To our customers,

Old Company Name in Catalogs and Other Documents

On April 1!, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

8.

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

LENESANS
User’'s Manual

ID78KO0

Integrated Debugger

Guide (Windows™ based operation)

Target device
78K/0 series

Document No. U11649EJ1V2UMOO (1st edition)
Date Published March 1998 J CP(K)

© NEC Corporation 1996
Printed in Japan

IBM PC/AT is a trademark of International Business Machines Corporation.

i386 and i486 are trademarks of Intel Corporation.

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation
in the United States and/or other countries.

Windows is an abbreviation of Microsoft ™ Windows ™ Operating System.

The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or of others.

M7A 96.10

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

+ Device availability
+ Ordering information

« Product release schedule

« Availability of related technical literature

- Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

+ Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California

Tel: 408-588-6000
800-366-9782

Fax: 408-588-6130
800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany

Tel: 0211-65 03 02

Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK

Tel: 01908-691-133

Fax: 01908-670-290

NEC Electronics Italiana s.r.1.
Milano, Italy

Tel: 02-66 75 41

Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office

Eindhoven, The Netherlands

Tel: 040-2445845

Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France

Tel: 01-30-67 58 00

Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Spain Office

Madrid, Spain

Tel: 01-504-2787

Fax: 01-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office

Taeby, Sweden

Tel: 08-63 80 820

Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong

Tel: 2886-9318

Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch

Seoul, Korea

Tel: 02-528-0303

Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 65-253-8311

Fax: 65-250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan

Tel: 02-719-2377

Fax: 02-719-5951

NEC do Brasil S.A.
Cumbica-Guarulhos-SP, Brasil
Tel: 011-6465-6810

Fax: 011-6465-6829

J98. 2

Preface

Preface

Thank you for purchasing the ID78K0 integrated debugger.

Conventional debuggers are used by entering commands directly. The ID78KO0 integrated debugger, on
the other hand, runs under Windows to provide a friendly, easy-to-use GUI (Graphical User Interface). Its
operation is mouse-based, and operation is possible without having to refer to the manual. Also,
frequently used commands are represented as buttons, allowing their activation simply by clicking the
button with the mouse.

«Purpose»

The purpose of this manual is to provide the user with a brief explanation of how to use the ID78K0
integrated debugger. This manual should be read together with the “ID78K0 Integrated Debugger
User's Manual (Reference).” For a detailed explanation of each window, refer to the “ID78K0
Integrated Debugger User's Manual (Reference).”

«Files supplied with the integrated debugger»

Files used with the integrated debugger

File name Explanation
ID78K0.EXE Debugger main section.
The debugger is started by executing this file.
ID78KOP.DLL Contains the libraries used for link processing with Project Manager.
DB78K0.DLL Contains libraries for file and symbol processing.
AS78K0.DLL Contains libraries for assembly and disassembly.
EX78K0.DLL Contains libraries for communication with the in-circuit emulator.
EX78K0.0MO Downloaded into the in-circuit emulator when the debugger starts.
ID78KO0.HLP Help file.
EXPC.INI Initial file.
Used to specify a set point and an interrupt address for the PC interface board.

Sample programs

File name Explanation
SAMPLE.C Sample program written in C.
SUB.C Sample program written in C. Contains the subroutines of SAMPLE.C.
SAMPLE.LNK Load module file for sample programs SAMPLE.C and SUB.C. Compiled by
/PD78014.

Preface

«Target device»

The device which is to be the target of debugging by the integrated debugger is called a target device.
The table below lists target devices, their associated device files, microprograms, and the names of
the CPUs which select the target devices.

Target device CPU name Device file
/PD78014 78014 D014.78K
PD78044 78044 D044.78K
/PD78054 78054 D054.78K
PD78064 78064 D064.78K

Note: For details of other devices, contact your NEC sales representative or authorized dealer.

«In-circuit emulator»

An in-circuit emulator and dedicated interface board are required to use the integrated debugger.

The table below lists the in-circuit emulator boards and interface boards that can be connected to host
machines.

In-circuit emulator

Product name Explanation
IE-78000-R-A In-circuit emulator main board
IE-78xxx-R-EM(Note 1) Product type dependent board

Note 1. For details, contact your NEC sales representative or authorized dealer.

Interface boards

Product name Explanation
IE-70000-98-1F-A Interface board for PC-9801 and 9821 Series (C bus)
IE-70000-98-IF-B Interface board for PC-9801 and 9821 Series (C bus)
IE-70000-98N-IF(Note 2) Interface board for 98NOTE (110-pin expansion bus)
IE-70000-PC-IF-B(Note 3) Interface board for IBM-PC/AT Series (ISA bus)

Note 2. The IE-70000-98N-IF is corrected to the expansion bus (110-pin type) of 98NOTE.
Note 3. The IE-70000-PC-IF-A cannot be used.

Preface

«Host machine»

The integrated debugger runs under Windows. The table below lists the requirements for the
machine to be used.

ltem Requirement
Host machine PC-9801, 9821 or IBM-PC/AT Series
CPU i80386 or above (180486, 33 MHz or above recommended)
Main memory 4M bytes or more (8M bytes or more recommended)
(O} Windows 3.1 or Windows 95
Screen size 640 x 400 dots or larger (800 x 600 dots or larger recommended)
«Configuration»

® Chapter 1 Overview

Explains general operations of the integrated debugger.

®* Chapter 2 Basic Operations

Explains the relationships between windows and other information by purpose.

® Chapter 3 Advanced Use of ID78K0

Describes the terms used in the explanation of the integrated debugger.

«Conventions»

The following explains the conventions used throughout this manual.

|:| . Indicates a key to be pressed.

+ . Indicates keys which must be pressed at the same time.
Indicates a character string.
Indicates a character.

[] . Indicates an optional parameter.
GRPH| key . Representation of a key featured by the PC-9801 and 9821 Series.

The key of the IBM-PC/AT Series has the same function.

All representations of keys in this manual are for the PC-9801 and 9821 Series. When using an IBM-
PC/AT Series computer as a host machine, see Appendix B .

Preface

«Screen»

The descriptions in this manual refer to Windows 95 screens unless specified otherwise.
The differences between Windows 3.1 screens and Windows 95 screens are as described below.

Windows Windows

31 95 Remarks

Control menu box Displays the control menu.

With Windows 95, an icon or the Windows logo is
displayed.

Minimizes the window.

Window size - I
modification
Maximizes the window.

B
=
o
ﬂ il Restores the window to its original size.
X
VI

Close button (None) Closes the window.
Option E |:| Multiple options can be selected.
i {+ (— |Only one of the multiple options can be selected.
Control menu box Window size modification, program closing

(’V)f)?em = |0 x])
Wiew Ogtmn Execu Operatmn BEromse dump Window Help

-

/ Windows 95 screen \

= \ D78k [|-

ile Edit Yiew Option Executé\ ﬂperat\un owse Jump MWindow Help

Pl Z (i & | = |

[T
= wtended Option

,
-

Windows 3.1 screen

Options

Preface

«Cautions»

* To perform source debugging, add options for creating debug information whenever compiling,

assembly, or linking is performed. Otherwise, source debugging may not be possible.

« When creating your own startup routine in C, add the symbols given below. Failing to do so may

result in part of the step execution not being performed correctly.

Where to add Symbol to be added
Start of startup routine _@cstart
End of startup routine _(@cend

«Related Documents»

The documents (user’'s manuals) related to this manual are listed below:

Document name

Document number

Japanese English
ID78KO0 Integrated Debugger User’'s Manual, Reference U11539J U11539E
RA78K Series Assembler Package Language EEU-815 EEU-1399
Operation EEU-809 EEU-1404
RA78K Series Structured Assembler Preprocessor EEU-817 EEU-1402
CC78K Series C Compiler Language EEU-655 EEU-1280
Operation EEU-656 EEU-1284
78K/0 Series User's Manual, Instructions IEU-849 EEU-1372
/PD78014, 78014Y Sub-Series U-10085JJ | EEU-1343

Note: The above documents may be revised without notice.

designing an application system.

Use the latest versions when

Contents

Chapter 1 Overview

1.1 Starting and Terminating the Debugger

1.2 Making Maximum Use of the Main Window

Chapter 2 Basic Operations
2.1 Establishing the Environment

2.2

2.3

24

2.5

2.6

1.1.1
1.1.2

1.2.1
1.2.2
1.2.3
1.2.4

211
21.2
2.13
214
2.15
2.16
2.1.7

Source Level Debugging

221
222
2.2.3
224
2.25

Instruction Level Debugging

23.1

2.3.2 Saving and Referencing Displayed Assembly Language Code

233
234

Manipulating Memory

24.1
24.2
243
24.4
245

Manipulating Registers

251
252
253
254
255

Creating Events

2.6.1

2.6.2
2.6.3
2.6.4
2.6.5
2.6.6

Starting

Terminating

Main Window Functions

Making Maximum Use of Menus

One-Touch Tool Bar Operation
Using Information Provided by the Status Bar

Selecting a Device
Selecting a CPU Clock

Mapping
Specifying a Stack Area

Setting the Alternate Software Operation Clock
Setting Memory Banks

Loading/Saving the Debugging Environment

Notes on Compilation, Assembly, and Linking
Downloading a Program

Displaying a Source
Functions Supported by the Source Window

Jump from the Source Window

Assembly Language Display and Online Assembly

Functions Supported by the Assemble Window

Jump from the Assemble Window

Displaying and Modifying Memory Data
Basic Memory Data Operations

Saving and Referencing Displayed Memory Data

Functions Available in the Memory Window
Jumping from the Memory Window

Displaying and Modifying Registers

Saving and Referencing Displayed Register Data
Functions Available in the Register Window

Functions Available in the SFR Window

Jumping from the Register Window

Setting and Referencing Events in the Source Window
and Assemble Window

Creating Event Conditions
Setting Events

Saving and Restoring Event Conditions
Functions Available in the Event Manager

Jumping to an Event Setting Address

Vi

N oo A DMODNDNNDPR

(0]

10
11
12
13
14
16
18
20
20
21
22
23
24
25
26
27
28
29
30
30
31
32
33
34
35
35
36
37
37
38
39

40
41
43
44
45
46

Contents

2.7 Manipulating Symbols (Variables)
2.7.1 Displaying and Modifying Variables

2.7.2 Saving and Referencing Symbol Data

2.7.3 Functions Available in the Variable Window and
Local Variable Window

2.8 Using the Tracer Effectively

2.8.1 Displaying Trace Results
2.8.2 Saving and Referencing Trace Results

2.8.3 Effective Trace Memory Usage 1 (Trace Mode Setting)
2.8.4 Effective Trace Memory Usage 2

(Trace Full Break, Snapshot Trace)
2.8.5 Inter-Window Connection Functions

(Window Connection Function, Jump Function)
2.9 Measuring the Execution Time

2.9.1 Measuring Program Execution Time
2.9.2 Time Measurement Using the Tracer

Chapter 3 Advanced Use of ID78K0
3.1 Verifying the Validity of Evaluation

3.1.1 Coverage
3.1.2 Verifying the Validity of Evaluation Based on Coverage

3.1.3 Notes on Coverage Results

3.2 Using External Sense Clips
3.2.1 Tracing External Data

3.2.2 Trigger Output
3.2.3 Real-Time RAM Output

3.2.4 Creating an Event by ANDing a Data Condition
3.3 Measuring Time by Setting Conditions

Appendix A Error Messages

Appendix B Key Functions
B.1 Functions of Special Function Keys

B.2 Functions of Special Function Keys ((CTRL|+ Key)

Appendix C Menus

Vii

47
48
50

51
52
53
54
55

59

61
63
63
64

65
66
66
67
69
70
71
72
73
74
75

77

87
87

88

89

[MEMO]

Chapter 1 Overview

Chapter 1 Overview

This chapter outlines the debugger.

1.1 Starting and Terminating the Debugger
This section explains how to start and terminate the debugger.

1.2 Making Maximum Use of the Main Window
The main window appears when the debugger is started. The main window supports many
functions. By making full use of these functions, the efficiency of debugging can be significantly
enhanced.

Chapter 1 Overview 1.1 Starting and Terminating the Debugger

1.1 Starting and Terminating the Debugger

* The debugger can be started and terminated easily.

* To start the debugger, select the icon, shortcut key, or corresponding item in the start menu.
These will have been registered when the software was installed.

* To terminate the debugger, select the corresponding item from the menu. When terminating the
debugger, you may select saving of the debugging environment. Doing so allows the debugger
to be used immediately the next time it is started.

1.1.1 Starting

1. Start Windows.
2. Turn on the in-circuit emulator.
3. Turn on the target, if being used.
4. Double-click the icon or shortcut key, registered when the debugger was installed.
E-'? Programsz U= Accessories k
= Documents k I:',:j Startllp k
Fird v i M5-DOS Prompt
DTS KD @ Help LQ Windows Esplorer
Bun.

Configuration x|
—Chip — Memory BANK —
y (1].4
Hame: uF'D?BI]14 jl CON |
—Sizing RAM & OEF Heset
Internal ROM: 32 KByte C I
BANK Set | &I
Internal RAM: 1024 Byte =
—Clock ~Peripheral Break — ~ Firm Clock Help
¥ Internal ¥ Break % System
" External " Hon Break € User
—Memory Mapping
Memory Attribute — LAl |
Emulation ROM . = |

Chapter 1 Overview 1.1 Starting and Terminating the Debugger

6. Select a debug target device.
(Note that the debug target device can be selected only when the debugger is being

started.)
r Chip
| [YEC T [.PD 78014 B

7. Set the clock source, memory mapping, and other required items.

1].4
8. Once all the necessary items have been set, click the —l button. This completes

device initialization and causes the required data to be downloaded to the in-circuit emulator.

9. Once downloading has been completed, the main window of the debugger opens. The main
window is used as the core window for debugging.

FRID78K0 =0l x]

File Edit Miew Option Execute Cperation Browse Jump Window Help

n||-|l*N|I|a-l|m| 5!

1.1.2 Terminating

1. Select File from the menu bar of the main window.
2. Select Exit from the File pull-down menu.

3. The Exit Debugger dialog box appears.
et Debugger x|

Thiz will end your Debugger seszion.

[TiSave Project file_

1] % | LCancel

4. Click the Ll button to terminate the debugger.

Chapter 1 Overview 1.2 Making Maximum Use of the Main Window

1.2 Making Maximum Use of the Main Window

» All debugger windows are based on the main window.
* The main window supports many functions, all of which are easy to use.

1.2.1 Main Window Functions

* The main window supports four major functions.
* Many debugger operations are performed from the main window. Remember the following four

functions.
Function Description
Menu bar Contains all the functions supported by the debugger. To perform
some operation with the debugger, first check the contents of the
menu bar.
Tool bar Contains the most-frequently used commands. While no target is

connected, try clicking each of the buttons, and make a note of the
graphic identifying each button.

Window display area Windows are displayed in this area. These windows include, for
example, the Source window and Assemble window, both of which
are used whenever debugging is performed.

Status bar The status of the in-circuit emulator (IE) is displayed in this area.
The |IE status and break cause are particularly important.

Tool B_ar: Menu bar:
Contains he most-frequently used All operations supported by the debugger
commands. Tool bar commands can are displayed on pull-down menus.
be executed by a single action, making
them extremely conventient to use. Z
E | O e B/ _=J_I:I_|£I
File Edit EiEW/Oécicun Execute Operation Brfwse Jump Window Help
HERNEBEARB =i |77} =
B Source Window (sample.c) =1o] x|
Ent: FixedSyvs v|| Size: | 15 ;J Set BP I Watch | Yiew | Search | Event
10035 EIC); ;II
(0036 while(1)]
S % ® Trace View =lo] x|
I Window display area:
00393 L) EREV | - Windows are displayed.
0040 .
(1041 Fram=e Timne Faddr Fdat F=tat Maddr HMdat H=tat E=xi
— 32759 K] FDFO nz W E;[
L 32760 5 0119 BE M1
32761 g 0114 03 op
32762 5 011E a0 M1 [x
il r
Emulation: [l]
Frame: D Status: Guard:
Memor"y‘ e il |
sample.c:38 main [o11E [|[BREAK , |[Compulsory Break
y4
Status bar:

Information such as IE
inforation is displayed.

Chapter 1 Overview 1.2 Making Maximum Use of the Main Window

1.2.2 Making Maximum Use of Menus

* The menus contain all the functions supported by the debugger.

* Even when you are not familiar with the debugger's functions, briefly studying each of the pull-
down menus will allow you to understand the range of functions available.

* The menus are outlined below.

Menu Description

File Contains file operation commands. This menu enables the switching of the
source displayed in the Source window, the loading and saving of project
files, and other file operations.

Edit Provides commands for copying and pasting displayed data, as well as
commands for memory editing.

View Contains display commands. Using this menu, you can retrieve variables,
enter the display start address, and display variables.

Option Allows you to display and hide the tool bar, status bar, and buttons in each
window, and to establish the debugger environment.

Execute Contains execution commands. Also, trace mode setting is performed from
this menu.

Operation Allows you to perform window mode switching, and to specify connection to
the trace window.

Browse Contains the commands used to open each window. From this menu, you
can display windows such as the event and coverage windows.

Jump Allows you to jump to the source window, assemble window, and memory
window.

Window Allows you to specify how windows are to be displayed, the arrangement of
icons, and also enables switching between windows.

Help Displays help information.

1.2.3 One-Touch Tool Bar Operation

* The tool bar consists of buttons which correspond to frequently used commands. Commands
are executed simply by clicking the corresponding button.

* The function of each button is identified by a suitably representative graphic.

* The commands assigned to the tool bar buttons can also be executed from the menu bar.

Commands for program
execution:

Commands for controlling
m program execution

IDT8KD
w_

Source Window (sample.c) /
Fﬂnt: Fi &E‘IQUC‘ v“ E| m | Mﬂr"‘l hAL

03 Window manipulation commands: el PBetioe |
(02 Frequently used commands such as that

- for displaying a source and that for 0 93 1C Dk A1
displaying registers.

Chapter 1 Overview 1.2 Making Maximum Use of the Main Window

Description

Stops user program execution.

Executes a user program.
As soon as the break conditions are satisfied, the user program terminates.

Executes a user program.
Even when break conditions are satisfied, the user program does not terminate.

Executes the program in real time, until execution returns to the calling function.

Executes the program, step by step.

Every time this button is clicked, one step of the program is executed. For source level
debugging, one step corresponds to one line. For instruction level debugging, one step
corresponds to one instruction.

Performs Next step execution of the program.

Every time this button is clicked, one step of the program is executed, by means of Next
step execution. For source level debugging, one step corresponds to one line. For
instruction level debugging, one step corresponds to one instruction.

Initializes the debugger or emulation CPU.
Opens the Reset Debugger dialog box.

Displays the source text.
Opens the Source window.

Displays the stack contents.
Opens the Stack window.

Displays a disassembled program.
Opens the Assemble window.

Displays the contents of memory.
Opens the Memory window.

Displays the register contents.
Opens the Register window.

Registers and sets break events.
Opens the Break dialog box.

Displays trace results.
Opens the Trace View window.

Registers and sets trace events.
Opens the Trace dialog box.

Displays the SFR contents.
Opens the SFR window.

o] 1) [12+ (5) 1 o8 U] &) 1] 1] (] &M 2

Displays timer measurement results.
Opens the Timer window.

Chapter 1 Overview 1.2 Making Maximum Use of the Main Window

1.2.4 Using Information Provided by the Status Bar

» The status bar displays important data including, for example, the status of the IE and the cause
of a break.

« If a break occurs at a point where no break has been set, or if no source appears when a break
occurs, for example, check this area first.

— rereies | Status bar:
L I * 1 Information relating to IE is displayed. Break -1 B
0032 M| I{ cause information is particularly important.
0033 Elrosape a2 5
(034 wh |0oe0[ze 66 89 46 9D 19 98 99 26 26 99 8B D6 65
T7TIEE P R 99 76 4% 99 99 B9 11 74 FRTo—otr—aunn —| |
‘I-sample.-:::35 |[main (0104 | |[BREAK ||[Compulsory Break
1. Source file name: Displays the source file name and source line number corresponding
to the indicated PC value. If no file information is available, "---" is
displayed.
2. Function name: Displays the function name corresponding to the indicated PC value.
If no function information is available, "---" is displayed.
3. PCvalue: Displays the current PC value.
4. CPU status: Displays the status of the CPU (/PD780xx: target device).
CPU status Description
TARGET The target is on.
HOLD Bus hold mode
STANDBY Halt or stop mode
LUTCHUP Latch-up has been detected. Turn off the target and in-circuit
emulator immediately.
5. |E status: Displays the operation status of the in-circuit emulator.
IE status Description
RUN Real-time execution in progress
STEP Step-by-step execution in progress
BREAK Break status
TRACE Tracing in progress
TIMER Timer measurement in progress
6. Break cause: Displays the reason for a break. The table below lists possible break
causes.
Cause Description
Compulsory Break Normal break (manual break)
Temporally Break Normal break (break caused by internal processing)
Event Break Break triggered by an event
Out Of Range Break Break caused by procedure step termination
Trace Full Break Break caused by trace full state
Non Map Break Access to a non-mapped area was attempted.
SFR lllegal lllegal access to an SFR was attempted.
Stack Overflow Break caused by stack overflow
Write Protect An attempt was made to write to a write-protected area.

