

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas

Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog

and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)

Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand

names are mentioned in the document, these names have in fact all been changed to Renesas

Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and

corporate statement, no changes whatsoever have been made to the contents of the document, and

these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.

Customer Support Dept.

April 1, 2003

To all our customers

Cautions

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corporation
or an authorized Renesas Technology Corporation product distributor for the latest product information
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, diagrams,
charts, programs, and algorithms, please be sure to evaluate all information as a total system before
making a final decision on the applicability of the information and products. Renesas Technology
Corporation assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device
or system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor
when considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other
than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the products
contained therein.

Ho7000 Series
Operating System Manual

U
ser’s M

anual

 Rev.1.0 2002.06

PLEASE READ THE FOLLOWING CAREFULLY BEFORE YOU USE THIS PRODUCT .

1. If you use the enclosed software product and any related software products (hereafter referred to
as “PRODUCT“), before exporting or taking such PRODUCT to other countries or states, you
must comply with applicable export control laws and regulations of Japan and other countries
with jurisdiction and the applicable states and provinces within Japan and such other countries.

2. Please be advised that Hitachi neither warrants nor grants licenses of any rights to the patents,
copyrights, trademarks, or other intellectual property rights owned by Hitachi or any third party
for the use of the PRODUCT, unless otherwise expressly granted to you by Hitachi in a contract
or other document including without limitation any warranty or license included in the user’s
manual for the PRODUCT (hereinafter referred to as “CONTRACTS”). Please be further advised
that Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with the use of the PRODUCT.

3. The PRODUCT, its specifications and/or its description in the user’s manual are subject to change
in the future without any prior notice. Confirm that you have received the latest standards and/or
specification for the PRODUCT (including the user’s manual) before you make your final design,
purchase or use.

4. Please be advised that Hitachi will not have any liability whatsoever for damages, including
indirect or consequential damages, arising out of your use of the PRODUCT (including the use
based on the descriptions of the user’s manual). Hitachi shall not be liable for any damages
caused by any equipment or media used for delivery of the PRODUCT.

5. The PRODUCT is not designed for, and you may not use the PRODUCT for, applications that
demand especially high quality and reliability, or where its failure or malfunction may directly
threaten human life or cause risk of bodily injury, such as equipment used for aerospace,
aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or
medical equipment for life support. If you have any questions regarding whether or not your
intended use of the PRODUCT is permitted by Hitachi,, please contact your local Hitachi’s sales
office.

6. At the time of designing or planning your system using the PRODUCT, please consider normally
foreseeable failure rates or failure modes and employ sufficient systematic measures such as fail-
safe systems so that the equipment incorporating the PRODUCT does not cause any accident or
other consequential damage due to operation of the PRODUCT.

7. This manual and the PRODUCT are copyrighted by Hitachi. Under any circumstances, you may
not copy, analyze, reverse engineer, and/or modify, in whole or in part, the PRODUCT, except to
the extent expressly provided in the CONTRACTS.

8. You may not use or copy, in whole or in part, the user’s manual for the PRODUCT without the
prior written consent of Hitachi, except to the extent expressly provided in the CONTRACTS.

9. You may use the PRODUCT on just one (1) computer. You may not transfer, lease or otherwise
assign the PRODUCT to any third party or parties, except to the extent expressly provided in the
CONTRACTS.

10. Please contact your local Hitachi’s sales office for any questions regarding the PRODUCT, any
Hitachi semiconductor products or any related products.

Cautions

1

Table of Contents
1 OVERVIEW ... 4

1.1 INTRODUCTION... 4
1.2 FEATURES... 4

2 OS APPLICATION BUILDING... 5

3 OPERATING SYSTEM FUNCTION... 7

3.1 PROCESSING LEVELS... 7
3.2 FEATURES... 8
3.3 APPLICATION MODES.. 9
3.4 CONFORMANCE CLASSES.. 10
3.5 MAXIMUM PARAMETERS.. 11

4 TASK MANAGEMENT .. 12

4.1 TASK CONCEPT... 12
4.2 TASK STATE ... 12

4.2.1 Introduction... 12
4.2.2 Basic Tasks.. 13
4.2.3 Extended Tasks.. 14

4.3 COMPARISON OF THE TASK TYPES.. 16
4.4 TASK ACTIVATION AND TERMINATION.. 16
4.5 TASK PRIORITY... 16
4.6 TASK PREEMPTABILITY... 16
4.7 TASK STACKS... 17
4.8 TASK SYSTEM SERVICES... 17

5 SCHEDULER... 18

5.1 INTRODUCTION... 18
5.2 NON-PREEMPTIVE SCHEDULING.. 19
5.3 FULL PREEMPTIVE SCHEDULING ... 20
5.4 MIXED PREEMPTIVE SCHEDULING... 21
5.5 INTERRUPT MASK LEVEL AND TASK PREEMPTION... 21

6 INTERRUPT MANAGEMENT.. 22

6.1 INTERRUPT CATEGORIES... 22
6.2 INTERRUPT CONTROL.. 24

6.2.1 Interrupt Mask Level Method .. 24
6.2.2 Interrupt Source Method ... 25

6.3 INTERRUPT SOURCE CLASSIFICATION.. 27
6.3.1 Non-Maskable Interrupt .. 27
6.3.2 Other Interrupts .. 27

6.4 INTERRUPT STACKS .. 27
6.4.1 Interrupts of Category 2 ... 27
6.4.2 Interrupts of Category 1 .. 27
6.4.3 NMI Interrupts .. 28

6.5 EXCEPTIONS... 28
6.6 INTERRUPT SYSTEM SERVICES.. 29

7 RESOURCE MANAGEMENT ... 30

2

7.1 INTRODUCTION... 30
7.2 PRIORITY RESOURCE MANAGEMENT... 30
7.3 NESTED RESOURCE OCCUPATION.. 31
7.4 RESOURCE OCCUPATION AT TASK TERMINATION .. 31
7.5 SCHEDULER AS A RESOURCE... 31
7.6 RESOURCE PRIORITY CEILING FOR ECC1 CONFORMANCE............................ 31
7.7 RESTRICTIONS WHEN USING RESOURCES.. 32
7.8 RESOURCE SYSTEM SERVICES... 32

8 EVENT MANAGEMENT ... 33

8.1 INTRODUCTION... 33
8.2 EVENT OPERATION... 33
8.3 EVENT IDS ... 34
8.4 EVENT SYSTEM SERVICES... 35

9 ALARM AND COUNTER MANAGEMENT .. 36

9.1 INTRODUCTION... 36
9.2 COUNTERS.. 37

9.2.1 Counter Handler ... 37
9.2.2 System Timer ... 37
9.2.3 Non-Variant Alarm Timer ... 37
9.2.4 Counter Properties.. 38

9.3 ALARMS ... 39
9.3.1 Introduction... 39
9.3.2 Alarm Parameters ... 40

9.4 EXAMPLE FOR USING COUNTER AND ALARM .. 41
9.5 COUNTER AND ALARM SYSTEM SERVICES.. 42

10 SYSTEM CONTROL ... 43

10.1 SYSTEM START-UP... 43
10.2 SYSTEM SHUTDOWN.. 43
10.3 HOOK ROUTINES... 44
10.4 ERROR HANDLING ... 45

10.4.1 Error Status.. 45
10.4.2 Shutdown Errors .. 45

10.5 ERRORHOOK RE-ENTRY.. 45

11 PROGRAMMING .. 46

11.1 REGISTERS.. 46
11.2 DECLARATION OF OSEK PROCESSES... 47

11.2.1 OS Initiation... 47
11.2.2 Tasks .. 48
11.2.3 ISR ... 48

11.3 SYSTEM CONFIGURATION FILES... 48
11.3.1 Header Files .. 49

11.4 DECLARING SYSTEM OBJECTS THROUGH SYSTEM SERVICES...................... 49
11.5 REFERRING TO SYSTEM OBJECTS... 49
11.6 CALLING A SYSTEM SERVICE FROM AN ASSEMBLER ROUTINE 50
11.7 ASSEMBLER ISR.. 50

11.7.1 Interrupt Category 1 .. 50
11.7.2 Interrupt Category 2 .. 52

3

11.8 REGISTERING ISRS.. 53
11.9 OS INTERRUPTS... 54

12 SYSTEM SERVICES ... 55

12.1 INTRODUCTION.. 55
12.2 TASK MANAGEMENT SERVICES... 56

12.2.1 Data Types ... 56
12.2.2 System Services .. 57
12.2.3 Constants of data type TaskStateType .. 61

12.3 INTERRUPT MANAGEMENT SERVICES... 62
12.3.1 DataTypes .. 62
12.3.2 System Services .. 62
12.3.3 Constants of the IntDescriptorType Data Type 68
12.3.4 Interrupt Sources and Settings... 69
12.3.5 Functions Used to Control Interrupts from User-Defined Sources..... 73

12.4 RESOURCE MANAGEMENT SERVICES... 76
12.4.1 Data Types ... 76
12.4.2 System Services .. 76

12.5 EVENT MANAGEMENT SERVICES... 78
12.5.1 Data Types ... 78
12.5.2 System Services .. 79

12.6 COUNTER AND ALARM MANAGEMENT SERVICES....................................... 83
12.6.1 Data Types ... 83
12.6.2 System Services .. 84

12.7 OPERATING SYSTEM EXECUTION CONTROL... 90
12.7.1 Data Types ... 90
12.7.2 System Services .. 90

12.8 HOOK ROUTINES... 92
12.8.1 System Services .. 92

A APPENDIX.. 94

A.1 SYSTEM SERVICE RETURN CODES.. 94
A.2 IDS.. 96

A.2.1 Return Code IDs.. 96
A.2.2 System Service IDs ... 97
A.2.3 Context IDs ... 98

A.3 SYSTEM SERVICE CALLS .. 99
A.4 DATA TYPES.. 100

4

1 Overview

1.1 Introduction

This document defines the operation of an Ho7000 series V1 (hereafter referred to as
OS) which conforms to the OSEK/VDX (hereafter referred to as OSEK) open
standard for operating systems, Specification Version 2.0 revision 1. This document
is described on the assumption that OSEK specification is understood.
Read this document carefully and understand the contents of the following documents
before using the OS.

- “OSEK/VDX Operating System”, Version 2.0 revision 1 (OSEK/VDX steering
committee)

- Release Notes of this product
- SuperH RISC engine C/C++ Compiler Package Manual
- Programming Manual and Hardware Manual of the target SH microprocessor

1.2 Features

• The OS is configured and scaled statically. The number of system objects (see
Section 3.3), such as tasks and resources required is statically specified by the
user.

• The OS supports portability of application by providing a standardised application
program interface that is defined according to the ANSI C standard.

• The OS provides the following features for the real-time, multi-tasking operation
of applications.

− Task Management
− Scheduling Policies
− Interrupt Management
− Resource Management
− Event Management
− Counter and Alarm Management
− Error Handling

5

2 OS Application Building

The following files are required for building an OS application.

− Kernel library. The kernel library is a set of object files implementing the
functionality of the OS. The core functionality (task management, scheduler, etc.)
is always included, but non-essential features (resource management, event
management, etc.) are automatically combined by the linkage editor.

− OS configuration files. These files register information about system objects such
as tasks and resources. The files are automatically generated by the OS
Configurator.

− Application program files. The user application code is written in C language or
assembly language.

Figure 2.1 shows the procedure for building an OS application.

LOAD
MODULE

COMPILER
ASSEMBLER

LINKAGE EDITOR

OS
CONFIGURATOR

KERNEL
LIBRARY

APPLICATION
PROGRAM FILES

OS
CONFIG.FILE

USER
INPUT

CONFIG.
DEFINITION

FILE

: File
: Tool

Figure 2.1 OS Application Building Flow

6

The configurator generates the OS configuration files and the kernel library files
determined by the user input or configuration definition file. Along with the
application program files, these files are compiled, assembled and linked to generate
the load module. There are two formats for the configuration definition file: an *.oil
file which describes the application using the OSEK Implementation Language
format, and an *.ocf file which describes the application using an internal format.

The user is referred to the help file of OS Configurator for information on how to
generate configuration files.

7

3 Operating System Function

3.1 Processing Levels

There are three types of processes:

• Interrupt service routines (hereafter referred to as ISRs)
• OS

• Tasks

The highest processing priority is assigned to the interrupt level, where ISRs are
executed. This interrupt level also includes cases where the interrupt-mask level
within a task is non-zero. This method of specification is an original feature of this
system. The processing level of the operating system has a priority immediately
below the interrupt level. The lowest is the task level on which the application is
executed. This is illustrated in Figure 3.1 .

Figure 3.1 OSEK Processing Levels

T A S K L E V E L

I N T E R R U P T L E V E L

O S L E V E L

p r i o r i t y

h i g h

l o w

8

3.2 Features

The OS provides the following features for use by the application.

• Scheduling Kernel. Provides a mechanism whereby tasks are allocated under the
control of the CPU.

• Task Management. Provides system services for controlling tasks.

• Interrupt Management. Provides system services for controlling interrupts.

• Resource Management. Provides system services for controlling synchronisation
of access to shared resources between tasks.

• Event Management. Provides system services for controlling events.

• Counter Management. Provides system services for controlling counters.

• Alarm Management. Provides system services for controlling alarms.

• Error Handlers and Hook Routines. Provides a mechanism for error handling
and controlling hook routines called to specific timing.

9

3.3 Application Modes

Application modes are designed to allow the OS to start in different modes. This
feature is intended for modes of operation that are totally mutually exclusive. For
example, application modes may be used to distinguish between normal running
mode, and service or maintenance mode.

Each of the following system objects can be selected whether it is valid or not in each
application mode.

• Task
• Resource
• Alarm
• Counter
• ISR

Additionally, if a system object depends on another one, the user must ensure that
both system objects are valid in all application modes that have been selected. For
example, when a task uses a resource in a certain application mode, the resource
should also be valid in the application mode. Note that objects which are defined in
the application, but not used, will still be subject to object validation or error checking
at the time of configuration file generation.
Once the operating system has started, it is not allowed to change the application
mode.

10

3.4 Conformance Classes

Conformance classes are determined by the following attributes:

− number of times of queuing of task activation (multiple requesting)
− type of task (Basic or Extended)
− number of tasks per priority

 The kind of conformance class is shown below.

• BCC1 (only basic tasks, limited to one request per task and one task per priority,
while all tasks have different priorities)

• BCC2 (more than one task per priority and multiple requesting of task activation
are added to BCC1)

• ECC1 (extended tasks are added to BCC1)

• ECC2 (extended tasks are added to BCC2)

Figure 3.2 OS Conformance Classes

B C C 1 E C C 1

B C C 2 E C C 2

B a s i c
t a s k s

E x t e n d e d
T a s k s

1 t a s k / p r i o r i t y ,
n o m u l t i p l e
a c t i v a t i o n s

= > 1 t a s k / p r i o r i t y ,
m u l t i p l e a c t i v a t i o n s

(f o r b a s i c t a s k s o n l y)

11

3.5 Maximum Parameters

Table 3.1 shows the maximum parameters for the OS.

Table 3.1 OS Maximum Parameters

Maximum numberItem
BCC1 BCC2 ECC1 ECC2

 Number of tasks 1023
 Number of active tasks 1023 (max. 128 basic tasks)
 Number of priorities 128
Number of tasks per priority 1 1023 1 1023
Upper limit for number of task activations (must be
“1” for extended tasks)

1 127 1 127

Number of events per task 8
Number of alarm objects 127
Number of counter objects 127
Number of resources* 1 127
Number of application modes 8
Number of interrupt service routines 256
 Note: Includes the RES_SCHEDULER resource (resource ID = 0) provided by OS.

12

4 Task Management

4.1 Task Concept

Complex control software can conveniently be subdivided into parts executed
according to their real-time requirements. These parts can be implemented by means
of tasks. The OS uses a task scheduler to provide concurrent and asynchronous
execution of tasks.

A task can either be activated at OS start-up, or by other tasks. The task may then
terminate, or run in an endless loop. Once terminated, the task will be re-started when
activated by another task, or through an alarm expiry.

Two different task types are provided by the OS:

• Basic tasks
• Extended tasks

Basic tasks only release the processor, if

• They are being terminated,

• The OS is executing higher-priority tasks, or
• Interrupts occur which cause the processor to switch to an ISR.

In addition to the above, Extended tasks can release processor by waiting for an event.
More than one Extended tasks cannot be activated at the same time.

