 < 00> UNMATCH
TRACE SEL : TRACE DON'T CARE

BRK>.DC$$

UNIT (0 -3) 7?3

CONDITION : OR

PROG ADDR : FFFF - 0000 UNMATCH
INST CODE : 0000 <0000> UNMATCH
PORT DATA : 0 <G> LEVEL UNMATCH
TRACE SEL : TRACE DON’T CARE

5-89

[Note] < >: Mask data

5-90

.DT Dump Trace Table

Format :[¢, 8].DT

a

B

.
.

Dump start trace number (o <8 ;

Dump end trace number a >B : Error)

[Function]

Dumps the trace contenfs from specified trace
number ¢ to 8. When both ¢ and 8 are omitted,
the contents of the end of the trace table are
displayed. System reset initializes the trace

table and clears the trace counter to O.

For trace within 32K (32768 decimal) steps,
the trace counter shows the end of the trace
table.

For trace exceeding 32K steps, the trace
contents of the newest 32K steps are stored
to the trace table and the trace counter
becomes 7FFFH (32767).

There are two kinds of trace, address trace

and status trace.
Address trace traces the newest program
execution contents without regard to the trace

conditions.

Status trace traces the range specified by the

trace conditions.

5-91

Status trace includes much more information

than address trace.

(Example 1) Dump the address trace results of

trace numbers 0 to 10.

BRK>0, "D10. DT$$
ADDRESS(1) / STATUS (0) TRACE? | o

TR_NO ADDR HNEMONIC INST
0000 0000 0000 Mov 00 ,#A 1DOOA
0001 0001 0001 MOV Ol ,#B 1DOIB
0002 0002 0002 MOV 02 ,4C 1D02C
0003 0003 0003 MOV 03 ,#D 1DO3D
0004 0004 0004 MOV 04 ,#E 1DO4E
0005 0005 0005 MOV Q5 ,#F 1DOSF
0006 0006 0006 MOV 06 ,% 1D060
0007 0007 0007 MOV 07 ,#1 1DO71
0008 0008 0008 MOV 08 ,#2 1DO82
0009 0003 0009 MOV 09 ,#3 1DO93
0010 000A 000A NOP 074F0
@ @3 €y, %)

(Example 2) Dump the status trace results
from 0 to 10H.

BRK>0, 10. DT$$
ADDRESS(1) / STATUS (0) TRACE? 0 o

TR_NO ADDR INSTRUCTION PORT VA DB JG TIME
0000 0000 0000 MOV 00 ,#A 1D0OA [IIIL1L11l 000 A 0O 0000001
0001 0001 000f MOV 01 ,#B 1DOIB II111111 00L B 0 0000002
0002 0002 0002 MOV 02 ,#C 1D02C 11111111 002 C 0 0000003
0003 0003 0003 MOV 03 ,#D 1DO3D 11111111 003 D 0O 0000004
0004 0004 0004 MOV 04 ,#E 1IDO4E 111t1111 004 E 0 0000005
0005 0005 0005 MOV 05 ,#F IDOSF 11111111 005 F 0O 0000006
0006 0006 0006 MOV 06 ,#0 1D060 11111111 006 O O 0000007
0007 0007 0007 MOV 07 ,#l 1DOTL I1I1Ll1111 007 1 O 0000008
0008 0008 0008 MOV 08 ,®#2 1DO82 II1L1111 008 2 0O 0000009
0009 0009 0009 HOV 09 ,#3 1[DO93 11111111 009 3 0 0000010
0010 000A 000A NOP 074FQ 11111111 04F 0 0 0000011
0011 000B 000B NOP 074F0 11111111 O4F 0 0 0000012
0012 000C 000C NOP 074F0 11111111 O4F 0 0 0000013
0013 000D 000D NOP 074F0 11111111 04F 0 0 0000014
0014 000E QOOE NOP 074F0 L1111111 O4F 0 0 0000015
0015 O000F 0OOF BR QO0OF QOCQOF 1111111l 000 F 0O 0000016

0016 0010 OQOOF BR 000F OCOOF 11il11il 000 F O 0000017
(H @ @& (4) (6) (M @9 10
(1) Trace number decimal display
(2) Trace number hexadecimal display
(3) Program address (program counter value)
(4) Instruction mnemonic display

(5) Instruction code (1-4-3-4-4 bit format)

(6)

(8)

(9)

(10)

State of each pin of logic analyzer probe

Corresponds to pin STO, ST1, ,
ST7, from right to left.

Data memory write address

Effective when data is written to data

memory¥*.,

Data bus

Shows the value written when data is

written to data memory¥*.

"*"(asterisk) 1is displayed for
instructions that are skipped at skip

instruction execution.

Time stamp

Set to 1 by .RN command and counted up by
one each time an instruction is executed
(However, when a MOVT instruction is

executed, it is counted up by 2).

*: This is valid only when written
in the data memory. The
contents displayed when writing
to the register file (PEEK
instruction), or when writing to
the peripheral register (PUT
instruction) are contents on the
the IE-17K bus and so the

displayed contents are invalid.

.SCO0 .SCl Save Break/Trace Condition

Format : .SCO
.SC1

RS-232-C channel 0 : SCO
channel 1 : SC1

[Function] Outputs the break/trace conditions set at .CC
level 1 to the RS-232-C channel specified by

.8CO or .SCl in Intel hexadecimal format.

(Example) Output break/trace conditions to

channel O.

BRK>. SCO$$
*10414300080BOBOBOOFF020202000000000001003A

-1041530000010100000000FFFF0000100000FF0746
+104163000BO0CF0400000F00040000FFFFO0OC0011C
- 104173000001000F0000010100010100000000FF23
- 10418300FF000010000000FFFF0000100000FF0709
-104133000B000F0400040F00000000FFFFO00001EC
+1041A3000001000F0400010000010000000000FFF7
-1041B300FFO00008000000FFFFO000100000FFO7EL
:1041C3000B000F0400000F00000000FFFF000001C0
+1041D3000001000F0000010000010000000000FFCB
- 104 1E300FF000008000000FFFFO000100000FFO7B1
- 1041F30000000F0000000F00000000FFFF1000018F
:104203000001000F0000010000010000000000FF3A
-07421300FF000000000000A5

:0000Q001FF

5-95

.LCO .LCl Load Break/Trace Condition
Format .LCO
.LC1
RS-232-C channel 0 : LCO

channel 1 : LC1

[Function] Stores the data sent to IE-17K in the area in

which the IE-17K internal break/trace

conditions are stored.

(Example) Input the break/trace conditions

from channel O.

BRK> . LCOSS

.VCO

.VC1 Verify Break/Trace Condition

Format

.VCO
.VC1

RS-232-C channel Q0 : VCO
channel 1 : VC1

[Function] Verifies the IE-17K internal break/trace

conditions and the data sent to IE-17K.

If the conditions and data are the same, the

message

Verify OK

and if the conditions and data are not the

same, the message

Verify NG

is output.

(Example) Verify the break/trace condition

input from channel O.

BRK>.VC0SS
Verify OK

5-97

5.8.6 COVERAGE DISPLAY COMMAND

(1) Coverage Memory Dump

.DM (Dump Coverage Memory)

.DM Dump Coverage Memory

Format : [¢o, B].DM

@ : Start address (o B

~e

B : End address ¢ >B : Error)

[Function] Dumps the contents of the coverage memory.

There are two coverage objectives, PC (Program

Counter) and DATA.

. PC coverage records the number of
executions for the executed address by O
to FFH. For values over FFH, FFH is
displayed.

. DATA coverage displays the data memory
write state (bit units). The display is
defined below.

<Definition of display»>

— e e Bit not written even once

[Bit written 0 and 1
0 «vn.. Bit written O only
1 Bit written 1 only

. When PC coverage is selected, when & and B
are omitted, program memory addresses 0 to

7FH are displayed.

[Note]

When DATA coverage 1s selected,

0 to 3FH are displayed.

(Example 2)

Depending on

and g are omitted, data memory addresses

outside the coverage objective.

(Example 1) Display the contents of PC

coverage.

BRK>. DHSS
PC (1) / DATA (0) COVERAGE : ? 1«

ADDR 0 1 2 3456789 ABCDETF
0000 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FP
0010 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0020 FF FF FF FF FF FF FF FF FF FF FF FF IF FF FF FF
0030 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0040 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0050 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0060 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0070 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

coverage.

BRK>. DHSS
PC (1) / DATA (0) COVERAGE : ? Qud

ADDR 0/8 1/9 2/A 3/B 4C S5/ &E TUF
0000 === =mm cmem mmes mmen o emes oo oo
0008 -=-- smee mmee mme o mmee meeseon oo
0010 === =mm mmem mmen s emn e oo
0018 —--- ~me mmen mme mee een e oo
0020 —=m- meee mmem mee o mem meee cees oo
0028 ---- —ee- meem mees mees mees cmes eee
0030 ---- eee cmen mee e men emen oo
0038 ~--- cow mmem mees mem een meee oo

an error may be generated.

5-100

when «

Register files are

Display the contents of DATA

the device, when ¢ and B are omitted,

5.8.7 PROGRAM PATTERN GENERATOR (PPG) CONTROL COMMANDS

(1)

(2)

(3)

(4)

(5)

(6)

(7)

PPG
.IG

PPG
.CG

PPG
.DG

PPG
.EG

PPG
.SG

PPG
LG

PPG
.VG

data initialize
(Initialize PPG Date)

data change
(Change PPG Data)

data dump
(Dump PPG Data)

execute/stop/operate mode setting
(Execute PPG)

data save
(Save PPG Data)

data load
(Load PPG Data)

data verify
(Verify PPG Data)

5-101

.IG Initialize PPG Data

Format

[a, B, v].IG

Start address (0 to 1FFF)(a B ;
B : End address (0 to 1FFF) a > B : Error)

Yy : Data (0 to FFFF)

[Function] Initializes the PPG of addresses « to B to y.

[Note]

When all the PPG data (0 to 1FFF) is cleared
to 0, o, B and y can be omitted.

(Example 1) Clear all the PPG data to O.

BRK>.IGSS

(Example 2) Initialize the contents of PPG
data addresses 0 to FFH to 5555.

BRK>0,FF,5555.1G $$

.IG input is not accepted while PPG is executing.

5-102

.CG Change PPG Data

Format : [].CG

@ : PPG data to be changed (0 to 1FFF)

[Function] Changes the PPG data of address o. When ¢ is
0, o can be omitted.

(Example 1) Change the PPG data from address
0.

BRK>. CGSS
0000:0000000000000000 - LILILITLILILILLIL
0001:0000000000000000 - §

(Example 2) Change the PPG data from address
100.

BRK>100. CGS$
0100:1001101110110011 - L10OLILILLIILLLL] o
0101:1001101110110000 -

n
L—> Input Wait Cursor
Current Data
Address

[Note] . o only input does not change the current data,

but only shifts to the next address.

$ input ends change.

5-103

The change data which is input is 16 characters

and ~ .

The DEL key deletes the character input last.
When there is no character to be deleted, this

operation is not performed.

The PPG data items are meaningful.

16 bits >
ceeeee... O

L—— PPG probe

PDO pin :] PPG probe

O ¢+
(@)
&)

output data
PPG probe
PD13 pin

L— PPG output stop control bit (stop when 1)

L PPG output return control bit
(return to data address 0 when 1)

When setting the PPG stop address, set the stop

control bit to 1 for two consecutive steps.

When .CG is performed while PPG is executing,
PPG stops.

The PPG data set at address OH is output for a
time of double the set step rate.

After PPG execution starts, provide an interval

of at least 3us up tc the next stop before

setting the stop control bit.

5-104

.DG Dump PPG Data

Format : [a], B.DG

@ : Start address (0 to 1FFF)(q

8 : End address (0 to 1FFF) «a Error)

A A
w W

[Function] Display the PPT data of addressed o to B.

(Example) Dump the PPG data of addressed 0O to
10H.

BRK>0,10.DG$$

0000 : 0000000000000000
0001 : 0000000000000000
0002 : 0000000000000000
0003 : 0000000000000000
0004 : 0000000000000000
0005 : 0000000000000000
0006 : 0000000000000000
0007 : 0000000000000000
0008 : 0000000000000000
0003 : 0000000000000000
000A : 00000000600000000
0008 : 0000000000000000
000C : 0000000000000000
000D : 0000000000000000
000E : 0000000000000000
000F : 0000000000000000
0010 : 0000000000000000

[Notej When .IG is performed while PPG is executing,

PPG stops.

