

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

2003/09/08 Ver.1.0

 - 1 -

Supplementary explanation for HEW generation file

（（（（SH-1, SH-2, SH-2E, SH-DSP））））

1. Introduction
1.1 Contents of This Document

 This document describes the description method of programming in embedded assembly language

and C/C++ language. Supplementary explanation for HEW generation file is also included.

1.2 Targeted Compilers

This document targets compilers, which are newer than SuperH RISC engine C/C++ compiler Ver.7,

and HEW3.0. This document contains “pragma” etc., which can not be used in the older versions.

In addition, an electronic instruction manual (PDF file) is included in the compiler packages. Please

refer to it for information on use of HEW, compilers, assemblers and optimizing linkage editor.

1.3 Notes

Please refer to a hardware manual and a programming manual attached to your microcomputer for

information on contains of memory allocation and vector tables or use of the microcomputer. This

document does not describe C/C++ language specification.

2. Programming in Assembly Language
2.1 Description of Reset Function

The following assembly program is minimum necessary to have SH-1/SH-2/SH-2E/SH-DSP

microcomputers worked. Please set a stack pointer (R15 register) at 0xFFFFFFF0 just after power-

on-reset, and jump at 0x00000800 where _PowerON_Reset_PC is set at (It is automatically

performed by hardware). The processing is terminated with a SLEEP instruction. You can name

the section as you want. In this document however, the sections are named PResetPRG and

DVECTTBL in accordance with HEW generation files. You can also name the function as you want.

In this document however, the function is named _PowerON_Reset_PC in accordance with HEW

generation files. DVECTTBL is reset vector table, and it must be set at 0. PResetPRG section can

be set anywhere in ROM region as long as it is not in the vector table area. In this document

however, it is set at 0x00000800 in accordance with HEW generation files.

List ２２２２-1

 .SECTION PResetPRG,CODE,LOCATE=H'00000800
_PowerON_Reset_PC:
 SLEEP

 .SECTION DVECTTBL,DATA,LOCATE=H'00000000
 .DATA.L _PowerON_Reset_PC
 .DATA.L H'FFFFFFF0

 .END

2003/09/08 Ver.1.0

 - 2 -

When manual reset function is added to the above program, it becomes as follows.

List １１１１-2

2.2 Function Call

In the following assembly program, _main function is called from _PowerON_Reset_PC function

after power-on-reset, and the processing is terminated with a SLEEP instruction after returning from

the function. Descriptions of a _Manual_Reset_PC function and a vector table are omitted.

List ２２２２-3

In case of returning from functions, you can use RTS instruction. However, it was not described in

_PowerON_Reset_PC function above. It is because it never happens to return from reset function.

In addition, it is required to set SLEEP instruction or loop them infinitely to prevent the program from

running away. The following program is an example of infinite loop.

List ２２２２-4

Additionally, when calling function with JSR instruction, the returning address from the called function

is stored in PR register (It is automatically performed by hardware). In case of returning from the

 .SECTION PResetPRG,CODE,LOCATE=H'00000800
_PowerON_Reset_PC:
 MOV.L #_main, R0
 JSR @R0
 NOP
 SLEEP

 .SECTION P,CODE,LOCATE=H'00001000
_main:
 RTS
 NOP

 .SECTION PResetPRG,CODE,LOCATE=H'00000800
_PowerON_Reset_PC:
 SLEEP
_Manual_Reset_PC:
 SLEEP

 .SECTION DVECTTBL,DATA,LOCATE=H'00000000
 .DATA.L _PowerON_Reset_PC
 .DATA.L H'FFFFFFF0
 .DATA.L _Manual_Reset_PC
 .DATA.L H'FFFFFFF0
 .END

_PowerON_Reset_PC:
 MOV.L #_main, R0
 JSR @R0
 NOP
_loop:
 BRA _loop
 NOP

2003/09/08 Ver.1.0

 - 3 -

function call with RTS instruction, the processing which had been done before the function call is

continued by restoring a value of PR register to PC register (It is also automatically performed by

hardware). Because SH microcomputer has only one PR register, PR register needs to be saved

temporarily and restored in case that the function call is nested with JSR instructions. In the

following program, PR register is saved before a function call (a), and restored after the function call

(b). Moreover, not only PR register, but also registers for general purpose need to be saved and

restored as well.

List ２２２２-5

Because it never happens to return from _PowerON_Reset_PC function, PR register needs to be

neither saved nor restored in _PowerON_Reset_PC function.

2.3 Description of Interrupt Function

You can describe interrupt function in assembly language as follows. In the following program, if an

interruption by general illegal instruction exception occurs, _INT_Illegal_code function is called and

the processing is terminated with a SLEEP instruction. Also, if an interruption by illegal slot instruction

exception occurs, _INT_Illegal_slot function is called and a processing is terminated with a SLEEP

instruction.