Chapter 2 Basic Operations

Chapter 2 Basic Operations

This chapter explains the basic operations of the ID78KO.
Each section clarifies how windows are related to each other.

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Establishing the Environment
Explains how to establish a debugging environment.

Source Level Debugging
Explains the use of the Source window to debug a source program.

Instruction Level Debugging
Explains the use of the Assemble window to perform assembler level debugging.

Manipulating Memory
Explains the use of the Memory window to perform modification, initialization, and other operations
on memory.

Manipulating Registers
Explains the functions of the Register window, used to manipulate general-purpose registers, and
those of the SFR window, used to manipulate SFRs.

Creating Events
Events are very useful for debugging. Events can be used for program and trace control. This
section explains how to set an event.

Manipulating Symbols (Variables)
The debugger supports the input of symbols as data. This section explains how to enter symbols
and display variables.

Using the Tracer Effectively
The IE-78000-R-A contains 32K frames of trace memory. The tracer is used to trace data, making it
very useful for detecting program problems. This section explains the use of the tracer.

Measuring the Execution Time
Explains the time required to execute a program from beginning to end, and time tags written in the
tracer.

Chapter 2 Basic Operations 2.1 Establishing the Environment

2.1 Establishing the Environment

» Establishing an environment allows the debugger to recognize the configuration of a target
system. Establishing a debugging environment enables the maximum utilization of the
debugger functions.

* The environment must be established whenever the debugger is started.

¢ Once an environment has been established, it can be saved to a file, subsequently eliminating
the need to newly establish the environment. When the debugger is next started, the

environment can be established simply by loading the file (project file).
* For the ID78KO0 operating environment, set the following items:

Item Setting window Location in Remarks
environment
setup diagram
Device Configuration dialog box <1>CPU Can be set
CPU clock <2> <3> <4> <6> | only when
<7> CLOCK the _
Peripheral equipment <1> CPU debugger is
operation being
Memory bank switching | Configuration dialog box <1>CPU started
Bank Set dialog box <8> MEMORY
Alternate operation clock | Configuration dialog box <1> CPU
Memory mapping Configuration dialog box <5> <8> MEMORY | Can be set
Mask option Mask Option dialog box <1>CPU at any time
In-circuit emulator Target jig
- CLOCK
1>CPU ~ CLOCK
<1>
<6>
<2>
- Internal Clock - External Clock
<7/>
<3> External Clock Subsystem
- or clock
6-8pin short
<4> Subsystem MEMORY
clock EP-78xxx-R
B <e>
6-8pin short
I -MEMORY <
=
[l = 5>
IE alternate memory Power supply
Mm (64K bytes)
G
===
- " Target jig

Establishing an Environment

Chapter 2 Basic Operations 2.1 Establishing the Environment

2.1.1 Selecting a Device

* A device can be selected in the Configuration dialog box that appears when the debugger is
started. Note that once the debugger has started, this selection cannot be changed.

Setting in the Configuration dialog box:
1. Start the debugger.
2. Select a device in the Configuration dialog box that appears when the debugger is
started.

When the main window has already been opened:
1. Terminate, then restart, the debugger.

Selecting Configuration pd|
a device i [Memory BANK —
Name: | _ﬂ| ,> " ON —IDK
— Sizing Fadd & EFF Heset |
Internal ROM: 32 KBpe Cancel |
Internal RAM: 1024 Byte _ BANK et |
—Clock Peripheral Break — —Firm Clock Help |
% Internal = Break {# Spstem
" External (" Non Break & User

—Memory Mapping
Memory Attribute
Emulation ROM B | | o |

10

Chapter 2 Basic Operations

2.1 Establishing the Environment

2.1.2 Selecting a CPU Clock

* A CPU clock is selected in the Configuration dialog box that appears when the debugger is
started. Note that once the debugger has started, the CPU clock cannot be changed.

1. Start the debugger.

is started.

Setting in the Configuration dialog box

When the main window has already been opened:
1. Terminate, then restart, the debugger.

2. Change the CPU clock in the Configuration dialog box that appears when the debugger

* When "Internal” is selected as the CPU clock, the clock provided by the in-circuit emulator is
used as the CPU clock. This clock frequency is determined by the connected emulation board

(EM board).

Emulation board(Note)

CPU clock frequency when "Internal” is selected

IE-78014-R-EM 8.38 MHz
IE-78014-R-EM-A
IE-780208-R-EM 4.19 MHz
IE-78044-R-EM
IE-78064-R-EM 5.0 MHz
IE-78078-R-EM
IE-78098-R-EM 6.0 MHz

Note For emulation boards not listed here, refer to the manual provided with the board.

To use the clock provided
by the target, select
"External."

Configuration

Memory Attribute

|
—Chip —Memory BANEK —
Name: |VEDEZIIE] - ok |
I " ON
—5Sizing RAM & OFF Heset |
Internal ROM: 32 KByte C
BANK Set | L’“’"I
Internal RAM: 1024 Byte =2
N\ Clock Penpheral Break — ~ Firm Clock Help |
= Internal & Break @ System
" External " Hon Break & User
—Memory Mapping
Add Delete |

Emulation ROM

-

11

Chapter 2 Basic Operations 2.1 Establishing the Environment

2.1.3 Mapping

* When external ROM/RAM is used in addition to internal ROM and internal RAM (including SFRs
and registers), the area to be mapped must be set.

To add an area to be mapped:

1. Open the Configuration dialog box. This dialog box appears when the debugger is started.
It can also be displayed by selecting Option -> Configuration... from the menu bar.

2. Setthe Memory Attribute area, then click the Add button.

To delete a mapped area:

1. Open the Configuration dialog box. This dialog box appears when the debugger is started.
It can also be displayed by selecting Option -> Configuration... from the menu bar.

2. Select the mapped area to be deleted, then click the &l button.

Configuration x|
— Chip —Memory BANK —
: (114
Mame: |uPD78014 - CoN |
—Sizing RAM & OFF Heset |
Internal ROM: 32 KByte
BANK Set | ﬂl
Internal RAM: 1024 Byte =
— Clack - Peripheral Break — —Firm Clock Help |
{*' Internal {* Break & System
" External " Non Break & User
~ Memory Mapping e — Mapping can be performed using the
i = Uelele | Configuration dialog box.
Memory Altiihate Emulation ROM: |E alternate ROM
Stack j| |FEUU | |FE?F | Emulation RAM: |E alternate RAM
- Target . Target RAM
Emulation ROM 8000 - 9FFF Stack . Stack area specification

Emulation RAM AQ00 — BFFF
Stack FiC00 — FE7F

12

Chapter 2 Basic Operations 2.1 Establishing the Environment

2.1.4 Specifying a Stack Area

* To monitor stack operation, specify a stack area.

¢ When a stack area has been specified, any stack operation (CALL, RET, PUSH, POP)
performed outside the set area is detected as being an illegal access.

* An area in internal high-speed RAM can be specified as the stack area.

* When no stack area is specified, the entire internal high-speed RAM area is used as the stack
area.

To specify a stack area:

1. Open the Configuration dialog box. This dialog box appears when the debugger is started.
It can also be displayed by selecting Option -> Configuration... from the menu bar.

2. Setthe Memory Attribute area, then click the Add button.

To cancel the stack area specification:

1. Open the Configuration dialog box. This dialog box appears when the debugger is started.
It can also be displayed by selecting Option -> Configuration... from the menu bar.

Delete

2. Select the mapped stack area to be deleted, then click the button.

Configuration x|
— Chip — Memory BAMK —

Mame: |uPD78014 H || con oKk |
— Sizing BAM SR Reset |

Internal ROM: 32 KByte
-+ BANK Set | __ Cancel |
Internal BAM: 1024 Byte >3 2

~ Clock - Peripheral Break — - Firmths< Help |

' Internal ¥ Break ¥ System

" External " Mon Break & User)

| The pPD78014 contains 1024
— Memory Mapping bytes of internal high-speed
. : Delete | RAM between addresses
Memory Attribute 0xfb00 and Oxfeff. Therefore,
tack - FCOO .- |FDFF 13 set the area to be mapped
<’I’5? J| | | | \'\ within this range.

FCO00 — FDFF i

13

Chapter 2

Basic Operations

2.1 Establishing the Environment

2.1.5 Setting the Alternate Software Operation Clock

The alternate software is control software that runs on the 78K0 device.

It controls the

resources (register values, SFRs, and memory) of the target while the in-circuit emulator is in

break mode.

The alternate software accesses the target resources directly.

The operation of the alternate software uses the same clock as the user program.

If, therefore,

the user program uses a low-speed clock while the in-circuit emulator is in break mode, the
alternate software will also operate slowly, thus lowering the overall speed of debugger operation.
To avoid this, specify the use of the alternate software operation clock.

started.
bar.

2. Select the operation clock in the alternate software operation clock selection area.

To set the operation clock:
1. Open the Configuration dialog box.

This dialog box appears when the debugger is
It can also be displayed by selecting Option -> Configuration... from the menu

Configuration x|
— Chip — Memory BANK —
< 0K
[[uPD 78001 - & i
—Sizing RAM & OFF Hes
Internal ROM: 8 KByte e
Internal RAM: 256 Byte RONE St |
—Clock - Peripheral Break — ~ Firm Clock Help |
{% Internal ¥ Break % Spst
" External {" Mon Break ¥ User
—Memory Mapping
Add Delete |

Memory Attribute

Emulation ROM

[]

Setting alternate
— software operation
clock

14

Chapter 2 Basic Operations

2.1 Establishing the Environment

The alternate software operating environment is illustrated below.

===

75 J7

ID78K0.EXE
AS78K0.DLL
DB78K0.DLL Control software
EX78KO0.DLL -
a
===
EX78K0.0MO I During break: Alternate software I/O and memory
While running: User program on the target
SV board
CPU for IE BK, EM board
control: V53
T Emulation CPU: 78K0
=
=

Trace board

Power supply

7S

W

Target

15

Chapter 2 Basic Operations 2.1 Establishing the Environment

2.1.6

Setting Memory Banks

The 78K0 series has an address space consisting of up to 64K bytes between addresses 0 and
Oxffff.

A program of 64K bytes or more can be run by switching part or all of the program area between
addresses 0 and Oxffff.

The structure of the memory banks is shown below.

In the following figure, the 16K-byte space between addresses 4000h and 7fffh is used for the
memory banks. Five banks, 0 to 4, are used. When bank 0 is selected, data in bank 0 can be
accessed at addresses 4000h to 7fffh, a linear space existing between address Oh and 7fffh.
When bank 0 is selected, the spaces corresponding to banks 1 to 4 cannot be accessed. When

bank 3 is selected, the data in bank 3 can be accessed between addresses 4000h and 7fffh.
The other banks cannot be accessed.

Memory Bank Switching

FFFFH FFFF
SFR SFR
Bank4 Bank4
Bank3 Bank2
7FFF 7FFF
Bank memory Bank2 Bank memory Bankl
Bank1 BankO
4000H Bank0 4000H Bank3
3FFFH 3FFFH
Internal ROM Internal ROM
0000H 0000H
When bank 0 is When bank 3 is
selected selected

16

Chapter 2 Basic Operations 2.1 Establishing the Environment

* To switch between memory banks, program the generation of the upper address by using, for
example, ports.

* So that the debugger can control the memory banks effectively, set the ports and other data to
be used for bank switching when establishing the environment.

Configuration d |
— Chip
Mame: [uPD78014 - ok |
~ Sizing HAM (" OFF To set up the memory banks, click the
Internal ROM- 32 KByte T BANK Set button in the Configuration
' \ BANK Set /{/ dialog box. The dialog box for
Internal RAM: 1024 Byte N = memory bank setting will appear.
— Clock - Pernipheral Break — ~ Fum ©inc
¥ Internal ‘ ¥ Break {# System ,
" External M Eank Set N .’ﬂ

~Memory Map Bank Port Thit Ghit Hbit 4bit Jbit Z2bit 1bit Obit
Memory Attri

[Emidetontt Potname || || || || || roa]||Po3||Poz ||Pm |
BANK address .

BANK increment count 010000

External probe data * Debwugger uge " User uge
External memory access attribute MM EBTS0 E

Beset | Cancel | Help |

17

Chapter 2 Basic Operations

2.1 Establishing the Environment

2.1.7 Loading/Saving the Debugging Environment

* Saving the debugging environment into a project file enables subsequent debugging to be
performed in exactly the same environment.

Debugging
environment

Method

Load At start

Specify a project file to be read, using its full path name, as a start option.

After start

Load a project file by using the Project file load dialog box.

Save After start

Save a project file using the Project file save dialog box.

At exit

Select "Save Project File" in the Exit Debugger dialog box, then terminate the
debugger.

After the debugger starts (loading)
M Open x|
File Name Directories oK
R b:\ debugger —
. Cancel Before the debugger
sample.prj el A= || stats
lsrc] o N HE|
[-a-]
[_ b _] Type the name of a program, folder, or document, and
{_ 3 _{ indows will open it for you,
[—e-] @EKD.EXE B:\SRC\GAMPLE PR >
7
[_Q_]] \ancel i Browse... |
_
Enter the full path
After the debugger starts (save) Ofn aegrofec‘t‘ﬁ@‘f" name
M Save X]
File Name Directories 0K
R b:\ debugger = |
Lance
sample.prj [..] £
[src] Resef
[:a:] Help When the debugger
{ b %) - terminates
s :
[-d-] ME it Debugger x|
{_e_]] Thiz will end your Debugger zession.
af = : e
¥ Save Project file.;
[-g-] - : '
o 1] 4 l Cancel
When terminating the i
debugger, select J

Chapter 2 Basic Operations

2.1 Establishing the Environment

Data to be loaded/saved

Window Data
Configuration dialog box All items
Bank Set dialog box All items

Main window

Setting information

Load Module dialog box

File information downloaded

Extended Option dialog box

Setting information

Mask Option dialog box

Setting information

Source Path dialog box

Source path information

Source window

Window display information, font information

Assemble window

Window display information, display start address

Memory window

Window display information, display start address

Stack window

Window display information

SFR window

Window display information

Local Variable window

Window display information

Trace View window

Window display information

Show Trace dialog box

Setting information

Snap Trace dialog box

Setting information

Event Manager

Window display information, all event information

Event Link dialog box

Window display information

Break dialog box

Window display information

Trace dialog box

Window display information

Snap-Shot dialog box

Window display information

Event Set dialog box

Window display information

Register window

Window display information, displayed bank

Variable window

Window display information, displayed variable information

Coverage window

Window display information

19

Chapter 2 Basic Operations

2.2 Source Level Debugging

2.2 Source Level Debugging

» ID78K0 can set breakpoints and display variables for a source.

* Many source level operations are supported, thus greatly enhancing debugging efficiency.

* Source level debugging can be performed by loading a file containing source information.

* Source level debugging is particularly effective for debugging programs written in C or structured

assembly language.

2.2.1

Notes on Compilation, Assembly, and Linking

* When source level debugging is performed, the file to be loaded must contain source debugging

information.

» Source debugging information is included in the object by specifying the option for adding
debugging information at assembly or compile time.
* The following shows how to set options at compilation, assembly, and linking:

Type of source to be debugged

Required action

C program Without in-line assembly
description

Specify the -G option at compile time.

With in-line assembly description

1. At compile time, specify the -a option to
output an assembly source file.

2. Assemble the source generated in 1, above,
without specifying any debug options (-GA, -
NGA).

Structured assembly language program

1. Specify the -GS option at structured
assembly.

2. Assemble the source generated in 1, above,
without specifying any debug options (-GA, -
NGA).

Assembly language program

Specify the -GA option at assembly.

[Link

[Specify the -G option at linking.

20

Chapter 2 Basic Operations 2.2 Source Level Debugging

2.2.2 Downloading a Program

¢ Load module files and hexadecimal files can be downloaded.

* When a downloaded file contains source debugging information, source level debugging can be
performed.

To perform downloading:

1. Select File -> Download... from the menu bar to open the Load Module dialog box.
2. Load the desired file.

| cad Module x|
Select the file to File Name Directories oK
be loaded. o % LNK: %.D26 b:\ debugger —
Cancel
sample.Ink [..] [
larc] Reset
[-a-] E—
[-b-] Help
[-c-]
=]
[ige]
el ==
[-g-] g
~Option
W Symbol
¥ Object Ciffsat valye - (0000

21

Chapter 2 Basic Operations 2.2 Source Level Debugging

2.2.3 Displaying a Source

« After a load module file containing source debugging information has been downloaded, the
source can be displayed.
 |f the source file is stored in a directory other than that containing load module file, or if the

source file is stored in more than one directory, source path information must be provided to the
debugger.

To display a source:

1. Select Browse -> Source Text... from the menu bar or click the button to open the
Source window.

To change the source file displayed in the Source window:
1. Activate the Source window.

2. Select File -> Open... from the menu bar to open the Source file select dialog box.

When a source file is stored in another directory or in more than one directory:
1. Select Option -> Source Path... from the menu bar to open the Source Path dialog box.

Specifying a directory containing a source file: Source Path dialog box
M Source Path x|

Source Path: |h: Lsrc |

(1] 4 | Cancel | Displaying a source file: Source window
—— |8 Source Window lsarmple.c) =0l x|
Font: FixedSwys -" Size: |15 ;IJ Set BP | Watch I Yiew | Sean:hl Event ?i Close |
] initmen(); =
ELC);
while(1)[[#oOpen x|
cntd o . i
i File Mame Directories ok
' b:\debugger
Cancel
c_sub.c .| |-
sample.c [srcl Resef
t sub.asm [-a-] TR
[-b-] Help
{:3:% List of Tvpe—
[-e-] & Source
Selecting a source file to be [-1-] —
displayed in the Source window: [<=] & Func
Source file select dialog box g ~ - |

22

Chapter 2 Basic Operations

2.2 Source Level Debugging

2.2.4 Functions Supported by the Source Window

* The Source window Supports a wide range of functions, such as the setting of breakpoints and
the addition of variables to be displayed.
* The supported functions are listed below:

Function

Procedure

Using the mouse

From the keyboard

Setting/deleting a

Click the point mark area.

1. Select a line number (with the mouse).

character string

2. Click the Ml

button.

2. Select View -> Search... from the menu bar.

breakpoint 2. Select Execute -> Set BP from the menu bar.
(CTRU+[B])
Setting PC 1. Select a line number (with the mouse).
2. Select Execute -> Set PC from the menu bar.
(CTRU+[E])
Displaying a 1. Select avariable. 1. Select a variable (with the mouse).
variable 2 Click the | Watch | 2. Selgct View -> Watch Variable... or View
Variable... from the menu bar.
button then the
ﬂl button.
Retrieving a 1. Select avariable. 1. Select a variable (with the mouse).

Checking an
event

1. Select an event line.

2. Click the M

button.

1. Select an event line (with the mouse).
2. Select View -> Event? from the menu bar.

Setting, deleting, and displaying a

breakpoint, and displaying an event Even{? button: [Event Manazer x|
. vent manager File Edit Miew Execute Operation Jump
PC position =
. . . Dizable | Delete |
Line number: Mainly used as the pointer for keyboard entry.
[E|[D001041 | (][BreakL | B[0001042 | [E][0000FFA |
Sofirce Window (sample.c) =T
Font: FixedSyvs ." Size: |15 Set BP | Watch | View I Sealchi Event ?I Close I
003 initmeml) El
0023 Q? Select a character string. o
0034 while(1){ (Token-based selection is enabled by double-clicking.)
| :
0027 i M ariable Window
0038 Focky Elo LMt yon_peration
029 timeup ToModify]| ToView | Wirite in | Restore | Delete I
0040 j++; [File:Function:variable) [Variable] Value
0041 int timeupf = 0
4 " N .
/ || / WV ariable View x|
Find x|
Find What: TR0, | [EindNext| S R ,
r Direction ——— ; P
Cancel Watch button: Variable window
¥ Match Case ‘ Up & Down ‘ 4'

Addiess: [32 | - [40

Search button: Find dialog box

| View button: Variable View dialog box

23

Chapter 2 Basic Operations 2.2 Source Level Debugging

2.2.5 Jump from the Source Window

* Jump from the Source window to the Assemble window and Memory window is supported.

