
www.renesas.com

U
ser's M

anual

CC-RX V2.01.00
User's Manual: RX Build

Target Device
RX Family

Rev.1.00 Oct 2013

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you
or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of
third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No
license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of
Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration,
modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The
recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property
damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas
Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any
application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred
by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas
Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas
Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and
malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation
of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by
you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility
of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and
regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.
Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws
and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use
Renesas Electronics products or technology described in this document for any purpose relating to military applications or use
by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas
Electronics products or technology described in this document, you should comply with the applicable export control laws and
regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise
places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this
document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of
unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document
or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(2012.4)

TABLE OF CONTENTS

CHAPTER 1 GENERAL ... 4

1.1 Overview ... 4

1.2 Copyrights ... 6

CHAPTER 2 BUILD OUTPUT LISTS ... 7

2.1 Assemble List File ... 7

2.1.1 Source Information ... 7

2.1.2 Object Information ... 7

2.1.3 Statistics Information ... 9

2.1.4 Compiler Command Specification Information ... 9

2.1.5 Assembler Command Specification Information ... 10

2.2 Link Map File ... 11

2.2.1 Structure of Linkage List ... 11

2.2.2 Option Information ... 11

2.2.3 Error Information ... 12

2.2.4 Linkage Map Information ... 12

2.2.5 Symbol Information ... 13

2.2.6 Symbol Deletion Optimization Information ... 14

2.2.7 Cross-Reference Information ... 14

2.2.8 Total Section Size ... 15

2.2.9 Vector Information ... 16

2.2.10 CRC Information ... 16

2.3 Library List ... 17

2.3.1 Structure of Library List ... 17

2.3.2 Option Information ... 17

2.3.3 Error Information ... 18

2.3.4 Library Information ... 18

2.3.5 Module, Section, and Symbol Information within Library ... 18

2.4 S-Type and HEX File Formats ... 20

2.4.1 S-Type File Format ... 20

2.4.2 HEX File Format ... 22

APPENDIX A COMMAND REFERENCE ... 24

A.1 RX Family C/C++ Compiler ... 24

A.1.1 Input/Output Files ... 24

A.1.2 Operating Instructions ... 26

A.1.3 Options ... 30

APPENDIX B INDEX ... 267

CC-RX V2.01.00 CHAPTER 1 GENERAL

R20UT2747EJ0100 Rev.1.00 Page 4 of 276
Oct. 01, 2013

CHAPTER 1 GENERAL

This chapter introduces the processing of compiling performed by CC-RX, and provides an example of program devel-

opment using CC-RX.

1.1 Overview

This section describes the components and processing flow of CC-RX.

CC-RX is comprised of the 6 executable files listed below.

(1) ccrx: Compile driver

(2) rxc: Compiler

(3) asrx: Assembler

(4) rlink: Optimizing linkage editor

(5) lbgrx: Library generator

(6) CallWalker: Stack display tool

CC-RX Flow illustrates the CC-RX processing flow.

CC-RX V2.01.00 CHAPTER 1 GENERAL

R20UT2747EJ0100 Rev.1.00 Page 5 of 276
Oct. 01, 2013

Figure 1-1. CC-RX Processing Flow

CC-RX V2.01.00 CHAPTER 1 GENERAL

R20UT2747EJ0100 Rev.1.00 Page 6 of 276
Oct. 01, 2013

1.2 Copyrights

This LLVM-based software was developed in compliance with the LLVM Release License. Copyrights of other software

components are owned by Renesas Electronics Corporation.

==

LLVM Release License

==

University of Illinois/NCSA

Open Source License

Copyright (c) 2003-2012 University of Illinois at Urbana-Champaign.

All rights reserved.

Developed by:

 LLVM Team

 University of Illinois at Urbana-Champaign

 http://llvm.org

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation

files (the "Software"), to deal with the Software without restriction, including without limitation the rights to use, copy, modify,

merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

 * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimers.

 * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimers

in the documentation and/or other materials provided with the distribution.

 * Neither the names of the LLVM Team, University of Illinois at Urbana-Champaign, nor the names of its contributors may be

used to endorse or promote products derived from this Software without specific prior written permission.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT

NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE

SOFTWARE.

CC-RX V2.01.00 CHAPTER 2 BUILD OUTPUT LISTS

R20UT2747EJ0100 Rev.1.00 Page 7 of 276
Oct. 01, 2013

CHAPTER 2 BUILD OUTPUT LISTS

This chapter describes the format and other aspects of files output by a build via each command.

2.1 Assemble List File

This section covers the contents and format of the assemble list file output by the assembler.

The source list file contains the compilation and assembly results. Table 3.1 shows the structure and contents of the

source list.

Table 2-1. Structure and Contents of Source List

Note Valid when the -listfile option is specified.

2.1.1 Source Information

The source information is included in the object information when the -show=source option is specified. For an exam-

ple of source information, refer to section 3.1.2, Object Information.

2.1.2 Object Information

Figure 3.1 shows an example of object information output.

No Output Information Contents SuboptionNote When -show Option is not

Specified

1 Source information C/C++ source code corresponding to

assembly source code

-show=source Not output

2 Object information Machine code used in object programs

and the assembly source code

None Output

3 Statistics information Total number of errors, number of source

program lines, and size of each section

None Output

4 Command specification

information

File names and options specified by the

command

None Output

CC-RX V2.01.00 CHAPTER 2 BUILD OUTPUT LISTS

R20UT2747EJ0100 Rev.1.00 Page 8 of 276
Oct. 01, 2013

* RX FAMILY ASSEMBLER V2.00.00 [15 Feb 2013] * SOURCE LIST Mon Feb 18 20:15:19 2013
(1) (2) (3) (4)
LOC. OBJ. 0XMDA SOURCE STATEMENT

 ;RX Family C/C++ Compiler (V2.00.00 [15 Feb 2013]) 18-Feb-
2013 20:15:19

 ;*** CPU TYPE ***

 ;-ISA=RXV1

 ;*** COMMAND PARAMETER ***

 ;-output=src=sample.src
 ;-listfile
 ;-show=source
 ;sample.c

 .glb_x
 .glb_y
 .glb_func02
 .glb_func03
 .glb_func01
 (5) (6)
 ;LineNo. C-SOURCE STATEMENT

 .SECTIONP,CODE
00000000 _func02:
 .STACK_func02=12
 ; 1 #include "include.h"
 ; 2 int func01(int);
 ; 3 int func03(int);
 ; 4
 ; 5 int func02(int z)
00000000 6E67 PUSHM R6-R7
00000002 EF16 MOV.L R1, R6
 ; 6 {
 ; 7 x = func01(z);
00000004 05rrrrrr A BSR _func01
00000008 FB72rrrrrrrr MOV.L #_x, R7
0000000E E371 MOV.L R1, [R7]
 ; 8 if (z == 2) {
00000010 6126 CMP #02H, R6
00000012 18 S BNE L12
00000013 L11:; bb3
 ; 9 x++;
00000013 6211 ADD #01H, R1
00000015 08 S BRA L13
00000016 L12:; bb6
 ; 10 } else {
 ; 11 x = func03(x + 2);
00000016 6221 ADD #02H, R1
00000018 39rrrr W BSR _func03
0000001B L13:; bb13
0000001B E371 MOV.L R1, [R7]
 ; 12 }
 ; 13 return x;
 ; 14 }
0000001D 3F6702 RTSD #08H, R6-R7
00000020 _func03:
 .STACK_func03=4
 ; 15
 ; 16 int func03(int p)
 ; 17 {
 ; 18 return p+1;
00000020 6211 ADD #01H, R1
 ; 19 }
00000022 02 RTS
 .SECTIOND,ROMDATA,ALIGN=4
00000000 _y:
00000000 01000000 .lword00000001H
 .END

Item

Number

Description

(1) Location information (LOC.)

Location address of the object code that can be determined at assembly.

CC-RX V2.01.00 CHAPTER 2 BUILD OUTPUT LISTS

R20UT2747EJ0100 Rev.1.00 Page 9 of 276
Oct. 01, 2013

2.1.3 Statistics Information

The following figure shows an example of statistics information output.

2.1.4 Compiler Command Specification Information

(2) Object code information (OBJ.)

Object code corresponding to the mnemonic of the source code.

(3) Line information (0XMDA)

Results of source code processing by the assembler. The following shows the meaning of each symbol.

0 X M D A Description

0-30 Shows the nesting level of include files.

X Shows the line where the condition is false in conditional assembly when -

show=conditions is specified.

M Shows the line expanded from a macro instruction when -show=expansions is

specified.

D Shows the line that defines a macro instruction when -show=definitions is specified.

S Shows that branch distance specifier S is selected.

B Shows that branch distance specifier B is selected.

W Shows that branch distance specifier W is selected.

A Shows that branch distance specifier A is selected.

* Shows that a substitute instruction is selected for a conditional branch instruction.

(4) Source information (SOURCE STATEMENT)

Contents of the assembly-language source file.

(5) C/C++ source line number (LineNo.)

(6) C/C++ source statement (C-SOURCE STATEMENT)

C/C++ source statement output when the -show=source option is specified.

Information List (1)

TOTAL ERROR(S) 00000

TOTAL WARNING(S) 00000

TOTAL LINE(S) 00071 LINES

Section List (2)

Attr Size Name

CODE 0000000047(0000002FH) P

ROMDATA 0000000004(00000004H) D

Item

Number

Description

(1) Numbers of error messages and warning messages, and total number of source lines

(2) Section information (section attribute, size, and section name)

Item

Number

Description

CC-RX V2.01.00 CHAPTER 2 BUILD OUTPUT LISTS

R20UT2747EJ0100 Rev.1.00 Page 10 of 276
Oct. 01, 2013

The file names and options specified on the command line when the compiler is invoked are output. The compiler com-

mand specification information is output at the beginning of the list file. The following figure shows an example of com-

mand specification information output.

2.1.5 Assembler Command Specification Information

The file names and options specified on the command line when the assembler is invoked are output. The assembler

command specification information is output at the end of the list file. The following figure shows an example of command

specification information output.

;*** CPU TYPE *** (1)

;-ISA=RXV1

;*** COMMAND PARAMETER *** (2)

;-output=src=C:\tmp\elp1894\sample.src

;-nologo

;-show=source

;sample.c

Item

Number

Description

(1) Selected microcomputer

(2) File names and options specified for the compiler

Cpu Type (1)

-ISA=RXV1

Command Parameter (2)

-output=sample.obj

-nologo

-listfile=sample.lst

Item

Number

Description

(1) Microcomputer selected for the assembler

(2) File names and options specified for the assembler

CC-RX V2.01.00 CHAPTER 2 BUILD OUTPUT LISTS

R20UT2747EJ0100 Rev.1.00 Page 11 of 276
Oct. 01, 2013

2.2 Link Map File

This section explains the link map file.

The link map has information of the link result. It can be referenced for information such as the section's allocation

addresses.

2.2.1 Structure of Linkage List

Table 3-3 shows the structure and contents of the linkage list.

Table 2-2. Structure and Contents of Linkage List

Note The -show option is valid when the list option is specified.

2.2.2 Option Information

The option strings specified by a command line or a subcommand file are output. The following figure shows an exam-

ple of option information output when rlink -subcommand=test.sub -list -show is specified.

No Output Information Contents When -show OptionNote

is Specified

When -show Option is not

Specified

1 Option information Option strings specified by a com-

mand line or subcommand

None Output

2 Error information Error messages None Output

3 Linkage map infor-

mation

Section name, start/end addresses,

size, and type

None Output

4 Symbol information Static definition symbol name,

address, size, and type in the order

of address

-show =symbol Not output

When -show=reference is specified:

Symbol reference count and optimi-

zation information in addition to the

above information

-show =reference Not output

5 Symbol deletion

optimization infor-

mation

Symbols deleted by optimization -show =symbol Not output

6 Cross-reference

information

Symbol reference information -show =xreference Not output

7 Total section size Total sizes of RAM, ROM, and pro-

gram sections

-show=total_size Not output

8 Vector information Vector numbers and address infor-

mation

-show=vector Not output

9 CRC information CRC calculation result and output

addresses

None Always output when the

CRC option is specified

CC-RX V2.01.00 CHAPTER 2 BUILD OUTPUT LISTS

R20UT2747EJ0100 Rev.1.00 Page 12 of 276
Oct. 01, 2013

2.2.3 Error Information

Error messages are output. The following figure shows an example of error information output.

2.2.4 Linkage Map Information

The start and end addresses, size, and type of each section are output in the order of address. The following figure

shows an example of linkage map information output.

Item

Number

Description

(1) Outputs option strings specified by a command line or a subcommand in the specified order.

(2) Subcommand in the test.sub subcommand file.

*** Error Information ***

** E0562310 (E) Undefined external symbol "strcmp" referred to in "test.obj" (1)

Item

Number

Description

(1) Outputs an error message.

*** Mapping List ***

(1) (2) (3) (4) (5)

SECTION START END SIZE ALIGN

P

 00001000 00001000 1 1

C

 00001004 00001007 4 4

D_2

 00001008 000014dd 4d6 2

B_2

 000014de 000050b3 3bd6 2

Item

Number

Description

(1) Section name

(2) Start address

(test.sub contents)

INPUT test .obj

*** Options ***

-sub=test.sub

INPUT test .obj

-list

-show

(2)

(1)

CC-RX V2.01.00 CHAPTER 2 BUILD OUTPUT LISTS

R20UT2747EJ0100 Rev.1.00 Page 13 of 276
Oct. 01, 2013

2.2.5 Symbol Information

When -show=symbol is specified, the addresses, sizes, and types of externally defined symbols or static internally

defined symbols are output in the order of address. When -show=reference is specified, the symbol reference counts and

optimization information are also output. The following figure shows an example of symbol information output.

(3) End address

(4) Section size

(5) Section boundary alignment value

*** Symbol List ***

SECTION=(1)

 (3) (4) (5)

FILE=(2) START END SIZE

 (6) (7) (8) (9) (10) (11)

 SYMBOL ADDR SIZE INFO COUNTS OPT

SECTION=P

FILE=test.obj

 00000000 00000428 428

 _main
 00000000 2 func ,g 0

 _malloc

 00000000 32 func ,l 0

FILE=mvn3

 00000428 00000490 68

 $MVN#3

 00000428 0 none ,g 0

Item

Number

Description

(1) Section name

(2) File name

(3) Start address of a section included in the file indicated by (2) above

(4) End address of a section included in the file indicated by (2) above

(5) Section size of a section included in the file indicated by (2) above

(6) Symbol name

(7) Symbol address

(8) Symbol size

Item

Number

Description

CC-RX V2.01.00 CHAPTER 2 BUILD OUTPUT LISTS

R20UT2747EJ0100 Rev.1.00 Page 14 of 276
Oct. 01, 2013

2.2.6 Symbol Deletion Optimization Information

The size and type of symbols deleted by symbol deletion optimization (-optimize=symbol_delete) are output.

The following figure shows an example of symbol deletion optimization information output.

2.2.7 Cross-Reference Information

The symbol reference information (cross-reference information) is output when -show=xreference is specified. The fol-

lowing figure shows an example of cross-reference information output.

(9) Symbol type as shown below

Data type:

func: Function name

data: Variable name

entry: Entry function name

none:Undefined (label, assembler symbol)

Declaration type

g: External definition

l: Internal definition

(10) Symbol reference count only when -show=reference is specified. * is output when show=reference is not specified.

(11) Optimization information as shown below.

ch: Symbol modified by optimization

cr: Symbol created by optimization

mv: Symbol moved by optimization

*** Delete Symbols ***
(1) (2) (3)
SYMBOL SIZE INFO
 _Version
 4 data ,g

Item

Number

Description

(1) Deleted symbol name

(2) Deleted symbol size

(3) Deleted symbol type as shown below

Data type

func: Function name

data: Variable name

Declaration type

g: External definition

l: Internal definition

Item

Number

Description

CC-RX V2.01.00 CHAPTER 2 BUILD OUTPUT LISTS

R20UT2747EJ0100 Rev.1.00 Page 15 of 276
Oct. 01, 2013

2.2.8 Total Section Size

The total sizes of ROM, RAM, and program sections are output. The following figure shows an example of total section

size output.

*** Cross Reference List ***

(1) (2) (3) (4) (5)

No Unit Name Global.Symbol Location External Information

0001 a

 SECTION=P _func

 00000100

 _func1

 00000116

 _main

 0000012c

 _g

 00000136

 SECTION=B

 _a

 00000190 0001(00000140:P)

 0002(00000178:P)

 0003(0000018c:P)

0002 b

 SECTION=P

 _func01

 00000154 0001(00000148:P)

 _func02

 00000166 0001(00000150:P)

0003 c

 SECTION=P

 _func03

 00000184

Item

Number

Description

(1) Unit number, which is an identification number in object units

(2) Object name, which specifies the input order at linkage

(3) Symbol name output in ascending order of allocation addresses for every section

(4) Symbol allocation address, which is a relative value from the beginning of the section when -form=relocate is speci-

fied

(5) Address of an external symbol that has been referenced

Output format: <Unit number> (<address or offset in section>:<section name>)

CC-RX V2.01.00 CHAPTER 2 BUILD OUTPUT LISTS

R20UT2747EJ0100 Rev.1.00 Page 16 of 276
Oct. 01, 2013

2.2.9 Vector Information

The contents of the variable vector table are output when -show=vector is specified. The following figure shows an

example of vector information output.

2.2.10 CRC Information

The CRC calculation result and output address are output when the CRC option is specified.

*** Total Section Size ***

RAMDATA SECTION : 00000660 Byte(s) (1)

ROMDATA SECTION : 00000174 Byte(s) (2)

PROGRAM SECTION : 000016d6 Byte(s) (3)

Item

Number

Description

(1) Total size of RAM data sections

(2) Total size of ROM data sections

(3) Total size of program sections

*** Variable Vector Table List ***

(1) (2)

NO. SYMBOL/ADDRESS

 0 $fdummy

 1 $fa

 2 00ff8800

 3 $fdummy

 :

<Omitted>

Item

Number

Description

(1) Vector number

(2) Symbol. When no symbol is defined for the vector number, the address is output.

*** CRC Code ***

CODE : cb0b (1)

ADDRESS : 00007ffe (2)

Item

Number

Description

(1) CRC calculation result

(2) Address where the CRC calculation result is output

CC-RX V2.01.00 CHAPTER 2 BUILD OUTPUT LISTS

R20UT2747EJ0100 Rev.1.00 Page 17 of 276
Oct. 01, 2013

2.3 Library List

This section covers the contents and format of the library list output by the optimizing linkage editor.

2.3.1 Structure of Library List

Table 3.4 shows the structure and contents of the library list.

Table 2-3. Structure and Contents of Library List

Note All options are valid when the -list option is specified.

2.3.2 Option Information

The option strings specified by a command line or a subcommand file are output.

The following figure shows an example of option information output when rlink -subcommand = test.sub -list -show is

specified.

No Output Information Contents SuboptionNote When -show Option is not

Specified

1 Option information Option strings specified by a com-

mand line or subcommand

- Output

2 Error information Error messages - Output

3 Library information Library information - Output

4 Information of mod-

ules, sections, and

symbols within library

Module within the library - Output

When show=symbol is specified:

List of symbol names in a module

within the library

-show=symbol Not output

When show=section is specified:

Lists of section names and symbol

names in a module within the

library

-show=section Not output

Item

Number

Description

(1) Outputs option strings specified by a command line or a subcommand in the specified order.

(test.sub contents)

form library

in adhry.obj

output test.lib

*** Options ***

-sub=test.sub

form library

in adhry.obj

output test.lib

-list

-show

(2)

(1)

CC-RX V2.01.00 CHAPTER 2 BUILD OUTPUT LISTS

R20UT2747EJ0100 Rev.1.00 Page 18 of 276
Oct. 01, 2013

2.3.3 Error Information

Messages for errors or warnings are output.

The following figure shows an example of error information output.

2.3.4 Library Information

The library type is output.

The following figure shows an example of library information output.

2.3.5 Module, Section, and Symbol Information within Library

A list of modules within the library is output.

When -show=symbol is specified, the symbol names in a module within the library are listed. When -show=section is

specified, the section names and symbol names in a module within the library are listed.

The following figure shows an output example of module, section, and symbol information within a library.

(2) Subcommand in the test.sub subcommand file.

*** Error Information ***

** W0561200 (W) Backed up file "main.lib" into "main.lbk" (1)

Item

Number

Description

(1) Outputs a warning message.

*** Library Information ***

LIBRARY NAME =test.lib (1)

CPU=RX610 (2)

ENDIAN=Big (3)

ATTRIBUTE=system (4)

NUMBER OF MODULE =1 (5)

Item

Number

Description

(1) Library name

(2) CPU name

(3) Endian type

(4) Library file attribute: either system library or user library

(5) Number of modules within the library

Item

Number

Description

CC-RX V2.01.00 CHAPTER 2 BUILD OUTPUT LISTS

R20UT2747EJ0100 Rev.1.00 Page 19 of 276
Oct. 01, 2013

*** Library List ***

(1) (2)

MODULE LAST UPDATE

 (3)

 SECTION

 (4)

 SYMBOL

adhry

 29-Feb-2000 12:34:56

 P

 _main

 _Proc0

 _Proc1

 C

 D

 _Version

 B

 _IntGlob

 _CharGlob

Item

Number

Description

(1) Module name

(2) Module definition date

If the module is updated, the latest module update date is displayed.

(3) Section name within a module

(4) Symbol within a section

CC-RX V2.01.00 CHAPTER 2 BUILD OUTPUT LISTS

R20UT2747EJ0100 Rev.1.00 Page 20 of 276
Oct. 01, 2013

2.4 S-Type and HEX File Formats

This section describes the S-type files and HEX files that are output by the optimizing linkage editor.

2.4.1 S-Type File Format

Figure 2-1. S-Type File Format

(a) Header record (S0 record)

30 30 45 30 30 30 30 XX XX53

 0 E S 0 0 0 0 0

Load address
Byte count [1]
Record format
Record header

Checksum [2]
File format extension (3 characters: 6 bytes)
Body of file name (8 characters: 16 bytes)

[3]

(b) Data record (S1, S2, and S3 records)

(i) When the load address is 0 to FFFF

31 XX XX XX XX XX XX53

 1 S

XX XX

[3]

(ii) When the load address is 10000 to FFFFFF

32 XX XX XX XX XX XX53

 2 S

XX XX

[3]

XX XX

Load address (2 bytes)
Byte count [1]
Record format
Record header

Checksum [2]
Data (16 bytes max.)

Load address (3 bytes)
Byte count [1]
Record format
Record header

Checksum [2]
Data (16 bytes max.)

CC-RX V2.01.00 CHAPTER 2 BUILD OUTPUT LISTS

R20UT2747EJ0100 Rev.1.00 Page 21 of 276
Oct. 01, 2013

Figure 2-2. S-Type File Format (cont)

33 XX XX XX XX XX XX53

 3 S

XX XX

[3]

XX XX XX XX

39 30 33 XX XX XX XX53

 9 S [3]

38 30 34 XX XX XX XX53

 8 S

XX XX

[3]

XX XX

37 30 35 XX XX XX XX53

 7 S

XX XX

[3]

XX XX XX XX

 3 0

XX XX

 4 0

 5 0

(c) End record (S9, S8, and S7 records)

Notes: [1] The number of bytes from the load address (or the entry address) to the checksum.

[2] 1's complement of the sum of the byte count and the data between the checksum
and the byte count, in byte units.

[3] A new-line character is added immediately after the checksum.

(iii) When the load address is 1000000 to FFFFFFFF

Load address (4 bytes)
Byte count [1]
Record format
Record header

Checksum [2]
Data (16 bytes max.)

(i) When the entry address is 0 to FFFF

Entry address (2 bytes)
Byte count [1]
Record format
Record header

Checksum [2]

(ii) When the entry address is 10000 to FFFFFF

Entry address (3 bytes)
Byte count [1]
Record format
Record header

Checksum [2]

(iii) When the entry address is 1000000 to FFFFFFFF

Entry address (4 bytes)
Byte count [1]
Record format
Record header

Checksum [2]

CC-RX V2.01.00 CHAPTER 2 BUILD OUTPUT LISTS

R20UT2747EJ0100 Rev.1.00 Page 22 of 276
Oct. 01, 2013

2.4.2 HEX File Format

The execution address of each data record is obtained as described below.

(1) Segment address

(Segment base address << 4) + (Address offset of the data record)

(2) Linear address

(Linear base address << 16) + (Address offset of the data record)

Figure 2-3. HEX File Format

0 0 0 0 0

Record type
Address offset
Byte count [1]
Start mark

XX XX

Checksum [2]
Data

0 XX XX XX XX1 0:

[3]

(b) End record (01 record)

0 0 0 0 0 0 0: 1 FF FF

[3]

0 2 0 0 0 0 2 XX XX: 0 XXXX XXXX

[3]

(a) Data record (00 record)

Address offset
Byte count [1]
Start mark

Checksum [2]
Record type

Record type
Address offset
Byte count [1]
Start mark

Checksum [2]
Segment base address

(c) Expansion segment address record (02 record)

CC-RX V2.01.00 CHAPTER 2 BUILD OUTPUT LISTS

R20UT2747EJ0100 Rev.1.00 Page 23 of 276
Oct. 01, 2013

Figure 2-4. HEX File Format (cont)

0 2 0 0 0 0 4 XX XX: 0 XXXX XXXX

[3]

0 4 0 0 0 0 5 XX XX: 0 XXXX XXXX

[3]

XXXX XXXX

0 4 0 0 0 0 3 XX XX: 0 XXXX XXXX

[3]

XX XXXXXX

(d) Start address record (03 record)

(e) Expansion linear address record (04 record)

(f) 32-bit start linear address record (05 record)

Record type
Address offset
Byte count [1]
Start mark

Checksum [2]
Start address

Record type
Address offset
Byte count [1]
Start mark

Checksum [2]
Linear base address

Record type
Address offset
Byte count [1]
Start mark

Checksum [2]
Start address

Notes: [1] The number of bytes from the byte following the record type to the previous byte
of the checksum.

[2] 2's complement of the sum of the byte count and the data between the byte count
and checksum, in hexadecimal (lower 8 bits are valid).

[3] A new-line character is added immediately after the checksum.

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 24 of 276
Oct. 01, 2013

APPENDIX A COMMAND REFERENCE

This appendix describes the detailed specifications of each command included in the build tool.

A.1 RX Family C/C++ Compiler

The RX family C/C++ compiler generates a file executable in the target system from the source program written in C

language, C99 language, C++ language, or assembly language.

In this compiler, a single driver controls multiple phases from preprocessing to linkage.

The following describes processing in each phase.

(1) Compiler

This processes preprocessing directives, comments, and optimization for the C source program and generates an

assembly-language source file.

(2) Preprocessor

This processes the preprocessing directives in the source program.

Only when the -P option is specified, it outputs the preprocessed file.

(3) Parsing section

This parses the C source program and then converts it to the internal data representation for the compiler.

(4) Optimizing section

This optimizes the internal data representation converted from the C source program.

(5) Code generating section

This converts the internal data representation to an assembly-language source program.

(6) Assembler

This converts the assembly-language source program to machine-language instructions and generates a relocat-

able object module file.

(7) Optimizing linkage editor

This links object module files, link directive files, and library files and generates an object file (load module file) exe-

cutable in the target system.

A.1.1 Input/Output Files

The following shows the files input to and output from the RX family C/C++ compiler.

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 25 of 276
Oct. 01, 2013

Table A-1. Input/Output Files for the RX Family C/C++ Compiler

File Type Extension I/O Description

C source program file .c Input A source file written in C99 language.

This file is created by the user.

C++ source program file .cpp, .cp, and

.cc

Input A source file written in C++ language.

This file is created by the user.

Include file Optional Input A file referenced by the source file and written in C, C99,

C++, or assembly language.

This file is created by the user.

Preprocessor expansion file

for the C program

.p Output A file output as a result of preprocessing applied to an input

C-language or the C99-language source program.

An ASCII image file.

This is output when the -output=prep option is specified.

Preprocessor expansion file

for the C++ program

.pp Output A file output as a result of preprocessing applied to an input

C++-language source program.

An ASCII image file.

This is output when the -output=prep option is specified.

Assembly-source program file .src Output An assembly-language file generated from a C, C99, or

C++ source file through compilation.

.src Input A source file written in assembly language.

List file for the assembly pro-

gram

.lst Output A list file containing the assembly result information.

This is output when the -listfile option is specified.

The output contents are selected with the -show option.

Relocatable object program

file

.obj Output An ELF-format file that contains the machine-language

information, the relocation information about the allocation

addresses of machine-language instructions, and symbol

information.

Absolute load module file .abs Output An ELF-format file for the object code generated as a result

of linkage.

This is an input file when a hex file is output.