 .SECTION PResetPRG,CODE,LOCATE=H'00000800
_PowerON_Reset_PC:
 MOV.L #_main, R0
 JSR @R0
 NOP
 SLEEP

 .SECTION P,CODE,LOCATE=H'00001000
_main:
 STS.L PR, @-R15 ...(a)
 MOV.L #_foo, R0
 JSR @R0
 NOP
 LDS.L @R15+, PR ...(b)
 RTS
 NOP

_foo:
 RTS
 NOP

2003/09/08 Ver.1.0

 - 4 -

List ２２２２-6

You can name the functions and the sections as you want here also. In this document however, the

functions are named _INT_Illegal_code and _INT_Illegal_slot, and the sections are named PIntPRG

and DINTTBL in accordance with HEW generation files. You can set PIntPRG section at anywhere

in ROM region as long as it is not in the vector table area. In this document however, it is set at

0x00000400 in accordance with HEW generation files. DINTTBL is vector tables other than reset

vector table, and set at 0x00000010. You can set the vector tables at an address other than

0x00000010 by setting an address of VBR register ([2.4 VBR Register]).

In the above program [List 2-6], if _main function is defined as follows, general illegal instruction

exception occurs by (a) instruction, and _INT_Illegal_code function is called.

List ２２２２-7

Also, if _main function is defined as follows, illegal slot instruction exception occurs by (b)

instruction, and _INT_Illegal_slot function is called.

List ２２２２-8

[List 2-6] shows cases of terminating processing with SLEEP instructions after occurrence of

interruptions. In some cases such as timer interruption, it may return from an interrupt function, and

continue the processing, which had been done before the interruption. When returning from interrupt

function, it must be returned with RTE instruction ([List 2-9]). Interrupt function is different from

general functions, which can be returned with RTS instruction. When an interruption occurs, PC

register and SR register are stored on the stack, and an interrupt function is called (It is automatically

performed by hardware). In case of returning from interrupt function with RTE instruction,

processing which had been done before the interruption is continued by taking the PC register and

 .SECTION PIntPRG,CODE,LOCATE=H'00000400
_INT_Illegal_code:
 SLEEP

_INT_Illegal_slot:
 SLEEP

 .SECTION DINTTBL,DATA,LOCATE=H'00000010
 .DATA.L _INT_Illegal_code
 .DATA.L 0
 .DATA.L _INT_Illegal_slot

_main:
 .DATA.L 0 ...(a)
 RTS
 NOP

_main:
 RTS ...(b)
 .DATA.W 0

2003/09/08 Ver.1.0

 - 5 -

the SR register back from the stack (It is also automatically performed by hardware).

List ２２２２-9

Registers other than PC register and SR register are neither saved nor restored at occurrence of an

interruption. Therefore, values of registers, which have possibilities to be rewritten in interrupt function

must be temporally saved on the stack before it is used in interrupt function. The values of registers

also must be restored again before returning from the interrupt function with RTE instruction. In the

following program, a value of R0 register is modified by (c) processing. If an interruption occurs

between (a) and (b), it returns to (b) from interrupt function with the value of R0 register, which is

modified in _INIT_xxx function. Therefore, the microcomputers do not work properly from that time.

List ２２２２-10

In order to avoid it, R0 register must be saved temporarily before（C）processing, and restored after

(C) processing ((d),(e) of [List 2-11]).

List ２２２２-11

_main:
 STS.L PR, @-R15
 MOV.L A_foo, R0 ...(a)
 JSR @R0 ...(b)
 NOP
 LDS.L @R15+, PR
 RTS
 NOP

_INT_xxx: ; 任意の例外処理
 MOV.L #0, R0 ...(c)
 RTE
 NOP

_main:
 STS.L PR, @-R15
 MOV.L A_foo, R0
 JSR @R0
 NOP
 LDS.L @R15+, PR
 RTS
 NOP

_INT_xxx: ; 任意の例外処理
 MOV.L R0, @-R15 ...(d)
 MOV.L #0, R0
 MOV.L @R15+, R0 ...(e)
 RTE
 NOP

_INT_xxx:
 RTE
 NOP

2003/09/08 Ver.1.0

 - 6 -

2.4 VBR register

In hardware specification on SH microcomputers, vector tables other than reset vector table are

referenced using the offset from the value of VBR register. Therefore, you can also set the vector

tables other than reset vector table at any address you want by setting VBR register at an address

you want. For example, you will set VBR register as follows. However, an address of DINTTBL

section needs to be set at xxxxxxxx.

List 2-12

You can also set VBR register as follows.

Figure 2-1

In this case, an address of vector tables other than reset vector table needs to be set at xxxxxxxx.

Because VBR register needs to be set at a start address of the vector tables including reset vector

table, 0x00000010 is subtracted from xxxxxxxx in the above program. You can also set VBR

register as follows.

_PowerON_Reset_PC:
 MOV.L # H'xxxxxxxx - H'00000010, R0
 LDC R0, VBR
 ...

 .SECTION DINTTBL,DATA,LOCATE=H'xxxxxxxx
 .DATA.L _INT_Illegal_code
 .DATA.L 0
 .DATA.L _INT_Illegal_slot

_PowerON_Reset_PC:
 MOV.L # H'xxxxxxxx, R0
 LDC R0, VBR
 ...

 .SECTION DINTTBL,DATA,LOCATE=H'xxxxxxxx
 .DATA.L 0
 .DATA.L 0
 .DATA.L 0
 .DATA.L 0
 .DATA.L _INT_Illegal_code
 .DATA.L 0
 .DATA.L _INT_Illegal_slot

2003/09/08 Ver.1.0

 - 7 -

List 2-13

By setting an address at xxxxxxxx, you can set VBR register at an address, which is subtracted

0x00000010 (reset vector table size) from it. In this case, when you change the vector table, you only

need to modify one address (an address set for LOCATE) in the source file, so you can avoid mistakes

at modifying.

