
U
ser’s M

anual

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

CubeSuite+ V1.00.00

Integrated Development Environment
User’s Manual: RL78,78K0R Coding

Rev.1.00 Apr 2011

Target Device
RL78 Family
78K0R Microcontroller

www.renesas.com

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

How to Use This Manual

This manual describes the role of the CubeSuite+ integrated development environment for developing application

systems for RL78 family, 78K0R microcontrollers, and provides an outline of its features.

CubeSuite+ is an integrated development environment (IDE) for RL78 family, 78K0R microcontrollers, integrating

the necessary tools for the development phase of software (e.g. design, implementation, and debugging) into a

single platform.

By providing an integrated environment, it is possible to perform all development using just this product, without

the need to use many different tools separately.

Readers This manual is intended for users who wish to understand the functions of the

CubeSuite+ and design software and hardware application systems.

Purpose This manual is intended to give users an understanding of the functions of the

CubeSuite+ to use for reference in developing the hardware or software of systems

using these devices.

Organization This manual can be broadly divided into the following units.

CHAPTER 1 GENERAL

CHAPTER 2 FUNCTIONS

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

CHAPTER 6 FUNCTION SPECIFICATIONS

CHAPTER 7 STARTUP

CHAPTER 8 ROMIZATION

CHAPTER 9 REFERENCING COMPILER AND ASSEMBLER

CHAPTER 10 CAUTIONS

APPENDIX A ROMIZATION PROCESSOR

APPENDIX B EDITOR

APPENDIX C INDEX

How to Read This Manual It is assumed that the readers of this manual have general knowledge of electricity, logic

circuits, and microcontrollers.

Conventions Data significance: Higher digits on the left and lower digits on the right

 Active low representation: XXX
–––

 (overscore over pin or signal name)

 Note: Footnote for item marked with Note in the text

 Caution: Information requiring particular attention

 Remark: Supplementary information

 Numeric representation: Decimal … XXXX

 Hexadecimal … 0xXXXX

Related Documents The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

Document Name Document No.

Start R20UT0545E

78K0 Design R20UT0546E

78K0R Design R20UT0547E

RL78 Design R20UT0548E

V850 Design R20UT0549E

R8C Design R20UT0550E

78K0 Coding R20UT0551E

RL78,78K0R Coding This manual

V850 Coding R20UT0553E

Coding for CX Compiler R20UT0554E

R8C Coding R20UT0576E

78K0 Build R20UT0555E

RL78,78K0R Build R20UT0556E

V850 Build R20UT0557E

Build for CX Compiler R20UT0558E

R8C Build R20UT0575E

78K0 Debug R20UT0559E

78K0R Debug R20UT0560E

RL78 Debug R20UT0561E

V850 Debug R20UT0562E

R8C Debug R20UT0574E

Analysis R20UT0563E

CubeSuite+

Integrated Development Environment

User's Manual

Message R20UT0407E

Caution The related documents listed above are subject to change without

notice. Be sure to use the latest edition of each document when

designing.

All trademarks or registered trademarks in this document are the property of their respective
owners.

[MEMO]

[MEMO]

[MEMO]

TABLE OF CONTENTS

CHAPTER 1 GENERAL ... 13

1.1 Overview ... 13

1.1.1 C compiler and assembler ... 13

1.1.2 Position of compiler and assembler ... 16

1.1.3 Processing flow ... 17

1.1.4 Basic structure of C source program ... 18

1.2 Features ... 20

1.2.1 Features of C compiler ... 20

1.2.2 Features of assembler ... 21

1.2.3 Limits ... 21

CHAPTER 2 FUNCTIONS ... 24

2.1 Variables (Assembly Language) ... 24

2.1.1 Defining variables with no initial values ... 24

2.1.2 Defining const constants with initial values ... 24

2.1.3 Defining 1-bit variables ... 24

2.1.4 1/8 bit access of variable ... 25

2.1.5 Allocating to sections accessible with short instructions ... 26

2.2 Variables (C Language) ... 27

2.2.1 Allocating data only of reference in ROM ... 27

2.2.2 Allocating to sections accessible with short instructions ... 27

2.2.3 Allocating in near areas ... 28

2.2.4 Allocating in far areas ... 28

2.2.5 Allocating addresses directly ... 29

2.2.6 Defining 1-bit variables ... 30

2.2.7 Empty area of the structure is stuffed ... 30

2.3 Functions ... 31

2.3.1 Allocating to sections accessible with short instructions ... 31

2.3.2 Allocating in near areas ... 31

2.3.3 Allocating in far areas ... 32

2.3.4 Allocating addresses directly ... 32

2.3.5 Inline expansion of function ... 33

2.3.6 Embedding assembly instructions ... 33

2.4 Using Microcontroller Functions ... 34

2.4.1 Accessing special function registers (SFR) from C ... 34

2.4.2 Interrupt functions in C ... 35

2.4.3 Using CPU control instructions in C ... 36

2.5 Startup Routine ... 38

2.5.1 Deleting unused functions and areas from startup routine ... 38

2.5.2 Allocating stack area ... 39

2.5.3 Initializing RAM ... 40

2.6 Link Directives ... 41

2.6.1 Partitioning default areas ... 41

2.6.2 Specifying section allocation ... 41

2.7 Reducing Code Size ... 42

2.7.1 Using extended functions to generate efficient object code ... 42

2.7.2 Calculating complex expressions ... 45

2.8 Compiler and Assembler Mutual References ... 46

2.8.1 Mutually referencing variables ... 46

2.8.2 Mutually referencing functions ... 48

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS ... 50

3.1 Basic Language Specifications ... 50

3.1.1 Processing system dependent items ... 50

3.1.2 Internal representation and value area of data ... 61

3.1.3 Memory ... 65

3.2 Extended Language Specifications ... 66

3.2.1 Macro names ... 67

3.2.2 Keywords ... 67

3.2.3 #pragma directives ... 68

3.2.4 Using extended functions ... 70

3.2.5 C source modifications ... 181

3.3 Function Call Interface ... 182

3.3.1 Return values ... 182

3.3.2 Ordinary function call interface ... 182

3.4 List of saddr Area Labels ... 186

3.5 List of Segment Names ... 187

3.5.1 List of segment names ... 188

3.5.2 Segment allocation ... 190

3.5.3 C source example ... 190

3.5.4 Example of output assembler module ... 191

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS ... 200

4.1 Description Methods of Source Program ... 200

4.1.1 Basic configuration ... 200

4.1.2 Description method ... 206

4.1.3 Expressions and operators ... 216

4.1.4 Arithmetic operators ... 219

4.1.5 Logic operators ... 227

4.1.6 Relational operators ... 232

4.1.7 Shift operators ... 239

4.1.8 Byte separation operators ... 242

4.1.9 Word separation operators ... 245

4.1.10 Special operators ... 248

4.1.11 Other operator ... 252

4.1.12 Restrictions on operations ... 254

4.1.13 Absolute expression definitions ... 258

4.1.14 Bit position specifier ... 258

4.1.15 Identifiers ... 260

4.1.16 Operand characteristics ... 261

4.2 Directives ... 269

4.2.1 Overview ... 269

4.2.2 Segment definition directives ... 270

4.2.3 Symbol definition directives ... 288

4.2.4 Memory initialization, area reservation directives ... 295

4.2.5 Linkage directives ... 305

4.2.6 Object module name declaration directive ... 312

4.2.7 Branch instruction automatic selection directives ... 314

4.2.8 Macro directives ... 319

4.2.9 Assemble termination directive ... 334

4.3 Control Instructions ... 336

4.3.1 Overview ... 336

4.3.2 Assemble target type specification control instruction ... 338

4.3.3 Debug information output control instructions ... 340

4.3.4 Cross-reference list output specification control instructions ... 345

4.3.5 Include control instruction ... 350

4.3.6 Assembly list control instructions ... 354

4.3.7 Conditional assembly control instructions ... 377

4.3.8 Kanji code control instruction ... 403

4.3.9 RAM area allocation-specification control instruction ... 405

4.3.10 Other control instructions ... 407

4.4 Macros ... 408

4.4.1 Overview ... 408

4.4.2 Using macros ... 408

4.4.3 Symbols in macros ... 411

4.4.4 Macro operators ... 413

4.5 Reserved Words ... 414

4.6 Instructions ... 415

4.6.1 Differences from 78K0 microcontrollers (for assembler users) ... 415

4.6.2 Memory space ... 417

4.6.3 Registers ... 420

4.6.4 Addressing ... 425

4.6.5 Instruction set ... 435

4.6.6 Explanation of instructions ... 467

4.6.7 Pipeline ... 590

CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS ... 593

5.1 Coding Method ... 593

5.1.1 Link directives ... 593

5.2 Reserved Words ... 598

5.3 Coding Examples ... 598

5.3.1 When specifying link directive ... 598

5.3.2 When using the compiler ... 599

CHAPTER 6 FUNCTION SPECIFICATIONS ... 601

6.1 Distribution Libraries ... 601

6.1.1 Standard library ... 602

6.1.2 Runtime library ... 607

6.2 Interface Between Functions ... 615

6.2.1 Arguments ... 615

6.2.2 Return values ... 615

6.2.3 Saving registers used by separate libraries ... 615

6.3 Header Files ... 616

6.3.1 ctype.h ... 616

6.3.2 setjmp.h ... 616

6.3.3 stdarg.h ... 617

6.3.4 stdio.h ... 617

6.3.5 stdlib.h ... 617

6.3.6 string.h ... 618

6.3.7 error.h ... 618

6.3.8 errno.h ... 618

6.3.9 limits.h ... 618

6.3.10 stddef.h ... 619

6.3.11 math.h ... 620

6.3.12 float.h ... 620

6.3.13 assert.h ... 622

6.4 Re-entrant ... 622

6.5 Use of Arguments/Return Values Suitable for Standard Library ... 623

6.6 Character/String Functions ... 624

6.7 Program Control Functions ... 644

6.8 Special Functions ... 647

6.9 Input and Output Functions ... 652

6.10 Utility Functions ... 670

6.11 String and Memory Functions ... 702

6.12 Mathematical Functions ... 725

6.13 Diagnostic Function ... 772

6.14 Library Stack Consumption List ... 774

6.14.1 Standard libraries ... 774

6.14.2 Runtime libraries ... 779

6.15 List of Maximum Interrupt Disabled Times for Libraries ... 786

6.16 Batch Files for Update of Startup Routine and Library Functions ... 789

6.16.1 Using batch files ... 790

CHAPTER 7 STARTUP ... 794

7.1 Function Overview ... 794

7.2 File Organization ... 794

7.2.1 "bat" folder contents ... 795

7.2.2 "lib" folder contents ... 796

7.2.3 "src" folder contents ... 798

7.3 Batch File Description ... 799

7.3.1 Batch files for creating startup routines ... 799

7.4 Startup Routines ... 800

7.4.1 Overview of startup routines ... 800

7.4.2 Startup routine preprocessing ... 801

7.4.3 Startup routine initial settings ... 803

7.4.4 Startup routine main function startup and postprocessing ... 807

7.5 ROMization Processing in Startup Routine for Flash Area ... 809

7.6 Coding Examples ... 810

7.6.1 When revising startup routine ... 810

7.6.2 When using RTOS ... 811

CHAPTER 8 ROMIZATION ... 812

CHAPTER 9 REFERENCING COMPILER AND ASSEMBLER ... 813

9.1 Accessing Arguments and Automatic Variables ... 813

9.2 Storing Return Values ... 813

9.3 Calling Assembly Language Routines from C Language ... 813

9.3.1 C language function calling procedure ... 813

9.3.2 Saving data from assembly language routine and returning ... 814

9.4 Calling C Language Routines from Assembly Language ... 816

9.4.1 Calling C language function from assembly language program ... 816

9.5 Referencing Variables Defined in C Language ... 818

9.6 Referencing Variables Definted in Assembly Language from C Language ... 818

9.7 Points of Caution for Calling Between C Language Functions and Assembler Functions ... 819

CHAPTER 10 CAUTIONS ... 820

APPENDIX A ROMIZATION PROCESSOR ... 835

A.1 Overview ... 835

A.2 Procedure for Creating ROMization Load Module ... 836

APPENDIX B EDITOR ... 837

APPENDIX C INDEX ... 842

CubeSuite+ Ver.1.00.00 CHAPTER 1 GENERAL

R20UT0552EJ0100 Rev.1.00 Page 13 of 853
Apr 01, 2011

CHAPTER 1 GENERAL

This chapter explains the roles of the RL78,78K0R C compiler package (called "CA78K0R") in system development,

and provides an outline of their functions.

1.1 Overview

RL78,78K0R C compiler is a translation program that converts source programs written in traditional C or ANSI C into

machine language. RL78,78K0R C compiler can produce either object files or assembly source files.

RL78,78K0R assembler is a language processing program that converts source programs written in assembly lan-

guage into machine language.

1.1.1 C compiler and assembler

(1) C language and assembly language

A C compiler takes C source modules as input and produces either object modules or assembly source modules

as output. This means that you can develop your programs in C and use assembly language as required to make

fine adjustments.

An assembler takes assembly source modules as input and produces object modules as output.

The following figure shows the flow of program development with a C compiler and an assembler.

Figure 1-1. Flow of Development with C Compiler and Assembler

Program written in C Binary program

Translation program

(C source modules)

(Assembler)

Translation program

(Object modules)

Binary program

(Object modules)
(C compiler)

Program written in assembly language

(assembler source modules)

CubeSuite+ Ver.1.00.00 CHAPTER 1 GENERAL

R20UT0552EJ0100 Rev.1.00 Page 14 of 853
Apr 01, 2011

(2) Relocatable assemblers

The machine language translated from assembly source files by the assembler is written to the memory of the

microcontroller before use. To do this, the location in memory where each machine language instruction is to be

written must already be determined.

Therefore, information is added to the machine language assembled by the assembler, stating where in memory

each machine language instruction is to be located.

Depending on the method used to allocate machine language instructions to memory addresses, assemblers can

be broadly divided into absolute assemblers and relocatable assemblers. RA78K0R is a relocatable assembler.

- Absolute assembler

An absolute assembler allocates machine language instructions assembled from the assembly language at

absolute addresses.

- Relocatable assembler

In a relocatable assembler, the addresses determined for the machine language instructions assembled from

the assembly language are tentative

Absolute addresses are determined subsequently by the linker.

In the past, when programs were created with absolute assemblers, programmers normally had to write the entire

program as a single large block. However, when all the components of a large program are contained in a single

block, the program becomes complicated, making it harder to understand and maintain.

To avoid this, large programs are now usually developed by dividing them into several subprograms, called

modules, one for each functional unit. This programming technique is called modular programming.

Relocatable assemblers are well suited for modular programming, which has the following advantages:

(a) Greater development efficiency

It is difficult to write a large program all at the same time. In such cases, dividing the program into modules for

individual functions enables two or more programmers to develop subprograms in parallel to increase

development efficiency.

Moreover, when bugs are found, only the module that contained the bugs needs to be corrected and

assembled again, instead of needing to assemble the entire program. This shortens debugging time.

Figure 1-2. Division into Modules

Module

Program consisting of single module Program consisting of multiple modules

xxx xxx

Module

Module

Module

Module

Only this module

needs to be

assembled again

Entire program

must be assembled

again

Bug

found!

Bug

found!

CubeSuite+ Ver.1.00.00 CHAPTER 1 GENERAL

R20UT0552EJ0100 Rev.1.00 Page 15 of 853
Apr 01, 2011

(b) Utilization of resources

Reliable and versatile modules from previous development efforts are software resources that can be reused

in new programs. As you accumulate more of these resources, you save time and labor in developing new

programs.

Figure 1-3. Resource Utilization

New program

CModule A

Module D

New

Module

New

Module

Module DModule CModule B

Module A

CubeSuite+ Ver.1.00.00 CHAPTER 1 GENERAL

R20UT0552EJ0100 Rev.1.00 Page 16 of 853
Apr 01, 2011

1.1.2 Position of compiler and assembler

The following figure shows the position of compiler and assembler in the flow of product development.

Figure 1-4. Flow of Microcontroller Application Product Development

NO
NO

YES
YES

NO

YES

Position of

CA78K0R

Program coding

Compilation

and assembly

Product planning

System design
Hardware development Software development

Logic design

Manufacturing

Testing

OK? OK?

Debugging

System evaluation

Marketing

OK?

Software design

CubeSuite+ Ver.1.00.00 CHAPTER 1 GENERAL

R20UT0552EJ0100 Rev.1.00 Page 17 of 853
Apr 01, 2011

1.1.3 Processing flow

This section explains the flow of processing in program development.

The C compiler compiles C source module files and generates object files or assembly source module files. By hand

optimizing the generated assembly source module files, you can create more efficient object module files. This is useful

when the program must perform high-speed processing and when compact modules are desirable.

The following programs are involved in the processing flow.

Table 1-1. Programs Involved in Processing Flow

Figure 1-5. Flow of Compiler and Assembler Processing

Program Function

Compiler Compiles C source module files

Assemble Assembles assembly language source module files

Linker Links object module files

Determines addresses of relocatable segments

Object converter Converts to HEX-format object module files

Librarian Creates library files

List converter Generates absolute assemble list files

C source files

Include files

Object module files

Library files

Load module files

Absolute

assemble list

Assembler source filesAssembler source files

HEX-format object module files

Assemble list files

List converter

Object converter

Linker

Librarian

Assembler

C compiler

ROMization processor

ROMization object file

CubeSuite+ Ver.1.00.00 CHAPTER 1 GENERAL

R20UT0552EJ0100 Rev.1.00 Page 18 of 853
Apr 01, 2011

1.1.4 Basic structure of C source program

A program in C is a collection of functions. A function is an independent unit of code that performs a specific action.

Every C language program must have a function "main" which becomes the main routine of the program and is the first

function to be called when execution begins.

Each function consists of a header part, which defines its function name and arguments, and a body part, which

consists of declarations and statements. The format of C programs is shown below.

An actual C source program looks like this.

#define TRUE 1 /* #define xxx xxx Preprocessor directive (macro definition) */

#define FALSE 0 /* #define xxx xxx Preprocessor directive (macro definition) */

#define SIZE 200 /* #define xxx xxx Preprocessor directive (macro definition) */

void displaystring (char * , int) ; /* xxx xxxx (xxx, xxx)

 Function prototype declaration */

void displaychar (char) ; /* xxx xxxx (xxx)

 Function prototype declaration */

char mark[SIZE + 1] ; /* char xxx

 Type declaration, External definition */

 /* xx[xx] Operator */

void main (void) {

 int i, prime, k, count ; /* int xxx Type declaration */

 count = 0 ; /* xx = xx Operator */

Definitions of variables/constants Definitions of data items, variables, and macros

void main (arguments) { Header of the function main

 statement 1 ;

 statement 2 ;

 function1 (arguments) ;

 function2 (arguments) ;

}

function1 (arguments) {

 statement 1 ;

 statement 2 ;

}

function2 (arguments) {

 statement 1 ;

 statement 2 ;

}

 Body of the function main

 function1

 function2

CubeSuite+ Ver.1.00.00 CHAPTER 1 GENERAL

R20UT0552EJ0100 Rev.1.00 Page 19 of 853
Apr 01, 2011

(1) Declaration of type and storage class

Declares the data type and storage class of an object identifier.

(2) Operator or expression

Performs arithmetic, logical, or assignment operations.

(3) Control structure

Specifies the flow of the program. C has a number of instructions for different types of control, such as conditional

control, iteration, and branching.

(4) Structure or union

Declares a structure or union. A structure is a data object that contains several subobjects or members that may

have different types. A union is like a structure, but allows two or more variables to share the same memory.

 for (i = 0 ; i <= SIZE ; i ++) /* for (xx ; xx ; xx) xxx ; Control structure */

 mark[i] = TRUE ;

 for (i = 0 ; i <= SIZE ; i ++) {

 if (mark[i]) {

 prime = i + i + 3 ; /* xxx = xxx + xxx + xxx Operator */

 displaystring ("%6d", prime) ; /* xxx (xxx) ; Operator */

 count ++ ;

 if ((count%8) == 0)

 displaychar ('\n') ; /* if (xxx) xxx ; Control structure */

 for (k = i + prime ; k <= SIZE ; k += prime)

 mark[k] = FALSE ;

 }

 }

 displaystring ("\n%d primes found.", count) ; /* xxx (xxx) ; Operator */

}

void displaystring (char *s, int i) {

 int j ;

 char *ss ;

 j = i ;

 ss = s ;

}

void displaychar (char c) {

 char d ;

 d = c ;

}

CubeSuite+ Ver.1.00.00 CHAPTER 1 GENERAL

R20UT0552EJ0100 Rev.1.00 Page 20 of 853
Apr 01, 2011

(5) External definition

Declares a function or external object. A function is an independent unit of code that performs a specific action. A

C program is a collection of functions.

(6) Preprocessor directive

An instruction to the compiler. The #define directive instructs the compiler to replace any instances of the first

operand that appear in the program with the second operand.

(7) Declaration of function prototype

Declares the types of the return value and arguments of a function.

1.2 Features

This section explains the features of the CA78K0R.

1.2.1 Features of C compiler

(1) Conforms to ANSI C

The compiler conforms to the ANSI standard for the C language.

Remark ANSI: American National Standards Institute

(2) Designed for efficient use of ROM and RAM memory

External variables can be allocated to short direct addressing memory. Function arguments and auto variables can

be allocated to short direct addressing memory or registers.

Bit instructions enable definitions and operations on data in units of 1 bit.

(3) Interrupt control features

Peripheral hardware of RL78,78K0R can be controlled directly from C.

Interrupt handlers can be written directly in C.

(4) Supports extended functions of RL78,78K0R

RL78,78K0R C compiler supports the following extended functions, which are not defined in the ANSI standard.

Some of these functions allow special-purpose registers to be accessed in C, while others enable more compact

object code and higher execution speed.

The following table lists extended functions that reduce the size of object code and improve execution speed.

Table 1-2. Methods to Improve Execution Speed

Method Extended Function

Allocate variables to registers Register variables

Allocate variables to the saddr area sreg/__sreg

Use sfr names. sfr area

Embed assembly language statements in C source programs. ASM statements

Accessing the saddr or sfr area can be made on a bit-by-bit basis. bit type variables, boolean/__boolean type

variables

Specify bit fields using the unsigned char type. Bit field declarations

The code to multiply can be directly output with inline expansion. Multiplication function

CubeSuite+ Ver.1.00.00 CHAPTER 1 GENERAL

R20UT0552EJ0100 Rev.1.00 Page 21 of 853
Apr 01, 2011

See "3.2 Extended Language Specifications" for detailed information about the extended functions of the

RL78,78K0R C compiler.

1.2.2 Features of assembler

The RL78,78K0R assembler has the following features.

(1) Macro function

When the same group of instructions occurs in a source program over and over again, you can define a macro to

give a single name to the group of instructions.

Macros can increase your coding efficiency and make your programs more readable.

(2) Optimized branching directives

The RL78,78K0R assembler provides the BR and CALL (Branch instruction automatic selection directives).

A characteristic of programs that make efficient use of memory is selection of the appropriate branching

instructions, using only the number of bytes required by the branch destination range. But it is a burden for the

programmer to need to be conscious of the branch destination range for every branch. The BR and CALL

directives are automatic solutions to this problem. They facilitate memory-efficient branching by instructing the

assembler to generate the most appropriate branching instruction for the branch destination range. This function is

called branch instruction optimization.

(3) Conditional assembly

Conditional assembly allows you to specify conditions that determine whether or not specific sections of the source

program are assembled.

For example, when the source contains debugging statements, a switch can be set to determine whether or not

they should be translated into machine language. When they are no longer needed, they can be excluded from the

output with no major modifications to the source program.

(4) 78K0 compatibility macro function

The assembly of the assembler source file made by the assembler for 78K0 is enabled.

When assemble 78K0 instructions that cannot be used on RL78,78K0R without changing the description of the

source, specify the -compati option.

78K0 instructions that cannot be used on RL78,78K0R: DIVUW/ROR4/ROL4/ADJBA/ADJBS/CALLF/DBNZ

1.2.3 Limits

(1) Compiler limits

See "(9) Translation Limit" for the limits of the compiler.

The code to rotate can be directly output with inline expansion. Rotation functions

Specific data and instructions can be directly embedded in the code

area.

Data insertion function

memcpy and memset are directly expanded inline and output. Memory function

Method Extended Function

CubeSuite+ Ver.1.00.00 CHAPTER 1 GENERAL

R20UT0552EJ0100 Rev.1.00 Page 22 of 853
Apr 01, 2011

(2) Assembler limits

The maximum values for the assembler are shown below.

Table 1-3. Assembler Translation Limits

Notes 1. Excluding the number of module names and section names.

Available memory is used. When memory is insufficient, a file is used.

2. Information passed to the linker when a symbol value cannot be resolved by the assembler.

For example, when an externally referenced symbol is referenced by the MOV instruction, two items of

relocation information are generated in a .rel file.

Description Limit

Number of symbols (local + public) 65,535

Number of symbols for which cross-reference list can be output 65,534Note 1

Maximum size of macro body for one macro reference 1 Mbyte

Total size of all macro bodies 10 Mbyte

Number of segments in one file 256

Number of macro and include specifications in one file 10,000

Number of macro and include specifications in one include file 10,000

Number of relocation data items Note 2 65,535

Line number data items 65,535

Number of BR/CALL directives in one file 32,767

Character length of source line 2,048Note 3

Character length of symbol 256

Character length of name definition Note 4 1,000

Character length of switch name Note 4 31

Character length of segment name 8

Character length of module name (NAME directive) 256

Number of parameters in MACRO directive 16

Number of arguments in macro reference 16

Number of arguments in IRP directive 16

Number of local symbols in macro body 64

Total number of local symbols in expanded macro 65,535

Nesting levels in macro (macro reference, REPT directive, IRP directive) 8 levels

Number of characters in TITLE control instruction (-lh option) 60Note 5

Number of characters in SUBTITLE control instruction 72

Include file nesting levels in 1 file 16 levels

Conditional assembly nesting levels 8 levels

Number of include file paths specifiable by -i option 64

Number of symbols definable by -d option 30

CubeSuite+ Ver.1.00.00 CHAPTER 1 GENERAL

R20UT0552EJ0100 Rev.1.00 Page 23 of 853
Apr 01, 2011

3. Including CR and LF codes. If a line is longer than 2048 characters, a warning message is output and

the 2049th and following characters are ignored.

4. Switch names are set to true/false by the SET and RESET directives and are used by constructs such

as $If.

5. If the maximum number of characters that can be specified in one line of the assemble list file ("X") is

119, this figure will be "X - 60" or less.

(3) Linker limits

The maximum values for the linker are shown below.

Table 1-4. Linker Limits

Note Including those defined by default.

Description Limit

Number of symbols (local + public) 65,535

Line number data items in 1 segment 65,535

Number of segments 65,535Note

Number of input modules 1,024

Character length of memory area name 256

Number of memory areas 100Note

Number of library files specifiable by the -b option 64

Number of include file paths specifiable by the -i option 64

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0552EJ0100 Rev.1.00 Page 24 of 853
Apr 01, 2011

CHAPTER 2 FUNCTIONS

This chapter explains programming technique to use CA78K0R more effectively and use of extended functions.

2.1 Variables (Assembly Language)

This section explains techniques for using variables in assembly language.

2.1.1 Defining variables with no initial values

Allocate memory area in a data segment.

Use the DSEG quasi directive to define a data segment, and use the DS quasi directive to allocate memory area.

Example Define an 10-byte variable with no initial values.

Remark See "DSEG" and "DS".

2.1.2 Defining const constants with initial values

Initialize memory area in a code segment.

Use the CSEG quasi directive to define a code segment, and use the DB (1 byte), DW (2 bytes), or DG (4 bytes) quasi

directive to initialize memory area.

Example Defining constants with initial values

Remark See "CSEG", "DB", "DW", and "DG".

2.1.3 Defining 1-bit variables

Allocate 1 bit memory area in a bit segment.

Use the BSEG quasi directive to define a bit segment, and use the DBIT quasi directive to allocate 1 bit memory area.

Example Define bit variables with no initial values.

Remark See "BSEG" and "DBIT".

 DSEG

_table : DS 10

 CSEG

_val1 : DB 0F0H ; 1 byte

_val2 : DW 1234H ; 2 bytes

_val3 : DG 56789H ; 4 bytes (20 bits)

 BSEG

_bit1 DBIT

_bit2 DBIT

_bit3 DBIT

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0552EJ0100 Rev.1.00 Page 25 of 853
Apr 01, 2011

2.1.4 1/8 bit access of variable

In assembly language source code, give two symbols for the address in the saddr area. To use the symbol name

respectively for the bit access and for byte access,specify saddr as the relocation attribute of a DSEG segment, define bit

name of a symbol for byte access as a symbol name for bit access by a EQU quasi directives.

Example Byte access symbol name: FLAGBYTE

Bit access symbol name: FLAGBIT

- smp1.asm

- smp2.asm

Remark See "DSEG" and "EQU".

 NAME SMP1

 PUBLIC FLAGBYTE, FLAGBIT

FLAGS DSEG SADDR ; The relocation attribute of DSEG is SADDR

FLAGBYTE : DS (1) ; Define FLAGBYTE

FLAGBIT EQU FLAGBYTE.0 ; Define FLAGBIT

 END

 NAME SMP2

 EXTRN FLAGBYTE

 EXTBIT FLAGBIT ; FLAGBIT declared as EXTBIT

 CSEG

C1 :

 MOV FLAGBYTE, #0FFH

 CLR1 FLAGBIT

 END

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0552EJ0100 Rev.1.00 Page 26 of 853
Apr 01, 2011

2.1.5 Allocating to sections accessible with short instructions

Compared to other data memory areas, the short direct addressing area can be accessed with shorter instructions.

Improve the memory efficiency of programs by efficiently using this area.

To allocate in the short direct addressing area, specify saddr or saddrp as the relocation attribute of a DSEG quasi

directive.

The following examples explains use in assembly source code.

- Module 1

- Module 2

Remark See "DSEG".

PUBLIC TMP1, TMP2

WORK DSEG saddrp

TMP1 : DS 2 ; word

TMP2 : DS 1 ; byte

EXTRN TMP1, TMP2

SAB CSEG

MOVW TMP1, #1234H

MOV TMP2, #56H

 :

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0552EJ0100 Rev.1.00 Page 27 of 853
Apr 01, 2011

2.2 Variables (C Language)

This section explains Variables (C language).

2.2.1 Allocating data only of reference in ROM

(1) Allocating variables with initial values in ROM

Specify the const qualifier to allocate variables with initial values only of a reference in ROM.

Example Allocating variable "a" with initial values only of a reference in ROM

Variable "a" is allocated in ROM.

For variable "b", the initializing value is allocated in ROM and the variable itself is allocated in RAM (areas is

required in both ROM and RAM).

Startup routine ROMization, an initial value of ROM is copied in a variable of RAM.

ROMization requires areas in both ROM and RAM.

(2) Allocating table data in ROM

If allocating table data in ROM only, define type qualifier const, as follows.

2.2.2 Allocating to sections accessible with short instructions

Compared to other data memory areas, the short direct addressing area can be accessed with shorter instructions.

Improve the memory efficiency of programs by efficiently using this area.

The use example is shown below.

 External variables defined sreg or __sreg, and static variables within functions (called sreg variables) are automatically

allocated in relocatable in short direct addressing area [FFE20H to FFEB3H]

Remark See "How to use the saddr area (sreg/__sreg)".

const int a = 0x12 ; /* Allocating ROM */

int b = 0x12 ; /* Allocating ROM/RAM */

const unsigned char table_data[9] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 } ;

extern sreg int hsmm0 ;

extern sreg int hsmm1 ;

extern sreg int *hsptr ;

void main (void) {

 hsmm0 -= hsmm1 ;

}

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0552EJ0100 Rev.1.00 Page 28 of 853
Apr 01, 2011

2.2.3 Allocating in near areas

Using the small model, the compiler generates code with 16-bit address lengths.

When knowing in advance that code and data are into 64 KB, obtain more compact code by using the small model

instead of the large model.

Specify the small model (-ms option) with the compiler option. Data and functions are allocated in near areas.

Or add the __near type qualifier to variable and function declarations.

Remark See to "near/far area specification".

2.2.4 Allocating in far areas

Using the large model, the compiler generates code with 20-bit address lengths.

If data are into 64 KB and code are into 1MB, use the medium model.

Specify the medium model (-mm option) with the compiler option. Data are allocated in near areas and functions are

allocated in far areas.

Or add the __near and __far type qualifier to variable and function declarations.

If code and data are into 1 MB, use the large model.

Specify the large model (-ml option) with the compiler option. Data and functions are allocated in far areas.

Or add the __far type qualifier to variable and function declarations.

Remark See to "near/far area specification".

__near int func (void) ; /* Allocating in near area */

__near const int a = 0 x 12 ; /* Allocating in near area */

__near int b = 0 x 12 ; /* Allocating in near area */

__near int func (void) { /* Allocating in near area */

 /* Function processing */

 return 0 ;

}

__far int func (void) ; /* Allocating in far area */

__near const int a = 0 x 12 ; /* Allocating in near area */

__near int b = 0 x 12 ; /* Allocating in near area */

__far int func (void) { /* Allocating in far area */

 /* Function processing */

 return 0 ;

}

__far int func (void) ; /* Allocating in far area */

__far const int a = 0 x 12 ; /* Allocating in far area */

__far int b = 0 x 12 ; /* Allocating in far area */

__far int func (void) { /* Allocating in far area */

 /* Function processing*/

 return 0 ;

}

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0552EJ0100 Rev.1.00 Page 29 of 853
Apr 01, 2011

2.2.5 Allocating addresses directly

(1) direcrtmap

External variable declared __directmap and the initializing value of static variable in functions are allocation

address, the variable is mapped to the specified address. Specify the allocation address as an integral number.

 __directmap variables in C source files are handled as well as static variables.

Make the __directmap declaration in the module which defines the variable that to map to an absolute address.

Remark See "Absolute address allocation specification (__directmap)".

(2) Using section names

Change the compiler output section name and specify a starting address.

Use the #pragma directive to specify the name of the section to be changed, a new name, and the starting address

of the new section.

The following example changes the section name from @@CODEL to CC1, and specifies 2400H as the starting

address.

Remark See "Changing compiler output section name (#pragma section ...)".

__directmap char c = 0xffe00 ;

__directmap __sreg char d = 0xffe20 ;

__directmap __sreg char e = 0xffe21 ;

__directmap struct x {

 char a ;

 char b ;

} xx = { 0xffe30 } ;

void main (void) {

 c = 1 ;

 d = 0x12 ;

 e.5 = 1 ;

 xx.a = 5 ;

 xx.b = 10 ;

}

#pragma section @@CODEL CC1 AT 2400H

void main (void) {

 /* Function definition */

}

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0552EJ0100 Rev.1.00 Page 30 of 853
Apr 01, 2011

2.2.6 Defining 1-bit variables

The variable is made bit and boolean type, are handled as 1-bit data, and are allocated in the short direct addressing

area.

bit and boolean type variables are handled in the same way as external variables with no initial values (irregularity).

The compiler generates the following bit manipulation instructions to this bit variables.

- MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF

The bit access to the short direct addressing area becomes possible in C source code.

Remark See "bit type variables (bit), boolean type variables (boolean/__boolean)".

2.2.7 Empty area of the structure is stuffed

Specify the -rc option to deselect alignment of structure members on 2-byte boundaries.

However, there is no support for deselecting alignment of non-structure variables.

#define ON 1

#define OFF 0

extern bit data1 ;

extern bit data2 ;

void main (void) {

 data1 = ON ;

 data2 = OFF ;

 while (data1) {

 data1 = data2 ;

 testb () ;

 }

 if (data1 && data2)

 chgb () ;

}

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0552EJ0100 Rev.1.00 Page 31 of 853
Apr 01, 2011

2.3 Functions

This section explains functions.

2.3.1 Allocating to sections accessible with short instructions

Using callt function calls, obtain code that is more compact that the code for normal function calls.

A callt instruction stored the address of the called function in the area [80H - 0BFH] called a callt table. And possible

to call the function by a short code than the function is called directly.

Remark See "callt functions (callt/__callt)".

2.3.2 Allocating in near areas

Using the small model, the compiler generates code with 16-bit address lengths.

When knowing in advance that code and data are into 64 KB, obtain more compact code by using the small model

instead of the large model.

Specify the small model (-ms option) with the compiler option. Functions are allocated in near areas.

Or add the __near type qualifier to function declarations.

Remark See to "near/far area specification".

__callt void func1 (void) ;

__callt void func1 (void) {

 /* Function definition */

}

__near int func (void) ; /* Allocating in near area */

__near const int a = 0 x 12 ; /* Allocating in near area */

__near int b = 0 x 12 ; /* Allocating in near area */

__near int func (void) { /* Allocating in near area */

 /* Function processing */

 return 0 ;

}

void main (void) {

 int a ;

 a = func () ;

}

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0552EJ0100 Rev.1.00 Page 32 of 853
Apr 01, 2011

2.3.3 Allocating in far areas

If data are into 64 KB and code are into 1MB, use the medium model.

Specify the medium model (-mm option) with the compiler option. Functions are allocated in far areas.

If code and data are into 1 MB, use the large model.

Specify the large model (-ml option) with the compiler option. Data and functions are allocated in far areas.

Or add the __far type qualifier to function declarations.

Remark See to "near/far area specification".

2.3.4 Allocating addresses directly

(1) Using section names

Change the compiler output section name and specify a starting address.

Use the #pragma directive to specify the name of the section to be changed, a new name, and the starting address

of the new section.

Remark See "Changing compiler output section name (#pragma section ...)".

__far int func (void) ; /* Allocating in far area */

__near const int a = 0 x 12 ; /* Allocating in near area */

__near int b = 0 x 12 ; /* Allocating in near area */

__far int func (void) { /* Allocating in far area */

 /* Function processing */

 return 0 ;

}

void main (void) {

 int a ;

 a = func () ;

}

#pragma section @@DATA ??DATA AT 0FDE00H

int a1 ; // ??DATA

int a2 ; // ??DATA

#pragma section @@DATS ??DATS AT 0FFE30H

sreg int b1 ; // ??DATS

sreg int b2 ; // ??DATS

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0552EJ0100 Rev.1.00 Page 33 of 853
Apr 01, 2011

2.3.5 Inline expansion of function

#pragma inline instructs to generate inline expansion code for memory operation standard library memcpy and memse,

instead of calling functions.

If to make the execution faster by expanding other functions inline, there are no instructions which can be inline

expansive every function. If the function except memcpy and memset being inline-expansive, define a macro in function

format,as shown below.

Remark See "Memory manipulation function (#pragma inline)".

2.3.6 Embedding assembly instructions

Embedding assembly instructions in the assembler source file output by the compiler.

(1) #asm - #endasm

#asm marks the start of an assembly source code block, and #endasm marks its end. Write assembly source code

between the #asm and #endasm.

[Output assemble file] by [Compile Options] tab of Property panel, set it as "Yes." (See "CubeSuite+ RL78,78K0R

Build" for a setting method.)

Remark See "ASM statements (#asm - #endasm/__asm)".

(2) __asm

Described by the next form in the C source.

Characters in the string literal are interpreted according to the ANSI conventions. Escape sequences, the line

continues on the next line by '\' character, and concatenate strings can be described.

[Output assemble file] by [Compile Options] tab of Property panel, set it as "Yes." (See "CubeSuite+ RL78,78K0R

Build" for a setting method.)

Remark See "ASM statements (#asm - #endasm/__asm)".

#define MEMCOPY (a, b, c) \

 { \

 struct st { unsigned char d[(c)]; } ; \

 * ((struct st *) (a)) = * ((struct st *) (b)) ; \

 }

#asm

 : /* Assembly source */

#endasm

__asm (string literal) ;

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0552EJ0100 Rev.1.00 Page 34 of 853
Apr 01, 2011

2.4 Using Microcontroller Functions

This section explains using microcontroller functions.

2.4.1 Accessing special function registers (SFR) from C

(1) Setting each register of SFR

The SFR area are a area of group of special function registers, such as mode and control registers for the

peripheral hardware of RL78 family, 78K0R microcontrollers (PM1, P1, TMC80, etc.).

To use the SFR area from C, place the #pragma sfr at the start of C source file. This declares the name of each

SFR register. The sfr keyword can be either uppercase or lowercase.

The following error message appears if attempt to use the SFR area without declaring the register names.

The symbols made available by the #pragma sfr directive are the same as the abbreviations given in the list of

special function registers.

The following items can be described before #pragma sfr:

- Comments

- Preprocessor directive which does neither define nor see to a variable or a function

In the C source, simply use the sfr names supported by the target device. The sfr names do not need to be

declared individually.

SFR names are external variables with no initial values (irregularity).

A compiler error occurs if assign invalid constant data to an SFR name.

Remark See "How to use the sfr area (sfr)".

(2) Specifying bits in SFR registers

As shown below, specify bits in SFR registers by using reserved names or by using the "register-name.bit-

position".

Examples 1. Starting TM1

2. Stopping TM1

#pragma sfr

E0711 Undeclared 'variable-name' ; function 'function-name'

TCE1 = 1 ;

or

TMC1.0 = 1 ;

TCE1 = 0 ;

or

TMC1.0 = 0 ;

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0552EJ0100 Rev.1.00 Page 35 of 853
Apr 01, 2011

2.4.2 Interrupt functions in C

(1) Interrupt function

The following two directives are provided when the interrupt function is specified.

- #pragma interrupt

- #pragma vect

Either can be used. And the vector table is generated, which can check in the assembler source list output.

Place the #pragma directive at the start of the C source file.

The following items can be described before #pragma directives:

- Comments

- Preprocessor directive which does neither define nor see to a variable or a function

Example Processing for input to INTP0 pin

Remark See " Interrupt functions (#pragma vect/#pragma interrupt)".

(2) RTOS interrupt handlers

RTOS interrupt handlers are described by use the #pragma rtos_interrupt, as shown below.

Place the #pragma directive at the start of the C source file.

The following items can be described before #pragma directives:

- Comments

- Preprocessor directive which does neither define nor see to a variable or a function

Remark See to “Interrupt handler for RTOS (#pragma rtos_interrupt ...)”.

(3) Allocating stack area

When using the extended functions for interrupt functions, and do not specify stack switching, the compiler uses

the default stack. It does not allocate any extra stack space that be required.

#pragma interrupt INTP0 inter rb1

void inter (void) {

 /* Processing for input to INTP0 pin*/

}

#pragma rtos_interrupt INTP0 inthdr1

#include "kernel.h"

#include "kernel_id.h"

void inthdr1 (void) {

 /* Handle the interrupt */

 return ;

}

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0552EJ0100 Rev.1.00 Page 36 of 853
Apr 01, 2011

2.4.3 Using CPU control instructions in C

(1) halt instruction

The halt instruction is one of the standby functions of the microcontroller. To use it, use the #pragma HALT as

shown below.

Place the #pragma directive at the start of the C source file.

The following items can be described before #pragma directives:

- Comments

- Preprocessor directive which does neither define nor see to a variable or a function

In the form similar to the function call, describes it by the uppercase letter in C source as follows.

Example Using the halt instruction

Remark See " CPU control instruction(#pragma HALT/STOP/BRK/NOP)".

(2) stop instruction

The stop instruction is one of the standby functions of the microcontroller. To use it, use the #pragma STOP as

shown below.

Place the #pragma directive at the start of the C source file.

The following items can be described before #pragma directives:

- Comments

- Preprocessor directive which does neither define nor see to a variable or a function

In the form similar to the function call, describes it by the uppercase letter in C source as follows.

Example Using the stop instruction

Remark See " CPU control instruction(#pragma HALT/STOP/BRK/NOP)".

#pragma HALT

 :

void func (void) {

 :

 HALT () ;

}

#pragma STOP

 :

void func (void) {

 :

 STOP () ;

}

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0552EJ0100 Rev.1.00 Page 37 of 853
Apr 01, 2011

(3) brk instruction

To use software interrupt of a microcontroller, use the #pragma BRK as shown below.

Place the #pragma directive at the start of the C source file.

The following items can be described before #pragma directives:

- Comments

- Preprocessor directive which does neither define nor see to a variable or a function

In the form similar to the function call, describes it by the uppercase letter in C source as follows.

Example Using the brk instruction

Remark See " CPU control instruction(#pragma HALT/STOP/BRK/NOP)".

(4) nop instruction

The nop instruction advances the clock without operating a microcontroller. To use it, use the #pragma NOP as

shown below.

Place the #pragma directive at the start of the C source file.

The following items can be described before #pragma directives:

- Comments

- Preprocessor directive which does neither define nor see to a variable or a function

In the form similar to the function call, describes it by the uppercase letter in C source as follows.

Example Using the nop instruction

Remark See " CPU control instruction(#pragma HALT/STOP/BRK/NOP)".

#pragma BRK

 :

void func (void) {

 :

 BRK () ;

}

#pragma NOP

 :

void func (void) {

 :

 NOP () ;

}

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0552EJ0100 Rev.1.00 Page 38 of 853
Apr 01, 2011

2.5 Startup Routine

This section explains startup routine.

2.5.1 Deleting unused functions and areas from startup routine

(1) Deleting the exit function

Delete the exit function by setting the EQU symbol EXITSW in the startup routine to 0.

(2) Deleting unused areas

An unused area about the area such as _ @FNCTBL that a standard library uses can be deleted by confirming the

library used, and changing the value of the EQU symbol such as EXITSW in startup routine cstart.asm.

The following table lists the controlling EQU symbols and the affected library function names and symbol names.

Remark See "7.4 Startup Routines".

EQU Symbol Library Function Name Symbol Name

BRKSW brk

sbrk

malloc

calloc

realloc

free

_errno

_@MEMTOP

_@MEMBTM

_@BRKADR

EXITSW exit _@FNCTBL

_@FNCENT

RANDSW rand

srand

_@SEED

DIVSW div _@DIVR

LDIVSW ldiv _@LDIVR

STRTOKSW strtok _@TOKPTR

FLOATSW atof

strtod

Math functions

Floating point runtime library

_errno

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0552EJ0100 Rev.1.00 Page 39 of 853
Apr 01, 2011

2.5.2 Allocating stack area

(1) Stack setting

If specify the stack resolution symbol option -s when linking, the symbol _@STEND is generated to mark the

lowest address in the stack, and the symbol _@STBEG is generated to mark the highest address + 1.

Figure 2-1. Stack Setting

In this case, set the stack pointer as follows.

(2) Checking stack area

To check the stack area, specify the linker -kp option to output the public symbol list in the link list file.

The stack area is between the _@STEND symbol and the _@STBEG symbol.

Example Public symbol list

MOVW SP, #LOWW _@STBEG

MOVW SP, #LOWW _@STBEG

*** Public symbol list ***

MODULE ATTR VALUE NAME

 NUM 0FFE20H _@STBEG

 NUM 0FFB7EH _@STEND

High

Lowt

User segment

Stack

User segment
_@STEND

_@STBEG

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0552EJ0100 Rev.1.00 Page 40 of 853
Apr 01, 2011

2.5.3 Initializing RAM

In the default startup routine, initial values are copied to the following areas.

- @@INIT segment

- @@INITL segment

- @@INIS segment

The following areas are zero cleared.

- saddr area (0FFE20H to 0FFEDFH)

- @@DATA segment

- @@DATAL segment

- @@DATS segment

If to initialize areas other than the above, add the appropriate initialization processing code to the startup routine.

Remark See "7.4 Startup Routines".

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0552EJ0100 Rev.1.00 Page 41 of 853
Apr 01, 2011

2.6 Link Directives

This section explains link directives.

2.6.1 Partitioning default areas

Link directives allow to specify names for memory areas that define. However, care is required regarding the location

of the special function register (SFR) area.

For example, if define two areas in RAM and specify 1) the name "RAM", which is defined by default, and 2) the user-

defined name "STACK", then should make sure that the SFR area is contained within the area named RAM.

Example Link directives

Remark See "5.1.1 Link directives".

2.6.2 Specifying section allocation

(1) Specifying areas

When specifying the allocation of a section, can specify a memory area.

Use the MERGE quasi directive to allocate the target section in a memory area.

Example Allocate input segment SEG1 to memory area MEM1.

Remark See "5.1.1 Link directives".

(2) Specifying addresses

When specifying the allocation of a section, can specify addresses.

Use the MERGE quasi directive to specify the allocation address of the target section.

Example Allocate input segment SEG1 to address 500H.

Remark See "5.1.1 Link directives".

MEMORY STACK : (0FEF00H, 00100H)

MEMORY RAM : (0FF000H, 01000H)

MEMORY ROM : (0000H, 1000H)

MEMORY MEM1 : (1000H, 2000H)

MERGE SEG1 : = MEM1

MEMORY ROM : (0000H, 10000H)

MERGE SEG1 : AT (500H)

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0552EJ0100 Rev.1.00 Page 42 of 853
Apr 01, 2011

2.7 Reducing Code Size

This section explains techniques for reducing the code size.

2.7.1 Using extended functions to generate efficient object code

When RL78,78K0R application product is developed, RL78,78K0R C compiler generates efficient object code by using

the saddr and callt areas in the device.

(1) Using external variables

If available in the saddr area when defineing external variables, define external variables as sreg/__sreg variables.

sreg/__sreg variables are shorter instruction code than the instructions to memory. Object code will be smaller and

execution speed will be faster. (Instead of the sreg variables, can use the compiler -rd option.)

Remark See "How to use the saddr area (sreg/__sreg)".

(2) Using 1 bit data

When using only 1 bit of data, define a bit type (or boolean/__boolean type) variable. The compiler generates bit

operation instructions to manipulate bit/boolean/__boolean type variables. Like sreg variables, they are stored in

the saddr area for smaller code and faster execution speed.

Remark See "bit type variables (bit), boolean type variables (boolean/__boolean)".

sreg/__sreg variable define : extern sreg int variable-name ;

 extern __sreg int variable-name ;

bit/boolean type variable define : bit variable-name ;

 boolean variable-name ;

 __boolean variable-name ;

use sreg/__sreg variables/

or compiler’s -rd option

if (saddr area available)

Using external variables

if (use automatic variables && saddr area available)

define as __callt/callt function (for smaller code size)

if (callt area available)

if (frequently called function)

Function definitions

use bit/boolean/__boolean type variables

if (saddr area available)

Using 1 bit data

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0552EJ0100 Rev.1.00 Page 43 of 853
Apr 01, 2011

(3) Function definitions

Frequently called functions can be registered in the callt table when callt area can be used.

callt functions are called by using the callt areas of the device, so they can be called by code that is shorter than

normal function calls.

Remark See "callt functions (callt/__callt)".

-qx3 reduces the code size by "subroutine-ization of a common code" and calling "library for the stack access" in

addition to -qx2. Therefore the execution speed has the possibility of slowing compared with -qx2.

(4) Using extended functions

(a) Functions that use automatic variables

When the function for which an automatic variable is used can use saddr area, define register. A register

definitions allocates a defined object to a register.

Programs that use registers are shorter object and faster execution than programs that use memory.

Remark About defining register variables (register int i ; ...), see "Register variables (register)".

(b) Functions that use internal static variables

When the function for which an internal static variables is used can use saddr area, define __sreg or specify

the -rs option. Like sreg variables, they are possible to shorter object and faster execution.

Remark See "How to use the saddr area (sreg/__sreg)".

callt function define : callt int tsub () {

 :

 }

__sreg definitions

if (use internal static variable) && (saddr area available)

Register definitions

if (use automatic variables && saddr area available)

Function definitions

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0552EJ0100 Rev.1.00 Page 44 of 853
Apr 01, 2011

(5) Other functions

Other extended functions allow to generate faster execution or more compact code.

(a) Use SFR names (or SFR bit names)

#pragma sfr

Remark See "How to use the sfr area (sfr)".

(b) __sreg definitions for bit fields of 1-bit members (members can also use unsigned char type)

Remark See "How to use the saddr area (sreg/__sreg)".

(c) Use register bank switching for interrupt routines

#pragma interrupt INTP0 inter RB1

Remark See "Interrupt functions (#pragma vect/#pragma interrupt)".

(d) Use of multiplication, division embedded function

#pragma mul

#pragma div

Remark See "Multiplication function (#pragma mul)", “Division function (#pragma div)".

(e) Described by assembly language to be faster modules.

__sreg struct bf {

 unsigned char a : 1 ;

 unsigned char b : 1 ;

 unsigned char c : 1 ;

 unsigned char d : 1 ;

 unsigned char e : 1 ;

 unsigned char f : 1 ;

} bf_1 ;

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0552EJ0100 Rev.1.00 Page 45 of 853
Apr 01, 2011

2.7.2 Calculating complex expressions

The following example shows the most reasonable way to calculate an expression whose result will always fit into byte

type, even when intermediate results require double word type.

Example Find the rounded percentage c of b in a.

In a function like the following, the variable for the result c must be defined as a long int, requiring 4 bytes of area

when a single byte would have been enough.

This can be written as follows, if using double word type for intermediate results only.

c = (a x 100 + b / 2) / b

void _x () {

 c = ((unsigned long int) a * (unsigned long int) 100 + (unsigned long int
) b / (unsigned long int) 2) / (unsigned long int) b ;

}

#pragma mul

#pragma div

unsigned int a, b ;

unsigned char c ;

void _x () {

 c = (unsigned char) divux ((unsigned long) (b / 2) + muluw (a, 100), b
) ;

}

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0552EJ0100 Rev.1.00 Page 46 of 853
Apr 01, 2011

2.8 Compiler and Assembler Mutual References

This section explains compiler and assembler mutual references.

2.8.1 Mutually referencing variables

(1) Reference a variable defined in C language

To reference a extern variable defined in a C program from an assembly language routine, define extern.

Prefix the name of the variable with an underscore (_) in the assembly language module.

Example C source

Example Assembly source

Remark See "9.5 Referencing Variables Defined in C Language".

extern void subf (void) ;

char c = 0 ;

int i = 0 ;

void main (void) {

 subf () ;

}

$PROCESSOR (F1166A0)

 PUBLIC _subf

 EXTRN _c

 EXTRN _i

@@CODE CSEG

_subf :

 MOV !_c, #04H

 MOVW AX, #07H

 MOVW !_i, AX

 RET

 END

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0552EJ0100 Rev.1.00 Page 47 of 853
Apr 01, 2011

(2) Reference a variable defined in assembly language

To reference a extern variable defined in an assembly language program from a C routine, define extern.

Prefix the name of the variable with an underscore (_) in the assembly language routine.

Example C source

Example Assembly source

Remark See "9.6 Referencing Variables Definted in Assembly Language from C Language".

extern char c ;

extern int i ;

void subf (void) {

 c = 'A' ;

 i = 4 ;

}

NAME ASMSUB

 PUBLIC _i

 PUBLIC _c

ABC DSEG BASEP

_i : DW 0

_c : DB 0

 END

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0552EJ0100 Rev.1.00 Page 48 of 853
Apr 01, 2011

2.8.2 Mutually referencing functions

(1) Reference a function defined in C language

The following procedure is used to call functions written in C from assembly language routines.

(a) Save the work registers (AX, BC, DE)

(b) Push the arguments on the stack

(c) Call the C function

(d) Adjust the stack pointer (SP) by the byte length of the arguments

(e) Reference the return value of the C function (BC, or DE, BC)

Example Assembly language

Remark See "9.4 Calling C Language Routines from Assembly Language".

(2) Reference a function defined in assembly language

Functions defined in assembly language to be called from C functions perform the following processing.

(a) Save the base pointer and saddr area for register variables

(b) Copy the stack pointer (SP) to the base pointer (HL)

(c) Perform the processing of the function FUNC

(d) Set the return value

(e) Restore the saved registers

(f) Return to the function main

$PROCESSOR (F1166A0)

 NAME FUNC2

 EXTRN _CSUB

 PUBLIC _FUNC2

@@CODE CSEG

_FUNC2 :

 movw ax, #20H ; Set 2nd argument (j)

 push ax

 movw ax, #21H ; Set 1st argument (i)

 call !_CSUB ; Call "CSUB (i, j)"

 pop ax

 ret

END

CubeSuite+ Ver.1.00.00 CHAPTER 2 FUNCTIONS

R20UT0552EJ0100 Rev.1.00 Page 49 of 853
Apr 01, 2011

Example Assembly language

Remark See "9.3 Calling Assembly Language Routines from C Language".

$PROCESSOR (F1166A0)

 PUBLIC _FUNC

 PUBLIC _DT1

 PUBLIC _DT2

@@DATA DSEG BASEP

_DT1 : DS (2)

_DT2 : DS (4)

@@CODE CSEG

_FUNC :

 PUSH HL ; Save base pointer

 PUSH AX

 MOVW HL, SP ; Copy stack pointer

 MOVW AX, [HL] ; arg1

 MOVW !_DT1, AX ; Move 1st argument (i)

 MOVW AX, [HL + 10] ; arg2

 MOVW !_DT2 + 2, AX

 MOVW AX, [HL + 8] ; arg2

 MOVW !_DT2, AX ; Move 2nd argument (l)

 MOVW BC, #0AH ; Set return value

 POP AX

 POP HL ; Restore base pointer

 RET

 END

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 50 of 853
Apr 01, 2011

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

This chapter explains the language specifications supported by RL78,78K0R C compiler.

3.1 Basic Language Specifications

The C compiler supports the language specifications stipulated by the ANSI standards. These specifications include

items that are stipulated as processing definitions. This chapter explains the language specifications of the items

dependent on the processing system of the micro processors for RL78 family, 78K0R microcontrollers.

The differences between when options strictly conforming to the ANSI standards are used and when those options are

not used are also explained.

See "3.2 Extended Language Specifications" for extended language specifications explicitly added by RL78,78K0R C

compiler.

3.1.1 Processing system dependent items

This section explains items dependent on processing system in the ANSI standards.

(1) Data types and sizes

The byte order in multibyte data types is "from least significant to most significant byte" Signed integers are

expressed by 2's complements. The sign is added to the most significant bit (0 for positive or 0, and 1 for

negative).

- The number of bits of 1 byte is 8.

- The number of bytes, byte order, and encoding in an object files are stipulated below.

Table 3-1. Data Types and Sizes

(2) Translation stages

The ANSI standards specify eight translation stages (known as "phases") of priorities among syntax rules for

translation. The arrangement of "non-empty white space characters excluding line feed characters" which is

defined as processing system dependent in phase 3 "Decomposition of source file into preprocessing tokens and

white space characters" is maintained as it is without being replaced by single white space character.

However, tabs are replaced by the space character specified with the -lt option.

(3) Diagnostic messages

When syntax rule violation or restriction violation occurs on a translation unit, the compiler outputs as error

message containing source file name and (when it can be determined) the number of line containing the error.

These error messages are classified into three types: "alarm", "fatal error", and "other error" messages.

Data Types Sizes

char 1 byte

int, short 2 bytes

long, float, double 4 bytes

pointer near : 2 bytes

far : 4 bytes

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 51 of 853
Apr 01, 2011

(4) Free standing environment

(a) The name and type of a function that is called on starting program processing are not stipulted in a

free-standing environmentNote. Therefore, it is dependent on the user-own coding and target system.

Note Environment in which a C Language source program is executed without using the functions of the

operating system.

In the ANSI Standard two environments are stipulated for execution environment: a free-standing envi-

ronment and a host environment. The RL78,78K0R C compiler does not supply a host environment at

present.

(b) The effect of terminating a program in a free-standing environment is not stipulated. Therefore, it is

dependent on the user-own coding and target system.

(5) Program execution

The configuration of the interactive unit is not stipulated.

Therefore, it is dependent on the user-own coding and target system.

(6) Character set

The values of elements of the execution environment character set are ASCII codes.

(7) Multi-byte characters

Multi-byte characters are not supported by character constants and character strings.

However, Japanese description in comments is supported.

(8) Significance of character display

The values of expanded notation are stipulated as follows.

Table 3-2. Expanded Notation and Meaning

(9) Translation Limit

The limit values of translation are explained below.

The values marked with * are guaranteed values. These values may be exceeded in some cases, but the

operation is not guaranteed.

Expanded Notation Value (ASCII) Meaning

\a 07 Alert (Warning tone)

\b 08 Backspace

\f 0C Form feed (New Page)

\n 0A New line (Line feed)

\r 0D Carriage return (Restore)

\t 09 Horizontal tab

\v 0B Vertical tab

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 52 of 853
Apr 01, 2011

Table 3-3. Translation Limit Values

Note The following table lists the maxium values for each memory model when extended functions are not used.

Contents Limit Values

Number of nesting levels of compound statements, repetitive control structures, and

selective control structures

(However, dependent on the number of "case" labels)

45

Number of nesting levels of condition embedding 255

Number of pointers, arrays, and function declarators (in any combination) qualifying

one arithmetic type, structure type, union type, or incomplete type in one declaration

12

Number of nesting levels enclosed by parentheses in a complete declarator 591*

Number of nesting levels of an expression enclosed by parentheses in a complete

expression

32

Valid number of first characters in a macro name 256

Valid number of first characters of an external identifier 249

Valid number of first characters in an internal identifier 249

Number of identifiers having an external identifier in one translation unit 1024*

Number of identifiers having the valid block range declared in one basic block 255

Number of macro identifiers simultaneously defined in one translation unit 32767

Number of dummy arguments in one function definition and number of actual

arguments in one function call

39*

Number of dummy arguments in one macro definition 31

Number of actual arguments in one macro call 31

Number of characters in one logical source line 2048*

One character string constant after concatenation, or number of characters in a wide

character string constant

509*

Object size of 1-file (Data is indicated) 65535

Number of nesting levels for include (#include) files 50

Number of "case" labels for one "switch" statement

(including those nested, if any)

257

Number of source lines per compilation unit 65535*

Number of nested function calls 40*

Total size of code, data, and stack segments in a single object module by memory modelNote

Number of members of a single structure or single union 256

Number of enumerate constants in a single enumerate type 255

Number of nesting levels of a structure or union definition in the arrangement of a

single structure declaration

15

Nesting of initializer elements 15

Number of function definitions in a single source file 4095

Macro nesting 200

Number of include file paths 64

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 53 of 853
Apr 01, 2011

(10)Quantitative limit

(a) The limit values of the general integer types (limits.h file)

The limits.h file specifies the limit values of the values that can be expressed as general integer types (char

type, signed/unsigned integer type, and enumerate type).

Because multibyte characters are not supported, MB_LEN_MAX does not have a corresponding limit.

Consequently, it is only defined with MB_LEN_MAX as 1.

If a -qu option is specified, CHAR_MIN is 0, and CHAR_MAX takes the same value as UCHAR_MAX. The

limit values defined by the limits.h file are as follows.

Table 3-4. Limit Values of General Integer Type (limits.h File)

(b) The limit values of the floating-point type (float.h file)

The limit values related to characteristics of the floating-point type are defined in float.h file.

The limit values defined by the float.h file are as follows.

Memory Model Maximum Values

Small model Code 64KB, Data 64KB, Total 128KB

Medium model Code 1MB, Data 64KB, Total 1MB

Large model Code 1MB, Data 1MB, Total 1MB

Name Value Meaning

CHAR_BIT +8 The number of bits (= 1 byte) of the

minimum object not in bit field

SCHAR_MIN -128 Minimum value of signed char

SCHAR_MAX +127 Maximum value of signed char

UCHAR_MAX +255 Maximum value of unsigned char

CHAR_MIN -128 Minimum value of char

CHAR_MAX +127 Maximum value of char

SHRT_MIN -32768 Minimum value of short int

SHRT_MAX +32767 Maximum value of short int

USHRT_MAX +65535 Maximum value of unsigned short int

INT_MIN -32768 Minimum value of int

INT_MAX +32767 Maximum value of int

UINT_MAX +65535 Maximum value of unsigned int

LONG_MIN -2147483648 Minimum value of long int

LONG_MAX +2147483647 Maximum value of long int

ULONG_MAX +4294967295 Maximum value of unsigned long int

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 54 of 853
Apr 01, 2011

Table 3-5. Definition of Limit Values of Floating-point Type (float.h File)

Notes 1. DBL_DIG and LDBL_DIG are 10 or more in the ANSI standards but are 6 in the RL78 family,

78K0R microcontrollers because both the double and long double types are 32 bits.

2. DBL_EPSILON and LDBL_EPSILON are 1E-9 or less in the ANSI standards, but 1.19209290E-

07F in the RL78 family, 78K0R microcontrollers.

Name Value Meaning

FLT_ROUNDS +1 Rounding mode for floating-point addition.

1 for the RL78 family, 78K0R

microcontrollers (rounding in the nearest

direction).

FLT_RADIX +2 Radix of exponent (b)

FLT_MANT_DIG +24 Number of numerals (p) with FLT_RADIX of

floating- point mantissa as base
DBL_MANT_DIG

LDBL_MANT_DIG

FLT_DIG +6 Number of digits of a decimal numberNote 1

(q) that can round a decimal number of q

digits to a floating-point number of p digits of

the radix b and then restore the decimal

number of q

DBL_DIG

LDBL_DIG

FLT_MIN_EXP -125 Minimum negative integer (emin) that is a

normalized floating-point number when

FLT_RADIX is raised to the power of the

value of FLT_RADIX minus 1.

DBL_MIN_EXP

LDBL_MIN_EXP

FLT_MIN_10_EXP -37 Minimum negative integerlog10bemin-1 that falls

in the range of a normalized floating-point

number when 10 is raised to the power of its

value.