5-105

.EG Execute PPG

Format : .EG

[Function] () Starts PPG.
(2 stops PPG.

() Sets the valid bits and the step rate as
the PPG operation mode.

<Operation mode setting method>

When desiring to fix the output of PPG
probe pins PDO to PD13 at O (Low Level),
set the SELECT BIT to 0. For output
according to the data, set the SELECT
BIT to 1.

The SELECT BIT setting and PPG probe pin
correspondence is shown below.

SELECT BIT : 001----- 1

STEP RATE sets the output time per PPG data
step. It can be set from approximately 1
us to 13333 (decimal) per step. When O is
selected, the step rate becomes 13333 us.

5-106

[Note]

(Example) Fix the output of PPG pins 13 and 1
to 0 and set the execution speed
per step to 10 ms.

BRK>. EGSS$
PPG RUN (1) / RESET (2) / SELECT (3) : 73
SELECT BIT : 0001111111111101+

STEP RATE : 100004

The PPG data set at address OH is output at a

time of double the set step rate.

When RESET is performed during RUN, PPG stops
and the valid bits set by SELECT BIT are fixed
at high level.

When RUN is performed again during RUN, RUN is

continued.

When SELECT is specified during RUN, the PPG

stops.

When the PPG is stopped by stop control bit,
the valid PPG data of the stopped address is
output.

The exact expression for computing the

execution speed per step is shown below.

. 1
(Execution - xINT (4.9152X (STEP RATE)}*
speed) 4.9152x 108
% INT [] represents the maximum integer value that

does not exceed [1].

5-107

.8GO0 .SGl Save PPG Data

Format : .SGO
.SG1

RS-232-C channel O : SGO
channel 1 : SG1

[Function] Outputs the PPG data in Intel hexadecimal
format at the RS-232-C channel specified by
.SGO or .SGl.

(Example) Output the PPG data at channel 1.

BRK>.SG1$$

:000000000000000000000000000000000000000F0
:100010000000000000000000000000000000000E0
:100020000000000000000000000000000000000D0
:100030000000000000000000000000000000000C0O
:10004000000000000000000000000000000000080
:100050000000000000000000000000000000000A0

)

5-108

.LGO .LG1 Load PPG Data

Format : . LGO
.LG1

RS-232-C channel 0 : LGO
channel 1 : LG1

[Function] Inputs the PPG data from the RS-232-C channel
specified by .LGO or .LGl.

(Example) Input the PPG data from channel O.

BRK> . LG0SS

5-109

.VGO .VGl Verify PPG Data

Format .VGO]

. VGl

RS-232~C channel 0 : VGO
channel 1 : VGl

[Function] Verifies the PPG data and the Intel
hexadecimal format data sent from the
RS-232-C channel specified by .VGO or .VGl.
If the data are the same, the message

Verify OK

is output and if the data are not the same,

the message

Verify NG

is output.

(Example) Verify the PPG data input from

channel O.

BRK> .VG0SS
Verify OK

5-110

5.8.8 HELP COMMAND

(1) Display of all commands
.H (Help)

5-111

.H Help

Format : .H

[Function] Display the commands table.

(Example) Display the commands table.

BRK>. H$$
AP .CP .DP .FP .SPO .SP1 .LPO .LPl .VPO .VPI .XSO XSI
<< PROGRAN MEMORY COMMAND >>
.10 .CD .DD .D
<< DATA MEMORY COMMAND »>>
.R .RN .BG .BK .CA .S
<< EMULATION COMMAND >>
.CC .CT .DC .DT .DM .SCO .SCl .LCO .LC1 .VCO .VCI
<< BREAK , TRACE CONDITION COMMAND >>
.1G .CG .DG .EG .SGO .SG! .LGO .LGl1 .VGO .VGl
<< PULSE GENERATER COMMAND >>

5-112

CHAPTER 6. PROGRAMMABLE PATTERN GENERATOR (PPG)

The IE-17K has a 14-bit parallel output PPG function. The output
pattern can be set up to 8192 steps. The step rate can be set
from approximately 1 us to 13333 us in approximately 1 us steps.

6.1 PPG DATA DISPLAY AND MODIFICATION

PPG data display and modification are performed by .DG and
.CG command. The .DG and .CG commands stop the PPG.

(Example 1) Display the PPG data of addresses 0 to
3.

BRK>0,3.DG
0000 : 0000000000000000

0001 : 0000000000000000
0002 : 0000000000000000
0003 : 0000000000000000

(Example 2) Modify the address O PPG data to

'0011111111111111"
BRK>. CGSS
0000:0000000000000000: - OQIIL ELLILLLNIT
0001:0000000000000000: - &
BRK>
6.2 PPG PROBE VALID BITS AND STEP RATE SETTING

Valid bits setting and step rate modification can be
performed by selecting SELECT(3) by .EG command. When .EG
SELECT(3) is selected, the PPG stops.

Of the 14 bits output pins, the output of which pins is

valid can be set for each bit.

When the PPG stopped, high level is output and when the
PPG is operating, the PPG data is output at the output

pins set at the valid bits.

6-1

Low level is output at output pins without valid bit
without regard to the PPG data.

For the step rate, the time per step can be set from
approximately 1 us to 13333 us in approximately 1 us

units.

One step is approximately 1 us, but when set step rate is

small, one step becomes smaller than 1 us.

(Example) Enable output of bits 0 to 7 and set the
step rate to 100 us/step.

BRK~. EGS$
PSG RUN (1) / RESET(2) / SELECT(3) : 2?3 o
SELECT BIT : 000000001 L1111l
STEP RATE @ 100«
BRK
6.3 PPG STARTING AND STOPPING

.EG is used to start and stop the PPG.
PPG execution can be started only when the PPG is stopped.

(Example 1) Start PPG execution.

BRK>. EGSS
PSG RUN (1) / RESET (2) / SELECT (3) : 7 1 «

BRK>

(Example 2) Stop the PPG.

BRK>- EGSS
PSG RUN (1) / RESET(2) / SELECT(3) : ? 2
BRK>

PPG USAGE PRECAUTIONS

The data set at PPG address OOQOH is output at a time of

twice the set step rate.

When using the PPG stop control bit to stop the PPG, set
the stop control bit to 1 for two consecutive steps.

(Example)

Qutput

0000:0000000000000000 Waveform
0001:001LILITTLTLIILT]
0002:0100000000000000
0003:0100000000000000 [

Address 0 |) |

Output
0000:0000000000000000 ~ Waveform
0001:00111TITELTTTLLY
0002:0000000000000000
0003:101111111LILLLL1L |

Address 0 { 2 3 0 1 l 2

6-3

.5 PPG EXAMPLES

Remote transmission IC uPD6122G output data can be
simulated by using the PPG. When the step rate is set to
563, one transmit data can be generated by using steps 106
to 138.

A uPD6122G output waveform example and part of the pattern

generator data are shown below.

(Output waveform example)

Number 16] 8 Custom Code Custom Code " Data Code Data Code
of Steps
(Numeric)
Leader Code 16~32 16~32 18
|
——— bt
Number
of Steps | L |1} 3
Data ‘0 T

6-4

PPG data (partial)

0000:
0001
0002:
0003:
0004:
0005:
0006:
0007:
0008:
0009:
000A:
0008B:
goac:
000D:
000QE:
000F:
0000:
0011
- 0012:
0013:
0014:
0015:
0018:
0017:
0018:
0018:
001A:
001B:
ool1C:

QOLILLTILIILLLLl

F00TTIILELIILLLLL]

OOILITtITLIILLILLL
(VIR RRRRRERRRREE!
ootLtrtIItLtILLL
OOIIITITIIELLLL
00ItI1IITIILLNTL
QOIIIIIITINLLELL
OOIIITTILILLTTL
OO1TITLITITELTLN
QOITILITTINLLLNE
COIII1ITIILEIINN
QOILITEITIILTILL
OOITIIILIITLLLN]
QO1T11111ELIILLL
0000000000000000
000000000000C000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0011111111111
0000000000000000
00I1111111111111
0000000000000000
0000000000000000
0000000000000000

)

Leader Code
(16-Step High Level)

Leader Code
(8-Step Low Level)

Custom Code
(Bits of '0")

(Bits of '1')

CHAPTER 7. PROGRAM EXECUTION

The following program execution methods are available.
(1) Real-time emulation

(2) 1 step emulation

7.1 REAL-TIME EMULATION

When desiring to run the program at the same speed as the
actual product, use .RN. Break at an arbitrary condition

is possible by setting the break point.
Execution can also be aborted by .BK.

(Example 1) Execute after resetting the CPU.

BRK>. R$$
BRK>. RN$S
RUN>

(Example 2) Resume after real-time emulation is

broken.

RUN>.BK$$
ADDR INSTRUCTION

0027 1E7F2 BREAK
0028 0C026 OGVERRUN
0029 O70E0 NEXT
PC SP AR WR BR MNP IX
0023 0 9993 x x xxx xxx
PS¥ :DB CP CY Z IXE MPE JG
o I 0 1 x x 0
RP 0123456783ABCDEF
xQ 8D98D99333FFADSD

BRK>.RN$S
RUN>

BREAK POINT SETTING

Execution can be broken by an arbitrary condition by
setting the break point. At the break condition, program
memory address, data memory address, data write to data
memory, logic analyzer probe input level change, etc. can

be set. (See Figure 7-1.)

The break condition can not only be used alone, but can
also be set so that execution is broken when multiple
break conditions are established simultaneously or
multiple break conditions are established continuously.

(See Figure 7-2.)

Figure 7-1 Break Condition Setting
Break Conditions (C to L)
[catcc p——r
[cATGD |———
Break Condition Set Units
[CATGE |——
| CATGF | AND/OR :
UNITO0 |——

[CATGH |——o ‘
| catéJ p———
[cat6x |——r
| CATGL |——
[catcC |—
[catcp }———
[CATGE |—— AND/OR

[uNniTL
[catcH |———

Combination of Units
[catc1l |———
| catGL |——r OR
————— DEPTHn
(n =0 to3)
[catcc |——
[CATGD |——
AND/OR

[CATGE | [uNIT2 b
[catcH |——
| catcL |—mm-
[caT6C |——
[CATGD |——— AND/OR

[uniTs f—r
[cATG G |—]
[catcH p—m—

Figure 7-2

Break by Break Condition Sequence

DEPTH 3 |—— DEPTH 2

- peptH1 }—{ DEPTH O |

7-3

7.2.1 BREAK BY PROGRAM ADDRESS

Break by program address is performed by specifying the
address by .CC command.

(Example 1) Break when the program address reaches
OOFOH.

BRK>.CC3$$
AY LEVEL(CL , 2) @ 2 |
B) UNIT (0 -3): 270
CATG (C-L):?2¢C
) 7

C) CONDITION ANDC(I CRCO) 0 : 20
D) PROG ADDR UPER : FFFF ? 00F0
PROG ADDR LOWER : 0000 ? 00FO

MATCH(1) / UNMATCH(0) 0 ? 1
E) RELEASE DATAMEMORY FROM AND YES(1) / NO(O) @ ? $

BRK>.CC$$

A) LEVEL(L , 2) @ 2 2

B) LEVEL2 D 0123
DEPTH-3 : 1101 ? 0000
DEPTH~2 : 1101 ? 0000
DEPTH-1 : 1101 ? 0000
DEPTH-0 : 1101 ? 1000

INITIAL DEPTH : 02 0 —
BRK>.R$$
BRK>.RN§S

ADDR TNSTRUCT [ON
00F0 1D0B3 BREAK

00F1 10053 OVERRUN
00F2 1D045 NEXT

PC SP AR WR BR MP IX
00F2 0 0000 x x xxx xxx
PSW :DB CP .CY Z IXE MPE JG

60 0 0 0 x x 0

RP 0123456783ABCDEF
*0 0000099990008005
BRK>

(Example 2) Break when the program address enters
the address OOFOH to OOFFH range.