_PowerON_Reset_PC:
 MOV.L #_INT_Vectors - H'00000010, R0
 LDC R0, VBR
 ...

 .SECTION DINTTBL,DATA,LOCATE=H'xxxxxxxx
_INT_Vectors:
 .DATA.L _INT_Illegal_code
 .DATA.L 0
 .DATA.L _INT_Illegal_slot

2003/09/08 Ver.1.0

 - 8 -

3. Programming in C/C++ Language

3.1 Description of Reset Function

The preceding chapter described programming methods in assembly language. This chapter

describes programming methods in C/C++ language. The following program written in C/C++

language is equivalent to [List-2-1].

List 3-1

PowerON_Reset_PC is a reset function. It is generated in PResetPRG section using #pragma

section ResetPRG statement (c). RESET_Vectors is a reset vector table. It is generated in

DVECTTBL section using #pragma section VECTTBL statement (e). At memory allocation of

optimizing linkage editor, DVECTTBL section needs to be set at 0 ([4.5 Memory allocation of

optimizing linkage editor]). PResetPRG section is set at 0x00000800 in HEW generation setting.

You can use built-in functions to describe SLEEP instruction in C/C++ language (d). When using the

built-in functions, <machine.h> need to be included in a source file, which is in use (a). There are

some built-in functions other than sleep function such as setting/getting of status register (set_cr /

get_cr), setting/getting of interrupt mask (set_imask / get_imask), setting/getting of VBR register

(set_vbr / get_vbr), nop function and so on. In addition, because it never happens to return from

_PowerON_Reset_PC function, registers need to be neither saved before function calls nor restored

after function calls. The save / restore codes of the registers can be suppressed by using #pragma

entry statement (b). You can also describe [List-2-1] in C/C++ language as follows.

#include <machine.h> ...(a)

#pragma entry PowerON_Reset_PC ...(b)

#pragma section ResetPRG ...(c)
void PowerON_Reset_PC(void)
{
 sleep(); ...(d)
}
#pragma section VECTTBL ...(e)
void* RESET_Vectors[] = {
 (void*)PowerON_Reset_PC,
 (void*)0xFFFFFFF0
};

2003/09/08 Ver.1.0

 - 9 -

List 3-2

S section with 0x400 bytes area is generated by compilers using #pragma stacksize statement (f).

S section is called a stack section. __second (g) is called a section address operator (it is not a

function), and can be set at an address, which is added 1 to the end address of a section surrounded

by quotes (“) . Then you can set S section in RAM region. At memory allocation of optimizing

linkage editor, you need to set a top address of the section. Therefore, if you set the end address of

the stack at 0xFFFFFFF0, you need to set the top address of the section at 0xFFFFFBF0

（0xFFFFFFF0 – 0x400）. When you add descriptions of manual reset function to it, the program

becomes as follows.

List 3-3

#include <machine.h>

#pragma entry PowerON_Reset_PC
#pragma stacksize 0x400 ...(f)

#pragma section ResetPRG
void PowerON_Reset_PC(void)
{
 sleep();
}
#pragma section VECTTBL
void* RESET_Vectors[] = {
 (void*)PowerON_Reset_PC,
 __secend(“S”) ...(g)
};

#include <machine.h>

#pragma entry PowerON_Reset_PC
#pragma entry Manual_Reset_PC

#pragma section ResetPRG
#pragma stacksize 0x400

void PowerON_Reset_PC(void)
{
 sleep();
}

void Manual_Reset_PC(void)
{
 sleep();
}

#pragma section VECTTBL
void* RESET_Vectors[] = {
 (void*)PowerON_Reset_PC,
 __secend(“S”)
 (void*)Manual_Reset_PC,
 __secend(“S”)
};

2003/09/08 Ver.1.0

 - 10 -

3.2 Function Call

The following written in program in C/C++ language is equivalent to [List2-5]. Descriptions of a

manual reset function and a reset vector table are omitted. Compilers automatically generate RTS

instruction ([List 2-3]) and instructions for save / restore operations of the PR and the other registers

([List 2-5]). Therefore, you do not need to describe them by yourself.

List 3-4

foo function and main function are generated in P section. Here upon HEW generation setting, P

section is set at 0x00001000.

#include <machine.h>

#pragma entry PowerON_Reset_PC
#pragma stacksize 0x400

void foo(void)
{
}

void main(void)
{
 foo();
}

#pragma section ResetPRG
void PowerON_Reset_PC(void)
{
 main();
 sleep();
}

2003/09/08 Ver.1.0

 - 11 -

3.3 Description of Interrupt Function

The following program written in C/C++ language is equivalent to [List 2-6].

List 3-5

INT_Illegal_code function, INT_Illegal_slot function and INT_xxx function are generated in PlntPRG

section by using #pragma section IntPRG statement (a). INT_Vectors is vector tables other than

reset vector table. It is generated in DINTTBL section by using #pragma section INTTBL statement

(e). Here upon HEW generation setting, PIntPRG section is set at 0x00000400, and DINTTBL

section is set at 0x00000010. However, you can set the DINTTBL section at any address you want

in accordance with setting of VBR address ([3.4 VBR Register]). INT_xxx function returns from the

function by RTE instruction by using #pragma interrupt statement (The code is automatically

generated by the compilers). Additionally, there are registers, which the values have possibilities to

be rewritten in interrupt function. In such case, save / restore operation codes of the registers are

generated by compilers. The operation codes of INT_Illegal_code function and INT_Illegal_slot

function are generated to return from the functions with RTE instruction by using #pragma interrupt

statement as (b) and (c) indicate above. In this case however, the processing is terminated with a

SLEEP instruction because of a built-in function sleep.