Linkage list file .map Output A list file containing the linkage result information.

This is output when the -list option is specified.

The output contents are selected with the -show option.

Library file .lib Output A file where multiple object module files are registered.

Library list file .lbp Output A list file containing the result information of generation of

the library.

This is output when the -list option is specified.

The output contents are selected with the -show option.

Library backup file .lbk Output File type for saving the contents of original library files

before they are overwritten by the library generator.

Hex file (Motorola S-format

file)

.mot Output A Motorola S-format file in the hex format converted from

the load module file.

Hex file (Intel (expansion) hex

format file)

.hex Output An Intel (expansion) file in the hex format converted from

the load module file.

Hex file (binary format file) .bin Output A binary file in the hex format converted from the load mod-

ule file.

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 26 of 276
Oct. 01, 2013

A.1.2 Operating Instructions

This section describes how to operate the RX family C/C++ compiler.

(1) Operating Tools

(a) Compiler (ccrx)

ccrx is the startup command for the compile driver.

Compilation, assemble, and linkage can be performed using this command.

When the extension of an input file is ".s", ".src", ".S", or ".SRC", the compiler interprets the file as an assem-

bly-language file (.src, .s) and initiates the assembler.

A file with an extension other than those above is compiled as a C/C++ source file (.c, .cpp).

[Command description format]

(b) Assembler (asrx)

asrx is the startup command for the assembler.

[Command description format]

Stack information file .sni Output A stack information file.

This is output when the -stack option is specified.

Debugging information file .dbg Output A debugging information file.

This is output when the -sdebug option is specified.

Object file including a defini-

tion specified with a file hav-

ing extension td

.rti Output An object file including a definition specified with a file hav-

ing extension td.

Calling information file .cal Output A calling information file.

This is output by CallWalker.

External symbol assignment

information file

.bls Output An external symbol assignment information file.

This is output at linkage when the -map option is specified.

.bls Input An external symbol assignment information file.

This is specified as an input file for the -map option at com-

pilation.

Jump table file (assembly lan-

guage)

.jmp Output An assembler source file for the jump table that branches

the external definition symbol.

This is output when the -jump_entries_for_pic option is

specified.

Symbol address file (assem-

bly language)

.fsy Output An assembler source file that describes the external defini-

tion symbol in an assembler directive.

This is output when the -fsymbol option is specified.

C++ language function sup-

port file

.td, .ti, .pi, and .ii Output An information file that supports the C++ language func-

tion.

ccrx [<option> …][<file name>[<option> …] …]

 <option>: -<option>[=<suboption>[=<suboption>]][, …]

asrx [<option> …][<file name>[<option> …] …]

 <option>: -<option>[=<suboption>][, …]

File Type Extension I/O Description

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 27 of 276
Oct. 01, 2013

(c) Optimizing Linkage Editor (rlink)

rlink is the startup command for the optimizing linkage editor.

The optimizing linkage editor has the following functions as well as the linkage processing.

- Optimizes relocatable files at linkage

- Generates and edits library files

- Converts files into Motorola S type files, Intel hex type files, and binary files

[Command description format]

(d) Library Generator (lbgrx)

lbgrx is the startup command for the library generator.

[Command description format]

(2) Command Description Examples

(a) Compilation, Assemble, and Linkage by One Command

Perform all steps below by a single command.

- Compile C/C++ source files (tp1.c and tp2.c) in ccrx.

- After compilation, assemble the files in asrx.

- After assemble, link the files in rlink to generate an absolute file (tp.abs).

[Command description]

Remarks 1. When the output type specification of the output option is changed to -output=sty, the file

after linkage will be generated as a Motorola S type file.

2. An intermediate file generated during the absolute file generation process (assembly-language

file or relocatable file) is not saved. Only a file of the type specified by the output option is to

be generated.

3. In order to specify assemble options and linkage options that are valid for only the assembler

and optimizing linkage editor in ccrx, use the -asmcmd, -lnkcmd, -asmopt, and -lnkopt

options.

4. Object files that are to be linked are allocated from address 0. The order of the sections is not

guaranteed. In order to specify the allocation address or section allocation order, specify

options for the optimizing linkage editor using the -lnkcmd and -lnkopt options.

(b) Compilation and Assemble by One Command

Perform all steps below by a single command, and initiate the linker with another command to generate tp.abs.

- Compile C/C++ source files (tp1.c and tp2.c) in ccrx.

- After compilation, assemble the files in asrx to generate relocatable files (tp1.obj and tp2.obj).

[Command description]

rlink [<option> …][<file name>[<option> …] …]

 <option>: -<option>[=<suboption>][, …]

lbgrx [<option> …]

 <option>: -<option>[=<suboption>][, …]

ccrx -isa=rxv1 -output=abs=tp.abs tp1.c tp2.c

ccrx -isa=rxv1 -output=obj tp1.c tp2.c

rlink -form=abs -output=tp.abs -subcommand=cmd.sub tp1.obj tp2.obj

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 28 of 276
Oct. 01, 2013

Remarks 1. When the -output=obj option is specified in ccrx, ccrx generates relocatable files.

2. In order to change relocatable file names, their C/C++ source files have to be input in ccrx,

one file each.

3. When the form option in rlink is changed to -form=sty, the file after linkage will be generated

as a Motorola S type file.

(c) Compilation, Assemble, and Linkage by Separate Commands

Individually perform each step below by a single command.

- Compile C/C++ source files (tp1.c and tp2.c) in ccrx to generate assembly-language files (tp1.src and

tp2.src).

- Assemble the assembly-language files (tp1.src and tp2.src) in asrx to generate relocatable files (tp1.obj

and tp2.obj).

- Link the relocatable files (tp1.obj and tp2.obj) in rlink to generate an absolute file (tp.abs).

[Command description]

Remark When the -output=src option is specified in ccrx, ccrx generates assembly-language files.

(d) Assemble and Linkage by One Command

Perform all steps below by a single command.

- Assemble assembly-language files (tp1.src and tp2.src) in asrx.

- After assemble, link the files in rlink to generate an absolute file (tp.abs).

[Command description]

Remark Object files that are to be linked are allocated from address 0. The order of the sections is not guar-

anteed. In order to specify the allocation address or section allocation order, specify options for the

optimizing linkage editor using the -lnkcmd and -lnkopt options.

(e) Assemble and Linkage by Separate Commands

Individually perform each step below by a single command.

- Assemble assembly-language files (tp1.src and tp2.src) in asrx to generate relocatable files (tp1.obj and

tp2.obj).

- Link the relocatable files (tp1.obj and tp2.obj) in rlink to generate an absolute file (tp.abs).

[Command description 1]

[Command description 2]

ccrx -isa=rxv1 -output=src tp1.c tp2.c

asrx tp1.src tp2.src

rlink -form=abs -output=tp.abs -subcommand=cmd.sub tp1.obj tp2.obj

ccrx -isa=rxv1 -output=abs=tp.abs tp1.src tp2.src

ccrx -isa=rxv1 -output=obj tp1.src tp2.src

rlink -form=abs -output=tp.abs -subcommand=cmd.sub tp1.obj tp2.obj

asrx -isa=rxv1 tp1.src tp2.src

rlink -form=abs -output=tp.abs -subcommand=cmd.sub tp1.obj tp2.obj

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 29 of 276
Oct. 01, 2013

(3) Environment Variables (Command Prompt)

Environment variables are listed below.

Table A-2. Environment Variables

*1) When both ISA_RX and CPU_RX are defined, ISA_RX takes precedence.

No. Environment Variable Description Default When Specification is

Omitted

1 path Specifies a storage directory
for the execution file.

Specification cannot be omit-
ted.

2 BIN_RX Specifies the directory in which
ccrx is stored.

<ccrx storage directory>
Specification cannot be omitted
when the lbgrx command is
used.

3 ISA_RX *1 Selects an instruction-set
architecture.
<Instruction-set architectures>
 RXV1
 RXV2

No value is set when the speci-
fication is omitted.

4 INC_RX Specifies a directory in which
an include file of the compiler is
stored.

<ccrx storage directory>
\..\include

5 INC_RXA Specifies a directory in which
an include file of the assembler
is stored.

No value is set when the
specification is omitted.

6 TMP_RX Specifies a directory in which a
temporary file is generated.

%TEMP% when the ccrx com-
mand is used.

7 HLNK_LIBRARY1
HLNK_LIBRARY2
HLNK_LIBRARY3

Specifies a default library name
for the optimizing linkage edi-
tor. Libraries which are speci-
fied by a library option are
linked first. Then, if there is an
unresolved symbol, the default
libraries are searched in the
order of 1, 2, 3.

No value is set when the
specification is omitted.

8 HLINK_TMP Specifies a folder in which the
optimizing linkage editor gener-
ates temporary files. If
HLNK_TMP is not specified,
the temporary files are created
in the current folder.

No value is set when the
specification is omitted.

9 HLINK_DIR Specifies an input file storage
folder for the optimizing linkage
editor. The search order for
files which are specified by the
input or library option is the
current folder, then the folder
specified by HLNK_DIR.
However, when a wild card is
used in the file specification,
only the current folder is
searched.

No value is set when the
specification is omitted.

10 CPU_RX *1 Specifies the CPU type.
<CPU types>
 RX600
 RX200

No value is set when the
specification is omitted.

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 30 of 276
Oct. 01, 2013

A.1.3 Options

This section describes the options for the RX family C/C++ compiler in each processing phase.

Compile phase: Refer to (1) Compile Options.

Assembly phase: Refer to (2) Assembler Command Options.

Link phase: Refer to (3) Optimizing Linkage Editor (rlink) Options.

Library generation phase: Refer to (4) Library Generator Options.

(1) Compile Options

The types and explanations for options of the compile phase are shown below.

Classification Option Description

Source Options -lang Specifies the language to assume in compiling the source

file.

-include Specifies the names of folders that hold include files.

-preinclude Specifies the names of files to be included at the head of

each compiling unit.

-define Specifies macro definitions.

-undefine Specifies disabling of predefined macros.

-message Information-level messages are output.

-nomessage Specifies the numbers of information-level messages to be

disabled.

-change_message Changes the levels of compiler output messages.

-file_inline_path Specifies the names of folders that hold files for inter-file

inline expansion.

-comment Selects permission for comment (/* */) nesting.

-check Checks compatibility with an existing program.

-misra2004 Checks the source code against the MISRA-C: 2004 rules.

-ignore_files_misra Selects files that will not be checked against the MISRA-C:

2004 rules.

-check_language_extension Enables complete checking against the MISRA-C: 2004

rules for parts of the code where this would otherwise be

suppressed due to use of an extended specification.

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 31 of 276
Oct. 01, 2013

Object Options -output Selects the output file type.

-noline Selects the non-output of #line in preprocessor expansion.

-debug Debugging information is output to the object files.

-nodebug Debugging information is not output to the object files.

-section Changes section names to be changed.

-stuff Variables are allocated to sections that match their align-

ment values.

-nostuff Alignment values of variables are ignored in allocating the

variables to sections.

-instalign4 Instructions at branch destinations are aligned with 4-byte

boundaries.

-instalign8 Instructions at branch destinations are aligned with 8-byte

boundaries.

-noinstalign Instructions at branch destinations have no specific

alignment.

-nouse_div_inst Generates code in which no DIV, DIVU, or FDIV instructions

are used for division and modular division.

List Options -listfile A source list file is output.

-nolistfile A source list file is not output.

-show Specifies the contents of the source list file.

Classification Option Description

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 32 of 276
Oct. 01, 2013

Optimize Options -optimize Selects the optimization level.

-goptimize Outputs additional information for inter-module optimization.

-speed Optimization is with emphasis on execution performance.

-size Optimization is with emphasis on code size.

-loop Specifies a maximum number for loop-expansion.

-inline Inline expansion is processed automatically.

-noinline Inline expansion is not processed automatically.

-file_inline Specifies a file for inter-file inline expansion.

-case Selects the method of expansion for switch statements.

-volatile External variables are handled as if they are all volatile
qualified.

-novolatile External variables are handled as if none of them have been
declared volatile.

-const_copy Enables constant propagation of const qualified external
variables.

-noconst_copy Disables constant propagation of const qualified external
variables.

-const_div Divisions and remainders of integer constants are converted
into instruction sequences.

-noconst_div Divisions and remainders of integer constants are not
converted into instruction sequences.

-library Selects the method for the execution of library functions.

-scope Selects division of the ranges for optimization into multiple
sections before compilation.

-noscope Selects non-division of the ranges for optimization into
multiple sections before compilation.

-schedule Pipeline processing is considered in scheduling instructions.

-noschedule Scheduling is not applied to instruction execution.

-map All access to external variables is optimized.

-smap Access to external variables is optimized as defined in the
file to be compiled.

-nomap Access to external variables is not optimized.

-approxdiv Division of floating-point constants is converted into multipli-
cation.

-enable_register Variables with the register storage class specification are
given preference for allocation to registers.

-simple_float_conv Part of the type conversion processing between the floating-
point type and the integer type is omitted.

-fpu Floating-point calculation instructions are used.

-nofpu Floating-point calculation instructions are not used.

-alias Optimization is performed in consideration of the types of
data indicated by pointers.

-float_order The orders of operations in floating-point expressions are
modified for optimization.

-ip_optimize Selects global optimization.

-merge_files The results of compiling multiple source files are output to a
single object file.

-whole_program Makes the compiler perform optimization on the assumption
that all source files have been input.

Classification Option Description

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 33 of 276
Oct. 01, 2013

Microcontroller Options -isa Selects the instruction-set architecture.

-cpu Selects the microcontroller type.

-endian Selects the endian type.

-round Selects the rounding method for floating-point constant oper-
ations.

-denormalize Selects the operation when denormalized numbers are used
to describe floating-point constants.

-dbl_size Selects the precision of the double and long double types.

-int_to_short Replaces the int type with the short type and the unsigned
int type with the unsigned short type.

-signed_char Variables of the char type are handled as signed char.

-unsigned_char Variables of the char type are handled as unsigned char.

-signed_bitfield The sign bits of bit-fields are taken as signed.

-unsigned_bitfield The sign bits of bit-fields are taken as unsigned.

-auto_enum Selects whether or not the sizes for enumerated types are
automatically selected.

-bit_order Selects the order of bit-field members.

-pack Specifies one as the boundary alignment value for structure
members and class members.

-unpack Aligns structure members and class members to the
alignment boundaries for the given data types.

-exception Enables the exception handling function.

-noexception Disables the exception handling function.

-rtti Selects enabling or disabling of C++ runtime type informa-
tion (dynamic_cast or typeid).

-fint_register Selects a general register for exclusive use with the fast
interrupt function.

-branch Selects the maximum size or no maximum size for branches.

-base Specifies the base registers for ROM and RAM.

-patch Selects avoidance or non-avoidance of a problem specific to
the CPU type.

-pic Enables the PIC function.

-pid Enables the PID function.

-nouse_pid_register The PID register is not used in code generation.

-save_acc The contents of ACC are saved and restored in interrupt
functions.

Assemble and Linkage

Options

-asmcmd Specifies a subcommand file for asrx options.

-lnkcmd Specifies a subcommand file for rlink options.

-asmopt Specifies asrx options.

-lnkopt Specifies rlink options.

Classification Option Description

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 34 of 276
Oct. 01, 2013

Other Options -logo Selects the output of copyright information.

-nologo Selects the non-output of copyright information.

-euc The character codes of input programs are interpreted as

EUC codes.

-sjis The character codes of input programs are interpreted as

SJIS codes.

-latin1 The character codes of input programs are interpreted as

ISO-Latin1 codes.

-utf8 The character codes of input programs are interpreted as

UTF-8 codes.

-big5 The character codes of input programs are interpreted as

BIG5 codes.

-gb2312 The character codes of input programs are interpreted as

GB2312 codes.

-outcode Selects the character coding for an output assembly-lan-

guage file.

-subcommand Specifies a file for including command options.

Classification Option Description

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 35 of 276
Oct. 01, 2013

< Compile Options / Source Options >

The following source options are available.

- -lang

- -include

- -preinclude

- -define

- -undefine

- -message

- -nomessage

- -change_message

- -file_inline_path

- -comment

- -check

- -misra2004

- -ignore_files_misra

- -check_language_extension

-lang

< Compile Options / Source Options >

[Format]

- [Default]

If this option is not specified, the compiler will compile the program file as a C++ source file when the extension is

cpp, cc, or cp, and as a C (C89) source file for any other extensions. However, if the extension is src or s, the pro-

gram file is handled as an assembly-language file regardless of whether this option is specified.

[Description]

- This option specifies the language of the source file.

- When the lang=c option is specified, the compiler will compile the program file as a C (C89) source file.

- When the lang=cpp option is specified, the compiler will compile the program file as a C++ source file.

- When the lang=ecpp option is specified, the compiler will compile the program file as an Embedded C++ source

file.

- When the lang=c99 option is specified, the compiler will compile the program file as a C (C99) source file.

[Remarks]

- The Embedded C++ language specification does not support a catch, const_cast, dynamic_cast, explicit,

mutable, namespace, reinterpret_cast, static_cast, template, throw, try, typeid, typename, using, multiple

inheritance, or virtual base class. If one of these classes is written in the source file, the compiler will display an

error message. Always specify the lang=ecpp option when using an EC++ library.

Source Options

-lang= { c | cpp | ecpp | c99 }

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 36 of 276
Oct. 01, 2013

-include

< Compile Options / Source Options >

[Format]

[Description]

- This option specifies the name of the path to the folder that stores the include file.

- Multiple path names can be specified by separating them with a comma (,).

- The system include file is searched for in the order of the folders specified by the include option, the folders spec-

ified by environment variable INC_RX, and the folders specified by environment variable BIN_RX.

- The user include file is searched for in the order of the folders containing source files to be compiled, the folders

specified by the include option, the folders specified by environment variable INC_RX, and the folders specified

by environment variable BIN_RX.

[Remarks]

- If this option is specified for more than one time, all specified path names are valid.

-include=<path name>[,...]

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 37 of 276
Oct. 01, 2013

-preinclude

< Compile Options / Source Options >

[Format]

[Description]

- This option includes the specified file contents at the head of the compiling unit. Multiple file names can be speci-

fied by separating them with a comma (,).

- If there is more than one folder specified by the preinclude option, search is performed in turn starting from the

leftmost folder.

[Remarks]

- If this option is specified for more than one time, all specified files will be included.

-preinclude=<file name>[,...]

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 38 of 276
Oct. 01, 2013

-define

< Compile Options / Source Options >

[Format]

[Description]

- This option provides the same function as #define specified in the source file.

- <string> can be defined as a macro name by specifying <macro name>=<string>.

- When only <macro name> is specified as a suboption, the macro name is assumed to be defined. Names or inte-

ger constants can be written in <string>.

[Remarks]

- If the macro name specified by this option has already been defined in the source file by #define, #define takes

priority.

- If this option is specified for more than one time, all specified macro names are valid.

-define=<sub>[,...]

 <sub>: <macro name> [= <string>]

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 39 of 276
Oct. 01, 2013

-undefine

< Compile Options / Source Options >

[Format]

[Description]

- This option invalidates the predefined macro of <macro name>.

- Multiple macro names can be specified by separating them with a comma (,).

[Remarks]

- For the specifiable predefined macros, refer to Predefined Macros.

- If this option is specified for more than one time, all specified macro names will be undefined.

-undefine=<sub>[,...]

 <sub>: <macro name>

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 40 of 276
Oct. 01, 2013

-message

< Compile Options / Source Options >

[Format]

[Description]

- This option outputs the information-level messages.

[Remarks]

- Message output from the assembler or optimizing linkage editor cannot be controlled by this option. Message out-

put from the optimizing linkage editor can be controlled by using the lnkcmd option to specify the message or

nomessage option of the optimizing linkage editor.

-message

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 41 of 276
Oct. 01, 2013

-nomessage

< Compile Options / Source Options >

[Format]

[Description]

- When the nomessage option is specified, output of the information-level messages is disabled. When an error

number is specified as a suboption, the output of the specified information-level message will be disabled. Multiple

error numbers can be specified by separating them with a comma (,).

- A range of error numbers to be disabled can be specified by using a hyphen (-), that is, in the form of <error num-

ber>-<error number>.

- Error numbers are specified by the five lower-order digits (i.e. five digits from the right) of message numbers with-

out the prefix "M" (information).

Example: To change the level of information message M0523009

-nomessage=23009

[Remarks]

- Message output from the assembler or optimizing linkage editor cannot be controlled by this option. Message out-

put from the optimizing linkage editor can be controlled by using the lnkcmd option to specify the message or

nomessage option of the optimizing linkage editor.

- If the nomessage option is specified for more than one time, output for all specified error numbers will be disabled.

- This option is only specifiable for messages with number 0510000 to 0549999 (including the component number).

- This option can only be used to suppress the output of messages 0520000 to 0529999. The output of other mes-

sages is not suppressed even if their numbers are specified with this option. If you wish to suppress the output of

such messages, also use -change_message to change them to information messages.

-nomessage [= <error number> [- <error number>][,...]

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 42 of 276
Oct. 01, 2013

-change_message

< Compile Options / Source Options >

[Format]

[Description]

- This option changes the message level of information-level and warning-level messages.

- Multiple error numbers can be specified by separating them with a comma (,).

- Error numbers are specified by the five lower-order digits (i.e. five digits from the right) of the message numbers

without the prefix "M" (information) or "W" (warning).

Example: To change the level of information message M0523009

-change_message=error=23009

- Although this option may change the types of some messages (e.g. error (E) or warning (W)), the meaning of the

message indicated by the component or message number remains the same.

[Example]

- Warning-level messages with the specified error numbers are changed to information-level messages.

- Information-level messages with the specified error numbers are changed to warning-level messages.

- Information-level and warning-level messages with the specified error numbers are changed to error-level mes-

sages.

- All warning-level messages are changed to information-level messages.

- All information-level messages are changed to warning-level messages.

- All information-level and warning-level messages are changed to error-level messages.

[Remarks]

- The output of messages which have been changed to information-level messages can be disabled by the nomes-

sage option.

-change_message = <sub>[,...]

 <sub>: <error level>[=<error number>[- <error number>][,...]]

 <error level>: { information | warning | error }

change_message=information=error number

change_message=warning=error number

change_message=error=error number

change_message=information

change_message=warning

change_message=error

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 43 of 276
Oct. 01, 2013

- Message output from the assembler or optimizing linkage editor cannot be controlled by this option. Message out-

put from the optimizing linkage editor can be controlled by using the lnkcmd option to specify the message or

nomessage option of the optimizing linkage editor.

- If this option is specified for more than one time, all specified error numbers are valid.

- Only the levels of warning and information messages can be controlled by this option. Specification of the option

for a message not at these levels is ignored.

- This option is not usable to control the level of MISRA2004 detection messages (labeled M) that appear when the

misra2004 option has been specified.

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 44 of 276
Oct. 01, 2013

-file_inline_path

< Compile Options / Source Options >

[Format]

[Description]

- This option is not available in V.2.00. Any specification of this option will simply be ignored and will not lead to an

error due to compatibility with former versions.

-file_inline_path=<path name>[,...]

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 45 of 276
Oct. 01, 2013

-comment

< Compile Options / Source Options >

[Format]

[Description]

- When comment=nest is specified, nested comments are allowed to be written in the source file.

- When comment=nonest is specified, writing nested comments will generate an error.

- The default for this option is comment=nonest.

[Example]

- When comment=nest is specified, the compiler handles the above line as a nested comment; however, when

comment=nonest is specified, the compiler assumes (1) as the end of the comment.

-comment = { nest | nonest }

/* This is an example of /* nested */ comment */

 (1)

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 46 of 276
Oct. 01, 2013

-check

< Compile Options / Source Options >

[Format]

[Description]

- This option checks the specified options and source file parts which will affect the compatibility when this compiler

uses a C/C++ source file that has been coded for the R8C and M16C family C compilers, H8, H8S, and H8SX fam-

ily C/C++ compilers, and SuperH family C/C++ compilers.

- For check=nc, the compatibility with the R8C and M16C family C compilers is checked. Checking will be for the

following options and types:

- Options: signed_char, signed_bitfield, bit_order=left, endian=big, and dbl_size=4

- inline, enum type, #pragma BITADDRESS, #pragma ROM, #pragma PARAMETER, and asm()

- Assignment of a constant outside the signed short range to the int or signed int type or assignment of a constant

outside the unsigned short range to the int or unsigned int type while -int_to_short is not specified

- Assignment of a constant outside both of the signed short and unsigned short ranges to the long or long long

type

- Comparison expression between a constant outside the signed short range and the int, short, or char type

(except the signed char type)

- For check=ch38, the compatibility with the H8, H8S, and H8SX family C/C++ compilers is checked. Checking will

be for the following options and types:

- Options: unsigned_char, unsigned_bitfield, bit_order=right, endian=little, and dbl_size=4

- __asm and #pragma unpack

- Comparison expression with a constant greater than the maximum value of signed long

- Assignment of a constant outside the signed short range to the int or signed int type or assignment of a constant

outside the unsigned short range to the int or unsigned int type while -int_to_short is not specified

- Assignment of a constant outside both of the signed short and unsigned short ranges to the long or long long

type

- Comparison expression between a constant outside the signed short range and the int, short, or char type

(except the signed char type)

- For check=shc, the compatibility with the SuperH family C/C++ compilers is checked. Checking will be for the fol-

lowing options and types:

- Options: unsigned_char, unsigned_bitfield, bit_order=right, endian=little, dbl_size=4, and round=nearest

- #pragma unpack

- volatile qualified variables

- Confirm the following notes for the displayed items.

- Options: The settings which are not defined in the language specification and depend on implementation differ in

each compiler. Confirm the settings of the options that were output in a message.

- Extended specifications: There is a possibility that extended specifications will affect program operation. Confirm

the descriptions on the extended specifications that were output in a message.

-check = { nc | ch38 | shc }

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 47 of 276
Oct. 01, 2013

[Remarks]

- When dbl_size=4 is enabled, the results of type conversion related to floating-point numbers and the results of

library calculation may differ from those in the R8C and M16C family C compilers, H8, H8S, and H8SX family C/

C++ compilers, and SuperH family C/C++ compilers. When dbl_size=4 is specified, this compiler handles double

type and long double type as 32 bits, but the R8C and M16C family C compilers (fdouble_32), H8, H8S, and

H8SX family C/C++ compilers (double=float), and SuperH family C/C++ compilers (double=float) handle only

double type as 32 bits.

- The result of a binary operation (addition, subtraction, multiplication, division, comparison, etc.) with unsigned int

type and long type operands may differ from that in the SuperH family C/C++ compilers. In this compiler, the types

of the operands are converted to the unsigned long type before operation. However, in the SuperH family C/C++

compilers (only when strict_ansi is not specified), the types of the operands are converted to the signed long

long type before operation.

- The data size of reading from and writing to a volatile qualified variable may differ from that in the SuperH family

C/C++ compilers. This is because a volatile qualified bit field may be accessed in a size smaller than that of the

declaration type in this compiler. However, in the SuperH family C/C++ compilers, a volatile qualified bit field is

accessed in the same size as that of the declaration type.

- This option does not output a message regarding allocation of structure members and bit field members. When an

allocation-conscious declaration is made.

- In the R8C and M16C family C compilers (fextend_to_int is not specified), the generated code has been evalu-

ated without performing generalized integer promotion by a conditional expression. Accordingly, operation of such

a code may differ from a code generated by this compiler.

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 48 of 276
Oct. 01, 2013

-misra2004

< Compile Options / Source Options >

[Format]

[Description]

- This option enables checking against the MISRA-C: 2004 rules and to select specific rules to be used.

- When misra2004=all, the compiler checks the source code against all of the rules that are supported.

- When misra2004=apply=<rule number>[,<rule number>,...], the compiler checks the source code against the

rules with the selected numbers.

- When misra2004=ignore=<rule number>[,<rule number>,...], the compiler checks the source code against the

rules other than those with the selected numbers.

- When misra2004=required, the compiler checks the source code against the rules of the "required" type.

- When misra2004=required_add=<rule number>[,<rule number>,...], the compiler checks the source code

against the rules of the "required" type and the rules with the selected numbers.

- When misra2004=required_remove=<rule number>[,<rule number>,...], the compiler checks the source code

against the rules other than those with the selected numbers among the rules of the "required" type.

- When misra2004=<filename>, the compiler checks the source code against the rules with the numbers written in

the specified file. One rule number is written per line in the file. Each rule number must be specified by using a dec-

imal value and a period (".").

- When checking of a line of code against the MISRA-C: 2004 rules leads to detection of a violation, a message in

the following format will appear.

Filename (line number): M0523028 Rule number: Message

- When -misra2004=<filename> is used more than once, only the last specification is valid.

[Remarks]

- -misra2004 can be used multiple times. If two or more types (which follow -misra2004=) are specified, however,

only the type of the last specification is valid.