BRK>.CCS$$
A) LEVELCL , 2) = 2 |
B) UNIT (0 -3):270
CATG (C - L) : ?2C
C) CONDITION AND(1) 7 OR(0) 0 : ? 0
D) PROG ADOR UPER : FFFF 2 QOFF

PROG ADDR LOWER- : 0000 ? 00FO
MATCH(1) / UNMATCH(0) 0 ? |
E) RELEASE DATAMEMORY FROM AND YES(1) / NO(O) @ ? §

BRK>.CC$$

A) LEVELTL , 2) : 2?2

B) LEVEL2 0123
DEPTH-3 : 1101 2 0000
DEPTH-2 : 1101 ? 0000
DEPTH-1 : 1101 ? 0000
DEPTH-0 . 1101 ? 1000

INITIAL DEPTH : 0 2 0
BRK>.R$$
BRK>"RN$$

ADDR [NSTRUCTION

00F0 1D063 BREAK

00F1 1D053 OVERRUN

00F2 1D045 NEXT

PC SP AR WR BR MP IX

00F2 0 0000 x x xxx xxx

PSW :DB CP CY Z IXE MPE JG
0o 0 0 0 x x 0

RP 0123456789ABCDEF

x0 0000093390008005

BRK>

(Example 3)

BRK>.CCS$
A) LEVECTI , 2) @ 2 |
B) UNIT (0 -3): 210
CATG (C - L) : 2T
C) CONDITION AND(L) 7 OR(0) O :
D) PROG ADDR UPER . FFFF ?
PROG ADDR LOWER : 0000 ?

MATCH(1) / UNMATCH(0) 0 ? 0

E) RELEASE DATAMEMORY FROM AND

BRK>, CC$3

A) LEVEL(L , 2) @ 22

B) LEVEL2 : 0723
DEPTH-3 © 1101 2 0000
DEPTH-2 : 1101 ? 0000
DEPTH-1 © 1101 2 0000
DEPTH-0 © 1101 ? 000

INITIAL DEPTH : 0 2 0

BRK>, R$$

BRK>RN3S

ADDR TNSTRUCT 1ON

00FO 10069 BREAK

00F1 10059 OVERRUN

00F2 10045 NEXT

PC SP AR R BR MP IX

00F2 0 0000 x x wxx xxx

PSW :DB CP CY Z IXE MPE JG
0 0 0 0 x x O

RP 0123456783ABCDEF

x0 0000099990008005

BRK>

Break when the program address exceeds
the address 0000OH to OOEFH range.

YES(1) / NOCO) : 23

(Example 4) Break when program address OOFOH is

executed five times.

BRK>.CC$$
A) LEVELCL , 2) @ 2 1
B) UNIT (0-3):270
CATG (C-L):?¢C
C) CONDITION AND(L) 7 OR(0) 0 : ? 0
D) PROG ADDR UPER : FFFF ? 00F0

PROG ADDR LOWER- : 0000 ? 0QFO
MATCH(1) / UNMATCH(0) 0 ? 1
E) RELEASE DATAMEMORY FROM AND YES(1) / NO(O) : ? §

BRK>, CC$$
A) LEVELTL , 2) : 2 1
B) UNIT (0 -3) : 20
CATG (C- L) : 2L
L) COUNTER SOURCE SELECT
NO(0)/INST(1)/CONDITION(2)/INST AFTER CONDITION(3) : 0 ? 2

TERMINAL COUNTER 100?25 Break when condition
COUNTER MASK : 00 ? FF above establishes 5
MATCH(1) /UNMATCH(CO) @ 0 2 T~ times
BRK>.CC$$
A) LEVEL(L , 2) : 2 2
B) LEVEL2 » 0128
DEPTH-3 ¢ 1101 ? 0000
DEPTH-2 : 1101 ? 0000
DEPTH-1 + 1101 ? 0000
DEPTH-0 : 1101 7 1000
[NITIAL DEPTH : 0 ? Q
BRK>.R$$
BRK>.RN$$

ADDR INSTRUCTION

00F0 1D069 BREAK

00F1 1D059 OVERRUN

00F2 10045 NEXT

PC SP AR WR BR MP IX

00F2 0 0000 x x Xxx Xxx

PS¥ :DB CP CY Z IXE MPE JG
0 0 0 0 x x 0

RP 0123456789ABCDEF

*0 0000099330008005

BRK>

.2.

BREAK BY DATA MEMORY MODIFICATION

Break by data memory modification can be performed by
specifying the data memory address and modification data

by .CC command.

(Example 1) Break when data memory address 1.30H is

modified.

BRK>. CC$$
A) LEVELCL , 2) @ 9
B) UNIT (0 - 8) : ?
CATG (C - L) : 9
E) RELEASE DATAMEMORY FROM AND YES(L) / NOCO) : 2 0
DATA ADDR : 000 ? lgg getbfatalTegfgg ggd:sssezg 1.30H
DATA ADDR MASK : 000 ? FF Enable a
MATCHCL)/UNMATCH(D) : 0 9 1~ booak as on sadress above
CURRENT DATA £ 0
CURRENT MASK 0
MATCH(1)/UNMATCHCO) : 0
Y
0
0

Unrelated to write data

Y/NOCO) £ 0?1
Unrelated to data before
modification

PREVIOUS DATA DISABLE YES(
PREYIOUS DATA :

?
?
?
?
S
1 07?
MATCH(1)/UNMATCH(G) @ 0 ?

|—lO —]—| OOl —

BRK>. CC$$

A) LEVELTL , 2) : ? 2

B) LEVEL2 L0123
DEPTH-3 : 1101 ?
DEPTH-2 : 1101 9
DEPTH-1 : 1101 ?
DEPTH-0 1101 2

[NITIAL DEPTH : 0 2 0

o
O
(o]
o

o
O
Q
O

[an]
[
O
(e

|

O
—
[aw]
o

|

BRK>.R$$

BRK>.RN$$

ADDR [NSTRUCT[ON

00F0 1D30S BREAK

00F1 10058 OVERRUN

00F2 10045 NEXT

PC SP AR ¥R BR MP I[X

00FZ 0 0000 0 1 GO0 000

PSW :DB CP CY Z IXE MPE JG
¢ 0 0 006 0 O

RP 0123456783ABCDEF

00 000009939390008005

BRK>

(Example 2) Break when 5H is written to data memory
address 1.30H.

BRK>.CC$$
A) LEVELCL , ?
B) UNIT (0 - 3) 21
CATG (C - L) : ?2F
E) RELEASE DATAMEMURY FROM AND YES(C1) / NO(0) : ? 0
DATA ADDR . 000 ? 130 Set data memory address to 1.30H
DATA ADDR MASK © 000 ¢ F7F Enable all bits of address
MATCH(1)/UNHATCH(O) : 0 specification
CURRENT DATA 0 Break when written value is 5H
CURRENT MASK : 0
MATCH(C1)/UNMATCH(O) : O
PREVIOUS DATA D[SABLE Y
PREYIQUS DATA 0
MATCH(I)/UNMATCH(O) 0

ES(T)/NOCO) : 0 2 1

Unrelated to data before
modification

l)
9
t)
(7
S
()
()

I—lo v—-|.—|'-n|r_n|....

BRK>.CC$$

A) LEVEL(1 , 2) © 2 2

B) LEVELZ : 0123
DEPTH-3 : 1101 ? 0000
DEPTH-2 © 1101 ? 0000
DEPTH-1 » 1101 2 0000
DEPTH-0 : 1101 ? 0100

INITIAL DEPTH 0?0

BRK>.R$$
BRK>.RNS$
ADDR INSTRUCTIGN
00F0 1D305 BREAK
OOF1 1D059 OVERRUN
00F2 1D045 NEXT
PC SP AR ¥R BR MP IX
00F2 0 0000 O 1 000 00C
PS¥ :0B CP CY Z IXE MPE JG
"0 0 0 00 0 O
RP 0123456783ABCDEF
00 0000099330008005
BRK>

(Example 3) Break when bit O of data memory address 1.3xH

is set.

BRK>.CC$$
A) LEVELCL , 2) : ?
B) UNIT (0 -3) : ?
CATG (C - L) : ?
E) RELEASE DATAMEMOR FROM AND YES(1) / NOCO) @ ? 0
DATA ADDR : 000 2 130 Set data memory address to 1.30H
DATA ADDR MASK . 000 ? Elg Column address can be anything
MATCH(I)/UNMATCH(O) 0
CURRENT DATA 0
CURRENT MASK ¢ 0
MATCH(1)/UNMATCH(Q) : @ 2
Y
0
g9

| T —f —

Break when bit 0 is set

PREVIGUS DATA DISABLE
PREVIGUS DATA
MATCH(I)/UNMATCH(O)

)/NO(0) 1 0 2 L

Unrelated to data before
modification

BRK>. CC$$

A) LEVEL(L , 2) : 2 2

B) LEVEL2 : 0723
DEPTH-3 : 1101 ? 0000
DEPTH-2 : 1101 ? 0000
DEPTH-1 @ 1101 ? 000
DEPTH-0 : 1101 ? 0100

[NITIAL DEPTH : 0 2 Q

BRK>. R$$

BRK>_RNS$

ADDRTNSTRUCT [ON

00F0 1D309 BREAK

00F1 1D0§9 OVERRUN

00F2 1D045 NEXT

PC SP AR HR BR MP IX

00F2 0 0000 O 1 000 000

PSH :DB CP CY Z IXE MPE JG
| 0 0 0 00 0 O

RP 0123456789ABCDEF

00 0000099990008005

BRK>

(Example 4) Break when data memory address 1.30H is

changed from 1 to 5.

BRK>., CC$$
A) LEVELCL , 2) : 2 |
B) UNIT (0 -3) : 21
CATG (C - L) : 2 E
¥

E) RELEASE DATAMEMORY FROM AND YES(1) / NOCO) : ? 0

DATA ADDR : 000 ? 130 Set data memory address to 1.30H
DATA ADDR MASK : 000 ? WF‘ Enab}e'all bits of address
MATCH(L)/UNMATCH(0) : 0 2 |~ SPecification
CURRENT DATA 0?25 Break when write value is 5SH
CURRENT MASK r0?F
MATCH(1)/UNMATCH(O) : 0 2 T
PREVIQUS DATA DISABLE YES(T)/N0C0) : 0 ? 0
PREVIOUS DATA 071 Data before change is 1
MATCH(C1) /UNMATCH(O) : 0 ? I
BRK>.CC3
A) LEVEL(1 , 2) : 2 2
B) LEVEL2 . 0123
DEPTH-3 : 1101 ? 0000
DEPTH-2 : 1101 ? 0000
DEPTH-1 : 1101 ? 0000
DEPTH-0 : 1101 2 0100
INITIAL DEPTH : 0 20 —
BRK>.R$$
BRK>.RN3$

ADDR [NSTRUCTION

00F0 1D305 BREAK

Q0F1 1D053 OVERRUN

00F2 1D045 NEXT

PC SP AR WR BR MP X

00F2 0 0000 O t 000 000

PS¥ :DB CP CY Z IXE MPE JG
0O 0 0 00 0 O

RP 0123456789ABCDEF

00 0000083930008005

BRK>

7.2.3 BREAK BY MULTIPLE BREAK CONDITION

(Example 1)

Break when program address reaches
address OOFOH or O1lFOH.

BRK>.CC$3
A) LEVELCL , 2) : 2 1
B) UNIT (0 -3): 20 Set OOFOH at unit O
CATG(C-L):?2CT
C) CONDITION AND(1) 7 OR(0) 0 : 2 Q
D) PROG ADDR UPER @ FFFF ? 0OF0
PROG ADDR LOWER : 0000 ? O0FO
MATCH(1) / UNMATCH(0) 0 ? 1
E) RELEASE DATAMEMORY FROM AND YES(1) / NOCO) : ? $
BRK>,CC$3
A) LEVEL(L , 2) ¢ ? 1
B UNIT (0 -3) : 21 Set OlFOH at unit 1
CATG (C - L) : 2T
C) CONDITION AND(1) 7 OR(0) 0 : ? 0
D) PROG ADDR UPER @ FFFF ? QIFD
PROG ADDR LOWER . : 0000 ? QIFOQ
MATCH(1) / UNMATCH(C0) 0 ? |
E) RELEASE DATAMEMORY FROM AND YES(1) / NOCO) : ? §
BRK>.CC$$
A) LEVEL(L , 2) @ 22
B) LEVEL2 . 0123
DEPTH-3 : 1101 ? 0000
DEPTH-2 : 1101 ? 0000
DEPTH-1 1101 ? 0000
DEPTH-0 ¢ 1101 ?2 1100 Break when unit O or unit
INITIAL DEPTH : 0 2 0 — 1 condition establishes
BRK>.R$$
BRK>.RN3$
ADDR INSTRUCTION
00F0 1D06S BREAK
00F1 1D0O59 OVERRUN
00F2 1D045 NEXT
PC SP AR ¥R BR MP IX
00F2 0 0000 x x xxx Xxx
PSY :DB CP CY Z IXE MPE JG
0 0 0 0 x x 0
RP 0123456783ABCDEF
*0 0000099830008005
BRK>

(Example 2) Break when program address 0lFOH is
executed after address OOFOQOH.