* Using the jump function, it is easy to check the source text assemble results.

* Select a source line number as the jump destination. Then, the start address of the selected
source line is set as the jump pointer.

Jump destination

Procedure

Assemble window

1. Select a source line number.

2. Select Jump -> Assemble...

from the menu bar.

1. Select a source line number.
2. Select Jump -> Memory...

Memory window

from the menu bar.

The jump destination is the address of the source line, displayed in reverse video: In the
following example, the start address of the 38th line is set as the jump pointer.
B Source Window (sample.c) =13 x|
Font: ," Size: |15 ;I Set BPl Watch | Yiew | Sealchl Event ?I Cloze |
whilel131 =l
crt++;
= if0 timeupf == 1 31 |
k=0 +j:
> clockup(&t imedsp, &timecnt J;
e i o SO & !
R P B Azzermble Window (0132 0 =lo| x|
D
\ || ToView | write | Hestore | Set BP | Search | Event ? |
- Label Data Mnemonic
® Memord Window 1400FB MOVY DE. #0FBOOH
T ES FUSH LE
TDHDdlf}'I ic-VmW| Wit 0136 1480FE MOVY DE, #0FES0H
iE 0139 ES FUSH LE
= 0134 940002 CALL |_clockup
e 01308 EO FOP AX
ES L« |
AF um S0 AR UDS GO SR US OU bR Of .
0C FE Ea 00 BD 21 AE 04 &1 01 20 &4E OB 27 Jump to the Assemble window
D160|BE 05 30 BE 04 94 03 04 10 00 00 03 OC FBE AE 08 -]
Jump to the Memory window

24

Chapter 2 Basic Operations 2.3 Instruction Level Debugging

2.3 Instruction Level Debugging

* The contents of memory can be displayed, modified, and retrieved in assembly language.
* Instruction level debugging supports a higher level of precision than source level debugging.

* Assembly language code can be displayed in the Assemble window and Trace View window.
This section mainly explains the operations supported by the Assemble window.

25

Chapter 2 Basic Operations 2.3 Instruction Level Debugging

2.3.1 Assembly Language Display and Online Assembly

* The Assemble window allows you to view assembly language code and perform online assembly.
» With the online assemble function, patching can be performed. Simple bugs can be corrected
and confirmed immediately.

Procedure
Open the Addressing dialog box in either of the
following two ways:
1. Select Browse -> Assemble... from the menu bar.

Click the button.

Select an address to be used as the display
pointer.
. Select Jump -> Assemble... from the menu bar.

Assemble
To select a displayed address

Display

2.
1.

To display instructions starting from an
address selected in another window (such
as the Source, Memory, or Register
window)

Modification

. Open the Assemble window.

. Click the L& =] button to enter modify mode.
. Position the cursor to the mnemonic

display/modification area, then correct the program.
. After completing the correction of the program,

click the, M button to rewrite the program.

5. Click the

| button to enter view mode.

Specifying the start address for display: Addressing dialog box
M Oisassemble Window x|
Addreszs
N |

From: |_main
T | Assembly language display: Assemble window (display mode)

(1] 4 | Heset}sﬁel I
Assemble Window C 0000

Program correction: Assemble window (modify mode)

=|o] x|
IoView | Write in | Hestore | Set BP | Search | Event ? l
Label Data Mnemonic
ToModify button: main B7 FUUSH HL
Change to modify 291C MOV AX 5P
mode DAOCON SUBW AX . #0CH
991C MOV SP, AX
] MOV HL, AX
6111 SUE AL A
4
/ ToView button:
Change to view
Bl Assgfrble Whdow mode =lolxljf
Online assembly
T ulri-:bdii_ﬁl ToVYiew | Write in | Restore Set BP Search | Event ? |
Event Adr. Label Data HnemuW
main BEY FUUSH HL
00D 891cC Howw A SP
oooDa3 DADCON SUBW A%, 4
000G 991 MoV SPAX
ooDe D& MoV :
oooD9 6111 SE

26

Chapter 2 Basic Operations 2.3 Instruction Level Debugging

2.3.2 Saving and Referencing Displayed Assembly Language
Code

* The displayed assembly language code can be saved to a file. The saved file can subsequently
be referenced.

* The file is saved in text format, such that any commercially available editor can be used to view
its contents.

To save displayed assembly language code to a file:
1. Activate the Assemble window.
2. Select File -> Save As... from the menu bar.
3. Save the displayed assembly language code using the View file save dialog box.

To open and reference the saved file:
1. Activate the Assemble window.
2. Select File -> Open... from the menu bar.
3. Load the file to be referenced using the View file load dialog box.

Saving the display contents to a file: View file save dialog box

M Save Xl
File Name Directories QK
. — | | Reference window
| b:\ debquer Cancel The window used for loading and opening a
= file is opened as a reference window. All
[..]) operations other than search are disabled
[src] Reset while this window is displayed.
[-a-]
~b-] Help |
[-¢
[~ — —
[_E ToModity Write in Bestore | Set BP
[—f Event Adr Label Data
[_ 00D0] main B FUSH HL
L 00D1 ga1c HOYY AX, SP
ooD3 DAOCOD SUBW AX . #0CH
/4 O0Ds 991C MOV SP,AX
ooDg D& MOV HL, AX
/ aoD9 6111 SUE o
M Open / X| P.EOI'JI s
File Name Directories 0K
‘ b\ debugger
Cancel
sample.dis [..] =
[src] Resef
[-a-] N
[~b-] Help
[~c-]
[-d-]
[~e-]
- =
[~a-] -
Displaying the contents saved to a file: View file load dialog box

27

Chapter 2 Basic Operations

2.3 Instruction Level Debugging

2.3.3 Functions Supported by the Assemble Window

* The Assemble window supports many functions such as the setting of breakpoints and PC

setting.

* The supported functions are listed below:

Function

Procedure

Using the mouse

Using the keyboard

Setting/deleting a

Click the point mark area.

1. Select an address (with the mouse).

character string

string.

2. Click the Ml

button.

breakpoint 2. Select Execute -> Set BP from the menu bar.
(cTRU+[B)
Setting PC 1. Select an address (with the mouse).
2. Select Execute -> Set PC from the menu bar.
(CTRUH[E]
Retrieving a 1. Select a character 1. Select a character string (with the mouse).

2. Select View -> Search... from the menu bar.

Checking an
event

1. Select the address at
which an event is set.

Event ?

2. Click the
button.

1. Select the address at which an event is set (with
the mouse).
2. Select View -> Event? from the menu bar.

etting, deleting, and displaying a breakpoint, and
displaying an event
Address: The address displayed in
reverse video is set as the pointer for

PC position -
/ a function.

ToModify button: Program
correction

ble Window (0112)

o¥iew | Wiiieinl Heeimel Set BP | Seargh | Event?l

=lo] x|

Label Data _|_Mnemonic—__
020AFB A, |_timeupt
EA0100 gHPw AT, #1H
BD2C BNZ 51G0H
LEDS MOV 4. [HL+8H]
0904 MDD 4. [HL+0AH]
a0 WCH A%
LEDY MOV 4. [HL+9H]
290E fﬁDi A THL+OEH]

4

[EJ[O00TTCA | [LJ[BreakL | [EJ[DOOTIiCZ |

Search button: Find dialog box

Find x|
Event? button: Event manager]
= Find What: [ZIG | | Eind Next |
B E‘-.-’er‘!‘t Mgﬂager . Direction Cancel |
File Edit Yiew Execute Operation Jun [V Match Case | Cup & Down
, E Eahle | Qisahle | De!ete

Address:

|11|:: | |129 |

28

Chapter 2 Basic Operations 2.3 Instruction Level Debugging

2.3.4 Jump from the Assemble Window

« Jump from a line in the Assemble window to the corresponding source line or memory address is
supported.

* Select an address as the jump destination. Then, the selected address is set as the jump
pointer.

* When the jump destination is the Source window, a jump is made to a source line including the
jump pointer.

Jump destination Procedure
Source window Select an address.
Select Jump -> Source Text... from the menu bar.
Select an address.
Select Jump -> Memory... from the menu bar.

Memory window

N EIN e

The jump destination is the address displayed in reverse video: In the
following example, address 132H is the jump pointer.

B Assemble Window (0124) =10l x|
TnMndi[}lI ToView | Wite n | Hestore | Set BP | Search Event ? |
Event Adr. Label Data Mnemonic
EEOG MOV [HL+6H]. &
1400FEB MOYW DE, #¥0FE00H
ES FUSH DE
1430FE MOYW DE, #0FES0H
ES FUSH DE
9A0002 CALL |_clochkup
\ N En PR, AF
Bl Source Window (sample.c) =0] x|
k: i dSyS -|| Size: |15 _'!J Set BP l Watch | Yiew | Searchl E vent ?l Close I
clockup(&timedsp, &timecnt J; 2|
| Aemory Window LS ’Flmeupf = 0;]
ToModify| 1|oview | 0040 [
| 0041
! : P E T A mmmd = 1 8T =
I ;
FE Bt 94 00 02 BO BO 10 Jump to the Source window
AE OB 80 BE OB 30 BE 04 A jump is made to the source line
aE 04 61 01 30 AE 0B 27 including address 132H in the Source

10 00 00 03 0C FB 2E 08 =f| window.

Jump to the Memory window

29

Chapter 2 Basic Operations 2.4 Manipulating Memory

2.4 Manipulating Memory

* The user can display, modify, and search for memory data.
* The user can display and modify memory data in ASCII format.

2.4.1 Displaying and Modifying Memory Data

* The user can display and modify memory data in the Memory window.

Memory Procedure
Display [When a display address is to be The Addressing dialog box can be opened by means of
selected either of the following two procedures:

1. Select Browse -> Memory... from the menu bar.

]
2. Select the 'i button.
When memory data is to be . Select an address to act as a display pointer.
displayed starting from an address 2. Select Jump -> Memory... from the menu bar, or press
selected in another window (such CTRL + M.
as the Source window, Assemble
window, or Register window)
Modification 1. Open the Memory window.

=

2. Switch to modify mode by clicking the
button.

3. Position the cursor to the desired memory
display/modification area, then modify the data.

4. After entering the new data, execute the modification

by clicking the M button.

5. Switch to view mode by clicking the

il button.

Specifying a desired display start address: Addressing dialog box

Mermory Window x|
Address
From: |IFHRIE ~ | Memory display: Memory window (view mode)
oK | Heset | ﬂrﬁemor’y Window =|o] x|
i ifp] ToView | wirite in Hestore | Search I
ToModify button: 03 61 11 BE 08 BE 09 BE 0& BE OB 10 01 00 BE -
Used‘.“os"‘gtcmo 30 BE 04 30 BE 07 30 BE 06 94 83 01 94 51 03
modify mode. 1E AE 02 30 4E 03 D2 87 30 AE 01 Ci 01 00 9D

82 BE 01 30 97 E2 BE 03 30 BE 02 (@ 0A FB Ei
0o BD 2C AE 08 0% 04 30 AE 09 29 0B BE 07 30
06 14 00 FE BS 14 30 FE BS 94 00 02 BO BO 10

o0 02 0A FB AE 04 30 AE OB 20 BE OB 230 BE 0OA _él
ToView button: Used
to switch to view

mode. _IDIE

Write in Flesturel Search |
0F BE 09 BE 0& BE OB 10 01 00 BE i"

BE 07 30 BE 0Os 94 83 01 94 51 03
AE 03 D2 87 30 AE 01 C& 01 00 2D
97 E2 BE 03 30 EE 02 i@ 0A FE EA
o8 09 0& 30 AE 0% 29 OE BE 07 30
BS 14 80 FE BES 24 00 02 EO EO 10
AE 0& 30 AE OB 80 BE 0B 30 BE 04

e

Memory modification: Memory window (modify mode)

30

Chapter 2 Basic Operations 2.4 Manipulating Memory

2.4.2 Basic Memory Data Operations

* Basic memory data operations are enabled by activating the Memory window.
* The basic operations include initialization, copy, and comparison.

To initialize memory:
Select Edit -> Memory -> Memory Fill... from the menu bar.
To copy memory data:
Select Edit -> Memory -> Memory Copy... from the menu bar.
To compare memory data:
Select Edit -> Memory -> Memory Compare... from the menu bar.

Memory initialization: Memory Fill dialog box 'Iz\/lemory copy: I\gen‘{pryt_Copy di%Iog box_f d
String data of no more than 16 bytes can be memory copy destination can be specitied.

specified. #Mrermory Copy Dialog x|
@ Mermory Fill Dialog x| | Address
Address From: |l]l]l]l] | = |1FFF |

From: (0000 | -- |ZFFF | To:
fill code => Type: |IE ToIE -'v-.l|
1] 4 i Beszet | Cancel l Help |
N 1] .4
A\
inclowe =0 x|
ToView WWrite in I Hezstore | Search |

Beset | Eancell Help |

02 61 11 E 08 BPF 09 BE 02 BE 1 i0 01 00 BE ﬂl
20 BE 04 3 : 01 94 51 03
1E AE 02 3 A‘?t'c‘i’ate the Memory | -3 47 oo 9
82 BE 01 3 WIndow. A 0.1 FE EA

BD z2C o e o e o——=r UE BE 07 30
14 00 FE BS 14 30 FE BR 9A 00 02 EBO BO 10
N3 04 FB AE 0& 30 AE 0B 80 BE pQE_20 _BE 0OA 1

M Memory Compare X|
/ Source Destination

Addr Memory Addr

; : x 0085 |[FE 64| [2085 4]
M emory Compare Dialog x| 0038 oz opl Pose

Address 00ga7? 50 99| |2087 —
- |oDoDO - FFF nosa 03 22| EDEE
mem: | | | ooss |16 =9 [2083
. 2000 . [3FFF D08k |[20 26| |2084
mem2: | Josse] | ~ | looee ||oo ee| |208E

noac 14 89| |208C -
Ok l Beset | Cancel | Help I

Search Address:

Memory comparison: Memory Compare dialog box oK | Close |

If memory data comparison reveals a mismatch,
the Memory Compare result dialog box appears.

31

Chapter 2 Basic Operations 2.4 Manipulating Memory

2.4.3 Saving and Referencing Displayed Memory Data

» Displayed memory data can be saved to a file. A file containing saved memory data can be
referenced.

* Memory data is saved in text format, allowing an editor to be used to reference saved memory
data.

To save displayed memory data to a file:
1. Activate the Memory window.
2. Select File -> Save As... from the menu bar.
3. Save the displayed memory data by using the View file save dialog box.

To open and reference a file containing saved memory data:
1. Activate the Memory window.
2. Select File -> Open... from the menu bar.
3. Load the file to be referenced by using the View file load dialog box.

Saving displayed memory data to a file: View file save dialog box

#MSave X|
File Mame Directories Ok
| b:\ debugger
Cancel
) — Reference window.
sample.mem % y] M Reset Load and open the file to be displayed. The
src window is opened for reference. All
[-a-] | operations other than Search are disabled.
] elp
L]
[-d-1 (@ Memory Window [HOLD 01 =lof x|
{ _?]] ToModify | ToVi Write in Hs:cictel Search
[ODEQEE 03 61 11 BE 08 EE 09 BE DAT 10 01 00 BE
47! |porFolos 30 BE 04 30 BE 07 30 BE §3 01 94 51 03
oio0j7a 1E AE 02 30 AE 03 DZ &7 30 AE 01 CA 01 00 9D
Save address|00ED =5 50110 01 82 BE 01 30 97 E2 BE 03 30 BE 02 02 D& FE E&
g1zojol 00 BD 2C AE 08 09 0& 30 AE 09 29 OB BE 07 30
O130BF Ne 14 00 FR BE 14 80 FE BE 94 00 02 BO EBO 10
M Cpen X|| AE OB 80 BE OB 30 BE 0&
File Mame / Directories QK
| b:\ debugger
Cancel
sample.mem i 2
arcl Feset

] (o
] 5

Displaying memory data that has been saved to a file: View file load dialog box

i
[
[
[~
[-
[
g
[-
[-

a-
b-
£
d-
B
f
a-

32

Chapter 2 Basic Operations

2.4

Manipulating Memory

2.4.4 Functions Available in the Memory Window

* The Memory window allows the user to perform a range of functions including modification in

ASCII format, and data search.

The available functions are listed below.

Function

Procedure

Character string search

1. Select a character string.

2. Click the Ml button, or select View -> Search... from the
menu bar.

ASCII character display
selection

Select View -> Memory -> Ascii from the menu bar.

Type display selection

Select View -> Memory -> Nibble, Byte, Word, or Long from the

menu bar.
Number system display Select View -> Bin, Oct, Dec, or Hex from the menu bar.
selection
Data display.
ToModify button: Used to modify data.
The user can select binary, octal, decimal, or hexadecimal
display. Display in ASCII
/The user can also select nibble, byte, word, and long for display. /
Mermory Window / =1o] x|
: ; | Write inl i%eximel Search |
rr——eweom ST
30 AE 03 D2 87 30 AE 01 |G|n®|E|
a0 9Y EZ BE 03 30 BE 02 Opazp0z11.
AF 08 09 04 30 AE 09 29 %;@l D@}I
FE B. 14 80 FE BS 94 00 02 BO EO %fll uj.lllbj-ll
FE AE 04 30 AE 0B 80 BE 0B 30 BE T8 D@II%’ID
01 00 BD 21 AE 0A &1 01 30 AE OB ﬁ“ Y a|E|®I
04 94 03 04 10 00 00 03 0e ALN0RN. . D108 J
Search button: Find dialog box
_ Find x|
Address display: An address
displayed in reverse video acts Find What: 00 | Find Next |
as a pointer to be used with T
each function. Direction Cancel |
[¥ Match Caze Up & Down
Address: |EI] | i |-::I‘ |

33

Chapter 2 Basic Operations 2.4 Manipulating Memory

2.4.5 Jumping from the Memory Window

« This function enables a jump to the source line or disassembly start address corresponding to an
address in the Memory window.

* A jump destination can be specified by selecting a desired address. The selected address
serves as a jump pointer.

* When a jump is made to the Source window, a jump to the source line including the jump pointer
occurs.

Jump destination Procedure
Source window Select an address.
Select Jump -> SourceText... from the menu bar.
Select an address.
Select Jump -> Assemble... from the menu bar.

Assemble window

DM Ny e

A jump is made to the address displayed in reverse video.
In this case, address DOH is the jump pointer.

| Wemory Window =10] x|

TuHudifyI [oView | Write inl Hes.-iuiel Search l

84 FE AD 06 A1 00 27 86 FA F4 94 DO 00 FA FE =
89 1C D& 0C 00 99 1C D& 61 11 9% BE 01 EE 02 |
£1 11 EE 02 BE 09 BE 04 BE 0E 10 01 00 EE
BE 04 30 BE 07 30 BE 0O& 94 33 01 94 51 03
0100|FA N\E AE 02 30 AE 03 D2 87 30 AE 01 CA 01 00 9D

01i1ogp1 01 30 9Y E2Z2 BE 03 30 BE 02 02 DA FE EA
ni1zo0p1 O 2C AE 08 09 0A 30 AE 09 29 0B EBE 07 30 _:_II
\ Bl Source Window (sample.c) =10] x|
nt: |{u : ,i Size: |15 ;l Set BPI Watch I View | Sean:hl Event ?l
> =]
int Palskeals |
long crt
ble Window (00DO) =[0]x] i
]

________________________ IoView | Wwrite il:l Reaslolel Set BP | Search | Event?l

Jump to the Source window. A

Eve . Label Data Mnemonic jump to the source line including
/n)ain E7 FUSH HL |l address DOH in the Source
Lacec: g91c MOV AX.SP window occurs.
0oD3 DADCO0 SUBW AN, #0CH
00Dg 991C MOV SP,AX
0ons D& MOWW HL, AX
KT

Jump to the Assemble window

34

Chapter 2 Basic Operations

2.5 Manipulating Registers

2.5 Manlpulatlng Registers

Registers are classified into three major types: control registers, general-purpose registers, and

special function registers (SFRSs).

* The control registers and general-purpose registers can be displayed and modified in the
Register window. The SFRs can be displayed and modified in the SFR window.

2.5.1

Displaying and Modifying Registers

* The user can display and modify control registers, general-purpose registers, and SFRs.
* The user can manipulate control registers and general-purpose registers in the Register window,
and manipulate SFRs in the SFR window.

Memory

Procedure

Display |Control registers and general-
purpose registers (Register

window)

Select Browse -> Register... from the menu bar, or click

A
the (=== button.

SFRs (SFR window)

Select Browse -> Sfr... from the menu bar, or click the

E
=23 button.

Modification (common to the Register
window and SFR window)

1. Open a desired window.

2. Switch to modify mode by clicking the
button.

3. Position the cursor to a desired register, then modify
the data.

4. After making the modification, execute the modification

by clicking the M button.