DBL_MIN_10_EXP

LDBL_MIN_10_EXP

FLT_MAX_EXP +128 Maximum integer (emax) that is a finite

floating-point number that can be expressed

when FLT_RADIX is raised to the power of its

value minus 1.

DBL_MAX_EXP

LDBL_MAX_EXP

FLT_MAX_10_EXP +38 Maximum value of finite floating-point

numbers that can be expressed

(1 - b-p) * bemax

DBL_MAX_10_EXP

LDBL_MAX_10_EXP

FLT_MAX 3.40282347E + 38F Maximum value of finite floating-point

numbers that can be expressed

(1 - b-p) * bemax

DBL_MAX

LDBL_MAX

FLT_EPSILON 1.19209290E - 07F DifferenceNote 2 between 1.0 that can be

expressed by specified floating-point number

type and the lowest value which is greater

than 1.

b1 - p

DBL_EPSILON

LDBL_EPSILON

FLT_MIN 1.17549435E - 38F Minimum value of normalized positive

floating-point number

bemin - 1

DBL_MIN

LDBL_MIN

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 55 of 853
Apr 01, 2011

(11) Identifier

The initial 249 characters of identifiers are recognized.

Uppercase and lowercase characters are distinguished.

(12)char type

A char type with no type specifier (signed, unsigned) specified is treated as a signed integer as the default

assumption.

However, a simple char type can be treated as an unsigned integer by specifying the - qi option of the C compiler.

The types of those that are not included in the character set of the source program required by the ANSI standards

(escape sequence) is converted for storage, in the same manner as when types other than char type are

substituted for a char type.

(13)Floating-point constants

The floating-point constants conform to IEEE754Note.

Note IEEE:Institute of Electrical and Electronics Engineers

Moreover, IEEE754 is a standard to unify specifications such as the data format and numeric range in

systems that handle floating-point operations.

(14)Character constants

(a) Both the character set of the source program and the character set in the execution environment are

basically ASCII codes, and correspond to members having the same value.

(b) The last character of the value of an integer character constant including two or more characters is

valid.

(c) A character that cannot be expressed by the basic execution environment character set or escape

sequence is expressed as follows.

<1> An octal or hexadecimal escape sequence takes the value indicated by the octal or hexadecimal

notation

<2> The simple escape sequence is expressed as follows.

<3> Values of \a, \b, \f, \n, \r, \t, \v are same as the values explained in "(8) Significance of character

display".

(d) Character constants of multi byte characters are not supported.

char c = '\777'; /* Value of c is -1 */

\077 63

\' '

\" "

\? ?

\\ \

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 56 of 853
Apr 01, 2011

(15)Header file name

The method to reflect the string in the two formats (<> and " ") of a header file name on the header file or an exter-

nal source file name is stipulated in "(32) Loading header file".

(16)Comment

A comment can be described in Japanese. The default character code set for Japanese is Shift JIS.

The character code set of the input source file can be specified by the compiler’s -z option, or by an environmental

variable. An option specification takes priority over an environment variable specification. However, character

codes are not guaranteed when "none" is specified.

(a) Option specification

(b) Environment variable

To set environment variables, use the standard procedure for environment.

(17)Signed constants and unsigned constants

If the value of a general integer type is converted into a signed integer of a smaller size, the higher bits are

truncated and a bit string image is copied.

If an unsigned integer is converted into the corresponding signed integer, the internal representation is not

changed.

(18)Floating-points and general integers

If the value of a general integer type is converted into the value of a floating-point type, and if the value to be

converted is within a range that can be expressed but not accurately, the result is rounded to the closest

expressible value.

When the result is just a middle value, it can be rounded to the even number (with the least significant bit of the

mantissa being 0).

(19)double type and float type

In the RL78,78K0R C compiler, a double type is expressed as a floating-point number in the same manner as a

float type, and is treated as 32-bit (single-precision) data

(20)Signed type in operator in bit units

The characteristics of the shift operator conform to the stipulation in"(26) Shift operator in bit units" .

The other operators in bit units for signed type are calculated as unsigned values (as in the bit image).

(21)Members of structures and unions

If the value of a member of a union is stored in a different member, it is stored according to an alignment condition.

Therefore, the members of that union are accessed according to the alignment condition (see "(b) Structure type"

and "(c) Union type").

In the case of a union that includes a structure sharing the arrangement of the common first members as a

member, the internal representation is the same, and the result is the same even if the first member common to

any structure is referred.

-ze | -zn | -zs

LANG78K [euc | none | sjis]

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 57 of 853
Apr 01, 2011

(22)sizeof operator

The value resulting from the "sizeof" operator conforms to the stipulation related to the bytes in an object in"(1)

Data types and sizes".

For the number of bytes in a structure and union, it is byte including padding area.

(23)Cast operator

When a pointer is converted into a general integer type, the required size of the variable is the same as the

following table lists. The bit string is saved as is as the conversion result.

Any integer can be converted by a pointer. However, the result of converting an integer smaller than an int type is

expanded according to the type.

- near: 2 bytes

- far: 4 bytes

When a near pointer or int is cast to a far pointer, and when a near pointer is cast to a long, the operation behaves

as follows.

- For variable pointers, 0xf is added at the most significant position (0 is an exception and the pointer is zero-

extended).

- Function pointers are zero-extended.

(24)Division/remainder operator

The result of the division operator ("/") when the operands are negative and do not divide perfectly with integer

division, is as follows: If either the divisor or the dividend is negative, the result is the smallest integer greater than

the algebraic quotient.

If both the divisor and the dividend are negative, the result is the largest integer less than the algebraic quotient.

If the operand is negative, the result of the "%" operator takes the sign of the first operand in the expression.

(25)Addition and subtraction operators

If two pointers indicating the elements of the same array are subtracted, the type of the result is int type, and the

size is 2 bytes.

(26)Shift operator in bit units

If E1 of "E1 >> E2" is of signed type and takes a negative value, an arithmetic shift is executed.

(27)Storage area class specifier

The storage area class specifier "register" is declared to increase the access speed as much as possible, but this

is not always effective.

(28)Structure and union specifier

(a) int type bit field sign Simple int type bit fields without a signed or unsigned specifier are treated as

unsigned.

(b) To retain a bit field, a storage area unit to which any address with sufficient size can be assigned can

be allocated. If there is insufficient area, however, the bit field that does not match is packed into to

the next unit according to the alignment condition of the type of the field.

(c) The allocation sequence of the bit field in unit is from lower to higher.

However, the -rb option can be specified for the allocation sequence is from higher to lower.

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 58 of 853
Apr 01, 2011

(d) Each member of the non-bit field of one structure or union is aligned at a boundary as follows

- char and unsigned char types, and arrays of char and unsigned char types: Byte boundary

- Other (including pointers): 2-byte boundary

(29)Enumerate type specifier

The type of an enumeration is the first type from among the following which is capable of expressing all of the

enumeration constants.

- signed char

- unsigned char

- signed int

(30)Type qualifier

The configuration of access to data having a type qualified to be "volatile" is dependent upon the address (I/O port,

etc.) to which the data is mapped.

(31)Condition embedding

(a) The value for the constant specified for condition embedding and the value of the character constant

appearing in the other expressions are equal.

(b) The character constant of a single character must not have a negative value.

(32)Loading header file

(a) A preprocessing directive in the form of "#include <character string>"

Unless "filename" begins with the character '\' Note the #include <filename> preprocessor directive instructs the

preprocessor to search for the file specified between the angle brackets (<..>) in the following locations: 1) the

folder specified by the -i option, 2) the folder specified by the INC78K0R environment variable, and 3) the

..\inc78k0r folder relative to the bin folder where cc78k0r.exe resides.

If a header file uniformly identified is searched with a character string specified between delimiters "<" and ">",

the whole contents of the header file are replaced.

Note Both "\" and "/" are regarded as the delimiters of a folder.

Example

The search order is as follows.

- The folder specified by the -i option

- The folder specified by the INC78K0R environment variable

- The standard folder

#include <header.h>

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 59 of 853
Apr 01, 2011

(b) A preprocessing directive in the form of "#include "character string""

Unless "character string" begins with the character '\'Note, the #include "character string" preprocessor direc-

tive instructs the preprocessor to search for the file specified between the quotation marks ("..") in the following

locations: 1) the folder that contains the source file, 2) the folder specified by the -i option, 3) the folder speci-

fied by the INC78K0R environment variable, and 4) the ..\inc78k0r folder relative to the bin folder where

cc78k0r.exe resides.

If the file specified between the quotation mark delimiters is found, the #include directive line is replaced with

the entire contents of the file.

Note Both "\" and "/" are regarded as the delimiters of a folder.

Example

The search order is as follows.

- The folder that contains the source file

- The folder specified by the -i option

- The folder specified by the INC78K0R environment variable

- The standard folder

(c) The format of "#include preprocessing character phrase string"

The format of "#include preprocessing character phrase string" is treated as the preprocessing character

phrase of single header file only if the preprocessing character phrase string is a macro that is replaced to the

form of <character string> or "character string".

(d) A preprocessing directive in the form of "#include <character string>"

Between a string delimited (finally) and a header file name, the length of the alphabetic characters in the

strings is identified,

The folder that searches a file conforms to the above stipulation.

(33)#pragma directive

#pragma directives are one of the preprocessing directive types defined by the ANSI standard. The string that

follows #pragma the compiler to translate in an implementation-defined manner.

When a #pragma directive is not recognized by the compiler, it is ignored and translation continues. If the directive

adds a keyword, then an error occurs if the C source contains that keyword. To avoid the error, delete the keyword

from the source or exclude it with #ifdef.

(34)Predefined macro names

All the following macro names are supported.

Macros not ending with "_ _ " are supplied for the sake of former C language specifications (K&R specifications).

To perform processing strictly conforming to the ANSI standards, use macros with "_ _ " before and after.

#include "header.h"

And the file name length valid in the compiler operating environment is valid.

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 60 of 853
Apr 01, 2011

Table 3-6. List of Supported Macros

Note Defined when the -za option is specified

(35)Definition of special data type

NULL, size_t, and ptrdiff_t defined by stddef.h file are as follows.

Table 3-7. Definition of NULL, size_t, ptrdiff_t (stddef.h File)

Macro Name Definition

__LINE__ Line number of source line at that point (decimal).

__FILE__ Name of assumed source file (character string constant).

__DATE__ Date of translating source file (character string constant in the form of "Mmm

dd yyyy").

Here, the name of the month is the same as that created by the asctime

function stipulated by ANSI standards (3 alphabetic characters with only the

first character is capital letter) (The first character of dd is blank if its value is

less than 10).

__TIME__ Translation time of source file (character string constant having format

"hh:mm:ss" similar to the time created by the asctime function).

__STDC__ Decimal constant 1, indicating conformance to the ANSI standard.Note

__K0R__ Decimal constant 1

__K0R_SMALL__ Decimal constant 1 (When small model is specified.)

__K0R_MEDIUM__ Decimal constant 1 (When medium model is specified.)

__K0R_LARGE__ Decimal constant 1 (When large model is specified.)

__CHAR_UNSIGNED__ Decimal constant 1 (When the -qu option was specified.)

__RL78__ Decimal constant 1 (When device classification of RL78 family is specified.)

__RL78_1__ Decimal constant 1 (When device classification of RL78 non-mounted multi-

ply/divide/multiply & accumulate instructions is specified.)

__RL78_2__ Decimal constant 1(When device classification of RL78 mounted multiply/

divide/multiply & accumulate instructions is specified.)

__CA78K0R__ Decimal constant 1

CPUmacro Decimal constant 1 of a macro indicating the target CPU.

A character string indicated by "product type specification" in the device file

with "_ _ " prefixed and suffixed is defined.

NULL/size_t/ptrdiff_t Definition

NULL ((void *) 0)

size_t unsigned int

ptrdiff_t int

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 61 of 853
Apr 01, 2011

3.1.2 Internal representation and value area of data

This section explains the internal representation and value area of each type for the data handled by the RL78,78K0R

C compiler.

(1) Basic types

The basic types, also called arithmetic types, consist of the integer types and the floating point types.

The integer types can be classified into the char type, signed integer types, unsigned integer types, and

enumeration type.

(a) Integer types

Integer types can be divided into 4 categories, as follows. Integer types are expressed as binary 0s and 1s.

- char type

- signed integer types

- unsigned integer types

- enumeration types

<1> char type

The char type is large enough to store any member of the execution character set.

If a member of the basic execution character set is stored in a char object, its value is guaranteed to be

nonnegative.

Objects other than characters are treated as signed integers.

If an overflow occurs when a value is stored, the overflow part is ignored.

<2> Signed integer types

There are four signed integer types, as follows.

- signed char

- short int

- int

- long int

An object defined as signed char type occupies the same amount of area as a "plain" char.

A "plain" int has the natural size suggested by the CPU architecture of the execution environment.

For each of the signed integer types, there is a corresponding unsigned integer type that uses the same

amount of area.

The positive number of a signed integer type is a subset of the the unsigned integer type.

<3> Unsigned integer types

Unsigned integer types are designated by the keyword "unsigned".

A computation involving unsigned integer types can never overflow, because a result that cannot be

represented by the resulting unsigned integer type is reduced modul the number that is one greater than

the largest value that can be represented by the resulting type.

<4> Enumeration types

An enumeration comprises a set of named integer constant values.

Each distinct enumeration constitutes a different enumerated type.

Each enumeration constitutes a enumerated type.

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 62 of 853
Apr 01, 2011

(b) Floating point types

There are three real floating types, as follows.

- float

- double

- long double

Like the float type, the double and long double types of RL78,78K0R C compiler are supported as floating

point representations of the single-precision normalized numbers defined in ANSI/IEEE 754-1985. This

means that the float, double, and long double types have the same value range.

Table 3-8. Value Ranges by Type

Remarks 1. The "signed" type specifier may be omitted. However, when it is omitted for the char type, a

compiling condition (option) determines whether the type is the signed char or unsigned char

type.

2. The short int and int types have the same value range, but they are treated as different types.

3. The unsigned short int and unsigned int types have the same value range, but they are treated

as different types.

4. The float, double, and long double types have the same value range, but they are treated as

different types.

5. The ranges of the float, double, and long double types are ranges of absolute values.

The following show the specifications of floating point numbers (float type).

<1> Format

The floating point number format is shown below.

Figure 3-1. Floating Point Number Format

Numerical values in this format are as follows.

Type Value Range

(signed) char -128 to +127

unsigned char 0 to 255

(signed) short int -32768 to +32767

unsigned short int 0 to 65535

(signed) int -32768 to +32767

unsigned int 0 to 65535

(signed) long int -2147483648 to +2147483647

unsigned long int 0 to 4294967295

float 1.17549435E - 38F to 3.40282347E + 38F

double 1.17549435E - 38F to 3.40282347E + 38F

long double 1.17549435E - 38F to 3.40282347E + 38F

s (High address) (Low address)

31 0

me

30 23 22

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 63 of 853
Apr 01, 2011

<2> Expression of zero

When exponent = 0 and mantissa = 0, + 0 is expressed as follows.

<3> Expression of infinity

When exponent = FFH and mantissa = 0, + ∞ is expressed as follows.

<4> Denormalized values

When exponent = 0 and mantissa ≠ 0, the denormalized value is expressed as follows.

Remark The mantissa value here is a number less than 1, so bit positions 22 to 0 of the mantissa

express the 1st to 23rd decimal places.

 (Value of sign) (Value of exponent)

(-1) * (Value of mantissa) * 2

s Sign (1 bit)

0 for a positive number and 1 for a negative number.

e Exponent (8 bits)

A base-2 exponent is expressed as a 1-byte integer (expressed by 2’s complement in the case of a

negative), after the further addition of a bias of 7FH. These relationships are shown in the table below.

m Mantissa (23 bits)

The mantissa is expressed as an absolute value, with bit positions 22 to 0 equivalent to the 1st to 23rd

places of a binary number.

Except for when the value of the floating point is 0, the value of the exponent is always adjusted so that

the mantissa is within the range of 1 to 2 (normalization). The result is that the position of 1 (i.e. the

value of 1) is always 1, and is thus represented by omission in this format.

 (Value of sign)

(-1) * 0

 (Value of sign)

(-1) * ∞

 (Value of sign) -126

(-1) * (Value of mantissa) * 2

Exponent (Hexadecimal) Value of Exponent

FE

:

81

80

7F

7E

:

01

127

:

2

1

0

-1

:

-126

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 64 of 853
Apr 01, 2011

<5> Expression of NaN (Not-a-number)

When exponent = FFH and mantissa ≠ 0, NaN is expressed, regardless of the sign.

<6> Rounding of computation results

Numerical values are rounded down to the nearest even number. If the computation result cannot be

expressed in the above floating point format, round to the nearest expressible number.

If there are 2 values that can express the differential of the prerounded value, round to an even number

(a number whose least significant binary bit is 0).

<7> Exceptions

There are 5 types of exceptions, as shown in the table below.

Table 3-9. Numerical Exception

When an exception occurs, calling the matherr function causes a warning to appear.

(2) Character types

There are 3 char data types.

- char

- signed char

- unsigned char

(3) Incomplete types

There are 4 incomplete data types.

- Arrays with indefinite object size

- Structures

- Unions

- void type

(4) Derived types

There are 5 derived data types.

- Array type

- Structure type

- Union type

- Function type

- Pointer type

Exception Return Value

Underflow Denormalized number

Inexact + 0

Overflow + ∞

Division by zero + ∞

Invalid operation NaN

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 65 of 853
Apr 01, 2011

(a) Array type

An array type describes a contiguously allocated set of objects with a particular member object type, called the

element type.

All member objects have the area of the same size. Array types and individual elements can be specified. It is

not possible to create an incomplete array type.

(b) Structure type

A structure type describes a sequentially allocated set of member objects, each of which has an optionally

specified name and possibly a distinct type.

Remark Array and structure types are collectively called aggregate types. The member objects in

aggregate types are allocated sequentially.

(c) Union type

A union type describes an overlapping set of member objects.

Each member of a union has an optionally specified name and possibly a distinct type. Union members can

be specified individually.

(d) Function type

A function type describes a function with the return value of the specified type.

A function type is characterized by its return value type and the number and types of its parameters.

If its return value type is T, the function is called a "function returning T".

(e) Pointer type

A pointer type may be derived from a function type, an object type, or an incomplete type, called the

referenced type.

A pointer type describes an object whose value provides a reference to an entity of the referenced type.

A pointer type derived from the referenced type T is sometimes called a "pointer to T".

3.1.3 Memory

The memory model is determined by the memory space of the target device.

(1) Memory models

The following memory models are available.

Table 3-10. Memory Models

Data sections include ROM data. The above table lists maximum values when expanded functions are not used.

(2) Register banks

- The current register bank is set to "RB0" by the RL78,78K0R C compiler startup routine. Unless it is changed,

it remains set to register bank 0.

- It's set as a specified register bank at the start of the interrupt function where register bank change designation

was done.

Memory Model Maximum Values

Small modell (-ms option) Code 64KB, Data 64KB, Total 128KB

Medium model (-mm option) Code 1MB, Data 64KB, Total 1MB

Large model (-ml option) Code 1MB, Data 1MB, Total 1MB

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 66 of 853
Apr 01, 2011

(3) Memory space

RL78,78K0R C compiler utilizes the following memory space.

Figure 3-2. Usage of Memory Space

Notes 1. Used when a register bank is specified.

2. Varies depending on the device used.

3.2 Extended Language Specifications

This section explains extensions unique to the RL78,78K0R C compiler, which are not specified by theI ANSI (Ameri-

can National Standards Institute) standard.

The RL78,78K0R C compiler extensions allow to generate code that makes the most effective use of the target device.

These extensions are not necessarily useful in every situation, so recommended to use only those which are useful for

purposes. For more information about effective use of the RL78,78K0R C compiler extensions, see "CHAPTER 2

FUNCTIONS".

Use of the RL78,78K0R C compiler extensions introduces microcontroller dependencies into C source programs, but

compatibility on the C language level is maintained. Even if using the RL78,78K0R C compiler extensions in C source

programs, can still port the programs to other microcontrollers with a few easy-to-make modifications.

Remark In this section, “RTOS" stands for the RL78,78K0R real-time OS.

Size

(bytes)
UseAddress

64

148

16

4

8

24

8

256

Max. 2048 Note 2

16

F0

FF

FF

FF

FF

FF

FF

FF

00 080 - 0BFH

E20 - EB3H

EB4 - EC3H

EC4 - ED3H

ED4 - ED7H

ED8 - EDFH

EE0 - EF7H

EF8 - EFFH

F00 - FFFH

000 - 7FFH

CALLT table

sreg variables, boolean variables

Register variables

Compiler reserved area

Segment information

Runtime library arguments

RB3 - RB1

RB0

Work registersNote 1

Work registers

sfr variables

2nd sfr variables

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 67 of 853
Apr 01, 2011

3.2.1 Macro names

RL78,78K0R C compiler defines a macro name to indicate the microcontroller name of the target device and a macro

name to indicate the device name. These device names are specified by a compiling option to generate object code for

the target device or by device classification in the C source code. The following examples define the macro names

__K0R__and __F1166A0_.

See "(34) Predefined macro names" for more information about macro names.

3.2.2 Keywords

RL78,78K0R C compiler defines the following keywords to enable the extended functions. Like ANSI C keywords,

these keywords cannot be used as labels or variable names.

All of these keywords are in lowercase. Any token that contains an uppercase character is not regarded as a keyword.

In the following table of keywords added by RL78,78K0R C compiler, keywords that do not begin with "__" can be

undefined by specifying the strict ANSI C conformance option (-za).

Table 3-11. Keywords Added by RL78,78K0R C Compiler

Compiling option:

>cc78k0r -cf1166a0 prime.c ...

Additional Keyword Purpose

Always Defined Undefined When -za Option Is

Specified

__callt callt Call functions via callt table

__callf callf For 78K0 compatibility

__sreg sreg Allocate variables in saddr area

- noauto For 78K0 compatibility

__leaf norec For 78K0 compatibility

__boolean boolean Bit access to saddr and sfr area

- bit Bit access to saddr and sfr area

__interrupt - Hardware interrupt

__interrupt_brk - Software interrupt

__asm - ASM statements

__rtos_interrupt - RTOS interrupt handlers

__pascal - For 78K0 compatibility

__flash - Firmware ROM functions

__flashf - __flashf functions

__directmap - Absolute address mapping

__temp - For 78K0 compatibility

__near, __far - Memory area specification

__mxcall - For 78K0 compatibility

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 68 of 853
Apr 01, 2011

(1) Functions

The callt, __callt, __interrupt, __interrupt_brk, __rtos_interrupt, __flash, __flashf keywords are attribute qualifiers

that may be added to the start of function descriptions.

The syntax is shown below.

Following is an example description .

Valid attribute qualifiers are limited to the following.

Note that callt and __callt are regarded as the same specification. However, the qualifier that begins with "__" is

defined even when the -za option is specified.

callt, __interrupt, __interrupt_brk, __rtos_interrupt, __flash, __flashf

Caution The compiler issues a warning when it encounters the callf, __callf, noauto, __pascal, __mxcall,

norec, and__leaf keywords, but otherwise ignores them.

(2) Variables

sreg and __sreg follow the same rules as the "register" of the C language (See "How to use the saddr area (sreg/

__sreg)" for more information about the sreg keywords).

The bit, boolean, and __boolean type specifiers follow the same rules as the "char" and "int" type specifiers of the

C language. However, they can be applied only to variables declared outside functions (external variables).

The __directmap qualifier follows the same rules as the qualifiers of the C language (See "Absolute address

allocation specification (__directmap)" for details).

The __near and __far qualifiers follow the same rules as the type qualifiers of the C language (See "near/far area

specification" for details).

Caution The compiler issues a warning when it encounters the __temp keyword, but otherwise ignores

it.

3.2.3 #pragma directives

#pragma directives are one of the types of preprocessing directives supported by the ANSI C standard. A #pragma

directive instructs the compiler to translate in a specific way, depending on the string that follows the #pragma.

When a compiler encounters a #pragma directive that it does not recognize, it ignores the directive and continues

compiling. If the function of the unrecognized #pragma was to define a keyword, then an error will occur when that

keyword is encountered in the C source. To avoid this, the undefined keyword should be deleted from the C source or

excluded by #ifdef.

RL78,78K0R C compiler supports the following #pragma directives, which allow extended functions.

The keyword after #pragma may be specified in either uppercase or lowercase.

See "3.2.4 Using extended functions" for more information about using these directives to enable extended func-

tions.#pragma directive list.

attribute-qualifier ordinary-declarator function-name (parameter-type-list/identifier-
list)

__callt int func (int) ;

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 69 of 853
Apr 01, 2011

Table 3-12. #pragma List

#pragma Directive Purpose

#pragma sfr Use SFR names in C source files.

-> See "How to use the sfr area (sfr)".

#pragma vect

#pragma interrupt

Write interrupt service routines in C.

-> See "Interrupt functions (#pragma vect/#pragma interrupt)".

#pragma di

#pragma ei

Disable and enable interrupts in C.

-> See "Interrupt functions (#pragma DI, #pragma EI)".

#pragma halt

#pragma stop

#pragma brk

#pragma nop

Write CPU control instructions in C.

-> See "CPU control instruction(#pragma HALT/STOP/BRK/NOP)".

#pragma section Change the compiler output section name and specify the section location.

-> See "Changing compiler output section name (#pragma section ...)".

#pragma name Change the module name.

-> See "Module name changing function (#pragma name)".

#pragma rot Use the inline rotation functions.

-> See "Rotate function (#pragma rot)".

#pragma mul Use the inline multiplication function.

-> See "Multiplication function (#pragma mul)".

#pragma div Use optimized division functions.

-> See "Division function (#pragma div)".

#pragma mac Use optimized sum-of-products calculation functions.

-> See "Sum-of-products calculation function (#pragma mac)".

#pragma opc Insert data at the current code address.

-> See "Data insertion function (#pragma opc)".

#pragma rtos_interrupt Write RI78V4 (real-time OS) interrupt handlers in C.

See "Interrupt handler for RTOS (#pragma rtos_interrupt ...)".

#pragma rtos_task Write RI78V4 (real-time OS) tasks in C.

See "Task function for RTOS (#pragma rtos_task)".

#pragma ext_func Call flash area functions from boot area.

-> See "Function of function call from boot area to flash area (#pragma ext_func)".

#pragma inline Inline expansion of the standard library functions memcpy and memset.

-> See "Memory manipulation function (#pragma inline)".

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 70 of 853
Apr 01, 2011

3.2.4 Using extended functions

The following lists the extended functions of RL78,78K0R C compiler.

Table 3-13. Extended Function List

Extended Function Description

callt functions (callt/__callt) Allocated the address of a called function in the callt table area.

It's possible to reduce an object code compared with usual calling instruction call..

Register variables (register) Instructs the compiler to place a variable in a register or the saddr area, for greater execution

speed.

Object code is also more compact.

How to use the saddr area

(sreg/__sreg)

Allocated a external variable of specified sreg or specified __sreg, and a static variable in a

function in the saddr area. Variables in the saddr area can be faster execution speed than

normal variables.

Object code is also more compact. Variables can be allocated in the saddr area by compiler

options.

Usage with saddr automatic

allocation option of external

variables/external static

variables (-rd)

Allocated a external variable and a external static variable in the saddr area. Variables in the

saddr area can be faster execution speed than normal variables.

Object code is also more compact. Variables can be allocated in the saddr area by compiler

options.

Usage with saddr automatic

allocation option of internal

static variables (-rs)

Allocated a internal static variable in the saddr area. Variables in the saddr area can be faster

execution speed than normal variables.

Object code is also more compact. Variables can be allocated in the saddr area by compiler

options.

How to use the sfr area (sfr) The #pragma sfr directive declares sfr names, which can use to manipulate special function

registers (sfr) from C source files.

bit type variables (bit),

boolean type variables

(boolean/__boolean)

Generate variables having 1-bit memory area.

bit and boolean/__boolean type variables allow bit access to the saddr area.

boolean and __boolean type variables are functionally identical to bit type variables, and can

be used in the same way.

ASM statements (#asm -

#endasm/__asm)

The #asm and __asm directives allow to use assembly language statements in C source

code. The statements are embedded in the assembly source code generated by the C

compiler.

Kanji (2-byte character) (/*

kanji */, // kanji)

C source comments can contain kanji (multibyte Japanese characters).

Select the kanji encoding from Shift-JIS, EUC, or none.

Interrupt functions

(#pragma vect/#pragma

interrupt)

Generate the interrupt vector table, and output object code required by interrupt.

This allows to write interrupt functions in C..

Interrupt function qualifier

(__interrupt,

__interrupt_brk)

It's possible to describe a vector table setting and an interrupt function definition in another

file.

Interrupt functions

(#pragma DI, #pragma EI)

Embed instructions to disable/enable interrupts in object code.

CPU control

instruction(#pragma HALT/

STOP/BRK/NOP)

Embed the following instruction in object code.

halt instruction

stop instruction

brk instruction

nop instruction

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 71 of 853
Apr 01, 2011

Bit field declaration

(Extension of type specifier)

Defining bit fields of unsigned char, signed char, signed int, unsigned short, signed short type

can save memory and make object code shorter and faster execution speed.

Bit field declaration

(Allocation direction of bit

field)

The -rb option changes the bit-field allocation order.

Changing compiler output

section name (#pragma

section ...)

Allows to change the compiler output section name and instruct the linker to locate that

section independently.

Binary constant (0bxxx) Allows specifying binary constants in C source code.

Module name changing

function (#pragma name)

The module name of an object can be changed to any name in C source code.

Rotate function (#pragma

rot)

Outputs the code that rotates the value of an expression to the object with direct inline

expansion.

Multiplication function

(#pragma mul)

Outputs the code that multiplies the value of an expression to the object with direct inline

expansion.

The resulting object code is smaller and faster execution speed.

Division function (#pragma

div)

Output instructions using the data size of the input/output of a division instruction.

The code is compatible with the 78K0 compiler.

It is object code is smaller and faster execution speed than description division expressions.

Sum-of-products

calculation function

(#pragma mac)

It is object code is smaller and faster execution speed than description sum-of-products

calculation expressions.

BCD operation function

(#pragma bcd)

Outputs the code that performs a BCD operation on the expression value in an object by

direct inline expansion.

BCD operation is the calculation to express 1 digit of decimal number by 4 bits of binary

number.

Data insertion function

(#pragma opc)

Inserts constant data into the current address.

Specific data and instruction can be embedded in the code area without using the ASM

statement.

Interrupt handler for RTOS

(#pragma rtos_interrupt ...)

The interrupt handler for RI78V4 can be described..

Interrupt handler qualifier

for RTOS (__rtos_interrupt)

The setting of the vector and the description of the interrupt handler for RI78V4 can be

described in separate files.

Task function for RTOS

(#pragma rtos_task)

The function names specified with #pragma rtos_task are interpreted as the tasks for RI78V4.

This allows to write efficient code of real-time OS task functions in C.

Flash area allocation

method (-zf)

By compiling with the -zf option, allows programs to be allocated to the flash area, and allows

those programs to be linked to object code (compiled without the -zf option) in the boot area.

Flash area branch table

and flash area allocation

Specifies the start address of the flash area branch table by -zt option, allowing the startup

routine and interrupt functions to be allocated in the flash area, and allowing flash area

functions to be called from the boot area.

Function of function call

from boot area to flash area

(#pragma ext_func)

The #pragma instruction specifies the function name and ID value in the flash area called

from the boot area, allowing flash area functions to be called from the boot area.

Mirror source area

specification

Compiling with the -mi0/-mi1 option, instructs the compiler to generate code for a specified

mirror source area.

Extended Function Description

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 72 of 853
Apr 01, 2011

Method of int expansion

limitation of argument/

return value (-zb)

Compiling with the -zb option, to generate smaller object code and faster execution speed.

Memory manipulation

function (#pragma inline)

An object file is generated by the output of the standard library functions memcpy and

memset with direct inline expansion.

The resulting code is faster execution speed.

Absolute address allocation

specification (__directmap)

Declare __directmap in the module in which the variable to be allocated in an absolute

address is to be defined. One or more variables can be allocated to the same arbitrary

address.

near/far area specification An allocating place of the function and a variable can be designated specifically by adding the

__near or __far type qualifier when a function or variable declared.

Memory model

specification

An allocating place of the function and a variable can be specifying by a memory model by

specifying the -ms, -mm, or -ml option when compiling.

Allocating ROM data

specification

An allocating place of the ROM data can be designated specifically near or far area.

Specifying RAM allocation

destinations with self-

programming

An allocating place of the code and ROM data can be designated RAM area.

Extended Function Description

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 73 of 853
Apr 01, 2011

The address of the called function is allocate in the callt table area, and the function is called.

[Function]

- The callt instruction stores the address of a function to be called in an area [80H to BFH] called the callt table, so

that the function can be called with a shorter code than the one used to call the function directly.

- To call a function declared by the callt (or __callt) (called the callt function), a name with ? prefixed to the function

name is used. To call the function, the callt instruction is used.

- The function to be called is not different from the ordinary function.

[Effect]

- The object code can be shortened.

[Usage]

- Add the callt/__callt attribute to the function to be called as follows (described at the beginning):

[Restrictions]

- The callt functions are allocated to the area within [C0H to 0FFFFH], regardless of the memory model.

- The address of each function declared with callt/__callt will be allocated to the callt table at the time of linking

object modules. For this reason, when using the callt table in an assembler source module, the routine to be cre-

ated must be made "relocatable" using symbols.

- A check on the number of callt functions is made at linking time.

- When the -za option is specified, __callt is enabled and callt is disabled.

- When the -zf option is specified, callt functions cannot be defined. If a callt function is defined, an error will occur.

- The area of the callt table is 80H to BFH.

- When the callt table is used exceeding the number of callt attribute functions permitted, a compile error will occur.

- The callt table is used by specifying the -ql option. For that reason, the number of callt attributes permitted per 1

load module and the total in the linking modules is as shown below.

- Cases where the -ql option is not used and the defaults are as shown in the table below.

callt functions (callt/__callt)

callt extern type-name function-name

__callt extern type-name function-name

Option -ql1 -ql2 to -ql3

number of callt attribute functions 32 30

callt Function Restriction Value

Number per load module 32 max.

Total number in linked module 32 max.

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 74 of 853
Apr 01, 2011

[Example]

The callt attribute is given to the function tsub () so that it can be stored in the callt table.

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- The C source program need not be modified if the keyword callt/__callt is not used.

- To change functions to callt functions, observe the procedure described in the Usage above.

(2) From the RL78,78K0R C compiler to another C compiler

- #define must be used. For details, see "3.2.5 C source modifications".

(C source)

============ ca1.c ============

__callt extern int tsub (void) ;

void main (void) {

 int ret_val ;

 ret_val = tsub () ;

}

 ============ ca2.c ============

__callt int tsub (void) {

 int val ;

 return val ;

}

(Output object of compiler)

ca1 module

 EXTRN ?tsub ; Declaration

 callt [?tsub] ; Call

ca2 module

 PUBLIC _tsub ; Declaration

 PUBLIC ?tsub ;

@@CALT CSEG CALLT0 ; Allocation to segment

?tsub : DW _tsub

@@BASE CSEG BASE

_tsub : ; Function definition

 :

 ; Function body

 :

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 75 of 853
Apr 01, 2011

A variable is allocated to a register and saddr area.

[Function]

- Allocates the declared variables (including arguments of function) to the register (HL) and saddr area (_@KREG00

to _@KREG15). Saves and restores registers or saddr area during the preprocessing/ postprocessing of the mod-

ule that declared a register.

- For the details of the allocation of register variables, see "3.3 Function Call Interface".

- Register variables are allocated to register HL or the saddr area (FFEB4H to FFEC3H), in the order of reference

frequency. Register variables are allocated to register HL only when there is no stack frame, and allocated to the

saddr area only when the -qr option is specified.

[Effect]

- Instructions to the variables allocated to the register or saddr area are generally shorter in code length than those

to memory. This helps shorten object and also improves program execution speed.

[Usage]

- Declare a variable with the register storage class specifier as follows:

[Restrictions]

- If register variables are not used so frequently, object code may increase (depending on the size and contents of

the source).

- Register variable declarations may be used for char/int/short/long/float/double/long double and pointer data types.

- The char type uses half as much area as the int type does. The long, float, double, long double, and far pointers

use twice as much area as the int type does. Between chars there are byte boundaries but in other cases, there

are word boundaries.

- In the cases of int, short and near pointers, up to eight variables can be used for each function. The ninth and sub-

sequent variables are allocated to the normal memory.

- In the case of a function without a stack frame, a maximum of 9 variables per function is usable for int, short and

near pointers. The 10th and subsequent variables are allocated to the normal memory.

[Example]

<C source>

Register variables (register)

register type-name variable-name

void func () ;

void main () {

 register int i, j ;

 i = 0 ;

 j = 1 ;

 i += j ;

 func () ;

}

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 76 of 853
Apr 01, 2011

(1) Example of register variable allocation to register HL and the saddr area

The following labels are declared in the startup routine (see to "3.4 List of saddr Area Labels").

<Output object of compiler>

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- The C source program need not be modified if the other C compiler supports register declarations.

- To change to register variables, add the register declarations for the variables to the program.

(2) From the RL78,78K0R C compiler to another C compiler

- The C source program need not be modified if the other compiler supports register declarations.

- How many variable registers can be used and to which area they will be allocated depend on the implementa-

tions of the other C compiler.

 EXTRN _@KREG00 ; References the saddr area to be used

@@CODEL CSEG

_main :

 push hl ; Saves the contents of the register at the beginning of

 ; the function

 movw ax, _@KREG00 ; Saves the contents of the saddr at the beginning of

 ; the function

 push ax

; line 3 : register int i, j ;

; line 4 : i = 0 ;

; line 5 : j = 1 ;

 movw hl, #00H ; The following codes are output in the middle of the

 ; function

 onew ax

 movw _@KREG00, ax ; j

; line 6 : i += j ;

 addw ax, hl

 movw hl, ax

; line 7 :

 pop ax ; Restores the contents of the saddr at the end of the

 ; function

 movw _@KREG00, ax

 pop hl ; Restores the contents of the register at the end of

 ; the function

 ret

 END

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 77 of 853
Apr 01, 2011

External variables that the sreg or __sreg is declared and static variables declared within functions are allocated in the

saddr area.

[Function]

- The external variables and in-function static variables (called sreg variable) declared with keyword sreg or __sreg

are automatically allocated to saddr area [FFE20H to FFEB3H] and with relocatability. When those variables

exceed the area shown above, a compile error will occur.

- The sreg variables are treated in the same manner as the ordinary variables in the C source.

- Each bit of sreg variables of char, short, int, and long type becomes boolean type variable automatically.

- sreg variables declared without an initial value take 0 as the initial value.

- Of the sreg variables declared in the assembler source, the saddr area [FFE20H to FFF1FH] can be referred to.

The area [FFEB4H to FFEDFH] are used by compiler so that care must be taken (see Figure 3-2. Usage of Mem-

ory Space).

[Effect]

- Instructions to the saddr area are generally shorter in code length than those to memory. This helps shorten object

code and also improves program execution speed.

[Usage]

- Declare variables with the keywords sreg and __sreg inside a module and a function which defines the variables.

Only the variable with a static storage class specifier can become a sreg variable inside a function.

- Declare the following variables inside a module which refers to sreg external variables. They can be described

inside a function as well.

[Restrictions]

- If const type is specified, or if sreg/__sreg is specified for a function, a warning message is output, and the sreg

declaration is ignored.

- char type uses a half the space of other types and long/float/double/long double/far pointer types use a space

twice as wide as other types.

- Between char types there are byte boundaries, but in other cases, there are word boundaries.

- When the -za option is specified, only __sreg is enabled and sreg is disabled.

- In the case of int/shortt, and near pointer and pointer, a maximum of 74 variables per load module is usable (when

saddr area [FFE20H to FFEB3H] is used).

Note that the number of usable variables decreases when bit and boolean type variables, boolean type variables

are used.

How to use the saddr area (sreg/__sreg)

sreg type-name variable-name/ sreg static type-name variable-name

__sreg type-name variable-name/ __sreg static type-name variable-name

extern sreg type-name variable-name/ extern __sreg type-name variable-name

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 78 of 853
Apr 01, 2011

[Example]

<C source>

The following example shows a definition code for sreg variable that the user creates. If extern declaration is ot made

in the C source, the RL78,78K0R C compiler outputs the following codes. In this case, the ORG quasi-directive will not

be output.

The following codes are output in the function.

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- Modifications are not needed if the other compiler does not use the keyword sreg/__sreg.

To change to sreg variable, modifications are made according to the method shown above.

(2) From the RL78,78K0R C compiler to another C compiler

- Modifications are made by #define. For the details, see "3.2.5 C source modifications". Thereby, sreg vari-

ables are handled as ordinary variables.

extern sreg int hsmm0 ;

extern sreg int hsmm1 ;

extern sreg int *hsptr ;

void main () {

 hsmm0 -= hsmm1 ;

}

 PUBLIC _hsmm0 ; Declaration

 PUBLIC _hsmm1

 PUBLIC _hsptr

@@DATS DSEG SADDRP ; Allocation to segment

 ORG 0FE20H

_hsmm0 : DS (2)

_hsmm1 : DS (2)

_hsptr : DS (2)

movw ax, _hsmm0

subw ax, _hsmm1

movw _hsmm0, ax

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 79 of 853
Apr 01, 2011

The -rs option to automatically allocate internal static variables in the saddr area.

[Function]

- Automatically allocates internal static variables (except const type) to saddr area regardless of with/ without sreg

declaration.

- Depending on the value of n and the specification of m, the internal static variables to allocate can be specified as

follows.

- Variables declared with the keyword sreg are allocated to the saddr area regardless of the above specification.

- The variables allocated to the saddr area by this option are handled in the same manner as the sreg variable. The

functions and restrictions for these variables are as described in [How to use the saddr area (sreg/__sreg)].

[Usage]

- Specify the -rs[n][m] (n = 1, 2, or 4) option.

Remark In the -rs[n][m] option, modules specifying different n, m value can also be linked each other.

Usage with saddr automatic allocation option of internal static variables (-rs)

Specification of n, m Variables Allocated to saddr Area

n (1) When n = 1:

Variables of char and unsigned char types

(2) When n = 2:

Variables for when n = 1, plus variables of short, unsigned short, int, unsigned int, enum,

and near pointer type

(3) When n = 4:

Variables for when n = 2, plus variables of long, unsigned long, float, double, and long

double, far pointer type

m Structures, unions, and arrays

When omitted All variables (including structures, unions, and arrays in this case only)

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 80 of 853
Apr 01, 2011

The -rd option to automatically allocate external variables and external static variables in the saddr area.

[Function]

- External variables/external static variables (except const type) are automatically allocated to the saddr area

regardless of whether sreg declaration is made or not.

- Depending on the value of n and the specification of m, the external variables and external static variables to allo-

cate can be specified as follows.

- Variables declared with the keyword sreg are allocated to the saddr area, regardless of the above specification.

- The above rule also applies to variables referenced by extern declaration, and processing is performed as if these

variables were allocated to the saddr area.

- The variables allocated to the saddr area by this option are treated in the same manner as the sreg variable. The

functions and restrictions of these variables are as described in [How to use the saddr area (sreg/__sreg)].

[Usage]

- Specify the -rd[n][m] (n = 1, 2, or 4) option.

[Restrictions]

- In the -rd[n][m] option, modules specifying different n, m value cannot be linked each other.

Usage with saddr automatic allocation option of external variables/external static variables (-rd)

Specification of n,m Variables Allocated to saddr Area

n (1) When n = 1

Variables of char and unsigned char types

(2) When n = 2

Variables for when n = 1, plus variables of short, unsigned short, int, unsigned int, enum,

and near pointer type

When n = 4

Variables for when n = 2, plus variables of long, unsigned long, float, double, and long double,

far pointer type

m Structures, unions, and arrays

When omitted All variables

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 81 of 853
Apr 01, 2011

The #pragma sfr directive declares sfr names, which can use to manipulate special function registers (sfr) from C

source files.

[Function]

- The sfr area refers to a group of special function registers such as mode registers and control registers for the var-

ious peripherals of the RL78 family, 78K0R microcontrollers.

- By declaring use of sfr names, manipulations on the sfr area can be described at the C source level.

- sfr variables are external variables without initial value (undefined).

- A write check will be performed on read-only sfr variables.

- A read check will be performed on write-only sfr variables.

- Assignment of an illegal data to an sfr variable will result in a compile error.

- The sfr names that can be used are those allocated to an area consisting of addresses [FFF00H to FFFFFH, and

F0000H to F07FFHNote].

Note Varies depending on the device used.

[Effect]

- Manipulations to the sfr area can be described in the C source level.

- Instructions to the sfr area are shorter in code length than those to memory. This helps shorten object code and

also improves program execution speed.

[Usage]

- Declare the use of an sfr name in the C source with the #pragma preprocessor directive, as follows (The keyword

sfr can be described in uppercase or lowercase letters.):

The #pragma sfr directive must be described at the beginning of the C source line.

The following statement and directives may precede the #pragma sfr directive:

- Comment

- Preprocessor directives which do not define nor see to a variable or function

- In the C source program, describe an sfr name that the device has as is (without change). In this case, the sfr

need not be declared.

[Restrictions]

- All sfr names must be described in uppercase letters. Lowercase letters are treated as ordinary variables.

How to use the sfr area (sfr)

#pragma sfr

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 82 of 853
Apr 01, 2011

[Example]

<C source>

Codes that relate to declarations are not output and the following codes are output in the middle of the function.

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- Those portions of the C source program not dependent on the device or compiler need not be modified.

(2) From the RL78,78K0R C compiler to another C compiler

- Delete the "#pragma sfr" statement or sort by "#ifdef" and add the declaration of the variable that was formerly

a sfr variable.

The following shows an example.

- In case of a device which has the sfr or its alternative functions, a dedicated library must be created to access

that area.

#ifdef __K0R__

#pragma sfr

#endif

void main (void) {

 PL0 -= ADCR ;

 /* ADCR = 10 ; ==> error */

}

mov a, PL0

sub a, ADCR

mov PL0, a

#ifdef __K0R__

#pragma sfr

#else

unsigned char P0 ; /*Declaration of variables*/

#endif

void main (void) {

 P0 = 0 ;

}

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 83 of 853
Apr 01, 2011

The bit, boolean, and __boolean type specifiers generate variables having 1-bit of memory area.

[Function]

- A bit or boolean type variable is handled as 1-bit data and allocated to saddr area.

- This variable can be handled the same as an external variable that has no initial value (or has an unknown value).

- To this variable, the C compiler outputs the following bit manipulation instructions:

[Effect]

- Programming at the assembler source level can be performed in C, and the saddr and sfr area can be accessed in

bit units.

[Usage]

- Declare a bit or boolean type inside a module in which the bit or boolean type variable is to be used, as follows:

- __boolean can also be described instead of bit.

- Declare a bit or boolean type inside a module in which the bit or boolean type variable is to be used, as follows:

- char, int, short, and long type sreg variables (except the elements of arrays and members of structures) and 8-bit

sfr variables can be automatically used as bit type variables.

[Restrictions]

- An operation on 2 bit or boolean type variables is performed by using the CY (Carry) flag. For this reason, the con-

tents of the carry flag between statements are not guaranteed.

- Arrays cannot be defined or referenced.

- A bit or boolean type variable cannot be used as a member of a structure or union.

- This type of variable cannot be used as the argument type of a function.

- A bit type variable cannot be used as a type of automatic variable

- With bit type variables only, up to 1184 variables can be used per load module (when saddr area [FFE20H to

FFEB3H] is used) (normal model

- The variable cannot be declared with an initial value.

- If the variable is described along with const declaration, the const declaration is ignored.

- Only operations using 0 and 1 can be performed by the operators and constants shown in the table below.

bit type variables (bit), boolean type variables (boolean/__boolean)

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF

bit variable-name

boolean variable-name

__boolean variable-name

extern bit variable-name

extern boolean variable-name

extern __boolean variable-name

variable-name.n (where n = 0 to 31)

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 84 of 853
Apr 01, 2011

- *, & (pointer reference, address reference), and sizeof operations cannot be performed.

- When the -za option is specified, only __boolean is enabled.

- In the case that sreg variables are used or if -rd, -rs (saddr automatic allocation option) options are specified, the

number of usable bit type variables is decreased.

[Example]

<C source>

This example is for cases when the user has generated a definition code for a bit type variable. If an extern declaration

has not been attached, the compiler outputs the following code. The ORG quasi-directive is not output in this case.

Classification Operator

Assignment =

Bitwise AND &, &=

Bitwise OR |, |=

Bitwise XOR ^, ^=

Logical AND &&

Logical OR ||

Equal ==

Not Equal !=

#define ON 1

#define OFF 0

extern bit data1 ;

extern bit data2 ;

void main (void) {

 data1 = ON ;

 data2 = OFF ;

 while (data1) {

 data1 = data2 ;

 testb () ;

 }

 if (data1 && data2)

 chgb () ;

}

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 85 of 853
Apr 01, 2011

The following codes are output in a function

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- The C source program need not be modified if the keyword bit, boolean, or __boolean is not used.

- To change variables to bit or boolean type variables, modify the program according to the procedure described

in Usage above.

(2) From the RL78,78K0R C compiler to another C compiler

- #define must be used. For details, see "3.2.5 C source modifications" (As a result of this, the bit or boolean

type variables are handled as ordinary variables.).

PUBLIC _data1 ; Declaration

PUBLIC _data2

@@BITS BSEG ; Allocation to segment

 ORG 0FE20H

_data1 DBIT

_data2 DBIT

set1 _data1 (Initialized)

clr1 _data2 (Initialized)

bf data1, $?L0004 (Judgment)

mov1 CY, _data2 (Assignment)

mov1 _data1, CY (Assignment)

bf _data1, $?L0005 (Logical AND expression)

bf _data2, $?L0005 (Logical AND expression)

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 86 of 853
Apr 01, 2011

The #asm and __asm directives allow to use assembly language statements in C source code. The statements are

embedded in the assembly source code generated by the C compiler.

[Function]

(1) #asm - #endasm

- The assembler source program described by the user can be embedded in an assembler source file to be out-

put by the RL78,78K0R C compiler by using the preprocessor directives #asm and #endasm.

- #asm and #endasm lines will not be output.

(2) __asm

- An assembly instruction is output by describing an assembly code to a character string literal and is inserted in

an assembler source.

[Effect]

- To manipulate the global variables of the C source in the assembler source

- To implement functions that cannot be described in the C source

- To hand-optimize the assembler source output by the C compiler and embed it in the C source (to obtain effi-

cient object)

[Usage]

(1) #asm #endasm

- Indicate the start of the assembler source with the #asm directive and the end of the assembler source with

the #endasm directive. Describe the assembler source between #asm and #endasm.

(2) __asm

- The ASM statement is described in the following format in the C source:

- The description method of character string literal conforms to ANSI, and a line can be continued by using an

escape character string (\n: line feed, \t: tab) or \, or character strings can be linked.

[Restrictions]

- Nesting of #asm directives is not allowed.

If ASM statements are used, no object module file will be created. Instead, an assembler source file will be cre-

ated.

[Output assemble file] by [Compile Options] tab of Property panel, set it as "Yes." (See "CubeSuite+ RL78,78K0R

Build" for a setting method.)

- Only lowercase letters can be described for __asm. If __asm is described with uppercase and lowercase charac-

ters mixed, it is regarded as a user function.

ASM statements (#asm - #endasm/__asm)

#asm

 : /* Assembler source */

#endasm

__asm (string-literal) ;

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 87 of 853
Apr 01, 2011

- When the -za option is specified, only __asm is enabled.

- #asm - #endasm and __asm block can only be described inside a function of the C source. Therefore, the assem-

bler source is output to CSEG of segment name @@CODE, or @@CODEL.

[Example]

(1) #asm - #endasm

<C source>

<Output object of compiler>

In the above example, statements between #asm and #endasm will be output as an assembler source program to

the assembler source file.

(2) __asm

<C source>

<Output object of compiler>

void main (void) {

#asm

 callt [init]

#endasm

}

@@CODEL CSEG

_main :

 callt [init]

 ret

 END

int a, b ;

void main (void) {

 __asm ("\tmovw ax, !_a \t ; ax <- a") ;

 __asm ("\tmovw !_b, ax \t ; b <- ax") ;

}

@@CODEL CSEG

_main :

 movw ax, !_a ; ax <- a

 movw !_b, ax ; b <- ax

 ret

 END

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 88 of 853
Apr 01, 2011

[Compatibility]

- With the C compiler which supports #asm, modify the program according to the format specified by the C compiler.

- If the target device is different, modify the assembler source part of the program.

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 89 of 853
Apr 01, 2011

C source comments can contain kanji (multibyte Japanese characters).

[Function]

- Kanji code can be described in comments in C source files.

- Kanji code in comments is handled as a part of comments, so the code is not subject to compilation.

- The kanji code to be used in comments can be specified by using an option or the environment variable.

If no option is specified, the code set in the environment variable LANG78K is set as the kanji code.

- If the kanji code is specified by both the option and environment variable LANG78K, specification by the option

takes precedence.

- If "SJIS" is set in the environment variable LANG78K, the type of kanji in comments is Interpreted as shift JIS code.

- If "EUC" is set in the environment variable LANG78K, the compiler interprets this as meaning that the type of kanji

in comments is EUC code.

- If "NONE" is set in the environment variable LANG78K, the compiler interprets this as meaning that comments do

not contain kanji codes.

- SJIS code is specified by default.

[Effect]

- The use of kanji code allows Japanese programmers to describe easier-to-understand comments, which makes C

source management easier.

[Usage]

- Set the kanji code by using a compiler option or environment variable (Setting is not needed if the default setting is

used).

(1) Setting by compiler option

Set any of the options listed in the following table.

(2) Setting by environment variable LANG78K

- Set "SJIS", "EUC" or "NONE".

- Specification of SJIS, EUC or NONE is not case-sensitive.

- Describe kanji characters in comments in C source files, in accordance with the one specified in LANG78K.

Kanji (2-byte character) (/* kanji */, // kanji)

Option Explaination

-zs SJIS (shift JIS code)

-ze EUC (EUC code)

-zn NONE (kanji code not used)

SET LANG78K = SJIS ; shift JIS code

SET LANG78K = EUC ; EUC code

SET LANG78K = NONE ; kanji code not used

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 90 of 853
Apr 01, 2011

[Restrictions]

- Only shift JIS code and EUC code can be described in comments. Only the characters of 0x7f or lower ASCII

codes can be described for places other than comments. Neither full-size characters nor half-size katakana

(including half-size punctuation marks) can be described for any place other than comments.

If any of these characters is described, the expected code may not be output.

[Example]

<C source>

Kanji type information is output to the assembler source.

<Output object of compiler>

When the C source contents are output to the assembler source, kanji characters in the comment are also output.

[Description]

- Kanji code can be described only in comments in C source files.

- When using the format "// comment", specify compiler option -zp.

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- If there is kanji in the the area that comment cannot be described (the area other than "/* ... */", or "// newline"

), the source files must be modified.

- If the kanji code differs from the one specified in the CC78K0R, the kanji code must first be converted.

(2) From the RL78,78K0R C compiler to another C compiler

- The C source need not be modified for a C compiler that supports kanji characters to be described in com-

ments.

- Kanji characters in the C source must be deleted if the C compiler does not support kanji characters to be

described in comments.

// main function

void main (void) {

 /* Comment */

}

$KANJICODE SJIS

; line 1 : // main function

; line 2 : void main (void) {

@@CODEL CSEG

_main :

; line 3 : /* Comment */

; line 4 : }

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 91 of 853
Apr 01, 2011

Generate the interrupt vector table, and output object code required by interrupt.

[Function]

- The address of a described function name is registered to an interrupt vector table corresponding to a specified

interrupt request name.

- An interrupt function outputs a code to save or restore the following data (except that used in the ASM statement)

to or from the stack at the beginning and end of the function (after the code if a register bank is specified):

- Registers

- saddr area for register variables

- saddr area for work

- saddr area for run time library

- saddr area for storing segment information

- ES and CS registers

Note, however, that depending on the specification or status of the interrupt function, saving/restoring is performed

differently, as follows:

- If no change is specified, codes that change the register bank or saves/restores register contents, and that

saves/restores the contents of the saddr area are not output regardless of whether to use the codes or not.

- If a register bank is specified, a code to select the specified register bank is output at the beginning of the inter-

rupt function, therefore, the contents of the registers are not saved or restored.

- If no change is not specified and if a function is called in the interrupt function, however, the entire register

area is saved or restored, regardless of whether use of registers is specified or not.

- If the -qr option is not specified for compilation, the saddr area for register variables and the saddr area for work

are not used; so the saving/restoring code is not output.

If the size of the saving code is smaller than that of the restoring code, the restoring code is output. The table

below summarizes the above and lists the saving/restoring areas.

Stack : Use of stack is specified

RBn : Register bank is specified

Interrupt functions (#pragma vect/#pragma interrupt)

Save/Restore Area NO

BANK

Function Called Function Not Called

Without -qr With -qr Without -qr With -qr

Stack RBn Stack RBn Stack RBn Stack RBn

Register used NG NG NG NG NG OK NG OK NG

All registers NG OK NG OK NG NG NG NG NG

saddr area for runtime library used,

ES, CS register,

saddr area for storing segment infor-

mation

NG NG NG NG NG OK OK OK OK

saddr area for all runtime libraries,

ES, CS register,

saddr area for storing segment infor-

mation

NG OK OK OK OK NG NG NG NG

saddr area for register variable used NG NG NG OK OK NG NG OK OK

All saddr area for work NG NG NG OK OK NG NG NG NG

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 92 of 853
Apr 01, 2011

OK : Saved

NG : Not saved

[Effect]

- Interrupt functions can be described at the C source level.

- Because the register bank can be changed, codes that save the registers are not output; therefore, object codes

can be shortened and program execution speed can be improved.

- You do not have to be aware of the addresses of the vector table to recognize an interrupt request name.

[Usage]

- Specify an interrupt request name, a function name, stack switching, registers used by the compiler, and whether

the saddr area is saved/restored, with the #pragma directive. Describe the #pragma directive at the beginning of

the C source. The #pragma directive is described at the start of the C source (for the interrupt request names, see

the user’s manual of the target device used). For the software interrupt BRK, describe BRK_I.

- The following items can be described before this #pragma directive:

- Comments

- Preprocessor directive which does neither define nor see to a variable or a function

- Interrupt request name
Described in uppercase letters.

See the user’s manual of the target device used (Example: NMI, INTP0, etc.).

For the software interrupt BRK, describe BRK_I.

- Function name
Name of the function that describes interrupt processing

- Stack change specification
SP = array name [+ offset location] (Example: SP = buff + 10)

Define the array by unsigned short (Example: unsigned short buff [5];).

Specify for the offset location an even value of the buff size or lower (Example: In the case of unsigned short

buff[5], the buff size is 10 bytes, so an even value of 10 or lower should be specified).

- Stack use specification
STACK (default)

- No change specification
NOBANK

- Register bank specification
RB0/RB1/RB2/RB3

Caution Since the RL78,78K0R C compiler startup routine is initialized to register bank 0, be sure to specify

register banks 1 to 3.

#pragma vect(or interrupt) interrupt-request-name function-name

 [Stack-change-specification] Stack-usage-specification

 No-change-specification

 Register-bank-specification

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 93 of 853
Apr 01, 2011

[Restrictions]

- When the -zf option is not specified, interrupt functions are allocated to the area between C0H and 0FFFFH,

regardless of the memory model.

When the -zf option is specified, interrupt functions are allocated in accordance with the memory model. In addi-

tion, specification of allocation area by specifying __near or __far is also enabled.

- Arrays in an area other than the near area cannot be specified for stack change. If specified, an error will occur.

- A value other than an even value cannot be specified for the offset location. If specified, an error will occur.

- Unlike other microcontrollers, the unsigned short type array is reserved for changing the stack pointer.

- An interrupt request name must be described in uppercase letters.

- A duplication check on interrupt request names will be made within only 1 module.

- The contents of a register may be changed if the following three conditions are satisfied, but the compiler cannot

check this.

If it is specified to change the register bank, set the register banks so that they do not overlap. If register banks

overlap, control their interrupts so that they do not overlap.

When NOBANK (no change specification) is specified, the registers are not saved. Therefore, control the registers

so that their contents are not lost.

- If two or more interrupts occur

- If two or more interrupts that use the same BANK are included in the interrupt that has occurred

- If NOBANK or a register bank is specified in the description #pragma interrupt -.

- As the interrupt function, callt/__callt/__rtos_interrupt/__flash/__flashf cannot be specified.

__far can be specified only when the -zf option is specified.

- An interrupt function is specified with void type (example: void func (void);) because it cannot have an argument

nor return value.

- Even if an ASM statement exists in the interrupt function, codes saving all the registers and variable areas are not

output. If an area reserved for the compiler is used in the ASM statement in the interrupt function, therefore, or if a

function is called in the ASM statement, the user must save the registers and variable areas.

- If leafwork 1 to 16 is specified, a warning is output and the specification is ignored.

- When stack change is specified, the stack pointer is changed to the location where offset is added to the array

name symbol. The area of the array name is not secured by the #pragma directive. It needs to be defined sepa-

rately as global unsigned short type array.

- The code that changes the stack pointer is generated at the start of a function, and the code that sets the stack

pointer back is generated at the end of a function.

- When keywords sreg/__sreg are added to the array for stack change, it is regarded that two or more variables with

the different attributes and the same name are defined, and a compile error will occur. It is possible to allocate an

array in saddr area by the -rd option, but code and speed efficiency will not be improved because the array is used

as a stack. It is recommended to use the saddr area for purposes other than a stack.

- The stack change cannot be specified simultaneously with the no change. If specified so, an error will occur.

- The stack change must be described before the stack use/register bank specification. If the stack change is

described after the stack use/register bank specification, an error will occur.

- If a function specifying no change, register bank, or stack change as the saving destination in #pragma vect/

#pragma interrupt specification is not defined in the same module, a warning message is output and the stack

change is ignored. In this case, the default stack is used.

- Coding a "#pragma vect” or “#pragma interrupt" when -zx is specified will cause an error. Use the "__interrupt” or

“__interrupt_brk " modifier when defining an interrupt function. RL78 familyuse the self-programming library to

allocate interrupt vector tables in self-programming.

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 94 of 853
Apr 01, 2011

[Example]

(1) When register bank is specified

<C source>

<Output object of compiler>

(2) When stack change and register bank are specified

<C source>

#pragma interrupt INTP0 inter rb1

void inter (void) {

 /* Interrupt processing to INTP0 pin input*/

}

@@VECT08 CSEG AT 0008H ; INTP0

_@vect08 :

 DW _inter
@@BASE CSEG BASE

_inter :

 ; Switching code for the register bank

 ; Saving code of the saddr area for use by the compiler

 ; Saves ES and CS registers

 ; Interrupt processing to INTP0 pin input (function body)

 ; Restores ES and CS registers

 ; Restoring code of the saddr area used by the compiler

 reti

#pragma interrupt INTP0 inter sp = buff + 10 rb2

unsigned short buff[5] ;

void func (void) ;

void inter (void) {

 func () ;

}

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 95 of 853
Apr 01, 2011

<Output object of compiler>

@@BASE CSEG BASE

_inter :

 sel RB2 ; Changes register bank

 movw ax, sp ; Changes stack pointer

 movw sp, #_buff + 10 ; :

 push ax ; :

 movw c, #0CH ; Saves saddr used by the compiler

 dec c ; :

 dec c ; :

 movw ax, _@SEGAX[c] ; :

 push ax ; :

 bnz $$ - 6 ; :

 mov a, ES ; Saves ES and CS registers

 mov x, a ; :

 mov a, CS ; :

 push ax ; :

 call !!_func

 pop ax ; Restores ES and CS registers

 mov CS, a ; :

 mov a, x ; :

 mov CS, a ; :

 movw de, #_@SEGAX ; Restores saddr used by the compiler

 mov c, #06H ; :

 pop ax ; :

 movw [de], ax ; :

 incw de ; :

 incw de ; :

 dec c ; :

 bnz $$ - 5 ; :

 pop ax ; Returns the stack pointer to its original position

 movw sp, ax ; :

 reti

@@VECT08 CSEG AT 0008H

_@vect08 :

 DW _inter

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 96 of 853
Apr 01, 2011

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- The C source program need not be modified if interrupt functions are not used at all.

- To change an ordinary function to an interrupt function, modify the program according to the procedure

described in Usage above.

(2) From the RL78,78K0R C compiler to another C compiler

- An interrupt function can be used as an ordinary function by deleting its specification with the #pragma vect,

#pragma interrupt directive.

- When an ordinary function is to be used as an interrupt function, change the program according to the specifi-

cations of each compiler.

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 97 of 853
Apr 01, 2011

It's possible to describe a vector table setting and an interrupt function definition in another file.

[Function]

- A function declared with the __interrupt qualifier is regarded as a hardware interrupt function, and execution is

returned by the return RETI instruction for non-maskable/maskable interrupt function.

- By declaring a function with the __interrupt_brk qualifier, the function is regarded as a software interrupt function,

and execution is returned by the return instruction RETB for software interrupt function.