4.2 Task State

4.2.1 Introduction

A task must be able to change between several states, as the processor can only
execute one task at any time. Several tasks may be competing for the processor at the
same time. The following sections explain the task states for basic and extended tasks.

13

4.2.2 Basic Tasks

Basic tasks have three task states:

• running
The processor is assigned to the task, so that its instructions can be executed. Only
one task can be in this state at any point in time, while all the other states can be
adopted simultaneously by several tasks.

• ready
All functional prerequisites for a transition into the running state exist, and the
task only waits for allocation of the processor. The scheduler decides which ready
task is executed next.

• suspended
In the suspended state the task is passive and can be activated.

Figure 4.1 Basic Task State

suspended

ready

running

terminate

activate

preempt start

14

Table 4.1 States and Transitions for Basic Tasks

Transition Former
state

New
state

Description

activate suspended ready1 A new task is entered into the ready queue
by a system service. The operating system
ensures that the execution of the task will
start with the first instruction.

start ready running A ready task selected by the scheduler is
executed.

preempt running ready The scheduler decides to start another task.
The running task is put into the ready state.

terminate running suspended The running task causes its transition into
the suspended state by a system service.

4.2.3 Extended Tasks

Extended tasks have four task states:

• running
The processor is assigned to the task, so that its instructions can be executed. Only
one task can be in this state at any point in time, while all other states can be
adopted simultaneously be several tasks.

• ready
All functional prerequisites for a transition into the running state exist, and the
task only waits for allocation for the processor. The scheduler decides which
ready task is executed next.

• waiting
A task cannot continue execution because it has to wait for at least one event.

• suspended
In the suspended state the task is passive and can be activated.

1 Activation of a task will not immediately change the state of the task in the case of multiple
requesting. If the task is not suspended, the activation will only be recorded and performed later.

15

Figure 4.2 Extended Task State

Table 4.2 States and Transitions for Extended Tasks

Transition Former
state

New
state

Description

activate suspended ready A new task is entered into the ready queue
by a system service. The operating system
ensures that the execution of the task will
start with the first instruction.

start ready running A ready task selected by the scheduler is
executed.

wait running waiting The running task requires an event. It causes
a transition into the waiting state by using a
system service.

release waiting ready At least one event has set which a task has
waited on.

preempt running ready The scheduler decides to start another task.
The running task is put into the ready state.

terminate running suspended The running task causes its transition into
the suspended state by a system service.

suspended

ready

running

waiting

wait terminate

activaterelease

preempt start

16

4.3 Comparison of the Task Types

Basic tasks have no waiting state, and thus only comprise synchronisation points at
the beginning and the end of the task. Parts of the application with internal
synchronisation points have to be implemented to synchronise more than one basic
task.

Extended tasks can synchronise by using an event.

4.4 Task Activation and Termination

Task activation is performed using automatic activation at the time of OS
initialisation, or by calling system services.

Depending on the conformance class, a basic task can be activated once or multiple
times. The maximum number of multiple requests in parallel is defined at the time of
system generation. If the maximum number of multiple requests has not been reached,
the request of the basic task is queued in a First-In-First-Out (FIFO) queue per priority
to preserve activation order.

A task can only terminate itself. The OS also provides a system service that can
activate a task upon termination of the current task. When the task is terminated, be
sure to issue the TerminateTask or ChainTask system service.

4.5 Task Priority

Each task has a priority, which is a number from 0 to 127; priority level 0 is the
lowest and priority level 127 is the highest. This priority is assigned statically at the
time of system generation, and is used by the scheduler to determine the next task to
execute. Dynamic priority management scheme is not supported. However, in priority
resource management function, the OS can treat a task with a defined higher priority.
Please refer to Section 7.2 for more information.

4.6 Task Preemptability

Each task has the option of being preemptive or non-preemptive. A task that permits
preemption of the CPU is a preemptive task. A task that does not permit preemption is
a non-preemptive task.

If a task is preemptive, then if a higher priority task becomes ready to execute whilst
the preemptive task is running, the scheduler will pass control to that task.

If a task is non-preemptive, then if a higher priority task becomes ready to execute
whilst the preemptive task is running, task switching does not occurred. The scheduler

17

only passes control to that task if the current task is terminated, the current task
explicitly calls the scheduler, or the current task enters the waiting state.

4.7 Task Stacks

Stacks are allocated to tasks depending on their types. The stack allocation method for
each task type is described below.

• Basic tasks
All basic tasks share a single stack. If a basic task is preempted by another basic
task, the next task to execute will use the current stack pointer value of the
preempted task. There will be no conflict with task stack overwriting, as all basic
tasks of higher priority will execute before the preempted task will execute again.

• Extended tasks
Each extended task executes in its own stack. They cannot share stacks as it is
possible for them to enter the waiting state (this is not possible with basic tasks).

4.8 Task System Services

Table 4.3 shows the system services supplied by the OS to manipulate tasks.

Table 4.3 Task System Services

System Service Function
ActivateTask Activates a task
TerminateTask Terminates the current task
ChainTask Activates a task and terminate the current task
Schedule Calls the scheduler to switch to a higher priority task (if any exist)
GetTaskID Gets the task ID of the current task
GetTaskState Gets the task state of a task

Note: The basic task stack size depends on a function of the number of
priorities. If the application uses less priorities, the basic task stack size will
also be decreased.

18

5 Scheduler

5.1 Introduction

The OS provides task scheduling based on task priority and task preemption. This is
in contrast to other operating systems that use time-sliced algorithms (round-robin
scheduling, for example). The OS uses a set of ready queues, one for each task
priority which exists in the application to keep track of all tasks which are in the ready
and running states. Each ready queue is implemented as a First In First Out (FIFO)
queue to preserve activation order. Figure 5.1 shows an example of using FIFO
queues for each priority level.

Figure 5.1 Ready Queues

The scheduler performs the following steps to determine the next task to be processed.

• From the set of tasks in the ready state, the scheduler determines the set of tasks
with the highest priority.

• Within the set of tasks in the ready state and of highest priority, the scheduler
finds the oldest task.

When there are no tasks in the ready queue, the OS enters IDLE mode.

A task, which is released from the waiting state, is treated as the newest task in the
ready queue of its priority.

The OSEK OS provides three scheduling algorithms.

• Non-Preemptive scheduling
• Full Preemptive scheduling

• Mixed Preemptive scheduling

These are explained in the following sections.

• •
• • • • •

•

0123n

F IF O
q u eu e

h igh lo wp r io ri ty

tasks ta r t o f F IF O q u eu e

19

5.2 Non-Preemptive Scheduling

If all tasks are non-preemptive, then the scheduling policy selected is non-preemptive
scheduling. A non-preemptive task can block the execution of a higher-priority task
which is ready to execute.

In the case of a non-preemptive task, rescheduling will take place exactly in the
following cases:

• Successful termination of a task

• Explicit call of the scheduler (Schedule system service issue)
• A transition into the waiting state takes place

Figure 5.2 Non-Preemptive Scheduling

suspended

running

running

waiting

readyTask T1

Task T2

issue Schedule system service

suspended

running

running

suspended

readyTask T3

Task T4

terminate task

ready

suspended ready

priority

high

low

transit to waiting

20

5.3 Full Preemptive Scheduling

Full preemptive scheduling is adopted when all tasks are preemptive. When a higher
priority task is ready, the current task will be swapped out. With full preemptive
scheduling, the latency time is independent of the run time of lower priority tasks. As
each task can be rescheduled at any location, access to data, which are used jointly
with other tasks, must be synchronised.

In Figure 5.3, task T2 with the lower priority does not delay the scheduling of task T1
with higher priority.

Figure 5.3 Full-Preemptive Scheduling

If a task fragment must not be preempted, this can be achieved by blocking the
scheduler temporarily via the system service GetResource.

Summarised, rescheduling could be performed in all the following cases:

• successful termination of a task
• a transition into the waiting state takes place
• activating of a higher priority task

• setting an event to a waiting task
• alarm expiry, when higher priority task activation or event setting is defined for

this alarm

• releasing a resource

• return from an ISR

 ac tiva tio n o f
 task T 1

su spen ded

ru n n in g

su spen ded

ru n n in g

ru n n in g

ready

T ask T 1

T ask T 2

 te rm ina tio n o f task T 1
 ready

21

5.4 Mixed Preemptive Scheduling

If both preemptive and non-preemptive tasks are used in the same system, then
“mixed preemptive” scheduling is used. If a preemptive task is running then full
preemptive scheduling is employed; and non-preemptive scheduling is used if a non-
preemptive task is running.

Figure 5.4 Mixed-Preemptive Scheduling

5.5 Interrupt Mask Level and Task Preemption

 Preemption of task is independent of the interrupt mask level (i bit of CPU status
register). When the interrupt-mask level is non-zero, task switching does not take
place. When the interrupt-mask level is zero, preemption of that task by another task
is possible.

suspended

running

running

waiting

Task T1
Preemptive

Task T2
Non-Preemptive

preempted by higher priority

suspended

running

running

suspended

readyTask T3
Preemptive

Task T4
Non-Preemptive

terminate task

ready

suspended

priority

high

low

running ready

ready

ready

22

6 Interrupt Management

6.1 Interrupt Categories

The functions for processing an interrupt are divided into three categories:

− Interrupt Category 1

The ISR for an interrupt of category 1 does not use system services. After the ISR
has finished, processing continues exactly at the instruction where the interrupt
has occurred. Category 1 interrupts do not execute under control of the OS.
Therefore, if an interrupt occurs, program execution will branch to ISR
immediately. Interrupts of this category are the fastest.

− Interrupt Category 2

The OS intervenes at the time of interrupt occurence. If an interrupt occurs, the
processing level is switched to the interrupt processing level and the stack frame
is changed. This mechanism is called the interrupt preamble. After it finishes
processing, control then passes to the interrupt handler. Within the ISR, use of
system services is restricted according to “Appendix A.3 System Service Calls”.

− Interrupt Category 3

These interrupts are same as interrupts of category 2, and they have the same
structure and operate in the same way as those in category 2. They are used for
compatibility with an earlier version of the OS. Although the EnterISR and
LeaveISR system service are available, they are not processed or executed, so
there is no point in calling these routines. For further information, see the
description under interrupt category 2.

Note: This mode of operation is an original feature of this system.

23

Figure 6.1 shows the flow of interrupt category 1.

Interrupt
occur

ISR

Interrupt processing

Interrupt termination

Task

Figure 6.1 Flow of Interrupt Category 1

 Figure 6.2 shows the flow of interrupt category 2.

Interrupt
occur

ISR

Interrupt processing

Interrupt termination

Task

Interrupt preamble

Interrupt disposal

Dispatch

OS

Switch to interrupt
processing level

Return from interrupt
processing level

Figure 6.2 Flow of Interrupt Category 2

24

Figure 6.3 shows the contents of description of ISR for each category.

Figure 6.3 ISR Description in Each Category

Inside the ISR, no rescheduling may take place. Rescheduling may only take place on
termination of the ISR of category 2 if a preemptive task has been interrupted, the
scheduler has not been locked, and no other interrupt has been active.

6.2 Interrupt Control

Two system services EnableInterrupt and DisableInterrupt are provided to
manipulate the servicing of interrupts. When the interrupt-mask level is selected as
the interrupt control method, i.e., "Use mask level" is selected on the OS page of the
OS configurator, these system services modify the interrupt mask bit (i) in the status
register (SR), thus providing interrupt enabling or disabling based on interrupt priority
level. If interrupts are disabled (other than zero), tasks are not switched. In this case,
all interrupts are enabled by EnableInterrupt and preempted (zero).

When the interrupt source is selected as the interrupt control method, i.e., "Use
source" is selected in the OS page of the OS configurator, these system services make
the interrupt enabling or disabling by changing the CPU’s interrupt-request enable bit,
or the values in the interrupt priority-level setting register (IPR).

6.2.1 Interrupt Mask Level Method

• EnableInterrupt(<Descriptor>) enables interrupts with priority level
<Descriptor> and higher. The values of <Descriptor> range from H'00000000 to

 ISR
 {

 code without an
system service call

 }

Interrupt preamble processing ()
{
 switch to interrupt level
 stack change
 jump to ISR
}

ISR
 {
 code with system service call
 }

 Category 1 Category 2

25

H'000000f0 that are multiples of 16. When H'00000000 is specified, the OS
performs rescheduling.

• DisableInterrupt(<Descriptor>) disables interrupts with priority level
<Descriptor> and lower. The values of <Descriptor> range from H'00000000 to
H'000000f0 that are multiples of 16. All interrupts are enabled when H'00000000
is specified. The interrupt mask bit of SR before the interrupt has been disabled is
returned as a return value.

6.2.2 Interrupt Source Method

• EnableInterrupt(<Descriptor>) sets the interrupt-request enable bit to enable the
interrupt source that corresponds to the ISR ID specified in <Descriptor> or
makes the value in the interrupt priority-level setting register (IPR) valid.

• DisableInterrupt(<Descriptor>) sets the interrupt-request enable bit to disable the
interrupt source that corresponds to the ISR ID specified in <Descriptor> or
makes the value in the interrupt priority-level setting register (IPR) valid.

<Descriptor> (ISR ID) is specified by adding "_ID" to the end of the ISR name. The
interrupt source for each interrupt is set in the configurator. For the values to be set to
select interrupt sources that are provided as standard, refer to section 12.3.4. It is also
possible to select an interrupt source defined by the user (CUSTOM0 to
CUSTOM31). In this case, interrupt control is by using the user-defined source
function (refer to section 12.3.5).

Note: These system services do not comply with Version 2.0, revision 1 of the OSEK
Operating System Specification.
Ho7047 does not support the interrupt source method. Only the interrupt mask level
method can be used for controlling interrupts.

The interrupt mask level must not be lowered at the time of interrupt occurring level
during execution of the ISR.
A task can change an interrupt mask level. When the interrupt-mask level is non-zero
during the execution of a task, the task may increase their mask level during task
execution to exceed the OS mask level, but it will be illegal to call system services.

Note: These system services do not comply with the OSEK Operating System
specification Version 2.0 revision 1. Processing is always performed and E_OK
returns. The error code E_OS_NOFUNC will not be returned.

26

The interrupt mask level of category 1 must have at least the same, or a higher
interrupt level, as the OS mask level2. This is because interrupts of category 1 are
outside the control of the operating system.

Figure 6.4 shows the interrupt level.

Figure 6.4 Interrupt Level

2 The interrupt mask level of the OS is set to the highest interrupt level of any interrupt of category 2 or
3 by the configurator automatically.

Interrupt
level

high

low

Category 1
interrupts

Category 2
interrupts

Tasks

OS
mask
level

27

6.3 Interrupt Source Classification

Interrupt sources are classified into two classes: NMI or other interrupts (the external
interrupt and the internal peripheral module interrupt). The software trap is handled
as an exception but not as an interrupt. The following sections explain the interrupt
source classifications.

6.3.1 Non-Maskable Interrupt

The non-maskable interrupt (NMI) cannot be masked and is always accepted. It can
only be of category 1.

6.3.2 Other Interrupts

Other interrupt causes are the internal peripheral module interrupt and the external
interrupt other than the above.

6.4 Interrupt Stacks

Stacks are allocated to interrupts as described below. The stack size used by each
interrupt is specified on the configurator.

6.4.1 Interrupts of Category 2

All ISRs of category 2 share the stacks in the same area as the basic task stack. The
stack size of ISR specified on the configurator is reserved on the basic task stack.
When an interrupt of this category is serviced, the OS swaps in the stack for the
interrupt. If a nested interrupt of category 2 occurs, the OS will not change the stack.

6.4.2 Interrupts of Category 1

Each interrupt of category 1 will share a stack with those of the same interrupt mask
level.

Note: The OS has no control over the handling of interrupts of category 1, for
performance reasons, thus the shared stack used by other interrupt categories cannot
be used.

28

6.4.3 NMI Interrupts

ISR for NMI will use the same stack as the interrupted program.

6.5 Exceptions

The following exceptions in Table 6.1 are classified as fatal errors by the operating
system, and thus are handled by the operating system.