5. Switch to view mode by clicking the L

Displaying and modifying control registers
and general-purpose registers

Register window (view mode)

p

MR egister Window x|
File Edit MNiew Qpergtion Jdump
v | ToView | Wite in I Hestore I

Sw HBS £ ACISPCY IE

|DDSD\{|FEEEI [[00 o] [@] [0] [B]
= | Ré&ister '-)\‘indow x|

File Edit Ulet\ Operatmn Jurnp
|| [ToModify K

Write in i Restore I

P5SW RBS 2 AC ISPCY IE

Innen IIFEED [02] [ao][] [o]] [2] [a]
Register Bank: Current Bank: EI

AE (000D DE [0000
EC [0D0D HL |o000

Displaying and modifying SFRs

SFR window (view mode)

SFR Window o [=] 4
ji&'ﬁﬁ&ii" :! I oWiew | Write in I Hestore | Cloze |
SFR I‘\ame A}(Yalue
F4 |R mi.8 FFO4 oo _-_jl
F5 I 1.8 FFO5 oo |
= \
I Q‘ZH W e =10] x|
"IE V Write in| Hesturel Close I
- SFR Mame Al Yalue

F4 E-W 1,8 FFO4 on :J

I8 E-W 1.8 FFO5 on __I

F& E-W 1.8 FFOR on

CROO E-W 16 FF10 goon

=

o

Register window (modify mode)/

SFR window (modify mo@

ToModify button: Used to switch to
modify mode.
ToView: Used to switch to view mode.

o

35

Chapter 2 Basic Operations

2.5 Manipulating Registers

2.5.2 Saving and Referencing Displayed Register Data

» Displayed register data can be saved to a file.
referenced.

* Register data is saved in text format, allowing an editor to be used to reference saved register
data.

A file containing saved register data can be

To save displayed register data to a file:
1. Activate a desired window.
2. When the Register window has been selected, select File -> Open/save Condition -> Save
File as... from the menu bar.
When the SFR window has been selected, select File -> Save As... from the menu bar.
3. Save the displayed register data by using the View file save dialog box.

To open and reference a file containing saved register data:
1. Activate a desired window.
2. When the Register window has been selected, select File -> Open/save Condition -> Open
Condition... from the menu bar.
When the SFR window has been selected, select File -> Open... from the menu bar.
3. Load the file to be referenced by using the View file load dialog box.

Saving displayed register data to a file: View file save dialog box

M Save x|
File Name Directories oK
| b:\ debugger
Cancel
] ————1 | Reference window.
sample.reg L] [l Resat Load and open the file to be displayed. The
[src] window is opened for reference. All
[-a-] operations related to modification are
[-b-] Help disabled.
[=—]
(i Hagister Window [HOI.D})7
File Edt—tfew—&peration_ Jump
TuHoiial loView | write in I |
PSwW RBS FZ AC IS SFA Hame 3 Yalue
DDS FEED non F4 R-W 1.8 FFO4 oo -
1008F | ipz] onil o] [‘FB/ R 1.8 FFO5 il
ol o eea |G R 1.8 FFOE |00
: w |B FF10 aonn
ﬂOpen / - . x| oooao
File Name / Directories oK % é’]
G | b:\ debugger
Cancel
sample.reg [..] =
[zre] Reset
[a-] q
[-b-] Help
[-c-]
[-d-]
[-e-]
[~f-1 —
[~g-] -
Displaying register data that has been saved to a file: View file load dialog box

36

Chapter 2 Basic Operations

2.5 Manipulating Registers

2.5.3

Functions Available in the Register Window

* The Register window allows the user to choose between the function name display option and
absolute name display option, choose between the register display option and pair register

display option, and so forth.

¢ The available functions are listed below.

register display

Function Procedure
Display Absolute name Absolute name: Select View -> Absolute Name from the menu
switching | display/function bar.
name display Function name: Select View -> Function Name from the menu
bar.
Register Register display: Select View -> Register from the menu bar.
display/pair Pair register display: Select View -> Register Pair from the

menu bar.

Number system display
selection

Select View -> Bin, Oct, Dec, or Hex from the menu bar.

2.5.4 Functions Available in the SFR Window

* The SFR window allows the user to select the display order, specify whether attribute data is to

be displayed, and so forth.

¢ The available functions are listed below.

Function

Procedure

Display order selection

The user can choose either address order or alphabetic order as
the display order:

Select View -> Sfr -> Address Sort from the menu bar.

Attribute display selection

Select View -> Sfr -> Attribute -> Show or Hide from the menu
bar.

Pickup display selection

Only those SFRs that have been modified but not yet written to a
target in modify mode are displayed.
Select View -> Sfr -> Pick Up from the menu bar.

Address order, attribute display (default)

Pickup display

SFR Window =1o] x| SFR Window =10 x|
ToModi [o¥iew Write in | Hestore | Close | Toi‘dudii_-,-l ToView Write in | Bestore | Close |

SFR Name Atr. VYalue SFR Hame At Value

FO E-W 1.8 FFOO oo = CRE10 R~ & FF16& 20

Pl E-W 1.8 FFO1 oo FFDO E-W 1.8 FELOD 11

P2 E-T 1.8 FFOZ oo HEOH E-W 1.8 FFES 1F

F3 E-W 1.8 FFO3 no PH1 E~W 1.8 FFZ1 oo

F4 E-W 1.8 FFO4 oo

PS R 1.8 FFO5 oo =l
Hiding attribute data Alphabetical order

SFR Window M=TE] SFR Window -|0] %]
T l_v I o¥iew Wiite in Restore | Cloze | T o¥iew Write in Hestore | Close |
SFR Hame Yalue SFR Name Atr. Yalue
EO oo - ADCR E] FF1F FEF -
Fl oo ADIS E-TM 8 FF&4 oo
| oo ADH E-W 1.8 FFa0 ni
P3 no ADTC E-W 1.8 FF&9 oo
P4 oo ADTPE E-W 8 FFhA no
P'L oo ;_II CROO E-W 16 FF10 nonao ;JI

37

Chapter 2 Basic Operations 2.5 Manipulating Registers

2.5.5 Jumping from the Register Window

« This function enables a jump to the source line, disassembly start address, or memory address
corresponding to a register value in the Register window.

* A jump destination can be specified by selecting a desired register. The value of a selected
register acts as a jump pointer.

* When a jump is made to the Source window, a jump to that source line including the jump pointer
is performed.

Jump destination Procedure
Source window Select a register
Select Jump -> SourceText... from the menu bar.
Select a register.
Select Jump -> Assemble... from the menu bar.
Select a register.
Select Jump -> Memory... from the menu bar.

Assemble window

Memory window

NEINEIN e

A jump is made to the value of the selected register. In this case,
address DOH, held in the BC register, is the jump pointrer.

#MRegister Window x|
File Edit “iew Qperation Jump

TuMudiI_l,li Io‘:‘iewl Write ini Ra:almc:l

PSwW RBS £ ACISPCY IE

mm- [00][] [0]] [o] [o]
Register Bank: [(8 1| & Memory Window =Tk

TuMudiI‘yI 'I'i.l"’is:wl Write in Restore Search
Ll

,,‘* 84 FE &D 06 A1 00 597 86 FA F4 94 DO 00 Fi FE e
89 1C D& 0C 00 99 1C De &1 11 97 BE 01 EE 02

,_' 03 61 11 BE 08 EE 09 BE 04 BE OB 10 01 00 BE
EIEIFDEIS 30 BE 04 30 EE 07 30 BE 06 34 83 01 94 51 03

Bl Source Window (sample o) (=0
- -l - |15 ;J Set BPl Watch I Yiew | Sealchl Event ?|

&l
irt Fadileil s _
B Asserble Window (00D0) =lal x|
ToYiew | Write in | Hestore Set BP | Search | Event ? | _';II
Eve . Label Data Mnemonic =7
L yhin E7 FUSH HL -l Jump to the Source window. A
e ggégnﬂ ggg% i%iECH £l jump to that source line including
. r DOH in th r
00D 391C MOVY SP.AX ki i‘v?,?df,ﬁfis ger;ortmids ouree
0nDg D& MOV HL AX ’
EIN|

Jump to the Assemble window

38

Chapter 2 Basic Operations

2.6 Creating Events

2.6 Creating Events

* An event, set beforehand in a program, specifies that an operation is to be performed when a

specified condition is satisfied.

* Two types of conditions are used. One is an execution event, which is set for a program
execution address. The other is an access event, which is set for memory data accessed by a

programmed instruction.

* Four types of events are used to perform operations. These include break events for
terminating the program or analyzer, and qualified events, section events, and snapshot events

which are used to control the tracer.

¢ The event-related windows are listed below.

Operation Window
Event management Event Manager
Event condition Event condition Event Set dialog box
creation Event link condition Event Link dialog box
Event setting Break condition Break dialog box

Trace condition

Trace dialog box

Snapshot condition

Snap-Shot dialog box

External sense clip
condition

External Sense Clip dialog box

39

Chapter 2 Basic Operations

2.6 Creating Events

2.6.1 Setting and Referencing Events in the Source Window
and Assemble Window

¢ In the Source window and Assemble window, break events can be set, and events can be

referenced.

* |f a break event is set in the Source window or Assemble window, a parallel-linked event link
condition, named Break-L, is automatically created.

« All set break events become execution events (with the status set to Run).

Function

Procedure

Break event setting

Use any of the five methods described below.
1. Click the point mark area.
2. Double-click a line number or address.

3. Select a line number or address, then click the Set BP button.
4. Select a line number or address, then select Execute -> Set BP from the
menu bar.

5. Select a line number or address, then press |CTRL +.

Event condition reference

Use either of the two methods described below. Select an address or line
number indicated by E in the point mark area, then perform either of the
following operations:

1. Click the M button.

2. Select View -> Event? from the menu bar.

Line number and address:

An address displayed in reverse
video becomes the pointer used
for input.

Bl Azsemble Window € 01 =|o] x|
To¥ie rite Hes.l Te @ Search
EII'ID"I

Label Dala Mn
/ |HO‘EF 3 [HI./tBH] |‘J
A0 &, [HLAOAH] -
B Source er'ld?éJ (samplq/c:' =|0] x|

("

/115 m\#at | Yiew |Searcm Cloze l

E_E

/4

Break event #MEvent M’ar‘lag@/

setting File Edit /iiew/i;ecute Dperation Jump

Eﬂahﬂ Disable | i "Delste |

Point mark area:

clicking this area.

A break event can be set simply by @Dm 25T |DI[BreakL | [EJ[OOOTZE | ‘

Event reference:

When an event is referenced, the Event
Manager is opened, and the event is marked.

40

Chapter 2 Basic Operations

2.6 Creating Events

2.6.2 Creating Event Conditions

« Event conditions are divided into two main types: execution events for detecting an execution
address, and access events for detecting access data.
* When an execution event is used, it can be combined with an event condition.

Function

Procedure

Event condition creation

The Event Set dialog box is used.
Select Browse -> Event -> EventSet... from the menu bar.

Event link condition creation

1. Create an execution event in the Event Set dialog box.

2. Open the Event Manager by selecting Browse -> Event ->
EventManager... from the menu bar.

3. Open the Event Link dialog box by selecting Browse -> Event ->
EventLinkSet... from the menu bar.

4. Create an event link condition by dragging & dropping the execution

event created in 1., above.

Event condition link: Event Link dialog box

MEvent Link X|
Restore Link | Make Link | Cloze I
Event condition creation: Event Set dialog box Event Link: | ‘:j|
MEvant Sot Pul'lljase 1 Phase 2 Phaze 3 Phaze 4
Restore Evnt | Make Evnt l Cloze I @W‘ \
Event Name: | .;]| > Use execution events. ©
Address 0x124 | - [ox124 /
tatus Run jﬂ) %
ata | | Mask ||;lfl |
xternal |["]

\,
N

| uasyfpp |

/

Event link condition creation and
registration

Event condition creation and \\
registration T

/ /

nagsr

x|

File Edit Wiew Egeg[te Dperation)@mp

“nable

0001241 @ 000713F-1

[BreakL D[EJ[0001242

An execution event is
an event for which the
status is Run.

Event management: Event Manager

41

Chapter 2 Basic Operations 2.6 Creating Events

* Examples of event condition setting are given below.
When the Event Set dialog box is opened, the default screen, shown below, initially appears.
Modify the screen settings as required.

M Event Set x|
fl Make Evnt | Close |

Event Name: @ =New== ﬂ
<1> [Addiess | | - ask |0000 D <2>
<3> tus |F|un d
<4>fbata azk ﬁ) <5>
<6> ternal 0o ﬂ'_\l‘> <7>

Condition Setting Remarks
When a program at address <1>0x100 <2>0 <3>Run The defaults are used for
0x100 is executed <4>, <5>, <6>, and <7>.
When memory access to <1>0xfe00 <2>0 <3>Data R/W | The defaults are used for
address 0xfe00 is <4>0x00 <5>ff <6> and <7>.
performed
When memory access is <1>0xfe00-0xfe7f <2>0 The defaults are used for
performed for addresses <3>Data R/W <4>0 <6> and <7>. An event
0xfe00 to Oxfe7f <5>ff occurs when any address in

the range is accessed.

When memory is read (with <1>0 <2>ffff <3>Data Read | The defaults are used for
no address condition set) <4>0 <5>ff <6> and <7>.
If bit 0 is 1 when writing to <1>0xfb01 <2>0 <3>Data Write | The defaults are used for
address 0xfb01 is <4>1 <5>fe <6> and <7>. For mask
performed specification, set those bits

to be monitored to 0, and set
the other bits to 1.

When 0x10 is written to <1>0xfb01 <2>0 <3>Data Write | The defaults are used for
address 0Oxfb01 <4>0x10 <5>0 <6> and <7>.

When an event is to be set <1> sub <2>0 <3>Run The defaults are used for
at the start of function <4>, <5>, <6>, and <7>.
sub(), coded in C

When the value of variable <1> cnt <2>0 <3>Data R/W | The defaults are used for
cnt, registered in C, <4>0x46 <5>0 <6> and <7>.

becomes 0x46

When an event is to be set <1>START <2>0 <3>Run The defaults are used for
with the START function of <4>, <5>, <6>, and <7>.
the assembler

When the value of <1>DATA <2>0 <3>Data R/W | The defaults are used for
assembler variable DATA <4>35H <5>0 <6> and <7>.

becomes 35H

42

Chapter 2 Basic Operations

2.6 Creating Events

2.6.3 Setting Events

Event conditions registered in the Event Set dialog box or Event Link dialog box can be used as break

conditions and trace conditions.

Condition

Procedure

When used as a break
condition

Select Browse -> BreakSet... from the menu bar.

When used as a trace condition

Select Browse -> Trace -> TraceSet... from the menu bar.

When used as a snapshot
condition

Select Browse -> Trace -> SnapShotTraceSet... from the menu bar.

When used as an external
sense clip condition

Select Execute -> ExtSenseClip... from the menu bar.

Set an event in the desired dialog box by dragging and
dropping from the Event Manager.

. %Ex‘ternalSenseClip Cialog x|
#Event Manager A Set | Reset | Cancel | Hel |
File Edit \iew Execute Operation Jump — — il
: Setting a condition enabling the output of data to the
. Enable | Disable l Delete | external sense clip: External Sense Clip dialog box
E Eventi] @ Eveptd? :]| Eventl3 | [E][Eventid | | *{0utput : BitO - Bit7 when suitable for Event
Lrk__ | [E][/Ev=n M Break Event: |[EJ[EvertOl] U]
Set Brk I Hestore —= T - " — T
] Break Hame: |Bleak _vi|
E '
" Setting a break condition: Break dialog box
M Shap—Shot
Sat Snap I Restor Pass Count: L‘ _J _"I El
Snap Mame: E Delay: A _ | 1272
: 1
5 Event: Ewent05 . N .
nap Even |E|—I Setting a snapshot condition: Snap-Shot dialog box
A Enbru- Cicl el TEEE I
TRACE x|
& Memory
Set Tic | Bestore Tric | Make Tic I Cancel Trc | Cloze |
Trace Name: | _:_"
Trace Mode: ‘ ¥ Section " Qualify | - I:I
Section Trace
Section Start Section End
B |
Qualify Setting a trace condition: Trace dialog box

43

Chapter 2 Basic Operations

2.6 Creating Events

2.6.4 Saving and Restoring Event Conditions

¢ Event conditions can be saved to a file.

Saved event conditions can be referenced.

* Event conditions are saved in text format, allowing an editor to be used to reference saved event

conditions.

Manager.

Manager.

box.

To save an event condition to a file:
1. Activate the Event Manager.
2. Select File -> Open/save Condition -> Save File as..

To restore a saved event condition:
1. Activate the Event Manager.
2. Select File -> Open/save Condition -> Open Condition...

3. Save the event condition by using the View file save dialog box.

3. Load the file containing the event condition to be restored with the View file load dialog

. from the menu bar of the Event

from the menu bar of the Event

Saving an event condition to a file: View file save dialog box

M Save x|
File Mame Directories Ok
b\ debugger
- Cancel
sample.evn bl -]
[src] Reset
[-a-] o
[—b—] [
{:3:{ MEvent Manager x|
[_e_] Eile Edit View Execute Dperation dJurnp
[—f—] i Dizable I Delete |
[_Q_] E| Eventl |E| Eventd? |@| Eventl3 |
7
M Open / x|
File Name Directories oK
b\ debugger
- Cancel
sample.evn bl -]
[src] Reset
[-a-] 7
[I:l_] =]
5]
[-d-]
[-e-]
[—f-] .
[-g-] 7

Restoring an event condition saved to a file: View file load dialog box

44

Chapter 2 Basic Operations 2.6 Creating Events

2.6.5 Functions Available in the Event Manager

* The Event Manager allows the user to use a variety of functions such as enabling/disabling an
event, deleting an event, and referencing an event.
* The available functions are listed below.

Function Procedure
Enabling/disabling an Select an event to be enabled or disabled, then perform the following:
event
To enable the event: Click the je..== i
To disable the event: Click the —_l button.
Deleting an event 1. Select the event to be deleted.
2. Click the Lot® | puton.
Detailed event condition Select View -> Detail from the menu bar of the Event Manager.
display
Changing the order of The order of display can be changed using the menu bar of the Event
display Manager.

To enable display in event name order: Select View -> Name.
To enable display in type order: Select View -> Kind.

Referencing/modifying an 1. Select the event to be referenced or modified.
event condition 2. Select an option from Operation in the menu bar of the Event
Manager.

Event Manager

M Event Manager X
File Edit Yiew Execute Qperation Jump

n | Dizable I Delete |

[EJ[_Eventl | [E][EventlZ | [E][Event03 | [E][Event04 |

@[Bl (L Bk D (detalied diapiay)
MEvent Manager x|
Eile Edit Wiew Execute Operation Jump

......... E nahle | gisahle | D E!Etﬂ l

[EJ[_EventdT] |[5]Run [A1 main [M]0 [d] [dMIFF [E]0 [EMIFF -
Referencing an event (EJ[Event0Z] |5 1Run [&] iritck [M]0 [d] [dMIFF [E]0 [EMIFF -
(B[Eventd3 | s jFiun [&] initmem [M]0 [d] [dMFF [E]0 [EMIFF

'E! Ewent0d [EM]FF
M Break I _,';I
Set Brk I ﬂesturvrk | Make Brk l Cancel Brk Cloze I
Break Mame: | _v1|

| Break-L |@| Ewentll |

Paszz Count: 1 I I

o]
Delay: Al ol P

45

Chapter 2 Basic Operations 2.6 Creating Events

2.6.6 Jumping to an Event Setting Address

« This function enables a jump to the source line, disassembly start address, or memory address
corresponding to the address of an event condition in the Event Manager.

* A jump destination can be specified by selecting an event condition. The start address of a
selected event condition acts as a jump pointer.

* When a jump is made to the Source window, a jump to that source line including the jump pointer
is performed.

Jump destination Procedure
Source window . Select an event condition.
. Select Jump -> SourceText... from the menu bar.
. Select an event condition.
. Select Jump -> Assemble... from the menu bar.
. Select an event condition.
. Select Jump -> Memory... from the menu bar.

Assemble window

Memory window

NEFEINEFLIN PR

A jump is made to the address of the selected event, Event02.
In this case, the start address (DOH) of function main is the jump pointer.