... -misra2004=ignore=2.2 -misra2004=apply=2.3

-misra2004=required_add=4.1 -misra2004=apply=4.2

-misra2004=apply=5.2 ...

In this example, ignore, apply, and required_add are specified, but only apply (used in the last two cases) is

valid. The compiler will check the source code against rules 4.2 and 5.2.

- When the number of an unsupported rule is specified for <rule number>, the compiler detects error C0523031

and stops the processing.

-misra2004 = {

 all

 | apply=<rule number>[,<rule number>,...]

 | ignore=<rule number>[,<rule number>,...]

 | required

 | required_add=<rule number>[,<rule number>,...]

 | required_remove=<rule number>[,<rule number>,...]

 | <filename> }

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 49 of 276
Oct. 01, 2013

- When the file specified in misra2004=<filename> cannot be opened, the compiler detects error C0523029. When

rule numbers are not extractable from the specified file, the compiler detects error C0523030. Processing by the

compiler stops in both cases.

- This option is ignored when cpp, c99, or ecpp is selected for the lang option or when output=prep is specified at

the same time.

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 50 of 276
Oct. 01, 2013

- This option supports the MISRA-C: 2004 rules listed below.

[Required]

2.2 2.3

4.1 4.2

5.2 5.3 5.4

6.1 6.2 6.4 6.5

7.1

8.1 8.2 8.3 8.5 8.6 8.7 8.11 8.12

9.1 9.2 9.3

10.1 10.2 10.3 10.4 10.5 10.6

11.1 11.2 11.5

12.3 12.4 12.5 12.7 12.8 12.9 12.10 12.12

13.1 13.3 13.4

14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10

15.1 15.2 15.3 15.4 15.5

16.1 16.3 16.5 16.6 16.9

18.1 18.4

19.3 19.6 19.8 19.11 19.14 19.15

20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.11 20.12

[Not required]

5.5 5.6

6.3

11.3 11.4

12.1 12.6 12.11 12.13

13.2

17.5

19.7 19.13

- For source programs that use extended functions such as #pragma, checking against these rules will be sup-

pressed under some conditions. For details, refer to the section on the check_language_extension option.

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 51 of 276
Oct. 01, 2013

-ignore_files_misra

< Compile Options / Source Options >

[Format]

[Description]

- This option selects files that will not be checked against the MISRA-C: 2004 rules.

[Remarks]

- If a single option is specified more than once in the command line, all specifications are valid.

- This option is ignored when the -misra2004 option has not been specified.

- <filename> is ignored when the specified file is not to be compiled.

-ignore_files_misra=<filename>[,<filename>,...]

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 52 of 276
Oct. 01, 2013

-check_language_extension

< Compile Options / Source Options >

[Format]

[Description]

- This option enables complete checking against the MISRA-C: 2004 rules for parts of the code where it would oth-

erwise be suppressed due to individual extensions from the C/C++ language specification.

- With the default misra2004 option, the compiler does not proceed with checking against the MISRA-C: 2004 rules

under the condition given below. To enable complete checking, specify the check_language_extension option.

- Condition:

- The function has no prototype declaration (rule 8.1) and #pragma entry or #pragma interrupt is specified for

it.

[Example]

- Function vfunc, for which #pragma interrupt is specified, has no prototype declaration. Even when this function is

compiled with -misra2004=all specified, the message on rule 8.1 is not displayed unless the

check_language_extension option is specified.

[Remarks]

This option is ignored when the -misra2004 option has not been specified.

-check_language_extension

#pragma interrupt vfunc

extern void service(void);

void vfunc(void)

{

 service();

}

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 53 of 276
Oct. 01, 2013

< Compile Options / Object Options >

The following object options are available.

- -output

- -noline

- -debug

- -nodebug

- -section

- -stuff

- -nostuff

- -instalign4

- -instalign8

- -noinstalign

- -nouse_div_inst

-output

< Compile Options / Object Options >

[Format]

- [Default]

The default for this option is output=obj.

[Description]

- This option specifies the output file type.

- The suboptions and output files are shown in the following table.

- If no <file name> is specified, a file will be generated with an extension, that is shown in the following table,

appended to the source file name input at the beginning.

Table A-3. Suboption Output Format

Note Relocatable files are files output from the assembler.

Absolute files, Intel hex type files, and Motorola S type files are files output from the optimizing linkage editor.

Object Options

-output = <sub> [=<file name>]

 <sub>: { prep | src | obj | abs | hex | sty }

Suboption Output File Type Extension When File Name is Not Specified

prep Source file after preprocessed C (C89, C99) source file: p

C++ source file: pp

src Assembly-language file src

obj Relocatable file obj

abs Absolute file abs

hex Intel hex type file hex

sty Motorola S type file mot

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 54 of 276
Oct. 01, 2013

[Remarks]

- An intermediate file used to generate a file of the specified type is stored in the specified folder; however, when no

folder has been specified, the intermediate file is stored in the current folder.

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 55 of 276
Oct. 01, 2013

-noline

< Compile Options / Object Options >

[Format]

[Description]

- This option disables #line output during preprocessor expansion.

[Remarks]

- This option is validated when the output=prep option has not been specified.

-noline

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 56 of 276
Oct. 01, 2013

-debug

< Compile Options / Object Options >

[Format]

[Description]

- When the debug option is specified, debugging information necessary for C-source debugging is output. The

debug option is valid even when an optimize option is specified.

-debug

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 57 of 276
Oct. 01, 2013

-nodebug

< Compile Options / Object Options >

[Format]

[Description]

- When the nodebug option is specified, no debugging information is output.

-nodebug

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 58 of 276
Oct. 01, 2013

-section

< Compile Options / Object Options >

[Format]

[Description]

- This option specifies the section name.

- section=P=<section name> specifies the section name of a program area.

- section=C=<section name> specifies the section name of a constant area.

- section=D=<section name> specifies the section name of an initialized data area.

- section=B=<section name> specifies the section name of an uninitialized data area.

- section=L=<section name> specifies the section name of a literal area.

- section=W=<section name> specifies the section name of a switch statement branch table area.

- <section name> must be alphabetic, numeric, underscore (_), or $. The first character must not be numeric.

[Remarks]

- The default for this option is section=P=P,C=C,D=D,B=B,L=L,W=W.

- In the same way as in V. 1.00, if you want to output the literal area in the C section rather than output a separate L

section, select section=L=C.

- Except for changing the L section to the same section name as that of the C section, the same section name can-

not be specified for the sections for different areas.

- For the translation limit of the section name length, refer to Translation Limits.

-section = <sub>[,...]

 <sub>: { P = <section name> |

 C = <section name> |

 D = <section name> |

 B = <section name> |

 L = <section name> |

 W = <section name> }

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 59 of 276
Oct. 01, 2013

-stuff

< Compile Options / Object Options >

[Format]

[Description]

- When the stuff option is specified, all variables are allocated to 4-byte, 2-byte, or 1-byte boundary alignment sec-

tions depending on the alignment value (see table B-4).

Table A-4. Correspondences between Variables and Their Output Sections When stuff Option is Specified

- C, D, and B are the section names specified by the section option or #pragma section. W is the section name

specified by the section option. The data contents allocated to each section are output in the order they were

defined, except that variables that do not have the initial value are output after those that have the initial value in

section C.

[Example]

-stuff

Variable Type Alignment Value for Variable Section to Which Variable Belongs

const qualified variables 4 C

2 C_2

1 C_1

Initialized variables 4 D

2 D_2

1 D_1

Uninitialized variables 4 B

2 B_2

1 B_1

switch statement branch table 4 W

2 W_2

1 W_1

int a;

char b=0;

const short c=0;

struct {

 char x;

 char y;

} ST;

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 60 of 276
Oct. 01, 2013

[Remarks]

- The stuff option has no effect for sections other than B, D, C, and W.

 .SECTION C_2,ROMDATA,ALIGN=2

 .glb _c

_c:

 .word 0000H

 .SECTION D_1,ROMDATA

 .glb _b

_b:

 .byte 00H

 .SECTION B,DATA,ALIGN=4

 .glb _a

_a:

 .blkl 1

 .SECTION B_1,DATA

 .glb _ST

_ST

 .blkb 2

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 61 of 276
Oct. 01, 2013

-nostuff

< Compile Options / Object Options >

[Format]

[Description]

- When the nostuff option is specified, the compiler allocates the variables belonging to the specified <section

type> to 4-byte boundary alignment sections. When <section type> is omitted, variables of all section types are

applicable.

- C, D, and B are the section names specified by the section option or #pragma section. W is the section name

specified by the section option. The data contents allocated to each section are output in the order they were

defined, except that variables that do not have the initial value are output after those that have the initial value in

section C.

[Example]

[Remarks]

-nostuff [= <section type>[,...]]

 <section type>: { B | D | C | W }

int a;

char b=0;

const short c=0;

struct {

 char x;

 char y;

} ST;

 .SECTION C,ROMDATA,ALIGN=4

 .glb _c

_c:

 .word 0000H

 .SECTION D,ROMDATA,ALIGN=4

 .glb _b

_b:

 .byte 00H

 .SECTION B,DATA,ALIGN=4

 .glb _a

_a:

 .blkl 1

 .glb _ST

_ST

 .blkb 2

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 62 of 276
Oct. 01, 2013

- The nostuff option cannot be specified for sections other than B, D, C, and W.

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 63 of 276
Oct. 01, 2013

-instalign4

< Compile Options / Object Options >

[Format]

[Description]

- This option aligns instructions at branch destinations.

- When the instalign4 option is specified, the instruction at the location address is aligned to the 4-byte boundary.

- Instruction alignment is performed only when the instruction at the specified location exceeds the address which is

a multiple of the alignment value (4)*1.

- The following three types of branch destination can be selected by specifying the suboptions of -instalign4*2.

- No specification:Head of function and case and default labels of switch statement

inmostloop: Head of each inmost loop, head of function, and case and default labels of switch statement

loop: Head of each loop, head of function, and case and default labels of switch statement

- When this option is selected, the alignment value of the program section is changed from 1 to 4 (for instalign4) or

8 (for instalign8).

- This option aims to efficiently operate the instruction queues of the RX CPU and improve the speed of program

execution by aligning the addresses of branch destination instructions.

This option has specifications targeting the following usage.

- instalign4: When attempting to improve the speed of CPUs with a 32-bit instruction queue (mainly RX200 Series)

Notes 1. This is when the instruction size is equal to or smaller than the alignment value. If the instruction size is

greater than the alignment value, alignment is performed only when the number of exceeding points is two

or more.

2. Alignment is adjusted only for the branch destinations listed above; alignment of the other destinations is

not adjusted. For example, when loop is selected, alignment of the head of a loop is adjusted but alignment

is not adjusted at the branch destination of an if statement that is used in the loop but does not generate a

loop.

-instalign4[={loop|inmostloop}]

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 64 of 276
Oct. 01, 2013

-instalign8

< Compile Options / Object Options >

[Format]

[Description]

- This option aligns instructions at branch destinations.

- When the instalign8 option is specified, the instruction at the location address is aligned to the 8-byte boundary.

- Instruction alignment is performed only when the instruction at the specified location exceeds the address which is

a multiple of the alignment value (8)*1.

- The following three types of branch destination can be selected by specifying the suboptions of -instalign4 and -

instalign8*2.

- No specification:Head of function and case and default labels of switch statement

inmostloop: Head of each inmost loop, head of function, and case and default labels of switch statement

loop: Head of each loop, head of function, and case and default labels of switch statement

- When these options are selected, the alignment value of the program section is changed from 1 to 4 (for

instalign4) or 8 (for instalign8).

- These options aim to efficiently operate the instruction queues of the RX CPU and improve the speed of program

execution by aligning the addresses of branch destination instructions.

This option has specifications targeting the following usage.

- instalign8: When attempting to improve the speed of CPUs with a 64-bit instruction queue (mainly RX600 Series)

Notes 1. This is when the instruction size is equal to or smaller than the alignment value. If the instruction size is

greater than the alignment value, alignment is performed only when the number of exceeding points is two

or more.

2. Alignment is adjusted only for the branch destinations listed above; alignment of the other destinations is

not adjusted. For example, when loop is selected, alignment of the head of a loop is adjusted but alignment

is not adjusted at the branch destination of an if statement that is used in the loop but does not generate a

loop.

-instalign8[={loop|inmostloop}]

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 65 of 276
Oct. 01, 2013

[Example]

- <C source file>

- <Output code>

[When compiling with -instalign8 specified]

In the example shown below, the head of each function is aligned so that the instruction does not exceed the 8-

byte boundary.

In 8-byte boundary alignment of instructions, the address will not be changed unless the target instruction exceeds

the 8-byte boundary. Therefore, only the address of function f2 is actually aligned.

dlong a;

int f1(int num)

{

 return (num+1);

}

void f2(void)

{

 a = 0;

}

void f3(void)

{

}

 .SECTION P,CODE,ALIGN=8

 .INSTALIGN 8

 _f1: ; Function f1, address = 0000H

 ADD #01H,R1 ; 2 bytes

 RTS ; 1 byte

 .INSTALIGN 8

 _f2: ; Function f2, address =0008H

 ; Note: Alignment is performed.

 ; When a 6-byte instruction is placed at

 ; 0003H, it exceeds the 8-byte boundary.

 ; Thus, alignment is performed.

 MOV.L #_a,R4 ; 6 bytes

 MOV.L #0,[R4] ; 3 bytes

 RTS ; 1 byte

 .INSTALIGN 8

 _f3: ; Function f3, address = 0012H

 RTS

 .END

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 66 of 276
Oct. 01, 2013

-noinstalign

< Compile Options / Object Options >

[Format]

[Description]

- This option does not aligns instructions at branch destinations.

-noinstalign

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 67 of 276
Oct. 01, 2013

-nouse_div_inst

< Compile Options / Object Options >

[Format]

[Description]

- This option generates code in which no DIV, DIVU, or FDIV instructions are used for division and modular division

operations in the program.

[Remarks]

- This option calls the equivalent runtime functions instead of DIV, DIVU, or FDIV instructions. This may lower code

efficiency in terms of required ROM capacity and speed of execution.

-nouse_div_inst

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 68 of 276
Oct. 01, 2013

< Compile Options / List Options >

The following list options are available.

- -listfile

- -nolistfile

- -show

-listfile

< Compile Options / List Options >

[Format]

[Description]

- These options specify whether to output a source list file.

- When the listfile option is specified, a source list file is output. <file name> can also be specified.

- An existing folder can also be specified as <path name> instead of <file name>. In such a case, a source list file

with the file extension .lst and the name of the source file being compiled or assembled is output to the folder

selected as <path name>.

[Remarks]

- A linkage list cannot be output by this option. In order to output a linkage list, specify the list option of the optimiz-

ing linkage editor by using the lnkcmd option.

- Information output from the compiler is written to the source list. For the source list file format, refer to Assemble

List File.

- When you use <path name>, create the folder in advance. If the folder specified as <path name> does not exist,

the compiler will assume that <file name> is selected.

List Options

-listfile[={<file name>|<path name>}]

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 69 of 276
Oct. 01, 2013

-nolistfile

< Compile Options / List Options >

[Format]

[Description]

- When the nolistfile option is specified, no source list file is output.

-nolistfile

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 70 of 276
Oct. 01, 2013

-show

< Compile Options / List Options >

[Format]

[Description]

- This option sets the source list file contents.

- The suboptions and specified contents are shown in the following table.

Table A-5. Suboption Specifications

[Remarks]

- This option is valid only when the listfile option has been specified.

- Information output from the compiler is written to the source list. For the source list file format, refer to Assemble

List File.

-show=<sub>[,...]

 <sub>: { source | conditionals | definitions | expansions }

Suboption Description

source Outputs the C/C++ source file.

conditionals Outputs also the statements for which the specified condition is not satisfied in conditional assembly.

definitions Outputs the information before .DEFINE replacement.

expansions Outputs the assembler macro expansion statements.

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 71 of 276
Oct. 01, 2013

< Compile Options / Optimize Options >

The following optimize options are available.

- -optimize

- -goptimize

- -speed

- -size

- -loop

- -inline

- -noinline

- -file_inline

- -case

- -volatile

- -novolatile

- -const_copy

- -const_div

- -noconst_div

- -library

- -scope

- -noscope

- -schedule

- -noschedule

- -map

- -nomap

- -approxdiv

- -enable_register

- -simple_float_conv

- -fpu

- -nofpu

- -alias

- -float_order

- -ip_optimize

- -merge_files

- -whole_program

Optimize Options

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 72 of 276
Oct. 01, 2013

-optimize

< Compile Options / Optimize Options >

[Format]

[Description]

- This option specifies the optimization level.

- When optimize=0 is specified, the compiler does not optimize the program. Accordingly, the debugging informa-

tion may be output with high precision and source-level debugging is made easier.

- When optimize=1 is specified, the compiler partially optimizes the program by automatically allocating variables to

registers, integrating the function exit blocks, integrating multiple instructions which can be integrated, etc. Accord-

ingly, the code size may become smaller than when compiled with the optimize=0 specification.

- When optimize=2 is specified, the compiler performs overall optimization. However, the optimization contents to

be performed slightly differ depending on whether the size option or speed option has been selected.

- When optimize=max is specified, the compiler performs optimization as much as possible. For example, the opti-

mization scope is expanded to its maximum extent, and if the speed option is specified, loop expansion is possible

on a large scale. Though the advantages of optimization can be expected, there may be side effects, such as

longer compilation time, and if the speed option is specified, significantly increased code size.

[Remarks]

- If the default is not included in the description of an optimize option, this means that the default varies depending

on the optimize option and speed or size option specifications. For details on the default, refer to the speed or

size option.

-optimize = { 0 | 1 | 2 | max }

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 73 of 276
Oct. 01, 2013

-goptimize

< Compile Options / Optimize Options >

[Format]

[Description]

- This option generates the additional information for inter-module optimization in the output file.

- At linkage, inter-module optimization is applied to files for which this option has been specified.

-goptimize

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 74 of 276
Oct. 01, 2013

-speed

< Compile Options / Optimize Options >

[Format]

[Description]

- When the speed option is specified, optimization will be performed with emphasis on execution performance.

[Remarks]

- When the speed option is specified, the following options are automatically specified based on the optimize

option specification.

- When optimize=max is specified

Note The default is map when a C/C++ source program has been specified for input and output=abs or out-

put=mot has been specified for output. For any other case, the default is nomap.

- When optimize=2 is specified

-speed

Loop

Expansion

Inline

Expansio

n

Converting

Constant

Division into

Multiplication

Scheduling

Instruction

s

Constant

Propagation

of const

Qualified

Variables

Dividing

Optimizing

Ranges

Optimizing

External

Variable

Accesses

Optimization

Considering

the Type of

the Data

Indicated by

the Pointer

speed loop=8 inline=250 const_div schedule const_copy noscope map*

nomap*

alias=ansi

Loop

Expansion

Inline

Expansio

n

Converting

Constant

Division into

Multiplication

Scheduling

Instruction

s

Constant

Propagation

of const

Qualified

Variables

Dividing

Optimizing

Ranges

Optimizing

External

Variable

Accesses

Optimization

Considering

the Type of

the Data

Indicated by

the Pointer

speed loop=2 inline=100 const_div schedule const_copy scope nomap alias=noansi

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 75 of 276
Oct. 01, 2013

- When optimize=0 or optimize=1 is specified

Loop

Expansion

Inline

Expansio

n

Converting

Constant

Division into

Multiplication

Scheduling

Instruction

s

Constant

Propagation

of const

Qualified

Variables

Dividing

Optimizing

Ranges

Optimizing

External

Variable

Accesses

Optimization

Considering

the Type of

the Data

Indicated by

the Pointer

speed loop=1 noinline const_div nosched-

ule

noconst_

copy

scope nomap alias=noansi

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 76 of 276
Oct. 01, 2013

-size

< Compile Options / Optimize Options >

[Format]

[Description]

- When the size option is specified, optimization will be performed with emphasis on code size.

[Remarks]

- When the size option is specified, the following options are automatically specified based on the optimize option

specification. Note however that if one of the following options is specified otherwise explicitly, that specified option

becomes valid.

- When optimize=max is specified

Note The default is map when a C/C++ source program has been specified for input and output=abs or out-

put=mot has been specified for output. For any other case, the default is nomap.

- When optimize=2 is specified

-size

Loop

Expansion

Inline

Expansio

n

Converting

Constant

Division into

Multiplication

Scheduling

Instruction

s

Constant

Propagation

of const

Qualified

Variables

Dividing

Optimizing

Ranges

Optimizing

External

Variable

Accesses

Optimization

Considering

the Type of

the Data

Indicated by

the Pointer

size loop=1 inline=0 noconst_div schedule const_

copy

noscope map*

nomap*

alias=ansi

Loop

Expansion

Inline

Expansio

n

Converting

Constant

Division into

Multiplication

Scheduling

Instruction

s

Constant

Propagation

of const

Qualified

Variables

Dividing

Optimizing

Ranges

Optimizing

External

Variable

Accesses

Optimization

Considering

the Type of

the Data

Indicated by

the Pointer

size loop=1 noinline noconst_div schedule const_

copy

scope nomap alias=noansi

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 77 of 276
Oct. 01, 2013

- When optimize=0 or optimize=1 is specified

Loop

Expansion

Inline

Expansio

n

Converting

Constant

Division into

Multiplication

Scheduling

Instruction

s

Constant

Propagation

of const

Qualified

Variables

Dividing

Optimizing

Ranges

Optimizing

External

Variable

Accesses

Optimization

Considering

the Type of

the Data

Indicated by

the Pointer

size loop=1 noinline noconst_div nosched-

ule

noconst_

copy

scope nomap alias=noansi

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 78 of 276
Oct. 01, 2013

-loop

< Compile Options / Optimize Options >

[Format]

- [Default]

The default for this option is loop=2.

[Description]

- This option specifies whether to optimize loop expansion.

- When the loop option is specified, the compiler expands loop statements (for, while, and do-while).

- The maximum expansion factor can be specified by <numeric value>. An integer from 1 to 32 can be specified for

<numeric value>. If no <numeric value> is specified, 2 will be assumed.

- The default for this option is determined based on the optimize option and speed or size option specifications. For

details, refer to the speed or size option.

[Remarks]

- This option is invalid when optimize=0 or optimize=1.

-loop[=<numeric value>]

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 79 of 276
Oct. 01, 2013

-inline

< Compile Options / Optimize Options >

[Format]

- [Default]

The default for this option is inline=100.

[Description]

- These options specify whether to automatically perform inline expansion of functions.

- A value from 0 to 65535 is specifiable as <numeric value>.

- When the inline option is specified, the compiler automatically performs inline expansion. However, inline expan-

sion is not performed for the functions specified by #pragma noinline. The user is able to use inline=<numeric

value>, to specify the allowed increase in the function's size due to the use of inline expansion. For example, when

inline=100 is specified, inline expansion will be performed until the function size has increased by 100% (size is

doubled).

- The default for this option is determined based on the optimize option and speed or size option specifications. For

details, refer to the speed or size option.

[Remarks]

- Inline expansion is attempted for all functions for which #pragma inline has been specified or with an inline spec-

ifier whether other options have been specified or not. To perform inline expansion for a function for certain, specify

#pragma inline for the function. Even though this option has been selected or an inline specifier has been speci-

fied for the function, if the compiler judges that the efficiency is degraded by inline expansion, it will not perform it in

some cases.

-inline[=<numeric value>]

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 80 of 276
Oct. 01, 2013

-noinline

< Compile Options / Optimize Options >

[Format]

[Description]

- When the noinline option is specified, automatic inline expansion is not performed.

[Remarks]

- Inline expansion is attempted for all functions for which #pragma inline has been specified or with an inline spec-

ifier whether other options have been specified or not.

-noinline

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 81 of 276
Oct. 01, 2013

-file_inline

< Compile Options / Optimize Options >

[Format]

- [Default]

None

[Description]

- This option is not available in V.2.00. Any specification of this option will simply be ignored and will not lead to an

error due to compatibility with former versions.

[Remarks]

- For C (C99) source files, -merge_files can be used instead of -file_inline. Add the file that was used with -

file_inline (including the file path if -file_inline_path was used together with it) as one of the source files to be

merged.

- There are some points to be noted regarding -merge_files. Refer to [Remarks] of the -merge_files option.

-file_inline=<file name>[,...]

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 82 of 276
Oct. 01, 2013

-case

< Compile Options / Optimize Options >

[Format]

- [Default]

The default for this option is case=auto.

[Description]

- This option specifies the expansion method of the switch statement.

- When case=ifthen is specified, the switch statement is expanded using the if_then method, which repeats, for

each case label, comparison between the value of the evaluation expression in the switch statement and the

case label value. If they match, execution jumps to the statement of the case label. This method increases the

object code size depending on the number of case labels in the switch statement.

- When case=table is specified, the switch statement is expanded by using the table method, where the case label

jump destinations are stored in a branch table so that a jump to the statement of the case label that matches the

expression for evaluation in the switch statement is made through a single access to the branch table. With this

method, the size of the branch table increases with the number of case labels in the switch statement, but the

performance in execution remains the same. The branch table is output to a section for areas holding switch

statements for branch tables.

- When case=auto is specified, the compiler automatically selects the if_then method or table method.

[Remarks]

- The branch table created when case=table has been specified will be output to section W when the nostuff option

is specified and will be output to section W, W_2, or W_1 according to the size of the switch statement when the

nostuff option is not specified.

-case={ ifthen | table | auto }

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 83 of 276
Oct. 01, 2013

-volatile

< Compile Options / Optimize Options >

[Format]

[Description]

- When volatile is specified, all external variables are handled as if they were volatile qualified. Accordingly, the

access count and access order for external variables are exactly the same as those written in the C/C++ source

file.

-volatile

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 84 of 276
Oct. 01, 2013

-novolatile

< Compile Options / Optimize Options >

[Format]

[Description]

- When novolatile is specified, the external variables which are not volatile qualified are optimized. Accordingly, the

access count and access order for external variables may differ from those written in the C/C++ source file.

-novolatile

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 85 of 276
Oct. 01, 2013

-const_copy

< Compile Options / Optimize Options >

[Format]

- [Default]

The default for this option is const_copy when the optimize=2 or optimize=max option has been specified.

[Description]

- When const_copy is specified, constant propagation is performed even for const qualified global variables.

- The default for this option is const_copy when the optimize=2 or optimize=max option has been specified.

[Remarks]

- const qualified variables in a C++ source file cannot be controlled by this option (constant propagation is always

performed).

-const_copy

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 86 of 276
Oct. 01, 2013

-noconst_copy

< Compile Options / Optimize Options >

[Format]

- [Default]

The default for this option is noconst_copy when the optimize=1 or optimize=0 option has been specified.

[Description]

- When noconst_copy is specified, constant propagation is disabled for const qualified global variables.

[Remarks]

- const qualified variables in a C++ source file cannot be controlled by this option (constant propagation is always

performed).

-noconst_copy

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 87 of 276
Oct. 01, 2013

-const_div

< Compile Options / Optimize Options >

[Format]

- [Default]

The default for this option is const_div when the speed option has been specified.

[Description]

- When const_div is specified, calculations for division and remainders of integer constants in the source file are

converted into sequences of multiplication or bitwise operation (shift or bitwise AND operations) instructions.

[Remarks]

- Constant multiplication that can be performed through only shift operations and division and residue that can be

performed through only bitwise AND operations cannot be controlled by the const_div option.

-const_div

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 88 of 276
Oct. 01, 2013

-noconst_div

< Compile Options / Optimize Options >

[Format]

- [Default]

The default for this option is noconst_div when the size option has been specified.

[Description]

- When noconst_div is specified, the corresponding division and remainder instructions are used for calculating

division and remainders of integer constants in the source file (except divisions and remainders of unsigned inte-

gers by powers of two).

[Remarks]

- Constant multiplication that can be performed through only shift operations and division and residue that can be

performed through only bitwise AND operations cannot be controlled by the noconst_div option.

-noconst_div

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 89 of 276
Oct. 01, 2013

-library

< Compile Options / Optimize Options >

[Format]

- [Default]

The default for this option is library=intrinsic.

[Description]

- When library=function is specified, all library functions are called.

- When library=intrinsic is specified, instruction expansion is performed for abs(), fabsf(), and library functions

which can use string manipulation instructions.

[Remarks]

- When -library=intrinsic and -isa=rxv2 are selected at the same time, calls of the sqrtf function or the sqrt function

(when -dbl_size=4) are expanded as FSQRT instructions. Note, however, that no value is set for errno in such

cases.

-library = { function | intrinsic }

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 90 of 276
Oct. 01, 2013

-scope

< Compile Options / Optimize Options >

[Format]

- [Default]

The default for this option is scope when the optimize=max option has been specified.

[Description]

- When the scope option is specified, the optimizing ranges of the large-size function are divided into many sections

before compilation.