BRK>.CC$$
A) LEVELTI , 2) : ?
B) UNIT (0 -3) : 270
CATG (C -L) : ?2¢C
) 7

—

Set OOFOH at unit O

C) CONDITION AND(! ORCO) 0 :?0
0) PROG ADDR UPER . FFFF ? 00F0
PROG ADDR LOWER- : 0000 ? OOFO

?
?
HATCH(1) / UNMATCH(0) 0 ? |
D

E) RELEASE DATAMEMORY FROM AND YES(1) / NO(O) : ? §

BRK>.CC$$

A) LEVELTL , 2) @ 2 1

B) UNIT (0-3): 21 Set OLFOH at unit 1
CATG (C-L):?CT

C) CONDITION AND(1) 7 OR(Q) 0 : 2 0

D) PROG ADDR UPER : FFFF ? 01F0
PROG ADDR LOWER : 0000 ? OIFO

HATCH(1) / UNMATCH(0) 0 ? 1
E) RELEASE DATAMEMORY FROM AND YES(1) / NOCO) : ? §

BRK>.CC$$
A) LEVELCL , 2) : 2 2
B) LEVEL2 : 0123
DEPTH-3 c 1101 ? 0000
DEPTH-2 . 1101 2 0000
DEPTH-1 : 1101 ? 1000 To DEPTHO when unit O establishes
DEPTH-0 . 1101 2 gigg Break when unit 1 establishes
INITIAL DEPTH : 0 ? 1
BRK>.R$S
BRK>.RN$$

ADDR INSTRUCTION
01F0 1D08S BREAK
01F1 1D058 OVERRUN

01F2 1D045 NEXT

PC SP AR WR BR MP IX
0lF2 0 0000 *x x xxx xxx
PSW (DB CP CY Z IXE MPE JG

0 0 0 0 x x 0

RP 0123456789ABCDEF
x0 0000099930008005
BRK>

7-13

1-STEP EMULATION

One-step emulation is used when desiring to verify the

processing flow by executing the program one instruction

at a time.

(Example 1)

(Example 2)

Execute one program execution.

BRK>. S$3
BR RP PC INSTRUCTION
x xQ 0034 0CO3D $3

BRK>

The instruction of displayed address
0034H is not executed.

When a numeric is described in front of
the .S command, the number of steps can

be specified.

Execute the two instructions of address
33H and address 34H.

BRK>33.CA$2. 533

BR RP PC INSTRUCTION
x x0 0034 0C03D
x x0 003D 11001 33

BRX>

After the .S command is executed, the
next instruction is executed by

entering a space.

(Example 3) Execute the two instructions of address
33H and address 34H.

BRK>33.CAS.S
BR RP PC INSTRUCTION

x x0 0034 0CO30 = eceees When a space is input, the
x xQ 003D 11001 55. program is executed 1 step

BRK>

CHAPTER 8. SE BOARD PROM CREATION

Programs corrected by IE-17K can output the PROM file format
hexadecimal codes output by AS17K to channel O or channel 1 by
using .XSO or .XS1l. Connecting PROM programmer to channel 1

makes it possible to create SE board PROM.

8-1

CHAPTER 9. ERROR MESSAGES

The IE-17K generates error messages for command errors and for

IE-17K hardware errors.

9.1

COMMAND ERRORS
Command errors are error messages which are displayed when
there is an error in the command name and when the number
of arguments do not match at command input.
The error messages and their meanings are shown below.
(1) ?ANF ARY NOT FOUND

Array not found.

Specify the correct array.
(2) ?ARG IMPROPER ARGUMENT

Incorrect argument.

Input the correct argument.
(3) 72ASC ARGUMENT STACK COUNTER ERROR

Number of arguments is incorrect.

Adjust the commands so that the number of arguments is

correct.

(4) ?AST ARGUMENT STACK OVERFLOW
Number of arguments is too large.
Reduce the number of arguments.
(5) ?AUN ARGUMENT STACK UNDERFLOW
No value in argument stack.
Assign a value to the argument stack.
(6) ©?FAP FAIL TO ACCESS PPG

When programmable pattern generator data is saved, a

verify error is generated.
Save again.
(7) 2ILL ILLEGAL COMMAND

An unsupported command is used or a command is used

incorrectly.
Use the correct command.
(8) 7?2INA ILLEGAL NUMBER OF ARGUMENTS
Number of macro command arguments is small.
Correct input the macro command arguments.
(9) 72IPE INPUT ERROR
Illegal value is set by .CC command.

Reset the correct value.

(10)

(11)

(12)

(13)

(14)

(15)

?ION ILLEGAL Q-REGISTER NAME

Q-register name is incorrect.

Use the correct Q-register name.

?IVA INVALID ARGUMENT

An illegal value is specified at an argument.
Specify the correct argument.

?2IWT ILLEGAL WAIT TIME VALUE

Z command argument is incorrect.

Specify the correct argument.

?MLA MISSING<

'<' at loop is less than the number of '>'.
Correct the < > correspondence.

?MLP MISSING)

'(' is less than the number of ')'.

Correct the () correspondence.

?MNF MACRO COMMAND NOT FOUND

Character string beginning with '.' is not found as a

built-in macro command.

Input the correct built-in macro command.

(16) 7?MRA MISSING>
'>' in loop is less than the number of '<'.
Correct the < > correspondence.
(17) 7?MRP MISSING(
')' is less than the number of '('.
Correct the () correspondence.
(18) ?MVQ NO VALUE IN Q-REGISTER

A Q-register that is not macro-defined is executed as

a macro.
Specify the correct macro-defined Q-register name.
(19) 7?2NAE NO ARGUMENT BEFORE=
No = command argument.
Input the argument.
(20) 7?NAQ NO ARGUMENT BEFORE"
No " command argument.

Input the argument.

(21)

(22)

(24)

?NVQ NO VALUE IN Q-REGISTER

There is no value (numeric or character string) in

the Q-register.
Assign a value to the Q-register.
?POS INVALID ADDRESS

Address specification exceeds the program memory

address range of the target product.

Specify a value within the last program memory

address.

?7QNF QUOTATION NOT FOUND

' not found.

Input the '.

?7QRO Q-REGISTER AREA OVERFLOW

Q-register area is full.

Delete the contents of the unwanted Q-register.
?7QST Q-STACK OVERFLOW

Q-stack area is full.

Delete the unwanted contents of the Q-register.

(26)

(27)

(28)

(29)

(30)

?2QUN Q-STACK UNDERFLOW

There is no value at the Q-stack area.
Assign at value to the Q-stack area.
?RNE CPU RUN ERROR

An unexecutable command is input during program

execution.

Stop the program by .BK command and re-input the

command.

?RNG NUMERIC RANGE OVER

Numeric exceeds the effective range.

Set the numeric to within the effective range.
?RSE CPU RESET ERROR

An unexecutable command is input during program

execution.

Stop the program by .BK command and re-input the

command.
?RTE CPU RESET ERROR

An unexecutable command is input during program

execution.

Stop the program by .BK command and re-input the

command .

(31)

(32)

(33)

(34)

(35)

(36)

?SYN INVALID SYNTAX

Syntax is incorrect.

Use the correct syntax.

?TAG MISSING TAG !XXX!

Tag is not found.

Specify the correct tag.

?UPE UNPRINTABLE ERROR

An error that is not available with the CLICE system
is generated. There is an error in the system.
Please restart it.

?UPO UNTERMINATED POINTER @ OR

@ command or _ command not terminated by V.
Terminate with V.

?UTG UNTERMINATED TAG

Tag not enclosed in !.

Enclose tag in !.

?WRE WRITE ERROR

When writing to memory, a verify error is generated.

Execute the command again.

HARDWARE ERRORS

Hardware errors are error messages that are displayed when

the IE-17K malfunctions during program execution.

The messages and their meanings are shown below.

(1)

(2)

(3)

(4)

(5)

SYSTEM REGISTER ACCESS ERROR

Displayed when an uninstalled bit is set at a system

register other than the AR register.
STACK OVER/UNDER FLOW

Displayed when the stack pointer underflows or

overflows.
RAM NOT INITIALIZRE

Displayed when an instruction which reads a data
memory, other than a port, etc., which is not written
even once or data memory without an initial value is

executed.

ILLEGAL RAM WRITY

Displayed when a nonexistent data memory is written.
?I0S INVALID OPTION SWITCH AT 0000

Displayed when the option switch specification
described when a program is loaded to the IE-17K or at
program execution is different from the setting of the
option switch on the SE board. The last number is the

number of the SE board switch with the different

setting.

9-8

(6)

(7)

(8)

(9)

?ISE INVALID SE BOARD NUMBER [00-00]

Displayed when the device file used by the assembler
when a program is loaded to the IE-17K or at program
execution and the SE board are different. It is also
displayed when the SE board installation state is bad.
The left side of the last number is the SE board
number and the right side is the number included at

the device file.

?IDI INVALID DEVICE ID NUMBER [00-00]

Displayed when the device file used by the assembler
when a program is loaded to the IE-17K or at program
execution and the device on the SE board are
different. It is also displayed when the SE board
installation state is bad. The left side of the last
number is the device number on the SE board and the
right side is the number included at the device file.

Displayed when the option information is not loaded

normally when a program is loaded to the IE-17K.
PC ERROR!
Displayed when the program counter does not operate as

expected due to a malfunction of the device on the SE

board.

Error message shown from (10) to (18) below are displayed

when there is an error in the result of IE-17K self-

diagnosis when the power is turned on and at system reset.

When these error messages are displayed, the hardware is

fault and must be repaired.

(10)

(11)

(12)

(13)

(14)

(15)

(16)

MEMORY ERROR -+ 0000:0000 to 7000:FFFF

Displayed when there is an error in
by the IE-17K.

the memory used

MEMORY ERROR * EO000:0000 to EQOO:FFFF

Displayed when there is an error used at the pulse

generator.
DEVICE ERROR ~+ PTC (UPD71054) #O

Displayed when there is an error at
timer O (uPD71054).

DEVICE ERROR + PTC (UPD71054) #1

Displayed when there is an error at
timer 1 (uPD71054).

DEVICE ERROR =+ PIU (UPD71055) #0

Displayed when there is an error at
interface 0 (uPD71055).

DEVICE ERROR ~ PIU (UPD71055) #1

Displayed when there is an error at
interface 1 (uPD71055).

DEVICE ERROR > SCU (UPD71051) #O

Displayed when there is an error at
unit O (uPD71051).

programmable

programmable

parallel

parallel

serial control

(17)

(18)

DEVICE ERROR -+ SCU (UPD71051) #1

Displayed when there is an error at serial control
unit 1 (uPD71051).

DEVICE ERROR ~+ ICU (UPD71059)

Displayed when there is an error at the interrupt
controller (uPD71059).

Error messages (19) to (24) below are displayed when IE-

17K CPU runs away or otherwise malfunctions.

(19)

(20)

(21)

(22)

(24)

<<DIVIDE BY ZERO>>

Divided by '0'.

<<CHECK FIELD>>

Memory boundary crossed.

<<SINGLE STEP>>

Single step is performed.

<<BREAK MODE>>

Break instruction is executed.

<<OVERFLOW>>

Overflow is generated during operation.

<<NMI>>

NMI is generated.

APPENDIX A. PRIMITIVE COMMANDS

The primitive command is used when creating a user original macro
command. However, for IE-17K CLICE 1.6, supports 52 built-in
macro commands that are combined with this primitive command.