- A function declared with this qualifier is regarded as (non-maskable/maskable/software) interrupt function, and

saves or restores the registers and variable areas (1) and (6) below, which are used as the work area of the com-

piler, to or from the stack.

If a function call is described in this function, however, all the variable areas are saved to the stack.

(1) Registers

(2) saddr area for register variables

(3) saddr area for work

(4) saddr area for run time library

(5) saddr area for storing segment information

(6) ES and CS registers

Remark If the -qr option is not specified (default) at compile time, save/restore codes are not output because areas

(2) and (3) are not used.

[Effect]

- By declaring a function with this qualifier, the setting of a vector table and interrupt function definition can be

described in separate files.

[Usage]

- Describe either __interrupt or __interrupt_brk as the qualifier of an interrupt function.

(1) For non-maskable/maskable interrupt function

(2) For software interrupt function>

Interrupt function qualifier (__interrupt, __interrupt_brk)

__interrupt void func () { processing }

__interrupt_brk void func () { processing }

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 98 of 853
Apr 01, 2011

[Restrictions]

- When the -zf option is specified, the interrupt functions are allocated to the area within [C0H to 0FFFFH], regard-

less of the memory model.

When the -zf option is specified, interrupt functions are allocated in accordance with the memory model. In addi-

tion, specification of allocation area by specifying __near or __far is also enabled.

- The interrupt function cannot specify callt/__callt/__rtos_interrupt/__flash/__flashf.

- When -zx is specified, the interrupt function is allocated at [C0H - FFEFFH], regardless of whether the -zf option

was specified, or the memory model. In self-programming mode, an interrupt vector table is allocated using the self-

programming library.

[Example]

- Declare or define interrupt functions in the following format. The code to set the vector address is generated by

#pragma interrupt.

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- The C source program need not be modified unless interrupt functions are supported.

- Modify the interrupt functions, if necessary, according to the procedure described in Usage above.

(2) From the RL78,78K0R C compiler to another C compiler

- #define must be used to allow the interrupt qualifiers to be handled as ordinary functions.

- To use the interrupt qualifiers as interrupt functions, modify the program according to the specifications of each

compiler.

[Cautions]

- The vector address is not set by merely declaring this qualifier. The vector address must be separately set by

using the #pragma vect/interrupt directive or assembler description.

- The saddr area and registers are saved to the stack.

- Even if the vector address is set or the saving destination is changed by #pragma vect (or interrupt) ..., the change

in the saving destination is ignored if there is no function definition in the same file, and the default stack is

assumed.

- To define an interrupt function in the same file as the #pragma vect (or interrupt) ... specification, the function name

specified by #pragma vect (or interrupt) ... is judged as the interrupt function, even if this qualifier is not described.

For details of #pragma vect/interrupt, see Usage of "Interrupt functions (#pragma vect/#pragma interrupt)".

#pragma interrupt INTP0 inter RB1 /*The interrupt request name of*/

#pragma interrupt BRK_I inter_b RB2 /*The software interrupt is "BRK_I"*/

__interrupt void inter () ; /*Prototype declaration*/

__interrupt_brk void inter_b () ; /*Prototype declaration*/

__interrupt void inter () { processing } ; /*Function body*/

__interrupt_brk void inter_b () { processing } ; /*Function body*/

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 99 of 853
Apr 01, 2011

Embed instructions to disable/enable interrupts in object code.

[Function]

- Codes DI and EI are output to the object and an object file is created.

- If the #pragma directive is missing, DI () and EI () are regarded as ordinary functions.

- If "DI ();" is described at the beginning in a function (except the declaration of an automatic variable, comment,

and preprocessor directive), the DI code is output before the preprocessing of the function (immediately after the

label of the function name).

- To output the code of DI after the preprocessing of the function, open a new block before describing "DI ();"

(delimit this block with "{").

- If "EI ();" is described at the end of a function (except comments and preprocessor directive), the EI code is output

after the post-processing of the function (immediately before the code RET).

- To output the EI code before the post-processing of a function, close a new block after describing "EI ();" (delimit

this block with "}").

[Effect]

- A function disabling interrupts can be created.

[Usage]

- Describe the #pragma DI and #pragma EI directives at the beginning of the C source.

However, the following statement and directives may precede the #pragma DI and #pragma EI directives:

- Comment

- Other #pragma directives

- Preprocessor directive which does neither define nor see to a variable or function

- Describe DI (); or EI (); in the source in the same manner as function call.

- DI and EI can be described in either uppercase or lowercase letters after #pragma.

[Restrictions]

- When using these interrupt functions, DI and EI cannot be used as function names.

- DI and EI must be described in uppercase letters. If described in lowercase letters, they will be handled as ordi-

nary functions.

[Example]

Interrupt functions (#pragma DI, #pragma EI)

#ifdef __K0R__

#pragma DI

#pragma EI

#endif

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 100 of 853
Apr 01, 2011

<C source>

<Output object of compiler>

(1) To output DI and EI after and before preprocessing/post-processing

<C source>

<Output object of compiler>

#pragma DI

#pragma EI

void main (void) {

 DI () ;

 ; Function body

 EI () ;

}

_main :

 di

 ; Preprocessing

 ; Function body

 ; Postprocessing

 ei

 ret

#pragma DI

#pragma EI

void main (void) {

 {

 DI () ;

 ; Function body

 EI () ;

 }

}

_main :

 ; Preprocessing

 di

 ; Function body

 ei

 ; Postprocessing

 ret

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 101 of 853
Apr 01, 2011

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- The C source program need not be modified if interrupt functions are not used at all.

- To change an ordinary function to an interrupt function, modify the program according to the procedure

described in Usage above.

(2) From the RL78,78K0R C compiler to another C compiler

- Delete the #pragma DI and #pragma EI directives or invalidate these directives by separating them with #ifdef

and DI and EI can be used as ordinary function names (Example: #ifdef__K0R__ ... #endif).

- When an ordinary function is to be used as an interrupt function, modify the program according to the specifi-

cations of each compiler.

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 102 of 853
Apr 01, 2011

The #pragma HALT/STOP/BRK/NOP directives declare functions that embed CPU control instructions.

[Function]

- The following codes are output to the object to create an object file:

- Instruction for HALT operation (HALT)

- Instruction for STOP operation (STOP)

- BRK instruction

- NOP instruction

[Effect]

- The standby function of a microcontroller can be used with a C program.

- A software interrupt can be generated.

- The clock can be advanced without the CPU operating.

[Usage]

- Describe the #pragma HALT, #pragma STOP, #pragma NOP, and #pragma BRK instructions at the beginning of

the C source.

- The following items can be described before the #pragma directive:

- Comment

- Other #pragma directive

- Preprocessor directive which does neither define nor see to a variable or function

- The keywords following #pragma can be described in either uppercase or lowercase letters.

- Describe as follows in uppercase letters in the C source in the same format as function call:

[Restrictions]

- When this feature is used, HALT, STOP, BRK, and NOP cannot be used as function names.

- Describe HALT, STOP, BRK, and NOP in uppercase letters. If they are described in lowercase letters, they are

handled as ordinary functions.

CPU control instruction(#pragma HALT/STOP/BRK/NOP)

HALT () ;

STOP () ;

BRK () ;

NOP () ;

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 103 of 853
Apr 01, 2011

[Example]

<C source>

<Output object of compiler>

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- The C source program need not be modified if the CPU control instructions are not used.

- Modify the program according to the procedure described in Usage above when the CPU control instructions

are used.

(2) From the RL78,78K0R C compiler to another C compiler

- If "#pragma HALT", "#pragma STOP", "#pragma BRK", and "#pragma NOP" statements are delimited by

means of deletion or with #ifdef, HALT, STOP, BRK, and NOP can be used as function names.

- To use these instructions as the CPU control instructions, modify the program according to the specifications

of each compiler.

#pragma HALT

#pragma STOP

#pragma BRK

#pragma NOP

void main (void) {

 HALT () ;

 STOP () ;

 BRK () ;

 NOP () ;

}

@@CODEL CSEG

_main :

 halt

 stop

 brk

 nop

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 104 of 853
Apr 01, 2011

It's possible declare bit-fields of type unsigned char, signed char, unsigned int, signed int, unsigned short, and signed

short.

[Function]

- The bit field of unsigned char, signed char type is not allocated straddling over a byte boundary.

- The bit field of unsigned int, signed int, unsigned short, signed short type is not allocated straddling over a word

boundary, but can be allocated straddling over a word boundary when the -rc option is specified.

- The bit fields that the types are same size are allocated in the same byte units (or word units).

If the types are different size, the bit fields are allocated in different byte units (or word units).

- unsigned short, signed short type is handled similarly with unsigned int, signed int type respectively.

[Effect]

- The memory can be saved, the object code can be shortened, and the execution speed can be improved.

[Usage]

- As a bit field type specifier, unsigned char, signed char, signed int, unsigned short, signed short type can be speci-

fied in addition to unsigned int type.

Declare as follows.

[Example]

Bit field declaration (Extension of type specifier)

struct tag-name {

 unsigned char field-name : bit-width ;

 unsigned char field-name : bit-width ;

 :

 unsigned int field-name : bit-width ;

} ;

struct tagname {

 unsigned char A : 1 ;

 unsigned char B : 1 ;

 :

 unsigned int C : 2 ;

 unsigned int D : 1 ;

 :

} ;

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 105 of 853
Apr 01, 2011

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- The source program need not be modified.

- Change the type specifier to use unsigned char, signed char, unsigned short, signed short as the type speci-

fier.

(2) From the RL78,78K0R C compiler to another C compiler

- The source program need not be modified if unsigned char, signed char, signed int, unsigned short and signed

short is not used as a type specifier.

- Change into unsigned int, if unsigned char, signed char, signed int, unsigned short and signed short is used as

a type specifier.

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 106 of 853
Apr 01, 2011

The -rb option changes the bit-field allocation order.

[Function]

- The direction in which a bit field is to be allocated is changed and the bit field is allocated from the MSB side when

the -rb option is specified.

- If the -rb option is not specified, the bit field is allocated from the LSB side.

[Usage]

- Specify the -rb option at compile time to allocate the bit field from the MSB side.

- Do not specify the option to allocate the bit field from the LSB side.

[Example]

(1) Bit field declaration 1

Because a through h are 8 bits or less, they are allocated in 1-byte units.

Bit field declaration (Allocation direction of bit field)

struct t {

 unsigned char a : 1 ;

 unsigned char b : 1 ;

 unsigned char c : 1 ;

 unsigned char d : 1 ;

 unsigned char e : 1 ;

 unsigned char f : 1 ;

 unsigned char g : 1 ;

 unsigned char h : 1 ;

} ;

Bit allocation from LSB

without the -rb option specified

Bit allocation from MSB

with the -rb option specified

MSB LSB MSB LSB

a ab bc cd de ef fg gh h

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 107 of 853
Apr 01, 2011

(2) Bit field declaration 2

Member a of char type is allocated to the first byte unit. Members b and c are allocated to subsequent byte units,

starting from the second byte unit. If a byte unit does not have enough space to hold the type char member, that

member will be allocated to the following byte unit. In this case, if there is only space for 3 bits in the second byte

unit, and member d has 4 bits, it will be allocated to the third byte unit.

Since member g is a bit field of type unsigned int, it can be allocated across byte boundaries.

Since h is a bit field of type unsigned char, it is not allocated in the same byte unit as the g bit field of type unsigned

int, but is allocated in the next byte unit.

struct t {

 char a ;

 unsigned char b : 2 ;

 unsigned char c : 3 ;

 unsigned char d : 4 ;

 int e ;

 unsigned int f : 5 ;

 unsigned int g : 6 ;

 unsigned char h : 2 ;

 unsigned int i : 2 ;

} ;

Bit field allocated from the LSB side

when the -rb option is not specified

Bit field allocated from the MSB side

when the -rb option is specified

MSB LSB MSB LSB

Vacant

1 0 1 0

b bc ca aVacant

d d

e e e e

f fg g g g

h h

2

4

2

5 4

6

5

7

8

6

9

7

89

33

Vacant Vacant Vacant Vacant

Vacant

Vacant

Vacant

Vacant Vacant Vacant

d

1010 1111

i iVacant Vacant VacantVacant

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 108 of 853
Apr 01, 2011

Since i is a bit field of type unsigned int, it is allocated in the next word unit.

When the -rc option is specified (to pack the structure members), the above bit field becomes as follows.

Remark The numbers below the allocation diagrams indicate the byte offset values from the beginning of the

structure.

(3) Bit field declaration 3

struct t {

 char a ;

 unsigned int b : 6 ;

 unsigned int c : 7 ;

 unsigned int d : 4 ;

 unsigned char e : 3 ;

 unsigned int f : 10 ;

 unsigned int g : 2 ;

 unsigned int h : 5 ;

 unsigned int i : 6 ;

} ;

00 11

22 33

44 55

66 77

88 99

i i

g gh h

g g

f

f

e e

e e

d d

a b acb c

f

VacantVacant

VacantVacantVacant

Vacant

VacantVacant

VacantVacant

VacantVacant

c

Bit field allocated from the LSB side

when the -rb option is not specified

Bit field allocated from the MSB side

when the -rb option is specified

MSB LSB MSB LSB

1 0 1 0

3 2 3 2

a a

b bc ccc VacantVacant

Vacant Vacant

b c

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 109 of 853
Apr 01, 2011

Since b and c are bit fields of type unsigned int, they are allocated from the next word unit.

Since d is also a bit field of type unsigned int, it is allocated from the next word unit.

Since e is a bit field of type unsigned char, it is allocated to the next byte unit.

f and g, and h and i are each allocated to separate word units.

When the -rc option is specified (to pack the structure members), the above bit field becomes as follows.

Remark The numbers below the allocation diagrams indicate the byte offset values from the beginning of the

structure.

44 55

66 77

VacantVacantVacantVacantd d

VacantVacantVacantVacant e e

888 99

1010 1111

f f f fgg

h hi i i iVacant

Vacant

Vacant

Vacant

i

MSB LSB MSB LSB

00 11

22 33

44 55

66 77

88 99

a a

b

bcc

c cd

de e

f f f f

hh

g g

i i i iVacantVacant

Vacant

VacantVacant

Vacant

Vacant

Vacant

VacantVacant

VacantVacant

i i

f

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 110 of 853
Apr 01, 2011

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- The source program need not be modified.

(2) From the RL78,78K0R C compiler to another C compiler

- he source program must be modified if the -rb option is used and coding is performed taking the bit field allo-

cation sequence into consideration.

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 111 of 853
Apr 01, 2011

Changing compiler output section name, and specifying the starting address.

[Function]

- A compiler output section name is changed and a start address is specified.

If the start address is omitted, the default allocation is assumed. For the compiler output section name and default

location, see "3.5 List of Segment Names".

In addition, the location of sections can be specified by omitting the start address and using the link directive file at

the time of link. For the link directives, see "5.1.1 Link directives".

- To change section names @@CALT with an AT start address specified, the callt functions must be described

before or after the other functions in the source file.

- If data are described after the #pragma instruction is described, those data are located in the data change section.

Another change instruction is possible, and if data are described after the rechange instruction, those data are

located in the rechange section.

If data defined before a change are redefined after the change, they are located in the rechanged section.

Furthermore, this is valid in the same way for static variables (within the function).

[Effect]

- Changing the compiler output section repeatedly in 1 file enables to locate each section independently, so that

data can be located in data units to be located independently.

[Usage]

- Specify the name of the section which is to be changed, a new section name, and the start address of the section,

by using the #pragma directive as indicated below.

Describe this #pragma directive at the beginning of the C source.

The following items can be described before this #pragma directive:

- Comment

- Preprocessor directive which does neither define nor see to a variable or a function

However, all sections in BSEG and DSEG, and the @@CNST, @@CNSTL section in CSEG can be described

anywhere in the C source, and rechange instructions can be performed repeatedly. To return to the original sec-

tion name, describe the compiler output section name in the changed section.

Declare as follows at the beginning of the file:

- Of the keywords to be described after #pragma, be sure to describe the compiler output section name in upper-

case letters.

section, AT can be described in either uppercase or lowercase letters, or in combination of those.

- The format in which the new section name is to be described conforms to the assembler specifications (up to 8 let-

ters can be used for a segment name).

- Only the hexadecimal numbers of the C language and the hexadecimal numbers of the assembler can be

described as the start address.

Changing compiler output section name (#pragma section ...)

#pragma section compiler-output-section-name new-section-name [AT startaddress]

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 112 of 853
Apr 01, 2011

(1) Hexadecimal numbers of C language

(2) Hexadecimal numbers of assembler

The hexadecimal number must start with a numeral.

To example,to express a numeric value with a value of 255 in hexadecimal number, specify zero before F. It is

therefore 0FFH.

- For sections other than the @@CNST, @@CNSTL section in CSEG, that is, sections which locate functions, this

#pragma instruction cannot be described in other than the beginning of the C source (after the C source is

described).If described, a warning is output and the description is ignored.

- If this #pragma instruction is executed after the C text is described, an assembler source file is created without an

object module file being created.

- If this #pragma instruction is after the C text is described, a file which contains this #pragma instruction and which

does not have the C text (including external reference declarations for variables and functions) cannot be included.

This results in an error (see "CODING ERROR EXAMPLE1").

- #include statement cannot be described in a file which executes this #pragma instruction following the C text

description. If described, it causes an error (see "CODING ERROR EXAMPLE2").

- If #include statement follows the C text, this #pragma instruction cannot be described after this description. If

described, it causes an error (see "CODING ERROR EXAMPLE3").

But, when a body of C is in the header file, it isn't cause an error.

[Restrictions]

- A section name that indicates a segment for vector table (e.g., @@VECT02, etc.) must not be changed.

- If two or more sections with the same name as the one specifying the AT start address exist in another file, a link

error will occur.

- Specify the address within the range from FFE20H to FFEB3H for compiler output section names @@DATS,

@@BITS and @@INIS, from 0x80 to 0xbf for @@CALT, from 0x0 to 0xffff for @@CODE and @@BASE, from

mirror area for @@CNST, and from 0x0 to 0xffeff for other sections.

0xn/0xn ... n

0Xn/0Xn ... n

(n = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)

nH/n ... nH

nh/n ... nh

(n = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)

d1.h

 extern int a ;

d2.h

 #define VAR 1

d.c

 #include "d1.h" // When there is a body of C and it's in #include,

 #include "d2.h" // #pragma instruction of d.c isn't an error.

 #pragma section @@DATA ??DATA1

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 113 of 853
Apr 01, 2011

[Example]

Section name @@CODEL is changed to CC1 and address 2400H is specified as the start address.

<C source>

<Output object of compiler>

The following is a code example in which the main C code is followed by a #pragma directive.

The contents are allocated in the section following "//".

(1) EXAMPLE1

#pragma section @@CODEL CC1 AT 2400H

void main (void) {

 ; Function body

}

CC1 CSEG AT 2400H

_main :

 ; Preprocessing

 ; Function body

 ; Postprocessing

 ret

#pragma section @@DATA ??DATA

int a1 ; // ??DATA

sreg int b1 ; // @@DATS

int c1 = 1 ; // @@INIT and @@R_INIT

const int d1 = 1 ; // @@CNST

#pragma section @@DATS ??DATS

int a2 ; // ??DATA

sreg int b2 ; // ??DATS

int c2 = 1 ; // @@INIT and @@R_INIT

const int d2 = 1 ; // @@CNST

#pragma section @@DATA ??DATA2

// ??DATA is automatically closed and ??DATA2 becomes valid

int a3 ; // ??DATA2

sreg int b3 ; // ??DATS

int c3 = 3 ; // @@INIT and @@R_INIT

const int d3 = 3 ; // @@CNST

#pragma section @@DATA @@DATA

// ??DATA2 is closed and processing returns to the default @@DATA

#pragma section @@INIT ??INIT

#pragma section @@R_INIT ??R_INIT

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 114 of 853
Apr 01, 2011

(2) EXAMPLE2

int a4 ; // @@DATA

sreg int b4 ; // ??DATS

// ROMization is invalidated unless both names (@@INIT and @@R_INIT) are changed. This

// is the user's responsibility.

int c4 = 1 ; // ??INIT and ??R_INIT

const int d4 = 1 ; // @@CNST

#pragma section @@INIT @@INIT

#pragma section @@R_INIT @@R_INIT

// ??INIT and ??R_INIT are closed and processing returns to the default setting

#pragma section @@BITS ??BITS

__boolean e4 ; // ??BITS

#pragma section @@CNST ??CNST

char *const p = "Hello" ; // p and "Hello" are both ??CNSTT

#pragma section @@DATA ??DATA1

int a1 ; // ??DATA

sreg int b1 ; // @@DATS

int c1 = 1 ; // @@INIT and @@R_INIT

const int d1 = 1 ; // @@CNST

#pragma section @@DATS ??DATS

int a2 ; // ??DATA

sreg int b2 ; // ??DATS

int c2 = 1 ; // @@INIT and @@R_INIT

const int d2 = 1 ; // @@CNST

#pragma section @@DATA ??DATA2

// ??DATA is automatically closed and ??DATA2 becomes valid

int a3 ; // ??DATA2

sreg int b3 ; // ??DATS

int c3 = 3 ; // @@INIT and @@R_INIT

const int d3 = 3 ; // @@CNST

#pragma section @@DATA @DATA

// ??DATA2 is closed and processing returns to the default @@DATA

#pragma section @@INIT ??INIT

#pragma section @@R_INIT ??R_INIT

// ROMization is invalidated unless both names (@@INIT and @@R_INIT) are changed. This

// is the user's responsibility.

int a4 ; // @@DATA

sreg int b4 ; // ??DATS

int c4 = 1 ; // ??INIT and ??R_INIT

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 115 of 853
Apr 01, 2011

Restrictions when this #pragma directive has been specified after the main C code are explained in the following coding

error examples.

(3) CODING ERROR EXAMPLE1

const int d4 = 1 ; // @@CNST

#pragma section @@INIT @@INIT

#pragma section @@R_INIT @@R_INIT

// ??INIT and ??R_INIT are closed and processing returns to the default setting

#pragma section @@BITS ??BITS

__boolean e4 ; // ??BITS

#pragma section @@CNST ??CNST

char *const p = "Hello" ; // p and "Hello" are both ??CNSTT

--

#pragma section @@INIT ??INIT1

#pragma section @@R_INIT ??R_INIT1

#pragma section @@DATA ??DATA1

char c1 ;

int i2 ;

#pragma section @@INIT ??INIT2

#pragma section @@R_INIT ??R_INIT2

#pragma section @@DATA ??DATA2

char c1 ;

int i2 = 1 ;

#pragma section @@DATA ??DATA3

#pragma section @@INIT ??INIT3

#pragma section @@R_INIT ??R_INIT3

extern char c1 ; // ??DATA3

int i2 ; // ??INIT3 and ??R_INIT3

#pragma section @@DATA ??DATA4

#pragma section @@INIT ??INIT4

#pragma section @@R_INIT ??R_INIT4

a1.h

 #pragma section @@DATA ??DATA1 // File containing only the #pragma

 // section

a2.h

 extern int func1 (void) ; s

 #pragma section @@DATA ??DATA2 // File containing the main C code

 // followed by the #pragma directive.

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 116 of 853
Apr 01, 2011

(4) CODING ERROR EXAMPLE2

(5) CODING ERROR EXAMPLE3

a3.h

 #pragma section @@DATA ??DATA3 // File containing only the #pragma

 // section

a4.h

 #pragma section @@DATA ??DATA3

 extern int func2 (void) ; // File that includes the main C code.

a.c

 #include "a1.h"

 #include "a2.h"

 #include "a3.h" // <- Error

 // Because the a2.h file contains the main C code

 // followed by this #pragma directive, file a3.h, which

 // includes only this #pragma directive, cannot be

 // included.

 #include "a4.h"

b1.h

 const int i ;

b2.h

 const int j ;

 #include "b1.h" // This does not result in an error since it is not

 // file (b.c) in which the main C code is followed by

 // this #pragma directive.

b.c

 const int k ;

 #pragma section @@DATA ??DATA1

 #include "b2.h" // <- Error

 // Since an #include statement cannot be coded afterward

 // in file (b.c) in which the main C code is followed by

 // this #pragma directive.

c1.h

 extern int j ;

 #pragma section @@DATA ??DATA1 // This does not result in an error since the

 // #pragma directive is included and

 // processed before the processing of c3.h.

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 117 of 853
Apr 01, 2011

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- The source program need not be modified if the section name change function is not supported.

- To change the section name, modify the source program according to the procedure described in Usage

above.

(2) From the RL78,78K0R C compiler to another C compiler

- Delete or delimit #pragma section ... with #ifdef.

- To change the section name, modify the program according to the specifications of each compiler.

[Cautions]

- A section is equivalent to a segment of the assembler.

- The compiler does not check whether the new section name is in duplicate with another symbol. Therefore, the

user must check to see whether the section name is not in duplicate by assembling the output assemble list.

- When the -zf option has been specified, each section name is changed so that the second "@" is replaced with

"E".

- If a section nameNote related to ROMization is changed by using #pragma section, the startup routine must be

changed by the user on his/her own responsibility.

c2.h

 extern int k ;

 #pragma section @@DATA ??DATA2 // <- Error

 // This #include statement is specified after

 // the main C code in c3.h, and the #pragma

 // directive cannot be specified afterward.

c3.h

 #include "c1.h"

 extern int i ;

 #include "c2.h"

 #pragma section @@DATA ??DATA3 // <- Error

 // This #include statement is specified after

 // the main C code, and the #pragma directive

 // cannot be specified afterward.

c.c

 #include "c3.h"

 #pragma section @@DATA ??DATA4 // <- Error

 // This #include statement is specified after

 // the main C code in c3.h, and the #pragma

 // directive cannot be specified afterward.

 int i ;

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 118 of 853
Apr 01, 2011

Note ROMization-related section name

@@R_INIT, @@R_INIS, @@RLINIT, @@INITL, @@INIT, @@INIS

Here are examples of changing the startup routine (cstart.asm or cstartn.asm) and termination routine (rom.asm) in

connection with changing a section name related to ROMization.

<C source>

If a section name that stores an external variable with an initial value has been changed by describing #pragma section

indicated above, the user must add to the startup routine the initial processing of the external variable to be stored to the

new section.

To the startup routine, therefore, add the declaration of the first label of the new section and the portion that copies the

initial value, and add the portion that declares the end label to the termination routine, as described below.

RTT1_S and RTT1_E are the names of the first and end labels of section RTT1, and TT1_S and TT1_E are the names

of the first and end labels of section TT1.

(1) Changing startup routine cstartx.asm

(a) Add the declaration of the label indicating the end of the section with the changed name

#pragma section @@R_INIT RTT1

#pragma section @@INIT TT1

 :

#pragma section @@R_INIT RTT1

#pragma section @@INIT TT1

EXTRN RTT1_E, TT1_E ; Adds EXTRN declaration of RTT1_E and TT1_E

 :

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 119 of 853
Apr 01, 2011

(b) Add a section to copy the initial values from the RTT1 section with the changed name to the TT1 sec-

tion.

 :

LDATS1 :

 MOVW AX, HL

 CMPW AX, #LOW _?DATS

 BZ $LDATS2

 MOV [HL + 0], #0

 INCW HL

 BR $LDATS1

LDATS2 :

 MOV ES, #HIGH RTT1_S

 MOV HL, #LOWW RTT1_S

 MOV DE, #LOWW TT1_S

LTT1 :

 MOVW AX, HL

 CMPW AX, #LOWW TT1_E

 BZ $LTT2

 MOV A, ES : [HL]

 MOV [DE], A

 INCW HL

 INCW DE

 BR $LTT1

LTT2 :

;

 CALL !!_main ; main () ;

 CLRW AX

 CALL !!_exit ; exit (0) ;

 BR $$

;

Adds section to copy the initial values from

the RTT1 section to the TT1 section

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 120 of 853
Apr 01, 2011

(c) Set the label of the start of the section with the changed name.

 :

@@R_INIT CSEG UNIT64KP

_@R_INIT :

@@R_INIS CSEG UNIT64KP

_@R_INIS :

@@INIT DSEG

_@INIT :

@@DATA DSEG

_@DATA :

@@INIS DSEG SADDRP

_@INIS :

@@DATS DSEG SADDRP

_@DATS :

RTT1 CSEG UNIT64KP ; Indicates the start of the RTT1 section

RTT1_S : ; Adds the label setting

TT1 DSEG BASEP ; Indicates the start of the TT1 section

TT1_S : ; Adds the label setting

@@CODEL CSEG

@@CALT CSEG CALLT0

@@CNST CSEG MIRRORP

@@BITS BSEG

;

 END

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 121 of 853
Apr 01, 2011

(2) Changing termination routine rom.asm

Caution Don't change the object module name "@rom" and "@rome".

(a) Add the declaration of the label indicating the end of the section with the changed name

(b) Setting the label indicating the end

NAME @rom

;

PUBLIC _?R_INIT, _?R_INIS

PUBLIC _?INIT, _?DATA, _?INIS, _?DATS

PUBLIC RTT1_E, TT1_E ; Adds RTT1_E and TT1_E

;

@@R_INIT CSEG UNIT64KP

_?R_INIT :

@@R_INIS CSEG UNIT64KP

_?R_INIS :

@@INIT DSEG

_?INIT :

@@DATA DSEG

_?DATA :

@@INIS DSEG SADDRP

_?INIS :

@@DATS DSEG SADDRP

_?DATS

 :

 :

RTT1 CSEG UNIT64KP ; Adds the label setting indicating the end of the

 ; RTT1 section.

RTT1_E : ; Adds the label setting

TT1 DSEG BASEP ; Adds the label setting indicating the end of the

 ; TT1 section.

TT1_E : ; Adds the label setting

;

 END

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 122 of 853
Apr 01, 2011

The compiler supports the 0bxxx notation for expressing binary constants in C source code.

[Function]

- Describes binary constants to the location where integer constants can be described.

[Effect]

- Constants can be described in bit strings without being replaced with octal or hexadecimal number. Readability is

also improved.

[Usage]

- Describe binary constants in the C source.

The following shows the description method of binary constants.

Remark Binary number: either "0" or "1".

- A binary constant has 0b or 0B at the start and is followed by the list of numbers 0 or 1.

- The value of a binary constant is calculated with 2 as the base.

- The type of a binary constant is the first one that can express the value in the following list.

[Example]

<C source>

Output object of compiler is the same as the following case.

Binary constant (0bxxx)

0b binary-number

0B binary-number

Subscripted binary number: int, unsigned int, long int, unsigned long int

Subscripted u or U: unsigned int, unsigned long int

Subscripted l or L: long int, unsigned long int

Subscripted u or U and subscripted l or L with: unsigned long int

unsigned i ;

i = 0b11100101 ;

unsigned i ;

i = 0xe5 ;

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 123 of 853
Apr 01, 2011

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- Modifications are not needed.

(2) From the RL78,78K0R C compiler to another C compiler

- Modifications are needed to meet the specification of the compiler if the compiler supports binary constants.

- Modifications into other integer formats such as octal, decimal, and hexadecimal are needed if the compiler

does not support binary constants.

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 124 of 853
Apr 01, 2011

The module name of an object can be changed to any name in C source code.

[Function]

- Outputs the first 254 letters of the specified module name to the symbol information table in a object module file.

- Outputs the first 254 letters of the specified module name to the assemble list file as symbol information

(MOD_NAM) when the -g2 option is specified and as NAME pseudo instruction when the -ng option is specified.

- If a module name with 255 or more letters are specified, a warning message is output.

- If unauthorized letters are described, an error will occur and the processing is aborted.

- If more than one of this #pragma directive exists, a warning message is output, and whichever described later is

enabled.

[Effect]

- The module name of an object can be changed to any name.

[Usage]

- The following shows the description method.

A module name must consist of the characters that the OS authorizes as a file name except "(", ")", and kanji (2-

byte character).

Upper/lowercase is distinguished.

[Example]

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- Modifications are not needed if the compiler does not support the module name changing function.

- To change a module name, modification is made according to Usage above.

(2) From the RL78,78K0R C compiler to another C compiler

- #pragma name ... is deleted or sorted by #ifdef.

- To change a module name, modification is needed depending on the specification of each compiler.

Module name changing function (#pragma name)

#pragma name module-name

#pragma name module1

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 125 of 853
Apr 01, 2011

Outputs the code that rotates the value of an expression to the object with direct inline expansion.

[Function]

- Outputs the code that rotates the value of an expression to the object with direct inline expansion instead of func-

tion call and generates an object file.

- If there is not a #pragma directive, the rotate function is regarded as an ordinary function.

[Effect]

- Rotate function is realized by the C source or ASM description without describing the processing to perform rotate.

[Usage]

- Describe in the source in the same format as the function call.

There are the following 4 function names.

rorb, rolb, rorw, rolw

(1) unsigned char rorb (x, y) ;

unsigned char x ;

unsigned char y ;

Rotates x to right for y times.

(2) unsigned char rolb (x, y) ;

unsigned char x ;

unsigned char y ;

Rotates x to left for y times.

(3) unsigned int rorw (x, y) ;

unsigned int x ;

unsigned char y ;

Rotates x to right for y times.

(4) unsigned int rolw (x, y) ;

unsigned int x ;

unsigned char y ;

Rotates x to left for y times.

- Declare the use of the function for rotate by the #pragma rot directive of the module.

However, the followings can be described before #pragma rot.

- Comments

- Other #pragma directives

- Preprocessing directives which do not generate definition/reference of variables and definition/reference of

functions

- Keywords following #pragma can be described in either uppercase or lowercase letters.

Rotate function (#pragma rot)

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 126 of 853
Apr 01, 2011

[Restrictions]

- The function names for rotate cannot be used as the function names.

- The function names for rotate must be described in lowercase letters. If the functions for rotate are described in

uppercase letters, they are handled as ordinary functions.

[Example]

<C source>

<Output assembler source>

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- Modification is not needed if the compiler does not use the functions for rotate.

- To change to functions for rotate, modifications are made according to Usage above.

(2) From the RL78,78K0R C compiler to another C compiler

- #pragma rot statement is deleted or sorted by #ifdef.

- To use as a function for rotate, modification is needed depending on the specification of each compiler (#asm,

#endasm or asm () ;, etc.).

#pragma rot

unsigned char a = 0x11 ;

unsigned char b = 2 ;

unsigned char c ;

void main (void) {

 c = rorb (a, b) ;

}

 mov x, !_b

 mov a, !_a

L0003 :

 ror a, 1

 dec x

 bnz $L0003

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 127 of 853
Apr 01, 2011

Outputs the code that multiplies the value of an expression to the object with direct inline expansion.

[Function]

- Outputs the code that multiplies the value of an expression to the object with direct inline expansion instead of

function call and generates an object file (mulu function).

- If there is not a #pragma directive, the multiplication function is regarded as an ordinary function.

[Effect]

- The codes utilizing the data size of input/output of the multiplication instruction are generated. Therefore, the

codes with faster execution speed and smaller size than the description of ordinary multiplication expressions can

be generated (mulu function).

- Because the generated code takes advantage of the multiplier's or RL78 expansion instructions I/O data size, the

execution speed is faster than writing normal multiplication expressions, and the size of the generated code is

smaller as well (muluw/mulsw function).

[Usage]

- Describe in the same format as that of function call in the source.

The following shows list of multiplication function.

mulu, muluw, mulsw

(1) unsigned int mulu (x, y) ;

unsigned char x ;

unsigned char y ;

Performs unsigned multiplication of x and y.

(2) unsigned long muluw (x, y) ;

unsigned int x ;

unsigned int y ;

Performs unsigned multiplication of x and y.

(3) signed long mulsw (x, y) ;

signed int x ;

signed int y ;

Performs signed multiplication of x and y.

- Declare the use of functions for multiplication by #pragma mul directive of the module.

However, the followings can be described before #pragma mul.

- Comments

- Other #pragma directives

- Preprocessing directives that do not generate definition/reference of variables and definition/reference of func-

tions

- Keywords following #pragma can be described in either uppercase or lowercase letters.

Multiplication function (#pragma mul)

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 128 of 853
Apr 01, 2011

[Restrictions]

- The function for multiplication cannot be used as the function names (when #pragma mul is declared).

- The function for multiplication must be described in lowercase letters. If they are described in uppercase letters,

they are handled as ordinary functions.

- This will become a library call. Inline expansion will not be performed (muluw/mulsw function).

[Example]

<C source>

<Output object of compiler>

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- Modifications are not needed if the compiler does not use the functions for multiplication.

- To change to functions for multiplication, modification is made according to Usage above.

(2) From the RL78,78K0R C compiler to another C compiler

- #pragma mul statement is deleted or sorted by #ifdef. Function names for multiplication can be used as the

function names.

- To use as functions for multiplication, modification is needed depending on the specification of each compiler

(#asm, #endasm or asm () ;, etc.).

#pragma mul

unsigned char a = 0x11 ;

unsigned char b = 2 ;

unsigned int i ;

void main (void) {

 i = mulu (a, b) ;

}

mov x, !_b

mov a, !_a

mulu x

movw !_i, ax

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 129 of 853
Apr 01, 2011

Outputs the code that divides the value of an expression to the object.

[Function]

- Outputs the code that divides the value of an expression to the object.

- If there is not a #pragma directive, the function for division is regarded as an ordinary function.

[Effect]

- Codes that are compatible with the 78K0 C compiler and utilize the data size of the division instruction I/O are gen-

erated. Therefore, codes with faster execution speed and smaller size than the description of ordinary division

expressions can be generated.

[Usage]

- Describe in the same format as that of function call in the source.

There are the following 2 functions for division.

divuw, moduw

(1) unsigned int divuw (x, y) ;

unsigned int x ;

unsigned char y ;

Performs unsigned division of x and y and returns the quotient.

(2) unsigned char moduw (x, y) ;

unsigned int x ;

unsigned char y ;

Performs unsigned division of x and y and returns the remainder.

- Declare the use of the function for divisions by the #pragma div directive of the module.

However, the followings can be described before #pragma div.

- Comments

- Other #pragma directives

- Preprocessing directives which do not generate definition/reference of variables and definition/ reference of

functions

- Keywords following #pragma can be described in either uppercase or lowercase letters.

[Restrictions]

- The division functions are not expanded inline, but are called by the library.

- The function names for division cannot be used as the function names.

- The function names for division must be described in lowercase letters. If they are described in uppercase letters,

they are handled as ordinary functions.

Division function (#pragma div)

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 130 of 853
Apr 01, 2011

[Example]

<C source>

<Output object of compiler>

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- Modification is not needed if the compiler does not use the functions for division.

- To change to functions for division, modifications are made according to Usage above.

(2) From the RL78,78K0R C compiler to another C compiler

- #pragma div statement is deleted or sorted by #ifdef. The function names for division can be used as the func-

tion name.

- To use as a function for division, modification is needed depending on the specification of each compiler

(#asm, #endasm or asm () ;, etc.).

#pragma div

unsigned int a = 0x1234 ;

unsigned char b = 0x12 ;

unsigned char c ;

unsigned int i ;

void main (void) {

 i = divuw (a, b) ;

 c = moduw (a, b) ;

}

mov c, !_b

movw ax, !_a

call !@@divuw

movw !_i, ax

mov c, !_b

movw ax, !_a

call !@@divuw

mov a, c

mov !_c, a

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 131 of 853
Apr 01, 2011

Outputs the code that sum-of-products calculation the value of an expression to the object.

[Function]

- Outputs the code that sum-of-products calculation the value of an expression to the object.

- If there is not a #pragma directive, the function for sum-of-products calculation is regarded as an ordinary function.

[Effect]

- The codes utilizing the data size of input/output of the sum-of-products calculation or RL78 expansion instructions

are generated. Therefore, the codes with faster execution speed and smaller size than the description of ordinary

sum-of-products calculation expressions can be generated.

[Usage]

- Describe in the same format as that of function call in the source.

The following shows list of sum-of-products calculation function.

(1) unsigned long macuw (x, y, z) ;

unsigned long x ;

unsigned int y ;

unsigned int z ;

Performs unsigned sum-of-products calculation of x + (y * z) and returns the result.

(2) signed long macsw (x, y, z) ;

signed long x ;

signed int y ;

signed int z ;

Performs signed sum-of-products calculation of x + (y * z) and returns the result.

- Declare the use of the function for sum-of-products calculation by the #pragma mac directive of the module.

However, the followings can be described before #pragma mac.

- Comments

- Other #pragma directives

- Preprocessing directives which do not generate definition/reference of variables and definition/ reference of

functions

- Keywords following #pragma can be described in either uppercase or lowercase letters.

[Restrictions]

- The sum-of-products calculation functions are not expanded inline, but are called by the library.

- The function names for sum-of-products calculation cannot be used as the function names.

- The function names for sum-of-products calculation must be described in lowercase letters. If they are described

in uppercase letters, they are handled as ordinary functions.

Sum-of-products calculation function (#pragma mac)

macuw, macsw

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 132 of 853
Apr 01, 2011

[Example]

<C source>

<Output object of compiler>

#pragma mac

unsigned long a = 100000 ;

unsigned int b = 1000 ;

unsigned int c = 100 ;

singed long d = 100000 ;

signed int e = 1000 ;

signed int f = -100 ;

unsigned long ul ;

signed long sl ;

void main () {

 ul = macuw (a, b, c) ;

 sl = macsw (d, e, f) ;

}

movw ax, !_a

movw _@RTARG0, ax

movw ax, !_a+2

movw _@RTARG2, ax

movw ax, !_b

movw _@RTARG4, ax

movw ax, !_c

call !@@macuw

movw ax, _@RTARG2

movw !_ul+2, ax

movw ax, _@RTARG0

movw !_ul, ax

movw ax, !_d

movw _@RTARG0, ax

movw ax, !_d+2

movw _@RTARG2, ax

movw ax, !_e

movw _@RTARG4, ax

movw ax, !_f

call !@@macsw

movw ax, _@RTARG2

movw !_sl+2, ax

movw ax, _@RTARG0

movw !_sl, ax

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 133 of 853
Apr 01, 2011

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- Modification is not needed if the compiler does not use the functions for sum-of-products calculation.

- To change to functions for sum-of-products calculation, modifications are made according to USAGE above.

(2) From the RL78,78K0R C compiler to another C compiler

- #pragma mac statement is deleted or sorted by #ifdef. The function names for sum-of-products calculation

can be used as the function name.

- To use as a function for sum-of-products calculation, modification is needed depending on the specification of

each compiler (#asm, #endasm or asm () ;, etc.).

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 134 of 853
Apr 01, 2011

Outputs the code that performs a BCD operation on the expression value in an object by direct inline expansion.

[Function]

- Outputs the code that performs a BCD operation on the expression value in an object by direct inline expansion

rather than by function call, and generates an object file.

However, bcdtob, btobcde, bcdtow, wtobcd and btobcd function are not developed inline.

- If there are no #pragma directives, the function for BCD operation is regarded as an ordinary function.

[Effect]

- Even if the process of the BCD operation is not described, the BCD operation function can be realized by the C

source or ASM statements.

[Usage]

- The same format as that of a function call is coded in the source.

There are 13 types of function name for BCD operation, as listed below.

(1) unsigned char adbcdb (x, y) ;

unsigned char x ;

unsigned char y ;

Decimal addition is carried out by the BCD adjustment instruction.

(2) unsigned char sbbcdb (x, y) ;

unsigned char x ;

unsigned char y ;

Decimal subtraction is carried out by the BCD adjustment instruction.

(3) unsigned int adbcdbe (x, y) ;

unsigned char x ;

unsigned char y ;

Decimal addition is carried out by the BCD adjustment instruction (with result expansion).

(4) unsigned int sbbcdbe (x, y) ;

unsigned char x ;

unsigned char y ;

Decimal subtraction is carried out by the BCD adjustment instruction (with result expansion).

If a borrow occurs, the high-order digits are set to 0x99.

(5) unsigned int adbcdw (x, y) ;

unsigned int x ;

unsigned int y ;

Decimal addition is carried out by the BCD adjustment instruction.

(6) unsigned int sbbcdw (x, y) ;

unsigned int x ;

unsigned int y ;

Decimal subtraction is carried out by the BCD adjustment instruction.

BCD operation function (#pragma bcd)

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 135 of 853
Apr 01, 2011

(7) unsigned long adbcdwe (x, y) ;

unsigned int x ;

unsigned int y ;

Decimal addition is carried out by the BCD adjustment instruction (with result expansion).

(8) unsigned long sbbcdwe (x, y) ;

unsigned int x ;

unsigned int y ;

Decimal subtraction is carried out by the BCD adjustment instruction (with result expansion).

If a borrow is occurred, the higher digits are set to 0x9999.

(9) unsigned char bcdtob (x) ;

unsigned char x ;

Values in decimal number are converted to binary number values.

(10)unsigned int btobcde (x) ;

unsigned char x ;

Values in binary number are converted to decimal number values.

(11) unsigned int bcdtow (x) ;

unsigned int x ;

Values in decimal number are converted to binary number values.

(12)unsigned int wtobcd (x) ;

unsigned int x ;

Values in decimal number are converted to binary number values.

However, if the value of x exceeds 10000, 0xffff is returned.

(13)unsigned char btobcd (x) ;

unsigned char x ;

Values in decimal number are converted to those in binary number.

However, the overflow is discarded.

- Use of functions for BCD operation is declared by the module’s #pragma bcd directive. The following items, how-

ever, can be coded before #pragma bcd.

- Comments

- Other #pragma directives

- Preprocessing directives that do not generate definitions/sreferences of variables or function definitions/ refer-

ences

- Either uppercase or lowercase letters can be used for keywords described after #pragma.

[Restrictions]

- BCD operation function names cannot be used as function names.

- The BCD operation function is coded in lowercase letters. If uppercase letters are used, these functions are

regarded as an ordinary functions.

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 136 of 853
Apr 01, 2011

[Example]

<C source>

<Output object of compiler>

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- Corrections are not needed if functions for the BCD operations are not used.

- To change another function to the function for BCD operation, use the description above.

(2) From the RL78,78K0R C compiler to another C compiler

- The #pragma bcd statements are either deleted or separated by #ifdef. A BCD operation function name can

be used as a function name.

- If using "pragma bcd" as a BCD operation function, the changes to the program source must conform to the C

compiler’s specifications (#asm, #endasm or asm (); etc.).

#pragma bcd

unsigned char a = 0x12 ;

unsigned char b = 0x34 ;

unsigned char c ;

void main (void) {

 c = adbcdb (a, b) ;

 c = sbbcdb (b, a) ;

}

mov a, !_a

add a, !_b

add a, !BCDADJ

mov !_c, a

mov a, !_b

sub a, !_a

sub a, !BCDADJ

mov !_c, a

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 137 of 853
Apr 01, 2011

Inserts constant data into the current address.

[Function]

- Inserts constant data into the current address.

- When there is not a #pragma directive, the function for data insertion is regarded as an ordinary function.

[Effect]

- Specific data and instruction can be embedded in the code area without using the ASM statement.

When ASM is used, an object cannot be obtained without the intermediary of assembler. On the other hand, if the

data insertion function is used, an object can be obtained without the intermediary of assembler.

[Usage]

- Describe using uppercase letters in the source in the same format as that of function call.

- The function name for data insertion is __OPC.

(1) void __OPC (unsigned char x, ...) ;

Insert the value of the constant described in the argument to the current address.

Arguments can describe only constants.

- Declare the use of functions for data insertion by the #pragma opc directive.

However, the followings can be described before #pragma opc.

- Comments

- Other #pragma directives

- Preprocessing directives which do not generate definition/reference of variables and definition/reference of

functions

- Keywords following #pragma can be described in either uppercase or lowercase letters.

[Restrictions]

- The function names for data insertion cannot be used as the function names (when #opc is specified).

- __OPC must be described in uppercase letters. If they are described in lowercase letters, they are handled as

ordinary functions.

[Example]

<C source>

Data insertion function (#pragma opc)

#pragma opc

void main (void) {

 __OPC (0xa7) ;

 __OPC (0x51, 0x12) ;

 __OPC (0x30, 0x34, 0x12) ;

}

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 138 of 853
Apr 01, 2011

<Output object of compiler>

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- Modification is not needed if the compiler does not use the functions for data insertion.

- To change to functions for data insertion, use the Usage above.

(2) From the RL78,78K0R C compiler to another C compiler

- The #pragma opc statement is deleted or delimited by #ifdef. Function names for data insertion can be used

as function names.

- To use as a function for data insertion, changes to the program source must conform to the specification of the

C compiler (#asm, #endasm or asm () ;, etc.).

_main :

; line 4 : __OPC (0xa7) ;

 DB 0AFH

; line 5 : __OPC (0x51, 0x12) ;

 DB 051H

 DB 012H

; line 6 : __OPC (0x30, 0x34, 0x12) ;

 DB 030H

 DB 034H

 DB 012H

; line 7 : }

 ret

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 139 of 853
Apr 01, 2011

The interrupt handler for RI78V4 can be described.

[Function]

- Interprets the function name specified with the #pragma rtos_interrupt directive as the interrupt handler for the

RL78,78K0R RTOS RI78V4.

- Registers the address of the described function name to the interrupt vector table for the specified interrupt request

name.

- The interrupt handler for RTOS generates codes in the following order.

(1) Calls kernel symbol __kernel_int_entry using call !!addr20 instruction

(2) Saves the saddr area used by compiler

(3) Secures the local variable area (only when there is a local variable)

(4) The function body

(5) Releases the local variable area (only when there is a local variable)

(6) Restores the saddr area used by compiler

(7) Unconditionally jumps to label _ret_int using br !!addr20 instruction

[Effect]

- The interrupt handler for RTOS can be described in the C source level.

- Because the interrupt request name is identified, the address of the vector table does not need to be identified.

[Usage]

- The interrupt request name, function name is specified by the #pragma directive.

- This #pragma directive is described at the start of the C source.

- The following can be described before the #pragma directive.

- Comments

- Preprocessing directives which do not generate definition/reference of variables and definition/reference of

functions

- Of the keywords to be described following #pragma, the interrupt request name must be described in uppercase

letters. The other keywords can be described either in uppercase or lowercase letters.

Interrupt handler for RTOS (#pragma rtos_interrupt ...)

#pragma rtos_interrupt[interrupt-request-name function-name]

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 140 of 853
Apr 01, 2011

[Restrictions]

- When the -zf option is not specified, interrupt handler for RTOS are allocated to the area between C0H and

0FFFFH, regardless of the memory model.

When the -zf option is specified, interrupt functions are allocated in accordance with the memory model. In addi-

tion, specification of allocation area by specifying __near or __far is also enabled.

- Interrupt request names are described in uppercase letters.

- Software interrupts and non-maskable interrupts cannot be specified for the interrupt request names, if specified

so, an error will occur.

- Interrupt requests are double-checked in one module units only.

- The interrupt handler for RTOS cannot specify callt/__callt/__interrupt/__interrupt_brk/__flash/__flashf.

__far can be specified only when the -zf option is specified.

- ret_int/_kernel_int_entry cannot be used for the function names.

- Coding a "#pragma rtos_interrupt" when -zx is specified will cause an error. Use the "__rtos_interrupt" modifier

when defining an RTOS interrupt handler. RL78 family use the self-programming library to allocate interrupt vector

tables in self-programming.

[Example]

<C source>

<Output object of compiler>

#pragma rtos_interrupt INTP0 intp

int i ;

void intp (void) {

 int a[3] ;

 a[0] = 1 ;

 func () ;

}

@@BASE CSEG BASE

_intp :

 call !!__kernel_int_entry

 movw ax, _@RTARG0 ; Saves saddr area used by the compiler

 push ax ;

 movw ax, _@RTARG2 ;

 push ax ;

 movw ax, _@RTARG4 ;

 push ax ;

 movw ax, _@RTARG6 ;

 push ax ;

 movw ax, _@SEGAX ;

 push ax ;

 movw ax, _@SEGDE ;

 push ax ;

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 141 of 853
Apr 01, 2011

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- Modifications are not needed if the compiler does not support the interrupt handler for RTOS.

- To change to interrupt handler for RTOS, use the USAGE above.

(2) From the RL78,78K0R C compiler to another C compiler

- Handled as an ordinary function if #pragma rtos_interrupt specification is deleted.

- To use as an interrupt handler for ROTS, changes to the source program must conform to the specification of

the C compiler.

 subw sp, #06H ; Secures the local variable area

 movw hl, sp

; line 5 : int a[3] ;

; line 6 : a[0] = 1 ;

 onew ax

 movw [hl], ax ; a

; line 7 : func () ;

 call !!_func

; line 8 : }

 addw sp, #06H ; Releases the local variable area

 pop ax ; Restores saddr area used by the compiler

 movw _@SEGDE, ax ;

 pop ax ;

 movw _@SEGAX, ax ;

 pop ax ;

 movw _@RTARG6, ax ;

 pop ax ;

 movw _@RTARG4, ax ;

 pop ax ;

 movw _@RTARG2, ax ;

 pop ax ;

 movw _@RTARG0, ax ;

 br !!_ret_int

@@VECT06 CSEG AT 0006H

_@vect06 :

 DW _intp

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 142 of 853
Apr 01, 2011

The setting of the vector and the description of the interrupt handler for RI78V4 can be described in separate files.

[Function]

- The function declared with the __rtos_interrupt qualifier is interpreted as an interrupt handler for RTOS. For details

on registers used with interrupt handler for RTOS and saving and restoring of saddr, see to "Interrupt handler for

RTOS (#pragma rtos_interrupt ...)".

[Effect]

- The setting of the vector table and the definition of the interrupt handler function for RTOS can be described in

separate files.

[Usage]

- __rtos_interrupt is added to the qualifier of the interrupt handler for RTOS.

[Restrictions]

- When the -zf option is not specified, interrupt handler for RTOS are allocated to the area between C0H and

0FFFFH, regardless of the memory model. When the -zf option is specified, interrupt functions are allocated in

accordance with the memory model. In addition, specification of allocation area by specifying __near or __far is

also enabled.

- The interrupt handler for RTOS cannot specify callt/__callt/__interrupt/__interrupt_brk/__flash/__flashf.

__far can be specified only when the -zf option is specified.

- ret_int/__kernel_int_entry cannot be used for the function names.

- When -zx is specified, the interrupt function is allocated at [C0H - FFEFFH], regardless of whether the -zf option

was specified, or the memory model. In self-programming mode, an interrupt vector table is allocated using the

self-programming library.

[Cautions]

- Vector addresses cannot be set only with declaration of this qualifier.

The setting of the vector address must be performed separately with the #pragma directive, assembler description,

etc.

- When the interrupt handler for RTOS is defined in the same file as the one in which the #pragma rtos_interrupt ...

is specified, the function name specified with #pragma rtos_interrupt is judged as an interrupt handler for RTOS

even if this qualifier is not described.

Interrupt handler qualifier for RTOS (__rtos_interrupt)

__rtos_interrupt void func () { processing }

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 143 of 853
Apr 01, 2011

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- Modifications are not needed if the compiler does not support interrupt handler for RTOS.

- To change to interrupt handler for RTOS, use the USAGE above.

(2) From the RL78,78K0R C compiler to another C compiler

- Changes can be made by #define (For the details, see to "3.2.5 C source modifications").

By these changes, interrupt handler qualifiers for RTOS are handled as ordinary variables.

- To use as an interrupt handler for RTOS, modification is needed depending on the specification of each com-

piler.

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 144 of 853
Apr 01, 2011

The function names specified with #pragma rtos_task are interpreted as the tasks for RI78V4.

[Function]

- The function names specified with #pragma rtos_task are interpreted as the tasks for RTOS.

- In the case the function name is specified, if the entity definition is not in the same file, an error will occur.

- The preprocessing of the task function for RTOS does not save the registers for frame pointer/register variables.

The postprocessing is not output.

- RTOS system call ext_tsk is always called at the end of #pragma rtos_task.

- The following RTOS system call calling function can be used.

void ext_tsk (void) ;

Calls RTOS system call ext_tsk.

When ext_tsk is, however, called in the ext_tsk entity definition, interrupt function, interrupt handler for RTOS, an

error will occur.

- RTOS system call ext_tsk is called using the br !!addr20 instruction. If ext_tsk is issued at the end of an ordinary

function, the epilogue is not output.

- A task function can be coded without arguments specified, or with only one argument of up to 4 bytes specified, but

no return values can be specified.

An error will be occur if two or more arguments are specified, an argument of 5 bytes or longer is specified, or a

return value is specified.

[Effect]

- The task function for RTOS can be described in the C source level.

- The saving and postprocessing of the register frame pointer/register variable are not output, so the code efficiency

is improved.

[Usage]

- Specifies the function name for the following #pragma directives.

- The #pragma directives are described at the start of the C source.

However, the followings can be described before the #pragma directive.

- Comments

- Preprocessing directives which do not generate definition/reference of variables and definition/ reference of

functions

- Keywords following #pragma can be described either in uppercase or lowercase letters.

Task function for RTOS (#pragma rtos_task)

#pragma rtos_task[task-function-name]

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 145 of 853
Apr 01, 2011

[Restrictions]

- The task function for RTOS cannot specify the callt/__callt/__interrupt/__interrupt_brk/__flash/__flashf.

__far can be specified only when the -zf option is specified.

- The task function for RTOS cannot be called in the same manner as the ordinary functions.

- RTOS system call calling function name ext_tsk cannot be used for function names.

- If #pragma rtos_task is not written to the C source, ext_tsk is not interpreted as a system call for RTOS. Conse-

quently, the following error will not be output even if ext_tsk is called from an RTOS interrupt handler.

E0778: Cannot call ext_tsk in interrupt function

Workarounds:

- Clearly specify the use of the task function, by specifying #pragma rtos_task.

- Do not cvoid all ext_tsk from RTOS interrupt handlers.

[Example]

<C source>

#pragma rtos_task func

#pragma rtos_task func2

void func (void) {

 int a[3] ;

 a[0] = 1 ;

 ext_tsk () ;

}

void func2 (int x) {

 int a[3] ;

 a[0] = 1 ;

}

void func3 (void) {

 int a[3] ;

 a[0] = 1 ;

 ext_tsk () ;

}

void func4 (void) {

 int a[3] ;

 a[0] = 1 ;

 if (a[0])

 ext_tsk () ;

}

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 146 of 853
Apr 01, 2011

<Output object of compiler>

@@CODEL CSEG

_func :

 subw sp, #06H ; Frame pointers are saved

 movw hl, sp

 onew ax

 movw [hl], ax ; a

 br !!_ext_tsk ; Calling of ext_tsk by writing ext_tsk function

 br !!_ext_tsk ; Calling of ext_tsk always output by task function

 ; Epilogue is not output

_func2 :

 push ax ; Frame pointers are not saved

 subw sp, #06H

 movw hl, sp

 onew ax

 movw [hl], ax ; a

 br !!_ext_tsk ; Calling of ext_tsk always output by task function

 ; Epilogue is not output

_func3 :

 push hl ; Frame pointers are saved

 subw sp, #06H

 movw hl, sp

 onew ax

 movw [hl], ax ; a

 br !!_ext_tsk ; Epilogue is output if ext_tsk is called in the middle of

 ; a function

_func4 :

 push hl ; Frame pointers are saved

 subw sp, #06H

 movw hl, sp

 onew ax

 movw [hl], ax ; a

 clrw bc

 cmpw ax, bc

 skz

 br !!_ext_tsk ; Epilogue is output if ext_tsk is called

 addw sp, #06H ; in the middle of a function

 pop hl

 ret

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 147 of 853
Apr 01, 2011

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- Modifications are not needed if the compiler does not support the task function for RTOS.

- To change to the task function for RTOS, use the USAGE above.

(2) From the RL78,78K0R C compiler to another C compiler

- If #pragma rtos_task specification is deleted, RTOS task function is used as an ordinary function.

- To use as RTOS task function, changes to the program source must conform to the specification of the C com-

piler.

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 148 of 853
Apr 01, 2011

Enables locating a program in the flash area compiling with specifying the -zf option. Enables using function linking

with a boot area object created without specifying the -zf option.

Caution This function enables the flash memory rewriting function of devices.

[Function]

- Generates an object file located in the flash area.

- External variables in the flash area cannot be referred to from the boot area.

- External variables in the boot area can be referred to from the flash area.

- The same external variables and the same global functions cannot be defined in a boot area program and a flash

area program.

[Effect]

- Enables locating a program in the flash area.

- Enables using function linking with a boot area object created without specifying the -zf option.

[Usage]

- Specify the -zf option during compiling.

[Restrictions]

- Use startup routines or library for the flash area.

Flash area allocation method (-zf)

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 149 of 853
Apr 01, 2011

The -zt option specify the starting address of the flash branch table. A startup routine and interrupt function can be

located in the flash area and a function calls can be performed from the boot area to the flash area.

Caution This function enables the flash memory rewriting function of devices.

[Function]

- The -zt options determines the first address of the branch table for the startup routine, the interrupt function, or the

function call from the boot area to the flash area.

- 64 addresses from the first address of the branch table are dedicated for interrupt functions (including startup rou-

tine), and each of them occupies 4 bytes of area.

- The branch tables for ordinary functions are normally allocated after the "first address of the branch table + 4 * 64".

Each of the branch tables occupies 4 bytes of area. See "Function of function call from boot area to flash area

(#pragma ext_func)" for more information about ext_func ID values.

- The -zz options determine the starting address of the branch table.

- When only the -zt option is specified, the -zz option is regarded as having the same value.

- When only the -zz option is specified, the -zt option is regarded as having the same value.

[Effect]

- A startup routine and interrupt function can be located in the flash area.

- A function calls can be performed from the boot area to the flash area.

[Usage]

- Use the -zt option as follows to specify the starting address of the flash branch table.

- Use the -zz option as follows to specify the starting address of the flash branch table.

Note The address varies on different devices.

[Restrictions]

- The range of addresses that may be specified as the starting address of the flash branch table is 0C0H to

0EDFFFH (However, the 0EDFFFH varies according to the target device).

- Either the -zf option must be specified when the source program contains a #pragma ext_func, and when the the -

zf option is specified and the program contains a #pragma vect, #pragma interrupt or a #pragma rtos_interrupt

directive. An error occurs if the -zz or -zt option is not specified.

- 2000H is the default starting address of the interrupt service routine library vector table (_@vect00 to _@vect7e).

The default of the start address of the branch table in the interrupt vector library is 2000H.

- The linker option -zb also specifies the starting address of the flash branch table. Always specify the same

address for the linker option -zb and the starting address of the flash area. An error occurs if the addresses do not

agree.

- An error occurs if the allocation address of the flash branch table is smaller than the starting address of the flash

branch table

Flash area branch table and flash area allocation

-ztxxxxxH : xxxxx = 0c0H to 0edfffHNote

-zzxxxxxH : xxxxx = 0c0H to 0edfffHNote

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 150 of 853
Apr 01, 2011

- The -zt or -zz option must be used to specify the allocation address of the flash area and the flash branch table if

you are creating a program to be located in the boot area or the flash area.

- An error occurs when modules compiled with different -zt or -zz address specifications are linked.

- Pointers to ROM data are forcibly handled as far pointers when the ROM data of the boot area or flash area cannot

be located in a near area (See the [Cautions] below). Consequently, in the small and medium models, the suffix

"_f" must be added after the library function name when calling a standard library function that takes a (const *)

argument (warning W0072 is always output).

The following standard library functions take (const *) arguments.

sprintf/sscanf/printf/scanf/vprintf/vsprintf/puts/atoi/atol/strtol/stltoul/atof/strtod/bsearch/qsort/memcpy/mem-

move/strcpy/strncpy/strcat/strncat/memcmp/strcmp/strncmp/memchr/strchr/strcspn/strpbrk/strrchr/strspn/str-

str/strtok/strlen/strcoll/strxfrm

[Example]

To generate a branch table after the address 2000H and place the interrupt function:

<C source>

(1) To place the interrupt function to the boot area (no -zf specified, -zt2000H specified)

<Output object of compiler>

Sets the first address of the interrupt function in the interrupt vector table.

(2) To place the interrupt function in the flash area (-zf specified, -zt2000H specified)

<Output object of compiler>

#pragma interrupt INTP0 intp

void intp (void) {

}

 PUBLIC _intp

 PUBLIC _@vect06

@@BASE CSEG BASE

_intp :

 reti

@@VECT06 CSEG AT 0006H

_@vect06 :

 DW _intp

 PUBLIC _intp

@ECODE CSEG BASE

_intp :

 reti

@EVECT06 CSEG AT 0200CH

 br !!_intp

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 151 of 853
Apr 01, 2011

Sets the first address of the interrupt function in the branch table.

The address value of the branch table is 2000H + 4 * (0006H / 2) since the first address of the branch table is

200CH and the interrupt vector address (2 bytes) is 0006H.

The interrupt vector library performs the setting of the address 200CH in the interrupt vector table.

<Library for interrupt vector 06>

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- To specify the first address of the flash area branch table, change the address in accordance with Usage

above.

(2) From the RL78,78K0R C compiler to another C compiler

- To specify the first address of the flash area branch table, the following change is required.

[Cautions]

- The starting address of the flash branch table and the starting address of the mirror area affect the handling of

near/far specifications. If near/far area specifications are different from the actual memory layout, warnings

W0070 and W0071 are issued once only, at the time of command line analysis.

- When the starting address of the flash branch table is within the mirror area, and within 64 KB: near/far area spec-

ifications are followed without change (See "Figure 3-3. Memory Map Example 1").