Table 6.1 Exceptions

Exception Handler Name
Unhandled exception _OSEKUnhandledExceptionError
General illegal instruction _OSEKIllegalInstructionError
Slot illegal instruction _OSEKIllegalSlotInstructionError
CPU address error _OSEKIllegalCPUAddressError

These exceptions can be inserted into any vector table entry that does not have a
vector. If these exceptions occur, OS will perform shutdown processing. Exceptions
other than the above can also be inserted into the vector table entry. In this case, the
user must prepare the handler for an exception. This exception will use the same stack
as the interrupted program.

29

6.6 Interrupt System Services

Table 6.2 shows the system services supplied by the OS to manipulate interrupts.

Table 6.2 Interrupt System Services

System Service Function
EnableInterrupt or EnableInterruptMask Enables interrupts

(Interrupt Mask Level Method)
EnableInterrupt or EnableInterruptSource Enables interrupts

(Interrupt Source Method)
DisableInterrupt or DisableInterruptMask Disables interrupts

(Interrupt Mask Level Method)
DisableInterrupt or DisableInterruptSource Disables interrupts

(Interrupt Source Method)
GetInterruptDescriptor or GetInterruptDescriptorMask Get the state of interrupts

 (Interrupt Mask Level Method)
GetInterruptDescriptor or GetInterruptDescriptorSource Get the state of interrupts

 (Interrupt Source Method)

30

7 Resource Management

7.1 Introduction

Resource management is used to co-ordinate concurrent accesses of several
preemptive tasks of different priorities to shared resources.

The priority of task becomes high temporarily during resource occupation. This can
prevent two or more tasks from occupying the same resources.

7.2 Priority Resource Management

When a task requests a resource, the priority of the task is raised to the priority ceiling
of the corresponding resource. This method excludes the possibility of two or more
tasks occupying the same resource simultaneously. The resource priority is
determined at system generation, and is calculated to be

1. Identical to or higher than the highest task priority with sharing the resource, and
2. Lower than all other tasks with higher priority than the highest priority task

sharing the resource.

Figure 7.1 illustrates the priority assignment. Task T0 has the highest priority, and
task T4 the lowest. Tasks T1 and T4 share the same resource. When these tasks get
the resource, the priority is raised to a higher value than or same value as task T1 and
a lower value than or same value as task T0. Tasks T0, T2, and T3 do not share the
resource.

Figure 7.1 Resource Priority Assignment

runningready

suspended ready

ready

suspended

running

running

running

runningrunningready

running

suspended

suspended

suspended

suspended

runningResource
 priority

task T1

task T2

task T4

task T3

release resource release resource

request resource request resource

suspendedtask T0

31

7.3 Nested Resource Occupation

Nested resources must be occupied and released using the Last-In-First-Out (LIFO)
principle.
When the inner resource priority that is lower than the current task priority is
obtained, by OSEK specification, the task priority is lowered and E_OK returns.
However, this version of the OS does not change the task priority. This provides
a secure mechanism whereby deadlocks and priority inversion will never occur.
An error will be returned by the system service in extended error status.

7.4 Resource Occupation at Task Termination

Resources must be released before the task is terminated. In extended error status, the
OS will return an error if resources are still occupied. In normal error status, the
system operation cannot be guaranteed as there will be no error reporting.

7.5 Scheduler as a Resource

If a task is to prevent itself from being preempted during the execution of a critical
section it may deactivate the scheduler. A standard resource with the defined name
RES_SCHEDULER provided by the OS can be used by the task. The following
points must be noted.

1. When a task requests the RES_SCHEDULER resource, the task priority is not
changed.

2. The RES_SCHEDULER resource release timing is not influenced by other
resources. Before terminating task, it can always release resource.

3. When a task requests the RES_SCHEDULER resource, the task is not changed
even if the Schedule system service is issued.

7.6 Resource Priority Ceiling For ECC1 Conformance

In ECC1 conformance class, the configurator will automatically shift task priorities in
order to accommodate resource priorities. That is, the priority specified by the user
may be changed.
The priority of shifted task can be checked on the configurator. This function makes
use of the feature of ECC1 conformance class, which has restriction of one task or one
resource and single activation per one priority, and high performance is therefore
drawn out.

Note: This behavior deviates from the OSEK OS Specification.

32

7.7 Restrictions when Using Resources

• Neither the waiting state or task termination is admissible while a resource is
occupied.

• A task does not switch to waiting state by resource acquisition. When resource
cannot be obtained since other task is under resource occupancy, resource
acquisition needs to be required again.

• The BCC1 conformance class can use only RES_SCHEDULER resource.

7.8 Resource System Services

Table 7.1 shows the system services supplied by the operating system to manipulate
resources.

Table 7.1 Resource System Services

System Service Function
GetResource Occupies the resource
ReleaseResource Releases the resource

33

8 Event Management

8.1 Introduction

Events are objects used by extended tasks. The OS can synchronise execution of
extended tasks by means of “events”.

8.2 Event Operation

Several events can be assigned to an extended task. Any task can set an event for an
extended task. Only the appropriate extended task is able to clear events and to wait
for the setting of events. It can wait for more than one event.

An extended task in the waiting state is released to the ready state if at least one event
for which the task is waiting for has set. If a running extended task tries to wait for an
event and this event has already set, the task remains in the running state.

Events belonging to the extended task are cleared upon task activation.

Figure 8.1 and Figure 8.2 show the synchronisation of extended tasks by event setting.

Figure 8.1 Synchronisation of Full Preemptive Extended Tasks

set

 running set event

 waiting

ready running

 running waitingreset event wait for event

ready

clear clear

Extended
task T2

Extended
task T1

Event of
extended

task T1

34

Figure 8.2 Synchronisation of Non-Preemptive Extended Tasks

In above example, extended task T1 has the highest priority. Task T1 waits for an
event. Task T2 sets this event for T1. Subsequently, T1 is transferred from the waiting
state into the ready state. In the case of full-preemptive scheduling in Figure 8.1, due
to the highest priority of T1, this results in a task switch, and T2 is preempted by T1.
Thereafter T1 waits for this event again, and T2 continues execution. In the case of
non-preemptive scheduling in Figure 8.2, Task will not be swapped until the next
scheduling point (until T2 enters the suspended state).

8.3 Event IDs

Each extended task may have eight events; such sets of events are represented in 8-bit
units. Each bit represents the state of one event; ‘0’ indicates that the event has not set
or has been cleared, ‘1’ indicates that the event has set. The events are given IDs
based on the position of each event in the bit-mask, as shown in Figure 8.3.

Figure 8.3 Event IDs

The event IDs are used to manipulate the event states; more than one event may be
referenced by using the bit-wise OR operator at one time. For example, to clear event
IDs 0x01 and 0x80, ClearEvent(0x01 | 0x80) is executed.

The event ID is specified by the user or is automatically determined by configurator.
The event used by each task by configurator must be defined. An event not defined by
a task must not be used in that task.

8-bit event bit-mask

Event ID’s: 0x80 0x40 0x20 0x10 0x08 0x04 0x02 0x01

LSBMSB

set

 running set event

 waiting

ready running

 running waitingreset event wait for event

ready

clear clear

Extended
task T2

Extended
task T1

Event of
extended

task T1

suspended

35

8.4 Event System Services

Table 8.1 shows the system services supplied by the operating system to manipulate
events.

Table 8.1 Event System Services

System Service Function
SetEvent Sets an event or events to the referenced task
WaitEvent Makes the task wait for an event or events
ClearEvent Clear an event or events
GetEvent Returns the current state of the events of the referenced task

36

9 Alarm and Counter Management

9.1 Introduction

The OS provides services for processing recurring events. It provides a two-stage
concept for alarms and counters, as shown in Figure 9.1.

counter handler

single alarms

cyclic alarms

defined at
system
configuration

counters

Figure 9.1 Layered Model of Alarm Management

Recurring events, such as timers that provide interrupts at regular intervals, are
considered sources for counters. Each counter is represented by a counter value,
measured in “ticks”. The count is incremented each time an event attached to that
counter occurs by using the IncrementCounter system service. Based on counters, the
OS offers alarm mechanisms to the application software. Upon alarm expiry, tasks
may be activated, or events set.

37

9.2 Counters

9.2.1 Counter Handler

Counter handlers are used to increment the counter for dynamic (variant) alarms. The
application needs to increment the counter by calling the IncrementCounter system
service. There is a timer interrupt service routine, etc. as an example of counter
source. Please create these ISR by application.

As an example, an interrupt might be generated by a timer. The interrupt handler for
the timer would then use the system service to increment the appropriate counter’s
count.

9.2.2 System Timer

The OS offers a system timer, called SYSTEM_TIMER , for use by the dynamic
(variant) alarm.
The OS reserves the on-chip Compare Match Timer Channel 0 for use as the system
timer. The ISR for the system timer, supplied by the OS, then has responsibility for
incrementing the system timer.

Please refer to Section 11.9 for the ISR name used for the system timer.

9.2.3 Non-Variant Alarm Timer

The OS allows the user to define static (non-variant) alarms. These alarms may only
use the non-variant alarm timer, called NonVariantAlarmTimer , provided by OS.
The OS reserves the on-chip Compare Match Timer Channel 1 for use as the timer.
The ISR for non-variant alarm timer, supplied by the OS, then has responsibility for
incrementing the timer.

Please refer to Section 11.9 for the ISR name used for the non-variant alarm timer.

38

9.2.4 Counter Properties

Each counter has the following properties, set at the time of system generation:

• maxallowedvalue
• ticksperbase
• mincycle

The following sections explain these properties.

9.2.4.1 maxallowedvalue

The maxallowedvalue property is used to determine the range of count values for the
counter.

If a counter has a maxallowedvalue of 8, the count values will range from 0 to 7, as
shown in Figure 9.2.

Figure 9.2 Range of Count Values for Counter with 'maxallowedvalue' of 8

When the counter reaches a count value of 7, the next increment will force to counter
to roll over to 0. If a cyclic alarm is set with a cycle value of maxallowedvalue, the
alarm will always expire at the same count value.

The count value is expressed as an unsigned 32 bit integer. Therefore, if the cycle of
the counter is 100 microsecond, it will correspond to about 5 days.

0 1 2 3 4 5 6 7
Count
value

Note: The maxallowedvalue count value cannot be reached. When a counter
reaches a count value of (maxallowedvalue – 1), the next increment will cause the
counter to roll over to a count value of 0.

39

9.2.4.2 ticksperbase

The ticksperbase property use of this property is user defined; it is not controlled
(used) by the OS.

9.2.4.3 mincycle

The mincycle value is used when setting the minimum cycle of cyclic alarms. When a
cyclic alarm is set, the cycle period is compared with the mincycle value to determine
if it is within acceptable limits.

9.3 Alarms

9.3.1 Introduction

The OS provides services to start tasks or set events when an alarm expires. An alarm
will expire when a predefined counter value is reached. Figure 9.3 shows the different
kinds of alarms that can be used.

alarms

Static alarms
Only cyclic

Absolute-value specification
of a cycle is possible at the
time of configuration.

Dynamic alarms
Selection of single-shot alarm
or cyclic alarm is possible.

Dynamic specification of an
expiration count is possible (an
absolute value or relative value
specification).

Figure 9.3 Alarm Classification

Alarms are classified into static alarm and dynamic alarm.

Dynamic alarms’ parameters may be set during application run-time. The user is
allowed to change the count value that an alarm expires at, and whether the alarm is
cyclic, through a system service. Dynamic alarms may be connected to any counter.
Dynamic alarm is active from SetAbsAlarm or SetRelAlarm system service to
CancelAlarm system service.

Dynamic alarms have the following properties that can be set at run-time:

• Absolute count or relative count expiry

• Starting or canceling of the alarm

40

• Single or cyclic

• A system-timer counter or user-defined counter can be selected for use

Static (non-variant) alarms are used to activate periodic tasks, or to set events
periodically. The period is set at the time of system generation, and cannot be altered.
Static alarms cannot be cancelled. The attachment of alarms to counters is defined at
the time of system generation. Static alarms are automatically started at the time of
OS initialisation. Static alarms cannot be suspended.
Please note the following points.

• Static alarms can only be attached to the non-variant alarms timer counter (cannot
be changed).

• The user cannot start and cancel static alarms.

• Static alarms can only be cyclic.
• The alarm expiry period is set at system generation time and cannot be altered.
• Static alarms carry a smaller overhead than dynamic alarms

9.3.2 Alarm Parameters

9.3.2.1 Expiry Count

Dynamic alarms may be set to expire at an absolute count value, or a count value
relative to the current count value of the corresponding counter. This parameter may
be set at run-time by using system services, thus allowing the user to decide whether
an alarm should be absolute or relative at run-time.

When set to an absolute count value, the alarm will expire when the counter reaches
that value.

When set as a relative count value, the alarm will expire at a count value relative to
the counter’s current count value.

The following points should be noted:

• If an absolute alarm is set in which the expiry count value is the same as the
counter’s current count value, the alarm will not expire immediately. Instead, the
alarm will expire when the counter rolls over and reaches the expiry count.

• If a relative alarm is set with a relative count of 0, the alarm’s expiry count will be
set to the current count value of the counter. The alarm will expire when the
counter rolls over and reaches the expiry count.

• If an absolute alarm is set with the expiry count value of maxallowedvalue for the
counter, the expiry count will be set to 0.

41

• If a relative alarm is set with a relative count of maxallowedvalue, the expiry
count will be set to the current count value of the counter.

9.3.2.2 Cyclic and Single Alarms

Alarms may be set to be either single alarms, or cyclic alarms at run-time via system
services.

Single alarms expire at a particular count, and then stop. Cyclic alarms are restarted
upon expiry with a count value relative to the current counter count. A system service
is provided for cancelling single and cyclic alarms.

9.4 Example for Using Counter and Alarm

Figure 9.4 shows the example for using counter and alarm.

Timer
interrupt

occur
(1-ms cycle)

Interrupt termination

OS

Timer ISR

IncrementCounter

Task x

SetRelAlarm

SetAbsAlarm

Alarm
processing

Counter
processing

Alarm 1 setting
(dynamic, relative)

Alarm 2 setting
(dynamic, absolute)

Counter A
increment

- Counter: A used
- Cycle: 10 counts
- Action: Activate Task y

Alarm 1

- Counter: A used
- Single: 5 counts
- Action: Set Event
0x01 to Task z

Alarm 2

Task activation by
10-count cycle

Event set by
5 counts

Figure 9.4 Example for Using Counter and Alarm

Alarm 1 and Alarm 2 share Counter A. Alarm 1 has been set up to be a cyclic alarm.
Alarm 1 expires every 10 counts (10 ms) and activates Task y. Alarm 2 has been set
up to be a single alarm. Alarm 2 expires after 5 counts (5 ms) and sets an event in
Task z.

42

9.5 Counter and Alarm System Services

Table 9.1 shows the system services supplied by the OS to manipulate counters and
alarms.

Table 9.1 Counter and Alarm System Services

System Service Function
InitialiseCounter Initialises a counter
IncrementCounter Increments a counter
GetAlarmBase Returns the attached counter’s properties
GetAlarm Returns the remaining counts to alarm expiry
SetRelAlarm Sets a relative alarm
SetAbsAlarm Sets an absolute alarm
CancelAlarm Cancels an alarm

43

10 System Control

10.1 System Start-up

Figure 10.1 shows the start-up method for the OS.

reset

Hardware
initialisation

Call to
StartOS

Figure 10.1 OS Start Up

The user has responsibility for initialising hardware if required.

The system service StartOS is provided to initialise and start the OS. The application
mode must be specified as an argument. If this is not valid, the system service returns.
If called successfully, the system service starts the OS. During the execution of
StartOS, all interrupts except category 1 are masked; all interrupts are accepted when
the scheduler is started. The scheduler then decides which task to execute from the
tasks which have been defined to be auto-start tasks, and from the tasks activated
from the StartupHook routine. The program that issues the StartOS system service
must reserve the 8-byte stack area.

10.2 System Shutdown

The OS provides a system service, ShutdownOS, to provide shutdown facilities. This
can either be called by the application, or requested by the OS due to a CPU
exception. When ShutdownOS is called, the system will shutdown regardless of
whether an incorrect error code was passed to the system service. While shutting
down the system, all interrupts except for the NMI are masked. If shutdown
processing is completed, it will return to the program that issued the StartOS system
service. When returned, R15 and SR are recovered but other register values become
undefined.

44

10.3 Hook Routines

The OS provides system-specific hook routines to allow user-defined actions within
the OS internal processing. Hook routines may be used for:

• system startup.
The corresponding hook routine (StartupHook) is called after the OS start-up and
before the scheduler is called. This is called after automatic activation of selected
tasks.