- Use this option at performance tuning because it affects the object performance depending on the program.

-scope

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 91 of 276
Oct. 01, 2013

-noscope

< Compile Options / Optimize Options >

[Format]

- [Default]

The default for this option is noscope when the optimize=max option has been specified.

[Description]

- When the noscope option is specified, the optimizing ranges are not divided before compilation. When the opti-

mizing range is expanded, the object performance is generally improved although the compilation time is delayed.

However, if registers are not sufficient, the object performance may be lowered. Use this option at performance

tuning because it affects the object performance depending on the program.

-noscope

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 92 of 276
Oct. 01, 2013

-schedule

< Compile Options / Optimize Options >

[Format]

- [Default]

The default for this option is schedule when the optimize=2 or optimize=max option has been specified.

[Description]

- When the schedule option is specified, instructions are scheduled taking into consideration pipeline processing.

-schedule

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 93 of 276
Oct. 01, 2013

-noschedule

< Compile Options / Optimize Options >

[Format]

- [Default]

The default for this option is noschedule when the optimize=1 or optimize=0 option has been specified.

[Description]

- When the noschedule option is specified, instructions are not scheduled. Basically, processing is performed in the

same order the instructions have been written in the C/C++ source file.

-noschedule

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 94 of 276
Oct. 01, 2013

-map

< Compile Options / Optimize Options >

[Format]

- [Default]

The default for this option is map when the optimize=max option has been specified.

[Description]

- This option optimizes accesses to global variables.

- When the map option is specified, a base address is set by using an external symbol-allocation information file

created by the optimizing linkage editor, and a code that uses addresses relative to the base address for accesses

to global or static variables is generated.

- When accesses to external variables are to be optimized by the map option, how the map option is used differs

according to the specification of the output option.

- [output=abs or output=mot is specified]

Specify only map (not necessary when optimize=max is specified). Compilation and linkage are automatically

performed twice, and a code in which the base address is set based on external symbol allocation information is

generated.

- [output=obj is specified]

Compile the source file once without specifying these options, create an external symbol-allocation information file

by specifying map=<file name> at linkage by the optimizing linkage editor, and then compile the source file again

by specifying map=<file name> in ccrx.

[Example]

- <C source file>

-map[= <file name>]

long A,B,C;

void func()

{

 A = 1;

 B = 2;

 C = 3;

}

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 95 of 276
Oct. 01, 2013

- <Output code>

[Remarks]

- When the order of the definitions of global variables or static variables has been changed, a new external symbol-

allocation information file must be created. If any option other than the map option in the previous compilation dif-

fers from the one in the current compilation, or if any contents of a function are changed, correct operation is not

guaranteed. In such a case, a new external symbol-allocation information file must be created.

- This option is only valid for the compilation of C/C++ source programs. It does not apply to programs that have

been compiled with the output=src specification or to programs written in assembly language.

- When the map option and smap option are specified simultaneously, the map option is valid.

- When continuous data sections are allocated after a program section, optimization of external variable accesses

may be disabled or may not be performed sufficiently. For performing optimization to a maximum extent in a case

in which multiple sections are allocated continuously, allocate the program section at the end. An example is

shown below.

- In the above example, section P is allocated from address 0x100, sections C1 and C2 are allocated immediately

after section P, and section C3 is allocated from address 0x400. Since sections C1 and C2 are allocated continu-

ously after section P, section P should be allocated behind section C2. Section C3 is not involved because it is not

allocated continuously.

_func:

 MOV.L #_A,R4 ; Sets the address of A as the base address.

 MOV.L #1,[R4]

 MOV.L #2,4[R4] ; Accesses B using the address of A as the base.

 MOV.L #3,8[R4] ; Accesses C using the address of A as the base.

P C1 C2 C3 Note:
P: Program section
C1, C2, C3: Data section

Address 0x100 Address 0x400

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 96 of 276
Oct. 01, 2013

-smap

< Compile Options / Optimize Options >

[Format]

[Description]

- When the smap option is specified, a base address is set for global or static variables defined in the file to be com-

piled, and a code that uses addresses relative to the base address for accesses to those variables is generated.

[Example]

- <C source file>

- <Output code>

[Remarks]

- This option is only valid for the compilation of C/C++ source programs. It does not apply to programs that have

been compiled with the output=src specification or to programs written in assembly language.

- When the map option and smap option are specified simultaneously, the map option is valid.

-smap

long A,B,C;

void func()

{

 A = 1;

 B = 2;

 C = 3;

}

_func:

 MOV.L #_A,R4 ; Sets the address of A as the base address.

 MOV.L #1,[R4]

 MOV.L #2,4[R4] ; Accesses B using the address of A as the base.

 MOV.L #3,8[R4] ; Accesses C using the address of A as the base.

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 97 of 276
Oct. 01, 2013

-nomap

< Compile Options / Optimize Options >

[Format]

- [Default]

The default for this option is nomap when the optimize=0, optimize=1, or optimize=2 option has been specified.

[Description]

- When the nomap option is specified, accesses to external variables are not optimized.

[Example]

- <C source file>

- <Output code>

-nomap

long A,B,C;

void func()

{

 A = 1;

 B = 2;

 C = 3;

}

_func:

 MOV.L #_A,R4

 MOV.L #1,[R4]

 MOV.L #_B,R4

 MOV.L #2,[R4]

 MOV.L #_C,R4

 MOV.L #3,[R4]

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 98 of 276
Oct. 01, 2013

-approxdiv

< Compile Options / Optimize Options >

[Format]

- [Default]

When this option is omitted, division of floating-point constants into multiplications of the corresponding reciprocals

as constants is not performed.

[Description]

- This option converts divisions of floating-point constants into multiplications of the corresponding reciprocals as

constants.

- To be specific, when there is an expression of (variable  divisor) with the divisor being a constant, a code with the

expression converted into (variable  reciprocal of divisor) will be generated.

[Remarks]

- When this option is specified, the execution performance of floating-point constant division will be improved. The

precision and order of operations may, however, be changed, so take care on this point.

-approxdiv

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 99 of 276
Oct. 01, 2013

-enable_register

< Compile Options / Optimize Options >

[Format]

[Description]

- This option is not available in V.2.00. Any specification of this option will simply be ignored and will not lead to an

error due to compatibility with former versions.

-enable_register

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 100 of 276
Oct. 01, 2013

-simple_float_conv

< Compile Options / Optimize Options >

[Format]

[Description]

- This option omits part of the type conversion processing for the floating type.

- When this option is selected, the generation code that performs type conversion of the next floating-point number

changes.

- a) Type conversion from 32-bit floating type to unsigned integer type

- b) Type conversion from unsigned integer type to 32-bit floating type

- c) Type conversion from integer type to 64-bit floating type via 32-bit floating type

[Example]

- < a) Type conversion from 32-bit floating type to unsigned integer type>

-simple_float_conv

unsigned long func1(float f)

{

 return ((unsigned long)f);

}

When this option is not specified:

 _func1:

 FCMP #4F000000H,R1

 BLT L12

 FADD #0CF800000H,R1

 L12:

 FTOI R1,R1

 RTS

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 101 of 276
Oct. 01, 2013

- < b) Type conversion from unsigned integer type to 32-bit floating type>

- < c) Type conversion from integer type to 64-bit floating type via 32-bit floating type>

Note Does not apply when the dbl_size=8 specification is not valid.

float func2(unsigned long u)

{

 return ((float)u);

}

When this option is not specified:

 _func2:

 BTST #31,R1

 BEQ L15

 SHLR #1,R1,R14

 AND #1,R1

 OR R14,R1

 ITOF R1,R1

 FADD R1,R1

 BRA L16

 L15:

 ITOF R1,R1

 L16:

 RTS

double func3(long l)

 {

 return (double)(float)l;

 }
When this option is not specified:

_func3:

 ITOF R1,R1

 BRA __COM_CONVfd

When this option is specified:

 BRA __COM_CONV32sd

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 102 of 276
Oct. 01, 2013

[Remarks]

- When this option is specified, code performance of the relevant type conversion processing is improved. The

conversion result may, however, differ from C/C++ language specifications, so take care on this point.

- This option of c) is invalid when optimize=0.

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 103 of 276
Oct. 01, 2013

-fpu

< Compile Options / Optimize Options >

[Format]

- [Default]

The default for this option is fpu when the Instruction-code set as the ISA *1.

The default for this option is nofpu (when RX200 is selected as the target CPU *2) or fpu (in other cases).

Note
*1) This means a selection by the -isa option or the ISA_RX environment variable.
*2) This means a selection by the -cpu option or the CPU_RX environment variable.

[Description]

- When the fpu option is specified, a code using FPU instructions is generated.

[Remarks]

- For details of the FPU instructions, refer to the RX Family Software Manual.

- When RX200 is selected as the CPU, an error will occur if fpu is specified.

-fpu

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 104 of 276
Oct. 01, 2013

-nofpu

< Compile Options / Optimize Options >

[Format]

- [Default]

The default for this option is fpu when the Instruction-code set as the ISA *1.

The default for this option is nofpu (when RX200 is selected as the target CPU *2) or fpu (in other cases).

Note
*1) This means a selection by the -isa option or the ISA_RX environment variable.
*2) This means a selection by the -cpu option or the CPU_RX environment variable.

[Description]

- When the nofpu option is specified, a code not using FPU instructions is generated.

[Remarks]

- For details of the FPU instructions, refer to the RX Family Software Manual.

-nofpu

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 105 of 276
Oct. 01, 2013

-alias

< Compile Options / Optimize Options >

[Format]

- [Default]

The default for this option is alias=noansi.

[Description]

- This option selects whether to perform optimization with consideration for the type of the data indicated by the

pointer.

- When alias=ansi is specified, based on the ANSI standard, optimization considering the type of the data indicated

by the pointer is performed. Although the performance of object code is generally better than when alias=noansi is

specified, the results of execution may differ according to whether alias=ansi or alias=noansi is specified.

- In the same way as in V. 1.00, ANSI-standard based optimization in consideration of the type of data indicated by

pointers is not performed when alias=noansi is specified.

[Example]

-alias = { noansi | ansi }

long x;

long n;

void func(short * ps)

{

 n = 1;

 *ps = 2;

 x = n;

}

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 106 of 276
Oct. 01, 2013

- [When alias=noansi is specified]

Note The value of n is reloaded at (A) since it is regarded that there is a possibility of the value of n being rewrit-

ten by *ps = 2.

- [When alias=ansi is specified]

Note The value used in assignment at n = 1 is reused at (B) because it is regarded that the value of n will not

change at *ps = 2 since *ps and n have different types.

(If the value of n is changed by *ps = 2, the result is also changed.)

[Remarks]

- When optimize=0 or optimize=1 is valid and the alias option is specified, the alias=ansi specification will be

ignored and code will always be generated as if alias=noansi has been selected.

_func:

 MOV.L #_n,R4

 MOV.L #1,[R4] ; n = 1;

 MOV.W #2,[R1] ; *ps = 2;

 MOV.L [R4],R5 ; (A) n is reloaded

 MOV.L #_x,R4

 MOV.L R5,[R4]

 RTS

_func:

 MOV.L #_n,R4

 MOV.L #1,[R4] ; n = 1;

 MOV.W #2,[R1] ; *ps = 2;

 MOV.L #_x,R4

 MOV.L #1,[R4] ; (B) Value used in assignment at n = 1 is reused

 RTS

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 107 of 276
Oct. 01, 2013

-float_order

< Compile Options / Optimize Options >

[Format]

- [Default]

If this option is omitted, optimization of modification of the operation order in a floating-point expression is not

performed.

[Description]

- This option is not available in V.2.00. Any specification of this option will simply be ignored and will not lead to an

error due to compatibility with former versions.

-float_order

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 108 of 276
Oct. 01, 2013

-ip_optimize

< Compile Options / Optimize Options >

[Format]

[Description]

- This option applies global optimization including

- optimization that utilizes interprocedural alias analysis and

- propagation of constant parameters and return values.

[Example]

1.

- <C source code>

- <Output assembly code without ip_optimize>

- <Output assembly code with ip_optimize>

-ip_optimize

static int func1(int *a, int *b) {

 *a=0;

 *b=1;

 return *a;

}

int x[2];

int func2() {

 return func1(x, x+1);

}

; -optimize=2 -size

__$func1:

 MOV.L #00000000H, [R1]

 MOV.L #00000001H, [R2]

 MOV.L [R1], R1

 RTS

_func2:

 MOV.L #_x,R1

 ADD #04H, R1, R2

 BRA __$func1

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 109 of 276
Oct. 01, 2013

2.

- <C source code>

- <Output assembly code without ip_optimize>

- <Output assembly code with ip_optimize>

[Remarks]

- Inter-file optimization is also applied when this option is used with merge_files.

; -optimize=2 -size

__$func1:

 MOV.L #00000000H, [R1]

 MOV.L #00000001H, [R2]

 MOV.L #00000000H, R1

 RTS

_func2:

 MOV.L #_x,R1

 ADD #04H, R1, R2

 BRA __$func1

static int func(int x, int y, int z) {

 return x-y+z;

}

int func2() {

 return func(3,4,5);

}

__$func:

 ADD R3, R1

 SUB R2, R1

 RTS

_func2:

 MOV.L #00000005H, R3

 MOV.L #00000004H, R2

 MOV.L #00000003H, R1

 BRA __$func

__$func:

 MOV.L #00000004H, R1

 RTS

_func2:

 MOV.L #00000005H, R3

 MOV.L #00000004H, R2

 MOV.L #00000003H, R1

 BRA __$func

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 110 of 276
Oct. 01, 2013

-merge_files

< Compile Options / Optimize Options >

[Format]

[Description]

- This option allows the compiler to compile multiple source files and output the results to a single object file.

- The name of the object file is specified by the output option. If no name is specified, the filename will be that of the

first source file plus a filename extension that corresponds to the selected output format.

- If src or obj is selected as the output format, the compiler also generates blank files that have the names of the

other source files with the given filename extension attached.

[Example]

files.obj is the object file. Blank files file1.obj, file2.obj, and file3.obj are also generated.

[Remarks]

- This option is invalid when only one source file is to be compiled or when the output option has been used to

specify prep as the output format.

- Inter-file in-line expansion is applied when this option is used with the inline option.

- This option is not available for files to be compiled in C++ or EC++.

- The following restrictions apply to programs that include static functions or static variables.

- If you wish to use the [Watch] window of the debugger to view a static variable that has the same name as a

variable in another file, specify the variable name as well as the filename. The debugger cannot identify the

variable without a filename.

- When two or more files contain static variables with the same name and rlink is used to overlay sections to

which the files belong, the debugger's facility to display overlay sections taking precedence over other sec-

tions is not available.

- The names of static variables and static functions written in the link map file (.map) are those converted by the

compiler (i.e., not original ones).

- Any differences (e.g. type specifier) in declarations of the same variable may lead to an error in compilation.

-merge_files

ccrx -merge_files -output=src=files.obj file1.c file2.c file3.c

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 111 of 276
Oct. 01, 2013

-whole_program

< Compile Options / Optimize Options >

[Format]

[Description]

- This option makes the compiler perform optimization on the assumption that all source files have been input.

[Remarks]

- Specifying this option also makes the ip_optimize option effective, and if multiple source files are input, the

merge_files option is also effective.

- When this option is specified, compilation is on the assumption that the conditions listed below are satisfied. Cor-

rect operation is not guaranteed otherwise.

- Values and addresses of extern variables defined in the target source files will not be modified or referred to

by other files.

- Functions within the target source file will not be called from within other files, although functions in other files

can be called from within the target source files.

[Example]

-whole_program

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 112 of 276
Oct. 01, 2013

[wp.c]

extern void g(void);

int func(void)

{

 static int a = 0;

 a++; // (1) Write a value to a.

 g(); // (2) Call g().

 return a; // (3) Call a.

}

[Without whole_program]

The compiler assumes that (2) will change the value of a since function g() may call
function func(), and generates a code to read the value of a in (3).

_func:

 PUSH.L R6

 MOV.L #__a1,R6

 MOV.L [R6],R14

 ADD #1,R14

 MOV.L R14,[R6] ; (1)

 BSR _g ; (2)

 MOV.L [R6],R1 ; (3)

 RTSD #4,R6-R6

[With whole_program]

The compiler assumes that function g() will not call function func() and thus (2) will not
change the value of a. As a result, the compiler does not read the value of a in (3) and
instead generates a code to use the value written to a in (1).

_func:

 PUSH.L R6

 MOV.L #__a1,R14

 MOV.L [R14],R6

 ADD #1,R6

 MOV.L R6,[R14] ; (1)

 BSR _g ; (2)

 MOV.L R6,R1 ; (3)

 RTSD #4,R6-R6

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 113 of 276
Oct. 01, 2013

< Compile Options / Microcontroller Options >

The following microcontroller options are available.

- -isa

- -cpu

- -endian

- -round

- -denormalize

- -dbl_size

- -int_to_short

- -signed_char

- -unsigned_char

- -signed_bitfield

- -unsigned_bitfield

- -auto_enum

- -bit_order

- -pack

- -unpack

- -exception

- -noexception

- -rtti

- -fint_register

- -branch

- -base

- -patch

- -pic

- -pid

- -nouse_pid_register

- -save_acc

Microcontroller Options

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 114 of 276
Oct. 01, 2013

-isa

< Compile Options / Microcontroller Options >

[Format]

- [Default]

The default for this option is determined based on the environment variable ISA_RX.

[Description]

- This option is used to select an instruction-set architecture (RXv1 or RXv2) for use in generating instruction codes.

- When -isa=rxv1 is specified, an instruction code for the RXv1 instruction-set architecture is generated.

- When -isa=rxv2 is specified, an instruction code for the RXv2 instruction-set architecture is generated.

[Remarks]

- When neither the -nofpu nor -fpu option has been selected, specifying the -isa option automatically selects the

-fpu option.

- Omitting the -isa option will lead to an error if neither the -cpu option nor one of the environment variables

(CPU_RX or ISA_RX) is specified.

- The -isa and -cpu options cannot be specified at the same time.

-isa={ rxv1 | rxv2 }

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 115 of 276
Oct. 01, 2013

-cpu

< Compile Options / Microcontroller Options >

[Format]

- [Default]

The default for this option is determined based on the environment variable CPU_RX.

[Description]

- This option specifies the microcontroller type for the instruction code to be generated.

- When cpu=rx600 is specified, an instruction code for the RX600 Series is generated.

- When cpu=rx200 is specified, an instruction code for the RX200 Series is generated.

[Remarks]

- This option is for compatibility with earlier products.

- For upcoming RX-family MCUs, the isa option will be used instead of the cpu option to select an instruction-set

architecture. In developing new applications, use the isa option where possible.

- The cpu option can be replaced by the -isa, -fpu and -nofpu option as follows.

-- -cpu=rx600 → -isa=rxv1 -fpu

-- -cpu=rx200 → -isa=rxv1 -nofpu

- When cpu=rx200 is specified, the nofpu option is automatically selected.

- cpu=rx200 and the fpu option cannot be specified at the same time.

- When cpu=rx600 is specified while neither the nofpu option nor the fpu option has been specified, the fpu option

is automatically selected.

- Omitting the cpu option will lead to an error if neither the -isa option nor one of the environment variables

(CPU_RX or ISA_RX) is specified.

- The cpu and isa options cannot be specified at the same time.

-cpu={ rx600 | rx200 }

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 116 of 276
Oct. 01, 2013

-endian

< Compile Options / Microcontroller Options >

[Format]

- [Default]

The default for this option is endian=little.

[Description]

- When endian=big is specified, data bytes are arranged in big endian.

- When endian=little is specified, data bytes are arranged in little endian.

- The endian type can also be specified by the #pragma endian extension. If both this option and a #pragma exten-

sion are specified, the #pragma specification takes priority.

-endian={ big | little }

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 117 of 276
Oct. 01, 2013

-round

< Compile Options / Microcontroller Options >

[Format]

- [Default]

The default for this option is round=nearest.

[Description]

- This option specifies the rounding method for floating-point constant operations.

- When round=zero is specified, values are rounded to zero.

- When round=nearest is specified, values are rounded to the nearest value.

[Remarks]

- This option does not affect the method of rounding for floating-point operations during program execution.

- The default selection of this option does not affect the selection of the fpu and nofpu options.

-round={ zero | nearest }

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 118 of 276
Oct. 01, 2013

-denormalize

< Compile Options / Microcontroller Options >

[Format]

- [Default]

The default for this option is denormalize=off.

[Description]

- This option specifies the operation when denormalized numbers are used to describe floating-point constants.

- When denormalize=off is specified, denormalized numbers are handled as zero.

- When denormalize=on is specified, denormalized numbers are handled as they are.

[Remarks]

- This option does not affect the handling of denormalized numbers in floating-point operations during program exe-

cution.

- This option is not automatically enabled by the selection of the fpu and nofpu options.

-denormalize={ off | on }

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 119 of 276
Oct. 01, 2013

-dbl_size

< Compile Options / Microcontroller Options >

[Format]

- [Default]

The default for this option is dbl_size=4.

[Description]

- This option specifies the precision of the double type and long double type.

- When dbl_size=4 is specified, the double type and long double type are handled as the single-precision floating

type (4 bytes).

- When dbl_size=8 is specified, the double type and long double type are handled as the double-precision floating

type (8 bytes).

[Remarks]

- When dbl_size=4 is selected, among the standard functions, the mathf.h and math.h functions having the same

specifications as each other (e.g., sqrtf and sqrt) are integrated to configure a standard library. Because of this,

phenomena, such as the following example will occur when dbl_size=4 is selected. When the RX simulator or

emulator traces (single-step execution) the calling of sqrtf which is a mathf.h header function, it appears as if not

sqrtf but sqrt, which is a math.h header function with the same specifications, has been called.

-dbl_size={ 4 | 8 }

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 120 of 276
Oct. 01, 2013

-int_to_short

< Compile Options / Microcontroller Options >

[Format]

- [Default]

Before compilation, the int type is not replaced with the short type and the unsigned int type is not replaced with

the unsigned short type in the source file.

[Description]

- Before compilation, the int type is replaced with the short type and the unsigned int type is replaced with the

unsigned short type in the source file.

[Remarks]

- INT_MAX, INT_MIN, and UINT_MAX of limits.h are not converted by this option.

- This option is invalid during C++ and EC++ program compilation. If an external name of a C program may be

referred to by a C++, EC++ program, message W0523041 will be output for the external name.

- When the int_to_short option is specified and a file including a C standard header is compiled as C++ or EC++,

the compiler may show the W0523041 message. In this case, simply ignore the message because it does not

indicate a problem.

- Data that are shared between C and C++ (EC++) programs must be declared as the long or short type rather than

as the int type.

-int_to_short

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 121 of 276
Oct. 01, 2013

-signed_char

< Compile Options / Microcontroller Options >

[Format]

- [Default]

The default for this option is unsigned_char.

[Description]

- When signed_char is specified, the value is handled as the signed char type.

[Remarks]

- The bit-field members of the char type are not controlled by this option; control them using the signed_bitfield

and unsigned_bitfield options.

-signed_char

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 122 of 276
Oct. 01, 2013

-unsigned_char

< Compile Options / Microcontroller Options >

[Format]

- [Default]

The default for this option is unsigned_char.

[Description]

- When unsigned_char is specified, the value is handled as the unsigned char type.

[Remarks]

- The bit-field members of the char type are not controlled by this option; control them using the signed_bitfield

and unsigned_bitfield options.

-unsigned_char

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 123 of 276
Oct. 01, 2013

-signed_bitfield

< Compile Options / Microcontroller Options >

[Format]

- [Default]

When signed_bitfield is omitted, the value is handled as unsigned.

[Description]

- When signed_bitfield is specified, the value is handled as signed.

-signed_bitfield

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 124 of 276
Oct. 01, 2013

-unsigned_bitfield

< Compile Options / Microcontroller Options >

[Format]

- [Default]

When unsigned_bitfield is omitted, the value is handled as unsigned.

[Description]

- When unsigned_bitfield is specified, the value is handled as unsigned.

-unsigned_bitfield

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 125 of 276
Oct. 01, 2013

-auto_enum

< Compile Options / Microcontroller Options >

[Format]

- [Default]

The default for this option is to process the enumeration type size as the signed long type.

[Description]

- This option processes the enumerated data qualified by enum as the minimum data type with which the enumera-

tion value can fit in.

- The possible enumeration values correspond to the data types as shown in the following table.

Table A-6. Correspondences between Possible Enumeration Values and Data Types

-auto_enum

Enumerator Data Type

Minimum Value Maximum Value

128 127 signed char

0 255 unsigned char

32768 32767 signed short

0 65535 unsigned short

Other than above Other than above signed long

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 126 of 276
Oct. 01, 2013

-bit_order

< Compile Options / Microcontroller Options >

[Format]

- [Default]

The default for this option is bit_order=right.

[Description]

- This option specifies the order of bit-field members.

- When bit_order=left is specified, members are allocated from the upper bit.

- When bit_order=right is specified, members are allocated from the lower bit.

- The order of bit-field members can also be specified by the #pragma bit_order extension. If both this option and a

#pragma extension are specified, the #pragma specification takes priority.

-bit_order = { left | right }

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 127 of 276
Oct. 01, 2013

-pack

< Compile Options / Microcontroller Options >

[Format]

- [Default]

The boundary alignment value for structures and classes equals the maximum boundary alignment value for mem-

bers.

[Description]

- This option specifies the boundary alignment value for structure members and class members.

- The boundary alignment value for structure members can also be specified by the #pragma pack extension. If

both this option and a #pragma extension are specified, the #pragma specification takes priority. The boundary

alignment value for structures and classes equals the maximum boundary alignment value for members.

[Remarks]

- The boundary alignment values for structure members and class members when these options are specified are

shown in the following table.

Table A-7. Boundary Alignment Values for Structure Members and Class Members When the pack Option is
Specified

Note Becomes the same as short when the int_to_short option is specified.

-pack

Member Type pack Not Specified

(signed) char 1 1

(unsigned) short 1 2

(unsigned) intNote, (unsigned) long, (unsigned) long long, floating type, and

pointer type

1 4

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 128 of 276
Oct. 01, 2013

-unpack

< Compile Options / Microcontroller Options >

[Format]

- [Default]

The boundary alignment value for structures and classes equals the maximum boundary alignment value for mem-

bers.

[Description]

- This option specifies the boundary alignment value for structure members and class members.

- The boundary alignment value for structures and classes equals the maximum boundary alignment value for mem-

bers.

[Remarks]

- The boundary alignment values for structure members and class members when these options are specified are

shown in the following table.

Table A-8. Boundary Alignment Values for Structure Members and Class Members When the unpack Option is
Specified

Note Becomes the same as short when the int_to_short option is specified.

-unpack

Member Type unpack Not Specified

(signed) char 1 1

(unsigned) short 2 2

(unsigned) intNote, (unsigned) long, (unsigned) long long, floating type, and

pointer type

4 4

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 129 of 276
Oct. 01, 2013

-exception

< Compile Options / Microcontroller Options >

[Format]

- [Default]

The C++ exceptional handling function (try, catch, throw) is disabled.

[Description]

- The C++ exceptional handling function (try, catch, throw) is enabled.

- The code performance may be lowered.

[Remarks]

- In order to use the C++ exceptional handling function among files, perform the following:

- Specify rtti=on.

- Do not specify the noprelink option in the optimizing linkage editor.

- The exception option can be specified only at C++ compilation. The exception option is ignored when lang=cpp

has not been specified and the input file extension is .c or .p.

-exception

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 130 of 276
Oct. 01, 2013

-noexception

< Compile Options / Microcontroller Options >

[Format]

- [Default]

The C++ exceptional handling function (try, catch, throw) is disabled.

[Description]

- The C++ exceptional handling function (try, catch, throw) is disabled.

[Remarks]

- In order to use the C++ exceptional handling function among files, perform the following:

- Specify rtti=on.

- Do not specify the noprelink option in the optimizing linkage editor.

- The noexception option can be specified only at C++ compilation. The noexception option cannot be specified

when lang=cpp has not been specified and the input file extension is .c or .p. If specified, an error will occur.

-noexception

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 131 of 276
Oct. 01, 2013

-rtti

< Compile Options / Microcontroller Options >

[Format]

- [Default]

The default for this option is rtti=off.

[Description]

- This option enables or disables runtime type information.

- When rtti=on is specified, dynamic_cast and typeid are enabled.

- When rtti=off is specified, dynamic_cast and typeid are disabled.

[Remarks]

- Do not define relocatable files (.obj) that were created by this option in a library, and do not output files in the relo-

catable format (.rel) through the optimizing linkage editor. A symbol double definition error or symbol undefined

error may occur.

- rtti=on can be specified only at C++ compilation. rtti=on is ignored when lang=cpp has not been specified and

the input file extension is .c or .p.