#include <machine.h>

#pragma section IntPRG ...(a)

#pragma interrupt INT_Illegal_code ...(b)
void INT_Illegal_code(void)
{
 sleep();
}

#pragma interrupt INT_Illegal_slot ...(c)
void INT_Illegal_slot(void)
{
 sleep();
}

#pragma interrupt INT_xxx ...(d)
void INT_xxx(void)
{
}

#pragma section INTTBL ...(e)
void *INT_Vectors[] =
{
 (void*) INT_Illegal_code,
 (void*) 0,
 (void*) INT_Illegal_slot
 ...
 (void*) INT_xxx
}

2003/09/08 Ver.1.0

 - 12 -

3.4 VBR Register

VBR register can be set using built-in functions.

List 3-6

VBR register needs to be set at a top address of the reset vector table. Therefore, it needs to be set

at an address, which is subtracted reset vector table size（0x00000010）from the top address

(INT_Vectors) of vector tables other than reset vector table. By setting in this way, VBR register will

automatically set at a proper address just by specifying an address of DINITTBL at memory allocation

of optimizing linkage editor.

3.5 Non-initialized data area

Definition of external variable is generated in B section as non-initialized data area at default in case

that the external variable has no initial value such as variable a as the following (a) indicates.

List 3-7

Because the non-initialized data area has possibilities to be rewritten at executing programs as (c)

indicates, it needs to be set in RAM region. In addition, external variables, which have no initial

values must be set 0 in according to ANSI C/C++ language specification. For example, the value of

variable a must be 0 when referring to (b). Therefore, B section area is required to clear with 0 at

executing applications as follows. However, in case non-initialized data was properly initialized in

the applications, It is not necessary to clear with 0.

int a; ...(a)
void main(void)
{
 int b = a; ...(b)
 a = 1; ...(c)
}

#include <machine.h>

extern void* INT_Vectors[];
void PowerON_Reset_PC(void)
{
 set_vbr((void*)((char*)INT_Vectors-0x00000010));
 ...
}

2003/09/08 Ver.1.0

 - 13 -

List 3-8

Additionally, __sectop is a section address operator (it is not a function) as well as __second. It can

be set at the top address of the section.

3.6 Constant Area

Definition of external variables is generated in C section as constant data area at default, in case that

the external variable has the initial value, which is designated as constant, not as volatile such as

variable b as the following (a) indicates. Character strings such as (b) is also generated in C section

as constant data area at default.

List 3-9

Because constant area cannot be rewritten at executing programs, it is set in ROM region.

Additionally, strings can be treated in the same way as [3.7 Initialization Data Area] by setting the

(-string=data) compiler option.

int a;
const int b = 1; ...(a)
void main(void)
{
 char* str = “string”; ...(b)
 a = b;
}

void PowerON_Reset_PC
{
 char* p;

 p=(char*)__sectop("B");
 for(; p<(char*)__secend("B"); p++)
 *p = 0;
 main();
 sleep();
}

2003/09/08 Ver.1.0

 - 14 -

3.7 Initialized Data Area

Definition of external variable is generated in D section as initialized data area at default, in case that

the external variable has the initial value such as variable a as the following (a) indicates.

List 3-10

Because the initialized data area has a initial value, the initial data need to be set in ROM region.

However, because the initialized data area has possibilities to be rewritten at executing programs as

(b) indicates, the data, which are accessed to storage and take the value needs to be set at RAM

region. What you can use here is ROM support function ([4.4 ROM support function]) included in

optimizing linkage editor. By using this function, R section can be generated as a copy of D section.

Where you are actually accessing to is R section hereat. D section is set in ROM region, and R

section is set in RAM region at memory allocation of the optimizing linkage editor. R section can be

named as you want. Additionally, variables with the initial values need to have the value by the

time of execution of programs. Therefore, the data of D section needs to be copied to R section as

follows.

List 3-11

int a = 1; ...(a)
void main(void)
{
 a = 2; ...(b)
}

void PowerON_Reset_PC(void)
{
 char *p, *q;

 p=(char*)__sectop("D");
 q=(char*)__sectop("R");
 for(; p<(char*)__secend("D"); p++, q++)
 *q = *p;

 main();
 sleep();
}

2003/09/08 Ver.1.0

 - 15 -

3.8 _INITSCT Function

[List 3-8] and [List 3-11] described about the initialization of B section and copying of D section to R

section by user programs. However, you do not need to describe the initialized routines by using

_INITSCT function included in standard libraries. You can use _INITSCT function as follows.

List 3-12

By just calling _INITSCT function, initialization of B section and copying of D section to R section are

performed. In case of using _INITSCT function, please include <_h_c_lib.h> as (a) indicates, and

link the standard library([4.6 Standard library]). Structure variable (d) is generated in C$DSEC

section, and (f) is generated in C$BSEC section by using #pragma section statement as(c) and (e)

indicate. They need to be set in ROM region. In case that there are any initialization data areas other

than D section, please add them in DTBL as follows. Moreover, R1 section needs to be generated

as a copy area of the initialization data area by ROM conversion feature. D1 section and R1 section

must be set in ROM region and in RAM region each.