• system shutdown.
The corresponding hook routine (ShutdownHook) is called at system shutdown. It
does not necessarily need to return from the hook routine. For example, it is also
possible to issue StartOS system service and to start OS again.

• task switching.
Two hook routines (PreTaskHook and PostTaskHook) are called on task context
switching. PreTaskHook is called after the selected task has made the transition to
the running state, but before task switching occurs. PostTaskHook is called before
the current task has exited the running state.

• error handling.
The corresponding hook routine (ErrorHook) is called if a system service is not
called correctly (and returns with an error code other than E_OK).

The following points must be noted:

1. Hook routines in the system are optional. The user has the choice of including
some, and excluding others.

2. Hook routines may only use a sub-set of system services. These are shown in
Appendix A.3 System Service Calls.

3. While executing the hook routine except for ShutdownHook, only the interrupt for
category 1 can be accepted. Therefore, to reduce the interrupt masking time, the
execution time for the hook routine should be reduced as short as possible. While
executing the ShutdownHook hook routine, only the NMI can be accepted.

4. The user should not lower the interrupt mask level when executing hook routines.
Operation of a system is not guaranteed when an interrupt mask level is
lowered.

45

10.4 Error Handling

10.4.1 Error Status

The OS can operate in one of two error modes. This is shown below.

Standard Error Status
− Minimal parameter checking
− Faster operation
− Less memory efficient

Extended Error Status
− More thorough parameter checking
− Slower operation
− More memory efficient

The operating system with extended error status is used in the development and
debugging of applications; the operating system with standard error status is used in
fully debugged systems. Appendix A.1 System Service Return Codes gives a
summary of the error codes returned by system services.

10.4.2 Shutdown Errors

Table 10.1 shows the shutdown errors.

Table 10.1 Shutdown Errors

Error Error Code
Illegal instruction executed E_OS_SYS_ILLEGAL
Undefined exception E_OS_SYS_EXCEPTION
Illegal slot instruction executed E_OS_SYS_ILLEGAL_SLOT
CPU address error E_OS_SYS_CPU_ADDRESS

If a shutdown error occurs, the ShutdownOS system service is executed. However, the
error hook is not called in this case.

10.5 ErrorHook Re-Entry

If a system service is incorrectly called from the ErrorHook routine, the ErrorHook
will not be called. In this case, ErrorHook routine is not called but processing is
continued (an error code returns). The user must be aware that no centralised error
handling for system service calls will occur at the ErrorHook level. This is the
original function.

46

11 Programming

11.1 Registers

The initial value and the usage of register are shown in Table 11.1.

47

Table 11.1 Initial Value and Usage of Register

Register Processing
level

Contents

Task Starting address of task
ISR Starting address of ISR

PC

Hook routine Starting address of hook routine
Task 0. Can be used freely.
ISR It is set to the occurred interrupt level. Do

not lower the interrupt level.

SR

Hook routine It is set to the OS mask level. Do not
lower the interrupt level.

Task It is set to the stack area for the task. Do
not change to another stack area.

ISR It is set to the stack area for the ISR. Do
not change to another stack area.

R15

Hook routine It is set to the stack area for the OS. Do
not change to another stack area.

Task Unknown. Can be used freely.
ISR Unknown. Can be used freely.

R0-R7,
FR0-FR11,
FPUL,
FPSCR3

Hook routine Unknown. Can be used freely.

Task Unknown. Can be used freely.
ISR Those are set to the value before interrupt

occurring. The values in the registers that
are used are saved and restored by code
generated by the compiler.

R8-R14,
MACH,
MACL,
PR,
GBR,
FR12-FR15 Hook routine Unknown. The values in the registers that

are used are saved and restored by code
generated by the compiler.

The program which issues StartOS system service should specify #pragma noregalloc
and not use gbr instrinsic function, #pragma gbr_base and #pragma gbr_base1.

The contents of Table 11.1 may be changed by version update etc. When they differ
from the present condition, please design by present-condition specification priority.

11.2 Declaration of OSEK Processes

11.2.1 OS Initiation

Within the application, a program for activating OS is defined according to the
following syntax:

3 FR0-FR15, FPUL and FPSCR registers are only valid for the processor with Floating Point Unit
(FPU).

48

#include "sysserv.h"

#pragma noregalloc (function name)
type-function name (argument)
{
 :
 StartOS (application mode ID);
 :
}

11.2.2 Tasks

Within the application, a task is defined according to the following syntax:

#include "osekos.h"

TASK (Task name)
{
 :
 :
 TerminateTask(); or ChainTask (task name);
}

11.2.3 ISR

Within the application, an interrupt handler is defined according to the following
syntax:

#include “osekos.h”
:
:
ISR (ISR name)
{
 :
 :
}

The macro definition for TASK and ISR is defined in the file “OSEKtype.h”

11.3 System Configuration Files

The following gives a list of the main header files generated by the configurator.

49

11.3.1 Header Files

Table 11.2 Header Files

File name Comment
size.h Machine word sizes
defsapp.h OSEK state definitions
sysobjid.h Gives the ID’s of system objects
OSEKtype.h Defines OSEK abstract type mapping
errcodes.h Error code
intdecl.h Interrupt declaration
sysserv.h OSEK system service declarations
Api_id.h System service ID
osekos.h Header file that includes all of the above

A program, task, or ISR for activating OS may include "osekos.h".

11.4 Declaring System Objects Through System Services

The system services in Table 11.3 for system object declaration are not required to be
used. The macro to define these system services is in the file “sysserv.h”.

Table 11.3 Declaration of System Objects

System Service Comment
DeclareTask Declares a task object
DeclareResource Declares a resource object
DeclareEvent Declares an event object
DeclareAlarm Declares an alarm object
EnterISR Enters an interrupt service routine
LeaveISR Resumes from an interrupt service

routine

11.5 Referring to System Objects

System object ID’s are declared in the file “sysobjid.h”. This file declares enumerated
type for system objects. IS system object IDs are the same as system object names.
Note, however, that _ID is added to ISR ID names. They can be referred to by
specifying an object name as follows:

#include “osekos.h”
 :
 :
TASK(Task2)
{

ActivateTask(Task1);

50

DisableInterrupt(Isr1_ID):
}

11.6 Calling a System Service From an Assembler Routine

System services may be called from assembler routines. In this case the application
programmer must branch to the address of each system service by using the JSR
instruction.
Follow the rules in Table 11.4. Refer to Table A.6 and C-language header file of
configuration files for information on parameter types.

Table 11.4 Argument Convention

Register Argument Number
R4 First argument
R5 Second argument
R6 Third argument
R7 Fourth argument

The general register R0 is used for the return value.

Registers R0 to R7, PR, FR0 to FR11, FPUL and FPSCR are not guaranteed before
and after calling the system service. These registers must be saved before the call, and
restored after the call. Do not use R8 to R14, MACH, MACL, GBR, FR12 to FR15,
FPUL, and FPSCR for the program that issues the StartOS system service.

11.7 Assembler ISR

11.7.1 Interrupt Category 1

11.7.1.1 NMI ISR

Any registers that the ISR routine uses must be saved upon entry, and restored upon
exit. Use the RTE instruction to exit the ISR.

11.7.1.2 Other Interrupts

11.7.1.2.1 Interrupt Stack Change

51

Change the stack at the beginning of the ISR. The corresponding interrupt stack for
that interrupt level must be used.

11.7.1.2.2 ISR Return

The RTE instruction must be used to exit ISR.

11.7.1.2.3 Register Used

Any registers that the ISR routine uses must be saved upon entry, and restored upon
exit.

11.7.1.2.4 Example of ISR

Figure 11.1 shows how the ISR, of interrupt level 4, should be implemented. In
addition, in the case of the C language, since configurator generates it automatically,
it does not need to be conscious by application.

:
.IMPORT _INTERRUPT_LEVEL_4_STACK_START
:

_f1:
MOV.L R0,@-R15
MOV.L _IntLev4,R0
MOV.L @R0,R0
MOV.L R15,@-R0
MOV.L R0,R15
:

; interrupt handler body
:
MOV.L @R15,R15
MOV.L @R15,R0
RTE
NOP
:
.ALIGN 4

_IntLev4:
.DATA.L _INTERRUPT_LEVEL_4_STACK_START

2

1

3

4

Figure 11.1 ISR Implementation in Assembler

52

Description:

1. In this case, the start of the interrupt stack for level 4 interrupts must be
referenced. Fifteen symbols can be imported. These are:

Table 11.5 Stack Start Symbol of Interrupt Category 1

Symbol Meaning
_INTERRUPT_LEVEL_1_STACK_START Stack for interrupt level 1
_INTERRUPT_LEVEL_2_STACK_START Stack for interrupt level 2
_INTERRUPT_LEVEL_3_STACK_START Stack for interrupt level 3
_INTERRUPT_LEVEL_4_STACK_START Stack for interrupt level 4
_INTERRUPT_LEVEL_5_STACK_START Stack for interrupt level 5
_INTERRUPT_LEVEL_6_STACK_START Stack for interrupt level 6
_INTERRUPT_LEVEL_7_STACK_START Stack for interrupt level 7
_INTERRUPT_LEVEL_8_STACK_START Stack for interrupt level 8
_INTERRUPT_LEVEL_9_STACK_START Stack for interrupt level 9
_INTERRUPT_LEVEL_10_STACK_START Stack for interrupt level 10
_INTERRUPT_LEVEL_11_STACK_START Stack for interrupt level 11
_INTERRUPT_LEVEL_12_STACK_START Stack for interrupt level 12
_INTERRUPT_LEVEL_13_STACK_START Stack for interrupt level 13
_INTERRUPT_LEVEL_14_STACK_START Stack for interrupt level 14
_INTERRUPT_LEVEL_15_STACK_START Stack for interrupt level 15

2. These statements provide the stack change into the interrupt stack before
execution of the ISR.

3. These statements provide the exit from the ISR, and stack change back to the
interrupt process.

4. These provide references for the stack start address

11.7.2 Interrupt Category 2

Any registers that the ISR routine uses must be saved upon entry, and restored upon
exit. Use the RTS instruction to exit the ISR. The stack is not needed to be changed
in the ISR.

53

11.8 Registering ISRs

ISR must register their starting addresses to the vector table. Figure 11.2 shows the
relationship between the vector table and the ISR of category 1.

Vector number H’00

Vector number H’01

Vector number H’02

Vector number n

:
:
:

:
:
:

VBR
ISR for vector

number n

Interrupt processing

Return from
interrupt processing

Vector table

Figure 11.2 Relationship between Vector Table and ISR of Category 1

For interrupts of category 2, control must first be passed to the OS. Preambles are
used to transfer control to the OS before calling the interrupt handler. Figure 11.3
shows the operation of the preamble.

Vector number H’00

Vector number H’01

Vector number H’02

Vector number n

:
:
:

:
:
:

VBR
ISR for vector

number n

Interrupt processing

Return from
interrupt processing

Vector table
interrupt
preamble

(shifts to an
interrupt

processing
level.)

Figure 11.3 Relationship between Vector Table and ISR of Category 2

54

Each interrupt of category 2 has its own preamble which must be registered to the
vector table. These preambles are automatically generated by the configurator. The
preamble name is generated by adding “_ISR” to the name. Thus, for example,
“ATUTimer1” becomes “ATUTimer1_ISR”.

Set an interrupt mask level same as a value defined by the OS configurator as
interrupt priority level setting register (IPR) of the CPU. Then, don't change IPR.

11.9 OS Interrupts

The OS reserves the interrupts in Table 11.7:

Table 11.7 OS Interrupt

Interrupt Interrupt handler (Assembler name)
Compare Match
Timer Interrupt 0

_SysTimer_ISR

Compare Match
Timer Interrupt 1

_NonVarTimer_ISR

55

12 System Services

12.1 Introduction

The functional details of each system service will be described using the following
fields.

System Service Description
Syntax Interface
Parameter (In): List of all input parameters.
Parameter (Out): List of all output parameters.
Description: Explanation of the functionality of the system service.
Particularities: Detail explanation of the functionality of the system service.
Error Status:
 Standard

 Extended

List of return values.
• List of error codes provided in the operating system’s

standard version.
• List of additional error codes in the operating system’s

extended version
Conformance
Class:

Specifies the conformance classes where the operating system
service is provided.

The specification of operating system services uses the following naming conventions
for data types:

…Type: Describes the values of individual data.
…RefType: Describes a pointer to the …Type.

56

12.2 Task Management Services

12.2.1 Data Types

• StatusType
This data type is used for all status information returned by the operating system
service.

• TaskType
This data type identifies a task.

• TaskRefType
This data type points to a variable of the data type TaskType.

• TaskStateType
This data type identifies the state of a task.

• TaskStateRefType
This data type points to a variable of the data type TaskStateType.

57

12.2.2 System Services

12.2.2.1 ActivateTask

Syntax StatusType ActivateTask(TaskType <TaskID>)
Parameter (In):
 TaskID Activation task ID (or name)
Parameter (Out): None
Description: The task <TaskID> is transferred from the suspended state into

the ready state4. The OS ensures that the task will start executing
from the first statement of the task.

Particularities: The service may be called from interrupt level, from task level
and the hook routine StartupHook.

Error Status:
 Standard

 Extended

• No error, E_OK
• Too many activations of <TaskID>, E_OS_LIMIT (original

function)

• Called from invalid processing level, E_OS_CALLEVEL
• <TaskID> is invalid, E_OS_ID

Conformance
Class:

BCC1, BCC2, ECC1, ECC2

4 The ActivateTask system service will not immediately change the state of the task in the case of
multiple requests. If the task is not suspended, the activation will only be recorded and performed later.

58

12.2.2.2 TerminateTask

Syntax StatusType TerminateTask(void)
Parameter (In): None
Parameter (Out): None
Description: This service causes the termination of the calling task. The calling

task is transferred from the running state into the suspended
state5.

Particularities: The resources occupied by the task must be released before the
call to TerminateTask. Undefined behaviour will result if
resources are still occupied at task termination in standard error
status mode.

If the version with standard error status is used, the system
service does not return. If the version with extended status is
used, the service returns in the case of an error. When there is no
error, the system service does not return.

This service may only be called from the task.

When the task is terminated, be sure to issue this system service
or ChainTask system service.

Error Status:
 Standard

 Extended

• No return to call level

• Call at non-task level, E_OS_CALLEVEL
• Task still occupies resources, E_OS_RESOURCE

Conformance
Class:

BCC1, BCC2, ECC1, ECC2

5 In the case of tasks with multiple activations, the suspended state of the task is transferred to the
ready state.

59

12.2.2.3 ChainTask

Syntax StatusType ChainTask(TaskType <TaskID>)
Parameter(In):
 TaskID Reference to the sequential succeeding task ID (or name) to be

activated.
Parameter(Out): None
Description: This service causes the termination of the calling task. After

termination, a succeeding task <TaskID> is activated
sequentially.

Particularities: If the succeeding task is identical to the current task, this situation
will not result in multiple requests. It is activated after the task
termination.

The resources occupied by the task must be released before the
call to ChainTask. Undefined behaviour will result if resources
are still occupied at task termination in standard error status
mode.

If the version with standard error status is used, the system
service does not return. If the version with extended status is
used, the service returns in the case of an error. When it has no
error, the system service does not return.

This service may only be called from the task.

When the task is terminated, be sure to issue this system service
or TerminateTask system service.

Error Status:
 Standard

 Extended

• No return to call level
• Too many activations of <TaskID>, E_OS_LIMIT (original

function)

• Call at non-task level, E_OS_CALLEVEL
• <TaskID> is invalid, E_OS_ID
• Task still occupies resources, E_OS_RESOURCE

Conformance
Class:

BCC1, BCC2, ECC1, ECC2

60

12.2.2.4 Schedule

Syntax StatusType Schedule(void)
Parameter (In): None
Parameter (Out): None
Description: If a higher-priority task is ready, the current task is put into the

ready state, and the higher priority task is executed. Otherwise,
the calling task continues execution.

Particularities: This system service allows non-preemptive tasks to enforce a
reschedule.

If the scheduler is locked (RES_SCHEDULER is occupied), no
reschedule will occur.