The primitive command is not necessary for normal work. This
chapter should be read if the advanced built-in commands are to

be used.

A.l PRIMITIVE COMMANDS TABLE
Table A-1 Commands Table
Command ASCLY Function Command ASCLL Function
Code Code
+e 00 | Dummy Y 16 | Pointer
+ A 01 Character string display +W 17 <{Undefined>
+B 02 Binary constant prefix +X 18 1 line deletion
+C 03 Abort +Y 19 {Undefined>
4D O4 | Decimal constant prefix +Z 1A | <Undefined>
+E 05 | Editor start A+ 1B | Dummy
+F 06 Array address func;ion +¥ 1C {Undefined>
+ G 07 | Current line display 4] 1D | <Undefined>
4+ H 08 1 character deletion A7 1E Remainder operator
+ I 09 | Dummy +_ 1F | <Undefined>
+J OA | Dummy SPACE | 20 |Dummy
+ K OB <Undefined> ! 21 |Tag
+L oc {Undefined> " 22 Conditional branch
M 0D Dummy # 23 OR operator
+N OE | <Undefined> $ 24 | Dummy
4+ 0 OF {Undefined> % 25 Q-register increment
AP 10 | 14344 constant prefix & 26 |AND operator
+Q 11 User-defined function ! 27 Conditional branch
call
+ R 12 Control character input (28 Priority indicator
+S 13 Screen display pause) 29 Priority indicator
47T 14 | Key input function * 2A |Integration operator
+U 15 1 line deletion + 2B Addition operator

(to be continued)

Table A-1 Commands Table (cont'd)

Command ASCLI Function Command ASCI Function

Code Code

' 2C | Dummy B 42 | Hexadecimal constant

- 2D Subtraction operator C 43 Hexadecimal constant
2E | Built-in macro prefix D 4t | Hexadecimal constant

/ 2F Division operator E 45 Hexadecimal constant

0 30 |Numeric constant F 46 | Hexadecimal constant

1 31 | Numeric constant G 47 | <Undefined>

2 32 | Numeric constant H 48 | <Undefined>

3 33 | Numeric constant I 49 | <Undefined>

4 34 | Numeric constant J 4a | <Undefined>

5 35 | Numeric constant K 4B | <Undefined>

6 36 |Numeric constant L he {Undefined>

7 37 Numeric constant M 4D Macro definition

command

8 38 | Numeric constant N UE <Undefined>

9 39 | Numeric constant 0 Yp GOTO
3A Argument pop P 50 {Undefined>

; 3B Loop abort Q 51 Q-register prefix

< 3C Loop start R 52 {Undefined>

= 3D Display command S 53 {Undefined>

> 3E | Loop end T 54 <Undefined>

? 3F Error display U 55 Q-register assignment

@ 4o | 8-bit pointer Y 56 <Undefined>

A 41 Hexadecimal constant W 57 {Undefined>

(to be continued)

Table A-1 Commands Table (cont'd)

Command ASCLL Function Command ASCIL Function
Code Code

X 58 | Array assignment 6E‘ <{Undefined>

Y 59 | <Undefined> 6F | <Undefined>

Z A Wait 70 <Undefined>

[5B | Q-register pop 71 {Undefined>

¥ 5C Numeric function 72 <{Undefined>

] 5D | Q-register push 73 {Undefined>

- 5E | Control character prefix 74 | <Undefined>

B 5F | 16-bit pointer 75 | <Undefined>
60 | <Undefined> 76 | <Undefined>
61 <Undefined> 77 | <Undefined>
62 <Undefined> 78 {Undefined>
63 | <Undefined> 79 | <Undefined>
64 | <Undefined> 7A | <Undefined>
65 | <Undefined> { 7B | Left shift operator
66 | <Undefined> | 7C | Exclusive-OR operator
67 | <Undefined> } 7D | Right shift operator
68 | <Undefined> ~ 7E | Negate operator
69 | <Undefined> DEL | 7F |1 character deletion
6A | <Undefined>
6B | <Undefined>
6C | <Undefined>
6D <{Undefined>

A.2 ARRAY TABLE

When referencing an array shown in Table A-2, use +FVER=H

(CLICE version displayed in hexadecimal), etc.

Table A-2 Array Table

Array Name Function

VER CLICE version

WRK CLICE work area top address

PRM Program memory top address

TRM Trace memory top address (be careful of the current bank)
BANK#0: PC, BANK#1:PORT, BANK#2:WA, DB, JG,
BANK#3: PC, BANK#4:TMO, BANK#5:TM1

PCV PC coverage memory top address

DCV Data coverage memory top address

CND Condition memory top address

ERG Emulator register top address

PSG PPG memory top address

CRG Condition register top address

CRO Condition register unit #0

CR1 Condition register unit #1

CR2 Condition register unit #2

CR3 Condition register unit #3

SRG System register top address

DTM Data memory top address

RGF Register file top address

RN1 RAM NOT INITIALIZE break register

SPE STACK OVERFLOW/UNDERFLOW break register

(to be continued)

Table A-2 Array Table (cont'd)

Array Name

Function

IRW ILLEGAL RAM WRITE break register
PC] System register PC address
SP[] System register SP address

ARO System register ARO address
AR1 System register AR1 address
AR2 System register ARZ2 address
AR3 System register AR3 address
WR{J System register WR address

BNK System register BANK address
IXH System register IXH address
IXM System register IXM address
IXL System register IXL address
RPH System register RPH address
RPL System register RPL address
PSW System register PSW address
JG[OQ System register JG address

ICU INTERRUPT CONTROL (uPD71059)
TCO TIMER CONTROL#0 (uPD71054)

TC1 TIMER CONTROL#1 (uPD71054)

SCO SERIAL CONTROL#0 (uPD71051)

SC1 SERIAL CONTROL#1 (uPD71051)
PGC PPG CONTROL

PGL PPG BIT SELECT (bit O to bit 7)
PGH PPG BIT SELECT (bit 8 to bit 15)

(to be continued)

Table A-2 Array Table (cont'd)

Array Name Function
PIO PARALLEL INTERFACE#0 (uPD71055)
PI1 PARALLEL INTERFACE#1 (uPD71055)
DSW DIP SWITCH
RES RESET Mam'Chip
SEN SE BOARD NUMBER

Remarks: [J indicates a space.

CONDITION REGISTER OFFSET ADDRESS

The offset addresses for the array CRG are shown in Table
A-3.

When referencing an array, use 4FCRG+ +FDPO=H (address
that stores the break condition DEPTHO in hexadecimal),

etc.

Table A-3 Condition Register Offset Address

Array Name Function
DPO Break condition DEPTHO
DP1 Break condition DEPTH1
DP2 Break condition DEPTH2
DP3 Break condition DEPTHS3
LVC Break condition DEPTH counter
CNB Condition break enable flag
RIB RAM NCT INITIALIZE break enable flag
IWB ILLEGAL RAM WRITE break enable flag
SOB SP OVER/UNDERFLOW break enable flag
TTM Trace timer
TTP Trace timer prescaler
TAD Status trace address trace switching flag
XPD Logic/analyzer probe data
XPE Logic analyzer probe data edge/level switching flag
XPM Logic analyzer probe data mask
XPU Logic analyzer probe break MATCH/UNMATCH switching flag
PDB PREVIOUS DATA break enable flag
PCA PC break address
PCB PC break enable flag

A.4 CONDITION UNIT REGISTER OFFSET ADDRESS
Table A-4 shows the offset addresses for arrays CRO to
CR3.
When referencing an array, use +FCRO+ 4FPAU=H (address of
unit 0 which stores the upper limit of the program
address break/trace condition range in hexadecimal), etc.
Table A-4 Condition Unit Register Offset Address
Array Name ‘ Function
PAU Upper limit of program address break/trace condition range
PAL Lower limit of program address break/trace condition range
PAM Program address break/trace condition range MATCH/UNMATCH
specification
DTA Data memory address break/trace condition
DMK Data memory address break/trace condition mask
DTU Data memory address break/trace condition MATCH/UNMATCH
specification
CRD Data memory write data break/trace condition
CRM Data memory write data break/trace condition mask
CRU Data memory write data break/trace condition MATCH/UNMATCH
specification
PDT Break/trace condition of data previously written to data
memory
PDM MATCH/UNMATCH specification of break/trace condition of data
previously written to data memory
SPU Upper limit of stack pointer break/trace condition range
SPL Lower limit of stack pointer break/trace condition range
SPM Stack pointer break/trace condition range MATCH/UNMATCH
specification

(to be continued)

Table A-4 Condition Unit Register Offset Address (cont'd)

Array Name

Function

ISD Break/trace condition by execution of specified instruction

ISM Mask of break/trace condition by execution of specified
instruction

ISU MATCH/UNMATCH specification of break/trace condition by
execution of specified instruction

PTD Logic analyzer probe data break/trace condition

PTM Logic analyzer probe data break/trace condition mask

PTE Logic analyzer probe data edge/level specification

PTU Logic analyzer probe data break/trace condition MATCH/UNMATCH
specification

MAR Break/trace condition of data specified by MAR (Monitor
Address Register)

MAM Mask of break/trace condition of data specified by MAR

MAU MATCH/UNMATCH specification of break/trace condition of data
specified by MAR

INT Break/trace condition by interrupt

INM Mask of break/trace condition by interrupt

INU MATCH/UNMATCH specification of break/trace condition by
interrupt

DMA Break/trace condition by DMA

DMM Mask of break/trace condition by DMA

DMU MATCH/UNMATCH specification of break/trace condition by DMA

AND AND/COR specification of break/trace condition

CNT Number of times break/trace condition established count
condition

CND Break/trace condition by number of times break/trace
condition established

CNM Mask of number of times break/trace condition established

(to be continued)

Table A-4 Condition Unit Register Offset Address (cont'd)

Array Name

Function

Current number of times break/trace condition established

CDR

CNU MATCH/UNMATCH specification of number of times break/trace
condition established

TRS Trace condition ON/OFF condition specification

.5.

PRIMITIVE COMMANDS DESCRIPTIONS

This section describes the functions of the primitive
commands. Primitive commands offer a more advanced
debugging method for those experienced in the development

of programs using the IE-17K.

New commands (macro commands) can be added to the IE-17K

or a series of debugging procedures can be programmed.

POINTER

Pointer reads the resources indicated by array elements.

(1) Byte pointer
@tV

(2) Word pointer
Y

@ +V Byte Pointer

Format : @ g4V

@ : Expression

[Function] Reads one byte from the array element.

The byte pointer reads the one byte (8 bits)
data from the array element indicated by the
evaluated value of the expression described
between @ and +4V.

(Example)
@ 100 sV ... Refer to contents of
array element number 100H.
@ 4FDTM 4V ... Refer to contents of data

memory start address
(address 0).

Here, +FDTM is a function
which returns the array
address that indicates the

data memory start address.

_ 4V Word Pointer

Format

_atV

Expression

[Function]

Reads one word from the array element.

The word pointer reads one word (16 bits) of

data by reading one byte (8 bits) of data from

the array element indicated by the evaluated

value of the expression described between _

and tV and making it the high-order byte and

reading one byte (8 bits) of data from the

array elements specified by evaluated value +

1 and making it the low-order byte.

(Example 1)
__ tFDTM 4V

Refer to 16-bit data by
making the contents of the
data memory start address
(address 0) the high-order
byte and the contents of
address 1 the low-order

byte.

Here, 4+FDTM is a function
which returns the data

memory start address.

(Example 2)

__ AFPRM+ (10H {1) 4V=P

Display the contents of
program memory address
10H.

Here, 4FPRM is a function
which returns the array
address that indicates the
program memory start

address.

.5.

FUNCTION

CLICE has two kinds of functions, "built-in functions"
which are built into the system and "user-defined

functions" (4Q commands) which are defined by the user.

Various built-in functions, including array address
function (4F command), key input function (4T command),

and numeric function (¥ command), are available.

(1) User-defined function
+Q

(2) Array address function
+F

(3) Key input function
AT

(4) Numeric function
¥

4Q User-Defined Function

Format : +Q a

Q-register name

[Function]

Executes the contents of the Q-register and

returns a value.

The 4Q command executes the command string
(character string) stored in the Q-register
indicated by a and returns the defined value

in it.