- When the starting address of the flash branch table is within the mirror area, and not within 64 KB: flash area func-

tions are located in a far area (See "Figure 3-4. Memory Map Example 2").

- When the starting address of the flash branch table is above the end address of the mirror area, and within 64 KB:

flash area ROM data is located in a far area (See "Figure 3-5. Memory Map Example 3").

- When the starting address of the flash branch table is above the end address of the mirror area, and not within 64

KB: flash area functions are located in a far area, and flash ROM data is located in a far area (See "Figure 3-6.

Memory Map Examplee 4").

- When the starting address of the flash branch table is below the starting address of the mirror area, and within 64

KB: boot area ROM data is located in a far area (See "Figure 3-7. Memory Map Example 5").

- When the starting address of the flash branch table is below the starting address of the mirror area, and not within

64 KB: boot area ROM data is located in a far area, and flash area ROM data is located in a far area (See "Figure

3-8. Memory Map Example 6").

- When boot area or flash area ROM data cannot be placed in a near area: pointers to ROM data are always far.

Consequently, small and medium model programs no longer conform to the ANSI standard. When the strict ANSI

conformance option -za is specified, warning W0073 is issued.

- When boot area or flash area ROM data cannot be placed in a near area, or when flash area functions cannot be

placed in a near area: the following restrictions apply.

 PUBLIC _@vect06

@@VECT06 CSEG AT 0006H

_@vect06 :

 DW 200CH

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 152 of 853
Apr 01, 2011

Table 3-14. Handling of ROM Data When There Is No Mirror of Boot Area

Table 3-15. Handling of ROM Data When There Is No Mirror of Flash Area

Table 3-16. Handing of Functions When Start of Flash Area Is Not Within 64 KB

Note Functions specified by #pragma ext_func reside in flash memory, so they are always far.

Figure 3-3. Memory Map Example 1

Area Definition Extern Declaration Object Pointed to by Pointer

Boot Always far Always far Always far

Flash near or far Always far Always far

Area Definition Extern Declaration Object Pointed to by Pointer

Boot near or far near or far Always far

Flash Always far Always far Always far

Area Definition Extern Declaration Object Pointed to by Pointer

Boot near or far near or far Note Always far

Flash Always far Always far Always far

10000H

(64K)

00000H

Mirror source Start address of

flash area
Boot area

Flash area

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 153 of 853
Apr 01, 2011

Figure 3-4. Memory Map Example 2

Figure 3-5. Memory Map Example 3

Figure 3-6. Memory Map Examplee 4

10000H

(64K)

00000H

Mirror source

Start address of

flash area

Boot area

Flash area

10000H

(64K)

00000H

Mirror source

Start address of

flash area

Boot area

Flash area

10000H

(64K)

00000H

Mirror source

Start address of

flash area

Boot area

Flash area

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 154 of 853
Apr 01, 2011

Figure 3-7. Memory Map Example 5

Figure 3-8. Memory Map Example 6

10000H

(64K)

00000H

Mirror source

Start address of

flash area

Boot area

Flash area

10000H

(64K)

00000H

Mirror source

Start address of

flash area

Boot area

Flash area

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 155 of 853
Apr 01, 2011

The #pragma instruction specifies the function name and ID value in the flash area called from the boot area. It

becomes possible to call a function in the flash area from the boot area.

Caution This function enables the flash memory rewriting function of devices.

[Function]

- Function calls from the boot area to the flash area are executed via the flash area branch table.

- From the flash area, functions in the boot area can be called directly.

[Effect]

- It becomes possible to call a function in the flash area from the boot area.

[Usage]

- The following #pragma instruction specifies the function name and ID value in the flash area called from the boot

area.

- This #pragma instruction is described at the beginning of the C source.

- The following items can be described before this #pragma instruction.

- Comments

- Instructions not to generate the definition/reference of variables or functions among the preprocess instruc-

tions.

[Restrictions]

- The ID value is set at 0 to 255 (0xff).

- An error occurs if a file containing a #pragma ext_func is compiled without specifying the -zt option or the -zz

option.

- For the same function with a different ID value and a different function with the same ID value, an error will occur.

(1) and (2) below are errors.

(1) #pragma ext_func f1 3

#pragma ext_func f1 4

(2) #pragma ext_func f1 3

#pragma ext_func f2 3

- If a function is called from the boot area to the flash area and there is no corresponding function definition in the

flash area, the linker cannot conduct a check. This is the user’s responsibility.

- The callt functions can only be located in the boot area. If the callt functions are defined in the flash area (when the

-zf option is specified), it results in an error.

Function of function call from boot area to flash area (#pragma ext_func)

#pragma ext_func function-name ID-value

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 156 of 853
Apr 01, 2011

- When the -rf option is specified for the small or medium model, and when the -rn option is specified for the large

model, the suffix "_f" must be added to the library function name when calling a standard library function that takes

a (const *) argument (warning W0072 is always output).

The following standard library arguments take (const *) arguments.

sprintf/sscanf/printf/scanf/vprintf/vsprintf/puts/atoi/atol/strtol/stltoul/atof/strtod/bsearch/qsort/memcpy/mem-

move/strcpy/strncpy/strcat/strncat/memcmp/strcmp/strncmp/memchr/strchr/strcspn/strpbrk/strrchr/strspn/str-

str/strtok/strlen/strcoll/strxfrm

[Example]

- In the case that the branch table is generated after address 2000H and functions f1 and f2 in the flash area are

called from the boot area.

<C source>

- Boot area side

- Flash area side

Remarks 1. #pragma ext_func f1 3 means that the branch destination to function f1 is located in starting address of

the branch table + 4 * 64 + 4 * 3.

2. #pragma ext_func f2 4 means that the branch destination to function f2 is located in starting address of

the branch table + 4 * 64 + 4 * 4.

3. 4 * 64 bytes from the beginning of the branch table are dedicated to interrupt functions (including the

startup routine).

#pragma interrupt INTP0 intf0

#pragma ext_func f1 3

#pragma ext_func f2 4

void f1 (), f2 () ;

void func () {

 f1 () ;

 f2 () ;

}

#pragma interrupt INTP1 intf1

#pragma ext_func f1 3

#pragma ext_func f2 4

void f1 () {

}

void f2 () {

}

void intf1 () {

}

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 157 of 853
Apr 01, 2011

<Output object of compiler>

(1) When allocation address of flash area branch table is within 64 KB

- Boot area side (no specified -zf and specified -zt2000H)

- Flash area side (specified -zf)

- Interrupt vector library for 0A

@@CODEL CSEG

_func :

 call !0210CH

 call !02110H

 ret

@@VECT08 CSEG AT 0008H

_@vect08 :

 DW _intf0

@ECODEL CSEG

_f1 :

 ret

_f2 :

 ret

_intf1 :

 reti

@EVECT0A CSEG AT 02014H

 br !!_intf1

@EXT03 CSEG AT 0210CH

 br !!_f1

 br !!_f2

@@VECT0A CSEG AT 000AH

_@vect0a :

 DW 2014H

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 158 of 853
Apr 01, 2011

(2) When allocation address of flash area branch table is not within 64 KB

When flash area branch table starting address is 13000H

- Boot area side (no specified -zf and specified -zt13000H)

- Flash area side (specified -zf and specified -zt13000H)

- Interrupt vector library for 0A

@@CODEL CSEG

_func :

 call !!01310CH

 call !!013110H

 ret

@@VECT08 CSEG AT 0008H

_@vect08 :

 DW _intf0

@ECODEL CSEG

_f1 :

 ret

_f2 :

 ret

_intf1 :

 reti

@EVECT0A CSEG AT 013014H

 br !!_intf1

@EXT03 CSEG AT 01310CH

 br !!_f1

 br !!_f2

@@BASE CSEG BASE

?@vect0a :

 br !!013014H

@@VECT0A CSEG AT 000AH

_@vect0a :

 DW ?@vect0a

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 159 of 853
Apr 01, 2011

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- If the #pragma ext_func is not used, no corrections are necessary.

- To perform the function call from the boot area to the flash area, make the change in accordance with Usage

above.

(2) From the RL78,78K0R C compiler to another C compiler

- Delete the #pragma ext_func instruction or divide it by #ifdef.

- To perform the function call from the boot area to the flash area, the following change is required.

[Cautions]

- A program ceases to conform to the ANSI standard when the -rf option is specified in the small or medium model,

and when the -rn option is specified for the large model. Warning W0073 is issued if the strict ANSI option -za is

specified.

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 160 of 853
Apr 01, 2011

The -mi0/-mi1 options instruct the compiler to generate code for a specified mirror source area.

[Function]

- When the -mi0 option is specified, code for 0 in MAA is generated.

- When the -mi1 option is specified, code for 1 in MAA is generated.

- A link error occurs when modules have been compiled with different -mi0/-mi1 option specifications.

- When the -mi option is not specified, code for 0 in MAA is generated.

- By default the linker's -mi option is set to the value of the compiling -mi option.

- Unless specified, the -mi option is set to 0.

- A link error occurs if the value of the linker -mi option is different from the value of the compiler -mi option.

- See the user's manual of the target device for more information about the mirror area and the MAA bit.

[Effect]

- The compiler generates code for the specified mirror source area.

[Usage]

- At compiling, specify the -mi0 or -mi1 option.

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- The -mi option can be specified to select the mirror source area. No modifications to source files are required.

(2) From the RL78,78K0R C compiler to another C compiler

- Source files can be compiled on other C compilers with no modifications required.

Mirror source area specification

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 161 of 853
Apr 01, 2011

The -zb option is specified during compiling, the object code is reduced and the execution speed improved.

[Function]

- When the type definition of the function return value is char/unsigned char, the int expansion code of the return

value is not generated.

- When the prototype of the function argument is defined and the argument definition of the prototype is char/

unsigned char, the int expansion code of the argument is not generated.

[Effect]

- The object code is reduced and the execution speed improved since the int expansion codes are not generated.

[Usage]

- The -zb option is specified during compiling.

[Restrictions]

- If the files are different between the definition of the function body and the prototype declaration to this function, the

program may operate incorrectly.

[Example]

<C source>

Method of int expansion limitation of argument/return value (-zb)

unsigned char func1 (unsigned char x, unsigned char y) ;

unsigned char c, d, e ;

void main (void) {

 c = func1 (d, e) ;

 c = func2 (d, e) ;

}

unsigned char func1 (unsigned char x, unsigned char y) {

 return x + y ;

}

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 162 of 853
Apr 01, 2011

(1) When the -zb option is specified

<Output object of compiler>

_main :

; line 5 : c = func1 (d, e) ;

 mov x, !_e

 push ax

 mov x, !_d ; Do not execute int expansion

 call !_func1

 pop ax

 mov a, c

 mov !_c, a

; line 6 : c = func2 (d, e) ;

 mov x, !_e

 clrb a ; Execute int expansion since there is no

 ; prototype declaration

 push ax

 mov x, !_d

 mov x, #00H

 xch a, x ; Execute int expansion since there is no

 ; prototype declaration

 call !_func2

 pop ax

 mov a, c

 mov !_c, a

; line 7 : }

 ret

; line 8 :

; line 9 : unsigned char func1 (unsigned char x, unsigned char y) {

_func1 :

 push hl

 push ax

 movw ax, sp

 movw hl, ax

 mov a, [hl]

 mov x, a

 mov a, [hl + 6]

 movw hl, ax

; line 10 : return x + y ;

 mov a, l

 add a, h

 mov c, a ; Do not execute int expansion

; line 11 : }

 pop ax

 pop hl

 ret

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 163 of 853
Apr 01, 2011

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- If the prototype declarations for all definitions of function bodies are not correctly performed, perform correct

prototype declaration. Alternatively, do not specify the -zb option.

(2) From the RL78,78K0R C compiler to another C compiler

- No modification is needed.

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 164 of 853
Apr 01, 2011

An object file is generated by the output of the standard library functions memcpy and memset with direct inline expan-

sion.

[Function]

- An object file is generated by the output of the standard library memory manipulation functions memcpy and mem-

set with direct inline expansion instead of function call.

- When there is no #pragma directive, the code that calls the standard library functions is generated.

[Effect]

- Compared with when a standard library function is called, the execution speed is improved.

- Object code is reduced if a constant is specified for the specified character number.

[Usage]

- The function is described in the source in the same format as a function call.

- The following items can be described before #pragma inline.

- Comments

- Other #pragma directives

- Preprocess directives that do not generate variable definitions/references or function definitions/references

[Example]

<C source>

Memory manipulation function (#pragma inline)

#pragma inline

char ary1[100], ary2[100] ;

void main (void) {

 memset (ary1, 'A', 50) ;

 memcpy (ary1, ary2, 50) ;

}

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 165 of 853
Apr 01, 2011

<Output object of compiler>

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- Modification is not needed if the memory manipulation function is not used.

- When changing the memory manipulation function, use the method above.

(2) From the RL78,78K0R C compiler to another C compiler

- The #pragma inline directive should be deleted or delimited using #ifdef.

_main :

 push hl

; line 5 : memset (ary1, 'A', 50) ;

 movw de, #loww (_ary1)

 mov a, #041H ; 65

 mov c, #032H ; 50

L0003 :

 mov [de], a

 incw de

 dec c

 bnz $L0003

; line 6 : memcpy (ary1, ary2, 50) ;

 movw de, #loww (_ary1)

 movw hl, #loww (_ary2)

 mov c, #032H ; 50

L0005 :
 mov a, [hl]

 mov [de], a

 incw de

 incw hl

 dec c

 bnz $L0005

; line 7 : }

 pop hl

 ret

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 166 of 853
Apr 01, 2011

Declare __directmap in the module in which the variable to be allocated in an absolute address is to be defined. Vari-

ables can be allocated to the arbitrary address.

[Function]

- The initial value of an external variable declared by __directmap and a static variable in a function is regarded as

the allocation address specification, and variables are allocated to the specified addresses.

Specify the allocation address using integers.

- The __directmap variable in the C source is treated as an static variable.

- Because the initial value is regarded as the allocation address specification, the initial value cannot be defined and

remains an undefined value.

- The specifiable address specification range, secured area range linked by the module for securing the area for the

specified addresses, and variable duplication check range are shown in the table below.

- If the address specification is outside the address specification range, an error is output.

- A variable that is declared with __directmap cannot be allocated to an area that extends over a boundary of the fol-

lowing areas. If allocated, an error will be output.

- saddr area (0xffe20 to 0xffeff)

- sfr area or an area with which saddr area overlaps (0xfff00 to to 0xfff1f)

- sfr area (0xfff20 to 0xfffff)

- 2nd sfr area (Varies depending on the device used.)

- If the allocation address of a variable declared by __directmap is duplicated and is within the duplication check

range, a warning message (W0762) is output and the name of the duplicated variable is displayed.

- If the address specification range is inside the saddr area, the __sreg declaration is made automatically and the

saddr instruction is generated.

- If char/unsigned char/short/unsigned short/int/unsigned int/long/unsigned long type variables declared by

__directmap are bit referenced, sreg/__sreg must be specified along with __directmap. If they are not, an error will

occur.

- If the specified address range is in the near area, the variable is regarded to be in the near area for accessing.

- If the specified address range is in neither the saddr area nor near area, the variable is regarded to be in the far

area for accessing.

- If neither the __near nor __far type qualifier is specified, the variable is accessed in accordance with the memory

model specifications.

Absolute address allocation specification (__directmap)

Item Range

When Small Model or

Medium Model Is Specified

When Large Model Is

Specified

Address Specification Range 0xf0000 - 0xfffff 0x00000 - 0xfffff

Secured Area Range 0xffd00 - 0xffeff 0xffd00 - 0xffeff

Duplication Check Range Start address - end address of

device internal RAM

Start address - end address of

device internal RAM

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 167 of 853
Apr 01, 2011

- If a type qualifier is specified, the variable is accessed in accordance with the specification. If the specified

address range and the type qualifier contradict, an error will be output.

The table below lists the relationship between the address specification ranges, memory models, and type qualifi-

ers.

[Effect]

- One or more variables can be allocated to the same arbitrary address.

[Usage]

- Declare __directmap in the module in which the variable to be allocated in an absolute address is to be defined.

- If __directmap is declared for a structure/union/array, specify the address in braces {}.

Address

Specification

Range

Type Qualifier

__near

__sreg

__far

__sreg

__sreg __near __far No Specification

In saddr

area

Access-

ing

method

sreg sreg sreg sreg sreg sreg

Pointer

length

2 bytes 4 bytes Small : 2 bytes

Medium : 2 bytes

Large : 4 bytes

2 bytes 4 bytes Small : 2 bytes

Medium : 2 bytes

Large : 4 bytes

In near

area

Access-

ing

method

Error Error Error near far Small : near

Medium : near

Large : far

Pointer

length

2 bytes 4 bytes Small : 2 bytes

Medium : 2 bytes

Large : 4 bytes

In far

area

Access-

ing

method

Error Error Error Error far Small : Error

Medium : Error

Large : far

Pointer

length

4 bytes Small : Error

Medium : Error

Large : 4 bytes

__directmap type-name variable-name = allocation-address-specification ;

__directmap static type-name variable-name = allocation-address-specification ;

__directmap __sreg type-name variable-name = allocation-address-specification ;

__directmap __sreg static type-name variable-name = allocation-address-specification ;

extern Type-name Variable-name ;

extern __sreg Type-name Variable-name ;

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 168 of 853
Apr 01, 2011

[Restrictions]

- __directmap cannot be specified for function arguments, return values, or automatic variables. If it is specified in

these cases, an error will occur.

- If an address outside the secured area range is specified, the variable area will not be secured, making it neces-

sary to either describe a directive file or create a separate module for securing the area.

- The __directmap variable cannot be declared with extern because it is handled in the same way as the static vari-

ables.

[Example]

<C source>

__directmap char c = 0xffe00 ;

__directmap __sreg char d = 0xffe20 ;

__directmap __sreg char e = 0xffe21 ;

__directmap struct x {

 char a ;

 char b ;

} xx = { 0xffe30 } ;

void main (void) {

 c = 1 ;

 d = 0x12 ;

 e.5 = 1 ;

 xx.a = 5 ;

 xx.b = 10 ;

}

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 169 of 853
Apr 01, 2011

<Output object of compiler>

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- No modification is necessary if the keyword __directmap is not used.

- To change to the __directmap variable, modify according to the description method above.

(2) From the RL78,78K0R C compiler to another C compiler

- Compatibility can be attained using #define (see "3.2.5 C source modifications for details).

- When the __directmap is being used as the absolute address allocation specification, modify according to the

specifications of each compiler.

 PUBLIC _main

_c EQU 0FFE00H ; Addresses for variables declared by __directmap

_d EQU 0FFE20H ; are defined by EQU

_e EQU 0FFE21H ;

_xx EQU 0FFE30H ;

 EXTRN __mmfe00 ; For linking secured area modules

 EXTRN __mmfe20 ; EXTRN output

 EXTRN __mmfe21 ;

 EXTRN __mmfe30 ;

 EXTRN __mmfe31 ;

@@CODEL CSEG

_main :

; line 10 :

 oneb !loww (_c)

; line 11 :

 mov _d, #012H ; saddr instruction output because address

; line 12 : ; specified in saddr area

 set1 _e.5 ; Bit manipulation possible because __sreg also used

; line 13 :

 mov _xx, #05H ; saddr instruction output because address

 ; specified in saddr area

; line 14 :

 mov _xx + 1, #0AH ; saddr instruction output because address

 ; specified in saddr area

; line 15 :

 ret

 END

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 170 of 853
Apr 01, 2011

An allocating place of the function and a variable can be designated specifically by adding the __near or __far type

qualifier when a function or variable declared.

[Function]

- The location of a function or variable is specified explicitly by specifying a __near or __far type qualifier.

- The pointer to the near area should be 2 bytes long, and that to the far area should be 4 bytes long.

- An error will occur if __near and __far type qualifiers are used together in declaration of the same variable or func-

tion.

- The __near and __far type qualifiers are handled as type qualifiers, grammatically.

- If specified together with __callt, __interrupt, __rtos_interrupt, __interrupt_brk, __sreg, or __boolean, the __near or

__far type qualifier is ignored.

- An error will occur if __near and __far type qualifiers are specified together.

- If specified for an automatic variable, argument or register variable, the __near or __far type qualifier is ignored.

- Variables in the near area are accessed without using the ES register.

The pointer length should be 2 bytes long.

- Variables in the far area are accessed by setting the ES register.

The pointer length should be 4 bytes long.

- Functions in the near area are called with !addr16, and functions in the far area are called with !!addr20.

- Since there are no instructions that can call function pointers without referencing the CS register, be sure to set the

CS register to call function pointers.

- Function pointers for functions in the near area output the code to set the CS register to 0.

- The highest byte of a far pointer is always undefined.

- Conversion from the near pointer or int to the far pointer, and from the near pointer to long results in the following

operations.

- "0xf" is added to the higher bytes of the variable pointer (0 is exceptional and zero-extended).

- The function pointer is zero-extended.

- Addition and subtraction with the far pointer uses the lower 2 bytes, and the higher bytes do not change.

- ptrdiff_t is always int type.

- An equality operation with the far pointer uses the lower 3 bytes.

- A relational operation with the far pointer uses the lower 2 bytes. To compare pointers that do not point to the

same object, the pointer must be converted to unsigned long. If the -za option is specified, the lower 3 bytes are

used for comparison.

- The character string constants are allocated to the far area or near area, according to the memory model specified.

near/far area specification

Qualifier Location

__near type qualifier near area

(data:0F0000H to 0FFFFFH, code:000000H to 00FFFFH)

__far type qualifier far area

(000000H to 0FFFFFH)

Memory Model Location

Small model near area

Medium model near area

Large model far area

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 171 of 853
Apr 01, 2011

- When the large model is used, pointers to automatic variables, arguments, and sreg variables are 4 bytes long.

- The following error checking is performed to detect cases in which the same variable or function is declared

__near in the defining module and __far in another module, or the reverse (See "Coding examples 2" below).

- A link error occurs when a variable or function is referenced if 1) it has been declared __near in the defining

module, and 2) it is declared __far in the module where it is referenced.

- Error checks are performed for up to 8 of any combination of pointer, array, or function declarator.

- Error checks are performed only when the -g option is specified.

[Effect]

- Specification of the __far type qualifier enables functions and variables to be allocated to the far area and to be ref-

erenced.

- Specification of the __near type qualifier enables functions and variables to be allocated to the near area and to be

referenced.

The functions and variables allocated to the near area can be called or referenced with a short instruction.

[Usage]

- The __near or __far type qualifier is added to a function or variable declared.

[Example]

(1) Coding examples 1

- i1 is int type and allocated to the near area.

- i2 is int type and allocated to the far area.

- p1 is a 4-byte type variable that points to "an int type in the far area". The variable itself is allocated to the near

area.

- p2 is a 2-byte variable that points to a 4-byte type in the near area, which points to "an int type in the far area".

The variable itself is allocated to the far area.

- func1 is a function that returns "an int type". The function itself is allocated to the far area.

- func2 is a function that returns a 4-byte type that points to "an int type in the far area". The function itself is

allocated to the near area.

- fp1 is a 2-byte type variable that points to "a function in the near area, which returns an int type". The variable

itself is allocated to the far area.

- fp2 is a 2-byte type variable that points to a function in the near area, which returns a 4-byte type that points

- to "an int type in the far area". The variable itself is allocated to the near area.

__near int i1 ;

__far int i2 ;

__far int *__near p1 ;

__far int *__near *__far p2 ;

__far int func1 () ;

__far int *__near func2 () ;

__near int (*__far fp1) () ;

__far int *__near (*__near fp2) () ;

__near int *__far (*__near fp3) () ;

__near int *__near (*__far fp4) () ;

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 172 of 853
Apr 01, 2011

- fp3 is a 4-byte type variable that points to a function in the far area, which returns a 2-byte type that points to

"an int type in the near area". The variable itself is allocated to the near area.

- fp4 is a 2-byte type variable that points to a function in the near area, which returns a 2-byte type that points to

"an int type in the near area". The variable itself is allocated to the far area.

(2) Coding examples 2

- The following examples explain the error checking that is performed to detect cases in which the same variable or

function is declared near in the defining module and far in another module, or the reverse.

- a.c

- b.c

/* Definitions */

int __near i1 ;

int __far i2 ;

int __near *__near nnp1 ;

int __near *__near nnp2 ;

int __near *__far fnp1 ;

int __near *__near nnp3 ;

int __far *__near nfp1 ;

int __far *__near nffunc1 () { }

int __far *__near nffunc2 () { }

int __far *__far fffunc1 () { }

int __near *__far fnfunc1 () { }

int __far *__far fffunc2 () { }

/* extern declarations */

extern int __far i1 ;

extern int __near i2 ;

extern int __near *__near nnp1 ;

extern int __near *__far nnp2 ;

extern int __near *__near fnp1 ;

extern int __far *__near nnp3 ;

extern int __near *__near nfp1 ;

extern int __far *__near nffunc1 () ;

extern int __far *__far nffunc2 () ;

extern int __far *__near fffunc1 () ;

extern int __far *__far fnfunc1 () ;

extern int __near *__far fffunc2 () ;

void main (void) {

 i1 = 1 ; /* OK */

 i2 = 1 ; /* Error */

 nnp1 = 1 ; / OK */

 nnp2 = 1 ; / OK */

 fnp1 = 1 ; / Error */

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 173 of 853
Apr 01, 2011

[Restrictions]

- Even if the __far type qualifier is specified, data cannot be allocated to an area extending over a 64 KB boundary.

Functions can be allocated to an area extending over a 64 KB boundary.

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- It is not necessary to modify the code if reserved word __near or __far is not used.

(2) From the RL78,78K0R C compiler to another C compiler

- It is not necessary to modify the code if the __near or __far type qualifier is not used.

- If the __near or __far type qualifier is used, #define can be used for near/far area specification.

[Cautions]

- If the lower 2 bytes are used for a relational operation, data cannot be allocated to the last byte of a 64 KB bound-

ary area. If allocated, an error will be output by the linker or compiler.

This is because, ANSI-compliant operationNote is performed for the relational operation that uses the pointer that

points to the range outside an array.

Note Constraints on relational operators prescribed by ANSI

If expression P points to an element of an array object and expression Q points to the last element of that array

object, pointer expression Q+1 is larger than expression P.

- The size of the pointer for the far area is 4 bytes but the calculation object is the lower 3 bytes, so the highest byte

is always undefined.

<Example>

A value is written to un.ptr and then un.ldata is referenced; the highest byte then becomes undefined. To guaran-

tee that the highest byte of un.ldata is 0, union un must first be initialized with 0.

 nnp3 = 1 ; / Error */

 nfp1 = 1 ; / Error */

 nffunc1 () ; /* OK */

 nffunc2 () ; /* OK */

 fffunc1 () ; /* Error */

 fnfunc1 () ; /* Error */

 fffunc2 () ; /* Error */
}

union tag {

 __far unsigned short *ptr ;

 unsigned long ldata ;

} un ;

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 174 of 853
Apr 01, 2011

- The linker checks the data location of sections with the following combination of segment type and relocation

attribute.

DSEG UNIT64KP

DSEG PAGE64KP

CSEG PAGE64KP

- If one of the above relocation attributes is changed using the #pragma section or link directive file, the linker does

not check it.

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 175 of 853
Apr 01, 2011

An allocating place of the function and a variable can be specifying by a memory model by specifying the -ms, -mm, or

-ml option when compiling.

[Function]

- The location of a function or variable is specified.

- If the __near or __far type qualifier is specified, the specified __near or __far type qualifier takes precedence.

- Small model

Consists of a data portion of 64 KB and a code portion of 64 KB; 128 KB in total.

The data ROM is allocated at 0000H to 0FFFFH or 10000H to 1FFFFH, and mirrored in FxxxxH.

Codes are allocated at 00000H to 0FFFFH.

Since the CS register value may be changed by specifying the __far type qualifier, be sure to set the CS register

when calling a function pointer.

- Medium model

Variables are allocated to the near area, and functions are allocated to the far area. Consists of a data portion of

64 KB and a code portion of 1 MB.

The data ROM is allocated at 000000H to 00FFFFH or 010000H to 01FFFFH, and mirrored in FxxxxH. There are

no limitations on locating codes.

- Large model

Variables and functions are allocated to the far area. Consists of a data portion of 1 MB and a code portion of 1

MB. There are no limitations on locating data and codes.

[Usage]

- Specify the -ms, -mm, or -ml option during compilation.

Memory model specification

Memory Model Data Function

Small model near area near area

Medium model near area far area

Large model far area far area

Option Explaination

-ms Small model

-mm Medium model

-ml Large model

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 176 of 853
Apr 01, 2011

[Example]

<C source>

<Output object of compiler>

(1) When small model is used

(2) When medium model is used

int i ;

int *p ;

void func(void) { }

void (*fp)(void) ;

void main(void) {

 int r ;

 r = i ; /* Data access */

 func () ; /* Function call */

 r = *p ; /* Data pointer */

 fp () ; /* Function pointer */

}

movw hl, !_i

call !_func

movw de, !_p

movw ax, [de]

movw hl, ax

movw ax, !_fp

mov CS, #00H ; 0

call ax

movw hl, !_i

call !!_func

movw de, !_p

movw ax, [de]

movw hl, ax

mov a, !_fp + 2

mov CS, a

movw ax, !_fp

call ax

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 177 of 853
Apr 01, 2011

(3) When large model is used>

[Restrictions]

- Even if the large model is specified, data cannot be allocated to an area that extends over 64 KB boundaries.

- Modules for which a different memory model is specified cannot be linked.

- The size of variables with/without initial values allocated to the far area are (64K - 1) bytes each, per load module

file (Note: 64KB if the -za option is specified).

This size can be increased by changing the section name that includes variables with/without initial values in a cer-

tain file to another output section name, using the function of "Changing compiler output section name (#pragma

section ...)".

In this case, the startup routine and termination routine must be modified (see to [Examples of Changing startup

Routine in Connection with Changing Section Name Related to ROMization] in "Changing compiler output section

name (#pragma section ...)").

- The maximum size per output section name does not change.

- If the -za option is not specified, data cannot be allocated to the last byte of a 64 KB boundary area (see to CAU-

TIONS in "near/far area specification").

mov ES, #highw (_i)

movw hl, ES:!_i

call !!_func

mov ES, #highw (_p)

mov a, ES:!_p + 2

movw de, ES:!_p

mov ES, a

movw ax, ES:[de]

movw hl, ax

mov ES, #highw (_fp)

mov a, ES:!_fp + 2

mov CS, a

movw ax, ES:!_fp

call ax

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 178 of 853
Apr 01, 2011

An allocating place of the ROM data can be designated specifically near or far area.

[Function]

- The -rf option places ROM data in a far area.

- The -rn option places ROM data in a near area.

- When neither the -rf nor the -rn option is specified, the placement of ROM data depends on the memory model.

- The placement of ROM data is determined by the following specifications, listed in order of priority from highest pri-

ority to lowest.

(1) near or far specification by specification of the start address of the flash area and the address of the mirror

source area (see "Flash area branch table and flash area allocation").

(2) __near or __far keyword

(3) -rn or -rf option specification

(4) Memory model

- ROM data refers to the following types of data.

- Variables declared as const

- String literals

- Initial values of auto aggregate type variables (arrays and structures)

- Switch statement branch tables

[Effect]

- It's possible to allocate ROM data in any area far or near area.

[Usage]

- Specify the -rf or -rn option at compiling.

[Restrictions]

- When the same const variable is referenced by different modules, it is placed according to the ROM data specifica-

tion priorities listed above, and an error check is performed. See "near/far area specification" about the error

check.

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- Specify the placement of ROM data by recompiling with the -rf or -rn option specified. There is no need to

modify the source program.

(2) From the RL78,78K0R C compiler to another C compiler

- Compile the source program on other C compilers with no modifications.

Allocating ROM data specification

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 179 of 853
Apr 01, 2011

An allocating place of the code and ROM data can be designated RAM area.

[Function]

- Supports RL78 family self-programming.

- The -zx option places code and ROM data in a RAM area.

- When -zx is specified, the far attribute is added to the code, regardless of the memory model.

- When -zx1 is specified, it calls a runtime library for ROM allocation.

- When -zx2 is specified, it calls a runtime library for RAM allocation.

- ROM data refers to the following types of data.

- Variables declared as const

- String literals

- Initial values of auto aggregate type variables (arrays and structures)

- Switch statement branch tables

[Effect]

- It's possible to allocate code and ROM data in a RAM area.

[Usage]

- Specify the -zx option at compiling.

[Restrictions]

- If this option is specified for a device that does not support RL78 familyself-programming, and the option -zf for

specifying flash area allocation is not specified, then defining an interrupt function or RTOS interrupt handler will

cause an error.

- If the -ql optimization option is specified when -zx2 is specified, then the -ql level is automatically set to 1.

- A callt function cannot be defined when -zx is specified. Coding a callt function will cause an error.

- The interrupt specification is different in self-programming mode. For this reason, coding a "#pragma interrupt" or

"#pragma rtos_interrupt" directive when -zx is specified will cause an error. Use the __interrupt/__interrupt_brk/

__rtos_interrupt modifiers to define an interrupt handler or RTOS interrupt handler when -zx is specified.

- When -zx is specified, there will be a warning because the function is allocated to the RAM area. All functions will

be far functions.

- Due to issues with RAM capacity, the standard libraries are allocated to ROM even when -zx is specified. Conse-

quently, you should not call standard libraries in self-programming mode, when it is possible that ROM will become

invisible. The user is responsible for calls to the standard libraries from functions allocated to RAM. Behavior is

not guaranteed when standard libraries are called while in self-programming mode.

- Due to issues of RAM capacity, libraries used by multiplication, division, sum-of-products, and BCD functions

using #pragma directives are allocated to ROM, even when -zx is specified. Consequently, you should not call

these functions in self-programming mode, when it is possible that ROM will become invisible. The user is respon-

sible for calls to multiplication, division, sum-of-products, and BCD functions using #pragma directives from func-

tions allocated to RAM. Behavior is not guaranteed when these functions are called while in self-programming

mode.

Specifying RAM allocation destinations with self-programming

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 180 of 853
Apr 01, 2011

[Compatibility]

(1) From another C compiler to the RL78,78K0R C compiler

- Recompiling with the -zx option specified. There is no need to modify the source program.

(2) From the RL78,78K0R C compiler to another C compiler

- Compile the source program on other C compilers with no modifications.

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 181 of 853
Apr 01, 2011

3.2.5 C source modifications

The compiler generates efficient object code when using the extended functions. But these functions are designed for

use on RL78 family, 78K0R microcontrollers. If programs make use of the extended functions, they must be modified

when porting them for use on other devices.

This section explains techniques that can use to port programs from other C compilers to RL78,78K0R C compiler, and

from RL78,78K0R C compiler to other C compilers.

(1) From another C compiler to the RL78,78K0R C compiler

- #pragmaNote

If the other C compiler supports the #pragma directive, the C source must be modified. The method and

extent of modifications to the C source depend on the specifications of the other C compiler.

- Extended specifications

If the other C compiler has extended specifications such as addition of keywords, the C source must be modi-

fied. The method and extent of modifications to the C source depend on the specifications of the other C com-

piler.

Note #pragma is one of the preprocessing directives supported by ANSI. The character string following the

#pragma is identified as a directive to the compiler. If the compiler does not support this directive, the

#pragma directive is ignored and the compile will be continued until it properly ends.

(2) From the RL78,78K0R C compiler to another C compiler

- Because the RL78,78K0R C compiler has added keywords as the extended functions, the C source must be

made portable to the other C compiler by deleting such keywords or invalidating them with #ifdef.

Following are some examples.

(a) To invalidate a keyword (Same applies to callf, sreg, and norec, etc.)

(b) To change from one type to another

#ifndef __K0R__

#define callt /* Makes callt as ordinary function */

#endif

#ifndef __K0R__

#define bit char /* Changes bit type to char type variable*/

#endif

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 182 of 853
Apr 01, 2011

3.3 Function Call Interface

This section explains the following features of the function call interface.

- Return values (common to all functions)

- Ordinary function call interface

3.3.1 Return values

- The return value of a function is stored in registers or carry flags.

- The locations at which a return value is stored are listed below.s

Table 3-17. Storage Locations of Return Values

3.3.2 Ordinary function call interface

(1) Passing arguments

- The second and following arguments are passed to functions on the stack.

- The first argument is passed to the function definition side via a register or stack.

The location where the first argument is passed is shown in the table below.

Table 3-18. Location Where First Argument Is Passed (Function Calling Side)

Note 1-byte to 4-byte data includes structures, unions, and pointers.

Type Storage Location

1 bit CY

1-byte or 2-byte integer BC

near pointer BC

4-byte integer BC (lower), DE (upper)

far pointer BC (lower), DE (upper)

Floating-point number BC (lower), DE (upper)

Structure The structure to be returned is copied into private storage for the function, and

the address of the copy is stored in BC and DE.

Type Storage Location

1-byte dataNote

2-byte dataNote

AX

Pointer to near data AX

3-byte dataNote

4-byte dataNote

AX, BC

Pointer to function,

Pointer to far data

AX, BC

Floating-point number AX, BC

Other On the stack

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 183 of 853
Apr 01, 2011

(2) Storage locations of arguments and auto variables

- An argument or automatic variable is assigned to a register at the top of the function, by declaring the argu-

ment or automatic variable with register or specifying the -qv option. Other arguments and automatic variables

are stored in a stack.

- If an argument, which is passed from the function call side via a stack, is not assigned to registers, the location

for passing is the location to be assigned.

- Arguments and automatic variables are assigned to register HL, unless otherwise there are no stack frames.

Arguments and automatic variables can also be assigned to _@KREGxx if the -qr option is specified. See to

"3.4 List of saddr Area Labels" for _@KREGxx.

- Arguments and automatic variables are assigned to registers in the order of reference frequency.

Arguments and automatic variables that are rarely referenced may not be assigned to registers, even if the

argument or automatic variable is declared with register or the -qv option is specified.

- The registers to which arguments or automatic variables are assigned are saved and restored by the function

definition side.

(3) Examples

(a) Examples 1

<C source>

<1> -When -qr option is specified

<Assembly source code generated by compiler>

void func0 (register int, int) ;

void main (void) {

 func0 (0x1234, 0x5678) ;

}

void func0 (register int p1, int p2) {

 register int r ;

 int a ;

 r = p2 ;

 a = p1 ;

}

_main :

; line 4 : func0 (0x1234, 0x5678) ;

 movw ax, #05678H ; 22136

 push ax ; 2nd and following arguments passed on

 ; stack

 movw ax, #01234H ; 4660 ; 1st argument passed in register

 call !!_func0 ; Function call

 pop ax ; Release stack used for function call

; line 5 : }

 ret

; line 6 :

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 184 of 853
Apr 01, 2011

(b) Example 2

<C source>

; line 7 : void func0 (register int p1, int p2) {

_func0 :

 push hl

 movw de, _@KREG14

 push de ; Save saddr area for register variable

 movw de, _@KREG12

 push de ; Save saddr area for register variable

 movw _@KREG14, ax ; Assign 1st argument p1 to saddr

 push ax ; Reserve storage for auto variable a

 movw hl, sp

; line 8 : register int r ;

; line 9 : int a ;

; line 10 : r = p2 ;

 movw ax, [hl+12] ; p2 ; Argument p2

 movw _@KREG12, ax ; r ; Auto variable r

; line 11 : a = p1 ;

 movw ax, _@KREG14 ; p1 ; Argument p1

 movw [hl], ax ; a ; Auto variable a

; line 12 : }

 pop ax ; Release storage for auto variable a

 pop ax

 movw _@KREG12, ax ; Restores saddr area for register

 ; argument

 pop ax

 movw _@KREG14, ax ; Restores saddr area for register

 ; argument

 pop hl

 ret

void func1 (int, register int) ;

void main (void) {

 func1 (0x1234, 0x5678) ;

}

void func1 (int p1, register int p2) {

 register int r ;

 int a ;

 r = p2 ;

 a = p1 ;

}

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 185 of 853
Apr 01, 2011

<1> When -qr option is specified

<Assembly source code generated by compiler>

_main :

; line 4 : func1 (0x1234, 0x5678) ;

 movw ax, #05678H ; 22136

 push ax ; 2nd and following arguments passed on

 ; stack

 movw ax, #01234H ; 4660 ; 1st argument passed in register

 call !!_func1 ; Function call

 pop ax ; Release stack used for function call

; line 5 : }

 ret

; line 6 :

; line 7 : void func1 (int p1, register int p2) {

_func0 :

 push hl

 push ax ; Place 1st argument p1 on stack

 movw de, _@KREG14

 push de ; Save saddr area for register variable

 movw de, _@KREG12

 push de ; Save saddr area for register variable

 movw ax, [sp+12]

 movw _@KREG12, ax ; Assign argument p2 to saddr

 push ax ; Reserve storage for auto variable a

 movw hl, sp

; line 8 : register int r ;

; line 9 : int a ;

; line 10 : r = p2 ;

 movw ax, _@KREG12 ; p2 ; Argument p2

 movw _@KREG14, ax ; r ; Auto variable r

; line 11 : a = p1 ;

 movw ax, [hl+6] ; p1 ; Argument p1

 movw [hl], ax ; a ; Auto variable a

; line 12 : }

 pop ax ; Release storage for auto variable a

 pop ax

 movw _@KREG12, ax ; Restores saddr area for register

 ; variable

 pop ax

 movw _@KREG14, ax ; Restores saddr area for register

 ; variable

 pop ax ; Release storage for 1st argument p1

 pop hl

 ret

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 186 of 853
Apr 01, 2011

3.4 List of saddr Area Labels

RL78,78K0R C compiler uses the following labels to reference addresses in the saddr area. Therefore, the names in

the following tables cannot be used in C and assembler source programs.

(1) Register variables

Note When the arguments of the function are declared by register or the -qv option is specified and the -qr option

is specified, arguments are allocated to the saddr area.

(2) For Works

Label Name Address

_@KREG00 0FFEB4H

_@KREG01 0FFEB5H

_@KREG02 0FFEB6H

_@KREG03 0FFEB7H

_@KREG04 0FFEB8H

_@KREG05 0FFEB9H

_@KREG06 0FFEBAH

_@KREG07 0FFEBBH

_@KREG08 0FFEBCH

_@KREG09 0FFEBDH

_@KREG10 0FFEBEH

_@KREG11 0FFEBFH

_@KREG12 0FFEC0HNote

_@KREG13 0FFEC1HNote

_@KREG14 0FFEC2HNote

_@KREG15 0FFEC3HNote

Label Name Address

_@NRARG0 0FFEC4H

_@NRARG1 0FFEC6H

_@NRARG2 0FFEC8H

_@NRARG3 0FFECAH

_@NRAT00 0FFECCH

_@NRAT01 0FFECDH

_@NRAT02 0FFECEH

_@NRAT03 0FFECFH

_@NRAT04 0FFED0H

_@NRAT05 0FFED1H

_@NRAT06 0FFED2H

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 187 of 853
Apr 01, 2011

(3) For Segment information

(4) Runtime library arguments

3.5 List of Segment Names

This section explains all the segments that the compiler outputs and their locations.

The tables below list the relocation attributes that appear in the tables of this section.

- CSEG relocation attributes

- DSEG relocation attributes

_@NRAT07 0FFED3H

Label Name Address

_@SEGAX 0FFED4H

_@SEGBC 0FFED5H

_@SEGDE 0FFED6H

_@SEGHL 0FFED7H

Label Name Address

_@RTARG0 0FFED8H

_@RTARG1 0FFED9H

_@RTARG2 0FFEDAH

_@RTARG3 0FFEDBH

_@RTARG4 0FFEDCH

_@RTARG5 0FFEDDH

_@RTARG6 0FFEDEH

_@RTARG7 0FFEDFH

CALLT0 Allocates the specified segment so that the start address is a multiple of two within the range of

80H to BFH.

AT absolute expres-

sion

Allocates the specified segment to an absolute address (within the range of 00000H to

FFEFFH).

UNITP Allocates the specified segment so that the start address is a multiple of two within any position

(within the range of C0H to EFFFEH).

SADDRP Allocates the specified segment so that the start address is a multiple of two within the range of

FFE20H to FFEFFH in the saddr area.

UNITP Allocates the specified segment so that the start address is a multiple of two within any position

(default is within the RAM area).

Label Name Address

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 188 of 853
Apr 01, 2011

3.5.1 List of segment names

(1) Program areas and data areas

Notes 1. ROM data refers to the following types of data.

- Segment for const variables

- Table reference for switch-case statement

- Unknown character-string constant

- Data of initial value of an auto variable

2. The value of nn and mm changes depending on the interrupt types.

Section Name Segment

Type

Relocation

Attribute

Description

@@CODE CSEG BASE Segment for code portion (allocated to near area)

@@CODEL CSEG Segment for code portion (allocated to far area)

@@CODER CSEG Segment for code portion (allocated to RAM)

@@LCODE CSEG BASE Segment for library code (allocated to near area)

@@LCODEL CSEG Segment for library code (allocated to far area)

@@LCODER CSEG Segment for library code portion (allocated to RAM)

@@CNST CSEG MIRRORP ROM data (allocated to near area)Note 1

@@CNSTR CSEG MIRRORP Segment for ROM data portion (allocated to RAM) (allocated to near

area)

@@CNSTL CSEG PAGE64KP ROM data (allocated to far area)Note 1

@@CNSTLR CSEG PAGE64KP Segment for ROM data portion (allocated to RAM) (allocated to far

area)

@@R_INIT CSEG UNIT64KP Segment for near initialized data (with initial value)

@@RLINIT CSEG UNIT64KP Segment for far initialized data (with initial value)

@@R_INIS CSEG UNIT64KP Segment for initialized data (sreg variable with initial value)

@@CALT CSEG CALLT0 Segment for callt function table

@@VECTnn CSEG AT 00mmH Segment for vector tableNote 2

@@BASE CSEG BASE Segment for callt function and interrupt function

@@LBASE CSEG BASE Segment for library and callt function

@@INIT DSEG BASEP Segment for data area (with initial value, allocated to near area)

@@INITL DSEG UNIT64KP Segment for data area (with initial value, allocated to far area)

@@DATA DSEG BASEP Segment for data area (without initial value, allocated to near area)

@@DATAL DSEG UNIT64KP Segment for data area (without initial value, allocated to far area)

@@INIS DSEG SADDRP Segment for data area (sreg variable with initial value)

@@DATS DSEG SADDRP Segment for data area (sreg variable without initial value)

@@BITS BSEG Segment for boolean type and bit type variables

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 189 of 853
Apr 01, 2011

(2) Flash memory areas

Notes 1. ROM data refers to the following types of data.

- Segment for const variables

- Table reference for switch-case statement

- Unknown character-string constant

- Data of initial value of an auto variable

2. The value of nn and mmmm changes depending on the interrupt types.

3. The values of xx and yyyy changes depending on the ID of the flash area function.

Section Name Segment

Type

Relocation

Attribute

Description

@ECODE CSEG BASE Segment for code portion (allocated to near area)

@ECODEL CSEG Segment for code portion (allocated to far area)

@ECODER CSEG Segment for code portion (allocated to RAM)

@LECODE CSEG BASE Segment for library code (allocated to near area)

@LECODEL CSEG Segment for library code (allocated to far area)

@LECODER CSEG Segment for library code (allocated to RAM)

@ECNST CSEG MIRRORP ROM data (allocated to near area)Note 1

@ECNSTR CSEG MIRRORP Segment for ROM data (allocated to RAM) (allocated to near area)

@ECNSTL CSEG PAGE64KP ROM data (allocated to far area)Note 1

@ECNSTLR CSEG PAGE64KP Segment for ROM data (allocated to RAM) (allocated to far area)

@ER_INIT CSEG UNIT64KP Segment for near initialized data (with initial value)

@ERLINIT CSEG UNIT64KP Segment for far initialized data (with initial value)

@ER_INIS CSEG UNIT64KP Segment for initialized data (sreg variable with initial value)

@EVECTnn CSEG AT mmmmH Segment for vector tableNote 2

@EXTxx CSEG AT yyyyH Segment for flash area branch tableNote 3

@EINIT DSEG BASEP Segment for data area (with initial value, allocated to near area)

@EINITL DSEG UNIT64KP Segment for data area (with initial value, allocated to far area)

@EDATA DSEG BASEP Segment for data area (without initial value, allocated to near area)

@EDATAL DSEG UNIT64KP Segment for data area (without initial value, allocated to far area)

@EINIS DSEG SADDRP Segment for data area (sreg variable with initial value)

@EDATS DSEG SADDRP Segment for data area (sreg variable without initial value)

@EBITS BSEG Segment for boolean type and bit type variables

@ECALT CSEG Dummy segment

@EBASE CSEG BASE Dummy segment

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 190 of 853
Apr 01, 2011

3.5.2 Segment allocation

3.5.3 C source example

Segment Type Location (Default)

CSEG ROM

BSEG saddr area of RAM

DSEG RAM

#pragma INTERRUPT INTP0 inter rb1 /* Interrupt vector*/

void inter (void) ; /* Interrupt function prototype declaration */

const int i_cnst = 1 ; /* const variable*/

__callt void f_clt (void) ; /* callt function prototype declaration*/

__boolean b_bit ; /* boolean-type variable*/

long l_init = 2 ; /* External variable with initial value*/

int i_data ; /* External variable without initial value*/

__sreg int sr_inis = 3 ; /* sreg variable with initial value*/

__sreg int sr_dats ; /* sreg variable without initial value*/

void main () { /* Function definition*/

 int i ;

 i = 100 ;

}

void inter () { /* Interrupt function definition*/

 unsigned char uc = 0;

 uc++;

 if (b_bit)

 b_bit = 0;

}

__callt void f_clt () { /* callt function definition*/

}

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 191 of 853
Apr 01, 2011

3.5.4 Example of output assembler module

Directives and instructions sets in assembly language source output vary according to the target device.

For details, see "CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS".

(1) Small model

; 78K0R C Compiler Vx.xx Assembler Source Date:xx xxx xxxx Time:xx:xx:xx

; Command : -cf104le sample.c -ms -sa -ng

; In-file : sample.c

; Asm-file : sample.asm

; Para-file :

$PROCESSOR (F104LE)

$NODEBUG

$NODEBUGA

$KANJICODE SJIS

$TOL_INF 03FH, 0xxxH, 00H, 00H, 00H, 00H, 00H

 PUBLIC _inter

 PUBLIC _i_cnst

 PUBLIC _b_bit

 PUBLIC _l_init

 PUBLIC _i_data

 PUBLIC _sr_inis

 PUBLIC _sr_dats

 PUBLIC _main

 PUBLIC _f_clt

 PUBLIC ?f_clt

 PUBLIC _@vect08

@@BITS BSEG ; Segment for boolean-type and bit-type variable

_b_bit DBIT

@@CNST CSEG MIRRORP ; Segment for const variable

_i_cnst : DW 01H ; 1

@@R_INIT CSEG UNIT64KP ; Segment for initialization data(External variable

 with initial value)

 DW 00002H, 00000H ; 2

@@INIT DSEG BASEP ; Segment for data area(External variable with

 initial value)

_l_init : DS (4)

@@DATA DSEG BASEP ; Segment for data area(External variable without

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 192 of 853
Apr 01, 2011

 initial value)

_i_data : DS (2)

@@R_INIS CSEG UNIT64KP ; Segment for initialization data(sreg variable

 with initial value)

 DW 03H ; 3

@@INIS DSEG SADDRP ; Segment for data area(sreg variable with initial
value)

_sr_inis : DS (2)

@@DATS DSEG SADDRP ; Segment for data area(sreg variable without

 initial value)

_sr_dats : DS (2)

@@CALT CSEG CALLT0 ; Segment for callt function table

?f_clt : DW _f_clt

; line 1 : #pragma interrupt INTP0 inter rb1 /* Interrupt vector */

; line 2 :

; line 3 : void inter (void) ; /* Interrupt function prototype declaration */

; line 4 : const int i_cnst = 1 ; /* const variable */

; line 5 : __callt void f_clt (void) ; /* callt function prototype declaration */

; line 6 : __boolean b_bit ; /* boolean-type variable */

; line 7 : long l_init = 2 ; /* External variable with initial value */

; line 8 : int i_data ; /* External variable without initial value */

; line 9 : __sreg int sr_inis = 3 ; /* sreg variable with initial value */

; line 10 : __sreg int sr_dats ; /* sreg variable without initial value */

; line 11 :

; line 12 : void main () { /* Function definition */

@@CODE CSEG BASE ; Segment for code portion

_main :

 push hl ;[INF] 1, 1

; line 13 : int i ;

; line 14 : i = 100 ;

 movw hl, #064H ; 100 ;[INF] 3, 1

; line 15 : }

 pop hl ;[INF] 1, 1

 ret ;[INF] 1, 6

; line 16 :

; line 17 : void inter () { /* Interrupt function definition */

@@BASE CSEG BASE ; Segment for callt and interrupt function

_inter :

 sel RB1 ;[INF] 2, 1 Selects register bank 1

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 193 of 853
Apr 01, 2011

; line 18 : unsigned char uc = 0;

 mov l,#00H ; 0 ;[INF] 2, 1

; line 19 : uc++;

 inc l ;[INF] 1, 1

; line 20 : if (b_bit)

 bf _b_bit,$L0005 ;[INF] 4, 5

; line 21 : b_bit = 0;

 clr1 _b_bit ;[INF] 3, 2

L0005:

; line 22 : }

 reti ;[INF] 2, 6

; line 23 :

; line 24 : __callt void f_clt () { /* callt function definition */

_f_clt :

; line 25 : }

 ret

@@VECT08 CSEG AT 0008H ; Segment for vector table

_@vect08 :

 DW _inter

 END

; *** Code Information ***

;

; $FILE D: ¥ CA78K0R ¥ Vx.xx ¥ Smp78k0r ¥ cc78k0r ¥ sample.c

;

; $FUNC main(12)

; void=(void)

; CODE SIZE= 6 bytes, CLOCK_SIZE= 9 clocks, STACK_SIZE= 2 bytes

;

; $FUNC inter(17)

; void=(void)

; CODE SIZE= 14 bytes, CLOCK_SIZE= 16 clocks, STACK_SIZE= 0 bytes

;

; $FUNC f_clt(24)

; void=(void)

; CODE SIZE= 1 bytes, CLOCK_SIZE= 6 clocks, STACK_SIZE= 0 bytes

; Target chip : R5F104LE

; Device file : Vx.xx

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 194 of 853
Apr 01, 2011

(2) Medium model

; 78K0R C Compiler Vx.xx Assembler Source Date:xx xxx xxxx Time:xx:xx:xx

; Command : -cf104le sample.c -mm -sa -ng

; In-file : sample.c

; Asm-file : sample.asm

; Para-file :

$PROCESSOR (F104LE)

$NODEBUG

$NODEBUGA

$KANJICODE SJIS

$TOL_INF 03FH, 0xxxH, 00H, 04000H, 00H, 00H, 00H

 PUBLIC _inter

 PUBLIC _i_cnst

 PUBLIC _b_bit

 PUBLIC _l_init

 PUBLIC _i_data

 PUBLIC _sr_inis

 PUBLIC _sr_dats

 PUBLIC _main

 PUBLIC _f_clt

 PUBLIC ?f_clt

 PUBLIC _@vect08

@@BITS BSEG ; Segment for boolean-type and bit-type variable

_b_bit DBIT

@@CNST CSEG MIRRORP ; Segment for const variable

_i_cnst : DW 01H ; 1

@@R_INIT CSEG UNIT64KP ; Segment for initialization data(External variable

 with initial value)

 DW 00002H, 00000H ; 2

@@INIT DSEG BASEP ; Segment for data area(External variable with

 initial value)

_l_init : DS (4)

@@DATA DSEG BASEP ; Segment for data area(External variable

 without initial value)

_i_data : DS (2)

@@R_INIS CSEG UNIT64KP ; Segment for initialization data(sreg variable

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 195 of 853
Apr 01, 2011

 with initial value)

 DW 03H ; 3

@@INIS DSEG SADDRP ; Segment for data area(sreg variable with

 initial value)

_sr_inis : DS (2)

@@DATS DSEG SADDRP ; Segment for data area(sreg variable without

 initial value)

_sr_dats : DS (2)

@@CALT CSEG CALLT0 ; Segment for callt function table

?f_clt : DW _f_clt

; line 1 : #pragma interrupt INTP0 inter rb1 /* Interrupt vector*/

; line 2 :

; line 3 : void inter (void) ; /* Interrupt function prototype declaration */

; line 4 : const int i_cnst = 1 ; /* const variable */

; line 5 : __callt void f_clt (void) ; /* callt function prototype declaration */

; line 6 : __boolean b_bit ; /* boolean-type variable */

; line 7 : long l_init = 2 ; /* External variable with initial value */

; line 8 : int i_data ; /* External variable without initial value */

; line 9 : __sreg int sr_inis = 3 ; /* sreg variable with initial value */

; line 10 : __sreg int sr_dats ; /* sreg variable without initial value */

; line 11 :

; line 12 : void main () { /* Function definition */

@@CODEL CSEG ; Segment for code portion

_main :

 push hl ;[INF] 1, 1

; line 13 : int i ;

; line 14 : i = 100 ;

 movw hl, #064H ; 100 ;[INF] 3, 1

; line 15 : }

 pop hl ;[INF] 1, 1

 ret ;[INF] 1, 6

; line 16 :

; line 17 : void inter () { /* Interrupt function definition */

@@BASE CSEG BASE ; Segment for callt and interrupt function

_inter :

 sel RB1 ;[INF] 2, 1 Selects register bank 1

; line 18 : unsigned char uc = 0;

 mov l,#00H ; 0 ;[INF] 2, 1

; line 19 : uc++;

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 196 of 853
Apr 01, 2011

 inc l ;[INF] 1, 1

; line 20 : if (b_bit)

 bf _b_bit,$L0005 ;[INF] 4, 5

; line 21 : b_bit = 0;

 clr1 _b_bit ;[INF] 3, 2

L0005:

; line 22 : }

 reti

; line 23 : ;[INF] 2, 6

; line 24 : __callt void f_clt () { /* callt function definition*/

_f_clt :

; line 25 : } ;[INF] 1, 6

 ret

@@VECT08 CSEG AT 0008H ; Segment for vector table

_@vect08 :

 DW _inter

 END

; *** Code Information ***

;

; $FILE D: ¥ CA78K0R ¥ Vx.xx ¥ Smp78k0r ¥ cc78k0r ¥ sample.c

;

; $FUNC main(12)

; void=(void)

; CODE SIZE= 6 bytes, CLOCK_SIZE= 9 clocks, STACK_SIZE= 2 bytes

;

; $FUNC inter(17)

; void=(void)

; CODE SIZE= 14 bytes, CLOCK_SIZE= 16 clocks, STACK_SIZE= 0 bytes

;

; $FUNC f_clt(24)

; void=(void)

; CODE SIZE= 1 bytes, CLOCK_SIZE= 6 clocks, STACK_SIZE= 0 bytes

; Target chip : R5F104LE

; Device file : Vx.xx

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 197 of 853
Apr 01, 2011

(3) Large model

; 78K0R C Compiler Vx.xx Assembler Source Date:xx xxx xxxx Time:xx:xx:xx

; Command : -cf104le sample.c -ml -sa -ng

; In-file : sample.c

; Asm-file : sample.asm

; Para-file :

$PROCESSOR (F104LE)

$NODEBUG

$NODEBUGA

$KANJICODE SJIS

$TOL_INF 03FH, 0xxxH, 00H, 08000H, 00H, 00H, 00H

 PUBLIC _inter

 PUBLIC _i_cnst

 PUBLIC _b_bit

 PUBLIC _l_init

 PUBLIC _i_data

 PUBLIC _sr_inis

 PUBLIC _sr_dats

 PUBLIC _main

 PUBLIC _f_clt

 PUBLIC ?f_clt

 PUBLIC _@vect08

@@BITS BSEG ; Segment for boolean-type and bit-type variable

_b_bit DBIT

@@R_INIS CSEG UNIT64KP ; Segment for initialization data(sreg variable

 with initial value)

 DW 03H ; 3

@@INIS DSEG SADDRP ; Segment for data area(sreg variable with

 initial value)

_sr_inis : DS (2)

@@DATS DSEG SADDRP ; Segment for data area(sreg variable without

 initial value)

_sr_dats : DS (2)

@@CNSTL CSEG PAGE64KP ; Segment for const variable

_i_cnst : DW 01H ; 1

@@RLINIT CSEG UNIT64KP ; Segment for initialization data (External

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 198 of 853
Apr 01, 2011

 variable with initial value)

 DW 00002H, 00000H ; 2

@@INITL DSEG UNIT64KP ; Segment for data area(External variable with
initial value)

_l_init : DS (4)

@@DATAL DSEG UNIT64KP ; Segment for data area(External variable without
initial value)

_i_data : DS (2)

@@CALT CSEG CALLT0 ; Segment for callt function table

?f_clt : DW _f_clt

; line 1 : #pragma interrupt INTP0 inter rb1 /* Interrupt vector */

; line 2 :

; line 3 : void inter (void) ; /* Interrupt function prototype declaration */

; line 4 : const int i_cnst = 1 ; /* const variable */

; line 5 : __callt void f_clt (void) ; /* callt function prototype declaration */

; line 6 : __boolean b_bit ; /* boolean-type variable */

; line 7 : long l_init = 2 ; /* External variable with initial value */

; line 8 : int i_data ; /* External variable without initial value */

; line 9 : __sreg int sr_inis = 3 ; /* sreg variable with initial value */

; line 10 : __sreg int sr_dats ; /* sreg variable without initial value */

; line 11 :

; line 12 : void main () { /* Function definition */

@@CODEL CSEG ; Segment for code portion

_main :

 push hl ;[INF] 1, 1

; line 13 :int i ;

; line 14 :i = 100 ;

 movw hl, #064H ; 100 ;[INF] 3, 1

; line 15 : }

 pop hl ;[INF] 1, 1

 ret ;[INF] 1, 6

; line 16 :

; line 17 : void inter () { /*Interrupt function definition */

@@BASE CSEG BASE ; Segment for callt and interrupt function

_inter :

 sel RB1 ;[INF] 2, 1 Selects register bank 1

; line 18 : unsigned char uc = 0;

 mov l,#00H ; 0 ;[INF] 2, 1

; line 19 : uc++;

 inc l ;[INF] 1, 1

CubeSuite+ Ver.1.00.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 199 of 853
Apr 01, 2011

; line 20 : if (b_bit)

 bf _b_bit,$L0005 ;[INF] 4, 5

; line 21 : b_bit = 0;

 clr1 _b_bit ;[INF] 3, 2

L0005:

; line 22 : }

 reti ;[INF] 2, 6
; line 23 :

; line 24 : __callt void f_clt () { /* callt function definition */

_f_clt :

; line 25 : }

 ret

@@VECT08 CSEG AT 0008H ; Segment for vector table

_@vect08 :

 DW _inter

 END

; *** Code Information ***

;

; $FILE D: ¥ CA78K0R ¥ Vx.xx ¥ Smp78k0r ¥ cc78k0r ¥ sample.c

;

; $FUNC main(12)

; void=(void)

; CODE SIZE= 6 bytes, CLOCK_SIZE= 9 clocks, STACK_SIZE= 2 bytes

;

; $FUNC inter(17)

; void=(void)

; CODE SIZE= 14 bytes, CLOCK_SIZE= 16 clocks, STACK_SIZE= 0 bytes

;

; $FUNC f_clt(24)

; void=(void)

; CODE SIZE= 1 bytes, CLOCK_SIZE= 6 clocks, STACK_SIZE= 0 bytes

; Target chip : R5F104LE

; Device file : Vx.xx

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 200 of 853
Apr 01, 2011

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

This chapter explains the assembly language specifications supported by RL78,78K0R assembler.

4.1 Description Methods of Source Program

This section explains the description methods, expressions and operators of the source program.

4.1.1 Basic configuration

When a source program is described by dividing it into several modules, each module that becomes the unit of input to

the assembler is called a source module (if a source program consists of a single module, "source program" means the

same as "source module").

Each source module that becomes the unit of input to the assembler consists mainly of the following three parts:

- Module header (Module Header)

- Module body (Module Body)

- Module tail (Module Tail)

Figure 4-1. Source Module Configuration

(1) Module header

In the module header, the control instructions shown below can be described. Note that these control instructions

can only be described in the module header.

Also, the module header can be omitted.

Module header

Module body

Module tail

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 201 of 853
Apr 01, 2011

Table 4-1. Instructions That Can Appear in Module Headers

(2) Module body

he following may not appear in the module body.

- Control instructions with the same functions as assembler options

All other directives, control instructions, and instructions can be described in the module body.

The module body must be described by dividing it into units, called " segments".

Segments are defined with the corresponding directives, as follows.

- Code segment

Defined with the CSEG directive

- Data segment

Defined with the DSEG directive

- Bit segment

Defined with the BSEG directive

- Absolute segment

Defined with the CSEG, DSEG, or BSEG directive, plus an absolute address (AT location address) as the relo-

cation attribute. Absolute segments can also be defined with the ORG directive.

The module body may be configured as any combination of segments.

However, data segments and bit segments should be defined before code segments.

(3) Module tail

The module tail indicates the end of the source module. The END directive must be described in this part.

If anything other than a comment, a blank, a tab, or a line feed code is described following the END directive, the

assembler will output a warning message and ignore the characters described after the END directive.