This service may only be called from the task.
Error Status:
 Standard

 Extended

• No error, E_OK

• Call at non-task level, E_OS_CALLEVEL
Conformance
Class:

BCC1, BCC2, ECC1, ECC2

12.2.2.5 GetTaskID

Syntax StatusType GetTaskID(TaskRefType <TaskID>)
Parameter (In):
 TaskID Task ID storage area and the addresses
Parameter (Out):
 *TaskID Reference to the task ID which is currently active
Description: This service returns the ID of the currently active task.
Particularities: This service is allowed at task level, and from several hook

routines.

If no task is currently active, the task ID ID_INVALID_TASK is
returned.

Error Status:
 Standard

 Extended

• No error, E_OK

• Call from invalid processing level, E_OS_CALLEVEL
Conformance
Class:

BCC1, BCC2, ECC1, ECC2

61

12.2.2.6 GetTaskState

Syntax StatusType GetTaskState(TaskType <TaskID>,
 TaskStateRefType <State>)

Parameter (In):
 TaskID
 State

Task ID (or name) for reference
State storage area and the addresses

Parameter (Out):
 *State Reference to the state of the task <TaskID>
Description: This service returns the state of the task <TaskID> at the time of

calling the system service.
Particularities: This service may be called from task level, interrupt level, and

some hook routines.
Error Status:
 Standard

 Extended

• No error, E_OK

• Call from invalid processing level, E_OS_CALLEVEL
• <TaskID> is invalid, E_OS_ID

Conformance
Class:

BCC1, BCC2, ECC1, ECC2

12.2.3 Constants of data type TaskStateType

Constant Description
SUSPENDED (D’0) task state suspended
WAITING (D’1) task state waiting
READY (D’2) task state ready
RUNNING (D’3) task state running

62

12.3 Interrupt Management Services

12.3.1 DataTypes

• IntDescriptorType
Data type for logical interrupt masks.

12.3.2 System Services

12.3.2.1 EnableInterrupt

(a) By Interrupt-Mask Level (when "Use mask level" is selected in the OS page of the
OS configurator)

Syntax void EnableInterrupt (IntDescriptorType <Descriptor>)
or
void EnableInterruptMask (IntDescriptorType <Descriptor>)

Parameter (In):
 Descriptor The status register value with an interrupt-mask level −1 to be

made valid.
Parameter (Out): None
Description: This service enables interrupts at, and above, the interrupt level

given in <Descriptor>.
Particularities: <Descriptor> values must be multiples of 16 in the range from

H'00000000 to H'000000f0. If some other value is specified,
system operation cannot be guaranteed. When H'00000000 is
specified, the OS performs rescheduling.

This service can be called from task level and interrupt level. It is
not allowed from hook routines, but no error will be returned for
this error condition. In this case, operation is not guaranteed.

Note: The operation of this system service is original function.
Error Status:
 Standard

 Extended

None (original function)

None (original function)
Conformance
Class:

BCC1, BCC2, ECC1, ECC2

63

(b) By Interrupt Source (when "Use source" is selected on the OS page of the OS
configurator)

Syntax StatusType EnableInterrupt (IntDescriptorType <Descriptor>)
or
StatusType EnableInterruptSource(IntDescriptorType
<Descriptor>)

Parameter (In):
 Descriptor The ISR ID (an ISR name ending with "_ID") for which

interrupts are to be enabled.
Parameter (Out): None
Description: This service enables interrupts from the source that corresponds

to the ISR ID given as <Descriptor>.
Particularities: The interrupt is enabled by the setting of the CPU’s interrupt-

request enable bit or in the interrupt priority-level setting register
(IPR). For information on the values to be set for each interrupt
source, see Section 12.3.4. For the user-defined sources
(CUSTOM0 to CUSTOM31), see Section 12.3.5.

This service can be called from task level and interrupt level. It is
not allowed from hook routines, but no error will be returned for
this error condition. In this case, operation is not guaranteed.

This service does not call the error-hook routine even when an
error occurs.

Note: The operation of this system service is original function.
Ho7047 does not support this system service.

Error Status:
 Standard

 Extended

No error, E_OK

The specified interrupt is enabled: E_OS_NOFUNC
Conformance
Class:

BCC1, BCC2, ECC1, ECC2

64

12.3.2.2 DisableInterrupt
(a) By Interrupt-Mask Level (when "Use mask level" is selected in the OS page of the
OS configurator)

Syntax IntDescriptorType DisableInterrupt (IntDescriptorType
<Descriptor>)
or
IntDescriptorType DisableInterruptMask (IntDescriptorType
<Descriptor>)

Parameter (In):
 Descriptor The status register value with an interrupt-mask level to be made

invalid.
Parameter (Out):
 R0 The value of the interrupt-mask level in the status register which

before issued DisableInterrupt.
Description: This service disables interrupts at, and below, the interrupt level

given in <Descriptor>.
Particularities: <Descriptor> values must be multiples of 16 in the range from

H'00000000 to H'000000f0. If some other value is specified,
system operation cannot be guaranteed. When H'00000000 is
specified, all interrupts are enabled. If the specified interrupt-
mask level has already been disabled (i.e., when the specified
interrupt-mask level is lower than the level before invalid), the
specified value is not set in the status register.

This service can be called from task level and interrupt level. It is
not allowed from hook routines, but no error will be returned for
this error condition. In this case, operation is not guaranteed.

Note: The operation of this system service is original function.
Error Status:
 Standard

 Extended

None (original function)

None (original function)
Conformance
Class:

BCC1, BCC2, ECC1, ECC2

65

(b) By Interrupt Source (when "Use source" is selected in the OS page of the OS
configurator)

Syntax StatusType DisableInterrupt (IntDescriptorType <Descriptor>)
or
StatusType DisableInterruptSource(IntDescriptorType
<Descriptor>)

Parameter (In):
 Descriptor The ISR ID (an ISR name ending with "_ID") for which

interrupts are to be disabled.
Parameter (Out): None
Description: This service disables interrupts from the source that corresponds

to the ISR ID given as <Descriptor>.
Particularities: The interrupt is disabled by the setting of the CPU’s interrupt-

request enable bit or in the interrupt priority-level setting register
(IPR). For information on the values to be set for each interrupt
source, see Section 12.3.4. For the user-defined sources
(CUSTOM0 to CUSTOM31), see Section 12.3.5.

This service can be called from task level and interrupt level. It is
not allowed from hook routines, but no error will be returned for
this error condition. In this case, operation is not guaranteed.

This service does not call the error-hook routine even when an
error occurs.

Note: The operation of this system service is original function.
Ho7047 does not support this system service.

Error Status:
 Standard

 Extended

No error, E_OK

The specified interrupt has been disabled: E_OS_NOFUNC
Conformance
Class:

BCC1, BCC2, ECC1, ECC2

66

12.3.2.3 GetInterruptDescriptor
(a) By Interrupt-Mask Level (when "Use mask level" is selected in the OS page on the
OS configurator)

Syntax IntDescriptiorType GetInterruptDescriptor (void)
or
IntDescriptiorType GetInterruptDescriptorMask (void)

Parameter (In): None
Parameter (Out):
 R0 Status register value with the current interrupt-mask level.
Description: This service gets the current interrupt mask level.
Particularities: This service can be called from task level, interrupt level, and

some hook routines. Calls are not allowed from certain hook
routines, but no error will be returned if such calls are made. In
this case, operation is not guaranteed.

Note: The operation of this system service is original function.
Error Status:
 Standard

 Extended

None (original function)

None
Conformance
Class:

BCC1, BCC2, ECC1, ECC2

67

(b) By Interrupt Source (when "Use source" is selected in the OS page on the OS
configurator)

Syntax StatusType GetInterruptDescriptor (IntDescriptorType
<Descriptor>)
or
StatusType GetInterruptDescriptorSource(IntDescriptorType
<Descriptor>)

Parameter (In):
 Descriptor The ISR ID (an ISR name ending with "_ID") that acquires

interrupt state.
Parameter (Out): None
Description: This service gets the state of the interrupt source that corresponds

to the ISR ID given in <Descriptor>.
Particularities: Refers to the CPU’s interrupt-request enable bit or the value in

the interrupt priority-level setting register (IPR). For a list of the
values that enable and disable each interrupt source, see
Section 12.3.4. In the interrupt source method to refer to IPR,
only the value defined by the OS configurator is valid. For user-
defined sources (CUSTOM0 to CUSTOM31), see Section 12.3.5.

This service can be called from task level, interrupt level, and
some hook routines. Calls are not allowed from certain hook
routines, but no error will be returned if such calls are made. In
this case, operation is not guaranteed.

This service does not call the error hook routine even when an
error occurs.

Note: The operation of this system service is original function.
Ho7047 does not support this system service.

Error Status:
 Standard

 Extended

When interrupt is enabled: 1

When interrupt is disabled: 0
Conformance
Class:

BCC1, BCC2, ECC1, ECC2

68

12.3.3 Constants of the IntDescriptorType Data Type

The constants of the IntDescriptorType data type are used when the interrupt mask
level method is selected (i.e., when "Usr mask level" is selected on the OS page of the
OS configurator).

Table 12.1 IntDescriptorType Data

Constant Description
SR_IMS00 (H’00000000) Interrupt mask level 0
SR_IMS01 (H’00000010) Interrupt mask level 1
SR_IMS02 (H’00000020) Interrupt mask level 2
SR_IMS03 (H’00000030) Interrupt mask level 3
SR_IMS04 (H’00000040) Interrupt mask level 4
SR_IMS05 (H’00000050) Interrupt mask level 5
SR_IMS06 (H’00000060) Interrupt mask level 6
SR_IMS07 (H’00000070) Interrupt mask level 7
SR_IMS08 (H’00000080) Interrupt mask level 8
SR_IMS09 (H’00000090) Interrupt mask level 9
SR_IMS10 (H’000000a0) Interrupt mask level 10
SR_IMS11 (H’000000b0) Interrupt mask level 11
SR_IMS12 (H’000000c0) Interrupt mask level 12
SR_IMS13 (H’000000d0) Interrupt mask level 13
SR_IMS14 (H’000000e0) Interrupt mask level 14
SR_IMS15 (H’000000f0) Interrupt mask level 15

69

12.3.4 Interrupt Sources and Settings

These interrupt sources and settings are used when the interrupt source method is
selected (i.e., when "User source" is selected on the OS page of the OS configurator).
Ho7047 does not support the interrupt source method.

Table 12.2 Interrupt Sources and Settings
No. Interrupt cause Vector

No.

Register Bit Invalid value Valid value

1 IRQ0 64 IPRA Bits 15 to 12 0 1 to 15 *1

2 IRQ1 65 IPRA Bits 11 to 8 0 1 to 15 *1

3 IRQ2 66 IPRA Bits 7 to 4 0 1 to 15 *1

4 IRQ3 67 IPRA Bits 3 to 0 0 1 to 15 *1

5 IRQ4 68 IPRB Bits 15 to 12 0 1 to 15 *1

6 IRQ5 69 IPRB Bits 11 to 8 0 1 to 15 *1

7 IRQ6 70 IPRB Bits 7 to 4 0 1 to 15 *1

8 IRQ7 71 IPRB Bits 3 to 0 0 1 to 15 *1

9 DMAC0 DEI0 72 CHCR0 IE (bit 2) 0 1

10 DMAC1 DEI1 74 CHCR1 IE (bit 2) 0 1

11 DMAC2 DEI2 76 CHCR2 IE (bit 2) 0 1

12 DMAC3 DEI3 78 CHCR3 IE (bit 2) 0 1

13 ATU0 ITV1(ITVE6) 80 ITVRR1 ITVE6 (bit 0) 0 1

14 ATU0 ITV1(ITVE7) 80 ITVRR1 ITVE7 (bit 1) 0 1

15 ATU0 ITV1(ITVE8) 80 ITVRR1 ITVE8 (bit 2) 0 1

16 ATU0 ITV1(ITVE9) 80 ITVRR1 ITVE9 (bit 3) 0 1

17 ATU0 ITV2A(ITVE10A) 80 ITVRR2A ITVE10A (bit 0) 0 1

18 ATU0 ITV2A(ITVE11A) 80 ITVRR2A ITVE11A (bit 1) 0 1

19 ATU0 ITV2A(ITVE12A) 80 ITVRR2A ITVE12A (bit 2) 0 1

20 ATU0 ITV2A(ITVE13A) 80 ITVRR2A ITVE13A (bit 3) 0 1

21 ATU0 ITV2B(ITVE10B) 80 ITVRR2B ITVE10B (bit 0) 0 1

22 ATU0 ITV2B(ITVE11B) 80 ITVRR2B ITVE11B (bit 1) 0 1

23 ATU0 ITV2B(ITVE12B) 80 ITVRR2B ITVE12B (bit 2) 0 1

24 ATU0 ITV2B(ITVE13B) 80 ITVRR2B ITVE13B (bit 3) 0 1

25 ATU0 ICI0A 84 TIER0 ICE0A (bit 0) 0 1

26 ATU0 ICI0B 86 TIER0 ICE0B (bit 1) 0 1

27 ATU0 ICI0C 88 TIER0 ICE0C (bit 2) 0 1

28 ATU0 ICI0D 90 TIER0 ICE0D (bit 3) 0 1

29 ATU0 OVI0 92 TIER0 OVE0 (bit 4) 0 1

30 ATU1 IMI1A 96 TIER1A IME1A (bit 0) 0 1

31 ATU1 CMI1 96 TIER1B CME1 (bit 0) 0 1

32 ATU1 IMI1B 97 TIER1A IME1B (bit 1) 0 1

33 ATU1 IMI1C 98 TIER1A IME1C (bit 2) 0 1

34 ATU1 IMI1D 99 TIER1A IME1D (bit 3) 0 1

35 ATU1 IMI1E 100 TIER1A IME1E (bit 4) 0 1

36 ATU1 IMI1F 101 TIER1A IME1F (bit 5) 0 1

37 ATU1 IMI1G 102 TIER1A IME1G (bit 6) 0 1

38 ATU1 IMI1H 103 TIER1A IME1H (bit 7) 0 1

70

No. Interrupt cause Vector

No.

Register Bit Invalid value Valid value

39 ATU1 OVI1A 104 TIER1A OVE1A (bit 8) 0 1

40 ATU1 OVI1B 104 TIER1B OVE1B (bit8) 0 1

41 ATU2 IMI2A 108 TIER2A IME2A (bit 0) 0 1

42 ATU2 CMI2A 108 TIER2B CME2A (bit 0) 0 1

43 ATU2 IMI2B 109 TIER2A IME2B (bit 1) 0 1

44 ATU2 CMI2B 109 TIER2B CME2B (bit 1) 0 1

45 ATU2 IMI2C 110 TIER2A IME2C (bit 2) 0 1

46 ATU2 CMI2C 110 TIER2B CME2C (bit 2) 0 1

47 ATU2 IMI2D 111 TIER2A IME2D (bit 3) 0 1

48 ATU2 CMI2D 111 TIER2B CME2D (bit 3) 0 1

49 ATU2 IMI2E 112 TIER2A IME2E (bit 4) 0 1

50 ATU2 CMI2E 112 TIER2B CME2E (bit 4) 0 1

51 ATU2 IMI2F 113 TIER2A IME2F (bit 5) 0 1

52 ATU2 CMI2F 113 TIER2B CME2F (bit 5) 0 1

53 ATU2 IMI2G 114 TIER2A IME2G (bit 6) 0 1

54 ATU2 CMI2G 114 TIER2B CME2G (bit 6) 0 1

55 ATU2 IMI2H 115 TIER2A IME2H (bit 7) 0 1

56 ATU2 CMI2H 115 TIER2B CME2H (bit 7) 0 1

57 ATU2 OVI2A 116 TIER2A OVE2A (bit 8) 0 1

58 ATU2 OVI2B 116 TIER2B OVE2B (bit 8) 0 1

59 ATU3 IMI3A 120 TIER3 IME3A (bit 0) 0 1

60 ATU3 IMI3B 121 TIER3 IME3B (bit 1) 0 1

61 ATU3 IMI3C 122 TIER3 IME3C (bit 2) 0 1

62 ATU3 IMI3D 123 TIER3 IME3D (bit 3) 0 1

63 ATU3 OVI3 124 TIER3 OVE3 (bit 4) 0 1

64 ATU4 IMI4A 128 TIER3 IME4A (bit 5) 0 1

65 ATU4 IMI4B 129 TIER3 IME4B (bit 6) 0 1

66 ATU4 IMI4C 130 TIER3 IME4C (bit 7) 0 1

67 ATU4 IMI4D 131 TIER3 IME4D (bit 8) 0 1

68 ATU4 OVI4 132 TIER3 OVE4 (bit 9) 0 1

69 ATU5 IMI5A 136 TIER3 IME5A (bit 10) 0 1

70 ATU5 IMI5B 137 TIER3 IME5B (bit 11) 0 1

71 ATU5 IMI5C 138 TIER3 IME5C (bit 12) 0 1

72 ATU5 IMI5D 139 TIER3 IME5D (bit 13) 0 1

73 ATU5 OVI5 140 TIER3 OVE5 (bit 14) 0 1

74 ATU6 CMI6A 144 TIER6 CME6A (bit 0) 0 1

75 ATU6 CMI6B 145 TIER6 CME6B (bit 1) 0 1

76 ATU6 CMI6C 146 TIER6 CME6C (bit 2) 0 1

77 ATU6 CMI6D 147 TIER6 CME6D (bit 3) 0 1

78 ATU7 CMI7A 148 TIER7 CME7A (bit 0) 0 1

79 ATU7 CMI7B 149 TIER7 CME7B (bit 1) 0 1

80 ATU7 CMI7C 150 TIER7 CME7C (bit 2) 0 1

81 ATU7 CMI7D 151 TIER7 CME7D (bit 3) 0 1

82 ATU8 OSI8A 152 TIER8 OSE8A (bit 0) 0 1

83 ATU8 OSI8B 153 TIER8 OSE8B (bit 1) 0 1

84 ATU8 OSI8C 154 TIER8 OSE8C (bit 2) 0 1

Table 12.2 Interrupt Sources and Settings (continue)

71

No. Interrupt cause Vector

No.