WM Event Set X
Hestore Evntl Make Evnt l Close |
MM Evant Manager .
: : : ; Event Name: [E] | _;“
File Edit Miew Execute Operation o
dd i Mask (0000
Disable I Delete @ :_maln D _“ | as
Status Run =
EwentD3 Event04
(BB JELE) e | | Mask
i i [| want [CcC
B lemory Window o] x||—

x

Tul'-'ludif_l,ll ToView l Write 'm' Hestore Search !

g4 FE AD 0Oe A1 00 97 86 FA F4 94 D0 00 Fi4 FE
89 1C D& 0C 00 99 1C D6 61 11 37 BE 01 BE 02
03 61 11 BE 08 BE 0% BE 0A BE 0OE 10 01 00 BE
30 BE 04 30 BE 07 30 BE 06 94 83 01 94 51 03

R Y = P = - o

Source Window (sample.c) =10 x]

Ll

,i Size: |15 ;lJ Set BFI Watch I View | Searchl Event ?|
int Felakal s _1|
B Assefrble Window { 00D0) =10l x|
I oWiew | Wite in I Hestore | Set BP | Search | Ewent ? | b
. Label Data Mnemonic =l
)ain E7 PUSH HL Jump to the Source window. A
891c MOV AX SP jump to that source line including
aoD3 DA0COD SUEW AX, #0CH address DOH in the Source
00De 991cC MOV SP,AX window is performed_
ooDg D6 HOVY HL, AX
4

Jump to the Assemble window

46

Chapter 2 Basic Operations

2.7 Manipulating Symbols (Variables)

2.7 Manipulating Symbols (Variables)

The user can display and modify the values of variables.

Before an operation such as symbol debugging can be performed, a load module file including debug

information must be loaded.

The user can enter symbols in the address and data input fields of each window.
To enter symbols, observe the input formats indicated below.

Type of symbol

Input format

Variable defined in C | fnc
file# fnc
Variable defined in assembler language |fnc
file#fnc
Source line number file:no
SFR sfrneme

fnc: Function name or variable name

no: Line number

sfrname: SFR name file: File name

1. When specifying a variable defined in C, prefix the variable with an underbar ().
2. Use a sharp (#) as the separator between a file name and variable name.
3. Use a colon () as the separator between a file name and line number.

The windows related to symbol operations are listed below.

Operation

Window

Display of variables

Variable window

Registration of displayed variables

Add Variable dialog box

Temporary display of variables

Variable View dialog box

Display of local variables

Local Variable window

47

Chapter 2 Basic Operations 2.7 Manipulating Symbols (Variables)

2.7.1 Displaying and Modifying Variables

* The user can display and modify the values of variables in the Variable window, Variable View dialog
box, and Local Variable window.

Variable Procedure
Display | Display at all times Display the variables in the Variable window.
Select View -> Watch Variable... from the menu bar.
Temporary display 1. Select a source variable displayed in the Source window.

2. Select View -> View Variable... from the menu bar, or click the

ﬂl button in the Source window.

Display of local Select Browse -> Local Variable... from the menu bar.
variables
Modifi- | Variable Use the Variable window to modify a variable. Use the Local Variable
cation | modification window to modify a local variable. Both windows are modified as
follows:

1. Open the desired window.

Local variable

modification 2. Switch to modify mode by clicking the L :
3. Position the cursor to the variable to be modified, then modify the
data.
4. After entering the new data, execute the modification by clicking the
Write in button.
Switch to view mode by clicking the <] button.
Registration The Variable window allows the user to register a displayed variable.

To register a variable in the Source window:
1. Select a source variable displayed in the Source window.
2. Select View -> Watch Variable... from the menu bar, or click the

ﬂl button in the Source window.

To register a variable in the Add Variable dialog box for variable
registration:

1. Select View -> Add Variable... from the menu bar.

2. Register the variable in the Add Variable dialog box.

Deletion The user can delete any variable displayed and registered in the
Variable window.

1. Select the variable to be deleted.
2. Select Operation -> Delete from the menu bar.

48

Chapter 2 Basic Operations

2.7 Manipulating Symbols (Variables)

After a variable has been selected in the Source window, that
variable can be displayed or modified by clicking the Watch button,
or can be temporarily displayed by clicking the View button.

M ariable View

= {

timeust = 0O;

lockup(&t imedspl—rrmeor
2 /f:l

B Source Window lsarmple.c) YAt :
-] Size: [15]| SetBP | watch | viéw || (0 |
cnt Temporary display of variables:
if == 193] Variable View dialog box

M Variable Window / x|
File Edit Miew Operation /

p| | ToView | Wiite in/l/ Hesmrel Delete |
nction:variable) Wal}éhle] Yalue

+tinedep = ‘{---}
lon t = % 2

El | ocal Wariable

=lo] x|

[oYiew | Write irtl Heslmel Cloze |
int = 1]
int = 1]
int = 1

Display and modification
VariabE\Window of variables: Variable

File Edit \ew Oper window

*_! _I loModify |

Write in| Hestulel Delete |

[File:Function: vanable] [Wariable] Value

+timedsp = Tk
long cnt = 2

int timeupf =
A Variable Dialog x|

/\,
Hame |_timeupl I)
Type: ¥ C Language { Other

Display and modification of local

variables: Local Variable

window

| %]

long cnt

L

o

Other
Size: ® Byte CwWord (& Double Word

Number: |:| To register a variable by keyboard input, or to
display a variable registered by the assembler in
the Variable window: Add Variable dialog box

oK |

49

Chapter 2 Basic Operations 2.7 Manipulating Symbols (Variables)

2.7.2 Saving and Referencing Symbol Data

» Displayed symbol data can be saved to a file. A file containing saved symbol data can be referenced.
* Symbol data is saved in text format, allowing an editor to be used to reference saved symbol data.

To save displayed symbol data to a file:
1. Activate the desired window.
2. When the Variable window has been selected, select File -> Open/save Condition -> Save
File as... from the menu bar.
When the Local Variable window has been selected, select File -> Save As... from the
menu bar.
3. Save displayed symbol data by using the View file save dialog box.

To open and reference a file containing saved symbol data:
1. Activate the desired window.
2. When the Variable window has been selected, select File -> Open/save Condition -> Open
Condition... from the menu bar.
When the Local Variable window has been selected, select File -> Open... from the menu
bar.
3. Load the file to be referenced by using the View file load dialog box.

Saving displayed register data to a file: View file save dialog box

M Save x|
File Mame Directories QK
* VAR b\ debugger
Cancel ret -
e eference window.
Sample.var L..] - B + Load and open the file to be displayed. The
[arc] ese window is opened for reference. All
[—a—] — | | operations related to modification are
[—h=] Heln disabled.
#Variable Window [HOLD 01] > x| /
File Edt —wrew—aperation .
l'nh!ﬂ.)difj.-l To¥iew Write in | Heston R | T |
[File:Function:variable] [Variable] Yal|—= E T = T
+timeds=p, = £ 121; = ; i
long = 3 Sl] Z 1
int timeupi = 1] :!.nt i = i
— 1 long cnt = 3
iﬂOper‘l / 1‘ [I __JJ
File Name / /[_ﬁdoriee oK
; L= b:\ debugger
\
Cancel
sample.var [..] =
[arc] Reset
[_a_] I
[~b-] =]
[~c-]
P
[~e-]
[+ =
[-g-1 -

Displaying symbol data that has been saved to a file: View file load dialog box

50

Chapter 2 Basic Operations 2.7 Manipulating Symbols (Variables)

2.7.3 Functions Available in the Variable Window and Local
Variable Window

* The Variable window and Local Variable window give the user access to a variety of functions, such as
the ability to modify the data number system.
* The available functions are listed below.

Function Procedure
Display of variables of A variable of pointer type is prefixed by + or -.
pointer type

Variable prefixed by +:
The value of the variable indicated by the pointer is displayed by
double-clicking. At this time, the prefix of the displayed variable
changes to -.

Variable prefixed by -:
The display of the value of the variable indicated by the pointer is
stopped by double-clicking. At this time, the prefix of the
displayed variable changes to +.

Number system display Select View -> Bin, Oct, Dec, Hex, or Proper from the menu bar.

selection

M ariable Window X]
Eile Edit Wiew Operation

TuHudifyl loYiew Wiite in Hesmrel Delete |

[File:Function:variahle

<timedsp =

un=igned char exul =

tunzighed char h
[

A variable prefixed by + or - is a variable
of pointer type. Double-clicking a
variable of pointer type prefixed by +
displays the value of the variable
indicated by the pointer.

At this time, the prefix of the displayed
variable changes from + to -.

un=igned char minute
un=igned char minute

< |

Variable window

To¥iew Write in estore \El%e |

Data display.
0000EZE ToModify button: Used to modify data.
The user can choose binary, octal, decimal,
hexadecimal, or automatic for display.
4 I I
—

51

Chapter 2 Basic Operations

2.8 Using the Tracer Effectively

2.8 Using the Tracer Effectively

The tracer records device operations in trace memory.
The IE-78000-R-A has 32K frames of trace memory.
Trace memory has a ring buffer structure.

For combined events, four trace methods are supported:

Trace cycle Trace mode Remarks

Machine cycle trace [Total trace Port trace operation is possible.

Event cycle trace Total trace Trace operation is performed only when the
device performs a read, write, or fetch
operation.

Conditio- Sectional The start and end of trace operation can be

nal trace trace specified using an event condition.
Qualified Trace operation is performed only when an
trace event condition match is detected.

The trace-related windows are listed below.

Operation Window
Trace result display Trace View window
Display item Trace display Show Trace dialog box
selection Snapshot Snap Trace dialog box
display

Trace condition setting

Trace dialog box

Snapshot condition setting

Snap-Shot dialog box

Trace result search

Trace pick-up dialog box

52

Chapter 2 Basic Operations 2.8 Using the Tracer Effectively

2.8.1 Displaying Trace Results

* Trace results can be displayed in the Trace View window.

To display trace results:

Select Browse -> Trace -> TraceView... from the menu bar, or click the button.

The execution time Display of fetch-type access results.

Display of data access results. Port trace results.

Frarr;)e between frames is The results of program execution are The results of R/W accesses to memory In machine cycle trace, port trace operation is
numoer counted.l dlsplayed/ are displayed. possible.
/
race View =lo| x|
N | ey | cighe |
I3 SP PSW H:R0O 3:RE1 C:R2 B:RE3 DE:EP2 HL:HP3 HEM1({DAT) MEMZ (DAT) MEM3{DAT) HEM4 (DAT) MEME{DAT)
Frams Tile Eadd d= tat Haddr Md M=stat ExtP B0 BPY P2 P2 P4 PS P& Disdsn

MOVYW AX. |_timeupf

CMEW AX ¥1H

\ ;|:|

|0 Enfulallon: [.EII i

[Event | Guard: |

Break

\

\

Trace status.
Statuses such as the |E status at trace stop
are displayed.

\ \

External sense clip Disassembly display.
input/output results are This display is provided when fetch-type

displayed. access Is performed and the status is M1.
ltem Description
Frame Displays trace frame numbers.
Valid range: 0 < Trace frame number < 32,767
Time Displays the number of clock pulses taken by the target chip between the start of
execution of the immediately preceding trace address and the start of execution of
the current trace address. For the clock signal, the CPU clock is not used.
Instead, the 10-MHz clock signal of the in-circuit emulator is used.
Measurement range: 1 < Time tag < Oxffffff
Address Displays program fetch results. This field displays the following information
Data depending on the fetch status displayed in the Status field:
Statu M1 : Fetch of the first byte of an instruction
OP : Operation code fetch
IF : Invalid fetch
Address Displays data access results. This field displays the following information
Data depending on the access status display in the Status field:
Statu VECT : Vector read
R . Dataread
W Data write
ExtP Displays the input level of the external sense clips when trace has been performed.
DisAsm Displays the results of disassembly. This information is displayed only when the
fetch status is M1.

53

Chapter 2 Basic Operations 2.8 Using the Tracer Effectively

2.8.2 Saving and Referencing Trace Results

* Trace results can be saved to a file. A file containing saved trace results can be referenced.

* Trace results are saved in text format, allowing an editor to be used to reference saved trace
results.

To save trace results to a file:
1. Activate the Trace View window.
2. Select File -> Save As... from the menu bar.
3. Save trace results with the View file save dialog box.

To open and reference a file containing saved trace results:
1. Activate the Trace View window.
2. Select File -> Open... from the menu bar.
3. Load the file to be referenced by using the View file load dialog box.

Saving displayed data to a file: View file save dialog box

MSave || If the range to be saved consists of about
. : 3 100 frames or more, a dialog box for
File Mame Directories 0K reporting the save status is opened. To stop
= the save operation, click the Stop button.
b:\ debugger ———
—_— Cancel S x|
Sﬁl’ﬂme.hﬁﬂi [..] e full] ~Save Frame ———
[SI’C] Reoget > start: 0
[o] ‘_I‘ end: 32767
[i] Rl cument: 1080
by
[~d-]
[-e-]
r « 1
j : Reference window. o] x
L 8l Trace View [HOLD 01] Load and open the file to be displayed. =10 x|
g MEXT I PREV I " Close i The window is opened for reference.
- Frame Tine Faddr Fdat F=tat Maddr Hdat H=tat ExtF FO0 Fl Di=iAsm
32704 4 0114 a0 H1 oo HCH ALK ;]
32705 7 FDF1 ED 1) oo J
32706 E 0115 7 M1 oo MOV [HL]. A
32707 4 0115 M1 on ¥CHY &X. EC
32708 AMopern \ x| 5
R . , , '
T] K File MName \ Directories oK
Frame: - i
IE| T, |b:\debugger
Cancel
sample. v] =
sre] Reset

]
]
]
]
|
] =
] =

Displaying data saved to a file: View file load dialog box

&
—b-
e
)=
&G
f
—4-

54

Chapter 2 Basic Operations

2.8 Using the Tracer Effectively

2.8.3 Effective Trace Memory Usage 1 (Trace Mode Setting)

« Trace memory can be used effectively by setting a trace condition and trace mode.
* Three major trace modes are supported:

Trace mode

Description

Total trace

All accesses are traced. The user can choose between machine
cycle trace and event cycle trace.

Sectional trace

A section from one event to another is traced. This mode is useful,
for example, for tracing one particular function.

Quialified trace

Only an event condition match point is traced. This mode is useful,
for example, for tracing particular memory accesses.

* Each trace mode is described below.
1. The data for each of the following modes indicates the results of executing test program 1
from address 80H to address 8EH.
2. Test program 1 initializes, to zero, the four bytes of memory from address OFEOOH to

address OFEO3H.

Test program 1. Clearing RAM

Addr Data Mnemonic

0080 61D0 SEL RBO Selects register bank 0.

0082 16FFFC MOVW HL,#0FCFFH Sets the initialization start address, minus 1.
0085 A100 MOV A#0H Sets initialization data.

0087 A304 MOV B,#4H Sets the number of bytes to be initialized.
0089 BB MOV [HL+B],A Initializes memory.

008A 8BFD DBNzZ B,$89H Determines termination.

008C 00 NOP

008D 00 NOP

008E FAFE BR $8EH

55

Chapter 2 Basic Operations 2.8 Using the Tracer Effectively

1. Results of total trace (event cycle trace)
¢ The results of total trace are indicated below.
¢ All accesses are traced, so that all program operations can be identified.
¢ Program fetch operations, and data read and write operations are traced.

frame Faddr Fdat Fstat Maddr Mdat Mstat DisAsm

32738 0080 61 M1 SEL RBO
327390081 DO OP
32740 0082 16 M1 MOVW HL,#0FCFFH

32741 0083 FF OP
32742 0084 FC OP

327430085 Al M1 MOV A #O0H
32744 0086 00 OP

327450087 A3 M1 MOV B #4H
32746 0088 04 OP

32747 0089 BB M1 MOV [HL+B],A
32748 008A 8B M1 DBNZ B,$89H
32749 FDO3 00 W

32750 008B FD OP

327510089 BB M1 MOV [HL+B],A
32752 008A 8B M1 DBNZ B,$89H
32753 FDO2 00 W

32754 008B FD OP

32755 0089 BB M1 MOV [HL+B],A
32756 008A 8B M1 DBNZ B,$89H
32757 FDO1 00 W

32758 008B FD OP

32759 0089 BB M1 MOV [HL+B],A
32760 008A 8B M1 DBNZ B,$89H
32761 FDOO 00 W

32762 008B FD OP

32763 008C 00 M1 NOP

32764 008D 00 M1 NOP

32765 008E FA M1 BR $8EH

32766 008F FE OP

¢ Total trace mode is set as follows:

1. Disable all trace event conditions.

2. Select a trace cycle.
Select Execute -> Trace -> Machine All. Trace or Event All. Trace from the menu
bar.

56

Chapter 2 Basic Operations

2.8 Using the Tracer Effectively

2. Results of sectional trace
¢ The results of sectional trace from address 89H to address 8CH are shown below.
¢ The range to be traced can be specified, such that trace memory is used effectively.

frame Faddr Fdat Fstat Maddr Mdat Mstat DisAsm
32750 0089 BB M1 MOV [HL+B],A
32751 008A 8B M1 DBNZ B,$89H
32752 FDO3 00 W

32753 008B FD OP

32754 0089 BB M1 MOV [HL+B],A
32755 008A 8B M1 DBNZ B,$89H
32756 FD02 00 W

32757 008B FD OP

32758 0089 BB M1 MOV [HL+B],A
32759 008A 8B M1 DBNZ B,$89H
32760 FDO1 00 W

32761 008B FD OP

32762 0089 BB M1 MOV [HL+B],A
32763 008A 8B M1 DBNZ B,$89H
32764 FDOO 00 W

32765 008B FD OP

32766 008C 00 M1 NOP

¢ Sectional trace mode and the event conditions can be set as shown below.
+ By enabling trace event conditions, a conditional trace operation can be performed.

MEvent Set X]
;'ﬁ'é'é'i'ﬁié"f{r'ﬁ'iéilm e en:c St x|
Event Name: @ Event01 Restore Evntl Make Evnt I Cloze |
Address 83h “| Event Hame: @ |Eventl]2 _:]|
Status | Run . Address |3Ch | - | | Maszk (0000
Data | / Status | Run ;"
External |["] / Data | | Maszk
Fuomal 100 Mask
A Eveyth Manager x|
Eile gdit YWiew Execute ;}aéatiun Jump
o E %h |E | Qig I D e!e s |
@| E:ventliﬂ | @| EventlZ | | Trace0T |
#TRACE B
| Set Tre Bestore Trc | Make Tre I Cancel Tre Cloze I
X Trace Hame: acell| -
< g
wce Mode: ¥ Sectio " Qualify
Set sectional trace conditions as SochonTia
fSOtlél?},:vsl:Event01 \ Section Start Section End
End:” Evento2 [EJ Event | Bl Even |
Event occurrence conditions
Event0l: Execution of address 89h
Event02: Execution of 8ch Qualify Trace

57

Chapter 2 Basic Operations 2.8 Using the Tracer Effectively

3. Results of qualified trace
¢ The results of qualified trace, for data read and write operations only, are indicated below.

¢ Only those points that are to be traced are traced, allowing large amounts of data to be traced.

Note, however, that since trace is performed only when an event condition match is detected, the
context is difficult to grasp.

frame Faddr Fdat Fstat Maddr Mdat Mstat DisAsm
32763 FDO3 00 W
32764 FD02 00 W
32765 FDO1 00 W
32766 FDOO 00 W

¢ Qualified trace mode and an event condition can be set as shown below.
¢ By enabling a trace event condition, a conditional trace operation can be performed.

M Event Set x|
Restore Evnt ”m Close |

Event Hame: @ |Eventﬂ:‘3 _;]|

Address ||] \ | - | | Mask
Status [DataRrw | B

Data ||] \ | Mazk
External 0o \ | Maszk |FF—|

| Ev&nt hanager X|
Eile E\:Iit YWiew Execute Operation Jump

E nahle | Dizahle I Delete |

@| Eveptl3 || TracelZ |
/

#MTRACE / x|
_|| Bestore Trc | #éke Trc I Cancel Trc | Close I
Trace Name: [T] Trace02 / - Set a qualified trace condition
- - as follows:
Trace Mode: (@ Sgﬁun % Qualify Event03

. Event condition
; Section Trace . |Event03: When data read or
Section Ztart Sectid

/ write is performed at

any address
/

2 7

% Qualify Trace

B

58

Chapter 2 Basic Operations 2.8 Using the Tracer Effectively

2.8.4 Effective Trace Memory Usage 2
(Trace Full Break, Snapshot Trace)

e Trace full break
1. Trace memory has a ring buffer structure. This means that, once the trace memory is filled
with trace data, the existing trace data is overwritten by the new data, starting from the oldest
data.
2. To preserve the trace results, trace operation can be stopped once the trace memory is full.

Trace full break setting:
Select Execute -> Trace Full Break from the menu bar.