For a detailed description of this command,

see Appendix A.5.6 "Macro".

A-18

+F Array Address Function

Array element name

[Function]

Returns the array address of an array element

name.

The +F command returns the array address
indicated by the array element name «
specified by the three characters following
it.

The array element names table is shown in

Appendix A.2.

(Example) 4 FPRM
This command returns the array
address corresponding to program

memory address 0.

Therefore, when the program memory

address uses array address.

+FPRM+1 ... Low-order 8 bits of

address O

4+ FPRM+n ...

When n an even number:
High-order 8 bits of
address n/2

When n an odd number:
Low-order 8 bits of
address (n-1)/2

+T Key Input Function

Format : 4T

[Function] Returns the code of the keyed in character.

Returns the ASCII code of the keyed in
character. When there is no key input, this

command waits until a key is input.

When the +C key is input two consecutive
times, the 4T command is terminated even if

it is being executed.

(Example) 4TU14TUZ4TU3

©® @ 06

When the command string above is
executed, first the program enters
the input wait state at +T(Q .
When *C is keyed in here, 4T Q)
returns 03H and assigns O3H to Q1.
(See "U command (Assignment to
Q-register)" in Appendix A.5.3

"Assignment")

Then, command execution shifts to

rT 2 .

When 4+C is keyed in here,
execution of the command string is
terminated by +T Q) .

In short, two consecutive +C

cannot be input at +T.

The input characters are displayed
automatically.

¥ Numeric Function

Format : ¥

¢}

a

¢ Q-register name

[Function]

Converts a character string to a numeric.

Returns the numeric which represents the
character string stored in the Q-register

specified by qg.

At this time, the number of digits of the
numeric is the number of digits from the
specified Q-register start address up to
the appearance of the first character other
than a numeric or from the start of the Q-
register to the last character of the Q-

register.

(Example) When the contents of Q-register 1
are as shown below, for ¥1,

@D +B1234 ... Returns 1.
(2 is not a binary number)
@ BACK ... Returns OBACH.

(K is not a hexadecimal

number.)

+D16*2 ... Returns 10H.
(* is not a decimal number.)

When 1 character cannot be
converted as a numeric and
when the range which can be
represented as a constant is
exceeded as shown below, an

error is recognized.

+4DECIMAL ... Error
12345678901234567890
Exrror

A.5.3 ASSIGNMENT

A U command and XB, XC and XW commands as available with
CLICE to assign a numeric or character string to a
variable.

(1) Assignment to Q-register
U ,

(2) Byte data assignment to array
XB

(3) Word data assignment to array
XW

(4) Character string assignment to array
XC

U OQ-register Assignment

Format : ()
C) U ay$ (macro definition)

C) §, eUaq

BU «a

O <X ™ R

[y}

X

.

Q-register name
Expression
Character string
Array start address

Array end address

[Function]

Assigns a numeric or character string to the

Q-register.

Format (1) assigns the evaluated value of
expression f# to the Q-register specified by

Q-
(Example) 3UA ... Assign 3 to Q-register A.

@ 4FDTM+1 4VU3
... Assign the contents of
data memory address 1 to

Q-register 3.

Format (2) assigns the character string y up
to $ to the Q-register specified by a.

When a command string is assigned as

character string Yy, it can be used as a macro.

(Example) ULABCS ... Assign ABC to Q-register
' 1.

Format () assigns the contents from the array
address specified by the evaluated value of
expression § to the array address specified by
the evaluated value of expression ¢ to the
Q-register specified by « as a character

string.
(Example) +FDTM, 4FDTM+3UX

Assign the contents of data
memory addresses O to 3 to
Q-register X as character

string.

Data Memory Contents of Q-Register X
0.00H 0.01H 0.02H 0.03H
1 2 3 4 < |0]1]0({2{0]3]0}4

8 characters loaded.

XB Byte Data Assignment to Array

Format : @ , B XB
@ : Expression (only low-order 8 bits valid)
B : Array address

[Function] Assigns 8-bit data o to array B.

Assigns the low-order 8 bits of the evaluated

value of expression o to the elements of the

array address indicated by the evaluated

value of expression B.

(Example 1) Ql1, +FDTMXB

.. Assign low-order 8 bits of Q-

register 1 to data memory

address 0.

(Example 2) A sample program which stores the

keyed in characters to the array

work area is shown below.

} FWRKUP < 1TU2 D-Q2 :

Q2, QPXB %P>

QP= FWRK Q2=key if CR ?

ARRAY (Q)=Q2 QP=QP+1

This program exits from the loop

when the keyed characters are
ASCII code ODH or less. (Also

see "<> command (loop)" in

Appendix A.5.7 "Control".)

A-28

XW Word Data Assignment to Array

Format : o , B XW

]

g

.
.

Expression (only low-order 16 bits wvalid)
Array address

[Function]

Assigns 16-bits data a4 to array B.

Assigns the low-order 16 bits of the evaluated
value of expression o to the elements of the
array address indicated by the evaluated

value of expression RB.
(Example) Q1, +FPRMXW
... Assign low-order 16-bits of Q-
register 1 to data memory
addresses 0 and 1.
This example can also be
described as follows by using

the XB command.

01}8, +FDTMXBQl, + FDTM+1XB

XC Character String Assignment to Array

Format : BXCa

Q-register name

Array address

[Function]

Assigns the character string stored in Q-

register o to array B.

The character string stored in the Q-register
specified by o is assigned to the array range
of that number of characters sequentially from
the array address element showing the

evaluated value of expression B.

(Example) UlABCS AFWRKXC1

@ @

This example assigns the character string ABC
to Q-register 1 at () and assigns its value
to A, B and C sequentially from the start of

the array work area at (@ .
That is, A is assigned to array address

AFWRK, B is assigned to 4FWRK+1l, and C is
assigned to tFWRK+2.

A-30

This example can also be described as follows

by using the XB command.

41, +*FWRKXB42, *FWRK+1XB43, *FWRK+2XB

However, 41H, 42H, 43H shows A, B, C by ASCII

code.

.5.4

ARGUMENT STACK

CLICE has an argument stack as a temporary memory for

passing command numeric arguments.
A numeric argument consists of a constant, function value,
or other expression evaluated value. It is stored in an
argument stack and used by reading it by command.
How an argument stack is used is shown below.

3, 4*%2, 5+18
The numeric argument 3 is pushed to the argument stack and
the numeric arguments 8 and 6 separated by a comma (,) are

then pushed to the argument stack in order.

Then, the command is used by popping the numeric arguments

from the argument stack in 6,8,3 order.

The argument stack is also initialized at the end of

execution of the command string.

(1) Argument push

Numeric

(2) Argument pop

Argument Push

Format : o [, «]

Expression

[Function]

Pushes a numeric to the argument stack.

The value of the expression is pushed to the

argument stack.

The level of the argument stack is incremented
(+1).

(Example) 12, 34, 56S

The values 12H and 34H and 56H are pushed to

the argument stack in order.

Argument Pop

" Format

Q-register name

[Function]

Pops the numeric from the argument stack and

stores it to the Q-register.

Pops the numeric from the argument stack and

stores it to the Q-register specified by «o.

The level of the argument stack is decremented

(-1).

(Example) UM:A:BQA*QB=DS$S
+D12, 3MMSSS36

Stores a command string to Q-register M and
then executes macro M, which makes 12 and 3

arguments.
The result 36 is displayed.
(For a description of the commands used, see

Appendix A.5.6 "Macro" and Appendix A.5.8
"Display".)

. 5.

Q-STACK

The Q-stack is a stack for saving the contents stored in
the Q-registers.

The Q-stack is initialized at the end of execution of a
command string.

(1) Q-register push
[

(2) OQ-register pop
]

[Q-register Push

Format : [a

@ : Q-register name

[Function] Pushes the contents of Q-register o to the Q-

stack.

Pushes the contents (numeric or character
string) of the Q-register specified by ¢ to
the Q-stack.

The level of Q-stack is incremented (+1).

(Example) 34UN [N

Assigns 34H to Q-register N and pushes 34H to
the Q-stack. '

] Q-register Pop

Format :] «

Q-register name

[Function]

Stores the contents popped from the Q-stack to

Q-register «.

Stores the contents (numeric or character
string) popped from the Q-stack to the Q-
register specified by a.

The level of the Q-stack is decremented (-1).

(Example)] NON=H

The contents popped from Q-register N are

displayed as a hexadecimal value.

.5.6

MACRO

A macro is a function which executes a character string

stored in a Q-register as a command.

There are two kinds of macro execution, macro command (M

command) and user function (4Q command).

(1) Macro command execution
M

(2) User function execution

+Q

M Macro Command Execution

Format : M«

@ : Q-register name

[Function] Executes the contents of Q-register o as a

command string.

Executes the contents stored in the Q-register

specified by ¢ as a command.

The parameters (arguments) are passed to the
character string in the Q-register through
variable, Q-stack, and argument stack.

Macro commands can also be nested.

A macro which displays the sum of two

arguments in hexadecimal is shown below.

(Example 1) Pass parameters through a

variable.

UMQ1+Q2=HSS
100U1200U2MMS$SS300

Stores a command which adds and hexadecimal
displays the contents of Q-register 1 and Q-
register 2 and stores the result to Q-register

M.

Next, it assigns 100H and 200H to Q-register 1
and Q-register 2, respectively, and passes the

parameters by executing macro M.
The result 300 is displayed.

When the same operation as the example above

is performed through an array.

UM _4FWRK 4 V+ _4FWRK+2 4V=HS$S
100, 4+ FWRKXW200, 4 FWRK+2XWMMS$$300

(Example 2) Pass parameters through the Q-

stack

When macros are nested, parameters may be
passed through variables by stacking the

variables (Q-register, etc.) used.

One method of solving this problem is to use
the Q-stack.

UM] 1Q1+] 1Q1=HSS
100Ul {1 200Ul [1 MMSS300

Stores a command string that adds and
hexadecimal displays the numerics popped to

Q-register 1 to Q-register M.

Next, the numeric assigned to Q-register 1 is
pushed to the Q-stack and parameters can be

passed by executing macro M.

(Example 3) Pass parameters through argument

stack

This is the most simple method of passing

parameters.

UM:1Q1+ :1Q1=HSS
100, 200MMSs300

Stores a command string which adds and
hexadecimal displays the numerical values

popped to Q-register 1 to Q-register M.

Next, the numeric is pushed to the argument
stack and the parameters can be passed by

executing macro M.

4Q User Function Execution

Format : +Q «

@ : Q-register name

[Function] Executes the contents of Q-register o as a
command string (function) and returns a value.

Executes the contents stored in the Q-register

specified by o as a command.

The value which can be returned as a function

in this command is pushed to the Q-stack.

A value is fetched automatically from the Q-
stack when execution of this function is

completed by means of this.

Parameters (arguments) are passed to the
command string in the Q-register through
variable, Q-stack, or argument stack, the same

as a macro command.
User-defined functions can also be nested.

(Example) An example of definition of a
' function that returns a program

memory address is shown below.

This function returns the logical address (1
address/8 bits) on an array, with a program
memory address (1 address/16 bits) as the

input.

UM:1 * FPRM+ (Q1*2) 4VUl [18

This macro M is used as follows:

—~100 +QM +V=HSS

This hexadecimal displays the contents of

program memory address 100H.

A.5.7 CONTROL

CLICE can control the execution order of each command.

(1)

(2)

(3)

(4)

(5)

Loop

<>

Loop abort

.
’

Tag

Unconditional branch

0s

Conditional branch

'

<> Loop

Format : [a]

Number of repetitions

Command string

[Function]

Executes command string B o times.
When ¢ is 232-1, it can be omitted.

Command string B enclosed in < > 1s executed
the number of times indicated by the value of

the numeric argument specified by «a.
Loops can be nested.

When the number of repetitions o is omitted,
32
2

-1 times is assumed.

(Example) 1O<command string A 5 <command

string B> command string C>

In this case, command string A is executed
once, command string B is executed 5 times,
and command string C is executed once so that

processing is repeated 16 times.

; Loop Abort

Format : o ;

a

End conditional expression

[Function]

Aborts a repetitive loop.