Register Bit Invalid value Valid value

85 ATU8 OSI8D 155 TIER8 OSE8D (bit 3) 0 1

86 ATU8 OSI8E 156 TIER8 OSE8E (bit 4) 0 1

87 ATU8 OSI8F 157 TIER8 OSE8F (bit 5) 0 1

88 ATU8 OSI8G 158 TIER8 OSE8G (bit 6) 0 1

89 ATU8 OSI8H 159 TIER8 OSE8H (bit 7) 0 1

90 ATU8 OSI8I 160 TIER8 OSE8I (bit 8) 0 1

91 ATU8 OSI8J 161 TIER8 OSE8J (bit 9) 0 1

92 ATU8 OSI8K 162 TIER8 OSE8K (bit 10) 0 1

93 ATU8 OSI8L 163 TIER8 OSE8L (bit 11) 0 1

94 ATU8 OSI8M 164 TIER8 OSE8M (bit 12) 0 1

95 ATU8 OSI8N 165 TIER8 OSE8N (bit 13) 0 1

96 ATU8 OSI8O 166 TIER8 OSE8O (bit 14) 0 1

97 ATU8 OSI8P 167 TIER8 OSE8P (bit 15) 0 1

98 ATU9 CMI9A 168 TIER9 CME9A (bit 0) 0 1

99 ATU9 CMI9B 169 TIER9 CME9B (bit 1) 0 1

100 ATU9 CMI9C 170 TIER9 CME9C (bit 2) 0 1

101 ATU9 CMI9D 171 TIER9 CME9D (bit 3) 0 1

102 ATU9 CMI9E 172 TIER9 CME9E (bit 4) 0 1

103 ATU9 CMI9F 174 TIER9 CME9F (bit 5) 0 1

104 ATU10 CMI10A 176 TIER10 CME10A (bit 0) 0 1

105 ATU10 CMI10B 178 TIER10 CME10B (bit 2) 0 1

106 ATU10 ICI10A 180 TIER10 ICE10A (bit 1) 0 1

107 ATU10 CMI10G 180 TIER10 CME10G (bit 3) 0 1

108 ATU11 IMI11A 184 TIER11 IME11A (bit 0) 0 1

109 ATU11 IMI11B 186 TIER11 IME11B (bit 1) 0 1

110 ATU11 OVI11 187 TIER11 OVE11 (bit 8) 0 1

111 CMT0 CMTI0 188 CMCSR0 CMIE (bit 6) 0 1

112 A/D0 ADI0 190 ADCSR0 ADIE (bit 6) 0 1

113 CMT1 CMTI1 192 CMCSR1 CMIE (bit 6) 0 1

114 A/D1 ADI1 194 ADCSR1 ADIE (bit 6) 0 1

115 A/D2 ADI2 196 ADCSR2 ADIE (bit 6) 0 1

116 SCI0 ERI0 200 SCR0 RIE (bit 6) 0 1

117 SCI0 RXI0 201 SCR0 RIE (bit 6) 0 1

118 SCI0 TXI0 202 SCR0 TIE (bit 7) 0 1

119 SCI0 TEI0 203 SCR0 TEIE (bit 2) 0 1

120 SCI1 ERI1 204 SCR1 RIE (bit 6) 0 1

121 SCI1 RXI1 205 SCR1 RIE (bit 6) 0 1

122 SCI1 TXI1 206 SCR1 TIE (bit 7) 0 1

123 SCI1 TEI1 207 SCR1 TEIE (bit 2) 0 1

124 SCI2 ERI2 208 SCR2 RIE (bit 6) 0 1

125 SCI2 RXI2 209 SCR2 RIE (bit 6) 0 1

126 SCI2 TXI2 210 SCR2 TIE (bit 7) 0 1

127 SCI2 TEI2 211 SCR2 TEIE (bit 2) 0 1

128 SCI3 ERI3 212 SCR3 RIE (bit 6) 0 1

129 SCI3 RXI3 213 SCR3 RIE (bit 6) 0 1

130 SCI3 TXI3 214 SCR3 TIE (bit 7) 0 1

Table 12.2 Interrupt Sources and Settings (continue)

72

No. Interrupt cause Vector

No.

Register Bit Invalid value Valid value

131 SCI3 TEI3 215 SCR3 TEIE (bit 2) 0 1

132 SCI4 ERI4 216 SCR4 RIE (bit 6) 0 1

133 SCI4 RXI4 217 SCR4 RIE (bit 6) 0 1

134 SCI4 TXI4 218 SCR4 TIE (bit 7) 0 1

135 SCI4 TEI4 219 SCR4 TEIE (bit 2) 0 1

136 HCAN0 ERS0(IRR5) 220 IMR0 IMR5 (bit 5) 1 0

137 HCAN0 ERS0(IRR6) 220 IMR0 IMR6 (bit 6) 1 0

138 HCAN0 ERS0(IRR3) 220 IMR0 IMR3 (bit 3) 1 0

139 HCAN0 ERS0(IRR4) 220 IMR0 IMR4 (bit 4) 1 0

140 HCAN0 OVR0(IRR0) 221 IMR0 IMR0 (bit 0) 1 0

141 HCAN0 OVR0(IRR7) 221 IMR0 IMR7 (bit 7) 1 0

142 HCAN0 OVR0(IRR9) 221 IMR0 IMR9 (bit 9) 1 0

143 HCAN0 OVR0(IRR10) 221 IMR0 IMR10 (bit 10) 1 0

144 HCAN0 OVR0(IRR11) 221 IMR0 IMR11 (bit 11) 1 0

145 HCAN0 OVR0(IRR12) 221 IMR0 IMR12 (bit 12) 1 0

146 HCAN0 OVR0(IRR13) 221 IMR0 IMR13 (bit 13) 1 0

147 HCAN0 OVR0(IRR14) 221 IMR0 IMR14 (bit 14) 1 0

148 HCAN0 OVR0(IRR15) 221 IMR0 IMR15 (bit 15) 1 0

149 HCAN0 RM0(IRR1) 222 IMR0 IMR1 (bit 1) 1 0

150 HCAN0 RM0(IRR2) 222 IMR0 IMR2 (bit 2) 1 0

151 HCAN0 SLE0(IRR8) 223 IMR0 IMR8 (bit 8) 1 0

152 WDT ITI 224 TCSR TME (bit 5) 0 1

153 HCAN1 ERS1(IRR5) 228 IMR1 IMR5 (bit 5) 1 0

154 HCAN1 ERS1(IRR6) 228 IMR1 IMR6 (bit 6) 1 0

155 HCAN1 ERS1(IRR3) 228 IMR1 IMR3 (bit 3) 1 0

156 HCAN1 ERS1(IRR4) 228 IMR1 IMR4 (bit 4) 1 0

157 HCAN1 OVR1(IRR0) 229 IMR1 IMR0 (bit 0) 1 0

158 HCAN1 OVR1(IRR7) 229 IMR1 IMR7 (bit 7) 1 0

159 HCAN1 OVR1(IRR9) 229 IMR1 IMR9 (bit 9) 1 0

160 HCAN1 OVR1(IRR10) 229 IMR1 IMR10 (bit 10) 1 0

161 HCAN1 OVR1(IRR11) 229 IMR1 IMR11 (bit 11) 1 0

162 HCAN1 OVR1(IRR12) 229 IMR1 IMR12 (bit 12) 1 0

163 HCAN1 OVR1(IRR13) 229 IMR1 IMR13 (bit 13) 1 0

164 HCAN1 OVR1(IRR14) 229 IMR1 IMR14 (bit 14) 1 0

165 HCAN1 OVR1(IRR15) 229 IMR1 IMR15 (bit 15) 1 0

166 HCAN1 RM1(IRR1) 230 IMR1 IMR1 (bit 1) 1 0

167 HCAN1 RM1(IRR2) 230 IMR1 IMR2 (bit 2) 1 0

168 HCAN1 SLE1(IRR8) 231 IMR1 IMR8 (bit 8) 1 0
Notes:
1. The interrupt level that is specified on the Isr page of the OS configurator.

Table 12.2 Interrupt Sources and Settings (continue)

73

12.3.5 Functions Used to Control Interrupts from User-Defined Sources

For user-defined source (CUSTOM0 to CUSTOM31), processing to enable or disable
interrupts and to get the interrupt status is not provided normally. Therefore, when
the user-defined source is used, add the processing to enable interrupts for the
EnableInterruptSource (or EnableInterrupt) system service to the
_OSEKInterrupt_CUSTOMxx function interrupt in the Example\OSEKisc.c file.
Also, add the processing to disable interrupts for the DisableInterruptSource (or
DisableInterrupt) system service and the processing to get the interrupt status for
the GetInterruptDescriptorSource (or GetInterruptDescriptor) system service.
An input parameter for the user-defined source function is passed by the OS. On the
other hand, an output parameter needs to be set by the user. Set an error code (E_OK
or E_OS_NOFUNC) for the EnableInterruptSource (or EnableInterrupt) and
DisableInterruptSource (or DisableInterrupt) system services, and an interrupt status
value (1 or 0) for the GetInterruptDescriptorSource (or GetInterruptDescriptor)
system service. The output parameter that has been set is returned to the system-
service calling program as the return code of each system service:
EnableInterruptSource (or EnableInterrupt),
DisableInterruptSource (or DisableInterrupt), and
GetInterruptDescriptorSource (or GetInterruptDescriptor).

74

Table 12.3 Functions Used to Control Interrupts from User-Defined Source

Cause name Function name
CUSTOM0 _OSEKInterrupt_CUSTOM0
CUSTOM1 _OSEKInterrupt_CUSTOM1
CUSTOM2 _OSEKInterrupt_CUSTOM2
CUSTOM3 _OSEKInterrupt_CUSTOM3
CUSTOM4 _OSEKInterrupt_CUSTOM4
CUSTOM5 _OSEKInterrupt_CUSTOM5
CUSTOM6 _OSEKInterrupt_CUSTOM6
CUSTOM7 _OSEKInterrupt_CUSTOM7
CUSTOM8 _OSEKInterrupt_CUSTOM8
CUSTOM9 _OSEKInterrupt_CUSTOM9
CUSTOM10 _OSEKInterrupt_CUSTOM10
CUSTOM11 _OSEKInterrupt_CUSTOM11
CUSTOM12 _OSEKInterrupt_CUSTOM12
CUSTOM13 _OSEKInterrupt_CUSTOM13
CUSTOM14 _OSEKInterrupt_CUSTOM14
CUSTOM15 _OSEKInterrupt_CUSTOM15
CUSTOM16 _OSEKInterrupt_CUSTOM16
CUSTOM17 _OSEKInterrupt_CUSTOM17
CUSTOM18 _OSEKInterrupt_CUSTOM18
CUSTOM19 _OSEKInterrupt_CUSTOM19
CUSTOM20 _OSEKInterrupt_CUSTOM20
CUSTOM21 _OSEKInterrupt_CUSTOM21
CUSTOM22 _OSEKInterrupt_CUSTOM22
CUSTOM23 _OSEKInterrupt_CUSTOM23
CUSTOM24 _OSEKInterrupt_CUSTOM24
CUSTOM25 _OSEKInterrupt_CUSTOM25
CUSTOM26 _OSEKInterrupt_CUSTOM26
CUSTOM27 _OSEKInterrupt_CUSTOM27
CUSTOM28 _OSEKInterrupt_CUSTOM28
CUSTOM29 _OSEKInterrupt_CUSTOM29
CUSTOM30 _OSEKInterrupt_CUSTOM30
CUSTOM31 _OSEKInterrupt_CUSTOM31

75

The specifications for a user-defined source function are as listed below.

Syntax StatusType OSEKInterrupt_CUSTOM xx(IntDescriptorType
<Descriptor>, DWORD<Service>)

Parameter (In*):
 Descriptor
 Service

The ISR ID specified for this interrupt service
System service ID (EnableInterruptSource_ID,
DisableInterruptSource_ID, or GetInterruptDescriptorSource_ID)

Parameter (Out): None
Description: Carries out processing of various kinds for user-defined interrupt

sources, such as enabling or disabling the interrupts, and
acquiring their status.

Particularities: This service is called when the ISR ID for the user-defined source
is specified in the interrupt-system service call by the interrupt
source method.

Do not issue a system service from this routine.

Only category 1 interrupts are accepted during the execution of
this routine. Therefore, its execution time should be kept as short
as possible to reduce the period of interrupt masking. Do not
reduce the interrupt-mask level during the execution of this
routine.

When an interrupt system-service is issued with an ISR ID
that corresponds to a given user-defined source, the stack size
used by this routine should be added to the stack size of the
calling program (task, ISR, or hook routine).

Ho7047 does not support this function.
Error Status:
 Standard

 Extended

No error, E_OK (EnableInterruptSource_ID or
DisableInterruptSource_ID)

When the interrupt is enabled: 1

When the interrupt is disabled: 0

(GetInterruptDescriptorSource_ID)

When the specified interrupt is enabled or disabled:
E_OS_NOFUNC (EnableInterruptSource_ID or
DisableInterruptSource_ID)

Conformance
Class:

BCC1, BCC2, ECC1, ECC2

Note: *: The OS sets up the input parameters.

76

12.4 Resource Management Services

12.4.1 Data Types

• ResourceType
Resource ID

12.4.2 System Services

12.4.2.1 GetResource

Syntax StatusType GetResource(ResourceType <ResID>)
Parameter (In):
 ResID Resource ID (or name)
Parameter (Out): None
Description: This service gets <ResID> and increases the priority of task.
Particularities: Services, which put the running task into the suspended or

waiting state, must not be used while the resource is occupied
(i.e. TerminateTask, ChainTask, and WaitEvent).

This service is only allowed on task level.

Nested resource occupation must follow the LIFO principle.

Note: If a nested resource has a lower resource priority than
the outer resource, an error will be returned (except in the
case of the RES_SCHEDULER resource). This behaviour is
original function. The system service is still executed in this
case.

Error Status:
 Standard

 Extended

• No error, E_OK

• Call from non-task level, E_OS_CALLEVEL
• <ResID> is invalid, E_OS_ID
• Under <ResID> use or <ResID> is using definition outside,

E_OS_ACCESS
• Incorrect nesting of resource priority,
 E_OS_INVALID_NEST (original function)

Conformance
Class:

BCC1, BCC2, ECC1, ECC2

77

12.4.2.2 ReleaseResource

Syntax StatusType ReleaseResource(ResourceType <ResID>)
Parameter (In):
 ResID Resource ID (or name)
Parameter (Out): None
Description: <ResID> is released and returned to the original priority.
Particularities: For information on nesting conditions, see particularities of

GetResource.