#include <_h_c_lib.h> ...(a)

void PowerON_Reset_PC(void)
{
 _INITSCT(); ...(b)

 main();

 sleep();
}

#pragma section $DSEC ...(c)
static const struct { ...(d)
 char *rom_s;
 char *rom_e;
 char *ram_s;
}DTBL[]= {
 {__sectop("D"),__secend("D"), __sectop("R")},
};

#pragma section $BSEC ...(e)
static const struct { ...(f)
 char *b_s;
 char *b_e;
}BTBL[]= {
 {__sectop("B"), __secend("B")},
};

2003/09/08 Ver.1.0

 - 16 -

List 3-13

In case that there are any non-initialized data areas other than B section, please add them in BTBL

as follows. Additionally, B1 section must be set in RAM region.

List 3-14

#pragma section 1
int a = 0; ...D1セクション

#pragma section $DSEC
static const struct {
 char *rom_s;
 char *rom_e;
 char *ram_s;
}DTBL[]= {
 {__sectop("D"),__secend("D"), __sectop("R")},
 {__sectop("D1"),__secend("D1"), __sectop("R1")},
};

#pragma section 1
int a; ...B1セクション

#pragma section $BSEC
static const struct {
 char *b_s;
 char *b_e;
}BTBL[]= {
 {__sectop("B"), __secend("B")},
 {__sectop("B1"), __secend("B1")},
};

2003/09/08 Ver.1.0

 - 17 -

3.9 Global class object (at programming in C++ language)

In case of developing application software in C++ language, globally declared class objects (global

class objects) may exist. (a) and (b) in the following source program are the global class objects.

List 3-15

In case that this class has a constructor, it needs to be called before accessing to any member of the

class. Please look at the following program in C++ language. In this case, (c) needs to be

performed, and member variable a as (d) indicates needs to be initialized to 1 before an execution of

(e). Briefly, the constructor(c) must be called by the time of an execution of (e).

List 3-16

class A
{
...
};

A g_A; ...(a)
A * g_pA;
static A s_A; ...(b)

void main()
{
 A a;
 A * p_a;
 static A s_a;

 g_pA = new A; delete g_pA;
 l_pA = new A; delete l_pA;
}

class A
{
private:
 int a;
public:
 A(void) { a = 1; } ...(c)
 int Get(void) { return a; }
};

A g_a; ...(d)

void main()
{
 int a = g_a.Get(); ...(e)
}

2003/09/08 Ver.1.0

 - 18 -

_CALL_INIT function is prepared as a standard library for the constructor call. _CALL_END function

is also prepared to call destructor of the global class object. _CALL_INIT function and _CALL_END

function are declared in <_h_c_lib.h>. Please include <_h_c_lib.h> in the source file which is in use

(f). You can call _CALL_INIT function before initiation of an application (g), and call _CALL_END

function after termination of the application (h).

List 3-17

Additionally, information for calling constructor and destructor is generated in C$INIT section. This

section is automatically generated by compilers. Please set C$INIT section in ROM region at

memory allocation of optimizing linkage editor.

3.10 Runtime Function and Standard Library

 Registers and CPU instructions vary depending on CPU. For example, SH-2E microcomputer has

a floating-point register and a floating-point unit. Therefore, it is possible carrying out floating-point

operations with CPU instructions relatively small number of times by using the floating-point

instruction. On the contrary, SH-1, SH-2, SH-DSP microcomputers have neither registers nor

instructions for the floating-point operations. Therefore, in order to carry out the floating-point

operations, dozens to hundreds of CPU instructions need to be executed. It can be said for not only

in case of floating-point operation, but also in case of shift operation and four rules. Runtime

function is useful in a time like this. Runtime function is usually used at developing applications in

C/C++ language. It is included in the standard library. In order to use the standard library functions,

the standard library must be linked([4.6 Standard Library]).

The following programs show codes generation at carrying out the floating-point operations.

List 3-18

float a,b,c;
void main()
{
 c = a + b;
}

#include <_h_c_lib.h> ...(f)

void PowerON_Reset_PC(void)
{
 _INITSCT();
 _CALL_INIT(); ...(g)

 main();

 _CALL_END(); ...(h)
 sleep();
}

2003/09/08 Ver.1.0

 - 19 -

The following program shows a code generation in case of using SH-2E.

List 3-19

The following program shows a code generation in case of using SH-2. __adds is called. It is a

runtime function in the standard libraries.

List 3-20

3.11 Low-level Interface Routine

At developing application software in C/C++ language, you might use functions such as standard

input / output libraries (fopen, printf, scanf etc.) and memory management libraries (malloc, free, new,

delete). However, the compilers do not offer all these features. For example, there are many

possible output directions such as LCD, HDD, printers and CD-R/RW etc. There also are many

possible input directions such as DIP switches, keyboards, mouse devices, buttons on cellular phone,

touchscreens etc. Needless to say, those devices require to be operated all differently. Therefore,

it is impossible offering all the features of the standard input / output libraries and the memory

management libraries by compilers. Consequently, a function constellation is called from the

standard input / output libraries and the memory management libraries. This is called low-level

interface routine. It absorbs the difference in operation among those devices. It needs to be

developed by user. There are open, close, read, write, lseek, sbrk, errno_addr, wait_sem,

signal_sem as the low-level interface routines. Please refer to the compiler user’s manual for

information on how to develop those routines. Additionally, the functions such as errno_addr,

wait_sem, siglan_sem are needed in case of using reentrant standard libraries (in case of specifying

–reent at constructing of the standard libraries). Moreover, libraries, which perform termination of

programs such as exit, atexit, abort are also required to be developed by user as well.