When the value of the numeric argument
specified by o becomes O or more before the
end of the specified number of repetitions of
a repetitive loop, repetition of the command
string ends and the program exits from. the

loop.
In other words, control shifts to the command
described at the immediate right of the > that

indicates the end of the loop containing;.

When the numeric argument specified by a is

smaller than 0, this command is ignored.

A ; command outside a loop generates an error.
(Example) 100<1F- 4 T;command string>

Executes the command string repeatedly until

the loop reaches 256 repetitions or a control
key (ASCII code OOH to 1FH) is input.

'l Tag

Format : !

a .

!

e

Tag

[Function]

Shows the tag in a command string.
A comment is described to explain processing
contents in the command string or specify

the jump destination of an O command.

The character string enclosed in ! has no

affect on execution of the command.

(Example) 4FWRKUL1!Q1=WORK POINTER!

Assigns the array WRK address to Q-register 1.

The character string enclosed in ! is treated

as a comment and is not executed as a command.

0$S Unconditional Branch

Format : 0O«a$

Tag

[Function]

Unconditionally shifts control to the

specified tag.

The O command changes the command flow at the
tag described by the same character string as
the character string (tag) described at the

right side of the command.

When the same tag is not described, the tag

that appears first is wvalid.

(Example) !LOOP! command string OLOOPS

Executes the command string infinitely.

" ' Conditional Branch

Format : a"By'S$
@ : Conditional expression
B : Condition
Y : Command string 1
§ : Command string 2
[Function] Changes the command to be executed according

to the condition.

Judges the value of conditional expression «

and controls the command execution flow.

When the value of the numeric argument
specified by o satisfies condition B described
at the right side of ", command string vy
following the condition is executed, then

command string § is executed.

If the condition is not satisfied, only

command string § following ' is executed.

That is, command string y is skipped.

This conditional branch command can be nested.

The following four conditions can be

described:

E: Equal zero

N: Not equal zero

L: Less than zero

G: Greater than zero
(Example)

In this example,

(n=0)
(n#0)
(n<0)
(n>0)

Q1-3" EOU2'Q1+Q2Ul

if Q1-3 is O (that is,

after O is assigned to Q-register 2, the next

command Q1+Q2Ul is executed.

If Q1l#3, 0U2 is not skipped and Ql1+Q2U1

following ' is executed.

A.5.8 DISPLAY

CLICE has commands which display characters and numerics.

(1)

(2)

(3)

(4)

(5)

(6)

Numeric binary display

=B

Numeric decimal display

=D

Numeric hexadecimal display

=H

Q-register contents character display

=C

Character string display

+A

1-4-3-4-4 bit format display

=P

=B Numeric Binary Display

Format : [B,] a=B

Q

Numeric data
Number of display digits

[Function]

Binary displays the value of the numeric

argument specified by numeric data «a.

The value of the numeric argument specified by
B indicates the number of display digits.
When it is O or is omitted, the data is

displayed by suppressing the leading zeros.
(Example 1) A=BS$$1010

Binary displays OAH. At this time, the
command is executed by $$, but line feed is
not performed and the value is displayed
unchanged.

(Example 2) 8, A=B$$00001010

Binary displays OAH in 8 digits.

=D Numeric Decimal Display

Format : [B,] a=D
d : Numeric data
B : Number of display digits

[Function] Decimal displays the value of the numeric

argument specified by numeric data «.

The value of the numeric argument specified by
B indicates the number of display digits.
When it is O or is omitted, the value is

displayed by suppressing the leading zeros.
(Example 1) A=DS10

Decimal displays OAH. At this time, the
command is executed by S, but line feed is
not performed and the value is displayed as
is.

(Example 2) 4, A=D$$0010

Decimal display OAH in 4 digits.

=H Numeric Hexadecimal Display

Format : [B,] a=H

Numeric data
Number of display digits

[Function]

Hexadecimal displays the value of the numeric

argument specified by numeric data «.

The value of the numeric argument specified by
8 indicates the number of display digits.
When it is O or is omitted, the value is

displayed by suppressing the leading zeros.
(Example 1) + D10=HS$SA

Hexadecimal displays the decimal number 10.
At this time, the command is executed by $§,

but line feed is not performed and the value

is displayed unchanged.

(Example 2) 4, A=HSSSS000A

Hexadecimal displays OAH in 4 digits.

=C Q-register Contents Character Display

Format : =C ¢

@ : Q-register name

[Function] Displays the contents stored in Q-register a

as a character string.

(Example) ULABCS$=C1S$SABC

*A Character String Display

Format : =

+4A o 4+ A

Character string

[Function]

Displays character string o enclosed in ¢t A.

(Example) 4+ ABELL + R 4+ GBELL TWICE 4R+ G*+R
+ G +ASS

Display BELL and sound one beep and displays
BELL TWICE and sounds two beeps.

=P 1-4-3-4-4 Bit Format Display

Format : ¢ =

P

Numeric data

[Function]

Displays the value of the numeric argument
specified by g in 1-4-3-4-4 bit format.

(Example) 4B0011110011110000=PSS078F0

Display 0011110011110000B(NOP) in 1-4-3-4-4
format. At this time, the command is executed
by $$, but line feed is not performed and the

value is displayed unchanged.

A.

5.

9

OTHERS

CLICE has the following commands,

above.

(1)

(2)

(3)

(4)

(6)

Q-register increment

oe

Assignment to Q-register
*

Error display

?

Data memory read from device
Y

Data memory write to device
W

besides those described

% Q-register Increment

Format : 5 Q

@ : Q-register name

[Function] Increment (+1) the contents of the Q-register.

Increments (+1) the contents stored in Q-

register ¢ as a numeric.

(Example) 100U1%1

After 100H is assigned to Q-register 1, the
contents of Q-register 1 are incremented (+1)

by % command.

As a result, the contents of Q-register 1

become 101H.

Z Wait

Format

o Z

Wait time

[Function]

Halts execution of the next command for the
time indicated by the value of the numeric
argument specified by ¢. The time units

are 10 msec.

(Example) +D1000Z

Halts execution for 10 seconds.

* Assignment to Q-register

Format : *

a

Q-register name

[Function]

Assigns the contents of the command buffer to

Q-register ga.

When command string input is interrupted by

4+ C and when command execution is interrupted
by +C+C or when a prompt is displayed by
interrupt by an error during command
execution, the contents of the command buffer
can be stored to the Q-register by entering *
at the 1lst character and specifying the Q-
register at the 1lst character following the

prompt.

(Example)
xxx>:1 _+FPRM+ (Q1 {1) 4V=HS$ 4C ... @
xxXx>*2 @
xxx>M2$3 ... ®

at (O, a command string is input
and the command is terminated by $

and input is interrupted by *tC.

At (@, the command string of (O

is assigned to Q-register 2 by *2.

At this time, if assignment is

performed normally, a prompt is
displayed as shown at Q) .

The command string stored to Q-
register 2 can be executed by M

command.

Macros can be easily created by using the *
like this.

When command execution is interrupted by an
error, the error can be corrected and the

command can be re-executed by .ED command by
assigning the contents of the command buffer

to a Q-register by * command.

This function allows efficient command input
without the need to re-input the command from
the beginning even when a long command string

is input and an error is generated.

Y Data Memory Read Command

Format : Y
[Function] Reads the contents of the data memory and
register file of a device on the SE board to
CLICE.
Reads the contents of the data memory of the
device on the SE board to the address
indicated by array DTM and succeeding
addresses. The contents of a register file
are read to the address indicated by array RGF
and succeeding addresses.
(CLICE) (Device on SE Board)

+ FDTM Address —-

+ FRGF Address —

Data Memory

Register File

W Data Memory Write Command

Format : W

[Function]

Writes the data on CLICE to the data memory
and register file of the device on the SE

board.

Writes the data beginning from the address
indicated by array DTM to the data memory of
the device on the SE board. Writes the data
beginning from the address indicated by array
RGF to the register file of the device on the
SE board.

(CLICE) (Device on SE Board)

+ FDTM Address —

+ FRGF Address -

Data Memory

Register File

.6.

.6.

EDITOR
CLICE has editor functions for editing command strings.

The editor can add, change, and delete all, or part, of a

command string (character string).

COMMAND BUFFER EDITING

[Function] Edits the command buffer.

[Format] +E

When 4E is input during command string input, CLICE
enters the editor mode which edits the input command

string.

The editor command to be described later can be used in

editor mode.

(Example) xxx>Ul +ASTRINGS 4+AS +E
> ... Enters editor

mode

Q-REGISTER EDITING

[Function] Edits the contents of the Q-register.
[Format] .ED ¢

CLICE enters the editor mode which edits the contents
stored in the Q-register specified by o as a character

string.

The editor commands to be described later are used in the

editor mode.

.6.

(Example) =xxx>Ul 4+ ASTRINGS 4 ASS
xxx>.ED1SS
> ... Enters the editor

mode.

[Note] When Q-register o is not defined, the error

message
?2NVQ NO VALUE IN Q-REGISTER
is displayed.

EDITOR COMMANDS

The editor commands include move, insert, delete, search,

replace, display and end.

In some commands, the number of times the command is to be

executed can be specified in front of the command.
The number of times is specified by a 2-digit decimal.

When O is specified or specification is omitted, 1 is

assumed.

Each editor command consists of one uppercase alphabetic
character. Note that an editor command is not displayed

even if input.

When an editor command generates an error, a beep is

sounded and the input command is ignored.
(1) Cursor control

The cursor is moved to the right and the character to

be edited is displayed with the space key.

The cursor is moved to the left and the displayed
character is detected with the BS or DEL key.

The cursor can be moved to the position to be edited

by these operations.

Editing is performed at the position indicated by the

cursor.
(Example) >N The first character is edited.
>S® When the cursor is moved to the
right with the space key, a
character string is displayed.
>STH
>STRINGH
>STRINK
When the cursor is moved to the
left with the BS or DEL key,
the displayed character is

deleted.

MW indicates the cursor.

(2) Insertion
[Command] I

Inserts the keyed in character string at the current

cursor position.
Insertion is ended by pressing the ESC key.

(Example) >ABCGHIM Original character string.
>ABCH Cursor is moved to G.
>ABCDEF N IDEF(ESC) is input.
>ABCDEFGHI H

When the cursor is moved, it

can be seen that a character

string have been inserted.

[Command] X

After moving the cursor to the end of the line, this

command operates the same as the I command.
Insertion is ended by pressing the ESC key.
(Example) >H Original character string.
>ABCDEF N

When X is input, the entire

character string is displayed.

>ABCDEFGHI &
GHI(ESC) is inserted and

insertion ends.

[Command] P

Inserts the keyed in character at the current cursor

position.
(Example) >ABCEFNM Original character string.
>ABCHR Cursor is moved to E.
>ABCDH PD is input
>ABCDEFE
When the cursor is moved, it
can be seen that characters
have been inserted.
(3) Deletion

[Command] D

Deletes one character from the current cursor

position.

When a count is specified, that number of characters

are deleted.

(Example 1)
>ABCDEF N Original character string.

>ABCD R The cursor is moved to E.
>ABCD¥E¥Y N

When D is input, the deleted

character is displayed.

(Example 2)
>ABCDEFE Original character string.

>ABCH The cursor is moved to D.

>ABC¥DEF¥ N
When 3D is input, the three

deleted characters are

displayed.

[Command] H

Deletes the characters from the current cursor
position to the end of the line and operates the same

as the I command.
Insertion is ended by pressing the ESC key.
(Example) >ABCH Original character string.

>YABC¥HN The characters deleted by
the H command are

displayed.

>YABC¥DEFM DEF (ESC) are input.

(4)

Search

[Command] S

Searches for the keyed in character from the current
cursor position and moves the cursor to the found

position.

If the character is not found, moves the cursor to

the end and sounds a beep.

When a count is specified, searches for that number

of characters.

(Example 1) >ABCDEFGHIN

Original character string.

>H
The curscr is moved to the top.

>ABCDEF#
When SG is input, the cursor

moves to G.

(Example 2) >ABCABCABCH
Original character string.

>H
The cursor is moved to the top.

>ABCABCA M
When 3SB is input, the cursor

moves to the 3rd B.

(5) Replace

[Command] C

Replaces the character at the current cursor position

with the keyed in character.

When a count is specified, characters are replaced by

the number of key inputs.

(Example 1)
>ABC*EFM Original character string.