* Snapshot trace
1. Trace memory is used to store the execution history. In addition to the execution history,
other data can be stored by specifying a snapshot event.
2. The snapshot trace function writes specified data into trace memory when a condition is
satisfied. The following data can be written:

Data Description
Register All registers of the current bank
(PC, SP, PSW, AX, BC, DE, HL)
Data SFR Up to five points in SFRs or memory can be traced.
Memory

3. Before data is written into trace memory, the execution of the user program is stopped.
4. For the program below, the method of writing the register and SFRs (PO, P1) when address
0fd02h is accessed is shown.

Test program 1: Clearing RAM

Addr Data Mnemonic

0080 61D0 SEL RBO Selects register bank 0.

0082 16FFFC MOVW HL #0FCFFH Sets an initialization start address, minus 1.
0085 A100 MOV A#OH Sets initialization data.

0087 A304 MOV B,#4H Sets the number of bytes to be initialized.
0089 BB MOV [HL+B],A Initializes memory.

008A 8BFD DBNZ B,$89H Determines termination.

008C 00 NOP

008D 00 NOP

008E FAFE BR $8EH

59

Chapter 2 Basic Operations 2.8 Using the Tracer Effectively

Example of snapshot event setting

MEvent Set x|
R estore Evntl Make Evnt l Close |
Event condition: Event Name: [E] |E"'E“E,m ;“
Add : 0fd02h { 2
Stat[JessS . Data R/W & |0fd0Zh / | | | Mask
Data . All data Status Data ﬂ/ﬂ# ;“
T | Mask
Extemal [0 | Mask
VA
/
M Shap—Shot / x|
Set Snap I Hestore Snapl Make 5941 | Cancel Snap | Close |

Snapshot condition:
Event: Event 01
Snapshot data: Registers,

SFRs (PO, P1)

Snap Name: |m ///;“
vV

Snap Event: |@

Entry:

i Sy & Memory

Memory

Address | - |

Trace data

PC SP PSW X:R0 A:R1 C:R2 B:R3 DE:RP2 HL:RP3 MEM1(DAT) MEM2(DAT)
frame Faddr Fdat Fstat Maddr Mdat Mstat DisAsm

327420089 BB M1 MOV [HL+B],A
32743 008A 8B M1 DBNZ B,$89H
32744 FDO3 00 W

32745 008B FD OP

32746 0089 BB M1 MOV [HL+B],A
32747 008A 8B M1 DBNZ B,$89H
32748 FDO2 00 W

32749 008B FD OP
[0089 FEEO 02 00 00 00 02 0000 FCFF P0(00) P1(00)

32755 0089 BB M1 MOV [HL+B],A
32756 008A 8B M1 DBNZ B,$89H
32757 FDO1 00 W

32758 008B FD OP

32759 0089 BB M1 MOV [HL+B],A
32760 008A 8B M1 DBNZ B,$89H
32761 FDOO 00 W

32762 008B FD OP
+ In frame 32748, a match with event condition EventO1 was detected, causing snapshot event
Snap to occur.
¢ Between frame 32749 and frame 32755, the debugger stopped once to write snapshot data into
the tracer.

60

Chapter 2 Basic Operations 2.8 Using the Tracer Effectively

2.8.5

Inter-Window Connection Functions
(Window Connection Function, Jump Function)

Window connection function: This function displays trace results in each window. When the
user positions the cursor to the Trace View window, each of the windows (Source window,
Assemble window, and Memory window) can be manipulated interactively, thus allowing trace
operation in each window.

Jump function: A jump can be made to a position in the Source window, Assemble window, and
Memory window corresponding to the address value of a frame line specified in the Trace View
window.

When the window connection function is used, the Trace View window remains active. When
the jump function is used, however, the jump destination window becomes the active window.

Function Operation

Window Connection to the Activate the Trace View window.
connection Source window Select Window Connect -> SourceText from the menu bar.
function Connection to the Activate the Trace View window.

Assemble window Select Window Connect -> Assemble from the menu bar.

Connection to the Activate the Trace View window.

Memory window Select Window Connect -> Memory from the menu bar.
Jump Jump to the Source Select a frame in the Trace View window.
function window Select Jump -> SourceText... from the menu bar, or press

[cTRU+{U]

Jump to the Assemble Select a frame in the Trace View window.

window Select Jump -> Assembile... from the menu bar, or press
CTRL]+A].

Jump to the Memory Select a frame in the Trace View window.

window Select Jump -> Memory... from the menu bar, or press

[CTRUJ+(M].

61

Chapter 2 Basic Operations 2.8 Using the Tracer Effectively

* With the window connection function and jump function, connection is made to the data in each
window as follows:

Function Window connection Jump function
Source window Fetch address Fetch address
Assemble window
Memory window Data read address and data | Fetch address, data read address,
write address and data write address
Bl Trace Wiew =10] x|
NEXT PREV | Close |
Frame Faddr Fdat Estat Madds Mdoit Motat Ti=A=ny
327 TP =
32732 0152 FE /I\ 0
32733 01c3 EA 3 CMELL AT #1[
2734 /]\ FEOC 00 R $
_I_I T 1\ :
Pt Emulatf: / ﬂ Memory Window For window connection and jump
32?5? i ToYiew I Write in I Hestore

MDD nu 00 00 12 00 20 03 00 00 00

inclow: =|o] x| } g9

- o i D1
oVYiew i Write ml Hesztore | Search I " LF
FE AE DA 30 AE OB 80 BE OF 30 EE 0A ‘;Egj
g JC FB EA 01 00 BD 21 AE 04 61 01 30 AE OB 27
—— —— 08
=la|x]}as
11
H Set BP I Search i E\renl?i 2E
Eve - Label Data Mnemonic FB -='-j
020CFE MOV AX, |_dispupt
FAMTNN CMPI AY #1H
- o] x|
FI"--- For window connection and jump Walchi View | Searchl Event?l Cloze I "
==
if(dispupf == 1 J1{
| =0 % 2; I
displav();
Al = N 1]
74

62

Chapter 2 Basic Operations 2.9 Measuring the Execution Time

2.9 Measuring the Execution Time

* The IE-78000-R-A has two timers. One timer measures the time from the start of execution to
the end of trace operation. The other timer measures the time from the start of the previous
trace operation to the start of the current trace operation.

* The specifications of the two timers are as follows:

Timer Maximum Minimum
measurement time measurement time
For execution time measurement Approx. 14 minutes Approx. 500
and 18 seconds nanoseconds
For trace interval measurement Approx. 1.677 Approx. 100
(time tag) seconds nanoseconds

2.9.1 Measuring Program Execution Time

* The time from the start of program execution to the end of program execution is displayed in the
Timer window.

* The measurement time depends on the execution mode, as indicated below.

Execution mode Measurement section

Step execution Last instruction

Real-time execution From the start of execution to a break

Non-break real-time execution From the start of execution to termination of
the tracer

* The Timer window can be opened as follows:

Execution time display:

Select Browse -> Timer... from the menu bar, or press the [1 button.

M Timer Window x|
File Operation
Min Sec msec usec
Runtime: [0 | [12 | [281]| [z080 |

63

Chapter 2 Basic Operations

2.9 Measuring the Execution Time

2.9.2

useful.

Time Measurement Using the Tracer

* For measurement of a short section, regularly executed processing, and so forth, the time tag is

* When compared with the execution times displayed in the Timer window, shorter times are
obtained with the time tag. However, the time tag stores multiple data items in trace memory,
so that information such as time distribution data can be checked using a separate tool.

« With the time tag, the time from the start of the previous trace operation to the start of the current

trace operation is measured. This measurement is conducted not only while the program is

being executed but also while the program is stopped. This means that the time tag data for the

first program execution frame is meaningless.

32741
32742

EPEFE
32743

32744
32745

Trace View o =l .3
= P Tlme tag
a2 I i EREV The interval from the previous frame to the current frame is displayed. An actual
time, counted in 100 ns steps, is converted to a hexadecimal number for display.
Frame Time [To convert a displayed value to an actual time, convert the displayed value to a
FREE —decimal number, then multiply that number by 100 ns.
32739
32740

nogz 15 Hi HOVW HL, #0FCFFH
noaa FF QP

IIEES FC QP

noa? A3 M1 MOV B. #4H

Frame

32746 noga 04 OF
32747 0os9 EE M1 MOV [HL+E]. A
32748 00gA 8B M1 DENZ E.%89H
32749 FDO3 oo w =
i | ¥
[32738 \ | ulation: (Al]) i

" 32767 E: Status:[Event | Guard:[|

64

Chapter 3 Advanced Use of ID78K0

Chapter 3 Advanced Use of
ID78K0

This chapter describes several advanced uses of the ID78K0. Note that these uses are usually not
essential to normal operation.

3.1 Verifying the Validity of Evaluation
Evaluation is essential to the development of a program. If the evaluation of a particularly important
item is omitted for some reason, bugs may remain in a program that is offered for retail sale. This
section describes the use of the coverage functions to verify the validity of evaluation.

3.2 Using External Sense Clips
The in-circuit emulator status or the contents of memory can be output in real time, by using external
sense clips together with event conditions. This section describes the use of the external sense clips.

3.3 Measuring Time by Setting Conditions
Basically, the Timer window of the ID78K0 supports only the measurement of the time that elapses
between the start and end of program execution. Shorter periods can, however, be measured by
using the tracer in combination with events.

65

Chapter 3 Advanced Use of ID78K0

3.1 Verifying the Validity of Evaluation

3.1

Verlfylng the Validity of Evaluation

Evaluation is essential to the development of a program.

If the evaluation of a particularly

important item is omitted for some reason, bugs may remain in a program that is offered for retail

sale.

* This section describes the use of the coverage functions to verify the validity of evaluation.
Note, however, that the validity of evaluation cannot be completely verified based on only the

results of coverage.

3.1.1 Coverage

» Coverage is a record of the flow of the execution of a program. While the tracer can trace
program execution backwards, coverage merely indicates whether specified instructions within a

program have actually been executed.

* The debugger supports coverage for the read, write, and fetch operations.
* The results of coverage can be displayed in the Coverage window.
* The following window and dialog boxes are used for coverage:

Window

Description

Coverage window

Displays the results of coverage.

Coverage Efficiency View

Displays the coverage results, as a percentage, for each function

dialog box or specified address range.

Coverage Condition Setting | Used to add items to be displayed in the Coverage Efficiency
dialog box View dialog box.

Coverage Memory Clear Initializes the coverage memory.

dialog box

Coverage window

. Coverage - 0] x|
{| Search | Cloze | Coverage Memory Clear dialog box
+ +4 +8 +e M Coverage — Memory Clear x|
O0OVE0[[k % % % % % ¥ * ® ¥ ¥ * * ¥ *| Addiess Range: [l | .. [osFFFF]
1] 4 I Cancel I
M Clverage — Efficiency View X% * % %
T - e e e e
Condition Hel
= | N kS g S,
Survey Hange Results(X] Coverage Condition Setting
samp | e. ch_m 45 dialog box
samp e, ch_in : Goverag&lﬁondition Setting x|
UKFEUU = UXF [I K i| EI\Ew I Cancel |
Survey Range Procedure
N came e, cl_main || << Survey | =ame le.cl_ma il
[sample.c_initc s sample.clh_ini
3 - : OxFEDOD - DxFEFF S _Nijzample.clt_intt
Coverage Efficiency View P o 1) Hlﬁj_']
dialog box o | Delete l | :
Address Range: |[DsFE00 | .- [0sFEFF | Add |

66

Chapter 3 Advanced Use of ID78K0 3.1 Verifying the Validity of Evaluation

3.1.2 Verifying the Validity of Evaluation Based on Coverage

Ideally, all possible patterns of program execution should be evaluated. Due to time or other
restrictions, however, evaluation may have to be restricted by, for example, sampling and
combining several patterns. Evaluation based on sampled patterns must, however, be checked
for validity.

One method of verifying the validity of evaluation is the use of the coverage results to check
whether all instructions have been executed.

The above check can easily be performed by using the Coverage window and the memory map
in the link list file (.MAP), output upon linkage of the program.

Verification based on coverage

1. Refer to the memory map in the link list file to identify any free spaces (* gap *) in the program.

2. Refer to the contents of the Coverage window to check whether all memory spaces other than the
free spaces, identified in step 1, have been accessed (read, written, or fetched).

3. If any unaccessed space is revealed by step 2, check the program and review the evaluation items.

If any free space in the program has been accessed, check that space by, for example, setting
event conditions.

Example link list file
*** Memory map ***
SPACE=REGULAR
MEMORY=ROM
BASE ADDRESS=0000H SIZE=8000H

OUTPUT INPUT INPUT BASE SIZE
SEGMENT SEGMENT MODULE ADDRESS
@@VECTO00 0000H 0002H CSEG AT

@@VECT00 @cstart 0000H 0002H

0002H 0012H
@@VECT14 0014H 0002H CSEG AT
@@VECT14 SAMPLE 0014H 0002H
0016H 002AH

0040H O0000OH CSEG CALLTO

@cstart 0040H 000OH
SAMPLE 0040H 0OOOH
C_SUB 0040H 0000H
0040H 0040H

|~k gap *

|* gap*

@@CALT
@@CALT
@@CALT
@@CALT

|* gap *

[Intermediate lines omitted|
0080H O0O0OOH CSEG UNITP

@@CNST

@@CNST @cstart

@@CNST C_SUB
@@CODE
@@CODE @cstart

@@CNST SAMPLE

@@CODE SAMPLE

0080H 0000H
0080H 0000H
0080H 0000H
0080H 02D1H CSEG
0080H 0050H
00DOH 0130H

In this example, 0002H to 0013H, 0016H to 003FH, and 0040H to 007FH are free spaces.

67

Chapter 3 Advanced Use of ID78K0

3.1 Verifying the Validity of Evaluation

Example coverage results (results of executing the example link list file)

B Coverage

Addr 40 +4

=lol x|

Unaccessed

spaces

000000 > . . .

000010 x %,
000020 |.
000030 |.
000040 |.
000050 |.

000040
DO00B0O| - ® % % % KG

In this example, the reset vector at addresses 0 and 1 has not been accessed. The operation

performed upon a reset must, therefore, be evaluated.

68

Chapter 3 Advanced Use of ID78K0 3.1 Verifying the Validity of Evaluation

3.1.3 Notes on Coverage Results

* When checking the coverage results, note the results of conditional branches.

* The IE-78000-R-A supports CO coverage, which cannot be used to check how processing has
branched at a conditional branch instruction.

Example of execution of a conditional branch instruction
1. When the following program is executed from address 80H to 8CH, a conditional branch instruction
is executed at address 86H. Execution jumps to address 88H because the condition is false.

Addr Data Mnemonic
0080 A101 MOV AH
0082 A302 MOV B,#2H
0084 4D01 CMP A #1H
(0086 BD02 BNZ $8AH
0088 610B ADD A,B
008A A200 MOV C#0H
008C 00 NOP

: Assume that the H register contains 1.

2. The coverage results are as follows, indicating that all instructions have been executed.

B Coverage =l0f x|
ﬁeamhl Close |

All instructions at
Addr +0 +4 +9 e L1 addresses 80H to 8CH
000050 1.

have been executed.
Q00060 .

FEXFEEXEXEEXE KR

0000AD |.
0000BL |
0000CoH |.
000000 |.
0000ED |.
B R L
DORIDO: o s s s s s s s v v es [N

3. Actually, however, the condition may be true, depending on the stored data, thus causing address
88H to be skipped. In such a case, the coverage results do not cover all evaluation items.

69

Chapter 3 Advanced Use of ID78K0 3.2 Using External Sense Clips

3.2 Using External Sense Clips

» External sense clips have various functions. They can be used to post naotification of the in-
circuit emulator status or output 1-byte RAM data in real-time.

* The use of external sense clips may enable essential processing which has not been possible
conventionally.

» External sense clips No. 01 to 08 are provided. The debugger handles them as bits 0 to 7,
respectively.

External sense clip number Debugger handles as:
No.08 Bit 7
No.07 Bit 6
No.06 Bit 5
No.05 Bit 4
No.04 Bit 3
No.03 Bit 2
No.02 Bit 1
No.01 Bit 0

* When external sense clips are set to output mode, they must be pulled up using resistors. In
such a case, a voltage exceeding +15 V cannot be applied to the sense clips.

* The tracer traces the potential difference between each external sense clip and GND, regardless
of whether the sense clips are set to input or output mode. The HC4050B (used as an input
buffer) determines whether the trace data for each external sense clip is 1 or 0.

* The trace data for external sense clips can be used for event conditions, thus enabling the
setting of a wide range of event conditions.

70

Chapter 3 Advanced Use of ID78K0 3.2 Using External Sense Clips

3.2.1 Tracing External Data

* To trace the state of each pin of the target device, set the external sense clips to input mode
(default). Input data can be incorporated into event conditions, such that an event can be
triggered by an external source.

Setting procedure
1. Setthe external sense clips to input mode.

#ME dernalSenseClip Dialog X | setto input
= | mode.

.......... E Et :I E:-{!‘EF‘ Eancel | !_IP

=
= Input All - BitD - Bit?
nput - Bitt—=Bi

rigger Output : BitD

& Dutput : BitD - Bit? when suitable for Event

event [|

2. Connect external sense clips to the pins to be traced.

3. To set an event, set event conditions using the Event Set dialog box. The results of trace can be
checked using the Trace View window.

Trace View ;[Q’ﬁll
N I SHE M Ciose
HEAT Eii2 Lalon Trace data for external
sense clips
Frame Time Faddr Fdat F=tat Maddr Mdat M=tat ExtP \Dis
2755 4 011F EA Hi oo HPW AX #1H ;Jl
32756 1 FBOA oo R oo
32757 5 FEOB oo R oo
32758 6 0120 01 OF oo
32759 4 0121 oo OF oo
32760 4 0122 ED Hi oo HZ $150H
; b e o) 4 A 04 39 k] T D D
WM Event Set x| 00 MOVY AX, |_dispupf
Restore Evntl Make Evnt I Cloze | gg |
Event Mame: @ |Eventl]1 .:!| E ud . =
Address |_data | - | | Mazk (000D \/
Status |Dala Riw ;“ i I:I
Data o | Mask [FF | Set this area to incorporate external sense
T Extenal |5 | Mask |E I>/ clip data into the event conditions.

71

Chapter 3 Advanced Use of ID78K0

3.2 Using External Sense Clips

3.2.2 Trigger Output

« To output the in-circuit emulator status or other data, set the external sense clips to trigger output

mode.

ME ternalSenseClip Dialog x|
Set | Reset | Cancel | Help | Set to trigger output |
mode
" Input All - BitD - Bit7
< ®nput : Bitl - Bit7 Tngger Dutput - BitD; é

€ Qutput : BitD - Bit7 when suitable for Event

eent [|

» Trigger output data is output under the following condition:

Trigger output condition

When the pass count becomes 0 upon the occurrence of a break event

Trigger data is not output upon the occurrence of a fail-safe or manual break.

» Trigger output data is output from external sense clip No. 01.
* When external sense clips are set to output mode, they must be pulled up using resistors.

Connection diagram

Vdd(Max:15V)

TRG OUT

e

Connect external sense clip No. 01.

Trigger output waveform

Vvdd

TRG OUT

Trigger condition satisfied

Time t

72

Chapter 3 Advanced Use of ID78K0 3.2 Using External Sense Clips

3.2.3 Real-Time RAM Output

* The IE-78000-R-A does not support real-time RAM sampling. Only 1-byte data in memory can

be output in real-time, by using event conditions in combination with external sense clips and
simple external jigs.

MEveant Set Create an access event. In

this example, the contents of
Resztore Evntl Make Evnt l Cloze | address 0xfe00 are output.
Event Hame: @ |Eventl]'| N _;H

Addcss [0xfe00 BN | Mask [0000
Status | Data B I
bia Mask
External o0 | Mask_|[FF
= | Extem}lSenseGlip Dialog x|
Set | hﬂ{et | Cancel | Help |
€ Input All - Bitd \m?\g
tE%rag & thOIOttt_he event itr;]to " Input : Bit1 - Bit7_Trigger Output : Bit0
€ event setting area, then T 3 N\ 3 :
select Outpu. 9 | —#Tutput : Bit0 - Bit7 when\&y[tahle for Event_ |
fvont [EFE=]] |

Because data is being output in real time, it can also be used as a trigger source for other targets.

* When external sense clips are set to output mode, they must be pulled up using resistors.

Transition of data output from
external sense clip

Latch the contents of the data bus

upon the occurrence of the set event.
The latched data is held until the next
occurrence of the event.

Data

| | !

The set event occurs.

Example connection Vdd(Max:15V)

LED

AN
N’

GND
Connect each external sense clip. |

No.01 - No.08

73

Chapter 3 Advanced Use of ID78K0 3.2 Using External Sense Clips

3.2.4 Creating an Event by ANDing a Data Condition

« Advanced events can be created by using external sense clips.
* An event condition can be created by ANDing a data condition, as follows:

Procedure for creating an event condition by ANDing a data condition

Create an event having a data condition.