Type of Instruction Description

Control instructions with the same

functions as assembler options

- PROCESSOR

- DEBUG/NODEBUG/DEBUGA/NODEBUGA

- XREF/NOXREF

- SYMLIST/NOSYMLIST

- TITLE

- FORMFEED/NOFORMFEED

- WIDTH

- LENGTH

- TAB

- KANJICODE

Special control instructions output by

a C compiler or other high-level pro-

gram

- TOL_INF

- DGS

- DGL

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 202 of 853
Apr 01, 2011

(4) Overall configuration of source program

The overall configuration of a source module (source program) is as shown below.

Figure 4-2. Overall Configuration of Source Program

Examples of simple source module configurations are shown below.

Figure 4-3. Examples of Source Module Configurations

Module header

Module body

Module tail

Special control instructions output by a

C compiler or other high-level program

Control instructions with the same

functions as assembler option

Directives

Control instructions

Instructions

END directive

Module header

Module body

Module tail

$ PROCESSOR (f1166a0)

VECT CSEG AT 0H

 :

 :

 :

MAIN CSEG

 :

 :

 :

 END

$ PROCESSOR (f1166a0)

FLAG BSEG

 :

 :

 :

WORK DSEG

 :

 :

 :

SUB CSEG

 :

 :

 :

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 203 of 853
Apr 01, 2011

(5) Coding example

In this subsection, a description example of a source module (source program) is shown as a sample program.

The configuration of the sample program can be illustrated simply as follows.

Figure 4-4. Sample Source Program Configuration

- Main routine

 NAME SAMPM ; (1)

; ***

; HEX -> ASCII Conversion Program

; main-routine

; ***

PUBLIC MAIN, START ; (2)

EXTRN CONVAH ; (3)

EXTRN _@STBEG ; (4) <- Error

DATA DSEG AT 0FFE20H ; (5)

HDTSA : DS 1

STASC : DS 2

CODE CSEG AT 0H ; (6)

 NAME SAMPS NAME SAMPM

DATA DSEG saddr

Variable definitions

CODE CSEG AT 0H

MAIN : DW START

 CSEG

START :

 :

 CALL !CONVAH

 :

 :

 :

 END

< Main routine > < Subroutine >

 CSEG

CONVAH :

 :

 :

 :

 CALL !SASC

 :

 :

 :

 RET

 END

 CSEG

SASC :

 :

 :

 :

 RET

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 204 of 853
Apr 01, 2011

(1) Declaration of module name

(2) Declaration of symbol referenced from another module as an external reference symbol

(3) Declaration of symbol defined in another module as an external reference symbol

(4) Declaration of stack resolution symbol. This will be generated by the linker when the program is linked

with the -s option specified. (An error occurs if the linker -s option is not specified.)

(5) Declaration of the start of a data segment (to be located in saddr)

(6) Declaration of start of code segment (to be located as an absolute segment starting from address 0H)

(7) Declaration of start of another code segment (ending the absolute code segment)

(8) Declaration of end of module

- Subroutine

MAIN : DW START

 CSEG ; (7)

START :

 ; chip initialize

 MOVW SP, #_@STBEG

 MOV HDTSA, #1AH

 MOVW HL, #LOWW (HDTSA) ; set hex 2-code data in HL registor

 CALL !CONVAH ; convert ASCII <- HEX

 ; output BC-register <- ASCII code

 MOVW DE, #LOWW (STASC) ; set DE <- store ASCII code table

 MOV A, B

 MOV [DE], A

 INCW DE

 MOV A, C

 MOV [DE], A

 BR $$

 END ; (8)

 NAME SAMPS ; (9)

; ***

; HEX -> ASCII Conversion Program

; sub-routine

;

; input condition : (HL) <- hex 2 code

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 205 of 853
Apr 01, 2011

(9) Declaration of module name

(10)Declaration of symbol referenced from another module as an external definition symbol

(11) Declaration of start of code segment

(12)The ROL4 instruction is 78K0 instruction that is not supported by the RL78,78K0R. The assembler -com-

pati option must be specified to assemble this module.

For the assembler option (-compati), see to CubeSuite+ RL78,78K0R Build.

(13)Declaration of end of module

; output condition : BC-register <- ASCII 2 code

; ***

PUBLIC CONVAH ; (10)

 CSEG ; (11)

CONVAH :

 XOR A, A

 ROL4 [HL] ; hex upper code load (12)

 CALL !SASC

 MOV B, A ; store result

 XOR A, A

 ROL4 [HL] ; hex lower code load

 CALL !SASC

 MOV C, A ; store result

 RET

; ***

; subroutine convert ASCII code

;

; input Acc (lower 4bits) <- hex code

; output Acc <- ASCII code

; ***

SASC :

 CMP A, #0AH ; check hex code > 9

 BC $SASC1

 ADD A, #07H ; bias (+7H)

SASC1 :

 ADD A, #30H ; bias (+30H)

 RET

 END ; (13)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 206 of 853
Apr 01, 2011

4.1.2 Description method

(1) Configuration

A source program consists of statements.

A statement is made up of the 4 fields shown below.

Figure 4-5. Statement Fields

(a) The symbol field and the mnemonic field must be separated by a colon (:) or one or more spaces or

tabs. (Whether a colon or space is required depends on the instruction in the mnemonic field.)

(b) The mnemonic field and the operand field must be separated by one or more spaces or tabs. Depend-

ing on the instruction in the mnemonic field, the operand field may not be required.

(c) The comment field, if present, must be preceded by a semicolon (;).

(d) Each line in the source program ends with an LF code (One CR code may exist before the LF code).

- A statement must be described in 1 line. The line can be up to 2048 characters long (including CR/LF). TAB

and the CR (if present) are each counted as 1 character. If the length of the line exceeds 2048 characters, a

warning is issued and all characters beyond the 2048th are ignored for purposes of assembly. However, char-

acters beyond 2048 are output to assembler list files.

- Lines consisting of CR only are not output to assembler list files.

- The following line types are valid.

- Empty lines (lines with no statements)

- Lines consisting of the symbol field only

- Lines consisting of the comment field only

(2) Character set

Source files can contain the following 3 types of characters.

- Language characters

- Character data

- Comment characters

(a) Language characters

Language characters are the characters used to describe instructions in source programs.

The language character set includes alphabetic, numeric, and special characters.

Table 4-2. Alphanumeric Characters

Name Characters

Numeric characters 0 1 2 3 4 5 6 7 8 9

Statement Symbol field Mnemonic field Operand field Comment fields [CR] LF

(a) (b) (c) (d)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 207 of 853
Apr 01, 2011

Table 4-3. Special Characters

Alphabetic

characters

Uppercase A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Lowercase a b c d e f g h i j k l m n o p q r s t u v w x y z

Character Name Main Use

? Question mark Symbol equivalent to alphabetic characters

@ Circa Symbol equivalent to alphabetic characters

_ Underscore Symbol equivalent to alphabetic characters

Blank Field delimiter Delimiter

symbolsHT (09H) Tab code Character equivalent to blank

, Comma Operand delimiter

: Colon Label delimiter

; Semicolon Symbol indicating the start of the Comment

field

CR (0DH) Carriage return code Symbol indicating the end of a line (ignored in

the assembler)

LF (0AH) Line feed code Symbol indicating the end of a line

+ Plus sign Add operator or positive sign Assembler opera-

tors
- Minus sign Subtract operator or negative sign

* Asterisk Multiply operator

/ Slash Divide operator

. Period Bit position specifier

() Left and right paren-

theses

Symbols specifying the order of arithmetic

operations to be performed

<> Not equal sign Relational operator

= Equal sign Relational operator

‘ Single quote mark - Symbol indicating the start or end of a character constant

- Symbol indicating a complete macro parameter

$ Dollar sign - Symbol indicating the location counter

- Symbol indicating the start of a control instruction equivalent to

an assembler option

- Symbol specifying relative addressing

& Ampersand Concatenation symbol (used in macro body)

Sharp sign Symbol specifying immediate addressingr

! Exclamation point Symbol specifying absolute addressing

[] Brackets Symbol specifying indirect addressing

Name Characters

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 208 of 853
Apr 01, 2011

(b) Character data

Character data refers to characters used to write string literals, strings, and the quote-enclosed operands of

some control instructions (TITLE, SUBTITLE, INCLUDE).

Cautions 1. Character data can use all characters except 00H (including multibyte kanji, although

the encoding depends on the OS). If 00H is encountered, an error occurs and all char-

acters from the 00H to the closing single quote (') are ignored.

2. When an invalid character is encountered, the assembler replaces it with an exclama-

tion point (!) in the assembly list. (The CR (0DH) character is not output to assembly

lists.)

3. The Windows OS interprets code 1AH as an end of file (EOF) code. Input data cannot

contain this code.

(c) Comment characters

Comment characters are used to write comments.

Caution Comment characters and character data have the same character set. However, no error is

output for 00H in comments. 00H is replaced by "!" in assembly lists.

(3) Symbol field

The symbol field is for symbols, which are names given to addresses and data objects. Symbols make programs

easier to understand.

(a) Symbol types

Symbols can be classified as shown below, depending on their purpose and how they are defined.

Caution The 4 types of symbols that can be written in symbol fields are names, labels, segment

names, and macro names.

(b) Conventions of symbol description

Observe the following conventions when writing symbols.

- The characters which can be used in symbols are the alphanumeric characters and special characters (?,

@, _).

The first character in a symbol cannot be a digit (0 to 9).

Symbol Type Purpose Definition Method

Name Used as names for addresses and data

objects in source programs.

Write in the symbol field of an EQU, SET, or

DBIT directive.

Label Used as labels for addresses and data

objects in source programs.

Write a name followed by a colon (:).

External refer-

ence name

Used to reference symbols defined by other

source modules.

Write in the operand field of an EXTRN or

EXTBIT directive.

Segment name Used at link time. Write in the symbol field of a CSEG, DSEG,

BSEG, or ORG directive.

Module name Used during symbolic debugging. Write in the operand field of a NAME direc-

tive.

Macro name Use to name macros in source programs. Write in the symbol field of a MACRO direc-

tive.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 209 of 853
Apr 01, 2011

- The maximum length of symbols is 256 characters.

Characters beyond the maximum length are ignored.

- Reserved words cannot be used as symbols.

See "4.5 Reserved Words" for a list of reserved words.

- The same symbol cannot be defined more than once.

However, a name defined with the SET directive can be redefined with the SET directive.

- The assembler distinguishes between lowercase and uppercase characters.

- When a label is written in a symbol field, the colon (:) must appear immediately after the label name.

<Examples of correct symbols>

<Examples of incorrect symbols>

<Example of a symbol that is too long>

< Example of a statement composed of a symbol only>

(c) Points to note about symbols

??Rannnn (where nnnn = 0000 to FFFF) is a symbol that the assembler replaces automatically every time it

generates a local symbol in a macro body. Unless care is taken, this can result in duplicate definitions, which

are errors.

The assembler generates a name automatically when a segment definition directive does not specify a name.

These segment names are listed below.

Duplicate segment name definitions are errors.

CODE01 CSEG ; "CODE01" is a segment name.

VAR01 EQU 10H ; "VAR01" is a name.

LAB01 : DW 0 ; "LAB01" is a label.

 NAME SAMPLE ; "SAMPLE" is a module name.

MAC1 MACRO ; "MAC1" is a macro name.

1ABC EQU 3 ; The first character is a digit.s

LAB MOV A, R0 ; "LAB"is a label and must be separated from the mnemonic field by

 ; a colon (:).

FLAG : EQU 10H ; The colon (:) is not needed for names.

ABCD : ; ABCD is defined as a label.

Segment Name Directive Relocation Attribute

?A0nnnnn (nnnnn = 00000 - FFFFF) ORG directive (none)

A123456789B12...Y123456789Z123456 EQU 70H

 257characters ; The last character (6) is ignored because it is

 ; beyond the maximum symbol length.

 ; The symbol is defined as

 ; A123456789B12...Y123456789Z12345

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 210 of 853
Apr 01, 2011

(d) Symbol attributes

Every name and label has both a value and an attribute.
The value is the value of the defined data object, for example a numerical value, or the value of the address
itself.
Segment names, module names, and macro names do not have values.
The following table lists symbol attributes.

?CSEG CSEG directive UNIT

?CSEGUP UNITP

?CSEGT0 CALLT0

?CSEGFX FIXED

?CSEGSI SECUR_ID

?CSEGB BASE

?CSEGP64 PAGE64KP

?CSEGU64 UNIT64KP

?CSEGMIP MIRRORP

?CSEGOB0 OPT_BYTE

?DSEG DSEG directive UNIT

?DSEGUP UNITP

?DSEGS SADDR

?DSEGSP SADDRP

?DSEGBP BASEP

?DSEGP64 PAGE64KP

?DSEGU64 UNIT64KP

?BSEG BSEG directive UNIT

Attribute Type Classification Value

NUMBER - Name to which numeric constants are assigned

- Symbols defined with the EXTRN directive

- Numeric constants

Decimal notation : 0 to 1048575

Hexadecimal notation :

00000H to FFFFFH (unsigned)

ADDRESS - Symbols defined as labels

- Names of labels defined with the EQU and SET

directives

Decimal notation : 0 to 1048575

Hexadecimal notation : 0H to FFFFFH

BIT - Names defined as bit values

- Names in BSEG

- Symbols defined with the EXTBIT directive

0H to FFFFFH

SFR Names defined as SFRs with the EQU directive SFR area

SFRP Names defined as SFRs with the EQU directive

Segment Name Directive Relocation Attribute

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 211 of 853
Apr 01, 2011

Example

(4) Mnemonic field

Write instruction mnemonics, directives, and macro references in the mnemonic field.

If the instruction or directive requires an operand or operands, the mnemonic field must be separated from the

operand field with one or more blanks or tabs.

However, if the first operand begins with "#", "$","!", or "[", the statement will be assembled properly even if nothing

exists between the mnemonic field and the first operand field.

<Examples of correct mnemonics>

<Examples of incorrect mnemonics>

(5) Operand field

In the operand field, write operands (data) for the instructions, directives, or macro references that require them.

Some instructions and directives require no operands, while others require two or more.

When you provide two or more operands, delimit them with a comma (,).

The following types of data can appear in the operand field:

- Constants (numeric or string)

- Character strings

- Register names

- Special characters ($ # ! [])

- Relocation attributes of segment definition directives

- Symbols

CSEG Segment names defined with the CSEG directive These attribute types have no values.

DSEG Segment names defined with the DSEG directive

BSEG Segment names defined with the BSEG directive

MODULE Module names defined with the NAME directive. (If

not specified, a module name is created from the pri-

mary name of the input source filename.)

MACRO Macro names defined with the MACRO directive

TEN EQU 10H ; The name TEN has the NUMBER attribute and a value of 10H.

 ORG 80H

START : MOV A, #10H ; The label START has the ADDRESS attribute and a value of 80H.

BIT1 EQU 0FFE20H.0 ; The name BIT1 has the BIT attribute and a value of 0FFE20H.0.

MOV A, #0H

CALL !CONVAH

RET

MOVA #0H ; There is no blank between the mnemonic and operand fields.

C ALL !CONVAH ; The mnemonic field contains a blank.

ZZZ ; The RL78,78K0R series does not have a ZZZ instruction.

Attribute Type Classification Value

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 212 of 853
Apr 01, 2011

- Expressions

- Bit terms

The size and attribute of the required operand depends on the instruction or directive. See "4.1.16 Operand char-

acteristics" for details.

See the user's manual of the target device for the format and notational conventions of instruction set operands.

The following sections explain the types of data that can appear in the operand field.

(a) Constants

A constant is a fixed value or data item and is also referred to as immediate data.

There are numeric constants and character string constants.

- Numeric constants

Numeric constants can be written in binary, octal, decimal, or hexadecimal notation.

The table below lists the notations available for numeric constants.

Numeric constants are handled as unsigned 32-bit data.

The range of possible values is 0 <= n <= 0FFFFFFFFH.

Use the minus sign operator to indicate minus values.

- Character string constants

A character-string constant is expressed by enclosing a string of characters from those shown in "(2)

Character set", in a pair of single quotation marks (').

The assembler converts string constants to 7-bit ASCII codes, with the parity bit set to 0.

The length of a string constant is 0 to 2 characters.

To include the single quote character in the string, write it twice in succession.

<Example string constants >

Type Notation Example

Binary Append a "B" or "Y" suffix to the number. 1101B

1101Y

Octal Append an "O" or "Q" suffix to the number. 74O

74Q

Decimal Simply write the number, or append a "D" or "T" suffix. 128

128D

128T

Hexadecimal - Append an "H" suffix to the number.

- If the number begins with "A", "B", "C", "D", "E", or "F", prefix it

with "0"

8CH

0A6H

'ab' ; 6162H

'A' ; 0041H

'A''' ; 4127H

' ' ; 0020H (1 space character)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 213 of 853
Apr 01, 2011

(b) Character strings

A character string is expressed by enclosing a string of characters from those shown in "(2) Character set", in

a pair of single quotation marks (').

The main use for character strings is as operands for the DB and CALL directives and the TITLE and SUBTI-

TLE control instructions.

<Special character example>

(c) Register names

The following registers can be named in the operand field:

- General registers

- General register pairs

- Special function registers

General registers and general register pairs can be described with their absolute names (R0 to R7 and RP0 to

RP3), as well as with their function names (X, A, B, C, D, E, H, L, AX, BC, DE, HL).

The register names that can be described in the operand field may differ depending on the type of instruction.

For details of the method of describing each register name, see the user's manual of each device for which

software is being developed.

(d) Special characters

The following table lists the special characters that can appear in the operand field.

<Special character example>

 CSEG

MAS1 : DB 'YES' ; Initialize with character string "YES".

MAS2 : DB 'NO' ; Initialize with character string "NO".

Special Character Function

$ - Indicates the location address of the instruction that has the operand (or the first byte of

the address, in the case of multibyte instructions).

- Indicates relative addressing for a branch instruction.

! - Indicates absolute addressing for a branch instruction.

- Indicates an addr16 specification, which allows a MOV instruction to access the entire

memory space.

- Indicates immediate data.

[] - Indicates indirect addressing.

Address Source program

100 ADD A, #10H

102 LOOP : INC A

103 BR $$ - 1 ; The second $ in the operand indicates address

 ; 103H. Describing "BR $ - 1" results in the

 ; same operation.

105 BR !$ + 100H ; The second $ in the operand indicates address

 ; 105H. Describing "BR $ + 100H" results in the

 ; same operation.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 214 of 853
Apr 01, 2011

(e) Relocation attributes of segment definition directives

Relocation attributes can appear in the operand field.

See "4.2.2 Segment definition directives" for more information about relocation attributes.

(f) Symbols

When a symbol appears in the operand field, the address (or value) assigned to that symbol becomes the

operand value.

<Symbol value example>

(g) Expressions

An expression is a combination of constants, location addresses (indicated by $), names, labels, and opera-

tors, which is evaluated to produce a value.

Expressions can be specified as instruction operands wherever a numeric value can be specified.

See "4.1.3 Expressions and operators" for more information about expressions.

<Expression example>

In this example, "TEN - 5H" is an expression.

In this expression, a name and a numeric value are connected by the - (minus) operator. The value of the

expression is 0BH, so this expression could be rewritten as "MOV A, #0BH".

(h) Bit terms

Bit terms are obtained by the bit position specifier.

See "4.1.14 Bit position specifier" for more information about bit terms.

<Bit term examples>

(6) Comment fields

Describe comments in the comment field, after a semicolon (;).

The comment field continues from the semicolon to the new line code at the end of the line, or to the EOF code of

the file.

Comments make it easier to understand and maintain programs.

Comments are not processed by the assembler, and are output verbatim to assembly lists.

Characters that can be described in the comment field are those shown in "(2) Character set ".

VALUE EQU 1234H

 MOV AX, #VALUE ; This could also be written MOV AX, #1234H

TEN EQU 10H

 MOV A, #TEN - 5H

CLR1 A.5

SET1 1 + 0FFE30H.3 ; The value of this operand is 0FFE31H.3

CLR1 0FFE40H.4 + 2 ; The value of this operand is 0FFE40H.6

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 215 of 853
Apr 01, 2011

<Comment example>

 NAME SAMPM

; ***

; HEX -> ASCII Conversion Program

; main-routine

; ***

 PUBLIC MAIN, START

 EXTRN CONVAH

 EXTRN @STBEG

DATA DSEG saddr

HDTSA : DS 1

STASC : DS 2

CODE CSEG AT 0H

MAIN : DW START

 CSEG

START :

 ; chip initialize

 MOVW SP, #_@STBEG

 MOV HDTSA, #1AH

 MOVW HL, #HDTSA ; set hex 2-code data in HL register

 CALL !CONVAH ; convert ASCII <- HEX

 ; output BC-register <- ASCII code

 MOVW DE, #STASC ; set DE <- store ASCII code table

 MOV A, B

 MOV [DE], A

 INCW DE

 MOV A, C

 MOV [DE], A

 BR $$

 END

Lines with comment fields only

Lines with

comments in

comment

fields

Lines with comment fields only

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 216 of 853
Apr 01, 2011

4.1.3 Expressions and operators

An expression is a symbol, constant, location address (indicated by $) or bit term, an operator combined with one of the

above, or a combination of operators.

Elements of an expression other than the operators are called terms, and are referred to as the 1st term, 2nd term, and

so forth from left to right, in the order that they occur in the expression.

The assembler supports the operators shown in "Table 4-4. Operator Types". Operators have priority levels, which

determine when they are applied in the calculation. The priority order is shown in "Table 4-5. Operator Precedence Lev-

els".

The order of calculation can be changed by enclosing terms and operators in parentheses "()".

<Example>

In the above example, "5 * (SYM+1)" is an expression. "5" is the 1st term, "SYM" is the 2nd term, and "1" is the 3rd

term. The operators are "*", "+", and "()".

Table 4-4. Operator Types

The above operators can also be divided into unary operators, special unary operators, binary operators, N-ary opera-

tors, and other operators.

MOV A, #5 * (SYM + 1)

Operator Type Operators

Arithmetic operators +, -, *, /, MOD, +sign, -sign

Logic operators NOT, AND, OR, XOR

Relational operators EQ (=), NE (<>), GT (>), GE (>=), LT (<), LE (<=)

Shift operators SHR, SHL

Byte separation operators HIGH, LOW

Word separation operators HIGHW, LOWW

Special operators DATAPOS, BITPOS, MASK

Other operator ()

Unary operators +sign, -sign, NOT, HIGH, LOW, HIGHW, LOWW

Special unary operators DATAPOS, BITPOS

Binary operators +, -, *, /, MOD, AND, OR, XOR, EQ (=), NE (<>), GT (>), GE (>=), LT (<), LE (<=),

SHR, SHL

N-ary operators MASK

Other operators ()

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 217 of 853
Apr 01, 2011

Table 4-5. Operator Precedence Levels

Expressions are operated according to the following rules.

- The order of operation is determined by the priority level of the operators.

When two operators have the same priority level, operation proceeds from left to right, except in the case of unary

operators, where it proceeds from right to left.

- Sub-expressions in parentheses "()" are operated before sub-expressions outside parentheses.

- Operations involving consecutive unary operators are allowed.

Examples:

1 = - - 1 == 1

-1 = -+1 = -1

- Expressions are operated using unsigned 32-bit values.

If intermediate values overflow 32 bits, the overflow value is ignored.

- If the value of a constant exceeds 32 bits, an error occurs, and its value is calculated as 0.

- In division, the decimal fraction part is discarded.

If the divisor is 0, an error occurs and the result is 0.

- Negative values are represented as two's complement.

- External reference symbols are evaluated as 0 at the time when the source is assembled (the evaluation value is

determined at link time).

- The results of operating an expression in the operand field must meet the requirements of the instruction for a valid

operand.

When the expression includes a relocatable or external reference term, and the instruction requires an 8-bit oper-

and, then object code is generated with the value of the least significant 8 bits and the information required for 16

bits is output in the relocation information. Subsequently the linker checks whether the previously determined

value overflows the range of 8 bits. If it overflows, a linking error occurs.

In the case of absolute expressions, the value is determined at the assembly stage and a check is performed at

that stage to test whether the result fits in the required range.

For example, the MOV instruction requires 8-bit operands, so the operand must be in the range 0H to 0FFH.

(1) Correct examples

(2) Incorrect examples

Priority Level Operators

Higher

Lower

1 + sign, - sign, NOT, HIGH, LOW, HIGHW, LOWW, DATAPOS, BITPOS, MASK

2 *, /, MOD, SHR, SHL

3 +, -

4 AND

5 OR, XOR

6 EQ (=), NE (<>), GT (>), GE (>=), LT (<), LE (<=)

MOV A, #'2*' AND 0FH

MOV A, #4 * 8 * 8 - 1

MOV A, #'2*.

MOV A, #4 * 8 * 8

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 218 of 853
Apr 01, 2011

(3) Evaluation examples

Note EXT : External reference symbols

Expression Evaluation

2 + 4 * 5 22

(2 + 3) * 4 20

10/4 2

0 - 1 0FFFFFFFFH

-1 > 1 00H (False)

EXTNote + 1 1

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 219 of 853
Apr 01, 2011

4.1.4 Arithmetic operators

The following arithmetic operators are available.

Operator Overview

+ Addition of values of first and second terms

- Subtraction of value of first and second terms

* Multiplacation of value of first and second terms.

/ Divides the value of the 1st term of an expression by the value of its 2nd term

and returns the integer part of the result.

MOD Obtains the remainder in the result of dividing the value of the 1st term of an

expression by the value of its 2nd term.

+sign Returns the value of the term as it is.

-sign The term value 2 complement is sought.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 220 of 853
Apr 01, 2011

Addition of values of first and second terms

[Function]

Returns the sum of the values of the 1st and 2nd terms of an expression.

[Application example]

(1) The BR instruction causes a jump to "current location address plus 6", namely, to address "100H + 6H =

106H".

Therefore, (1) in the above example can also be described as: START : BR !106H

+

 ORG 100H

START : BR !$ + 6 ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 221 of 853
Apr 01, 2011

Subtraction of value of first and second terms

[Function]

Returns the result of subtraction of the 2nd-term value from the 1st-term value.

[Application example]

(1) The BR instruction causes a jump to "address assigned to BACK minus 6", namely, to address "100H - 6H

= 0FAH".

Therefore, (1) in the above example can also be described as: BACK : BR !0FAH

-

 ORG 100H

BACK : BR BACK - 6H ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 222 of 853
Apr 01, 2011

Multiplacation of value of first and second terms

[Function]

Returns the result of multiplication (product) between the values of the 1st and 2nd terms of an expression.

[Application example]

(1) With the EQU directive, the value "10H" is defined in the name "TEN".

"#" indicates immediate data. The expression "TEN * 3" is the same as "10H * 3" and returns the value

"30H".

Therefore, (1) in the above expression can also be described as: MOV A, #30H

*

TEN EQU 10H

 MOV A, #TEN * 3 ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 223 of 853
Apr 01, 2011

Divides the value of the 1st term of an expression by the value of its 2nd term and returns the integer part of the result.

[Function]

Divides the value of the 1st term of an expression by the value of its 2nd term and returns the integer part of the result.

The decimal fraction part of the result will be truncated. If the divisor (2nd term) of a division operation is 0, an error

occurs

[Application example]

(1) The result of the division "256 / 50" is 5 with remainder 6.

The operator returns the value "5" that is the integer part of the result of the division.

Therefore, (1) in the above expression can also be described as: MOV A, #5

/

MOV A, #256 / 50 ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 224 of 853
Apr 01, 2011

Obtains the remainder in the result of dividing the value of the 1st term of an expression by the value of its 2nd term.

[Function]

Obtains the remainder in the result of dividing the value of the 1st term of an expression by the value of its 2nd term.

An error occurs if the divisor (2nd term) is 0.

A blank is required before and after the MOD operator.

[Application example]

(1) The result of the division "256 / 50" is 5 with remainder 6.

The MOD operator returns the remainder 6.

Therefore, (1) in the above expression can also be described as: MOV A, #6

MOD

MOV A, #256 MOD 50 ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 225 of 853
Apr 01, 2011

Returns the value of the term as it is.

[Function]

Returns the value of the term of an expression without change.

[Application example]

(1) The value "5" of the term is returned without change.

The value "5" is defined in name "FIVE" with the EQU directive.

+sign

FIVE EQU +5 ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 226 of 853
Apr 01, 2011

The term value 2 complement is sought.

[Function]

Returns the value of the term of an expression by the two's complement.

[Application example]

(1) -1 becomes the two's complement of 1.

The two's complement of binary 0000 0000 0000 0000 0000 0000 0000 0001 becomes:

1111 1111 1111 1111 1111 1111 1111 1111

Therefore, with the EQU directive, the value "0FFFFFFFFH" is defined in the name "NO".

-sign

NO EQU -1 ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 227 of 853
Apr 01, 2011

4.1.5 Logic operators

The following logic operators are available.

Operator Overview

NOT Obtains the logical negation (NOT) by each bit.

AND Obtains the logical AND operation for each bit of the first and second term val-

ues.

OR Obtains the logical OR operation for each bit of the first and second term values.

XOR Obtains the exclusive OR operation for each bit of the first and second term val-

ues.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 228 of 853
Apr 01, 2011

Obtains the logical negation (NOT) by each bit.

[Function]

Negates the value of the term of an expression on a bit-by-bit basis and returns the result.

A blank is required between the NOT operator and the term.

[Application example]

(1) Logical negation is performed on "3H" as follows:

0FFFFFFFCH is returned.

Therefore, (1) can also be described as: MOVW AX, #LOWW #0FFFFFFFCH

NOT

MOVW AX, #LOWW (NOT 3H) ; (1)

NOT) 0000 0000 0000 0000

1111 1111 1111 1111

0000 0000 0000 0011

1111 1111 1111 1100

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 229 of 853
Apr 01, 2011

Obtains the logical AND operation for each bit of the first and second term values.

[Function]

Performs an AND (logical product) operation between the value of the 1st term of an expression and the value of its

2nd term on a bit-by-bit basis and returns the result.

A blank is required before and after the AND operator.

[Application example]

(1) AND operation is performed between the two values "6FAH" and "0FH" as follows:

The result "0AH" is returned. Therefore, (1) in the above expression can also be described as:

MOV A, #0AH

AND

MOV A, #6FAH AND 0FH ; (1)

AND) 0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 1111

0000 0000 0000 1010

0000 0110 1111 1010

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 230 of 853
Apr 01, 2011

Obtains the logical OR operation for each bit of the first and second term values.

[Function]

Performs an OR (Logical sum) operation between the value of the 1st term of an expression and the value of its 2nd

term on a bit-by-bit basis and returns the result.

A blank is required before and after the OR operator.

[Application example]

(1) OR operation is performed between the two values "0AH" and "1101B" as follows:

The result "0FH" is returned.

Therefore, (1) in the above expression can also be described as: MOV A, #0FH

OR

MOV A, #0AH OR 1101B ; (1)

OR) 0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 1101

0000 0000 0000 1111

0000 0000 0000 1010

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 231 of 853
Apr 01, 2011

Obtains the exclusive OR operation for each bit of the first and second term values.

[Function]

Performs an Exclusive-OR operation between the value of the 1st term of an expression and the value of its 2nd term

on a bit-by-bit basis and returns the result. A blank is required before and after the XOR operator.

[Application example]

(1) XOR operation is performed between the two values "9AH" and "9DH" as follows:

The result "7H" is returned.

Therefore, (1) in the above expression can also be described as: MOV A, #7H

XOR

MOV A, #9AH XOR 9DH ; (1)

XOR) 0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 1001 1101

0000 0000 0000 0111

0000 0000 1001 1010

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 232 of 853
Apr 01, 2011

4.1.6 Relational operators

The following relational operators are available.

Operator Overview

EQ (=) Compares whether values of first term and second term are equivalent.

NE (<>) Compares whether values of first term and second term are not equivalent.

GT (>) Compares whether value of first term is greater than value of the second.

GE (>=) Compares whether value of first term is greater than or equivalent to the value of

the second term.

LT (<) Compares whether value of first term is smaller than value of the second.

LE (<=) Compares whether value of first term is smaller than or equivalent to the value of

the second term.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 233 of 853
Apr 01, 2011

Compares whether values of first term and second term are equivalent.

[Function]

Returns 0FFH (True) if the value of the 1st term of an expression is equal to the value of its 2nd term, and 00H (False)

if both values are not equal.

A blank is required before and after the EQ operator.

[Application example]

(1) In (1) above, the expression "A1 EQ (A2 + 4H)" becomes "12C4H EQ (12C0H + 4H)".

The operator returns 0FFH because the value of the 1st term is equal to the value of the 2nd term.

(2) In (2) above, the expression "A1 EQ A2" becomes "12C4H EQ 12C0H".

The operator returns 00H because the value of the 1st term is not equal to the value of the 2nd term.

EQ (=)

A1 EQU 12C4H

A2 EQU 12C0H

 MOV A, #A1 EQ (A2 + 4H) ; (1)

 MOV X, #A1 EQ A2 ; (2)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 234 of 853
Apr 01, 2011

Compares whether values of first term and second term are not equivalent.

[Function]

Returns 0FFH (True) if the value of the 1st term of an expression is not equal to the value of its 2nd term, and 00H

(False) if both values are equal.

A blank is required before and after the NE operator.

[Application example]

(1) In (1) above, the expression "A1 NE A2" becomes "5678H NE 5670H".

The operator returns 0FFH because the value of the 1st term is not equal to the value of the 2nd term.

(2) In (2) above, the expression "A1 NE (A2 + 8H)" becomes "5678H NE (5670H + 8H)".

The operator returns 00H because the value of the 1st term is equal to the value of the 2nd term.

NE (<>)

A1 EQU 5678H

A2 EQU 5670H

 MOV A, #A1 NE A2 ; (1)

 MOV A, #A1 NE (A2 + 8H) ; (2)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 235 of 853
Apr 01, 2011

Compares whether value of first term is greater than value of the second.

[Function]

Returns 0FFH (True) if the value of the 1st term of an expression is greater than the value of its 2nd term, and 00H

(False) if the value of the 1st term is equal to or less than the value of the 2nd term.

A blank is required before and after the GT operator.

[Application example]

(1) In (1) above, the expression "A1 GT A2" becomes "1023H GT 1013H".

The operator returns 0FFH because the value of the 1st term is greater than the value of the 2nd term.

(2) In (2) above, the expression "A1 GT (A2 + 10H)" becomes "1023H GT (1013H + 10H)".

The operator returns 00H because the value of the 1st term is equal to the value of the 2nd term.

GT (>)

A1 EQU 1023H

A2 EQU 1013H

 MOV A, #A1 GT A2 ; (1)

 MOV X, #A1 GT (A2 + 10H) ; (2)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 236 of 853
Apr 01, 2011

Compares whether value of first term is greater than or equivalent to the value of the second term.

[Function]

Returns 0FFH (True) if the value of the 1st term of an expression is greater than or equal to the value of its 2nd term,

and 00H (False) if the value of the 1st term is less than the value of the 2nd term.

A blank is required before and after the GE operator.

[Application example]

(1) In (1) above, the expression "A1 GE A2" becomes "2037H GE 2015H".

The operator returns 0FFH because the value of the 1st term is greater than the value of the 2nd term.

(2) In (2) above, the expression "A1 GE (A2 + 23H)" becomes "2037H GE (2015H + 23H)".

The operator returns 00H because the value of the 1st term is less than the value of the 2nd term.

GE (>=)

A1 EQU 2037H

A2 EQU 2015H

 MOV A, #A1 GE A2 ; (1)

 MOV X, #A1 GE (A2 + 23H) ; (2)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 237 of 853
Apr 01, 2011

Compares whether value of first term is smaller than value of the second.

[Function]

Returns 0FFH (True) if the value of the 1st term of an expression is less than the value of its 2nd term, and 00H (False)

if the value of the 1st term is equal to or greater than the value of the 2nd term.

A blank is required before and after the LT operator

[Application example]

(1) In (1) above, the expression "A1 LT A2" becomes "1000H LT 1020H".

The operator returns 0FFH because the value of the 1st term is less than the value of the 2nd term.

(2) In (2) above, the expression "(A1 + 20H) LT A2" becomes "(1000H + 20H) LT 1020H".

The operator returns 00H because the value of the 1st term is equal to the value of the 2nd term.

LT (<)

A1 EQU 1000H

A2 EQU 1020H

 MOV A, #A1 LT A2 ; (1)

 MOV X, # (A1 + 20H) LT A2 ; (2)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 238 of 853
Apr 01, 2011

Compares whether value of first term is smaller than or equivalent to the value of the second term.

[Function]

Returns 0FFH (True) if the value of the 1st term of an expression is less than or equal to the value of its 2nd term, and

00H (False) if the value of the 1st term is greater than the value of the 2nd term.

A blank is required before and after the LE operator.

[Application example]

(1) In (1) above, the expression "A1 LE A2" becomes "103AH LE 1040H".

The operator returns 0FFH because the value of the 1st term is less than the value of the 2nd term.

(2) In (2) above, the expression "(A1 + 7H) LE A2" becomes "(103AH + 7H) LE 1040H".

The operator returns 00H because the value of the 1st term is greater than the value of the 2nd term.

LE (<=)

A1 EQU 103AH

A2 EQU 1040H

 MOV A, #A1 LE A2 ; (1)

 MOV X, # (A1 + 7H) LE A2 ; (2)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 239 of 853
Apr 01, 2011

4.1.7Shift operators

The following shift operators are available.

Operator Overview

SHR Obtains only the right-shifted value of the first term which appears in the second

term.

SHL Obtains only the left-shifted value of the first term which appears in the second

term.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 240 of 853
Apr 01, 2011

Obtains only the right-shifted value of the first term which appears in the second term.

[Function]

Returns a value obtained by shifting the value of the 1st term of an expression to the right the number of bits specified

by the value of the 2nd term. Zeros equivalent to the specified number of bits shifted move into the high-order bits.

A blank is required before and after the SHR operator.

If the number of shifted bits is 0, the value of the first term is returned as is. If the number of shifted bits exceeds 32, the

space is automatically filled with zeros.

[Application example]

(1) This operator shifts the value "01AFH" to the right by 5 bits.

The value "000DH" is returned.

Therefore, (1) in the above example can also be described as: MOV A, #0DH

SHR

MOV A, #01AFH SHR 5 ; (1)

0000 0000 0000 0000 0000 0001 1010 1111

0000 0000 0000 0000 0000 0000 0000 1101 0111 1

0's are inserted. Right-shifted by 5 bits.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 241 of 853
Apr 01, 2011

Obtains only the left-shifted value of the first term which appears in the second term.

[Function]

Returns a value obtained by shifting the value of the 1st term of an expression to the left the number of bits specified by

the value of the 2nd term. Zeros equivalent to the specified number of bits shifted move into the low-order bits.

A blank is required before and after the SHL operator.

If the number of shifted bits is 0, the value of the first term is returned as is. If the number of shifted bits exceeds 32, the

space is automatically filled with zeros.

[Application example]

(1) This operator shifts the value "21H" to the left by 2 bits.

The value "84H" is returned.

Therefore, (1) in the above example can also be described as: MOV A, #84H

SHL

MOV A, #21H SHL 2 ; (1)

0000 0000 0000 0000 0000 0000 0010 0001

0000 0000 0000 0000 0000 0000 1000 010000

Left-shifted by 2 bits. 0's are inserted.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 242 of 853
Apr 01, 2011

4.1.8 Byte separation operators

The following byte separation operators are available.

Operator Overview

HIGH Returns the high-order 8-bit value of a term.

LOW Returns the low-order 8-bit value of a term.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 243 of 853
Apr 01, 2011

Returns the high-order 8-bit value of a term.

[Function]

Returns the high-order 8-bit value of a term.

A blank is required between the HIGH operator and the term.

[Application example]

(1) By executing a MOV instruction, this operator returns the high-order 8-bit value "12H" of the expression

"1234H".

Therefore, (1) in the above example can also be described as: MOV A, #12H

[Remark]

A HIGH operation for an SFR name is performed, using either of the following description methods.

Or,

The result obtained from the operation is an operand of the absolute NUMBER attribute.

No other operations can be performed for the SFR name .

<Example>

HIGH

MOV A, #HIGH 1234H ; (1)

HIGH SFR-name

HIGH[]([]SFR-name[])

Symbol field Mnemonic field Operand field

 MOV R0, #HIGH PM0

 MOV R1, #HIGH PM1 + 1H ; Equivalent to (HIGH PM1) + 1

 MOV R1, #HIGH (PM1 + 1H) ; An error is returned because

 ; operands other than HIGH, LOW,

 ; HIGHW, and LOWW are specified

 ; as the SFR name

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 244 of 853
Apr 01, 2011

Returns the low-order 8-bit value of a term.

[Function]

Returns the low-order 8-bit value of a term.

A blank is required between the LOW operator and the term.

[Application example]

(1) By executing a MOV instruction, this operator returns the low-order 8-bit value "34H" of the expression

"1234H".

Therefore, (1) in the above example can also be described as: MOV A, #34H

[Remark]

A LOW operation for an SFR name is performed, using either of the following description methods.

Or,

The result obtained from the operation is an operand of the absolute NUMBER attribute.

No other operations can be performed for the SFR name .

<Example>

LOW

MOV A, #LOW 1234H ; (1)

LOW SFR-name

LOW[]([]SFR-name[])

Symbol field Mnemonic field Operand field

 MOV R0, #LOW PM0

 MOV R1, #LOW PM1 + 1H ; Equivalent to #(LOW PM1) + 1

 MOV R1, #LOW (PM1 + 1H) ; An error is returned because

 ; operands other than HIGH, LOW,

 ; HIGHW, and LOWW are specified

 ; as the SFR name

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 245 of 853
Apr 01, 2011

4.1.9 Word separation operators

The following word separation operators are available.

Operator Overview

HIGHW Returns the high-order 16-bit value of a term.

LOWW Returns the low-order 16-bit value of a term.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 246 of 853
Apr 01, 2011

Returns the high-order 16-bit value of a term.

[Function]

Returns the high-order 16-bit value of a term.

A blank is required between the HIGHW operator and the term.

[Application example]

(1) By executing a MOVW instruction, this operator returns the high-order 16-bit value "1234H" of the expres-

sion "12345678H".

Therefore, (1) in the above example can also be described as: MOVW AX, #1234H

(2) By executing the MOV instruction on line (2), the higher address of label LAB is set to the ES register.

[Remark]

A HIGHW operation for an SFR name is performed, using either of the following description methods.

Or,

The result obtained from the operation is an operand of the absolute NUMBER attribute.

No other operations can be performed for the SFR name.

<Example>

HIGHW

MOVW AX, #HIGHW 12345678H ; (1)

MOV ES, #HIGHW LAB ; (2)

MOVW AX, ES:!LAB

HIGHW SFR-name

HIGHW[]([]SFR-name[])

Symbol field Mnemonic field Operand field

 MOVW RP0, #HIGHW PM0

 MOVW RP1, #HIGHW PM1 + 1H ; Equivalent to #(HIGHW PM1) + 1

 MOVW RP1, #HIGHW (PM1 + 1H) ; An error is returned because

 ; operands other than HIGH, LOW,

 ; HIGHW, and LOWW are specified

 ; as the SFR name

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 247 of 853
Apr 01, 2011

Returns the low-order 16-bit value of a term.

[Function]

Returns the low-order 16-bit value of a term.

A blank is required between the LOWW operator and the term.

[Application example]

(1) By executing a MOVW instruction, this operator returns the low-order 16-bit value "5678H" of the expres-

sion "12345678H".

Therefore, (1) in the above example can also be described as: MOVW AX, #5678H

[Remark]

A LOWW operation for an SFR name is performed, using either of the following description methods.

Or,

The result obtained from the operation is an operand of the absolute NUMBER attribute.

No other operations can be performed for the SFR name.

<Example>

LOWW

MOVW AX, #LOWW 12345678H ; (1)

LOWW SFR-name

LOWW[]([]SFR-name[])

Symbol field Mnemonic field Operand field

 MOVW RP0, #LOWW PM0

 MOVW RP1, #LOWW PM1 + 1H ; Equivalent to #(LOWW PM1) + 1

 MOVW RP1, #LOWW (PM1 + 1H) ; An error is returned because

 ; operands other than HIGH, LOW,

 ; HIGHW, and LOWW are specified

 ; as the SFR name

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 248 of 853
Apr 01, 2011

4.1.10 Special operators

The following special operators are available.

Operator Overview

DATAPOS Obtains the address part of a bit symbol.

BITPOS Obtains the bit part of a bit symbol.

MASK Obtains a 16-bit value in which the specified bit positions are 1 and all others are

0.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 249 of 853
Apr 01, 2011

Obtains the address part of a bit symbol.

[Function]

Returns the address portion (byte address) of a bit symbol.

[Application example]

(1) An EQU directive defines the name "SYM" with a value of 0FE68H.6.

(2) "DATAPOS SYM" represents "DATAPOS 0FE68H.6", and "0FE68H" is returned.

Therefore, (2) in the above example can also be described as: MOV A, !0FE68H

DATAPOS

SYM EQU 0FE68H.6 ; (1)

 MOV A, !DATAPOS SYM ; (2)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 250 of 853
Apr 01, 2011

Obtains the bit part of a bit symbol.

[Function]

Returns the bit portion (bit position) of a bit symbol.

[Application example]

(1) An EQU directive defines the name "SYM" with a value of 0FE68H.6.

(2) "BITPOS.SYM" represents "BITPOS 0FE68H.6", and "6" is returned.

A CLR1 instruction clears [HL].6 to 0.

BITPOS

SYM EQU 0FE68H.6 ; (1)

 CLR1 [HL].BITPOS SYM ; (2)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 251 of 853
Apr 01, 2011

Obtains a 16-bit value in which the specified bit positions are 1 and all others are 0.

[Function]

Returns a 16-bit value in which the specified bit position is 1 and all others are set to 0.

[Application example]

(1) A MOVW instruction returns the value "8089H".

MASK

MOVW AX, #MASK (0, 3, 0FE00H.7, 15) ; (1)

MASK (0, 3, 0FE00H.7, 15)

F E D C B A 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 252 of 853
Apr 01, 2011

4.1.11 Other operator

The following operators are also available.

Operator Overview

() Prioritizes the calculation within ()

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 253 of 853
Apr 01, 2011

Prioritizes the calculation within ()

[Function]

Causes an operation in parentheses to be performed prior to operations outside the parentheses.

This operator is used to change the order of precedence of other operators.

If parentheses are nested at multiple levels, the expression in the innermost parentheses will be calculated first.

[Application example]

Calculations are performed in the order of expressions (1), (2) and the value "14" is returned as a result.

If parentheses are not used,

Calculations are performed in the order (1), (2) shown above, and the value "10" is returned as a result.

See Table 4-5. Operator Precedence Levels, for the order of precedence of operators.

()

MOV A, # (4 + 3) * 2

(4 + 3) * 2

 (1)

 (2)

4 + 3 * 2

 (1)

 (2)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 254 of 853
Apr 01, 2011

4.1.12 Restrictions on operations

The operation of an expression is performed by connecting terms with operator(s). Elements that can be described as

terms are constants, $, names and labels. Each term has a relocation attribute and a symbol attribute.

Depending on the types of relocation attribute and symbol attribute inherent in each term, operators that can work on

the term are limited. Therefore, when describing an expression it is important to pay attention to the relocation attribute

and symbol attribute of each term constituting the expression.

(1) Operators and relocation attributes

Each term constituting an expression has a relocation attribute and a symbol attribute.

If terms are categorized by relocation attribute, they can be divided into 3 types: absolute terms, relocatable terms

and external reference terms.

The following table shows the types of relocation attributes and their properties, and also the corresponding terms.

Table 4-6. Relocation Attribute Types

Note There are 6 operators which can take an external reference term as the target of an operation; these are "+",

"-", "HIGH", "LOW", "HIGHW" and "LOWW". However, only one external reference term is allowed in one

expression, and it must be connected with the "+" operator.

The following tables categorize combinations of operators and terms which can be used in expressions by reloca-

tion attribute.

Table 4-7. Combinations of Operators and Terms by Relocation Attribute (Relocatable Terms)

Type Property Corresponding Elements

Absolute term Term that is a value or

constant determined at

assembly time

- Constants

- Labels in absolute segments

- $, indicating a location address defined in an abso-

lute segment

- Names defined with absolute values such as con-

stants or the labels and $ listed above.

Relocatable term Term with a value that is

not determined at

assembly time

- Labels defined in relocatable segments

- $, indicating a relocatable address defined in a

relocatable segment

- Names defined with relocatable symbols

External reference

termNote
Term for external reference

of symbol in other module

- Labels defined with EXTRN directive

- Names defined with EXTBIT directive

Operator Type Relocation Attribute of Term

X:ABS

Y:ABS

X:ABS

Y:REL

X:REL

Y:ABS

X:REL

Y:REL

X + Y A R R -

X - Y A - R ANote 1

X * Y A - - -

X / Y A - - -

X MOD Y A - - -

X SHL Y A - - -

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 255 of 853
Apr 01, 2011

ABS : Absolute term

REL : Relocatable term

A : Result is absolute term

R : Result is relocatable term

- : Operation not possible

Notes 1. Operation is possible only when X and Y are defined in the same segment, and when X and Y are not

relocatable terms operated on by HIGH, LOW, HIGHW, LOWW, or DATAPOS.

2. Operation is possible when X and Y are not relocatable terms operated on by HIGH, LOW, HIGHW,

LOWW, or DATAPOS.

There are 6 operators which can take an external reference term as the target of an operation; these are "+", "-",

"HIGH", "LOW", "HIGHW" and "LOWW". However, only one external reference term is allowed in one expression,

and it must be connected with the "+" operator.

The possible combinations of operators and terms are as follows, categorized by relocation attribute.

X SHR Y A - - -

X EQ Y A - - ANote 1

X LT Y A - - ANote 1

X LE Y A - - ANote 1

X GT Y A - - ANote 1

X GE Y A - - ANote 1

X NE Y A - - ANote 1

X AND Y A - - -

X OR Y A - - -

X XOR Y A - - -

NOT X A A - -

+ X A A R R

- X A A - -

HIGH X A A RNote 2 RNote 2

LOW X A A RNote 2 RNote 2

HIGHW X A A RNote 2 RNote 2

LOWW X A A RNote 2 RNote 2

MASK (X) A A - -

DATAPOS X.Y A - - -

BITPOS X.Y A - - -

MASK (X.Y) A - - -

DATAPOS X A A R R

BITPOS X A A A A

Operator Type Relocation Attribute of Term

X:ABS

Y:ABS

X:ABS

Y:REL

X:REL

Y:ABS

X:REL

Y:REL

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 256 of 853
Apr 01, 2011

Table 4-8. Combinations of Operators and Terms by Relocation Attribute (External Reference Terms)

ABS : Absolute term

EXT : External reference term

REL : Relocatable term

A : Result is absolute term

E : Result is external reference term

R : Result is relocatable term

- : Operation not possible

Notes 1. Operation is possible only when X and Y are not external reference terms operated on by HIGH, LOW,

HIGHW, LOWW, DATAPOS, or BITPOS.

2. Operation is possible only when X and Y are not relocatable terms operated on by HIGH, LOW,

HIGHW, LOWW, or DATAPOS.

(2) Operators and symbol attributes

Each of the terms constituting an expression has a symbol attribute in addition to a relocation attribute.

If terms are categorized by symbol attribute, they can be divided into two types: NUMBER terms and ADDRESS

terms.

The following table shows the types of symbol attributes used in expressions and the corresponding terms.

Table 4-9. Symbol Attribute Types in Operations

Operator Type Relocation Attribute of Term

X:ABS

Y:EXT

X:EXT

Y:ABS

X:REL

Y:EXT

X:EXT

Y:REL

X:EXT

Y:EXT

X + Y E E - - -

X - Y - E - - -

+ X A E R E E

HIGH X A ENote 1 RNote 2 ENote 1 ENote 1

LOW X A ENote 1 RNote 2 ENote 1 ENote 1

HIGHW X A ENote 1 RNote 2 ENote 1 ENote 1

LOWW X A ENote 1 RNote 2 ENote 1 ENote 1

MASK (X) A - - - -

DATAPOS X.Y - - - - -

BITPOS X.Y - - - - -

MASK (X.Y) - - - - -

DATAPOS X A E R E E

BITPOS X A E A E E

Symbol Attribute Type Corresponding Terms

NUMBER term - Symbol with NUMBER attribute

- Constant

ADDRESS term - Symbol with ADDRESS attribute

- "$", indicating the location counter

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 257 of 853
Apr 01, 2011

The possible combinations of operators and terms are as follows, categorized by symbol attribute.

Table 4-10. Combinations of Operators and Terms by Symbol Attribute

ADDRES : ADDRESS term

NUMBER : NUMBER term

A : Result is ADDRESS term

N : Result is NUMBER term

- : Operation not possible

Operator Type Symbol Attribute of Term

X:ADDRESS

Y:ADDRESS

X:ADDRESS

Y:NUMBER

X:NUMBER

Y:ADDRESS

X:NUMBER

Y:NUMBER

X + Y A A A N

X - Y N A N N

X * Y N N N N

X / Y N N N N

X MOD Y N N N N

X SHL Y N N N N

X SHR Y N N N N

X EQ Y N N N N

X LT Y N N N N

X LE Y N N N N

X GT Y N N N N

X GE Y N N N N

X NE Y N N N N

X AND Y N N N N

X OR Y N N N N

X XOR Y N N N N

NOT X A A N N

+ X A A N N

- X A A N N

HIGH X A A N N

LOW X A A N N

HIGHW X A A N N

LOWW X A A N N

DATAPOS X A A N N

MASK X N N N N

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 258 of 853
Apr 01, 2011

(3) How to check operation restrictions

The following is an example of how to interpret the operation of relocation attributes and symbol attributes.

Here, "TABLE" is presumed to be a defined label in a relocatable code segment.

(a) Operation and relocation attributes

"TABLE + 5H" is a relocatable term + an absolute term, so the rules of "Table 4-7. Combinations of Operators

and Terms by Relocation Attribute (Relocatable Terms)" apply.

Operator type ... X + Y

Relocation attribute of term ... X:REL, Y:ABS

Therefore, it can be understood that the result is "R", or more specifically a relocatable term.

(b) [Operation and symbol attributes]

"TABLE + 5H" is an ADDRESS term + a NUMBER term, so the rules of "Table 4-10. Combinations of Opera-

tors and Terms by Symbol Attribute" apply.

Operator type ... X + Y

Relocation attribute of term ... X:ADDRESS, Y:NUMBER

Therefore, it can be understood that the result is "A", or more specifically an ADDRESS term.

4.1.13 Absolute expression definitions

Absolute expressions are expressions with values determined by evaluation at assembly time.

The following belong to the category of absolute expressions:

- Constants

- Expressions that are composed only of constants (constant expressions)

- Constants, EQU symbols defined from constant expressions, and SET symbols

- Expressions that operate on the above

Remark Only backward referencing of symbols is possible.

4.1.14 Bit position specifier

Bit access becomes possible via use of the (.) bit position specifier.

(1) Description Format

BR $TABLE + 5H

X (First Term) Y (Second Term)

General register A Expression (0 - 7)

Control register PSW Expression (0 - 7)

Special function register sfrNote Expression (0 - 7)

Memory [HL]Note Expression (0 - 7)

X[].[]Y

 Bit term

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 259 of 853
Apr 01, 2011

Note For details on the specific description, see the user's manual of each device.

(2) Function

- The first term specifies a byte address, and the second term specifies a bit position. This makes it possible to

access a specific bit.

(3) Explanation

- An expression that uses a bit position specifier is called a bit term.

- The bit position specifier is not affected by the precedence order of operators. The left side is recognized as term

1 and the right side is recognized as term 2.

- The following restrictions apply to the first term:

- A NUMBER or ADDRESS attribute expression, an SFR name supporting 8 -bit access, or a register name (A)

can be specified.

- If the first term is an absolute expression, the area must be 0H to 0FFFFFH.

- External reference symbols can be specified.

- The following restrictions apply to the second term:

- The value of the expression must be in the range from 0 to 7. When this range is exceeded, an error occurs.

- It is possible to specify only absolute NUMBER attribute expressions.

- External reference symbols cannot be specified.

(4) Operations and relocation attributes

- The following table shows combinations of terms 1 and 2 by relocation attribute.

ABS : Absolute term

REL : Relocatable term

EXT : External reference term

A : Result is absolute term

E : Result is external reference term

R : Result is relocatable term

- : Operation not possible

(5) Bit symbol values

- When a bit symbol is defined by using the bit position specifier in the operand field of an EQU directive, the value

of the bit symbol is as follows:

Notes 1. For a detailed description, see the user's manual of each device.

2. bit = 0 - 7

Terms combination X: ABS ABS REL REL ABS EXT REL EXT EXT

Terms combination Y: ABS REL ABS REL EXT ABS EXT REL EXT

X.Y A - R - - E - - -

Operand Type Symbol Value

A.bitNote 2 1.bit

PSW.bitNote 2 FFFFAH.bit

sfrNote 1.bitNote 2 FFFXXH.bitNote 3

expression.bitNote 2 XXXXXH.bitNote 4

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 260 of 853
Apr 01, 2011

3. FFFXXH is an sfr address

4. XXXXXH is an expression value

(6) Example

4.1.15 Identifiers

An identifier is a name used for symbols, labels, macros etc.

Identifiers are described according to the following basic rules.

- Identifiers consist of alphanumeric characters and symbols that are used as characters (?,@,_)

However, the first character cannot be a number (0 to 9).

- Reserved words cannot be used as identifiers.

With regard to reserved words, see "4.5 Reserved Words".

- The assembler distinguishes between uppercase and lowercase.

SET1 0FFE20H.3

SET1 A.5

CLR1 P1.2

SET1 1 + 0FFE30H.3 ; Equals 0FFE31H.3

SET1 0FFE40H.4 + 2 ; Equals 0FFE40H.6

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 261 of 853
Apr 01, 2011

4.1.16 Operand characteristics

Instructions and directives requiring one or more operands differ in the size and address range of the required operand

values and in the symbol attributes of the operands.

For example, the function of the instruction "MOV r, #byte" is to transfer the value indicated by "byte" to register "r".

Because the register is an 8-bit register, the data size of "byte" must be 8 bits or less.

An assembly error will occur at the statement "MOV R0, #100H", because the value of the second operand (100H) can-

not be expressed with 8 bits.

Therefore, it is necessary to bear the following points in mind when describing operands.

- Whether the size and address range are suitable for an operand of that instruction (numeric value, name, label)

- Whether the symbol attribute is suitable for suitable for an operand of that instruction (name, label)

(1) Operand value sizes and address ranges

There are conditions that limit the size and address ranges of numeric values, names and labels used as instruc-

tion operands.

For instructions, the size and address range of operands are limited by the operand representation. For directives,

they are limited by the directive type.

These limiting conditions are as follows.

Table 4-11. Instruction Operand Value Ranges

Operand

Representation

Value Range

byte 8-bit value : 0H to 0FFH

word word [B]

word [C]

word [BC]

(1) Numeric constants and NUMBER attribute symbols

0H to FFFFH

(2) ADDRESS attribute symbols

In either of the following areas

- F0000H to FFFFFH

- When MAA=0, the area (01000H to 0xxxxH) mirrored to RAM

space, and when MAA=1 the area (11000H to 1xxxxH) Note 1 mir-

rored to RAM space

ES : word [B]

ES : word [C]

ES : word [BC]

(1) Numeric constants and NUMBER attribute symbols

0H to FFFFH

(2) ADDRESS attribute symbols

0H to FFFFFH

Other than the above 16-bit value : 0H to FFFFH

saddr FFE20H to FFF1FHNote 4

saddrp FFE20H to FFF1FH even numbeNote 4

sfr FFF20H to FFFFFH : Special function register symbols (SFR symbols), numeric constants,

and NUMBER attribute symbolsNote 5

sfrp FFF20H to FFFFFH : Special function register symbols (symbols of SFRs that support 16-bit

operations, even values only), numeric constants, and NUMBER attribute symbolsNote 5

addr20 !!addr20 0H to FFFFFH

$addr20 0H to FFFFFH, and when a branch destination is in the range (-80H)

to (+7FH) from the next address after a branch or call instruction

$!addr20 0H to FFFFFH, and when a branch destination is in the range (-

8000H) to (+7FFFH) from the next address after a branch or call

instruction

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 262 of 853
Apr 01, 2011

Notes 1. The address range of the area mirrored to RAM space differs depending to the device. For details, see

to the user's manual of the target device.

2. To describe sfr or 2ndsfr as an operand, it can be specified as !sfr and !2ndsfr. These are output as the

operands for !addr16 in the code.

It is possible to described 2ndsfr without "!". The same !addr16 operand code will be output.

3. Only even addresses can be specified for 16-bit data.

4. In order to maintain compatibility with the 78K0, the range from FE20H to FF1FH can be specified with

numeric constants and NUMBER attribute symbols only.

5. For numeric constants and NUMBER attribute symbols, no check of read/write access for the SFR at

the specified address is performed.

addr16 !addr16

(BR, CALL instruc-

tions)

0H to FFFFH

(The range in which numeric constants and symbols can be speci-

fied is the same)

!addr16Note 2

(Other than BR, CALL

instructions)

(1) Numeric constants and NUMBER attribute symbolNote 3

0H to FFFFH

(2) ADDRESS attribute symbolNote 3

Within one of the following:

- F0000H to FFFFFH

- The area mirrored to RAM space when MAA=0 (e.g. 01000H to

0xxxxH), or the area mirrored to RAM space when MAA=1 (e.g.

11000H to 1xxxxHNote 1

ES:!addr16 (1) Numeric constants or NUMBER attribute symbolsNote 3

0H to FFFFH

(2) ADDRESS attribute symbolsNote 3

0H to FFFFFH

!addr16.bit (1) DBIT symbol, SFBIT or SABIT attribute bit symbols, bit symbols

defined with EQU directives (but only when operand includes an

ADDRESS attribute symbol)

Within one of the following:

- F0000H to FFFFFH

- The area mirrored to RAM space when MAA=0 (e.g. 01000H to

0xxxxH), or the area mirrored to RAM space when MAA=1 (e.g.

11000H to 1xxxxH)Note 1

(2) Bit symbols other than the above

0H to FFFFH

ES : !addr16.bit (1) DBIT symbols, SFBIT or SABIT attribute bit symbols, bit sym-

bols defined with EQU directives (only when operand includes

an ADDRESS attribute symbol)

0H to FFFFFH

(2) Bit symbols other than the above

0H to FFFFH

addr5 0080H to 00BFH (CALLT table area, even values only)

bit 3-bit value : 0 to 7

n 2-bit value : 0 to 3

Operand

Representation

Value Range

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 263 of 853
Apr 01, 2011

The following examples explain why the symbol attribute of an addr16 or word operand affects the range that can

be specified for that operand.

For more information about symbol attributes, see "(d) Symbol attributes".

(a) !addr16 (Instructions other than BR,CALL)

This section explains why the range of values that can be specified for an !addr16 operand (instructions other

than BR and CALL) differs between (1) numeric constants and NUMBER attribute symbols and (2) ADDRESS

attribute symbols.

Following is an example.

Line (a) contains a NUMBER attribute symbol. The following explains the case when this NUMBER attribute

symbol is specified as an !addr16 operand.

The "MOV !addr16, A" instruction in the instruction set uses direct addressing for the !addr16 operand. In line

(b) of the example, the value in register A is transferred to address 0FF100H. The NUMBER attribute symbol

in line (a) could be replaced with the value in line (c). That is, the NUMBER0 symbol (the NUMBER attribute

symbol specified for the !addr16 operand) and the numeric value 0F100H both indicate the same address,

namely "0F100H". With respect to the range, NUMBER attribute symbols used as !addr16 operands (instruc-

tions other than BR and CALL) can have values from 0H to FFFFH. These values specify addresses from

F0000H to FFFFFH.

Next, the following explains the case where the same kind of processing is performed for the ADDRESS0

label, an ADDRESS attribute symbol.

The addr16 range is 0000H to FFFFH, while the value of the ADDRESS symbol in line (d) is in the RAM mem-

ory space FxxxxH to FFFFFH. Normally this would result in an error. Therefore, to facilitate program develop-

ment, provision is made for operand labels like ADDRESS0 (ADDRESS attribute symbols), under which the

operand range F0000H to FFFFFH is allowed.

To summarize, !addr16 operands (instructions other that BR,CALL) that are ADDRESS attribute symbols can

have values from F0000H to FFFFF. This allows them to be specified as !addr16 operands just as they are.

Additionally, support for !addr16 is required when ROM areas are mirrored to the RAM area.

This is shown in the following example.

NUMBER0 EQU 0F100H ; (a)

NUMBER1 EQU 0F102H

NUMBER2 EQU 0F103H

D0 DSEG AT 0FF100H

ADDRESS0 : DS 1

ADDRESS1 : DS 1

ADDRESS2 : DS 1

 CSEG

 MOV !NUMBER0, A ; (b)

 MOV !0F100H, A ; (c)

 MOV !ADDRESS0, A ; (d)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 264 of 853
Apr 01, 2011

Segment MO is located in ROM space that is mirrored to RAM space. Segment MO is located at 01000H to

0xxxxH when MAA=0, and at 11000H to 0xxxxH when MAA=1. Due to this, the value of the ADDRESS0 sym-

bol in line (e) is in the range from 01000H to 0xxxxH or from 11000H to 1xxxxH. To facilitate program develop-

ment, references to symbols in mirrored segments like the symbol in line (e) are allowed. Their !addr16 range

is 01000H to 0xxxxH, or 11000H to 1xxxxH.