>ABCH Cursor is moved to the *.

>ABCD M
When CD is input, the * is

replaced by D.

(Example 2)
>ABC1234HIMN
Original character string.

>ABCH Cursor is moved to 1.

>ABCDEFGH
When 4CDEFG is input, 1234 are

replaced by DEFG.

[Command] R

Replaces the character string from the current cursor

position with the keyed in character string.

Replacement is ended with the ESC key.

(6)

(Example) >ABCl23GHIHA
Original character string.

>ABCH Cursor is moved to 1.
>ABCDEF® RDEF (ESC) are input.

>ABCDEFGHINR
When the cursor is moved, the
replaced character string can

be seen.
Display
[Command] L

Displays the character string from the current cursor
position to the end of the line and moves the cursor

to the top of the line.
(Example) >ABCDEFGHE Original character string.
>ABCH Cursor is moved.

>ABCDEFG The character string is
displayed by L command.

>H Automatic line fed cursor
moves to the top of the

line.

[Command] T

Displays the character string from the current cursor
position to the last character string being edited
and moves the cursor to the top of the character

string being edited.

(Example) >ABCDEFG
HIJKLH Original character string.
>ABCH Cursor is moved.
>ABCDEFG
HIJKL
Character string displayed by

T command.

>l Automatically line fed cursor

moves to top.

(7) END

The editor mode is ended with the ESC key.

Built-in macro commands are listed in the following tables.

These can be used for program development.

APPENDIX B.

be used as an index.

BUILT-IN MACRO COMMANDS

These tables can also

B.1 PROGRAM MEMORY CONTROL COMMANDS
Command Function Outline Page
Name
.LPO Program memory When IE-17K starts up, downloads xxx.ICE 5-21
load (channel 0)| file using RS-232-C channel O.
.LP1 Program memory When IE-17K starts up, downloads xxx.ICE 5-21
load (channel 1)| file using RS-232-C channel 1.
.VPO Program memory Using RS-232-C channel O, verify program 5-22
verify memory and ICE file downloaded in IE-17K.
(channel 0)
.VP1 Program memory Using RS-232~C channel 1, verify program 5-22
verify memory and ICE file downloaded in IE-17K.
(channel 1)
.IP Program memory Rewrites specified data at a time in 524
initialization arbitrary range of IE~-17K program area
(1-4-3-4-4 format).
.CP Program memory Rewrites an instruction in arbitrary 5-25
change addresses of IE-17K program area
(1-4-3-4-4 format).
.AP Assemble command| Rewrites an instruction from mnemonic in 5-27
(change by arbitrary addresses of IE-17K program
mnemonic) area. It is convenient if used together
with UP command.
.DP Program memory Displays maximum 3FH-byte data from 5-30
dump arbitrary address in IE-17K program area
(1-4-3-4-4 format).
.UP Disassemble Displays maximum 10 steps (in mnemonic 5-32
command (dump format) from arbitrary address of IE-17K
by mnemonic) program area.
.FP Program memory Searches for contents of program memory 5-35

search

in 1-4-3-4-4 format.

(to be continued)

Command

Function Qutline Page
Name
.SPO Program memory Using RS-232-C channel O, saves an IE-17K 5-36
save program. Convenient to save a patched
{channel 0) program,

.SP1 Program memory Using RS-232-C channel 1, saves an IE-17K | 5-36
save program. it is convenient to save a
(channel 1) patched progran.

. XS0 PROM data Using RS-232-C channel 0, converts and 5-37
output outputs IE-17K program to PROM file.
{(channel 0)

.XS1 PROM data Using RS-232-C channel 1, converts and 5-37
output outputs IE-17K program to PROM file.
(channel 1)

.Q Restart If prompt is ">@@@" and this command is 5-38
executed, a program downloaded once is
restarted.

B.2 DATA MEMORY CONTROL COMMANDS

Command Function Outline Page

Name

.ID Data memory Initializes specified data in arbitrary 5-41

initializa- range of data memory at a time.
tion

.CD Data memory Rewrites data in arbitrary address of 5-42

change data memory in an address unit.

.DD Data memory Dumps data memory in arbitrary range. 5-44

dump

.D All data Dumps all data memory. 5-46

memory dump

B.3 PERIPHERAL CIRCUIT CONTROL COMMANDS

Command Function Outline Page
Name
.GD Peripheral Displays peripheral register contents. 5-48
register
contents
display
.GE Peripheral Assigns peripheral register contents to 5-49
register Q-register. Using a primitive command,
contents this command is used for editing a user
read macro.
.PD Peripheral Assigns a value to the peripheral 5-51
register register.
write
.PU Indirect Assigns Q-register contents to the 5-52
peripheral peripheral register. Using a primitive
register command, this command is used for editing
write a user macro.

B.4 EMULATION COMMANDS

Command Function Outline Page
Name
.R Reset Resets an SE board. Program execution 5-54,
address becomes OH, and data memory and 7-1
register file, etc. become the status
equal to the reset status of target
products.
.RN Program Executes a program from specified program 5-55,
execution execution start address. The break/trace 7-1
conditions are not changed.
.BG Program Executes a program from specified program 5-56
execution execution start address. The break/trace
(partial reset conditions are partially reset.
of break/trace
reset)
.BK Break Stops program execution. 5-57,
7-1
.CA Program start Changes program execution start address. 5-58
address change
.S Step operation Using space key, executes program 5-59,
according to the number of times specified| 7-~14
by keypad input in an instruction unit.
.DS Display This is a command associated with certain | 5-61
products with LCD controller.

B.5 BREAK/TRACE CONDITION CONTROL COMMANDS
Command Function Outline Page
Name
.CC Break/trace Sets/changes break/trace condition, 5-63,
condition 7-4
change
.CT Trace on/off Sets trace start/end and trace one shot. 5-84
condition change
.DC Break/trace Dumps on display the break/trace 5-89
condition dump condition.
.DT Trace table dump| Dumps trace result. 5-91
.SCO Break/trace Output to RS-232-C channel O the break/ 5-05
condition save trace condition set by .CC level 1.
(channel 0)
.SC1 Break/trace Qutput to RS-232-C channel 1 the break/ 5-95
condition save trace condition set by .CC level 1.
(channel 1)
.LCO Break/trace Downloads the break/trace condition from 5-96
condition load RS-232-C channel O.
(channel 0)
.LC1 Break/trace Downloads the break/trace condition from 5-96
condition load RS-232-C channel 1.
{channel 1)
.VCO Break/trace Verifies data from RS-232-C channel O 5-97
condition verify| using break/trace condition.
(channel 0)
.VC1 Break/trace Verifies data from RS-232-C channel 1 5-97
condition verify| using break/trace condition.
(channel 1)
B.6 COVERAGE DISPLAY COMMAND
Command Function Outline Page
Name
.DM Coverage memory Displays program memory change history 5-99

dump

and data memory write history.

B.7 PROGRAM PATTERN GENERATOR (PPG) CONTROL COMMANDS

Command Function Qutline Page
Name
IG PPG data Initializes PPG data. 5-102
initialization
.CG PPG data setting| Sets/changes PPG data. 5-103,
/change 6-1
.DG PPG data dump Dumps PPG data. 5-105,
6-1
.EG PPG execution/ Executes PPG, issues stop directive, and | 5-106,
stop & sets output pin and execution speed. 6-1
Operating mode
setting
.SGO PPG data save Outputs PPG data to RS-232-C channel O. 5-108
(channel 0)
.SG1 PPG data save Outputs PPG data to RS-232-C channel 1. 5-108
(channel 1)
.LGO PPG data load Downloads data from RS-232-C channel O 5-109
{channel 0) using PPG data.
LLG1 PPG data load Downloads data from RS-232-C channel 1 5-109
(channel 1) using PPG data.
.VGO PPG data verify | Verify data from RS-232~C channel O using| 5-110
{channel 0) PPG data.
.VG1 PPG data verify Verify data from RS-232-C channel 1 using| 5-110
(channel 1) PPG data.
B.8 HELP COMMAND
Command Function Outline Page
Name
H Support command | Displays command list. 5-112

display

	COVER
	PREFACE
	CHAPTER 1. GENERAL
	1.1 General
	1.2 Features
	1.2.1 Interface with Target System
	1.2.2 Program Memory
	1.2.3 Emulation Method
	1.2.4 Break Functions
	1.2.5 Real-Time Trace Function
	1.2.6 Data Memory Coverage Function
	1.2.7 Program Memory Coverage Function
	1.2.8 Programmable Pattern Generator (PPG) Function
	1.2.9 Other Features

	1.3 Composition
	1.3.1 System Diagram
	1.3.2 Block Diagram

	CHAPTER 2. SPECIFICATIONS
	2.1 Main LSI
	2.2 Console Interface
	2.3 Environmental Conditions
	2.4 Power Requirement
	2.5 Internal Power Supply
	2.6 Power Requirement of Each Board
	2.7 Dimensions
	2.8 Exterior Views
	2.9 Accessories

	CHAPTER 3. INSTALLATION
	3.1 Memory Board and Supervisor Board Removal
	3.2 Switch Settings
	3.2.1 Memory Board Switch Settings
	3.2.2 Supervisor Board Switch Settings

	3.3 Connector Connections
	3.3.1 Memory Board Internal Connectors
	3.3.2 Supervisor Board Internal Connectors

	3.4 SE Board Installation
	3.5 Connection to Host Machine
	3.6 Connection to PROM Programmer
	3.7 Connection to Target System

	CHAPTER 4. START-UP
	4.1 Communications Using Windows (Version 3.1)
	4.1.1 Terminal Start-Up
	4.1.2 Settings
	4.1.3 Downloading a Program to IE-17K

	CHAPTER 5. DESCRIPTION OF COMMANDS
	5.1 Prompt
	5.2 Command Line Format
	5.3 Command Buffer
	5.4 Character Set
	5.4.1 Special Control Characters
	5.4.2 Special Characters
	5.4.3 Dummy Character

	5.5 Expression
	5.6 Constant
	5.7 Variables
	5.7.1 Array
	5.7.2 Q-Register

	5.8 Built-In Macro Commands
	5.8.1 Program Memory Control Commands
	5.8.2 Data Memory Control Commands
	5.8.3 Peripheral Circuit Control Commands
	5.8.4 Emulation Commands
	5.8.5 Break/Trace Condition Control Commands
	5.8.6 Coverage Display Command
	5.8.7 Program Pattern Generator (PPG) Control Commands
	5.8.8 Help Command

	CHAPTER 6. PROGRAMMABLE PATTERN GENERATOR (PPG)
	6.1 PPG Data Display and Modification
	6.2 PPG Probe Valid Bits and Step Rate Setting
	6.3 PPG Starting and Stopping
	6.4 PPG Usage Precautions
	6.5 PPG Examples

	CHAPTER 7. PROGRAM EXECUTION
	7.1 Real-Time Emulation
	7.2 Break Point Setting
	7.2.1 Break by Program Address
	7.2.2 Break by Data Memory Modification
	7.2.3 Break by Multiple Break Condition

	7.3 1-Step Emulation

	CHAPTER 8. SE BOARD PROM CREATION
	CHAPTER 9. ERROR MESSAGES
	9.1 Command Errors
	9.2 Hardware Errors

	APPENDIX A. PRIMITIVE COMMANDS
	A.1 Primitive Commands Table
	A.2 Array Table
	A.3 Condition Register Offset Address
	A.4 Condition Unit Register Offset Address
	A.5 Primitive Commands Descriptions
	A.5.1 Pointer
	A.5.2 Function
	A.5.3 Assignment
	A.5.4 Argument Stack
	A.5.5 Q-Stack
	A.5.6 Macro
	A.5.7 Control
	A.5.8 Display
	A.5.9 Others

	A.6 EDITOR
	A.6.1 Command Buffer Editing
	A.6.2 Q-Register Editing
	A.6.3 Editor Commands

	APPENDIX B. BUILT-IN MACRO COMMANDS
	B.1 Program Memory Control Commands
	B.2 Data Memory Control Commands
	B.3 Peripheral Circuit Control Commands
	B.4 Emulation Commands
	B.5 Break/Trace Condition Control Commands
	B.6 Coverage Display Command
	B.7 Program Pattern Generator (PPG) Control Commands
	B.8 Help Command