_main:
 MOV.L #_a,R2
 FMOV.S @R2,FR8
 MOV.L #_b,R2
 FMOV.S @R2,FR9
 MOV.L #_c,R2
 FADD FR9,FR8
 RTS
 FMOV.S FR8,@R2

_main:
 STS.L PR,@-R15
 MOV.L #_a,R6
 MOV.L #_b,R5
 MOV.L @R6,R1
 MOV.L #__adds,R6
 JSR @R6
 MOV.L @R5,R0
 MOV.L #_c,R6
 LDS.L @R15+,PR
 RTS
 MOV.L R0,@R6

2003/09/08 Ver.1.0

 - 20 -

4. Exposition of HEW Generation Files
4.1 Setting of Project Generator

This document describes generation files, which are generated by project generator according to the

following procedures. The project generator is started from HEW menu [File New Workspace].

Please also refer to a tutorial of the online manual (PDF file), which is included in the SH C/C++

compiler package for information on use of the project generator.

(1) Creation of new workspace

Here is in case of selecting [Application] as project .

Figure 4-1

In case of selecting any other projects on this dialog box, it may be impossible choosing options such

as checkboxes, which are described in later chapters.

2003/09/08 Ver.1.0

 - 21 -

(2) CPU choice

Here is in case of selecting [SH-2] as [CPU Series], and [SH7046] as [CPU Type]. Even if you select

any other CPU Series（SH-1, SH2-DSP, SH-2E）or CPU Types, the basic generation files are the

same.

Figure 4-2

・ [CPU Series] choice is reflected in CPU option ([4.3 CPU Option]).

・ [CPU Type] choice is reflected in the contents of description in iodefine.h file and memory
allocation of the optimizing linkage editor. If there is no CPU type to be selected, select the

“CPU type” that a similar to hardware specification or select “other”.

2003/09/08 Ver.1.0

 - 22 -

(3) Option setting

Here is in case of modifying nothing of options on the dialog box, and just go to the next.

Figure 4-3

・ CPU choices are all reflected in options on this dialog box. They vary depending on CPUs,
which is selected at setting of [(2) CPU choice].

2003/09/08 Ver.1.0

 - 23 -

(4) Setting of generation files

Here is in case of checking [Use I/O Library] checkbox, setting “20” as [Number of I/O Streams], and

selecting [C/C++ source file] as [Generate Hardware Setup Function].

Figure 4-4

・ By checking [Use I/O Library] checkbox, lowlvl.src, lowsrc.c, lowsrc.h are generated. A sample

program of input / output-related low-level interface routines（open, close, write, read, lseek）and

an initialized program of standard libraries（_INIT_IOLIB, _CLOSEALL）are described in them. If

you do not use input / output–related standard libraries, please clear the checkbox, or delete

lowlvl.src, lowsrc.c and lowsrc.h from HEW project after the workspace construction. The setting

of [Number of I/O Stream] is reflected in lowsrc.h.

・ By checking [Use Heap Memory] checkbox, sbrk.h and sbrk.c are generated. A sample program
of memory management-related low-level interface routine (sbrk) is described in them. If you do

not use memory management-related standard libraries, please clear the checkbox, or delete

sbrk.h and sbrk.c from HEW project after the workspace construction. The setting of [Heap

Size] is reflected in sbrk.h.

・ By specifying [Generate main() Function], main function (C source file or C++ source source file)
and low-level interface routine (abort) are generated. By checking [I/O Register Definition

Files] checkbox, iodefine.h is generated.

・ By specifying [Generate Hardware Setup Function], hwsetup.c, hwsetup.cpp or hwsetup.src are
generated.

2003/09/08 Ver.1.0

 - 24 -

(5) Setting of standard library

Here is in case of modifying nothing of options on the dialog, and just go to the next.

Figure 4-5

・ The options you select on the dialog are reflected in setting of standard library.

2003/09/08 Ver.1.0

 - 25 -

(6) Setting of stack area

Here is in case of modifying nothing of options on the dialog, and just go to the next.

Figure 4-6

・ Setting of [Stack Pointer Address] is reflected in memory allocation of optimizing linkage editor.
Setting of [Stack Size] is reflected in stacksct.h.

・ However, in case of clearing the checkbox for [Vector Definition Files] at [(7) Vector setting],
stacksct.h is not generated.

2003/09/08 Ver.1.0

 - 26 -

(7) Vector setting

Here is in case of modifying nothing of options on the dialog, and just go to the next.

Figure 4-7

・ By checking [Vector Definition Files] checkbox, intprg.c, resetprg.c, stacksct.h, vect.c and vect.h
are generated.

2003/09/08 Ver.1.0

 - 27 -

(8) Specification of debugger targets

Here is in case of modifying nothing of options on the dialog, and just go to the next.