-rtti={ on | off }

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 132 of 276
Oct. 01, 2013

-fint_register

< Compile Options / Microcontroller Options >

[Format]

- [Default]

The default for this option is fint_register=0.

[Description]

- This option specifies the general registers which are to be used only in fast interrupt functions (functions that have

the fast interrupt setting (fint) in their interrupt specification defined by #pragma interrupt). The specified registers

cannot be used in functions other than the fast interrupt functions. Since the general registers specified by this

option can be used without being saved or restored in fast interrupt functions, the execution speed of fast interrupt

functions will most likely be improved. Then again, since the number of usable general registers in other functions

is reduced, the efficiency of register allocation in the entire program is degraded.

- The options correspond to the registers as shown in the following table.

Table A-9. Correspondences between Options and Registers

[Remarks]

- Correct operation is not guaranteed when a register specified by this option is used in a function other than the fast

interrupt functions. If a register specified by this option has been specified by the base option, an error will occur.

-fint_register = {0 | 1 | 2 | 3 | 4 }

Option Registers for Fast Interrupts Only

fint_register=0 None

fint_register=1 R13

fint_register=2 R12, R13

fint_register=3 R11, R12, R13

fint_register=4 R10, R11, R12, R13

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 133 of 276
Oct. 01, 2013

-branch

< Compile Options / Microcontroller Options >

[Format]

- [Default]

The default for this option is branch=24.

[Description]

- This option specifies the branch width.

- When branch=16 is specified, the program is compiled with a branch width within 16 bits.

- When branch=24 is specified, the program is compiled with a branch width within 24 bits.

- When branch=32 is specified, the branch width is not specified.

-branch = { 16 | 24 | 32 }

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 134 of 276
Oct. 01, 2013

-base

< Compile Options / Microcontroller Options >

[Format]

[Description]

- This option specifies the general register used as a fixed base address throughout the program.

- When base=rom=<register A> is specified, accesses to const variables are performed relative to the specified

register A. Note that the total size of the constant area section must be within 64 Kbytes to 256 Kbytes*.

- When base=ram=<register B> is specified, accesses to initialized variables and uninitialized variables are per-

formed relative to the specified register B. Note that the total RAM data size must be within 64 Kbytes to 256

Kbytes*.

- When <address value>=<register C> is specified, accesses to an area within 64Kbytes to 256 bytes from the

address value, among the areas whose addresses are already determined at the time of compilation, are per-

formed relative to the specified register C.

Note This value is in the range from 64 to 256 Kbytes and depends on the total size of variables to be accessed.

[Remarks]

- The same register cannot be specified for different areas.

- Only a single register can be specified for each area. If a register specified by the fint_register option is specified

by this option, an error will occur.

- When the pid option is selected, base=rom=<register> cannot be selected. If selected, message W0523039 is

output as a warning and the selection of base=rom=<register> is disabled.

-base = { rom=<register>

 | ram=<register>

 | <address value> = <register>}

 <register>:= {R8 to R13}

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 135 of 276
Oct. 01, 2013

-patch

< Compile Options / Microcontroller Options >

[Format]

[Description]

- This option is used to avoid a problem specific to the CPU type.

- When -patch=rx610 is specified, the MVTIPL instruction which causes a problem in the RX610 Group is not used

in the generated code. Unless -patch=rx610 is specified, the code generated in response to the call by the intrin-

sic function set_ipl will contain the MVTIPL instruction.

-patch = { rx610 }

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 136 of 276
Oct. 01, 2013

-pic

< Compile Options / Microcontroller Options >

[Format]

- [Default]

This option does not generate code with the program section as PIC (position independent code).

[Description]

- This option generates code with the program section as PIC (position independent code).

- In PIC, all function calls are performed with BSR or BRA instructions. When acquiring the address of a function, a

relative address from the PC should be used. This allows PIC to be located at a desired address after linkage.

[Example]

- Calling a function (only for branch=32)

- Acquiring a function address

-pic

void func()

{

 sub();

}

[Without -pic]

_func:

 MOV.L #_sub,R14

 JMP R14

[With -pic]

_func:

 MOV.L #_sub-L11,R14

L11:

 BRA R14

void func1(void);

void (*f_ptr)(void);

void func2(void)

{

 f_ptr = func1;

}

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 137 of 276
Oct. 01, 2013

[Remarks]

- In C++ or EC++ compilation, the pic option cannot be selected. If selected, message W0523039 is output as a

warning and the selection of the pic option is disabled.

- The address of a function which is PIC should not be used in the initialization expression used for static initializa-

tion. If used, error E0523026 will occur.

- <Example of using a PIC address for static initialization>

- When creating a code for startup of the application program using the PIC function, refer to Application Startup,

instead of Startup.

- For the PIC function, also refer to Usage of PIC/PID Function.

[Without -pic]

_func2:

 MOV.L #_f_ptr,R4

 MOV.L #_func1,[R4]

 RTS

[With -pic]

_func2:

 MOV.L #_f_ptr,R4

L11:

 MVFC PC,R14

 ADD #_func1-L11,R14

 MOV.L R14,[R4]

 RTS

void pic_func1(void), pic_func2(int), pic_func3(int); /* Becomes PIC */

void (*fptr1_for_pic) = pic_func1; /* Uses PIC address in static initialization: Error */

struct PIC_funcs{ int code; void (*fptr)(int); };

struct PIC_funcs pic_funcs[] = {

 { 2, pic_func2 }, /* Uses PIC address in static initialization: Error */

 { 3, pic_func3 }, /* Uses PIC address in static initialization: Error */

};

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 138 of 276
Oct. 01, 2013

-pid

< Compile Options / Microcontroller Options >

[Format]

- [Default]

The constant area sections C, C_2, and C_1, the literal section L, and the switch statement branch table sections

W, W_2, and W_1 are not handled as PID (position independent data).

[Description]

- The constant area sections C, C_2, and C_1, the literal section L, and the switch statement branch table sections

W, W_2, and W_1 are handled as PID (position independent data).

- PID can be accessed through a relative address from the PID register. This allows PID to be located at a desired

address after linkage.

- A single general register is used to implement the PID function.

- <PID register>

- Based on the rules in the following table, one register from among R9 to R13 is selected according to the

specification of the fint_register option. If the fint_register option is not specified, R13 is selected.

Table A-10. Correspondences between fint_register Options and PID Registers

- The PID register can be used only for the purpose of PID access.

- <Parameters>

- The parameter selects the maximum bit width of the offset when accessing the constant area section from the

PID register as 16 bits or 32 bits.

- The default for this option when the offset width is omitted is pid=16. When pid=16 is specified, the size of the

constant area section that can be accessed by the PID register is limited to 64 Kbytes to 256 Kbytes (varies

depending on the access width). When pid=32 is specified, there is no limitation of the size of the constant

area section that can be accessed by the PID register, but the size of the code accessing PID is increased.

- Note that when pid=32 and the map option with valid external symbol-allocation information are specified at

the same time, the allocation information causes code the same as if pid=16 was specified to be generated if

access by the PID register is possible.

-pid[={ 16 | 32 }]

fint_register Option PID Register

No fint_register specification R13

fint_register = 0

fint_register = 1 R12

fint_register = 2 R11

fint_register = 3 R10

fint_register = 4 R9

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 139 of 276
Oct. 01, 2013

[Examples]

- Accessing an externally referenced symbol that is const qualified

- Acquiring the address of an externally defined symbol that is const qualified

extern const int pid;

int work;

void func1()

{

 work = pid;

}

[Without -pid]

_func1:

 MOV.L #_pid,R4

 MOV.L [R4],R5

 MOV.L #_work,R4

 MOV.L R5,[R4]

 RTS

[With -pid=16] (only when the PID register is R13)

_func1:

 MOV.L _pid-__PID_TOP:16[R13],R5

 MOV.L #_work,R4

 MOV.L R5,[R4]

 RTS

 .glb __PID_TOP

[With -pid=32] (only when the PID register is R13)

_func1:

 ADD #(_pid-__PID_TOP),R13,R6

 MOV.L [R6],R5

 MOV.L #_work,R4

 MOV.L R5,[R4]

 RTS

 .glb __PID_TOP

extern const int pid = 1000;

const int *ptr;

void func2()

{

 ptr = &pid;

}

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 140 of 276
Oct. 01, 2013

[Remarks]

- The address of an area which is PID should not be used in the initialization expression used for static initialization.

If used, error E0523027 will occur.

- <Example of using a PID address for static initialization>

- When creating a code for startup of the application program using the PID function, refer to Application Startup,

instead of Startup.

- When the pid option is selected, the same external variables in different files all have to be const qualified. This is

because the pid option is used to specify const qualified variables as PID. The pid option (PID function) should

not be used when there may be an external variable that is not const qualified.

- If the map=<file name> option is enabled while the pid option is selected, warning W0530809 may be output

when there is an externally referenced variable that is not const qualified but used in different files as the same

external variable. In the case, the displayed variable is handled as PID.

- In C++ or EC++ compilation, the pid option cannot be selected. If selected, message W0523039 is output as a

warning and the selection of the pid option is disabled.

- When the pid option is selected, base=rom=<register> cannot be selected. If selected, message W0523039 is

output as a warning and the selection of base=rom=<register> is disabled.

- If a PID register selected by the pid option is also specified by the base option, warning W0511149 will occur.

- If the pid option and nouse_pid_register option are selected simultaneously, error C3305(F) will occur.

- For details of the application and PID function, refer to Usage of PIC/PID Function.

[Without -pid]

_func2:

 MOV.L #_ptr,R4

 MOV.L #_pid,[R4]

 RTS

[With -pid] (only when the PID register is R13)

_func2:

 ADD #(_pid-__PID_TOP),R13,R5

 MOV.L #_ptr,R4

 MOV.L R5,[R4]

 RTS

 .glb __PID_TOP

extern const int pid_data1; /* Becomes PID */

const int *ptr1_for_pid = &pid_data1;/* Uses PID address in static initialization: Error */

const int pid_data4[] = {1,2,3,4}; /* Becomes PID */

const int *ptr2_for_pid = pid_data4; /* Uses PID address in static initialization: Error */

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 141 of 276
Oct. 01, 2013

-nouse_pid_register

< Compile Options / Microcontroller Options >

[Format]

[Description]

- When this option is specified, the generated code does not use the PID register.

- Selection of the PID register according to the settings of the fint_register option is based on the same rule as for

the pid option.

- A master program called by an application program in which the PID function is enabled needs to be compiled with

this option. At this time, if the fint_register option is selected in the application program, the same parameter

fint_register should also be selected in the master program.

[Remarks]

- If the nouse_pid_register option and pid option are selected simultaneously, error C3305(F) will occur.

- A register selected as the PID register also being specified for the base option leads to warning W0511149.

- For details of the PID function, refer to Usage of PIC/PID Function.

-nouse_pid_register

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 142 of 276
Oct. 01, 2013

-save_acc

< Compile Options / Microcontroller Options >

[Format]

- [Default]

When this option is omitted, it does not generate the saved and restored code of the accumulator

(ACC,ACC0,ACC1) for interrupt functions.

[Description]

- This option generates the saved and restored code of the accumulator (ACC,ACC0,ACC1) for interrupt functions.

The save and restored code of the ACC when the ISA *1 is selected as the RXv1 or the microcomputer type is

selected by the CPU *2.

The save and restored code of the ACC0 and ACC1 when the ISA *1 is selected as the RXv2.

Note
*1) This means a selection by the -isa option or the ISA_RX environment variable.
*2) This means a selection by the -cpu option or the CPU_RX environment variable.

[Remarks]

- The generated saved and restored code is the same code generated when acc is selected in #pragma interrupt.

For the actual saved and restored code, refer to the description of acc and no_acc in #pragma interrupt of

#pragma Extension Specifiers and Keywords.

-save_acc

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 143 of 276
Oct. 01, 2013

< Compile Options / Assemble and Linkage Options >

The following assemble and linkage options are available.

- -asmcmd

- -lnkcmd

- -asmopt

- -lnkopt

-asmcmd

< Compile Options / Assemble and Linkage Options >

[Format]

[Description]

- This option specifies the assembler options to pass to asrx with a subcommand file.

[Example]

- The above description has the same meaning as the following two command lines:

[Remarks]

- If this option is specified for more than one time, all specified subcommand files are valid.

Assemble and Linkage Options

-asmcmd=<file name>

ccrx -isa=rxv1 -asmcmd=file.sub sample.c

ccrx -isa=rxv1 -output=src sample.c

asrx -isa=rxv1 -subcommand=file.sub sample.src

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 144 of 276
Oct. 01, 2013

-lnkcmd

< Compile Options / Assemble and Linkage Options >

[Format]

[Description]

- This option specifies the linkage options to pass to rlink with a subcommand file.

[Example]

- The above description has the same meaning as the following three command lines:

[Remarks]

- If this option is specified for more than one time, all specified subcommand files are valid.

-lnkcmd=<file name>

ccrx -isa=rxv1 -output=abs=tp.abs -lnkcmd=file.sub tp1.c tp2.c

ccrx -isa=rxv1 -output=src tp1.c tp2.c]

asrx -isa=rxv1 tp1.src tp2.src

rlink -subcommand=file.sub -form=abs -output=tp tp1.obj tp2.obj

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 145 of 276
Oct. 01, 2013

-asmopt

< Compile Options / Assemble and Linkage Options >

[Format]

[Description]

- This option specifies the assembler options to pass to asrx with a string.

- Multiple options can be specified by enclosing them with double-quote marks (").

[Example]

- The above description has the same meaning as the following two command lines:

[Remarks]

- If this option is specified for more than one time, all specified assembler options are valid.

-asmopt=["]<assembler option>["]

ccrx -isa=rxv1 -asmopt="-chkpm" sample.c

ccrx -isa=rxv1 -output=src sample.c

asrx -isa=rxv1 -chkpm sample.src

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 146 of 276
Oct. 01, 2013

-lnkopt

< Compile Options / Assemble and Linkage Options >

[Format]

[Description]

- This option specifies the linkage options to pass to rlink with a string.

- Multiple options can be specified by enclosing them with double-quote marks (").

[Example]

- The above description has the same meaning as the following three command lines:

[Remarks]

- If this option is specified for more than one time, all specified linkage options are valid.

-lnkopt=["]<linkage option>["]

ccrx -isa=rxv1 -output=abs=tp.abs -lnkopt="-start=P,C,D/100,B/8000" tp1.c tp2.c

ccrx -isa=rxv1 -output=src tp1.c tp2.c

asrx -isa=rxv1 tp1.src tp2.src

rlink -start=P,C,D/100,B/8000 -form=abs -output=tp tp1.obj tp2.obj

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 147 of 276
Oct. 01, 2013

< Compile Options / Other Options >

The following other options are available.

- -logo

- -nologo

- -euc

- -sjis

- -latin1

- -utf8

- -big5

- -gb2312

- -outcode

- -subcommand

-logo

< Compile Options / Other Options >

[Format]

- [Default]

The copyright notice is output.

[Description]

- The copyright notice is output.

Other Options

-logo

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 148 of 276
Oct. 01, 2013

-nologo

< Compile Options / Other Options >

[Format]

- [Default]

The copyright notice is output.

[Description]

- When the nologo option is specified, output of the copyright notice is disabled.

-nologo

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 149 of 276
Oct. 01, 2013

-euc

< Compile Options / Other Options >

[Format]

- [Default]

This option specifies the character code to handle the characters in strings, character constants, and comments in

SJIS code.

[Description]

- This option specifies the character code to handle the characters in strings, character constants, and comments in

euc code.

-euc

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 150 of 276
Oct. 01, 2013

-sjis

< Compile Options / Other Options >

[Format]

- [Default]

This option specifies the character code to handle the characters in strings, character constants, and comments in

SJIS code.

[Description]

- This option specifies the character code to handle the characters in strings, character constants, and comments in

SJIS code.

-sjis

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 151 of 276
Oct. 01, 2013

-latin1

< Compile Options / Other Options >

[Format]

- [Default]

This option specifies the character code to handle the characters in strings, character constants, and comments in

SJIS code.

[Description]

- This option specifies the character code to handle the characters in strings, character constants, and comments in

latin1 code.

-latin1

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 152 of 276
Oct. 01, 2013

-utf8

< Compile Options / Other Options >

[Format]

- [Default]

This option specifies the character code to handle the characters in strings, character constants, and comments in

SJIS code.

[Description]

- This option specifies the character code to handle the characters in strings, character constants, and comments in

utf8 code.

[Remarks]

- The utf8 option is valid only when the lang=c99 option has been specified.

-utf8

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 153 of 276
Oct. 01, 2013

-big5

< Compile Options / Other Options >

[Format]

- [Default]

This option specifies the character code to handle the characters in strings, character constants, and comments in

BIG5 code.

[Description]

- This option specifies the character code to handle the characters in strings, character constants, and comments in

big5 code.

[Remarks]

- When big5 is specified, the same character coding must be selected for the outcode option.

-big5

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 154 of 276
Oct. 01, 2013

-gb2312

< Compile Options / Other Options >

[Format]

- [Default]

This option specifies the character code to handle the characters in strings, character constants, and comments in

GB2312 code.

[Description]

- This option specifies the character code to handle the characters in strings, character constants, and comments in

gb2312 code.

[Remarks]

- When gb2312 is specified, the same character coding must be selected for the outcode option.

-gb2312

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 155 of 276
Oct. 01, 2013

-outcode

< Compile Options / Other Options >

[Format]

- [Default]

The default for this option is outcode=sjis.

[Description]

- This option specifies the character code to output characters in strings and character constants.

- The options correspond to the character codes as shown in the following table.

Table A-11. Correspondences between Options and Character Codes (outcode)

[Remarks]

- The utf8 option is valid only when the lang=c99 option has been specified.

- When outcode=big5 or outcode=gb2312, the big5 or gb2312 option must also be specified.

-outcode = { euc | sjis | latin1 | utf8 | big5 | gb2312 }

Option Character Code

euc EUC code

sjis SJIS code

latin1 ISO-Latin1 code

utf8 UTF-8 code

big5 Big5 code

gb2312 GB2312 code

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 156 of 276
Oct. 01, 2013

-subcommand

< Compile Options / Other Options >

[Format]

[Description]

- When the subcommand option is specified, the compiler options specified in a subcommand file are used at com-

piler startup. Specify options in a subcommand file in the same format as in the command line.

[Remarks]

- If this option is specified for more than one time, all specified subcommand files are valid.

-subcommand=<subcommand file name>

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 157 of 276
Oct. 01, 2013

(2) Assembler Command Options

Classification Option Description

Source Options -include Specifies the names of folders that hold include files.

-define Specifies macro definitions.

-chkpm Checks for a privileged instruction.

-chkfpu Checks for a floating-point operation instruction.

-chkdsp Checks for a DSP instruction.

Object Options -output Specifies the relocatable file name.

-debug Debugging information is output to the object files.

-nodebug Debugging information is not output to the object files.

-goptimize Outputs additional information for inter-module optimization.

-fpu Generates a relocatable file which is capable of containing FPU

instructions.

-nofpu Generates a relocatable file which is not capable of containing FPU

instructions.

List Options -listfile An assembler list file is output.

-nolistfile An assembler list file is not output.

-show Specifies the contents of the source list file.

Microcontroller Options -isa Selects the instruction-set architecture.

-cpu Selects the microcontroller type.

-endian Selects the endian type.

-fint_register Selects a general register for exclusive use with the fast interrupt func-

tion.

-base Specifies the base registers for ROM and RAM.

-patch Selects avoidance or non-avoidance of a problem specific to the CPU

type.

-pic Enables the PIC function.

-pid Enables the PID function.

-nouse_pid_register The PID register is not used in code generation.

Other Options -logo Selects the output of copyright information.

-nologo Selects the non-output of copyright information.

-subcommand Specifies a file for including command options.

-euc The character codes of input programs are interpreted as EUC codes.

-sjis The character codes of input programs are interpreted as SJIS codes.

-latin1 The character codes of input programs are interpreted as ISO-Latin1

codes.

-big5 The character codes of input programs are interpreted as BIG5 codes.

-gb2312 The character codes of input programs are interpreted as GB2312

codes.

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 158 of 276
Oct. 01, 2013

< Assembler Command Options / Source Options >

The following source options are available.

- -include

- -define

- -chkpm

- -chkfpu

- -chkdsp

-include

< Assembler Command Options / Source Options >

[Format]

- [Default]

The include file is searched for in the order of the current folder and the folders specified by environment variable

INC_RXA.

[Description]

- This option specifies the name of the path to the folder that stores the include file.

- Multiple path names can be specified by separating them with a comma (,).

- The include file is searched for in the order of the current folder, the folders specified by the include option, and

the folders specified by environment variable INC_RXA.

[Example]

- Folders c:\usr\inc and c:\usr\rxc are searched for the include file.

Source Options

-include=<path name>[,...]

asrx -include=c:\usr\inc,c:\usr\rxc test.src

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 159 of 276
Oct. 01, 2013

-define

< Assembler Command Options / Source Options >

[Format]

[Description]

- This option replaces the macro name with the specified string.

(This provides the same function as writing the .DEFINE directive at the beginning of the source file.)

[Remarks]

- .DEFINE takes priority over the define option if both are specified.

-define=<sub>[,...]

 <sub>: <macro name> = <string>

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 160 of 276
Oct. 01, 2013

-chkpm

< Assembler Command Options / Source Options >

[Format]

[Description]

- This option outputs warning A1011 when a privileged instruction is used in the source file.

[Remarks]

- For details of the privileged instructions, refer to the RX Family Software Manual.

-chkpm

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 161 of 276
Oct. 01, 2013

-chkfpu

< Assembler Command Options / Source Options >

[Format]

[Description]

- This option outputs warning A1012 when a floating-point operation instruction is used in the source file.

[Remarks]

- For details of the floating-point operation instructions, refer to the RX Family Software Manual.

-chkfpu

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 162 of 276
Oct. 01, 2013

-chkdsp

< Assembler Command Options / Source Options >

[Format]

[Description]

- This option outputs warning A1013 when a DSP instruction is used in the source file.

[Remarks]

- For details of the DSP instructions, refer to the RX Family Software Manual.

-chkdsp

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 163 of 276
Oct. 01, 2013

< Assembler Command Options / Object Options >

The following object options are available.

- -output

- -debug

- -nodebug

- -goptimize

- -fpu

- -nofpu

-output

< Assembler Command Options / Object Options >

[Format]

- [Default]

This option outputs a relocatable file having the same name as that of the source file with extension .obj.

[Description]

- When the specified output file name does not have an extension, the file name appended with extension .obj is

used for the output relocatable file name. When it has an extension, the extension is replaced with .obj.

Object Options

-output=<output file name>

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 164 of 276
Oct. 01, 2013

-debug

< Assembler Command Options / Object Options >

[Format]

- [Default]

If this option is not specified, no debugging information is output to the relocatable file.

[Description]

- When the debug option is specified, debugging information is output to the relocatable file.

-debug

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 165 of 276
Oct. 01, 2013

-nodebug

< Assembler Command Options / Object Options >

[Format]

- [Default]

If this option is not specified, no debugging information is output to the relocatable file.

[Description]

- When the nodebug option is specified, no debugging information is output to the relocatable file.

-nodebug

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 166 of 276
Oct. 01, 2013

-goptimize

< Assembler Command Options / Object Options >

[Format]

- [Default]

If this option is not specified, additional information for the inter-module optimization is not output.

[Description]

- This option outputs the additional information for the inter-module optimization.

- At linkage, inter-module optimization is applied to the file specified with this option.

-goptimize

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 167 of 276
Oct. 01, 2013

-fpu

< Assembler Command Options / Object Options >

[Format]

- [Default]

The default for this option is fpu when the Instruction-code set as the ISA *1.

The default for this option is nofpu (when RX200 is selected as the target CPU *2) or fpu (in other cases).

Note
*1) This means a selection by the -isa option or the ISA_RX environment variable.
*2) This means a selection by the -cpu option or the CPU_RX environment variable.

[Description]

- This option is used to generate a relocatable file which is capable of containing FPU instructions.

[Remarks]

- Specifying fpu will lead to an error when the RX200 is selected as the target CPU.

-fpu

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 168 of 276
Oct. 01, 2013

-nofpu

< Assembler Command Options / Object Options >

[Format]

- [Default]

The default for this option is fpu when the Instruction-code set as the ISA *1.

The default for this option is nofpu (when RX200 is selected as the target CPU *2) or fpu (in other cases).

Note
*1) This means a selection by the -isa option or the ISA_RX environment variable.
*2) This means a selection by the -cpu option or the CPU_RX environment variable.

[Description]

- This option is used to generate a relocatable file which is not capable of containing FPU instructions.

[Remarks]

- Specifying fpu will lead to an error when the RX200 is selected as the target CPU.

-nofpu

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 169 of 276
Oct. 01, 2013

< Assembler Command Options / List Options >

The following list options are available.

- -listfile

- -nolistfile

- -show

-listfile

< Assembler Command Options / List Options >

[Format]

- [Default]

If this option is not specified, no assemble list file is output.

[Description]

- When the listfile option is specified, an assemble list file is output. The name of the file can also be specified.

- <file name> should be specified according to the rules described in section 7.1, Naming Files.

- If <file name> is not specified in the listfile option, the source file name with the extension replaced with .lst is

used as the source list file name.

List Options

-listfile[=<file name>]

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 170 of 276
Oct. 01, 2013

-nolistfile

< Assembler Command Options / List Options >

[Format]

- [Default]

If this option is not specified, no assemble list file is output.

[Description]

- When the nolistfile option is specified, no assemble list file is output.

-nolistfile

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 171 of 276
Oct. 01, 2013

-show

< Assembler Command Options / List Options >

[Format]

[Description]

- This option specifies the contents of the list file to be output by the assembler. The following output types can be

specified as <sub>.

Table A-12. Output Types Specifiable for show Option

-show=<sub>[,...]

 <sub>: { conditionals | definitions | expansions }

Output Type Description

conditionals The statements for which the specified condition is not satisfied in conditional assembly are also

output to a source list file.

definitions The information before replacement specified by .DEFINE is output to a source list file.

expansions The macro expansion statements are output to a source list file.

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 172 of 276
Oct. 01, 2013

< Assembler Command Options / Microcontroller Options >

The following microcontroller options are available.

- -isa

- -cpu

- -endian

- -fint_register

- -base

- -patch

- -pic

- -pid

- -nouse_pid_register

-isa

< Assembler Command Options / Microcontroller Options >

[Format]

- [Default]

The default for this option is determined based on the environment variable ISA_RX.

[Description]

- This option is used to select an instruction-set architecture (RXv1 or RXv2) for use in generating instruction codes.

- When -isa=rxv1 is specified, an instruction code for the RXv1 instruction-set architecture is generated.

- When -isa=rxv2 is specified, an instruction code for the RXv2 instruction-set architecture is generated.

[Remarks]

- When neither the -nofpu nor -fpu option has been selected, specifying the -isa option automatically selects the

-fpu option.

- Omitting the -isa option will lead to an error if neither the -cpu option nor one of the environment variables

(CPU_RX or ISA_RX) is specified.

- The -isa and -cpu options cannot be specified at the same time.

Microcontroller Options

-isa={ rxv1 | rxv2 }

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 173 of 276
Oct. 01, 2013

-cpu

< Assembler Command Options / Microcontroller Options >

[Format]

- [Default]

The default for this option is determined based on the environment variable CPU_RX.

[Description]

- This option specifies the CPU type for the instruction code to be generated.

- When -cpu=rx600 is specified, a relocatable file for the RX600 Series is generated.

- When -cpu=rx200 is specified, a relocatable file for the RX200 Series is generated.

[Remarks]

- This option is for compatibility with earlier products.

- For upcoming RX-family MCUs, the isa option will be used instead of the cpu option to select an instruction-set

architecture. In developing new applications, use the isa option where possible.

- The cpu option can be replaced by the -isa, -fpu and -nofpu options as follows.

-- -cpu=rx600 → -isa=rxv1 -fpu

-- -cpu=rx200 → -isa=rxv1 -nofpu

- Suboptions will be added depending on the microcontroller products developed in the future.

- When -cpu=rx200 is specified, the -nofpu option is automatically selected, and writing floating-point operation

instructions which are not supported by the RX200 Series or writing FPSW in control registers will cause an error.

- -cpu=rx200 and the -fpu option cannot be specified at the same time.

- When -cpu=rx600 is specified while neither the -nofpu option nor the -fpu option has been specified, the -fpu

option is automatically selected.

- Omitting the cpu option will lead to an error if neither the -isa option nor one of the environment variables

(CPU_RX or ISA_RX) is specified.

- The -cpu and -isa options cannot be specified at the same time.

-cpu={ rx600 | rx200 }

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 174 of 276
Oct. 01, 2013

-endian

< Assembler Command Options / Microcontroller Options >

[Format]

- [Default]

The default for this option is endian=little.