Set the event created in step 1 as an output condition for the external sense clips.

Pull up the eight external sense clips using resistors.

Create an event having an address condition or execution condition.

Specify an external sense data condition for the event created in step 4, thus creating an event
having a condition ANDing those specified in steps 1 and 4.

arwDNE

Example

Causing an event to occur when 15h is written into address Ofel2h, provided address 0fe0O0h contains
20h

e o Ses Set External'as he defaultor
Restore Evnt "m Cloze | Mask in ff.

Event Name: [E] |m‘] ;I|

Address ||]fE|]|]h | - | | Mask

Status | Data R =

Data |l]l] Mask
E xternal |["] | k |FF

I' . P
.| Eh‘e(nalSenseChp Dialog X]
Set an event condition, and set || \l\ﬂf’“’t | Cancel | Help |
E)huet etﬁttranrgglesense clips to put All - Bitb\ Bit7
P) put : Bit1 - Bit7 Lrigger Output : Bit0

F?___I;Iutput - BitD - Bit¥ whenmdzuitable for Event;
MEvent Set x| Event: h@

Restore Evnt l Make Evnt l Cloze |
Event Hame: @ |Eventl]2 _:I| .
Finally, set Address, Status,
Address |0fe15h |- | Mask |0000 and Data for another event.
: Specify the value at address
Status | Data Write = 0fe00h for External.
Data 15h | Mask |00 ,
(Ewtenal |20 | Mask 00 T~

In this example, one data condition is ANDed with another data condition. A data condition can
also be ANDed with an execution condition. An event condition like that shown above can be set
for various events, thus enabling the creation of advanced events. First try specifying "on."

74

Chapter 3 Advanced Use of ID78K0

3.3 Measuring Time by Setting Conditions

3.3 Measuring Time by Setting Conditions

* The timer measurement function of the IE-78000-R-A does not support the setting of event

conditions.

The user may, however, require information such as the intervals that elapse
between a function being called, or whether timer interrupts are generated correctly and on time.

* Time measurement using event conditions in combination with the tracer is described below.

Setting procedure
1.

program is used as an example:

Example program to be subject to time measurement

Set an event at the beginning of the function for which time will be measured. The following

Addr Data Mnemonic
> 0080 A300 MOV B,#0H
0082 43 INC B
T 0083 63 MOV AB ; Set an event. |
0084 S8BFE DBNZ B,$84H
0086 73 MOV B,A
0087 FAF9 BR $82H

This program executes an infinite loop between addresses 82H and 87H. The intervals (us)
between the executions of the instruction at address 83H are measured.

2. Set event and trace conditions as follows:

MEent Sat

;'ﬁ’é’é’iﬁié"'ﬁ'ﬁﬁiéllm
@ | Event

Cloze |

-

Event Mame:

Set an event at the beginning
of the processing to be
subject to time measurement.

Address |33h | - | | Maszk
Status |Hun ;“
Data | | Mask
Extemal (00 | Mask

MTRACE x|

Tic Bestore Trc | Make Tic I Cancel Trc | LCloze I
Set a qualified event. Naiiie: ﬂ
" Section ' Qualify
; Section Trace :
Section Start Sechon End
L Qually Trace
= b

75

Chapter 3 Advanced Use of ID78K0

3.3 Measuring Time by Setting Conditions

3.

4.

After the event and trace conditions have been set, the execution of the program is traced as

follows:

E:

Status: Guard: :l

Trace View =10l x|
I TUPREV Check that the execution times are
HEXT L EREY I EI%I satisfactory by converting the time tag
data to an actual time by using, for
Frame/Tine Faddr Fdat | example, spreadsheet software. Dizd=n
T 3266 2671 Q083 63 MOV AE ;]
T 3266 2756 0083 63 M1 Moy 4. B
T 32668 283EB Q0823 63 M1 Mow A B
T 32669 291F o83 63 M1 MOV AE
T 32670 2414 Q083 63 M1 Moy 4. B
T 32671 2AEA 1083 63 M1 MOY AR
T 3267 ZBCE MO83 63 M1 MOV AE I
T 32e7? 2CB3 pO83 63 M1 Moy 4. B
T 3267 2093 /0083 63 M1 MO¥Y AR =
K :
Frame. B1Z11] Fmulation:

Save the trace results to a file.

data to actual times by using, for example, spreadsheet software.

Conversion results

Frame number Time tag data [hex] Actual time [us]
32666 0x2671 984.1
32667 0x2756 1007.0
32668 0x283B 1029.9
32669 0x291F 1052.7
32670 0x2A14 1077.2
32671 Ox2AEA 1098.6
32672 0x2BCE 1121.4
32673 0x2CB3 1144.3
32674 0x2D98 1167.2

Time tag data is counted every 100 ns.

then convert the radix.

76

The execution times can be obtained by converting the time tag

To obtain an actual time, convert hexadecimal to decimal,

Appendix A

Error Messages

Appendix A Error Messages

This appendix lists the error and warning messages output by ID78KO0.

An error message consists of [error number|+type|+ message|.

Error

\i) L0 EY LI not load,

Type

x]

\ Error number\ Message

A type is represented by an alphabetic character. There are three types:

Type Explanation

Abort error.

A |Processing is interrupted and the debugger ends. If this error occurs, debugging cannot
be continued.

F Format (syntax) error.
Processing is interrupted. The currently open windows and dialog boxes are closed.

W Warning.
Processing is interrupted. The currently open windows and dialog boxes remain as is.

A message contains the names of the file, variable, and device related to the error, as follows:

Representation in message Explanation
XXX Low-order three digits of device name
yyy File name
777 Function name

77

Appendix A Error Messages

Error messages (1/9)

Error No. | Type Message Explanation
-- |Can't open this file. please make | The project file format is incorrect, or the file content
sure, now Active Window. has collapsed.
Loading the project file was discontinued.

-- | Cannot find “character string”. The search character was not found. The search
was discontinued.

Alternatively, opening the specified file was
discontinued because no data was in the file.

-- |Event Name is not set. There is no event name.

Specify the name of the event when adding it.

-- |Event number already exist. It is impossible to add an event having the same
number as an existing event.

Change the number of the event to be added or of
the existing event.

-- | Not enough memory. Because of insufficient memory, a window cannot be
displayed, its content cannot be changed, or
changes to it cannot be retained.

Assign sufficient memory, and retry.

-- | Other view mode window exist. Two or more active windows of the same type
cannot be opened simultaneously.

An active window that was already open was closed.

-- | Sorry, Too large view file. The specified view file (MEM, .TVW, or .DIS)
contains more than 1000 lines. Its display was
discontinued.

-- |“event name” is already exist. It is impossible to add an event having the same
name as an existing event.

Change the name of the event to be added or of the
existing event.

0001 A |Communication open error Communication with the in-circuit emulator (IE) is
not possible.

0003 A |Hardware error A hardware error is detected.

0004 A | Monitor time out Data was not transferred to and from the monitor
program.
Clock pulses may not be being supplied to the target
CPU or power may not be supplied. Check the
above and restart the debugger.

0005 A | Not found monitor file The monitor file is not found.

0006 A | Monitor file error A monitor file error is detected.

0009 A | Communication failed Communication with the IE failed.

000a A | Verify error A verify error is detected.

000e A |User program Cannot run The user program cannot be executed.

000f A |lllegal receive data An illegal response is received.

0012 A |Emulation-Board conflicts with The EM board ID does not match the value in the

Device-file device file.

0014 W | Target power off The power of the target device is off.

0015 W |Program is running The user program is running.

0016 W | Already break The user program is already in the break status.

0017 W | Tracer is running The tracer is running.

78

Appendix A Error Messages

Error messages (2/9)

Error No. | Type Message Explanation

0018 W | Timer is running Timer measurement is in progress.

001d W |Measure is off Timer measurement is not performed.

0020 W | Execution mode error An execution mode error is detected.

0021 W | Mapping error A mapping error is detected.

0022 W | Trace block not found The specified trace block does not exist.

0023 W |There is no trace data There is no trace data.

0024 W |Trace range over The trace range has been exceeded.

0026 W |Bus hold mode The bus hold mode is active.

0077 F | Search data not found The search data does not exist.

0078 F |[Measure overflow The timer measurement result overflowed.

007a F |Not specified coverage range The coverage range has not been specified.

007e W |Event No.3 is using Event condition No. 3 is in use.

00c8 W |User program is stepping The user program step is being executed.

O0lal A |Invalid EX78Kx.OMO The executor file (EX78K0.0MO0) was not read
correctly.
The executor file may not exist or may have been
destroyed. Install the executor file again and
restart the debugger.

0la3 A |Unconnected Emulation-board The emulation board (IE-780xx-R-EM) is not
correctly connected.
Connect the IE-780xx-R-EM to the IE-78000-R-A
correctly.

0la5 A |Unconnected I/O emulation-board | Emulation board 1 (IE-78xxx-R-EM1) is not correctly
connected.
Connect the IE-78xxx-R-EML1 to the IE-78000-R-A
correctly.

0la6 A | Executor is running The executor is running.

0la8 A |Invalid EXPC.INI The initialize file (EXPC.INI) was not read correctly.
The initialize file may not exist or may have been
destroyed. Install the initialize file again and restart
the debugger.

0600 A |Communication buffer error The area for the buffer used for exchanging data
with the IE was not reserved. End other MS-
Windows applications, change the setting of the MS-
Windows swap file, or install additional main
memory in the host machine.

0f13 A | Send timed out Data transmission to the IE failed.
Possible causes include an invalid interface board
setting and IE power off condition. Install the
initialize file again, then restart the debugger.

0f14 A [Receive timed out No response was received from the |E.
The IE may be abnormal. Check the IE and restart
the debugger.

0f15 A |Invalid DOxxx.78K The device file (DOxxx.78K) cannot be read

correctly.

The device file may not be located in the specified
directory or it may have been destroyed. Install the
device file again, then restart the debugger.

79

Appendix A Error Messages

Error messages (3/9)

Error No. | Type Message Explanation

1000 A |failure in initialization An attempt to initialize the IE failed. Check whether
the IE is abnormal.

1003 F |lllegal relocation address It is impossible to relocate to a specified address.

1004 F |lllegal parameter The parameter is illegal.

1006 F |lllegal address The address is illegal.

1007 A [Not enough substitute memory |An attempt was made to map IE alternate memory in
an area of 64K bytes or more.

100b F |Program Is Running A user program is running. This command cannot
be executed.

100c F |Different Bussize An attempt was made to make duplicate specification
in areas having different bus sizes.

100d F |Total Maximum Over An attempt was made to specify a bus larger than the
maximum size (8).

100e F |Enable Maximum Over The bus size is larger than 8.

100f W | Wrong Target Status(Power Off) |The target state is unstable.

10ff A |Communication Error It is impossible to communicate with the IE. Check
whether the IE is abnormal.

2000 F |llegal sfr name The SFR name is illegal.

2002 F |User program is running A user program is running. This command cannot
be executed.

2003 F |lllegal SFR number An attempt was made to access a nonexistent SFR.

2004 F [lllegal bit number There is no bit SFR at the specified bit position.

2005 W |Redraw sfr name The SFR has been disabled from redrawing.

2006 F | This SFR is hidden SFR This SFR is not open to general use. It is impossible
to display or change data for the SFR.

2007 F |Can't Read/Write An attempt was made to write to a write-protected
SFR or read from a read-protected SFR.

2008 F |Too big number The specified SFR was not found.

200a F |lllegal Bit Pattern An attempt was made to specify an illegal value for
an SFR.

20ff A |Communication Error Communication with the IE is impossible. Check
whether the IE is abnormal.

3000 F |lllegal address The address is illegal.

3001 F |Different data There is a memory content mismatch.

3002 F [lllegal source address The specified source address range does not fall
within the mapping range (during a memory search,
comparison, or copy).

3003 F |llegal destination address The specified destination address range does not fall
within the mapping range (during a memory search,
comparison, or copy).

3004 F |lllegal address (source & The specified address range does not fall within the

destination) mapping range (during a memory search,
comparison, or copy).

3005 F |llegal parameter The parameter is illegal.

3006 F |[User program is running A user program is running. This command cannot
be executed.

3008 F |No Parameter There is no parameter.

80

Appendix A Error Messages

Error messages (4/9)

Error No. | Type Message Explanation
3009 F |Parameter Size Alignment Error The parameter size is illegal. Change the
parameter according to the memory access size.
300a F |Memory Alignment Error The address value is illegal. Change the address
value according to the memory access size.
300b F | Source Start Address Alignment The source address is illegal. Change the source
Error address according to the memory access size.
300c F | Error, Destination Start Address In the destination address range, a memory range
Alignment Error with a conflicting access memory size was
specified.
300d F |End Address Alignment Error The end address is illegal. Change the end
address according to the memaory access size.
300e F | Different Access Size in This Area |In the address range, a memory range with a
conflicting access memory size was specified.
300f F | Different Access Size in Source In the source address range, a memory range with
Area a conflicting access memory size was specified.
3010 F |Different Access Size in Destination|In the destination address range, a memory range
Area with a conflicting access memory size was
specified.
3011 F | Different Access Size, Source & The access size conflicts between the source and
Destination destination address ranges.
30ff A | Communication Error Communication with the IE is impossible. Check
whether the IE is abnormal.
4000 F [Number is referenced now The specified event condition cannot be deleted.
4001 F |lllegal table number The specified table number is illegal.
4002 F |lllegal start address The start address is illegal.
4003 F |llegal end address The end address is illegal.
4004 F |llegal status The status is illegal.
4005 F |llegal data The data is illegal.
4006 F [Can't action number An attempt was made to use an event number that
was already in use.
4007 F [Can’'t empty number An attempt was made to register more than 32,767
events of the same type.
4008 F | Table not found The specified event has not been registered.
4009 F |llegal data size The data size is illegal.
400a F |lllegal type mode The mode is illegal.
400b F |lllegal parameter The parameter is illegal.
400c F |llegal type number The type is illegal.
400d F | Table overflow An attempt was made to register more than 32,767
events of the same type.
400e F [No entry event number The specified event does not exist.
400f F |llegal Elink data An event condition specified with a range condition
or pass condition was used as an event link
condition. Alternatively, only one event condition
was specified.
4010 F |Function not found The specified function was not found.
4011 A [No free memory There is no sufficient memory. End unnecessary
applications, or close the Debugger window.
4012 F |Timer not enabled The timer is disabled. Enable it if timer

measurement must be made.

81

Appendix A Error Messages

Error messages (5/9)

Error No. | Type Message Explanation

4013 W |Data access size mismatch at the |The access size in an event condition does not

bus size match the bus size for mapping.

4014 F |Can't use software break At present, no software break can be used.
Specify that a software break be usable, using the
Extended Option dialog box.

4015 F [Not point-address It is impossible to use, as an address condition, an
event condition specifying a range.

4016 F [Not renew event condition. This event condition is being used for another
event. Itis impossible to change the address
range condition or pass count condition.

4017 F | Specified odd-address by word- The data value was not detected in word data

access. beginning at an odd address. Do not include that
data value in the setting.

5000 A |lllegal type number The type is illegal.

5002 A |lllegal file name The device file cannot be opened.

5003 A |Cannot file seek An attempt to seek the file failed.

5004 A [Cannot file close An attempt to close the file failed.

5005 A |lllegal device format The format of the device file is illegal.

5006 A | Cannot device initialize An attempt to initialize the IE failed.

5007 A |lllegal device information There is no device information.

5008 F |Cannot open device file The specified device file cannot be opened.

5009 F | Cannot open EX78KX.OMO file The EX78K0.0MO cannot be opened.

500a F |No match device file of version The version of the device file is illegal.

500b W |Device has no relocatable iram. The currently selected device does not support
relocation in internal RAM.

6001 F |lllegal entry symbol name The symbol name is illegal.

6002 F |lllegal parameter The parameter is illegal.

6003 F |lllegal entry function name The function name is illegal.

6004 F | Out of Buffer flow Function display in the Stack window is incomplete.
The maximum allowable line size is 512 characters.

6005 F |lllegal expression The expression is illegal.

7001 F |User program is running A user program is running. This command cannot
be executed.

7002 F |[User program is stopped A user program is at a break. This command
cannot be executed.

7003 F |Trace function is active The tracer is running. This command cannot be
executed.

7004 F |Trace memory is OFF The tracer is off.

7005 F |No Return Address, Can’t Execute |The return address of the current function was not
found. Step execution based on the Return
command is not carried out.

7010 W |Warning, No Source Line Instruction-level step execution was carried out

Information because there was no source information.
7012 A | Not enough memory There is no sufficient memory. End unnecessary

applications, or close the Debugger window.

82

Appendix A Error Messages

Error messages (6/9)

Error No. | Type Message Explanation

70fe A |Bus Hold Error The bus is on hold. The user program cannot be
executed.

70ff A |Communication Error Communication with the IE is impossible. Check
whether the IE is abnormal.

7801 F |Step wait canceled Step execution was discontinued. So,
communication with the IE may become impossible.

7802 F |Step aborted An illegal access break occurred during step
execution. Check the user program.

7f00 F |Interrupted step Step execution was forced to end.

7f02 F |Suspended step Step execution was suspended.

7f03 A |Run/Step cancel failed. CPU An attempt to break the user program failed. The

resetted IE is unstable because the evaluation chip was

reset. Make sure that the IE is normal, then
restart it.

7f04 F |llegal address An attempt was made to execute in an non-mapped
area.

8000 F | File not found The file was not found.

8001 F |llegal line number The line number is illegal.

8002 F | Current data is not set The current information has not been set.

8003 F |llegal address The address is illegal.

9002 F [lllegal set value The specified value cannot be set in a register.
Specify a value that can be set.

a001 F |lllegal expression The expression is illegal.

a002 F |Start address bigger than end The start address is greater than the end address

address (start address > end address). Check the

addresses.

a003 F | Source path not found The specified source path information is illegal.
Specify the correct source path information.

a004 F |Expression is too big The size of the expression is greater than 127
characters.

a005 A | Not enough memory There is no sufficient memory. End unnecessary
applications, or close the Debugger window.

a006 F |llegal argument The argument is illegal.

a008 F |Source path not set The source path has not been specified.

a009 F | File not found The file was not found.

a00a F | File not open The file cannot be opened.

a00b A |File not close An attempt to close the file failed.

a00c A |File not read An attempt to read the file failed. It is likely that
the file has collapsed.

a00d F | Not source file of LM The specified source file has not been registered
for the load module file. A file not registered for
the load module file cannot be displayed in the
Source window.

a00e F |llegal line number The line number is illegal.

a0of F |lllegal variable The variable does not exist.

a010 A |Communication failed Communication with the IE is impossible. Check

whether the IE is abnormal.

83

Appendix A Error Messages

Error messages (7/9)

Error No. | Type Message Explanation

a0l11 F |Can't access register The register cannot be accessed. Check the IE.

a012 F |Can't access memory The specified memory (variable) cannot be
accessed. Check the IE or map setting.

b000 F |Command line error The parameter is illegal.

b001 F |Task type not found The load module file does not contain program
information.

b002 F |File not found The file was not found.

b003 F | Function not found The specified function was not found.

b004 F |lllegal magic number The magic number for the load module file is illegal.

b005 F | Symbol not found The symbol was not found.

b008 F |lllegal value The expression is illegal.

b009 A |[Notenough memory There is no sufficient memory. End unnecessary
applications, or close the Debugger window.

b00a F |lllegal symbol entry There is an illegal symbol in the load module file.
It is likely that there is a bug related to the
programming language.

b0OOb F | Current type noting There is no debug information. Load the load
module file.

b00c F [Current file noting There is no current source file. Alternatively the
source file cannot be opened because the load
module file has not been loaded.

b012 F |Line number too large The line number is illegal.

b015 A |Read error An attempt to read the file failed. It is likely that the
file has collapsed.

b016 A |Open error The file cannot be opened.

b017 A | Write error An attempt to write to the file failed.

b019 A |Seek error An attempt to seek the file failed.

b0la A | Close error An attempt to close the file failed.

bO1d F |Address not found There is no source line that corresponds to the
current PC value.

bO1le F [No line information(not compile There is no source line information in the load

with -g) module file. Attach the debug option, and carry out

recompilation, assembly, and linkage.

bO1f F |Cannot find member No member was found in the specified structure.

b020 F |Cannot find value The specified enumeration constant is illegal.

b021 F |Striped LM There is no symbol information in the load module
file.

b022 F |Null statement line The line number is illegal.

b026 F |Max dimension array over A four-dimensional or greater-scale array cannot be
displayed.

b027 F |End of file The file is not complete.

b029 F |lllegal address The address is illegal.

b02a A [Communication failed Communication with the IE is impossible. Check
whether the IE is abnormal.

b02b F | No stack frame point Stack tracing is impossible with the current PC

value.