This service is only allowed on task level.
Error Status:
 Standard

 Extended

• No error, E_OK

• Call from non-task level, E_OS_CALLEVEL
• <ResID> is invalid, E_OS_ID
• Attempt to release a resource which is not occupied, or

another resource has to be released first, E_OS_NOFUNC
Conformance
Class:

BCC1, BCC2, ECC1, ECC2

78

12.5 Event Management Services

12.5.1 Data Types

• EventMaskType
Event mask value.

• EventMaskRefType
Pointer for the data type EventMaskType.

79

12.5.2 System Services

12.5.2.1 SetEvent

Syntax StatusType SetEvent(TaskType <TaskID>, EventMaskType
<Mask>)

Parameter (In):
 TaskID
 Mask

Task ID (or name) for setting one or several events.
Mask value (or name) of the events to be set.

Parameter (Out): None
Description: An event is set to <TaskID>. The <TaskID> is transferred to the

ready state if it was waiting for at least one event specified in
<Mask>.

The task can set more than one event. For example, if the task
wishes to set event ID’s 0x01 and 0x80, SetEvent(<TaskID>,
0x01 | 0x80) is executed.

Particularities:
No events set in the event mask remain unchanged.

The referenced task <TaskID> must be an extended task.

The service can be called from tasks or interrupts.
Error Status:
 Standard

 Extended

• No error, E_OK

• Call from invalid processing level, E_OS_CALLEVEL
• <TaskID> is invalid, E_OS_ID
• <TaskID> is not an extended task, E_OS_ACCESS
• <TaskID> is in the suspended state, E_OS_STATE

Conformance
Class:

ECC1, ECC2

80

12.5.2.2 ClearEvent

Syntax StatusType ClearEvent(EventMaskType <Mask>)
Parameter (In):
 Mask Mask value (or name) of the events to be cleared.
Parameter (Out): None
Description: The events of the extended task calling ClearEvent are cleared

according to the event mask <Mask>.

The task can clear more than one event. For example, if the task
wishes to clear event ID’s 0x01 and 0x80, ClearEvent(0x01 |
0x80) is executed.

Particularities: The system service ClearEvent is restricted to extended tasks.

The service can only be called at task level.
Error Status:
 Standard

 Extended

• No error, E_OK.

• Call from non-task level, E_OS_CALLEVEL .

• Call from basic task, E_OS_ACCESS
Conformance
Class:

ECC1, ECC2

81

12.5.2.3 GetEvent

Syntax StatusType GetEvent(TaskType <TaskID>, EventMaskRefType
<Mask>)

Parameter (In):
 TaskID
 Mask

Task ID (or name) for event reference.
Event mask storage area and the addresses

Parameter (Out):
 *Mask Current event mask value.
Description: This service gets the current event mask value of the task

<TaskID>.
Particularities: This service can be called from task level, interrupt level, and

some hook routines.

The referenced task <TaskID> must be an extended task.
Error Status:
 Standard

 Extended

• No error, E_OK.

• Call from invalid processing level, E_OS_CALLEVEL
• <TaskID> is invalid, E_OS_ID
• <TaskID> is not an extended task,
 E_OS_ACCESS
• <TaskID> is in the suspended state,
 E_OS_STATE

Conformance
Class:

ECC1, ECC2

82

12.5.2.4 WaitEvent
Syntax StatusType WaitEvent(EventMaskType <Mask>)
Parameter (In):
 Mask Mask value (or name) of the events waited for.
Parameter (Out): None
Description: The state of the calling task is set to waiting, unless at least one of

the events specified in <Mask> has already been set. If the event
is already set, task state does not change.

The task can wait for more than one event. For example, if the
task is waiting for event ID’s 0x01 and 0x80 to occur,
WaitEvent(0x01 | 0x80) is executed.

Particularities: Rescheduling occurs if the task enters the waiting state.

When task occupies resource, resource needs to be released
before calling WaitEvent system service. In standard error status,
when waiting for an event during resource occupancy, operation
is not guaranteed.

This service can only be called by extended tasks.
Error Status:
 Standard

 Extended

• No error, E_OK.

• Call from non-task level, E_OS_CALLEVEL
• Call from basic task, E_OS_ACCESS
• Occupying resource, E_OS_RESOURCE

Conformance
Class:

ECC1, ECC2

83

12.6 Counter and Alarm Management Services

12.6.1 Data Types

• TickType
Counter value.

• TickRefType
Pointer for data type TickType.

• AlarmBaseType
Elements of counter characteristics. The individual elements of the structure are:

− TickType maxallowedvalue: maximum count value
− TickType ticksperbase: number of counts required to reach a

counter-specific unit (Not used by OS)
− TickType mincycle: minimum allowed number of counts for

a cyclic alarm

• AlarmBaseRefType
Pointer for data type AlarmBaseType.

• AlarmType
Alarm ID.

84

12.6.2 System Services

12.6.2.1 GetAlarmBase
Syntax StatusType GetAlarmBase(AlarmType <AlarmID>,

 AlarmBaseRefType <Info>)
Parameter (In):
 AlarmID
 Info

Reference alarm ID (or name)
Counter characteristics storage area and the addresses

Parameter (Out):
 *Info Counter characteristics
Description: The service gets counter characteristics. The information of data

type AlarmBaseType (maximum count value, number of counts
required to reach a counter-specific unit, and minimum allowed
number of counts for a cyclic alarm) is stored.

Particularities: Allowed on task level, interrupt level, and some hook routines.

Not allowed for non-variant alarms.
Error Status:
 Standard

 Extended

• No error, E_OK.

• Call from invalid processing level, E_OS_CALLEVEL
• <AlarmID> is invalid, E_OS_ID

Conformance
Class:

BCC1, BCC2, ECC1, ECC2

85

12.6.2.2 GetAlarm
Syntax StatusType GetAlarm(AlarmType <AlarmID>, TickRefType

<Tick>)
Parameter (In):
 AlarmID
 Tick

Reference alarm ID (or name)
Count value storage area and the addresses

Parameter (Out):
 *Tick Relative value in counts before the alarm <AlarmID> expires.
Description: This service gets the relative value in counts before the alarm

<AlarmID> expires.
Particularities: If <AlarmID> is not in use, <Tick> is not defined.

Allowed on task level, interrupt level, and some hook routines.

Not allowed for non-variant alarms.
Error Status:
 Standard

 Extended

• No error, E_OK.
• <AlarmID> is not used, E_OS_NOFUNC

• Call from invalid processing level, E_OS_CALLEVEL
• <AlarmID> is invalid, E_OS_ID

Conformance
Class:

BCC1, BCC2, ECC1, ECC2

86

12.6.2.3 SetRelAlarm
Syntax StatusType SetRelAlarm(AlarmType <AlarmID>, TickType

<increment>, TickType <cycle>)
Parameter (In):
 AlarmID
 increment
 cycle

Alarm ID (or name)
Relative count value in counts for alarm expiration at the first
time
Cycle value in the case of cyclic alarm setting

Parameter (Out): None
Description: This service activates the alarm <AlarmID>. After <increment>

counts have elapsed, the associated action (task activation or
event setting) is executed.

Particularities: If a single alarm is to be set, the <cycle> value must be zero (0).

When <increment> is 0, the expiration count is set to the present
count value. Alarm expiry will not occur immediately; the alarm
will expire once the counter has rolled-over and reached the
present counter value.

If a cyclic alarm is to be set (by setting the <cycle> value to some
non-zero value), the alarm is re-activated after expiry with the
relative value <cycle>.

If the alarm is already in use, the call will be ignored and the error
E_OS_STATE is returned.

Allowed on task level and interrupt level.

Not allowed for non-variant alarms.
Error Status:
 Standard

 Extended

• No error, E_OK.
• <AlarmID> is already in use, E_OS_STATE

• Call from invalid processing level, E_OS_CALLEVEL
• <AlarmID> is invalid, E_OS_ID
• Value of <increment> is illegal (lower than zero, or greater

than maxallowedvalue), E_OS_VALUE
• Value of <cycle> is illegal (lower than mincycle or greater

than maxallowedvalue), E_OS_VALUE
Conformance
Class:

BCC1, BCC2,
ECC1, ECC2 (When alarm sets an event, only ECC1 or ECC2
can be used.)

87

12.6.2.4 SetAbsAlarm
Syntax StatusType SetAbsAlarm(AlarmType <AlarmID>, TickType

<start>, TickType <cycle>)
Parameter(In):
 AlarmID
 start
 cycle

Alarm ID (or name)
Absolute count value in counts for alarm expiration at the first
time
Cycle value in the case of cyclic alarm setting

Parameter(Out): None
Description: This service activates the alarm <AlarmID>. When <start> counts

are reached, the associated action (task activation or event
setting) is executed.

Particularities: If a single alarm is to be set, the <cycle> value must be zero (0).

If a cyclic alarm is to be set (by setting the <cycle> value to some
non-zero value), the alarm is re-activated after expiry with the
relative value <cycle>.

If the alarm is already in use, the call will be ignored and the error
E_OS_STATE is returned.

Allowed on task level and interrupt level.

Not allowed for non-variant alarms.
Error Status:
 Standard

 Extended

• No error, E_OK.

• <AlarmID> is already in use, E_OS_STATE

• Call from invalid processing level, E_OS_CALLEVEL
• <AlarmID> is invalid, E_OS_ID
• Value of <start> is illegal (lower than zero, or greater than

maxallowedvalue), E_OS_VALUE
• Value of <cycle> is illegal (lower than mincycle or greater

than maxallowedvalue), E_OS_VALUE
Conformance
Class:

BCC1, BCC2,
ECC1, ECC2 (When alarm sets an event, only ECC1 or ECC2
can be used.)

88

12.6.2.5 CancelAlarm
Syntax StatusType CancelAlarm(AlarmType <AlarmID>)
Parameter (In):
 AlarmID Alarm ID (or name)
Parameter (Out): None
Description: This service cancels the alarm <AlarmID>
Particularities: Allowed on task level and interrupt level.

Not allowed for non-variant alarms.
Error Status:
 Standard

 Extended

• No error, E_OK.
• <AlarmID> is not used, E_OS_NOFUNC

• Call from invalid processing level, E_OS_CALLEVEL
• <AlarmID> is invalid, E_OS_ID

Conformance
Class:

BCC1, BCC2, ECC1, ECC2

12.6.2.6 InitialiseCounter
Syntax StatusType InitialiseCounter (CounterType <CounterID>,

TickType <tick>)
Parameter (In):
 CounterID
 tick

Counter ID (or name)
Counter initial value

Parameter (Out): None
Description: This service initialises the counter with the <tick> value.
Particularities: Allowed on task level and interrupt level.

If not initialised, the count will not be incremented and alarm
does not operate.

The counter can be re-initialised.

Not allowed for non-variant alarm timer counter.

Note: This system service is original function.
Error Status:
 Standard

 Extended

• No error, E_OK.

• Call from invalid processing level, E_OS_CALLEVEL
• <CounterID> is invalid, E_OS_ID
• <tick> is invalid (lower than zero or greater than

maxallowedvalue), E_OS_VALUE
Conformance
Class:

BCC1, BCC2, ECC1, ECC2

89

12.6.2.7 IncrementCounter
Syntax StatusType IncrementCounter(CounterType <CounterID>)
Parameter (In):
 CounterID Counter ID (or name)
Parameter (Out): None
Description: This service advances the count of counter <CounterID> by 1. If

alarms are due to expire at the count, the actions associated with
the expiring alarm will be performed.

Particularities: Allowed on task level and interrupt level. Do not call this
parameter from other levels.

In extended error status, if multiple errors occur,
E_OS_MULTIPLE error returns. If an error is detected while
performing the associated actions of the expiring alarms, the
service will cancel the current action, but will continue service
execution.

If the counter is not initialised, then the count value will not be
incremented.

Not allowed for non-variant alarm timer counter.

Do not issue this system service to the same counter ID from the
task and the ISR. Do not issue this system service for the same
counter ID from the different interrupt mask level. The system
operation cannot be guaranteed.

Note: This system service is original function.
Error Status:
 Standard

 Extended

• No error, E_OK.

• Multiple task activations, E_OS_LIMIT
• E_OS_STATE or E_OS_LIMIT occurs two or more times,

E_OS_MULTIPLE

• Call from invalid processing level, E_OS_CALLEVEL
• <CounterID> is invalid, E_OS_ID
• Events cannot be set as the task associated with the expiring

alarm is in the suspended state, E_OS_STATE
Conformance
Class:

BCC1, BCC2, ECC1, ECC2

90

12.7 Operating System Execution Control

12.7.1 Data Types

• AppModeType
Application mode ID.

12.7.2 System Services

12.7.2.1 GetActiveApplicationMode
Syntax AppModeType GetActiveApplicationMode(void)
Parameter (In): None
Parameter (Out):
 Return value Application mode ID
Description: This service gets the current application mode ID.
Conformance
Class:

BCC1, BCC2, ECC1, ECC2

12.7.2.2 StartOS
Syntax void StartOS(AppModeType <Mode>)
Parameter (In):
 Mode Application mode ID (or name)
Parameter (Out): None
Description: This service starts the OS in a specific application mode.
Particularities: If this service is called with an illegal application mode, it will

cancel OS initialisation and return to the original call.

Call this system service after initialising CPU, etc.
Conformance
Class:

BCC1, BCC2, ECC1, ECC2

91

12.7.2.3 ShutdownOS
Syntax StatusType ShutdownOS(StatusType <Error>)
Parameter (In):
 Error Error classification
Parameter (Out): None
Description: This service shuts down the OS.
Particularities: Returns to StartOS call origin. This service can only be called

from the task level.
Error Status:
 Standard

 Extended

• No return to original call

• Call from invalid processing level, E_OS_CALLEVEL
(original function)

Conformance
Class:

BCC1, BCC2, ECC1, ECC2

92

12.8 Hook Routines

12.8.1 System Services

12.8.1.1 ErrorHook
Syntax void ErrorHook (StatusType <Error>,

 APICall <APICallId>,
 ContextType <ContextId>)

Parameter (In*):
 Error
 APICall

 ContextID

Error code that occurred
System service ID which returned error (original function; refer
to Table A.3)
Context ID of calling program (original function; refer to Table
A.4)

Parameter (Out): None
Description: If a system service error occurs, this hook routine is called by the

OS at the end of a system service. It is called before returning to
the calling program.

Particularities: See Section 10.3 for a general description of hook routines.
Conformance
Class:

BCC1, BCC2, ECC1, ECC2

12.8.1.2 PreTaskHook
Syntax void PreTaskHook (void)
Parameter (In*): None
Parameter (Out): None
Description: This hook routine is called by the OS before task switch to

running. The task is in the running state when this hook routine is
called (to get task ID by GetTaskID).

Particularities: See Section 10.3 for a general description of hook routines.
Conformance
Class:

BCC1, BCC2, ECC1, ECC2

12.8.1.3 PostTaskHook
Syntax void PostTaskHook (TaskStateType <State>)
Parameter (In*):
 State Reference to the task state (original function; refer to section

12.2.3)
Parameter (Out): None
Description: This hook routine is called by the OS after task switch to ready,

suspended or waiting. The task is in the running state when this
hook routine is called (to get task ID by GetTaskID).

Particularities: See Section 10.3 for a general description of hook routines.
Conformance
Class:

BCC1, BCC2, ECC1, ECC2

93

12.8.1.4 StartupHook
Syntax void StartupHook (void)
Parameter (In*): None
Parameter (Out): None
Description: This hook routine is called by the OS at the end of the OS

initialisation and before the scheduler is running. At this time the
application can start tasks, alarms, initialise device drivers, etc.

Particularities: See Section 10.3 for a general description of hook routines.
Conformance
Class:

BCC1, BCC2, ECC1, ECC2

12.8.1.5 ShutdownHook
Syntax void ShutdownHook (StatusType <Error>)
Parameter (In*):
 Error Error classification
Parameter (Out): None
Description: This hook routine is called by the OS when the system service

ShutdownOS has been called or the OS has shutdown.
Particularities: See Section 10.3.
Conformance
Class:

BCC1, BCC2, ECC1, ECC2

Note: *: The OS sets up the input parameters.