[Description]

- When endian=big is specified, data bytes are arranged in big endian.

When endian=little is specified, data bytes are arranged in little endian.

-endian={ big | little }

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 175 of 276
Oct. 01, 2013

-fint_register

< Assembler Command Options / Microcontroller Options >

[Format]

- [Default]

The default for this option is fint_register=0.

[Description]

- This option outputs to the relocatable file the information about the general registers that are specified to be used

only for fast interrupts through the same-name option in the compiler.

[Remarks]

- Be sure to set this option to the same value for all assembly processes in the project. If a different setting is made,

correct operation is not guaranteed.

- Do not use a general register dedicated to fast interrupts for other purposes in assembly-language files. If such a

register is used for any other purpose, correct operation is not guaranteed.

- If a register specified by this option is also specified by the base option, an error will be output.

-fint_register = {0 | 1 | 2 | 3 | 4 }

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 176 of 276
Oct. 01, 2013

-base

< Assembler Command Options / Microcontroller Options >

[Format]

[Description]

- This option outputs to the relocatable file the information about the general register that is specified to be used only

as a base address register through the same-name option in the compiler.

[Remarks]

- Be sure to set this option to the same value for all assembly processes in the project. If a different setting is made,

correct operation is not guaranteed.

- Do not use a general register specified by this option for other purposes than a base address register. If such a

register is used for any other purpose, correct operation is not guaranteed.

- If a single general register is specified for different areas, an error will be output.

- If a general register specified by the fint_register option is also specified by this option, an error will be output.

-base = { rom = <register>

 | ram = <register>

 | <address> = <register>}

 <register> = {R8 to R13}

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 177 of 276
Oct. 01, 2013

-patch

< Assembler Command Options / Microcontroller Options >

[Format]

[Description]

- This option is used to avoid a problem specific to the CPU type.

- When -patch=rx610 is specified, the MVTIPL instruction which causes a problem in the RX610 Group is handled

as an undefined instruction. The MVTIPL instruction will not be recognized as an instruction and the error mes-

sage A2113(E) will be output.

-patch = { rx610 }

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 178 of 276
Oct. 01, 2013

-pic

< Assembler Command Options / Microcontroller Options >

[Format]

- [Default]

This option generates a relocatable object indicating that code was generated with the PIC function disabled.

[Description]

- This option generates a relocatable object indicating that code was generated with the PIC function enabled.

[Remarks]

- Even if code conflicting with this option is written in the assembly code, it will not be checked.

- A relocatable object with the PIC function enabled cannot be linked with a relocatable object with the PIC function

disabled.

- For the PIC function, also refer to Usage of PIC/PID Function.

-pic

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 179 of 276
Oct. 01, 2013

-pid

< Assembler Command Options / Microcontroller Options >

[Format]

- [Default]

This option generates a relocatable object indicating that code was generated with the PID function disabled.

[Description]

- This option generates a relocatable object indicating that code was generated with the PID function enabled.

- <PID register>

- Based on the rules in the following table, one register from among R9 to R13 is selected according to the

specification of the fint_register option. If the fint_register option is not specified, R13 is selected.

Table A-13. Correspondences between fint_register Options and PID Registers

- The PID register can be used only for the purpose of PID access.

- <Parameters>

- The meaning of a parameter is the same as that for the compiler option with the same name.

[Remarks]

- Even if code conflicting with PID is written in the assembly code, it will not be checked.

- A relocatable object with the PID function enabled cannot be linked with a relocatable object with the PID function

disabled.

- If a PID register specified by the pid option is also specified by the base option, error A3111(F) will be output.

- If the pid option and nouse_pid_register option are selected simultaneously, error A3103(F) will be output.

- For the PID function, also refer to Usage of PIC/PID Function.

-pid[={ 16 | 32 }]

fint_register Option PID Register

No fint_register specification R13

fint_register = 0

fint_register = 1 R12

fint_register = 2 R11

fint_register = 3 R10

fint_register = 4 R9

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 180 of 276
Oct. 01, 2013

-nouse_pid_register

< Assembler Command Options / Microcontroller Options >

[Format]

[Description]

- This option generates a relocatable object that was generated without using the PID register.

- If the PID register is used in the assembly-language source file, error message E0552058 will be output. Specify-

ing this option, however, does not lead to an error if a substitute register defined in the assembler specifications is

used as the PID register.

- A master program called by an application program in which the PID function is enabled needs to be assembled

with this option. At this time, if the fint_register option is selected in the application program, the same parameter

fint_register should also be selected in the master program.

[Remarks]

- If the nouse_pid_register option and pid option are selected simultaneously, error A3103(F) will be output.

- If a register specified by the nouse_pid_register option is also specified by the base option, error F0553112 will

be output.

- For the PID function, also refer to Usage of PIC/PID Function.

-nouse_pid_register

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 181 of 276
Oct. 01, 2013

< Assembler Command Options / Other Options >

The following other options are available.

- -logo

- -nologo

- -subcommand

- -euc

- -sjis

- -latin1

- -big5

- -gb2312

-logo

< Assembler Command Options / Other Options >

[Format]

- [Default]

The copyright notice is output.

[Description]

- The copyright notice is output.

Other Options

-logo

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 182 of 276
Oct. 01, 2013

-nologo

< Assembler Command Options / Other Options >

[Format]

- [Default]

The copyright notice is output.

[Description]

- When the nologo option is specified, output of the copyright notice is disabled.

-nologo

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 183 of 276
Oct. 01, 2013

-subcommand

< Assembler Command Options / Other Options >

[Format]

[Description]

- When the subcommand option is specified, the assembler options specified in a subcommand file are used at

assembler startup. Specify options in a subcommand file in the same format as in the command line.

[Example]

- Contents of subcommand file opt.sub:

- Command line specifications:

- When options are specified in the command line as shown (1) below, the assembler interprets them as shown in

(2).

-subcommand=<subcommand file name>

-listfile

-debug

(1) asrx -endian=big -subcommand=opt.sub test.src

(2) asrx -endian=big -listfile -debug test.src

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 184 of 276
Oct. 01, 2013

-euc

< Assembler Command Options / Other Options >

[Format]

- [Default]

This option specifies the character code to handle the characters in strings, character constants, and comments in

sjis code.

[Description]

- This option specifies the character code to handle the characters in strings, character constants, and comments in

euc code.

-euc

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 185 of 276
Oct. 01, 2013

-sjis

< Assembler Command Options / Other Options >

[Format]

- [Default]

This option specifies the character code to handle the characters in strings, character constants, and comments in

sjis code.

[Description]

- This option specifies the character code to handle the characters in strings, character constants, and comments in

sjis code.

-sjis

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 186 of 276
Oct. 01, 2013

-latin1

< Assembler Command Options / Other Options >

[Format]

- [Default]

This option specifies the character code to handle the characters in strings, character constants, and comments in

sjis code.

[Description]

- This option specifies the character code to handle the characters in strings, character constants, and comments in

latin1 code.

-latin1

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 187 of 276
Oct. 01, 2013

-big5

< Assembler Command Options / Other Options >

[Format]

- [Default]

This option specifies the character code to handle the characters in strings, character constants, and comments in

BIG5 code.

[Description]

- This option specifies the character code to handle the characters in strings, character constants, and comments in

big5 code.

-big5

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 188 of 276
Oct. 01, 2013

-gb2312

< Assembler Command Options / Other Options >

[Format]

- [Default]

This option specifies the character code to handle the characters in strings, character constants, and comments in

GB2312 code.

[Description]

- This option specifies the character code to handle the characters in strings, character constants, and comments in

gb2312 code.

-gb2312

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 189 of 276
Oct. 01, 2013

(3) Optimizing Linkage Editor (rlink) Options

Classification Option Description

Input Options -Input Specifies relocatable files.

-library Specifies library files.

-binary Specifies binary files.

-define Specifies symbol definitions.

-entry Specifies an entry symbol or entry address.

-noprelink Selects non-initiation of the prelinker.

Output Options -form Selects the output file format.

-debug Debugging information is output to load module files.

-sdebug Debugging information is output to the .dbg file.

-nodebug Debugging information is not output.

-record Selects the record size.

-rom Specifies the section mapping from ROM to RAM.

-output Specifies the names of files to be output.

-map Outputs an external symbol-allocation information file.

-space Data are output to fill unused ranges of memory.

-message Information-level messages are output.

-nomessage The output of messages is disabled.

-msg_unused Messages are output to indicate the presence of externally

defined symbols to which there is no reference.

-byte_count Specifies the number of bytes in a data record.

-crc Specifies the format for output of the CRC code.

-padding Padding data are included at the end of each section.

-vectn Assigns an address to the specified vector number in the variable

vector table (for the RX Family and M16C Family).

-vect Assigns an address to an unused area in the variable vector table

(for the RX Family and M16C Family).

-jump_entries_for_pic Outputs a jump table file (for the PIC function of the RX Family).

List Options -list A linkage list file is output.

-show Selects the contents to be output in the linkage list file.

Optimize Options -optimize Selects the items to be optimized at linkage.

-nooptimize Selects no optimization at linkage.

-samesize Specifies the minimum size for unification of the same codes.

-symbol_forbid Specifies symbols for which unreferenced symbol deletion is dis-

abled.

-samecode_forbid Specifies symbols for which same code unification is disabled.

-section_forbid Specifies a section where optimization is disabled.

-absolute_forbid Specifies an address range where optimization is disabled.

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 190 of 276
Oct. 01, 2013

Section Options -start Specifies a section start address.

-fsymbol Specifies the section where an external defined symbol will be

placed in the output file.

-aligned_section Specifies the section alignment value as 16 bytes.

Verify Options -cpu Checks addresses for consistency.

-contiguous_section Specifies sections that will not be divided.

Other Options -s9 Selects the output of an s9 record at the end of the file.

-stack Selects the output of a stack-usage information file.

-compress Debugging information are compressed.

-nocompress Debugging information are not compressed.

-memory Selects the amount of memory to be used in linkage.

-rename Specifies symbol names and section names to be modified.

-delete Specifies symbol names and module names to be deleted.

-replace Specifies library modules to be replaced.

-extract Specifies modules to be extracted from library files.

-strip Debugging information is deleted from absolute files and library

files.

-change_message Specifies changes to the levels of messages (information, warn-

ing, and error).

-hide Name information on local symbols is deleted.

-total_size The total sizes of sections after linkage are sent to standard out-

put.

Subcommand File

Option

-subcommand Specifies a file from which to include command options.

Options Other Than

Above

-logo Selects the output of copyright information.

-nologo Selects the non-output of copyright information.

-end Selects the execution of option strings specified before END.

-exit Specifies the end of option specification.

Classification Option Description

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 191 of 276
Oct. 01, 2013

< Optimizing Linkage Editor (rlink) Options / Input Options >

The following input options are available.

- -Input

- -library

- -binary

- -define

- -entry

- -noprelink

-Input

< Optimizing Linkage Editor (rlink) Options / Input Options >

[Format]

[Description]

- Specifies an input file. Two or more files can be specified by separating them with a comma (,) or space.

- Wildcards (* or ?) can also be used for the specification. String literals specified with wildcards are expanded in

alphabetical order. Expansion of numerical values precedes that of alphabetical letters. Uppercase letters are

expanded before lowercase letters.

- Specifiable files are object files output from the compiler or the assembler, and relocatable or absolute files output

from the optimizing linkage editor. A module in a library can be specified as an input file using the format of <library

name>(<module name>). The module name is specified without an extension.

- If an extension is omitted from the input file specification, obj is assumed when a module name is not specified

and lib is assumed when a module name is specified.

[Examples]

[Remarks]

- When form=object or extract is specified, this option is unavailable.

- When an input file is specified on the command line, input should be omitted.

Input Options

-Input = <suboption>[{, | }...]

 <suboption>: <file name>[(<module name>[,...])]

input=a.obj lib1(e) ; Inputs a.obj and module e in lib1.lib.

input=c*.obj ; Inputs all .obj files beginning with c.

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 192 of 276
Oct. 01, 2013

-library

< Optimizing Linkage Editor (rlink) Options / Input Options >

[Format]

[Description]

- Specifies an input library file. Two or more files can be specified by separating them with a comma (,).

- Wildcards (* or ?) can also be used for the specification. String literals specified with wildcards are expanded in the

alphabetical order. Expansion of numerical values precedes that of alphabetical letters. Uppercase letters are

expanded before lowercase letters.

- If an extension is omitted from the input file specification, lib is assumed.

- If form=library or extract is specified, the library file is input as the target library to be edited.

- Otherwise, after the linkage processing between files specified for the input files are executed, undefined symbols

are searched in the library file.

- The symbol search in the library file is executed in the following order: user library files with the library option spec-

ification (in the specified order), the system library files with the library option specification (in the specified order),

and then the default library (environment variable HLNK_LIBRARY1,2,3).

[Examples]

-library = <file name>[,...]

library=a.lib,b ; Inputs a.lib and b.lib.

library=c*.lib ; Inputs all files beginning with c with the extension .lib.

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 193 of 276
Oct. 01, 2013

-binary

< Optimizing Linkage Editor (rlink) Options / Input Options >

[Format]

[Description]

- Specifies an input binary file. Two or more files can be specified by separating them with a comma (,).

- If an extension is omitted for the file name specification, bin is assumed.

- Input binary data is allocated as the specified section data. The section address is specified with the start option.

That section cannot be omitted.

- When a symbol is specified, the file can be linked as a defined symbol. For a variable name referenced by a C/C++

program, add an underscore (_) at the head of the reference name in the program.

- The section specified with this option can have its section attribute and boundary alignment specified.

- CODE or DATA can be specified for the section attribute.

- When section attribute specification is omitted, the write, read, and execute attributes are all enabled by default.

- A boundary alignment value can be specified for the section specified by this option. A power of 2 can be specified

for the boundary alignment; no other values should be specified.

- When the boundary alignment specification is omitted, 1 is used as the default.

[Examples]

- Allocates b.bin from 0x200 as the D1bin section.

- Allocates c.bin after D1bin as the D2bin section (with boundary alignment = 4).

- Links c.bin data as the defined symbol _datab.

[Remarks]

- When form={object | library} or strip is specified, this option is unavailable.

- If no input object file is specified, this option cannot be specified.

-binary = <suboption>[,...]

 <suboption>: <file name>(<section name>

 [:<boundary alignment>][/<section attribute>][,<symbol name>])

 <section attribute>: CODE | DATA

 <boundary alignment>: 1 | 2 | 4 | 8 | 16 | 32 (default: 1)

input=a.obj

start=P,D*/200

binary=b.bin(D1bin),c.bin(D2bin:4,_datab)

form=absolute

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 194 of 276
Oct. 01, 2013

-define

< Optimizing Linkage Editor (rlink) Options / Input Options >

[Format]

[Description]

- Defines an undefined symbol forcedly as an externally defined symbol or a numerical value.

- The numerical value is specified in the hexadecimal notation. If the specified value starts with a letter from A to F,

symbols are searched first, and if no corresponding symbol is found, the value is interpreted as a numerical value.

Values starting with 0 are always interpreted as numerical values.

- If the specified symbol name is a C/C++ variable name, add an underscore (_) at the head of the definition name in

the program. If the symbol name is a C++ function name (except for the main function), enclose the definition

name with the double-quotes including parameter strings. If the parameter is void, specify as "<function name>()".

[Examples]

[Remarks]

- When form={object | relocate | library} is specified, this option is unavailable.

-define = <suboption>[,...]

 <suboption>: <symbol name>={<symbol name> | <numerical value>}

define=_sym1=data ; Defines _sym1 as the same value as the externally defined symbol data.

define=_sym2=4000 ; Defines _sym2 as 0x4000.

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 195 of 276
Oct. 01, 2013

-entry

< Optimizing Linkage Editor (rlink) Options / Input Options >

[Format]

[Description]

- Specifies the execution start address with an externally defined symbol or address.

- The address is specified in hexadecimal notation. If the specified value starts with a letter from A to F, symbols are

searched first, and if no corresponding symbol is found, the value is interpreted as an address. Values starting with

0 are always interpreted as addresses.

- For a C function name, add an underscore (_) at the head of the definition name in the program. For a C++ func-

tion name (except for the main function), enclose the definition name with double-quotes in the program including

parameter strings. If the parameter is void, specify as "<function name>()".

- If the entry symbol is specified at compilation or assembly, this option precedes the entry symbol.

[Examples]

[Remarks]

- When form={object | relocate | library} or strip is specified, this option is unavailable.

- When optimization with undefined symbol deletion (optimize=symbol_delete) is specified, the execution start

address should be specified. If it is not specified, the specification of the optimization with undefined symbol dele-

tion is unavailable. Optimization with undefined symbol deletion is not available when an address is specified with

this option.

-entry = {<symbol name> | <address>}

entry=_main ; Specifies main function in C/C++ as the execution start address.

entry="init()" ; Specifies init function in C++ as the execution start address.

entry=100 ; Specifies 0x100 as the execution start address.

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 196 of 276
Oct. 01, 2013

-noprelink

< Optimizing Linkage Editor (rlink) Options / Input Options >

[Format]

- [Default]

If this option is not specified, the prelinker is initiated.

[Description]

- Disables the prelinker initiation.

- The prelinker supports the functions to generate the C++ template instance automatically and to check types at run

time. When the C++ template function and the run-time type test function are not used, specify the noprelink

option to reduce the link time.

[Remarks]

- When extract or strip is specified, this option is unavailable.

- If form=lib or form=rel is specified while the C++ template function and run-time type test are used, do not specify

noprelink.

-noprelink

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 197 of 276
Oct. 01, 2013

< Optimizing Linkage Editor (rlink) Options / Output Options >

The following output options are available.

- -form

- -debug

- -sdebug

- -nodebug

- -record

- -rom

- -output

- -map

- -space

- -message

- -nomessage

- -msg_unused

- -byte_count

- -crc

- -padding

- -vectn

- -vect

- -jump_entries_for_pic

Output Options

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 198 of 276
Oct. 01, 2013

-form

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

- [Default]

When this option is omitted, the default is form=absolute.

[Description]

- Specifies the output format.

- Table B-14 lists the suboptions.

Table A-14. Suboptions of form Option

[Remarks]

Table B-15 shows relations between output formats and input files or other options.

Table A-15. Relations Between Output Format and Input File or Other Options

-form = {Absolute | Relocate | Object | Library[={S | U}]} | Hexadecimal | Stype | Binary}

Suboption Description

absolute Outputs an absolute file

relocate Outputs a relocatable file

object Outputs an object file. This is specified when a module is extracted as an object file from a library

with the extract option.

library Outputs a library file.

When library=s is specified, a system library is output.

When library=u is specified, a user library is output.

Default is library=u.

hexadecimal Outputs a HEX file. For details of the HEX format, refer to HEX File Format.

stype Outputs an S-type file. For details of the S-type format, refer to S-Type File Format.

binary Outputs a binary file.

Output Format Specified Option Enabled File Format Specifiable OptionNote1

Absolute strip specified Absolute file input, output

Other than above Object file

Relocatable file

Binary file

Library file

input, library, binary, debug/nodebug, sdebug, cpu,

start, rom, entry, output, map, hide, optimize/noopti-

mize, samesize, symbol_forbid, samecode_forbid,

section_forbid, absolute_forbid, compress, rename,

delete, define, fsymbol, stack, noprelink, memory,

msg_unused, show=symbol, reference, xreference,

jump_entries_for_pic, aligned_section

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 199 of 276
Oct. 01, 2013

Notes 1. message/nomessage, change_message, logo/nologo, form, list, and subcommand can always be

specified.

2. s9 can be used only when form=stype is specified for the output format.

3. byte_count can be used only when form=hexadecimal is specified for the output format.

4. memory cannot be used when hide is specified.

Relocate extract specified Library file library, output

Other than above Object file

Relocatable file

Binary file

Library file

input, library, debug/nodebug, output, hide, rename,

delete, noprelink, msg_unused, show=symbol, xrefer-

ence

Object extract specified Library file library, output

Hexadecimal

Stype

Binary

Object file

Relocatable file

Binary file

Library file

input, library, binary, cpu, start, rom, entry, output, map,

space, optimize/nooptimize, samesize, symbol_forbid,

samecode_forbid, section_forbid, absolute_forbid,

rename, delete, define, fsymbol, stack, noprelink,

record, s9Note 2, byte_countNote3, memory,

msg_unused, show=symbol, reference, xreference,

jump_entries_for_pic, aligned_section

Absolute file input, output, record, s9Note2, byte_countNote3,

show=symbol, reference, xreference

Library strip specified Library file library, output, memoryNote4, show=symbol, section

extract specified Library file library, output

Other than above Object file

Relocatable file

input, library, output, hide, rename, delete, replace,

noprelink, memoryNote4, show=symbol, section

Output Format Specified Option Enabled File Format Specifiable OptionNote1

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 200 of 276
Oct. 01, 2013

-debug

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

- [Default]

When this option is omitted, debugging information is output to the output file.

[Description]

- When debug is specified, debugging information is output to the output file.

- If debug is specified and if two or more files are specified to be output with output, they are interpreted as sdebug

and debugging information is output to <first output file name>.dbg.

[Remarks]

- When form={object | library | hexadecimal | stype | binary}, strip or extract is specified, this option is unavail-

able.

-debug

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 201 of 276
Oct. 01, 2013

-sdebug

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

- [Default]

When this option is omitted, debugging information is output to the output file.

[Description]

- When sdebug is specified, debugging information is output to <output file name>.dbg file.

- If sdebug and form=relocate are specified, sdebug is interpreted as debug.

[Remarks]

- When form={object | library | hexadecimal | stype | binary}, strip or extract is specified, this option is unavail-

able.

-sdebug

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 202 of 276
Oct. 01, 2013

-nodebug

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

- [Default]

When this option is omitted, debugging information is output to the output file.

[Description]

- When nodebug is specified, debugging information is not output.

[Remarks]

- When form={object | library | hexadecimal | stype | binary}, strip or extract is specified, this option is unavail-

able.

-nodebug

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 203 of 276
Oct. 01, 2013

-record

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

- [Default]

When this option is omitted, various data records are output according to each address.

[Description]

- Outputs data with the specified data record regardless of the address range.

- If there is an address that is larger than the specified data record, the appropriate data record is selected for the

address.

[Remarks]

- This option is available only when form=hexadecimal or stype is specified.

-record = { H16 | H20 | H32 | S1 | S2 | S3 }

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 204 of 276
Oct. 01, 2013

-rom

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

[Description]

- Reserves ROM and RAM areas in the initialized data area and relocates a defined symbol in the ROM section with

the specified address in the RAM section.

- Specifies a relocatable section including the initial value for the ROM section.

- Specifies a nonexistent section or relocatable section whose size is 0 for the RAM section.

[Examples]

- Reserves R section with the same size as D section and relocates defined symbols in D section with the R section

addresses.

[Remarks]

- When form={object | relocate | library}or strip is specified, this option is unavailable.

-rom = <suboption>[,...]

 <suboption>: <ROM section name>=<RAM section name>

rom=D=R

start=D/100,R/8000

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 205 of 276
Oct. 01, 2013

-output

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

- [Default]

When this option is omitted, the default is <first input file name>.<default extension>.

The default extensions are as follows:

form=absolute: abs, form=relocate: rel, form=object: obj, form=library: lib, form=hexadecimal: hex, form=stype:

mot, form=binary: bin

[Description]

- Specifies an output file name. When form=absolute, hexadecimal, stype, or binary is specified, two or more files

can be specified. An address is specified in the hexadecimal notation. If the specified data starts with a letter from

A to F, sections are searched first, and if no corresponding section is found, the data is interpreted as an address.

Data starting with 0 are always interpreted as addresses.

[Examples]

- Outputs the range from 0 to 0xffff to file1.abs and the range from 0x10000 to 0x1ffff to file2.abs.

- Outputs the sec1 and sec2 sections to file1.abs and the sec3 section to file2.abs.

[Remarks]

- When a file is output in section units while the CPU type is RX Family in big endian, the section size should be a

multiple of 4.

-output = <suboption>[,...]

 <suboption>: <file name>[=<output range>]

 <output range>: {<start address>-<end address> | <section name>[:...]}

output=file1.abs=0-ffff,file2.abs=10000-1ffff

output=file1.abs=sec1:sec2,file2.abs=sec3

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 206 of 276
Oct. 01, 2013

-map

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

[Description]

- Outputs the external-symbol-allocation information file that is used by the compiler in optimizing access to external

variables.

- When <file name> is not specified, the file has the name specified by the output option or the name of the first

input file, and the extension bls.

- If the order of the declaration of variables in the external-symbol-allocation information file is not the same as the

order of the declaration of variables found when the object was read after compilations, an error will be output.

[Remarks]

- This option is valid only when form={absolute | hexadecimal | stype | binary} is specified.

-map [= <file name>]

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 207 of 276
Oct. 01, 2013

-space

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

[Description]

- Fills the unused areas in the output ranges with random values or a user-specified hexadecimal value.

- The following unused areas are filled with the value according to the output range specification in the output

option:

- When section names are specified for the output range:

- The specified value is output to unused areas between the specified sections.

- When an address range is specified for the output range:

- The specified value is output to unused areas within the specified address range.

- A 1-, 2-, or 4-byte value can be specified. The hexadecimal value specified to the space option determines the out-

put data size. If a 3-byte value is specified, the upper digit is extended with 0 to use it as a 4-byte value. If an odd

number of digits are specified, the upper digits are extended with 0 to use it as an even number of digits.

- If the size of an unused area is not a multiple of the size of the specified value, the value is output as many times

as possible, then a warning message is output.

[Remarks]

- When no suboption is specified by this option, unused areas are not filled with values.

- This option is available only when form={binary | stype | hexadecimal} is specified.

- When no output range is specified by the output option, this option is unavailable.

-space [= {<numerical value> | Random}]

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 208 of 276
Oct. 01, 2013

-message

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

[Description]

- When message is specified, information-level messages are output.

- When this option is omitted, the output of information-level messages is disabled.

-message

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 209 of 276
Oct. 01, 2013

-nomessage

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

- [Default]

When this option is omitted, the output of information-level messages is disabled.

[Description]

- When nomessage is specified, the output of information-level messages is disabled. If an error number is speci-

fied, the output of the error message with the specified error number is disabled. A range of error message num-

bers to be disabled can be specified using a hyphen (-).

- Each error number consists of a component number (05), phase (6), and a four-digit value (e.g. 0004 in the case of

M0560004). If the four-digit section has leading zeroes, e.g. before the 4 in the case of M0560004, these can be

omitted.

- If a warning or error level message number is specified, the message output is disabled assuming that

change_message has changed the specified message to the information level.

[Examples]

- Messages of L0004, L0200 to L0203, and L1300 are disabled to be output.

-nomessage [=<suboption>[,...]]

 <suboption>: <error number>[-<error number>]

nomessage=4,200-203,1300

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 210 of 276
Oct. 01, 2013

-msg_unused

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

[Description]

- Notifies the user of the externally defined symbol which is not referenced during linkage through an output mes-

sage.

[Examples]

[Remarks]

- When an absolute file is input, this option is invalid.

- To output a message, the message option must also be specified.

- The linkage editor may output a message for the function that was inline-expanded at compilation. To avoid this,

add a static declaration for the function definition.

- In any of the following cases, references are not correctly analyzed so that information shown by output messages

will be incorrect.

- There are references to constant symbols within the same file.

- There are branches to immediate subordinate functions when optimization is specified at compilation.

-msg_unused

rlink -msg_unused a.obj

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 211 of 276
Oct. 01, 2013

-byte_count

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

[Description]

- Specifies the maximum byte count for a data record when a file is to be created in the Intel-Hex format. Specify a

one-byte hexadecimal value (01 to FF) for the byte count. When this option is not specified, the linkage editor

assumes FF as the maximum byte count when creating an Intel-Hex file.

[Examples]

[Remarks]

- This option is invalid when the file to be created is not an Intel-Hex-type (form=hex) file.

-byte_count=<numerical value>

byte_count=10

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 212 of 276
Oct. 01, 2013

-crc

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

[Description]

- This option is used for cyclic redundancy checking (CRC) of values from the lowest to the highest address of each

target range and outputs the calculation result to the specified address.

- <endian> can be specified only when the CPU type is RX Family. When <endian> is specified, the calculation

result is output to the specified address in the specified endian. When <endian> is not specified, the result is output

to the specified address in the endian used in the absolute file.

- CRC-CCITT or CRC-16 is selectable as a polynomial expression (default: CRC-CCITT).

- Polynomial expression:

[Example]

- rlink *.obj -form=stype -start=P1,P2/1000,P3/2000

 -crc=2FFE=1000-2FFD -output=out.mot=1000-2FFF

- crc option: -crc=2FFE=1000-2FFD

- In this example, CRC will be calculated for the range from 0x1000 to 0x2FFD and the result will be output

to address 0x2FFE.