84

Appendix A Error Messages

Error messages (8/9)

Error No. | Type Message Explanation

b02c F |Max block overflow The maximum number of blocks in one function is
exceeded. The function cannot be displayed.
(The maximum number of blocks per function is
256.)

b02d F |lllegal argument The argument is illegal.

c001 F |Cannot open file The file cannot be opened.

c002 A |Cannot close file An attempt to close the file failed.

c003 A [Cannot read file An attempt to read the file failed. It is likely that the
file has collapsed.

c004 A |Cannot seek file An attempt to seek the file failed.

c005 F |lllegal file type The format of the file is illegal. This file cannot be
handled.

c006 F |lllegal magic number The magic number for the load module file is illegal.

c007 F | This file is not load-module file The specified file is not a load module file.

c008 F | Old coff version The version of the load module file is illegal.

c009 A [Not enough memory There is no sufficient memory. End unnecessary
applications, or close the Debugger window.

c00a F |lllegal address The address is illegal.

c00b F |LM not load The load module file has not been loaded.

c00c F |lllegal argument This is an internal error.

c00d F |User program is emulating A user program is running. This command cannot
be executed.

c00e F |User program is tracing The tracer is running. This command cannot be
executed.

c010 A [Communication failed Communication with the IE is impossible. Check
whether the IE is abnormal.

c011 F |lllegal file format The format of the load module file (LNK) is illegal.

c012 F [Check sum error A checksum error occurred in reading the load
module file. Check the load module file.

c013 F |Too big size The address range for uploading has exceeded 1M
byte.

c014 F |Cannot write file An attempt to write to the file failed.

c100 F |Not support The Tektronix format is not supported.

doo1 F |Not enough memory There is no sufficient memory. End unnecessary
applications, or close the Debugger window.

€000 F |lllegal argument This is an internal error.

e001 F |lllegal start address The start address is illegal.

e002 F |lllegal end address The end address is illegal.

e003 F |Size too long The address value is illegal.

e004 F |Can't open file The specified file cannot be opened.

85

Appendix A Error Messages

Error messages (9/9)

Error No. | Type Message Explanation

e005 F |Can'tread file An attempt to read the file failed. It is likely that the
file has collapsed.

€006 F |Can't seek file An attempt to seek the file failed.

e007 F |Can't write file An attempt to write to the file failed.

e008 F |Not enough memory There is no sufficient memory. End unnecessary
applications, or close the Debugger window.

e009 F |lllegal file format The format of the file is illegal.

XXXX F |Internal error An internal error occurred.

86

Appendix B Key Functions

Appendix B Key Functions

Debugging can be carried out more effectively when ID78K0 is operated using the special function keys.
In the following explanation of the special function keys, general key representations (generic key
representations) are used. For the IBM-PC/AT Series, the key representations may differ slightly
depending on the keyboard type.

B.1 Functions of Special Function Keys

Ke Function

<

W@
<
)
Q)
>
(2]
@
@
w

PC-9801 and 9821
Series

Deletes the character immediately before the cursor and
moves the cursor to the position of the deleted character.
The character string following the cursor is moved back.

BackSpace

o
9]

Captures the entire screen into the clipboard as a bit
image. (Windows function)

PrintScreen

ﬁ [
3

<1> Closes the pulldown menu.
<2> Closes the modal dialog box.

ESC

m
n
O

Moves the cursor to the menu bar.

2]

Displays the last line. Also, the cursor is positioned to
the last line.

m
>
Q.

Displays the first line. Also, the cursor is positioned to
the first line.

HOME CLR

Scrolls the display up by one screen. Also, the cursor is
positioned to the top of the screen.

ROLL UP PageUp

Scrolls the display down by one screen. Also, the cursor
is positioned to the top of the screen.

ROLL DOWN PageDown

Inserts one blank.

wn I
g 3
8 D

SPAC

Positions the cursor to the next item.

)
o

Moves the cursor up.

Scrolls the screen down by one line when the cursor is
positioned to the top of the screen.

-

Moves the cursor down.

Scrolls the screen up by one line when the cursor is at
the bottom of the screen.

-

Moves the cursor to the left.

Scrolls the screen to the right by one item when the
cursor is in the leftmost column.

Moves the cursor to the right.

Scrolls the screen to the left by one item when the
cursor is in the rightmost column.

Confirms input data.

[1]

[+]

iEERRE [FIL
m R L

El

87

Appendix B Key Functions

B.2 Functions of Special Function Keys (CTRL |+ Key)

Key
(Common to the PC-9801,
9821, and IBM-PC/AT Series)

Function

Using the data value in the current window as an address to jump to,
disassembles and displays the program starting from that address. Opens
the Assemble window.

Sets a breakpoint in a selected line.

Copies a selected character string to the clipboard buffer.

PC setting and window view: The Call dialog box is opened.

PC setting.

@] | [m]| [S]| o] | [=]

Switches a window to modify mode. This has the same effect as clicking

the |ToMaodify | putton.

Executes a program. This has the same effect as clicking the E button.

Switches a window to the Hold state.

Switches a window to the Active state.

=]| = ||]

Using the data value in the current window as an address to jump to,
displays the contents of memory starting from that address. Opens the
Memory window.

[©]

If the Source window is current:
Allows the user to select a source view file.
Opens the source file select dialog box.

Otherwise: Displays an appropriate view file in the current window.
Opens the view file save dialog box.

Stops the execution of a program. This has the same effect as clicking the
E_ button.

=l =

Performs step execution until control returns to the calling function. This
has the same effect as clicking the E button.

Saves the contents of the current window to a view file.

=] | (]

Performs step execution. This has the same effect as clicking the E
button.

[€]

Using the data value in the current window as an address to jump to,
displays an appropriate source text and source line. Opens the Source
window.

Pastes the contents of the clipboard buffer to the text cursor position.

5| =

Switches a window to view mode. This has the same effect as clicking the

ToView | putton.

]

Performs Next step execution. This has the same effect as clicking the
E_ button.

[N]

Cancels the previous editing operation.

88

Appendix C Menus

Appendix C Menus

This Appendix lists the menus supported by ID78KO0.

Symbols used in the menu lists

Symbol Meaning
[ltem] Item on a menu bar
No symbol Item in a pull-down menu
- (arrow) Item in a cascaded menu
The number of arrows corresponds to the nesting level.

Table C-1 Main Window (1/4)

Menu Mnemonic Explanation

[File]

Open... CTRL+O |Opens a file.

Save CTRL+S |Saves the contents of the current window into the view file.

Save As... Saves the contents of the current window into a view file having
a different name.

Close Closes the current window.

Print Prints the contents of the current window.

Down load... Downloads a program.

Up load... Uploads a program.

Open/Save Project

- Open Project... Opens a project file.

- Save Overwrites the project file with the current debugging
environment.

- Save As... Saves the current debugging environment into a project file.

Open/Save Log Records the history of execution.

Exit Exits from the debugger.

[Edit]

Undo CTRL+Z |Cancels the most recent editing.

Copy CTRL+C |[Copies a selected character string into the clipboard buffer.

Paste CTRL+V |Pastes the contents of the clipboard buffer at the point to which
the text cursor is positioned.

Write in Writes the modified contents into the target device.

Restore Cancels the modified contents.

Memory

- Memory Fill... Initializes memory.

—Memory Copy... Copies the contents of memory.

-Memory Compare...

Compares the contents of memory.

- File Compare...

Compares the view file with the contents of memory.

89

Appendix C Menus

Table C-1 Main Window (2/4)

Menu Mnemonic Explanation
[View]
Search... Searches for a character string or numerical value.
Address... Displays the contents of memory at a specified address.

View Variable...

Displays the value of a specified variable temporarily.

Watch Variable...

Displays the value of a specified variable continuously.

Add Variable... Adds a variable to the Variable window.
Sym To Adr... Converts symbols.

Delete Deletes a specified value.

Bin Selects binary display format.

Oct Selects octal display format.

Dec Selects decimal display format.

Hex Selects hexadecimal display format.
Proper Selects a default display format for each variable.
Event ? Displays event information.

Memory

- Nibble Displays data in nibble format.

- Byte Displays data in byte format.

-Word Displays data in word format.

-Long Displays data in long format.

- Ascii Switches on or off ASCII view mode.
Sfr

- Address Sort

Selects alphabetic display order or display in order of
addresses.

- Pick Up Displays only modified SFRs.

- Attribute

- - Show Displays the attribute view area.
- - Hide Hides the attribute view area.

- Compulsion Read

Performs forced reading of a read-protected SFR.

- Synchronize

Writes the modified SFRs to the target device.

Trace View
- Trace View... Selects the trace view contents.
- Shap View... Selects the snapshot trace view contents.

- Normal Title

Displays the trace frame titles.

- Snap Title Displays the snapshot frame titles.
- All Title Displays all titles.

—Open Frame... Specifies a view frame number.

- Pick Up... Selects a view frame.

Coverage

- 1 Byte Displays data in 1-byte units.

- 64 Byte Displays data in 64-byte units.

90

Appendix C Menus

Table C-1 Main Window (3/4)

Menu Mnemonic Explanation
[Option]
Tool Bar Displays or hides the tool bar.
Status Bar Displays or hides the status bar.
Button Displays or hides the buttons in the window.
Source Mode Selects the source mode.
Instruction Mode Selects the instruction mode.
Configuration... Sets the environment.
Source Path... Sets source path information.
Extended Option... Sets extended options.
Mask Option... Sets mask options.
[Execute]
Stop CTRL+P | Stops the execution of a program.
Go CTRL+G |Executes a program.
Return CTRL+R |Executes a program, step by step, until control is returned to
the calling function.
Step CTRL+T |Executes a program step by step.
Next CTRL+X |Performs Next step execution of a program.
Go & Go Repeatedly executes a program.
Go & Come Executes a program up to a specified address.
Slowmotion Continues step-by-step execution.
CPU Reset & Go Resets the CPU before starting execution.
CPU Reset... Resets the CPU.
Set BP CTRL+B |Sets a breakpoint.
Set PC CTRL+E |Sets the address in the program counter.
Call... CTRL+D |Sets PC in the specified address and moves.
ExtSenceClip... Sets external sense clip mode.
Trace
Cond. Trace Sets conditional tracing mode.
Machine All. Trace Sets machine cycle, all-tracing mode.
Event All. Trace Sets event cycle, all-tracing mode.
Trace Full Break Breaks after full tracing.
[Operation]
Active CTRL+l |Puts the window in the active state.
Hold CTRL+H |Puts the window in the hold state.
ToModify CTRL+F |Puts the window in modify mode.
ToView CTRL+W |Puts the window in view mode.

Window Connect

- SourceText Links to the Source window.
— Assemble Links to the Assemble window.
- Memory Links to the Memory window.

91

Appendix C Menus

Table C-1 Main Window (4/4)

Menu Mnemonic Explanation
[Browse]
SourceText... Opens the Source window.
Variable... Opens the Variable window.
Assemble... Opens the Assemble window.
Memory... Opens the Memory window.
Reqgister... Opens the Register window.
Stack Trace... Opens the Stack window.
Sir... Opens the SFR window.
Local Variable... Opens the Local Variable window.
BreakSet... Opens the Break dialog box.
Timer... Opens the Timer window.
Trace
- TraceSet... Opens the Trace dialog box.
- TraceView... Opens the Trace View dialog box.
- SnapShotTraceSet... Opens the Snap-Shot dialog box.
Event
- EventSet... Opens the Event Set dialog box.
- EventManager... Opens the Event Manager.
- EventLinkSet... Opens the Event Link dialog box.
Coverage
- View... Opens the Coverage window.
- Clear... Opens the Coverage Memory Clear dialog box.
- Condition... Opens the Coverage Condition Setting dialog box.
- Efficiency... Opens the Coverage Efficiency View dialog box.
[Jump]
SourceText... CTRL+U |Jumps to the Source window.
Assemble... CTRL+A [Jumps to the Assemble window.
Memory... CTRL+M [Jumps to the Memory window.
[Window]
Cascade Displays the window in cascade style.
Tile Displays the window in tile style.
Arrange Icons Re-arranges the icons.
Close All Closes all windows except the main window.
[Help]
About... Displays the information about the version.

92

Appendix C Menus

Table C-2 Event Manager

Menu Mnemonic Explanation

[File]

Open... Opens an event setting file.

Save Saves the current event settings into the event setting file,
overwriting the previously saved setting.

Save As... Saves the current event settings into a specified event setting
file.

Print Prints the event registration/setting information.

Close Closes the Event Manager.

[Edit]

Undo Cancels the most recent editing.

Copy Copies a specified icon using a different name.

All Select Selects all icons.

Delete Deletes a specified icon.

[View]

Name Sorts the icons into event name order.

Kind Sorts the icons into event type order.

Detail Switches between normal view and detail view.

[Execute]

Set Break Enables a break condition.

Cancel Break Disables a break condition.

Set Trace Enables a trace condition.

Cancel Trace Disables a trace condition.

Set SnapShotTrace Enables a snapshot condition.

Cancel SnapShotTrace Disables a snapshot condition.

[Operation]

BreakSet... Opens the Break dialog box.
TraceSet... Opens the Trace dialog box.
SnapShotTraceSet... Opens the Snap-Shot dialog box.
EventSet... Opens the Event Set dialog box.
EventLinkSet... Opens the Event Link dialog box.
[Jump]

SourceText... Jumps to the Source window.
Assemble... Jumps to the Assemble window.
Memory... Jumps to the Memory window.

93

Appendix C Menus

Table C-3 Register Window

Menu

Mnemonic

Explanation

[File]

Open/save Condition

- Open Condition...

Opens the selected file for reference.

- Save Condition

Saves the contents of the window into a view file.

- Save File as...

Saves the current event settings into a specified view file.

Close Closes the Register window.

[Edit]

Undo Cancels the most recent editing.

Copy Copies a selected character string into the clipboard buffer.

Paste Pastes the contents of the clipboard buffer at the point to which
the text cursor is positioned.

Write in Writes the modified contents into the target device.

Restore Cancels the modified contents.

[View]

Absolute Name

Displays absolute register names.

Functional Name

Displays functional register names.

Register Displays registers individually.

Register Pair Displays register pairs.

Bin Displays data in binary format.

Oct Displays data in octal format.

Dec Displays data in decimal format.

Hex Displays data in hexadecimal format.
[Operation]

Active Puts the Register window in the active state.
Hold Puts the Register window in the hold state.
ToModify Puts the Register window in modify mode.
ToView Puts the Register window in view mode.
[Jump]

SourceText... Jumps to the Source window.

Assemble... Jumps to the Assemble window.

Memory... Jumps to the Memory window.

94

Appendix C Menus

Table C-4 Variable Window

Menu

Mnemonic Explanation

[File]

Open/save Condition >

- Open Condition...

Opens the selected file for reference.

- Save Condition

Saves the contents of the window into a view file.

- Save File as...

Saves the contents of the window into a specified view file.

Close Closes the Variable window.

[Edit]

Undo Cancels the most recent editing.

Copy Copies a selected character string into the clipboard buffer.

Paste Pastes the contents of the clipboard buffer at the point to
which the text cursor is positioned.

Write in Writes the modified contents into the target device.

Restore Cancels the modified contents.

[View]

Bin Displays variable values in binary format.

Oct Displays variable values in octal format.

Dec Displays variable values in decimal format.

Hex Displays variable values in hexadecimal format.

Proper Displays variable values in default format for each variable.

[Operation]

Active Puts the Variable window in the active state.

Hold Puts the Variable window in the hold state.

ToModify Puts the Variable window in modify mode.

ToView Puts the Variable window in view mode.

Delete Removes a specified variable from the Variable window.

Table C-5 Timer Window

Menu

Mnemonic Explanation

[File]

Open/save Condition >

- Open Condition...

Opens a file.

- Save Condition

Saves the contents of the window into the original file.

- Save File as...

Saves the contents of the window into a specified file.

Close Closes the Timer window.

[Operation]

Active Places the Timer window in the active state.
Hold Places the Timer window in the hold state.

95

Facsimile

NEC

Message

Although NEC hastaken all possible steps
to ensure thatthe documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that

From: .
errors may occur. Despite all the care and
precautions we've taken, you may

Name encounter problemsinthe documentation.
Please complete this form whenever

Company you'd like to report errors or suggest
improvements to us.

Tel. FAX

Address

Thank you for your kind support.

North America

NEC Electronics Inc.

Corporate Communications Dept.

Fax: 1-800-729-9288
1-408-588-6130

Europe

NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6465-6829

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea

NEC Electronics Hong Kong Ltd.
Seoul Branch

Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-719-5951

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Semiconductor Technical Hotline
Fax: 044-548-7900

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

If possible, please fax the referenced page or drawing.

Document Rating Excellent Good Acceptable Poor
Clarity O O O a
Technical Accuracy a a a a

Organization a O a O

CS 98.2

	Cover
	Preface
	Purpose
	Files supplied with the integrated debugger
	Target device
	In-circuit emulator
	Host machine
	Configuration
	Conventions
	Screen
	Cautions
	Related Documents
	Contents
	Chapter 1 Overview
	1.1 Starting and Terminating the Debugger
	1.1.1 Starting
	1.1.2 Terminating

	1.2 Making Maximum Use of the Main Window
	1.2.1 Main Window Functions
	1.2.2 Making Maximum Use of Menus
	1.2.3 One-Touch Tool Bar Operation
	1.2.4 Using Information Provided by the Status Bar

	Chapter 2 Basic Operations
	2.1 Establishing the Environment
	2.1.1 Selecting a Device
	2.1.2 Selecting a CPU Clock
	2.1.3 Mapping
	2.1.4 Specifying a Stack Area
	2.1.5 Setting the Alternate Software Operation Clock
	2.1.6 Setting Memory Banks
	2.1.7 Loading/Saving the Debugging Environment

	2.2 Source Level Debugging
	2.2.1 Notes on Compilation, Assembly, and Linking
	2.2.2 Downloading a Program
	2.2.3 Displaying a Source
	2.2.4 Functions Supported by the Source Window
	2.2.5 Jump from the Source Window

	2.3 Instruction Level Debugging
	2.3.1 Assembly Language Display and Online Assembly
	2.3.2 Saving and Referencing Displayed Assembly Language Code
	2.3.3 Functions Supported by the Assemble Window
	2.3.4 Jump from the Assemble Window

	2.4 Manipulating Memory
	2.4.1 Displaying and Modifying Memory Data
	2.4.2 Basic Memory Data Operations
	2.4.3 Saving and Referencing Displayed Memory Data
	2.4.4 Functions Available in the Memory Window
	2.4.5 Jumping from the Memory Window

	2.5 Manipulating Registers
	2.5.1 Displaying and Modifying Registers
	2.5.2 Saving and Referencing Displayed Register Data
	2.5.3 Functions Available in the Register Window
	2.5.4 Functions Available in the SFR Window
	2.5.5 Jumping from the Register Window

	2.6 Creating Events
	2.6.1 Setting and Referencing Events in the Source Window and Assemble Window
	2.6.2 Creating Event Conditions
	2.6.3 Setting Events
	2.6.4 Saving and Restoring Event Conditions
	2.6.5 Functions Available in the Event Manager
	2.6.6 Jumping to an Event Setting Address

	2.7 Manipulating Symbols (Variables)
	2.7.1 Displaying and Modifying Variables
	2.7.2 Saving and Referencing Symbol Data
	2.7.3 Functions Available in the Variable Window and Local Variable Window

	2.8 Using the Tracer Effectively
	2.8.1 Displaying Trace Results
	2.8.2 Saving and Referencing Trace Results
	2.8.3 Effective Trace Memory Usage 1 (Trace Mode Setting)
	2.8.4 Effective Trace Memory Usage 2 (Trace Full Break, Snapshot Trace)
	2.8.5 Inter-Window Connection Functions (Window Connection Function, Jump Function)

	2.9 Measuring the Execution Time
	2.9.1 Measuring Program Execution Time
	2.9.2 Time Measurement Using the Tracer

	Chapter 3 Advanced Use of ID78K0
	3.1 Verifying the Validity of Evaluation
	3.1.1 Coverage
	3.1.2 Verifying the Validity of Evaluation Based on Coverage
	3.1.3 Notes on Coverage Results

	3.2 Using External Sense Clips
	3.2.1 Tracing External Data
	3.2.2 Trigger Output
	3.2.3 Real-Time RAM Output
	3.2.4 Creating an Event by ANDing a Data Condition

	3.3 Measuring Time by Setting Conditions

	Appendix A Error Messages
	Appendix B Key Functions
	B.1 Functions of Special Function Keys
	B.2 Functions of Special Function Keys (CTRL+ Key)

	Appendix C Menus