94

A Appendix

A.1 System Service Return Codes

Table A.1 System Service Return Codes

System Service Standard Error Status Additional Codes in Extended
Error

ActivateTask E_OK, E_OS_LIMIT* E_OS_ID,E_OS_CALLEVEL
TerminateTask --- E_OS_RESOURCE,

E_OS_CALLEVEL
ChainTask E_OS_LIMIT* E_OS_ID, E_OS_RESOURCE,

E_OS_CALLEVEL
Schedule E_OK E_OS_CALLEVEL
GetTaskID E_OK E_OS_CALLEVEL
GetTaskState E_OK E_OS_ID, E_OS_CALLEVEL
EnterISR --- ---
LeaveISR --- ---
EnableInterrupt or
EnableInterruptMask
(Interrupt Mask Level Method)*

--- ---

DisableInterrupt or
DsiableInterruptMask
(Interrupt Mask Level Method)*

--- ---

GetInterruptDescriptor or
GetIterruptDescriptorMask
(Interrupt Mask Level Method)*

--- ---

EnableInterrupt or
EnableInterruptSource
(Interrupt Source Method)*

E_OK E_OS_NOFUNC

DisableInterrupt or
DsiableInterruptSource
(Interrupt Source Method)*

E_OK E_OS_NOFUNC

GetInterruptDescriptor or
GetInterruptDescriptorSource
(Interrupt Source Method)*

--- ---

GetResource E_OK E_OS_ID, E_OS_ACCESS,
E_OS_CALLEVEL,
E_OS_INVALID_NEST*

ReleaseResource E_OK E_OS_ID, E_OS_NOFUNC,
E_OS_CALLEVEL,

SetEvent E_OK E_OS_ID, E_OS_ACCESS,
E_OS_STATE,
E_OS_CALLEVEL

ClearEvent E_OK E_OS_ACCESS,
E_OS_CALLEVEL

GetEvent E_OK E_OS_ID, E_OS_ACCESS,
E_OS_STATE,
E_OS_CALLEVEL

95

System Service Standard Error Status Additional Codes in Extended
Error

WaitEvent E_OK E_OS_ACCESS,
E_OS_RESOURCE,
E_OS_CALLEVEL

GetAlarmBase E_OK E_OS_ID, E_OS_CALLEVEL
GetAlarm E_OK, E_OS_NOFUNC E_OS_ID, E_OS_CALLEVEL
SetRelAlarm E_OK, E_OS_STATE E_OS_ID, E_OS_VALUE,

E_OS_CALLEVEL
SetAbsAlarm E_OK, E_OS_STATE E_OS_ID, E_OS_VALUE,

E_OS_CALLEVEL
CancelAlarm E_OK, E_OS_NOFUNC E_OS_ID, E_OS_CALLEVEL
InitialiseCounter* E_OK E_OS_ID, E_OS_CALLEVEL,

E_OS_VALUE
IncrementCounter* E_OK, E_OS_LIMIT,

E_OS_MULTIPLE
E_OS_ID, E_OS_STATE,
E_OS_CALLEVEL

GetActiveApplicationMode --- ---
StartOS --- ---
ShutdownOS --- E_OS_CALLEVEL*

Note: *: Original function.

Table A.1 System Service Return Codes (continue)

96

A.2 IDs

A.2.1 Return Code IDs

Table A.2 Return Codes

Error Description ID
E_OK No error 0 (H’0)
E_OS_ACCESS - Inadmissible access to resource

- Referenced task is not an
extended task
- Call from basic task

1 (H’1)

E_OS_CALLEVEL Call from invalid level 2 (H’2)
E_OS_ID ID is invalid 3 (H’3)
E_OS_LIMIT* Multiple task activations 4 (H’4)
E_OS_NOFUNC - Object not in use

- No resource has been got or
illegal resource release order
(another resource has to be released
first)
- The interrupt is already in
whichever state was requested
(enabled or disabled)

5 (H’5)

E_OS_RESOURCE Task still occupies resources 6 (H’6)
E_OS_STATE - Task is in the suspended state

- Alarm is in use
7 (H’7)

E_OS_VALUE - Illegal count value (lower than
 zero, or greater than
 maxallowedvalue)
- Illegal cycle (lower than mincycle
or greater than maxallowedvalue)

8 (H’8)

E_OS_INVALID_NEST* Illegal resource nest 9 (H’9)
E_OS_MULTIPLE* E_OS_STATE or E_OS_LIMIT

occurs two or more times
10 (H’a)

E_OS_SYS_EXCEPTION* Undefined exception 100 (H’64)
E_OS_SYS_ILLEGAL* Illegal general instruction 101 (H’65)
E_OS_SYS_ILLEGAL_SLOT* Illegal slot instruction 102 (H’66)
E_OS_SYS_CPU_ADDRESS* CPU address error 103 (H’67)

Note: *: Original function.

97

A.2.2 System Service IDs

Table A.3 System Service IDs

System Service ID
DeclareTask 0 (H’0)
ActivateTask 1 (H’1)
TerminateTask 2 (H’2)
ChainTask 3 (H’3)
Schedule 4 (H’4)
GetTaskID 5 (H’5)
GetTaskState 6 (H’6)
EnterISR 7 (H’7)
LeaveISR 8 (H’8)
EnableInterrupt 9 (H’9)
DisableInterrupt 10 (H’a)
GetInterruptDescriptor 11 (H’b)
DeclareResource 12 (H’c)
GetResource 13 (H’d)
ReleaseResource 14 (H’e)
DeclareEvent 15 (H’f)
SetEvent 16 (H’10)
ClearEvent 17 (H’11)
GetEvent 18 (H’12)
WaitEvent 19 (H’13)
DeclareAlarm 20 (H’14)
GetAlarmBase 21 (H’15)
GetAlarm 22 (H’16)
SetRelAlarm 23 (H’17)
SetAbsAlarm 24 (H’18)
CancelAlarm 25 (H’19)
GetActiveApplicationMode 26 (H’1a)
StartOS 27 (H’1b)
ShutdownOS 28 (H’1c)
InitialiseCounter* 29 (H’1d)
IncrementCounter* 30 (H’1e)
NonVariant (Non-variant alarm timer counter) 31 (H’1f)
EnableInterruptMask* 32 (H’20)
DisableInterruptMask* 33 (H’21)
GetInterruptDescriptorMask* 34 (H’22)
EnableInterruptSource* 35 (H’23)
DisableInterruptSource* 36 (H’24)
GetInterruptDescriptorSource* 37 (H’25)

Note: *: Original function.

98

A.2.3 Context IDs

Table A.4 Context IDs

Context ID
OS 0 (H’0)
OS_IDLE 1 (H’1)
TASK 2 (H’2)
ISR 3 (H’3)
ERRORHOOK 4 (H’4)
PRETASKHOOK 5 (H’5)
POSTTASKHOOK 6 (H’6)
SHUTDOWNHOOK 7 (H’7)
STARTUPHOOK 8 (H’8)

99

A.3 System Service Calls

System service that can be issued is shown by ✔in task, ISR, and hook routine.

Table A.5 System Service Calls

Service Task
Level

ISR
Level

Error
Hook

PreTask
Hook

PostTask
Hook

Startup
Hook

Shutdown
Hook

OS calling
program

ActivateTask ✔ ✔ --- --- --- ✔ --- ---
TerminateTask ✔ --- --- --- --- --- --- ---
ChainTask ✔ --- --- --- --- --- --- ---
Schedule ✔ --- --- --- --- --- --- ---
GetTaskID ✔ --- ✔ ✔ ✔ --- --- ---
GetTaskState ✔ ✔ ✔ ✔ ✔ --- --- ---
EnableInterrupt ✔ ✔ --- --- --- --- --- ---
DisableInterrupt ✔ ✔ --- --- --- --- --- ---
GetInterruptDescriptor ✔ ✔ ✔ ✔ ✔ --- --- ---
GetResource ✔ --- --- --- --- --- --- ---
ReleaseResource ✔ --- --- --- --- --- --- ---
SetEvent ✔ ✔ --- --- --- --- --- ---
ClearEvent ✔ --- --- --- --- --- --- ---
GetEvent ✔ ✔ ✔ ✔ ✔ --- --- ---
WaitEvent ✔ --- --- --- --- --- --- ---
GetAlarmBase ✔ ✔ ✔ ✔ ✔ --- --- ---
GetAlarm ✔ ✔ ✔ ✔ ✔ --- --- ---
SetRelAlarm ✔ ✔ --- --- --- --- --- ---
SetAbsAlarm ✔ ✔ --- --- --- --- --- ---
CancelAlarm ✔ ✔ --- --- --- --- --- ---
InitialiseCounter ✔ ✔ --- --- --- --- --- ---
IncrementCounter ✔ ✔ --- --- --- --- --- ---
GetActiveApplicationMode ✔ ✔ ✔ ✔ ✔ ✔ ✔ ---
StartOS --- --- --- --- --- --- --- ✔
ShutdownOS ✔ --- --- --- --- --- --- ---
EnableInterruptMask ✔ ✔ --- --- --- --- --- ---
DisableInterruptMask ✔ ✔ --- --- --- --- --- ---
GetInterruptDescriptorMask ✔ ✔ ✔ ✔ ✔ --- --- ---
EnableInterruptSource ✔ ✔ --- --- --- --- --- ---
DsiableInterruptSource ✔ ✔ --- --- --- --- --- ---
GetInterruptDescriptorSource ✔ ✔ ✔ ✔ ✔ --- --- ---

100

A.4 Data Types

Table A.6 Data Types

Name Data Type (size) Description
StatusType unsigned long (4 bytes) Return value
TaskType signed short (2 bytes) Task ID
TaskRefType TaskType * (4 bytes) Pointer to TaskType
TaskStateType signed char (1 byte) Task status
TaskStateRefType TaskStateType * (4 bytes) Pointer to TaskStateType
IntDescriptorType unsigned long (4 bytes) Status register value
IntDescriptorRefType IntDescriptorType * (4 bytes) Pointer to IntDescriptorType
ResourceType signed char (1 byte) Resource ID
EventMaskType signed char (1 byte) Event mask value
EventMaskRefType EventMaskType * (4 bytes) Pointer to EventMaskType
TickType unsigned long (4 bytes) Counter value
TickRefType TickType * (4 bytes) Pointer to TickType
AlarmBaseType struct AlarmBase (12 bytes) Element of the counter

characteristics
AlarmBaseRefType AlarmBaseType * (4 bytes) Pointer to AlarmBaseType
AlarmType signed char (1 byte) Alarm ID
AppModeType signed char (1 byte) Application mode ID
CounterType signed char (1 byte) Counter ID
APICall unsigned long (4 bytes) System service ID
ContextType unsigned long (4 bytes) Context ID

101

Ho7000 Series
Operating System Manual
Publication date: 1st Edition, June 2002
Copyright (c) Hitachi, Ltd., 2002. All rights reserved. Printed in Japan.

	Cover
	Cautions
	Table of Contents
	1 Overview
	1.1 Introduction
	1.2 Features

	2 OS Application Building
	3 Operating System Function
	3.1 Processing Levels
	3.2 Features
	3.3 Application Modes
	3.4 Conformance Classes
	3.5 Maximum Parameters

	4 Task Management
	4.1 Task Concept
	4.2 Task State
	4.2.1 Introduction
	4.2.2 Basic Tasks
	4.2.3 Extended Tasks

	4.3 Comparison of the Task Types
	4.4 Task Activation and Termination
	4.5 Task Priority
	4.6 Task Preemptability
	4.7 Task Stacks
	4.8 Task System Services

	5 Scheduler
	5.1 Introduction
	5.2 Non-Preemptive Scheduling
	5.3 Full Preemptive Scheduling
	5.4 Mixed Preemptive Scheduling
	5.5 Interrupt Mask Level and Task Preemption

	6 Interrupt Management
	6.1 Interrupt Categories
	6.2 Interrupt Control
	6.2.1 Interrupt Mask Level Method
	6.2.2 Interrupt Source Method

	6.3 Interrupt Source Classification
	6.3.1 Non-Maskable Interrupt
	6.3.2 Other Interrupts

	6.4 Interrupt Stacks
	6.4.1 Interrupts of Category 2
	6.4.2 Interrupts of Category 1
	6.4.3 NMI Interrupts

	6.5 Exceptions
	6.6 Interrupt System Services

	7 Resource Management
	7.1 Introduction
	7.2 Priority Resource Management
	7.3 Nested Resource Occupation
	7.4 Resource Occupation at Task Termination
	7.5 Scheduler as a Resource
	7.6 Resource Priority Ceiling For ECC1 Conformance
	7.7 Restrictions when Using Resources
	7.8 Resource System Services

	8 Event Management
	8.1 Introduction
	8.2 Event Operation
	8.3 Event IDs
	8.4 Event System Services

	9 Alarm and Counter Management
	9.1 Introduction
	9.2 Counters
	9.2.1 Counter Handler
	9.2.2 System Timer
	9.2.3 Non-Variant Alarm Timer
	9.2.4 Counter Properties
	9.2.4.1 maxallowedvalue
	9.2.4.2 ticksperbase
	9.2.4.3 mincycle

	9.3 Alarms
	9.3.1 Introduction
	9.3.2 Alarm Parameters
	9.3.2.1 Expiry Count
	9.3.2.2 Cyclic and Single Alarms

	9.4 Example for Using Counter and Alarm
	9.5 Counter and Alarm System Services

	10 System Control
	10.1 System Start-up
	10.2 System Shutdown
	10.3 Hook Routines
	10.4 Error Handling
	10.4.1 Error Status
	10.4.2 Shutdown Errors

	10.5 ErrorHook Re-Entry

	11 Programming
	11.1 Registers
	11.2 Declaration of OSEK Processes
	11.2.1 OS Initiation
	11.2.2 Tasks
	11.2.3 ISR

	11.3 System Configuration Files
	11.3.1 Header Files

	11.4 Declaring System Objects Through System Services
	11.5 Referring to System Objects
	11.6 Calling a System Service From an Assembler Routine
	11.7 Assembler ISR
	11.7.1 Interrupt Category 1
	11.7.1.1 NMI ISR
	11.7.1.2 Other Interrupts
	11.7.1.2.1 Interrupt Stack Change
	11.7.1.2.2 ISR Return
	11.7.1.2.3 Register Used
	11.7.1.2.4 Example of ISR

	11.7.2 Interrupt Category 2

	11.8 Registering ISRs
	11.9 OS Interrupts

	12 System Services
	12.1 Introduction
	12.2 Task Management Services
	12.2.1 Data Types
	12.2.2 System Services
	12.2.2.1 ActivateTask
	12.2.2.2 TerminateTask
	12.2.2.3 ChainTask
	12.2.2.4 Schedule
	12.2.2.5 GetTaskID
	12.2.2.6 GetTaskState

	12.2.3 Constants of data type TaskStateType

	12.3 Interrupt Management Services
	12.3.1 DataTypes
	12.3.2 System Services
	12.3.2.1 EnableInterrupt
	12.3.2.2 DisableInterrupt
	12.3.2.3 GetInterruptDescriptor

	12.3.3 Constants of the IntDescriptorType Data Type
	12.3.4 Interrupt Sources and Settings
	12.3.5 Functions Used to Control Interrupts from User-Defined Sources

	12.4 Resource Management Services
	12.4.1 Data Types
	12.4.2 System Services
	12.4.2.1 GetResource
	12.4.2.2 ReleaseResource

	12.5 Event Management Services
	12.5.1 Data Types
	12.5.2 System Services
	12.5.2.1 SetEvent
	12.5.2.2 ClearEvent
	12.5.2.3 GetEvent
	12.5.2.4 WaitEvent

	12.6 Counter and Alarm Management Services
	12.6.1 Data Types
	12.6.2 System Services
	12.6.2.1 GetAlarmBase
	12.6.2.2 GetAlarm
	12.6.2.3 SetRelAlarm
	12.6.2.4 SetAbsAlarm
	12.6.2.5 CancelAlarm
	12.6.2.6 InitialiseCounter
	12.6.2.7 IncrementCounter

	12.7 Operating System Execution Control
	12.7.1 Data Types
	12.7.2 System Services
	12.7.2.1 GetActiveApplicationMode
	12.7.2.2 StartOS
	12.7.2.3 ShutdownOS

	12.8 Hook Routines
	12.8.1 System Services
	12.8.1.1 ErrorHook
	12.8.1.2 PreTaskHook
	12.8.1.3 PostTaskHook
	12.8.1.4 StartupHook
	12.8.1.5 ShutdownHook

	A Appendix
	A.1 System Service Return Codes
	A.2 IDs
	A.2.1 Return Code IDs
	A.2.2 System Service IDs
	A.2.3 Context IDs

	A.3 System Service Calls
	A.4 Data Types

	Colophon