When the space option has not been specified, space=0xFF is assumed for calculation of free areas

within the target range.

- output option: -output=out.mot=1000-2FFF

- Since the space option has not been specified, the free areas are not output to the out.mot file. 0xFF is

used in CRC for calculation of the free areas, but will not be filled into these areas.

Notes 1. The address where the result of CRC will be output cannot be included in the target range.

2. The address where the result of CRC will be output must be included in the output range specified

with the output option.

-CRc = <suboption>

 <suboption>: <address where the result is output>=<target range>

 [/<polynomial expression>][:<endian>]

 <address where the result is output>: <address>

 <target range>: <start address>-<end address>[,...]

 <polynomial expression>: { CCITT | 16 }

 <endian>: {BIG | LITTLE}

CRC-CCITT

 X^16+X^12+X^5+1

 In bit expression: (10001000000100001)

CRC-16

 X^16+X^15+X^2+1

 In bit expression: (11000000000000101)

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 213 of 276
Oct. 01, 2013

- rlink *.obj -form=stype -start=P1/1000,P2/1800,P3/2000

 -space=7F -crc=2FFE=1000-17FF,2000-27FF

 -output=out.mot=1000-2FFF

- crc option: -crc=2FFE=1000-2FFD,2000-27FF

- In this example, CRC will be calculated for the two ranges, 0x1000 to 0x17FF and 0x2000 to 0x27FF, and

the result will be output to address 0x2FFE.

Two or more non-contiguous address ranges can be selected as the target range for CRC.

- space option: -space=7F

- The value of the space option (0x7F) is used for CRC in free areas within the target range.

- output option: -output=out.mot=1000-2FFF

- Since the space option has been specified, the free areas are output to the out.mot file. 0x7F will be filled

into the free areas.

Notes 1. The order that CRC is calculated for the specified address ranges is not the order that the ranges

have been specified. CRC proceeds from the lowest to the highest address.

2. Even if you wish to use the crc and space options at the same time, the space option cannot be

set as random or a value of 2 bytes or more. Only 1-byte values are valid.

- rlink *.obj -form=stype -start=P1,P2/1000,P3/2000

 -crc=1FFE=1000-1FFD,2000-2FFF

 -output=flmem.mot=1000-1FFF

- crc option: -crc=1FFE=1000-1FFD,2000-2FFF

- In this example, CRC will be calculated for the two ranges, 0x1000 to 0x1FFD and 0x2000 to 0x2FFF, and

the result will be output to address 0x1FFE.

When the space option has not been specified, space=0xFF is assumed for calculation of free areas

within the target range.

- output option: -output=flmem.mot=1000-1FFF

- Since the space option has not been specified, the free areas are not output to the flmem.mot file. 0xFF

is used in CRC for calculation of the free areas, but will not be filled into these areas.

[Remarks]

- This option is invalid when two or more absolute files have been selected.

- This option is valid only when form={hexadecimal | stype}.

- When the space option has not been specified and the target range includes free areas that will not be output,

the linkage editor assumes in CRC that 0xFF has been set in the free areas.

- An error occurs if the target range includes an overlay area.

- Sample Code: The sample code shown below is provided to check the result of CRC figured out by the crc option.

The sample code program should match the result of CRC by rlink.

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 214 of 276
Oct. 01, 2013

- When the selected polynomial expression is CRC-CCITT:

typedef unsigned char uint8_t;

typedef unsigned short uint16_t;

typedef unsigned ong uint32_t;

uint16_t CRC_CCITT(uint8_t *pData, uint32_t iSize)

{

 uint32_t ui32_i;

 uint8_t *pui8_Data;

 uint16_t ui16_CRC = 0xFFFFu;

 pui8_Data = (uint8_t *)pData;

 for(ui32_i = 0; ui32_i < iSize; ui32_i++)

 {

 ui16_CRC = (uint16_t)((ui16_CRC >> 8u) |

 ((uint16_t)((uint32_t)ui16_CRC << 8u)));

 ui16_CRC ^= pui8_Data[ui32_i];

 ui16_CRC ^= (uint16_t)((ui16_CRC & 0xFFu) >> 4u);

 ui16_CRC ^= (uint16_t)((ui16_CRC << 8u) << 4u);

 ui16_CRC ^= (uint16_t)(((ui16_CRC & 0xFFu) << 4u) << 1u);

 }

 ui16_CRC = (uint16_t)(0x0000FFFFul &

 ((uint32_t)~(uint32_t)ui16_CRC));

 return ui16_CRC;

}

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 215 of 276
Oct. 01, 2013

- When the selected polynomial expression is CRC-16:

#define POLYNOMIAL 0xa001 // Generated polynomial expression CRC-16

typedef unsigned char uint8_t;

typedef unsigned short uint16_t;

typedef unsigned long uint32_t;

uint16_t CRC16(uint8_t *pData, uint32_t iSize)

{

 uint16_t crcdData = (uint16_t)0;

 uint32_t data = 0;

 uint32_t i,cycLoop;

 for(i=0;i<iSize;i++){

 data = (uint32_t)pData[i];

 crcdData = crcdData ^ data;

 for (cycLoop = 0; cycLoop < 8; cycLoop++) {

 if (crcdData & 1) {

 crcdData = (crcdData >> 1) ^ POLYNOMIAL;

 } else {

 crcdData = crcdData >> 1;

 }

 }

 }

 return crcdData;

}

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 216 of 276
Oct. 01, 2013

-padding

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

[Description]

- Fills in padding data at the end of a section so that the section size is a multiple of the boundary alignment of the

section.

[Examples]

- When the boundary alignment of section P is 4 bytes, the size of section P is 0x06 bytes, the boundary alignment

of section C is 1 byte, and the size of section C is 0x03 bytes, two bytes of padding data is filled in section P to

make its size become 0x08 bytes and then linkage is performed.

- When the boundary alignment of section P is 4 bytes, the size of section P is 0x06 bytes, the boundary alignment

of section C is 1 byte, and the size of section C is 0x03 bytes, if two bytes of padding data is filled in section P to

make its size become 0x08 bytes and then linkage is performed, error L2321 will be output because section P

overlaps with section C.

[Remarks]

- The value of the created padding data is 0x00.

- Since padding is not performed to an absolute address section, the size of an absolute address section should be

adjusted by the user.

-padding

-start=P,C/0 -padding

-start=P/0,C/7 -padding

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 217 of 276
Oct. 01, 2013

-vectn

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

[Description]

- Assigns the specified address to the specified vector number in the variable vector table section.

- When this option is specified, a variable vector table section is created and the specified address is set in the table

even if there is no interrupt function in the source code.

- Specify a decimal value from 0 to 255 for <vector number>.

- Specify the external name of the target function for <symbol>.

- Specify the desired hexadecimal address for <address>.

[Examples]

[Remarks]

- This option is ignored when the user creates a variable vector table section in the source program because the

variable vector table is not automatically created in this case.

-vectn = <suboption>[,...]

 <suboption>: <vector number> = {<symbol> | <address>}

-vectn=30=_f1,31=0000F100 ;Specifies the _f1 address for vector

 ;number 30 and 0x0f100 for vector number 31

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 218 of 276
Oct. 01, 2013

-vect

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

[Description]

- Assigns the specified address to the vector number to which no address has been assigned in the variable vector

table section.

- When this option is specified, a variable vector table section is created by the linkage editor and the specified

address is set in the table even if there is no interrupt function in the source code.

- Specify the external name of the target function for <symbol>.

- Specify the desired hexadecimal address for <address>.

[Remarks]

- This option is ignored when the user creates a variable vector table section in the source program because the

variable vector table is not automatically created in this case.

- When the {<symbol>|<address>} specification is started with 0, the whole specification is assumed as an

address.

-vect={<symbol>|<address>}

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 219 of 276
Oct. 01, 2013

-jump_entries_for_pic

< Optimizing Linkage Editor (rlink) Options / Output Options >

[Format]

[Description]

- Outputs an assembly-language source for a jump table to branch to external definition symbols in the specified

section.

[Examples]

- A jump table for branching to external definition symbols in the sections sct2 and sct3 is output to test.jmp.

- [Example of a file output to test.jmp]

[Remarks]

- This option is invalid when form={object | relocate| library} or strip is specified.

- The generated jump table is output to the P section.

- Only the program section can be specified for the type of section in the section name.

-jump_entries_for_pic=<section name>[,...]

jump_entries_for_pic=sct2,sct3

output=test.abs

;OPTIMIZING LINKAGE EDITOR GENERATED FILE 2009.07.19

 .glb _func01

 .glb _func02

 .SECTION P,CODE

_func01:

 MOV.L #1000H,R14

 JMP R14

_func02:

 MOV.L #2000H,R14

 JMP R14

 .END

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 220 of 276
Oct. 01, 2013

< Optimizing Linkage Editor (rlink) Options / List Options >

The following list options are available.

- -list

- -show

-list

< Optimizing Linkage Editor (rlink) Options / List Options >

[Format]

[Description]

- Specifies list file output and a list file name.

- If no list file name is specified, a list file with the same name as the output file (or first output file) is created, with the

extension lbp when form=library or extract is specified, or map in other cases.

List Options

-list [=<file name>]

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 221 of 276
Oct. 01, 2013

-show

< Optimizing Linkage Editor (rlink) Options / List Options >

[Format]

[Description]

- Specifies output contents of a list.

- Table B-16 lists the suboptions.

- For details of list examples, refer to Linkage List, and Library List in the user's manual.

Table A-16. Suboptions of show Option

[Remarks]

-show [=<sub>[,...]]

 <sub>:{ symbol | reference | section | xreference | total_size | vector | all}

Output Format Suboption Name Description

form=library or

extract is specified.

symbol Outputs a symbol name list in a module (when extract is specified).

reference Not specifiable.

section Outputs a section list in a module.

xreference Not specifiable.

total_size Not specifiable.

vector Not specifiable.

all Not specifiable (when extract is specified).

Outputs a symbol name list and a section list in a module (when

form=library).

Other than

form=library and

extract is not speci-

fied.

symbol Outputs symbol address, size, type, and optimization contents.

reference Outputs the number of symbol references.

section Not specifiable.

xreference Outputs the cross-reference information.

total_size Shows the total sizes of sections allocated to the ROM and RAM areas.

vector Outputs vector information.

all If form=rel the linkage editor outputs the same information as when

show=symbol,xreference,total_size is specified.

If form=rel,data_stuff have been specified, the linkage editor outputs the

same information as when show=symbol,total_size is specified.

If form=abs the linkage editor outputs the same information as when

show=symbol,reference,xreference,total_size is specified.

If form=hex/stype/bin the linkage editor outputs the same information as

when show=symbol,reference,xreference,total_size is specified.

If form=obj, all is not specifiable.

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 222 of 276
Oct. 01, 2013

- The following table shows whether suboptions will be valid or invalid by all possible combinations of options form,

show, and/or show=all.

Note The option is invalid if an absolute-format file is input.

- Note the following limitations on output of the cross-reference information.

- When an absolute-format file is input, the referrer address information is not output.

- Information about references to constant symbols within the same file is not output.

- When optimization is specified at compilation, information about branches to immediate subordinate functions

is not output.

- When optimization of access to external variables is specified, information about references to variables other

than base symbols is not output.

- Both show=total_size and total_size output the same information.

- When show=reference is valid, the number of references of the variable specified by #pragma address is out-

put as 0.

Symbol Reference Section Xreference Vector Total_size

form=abs show Valid Valid Invalid Invalid Invalid Invalid

show=all Valid Valid Invalid Valid Valid Valid

form=lib show Valid Invalid Valid Invalid Invalid Invalid

show=all Valid Invalid Valid Invalid Invalid Invalid

form=rel show Valid Invalid Invalid Invalid Invalid Invalid

show=all Valid Invalid Invalid ValidNote Invalid Valid

form=obj show Valid Valid Invalid Invalid Invalid Invalid

show=all Valid Invalid Invalid Invalid Invalid Invalid

form=hex/bin/sty show Valid Valid Invalid Invalid Invalid Invalid

show=all Valid Valid Invalid Valid ValidNote ValidNote

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 223 of 276
Oct. 01, 2013

< Optimizing Linkage Editor (rlink) Options / Optimize Options >

The following optimize options are available.

- -optimize

- -nooptimize

- -samesize

- -symbol_forbid

- -samecode_forbid

- -section_forbid

- -absolute_forbid

-optimize

< Optimizing Linkage Editor (rlink) Options / Optimize Options >

[Format]

- [Default]

When this option is omitted, the default is optimize.

[Description]

- When optimize is specified, optimization is performed for the file specified with the goptimize option at compila-

tion or assembly.

- Table B-17 shows the suboptions.

Table A-17. Suboptions of optimize Option

Optimize Options

-optimize [= <suboption>[,...]]

<suboption>: { SYmbol_delete | SAMe_code | SHort_format | Branch | SPeed | SAFe }

Suboption Description Program to be

OptimizedNote1

RXC RXA

No parameter Provides all optimizations O ×

symbol_delete Deletes variables/functions that are not referenced.

Always be sure to specify #pragma entry at compilation or the entry option in the

optimizing linkage editor.

O ×

same_code Creates a subroutine for the same instruction sequence. O ×

short_format Replaces an instruction having a displacement or an immediate value with a

smaller-size instruction when the code size of the displacement or immediate

value can be reduced.

O ×

branch Optimizes branch instruction size according to program allocation information.

Even if this option is not specified, it is performed when any other optimization is

executed.

O ×

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 224 of 276
Oct. 01, 2013

Notes 1. RXC: C/C++ program for RX Family,

RXA: Assembly program for RX Family

2. symbol_delete, branch, and short_format are valid in optimization for which speed was specified.

3. short_format and branch are valid in optimization for which safe was specified.

[Remarks]

- When form={object | relocate | library} or strip is specified, this option is unavailable.

- When a start function with #pragma entry or entry is not specified, optimize=symbol_delete is invalid.

speed Executes optimizations other than those reducing object speed. This suboption is

the same as the following specifications:

optimize=string_unify, symbol_delete, variable_access, register, short_format, or

branch

ONote2 ×

safe Executes optimizations other than those limited by variable or function attributes.

This suboption is the same as the following specifications:

optimize=string_unify, register, short_format, or branch

ONote3 ×

Suboption Description Program to be

OptimizedNote1

RXC RXA

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 225 of 276
Oct. 01, 2013

-nooptimize

< Optimizing Linkage Editor (rlink) Options / Optimize Options >

[Format]

- [Default]

When this option is omitted, the default is optimize.

[Description]

- When pnooptimize is specified, optimization is not performed at linkage.

-nooptimize

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 226 of 276
Oct. 01, 2013

-samesize

< Optimizing Linkage Editor (rlink) Options / Optimize Options >

[Format]

- [Default]

When this option is omitted, the default is samesize=1E.

[Description]

- Specifies the minimum code size for the optimization with the same-code unification (optimize=same_code).

Specify a hexadecimal value from 8 to 7FFF.

[Remarks]

- When optimize=same_code is not specified, this option is unavailable.

-samesize = <size>

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 227 of 276
Oct. 01, 2013

-symbol_forbid

< Optimizing Linkage Editor (rlink) Options / Optimize Options >

[Format]

[Description]

- Disables optimization regarding unreferenced symbol deletion. For a C/C++ variable or C function name, add an

underscore (_) at the head of the definition name in the program. For a C++ function, enclose the definition name

in the program with double-quotes including the parameter strings. When the parameter is void, specify as "<func-

tion name>()".

[Remarks]

- If optimization is not applied at linkage, this option is ignored.

-symbol_forbid = <symbol name> [,...]

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 228 of 276
Oct. 01, 2013

-samecode_forbid

< Optimizing Linkage Editor (rlink) Options / Optimize Options >

[Format]

[Description]

- Disables optimization regarding same-code unification. For a C/C++ variable or C function name, add an under-

score (_) at the head of the definition name in the program. For a C++ function, enclose the definition name in the

program with double-quotes including the parameter strings. When the parameter is void, specify as "<function

name>()".

[Remarks]

- If optimization is not applied at linkage, this option is ignored.

-samecode_forbid = <function name> [,...]

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 229 of 276
Oct. 01, 2013

-section_forbid

< Optimizing Linkage Editor (rlink) Options / Optimize Options >

[Format]

[Description]

- Disables optimization for the specified section. If an input file name or library module name is also specified, the

optimization can be disabled for a specific file, not only the entire section.

[Remarks]

- If optimization is not applied at linkage, this option is ignored.

- To disable optimization for an input file with its path name, type the path with the file name when specifying

section_forbid.

-section_forbid = <sub>[,...]

 <sub>: [<file name>|<module name>](<section name>[,...])

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 230 of 276
Oct. 01, 2013

-absolute_forbid

< Optimizing Linkage Editor (rlink) Options / Optimize Options >

[Format]

[Description]

- Disables optimization regarding address + size specification.

[Remarks]

- If optimization is not applied at linkage, this option is ignored.

-absolute_forbid = <address> [+<size>] [,...]

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 231 of 276
Oct. 01, 2013

< Optimizing Linkage Editor (rlink) Options / Section Options >

The following section options are available.

- -start

- -fsymbol

- -aligned_section

-start

< Optimizing Linkage Editor (rlink) Options / Section Options >

[Format]

- [Default]

The section is allocated at 0.

[Description]

- Specifies the start address of the section. Specify an address as the hexadecimal.

- The section name can be specified with wildcards "*". Sections specified with wildcards are expanded according to

the input order.

- Two or more sections can be allocated to the same address (i.e., sections are overlaid) by separating them with a

colon ":".

- Sections specified at a single address are allocated in the specification order.

- Sections to be overlaid can be changed by enclosing them by parentheses "()".

- Objects in a single section are allocated in the specification order of the input file or the input library.

- If no address is specified, the section is allocated at 0.

- A section which is not specified with the start option is allocated after the last allocation address.

[Examples]

This example shows how sections are allocated when the objects are input in the following order (names enclosed by

parentheses are sections in the objects).

tp1.obj(A,D1,E) -> tp2.obj(B,D3,F)) -> tp3.obj(C,D2,E,G) -> lib.lib(E)

- -start=A,B,E/400,C,D*:F:G/8000

- Sections C, F, and G separated by colons are allocated to the same address.

- Sections specified with wildcards "*" (in this example, the sections whose names start with D) are allocated in

the input order.

- Objects in the sections having the same name (E in this example) are allocated in the input order.

Section Options

-start = <sub> [,...]

 <sub>: [(] <section name> [{ : | , } <section name> [,...]] [)] [,...] [/ <address>]

A B E (tp1) E (tp3) E (lib)

0x400

C D1 D3 D2

0x8000

F

G

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 232 of 276
Oct. 01, 2013

- An input library's section having the same name (E in this example) as those of input objects is allocated after

the input objects.

- -start=A,B,C,D1:D2,D3,E,F:G/400

- The sections that come immediately after the colons (A, D2, and G in this example) are selected as the start

and allocated to the same address.

- -start=A,B,C,(D1:D2,D3),E,(F:G)/400

- When the sections to be allocated to the same address are enclosed by parentheses, the sections within

parentheses are allocated to the address immediately after the sections that come before the parentheses (C

and E in this example).

- The section that comes after the parentheses (E in this example) is allocated after the last of the sections

enclosed by the parentheses.

[Remarks]

- When form={object | relocate | library} or strip is specified, this option is unavailable.

- Parentheses cannot be nested.

- One or more colons must be written within parentheses. Parentheses cannot be written without a colon.

- Colons cannot be written outside of parentheses.

- When this option is specified with parentheses, optimization with the linkage editor is disabled.

D2 D3 E

0x400

F

G

A B C D1

D2 D3

E

0x400

F

G

A B C D1

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 233 of 276
Oct. 01, 2013

-fsymbol

< Optimizing Linkage Editor (rlink) Options / Section Options >

[Format]

[Description]

- Outputs externally defined symbols in the specified section to a file in the assembler directive format.

- The file name is <output file>.fsy.

[Examples]

- Outputs externally defined symbols in sections sct2 and sct3 to test.fsy.

- [Output example of test.fsy]

[Remarks]

- When form={object | relocate | library} or strip is specified, this option is unavailable.

-fsymbol = <section name> [,...]

fsymbol = sct2, sct3

output=test.abs

;RENESAS OPTIMIZING LINKER GENERATED FILE 2012.07.19

;fsymbol = sct2, sct3

;SECTION NAME = sct2

 .glb_f

_f: .equ 00000000h

 .glb_g

_g: .equ 00000016h

;SECTION NAME = sct3

 .glb _main

_main: .equ 00000020h

 .end

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 234 of 276
Oct. 01, 2013

-aligned_section

< Optimizing Linkage Editor (rlink) Options / Section Options >

[Format]

[Description]

- Changes the alignment value for the specified section to 16 bytes.

[Remarks]

- When form={object | relocate | library}, extract, or strip is specified, this option is unavailable.

-aligned_section = <section name>[,...]

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 235 of 276
Oct. 01, 2013

< Optimizing Linkage Editor (rlink) Options / Verify Options >

The following verify options are available.

- -cpu

- -contiguous_section

-cpu

< Optimizing Linkage Editor (rlink) Options / Verify Options >

[Format]

[Description]

- When cpu=stride is not specified, a section larger than the specified range of addresses leads to an error.

- When cpu=stride is specified, a section larger than the specified range of addresses is allocated to the next area

of the same memory type or the section is divided.

[Examples]

- When the stride suboption is not specified:

- The result is normal when D1 and D2 are respectively allocated within the ranges from 100 to 1FF and from

200 to 2FF. If they are not allocated within the ranges, an error will be output.

- When the stride suboption is specified:

- The result is normal when D1 and D2 are allocated within the ROM area (regardless of whether the section is

divided). A linkage error occurs when they are not allocated within the ROM area even though the section is

divided.

- Specify an address range in which a section can be allocated in hexadecimal notation. The memory type

attribute is used for the inter-module optimization.

- FIX for <memory type> is used to specify a memory area where the addresses are fixed (e.g. I/O area).

- If the address range of <start>-<end> specified for FIX overlaps with that specified for another memory type,

the setting for FIX is valid.

- When <memory type> is ROM or RAM and the section size is larger than the specified memory range, sub-

option STRIDE can be used to divide a section and allocate them to another area of the same memory type.

Sections are divided in module units.

Verify Options

-cpu={ <memory type> = <address range> [,...] | STRIDE}

 <memory type>: { ROm | RAm | FIX }

 <address range>: <start address> - <end address>

start=D1,D2/100

cpu=ROM=100-1FF,RAM=200-2FF

start=D1,D2/100

cpu=ROM=100-1FF,RAM=200-2FF,ROM=300-3FF

cpu=stride

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 236 of 276
Oct. 01, 2013

- Checks that section addresses are allocated within the range from 0 to FFFF or from 10000 to 1FFFF.

- Object movement is not provided between different attributes with the inter-module optimization.

- When section addresses are not allocated within the range from 100 to 1FF, the linkage editor divides the sec-

tions in module units and allocates them to the range from 400 to 4FF.

[Remarks]

- When form={object | relocate | library} or strip is specified, this option is unavailable.

- When cpu=stride and memory=low are specified, this option is unavailable.

- When section B is divided by cpu=stride, the size of section C$BSEC increases by 8 bytes  number of divisions

because this amount of information is required for initialization.

cpu=ROM=0-FFFF,RAM=10000-1FFFF

cpu=ROM=100-1FF,ROM=400-4FF,RAM=500-5FF

cpu=stride

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 237 of 276
Oct. 01, 2013

-contiguous_section

< Optimizing Linkage Editor (rlink) Options / Verify Options >

[Format]

[Description]

- Allocates the specified section to another available area of the same memory type without dividing the section

when cpu=stride is valid.

[Examples]

- Section P is allocated to address 100.

- If section PA which is specified as contiguous_section is over address 1FF, section PA is allocated to address

300 without being divided.

- If section PB which is not specified as contiguous_section is over address 3FF, section PB is divided and allo-

cated to address 500.

[Remarks]

- When cpu=stride is invalid, this option is unavailable.

-contiguous_section=<section name>[,...]

start=P,PA,PB/100

cpu=ROM=100-1FF,ROM=300-3FF,ROM=500-5FF

cpu=stride

contiguous_section=PA

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 238 of 276
Oct. 01, 2013

< Optimizing Linkage Editor (rlink) Options / Other Options >

The following other options are available.

- -s9

- -stack

- -compress

- -nocompress

- -memory

- -rename

- -delete

- -replace

- -extract

- -strip

- -change_message

- -hide

- -total_size

-s9

< Optimizing Linkage Editor (rlink) Options / Other Options >

[Format]

[Description]

- Outputs the S9 record at the end even if the entry address exceeds 0x10000.

[Remarks]

- When form=stype is not specified, this option is unavailable.

Other Options

-s9

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 239 of 276
Oct. 01, 2013

-stack

< Optimizing Linkage Editor (rlink) Options / Other Options >

[Format]

[Description]

- Outputs a stack consumption information file.

- The file name is <output file name>.sni.

[Remarks]

- When form={object | relocate | library} or strip is specified, this option is unavailable.

-stack

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 240 of 276
Oct. 01, 2013

-compress

< Optimizing Linkage Editor (rlink) Options / Other Options >

[Format]

- [Default]

If this option is omitted, the debugging information is not compressed.

[Description]

- The debugging information is compressed.

- By compressing the debugging information, the debugger loading speed is improved.

[Remarks]

- When form={object | relocate | library | hexadecimal | stype | binary} or strip is specified, this option is

unavailable.

-compress

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 241 of 276
Oct. 01, 2013

-nocompress

< Optimizing Linkage Editor (rlink) Options / Other Options >

[Format]

- [Default]

If this option is omitted, the debugging information is not compressed.

[Description]

- The debugging information is not compressed.

- If the nocompress option is specified, the link time is reduced.

-nocompress

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 242 of 276
Oct. 01, 2013

-memory

< Optimizing Linkage Editor (rlink) Options / Other Options >

[Format]

- [Default]

The default for this option is memory = high.

[Description]

- Specifies the memory size occupied for linkage.

- When memory = high is specified, the processing is the same as usual.

- When memory = low is specified, the linkage editor loads the information necessary for linkage in smaller units to

reduce the memory occupancy. This increases file accesses and processing becomes slower when the occupied

memory size is less than the available memory capacity.

- memory = low is effective when processing is slow because a large project is linked and the memory size occu-

pied by the linkage editor exceeds the available memory in the machine used.

[Remarks]

- When one of the following options is specified, the memory=low option is unavailable:

- When form=absolute, hexadecimal, stype, or binary is specified:

compress, delete, rename, map, stack, cpu=stride, or

list and show[={reference | xreference}] are specified in combination.

- When form=library is specified:

delete, rename, extract, hide, or replace

- When form=object or relocate is specified:

extract

- Some combinations of this option and the input or output file format are unavailable.

-memory = [High | Low]

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 243 of 276
Oct. 01, 2013

-rename

< Optimizing Linkage Editor (rlink) Options / Other Options >

[Format]

[Description]

- Modifies an external symbol name or a section name.

- Symbol names or section names in a specific file or library in a module can be modified.

- For a C/C++ variable name, add an underscore (_) at the head of the definition name in the program.

- When a function name is modified, the operation is not guaranteed.

- If the specified name matches both section and symbol names, the symbol name is modified.

- If there are several files or modules of the same name, the priority depends on the input order.

[Examples]

[Remarks]

- When extract or strip is specified, this option is unavailable.

- When form=absolute is specified, the section name of the input library cannot be modified.

- Operation is not guaranteed if this option is used in combination with compile option -merge_files.

-rename = <suboption> [,...]

 <suboption>: {[<file>] (<name> = <name> [,...])

 | [<module>] (<name> = <name> [,...]) }

rename=(_sym1=data) ; Modifies _sym1 to data.

rename=lib1(P=P1) ; Modifies the section P to P1

 ; in the library module lib1.

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 244 of 276
Oct. 01, 2013

-delete

< Optimizing Linkage Editor (rlink) Options / Other Options >

[Format]

[Description]

- Deletes an external symbol name or library module.

- Symbol names or modules in the specified file can be deleted.

- For a C/C++ variable name or C function name, add an underscore (_) at the head of the definition name in the

program. For a C++ function name, enclose the definition name in the program with double-quotes including the

parameter strings. If the parameter is void, specify as "<function name>()". If there are several files or modules of

the same name, the file that is input first is applied.

- When a symbol is deleted using this option, the object is not deleted but the attribute is changed to the internal

symbol.

[Examples]

[Remarks]

- When extract or strip is specified, this option is unavailable.

- When form=library has been specified, this option deletes modules.

- When form={absolute|relocate|hexadecimal|stype|binary} has been specified, this option deletes external

symbols.

- Operation is not guaranteed if this option is used in combination with compile option -merge_files.

-delete = <suboption> [,...]