To summarize, !addr16 (instructions other than BR,CALL) symbols with the ADDRESS attribute can have val-

ues from 01000H to 0xxxxH, or from 11000H to 0xxxxH. This allows them to be specified as !addr16 operands

just as they are.

(b) ES:!addr16

This section explains why the range of values that can be specified for an ES:!addr16 operand varies between

(1) numeric constants and NUMBER attribute symbols and (2) ADDRESS attribute symbols.

Following is an example.

The statements in lines (f) and (g) transfer data from ADDRESS0 to register A.

The addr16 range is 0000H to FFFFH. But in line (g) the value of the ADDRESS0 symbol is 12345H. Nor-

mally this would result in an error.

Therefore, to facilitate program development, provision is made to allow ADDRESS0 to be in the range 0H to

FFFFFH, making it possible to write lines like line (g).

To summarize, ES:!addr16 operands which are ADDRESS attribute symbols can be specified just as they are.

Values from 0H to FFFFFH can also be specified just as they are.

M0 CSEG MIRRORP

ADDRESS0 : DB 12H

ADDRESS1 : DB 34H

ADDRESS2 : DB 56H

 CSEG

 MOV A, !ADDRESS0 ; (e)

DATA CSEG AT 12345H

ADDRESS0 : DB 12H

ADDRESS1 : DB 34H

ADDRESS2 : DB 56H

 CSEG

 MOV ES, #HIGHW ADDRESS0 ; (f)

 MOV A, ES:!ADDRESS0 ; (g)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 265 of 853
Apr 01, 2011

(c) !addr16.bit, ES:!addr16.bit

This section explains why the value range in !addr16.bit and ES:!addr16.bit operands differs between (1) DBIT

symbols, SFBIT and SABIT attribute bit symbols, bit symbols defined by EQU directives (but only when an

ADDRESS attribute symbol is included in the operand) and (2) all other symbols.

This is shown by the following example.

Describing of the DBIT symbol on line (h), SFBIT attribute and SABIT attribute bit symbols on lines (i) and (j),

and the bit symbol defined with the EQU directive on line (k) (only when an ADDRESS attribute symbol is

included as an operand) as operands for !addr16.bit is made possible, as stated on lines (l) to (o), so the range

of values varies depending on the symbol attribute described.

For the same reasons, the value range for ES:!addr16.bit operands also depends on the symbol attribute.

(d) word

This section explains why the value ranges of word operands differs between (1) numeric constants and NUM-

BER attribute symbols and (2) ADDRESS attribute symbols.

This is shown by the following example.

 BSEG

DBITSYM0 DBIT ; (h)

DBITSYM1 DBIT

DBITSYM2 DBIT

BIT1_PM0 EQU PM0.1 ; (i)

BIT2_P0 EQU P0.2 ; (j)

 DSEG

ADDRESS0 : DS 1

ADDRESS1 : DS 1

ADDRESS2 : DS 1

ADR_BIT0 EQU ADDRESS0.0 ; (k)

ADR_BIT1 EQU ADDRESS0.1

ADR_BIT2 EQU ADDRESS0.2

 CSEG

 SET1 !DBITSYM0 ; (l)

 SET1 !BIT1_PM0 ; (m)

 SET1 !BIT2_P0 ; (n)

 SET1 !ADR_BIT0 ; (o)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 266 of 853
Apr 01, 2011

Since labels (ADDRESS attribute symbols) are often specified where a word is required in an operand, such

as in the word[B], word[C] and word[BC] instructions in lines (p) to (r), coding is made simpler by the ability to

specify labels, in the same manner as !addr16.

In the same reason, coding of ES:word[B], ES:word[C], ES:word[BC] instructions is simplified.

Table 4-12. Value ranges of Directive Operands

(2) Sizes of operands required by instructions

Instructions can be classified into machine instructions and directives. When they require immediate data or sym-

bols, the size of the required operand differs according to the instruction or directive. An error occurs when source

code specifies data that is larger than the required operand.

Expressions are operated as unsigned 32 bits. When evaluation results exceed 0FFFFFFFFH (32 bits),a warning

message is issued.

However, when relocatable or external symbols are specified as operands, the value cannot be determined by the

assembler. In these cases, the linker determines the value and performs range checks.

 DSEG

ADDRESS0 : DS 1

ADDRESS1 : DS 1

ADDRESS2 : DS 1

 CSEG

 MOV B, #0

 MOV ADDRESS0[B], A ; (p)

 MOV C, #1

 MOV ADDRESS0[C], A ; (q)

 MOVW BC, #2

 MOV ADDRESS0[BC], AX ; (r)

Directive Type Directive Value Range

Segment definition CSEG AT 0H to 0FFFFFH (excluding SFR and 2ndSFR)

DSEG AT 0H to 0FFFFFH (excluding SFR and 2ndSFR)

BSEG AT 0H to 0FFFFFH (excluding SFR and 2ndSFR)

ORG 0H to 0FFFFFH (excluding SFR and 2ndSFR)

Symbol definition EQU 20-bit value 0H to FFFFFH

SET 20-bit value 0H to FFFFFH

Memory initialization and

area reservation

DB 8-bit value 0H to FFH

DW 16-bit value 0H to FFFFH

DG 20-bit value 0H to FFFFFH

DS 16-bit value 0H to FFFFH

Automatic branch instruc-

tion selection

BR/CALL 0H to FFFFFH

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 267 of 853
Apr 01, 2011

(3) Symbol attributes and relocation attributes of operands

When names, labels, and $ (which indicate location counters) are described as instruction operands, they may or

may not be describable as operands. This depends on the symbol attributes and relocation attributes (see "4.1.12

Restrictions on operations").

When names and labels are described as instruction operands, they may or may not be describable as operands.

This depends on the direction of reference.

Reference direction for names and labels can be backward reference or forward reference.

- Backward reference: A name or label referenced as an operand, which is defined in a line above (before) the

name or label

- Forward reference: A name or label referenced as an operand, which is defined in a line below (after) the

name or label

<Example>

These symbol attributes and relocation attributes, as well as direction of reference for names and labels, are

shown below.

Table 4-13. Properties of Described Symbols as Operands

Symbol

Attributes

NUMBER ADDRESS NUMBER

ADDRESS

sfr Reserved WordsNote 1

Relocation

Attributes

Attributes Terms Attributes Terms Relocatable

Terms

External

Reference

Terms

Reference

Pattern

Backw

ard

Forwar

d

Backw

ard

Forwar

d

Backw

ard

Forwar

d

Backw

ard

Forwar

d

sfr 2ndsfr

D

e

s

c

ri

p

ti

o

n

F

o

r

m

a

t

byte OK OK OK OK OK OK OK OK NG NG

word OK OK OK OK OK OK OK OK NG NG

saddr OK OK OK OK OK OK OK OK OKNote 3 NG

saddrp OK OK OK OK OK OK OK OK OKNote 2,4 NG

sfr OK OK NG NG NG NG NG NG OKNote 2,5 NG

sfrp OK OK NG NG NG NG NG NG OKNote 2,6 NG

addr20 OK OK OK OK OK OK OK OK NG NG

addr16 OK OK OK OK OK OK OK OK OKNote 7 OKNote 7

addr5 OK OK OK OK OK OK OK OK NG NG

bit OK OK NG NG NG NG NG NG NG NG

n OK OK OK OK NG NG NG NG NG NG

 NAME TEST

 CSEG

L1 :

 BR !L1

 BR !L2

L2 :

 END

Forward reference

Backward reference

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 268 of 853
Apr 01, 2011

Forward : Forward reference
Backward : Backward reference
OK : Description possible
NG : An error
- : Description impossible

Notes 1. The defined symbol specifying sfr or sfrp (sfr area where saddr and sfr are not overlapped) as an oper-

and of EQU directive is only referenced backward. Forward reference is prohibited.

2. If an sfr reserved word in the saddr area has been described for an instruction in which a combination of

sfr/sfrp changed from saddr/saddrp exists in the operand combination, a code is output as saddr/sad-

drp.

3. sfr reserved word in saddr area

4. sfrp reserved word in saddr area

5. Only sfr reserved words that allow 8-bit accessing

6. Only sfr reserved words that allow 16-bit accessing

7. !sfr and !2ndsfr can be specified only for operand !addr16 of instructions other than BR and CALL.

Table 4-14. Properties of Described Symbols as Operands of Directives

Forward : Forward reference
Backward : Backward reference
OK : Description possible
- : Description impossible

Symbol

Attributes

NUMBER ADDRESS, SADDR BIT

Relocation

Attributes

Attributes

Terms

Attributes

Terms

Relocatable

Terms

External

Referenc

e Terms

Attributes

Terms

Relocatable

Terms

External

Referenc

e Terms

Reference

Pattern

Backwar

d

For

war

d

Ba

ck

war

d

For

war

d

Backwar

d

For

war

d

Ba

ck

war

d

For

war

d

Ba

ck

war

d

For

war

d

Backwar

d

For

war

d

Ba

ck

war

d

For

war

d

D

ir

e

c

ti

v

e

ORG OKNote 1 - - - - - - - - - - - - -

EQUNote 2 OK - OK - OKNote 3 - - - OK - OKNote 3 - - -

SET OKNote 1 - - - - - - - - - - - - -

DB Size OKNote 1 - - - - - - - - - - - - -

Initial

value

OK OK OK OK OK OK OK OK - - - - - -

D

W

Size OKNote 1 - - - - - - - - - - - - -

Initial

value

OK OK OK OK OK OK OK OK - - - - - -

DG Size OKNote 1 - - - - - - - - - - - - -

Initial

value

OK OK OK OK OK OK OK OK - - - - - -

DS OKNote 4 - - - - - - - - - - - - -

BR/CALL OK - - - - - - - - - - - - -

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 269 of 853
Apr 01, 2011

Notes 1. Only an absolute expression can be described.

2. An error occurs if an expression including one of the following patterns is described.

- ADDRESS attribute - ADDRESS attribute

- ADDRESS attribute relational operator ADDRESS attribute

- HIGH absolute ADDRESS attribute

- LOW absolute ADDRESS attribute

- HIGHW absolute ADDRESS attribute

- LOWW absolute ADDRESS attribute

- DATAPOS absolute ADDRESS attribute

- MASK absolute ADDRESS attribute

- When the operation results can be affected by optimization from the above 8 patterns.

3. A term created by the HIGH/LOW/HIGHW/LOWW/DATAPOS/MASK operator that has a relocatable

term is not allowed.

4. See "4.2.4 Memory initialization, area reservation directives".

4.2 Directives

This chapter explains the directives.

Directives are instructions that direct all types of instructions necessary for the RL78,78K0R assemmbler to perform a

series of processes.

4.2.1 Overview

Instructions are translated into object codes (machine language) as a result of assembling, but directives are not con-

verted into object codes in principle.

Directives contain the following functions mainly:

- To facilitate description of source programs

- To initialize memory and reserve memory areas

- To provide the information required for assemblers and linkers to perform their intended processing

The following table shows the types of directives.

Table 4-15. List of Directives

The following sections explain the details of each directive.

In the description format of each directive, "[]" indicates that the parameter in square brackets may be omitted from

specification, and "..." indicates the repetition of description in the same format.

Type Directives

Segment definition directives CSEG, DSEG, BSEG, ORG

Symbol definition directives EQU, SET

Memory initialization, area reservation directives DB, DW, DG, DS, DBIT

Linkage directives EXTRN, EXTBIT, PUBLIC

Object module name declaration directive NAME

Branch instruction automatic selection directives BR, CALL

Macro directives MACRO, LOCAL, REPT, IRP, EXITM, ENDM

Assemble termination directive END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 270 of 853
Apr 01, 2011

4.2.2 Segment definition directives

The source module is described by dividing each segment unit.

The segment directive is what defines these "segments".

There are 4 types of these segments.

- Code segment

- Data segment

- Bit segment

- Absolute segment

The type of segment determines which area of the memory it is mapped to.

The following shows each segment definition method and the memory address that is mapped to.

Table 4-16. Segment Definition Method and Memory Address Location

The absolute segment is defined for when the user wants to set the address mapped in the memory. For stack area,

the user must set a stack pointer and secure an area in the data segment.

Also, segments cannot be located to the areas below.

Examples of segment mapping are shown below.

Segment Type Definition Method Memory Address Location

Code segment CSEG directive In internal or external ROM address area

Data segment DSEG directive In internal or external RAM address area

Bit segment BSEG directive In internal RAM saddr area

Absolute segment Specifies location address (AT

location address) to relocation

attribute with CSEG, DSEG,

BSEG directive

Specified address

Option byte area C0 to C2H (user option byte)

C3H (on-chip-debug option byte)

When specifying security ID C4H to CDH

When using on-chip-debug function 02H to 03H, CE to D7H (for on-chip debugging)

Area of program size part from the start address specified with the -go

option by the user

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 271 of 853
Apr 01, 2011

Figure 4-6. Segment Memory Mapping

The following segment definition directives are available.

Control Instruction Overview

CSEG Indicate to the assembler the start of a code segment

DSEG Indicate to the assembler the start of a data segment

BSEG Indicate to the assembler the start of a bit segment

ORG Set the value of the expression specified by its operand of the location counter.

Source Module

Source ModuleSource Module

<1 Source Module>

<Memory>

Data segment

Absolute segment which goes with

data segment.

Absolute segment which goes with

code segment

Bit segment

Code segment

FFFFFH

00000H

saddr

RAM

ROM

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 272 of 853
Apr 01, 2011

Indicate to the assembler the start of a code segment.

[Description Format]

[Function]

- The CSEG directive indicates to the assembler the start of a code segment.

- All instructions described following the CSEG directive belong to the code segment until it comes across a seg-

ment definition directives (CSEG, DSEG, BSEG, or ORG) or the END directive, and finally those instructions are

located within a ROM address after being converted into machine language.

[Use]

- The CSEG directive is used to describe instructions, DB, DW directives, etc. in the code segment defined by the

CSEG directive.

However, to relocate the code segment from a fixed address, "AT absolute-expression" must be described as its

relocation attribute in the operand field.

- Description of one functional unit such as a subroutine should be defined as a single code segment.

If the unit is relatively large or if the subroutine is highly versatile (i.e. can be utilized for development of other pro-

grams), the subroutine should be defined as a single module.

[Description]

- The start address of a code segment can be specified with the ORG directive.

It can also be specified by describing the relocation attribute "AT absolute-expression".

- A relocation attribute defines a range of location addresses for a code segment.

CSEG

Symbol field Mnemonic field Operand field Comment field

[segment-name] CSEG [relocation-attribute] [; comment]

<Source module> <Memory>

Code segment

ROM

RAM

 NAME T1

 :

 DSEG

 :

 CSEG

 :

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 273 of 853
Apr 01, 2011

Table 4-17. Relocation Attributes of CSEG

Note The address ranges to be mirrored in the RAM space differ depending on the device used.

- If no relocation attribute is specified for the code segment, the assembler will assume that "UNIT" has been speci-

fied.

- If a relocation attribute other than those listed in "Table 4-17. Relocation Attributes of CSEG" is specified, the

assembler will output an error and assume that "UNIT" has been specified. An error occurs if the size of each

code segment exceeds that of the area specified by its relocation attribute.

Relocation

Attribute

Description Format Explanation

CALLT0 CALLT0 Tells the assembler to locate the specified segment so that the start

address of the segment becomes a multiple of 2 within the address

range 00080H to 000BFH.

FIXED FIXED Tells the assembler to locate the beginning of the specified segment

within the address range 000C0H to 0FFFFH

BASE BASE Tells the assembler to locate the beginning of the specified segment

within the address range 000C0H to 0FFFFH

AT AT absolute-expression Tells the assembler to locate the specified segment to an absolute

address (excluding SFR and 2ndSFR).

UNIT UNIT Tells the assembler to locate the specified segment to any address

(000C0H to EFFFFH in memory area "ROM").

UNITP UNITP Tells the assembler to locate the specified segment to any address,

so that the start of the address may be an even number (000C0H to

EFFFFH) in memory area "ROM").

IXRAM IXRAM Tells the assembler to locate the specified segment to any address

(000C0H to EFFFFH in memory area "ROM").

SECUR_ID SECUR_ID It is a security ID specific attribute. Not specify except security ID.

Tells the assembler to locate the specified segment within the

address range 000C4H to 000CDH.

PAGE64KP PAGE64KP Tells the assembler to locates the specified segment in memory area

"ROM" that does not extend over a 64 KB boundary, so that the start

of the address may be an even number.

The same-named segments but located in different files are not com-

bined.

UNIT64KP UNIT64KP Tells the assembler to locates the specified segment in memory area

"ROM" that does not extend over a 64 KB boundary, so that the start

of the address may be an even number.

The same-named segments are combined.

MIRRORP MIRRORP Tells the assembler to locates the specified segment in the area mir-

rored in the RAM space when MAA = 0 (01000H to 0xxxxH) or the

area mirrored in the RAM space when MAA = 1 (11000H to

1xxxxH).Note

OPT_BYTE OPT_BYTE It is a user option byte and on-chip debugging specific attribute. Not

specify except user option byte and on-chip debugging.

Tells the assembler to locate the specified segment within the

address range 000C0H to 000C3H.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 274 of 853
Apr 01, 2011

- If the absolute expression specified with the relocation attribute "AT" is illegal, the assembler will output an error

message and continue processing by assuming the value of the expression to be "0".

- By describing a segment name in the symbol field of the CSEG directive, the code segment can be named. If no

segment name is specified for a code segment, the assembler will automatically give a default segment name to

the code segment.

The default segment names of the code segments are shown below.

- When the size of the following segment is 0 among the default segments that C compiler outputs, the relocation

attribute is changed by the linker.

- An error occurs if the segment name is omitted when the relocation attribute is AT.

- If two or more code segments have the same relocation attribute (except AT), these code segments may have the

same segment name.

These same-named code segments are processed as a single code segment within the assembler.

An error occurs if the same-named segments differ in their relocation attributes. Therefore, the number of the

same-named segments for each relocation attribute is one.

- Description of a code segment can be divided into units. The same relocation attribute and the samenamed code

segment described in one module are handled by the assembler as a series of segments.

Cautions 1. Description of a code segment whose relocation attribute is AT cannot be divided into units.

2. Insert a 1-byte interval, as necessary, so that the address specified by relocation attribute

CALLT0 may be an even number.

- The same-named data segments in two or more different modules can be specified only when their relocation

attributes are UNIT, CALLT0, FIXED, UNITP, BASE, PAGE64KP, UNIT64KP, MIRRORP, or SECUR_ID, and are

combined into a single data segment at linkage.

- No segment name can be referenced as a symbol.

Relocation Attribute Default Segment Name

CALLT0 ?CSEGT0

FIXED ?CSEGFX

UNIT (or omitted) ?CSEG

UNITP ?CSEGUP

IXRAM ?CSEGIX

BASE ?CSEGB

SECUR_ID ?CSEGSI

PAGE64KP ?CSEGP64

UNIT64KP ?CSEGU64

MIRRORP ?CSEGMIP

OPT_BYTE ?CSEGOB0

AT Segment name cannot be omitted.

Section Name Relocation Attribute Relocation Attribute When Being Size 0

@@CALT CSEG CALLT0 CSEG UNIT

@@CNST CSEG MIRRORP CSEG UNIT

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 275 of 853
Apr 01, 2011

- The total number of segments that can be output by the assembler is up to 256 alias names, including those

defined with the ORG directive. The same-named segments are counted as one.

- The maximum number of characters recognizable as a segment name is 8.

- The uppercase and lowercase characters of a segment name are distinguished.

- Specify user option byte and on-chip debugging by using OPT_BYTE.

When the user option byte is not specified for the chip having the user option byte feature, define a default seg-

ment of “?CSEGOB0” to each address and set the initial value by reading from a device file.

[Example]

(1) The assembler interprets the segment name as "C1", and the relocation attribute as "UNIT".

(2) The assembler interprets the segment name as "C2", and the relocation attribute as "CALLT0".

(3) The assembler interprets the segment name as "?CSEGFX", and the relocation attribute as "FIXED".

(4) An error occurs because the segment name "C1" was defined as the relocation attribute "UNIT" in (1).

(5) The assembler interprets the segment name as "?CSEG", and the relocation attribute as "UNIT".

 NAME SAMP1

C1 CSEG ; (1)

C2 CSEG CALLT0 ; (2)

 CSEG FIXED ; (3)

C1 CSEG CALLT0 ; (4) <- Error

 CSEG ; (5)

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 276 of 853
Apr 01, 2011

Indicate to the assembler the start of a data segment.

[Description Format]

[Function]

- The DSEG directive indicates to the assembler the start of a data segment.

- A memory defined by the DS directive following the DSEG directive belongs to the data segment until it comes

across a segment definition directives (CSEG, DSEG, BSEG, or ORG) or the END directive, and finally it is

reserved within the RAM address.

[Use]

- The DS directive is mainly described in the data segment defined by the DSEG directive.

Data segments are located within the RAM area. Therefore, no instructions can be described in any data seg-

ment.

- In a data segment, a RAM work area used in a program is reserved by the DS directive and a label is attached to

each work area. Use this label when describing a source program.

Each area reserved as a data segment is located by the linker so that it does not overlap with any other work areas

on the RAM (stack area, and work areas defined by other modules).

The linker outputs a warning message if the data segment overlaps a general-purpose register area. The output

level of the warning message can be changed using the warning message specification option (-w).

DSEG

Value Specified by -w Check Target

0 No areas

Symbol field Mnemonic field Operand field Comment field

[segment-name] DSEG [relocation-attribute] [; comment]

<Source module> <Memory>

Data segment

ROM

RAM

 NAME T1

 :

 DSEG

 :

 CSEG

 :

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 277 of 853
Apr 01, 2011

[Description]

- The start address of a data segment can be specified with the ORG directive.

It can also be specified by describing the relocation attribute "AT" followed by an absolute expression in the oper-

and field of the DSEG directive.

- A relocation attribute defines a range of location addresses for a data segment.

The relocation attributes available for data segments are shown below.

Table 4-18. Relocation Attributes of DSEG

Note The address represented by xxxx varies depending on the device used.

- Relocation attributes provided for the 78K0 assembler can also be described, which function in the same manner

as "UNIT".

The following table lists the relocation attributes of DSEG provided for the 78K0.

1 RB0

2 RB0 to RB3

Relocation

Attribute

Description Format Explanation

SADDR SADDR Tells the assembler to locate the specified segment in the saddr area

(saddr area: FFE20H to FFEFFH).

SADDRP SADDRP Tells the assembler to locate the specified segment from an even-

numbered address of the saddr area (saddr area: FFE20H to

FFEFFH).

AT AT absolute-expression Tells the assembler to locate the specified segment in an absolute

address (excluding SFR and 2ndSFR).

UNIT UNIT or no specification Tells the assembler to locate the specified segment in the internal or

any external location (within the memory area name "RAM").

UNITP UNITP Tells the assembler to locate the specified segment in the internal or

any external location from an even-numbered address (within the

memory area name "RAM").

BASEP BASEP Tells the assembler to locates the specified segment in the internal

RAM area so that the start of the address may be an even number

(not including saddr area: FxxxxH to FFEFFH).Note

When arranging the data to access without ES references, it's used.

PAGE64KP PAGE64KP Tells the assembler to locates the specified segment in memory area

"RAM" that does not extend over a 64 KB boundary, so that the start

of the address may be an even number.

The same-named segments but located in different files are not com-

bined.

UNIT64KP UNIT64KP Tells the assembler to locates the specified segment in memory area

"RAM" that does not extend over a 64 KB boundary, so that the start

of the address may be an even number.

The same-named segments are combined.

Value Specified by -w Check Target

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 278 of 853
Apr 01, 2011

- If no relocation attribute is specified for the data segment, the assembler will assume that "UNIT" has been speci-

fied.

- If a relocation attribute other than those listed in "Table 4-18. Relocation Attributes of DSEG" is specified, the

assembler will output an error and assume that "UNIT" has been specified. An error occurs if the size of each data

segment exceeds that of the area specified by its relocation attribute.

- If the absolute expression specified with the relocation attribute "AT" is illegal, the assembler will output an error

and continue processing by assuming the value of the expression to be "0".

- Machine language instructions (including BR directive) cannot be described in a data segment. If described, an

error is output and the line is ignored.

- By describing a segment name in the symbol field of the DSEG directive, the data segment can be named. If no

segment name is specified for a data segment, the assembler automatically gives a default segment name.

The default segment names of the data segments are shown below.

- When the size of the following segment is 0 among the default segments that C compiler outputs, the relocation

attribute is changed by the linker.

Relocation aAtribute Description ffrmat

IHRAM IHRAM

LRAM LRAM

DSPRAM DSPRAM

IXRAM IXRAM

Relocation Atribute Default Segment Name

SADDR ?DSEGS

SADDRP ?DSEGSP

UNIT(or no specification) ?DSEG

UNITP ?DSEGUP

IHRAM ?DSEGIH

LRAM ?DSEGL

DSPRAM ?DSEGDSP

IXRAM ?DSEGIX

BASEP ?DSEGBP

PAGE64KP ?DSEGP64

UNIT64KP ?DSEGU64

AT Segment name cannot be omitted.

Section Name Relocation Attribute Relocation Attribute When Being Size 0

@@INIS DSEG SADDRP DSEG UNITP

@@DATS DSEG SADDRP DSEG UNITP

@EINIS DSEG SADDRP DSEG UNITP

@EDATS DSEG SADDRP DSEG UNITP

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 279 of 853
Apr 01, 2011

- If two or more data segments have the same relocation attribute (except AT), these data segments may have the

same segment name.

These segments are processed as a single data segment within the assembler.

- Description of a data segment can be divided into units. The same relocation attribute and the same-named code

segment described in one module are handled by the assembler as a series of segments.

Cautions 1. Description of a code segment whose relocation attribute is AT cannot be divided into units.

2. When the relocation attribute is SADDR, insert a 1-byte interval, as necessary, so that the

address immediately after a DESG directive is described may be an even number.

- If the relocation attribute is SADDRP, the specified segment is located so that the address immediately after the

DSEG directive is described becomes a multiple of 2.

- An error occurs if the same-named segments differ in their relocation attributes. Therefore, the number of the

same-named segments for each relocation attribute is one.

- The same-named data segments in two or more different modules can be specified only when their relocation

attributes are UNIT, UNITP, SADDR, SADDRP, LRAM, IHRAM, DSPRAM, IXRAM, BASEP, PAGE64KP, or

UNIT64KP, and are combined into a single data segment at linkage.

- No segment name can be referenced as a symbol.

- The total number of segments that can be output by the assembler is up to 255 alias segments including those

defined with the ORG directive. The same-named segments are counted as one.

- The maximum number of characters recognizable as a segment name is 8.

- The uppercase and lowercase characters of a segment name are distinguished.

[Example]

(1) The start of a data segment is defined with the DSEG directive.

Because its relocation attribute is omitted, "UNIT" is assumed. The default segment name is "?DSEG".

(2) This description corresponds to "MOV A, !addr16".

(3) This description corresponds to "MOV A, saddr".

Relocatable label "WORK2" cannot be described as "saddr". Therefore, an error occurs as a result of this

description.

(4) This description corresponds to "MOVW rp, #word".

 NAME SAMP1

 DSEG ; (1)

WORK1 : DS 2

WORK2 : DS 1

 CSEG

 MOV A, !WORK2 ; (2)

 MOV A, WORK2 ; (3) <- Error

 MOVW DE, #WORK1 ; (4)

 MOVW AX, WORK1 ; (5) <- Error

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 280 of 853
Apr 01, 2011

(5) This description corresponds to "MOVW AX, saddrp".

Relocatable label "WORK1" cannot be described as "saddrp". Therefore, an error occurs as a result of

this description.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 281 of 853
Apr 01, 2011

Indicate to the assembler the start of a bit segment.

[Description Format]

[Function]

- The BSEG directive indicates to the assembler the start of a bit segment.

- A bit segment is a segment that defines the RAM addresses to be used in the source module.

- A memory area that is defined by the DBIT directive after the BSEG directive until it comes across a segment defi-

nition directives (CSEG, DSEG, or BSEG) or the END directive belongs to the bit segment.

[Use]

- Describe the DBIT directive in the bit segment defined by the BSEG directive.

- No instructions can be described in any bit segment.

[Description]

- The start address of a bit segment can be specified by describing "AT absolute-expression" in the relocation

attribute field.

- A relocation attribute defines a range of location addresses for a bit segment.

Relocation attributes available for bit segments are shown below.

BSEG

Symbol field Mnemonic field Operand field Comment field

[segment-name] BSEG [relocation-attribute] [; comment]

<Source module> <Memory>

Bit segment
ROM

RAM

 NAME T1

 BSEG

 :

 DSEG

 :

 CSEG

 :

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 282 of 853
Apr 01, 2011

Table 4-19. Relocation Attributes of BSEG

- If no relocation attribute is specified for the bit segment, the assembler assumes that "UNIT" is specified.

- If a relocation attribute other than those listed in Table 3-5 is specified, the assembler outputs an error and

assumes that "UNIT" is specified. An error occurs if the size of each bit segment exceeds that of the area speci-

fied by its relocation attribute.

- In both the assembler and the linker, the location counter in a bit segment is displayed in the form “0xxxxx.b” (The

byte address is hexadecimal 5 digits and the bit position is hexadecimal 1 digit (0 to 7)).

(1) Absolute

(2) Relocatable

Remark Within a relocatable bit segment, the byte address specifies an offset value in byte units from the begin-

ning of the segment.

In a symbol table output by the object converter, a bit offset from the beginning of an area where a bit is

defined is displayed and output.

Relocation

Attribute

Description Format Explanation

AT AT absolute-expression Tells the assembler to locate the starting address of the specified

segment in the 0th bit of an absolute address. Specification in bit

units is prohibited (00000H to FFFFFH)(excluding SFR and

2ndSFR).

UNIT UNIT or no specification Tells the assembler to locate the specified segment in any location

(FFE20H to FFEFFH).

Byte

Address

Bit Position

0 1 2 3 4 5 6 7

0FFE20H 0FFE20H.0 0FFE20H.1 0FFE20H.2 0FFE20H.3 0FFE20H.4 0FFE20H.5 0FFE20H.6 0FFE20H.7

0FFE21H 0FFE21H.0 0FFE21H.1 0FFE21H.2 0FFE21H.3 0FFE21H.4 0FFE21H.5 0FFE21H.6 0FFE21H.7

Byte

Address

Bit Position

0 1 2 3 4 5 6 7

0H 0H.0 0H.1 0H.2 0H.3 0H.4 0H.5 0H.6 0H.7

1H 1H.0 1H.1 1H.2 1H.3 1H.4 1H.5 1H.6 1H.7

Symbol Value Bit Offset

0FFE20H.0 0000

0FFE20H.1 0001

0FFE20H.2 0002

 : :

0FFE20H.7 0007

0FFE21H.0 0008

0FFE21H.1 0009

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 283 of 853
Apr 01, 2011

- If the absolute expression specified with the relocation attribute "AT" is illegal, the assembler outputs an error mes-

sage and continues processing while assuming the value of the expression to be "0".

- By describing a segment name in the symbol field of the BSEG directive, the bit segment can be named. If no seg-

ment name is specified for a bit segment, the assembler automatically gives a default segment name.

The following table shows the default segment names.

- When the size of the following segment is 0 among the default segments that C compiler outputs, the relocation

attribute is changed by the linker.

- If the relocation attribute is "UNIT", two or more data segments can have the same segment name (except AT).

These segments are processed as a single segment within the assembler.

Therefore, the number of same-named segments for each relocation attribute is one.

- The same-named bit segments name must have the same relocation attribute UNIT (when the relocation attribute

is AT, specifying the same name for multiple segments is prohibited).

- If the relocation attribute of the same-named segments in a module is not UNIT, an error is output and the line is

ignored.

- The same-named bit segments in two or more different modules will be combined into a single bit segment at link-

age time.

- No segment name can be referenced as a symbol.

- Bit segments are located at 0H to FFFFFH by the linker.

- Labels cannot be described in a bit segment.

- The only instructions that can be described in the bit segments are the DBIT, EQU, SET, PUBLIC, EXTBIT,

EXTRN, MACRO, REPT, IRP, ENDM directive, macro definition and macro reference. Description of instructions

other than these causes in an error.

- The total number of segments that the assembler outputs is up to 256 alias segments, with segments defined by

the ORG directive. The segments having the same name are counted as one.

- The maximum number of characters recognizable as a segment name is 8.

- The uppercase and lowercase characters of a segment name are distinguished.

 : :

0FFE80H.0 0300

 : :

Relocation Attribute Default Segment Name

UNIT (or no specification) ?BSEG

AT Segment name cannot be omitted.

Section Name Relocation Attribute Relocation Attribute When Being Size 0

@@BITS BSEG UNIT (in SADDR area) BSEG UNIT (in RAM area)

Symbol Value Bit Offset

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 284 of 853
Apr 01, 2011

[Example]

(1) Bit addresses (bits 0 of 0FFE20H are defined with consideration given to byte address boundaries.

(2) Bit addresses (bits 1 of 0FFE20H) are defined with consideration given to byte address boundaries.

(3) A bit segment is defined with the BSEG directive. Because its relocation attribute is omitted, the reloca-

tion attribute "UNIT" and the segment name "?BSEG" are assumed.

In each bit segment, a bit work area is defined for each bit with the DBIT directive. A bit segment should

be described at the early part of the module body.

Bit address FLAG2 defined within the bit segment is located without considering the byte address bound-

ary.

(4) This description can be replaced with "SET1 FLAG.0". This FLAG indicates a byte address.

(5) In this description, no consideration is given to byte address boundaries.

 NAME SAMP1

FLAG EQU 0FFE20H

FLAG0 EQU FLAG.0 ; (1)

FLAG1 EQU FLAG.1 ; (2)

 BSEG ; (3)

FLAG2 DBIT

 CSEG

 SET1 FLAG0 ; (4)

 SET1 FLAG2 ; (5)

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 285 of 853
Apr 01, 2011

Set the value of the expression specified by its operand of the location counter.

[Description Format]

[Function]

- The ORG directive sets the value of the expression specified by its operand of the location counter.

- After the ORG directive, described instructions or reserved memory area belongs to an absolute segment until it

comes across a segment definition directives (CSEG, DSEG, BSEG, or ORG) or the END directive, and they are

located from the address specified by an operand.

[Use]

- Specify the ORG directive to locate a code segment or data segment from a specific address.

[Description]

- The absolute segment defined with the ORG directive belongs to the code segment or data segment defined with

the CSEG or DSEG directive immediately before this ORG directive.

Within an absolute segment that belongs to a data segment, no instructions can be described. An absolute seg-

ment that belongs to a bit segment cannot be described with the ORG directive.

- The code segment or data segment defined with the ORG directive is interpreted as a code segment or data seg-

ment of the relocation attribute "AT".

- By describing a segment name in the symbol field of the ORG directive, the absolute segment can be named.

The maximum number of characters that can be recognized as a segment name is 8.

ORG

Symbol field Mnemonic field Operand field Comment field

[segment-name] ORG [absolute-expression] [; comment]

<Source module> <Memory>

Absolute segment ROM

RAM

 NAME T1

 DESG

 BSEG AT 0FFE20H

 :

 CSEG

 :

 ORG 1000H

 :

 END

Absolute segment

1000H

0FFE20H

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 286 of 853
Apr 01, 2011

- The same-named segments in a module, which are defined with the ORG directive, are handled in the same man-

ner as segments of the AT attribute, which are defined with the CSEG or DESG directive.

- The same-named segments in different modules, which are defined with the ORG directive, are handled in the

same manner as segments of the AT attribute, which are defined with the CSEG or DESG directive.

- If no segment name is specified for an absolute segment, the assembler will automatically assign the default seg-

ment name "?A0nnnnn", where "nnnnn" indicates the 5 digit hexadecimal start address (00000 to FFFFF) of the

segment specified.

- If neither CSEG nor DSEG directive has been described before the ORG directive, the absolute segment defined

by the ORG directive is interpreted as an absolute segment in a code segment.

- If a name or label is described as the operand of the ORG directive, the name or label must be an absolute term

that has already been defined in the source module.

- If illegal objects are described for absolute expressions, or if the evaluated value of an absolute expression

exceeds 00000H to FFEFFH, the assembler outputs an error and continues processing, assuming that the value of

the absolute expression is 00000H.

- Absolute expressions for operands are evaluated in unsigned 32-bit units.

- No segment name can be referenced as a symbol.

- The total number of segments that the assembler outputs is up to 256 alias segments, with segments defined by

the segment definition directives. The segments having the same name are counted as one.

- The maximum number of characters recognizable as a segment name is 8.

- The uppercase and lowercase characters of a segment name are distinguished.

[Example]

(1) An absolute segment that belongs to a data segment is defined.

This absolute segment will be located from the short direct addressing area that starts from address

"FFE20H". Because specification of the segment name is omitted, the assembler automatically assigns

the name "?A0FFE20".

(2) An error occurs because no instruction can be described within an absolute segment that belongs to a

data segment.

 NAME SAMP1

 DSEG

 ORG 0FFE20H ; (1)

SADR1 : DS 1

SADR2 : DS 1

SADR3 : DS 2

MAIN0 ORG 100H

 MOV A, SADR1 ; (2) <- Error

 CSEG ; (3)

MAIN1 ORG 1000H ; (4)

 MOV A, SADR2

 MOVW AX, SADR3

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 287 of 853
Apr 01, 2011

(3) This directive declares the start of a code segment.

(4) This absolute segment is located in an area that starts from address "1000H".

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 288 of 853
Apr 01, 2011

4.2.3 Symbol definition directives

Symbol definition directives specify names for the data that is used when writing to source modules. With these, the

data value specifications are made clear and the details of the source module are easier to understand.

Symbol definition directives indicate the names of values used in the source module to the assembler.

The following symbol definition directives are available.

Control Instruction Overview

EQU The value of the expression specified by operand and the numerical data with

attribute are defined as a name.

SET The value of the expression specified by operand and the variable with attribute

are defined as a name.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 289 of 853
Apr 01, 2011

The value of the expression specified by operand and the numerical data with attribute are defined as a name.

[Description Format]

[Function]

- The EQU directive defines a name that has the value and attributes (symbol attribute and relocation attribute) of

the expression specified in the operand field.

[Use]

- Define numerical data to be used in the source module as a name with the EQU directive and describe the name

in the operand of an instruction in place of the numerical data.

Numerical data to be frequently used in the source module is recommended to be defined as a name. If you must

change a data value in the source module, all you need to do is to change the operand value of the name.

[Description]

- The EQU directive may be described anywhere in a source program.

- A symbol defined with the EQU directive cannot be redefined with the SET directive, nor as a label. In addition, a

symbol or label defined with the SET directive cannot be redefined with the EQU directive, nor as a label.

- When a name or label is to be described in the operand of the EQU directive, use the name or label that has

already been defined in the source module.

No external reference term can be described as the operand of this directive.

SFRs and SFR bit symbols can be described.

- An expression including a term created by a HIGH/LOW/HIGHW/LOWW/DATAPOS/BITPOS operator that has a

relocatable term in its operand cannot be described.

- An error occurs if an expression with any of the following patterns of operands is described:

(1) Expression 1 with ADDRESS attribute - Expression 2 with ADDRESS attribute

Either of the following conditions (1) and (2) is fulfilled in the above expression (a) or (b):

(a) (a) If label 1 in the expression 1 with ADDRESS attribute and label 2 in the expression 2 with ADDRESS

attribute belong to the same segment and if a BR directive for which the number of bytes of the object

code cannot be determined is described between the two labels

(b) (b) If label 1 and label 2 differ in segment and if a BR directive for which the number of bytes of the

object code cannot be determined is described between the beginning of the segment and label

(2) Expression 1 with ADDRESS attribute attributeRelational operator Expression 2 with ADDRESS attribute

(3) HIGH absolute expression with ADDRESS attribute

(4) LOW absolute expression with ADDRESS attribute

EQU

Symbol field Mnemonic field Operand field Comment field

 name EQU expression [; comment]

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 290 of 853
Apr 01, 2011

(5) HIGHW absolute expression with ADDRESS attribute

(6) LOWW absolute expression with ADDRESS attribute

(7) DATAPOS absolute expression with ADDRESS attribute

(8) BITPOS absolute expression with ADDRESS attribute

(9) The following (a) is fulfilled in the expression (3) to (8):

(a) If a BR directive for which the number of bytes of the object code cannot be determined instantly is

described between the label in the expression with ADDRESS attribute and the beginning of the seg-

ment to which the label belongs

- If an error exists in the description format of the operand, the assembler will output an error message, but will

attempt to store the value of the operand as the value of the name described in the symbol field to the extent that it

can analyze.

- A name defined with the EQU directive cannot be redefined within the same source module.

- A name that has defined a bit value with the EQU directive will have an address and bit position as value.

- The following table shows the bit values that can be described as the operand of the EQU directive and the range

in which these bit values can be referenced.

Notes 1. bit = 0 to 7

2. For a detailed description, see the user's manual of each device.

3. 0FFFXXH : the address of a sfr

4. 0FXXXXH : 2ndsfr area

5. 0FXXXXH : saddr area (0FFE20H to 0FFF1FH)

6. 0XXXXXH : 0H to 0FFFFFH

Operand Type Symbol Value Reference Range

A.bitNote 1 1.bit Can be referenced within the same module

only.
PSW.bitye 0FFFFAH.bit

sfrNote 2.bitNote 1 0FFFXXHNote 3.bit

2ndsfrNote 2.bitNote 1 0FXXXXHNote 4.bit

saddr.bitNote 1 0FFXXXHNote 5.bit Can be referenced from another module.

expression.bitNote 1 0XXXXXHNote 6.bit

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 291 of 853
Apr 01, 2011

[Example]

(1) The name "WORK1" has the value "0FFE20H", symbol attribute "NUMBER", and relocation attribute

"ABSOLUTE".

(2) The name "WORK10" is assigned to bit value "WORK1.0", which is in the operand format "saddr.bit".

"WORK1", which is described in an operand, is already defined at the value “0FFE20H”, in (1) above.

(3) The name "P02" is assigned to the bit value "P0.2", which is in the operand format "sfr.bit".

(4) The name "A4" is assigned to the bit value "A.4", which is in the operand format "A.bit".

(5) The name "PSW5" is assigned to the bit value "PSW.5", which is in the operand format "PSW.bit".

(6) This description corresponds to "SET1 saddr.bit".

(7) This description corresponds to "SET1 sfr.bit".

(8) This description corresponds to "SET1 A.bit".

(9) This description corresponds to "SET1 PSW.bit".

Names that have defined "A.bit", and "PSW.bit" as in (4) through (5) can be referenced only within the same module.

A name that has defined "sfr.bit", "saddr.bit", "expression.bit" can also be referenced from another module as an exter-

nal definition symbol (see "4.2.5 Linkage directives").

 NAME SAMP1

WORK1 EQU 0FFE20H ; (1)

WORK10 EQU WORK1.0 ; (2)

P02 EQU P0.2 ; (3)

A4 EQU A.4 ; (4)

PSW5 EQU PSW.5 ; (5)

 SET1 WORK10 ; (6)

 SET1 P02 ; (7)

 SET1 A4 ; (8)

 SET1 PSW5 ; (9)

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 292 of 853
Apr 01, 2011

As a result of assembling the source module in the application example, the following assemble list is generated.

On lines (2) through (5) of the assemble list, the bit address values of the bit values defined as names are indicated in

the object code field.

 Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

 1 1 NAME SAMP

 2 2

 3 3 (FFE20) WORK1 EQU 0FFE20H ; (1)

 4 4 (FFE20.0) WORK10 EQU WORK1.0 ; (2)

 5 5 (FFF00.2) P02 EQU P0.2 ; (3)

 6 6 (00001.4) A4 EQU A.4 ; (4)

 7 7 (FFFFA.5) PSW5 EQU PSW.5 ; (5)

 8 8

 9 9 00000 710220 SET1 WORK10 ; (6)

 10 10 00003 712200 SET1 P02 ; (7)

 11 11 00006 71CA SET1 A4 ; (8)

 12 12 00008 715AFA SET1 PSW5 ; (9)

 13 13 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 293 of 853
Apr 01, 2011

The value of the expression specified by operand and the variable with attribute are defined as a name.

[Description Format]

[Function]

- The SET directive defines a name that has the value and attributes (symbol attribute and relocation attribute) of

the expression specified in the operand field.

- The value and attribute of a name defined with the SET directive can be redefined within the same module.

These values and attribute are valid until the same name is redefined.

[Use]

- Define numerical data (a variable) to be used in the source module as a name and describe it in the operand of an

instruction in place of the numerical data (a variable).

If you wish to change the value of a name in the source module, a different value can be defined for the same

name using the SET directive again.

[Description]

- An absolute expression must be described in the operand field of the SET directive.

- The SET directive may be described anywhere in a source program.

However, a name that has been defined with the SET directive cannot be forward-referenced.

- If an error is detected in the statement in which a name is defined with the SET directive, the assembler outputs an

error message but will attempt to store the value of the operand as the value of the name described in the symbol

field to the extent that it can analyze.

- A symbol defined with the EQU directive cannot be redefined with the SET directive.

A symbol defined with the SET directive cannot be redefined with the EQU directive.

- A bit symbol cannot be defined.

SET

Symbol field Mnemonic field Operand field Comment field

 name SET absolute-expression [; comment]

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 294 of 853
Apr 01, 2011

[Example]

(1) The name "COUNT" has the value "10H", the symbol attribute "NUMBER", and relocation attribute "ABSO-

LUTE". The value and attributes are valid until they are redefined by the SET directive in (3) below.

(2) The value "10H" of the name "COUNT" is transferred to register B.

(3) The value of the name "COUNT" is changed to "20H".

(4) The value "20H" of the name "COUNT" is transferred to register B.

 NAME SAMP1

COUNT SET 10H ; (1)

 CSEG

 MOV B, #COUNT ; (2)

LOOP :

 DEC B

 BNZ $LOOP

COUNT SET 20H ; (3)

 MOV B, #COUNT ; (4)

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 295 of 853
Apr 01, 2011

4.2.4 Memory initialization, area reservation directives

The memory initialization directive defines the constant data used by the program.

The defined data value is generated as object code.

The area reservation directive secures the area for memory used by the program.

The following memory initialization and partitioning directives are available.

Control Instruction Overview

DB Initialization of byte area

DW Initialization of word area

DG Initialization of 20 bit area in 32 bits (4 bytes)

DS Secures the memory area of the number of bytes specified by operand.

DBIT Secures 1 bit of memory area in bit segment.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 296 of 853
Apr 01, 2011

Initialization of byte area

[Description Format]

[Function]

- The DB directive tells the assembler to initialize a byte area.

The number of bytes to be initialized can be specified as "size".

- The DB directive also tells the assembler to initialize a memory area in byte units with the initial value(s)specified in

the operand field.

[Use]

- Use the DB directive when defining an expression or character string used in the program.

[Description]

- If a value in the operand field is parenthesized, the assembler assumes that a size is specified. Otherwise, an ini-

tial value is assumed.

(1) With size specification:

(a) If a size is specified in the operand field, the assembler initializes an area equivalent to the specified

number of bytes with the value "00H".

(b) An absolute expression must be described as a size. If the size description is illegal, the assembler

outputs an error message and will not execute initialization.

(2) With initial value specification:

(a) Expression

The value of an expression must be 8-bit data. Therefore, the value of the operand must be in the range of 0H

to 0FFH. If the value exceeds 8 bits, the assembler will use only lower 8 bits of the value as valid data and out-

put an error.

(b) Character string

If a character string is described as the operand, an 8-bit ASCII code will be reserved for each character in the

string.

- The DB directive cannot be described in a bit segment.

- Two or more initial values may be specified within a statement line of the DB directive.

- As an initial value, an expression that includes a relocatable symbol or external reference symbol may be

described.

DB

Symbol field Mnemonic field Operand field Comment field

 [label:] DB (size) [; comment]

 or

 [label:] DB initial-value[, ...] [; comment]

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 297 of 853
Apr 01, 2011

[Example]

(1) Because the size is specified, the assembler will initialize each byte area with the value "00H".

(2) A 6-byte area is initialized with character string 'ABCDEF'.

(3) A 3-byte area is initialized with "0AH, 0BH, 0CH".

(4) A 4-byte area is initialized with "00H".

(5) Because the value of expression "AB" + 1 is 4143H (4142H + 1) and exceeds the range of 0 to 0FFH,

this description occurs in an error.

 NAME SAMP1

 CSEG

WORK1 : DB (1) ; (1)

WORK2 : DB (2) ; (1)

 CSEG

MASSAG : DB 'ABCDEF' ; (2)

DATA1 : DB 0AH, 0BH, 0CH ; (3)

DATA2 : DB (3 + 1) ; (4)

DATA3 : DB 'AB' + 1 ; (5) <- Error

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 298 of 853
Apr 01, 2011

Initialization of word area

[Description Format]

[Function]

- The DW directive tells the assembler to initialize a word area.

The number of words to be initialized can be specified as "size".

- The DW directive also tells the assembler to initialize a memory area in word units (2 bytes) with the initial value(s)

specified in the operand field.

[Use]

- Use the DW directive when defining a 16-bit numeric constant such as an address or data used in the program.

[Description]

- If a value in the operand field is parenthesized, the assembler assumes that a size is specified; otherwise an initial

value is assumed.

(1) With size specification:

(a) If a size is specified in the operand field, the assembler will initialize an area equivalent to the specified

number of words with the value "00H".

(b) An absolute expression must be described as a size. If the size description is illegal, the assembler

outputs an error and will not execute initialization.

(2) With initial value specification:

(a) Constant

16 bits or less.

(b) Expression

The value of an expression must be stored as a 16-bit data.

No character string can be described as an initial value.

- The DW directive cannot be described in a bit segment.

- The upper 2 digits of the specified initial value are stored in the HIGH address and the lower 2 digits of the value in

the LOW address.

- Two or more initial values may be specified within a statement line of the DW directive.

- As an initial value, an expression that includes a relocatable symbol or external reference symbol may be

described.

DW

Symbol field Mnemonic field Operand field Comment field

 [label:] DW (size) [; comment]

 or

 [label:] DW initial-value[, ...] [; comment]

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 299 of 853
Apr 01, 2011

[Example]

(1) Because the size is specified, the assembler will initialize each word with the value "00H".

(2) Vector entry addresses are defined with the DW directives.

(3) A 2-word area is initialized with value "34127856".

Caution The HIGH address of memory is initialized with the upper 2 digits of the word value. The LOW

address of memory is initialized with the lower 2 digits of the word value.

 NAME SAMP1

 CSEG

WORK1 : DW (10) ; (1)

WORK2 : DW (128) ; (1)

 CSEG

 ORG 10H

 DW MAIN ; (2)

 DW SUB1 ; (2)

 CSEG

MAIN :

 CSEG

SUB1 :

DATA : DW 1234H, 5678H ; (3)

 END

<Source module> <Memory>

 NAME SAMLE

 CSEG

 ORG 1000H

 DW 1234H

 :

 :

 :

 END

1 2

3 4

Upper 2 digits

Lower 2 digits

HIGH address

LOW address

<Example>

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 300 of 853
Apr 01, 2011

Initialization of 20 bit area in 32 bits (4 bytes)

[Description Format]

[Function]

- The DG directive tells the assembler to initialize a 20-bit area in 32-bit (4-byte) units. The initial value or size can

be specified as an operand.

- The DG directive also tells the assembler to initialize a memory area in 4 bytes units with the initial value(s) speci-

fied in the operand field.

[Use]

- Use the DG directive when defining a 20-bit numeric constant such as an address or data used in the program.

[Description]

- If a value in the operand field is parenthesized, the assembler assumes that a size is specified; otherwise an initial

value is assumed.

(1) With size specification:

(a) If a size is specified in the operand field, the assembler will initialize an area equivalent to the specified

numbers x 4 bytes, with "00H".

(b) An absolute expression must be described as a size. If the size description is illegal, the assembler

outputs an error and will not execute initialization.

(2) With initial value specification:

(a) Constant

20 bits or less.

(b) Expression

The value of an expression must be stored as a 16-bit data.

No character string can be described as an initial value.

- The DG directive cannot be described in a bit segment.

- The highest byte of the specified initial value is stored in the HIGH WORD address, the lowest byte is stored in the

LOW address, and the higher byte of the lowest 2 bytes is stored in the HIGH address in the memory.

- Two or more initial values may be specified within a statement line of the DW directive.

- As an initial value, an expression that includes a relocatable symbol or external reference symbol may be

described.

DG

Symbol field Mnemonic field Operand field Comment field

 [label:] DG (size) [; comment]

 or

 [label:] DG initial-value[, ...] [; comment]

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 301 of 853
Apr 01, 2011

[Example]

(1) A 4-byte area is initialized with value "4523010089670500".

(2) The 40-byte (10 x 4 bytes) area is initialized with "00H".

Caution For the 20-bit value, the HIGH WORD address in the memory is initialized with the highest byte, the

LOW address in the memory is initialized with the lowest byte, and the HIGH address is initialized

with the higher byte of the lowest 2 bytes.

 NAME SAMP1

DATA1 : DG 12345H, 56789H ; (1)

DATA2 : DG (10) ; (2)

 END

<Source module>

NAME SAMP1

 CSEG

DATA1: DG 12345H, 56789H

 :

 END

00

HIGH Address

LOW address

<Memory>

<Example>

05

67

89

00

01

23

45

HW

HW

H

H

L

L

HW : HIGH WORD

H : HIGH

L : LOW

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 302 of 853
Apr 01, 2011

Secures the memory area of the number of bytes specified by operand.

[Description Format]

[Function]

- The DS directive tells the assembler to reserve a memory area for the number of bytes specified in the operand

field.

[Use]

- The DS directive is mainly used to reserve a memory (RAM) area to be used in the program.

If a label is specified, the value of the first address of the reserved memory area is assigned to the label. In the

source module, this label is used for description to manipulate the memory.

[Description]

- The contents of an area to be reserved with this DS directive are unknown (indefinite).

- The specified absolute expression will be evaluated with unsigned 16 bits.

- When the operand value is "0", no area can be reserved.

- The DS directive cannot be described within a bit segment.

- The symbol (label) defined with the DS directive can be referenced only in the backward direction.

- Only the following parameters extended from an absolute expression can be described in the operand field:

- A constant

- An expression with constants in which an operation is to be performed (constant expression)

- EQU symbol or SET symbol defined with a constant or constant expressionADDRESS

- Expression 1 with ADDRESS attribute - expression 2 with ADDRESS attribute

If both label 1 in "expression 1 with ADDRESS attribute" and label 2 in "expression 2 with ADDRESS attribute"

are relocatable, both labels must be defined in the same segment.

However, an error occurs in either of the following two cases:

- If label 1 and label 2 belong to the same segment and if a BR directive for which the number of bytes of

the object code cannot be determined is described between the two labels

- If label 1 and label 2 differ in segment and if a BR directive for which the number of bytes of the object

code cannot be determined is described between either label and the beginning of the segment to which

the label belongs

- Any of the expressions (1) through (4) above on which an operation is to be performed.

- The following parameters cannot be described in the operand field:

- External reference symbol

- Symbol that has defined "expression 1 with ADDRESS attribute - expression 2 with ADDRESS attribute" with

the EQU directive

- Location counter ($) is described in either expression 1 or expression 2 in the form of "expression 1 with

ADDRESS attribute - expression 2 with ADDRESS attribute"

- Symbol that defines with the EQU directive an expression with the ADDRESS attribute on which the HIGH/

LOW/DATAPOS/BITPOS operator is to be operated

DS

Symbol field Mnemonic field Operand field Comment field

 [label:] DS absolute-expression [; comment]

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 303 of 853
Apr 01, 2011

[Example]

(1) A 10-byte working area is reserved, but the contents of the area are unknown (indefinite). Label "TABLE1"

is allocated to the start of the address.

(2) A 1-byte working area is reserved.

(3) A 2-byte working area is reserved.

 NAME SAMPLE

 DSEG

TABLE1 : DS 10 ; (1)

WORK1 : DS 2 ; (2)

WORK2 : DS 1 ; (3)

 CSEG

 MOVW HL, #TABLE1

 MOV A, !WORK2

 MOVW BC, #WORK1

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 304 of 853
Apr 01, 2011

Secures 1 bit of memory area in bit segment.

[Description Format]

[Function]

- The DBIT directive tells the assembler to reserve a 1-bit memory area within a bit segment.

[Use]

- Use the DBIT directive to reserve a bit area within a bit segment.

[Description]

- The DBIT directive is described only in a bit segment.

- The contents of a 1-bit area reserved with the DBIT directive are unknown (indefinite).

- If a name is specified in the Symbol field, the name has an address and a bit position as its value.

- The defined name can be described at the place where saddr.bit, addr16.bit, ES:addr16.bitt is required.

[Example]

(1) By these three DBIT directives, the assembler will reserve three 1-bit areas and define names (BIT1, BIT2,

and BIT3) each having an address and a bit position as its value.

(2) This description corresponds to "SET1 saddr.bit" and describes the name "BIT1" of the bit area reserved

in (1) above as operand "saddr.bit".

(3) This description corresponds to "CLR1 saddr.bit" and describes name "BIT2" as "saddr.bit".

DBIT

 NAME SAMPLE

 BSEG

BIT1 DBIT ; (1)

BIT2 DBIT ; (1)

BIT3 DBIT ; (1)

 CSEG

 SET1 BIT1 ; (2)

 CLR1 BIT2 ; (3)

 END

Symbol field Mnemonic field Operand field Comment field

 [name] DBIT None [; comment]

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 305 of 853
Apr 01, 2011

4.2.5 Linkage directives

Linkage directives clarify associations when referring to symbols defined by other modules. This is thought to be in

cases when one program is written that divides module 1 and module 2.

In cases when you want to see to a symbol defined in module 2 in module 1, there is nothing declared in either module

and and so the symbol cannot be used. Due to this, there is a need to display "I want to use" or "I don't want to use" in

respective modules.

An "I want to see to a symbol defined in another module" external reference declaration is made in module 1. At the

same time, a "This symbol may be referred to by other symbols" external definition declaration is made in module 2.

This symbol can only begin to be referred to after both external reference and external definition declarations in effect.

Linkage directives are used to to form this relationship and the following instructions are available.

- Symbol external reference declaration: EXTRN, and also EXTBIT directive.

- Symbol external definition declaration: PUBLIC directive.

Figure 4-7. Relationship of Symbols Between 2 Modules

In the above modules, in order for the "MDL2" symbol defined in module 2 to be referred to in (2), an external reference

is declared via an EXTRN directive in (1).

In module 2 (3), an external definition declaration is undergone of the "MDL2" symbol referenced from module 1 via a

PUBLIC directive.

Whether or not this external reference and external definition symbols are correctly responding or not is checked via a

linker.

The following linkage directives are available.

Control Instruction Overview

EXTRN Declares to the linker that a symbol (other than bit symbols) in another module is

to be referenced in this module.

EXTBIT Directive declares to the linker that a bit symbol in another module is to be refer-

enced in this module.

PUBLIC Declares to the linker that the symbol described in the operand field is a symbol

to be referenced from another module.

<Module 1>

NAME MODUL1

EXTRN MDL2 ; (1)

CSEG

 :

BR !MDL2 ; (2)

 :

END

<Module 2>

NAME MODUL2

PUBLIC MDL2 ; (3)

CSEG

 :

MDL2 :

 :

END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 306 of 853
Apr 01, 2011

Declares to the linker that a symbol (other than bit symbols) in another module is to be referenced in this module.

[Description Format]

[Function]

- The EXTRN directive declares to the linker that a symbol (other than bit symbols) in another module is to be refer-

enced in this module.

[Use]

- When referencing a symbol defined in another module, the EXTRN directive must be used to declare the symbol

as an external reference.

- The resulting operation varies depending on the description format for operands.

[Description]

- The EXTRN directive may be described anywhere in a source program (see "4.1.1 Basic configuration").

- Up to 20 symbols can be specified in the operand field by delimiting each symbol name with a comma (,).

- When referencing a symbol having a bit value, the symbol must be declared as an external reference with the

EXTBIT directive.

- The symbol declared with the EXTRN directive must be declared in another module with a PUBLIC directive.

- No error is output even if a symbol declared with the EXTRN directive is not referenced in the module.

- No macro name can be described as the operand of EXTRN directive (see "4.4 Macros" for the macro name).

- The EXTRN directive enables only one EXTRN declaration for a symbol in an entire module. For the second and

subsequent EXTRN declarations for the symbol, the linker will output a warning.

- A symbol that has been declared cannot be described as the operand of the EXTRN directive. Conversely, a sym-

bol that has been declared as EXTRN cannot be redefined or declared with any other directive.

- An area within a 64 KB area (0H to 0FFFFH) can be referenced using a symbol defined with the EXTRN directive.

A symbol name declared in the format of "BASE(symbol name)" can be referenced from the 64 KB area.

EXTRN

BASE(symbol-name[, ...]) The specified symbol is regarded as a symbol in an area within a 64 KB area (0H

to 0FFFF) and can be referenced.

No relocation attribute specified After located by the linker, processing is performed in accordance with the area for

which PUBLIC is declared and then can be referenced.

Symbol field Mnemonic field Operand field Comment field

 [label:] EXTRN symbol-name[, ...] [; comment]

 or

 [label:] EXTRN BASE(symbol-name[, ...]) [; comment]

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 307 of 853
Apr 01, 2011

[Example]

- Module 1

- Module 2

(1) This EXTRN directive declares symbols "SYM1", "SYM2" and "SYM3" to be referenced in (2), (3) and (4) as

external references. Two or more symbols may be described in the operand field.

(2) This DW instruction references symbol "SYM1".

(3) This MOV instruction references symbol "SYM2" and outputs a code that references an saddr area.

(4) This BR instruction references symbol "SYM3" and outputs a code that references an area within a 64 KB

area (0H to 0FFFFH).

(5) The symbols "SYM1", "SYM2" and "SYM3" are declared as external definitions.

(6) The symbol "SYM1" is defined.

(7) The symbol "SYM2" is defined.

(8) The symbol "SYM3" is defined.

 NAME SAMP1

 EXTRN SYM1, SYM2, BASE (SYM3) ; (1)

 CSEG

S1 : DW SYM1 ; (2)

 MOV A, SYM2 ; (3)

 BR !SYM3 ; (4)

 END

 NAME SAMP2

 PUBLIC SYM1, SYM2, SYM3 ; (5)

 CSEG

SYM1 EQU 0FFH ; (6)

DATA1 DSEG SADDR

SYM2 : DB 012H ; (7)

C1 CSEG BASE

SYM3 : MOV A, #20H ; (8)

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 308 of 853
Apr 01, 2011

Directive declares to the linker that a bit symbol in another module is to be referenced in this module.

[Description Format]

[Function]

- The EXTBIT directive declares to the linker that a bit symbol in another module is to be referenced in this module.

[Use]

- When referencing a symbol that has a bit value and has been defined in another module, the EXTBIT directive

must be used to declare the symbol as an external reference.

[Description]

- The EXTBIT directive may be described anywhere in a source program.

- Up to 20 symbols can be specified in the operand field by delimiting each symbol with a comma (,).

- A symbol declared with the EXTBIT directive must be declared with a PUBLIC directive in another module.

- The EXTBIT directive enables only one EXTBIT declaration for a symbol in an entire module. For the second and

subsequent EXTBIT declarations for the symbol, the linker will output a warning.

- No error is output even if a symbol declared with the EXTRN directive is not referenced in the module.

[Example]

- Module 1

- Module 2

EXTBIT

NAME SAMP1

EXTBIT FLAG1, FLAG2 ; (1)

CSEG

SET1 FLAG1 ; (2)

CLR1 FLAG2 ; (3)

 END

 NAME SAMP2

 PUBLIC FLAG1, FLAG2 ; (4)

 BSEG

FLAG1 DBIT ; (5)

FLAG2 DBIT ; (6)

 CSEG

 NOP

 END

Symbol field Mnemonic field Operand field Comment field

 [label:] EXTBIT bit-symbol-name[, ...] [; comment]

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 309 of 853
Apr 01, 2011

(1) This EXTBIT directive declares symbols "FLAG1" and "FLAG2" to be referenced as external references.

Two or more symbols may be described in the operand field.

(2) This SET1 instruction references symbol "FLAG1".

This description corresponds to "SET1 saddr.bit".

(3) This CLR1 instruction references symbol "FLAG2".

This description corresponds to "CLR1 saddr.bit".

(4) This PUBLIC directive defines symbols "FLAG1" and "FLAG2".

(5) This DBIT directive defines symbol "FLAG1" as a bit symbol of SADDR area.

(6) This DBIT directive defines symbol "FLAG2" as a bit symbol of SADDR area.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 310 of 853
Apr 01, 2011

Declares to the linker that the symbol described in the operand field is a symbol to be referenced from another module.

[Description Format]

[Function]

- The PUBLIC directive declares to the linker that the symbol described in the operand field is a symbol to be refer-

enced from another module.

[Use]

- When defining a symbol (including bit symbol) to be referenced from another module, the PUBLIC directive must

be used to declare the symbol as an external definition.