Figure 4-8

(9) Modification of generated file names

Here is in case of modifying nothing of options on the dialog, and just go to the next.

Figure 4-9

2003/09/08 Ver.1.0

 - 28 -

4.2 List of Generated Folders and Files

The following list shows the folder constructions and generated files, which are generated according to

[4.1 Setting of Project Generator].

C:¥test A workspace folder

The folder name is which specified at (1) [Directory].
 test.hws A workspace file

The file name is which specified at (1) [Workspace
Name].

 ¥test A project folder
The folder name is which specified at (1) [Project
Name].

 dbsct.c This file is inevitably generated.
 hwsetup.c

(hwsetup.src,hwsetup.cpp)
A file generated by specifying (4)[Generate Hardware
Setup Function]

 intprg.c A file generated by checking (7)[Vector Definition Files]
checkbox.

 iodefine.h A file generated by checking (4)[I/O Register Definition
Files] checkbox.

 lowlvl.src A file generated by checking (4)[Use I/O Library]
checkbox.

 lowsrc.c A file generated by checking (4)[Use I/O Library]
checkbox.

 lowsrc.h A file generated by checking (4)[Use I/O Library]
checkbox.
Setting of (4)[Number of I/O Stream] is reflected in this
file.

 resetprg.c A file generated by checking (7)[Vector Definition Files]
checkbox.

 sbrk.c A file generated by checking (4)[Use Heap Memory]
checkbox.

 sbrk.h A file generated by checking (4)[Use Heap Memory]
checkbox.
Reflects (4)[Heap Size].

 stacksct.h A file generated by checking (7)[Vector Definition Files]
checkbox.
Reflects (6)[Stack Size]

 test.c
(test.cpp)

A file generated by specifying (4)[Generate main()
Function]
The file name is one, which is specified at (1) [Project
Name].

 test.hwp A HEW project file
The file name is which specified at (1) [Project Name].

 vect.h A file generated by checking (7)[Vector Definition Files]
checkbox.

 vecttbl.c A file generated by checking (7)[Vector Definition Files]
checkbox.

 ¥Debug Intermediate files and absolute file are generated in this
folder at specifying Debug configuration.

 ¥Release Intermediate files and absolute file are generated in this
folder at specifying Release configuration.

Figure 4-1

2003/09/08 Ver.1.0

 - 29 -

4.3 CPU Option

From HEW menu：[Options SuperH RISC engine Standard Toolchain]

select [CPU] tab

The following dialog box is displayed.

Figure 4-10

This dialog box reflect [(2) CPU choice] and [(3) Option setting].

2003/09/08 Ver.1.0

 - 30 -

4.4 ROM support function

From HEW menu：[Options SuperH RISC engine Standard Toolchain]

select [Link/Library] tab

 select ”Output” as [Category]

select ”ROM to RAM mapped sections” as [Show entries for]

The following dialog box is displayed.

Figure 4-11

Please modify the setting on the dialog in case of using ROM support function of optimizing linkage

editor.

2003/09/08 Ver.1.0

 - 31 -

4.5 Memory Allocation

From HEW menu：[Options SuperH RISC engine Standard Toolchain]

select [Link/Library] tab

select ”Section” as [Category]

 select ”Section” as [Show entries for]

The following dialog box is displayed.

Figure 4-12

In case of selecting SH7046 as CPU Type, the sections are addressed as follows. However, C$INIT is

addressed as follows in case that main function is generated in C++ language. Please modify the

addresses properly on the above dialog box.
Address Section name Explanation

DVECTTBL Reset vector table
DINTTBL Vector tables other than reset

0x00000000

PIntPRG Interrupt function
0x00000800 PResetPRG Reset function

P Program area
C Constant area
C$BSEC For _INITECT function
C$DSEC For _INITECT function
C$INIT For _CALL_INIT

0x00001000

D Initialized data area（ROM）
B Non-initialized data area 0xFFFFF000
R Initialized data area（RAM）

0xFFFFFBF0 S Stack section

List 4-2

2003/09/08 Ver.1.0

 - 32 -

・ An error message [L1120 (W) Section address is not assigned to “xxx”] might be displayed at
building. It shows you that you have omitted setting an address for xxx section. Please set

“xxx” section at designated address on this dialog.

・ An error message [L1100 (W) Cannot find “xxx” specified in option “start”] might be displayed at
building. It shows you that you have specified xxx section unnecessarily on this dialog. Please

drop xxx section out of the specification the dialog. C section is automatically addressed by

HEW however, the section may not exist depending on the generated files. In this case, L1100

is output instead.

4.6 Standard Library

(1) Generation options

From HEW menu：[Options SuperH RISC engine Standard Toolchain]

select [Standard Library] tab

 select ”Mode” as [Category]

The following dialog box is displayed.

Figure 4-13

In order to link the standard library, please select either ”Build a library file (option changed)” or ”Build

a library file (anytime)” as [Mode].

2003/09/08 Ver.1.0

 - 33 -

(2) Targeted header files

From HEW menu：[Options SuperH RISC engine Standard Toolchain]

select [Standard Library] tab

select ”Standard Library” as [Category]

The following dialog box is displayed.

Figure 4-14

Please check the checkboxes of the standard library you want to use on a header file basis.

However, a description to include them in the source file is still required. Please include the header

files in the source file, which the standard library function is used.