 <suboption>: {[<file>] (<name>[,...]) | <module>}

delete=(_sym1) ; Deletes the symbol _sym1 in all files.

delete=file1.obj(_sym2) ; Deletes the symbol _sym2 in the file file1.obj.

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 245 of 276
Oct. 01, 2013

-replace

< Optimizing Linkage Editor (rlink) Options / Other Options >

[Format]

[Description]

- Replaces library modules.

- Replaces the specified file or library module with the module of the same name in the library specified with the

library option.

[Examples]

[Remarks]

- When form={object | relocate | absolute | hexadecimal | stype | binary}, extract, or strip is specified, this

option is unavailable.

- Operation is not guaranteed if this option is used in combination with compile option -merge_files.

-replace = <suboption> [,...]

 <suboption>: <file name> [(<module name> [,...]) }

replace=file1.obj ; Replaces the module file1 with the module file1.obj.

replace=lib1.lib(mdl1) ; Replaces the module mdl1 with the module mdl1

 ; in the input library file lib1.lib.

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 246 of 276
Oct. 01, 2013

-extract

< Optimizing Linkage Editor (rlink) Options / Other Options >

[Format]

[Description]

- Extracts library modules.

- Extracts the specified library module from the library file specified using the library option.

[Examples]

[Remarks]

- When form={absolute | hexadecimal | stype | binary} or strip is specified, this option is unavailable.

- When form=library has been specified, this option deletes modules.

- When form={absolute|relocate|hexadecimal|stype|binary} has been specified, this option deletes external

symbols.

-extract = <module name> [,...]

extract=file1 ; Extracts the module file1.

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 247 of 276
Oct. 01, 2013

-strip

< Optimizing Linkage Editor (rlink) Options / Other Options >

[Format]

[Description]

- Deletes debugging information in an absolute file or library file.

- When the strip option is specified, one input file should correspond to one output file.

[Examples]

- Deletes debugging information of file1.abs, file2.abs, and file3.abs, and outputs this information to file1.abs,

file2.abs, and file3.abs, respectively. Files before debugging information is deleted are backed up in file1.abk,

file2.abk, and file3.abk.

[Remarks]

- When form={object | relocate | hexadecimal | stype | binary} is specified, this option is unavailable.

-strip

input=file1.abs file2.abs file3.abs

strip

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 248 of 276
Oct. 01, 2013

-change_message

< Optimizing Linkage Editor (rlink) Options / Other Options >

[Format]

[Description]

- Modifies the level of information, warning, and error messages.

- Specifies the execution continuation or abort at the message output.

- When a message number is specified, the error level of the message with the specified error number changes to

the given level.

- A range of error message numbers can be specified by using a hyphen (-).

- Each error number must consist of a component number (05), phase (6), and a four-digit value (e.g. 2310 in the

case of E0562310).

- If no error number is specified, all messages will be changed to the specified level.

[Examples]

- This changes E0562310 to a warning-level message so that linkage proceeds even if E0562310 is output.

- This changes all information and warning messages to error level messages.

When a message is output, the execution is aborted.

-change_message = <suboption> [,...]

 <suboption>: <error level> [= <error number> [-<error number>] [,...]]

 <error level>: {Information | Warning | Error}

change_message=warning=2310

change_message=error

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 249 of 276
Oct. 01, 2013

-hide

< Optimizing Linkage Editor (rlink) Options / Other Options >

[Format]

[Description]

- Deletes local symbol name information from the output file. Since all the name information regarding local symbols

is deleted, local symbol names cannot be checked even if the file is opened with a binary editor. This option does

not affect the operation of the generated file.

- Use this option to keep the local symbol names secret.

- The following types of symbol names are hidden:

- C source: Variable or function names specified with the static qualifiers

- C source: Label names for the goto statements

- Assembly source: Symbol names of which external definition (reference) symbols are not declared

Note The entry function name is not hidden.

-hide

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 250 of 276
Oct. 01, 2013

[Examples]

- The following is a C source example in which this option is valid:

[Remarks]

- This option is available only when the output file format is specified as absolute, relocate, or library.

- When the input file was compiled or assembled with the goptimize option specified, this option is unavailable if the

output file format is specified as relocate or library.

- To use this option with the external variable access optimization, do not use this option for the first linkage, and use

it only for the second linkage.

- The symbol names in the debugging information are not deleted by this option.

int g1;

int g2=1;

const int g3=3;

static int s1; //<- The static variable name will be hidden.

static int s2=1; //<- The static variable name will be hidden.

static const int s3=2; //<- The static variable name will be hidden.

static int sub1() //<- The static function name will be hidden.

{

 static int s1; //<- The static variable name will be hidden.

 int l1;

 s1 = l1; l1 = s1;

 return(l1);

}

int main()

{

 sub1();

 if (g1==1)

 goto L1;

 g2=2;

L1: //<- The label name of the goto statement will be hidden.

 return(0);

}

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 251 of 276
Oct. 01, 2013

-total_size

< Optimizing Linkage Editor (rlink) Options / Other Options >

[Format]

[Description]

- Sends total sizes of sections after linkage to standard output. The sections are categorized as follows, with the

overall size of each being output.

- Executable program sections

- Non-program sections allocated to the ROM area

- Sections allocated to the RAM area

- This option makes it easy to see the total sizes of sections allocated to the ROM and RAM areas.

[Remarks]

- The show=total_size option must be used if total sizes of sections are to be output in the linkage listing.

- When the ROM-support function (rom option) has been specified for a section, the section will be used by both the

source (ROM) and destination (RAM) of the transfer. The sizes of sections of this type will be added to the total

sizes of sections in both ROM and RAM.

-total_size

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 252 of 276
Oct. 01, 2013

< Optimizing Linkage Editor (rlink) Options / Subcommand File Option >

The following subcommand file option is available.

- -subcommand

-subcommand

< Optimizing Linkage Editor (rlink) Options / Subcommand File Option >

[Format]

[Description]

- Specifies options with a subcommand file.

- The format of the subcommand file is as follows:

<option> { = |  } [<suboption> [,…]] [&] [;<comment>]

- The option and suboption are separated by an "=" sign or a space.

- For the input option, suboptions are separated by a space.

- One option is specified per line in the subcommand file.

- If a subcommand description exceeds one line, the description can be allowed to overflow to the next line by using

an ampersand (&).

- The subcommand option cannot be specified in the subcommand file.

[Examples]

- Command line specification:

- Subcommand specification:

- Option contents specified with a subcommand file are expanded to the location at which the subcommand is spec-

ified on the command line and are executed.

- The order of file input is file1.obj, file2.obj, file3.obj, and file4.obj.

Subcommand File Option

-subcommand = <file name>

rlink file1.obj -sub=test.sub file4.obj

input file2.obj file3.obj ; This is a comment.

library lib1.lib, & ; Specifies line continued.

lib2.lib

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 253 of 276
Oct. 01, 2013

< Optimizing Linkage Editor (rlink) Options / Options Other Than Above >

The following options other than above are available.

- -logo

- -nologo

- -end

- -exit

-logo

< Optimizing Linkage Editor (rlink) Options / Options Other Than Above >

[Format]

- \[Default]

When this option is omitted, the copyright notice is output.

[Description]

- The copyright notice is output.

Options Other Than Above

-logo

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 254 of 276
Oct. 01, 2013

-nologo

< Optimizing Linkage Editor (rlink) Options / Options Other Than Above >

[Format]

- [Default]

When this option is omitted, the copyright notice is output.

[Description]

- Output of the copyright notice is disabled.

-nologo

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 255 of 276
Oct. 01, 2013

-end

< Optimizing Linkage Editor (rlink) Options / Options Other Than Above >

[Format]

[Description]

- Executes option strings specified before END. After the linkage processing is terminated, option strings that are

specified after END are input and the linkage processing is continued.

- This option cannot be specified on the command line.

[Examples]

- Executes the processing from (1) to (3) and outputs a.abs. Then executes the processing from (4) to (6) and out-

puts a.mot.

-end

input=a.obj,b.obj ; Processing (1)

start=P,C,D/100,B/8000 ; Processing (2)

output=a.abs ; Processing (3)

end

input=a.abs ; Processing (4)

form=stype ; Processing (5)

output=a.mot ; Processing (6)

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 256 of 276
Oct. 01, 2013

-exit

< Optimizing Linkage Editor (rlink) Options / Options Other Than Above >

[Format]

[Description]

- Specifies the end of the option specifications.

- This option cannot be specified on the command line.

[Examples]

- Command line specification:

- test.sub:

- Executes the processing from (1) to (3) and outputs a.abs.

- The nodebug option specified on the command line after exit is executed is ignored.

-exit

rlink -sub=test.sub -nodebug

input=a.obj,b.obj ; Processing (1)

start=P,C,D/100,B/8000 ; Processing (2)

output=a.abs ; Processing (3)

exit

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 257 of 276
Oct. 01, 2013

(4) Library Generator Options

Classification Option Description

Library Options -head Specifies a configuration library.

-output Specifies an output library file name.

-nofloat Creates a simple I/O function.

-lang Selects the set of functions available from the C standard library.

-simple_stdio Creates a functionally cut down version of the set of I/O functions.

-logo

-nologo

Outputs the copyright.

Disables output of the copyright.

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 258 of 276
Oct. 01, 2013

< Library Generator Options / Library Options >

The following library options are available.

- -head

- -output

- -nofloat

- -lang

- -simple_stdio

- -logo

- -nologo

-head

< Library Generator Options / Library Options >

[Format]

- [Default]

The default for this option is head=all.

[Description]

- This option specifies a configuration file with a header file name.

- When head=all is specified, all header file names will be configured.

- The runtime library is always configured.

Library Options

-head=<sub>[,...]

<sub>:{ all | runtime | ctype | math | mathf | stdarg | stdio | stdlib | string | ios |

 new | complex | cppstring | c99_complex | fenv | inttypes | wchar | wctype}

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 259 of 276
Oct. 01, 2013

-output

< Library Generator Options / Library Options >

[Format]

- [Default]

The default for this option is output=stdlib.lib.

[Description]

- This option specifies an output file name.

-output=<file name>

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 260 of 276
Oct. 01, 2013

-nofloat

< Library Generator Options / Library Options >

[Format]

[Description]

- This option creates simple I/O functions that do not support the conversion of floating-point numbers (%f, %e, %E,

%g, %G).

- When inputting or outputting files that do not require the conversion of floating-point numbers, ROM can be saved.

Target functions: fprintf, fscanf, printf, scanf, sprintf, sscanf, vfprintf, vprintf, and vsprintf

[Remarks]

- In a library created with this option specified, correct operation cannot be guaranteed when floating-point numbers

are input to or output from the target functions.

-nofloat

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 261 of 276
Oct. 01, 2013

-lang

< Library Generator Options / Library Options >

[Format]

- [Default]

The default for this option is lang=c.

[Description]

- This option selects which functions are to be usable in the C standard library.

- When lang=c is specified, only the functions conforming to the C89 standard are included in the C standard library,

and the extended functions of the C99 standard are not included. When lang=c99 is specified, the functions con-

forming to the C89 standard and the functions conforming to the C99 standard are included in the C standard

library.

[Remarks]

- There are no changes in the functions included in the C++ and EC++ standard libraries.

- When lang=c99 is specified, all functions including those specified by the C99 standard can be used. Since the

number of available functions is greater than when lang=c is specified, however, generating a library may take a

long time.

-lang = { c | c99 }

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 262 of 276
Oct. 01, 2013

-simple_stdio

< Library Generator Options / Library Options >

[Format]

[Description]

- This option creates a functional cutdown version of I/O functions.

- The functional cutdown version does not include the conversion of floating-point numbers (same as the function

not supported with the nofloat option), the conversion of long long type, and the conversion of 2-byte code. When

inputting or outputting files that do not require these functions, ROM can be saved.

Target functions:fprintf, fscanf, printf, scanf, sprintf, sscanf, vfprintf, vprintf, and vsprintf

[Remarks]

- In a library created with this option specified, correct operation cannot be guaranteed when a cutdown function is

used in the target functions.

- This function is disabled during C++ and EC++ program compilation.

-simple_stdio

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 263 of 276
Oct. 01, 2013

-logo

< Library Generator Options / Library Options >

[Format]

- [Default]

When this option is omitted, the copyright notice is output.

[Description]

- The copyright notice is output.

-logo

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 264 of 276
Oct. 01, 2013

-nologo

< Library Generator Options / Library Options >

[Format]

- [Default]

When this option is omitted, the copyright notice is output.

[Description]

- Output of the copyright notice is disabled.

-nologo

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 265 of 276
Oct. 01, 2013

In addition to the options in (4) Library Generator Options, the C/C++ compiler options can be specified in the library

generator as options used for library compilation. However, the options listed below are invalid; they are not selected at

library compilation.

Table A-18. Invalid Options

Compiler Options That Become Invalid

No. Options that Become Invalid Conditions for

Invalidation

Library Configuration When Made Invalid

1 lang Always invalid None

2 include Always invalid None

3 define Always invalid None

4 undefined Always invalid None

5 message

nomessage

Always invalid nomessage

6 change_message Always invalid None

7 file_inline_path Always invalid None

8 comment Always invalid None

9 check Always invalid None

10 output Always invalid output=obj

11 noline Always invalid None

12 debug

nodebug

Always invalid nodebug

13 listfile

nolistfile

show

Always invalid nolistfile

14 file_inline Always invalid None

15 asmcmd Always invalid None

16 lnkcmd Always invalid None

17 asmopt Always invalid None

18 lnkopt Always invalid None

19 logo

nologo

Always invalid nologo

20 euc

sjis

latin1

utf8

Always invalid None

21 outcode Always invalid None

22 subcommand Always invalid None

23 alias Always invalid alias=noansi

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 266 of 276
Oct. 01, 2013

Notes 1. Warning W0511171 is output.

2. Error F0593305 is output. (This library cannot be generated.)

24 pic

pid

lang=cpp or at C++

source

compilationNote1

None

25 ip_optimize Always invalid None

26 merge_files Always invalid None

27 whole_program Always invalid None

28 big5

gb2312

Always invalid Note2 None

No. Options that Become Invalid Conditions for

Invalidation

Library Configuration When Made Invalid

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 267 of 276
Oct. 01, 2013

APPENDIX B INDEX

A

-absolute_forbid(Optimizing linkage editor option) ... 230
-alias(Compile option) ... 105

-aligned_section(Optimizing linkage editor option) ... 234

-approxdiv(Compile option) ... 98

-asmcmd(Compile option) ... 143

-asmopt(Compile option) ... 145

Assemble list file ... 7

-auto_enum(Compile option) ... 125

B

-base(Assemble option) ... 176

-base(Compile option) ... 134

-big5(Assemble option) ... 187

-big5(Compile option) ... 153

-binary(Optimizing linkage editor option) ... 193

-bit_order(Compile option) ... 126

-branch(Compile option) ... 133

-byte_count(Optimizing linkage editor option) ... 211

C

-case(Compile option) ... 82

CC-RX processing flow ... 5

-change_message(Compile option) ... 42

-change_message(Optimizing linkage editor option) ...

248

-check(Compile option) ... 46

-check_language_extension(Compile option) ... 52

-chkdsp(Assemble option) ... 162

-chkfpu(Assemble option) ... 161

-chkpm(Assemble option) ... 160

Command specification information

Assembler ... 10

Compiler ... 9

-comment(Compile option) ... 45

-compress(Optimizing linkage editor option) ... 240

-const_copy(Compile option) ... 85

-const_div(Compile option) ... 87

-contiguous_section(Optimizing linkage editor option) ...

237

Copyrights ... 6

-cpu(Assemble option) ... 173

-cpu(Compile option) ... 115

-cpu(Optimizing linkage editor option) ... 235

CRC information ... 16

-crc(Optimizing linkage editor option) ... 212

Cross-reference information ... 14

D

-dbl_size(Compile option) ... 119

-debug(Assemble option) ... 164

-debug(Compile option) ... 56

-debug(Optimizing linkage editor option) ... 200

-define(Assemble option) ... 159

-define(Compile option) ... 38

-define(Optimizing linkage editor option) ... 194

-delete(Optimizing linkage editor option) ... 244

-denormalize(Compile option) ... 118

E

-enable_register(Compile option) ... 99

-end(Optimizing linkage editor option) ... 255

-endian(Assemble option) ... 174

-endian(Compile option) ... 116

-entry(Optimizing linkage editor option) ... 195

Error information ... 12, 18

-euc(Assemble option) ... 184

-euc(Compile option) ... 149

-exception(Compile option) ... 129

-exit(Optimizing linkage editor option) ... 256

-extract(Optimizing linkage editor option) ... 246

F

-file_inline(Compile option) ... 81

-file_inline_path(Compile option) ... 44

-fint_register(Assemble option) ... 175

-fint_register(Compile option) ... 132

-float_order(Compile option) ... 107

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 268 of 276
Oct. 01, 2013

-form(Optimizing linkage editor option) ... 198

-fpu(Assemble option) ... 167

-fpu(Compile option) ... 103

-fsymbol(Optimizing linkage editor option) ... 233

G

-gb2312(Assemble option) ... 188

-gb2312(Compile option) ... 154

-goptimize(Assemble option) ... 166

-goptimize(Compile option) ... 73

H

-head(Library generator option) ... 258

HEX file format ... 22

-hide(Optimizing linkage editor option) ... 249

I

-ignore_files_misra(Compile option) ... 51

-include(Assemble option) ... 158

-include(Compile option) ... 36

-inline(Compile option) ... 79

-Input(Optimizing linkage editor option) ... 191

Input/output files ... 24

-instalign4(Compile option) ... 63

-instalign8(Compile option) ... 64

-int_to_short(Compile option) ... 120

-ip_optimize(Compile option) ... 108

-isa(Assemble option) ... 172

-isa(Compile option) ... 114

J

-jump_entries_for_pic(Optimizing linkage editor option) ... 219

L

-lang(Compile option) ... 35

-lang(Library generator option) ... 261

-latin1(Assemble option) ... 186

-latin1(Compile option) ... 151

Library information ... 18

Library list ... 17

-library(Compile option) ... 89

-library(Optimizing linkage editor option) ... 192

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 269 of 276
Oct. 01, 2013

Link map file ... 11

Linkage map information ... 12

-list(Optimizing linkage editor option) ... 220

-listfile(Assemble option) ... 169

-listfile(Compile option) ... 68

-lnkcmd(Compile option) ... 144

-lnkopt(Compile option) ... 146

-logo(Assemble option) ... 181

-logo(Compile option) ... 147

-logo(Library generator option) ... 263

-logo(Optimizing linkage editor option) ... 253

-loop(Compile option) ... 78

M

-map(Compile option) ... 94

-map(Optimizing linkage editor option) ... 206

-memory(Optimizing linkage editor option) ... 242

-merge_files(Compile option) ... 110

-message(Compile option) ... 40

-message(Optimizing linkage editor option) ... 208

-misra2004(Compile option) ... 48

Module, section, and symbol information within library ... 18

-msg_unused(Optimizing linkage editor option) ... 210

N

-nocompress(Optimizing linkage editor option) ... 241

-noconst_copy(Compile option) ... 86

-noconst_div(Compile option) ... 88

-nodebug(Assemble option) ... 165

-nodebug(Compile option) ... 57

-nodebug(Optimizing linkage editor option) ... 202

-noexception(Compile option) ... 130

-nofloat(Library generator option) ... 260

-nofpu(Assemble option) ... 168

-nofpu(Compile option) ... 104

-noinline(Compile option) ... 80

-noinstalign(Compile option) ... 66

-noline(Compile option) ... 55

-nolistfile(Assemble option) ... 170

-nolistfile(Compile option) ... 69

-nologo(Assemble option) ... 182

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 270 of 276
Oct. 01, 2013

-nologo(Compile option) ... 148

-nologo(Library generator option) ... 264

-nologo(Optimizing linkage editor option) ... 254

-nomap(Compile option) ... 97

-nomessage(Compile option) ... 41

-nomessage(Optimizing linkage editor option) ... 209

-nooptimize(Optimizing linkage editor option) ... 225

-noprelink(Optimizing linkage editor option) ... 196

-noschedule(Compile option) ... 93

-noscope(Compile option) ... 91

-nostuff(Compile option) ... 61

-nouse_div_inst(Compile option) ... 67

-nouse_pid_register(Assemble option) ... 180

-nouse_pid_register(Compile option) ... 141

-novolatile(Compile option) ... 84

O

Object information ... 7

-optimize(Compile option) ... 72

-optimize(Optimizing linkage editor option) ... 223

Option information ... 11, 17

-outcode(Compile option) ... 155

-output(Assemble option) ... 163

-output(Compile option) ... 53

-output(Library generator option) ... 259

-output(Optimizing linkage editor option) ... 205

P

-pack(Compile option) ... 127

-padding(Optimizing linkage editor option) ... 216

-patch(Assemble option) ... 177

-patch(Compile option) ... 135

-pic(Assemble option) ... 178

-pic(Compile option) ... 136

-pid(Assemble option) ... 179

-pid(Compile option) ... 138

-preinclude(Compile option) ... 37

R

-record(Optimizing linkage editor option) ... 203

-rename(Optimizing linkage editor option) ... 243

-replace(Optimizing linkage editor option) ... 245

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 271 of 276
Oct. 01, 2013

-rom(Optimizing linkage editor option) ... 204

-round(Compile option) ... 117

-rtti(Compile option) ... 131

RX Family C/C++ Compiler ... 24

S

-s9(Optimizing linkage editor option) ... 238

-samecode_forbid(Optimizing linkage editor option) ... 228

-samesize(Optimizing linkage editor option) ... 226

-save_acc(Compile option) ... 142

-schedule(Compile option) ... 92

-scope(Compile option) ... 90

-sdebug(Optimizing linkage editor option) ... 201

-section(Compile option) ... 58

-section_forbid(Optimizing linkage editor option) ... 229

-show(Assemble option) ... 171

-show(Compile option) ... 70

-show(Optimizing linkage editor option) ... 221

-signed_bitfield(Compile option) ... 123

-signed_char(Compile option) ... 121

-simple_float_conv(Compile option) ... 100

-simple_stdio(Library generator option) ... 262

-size(Compile option) ... 76

-sjis(Assemble option) ... 185

-sjis(Compile option) ... 150

-smap(Compile option) ... 96

Source information ... 7

-space(Optimizing linkage editor option) ... 207

-speed(Compile option) ... 74

-stack(Optimizing linkage editor option) ... 239

-start(Optimizing linkage editor option) ... 231

Statistics information ... 9

-strip(Optimizing linkage editor option) ... 247

Structure of library list ... 17

Structure of linkage list ... 11

-stuff(Compile option) ... 59

S-type file format ... 20

-subcommand(Assemble option) ... 183

-subcommand(Compile option) ... 156

-subcommand(Optimizing linkage editor option) ... 252

Symbol deletion optimization information ... 14

CC-RX V2.01.00

R20UT2747EJ0100 Rev.1.00 Page 272 of 276
Oct. 01, 2013

Symbol information ... 13

-symbol_forbid(Optimizing linkage editor option) ... 227

T

Total section size ... 15

-total_size(Optimizing linkage editor option) ... 251

U

-undefine(Compile option) ... 39

-unpack(Compile option) ... 128

-unsigned_bitfield(Compile option) ... 124

-unsigned_char(Compile option) ... 122

-utf8(Compile option) ... 152

V

-vect(Optimizing linkage editor option) ... 218

-vectn(Optimizing linkage editor option) ... 217

Vector information ... 16

-volatile(Compile option) ... 83

W

-whole_program(Compile option) ... 111

Revision Record

Rev. Date
Description

Page Summary

Rev.1.00 Oct. 01, 2013 - First Edition issued

CC-RX V2.01.00 User's Manual:
RX Build

Publication Date: Rev.1.00 Oct. 01, 2013

Published by: Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2012 Renesas Electronics Corporation. All rights reserved.

Colophon 1.3
© 2013 Renesas Electronics Corporation and Renesas Solutions Corp.

Colophon 1.3

CC-RX V2.01.00

R20UT2747EJ0100

	Cover

	TABLE OF CONTENTS
	CHAPTER 1 GENERAL
	1.1 Overview
	1.2 Copyrights

	CHAPTER 2 BUILD OUTPUT LISTS
	2.1 Assemble List File
	2.1.1 Source Information
	2.1.2 Object Information
	2.1.3 Statistics Information
	2.1.4 Compiler Command Specification Information
	2.1.5 Assembler Command Specification Information

	2.2 Link Map File
	2.2.1 Structure of Linkage List
	2.2.2 Option Information
	2.2.3 Error Information
	2.2.4 Linkage Map Information
	2.2.5 Symbol Information
	2.2.6 Symbol Deletion Optimization Information
	2.2.7 Cross-Reference Information
	2.2.8 Total Section Size
	2.2.9 Vector Information
	2.2.10 CRC Information

	2.3 Library List
	2.3.1 Structure of Library List
	2.3.2 Option Information
	2.3.3 Error Information
	2.3.4 Library Information
	2.3.5 Module, Section, and Symbol Information within Library

	2.4 S-Type and HEX File Formats
	2.4.1 S-Type File Format
	2.4.2 HEX File Format

	APPENDIX A COMMAND REFERENCE
	A.1 RX Family C/C++ Compiler
	A.1.1 Input/Output Files
	A.1.2 Operating Instructions
	A.1.3 Options
	(1) Compile Options
	Source Options
	-lang
	-include
	-preinclude
	-define
	-undefine
	-message
	-nomessage
	-change_message
	-file_inline_path
	-comment
	-check
	-misra2004
	-ignore_files_misra
	-check_language_extension

	Object Options
	-output
	-noline
	-debug
	-nodebug
	-section
	-stuff
	-nostuff
	-instalign4
	-instalign8
	-noinstalign
	-nouse_div_inst

	List Options
	-listfile
	-nolistfile
	-show

	Optimize Options
	-optimize
	-goptimize
	-speed
	-size
	-loop
	-inline
	-noinline
	-file_inline
	-case
	-volatile
	-novolatile
	-const_copy
	-noconst_copy
	-const_div
	-noconst_div
	-library
	-scope
	-noscope
	-schedule
	-noschedule
	-map
	-smap
	-nomap
	-approxdiv
	-enable_register
	-simple_float_conv
	-fpu
	-nofpu
	-alias
	-float_order
	-ip_optimize
	-merge_files
	-whole_program

	Microcontroller Options
	-isa
	-cpu
	-endian
	-round
	-denormalize
	-dbl_size
	-int_to_short
	-signed_char
	-unsigned_char
	-signed_bitfield
	-unsigned_bitfield
	-auto_enum
	-bit_order
	-pack
	-unpack
	-exception
	-noexception
	-rtti
	-fint_register
	-branch
	-base
	-patch
	-pic
	-pid
	-nouse_pid_register
	-save_acc

	Assemble and Linkage Options
	-asmcmd
	-lnkcmd
	-asmopt
	-lnkopt

	Other Options
	-logo
	-nologo
	-euc
	-sjis
	-latin1
	-utf8
	-big5
	-gb2312
	-outcode
	-subcommand

	(2) Assembler Command Options
	Source Options
	-include
	-define
	-chkpm
	-chkfpu
	-chkdsp

	Object Options
	-output
	-debug
	-nodebug
	-goptimize
	-fpu
	-nofpu

	List Options
	-listfile
	-nolistfile
	-show

	Microcontroller Options
	-isa
	-cpu
	-endian
	-fint_register
	-base
	-patch
	-pic
	-pid
	-nouse_pid_register

	Other Options
	-logo
	-nologo
	-subcommand
	-euc
	-sjis
	-latin1
	-big5
	-gb2312

	(3) Optimizing Linkage Editor (rlink) Options
	Input Options
	-Input
	-library
	-binary
	-define
	-entry
	-noprelink

	Output Options
	-form
	-debug
	-sdebug
	-nodebug
	-record
	-rom
	-output
	-map
	-space
	-message
	-nomessage
	-msg_unused
	-byte_count
	-crc
	-padding
	-vectn
	-vect
	-jump_entries_for_pic

	List Options
	-list
	-show

	Optimize Options
	-optimize
	-nooptimize
	-samesize
	-symbol_forbid
	-samecode_forbid
	-section_forbid
	-absolute_forbid

	Section Options
	-start
	-fsymbol
	-aligned_section

	Verify Options
	-cpu
	-contiguous_section

	Other Options
	-s9
	-stack
	-compress
	-nocompress
	-memory
	-rename
	-delete
	-replace
	-extract
	-strip
	-change_message
	-hide
	-total_size

	Subcommand File Option
	-subcommand

	Options Other Than Above
	-logo
	-nologo
	-end
	-exit

	(4) Library Generator Options
	Library Options
	-head
	-output
	-nofloat
	-lang
	-simple_stdio
	-logo
	-nologo

	Compiler Options That Become Invalid

	APPENDIX B INDEX