[Description]

- The PUBLIC directive may be described anywhere in a source program.

- Up to 20 symbols can be specified in the operand field by delimiting each symbol name with a comma (,).

- Symbol(s) to be described in the operand field must be defined within the same module.

- The PUBLIC directive enables only one PUBLIC declaration for a symbol in an entire module. The second and

subsequent PUBLIC declarations for the symbol will be ignored by the linker.

- Bit symbols in each bit area can be declared with PUBLIC.

- The following symbols cannot be used as the operand of the PUBLIC directive:

(1) Name defined with the SET directive

(2) Symbol defined with the EXTRN or EXTBIT directive within the same module

(3) Segment name

(4) Module name

(5) Macro name

(6) Symbol not defined within the module

(7) Symbol defining an operand with a SFBIT attribute with the EQU directive

(8) Symbol defining an sfr and 2ndSFR with the EQU directive (however, the place where sfr area and saddr

area are overlapped is excluded)

PUBLIC

Symbol field Mnemonic field Operand field Comment field

 [label:] PUBLIC symbol-name[, ...] [; comment]

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 311 of 853
Apr 01, 2011

[Example]

- Module 1

- Module 2

- Module 3

(1) This PUBLIC directive declares that symbols "A1" and "A2" are to be referenced from other modules.

(2) This PUBLIC directive declares that symbol "B1" is to be referenced from another module.

(3) This PUBLIC directive declares that symbol "C1" is to be referenced from another module.

 NAME SAMP1

 PUBLIC A1, A2 ; (1)

 EXTRN B1

 EXTBIT C1

A1 EQU 10H

A2 EQU 0FFE20H.1

 CSEG

 BR B1

 SET1 C1

 END

 NAME SAMP2

 PUBLIC B1 ; (2)

 EXTRN A1

 CSEG

B1 :

 MOV C, #LOW (A1)

 END

 NAME SAMP3

 PUBLIC C1 ; (3)

 EXTBIT A2

C1 EQU 0FFE21H.0

 CSEG

 CLR1 A2

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 312 of 853
Apr 01, 2011

4.2.6 Object module name declaration directive

An object module name directive gives a name to an object module generated by the assembler.

The following object module name declaration directives are available.

Control Instruction Overview

NAME Assign the object module name described in the operand field to an object mod-

ule to be output by the assembler.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 313 of 853
Apr 01, 2011

Assign the object module name described in the operand field to an object module to be output by the assembler.

[Description Format]

[Function]

- The NAME directive assigns the object module name described in the operand field to an object module to be out-

put by the assembler.

[Use]

- A module name is required for each object module in symbolic debugging with a debugger.

[Description]

- The NAME directive may be described anywhere in a source program.

- For the conventions of module name description, see the conventions on symbol description in "(3) Symbol field".

- Characters that can be specified as a module name are those characters permitted by the operating system of the

assembler software other than "(" (28H) or ")" (29H) or 2-byte characters.

- No module name can be described as the operand of any directive other than NAME or of any instruction.

- If the NAME directive is omitted, the assembler will assume the primary name (first 256 characters) of the input

source module file as the module name. The primary name is converted to capital letters for retrieval.

If two or more module names are specified, the assembler will output a warning and ignore the second and subse-

quent module name declarations.

- A module name to be described in the operand field must not exceed 256characters.

- The uppercase and lowercase characters of a symbol name are distinguished.

[Example]

(1) This NAME directive declares "SAMPLE" as a module name.

NAME

 NAME SAMPLE ; (1)

 DSEG

BIT1 : DBIT

 CSEG

 MOV A, B

 END

Symbol field Mnemonic field Operand field Comment field

 [label:] NAME object-module-name [; comment]

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 314 of 853
Apr 01, 2011

4.2.7 Branch instruction automatic selection directives

There are two unconditional branch instructions which write the branch address to the operand directly, "BR !addr20",

and "BR $addr20".

With regard to these instructions, because the number of bytes for instructions differs, it is necessary for the user to use

them after selecting which operand is suitable depending on the range of the branch destination in order to create a pro-

gram with good memory efficiency.

Due to this, the RL78,78K0R assembler has a directive to automatically select 2, 3 or 4-byte branch instructions

depending on the range of the branch destination. This is called the branch destination instruction automatic selection

directive.

The following branch instruction automatic selection directives are available.

Control Instruction Overview

BR Depending on the range of the value of the expression specified by the operand,

the assembler automatically selects 2, 3 or 4-byte branch instructions and gener-

ates corresponding object code.

CALL Depending on the range of the value of the expression specified by the operand,

the assembler automatically selects 3 to 4-byte call branch instructions and gen-

erates corresponding object code.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 315 of 853
Apr 01, 2011

Tells the assembler to automatically select a 2-, 3-, or 4-byte BR branch instruction according to the value range of the

expression specified in the operand field and to generate the object code applicable to the selected instruction.

[Description Format]

[Function]

- The BR directive tells the assembler to automatically select a 2-, 3-, or 4-byte BR branch instruction according to

the value range of the expression specified in the operand field and to generate the object code applicable to the

selected instruction.

[Use]

- Among the branch instructions listed below, the assembler determines the address range of the branch destination

and automatically selects and outputs an instruction which uses the fewest number of bytes as much as possible.

Use the BR directive if it is unclear whether a 2-byte branch instruction can be described.

If an operand (branch destination) is located in a relocatable segment different from that to which the directive is

located, and outside the BASE area, the directive will be substituted with a 4-byte instruction and the output.

If a directive and an operand (branch destination) are located in different segments and outside the BASE area,

and their types are different, the directive will be substituted with a 4-byte instruction, even if the operand is located

in an absolute segment.

If a directive and the branch destination are located in different segments and in the BASE area, the directive will

be substituted with a 3-byte instruction (BR !addr20).

Remark The different type means the different relocatable segments if the BR directive is located in an absolute seg-

ment, or an absolute segment if the BR directive is located in a relocatable segment.

- If it is definitely known which of a2-, 3-, or 4-byte branch instruction should be described, describe the applicable

instruction. This shortens the assembly time in comparison with describing the BR directive.

BR

Branch instruction Explanation

“BR $addr20” (2 bytes) Can be used if the address range of the branch destination is within the range

of -80H to +7FH, from an address following the BR directive.

“BR !addr20” (3 bytes) Can be used if the address range of the branch destination is within 64 KB.

“BR $!addr20” (3 bytes) Calculates the displacement from the branch destination and can be used if

the displacement is within the range of -8000H to +7FFFH

“BR !!addr20” (4 bytes) Used in cases other than above

Symbol field Mnemonic field Operand field Comment field

 [label:] BR expression [; comment]

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 316 of 853
Apr 01, 2011

[Description]

- The BR directive can only be used within a code segment.

- The direct jump destination is described as the operand of the BR directive. "$" indicating the current location

counter at the beginning of an expression cannot be described.

- For optimization, the following conditions must be satisfied.

- No more than 1 label or forward-reference symbol in the expression.

- Do not describe an EQU symbol with the ADDRESS attribute.

- Do not describe an EQU defined symbol for "expression 1 with ADDRESS attribute - expression 2 with

ADDRESS attribute".

- Do not describe an expression with ADDRESS attribute on which the HIGH/LOW/HIGHW/LOWW/ DATAPOS/

BITPOS operator has been operated.

If these conditions are not met, the 4-byte BR instruction will be selected.

Even if these conditions are met, however, the 4-byte BR instruction may be selected if the branch address is

around 10000H and forward and backward references are included.

[Example]

(1) This BR directive generates a 2-byte branch instruction (BR $addr20) because the displacement between

this line and the branch destination is within the range of -80H and +7FH.

(2) The branch destination of this BR directive is within 64 KB, so the BR directive will be substituted with a 3-

byte branch instruction (BR !addr20).

(3) This BR directive will be substituted with the 4-byte branch instruction (BR !!addr20).

(4) This BR directive will be substituted with the 3-byte branch instruction (BR !addr20) because the displace-

ment between this line and the branch destination is without the range of -8000H and +7FFFH.

ADDRESS NAME SAMPLE

 C1 CSEG AT 50H

00050H BR L1 ; (1)

00052H BR L2 ; (2)

00055H BR L3 ; (3)

0007DH L1 :

0FFFFH L2 :

10000H L3 :

 C2 CSEG AT 20050H

20050H BR L4 ; (4)

27FFFH L4 :

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 317 of 853
Apr 01, 2011

Tells the assembler to automatically select a 3- or 4-byte CALL branch instruction according to the value range of the

expression specified in the operand field and to generate the object code applicable to the selected instruction.

[Description Format]

[Function]

- The CALL directive tells the assembler to automatically select a 3- or 4-byte CALL branch instruction according to

the value range of the expression specified in the operand field and to generate the object code applicable to the

selected instruction.

[Use]

- Among the branch instructions listed below, the assembler determines the address range of the branch destination

and automatically selects and outputs an instruction which uses the fewest number of bytes as much as possible.

Use the CALL directive if it is unclear whether a 3-byte branch instruction can be described.

If an operand (branch destination) is located in a relocatable segment different from that to which the directive is

located, and outside the BASE area, the directive will be substituted with a 4-byte instruction and the output.

If a directive and an operand (branch destination) are located in different segments and outside the BASE area,

and their types are differentNote, the directive will be substituted with a 4-byte instruction, even if the operand is

located in an absolute segment.

If a directive and the branch destination are located in different segments and in the BASE area, the directive will

be substituted with a 3-byte instruction (BR !addr20).

Note The different type means the different relocatable segments if the CALL directive is located in an absolute seg-

ment, or an absolute segment if the CALL directive is located in a relocatable segment.

- If it is definitely known which of a 3- or 4-byte branch instruction should be described, describe the applicable

instruction. This shortens the assembly time in comparison with describing the CALL directive.

CALL

Branch Instruction Explanation

“CALL !addr20” (3 bytes) Can be used if the address range of the branch destination is within 64 KB.

“CALL $!addr20” (3 bytes) Calculates the displacement from the branch destination and can be used if

the displacement is within the range of -8000H to +7FFFH

“CALL !!addr20” (4 bytes) Used in cases other than above

Symbol field Mnemonic field Operand field Comment field

 [label:] CALL expression [; comment]

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 318 of 853
Apr 01, 2011

[Description]

- The CALL directive can only be used within a code segment.

- The direct jump destination is described as the operand of the CALL directive.

- For optimization, the following conditions must be satisfied.

- No more than 1 label or forward-reference symbol in the expression.

- Do not describe an EQU symbol with the ADDRESS attribute.

- Do not describe an EQU defined symbol for "expression 1 with ADDRESS attribute - expression 2 with

ADDRESS attribute".

- Do not describe an expression with ADDRESS attribute

If these conditions are not met, the 4-byte CALL instruction will be selected.

Even if these conditions are met, however, the 4-byte BR instruction may be selected if the branch address is

around 10000H and forward and backward references are included.

[Example]

(1) The branch destination of this CALL directive is within 64 KB, so the CALL directive will be substituted

with a 3-byte branch instruction (CALL !addr20).

(2) This CALL directive will be substituted with the 4-byte branch instruction (CALL !!addr20).

(3) This CALL directive will be substituted with the 3-byte branch instruction (CALL !addr20) because the dis-

placement between this line and the branch destination is without the range of -8000H and +7FFFH.

ADDRESS NAME SAMPLE

 C1 CSEG AT 50H

00050H CALL L1 ; (1)

00053H CALL L2 ; (2)

08052H L1 :

0FFFFH L2 :

 C2 CSEG AT 20050H

20050H CALL L3 ; (3)

27FFFH L3 :

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 319 of 853
Apr 01, 2011

4.2.8 Macro directives

When describing a source it is inefficient to have to describe for each series of high usage frequency instruction groups.

This is also the source of increased errors.

Via macro directives, using macro functions it becomes unnecessary to describe many times to the same kind of

instruction group series, and coding efficiency can be improved.

Macro basic functions are in substitution of a series of statements.

The following macro directives are available.

Control Instruction Overview

MACRO Executes a macro definition by assigning the macro name specified in the sym-

bol field to a series of statements described between MACRO directive and the

ENDM directive.

LOCAL Declares that the symbol name specified in the operand column is a local symbol

only effective in that macro body.

REPT Only the value of the expression specified by the series of statements written

between the REPT directive and the ENDM directive is developed repeatedly.

IRP Only the number of actual arguments is repeatedly developed while the dummy

argument is replaced by the actual argument specified by the operand in the

series of statements between the IRP directive and ENDM directive.

EXITM Develops the macro body defined with the MACRO directive, and also via REPT-

ENDM, IRP-END M repeat is forced to complete.

ENDM Completes a set of statements defined as a macro function.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 320 of 853
Apr 01, 2011

Executes a macro definition by assigning the macro name specified in the symbol field to a series of statements

described between MACRO directive and the ENDM directive.

[Description Format]

[Function]

- The MACRO directive executes a macro definition by assigning the macro name specified in the symbol field to a

series of statements (called a macro body) described between this directive and the ENDM directive.

[Use]

- Define a series of frequently used statements in the source program with a macro name. After its definition only

describe the defined macro name (see "(2) Referencing macros"), and the macro body corresponding to the

macro name is expanded.

[Description]

- The MACRO directive must be paired with the ENDM directive.

- For the macro name to be described in the symbol field, see the conventions of symbol description in "(3) Symbol

field".

- To reference a macro, describe the defined macro name in the mnemonic field.

- For the formal parameter(s) to be described in the operand field, the same rules as the conventions of symbol

description will apply.

- Up to 16 formal parameters can be described per macro directive.

- Formal parameters are valid only within the macro body.

- An error occurs if any reserved word is described as a formal parameter. However, if a user-defined symbol is

described, its recognition as a formal parameter will take precedence.

- The number of formal parameters must be the same as the number of actual parameters.

- A name or label defined within the macro body if declared with the LOCAL directive becomes effective with respect

to one-time macro expansion.

- Nesting of macros (i.e., to see to other macros within the macro body) is allowed up to eight levels including REPT

and IRP directives.

- The number of macros that can be defined within a single source module is not specifically limited. In other words,

macros may be defined as long as there is memory space available.

- Formal parameter definition lines, reference lines, and symbol names are not output to a cross-reference list.

- Two or more segments must not be defined in a macro body. If defined, an error will be output.

MACRO

Symbol field Mnemonic field Operand field Comment field

 macro-name MACRO [formal-parameter[, ...]] [; comment]

 :

 Macro body

 :

 ENDM [; comment]

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 321 of 853
Apr 01, 2011

[Example]

(1) A macro is defined by specifying macro name "ADMAC" and two formal parameters "PARA1" and

"PARA2".

(2) This directive indicates the end of the macro definition.

(3) Macro "ADMAC" is referenced.

 NAME SAMPLE

ADMAC MACRO PARA1, PARA2 ; (1)

 MOV A, #PARA1

 ADD A, #PARA2

 ENDM ; (2)

 ADMAC 10H, 20H ; (3)

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 322 of 853
Apr 01, 2011

Declares that the symbol name specified in the operand field is a local symbol that is valid only within the macro body

[Description Format]

[Function]

- The LOCAL directive declares that the symbol name specified in the operand field is a local symbol that is valid

only within the macro body.

[Use]

- If a macro that defines a symbol within the macro body is referenced more than once, the assembler will output a

double definition error for the symbol. By using the LOCAL directive, you can reference (or call) a macro, which

defines symbol(s) within the macro body, more than once.

[Description]

- For the conventions on symbol names to be described in the operand field, see the conventions on symbol

description in "(3) Symbol field".

- A symbol declared as LOCAL will be substituted with a symbol "??RAnnnn" (where n = 0000 to FFFF) at each

macro expansion. The symbol "??RAnnnn" after the macro replacement will be handled in the same way as a glo-

bal symbol and will be stored in the symbol table, and can thus be referenced under the symbol name

"??RAnnnn".

- If a symbol is described within a macro body and the macro is referenced more than once, it means that the sym-

bol would be defined more than once in the source module. For this reason, it is necessary to declare that the

symbol is a local symbol that is valid only within the macro body.

- The LOCAL directive can be used only within a macro definition.

- The LOCAL directive must be described before using the symbol specified in the operand field (in other words, the

LOCAL directive must be described at the beginning of the macro body).

- Symbol names to be defined with the LOCAL directive within a source module must be all different (in other words,

the same name cannot be used for local symbols to be used in each macro).

- The number of local symbols that can be specified in the operand field is not limited as long as they are all within a

line. However, the number of symbols within a macro body is limited to 64. If 65 or more local symbols are

declared, the assembler will output an error and store the macro definition as an empty macro body. Nothing will

be expanded even if the macro is called.

- Macros defined with the LOCAL directive cannot be nested.

- Symbols defined with the LOCAL directive cannot be called (referenced) from outside the macro.

- No reserved word can be described as a symbol name in the operand field. However, if a symbol same as the

user-defined symbol is described, its recognition as a local symbol will take precedence.

- A symbol declared as the operand of the LOCAL directive will not be output to a cross-reference list and symbol

table list.

- The statement line of the LOCAL directive will not be output at the time of the macro expansion.

- If a LOCAL declaration is made within a macro definition for which a symbol has the same name as a formal

parameter of that macro definition, an error will be output.

LOCAL

Symbol field Mnemonic field Operand field Comment field

 None LOCAL symbol-name[, ...] [; comment]

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 323 of 853
Apr 01, 2011

[Example]

(1) This LOCAL directive defines symbol name "LLAB" as a local symbol.

(2) This BR instruction references local symbol "LLAB" within macro MAC1.

(3) This macro reference calls macro MAC1.

(4) Because local symbol "LLAB" is referenced outside the definition of macro MAC1, this description results

in an error.

(5) This macro reference calls macro MAC1.

 NAME SAMPLE

 ; Macro definition

MAC1 MACRO

 LOCAL LLAB ; (1)

LLAB : ;

 BR $LLAB ; (2)

 ENDM ;

 ; Source text

REF1 : MAC1 ; (3)

??RA0000 :

 BR $??RA0000 ; (2)

 BR !LLAB ; (4) <- Error

REF2 : MAC1 ; (5)

??RA0001 :

 BR $??RA0001 ; (2)

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 324 of 853
Apr 01, 2011

The assemble list of the above application example is shown below.

 Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

 1 1 NAME SAMPLE

 2 2 M MAC1 MACRO

 3 3 M LOCAL LLAB ; (1)

 4 4 M LLAB :

 5 5 M BR $LLAB ; (2)

 6 6 M ENDM

 7 7

 8 8 000000 REF1 : MAC1 ; (3)

 9 #1 ;

 10 000000 #1 ??RA0000 :

 11 000000 14FE #1 BR $??RA0000 ; (2)

 9 12

 10 13 000002 2C0000 BR !LLAB ; (4)

*** ERROR E2407 , STNO 13 (0) Undefined symbol reference 'LLAB'

*** ERROR E2303 , STNO 13 (13) Illegal expression

 11 14

 12 15 000005 REF2 : MAC1 ; (5)

 16 #1 ;

 17 000005 #1 ??RA0001 :

 18 000005 14FE #1 BR $??RA0001 ; (2)

 13 19

 14 20 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 325 of 853
Apr 01, 2011

Tells the assembler to repeatedly expand a series of statements described between this directive and the ENDM direc-

tive the number of times equivalent to the value of the expression specified in the operand field.

[Description Format]

[Function]

- The REPT directive tells the assembler to repeatedly expand a series of statements described between this direc-

tive and the ENDM directive (called the REPT-ENDM block) the number of times equivalent to the value of the

expression specified in the operand field.

[Use]

- Use the REPT and ENDM directives to describe a series of statements repeatedly in a source program.

[Description]

- An error occurs if the REPT directive is not paired with the ENDM directive.

- In the REPT-ENDM block, macro references, REPT directives, and IRP directives can be nested up to eight levels.

- If the EXITM directive appears in the REPT-ENDM block, subsequent expansion of the REPT-ENDM block by the

assembler is terminated.

- Assembly control instructions may be described in the REPT-ENDM block.

- Macro definitions cannot be described in the REPT-ENDM block.

- The absolute expression described in the operand field is evaluated with unsigned 16 bits.

If the value of the expression is 0, nothing is expanded.

[Example]

(1) This REPT directive tells the assembler to expand the REPT-ENDM block three consecutive times.

(2) This directive indicates the end of the REPT-ENDM block.

REPT

NAME SAMP1

CSEG

 ; REPT-ENDM block

REPT 3 ; (1)

 INC B

 DEC C

 ; Source text

ENDM ; (2)

END

Symbol field Mnemonic field Operand field Comment field

 [label:] REPT absolute-expression [; comment]

 :

 ENDM [; comment]

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 326 of 853
Apr 01, 2011

When the above source program is assembled, the REPT-ENDM block is expanded as shown in the following assem-

ble list:

The REPT-ENDM block defined by statements (1) and (2) has been expanded three times.

On the assemble list, the definition statements (1) and (2) by the REPT directive in the source module is not displayed.

NAME SAMP1

CSEG

REPT 3

 INC B

 DEC C

ENDM

 INC B

 DEC C

 INC B

 DEC C

 INC B

 DEC C

END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 327 of 853
Apr 01, 2011

Tells the assembler to repeatedly expand a series of statements described between IRP directive and the ENDM direc-

tive the number of times equivalent to the number of actual parameters while replacing the formal parameter with the

actual parameters (from the left, the order) specified in the operand field.

[Description Format]

[Function]

- The IRP directive tells the assembler to repeatedly expand a series of statements described between this directive

and the ENDM directive (called the IRP-ENDM block) the number of times equivalent to the number of actual

parameters while replacing the formal parameter with the actual parameters (from the left, the order) specified in

the operand field.

[Use]

- Use the IRP and ENDM directives to describe a series of statements, only some of which become variables,

repeatedly in a source program.

[Description]

- The IRP directive must be paired with the ENDM directive.

- Up to 16 actual parameters may be described in the operand field.

- In the IRP-ENDM block, macro references, REPT and IRP directives can be nested up to eight levels.

- If the EXITM directive appears in the IRP-ENDM block, subsequent expansion of the IRP-ENDM block by the

assembler is terminated.

- Macro definitions cannot be described in the IRP-ENDM block.

- Assembly control instructions may be described in the IRP-ENDM block.

[Example]

IRP

NAME SAMP1

CSEG

IRP PARA, <0AH, 0BH, 0CH> ; (1)

 ; IRP-ENDM block

ADD A, #PARA

MOV [DE], A

ENDM ; (2)

 ; Source text

END

Symbol field Mnemonic field Operand field Comment field

 [label:] IRP formal-parameter,<[actual-parameter[, ...]]> [; comment]

 :

 ENDM [; comment]

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 328 of 853
Apr 01, 2011

(1) The formal parameter is "PARA" and the actual parameters are the following three: "0AH", "0BH", and

"0CH".

This IRP directive tells the assembler to expand the IRP-ENDM block three times (i.e., the number of actual

parameters) while replacing the formal parameter "PARA" with the actual parameters "0AH", "0BH", and

"0CH".

(2) This directive indicates the end of the IRP-ENDM block.

When the above source program is assembled, the IRP-ENDM block is expanded as shown in the following assemble

list:

The IRP-ENDM block defined by statements (1) and (2) has been expanded three times (equivalent to the number of

actual parameters).

(3) In this ADD instruction, PARA is replaced with 0AH.

(4) In this ADD instruction, PARA is replaced with 0BH.

(5) In this ADD instruction, PARA is replaced with 0CH.

NAME SAMP1

CSEG

 ; IRP-ENDM block

ADD A, #0AH ; (3)

MOV [DE], A

ADD A, #0BH ; (4)

MOV [DE], A

ADD A, #0CH ; (5)

MOV [DE], A

 ;Source text

END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 329 of 853
Apr 01, 2011

Forcibly terminates the expansion of the macro body defined by the MACRO directive and the repetition by the REPT-

ENDM or IRP-ENDM block.

[Description Format]

[Function]

- The EXITM directive forcibly terminates the expansion of the macro body defined by the MACRO directive and the

repetition by the REPT-ENDM or IRP-ENDM block.

[Use]

- This function is mainly used when a conditional assembly function (see "4.3.7 Conditional assembly control

instructions") is used in the macro body defined with the MACRO directive.

- If conditional assembly functions are used in combination with other instructions in the macro body, part of the

source program that must not be assembled is likely to be assembled unless control is returned from the macro by

force using this EXITM directive. In such cases, be sure to use the EXITM directive.

[Description]

- If the EXITM directive is described in a macro body, instructions up to the ENDM directive will be stored as the

macro body.

- The EXITM directive indicates the end of a macro only during the macro expansion.

- If something is described in the operand field of the EXITM directive, the assembler will output an error but will

execute the EXITM processing.

- If the EXITM directive appears in a macro body, the assembler will return by force the nesting level of IF/_IF/ELSE/

ELSEIF/_ELSEIF/ENDIF blocks to the level when the assembler entered the macro body.

- If the EXITM directive appears in an INCLUDE file resulting from expanding the INCLUDE control instruction

described in a macro body, the assembler will accept the EXITM directive as valid and terminate the macro expan-

sion at that level.

EXITM

Symbol field Mnemonic field Operand field Comment field

 [label:] EXITM None [; comment]

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 330 of 853
Apr 01, 2011

[Example]

(1) The macro "MAC1" uses conditional assembly functions (2) and (4) through (8) within the macro body.

(2) An IF block for conditional assembly is defined here.

If switch name "SW1" is true (not "0"), the ELSE block is assembled.

(3) This directive terminates by force the expansion of the macro body in (4) and thereafter.

If this EXITM directive is omitted, the assembler proceeds to the assembly process in (6) and thereafter

when the macro is expanded.

(4) An ELSE block for conditional assembly is defined here.

If switch name "SW1" is false ("0"), the ELSE block is assembled.

(5) This ENDIF control instruction indicates the end of the conditional assembly.

(6) Another IF block for conditional assembly is defined here.

If switch name "SW2" is true (not "0"), the following IF block is assembled.

(7) Another ELSE block for conditional assembly is defined.

If switch name "SW2" is false ("0"), the ELSE block is assembled.

 NAME SAMP1

MAC1 MACRO ; (1)

 ; macro body

 NOT1 CY

$ IF (SW1) ; (2) <- IF block

 BT A.1, $L1

 EXITM ; (3)

$ ELSE ; (4) <- ELSE block

 MOV1 CY, A.1

 MOV A, #0

$ ENDIF ; (5)

$ IF (SW2) ; (6) <- IF block

 BR [HL]

$ ELSE ; (7) <- ELSE block

 BR [DE]

$ ENDIF ; (8)

 ; Source text

 ENDM ; (9)

 CSEG

$ SET (SW1) ; (10)

 MAC1 ; (11) <- Macro reference

L1 : NOP

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 331 of 853
Apr 01, 2011

(8) This ENDIF instruction indicates the end of the conditional assembly processes in (6) and (7).

(9) This directive indicates the end of the macro body.

(10)This SET control instruction gives true value (not "0") to switch name "SW1" and sets the condition of the

conditional assembly.

(11) This macro reference calls macro "MAC1".

Remark In the example here, conditional assembly control instructions are used. See "4.3.7 Conditional assembly

control instructions". See "4.4 Macros" for the macro body and macro expansion.

The assemble list of the above application example is shown below.

The macro body of macro "MAC1" is expanded by referring to the macro in (11).

Because true value is set in switch name "SW1" in (10), the first IF block in the macro body is assembled. Because the

EXITM directive is described at the end of the IF block, the subsequent macro expansion is not executed.

 NAME SAMP1

MAC1 MACRO ; (1)

 :

 ENDM ; (9)

 CSEG

$ SET (SW1) ; (10)

 MAC1 ; (11)

 ; Macro-expanded part

 NOT1 CY

$ IF (SW1)

 BT A.1, $L1

 ; Source text

L1 : NOP

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 332 of 853
Apr 01, 2011

Instructs the assembler to terminate the execution of a series of statements defined as the functions of the macro.

[Description Format]

[Function]

- The ENDM directive instructs the assembler to terminate the execution of a series of statements defined as the

functions of the macro.

[Use]

- The ENDM directive must always be described at the end of a series of statements following the MACRO, REPT,

and/or the IRP directives.

[Description]

- A series of statements described between the MACRO directive and ENDM directive becomes a macro body.

- A series of statements described between the REPT directive and ENDM directive becomes a REPT-ENDM block.

- A series of statements described between the IRP directive and ENDM directive becomes an IRP-ENDM block.

[Example]

(1) MACRO-ENDM

(2) REPT-ENDM

ENDM

 NAME SAMP1

ADMAC MACRO PARA1, PARA2

 MOV A, #PARA1

 ADD A, #PARA2

 ENDM

 :

 END

NAME SAMP2

CSEG

 :

REPT 3

 INC B

 DEC C

ENDM

 :

END

Symbol field Mnemonic field Operand field Comment field

 None ENDM None [; comment]

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 333 of 853
Apr 01, 2011

(3) IRP-ENDM

NAME SAMP3

CSEG

 :

IRP PARA, <1, 2, 3>

 ADD A, #PARA

 MOV [DE], A

ENDM

 :

END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 334 of 853
Apr 01, 2011

4.2.9 Assemble termination directive

The assemble termination directive specifies completion of the source module to the assembler. This assembly termi-

nation directive must always be described at the end of each source module.

The assembler processes as a source module until the assemble completion directive. Consequently, with REPT block

and IRP Block, if the assemble directive is before ENDM, the REPT block and IRP block become ineffective.

The following assemble termination directives are available.

Control Instruction Overview

END Declares termination of the source module

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 335 of 853
Apr 01, 2011

Declares termination of the source module

[Description Format]

[Function]

- The END directive indicates to the assembler the end of a source module.

[Use]

- The END directive must always be described at the end of each source module.

[Description]

- The assembler continues to assemble a source module until the END directive appears in the source module.

Therefore, the END directive is required at the end of each source module.

- Always input a line-feed (LF) code after the END directive.

- If any statement other than blank, tab, LF, or comments appears after the END directive, the assembler outputs a

warning message.

[Example]

(1) Always describe the END directive at the end of each source module.

END

NAME SAMPLE

DSEG

 :

CSEG

 :

END ; (1)

Symbol field Mnemonic field Operand field Comment field

 None END None [; comment]

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 336 of 853
Apr 01, 2011

4.3 Control Instructions

This chapter describes control instructions.

Control Instructions provide detailed instructions for assembler operation.

4.3.1 Overview

Control instructions provide detailed instructions for assembler operation and so are written in the source.

Control instructions do not become the target of object code generation.

Control instruction categories are displayed below.

Table 4-20. Control Instruction List

As with directives, control instructions are specified in the source.

Also, among the control instructions displayed in "Table 4-20. Control Instruction List", the following can be written as

an assembler option even in the command line when the assembler is activated.

Table 4-21. Control Instructions and Assembler Options

Control Instruction Type Control Instruction

Assemble target type specification control instruc-

tion

PROCESSOR

Debug information output control instructions DEBUG, NODEBUG, DEBUGA, NODEBUGA

Cross-reference list output specification control

instructions

XREF, NOXREF, SYMLIST, NOSYMLIST

Include control instruction INCLUDE

Assembly list control instructions EJECT, LIST, NOLIST, GEN, NOGEN, COND, NOCOND,

TITLE, SUBTITLE, FORMFEED, NOFORMFEED, WIDTH,

LENGTH, TAB

Conditional assembly control instructions IF, _IF, ELSEIF, _ELSEIF, ELSE, ENDIF, SET, RESET

Kanji code control instruction KANJICODE

RAM area allocation-specification control instruc-

tion

RAM_ALLOCATE

Other control instructions TOL_INF, DGS, DGL

Control Instruction Assembler Options

PROCESSOR -c

DEBUG/NODEBUG -g/-ng

DEBUGA/NODEBUGA -ga/-nga

XREF/NOXREF -kx/-nkx

SYMLIST/NOSYMLIST -ks/-nks

TITLE -lh

FORMFEED/NOFORMFEED -lf/-nlf

WIDTH -lw

LENGTH -ll

TAB -lt

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 337 of 853
Apr 01, 2011

KANJICODE -zs/-ze/-zn

Control Instruction Assembler Options

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 338 of 853
Apr 01, 2011

4.3.2 Assemble target type specification control instruction

Assemble target type specification control instructions specify the assemble target type in the source module file.

The following assemble target type specification control instructions are available.

Control Instruction Overview

PROCESSOR Specifies in a source module file the assemble target type.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 339 of 853
Apr 01, 2011

Specifies in a source module file the assemble target type.

[Description Format]

[Function]

- The PROCESSOR control instruction specifies in a source module file the processor type of the target device sub-

ject to assembly.

[Use]

- The processor type of the target device subject to assembly must always be specified in the source module file or

in the startup command line of the assembler.

- If you omit the processor type specification for the target device subject to assembly in each source module file,

you must specify the processor type at each assembly operation. Therefore, by specifying the target device sub-

ject to assembly in each source module file, you can save time and trouble when starting up the assembler.

[Description]

- The PROCESSOR control instruction can be described only in the header section of a source module file. If the

control instruction is described elsewhere, the assembler will be aborted.

- For the specifiable processor name, see the user's manual of the device used or "Device Files Operating Precau-

tions".

- If the specified processor type differs from the actual target device subject to assembly, the assembler will be

aborted.

- Only one PROCESSOR control instruction can be specified in the module header.

- The processor type of the target device subject to assembly may also be specified with the assembler option (-c) in

the startup command line of the assembler. If the specified processor type differs between the source module file

and the startup command line, the assembler will output a warning message and give precedence to the processor

type specification in the startup command line.

- Even when the assembler option (-c) has been specified in the startup command line, the assembler performs a

syntax check on the PROCESSOR control instruction.

- If the processor type is not specified in either the source module file or the startup command line, the assembler

will be aborted.

[Application example]

PROCESSOR

[]$[]PROCESSOR[]([]processor-type[])

[]$[]PC[]([]processor-type[]) ; Abbreviated format

$ PROCESSOR (f1166a0)

$ DEBUG

$ XREF

 NAME TEST

 :

 CSEG

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 340 of 853
Apr 01, 2011

4.3.3 Debug information output control instructions

With debug information output control instructions is is possible to specify the output of debug information for the object

module file in the source module file.

The following debug information output control instrucitons are available.

Control Instruction Overview

DEBUG Adds local symbol information in the object module file.

NODEBUG Does not add local symbol information in the object module file.

DEBUGA Adds assembler source debug information in the object module file.

NODEBUGA Does not add assembler source debug information in the object module file.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 341 of 853
Apr 01, 2011

Adds local symbol information in the object module file.

[Description Format]

[Function]

- The DEBUG control instruction tells the assembler to add local symbol information to an object module file.

- The NODEBUG control instruction tells the assembler not to add local symbol information to an object module file.

However, in this case as well, the segment name is output to an object module file.

[Use]

- Use the DEBUG control instruction when symbolic debugging including local symbols is to be performed.

[Description]

- The DEBUG or NODEBUG control instruction can be described only in the header section of a source module file.

- If the DEBUG or NODEBUG control instruction is omitted, the assembler will assume that the DEBUG control

instruction has been specified.

- If two or more of these control instructions are specified, the last specified control instruction takes precedence

over the others.

- The addition of local symbol information can be specified using the assembler option (-g/-ng) in the startup com-

mand line.

- If the control instruction specification in the source module file differs from the specification in the startup command

line, the specification in the command line takes precedence.

- Even when the assembler option (-ng) has been specified, the assembler performs a syntax check on the DEBUG

or NODEBUG control instruction.

DEBUG

[]$[]DEBUG ; Default assumption

[]$[]DG ; Abbreviated format

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 342 of 853
Apr 01, 2011

Does not add local symbol information in the object module file.

[Description Format]

[Function]

- The NODEBUG control instruction tells the assembler not to add local symbol information to an object module file.

However, in this case as well, the segment name is output to an object module file.

- "Local symbol information" refers to symbols other than module names and PUBLIC, EXTRN, and EXTBIT sym-

bols.

[Use]

- Use the NODEBUG control instruction when:

- Symbolic debugging is to be performed for global symbols only

- Debugging is to be performed without symbols

- Only objects are required (as for evaluation with PROM)

[Description]

- The DEBUG or NODEBUG control instruction can be described only in the header section of a source module file.

- If the DEBUG or NODEBUG control instruction is omitted, the assembler will assume that the DEBUG control

instruction has been specified.

- If two or more of these control instructions are specified, the last specified control instruction takes precedence

over the others.

- The addition of local symbol information can be specified using the assembler option (-g/-ng) in the startup com-

mand line.

- If the control instruction specification in the source module file differs from the specification in the startup command

line, the specification in the command line takes precedence.

- Even when the assembler option (-ng) has been specified, the assembler performs a syntax check on the DEBUG

or NODEBUG control instruction.

NODEBUG

[]$[]NODEBUG

[]$[]NODG ; Abbreviated format

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 343 of 853
Apr 01, 2011

Adds assembler source debug information in the object module file.

[Description Format]

[Function]

- The DEBUGA control instruction tells the assembler to add assembler source debugging information to an object

module file.

[Use]

- Use the DEBUGA control instruction when debugging is to be performed at the assembler source level. An inte-

grated debugger will be necessary for debugging at the source level.

[Description]

- The DEBUGA or NODEBUGA control instruction can be described only in the header section of a source module

file.

- If the DEBUGA or NODEBUGA control instruction is omitted, the assembler will assume that the DEBUGA control

instruction has been specified.

- If two or more of these control instructions are specified, the last specified control instruction takes precedence

over the others.

- The addition of assembler source debugging information can be specified using the assembler option (-ga/-nga) in

the startup command line.

- If the control instruction specification in the source module file differs from the specification in the startup command

line, the specification in the command line takes precedence.

- Even when the assembler option (-nga) has been specified, the assembler performs a syntax check on the

DEBUGA or NODEBUGA control instruction.

- If compiling the debug information output by the C compiler, do not describe the debug information output control

instructions when assembling the output assemble source. The control instructions necessary at assembly are

output to assembler source as control statements by the C compiler.

DEBUGA

[]$[]DEBUGA ; Default assumption

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 344 of 853
Apr 01, 2011

Does not add assembler source debug information in the object module file.

[Description Format]

[Function]

- NThe NODEBUGA control instruction tells the assembler not to add assembler source debugging information to

an object module file.

[Use]

- Use the NODEBUGA control instruction when:

- Debugging is to be performed without the assembler source

- Only objects are required (as for evaluation with PROM)

[Description]

- The DEBUGA or NODEBUGA control instruction can be described only in the header section of a source module

file.

- If the DEBUGA or NODEBUGA control instruction is omitted, the assembler will assume that the DEBUGA control

instruction has been specified.

- If two or more of these control instructions are specified, the last specified control instruction takes precedence

over the others.

- The addition of assembler source debugging information can be specified using the assembler option (-ga/-nga) in

the startup command line.

- If the control instruction specification in the source module file differs from the specification in the startup command

line, the specification in the command line takes precedence.

- Even when the assembler option (-nga) has been specified, the assembler performs a syntax check on the

DEBUGA or NODEBUGA control instruction.

- If compiling the debug information output by the C compiler, do not describe the debug information output control

instructions when assembling the output assemble source. The control instructions necessary at assembly are

output to assembler source as control statements by the C compiler.

NODEBUGA

[]$[]NODEBUGA

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 345 of 853
Apr 01, 2011

4.3.4 Cross-reference list output specification control instructions

cross-reference list output specification control instructions specify cross-reference list output in a source module file.

The following cross-reference list output specification control instructions are available.

Control Instruction Overview

XREF Outputs a cross-reference list to an assemble list file.

NOXREF Does not output a cross-reference list to an assemble list file.

SYMLIST Outputs a symbol list to a list file.

NOSYMLIST Does not output a symbol list to a list file.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 346 of 853
Apr 01, 2011

Outputs a cross-reference list to an assemble list file.

[Description Format]

[Function]

- The XREF control instruction tells the assembler to output a cross-reference list to an assembly list file.

[Use]

- Use the XREF control instruction to output a cross-reference list when you want information on where each of the

symbols defined in the source module file is referenced or how many such symbols are referenced in the source

module file.

- If you must specify the output or non-output of a cross-reference list at each assembly operation, you may save

time and labor by specifying the XREF and NOXREF control instruction in the source module file.

[Description]

- The XREF or NOXREF control instruction can be described only in the header section of a source module file.

- If two or more of these control instructions are specified, the last specified control instruction takes precedence

over the others.

- Output or non-output of a cross-reference list can also be specified by the assembler option (-kx/-nkx) in the star-

tup command line.

- If the control instruction specification in the source module file differs from the assembler option specification in the

startup command line, the specification in the command line will take precedence over that in the source module.

- Even when the assembler option (-np) has been specified in the startup command line, the assembler performs a

syntax check on the XREF/NOXREF control instruction.

XREF

[]$[]XREF

[]$[]XR ; Abbreviated format

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 347 of 853
Apr 01, 2011

Does not output a cross-reference list to an assemble list file.

[Description Format]

[Function]

- The NOXREF control instruction tells the assembler not to output a cross-reference list to an assembly list file.

[Use]

- Use the XREF control instruction to output a cross-reference list when you want information on where each of the

symbols defined in the source module file is referenced or how many such symbols are referenced in the source

module file.

- If you must specify the output or non-output of a cross-reference list at each assembly operation, you may save

time and labor by specifying the XREF and NOXREF control instruction in the source module file.

[Description]

- The XREF or NOXREF control instruction can be described only in the header section of a source module file.

- If two or more of these control instructions are specified, the last specified control instruction takes precedence

over the others.

- Output or non-output of a cross-reference list can also be specified by the assembler option (-kx/-nkx) in the star-

tup command line.

- If the control instruction specification in the source module file differs from the assembler option specification in the

startup command line, the specification in the command line will take precedence over that in the source module.

- Even when the assembler option (-np) has been specified in the startup command line, the assembler performs a

syntax check on the XREF/NOXREF control instruction.

NOXREF

[]$[]NOXREF ; Default assumption

[]$[]NOXR ; Abbreviated format

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 348 of 853
Apr 01, 2011

Outputs a symbol list to a list file

[Description Format]

[Function]

- The SYMLIST control instruction tells the assembler to output a symbol list to a list file.

[Use]

- Use the SYMLIST control instruction to output a symbol list.

[Description]

- The SYMLIST or NOSYMLIST control instruction can be described only in the header section of a source module

file.

- If two or more of these control instructions are specified, the last specified control instruction takes precedence

over the others.

- Output of a symbol list can also be specified by the assembler option (-ks/-nks) in the startup command line.

- If the control instruction specification in the source module file differs from the assembler option specification in the

startup command line, the specification in the command line will take precedence over that in the source module.

- Even when the assembler option (-np) has been specified in the startup command line, the assembler performs a

syntax check on the SYMLIST/NOSYMLIST control instruction.

SYMLIST

[]$[]SYMLIST

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 349 of 853
Apr 01, 2011

Does not output a symbol list to a list file.

[Description Format]

[Function]

- The NOSYMLIST control instruction tells the assembler not to output a symbol list to a list file.

[Use]

- Use the NOSYMLIST control instruction not to output a symbol list.

[Description]

- The SYMLIST or NOSYMLIST control instruction can be described only in the header section of a source module

file.

- If two or more of these control instructions are specified, the last specified control instruction takes precedence

over the others.

- Output of a symbol list can also be specified by the assembler option (-ks/-nks) in the startup command line.

- If the control instruction specification in the source module file differs from the assembler option specification in the

startup command line, the specification in the command line will take precedence over that in the source module.

- Even when the assembler option (-np) has been specified in the startup command line, the assembler performs a

syntax check on the SYMLIST/NOSYMLIST control instruction.

NOSYMLIST

[]$[]NOSYMLIST ; Default assumption

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 350 of 853
Apr 01, 2011

4.3.5 Include control instruction

Include control instructions are used when quoting other source module files in the source module

By using include control instructions effectively, the labor hours for describing source can be reduced.

The following include control instructions are available.

Control Instruction Overview

INCLUDE Quote a series of statements from another source module file.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 351 of 853
Apr 01, 2011

Quote a series of statements from another source module file.

[Description Format]

[Function]

- The INCLUDE control instruction tells the assembler to insert and expand the contents of a specified file beginning

on a specified line in the source program for assembly.

[Use]

- A relatively large group of statements that may be shared by two or more source modules should be combined into

a single file as an INCLUDE file.

 If the group of statements must be used in each source module, specify the filename of the required INCLUDE file

with the INCLUDE control instruction.

 With this control instruction, you can greatly reduce time and labor in describing source modules.

[Description]

- The INCLUDE control instruction can only be described in ordinary source programs.

- The pathname or drive name of an INCLUDE file can be specified with the assembler option (-I).

- The assembler searches INCLUDE file read paths in the following sequence:

(1) When an INCLUDE file is specified without pathname specification

(a) Path in which the source file exists

(b) Path specified by the assembler option (-I)

(c) Path specified by the environment variable INC78K0R

(2) When an INCLUDE file is specified with a pathname

If the INCLUDE file is specified with a drive name or a pathname which begins with backslash (\), the path specified

with the INCLUDE file will be prefixed to the INCLUDE filename. If the INCLUDE file is specified with a relative

path (which does not begin with \), a pathname will be prefixed to the INCLUDE filename in the order described in

(1) above.

- Nesting of INCLUDE files is allowed up to seven levels. In other words, the nesting level display of INCLUDE files

in the assembly list is up to 8 (the term "nesting" here refers to the specification of one or more other INCLUDE

files in an INCLUDE file).

- The END directive need not be described in an INCLUDE file.

- If the specified INCLUDE file cannot be opened, the assembler will abort operation.

INCLUDE

[]$[]INCLUDE[]([]filename[])

[]$[]IC[]([]filename[]) ; Abbreviated format

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 352 of 853
Apr 01, 2011

- An INCLUDE file must be closed with IF or _IF control instruction that is properly paired with an ENDIF control

instruction within the INCLUDE file. If the IF level at the entry of the INCLUDE file expansion does not correspond

with the IF level immediately after the INCLUDE file expansion, the assembler will output an error message and

force the IF level to return to that level at the entry of the INCLUDE file expansion.

- When defining a macro in an INCLUDE file, the macro definition must be closed in the INCLUDE file. If an ENDM

directive appears unexpectedly (without the corresponding MACRO directive) in the INCLUDE file, an error mes-

sage will be output and the ENDM directive will be ignored. If an ENDM directive is missing for the MACRO direc-

tive described in the INCLUDE file, the assembler will output an error message but will process the macro

definition by assuming that the corresponding ENDM directive has been described.

- Two or more segments cannot be defined in an include file. An error is output, if defined.

[Application example]

(1) This control instruction specifies "EQU.INC" as the INCLUDE file.

(2) This control instruction specifies "SET1.INC" as the INCLUDE file.

(3) This control instruction specifies "SET2.INC" as the INCLUDE file.

(4) This control instruction specifies "SET3.INC" as the INCLUDE file.

Notes 1. Two or more $IC control instructions can be specified in the source file. The same INCLUDE file may also

be specified more than once.

2. Two or more $IC control instructions may be specified for INCLUDE file "EQU.INC".

3. No $IC control instruction can be specified in any of the INCLUDE files "SET1.INC", "SET2.INC", and

"SET3.INC".

 NAME SAMPLE

 EXTRN L1, L2

 PUBLIC L3

$ INCLUDE (EQU.INC) ;

 CSEG

 :

 END

<Source program>Note 1

 SYMA EQU 10H

$ INCLUDE (SET1.INC) ;

 SYMB EQU 20H

$ INCLUDE (SET2.INC) ;

 :

$ INCLUDE (SET3.INC) ;

 SYMZ EQU 100H

<EQU.INC>Note 2

SYM1 SET 10H

<SET1.INC>Note 3

SYM1 SET 20H

< SET2.INC >Note 3

SYM1 SET 30H

< SET3.INC >Note 3

(1)

(2)

(3)

(4)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 353 of 853
Apr 01, 2011

When this source program is assembled, the contents of the INCLUDE file will be expanded as follows:

 NAME SAMPLE

 EXTRN L1, L2

 PUBLIC L3

$ INCLUDE (EQU.INC) ;

 SYMA EQU 10H

& INCLUDE (SET1.INC) ;

 SYM1 SET 10H

 SYMB EQU 20H

& INCLUDE (SET2.INC) ;

 SYM1 SET 20H

& INCLUDE (SET3.INC) ;

 SYM1 SET 30H

 SYMZ EQU 100H

 CSEG

 :

 END

The contents of INCLUDE file "EQU.INC"

have been expanded.

The contents of INCLUDE file "SET1.INC"

have been expanded.

The contents of INCLUDE file "SET2.INC"

have been expanded.

The contents of INCLUDE file "SET3.INC"

have been expanded.

(1)

(2)

(3)

(4)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 354 of 853
Apr 01, 2011

4.3.6 Assembly list control instructions

The assembly list control instructions are used in a source module file to control the output format of an assembly list

such as page ejection, suppression of list output, and subtitle output.

The following assembly list control instructions are available.

Control Instruction Overview

EJECT Indicates an Assembly List page break.

LIST Indicates starting location of output of assembly list.

NOLIST Indicates stop location of output of assembly list.

GEN Outputs macro definition lines, reference line and also macro-expanded lines to

assembly list.

NOGEN Does not output macro definition lines, reference line and also macro-expanded

lines to assembly list.

COND Outputs approved and failed sections of the conditional assemble to the assem-

bly list.

NOCOND Does not output approved and failed sections of the conditional assemble to the

assembly list

TITLE Prints character strings in the TITLE column at each page header of an assem-

bly list, symbol table list, or cross-reference list.

SUBTITLE Prints character strings in the SUBTITLE column at header of an assembly list.

FORMFEED Outputs form feed at the end of a list file.

NOFORMFEED Does not output form feed at the end of a list file.

WIDTH Specifies the maximum number of characters for one line of a list file.

LENGTH Specifies the number of lines for 1 page of a list file.

TAB Specifies the number of characters for list file tabs.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 355 of 853
Apr 01, 2011

Indicates an assembly list page break.

[Description Format]

[Default Assumption]

- EJECT control instruction is not specified.

[Function]

- The EJECT control instruction causes the assembler to execute page ejection (formfeed) of an assembly list.

[Use]

- Describe the EJECT control instruction in a line of the source module at which page ejection of the assembly list is

required.

[Description]

- The EJECT control instruction can only be described in ordinary source programs.

- Page ejection of the assembly list is executed after the image of the EJECT control instruction itself is output.

- If the assembler option (-np) or (-llo) is specified in the startup command line or if the assembly list output is dis-

abled by another control instruction, the EJECT control instruction becomes invalid.

See "RL78,78K0R Build" for those assembler options.

- If an illegal description follows the EJECT control instruction, the assembler will output an error message.

[Application example]

(1) Page ejection is executed with the EJECT control instruction.

EJECT

[]$[]EJECT

[]$[]EJ ; Abbreviated format

 :

 MOV [DE+], A

 BR $$

$ EJECT ; (1)

 :

 CSEG

 :

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 356 of 853
Apr 01, 2011

The assemble list of the above application example is shown below.

 :

 MOV [DE+], A

 BR $$

$ EJECT ; (1)

---page ejection-----------------------

 :

 CSEG

 :

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 357 of 853
Apr 01, 2011

Indicates starting location of output of assembly list.

[Description Format]

[Function]

- The LIST control instruction indicates to the assembler the line at which assembly list output must start.

[Use]

- LUse the LIST control instruction to cancel the assembly list output suppression specified by the NOLIST control

instruction.

By using a combination of NOLIST and LIST control instructions, you can control the amount of assembly list out-

put as well as the contents of the list.

[Description]

- The LIST control instruction can only be described in ordinary source programs.

- If the LIST control instruction is specified after the NOLIST control instruction, statements described after the LIST

control instruction will be output again on the assembly list. The image of the LIST or NOLIST control instruction

will also be output on the assembly list.

- If neither the LIST nor NOLIST control instruction is specified, all statements in the source module will be output to

an assembly list.

[Application example]

(1) Because the NOLIST control instruction is specified here, statements after "$ NOLIST" and up to the LIST

control instruction in (2) will not be output on the assembly list.

The image of the NOLIST control instruction itself will be output on the assembly list.

LIST

[]$[]LIST ; Default assumption

[]$[]LI ; Abbreviated format

 NAME SAMP1

$ NOLIST ; (1)

DATA1 EQU 10H ; The statement will not be output to the assembly list.

DATA2 EQU 11H ; The statement will not be output to the assembly list.

 : ; The statement will not be output to the assembly list.

DATAX EQU 20H ; The statement will not be output to the assembly list.

DATAY EQU 20H ; The statement will not be output to the assembly list.

$ LIST ; (2)

 CSEG

 :

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 358 of 853
Apr 01, 2011

(2) Because the LIST control instruction is specified here, statements after this control instruction will be out-

put again on the assembly list.

The image of the LIST control instruction itself will also be output on the assembly list.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 359 of 853
Apr 01, 2011

Indicates stop location of output of assembly list.

[Description Format]

[Function]

- The NOLIST control instruction indicates to the assembler the line at which assembly list output must be sup-

pressed.

All source statements described after the NOLIST control instruction specification will be assembled, but will not be

output on the assembly list until the LIST control instruction appears in the source program.

[Use]

- Use the NOLIST control instruction to limit the amount of assembly list output.

- Use the LIST control instruction to cancel the assembly list output suppression specified by the NOLIST control

instruction.

By using a combination of NOLIST and LIST control instructions, you can control the amount of assembly list out-

put as well as the contents of the list.

[Description]

- The NOLIST control instruction can only be described in ordinary source programs.

- The NOLIST control instruction functions to suppress assembly list output and is not intended to stop the assembly

process.

- If the LIST control instruction is specified after the NOLIST control instruction, statements described after the LIST

control instruction will be output again on the assembly list. The image of the LIST or NOLIST control instruction

will also be output on the assembly list.

- If neither the LIST nor NOLIST control instruction is specified, all statements in the source module will be output to

an assembly list.

[Application example]

NOLIST

[]$[]NOLIST

[]$[]NOLI ; Abbreviated format

 NAME SAMP1

$ NOLIST ; (1)

DATA1 EQU 10H ; The statement will not be output to the assembly list.

DATA2 EQU 11H ; The statement will not be output to the assembly list.

 : ; The statement will not be output to the assembly list.

DATAX EQU 20H ; The statement will not be output to the assembly list.

DATAY EQU 20H ; The statement will not be output to the assembly list.

$ LIST ; (2)

 CSEG

 :

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 360 of 853
Apr 01, 2011

(1) Because the NOLIST control instruction is specified here, statements after "$ NOLIST" and up to the LIST

control instruction in (2) will not be output on the assembly list.

The image of the NOLIST control instruction itself will be output on the assembly list.

(2) Because the LIST control instruction is specified here, statements after this control instruction will be out-

put again on the assembly list.

The image of the LIST control instruction itself will also be output on the assembly list.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 361 of 853
Apr 01, 2011

Outputs macro definition lines, reference line and also macro-expanded lines to assembly list.

[Description Format]

[Function]

- The GEN control instruction tells the assembler to output macro definition lines, macro reference lines, and macro-

expanded lines to an assembly list.

[Use]

- Use the GEN control instruction to limit the amount of assembly list output.

[Description]

- The GEN control instruction can only be described in ordinary source programs.

- If neither the GEN nor NOGEN control instruction is specified, macro definition lines, macro reference lines, and

macro-expanded lines will be output to an assembly list.

- The specified list control takes place after the image of the GEN or NOGEN control instruction itself has been

printed on the assembly list.

- If the GEN control instruction is specified after the NOGEN control instruction, the assembler will resume the out-

put of macro-expanded lines.

[Application example]

GEN

[]$[]GEN ; Default assumption

 NAME SAMP

$ NOGEN ; (1)

ADMAC MACRO PARA1, PARA2

 MOV A, #PARA1

 ADD A, #PARA2

 ENDM

 CSEG

 ADMAC 10H, 20H

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 362 of 853
Apr 01, 2011

The assemble list of the above application example is shown below.

(1) Because the NOGEN control instruction is specified, the macro-expanded lines will not be output to the

assembly list.

 NAME SAMP1

$ NOGEN ; (1)

ADMAC MACRO PARA1, PARA2

 MOV A, #PARA1

 ADD A, #PARA2

 ENDM

 CSEG

 ADMAC 10H, 20H

 MOV A, #10H ; The macro-expanded lines will not be output.

 AUD A, #20H ; The macro-expanded lines will not be output.

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 363 of 853
Apr 01, 2011

Does not output macro definition lines, reference line and also macro-expanded lines to assembly list.

[Description Format]

[Function]

- The NOGEN control instruction tells the assembler to output macro definition lines and macro reference lines but

to suppress macro-expanded lines.

[Use]

- Use the NOGEN control instruction to limit the amount of assembly list output.

[Description]

- The NOGEN control instruction can only be described in ordinary source programs.

- If neither the GEN nor NOGEN control instruction is specified, macro definition lines, macro reference lines, and

macro-expanded lines will be output to an assembly list.

- The specified list control takes place after the image of the GEN or NOGEN control instruction itself has been

printed on the assembly list.

- The assembler continues its processing and increments the statement number (STNO) count even after the list

output control by the NOGEN control instruction.

- If the GEN control instruction is specified after the NOGEN control instruction, the assembler will resume the out-

put of macro-expanded lines.

[Application example]

NOGEN

[]$[]NOGEN

 NAME SAMP

$ NOGEN ; (1)

ADMAC MACRO PARA1, PARA2

 MOV A, #PARA1

 ADD A, #PARA2

 ENDM

 CSEG

 ADMAC 10H, 20H

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 364 of 853
Apr 01, 2011

The assemble list of the above application example is shown below.

(1) Because the NOGEN control instruction is specified, the macro-expanded lines will not be output to the

assembly list.

 NAME SAMP1

$ NOGEN ; (1)

ADMAC MACRO PARA1, PARA2

 MOV A, #PARA1

 ADD A, #PARA2

 ENDM

 CSEG

 ADMAC 10H, 20H

 MOV A, #10H ; The macro-expanded lines will not be output.

 AUD A, #20H ; The macro-expanded lines will not be output.

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 365 of 853
Apr 01, 2011

Outputs approved and failed sections of the conditional assemble to the assembly list.

[Description Format]

[Function]

- The COND control instruction tells the assembler to output lines that have satisfied the conditional assembly con-

dition as well as those which have not satisfied the conditional assembly condition to an assembly list.

[Use]

- Use the COND control instruction to limit the amount of assembly list output.

[Description]

- The COND control instruction can only be described in ordinary source programs.

- If neither the COND nor NOCOND control instruction is specified, the assembler will output lines that have satis-

fied the conditional assembly condition as well as those which have not satisfied the conditional assembly condi-

tion to an assembly list.

- The specified list control takes place after the image of the COND or NOCOND control instruction itself has been

printed on the assembly list.

- If the COND control instruction is specified after the NOCOND control instruction, the assembler will resume the

output of lines that have not satisfied the conditional assembly condition and lines in which IF/_IF, ELSEIF/

_ELSEIF, ELSE, and ENDIF have been described.

[Application example]

COND

[]$[]COND ; Default assumption

 NAME SAMP

$ NOCOND

$ SET (SW1)

$ IF (SW1) ; This part, though assembled, will not be outout

 ; to the list.

 MOV A, #1H

$ ELSE ; This part, though assembled, will not be outout

 ; to the list.

 MOV A, #0H ; This part, though assembled, will not be outout

 ; to the list.

$ ENDIF ; This part, though assembled, will not be outout

 ; to the list.

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 366 of 853
Apr 01, 2011

Does not output approved and failed sections of the conditional assemble to the assembly list.

[Description Format]

[Function]

- The NOCOND control instruction tells the assembler to output only lines that have satisfied the conditional assem-

bly condition to an assembly list. The output of lines that have not satisfied the conditional assembly condition and

lines in which IF/_IF, ELSEIF/_ELSEIF, ELSE, and ENDIF have been described will be suppressed.

[Use]

- Use the NOCOND control instruction to limit the amount of assembly list output.

[Description]

- The NOCOND control instruction can only be described in ordinary source programs.

- If neither the COND nor NOCOND control instruction is specified, the assembler will output lines that have satis-

fied the conditional assembly condition as well as those which have not satisfied the conditional assembly condi-

tion to an assembly list.

- The specified list control takes place after the image of the COND or NOCOND control instruction itself has been

printed on the assembly list.

- The assembler increments the ALNO and STNO counts even after the list output control by the NOCOND control

instruction.

- If the COND control instruction is specified after the NOCOND control instruction, the assembler will resume the

output of lines that have not satisfied the conditional assembly condition and lines in which IF/_IF, ELSEIF/

_ELSEIF, ELSE, and ENDIF have been described.

[Application example]

NOCOND

[]$[]NOCOND

 NAME SAMP

$ NOCOND

$ SET (SW1)

$ IF (SW1) ; This part, though assembled, will not be outout

 ; to the list.

 MOV A, #1H

$ ELSE ; This part, though assembled, will not be outout

 ; to the list.

 MOV A, #0H ; This part, though assembled, will not be outout

 ; to the list.

$ ENDIF ; This part, though assembled, will not be outout

 ; to the list.

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 367 of 853
Apr 01, 2011

Prints character strings in the TITLE column at each page header of an assembly list, symbol table list, or cross-refer-

ence list.

[Description Format]

[Default Assumption]

- When the TITLE control instruction is not specified, the TITLE column of the assembly list header is left blank.

[Function]

- The TITLE control instruction specifies the character string to be printed in the TITLE column at each page header

of an assembly list, symbol table list, or cross-reference list.

[Use]

- Use the TITLE control instruction to print a title on each page of a list so that the contents of the list can be easily

identified.

- If you need to specify a title with the assembler option at each assembly time, you can save time and labor in start-

ing the assembler by describing this control instruction in the source module file.

[Description]

- The TITLE control instruction can be described only in the header section of a source module file.

- If two or more TITLE control instructions are specified at the same time, the assembler will accept only the last

specified TITLE control instruction as valid.

- Up to 60 characters can be specified as the title string. If the specified title string consists of 61 or more charac-

ters, the assembler will accept only the first 60 characters of the string as valid.

However, if the character length specification per line of an assembly list file (a quantity "X") is 119 characters or

less, "X - 60 characters" will be acceptable.

- If a single quotation mark (') is to be used as part of the title string, describe the single quotation mark twice in

succession.

- If no title string is specified (the number of characters in the title string = 0), the assembler will leave the TITLE col-

umn blank.

- If any character not included in "(2) Character set" is found in the specified title string, the assembler will output "!"

in place of the illegal character in the TITLE column.

- A title for an assembly list can also be specified with the assembler option (-lh) in the startup command line of the

assembler.

TITLE

[]$[]TITLE[]([]'title-string'[])

[]$[]TT[]([]'title-string'[]) ; Abbreviated format

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 368 of 853
Apr 01, 2011

[Application example]

The assemble list of the above application example is shown below. (with the number of lines per page specified as

72).

$ PROCESSOR (f1166a0)

$ TITLE ('THIS IS TITLE')

 NAME SAMPLE

 CSEG

 MOV A, B

 END

78K0R Assembler Vx.xx THIS IS TITLE Date:xx xxx xx Page:1

Command : -ll72 sample.asm

Para-file :

In-file : sample.asm

Obj-file : sample.rel

Prn-file : sample.prn

 Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

 1 1 $ PROCESSOR (f1166a0)

 2 2 $ TITLE ('THIS IS TITLE')

 3 3 NAME SAMPLE

 4 4 ---- CSEG

 5 5 00000 63 MOV A, B

 6 6 END

Segment information :

ADRS LEN NAME

00000 00001H ?CSEG

Target chip : uPD78F1166_A0
Device file : Vx.xx

Assembly complete, 0 error(s) and 0 warning(s) found. (0)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 369 of 853
Apr 01, 2011

Prints character strings in the SUBTITLE column at header of an assembly list.

[Description Format]

[Default Assumption]

- When the SUBTITLE control instruction is not specified, the SUBTITLE section of the assembly list header is left

blank.

[Function]

- The SUBTITLE control instruction specifies the character string to be printed in the SUBTITLE section at each

page header of an assembly list.

[Use]

- Use the SUBTITLE control instruction to print a subtitle on each page of an assembly list so that the contents of the

assembly list can be easily identified.

The character string of a subtitle may be changed for each page.

[Description]

- The SUBTITLE control instruction can only be described in ordinary source programs.

- Up to 72 characters can be specified as the subtitle string.

If the specified title string consists of 73 or more characters, the assembler will accept only the first 72 characters

of the string as valid. A 2-byte character is counted as two characters, and tab is counted as one character.

- The character string specified with the SUBTITLE control instruction will be printed in the SUBTITLE section on the

page after the page on which the SUBTITLE control instruction has been specified. However, if the control instruc-

tion is specified at the top (first line) of a page, the subtitle will be printed on that page.

- If the SUBTITLE control instruction has not been specified, the assembler will leave the SUBTITLE section blank.

- If a single quotation mark (') is to be used as part of the character string, describe the single quotation mark twice

in succession.

- If the character string in the SUBTITLE section is 0, the SUBTITLE column will be left blank.

- If any character not included in "(2) Character set" is found in the specified subtitle string, the assembler will out-

put "!" in place of the illegal character in the SUBTITLE column. If CR (0DH) is described, an error occurs and

nothing will be output in the assembly list. If 00H is described, nothing from that point to the closing single quota-

tion mark (') will be output.