2003/09/08 Ver.1.0

 - 34 -

4.7 Configuration

Options of compiler, assembler and optimized linkage editor are saved on projects on a unit basis

called “configuration”. By switching the configurations, programs are built with these options.

Figure 4-15

Configurations for Debug, Release and debug session are generated by the project generator.

However, the configuration for debug session is generated in case of specifying the debugger targets

at (8) Specification of debugger targets in [4.1 Project generator setting]. Please use the

configuration for debug session if the setting of the compiler needs to be modified in accordance with

the debugger targets.

Setting of these configurations generated by HEW are all the same, however, only Release

configuration is set not to output the debug information. Because the debug information is

additional information required at debugging by a debugger, the HEW output codes between Debug

and Release configurations are the same. At modifying the setting of the compiler, a configuration in

use is targeted. For example, if only the setting of the Debug configuration was modified, the codes

between Debug and the other configurations would be different. It is possible modifying options of

multiple configurations at the same time by specifying “All configurations” as the target at modifying

the options of the compiler, the assembler etc. on the following dialog box.

Figure 4-16

2003/09/08 Ver.1.0

 - 35 -

4.8 Project Configuration Editing

From HEW menu：[Project Edit Project Configuration]

You can modify the options of files generated by HEW on the following dialog box.

(1) I/O Register

By checking [I/O Register Definition Files (Overwrite)] checkbox on [I/O Register] tab, and clicking

[OK], iodefine.h is generated. You can use this feature in case that you have not checked [I/O

Register Definition Files] checkbox at (4) Setting of generation files in [4.1 Setting of Project

Generator], or in case that you want to restore iodefine.h.

Figure 4-17

2003/09/08 Ver.1.0

 - 36 -

(2) Stack

You can set a stack area on the [Stack] tab. You can use this feature in case that you want to

modify the setting of (6) Setting of stack area in [4.1 Setting of Project Generator]. These values

are reflected in memory allocation of the optimized linkage editor and stacksct.h. However, this

function can not be used in case that you have modified the address of S section at memory

allocation of optimized linkage editor, or in case that you have modified the #pragma stacksize

statement of stacksct.h.

Figure 4-18

2003/09/08 Ver.1.0

 - 37 -

(3) Target

You can set debugger targets on [Target] tab. You can use this feature in case that you have not

specified the targets at (8) Specification of debugger targets in [4.1 Setting of Project Generator].

Figure 4-19

4.9 Low-level Interface Routines

(1) Memory management low-level interface routines

Sbrk function is described in sbrk.c as a low-level interface routine of memory management library.

Please modify it properly according to the user system. Sbrk function is called when either malloc

or new is called. You can delete the memory management library from the project, if you do not use

this file. In addition, the heap size can be modified by setting the value of _sbrk_size. HEAPSIZE

macro, which specifies the entire size of heap area is defined in sbrk.h. Please modify the

HEAPSIZE macro if you want to modify the entire size of the heap area.

(2) Input / output low-level interface routines

Input / output low-level interface routine is described in lowlvl.src, lowsrc.c and lowsrc.h. Please

modify it according to the user system. _INIT_IOLIB and _CLOSEALL functions are defined in

lowsrc.c as an initialized routine of file handler (input / output stream). Initialization of the file handler,

and opening files for standard input (stdin), standard output (stdout) and standard error output (stderr)

of the file handler are performed in _INIT_IOLIB function. If none of those features: standard input /

output and standard error output is necessary, please delete these opening handles. Please note

that file handler can be operated only in _INIT_IOLIB function. You can configure member variables

2003/09/08 Ver.1.0

 - 38 -

of file handler such as _bufptr, _bufcnt, _bufbase and _buflen by using either setbuf function or

setvbuf function after the file open. The processing to close all of the opened files is described in

_CLOSE function.

IOSTREAM, which specifies the number of file handler is defined in lowsrc.h. In case of modifying

the number of file handler, please modify the macro. Additionally, the three file handlers are open in

_INIT_IOLIB function in lowsrc.c generated by HEW as described above. Therefore, when these

open processing are enabled, the number of file handler, which can be used is (IOSTREAM – 3).

Open, close, read, write and lseek function are defined in lowsrc.c as low-level interface routines of

Input / output libraries.

・ File opening requests are distinguished which cause they have been made for between
standard input, standard output and standard error output in open function. The file mode is

also checked in this function. Any other inputs are treated as errors, and then return –1.

・ Checking of a range of the file number and clearing of the file mode are performed in close
function. In case that the file number is out of the range, it is treated as an error, and then

return –1.

・ Charget function, which actually gets a character is called as the same times as the number of
the requested characters in read function after checking the file mode. In case that it is an error,

return –1.

・ Charput function, which actually outputs a character is called as the same times as the number
of the requested characters in write function after checking the file mode. In case that it is an

error, return –1.

・ Nothing is performed in lseek function, which is generated by HEW.
Charget function and charput function, which are called from read function and write function are

defined in lowlvl.src. These definitions are enabled only on simulator debuggers. Please note that

these definitions are not enabled on target boards.

(3) Termination processing

Abort function is defined in <Project name>.c as a termination processing routine. Please modify it

properly according to the user system. In case that the termination processing is not necessary, you

can delete the abort function. In addition, please note that there are standard libraries to call the

abort function.