SUBTITLE

[]$[]SUBTITLE[]([]'title-string'[])

[]$[]ST[]([]'title-string'[]) ; Abbreviated format

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 370 of 853
Apr 01, 2011

[Application example]

(1) This control instruction specifies the character string "THIS IS SUBTITLE 1".

(2) This control instruction specifies a page ejection.

(3) This control instruction specifies the character string "THIS IS SUBTITLE 2".

(4) This control instruction specifies a page ejection.

(5) This control instruction specifies the character string "THIS IS SUBTITLE 3".

The assembly list for this example appears as follows (with the number of lines per page specified as 80).

 NAME SAMP

 CSEG

$ SUBTITLE ('THIS IS SUBTITLE 1') ; (1)

$ EJECT ; (2)

 CSEG

$ SUBTITLE ('THIS IS SUBTITLE 2') ; (3)

$ EJECT ; (4)

$ SUBTITLE ('THIS IS SUBTITLE 3') ; (5)

 END

78K0R Assembler Vx.xx Date:xx xxx xx Page:1

Command : -cf1166a0 -ll80 sample.asm

Para-file :

In-file : sample.asm

Obj-file : sample.rel

Prn-file : sample.prn

 Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

 1 1 NAME SAMP

 2 2 ----- CSEG

 3 3 $ SUBTITLE ('THIS IS SUBTITLE 1') ; (1)

 4 4 $ EJECT ; (2)

---page ejection-------------------------

78K0R Assembler Vx.xx Date:xx xxx xx Page:2

THIS IS SUBTITLE 1

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 371 of 853
Apr 01, 2011

 5 5 ----- CSEG

 6 6 $ SUBTITLE ('THIS IS SUBTITLE 2') ; (3)

 7 7 $ EJECT ; (4)

---page ejection-------------------------

78K0R Assembler Vx.xx Date:xx xxx xx Page:3

THIS IS SUBTITLE 2

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

 8 8 $ SUBTITLE ('THIS IS SUBTITLE 3') ; (5)

 9 9 END

Segment informations :

ADRS LEN NAME

00000 00000H ?CSEG

Target chip : uPD78F1166_A0

Device file : Vx.xx

Assembly complete, 0 error(s) and 0 warning(s) found. (0)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 372 of 853
Apr 01, 2011

Outputs form feed at the end of a list file.

[Description Format]

[Function]

- The FORMFEED control instruction tells the assembler to output a FORMFEED code at the end of an assembly

list file.

[Use]

- Use the FORMFEED control instruction when you want to start a new page after printing the contents of an assem-

bly list file.

[Description]

- The FORMFEED control instruction can be described only in the header section of a source module file.

- At the time of printing an assembly list, the last page of the list may not come out if printing ends in the middle of a

page.

In such a case, add a FORMFEED code to the end of the assembly list using the FORMFEED control instruction

or assembler option (-lf).

In many cases, a FORMFEED code will be output at the end of a file. For this reason, if a FORMFEED code exists

at the end of a list file, an unwanted white page may be ejected. To prevent this, the NOFORMFEED control

instruction or assembler option (-nlf) has been set by default value.

- If two or more FORMFEED/NOFORMFEED control instructions are specified at the same time, only the last spec-

ified control instruction will become valid.

- The output or non-output of a formfeed code may also be specified with the assembler option (-lf) or (-nlf) in the

startup command line of the assembler.

- If the control instruction specification (FORMFEED/NOFORMFEED) in the source module differs from the specifi-

cation (-lf/-nlf) in the startup command line, the specification in the startup command line will take precedence over

that in the source module.

- Even when the assembler option (-np) has been specified in the startup command line, the assembler performs a

syntax check on the FORMFEED or NOFORMFEED control instruction.

FORMFEED

[]$[]FORMFEED

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 373 of 853
Apr 01, 2011

Does not output form feed at the end of a list file.

[Description Format]

[Function]

- The NOFORMFEED control instruction tells the assembler not to output a FORMFEED code at the end of an

assembly list file.

[Use]

- Use the FORMFEED control instruction when you want to start a new page after printing the contents of an assem-

bly list file.

[Description]

- The NOFORMFEED control instruction can be described only in the header section of a source module file.

- At the time of printing an assembly list, the last page of the list may not come out if printing ends in the middle of a

page.

In such a case, add a FORMFEED code to the end of the assembly list using the FORMFEED control instruction

or assembler option (-lf).

In many cases, a FORMFEED code will be output at the end of a file. For this reason, if a FORMFEED code exists

at the end of a list file, an unwanted white page may be ejected. To prevent this, the NOFORMFEED control

instruction or assembler option (-nlf) has been set by default value.

- If two or more FORMFEED/NOFORMFEED control instructions are specified at the same time, only the last spec-

ified control instruction will become valid.

- The output or non-output of a formfeed code may also be specified with the assembler option (-lf) or (-nlf) in the

startup command line of the assembler.

- If the control instruction specification (FORMFEED/NOFORMFEED) in the source module differs from the specifi-

cation (-lf/-nlf) in the startup command line, the specification in the startup command line will take precedence over

that in the source module.

- Even when the assembler option (-np) has been specified in the startup command line, the assembler performs a

syntax check on the FORMFEED or NOFORMFEED control instruction.

NOFORMFEED

[]$[]NOFORMFEED ; Default assumption

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 374 of 853
Apr 01, 2011

Specifies the maximum number of characters for one line of a list file.

[Description Format]

[Default Assumption]

$WIDTH (132)

[Function]

- The WIDTH control instruction specifies the number of columns (characters) per line of a list file.

"columns-per-line" must be a value in the range of 72 to 260.

[Use]

- Use the WIDTH control instruction when you want to change the number of columns per line of a list file.

[Description]

- The WIDTH control instruction can be described only in the header section of a source module file.

- If two or more WIDTH control instructions are specified at the same time, only the last specified control instruction

will become valid.

- The number of columns per line of a list file may also be specified with the assembler option (-lw) in the startup

command line of the assembler.

- If the control instruction specification (WIDTH) in the source module differs from the specification (-lw) in the star-

tup command line, the specification in the command line will take precedence over that in the source module.

- Even when the assembler option (-np) has been specified in the startup command line, the assembler performs a

syntax check on the WIDTH control instruction.

WIDTH

[]$[]WIDTH[]([]columns-per-line[])

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 375 of 853
Apr 01, 2011

Specifies the number of lines for 1 page of a list file

[Description Format]

[Default Assumption]

$LENGTH (66)

[Function]

- The LENGTH control instruction specifies the number of lines per page of a list file.

"lines-per-page" may be "0" or a value in the range of 20 to 32767.

[Use]

- Use the LENGTH control instruction when you want to change the number of lines per page of a list file.

[Description]

- The LENGTH control instruction can be described only in the header section of a source module file.

- If two or more LENGTH control instructions are specified at the same time, only the last specified control instruc-

tion will become valid.

- The number of columns per line of a list file may also be specified with the assembler option (-ll) in the startup com-

mand line of the assembler.

- If the control instruction specification (LENGTH) in the source module differs from the specification (-ll) in the star-

tup command line, the specification in the command line will take precedence over that in the source module.

- Even when the assembler option (-np) has been specified in the startup command line, the assembler performs a

syntax check on the LENGTH control instruction.

LENGTH

[]$[]LENGTH[]([]lines-per-page[])

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 376 of 853
Apr 01, 2011

Specifies the number of characters for list file tabs.

[Description Format]

[Default Assumption]

$TAB (8)

[Function]

- The TAB control instruction specifies the number of columns as tab stops on a list file.

"number-of-columns" may be a value in the range of 0 to 8.

- The TAB control instruction specifies the number of columns that becomes the basis of tabulation processing to

output any list by replacing a HT (Horizontal Tabulation) code in a source module with several blank characters on

the list.

[Use]

- Use HT code to reduce the number of blanks when the number of characters per line of any list is reduced using

the TAB control instruction.

[Description]

- The TAB control instruction can be described only in the header section of a source module file.

- If two or more TAB control instructions are specified at the same time, only the last specified control instruction will

become valid.

- The number of tab stops may also be specified with the assembler option (-lt) in the startup command line of the

assembler.

- If the control instruction specification (TAB) in the source module differs from the specification (-lt) in the startup

command line, the specification in the command line will take precedence over that in the source module.

- Even when the assembler option (-np) has been specified in the startup command line, the assembler performs a

syntax check on the TAB control instruction.

TAB

[]$[]TAB[]([]number-of-columns[])

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 377 of 853
Apr 01, 2011

4.3.7 Conditional assembly control instructions

Conditonal assembly control instructions select, with the conditonal assemble switch, whether to to make a series of

statements in the source module into an assemble target or not.

If conditional assemble instructions are made effective, it is possible to assemble without unnecessary statements and

hardly changing the source module.

The following conditonal assembly control instructions are available.

Control Instruction Overview

IF Sets conditions in order to limit the assembly target source statements.

_IF

ELSEIF

_ELSEIF

ELSE

ENDIF

SET Sets value for switch name specified by IF/ELSEIF control instruction.

RESET

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 378 of 853
Apr 01, 2011

Sets conditions in order to limit the assembly target source statements.

[Description Format]

[Function]

- The control instructions set the conditions to limit source statements subject to assembly.

Source statements described between the IF control instruction and the ENDIF control instruction are subject to

conditional assembly.

- If the evaluated value of the conditional expression or the switch name specified by the IF control instruction (i.e.,

IF or _IF condition) is true (other than 00H), source statements described after this IF control instruction until the

appearance of the next conditional assembly control instruction (ELSEIF/ _ELSEIF, ELSE, or ENDIF) in the source

program will be assembled. For subsequent assembly processing, the assembler will proceed to the statement

next to the ENDIF control instruction.

If the IF condition is false (00H), source statements described after this IF control instruction until the appearance

of the next conditional assembly control instruction (ELSEIF/_ELSEIF, ELSE, or ENDIF) in the source program will

not be assembled.

- The ELSEIF or _ELSEIF control instruction is checked for true/false status only when the conditions of all the con-

ditional assembly control instructions described before this ELSEIF or _ELSEIF control instruction are not satisfied

(i.e. the evaluated values are false).

If the evaluated value of the conditional expression or the switch name specified by the ELSEIF or _ELSEIF con-

trol instruction (i.e. ELSEIF or _ELSEIF condition) is true, source statements described after this ELSEIF or

_ELSEIF control instruction until the appearance of the next conditional assembly control instruction (ELSEIF/

_ELSEIF, ELSE, or ENDIF) in the source program will be assembled. For subsequent assembly processing, the

assembler will proceed to the statement next to the ENDIF control instruction.

If the ELSEIF or _ELSEIF condition is false, source statements described after this ELSEIF or _ELSEIF control

instruction until the appearance of the next conditional assembly control instruction (ELSEIF/ _ELSEIF, ELSE, or

ENDIF) in the source program will not be assembled.

- If the conditions of all the IF/_IF and ELSEIF/_ELSEIF control instructions described before the ELSE control

instruction are not satisfied (i.e., all the switch names are false), source statements described after this ELSE con-

trol instruction until the appearance of the ENDIF control instruction in the source program will be assembled.

- The ENDIF control instruction indicates to the assembler the termination of source statements subject to condi-

tional assembly.

IF

[]$[]IF[]([]switch-name[[]:[]switch-name] ... [])

 :

[]$[]ELSEIF[]([]switch-name[[]:[]switch-name] ... [])

 :

[]$[]ELSE

 :

[]$[]ENDIF

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 379 of 853
Apr 01, 2011

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-

out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a

source program, whether or not the debugging statement should be assembled (translated into machine language)

can be specified by setting switches for conditional assembly.

[Description]

- The IF and ELSEIF control instructions are used for true/false condition judgment with switch name(s), whereas

the _IF and _ELSEIF control instructions are used for true/false condition judgment with a conditional expression.

Both IF/ELSEIF and _IF/_ELSEIF may be used in combination. In other words, ELSEIF/_ELSEIF may be used in

a pair with IF or _IF and ENDIF.

- Describe absolute expression for a conditional expression.

- The rules of describing switch names are the same as the conventions of symbol description (for details, see "(3)

Symbol field").

However, the maximum number of characters that can be recognized as a switch name is always 31.

- If the two or more switch names are to be specified with the IF or ELSEIF control instruction, delimit each switch

name with a colon (:).

Up to five switch names can be used per module.

- When two or more switch names have been specified with the IF or ELSEIF control instruction, the IF or ELSEIF

condition is judged to be satisfied if one of the switch name values is true.

- The value of each switch name to be specified with the IF or ELSEIF control instruction must be defined with the

SET/RESET control instruction.

Therefore, if the value of the switch name specified with the IF or ELSEIF control instruction is not set in the source

module with the SET or RESET control instruction in advance, it is assumed to be reset.

- If the specified switch name or conditional expression contains an illegal description, the assembler will output an

error message and determine that the evaluated value is false.

- When describing the IF or _IF control instruction, the IF or _IF control instruction must always be paired with the

ENDIF control instruction.

- If an IF-ENDIF block is described in a macro body and control is transferred back from the macro at that level by

EXITM processing, the assembler will force the IF level to return to that level at the entry of the macro body. In this

case, no error occurs.

- Description of an IF-ENDIF block in another IF-ENDIF block is referred to as nesting of IF control instructions.

Nesting of IF control instructions is allowed up to 8 levels.

- In conditional assembly, object codes will not be generated for statements not assembled, but these statements

will be output without change on the assembly list. If you do not wish to output these statements, use the

$NOCOND control instruction.

[Application example]

- Example 1

 text0

$ IF (SW1) ; (1)

 text1

$ ENDIF ; (2)

 :

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 380 of 853
Apr 01, 2011

(1) If the value of switch name "SW1" is true, statements in "text1" will be assembled.

If the value of switch name "SW1" is false, statements in "text1" will not be assembled.

The value of switch name "SW1" has been set to true or false with the SET or RESET control instruction

described in "text0".

(2) This instruction indicates the end of the source statement range for conditional assembly.

- Example 2

(1) The value of switch name "SW1" has been set to true or false with the SET or RESET control instruction

described in "text0".

If the value of switch name "SW1" is true, statements in "text1" will be assembled and statements in

"text2" will not be assembled.

(2) If the value of switch name "SW1" in (1) is false, statements in "text1" will not be assembled and state-

ments in "text2" will be assembled.

(3) This instruction indicates the end of the source statement range for conditional assembly.

- Example 3

(1) The values of switch names "SW1", "SW2", and "SW3" have been set to true or false with the SET or

RESET control instruction described in "text0".

If the value of switch name "SW1" or "SW2" is true, statements in "text1" will be assembled and state-

ments in "text2", "text3", and "text4" will not be assembled.

 text0

$ IF (SW1) ; (1)

 text1

$ ELSE ; (2)

 text2

$ ENDIF ; (3)

 :

 END

 text0

$ IF (SW1 : SW2) ; (1)

 text1

$ ELSEIF (SW3) ; (2)

 text2

$ ELSEIF (SW4) ; (3)

 text3

$ ELSE ; (4)

 text4

$ ENDIF ; (5)

 :

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 381 of 853
Apr 01, 2011

If the values of switch names "SW1" and "SW2" are false, statements in "text1" will not be assembled and

statements after (2) will be conditionally assembled.

(2) If the values of switch names "SW1" and "SW2" in (1) are false and the value of switch name "SW3" is true,

statements in "text2" will be assembled and statements in "text1", "text3", and "text4" will not be assem-

bled.

(3) If the values of switch names "SW1" and "SW2" in (1) and "SW3" in (2) are false and the value of switch

statements in "text4" will be assembled and statements in "text1", "text2", and "text3" will not be will not

be assembled.

(4) If the values of switch names "SW1" and "SW2" in (1), "SW3" in (2), and "SW4" in (3) are all false, state-

ments in "text4" will be assembled and statements in "text1", "text2", and "text3" will not be assembled.

(5) This instruction indicates the end of the source statement range for conditional assembly.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 382 of 853
Apr 01, 2011

Sets conditions in order to limit the assembly target source statements.

[Description Format]

[Function]

- The control instructions set the conditions to limit source statements subject to assembly.

Source statements described between the _IF control instruction and the ENDIF control instruction are subject to

conditional assembly.

- If the evaluated value of the conditional expression or the switch name specified by the _IF control instruction (i.e.,

IF or _IF condition) is true (other than 00H), source statements described after this _IF control instruction until the

appearance of the next conditional assembly control instruction (ELSEIF/ _ELSEIF, ELSE, or ENDIF) in the source

program will be assembled. For subsequent assembly processing, the assembler will proceed to the statement

next to the ENDIF control instruction.

If the _IF condition is false (00H), source statements described after this _IF control instruction until the appear-

ance of the next conditional assembly control instruction (ELSEIF/_ELSEIF, ELSE, or ENDIF) in the source pro-

gram will not be assembled.

- The ELSEIF or _ELSEIF control instruction is checked for true/false status only when the conditions of all the con-

ditional assembly control instructions described before this ELSEIF or _ELSEIF control instruction are not satisfied

(i.e. the evaluated values are false).

If the evaluated value of the conditional expression or the switch name specified by the ELSEIF or _ELSEIF con-

trol instruction (i.e. ELSEIF or _ELSEIF condition) is true, source statements described after this ELSEIF or

_ELSEIF control instruction until the appearance of the next conditional assembly control instruction (ELSEIF/

_ELSEIF, ELSE, or ENDIF) in the source program will be assembled. For subsequent assembly processing, the

assembler will proceed to the statement next to the ENDIF control instruction.

If the ELSEIF or _ELSEIF condition is false, source statements described after this ELSEIF or _ELSEIF control

instruction until the appearance of the next conditional assembly control instruction (ELSEIF/ _ELSEIF, ELSE, or

ENDIF) in the source program will not be assembled.

- If the conditions of all the IF/_IF and ELSEIF/_ELSEIF control instructions described before the ELSE control

instruction are not satisfied (i.e., all the switch names are false), source statements described after this ELSE con-

trol instruction until the appearance of the ENDIF control instruction in the source program will be assembled.

- The ENDIF control instruction indicates to the assembler the termination of source statements subject to condi-

tional assembly.

_IF

[]$[]_IF conditional-expression

 :

[]$[]_ELSEIF conditional-expression

 :

[]$[]ELSE

 :

[]$[]ENDIF

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 383 of 853
Apr 01, 2011

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-

out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a

source program, whether or not the debugging statement should be assembled (translated into machine language)

can be specified by setting switches for conditional assembly.

[Description]

- The IF and ELSEIF control instructions are used for true/false condition judgment with switch name(s), whereas

the _IF and _ELSEIF control instructions are used for true/false condition judgment with a conditional expression.

Both IF/ELSEIF and _IF/_ELSEIF may be used in combination. In other words, ELSEIF/_ELSEIF may be used in

a pair with IF or _IF and ENDIF.

- Describe absolute expression for a conditional expression.

- The rules of describing switch names are the same as the conventions of symbol description (for details, see "(3)

Symbol field").

However, the maximum number of characters that can be recognized as a switch name is always 31.

- If the two or more switch names are to be specified with the IF or ELSEIF control instruction, delimit each switch

name with a colon (:).

Up to five switch names can be used per module.

- When two or more switch names have been specified with the IF or ELSEIF control instruction, the IF or ELSEIF

condition is judged to be satisfied if one of the switch name values is true.

- The value of each switch name to be specified with the IF or ELSEIF control instruction must be defined with the

SET/RESET control instruction.

Therefore, if the value of the switch name specified with the IF or ELSEIF control instruction is not set in the source

module with the SET or RESET control instruction in advance, it is assumed to be reset.

- If the specified switch name or conditional expression contains an illegal description, the assembler will output an

error message and determine that the evaluated value is false.

- When describing the IF or _IF control instruction, the IF or _IF control instruction must always be paired with the

ENDIF control instruction.

- If an IF-ENDIF block is described in a macro body and control is transferred back from the macro at that level by

EXITM processing, the assembler will force the IF level to return to that level at the entry of the macro body. In this

case, no error occurs.

- Description of an IF-ENDIF block in another IF-ENDIF block is referred to as nesting of IF control instructions.

Nesting of IF control instructions is allowed up to 8 levels.

- In conditional assembly, object codes will not be generated for statements not assembled, but these statements

will be output without change on the assembly list. If you do not wish to output these statements, use the

$NOCOND control instruction.

[Application example]

 text0

$ _IF (SYMA) ; (1)

 text1

$ _ELSEIF (SYMB = SYMC) ; (2)

 text2

$ ENDIF ; (3)

 :

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 384 of 853
Apr 01, 2011

(1) The value of switch name "SYMA" has been defined with the EQU or SET directive described in "text0".

If the symbol name "SYMA" is true (not "0"), statements in "text1" will be assembled and "text2" will not

be assembled.

(2) If the value of the symbol name "SYMA" is "0", and "SYMB" and "SYMC" have the same value, statements

in "text2" will be assembled.

(3) This instruction indicates the end of the source statement range for conditional assembly.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 385 of 853
Apr 01, 2011

Sets conditions in order to limit the assembly target source statements.

[Description Format]

[Function]

- The control instructions set the conditions to limit source statements subject to assembly.

Source statements described between the IF or _IF control instruction and the ENDIF control instruction are sub-

ject to conditional assembly.

- If the evaluated value of the conditional expression or the switch name specified by the IF or _IF control instruction

(i.e., IF or _IF condition) is true (other than 00H), source statements described after this IF or _IF control instruction

until the appearance of the next conditional assembly control instruction (ELSEIF/ _ELSEIF, ELSE, or ENDIF) in

the source program will be assembled. For subsequent assembly processing, the assembler will proceed to the

statement next to the ENDIF control instruction.

If the IF or _IF condition is false (00H), source statements described after this IF or _IF control instruction until the

appearance of the next conditional assembly control instruction (ELSEIF/_ELSEIF, ELSE, or ENDIF) in the source

program will not be assembled.

- The ELSEIF or _ELSEIF control instruction is checked for true/false status only when the conditions of all the con-

ditional assembly control instructions described before this ELSEIF or _ELSEIF control instruction are not satisfied

(i.e. the evaluated values are false).

If the evaluated value of the conditional expression or the switch name specified by the ELSEIF or _ELSEIF con-

trol instruction (i.e. ELSEIF or _ELSEIF condition) is true, source statements described after this ELSEIF or

_ELSEIF control instruction until the appearance of the next conditional assembly control instruction (ELSEIF/

_ELSEIF, ELSE, or ENDIF) in the source program will be assembled. For subsequent assembly processing, the

assembler will proceed to the statement next to the ENDIF control instruction.

If the ELSEIF or _ELSEIF condition is false, source statements described after this ELSEIF or _ELSEIF control

instruction until the appearance of the next conditional assembly control instruction (ELSEIF/ _ELSEIF, ELSE, or

ENDIF) in the source program will not be assembled.

- If the conditions of all the IF/_IF and ELSEIF/_ELSEIF control instructions described before the ELSE control

instruction are not satisfied (i.e., all the switch names are false), source statements described after this ELSE con-

trol instruction until the appearance of the ENDIF control instruction in the source program will be assembled.

- The ENDIF control instruction indicates to the assembler the termination of source statements subject to condi-

tional assembly.

ELSEIF

[]$[]IF[]([]switch-name[[]:[]switch-name] ... [])

 :

[]$[]ELSEIF[]([]switch-name[[]:[]switch-name] ... [])

 :

[]$[]ELSE

 :

[]$[]ENDIF

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 386 of 853
Apr 01, 2011

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-

out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a

source program, whether or not the debugging statement should be assembled (translated into machine language)

can be specified by setting switches for conditional assembly.

[Description]

- The IF and ELSEIF control instructions are used for true/false condition judgment with switch name(s), whereas

the _IF and _ELSEIF control instructions are used for true/false condition judgment with a conditional expression.

Both IF/ELSEIF and _IF/_ELSEIF may be used in combination. In other words, ELSEIF/_ELSEIF may be used in

a pair with IF or _IF and ENDIF.

- Describe absolute expression for a conditional expression.

- The rules of describing switch names are the same as the conventions of symbol description (for details, see "(3)

Symbol field").

However, the maximum number of characters that can be recognized as a switch name is always 31.

- If the two or more switch names are to be specified with the IF or ELSEIF control instruction, delimit each switch

name with a colon (:).

Up to five switch names can be used per module.

- When two or more switch names have been specified with the IF or ELSEIF control instruction, the IF or ELSEIF

condition is judged to be satisfied if one of the switch name values is true.

- The value of each switch name to be specified with the IF or ELSEIF control instruction must be defined with the

SET/RESET control instruction.

Therefore, if the value of the switch name specified with the IF or ELSEIF control instruction is not set in the source

module with the SET or RESET control instruction in advance, it is assumed to be reset.

- If the specified switch name or conditional expression contains an illegal description, the assembler will output an

error message and determine that the evaluated value is false.

- When describing the IF or _IF control instruction, the IF or _IF control instruction must always be paired with the

ENDIF control instruction.

- If an IF-ENDIF block is described in a macro body and control is transferred back from the macro at that level by

EXITM processing, the assembler will force the IF level to return to that level at the entry of the macro body. In this

case, no error occurs.

- Description of an IF-ENDIF block in another IF-ENDIF block is referred to as nesting of IF control instructions.

Nesting of IF control instructions is allowed up to 8 levels.

- In conditional assembly, object codes will not be generated for statements not assembled, but these statements

will be output without change on the assembly list. If you do not wish to output these statements, use the

$NOCOND control instruction.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 387 of 853
Apr 01, 2011

[Application example]

(1) The values of switch names "SW1", "SW2", and "SW3" have been set to true or false with the SET or

RESET control instruction described in "text0".

If the value of switch name "SW1" or "SW2" is true, statements in "text1" will be assembled and state-

ments in "text2", "text3", and "text4" will not be assembled.

If the values of switch names "SW1" and "SW2" are false, statements in "text1" will not be assembled and

statements after (2) will be conditionally assembled.

(2) If the values of switch names "SW1" and "SW2" in (1) are false and the value of switch name "SW3" is true,

statements in "text2" will be assembled and statements in "text1", "text3", and "text4" will not be assem-

bled.

(3) If the values of switch names "SW1" and "SW2" in (1) and "SW3" in (2) are false and the value of switch

statements in "text4" will be assembled and statements in "text1", "text2", and "text3" will not be will not

be assembled.

(4) If the values of switch names "SW1" and "SW2" in (1), "SW3" in (2), and "SW4" in (3) are all false, state-

ments in "text4" will be assembled and statements in "text1", "text2", and "text3" will not be assembled.

(5) This instruction indicates the end of the source statement range for conditional assembly.

 text0

$ IF (SW1 : SW2) ; (1)

 text1

$ ELSEIF (SW3) ; (2)

 text2

$ ELSEIF (SW4) ; (3)

 text3

$ ELSE ; (4)

 text4

$ ENDIF ; (5)

 :

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 388 of 853
Apr 01, 2011

Sets conditions in order to limit the assembly target source statements.

[Description Format]

[Function]

- The control instructions set the conditions to limit source statements subject to assembly.

Source statements described between the IF or _IF control instruction and the ENDIF control instruction are sub-

ject to conditional assembly.

- If the evaluated value of the conditional expression or the switch name specified by the IF or _IF control instruction

(i.e., IF or _IF condition) is true (other than 00H), source statements described after this IF or _IF control instruction

until the appearance of the next conditional assembly control instruction (ELSEIF/ _ELSEIF, ELSE, or ENDIF) in

the source program will be assembled. For subsequent assembly processing, the assembler will proceed to the

statement next to the ENDIF control instruction.

If the IF or _IF condition is false (00H), source statements described after this IF or _IF control instruction until the

appearance of the next conditional assembly control instruction (ELSEIF/_ELSEIF, ELSE, or ENDIF) in the source

program will not be assembled.

- The ELSEIF or _ELSEIF control instruction is checked for true/false status only when the conditions of all the con-

ditional assembly control instructions described before this ELSEIF or _ELSEIF control instruction are not satisfied

(i.e. the evaluated values are false).

If the evaluated value of the conditional expression or the switch name specified by the ELSEIF or _ELSEIF con-

trol instruction (i.e. ELSEIF or _ELSEIF condition) is true, source statements described after this ELSEIF or

_ELSEIF control instruction until the appearance of the next conditional assembly control instruction (ELSEIF/

_ELSEIF, ELSE, or ENDIF) in the source program will be assembled. For subsequent assembly processing, the

assembler will proceed to the statement next to the ENDIF control instruction.

If the ELSEIF or _ELSEIF condition is false, source statements described after this ELSEIF or _ELSEIF control

instruction until the appearance of the next conditional assembly control instruction (ELSEIF/ _ELSEIF, ELSE, or

ENDIF) in the source program will not be assembled.

- If the conditions of all the IF/_IF and ELSEIF/_ELSEIF control instructions described before the ELSE control

instruction are not satisfied (i.e., all the switch names are false), source statements described after this ELSE con-

trol instruction until the appearance of the ENDIF control instruction in the source program will be assembled.

- The ENDIF control instruction indicates to the assembler the termination of source statements subject to condi-

tional assembly.

_ELSEIF

[]$[]_IF conditional-expression

 :

[]$[]_ELSEIF conditional-expression

 :

[]$[]ELSE

 :

[]$[]ENDIF

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 389 of 853
Apr 01, 2011

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-

out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a

source program, whether or not the debugging statement should be assembled (translated into machine language)

can be specified by setting switches for conditional assembly.

[Description]

- The IF and ELSEIF control instructions are used for true/false condition judgment with switch name(s), whereas

the _IF and _ELSEIF control instructions are used for true/false condition judgment with a conditional expression.

Both IF/ELSEIF and _IF/_ELSEIF may be used in combination. In other words, ELSEIF/_ELSEIF may be used in

a pair with IF or _IF and ENDIF.

- Describe absolute expression for a conditional expression.

- The rules of describing switch names are the same as the conventions of symbol description (for details, see "(3)

Symbol field").

However, the maximum number of characters that can be recognized as a switch name is always 31.

- If the two or more switch names are to be specified with the IF or ELSEIF control instruction, delimit each switch

name with a colon (:).

Up to five switch names can be used per module.

- When two or more switch names have been specified with the IF or ELSEIF control instruction, the IF or ELSEIF

condition is judged to be satisfied if one of the switch name values is true.

- The value of each switch name to be specified with the IF or ELSEIF control instruction must be defined with the

SET/RESET control instruction.

Therefore, if the value of the switch name specified with the IF or ELSEIF control instruction is not set in the source

module with the SET or RESET control instruction in advance, it is assumed to be reset.

- If the specified switch name or conditional expression contains an illegal description, the assembler will output an

error message and determine that the evaluated value is false.

- When describing the IF or _IF control instruction, the IF or _IF control instruction must always be paired with the

ENDIF control instruction.

- If an IF-ENDIF block is described in a macro body and control is transferred back from the macro at that level by

EXITM processing, the assembler will force the IF level to return to that level at the entry of the macro body. In this

case, no error occurs.

- Description of an IF-ENDIF block in another IF-ENDIF block is referred to as nesting of IF control instructions.

Nesting of IF control instructions is allowed up to 8 levels.

- In conditional assembly, object codes will not be generated for statements not assembled, but these statements

will be output without change on the assembly list. If you do not wish to output these statements, use the

$NOCOND control instruction.

[Application example]

 text0

$ _IF (SYMA) ; (1)

 text1

$ _ELSEIF (SYMB = SYMC) ; (2)

 text2

$ ENDIF ; (3)

 :

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 390 of 853
Apr 01, 2011

(1) The value of switch name "SYMA" has been defined with the EQU or SET directive described in "text0".

If the symbol name "SYMA" is true (not "0"), statements in "text1" will be assembled and "text2" will not

be assembled.

(2) If the value of the symbol name "SYMA" is "0", and "SYMB" and "SYMC" have the same value, statements

in "text2" will be assembled.

(3) This instruction indicates the end of the source statement range for conditional assembly.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 391 of 853
Apr 01, 2011

Sets conditions in order to limit the assembly target source statements.

[Description Format]

[Function]

- The control instructions set the conditions to limit source statements subject to assembly.

Source statements described between the IF or _IF control instruction and the ENDIF control instruction are sub-

ject to conditional assembly.

- If the evaluated value of the conditional expression or the switch name specified by the IF or _IF control instruction

(i.e., IF or _IF condition) is true (other than 00H), source statements described after this IF or _IF control instruction

until the appearance of the next conditional assembly control instruction (ELSEIF/ _ELSEIF, ELSE, or ENDIF) in

the source program will be assembled. For subsequent assembly processing, the assembler will proceed to the

statement next to the ENDIF control instruction.

If the IF or _IF condition is false (00H), source statements described after this IF or _IF control instruction until the

appearance of the next conditional assembly control instruction (ELSEIF/_ELSEIF, ELSE, or ENDIF) in the source

program will not be assembled.

- The ELSEIF or _ELSEIF control instruction is checked for true/false status only when the conditions of all the con-

ditional assembly control instructions described before this ELSEIF or _ELSEIF control instruction are not satisfied

(i.e. the evaluated values are false).

If the evaluated value of the conditional expression or the switch name specified by the ELSEIF or _ELSEIF con-

trol instruction (i.e. ELSEIF or _ELSEIF condition) is true, source statements described after this ELSEIF or

_ELSEIF control instruction until the appearance of the next conditional assembly control instruction (ELSEIF/

_ELSEIF, ELSE, or ENDIF) in the source program will be assembled. For subsequent assembly processing, the

assembler will proceed to the statement next to the ENDIF control instruction.

If the ELSEIF or _ELSEIF condition is false, source statements described after this ELSEIF or _ELSEIF control

instruction until the appearance of the next conditional assembly control instruction (ELSEIF/ _ELSEIF, ELSE, or

ENDIF) in the source program will not be assembled.

- If the conditions of all the IF/_IF and ELSEIF/_ELSEIF control instructions described before the ELSE control

instruction are not satisfied (i.e., all the switch names are false), source statements described after this ELSE con-

trol instruction until the appearance of the ENDIF control instruction in the source program will be assembled.

- The ENDIF control instruction indicates to the assembler the termination of source statements subject to condi-

tional assembly.

ELSE

[]$[]IF[]([]switch-name[[]:[]switch-name] ... [])

or[]$[]_IF conditional-expression

 :

[]$[]ELSEIF[]([]switch-name[[]:[]switch-name] ... [])

or[]$[]_ELSEIF conditional-expression

 :

[]$[]ELSE

 :

[]$[]ENDIF

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 392 of 853
Apr 01, 2011

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-

out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a

source program, whether or not the debugging statement should be assembled (translated into machine language)

can be specified by setting switches for conditional assembly.

[Description]

- The IF and ELSEIF control instructions are used for true/false condition judgment with switch name(s), whereas

the _IF and _ELSEIF control instructions are used for true/false condition judgment with a conditional expression.

Both IF/ELSEIF and _IF/_ELSEIF may be used in combination. In other words, ELSEIF/_ELSEIF may be used in

a pair with IF or _IF and ENDIF.

- Describe absolute expression for a conditional expression.

- The rules of describing switch names are the same as the conventions of symbol description (for details, see "(3)

Symbol field").

However, the maximum number of characters that can be recognized as a switch name is always 31.

- If the two or more switch names are to be specified with the IF or ELSEIF control instruction, delimit each switch

name with a colon (:).

Up to five switch names can be used per module.

- When two or more switch names have been specified with the IF or ELSEIF control instruction, the IF or ELSEIF

condition is judged to be satisfied if one of the switch name values is true.

- The value of each switch name to be specified with the IF or ELSEIF control instruction must be defined with the

SET/RESET control instruction.

Therefore, if the value of the switch name specified with the IF or ELSEIF control instruction is not set in the source

module with the SET or RESET control instruction in advance, it is assumed to be reset.

- If the specified switch name or conditional expression contains an illegal description, the assembler will output an

error message and determine that the evaluated value is false.

- When describing the IF or _IF control instruction, the IF or _IF control instruction must always be paired with the

ENDIF control instruction.

- If an IF-ENDIF block is described in a macro body and control is transferred back from the macro at that level by

EXITM processing, the assembler will force the IF level to return to that level at the entry of the macro body. In this

case, no error occurs.

- Description of an IF-ENDIF block in another IF-ENDIF block is referred to as nesting of IF control instructions.

Nesting of IF control instructions is allowed up to 8 levels.

- In conditional assembly, object codes will not be generated for statements not assembled, but these statements

will be output without change on the assembly list. If you do not wish to output these statements, use the

$NOCOND control instruction.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 393 of 853
Apr 01, 2011

[Application example]

- Example 1

(1) The value of switch name "SW1" has been set to true or false with the SET or RESET control instruction

described in "text0".

If the value of switch name "SW1" is true, statements in "text1" will be assembled and statements in

"text2" will not be assembled.

(2) If the value of switch name "SW1" in (1) is false, statements in "text1" will not be assembled and state-

ments in "text2" will be assembled.

(3) This instruction indicates the end of the source statement range for conditional assembly.

- Example 2

(1) The values of switch names "SW1", "SW2", and "SW3" have been set to true or false with the SET or

RESET control instruction described in "text0".

If the value of switch name "SW1" or "SW2" is true, statements in "text1" will be assembled and state-

ments in "text2", "text3", and "text4" will not be assembled.

If the values of switch names "SW1" and "SW2" are false, statements in "text1" will not be assembled and

statements after (2) will be conditionally assembled.

(2) If the values of switch names "SW1" and "SW2" in (1) are false and the value of switch name "SW3" is true,

statements in "text2" will be assembled and statements in "text1", "text3", and "text4" will not be assem-

bled.

 text0

$ IF (SW1) ; (1)

 text1

$ ELSE ; (2)

 text2

$ ENDIF ; (3)

 :

 END

 text0

$ IF (SW1 : SW2) ; (1)

 text1

$ ELSEIF (SW3) ; (2)

 text2

$ ELSEIF (SW4) ; (3)

 text3

$ ELSE ; (4)

 text4

$ ENDIF ; (5)

 :

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 394 of 853
Apr 01, 2011

(3) If the values of switch names "SW1" and "SW2" in (1) and "SW3" in (2) are false and the value of switch

statements in "text4" will be assembled and statements in "text1", "text2", and "text3" will not be will not

be assembled.

(4) If the values of switch names "SW1" and "SW2" in (1), "SW3" in (2), and "SW4" in (3) are all false, state-

ments in "text4" will be assembled and statements in "text1", "text2", and "text3" will not be assembled.

(5) This instruction indicates the end of the source statement range for conditional assembly.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 395 of 853
Apr 01, 2011

Sets conditions in order to limit the assembly target source statements.

[Description Format]

[Function]

- The control instructions set the conditions to limit source statements subject to assembly.

Source statements described between the IF or _IF control instruction and the ENDIF control instruction are sub-

ject to conditional assembly.

- If the evaluated value of the conditional expression or the switch name specified by the IF or _IF control instruction

(i.e., IF or _IF condition) is true (other than 00H), source statements described after this IF or _IF control instruction

until the appearance of the next conditional assembly control instruction (ELSEIF/ _ELSEIF, ELSE, or ENDIF) in

the source program will be assembled. For subsequent assembly processing, the assembler will proceed to the

statement next to the ENDIF control instruction.

If the IF or _IF condition is false (00H), source statements described after this IF or _IF control instruction until the

appearance of the next conditional assembly control instruction (ELSEIF/_ELSEIF, ELSE, or ENDIF) in the source

program will not be assembled.

- The ELSEIF or _ELSEIF control instruction is checked for true/false status only when the conditions of all the con-

ditional assembly control instructions described before this ELSEIF or _ELSEIF control instruction are not satisfied

(i.e. the evaluated values are false).

If the evaluated value of the conditional expression or the switch name specified by the ELSEIF or _ELSEIF con-

trol instruction (i.e. ELSEIF or _ELSEIF condition) is true, source statements described after this ELSEIF or

_ELSEIF control instruction until the appearance of the next conditional assembly control instruction (ELSEIF/

_ELSEIF, ELSE, or ENDIF) in the source program will be assembled. For subsequent assembly processing, the

assembler will proceed to the statement next to the ENDIF control instruction.

If the ELSEIF or _ELSEIF condition is false, source statements described after this ELSEIF or _ELSEIF control

instruction until the appearance of the next conditional assembly control instruction (ELSEIF/ _ELSEIF, ELSE, or

ENDIF) in the source program will not be assembled.

- If the conditions of all the IF/_IF and ELSEIF/_ELSEIF control instructions described before the ELSE control

instruction are not satisfied (i.e., all the switch names are false), source statements described after this ELSE con-

trol instruction until the appearance of the ENDIF control instruction in the source program will be assembled.

- The ENDIF control instruction indicates to the assembler the termination of source statements subject to condi-

tional assembly.

ENDIF

[]$[]IF[]([]switch-name[[]:[]switch-name] ... [])

or[]$[]_IF conditional-expression

 :

[]$[]ELSEIF[]([]switch-name[[]:[]switch-name] ... [])

or[]$[]_ELSEIF conditional-expression

 :

[]$[]ELSE

 :

[]$[]ENDIF

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 396 of 853
Apr 01, 2011

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-

out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a

source program, whether or not the debugging statement should be assembled (translated into machine language)

can be specified by setting switches for conditional assembly.

[Description]

- The IF and ELSEIF control instructions are used for true/false condition judgment with switch name(s), whereas

the _IF and _ELSEIF control instructions are used for true/false condition judgment with a conditional expression.

Both IF/ELSEIF and _IF/_ELSEIF may be used in combination. In other words, ELSEIF/_ELSEIF may be used in

a pair with IF or _IF and ENDIF.

- Describe absolute expression for a conditional expression.

- The rules of describing switch names are the same as the conventions of symbol description (for details, see "(3)

Symbol field").

However, the maximum number of characters that can be recognized as a switch name is always 31.

- If the two or more switch names are to be specified with the IF or ELSEIF control instruction, delimit each switch

name with a colon (:).

Up to five switch names can be used per module.

- When two or more switch names have been specified with the IF or ELSEIF control instruction, the IF or ELSEIF

condition is judged to be satisfied if one of the switch name values is true.

- The value of each switch name to be specified with the IF or ELSEIF control instruction must be defined with the

SET/RESET control instruction.

Therefore, if the value of the switch name specified with the IF or ELSEIF control instruction is not set in the source

module with the SET or RESET control instruction in advance, it is assumed to be reset.

- If the specified switch name or conditional expression contains an illegal description, the assembler will output an

error message and determine that the evaluated value is false.

- When describing the IF or _IF control instruction, the IF or _IF control instruction must always be paired with the

ENDIF control instruction.

- If an IF-ENDIF block is described in a macro body and control is transferred back from the macro at that level by

EXITM processing, the assembler will force the IF level to return to that level at the entry of the macro body. In this

case, no error occurs.

- Description of an IF-ENDIF block in another IF-ENDIF block is referred to as nesting of IF control instructions.

Nesting of IF control instructions is allowed up to 8 levels.

- In conditional assembly, object codes will not be generated for statements not assembled, but these statements

will be output without change on the assembly list. If you do not wish to output these statements, use the

$NOCOND control instruction.

[Application example]

- Example 1

 text0

$ IF (SW1) ; (1)

 text1

$ ENDIF ; (2)

 :

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 397 of 853
Apr 01, 2011

(1) If the value of switch name "SW1" is true, statements in "text1" will be assembled.

If the value of switch name "SW1" is false, statements in "text1" will not be assembled.

The value of switch name "SW1" has been set to true or false with the SET or RESET control instruction

described in "text0".

(2) This instruction indicates the end of the source statement range for conditional assembly.

- Example 2

(1) The value of switch name "SW1" has been set to true or false with the SET or RESET control instruction

described in "text0".

If the value of switch name "SW1" is true, statements in "text1" will be assembled and statements in

"text2" will not be assembled.

(2) If the value of switch name "SW1" in (1) is false, statements in "text1" will not be assembled and state-

ments in "text2" will be assembled.

(3) This instruction indicates the end of the source statement range for conditional assembly.

- Example 3

(1) The values of switch names "SW1", "SW2", and "SW3" have been set to true or false with the SET or

RESET control instruction described in "text0".

If the value of switch name "SW1" or "SW2" is true, statements in "text1" will be assembled and state-

ments in "text2", "text3", and "text4" will not be assembled.

 text0

$ IF (SW1) ; (1)

 text1

$ ELSE ; (2)

 text2

$ ENDIF ; (3)

 :

 END

 text0

$ IF (SW1 : SW2) ; (1)

 text1

$ ELSEIF (SW3) ; (2)

 text2

$ ELSEIF (SW4) ; (3)

 text3

$ ELSE ; (4)

 text4

$ ENDIF ; (5)

 :

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 398 of 853
Apr 01, 2011

If the values of switch names "SW1" and "SW2" are false, statements in "text1" will not be assembled and

statements after (2) will be conditionally assembled.

(2) If the values of switch names "SW1" and "SW2" in (1) are false and the value of switch name "SW3" is true,

statements in "text2" will be assembled and statements in "text1", "text3", and "text4" will not be assem-

bled.

(3) If the values of switch names "SW1" and "SW2" in (1) and "SW3" in (2) are false and the value of switch

statements in "text4" will be assembled and statements in "text1", "text2", and "text3" will not be will not

be assembled.

(4) If the values of switch names "SW1" and "SW2" in (1), "SW3" in (2), and "SW4" in (3) are all false, state-

ments in "text4" will be assembled and statements in "text1", "text2", and "text3" will not be assembled.

(5) This instruction indicates the end of the source statement range for conditional assembly.

- Example 4

(1) The value of switch name "SYMA" has been defined with the EQU or SET directive described in "text0".

If the symbol name "SYMA" is true (not "0"), statements in "text1" will be assembled and "text2" will not

be assembled.

(2) If the value of the symbol name "SYMA" is "0", and "SYMB" and "SYMC" have the same value, statements

in "text2" will be assembled.

(3) This instruction indicates the end of the source statement range for conditional assembly.

 text0

$ _IF (SYMA) ; (1)

 text1

$ _ELSEIF (SYMB = SYMC) ; (2)

 text2

$ ENDIF ; (3)

 :

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 399 of 853
Apr 01, 2011

Sets value for switch name specified by IF/ELSEIF control instruction.

[Description Format]

[Function]

- The SET control instructions give a value to each switch name to be specified with the IF or ELSEIF control

instruction.

- The SET control instruction gives a true value (0FFH) to each switch name specified in its operand.

[Use]

- Describe the SET control instruction to give a true value (0FFH) to each switch name to be specified with the IF or

ELSEIF control instruction.

[Description]

- With the SET and RESET control instructions, at least one switch name must be described.

The conventions for describing switch names are the same as the conventions for describing symbols (see "(3)

Symbol field").

However, the maximum number of characters that can be recognized as a switch name is always 31.

- The specified switch name(s) may be the same as user-defined symbol(s) other than reserved words and other

switch names.

- If two or more switch names are to be specified with the SET or RESET control instruction, delimit each switch

name with a colon (:). Up to 1,000 switch names can be used per module.

- A switch name once set to "true" with the SET control instruction can be changed to "false" with the RESET control

instruction, and vice versa.

- A switch name to be specified with the IF or ELSEIF control instruction must be defined at least once with the SET

or RESET control instruction in the source module before describing the IF or ELSEIF control instruction.

- Switch names will not be output to a cross-reference list.

SET

[]$[]SET[]([]switch-name[[]:[]switch-name] ... [])

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 400 of 853
Apr 01, 2011

[Application example]

(1) This instruction gives a true value (0FFH) to switch name "SW1".

(2) Because the true value has been given to switch name "SW1" in (1) above, statements in "text1" will be

assembled.

(3) This instruction indicates the end of the source statement range for conditional assembly that starts from

(2).

(4) This instruction gives a false value (00H) to switch names "SW1" and "SW2", respectively.

(5) Because the false value has been given to switch name "SW1" in (4) above, statements in "text2" will not

be assembled.

(6) Because the false value has also been given to switch name "SW2" in (4) above, statements in "text3" will

not be assembled.

(7) Because both switch names "SW1" and "SW2" are false in (5) and (6) above, statements in "text4" will be

assembled.

(8) This instruction indicates the end of the source statement range for conditional assembly that starts from

(5).

$ SET (SW1) ; (1)

 :

$ IF (SW1) ; (2)

 text1

$ ENDIF ; (3)

 :

$ RESET (SW1 : SW2) ; (4)

 :

$ IF (SW1) ; (5)

 text2

$ ELSEIF (SW2) ; (6)

 text3

$ ELSE ; (7)

 text4

$ ENDIF ; (8)

 :

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 401 of 853
Apr 01, 2011

Sets value for switch name specified by IF/ELSEIF control instruction.

[Description Format]

[Function]

- The RESET control instructions give a value to each switch name to be specified with the IF or ELSEIF control

instruction.

- The RESET control instruction gives a false value (00H) to each switch name specified in its operand.

[Use]

- Describe the RESET control instruction to give a false value (00H) to each switch name to be specified with the IF

or ELSEIF control instruction.

[Description]

- With the SET and RESET control instructions, at least one switch name must be described.

The conventions for describing switch names are the same as the conventions for describing symbols (see "(3)

Symbol field").

However, the maximum number of characters that can be recognized as a switch name is always 31.

- The specified switch name(s) may be the same as user-defined symbol(s) other than reserved words and other

switch names.

- If two or more switch names are to be specified with the SET or RESET control instruction, delimit each switch

name with a colon (:). Up to 1,000 switch names can be used per module.

- A switch name once set to "true" with the SET control instruction can be changed to "false" with the RESET control

instruction, and vice versa.

- A switch name to be specified with the IF or ELSEIF control instruction must be defined at least once with the SET

or RESET control instruction in the source module before describing the IF or ELSEIF control instruction.

- Switch names will not be output to a cross-reference list.

RESET

[]$[]RESET[]([]switch-name[[]:[]switch-name] ... [])

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 402 of 853
Apr 01, 2011

[Application example]

(1) This instruction gives a true value (0FFH) to switch name "SW1".

(2) Because the true value has been given to switch name "SW1" in (1) above, statements in "text1" will be

assembled.

(3) This instruction indicates the end of the source statement range for conditional assembly that starts from

(2).

(4) This instruction gives a false value (00H) to switch names "SW1" and "SW2", respectively.

(5) Because the false value has been given to switch name "SW1" in (4) above, statements in "text2" will not

be assembled.

(6) Because the false value has also been given to switch name "SW2" in (4) above, statements in "text3" will

not be assembled.

(7) Because both switch names "SW1" and "SW2" are false in (5) and (6) above, statements in "text4" will be

assembled.

(8) This instruction indicates the end of the source statement range for conditional assembly that starts from

(5).

$ SET (SW1) ; (1)

 :

$ IF (SW1) ; (2)

 text1

$ ENDIF ; (3)

 :

$ RESET (SW1 : SW2) ; (4)

 :

$ IF (SW1) ; (5)

 text2

$ ELSEIF (SW2) ; (6)

 text3

$ ELSE ; (7)

 text4

$ ENDIF ; (8)

 :

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 403 of 853
Apr 01, 2011

4.3.8 Kanji code control instruction

This is a control instruction which specifies which character code to use to interpret kanji characters described in the

comment.

The following kanji code control instructions are available.

Control Instruction Overview

KANJICODE Interprets Kanji character code for specified Kanji characters described in the

comment.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 404 of 853
Apr 01, 2011

Interprets Kanji character code for specified Kanji characters described in the comment.

[Description Format]

[Default Assumption]

$KANJICODE SJIS

[Function]

- Interprets Kanji character code for specified Kanji characters described in the comment.

- A kanji code can describe SJIS/EUC/NONE.

SJIS : Interpreted as a Shift JIS code.

EUC : Interpreted as a EUC code.

NONE : Not interpreted as a kanji.

[Use]

- Use to specify the interpretation of the kanji code (2-byte code) of the kanji (2-byte character) in the comment line.

[Description]

- The KANJICODE control instruction can be described only in the header section of a source module file.

- If two or more KANJICODE control instructions are specified in the header section of a source module file at the

same time, only the last specified control instruction will become valid.

- Kanji code specification stops may also be specified with the assembler option (-zs/-ze/-zn) in the startup com-

mand line of the assembler.

- If the control instruction specification (KANJICODE) in the source module differs from the specification (-zs/-ze/-zn)

in the startup command line, the specification in the command line will take precedence over that in the source

module.

- Even when the assembler option (-zs/-ze/-zn) has been specified in the startup command line, the assembler per-

forms a syntax check on the KANJICODE control instruction.

KANJICODE

[]$[]KANJICODE[]kanji-code

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 405 of 853
Apr 01, 2011

4.3.9 RAM area allocation-specification control instruction

This is a control instruction for allocating the segment with the specified segment name to the memory area name

"RAM".

The following RAM area allocation-specification control instructions are available.

Control Instruction Overview

RAM_ALLOCATE Allocate the segment with the specified segment name to the memory area

name "RAM".

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 406 of 853
Apr 01, 2011

Allocate the segment with the specified segment name to the memory area name "RAM".

[Description Format]

[Default Assumption]

- Allocate in memory area name "ROM".

[Function]

- Allocate the segment with the specified segment name to the memory area name "RAM".

[Description]

- If two or more RAM_ALLOCATE control instructions are specified in the source module file at the same time, only

the last specified control instruction will become valid.

- The only segment that can be specified are CSEG. If all except for CSEG was specified, a warning is output and

the description is ignored.

- If the two or more segment are to be specified with 1 RAM area allocation-specification control instruction, delimit

each segment name with ",".

Up to 256 segment can be specified per module.

RAM_ALLOCATE

[]$[]RAM_ALLOCATE[]([]segment-name[][, ...])[][;comment]

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 407 of 853
Apr 01, 2011

4.3.10 Other control instructions

The control instructions shown below are special control instructions output by an upper level program such as C com-

piler.

- $TOL_INF

- $DGS

- $DGL

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 408 of 853
Apr 01, 2011

4.4 Macros

This section explains how to use macros.

Macros are very useful when you need to use a series of statements repeatedly in a source program.

4.4.1 Overview

Macros make it easy to repeat a series of statements over and over again in a source program.

A macro contains a series of instructions in a macro body, which is defined between MACRO and ENDM directives.

These instructions are inserted into the source program at any location that references the macro.

Macros make it easier to write source programs. They are different from subroutines.

The difference between macros and subroutines is explained below. For effective use, select either a macro or a sub-

routine according to the specific purpose.

(1) Subroutines

- Subroutines handle processing that must be repeated many times in a program. A subroutine is converted

into machine language once by the assembler.

- To use a subroutine, simply call it with a subroutine call instruction. (Usually you will also need to set the argu-

ments of the subroutine before calling it, and adjust for them afterwards.)

Effective use of subroutines enables program memory to be used with high efficiency.

- Subroutines are also important in structured programming. Dividing the program into functional blocks clari-

fies the overall structure of the program and makes it easier to understand. There are benefits for design, cod-

ing, and maintenance.

(2) Macros

- The basic function of macros is to replace a series of instructions with a macro name.

A macros is defined as a series of instruction between MACRO and ENDM directives. When the macro name

appears in the source code, the instructions are inserted at that location. The assembler replaces any formal

parameters of the macro with actual parameters and converts the instructions into machine language.

- Macros can have parameters.

For example, if there are instruction groups that are the same in processing procedure but are different in the

data to be described in the operand, define a macro by assigning formal parameter(s) to the data. By describ-

ing the macro name and the actual parameter(s) at macro reference time, the assembler can cope with vari-

ous instruction groups that differ only in part of the statement description.

Subroutines are used mainly to reduce memory requirements and clarify the structure of programs. Macros are used to

make programs easier to describe and understand.

4.4.2 Using macros

(1) Macro definitions

Use the MACRO and ENDM directives to define macros.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 409 of 853
Apr 01, 2011

(a) Format

(b) Function

Define a macro, assigning the macro name specified in the symbol field to the series of statements (called the

macro body) between the MACRO directive and the ENDM directive

(c) Example

The above example shows a simple example that adds the two values PARA1 and PARA2, and stores the

result in register A. The macro is named ADMAC. PARA1 and PARA2 are formal parameters.

For details, see "4.2.8 Macro directives".

(2) Referencing macros

To reference an already defined macro, specify the macro name in the mnemonic field.

(a) Format

(b) Function

Reference the macro body to which the specified name has been assigned.

(c) Use

Use the above format to reference a macro body.

(d) Explanation

- The macro name specified in the mnemonic field must have been defined before the macro reference.

- Delimit actual parameters with commas (,). Up to 16 actual parameters can be specified, provided that

they all appear in the same line.

- Space characters cannot appear in an actual parameter string.

- If an actual parameter string contains a comma (,), semicolon (;), blank, or a tab, enclose the string in

single quotation marks (').

- Formal parameter are converted to actual parameters from the left, in the order that they occur in the macro definition.

The number of actual parameters must match the number of formal parameters. If it does not, a warning is issued.

ADMAC MACRO PARA1, PARA2

 MOV A, #PARA1

 ADD A, #PARA2

 ENDM

Symbol field Mnemonic field Operand field Comment field

 macro-name MACRO [formal-parameter[, ...]] [; comment]

 :

 ENDM [; comment]

Symbol field Mnemonic field Operand field Comment field

 [label:] macro-name [actual-parameter[, ...]] [; comment]

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 410 of 853
Apr 01, 2011

(e) Example

The already defined macro "ADMAC" is referenced.

10H and 20H are actual parameters.

(3) Macro expansion

The assembler processes a macro as follows:

- When it encounters a macro name, the assembler inserts the corresponding macro body at the location of the

macro name.

- The inserted macro body is then assembled in the same way as other stateme

(4) Example

When the macro shown above in "(2) Referencing macros" is referenced, it is expanded as shown below.

 NAME SAMPLE

ADMAC MACRO PARA1, PARA2

 MOV A, #PARA1

 ADD A, #PARA2

 ENDM

 CSEG

 :

 ADMAC 10H, 20H

 :

 END

 NAME SAMPLE

 ; Macro definition

ADMAC MACRO PARA1, PARA2

 MOV A, #PARA1

 ADD A, #PARA2

 ENDM

 ; Source code

 CSEG

 :

 ; Macro expansion

 ADMAC 10H, 20H ; (a)

 MOV A, #10H

 ADD A, #20H

 ; Source code

 :

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 411 of 853
Apr 01, 2011

(a) The macro body is inserted when the macro name is referenced.

In the macro body, formal parameters are replaced by actual parameters.

4.4.3 Symbols in macros

Two types of symbols can be defined in macros: global symbols and local symbols.

(1) Global symbols

- A global symbol is a symbol that can be referenced from any statement in a source program.

Therefore, if a macro that defines a global symbol is referenced more than once when expanding a series of

statements, a double definition error will occur.

- Symbols not defined with the LOCAL directive are global symbols.

(2) Local symbols

- A local symbol is a symbol defined with the LOCAL directive (see "4.2.8 Macro directives").

- A local symbol can be referenced only within the macro that declares it as LOCAL.

- No local symbol can be referenced from outside the macro that declares it

<Application example>

(a) This declares label LLAB as a local symbol.

(b) This defines label LLAB as a local symbol.

(c) This defines label GLAB as a global symbol.

(d) This references the local symbol LLAB in macro MAC1.

 NAME SAMPLE

 ; Macro definition

MAC1 MACRO

 LOCAL LLAB ; (a)

LLAB : ; (b)

 :

GLAB : ; (c)

 BR LLAB ; (d)

 BR GLAB ; (e)

 ENDM

 :

 ; Source code

REF1 : MAC1 ; (f) <- Macro reference

 :

 BR LLAB ; (g) <- Error

REF2 : MAC1 ; (h) <- Macro reference

 :

GLAB : ; (i) <- Error

 :

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 412 of 853
Apr 01, 2011

(e) This references the global symbol GLAB from inside the definition of macro MAC1.

(f) This references macro MAC1.

(g) This reference the local symbol LLAB from outside the definition of macro MAC1,

causing an error when the program is assembled.

(h) This references macro MAC1

The same macro is referenced twice.

(i) This defines the label GLAB as a global symbol.

The same label is already defined, so this causes an error when the program is assembled.

<Assemble list for the above application example>

Macro MAC1 defines the global symbol GLAB.

Macro MAC1 is referenced twice. An error occurs when the macro is expanded the second time, because the global

symbol GLAB is defined twice.

 NAME SAMPLE

 :

REF1 : MAC1

 ; Macro expansion

??RA0000 :

 :

GLAB : <- Error

 BR ??RA0000

 BR GLAB

 ; Source code

 :

 BR !LLAB <- Error

 BR !GLAB

 :

REF2 : MAC1

 ; Macro expansion

??RA0001 :

 :

GLAB : <- Error

 BR ??RA0001

 BR GLAB

 ; Source code

 :

 END

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 413 of 853
Apr 01, 2011

4.4.4 Macro operators

There are two macro operators: "&" (ampersand) and ", '" (single quotation mark).

(1) & (Concatenation)

- The ampersand "&" concatenates one character string to another within a macro body.

At macro expansion time, the character string on the left of the ampersand is concatenated to the character

string on the right of the sign. The "&" itself disappears after concatenating the strings.

- At macro definition time, strings before and after "&" in symbols are recognized as local symbols and formal

parameters. At macro expansion time, strings before and after the "&" in the symbol are evaluated as the local

symbols and formal parameters, and concatenated into single symbols.

- The "&" sign enclosed in a pair of single quotation marks is simply handled as data.

- Two "&" signs in succession are handled as a single "&" sign.

Following is an application example.

(a) Macro definition

(b) Macro reference

(2) ' (Single quotation mark)

- If a character string enclosed by a pair of single quotation marks appears at the beginning of an actual param-

eter in a macro reference line or an IRP directive, or if it appears after a delimiting character, the character

string is interpreted as an actual parameter. The character string is passed as a actual parameter without the

enclosing single quotation marks.

- If a character string enclosed by a pair of single quotation marks appears in a macro body, it is simply handled

as data.

- To use a single quotation mark as a single quotation mark in text, write the single quotation mark twice in suc-

cession.

MAC MACRO P

LAB&P : <- Formal parameter P is recognized

 D&B 10H

 DB 'P'

 DB P

 DB '&P'

 ENDM

 MAC 1H

LAB1H :

 DB 10H <- D&B has been concatenated to DB

 DB 'P'

 DB 1H

 DB '&P' <- Quoted '&' is simply data

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 414 of 853
Apr 01, 2011

<Application example>

When the source code in the above example is assembled, macro MAC1 is expanded as shown below.

4.5 Reserved Words

Reserved words are character strings reserved in advance by the assembler. They include machine language instruc-

tions, directives, control instructions, operators, register names, and sfr symbols. Reserved words cannot be used for

other than the intended purposes.

The following tables explain where reserved words can appear in source code statements and list the words reserved

by the assembler.

Table 4-22. Fields Where Reserved Words Can Appear

Table 4-23. List of Reserved Words

 NAME SAMP

MAC1 MACRO P

 IRP Q, <P>

 MOV A, #Q

 ENDM

ENDM

 MAC1 '10, 20, 30'

IRP Q, <10, 20, 30>

 MOV A, #Q

ENDM

 MOV A, #10 ; IRP expansion

 MOV A, #20 ; IRP expansion

 MOV A, #30 ; IRP expansion

Field Explanation

Symbol field No reserved words can appear in this field.

Mnemonic field Only machine language instructions and directives can appear in this field.

Operand field Only operators, sfr symbols, and register names can appear in this field.

Comment field All reserved words can appear in this field.

Type Reserved Word

Operators AND, BITPOS, DATAPOS, EQ (=), GE (>=), GT (>), HIGH, HIGHW, LE (<=), LOW, LOWW, LT (<

), MASK, MOD, NE (<>), NOT, OR, SHL, SHR, XOR

Directives AT, BASE, BASEP, BR, BSEG, CALL, CALLT0, CSEG, DB, DBIT, DG, DS, DSEG, DSPRAM, DW, END,

ENDM, ENDS, EQU, EXITM, EXTBIT, EXTRN, FIXED, IHRAM, IRP, IXRAM, LOCAL, LRAM, MACRO,

MIRRORP, NAME, OPT_BYTE, ORG, PAGE64KP, PUBLIC, REPT, SADDR, SADDRP, SECUR_ID, SET,

UNIT, UNIT64KP, UNITP

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 415 of 853
Apr 01, 2011

Remark Items in brackets following control instructions indicate the abbreviated format.

See the user's manual of the target device for a list of sfr names, a list of interrupt request sources, and lists of machine

language instructions and register names.

4.6 Instructions

This section explains the functions of RL78 family, 78K0R microcontroller instructions.

Caution For details of each operation and instruction code, see to the separate document "RL78 family

User’s Manual: Software"/"78K0R Microcontrollers Instructions User’s Manual".

And, see to the user’s manual of the target microcontroller.

4.6.1 Differences from 78K0 microcontrollers (for assembler users)

- The new pipeline architecture reduces the number of clock cycles for all instructions. Existing programs must be

re-evaluated.

- All instruction code maps have changed. Programs must be reassembled. When you reassemble, the code size

is likely to increase, but in some cases the overall code size may shrink if old instructions are replaced with new

ones.

- The memory space has changed from 64 KB to 1 MB, allowing greater stack depth. Address changes are required

if assembly programs manipulate RAM that is accessed with the stack pointer. Depending on the multiple CALL

and multiple interrupt depth, the stack size should be set to slightly more than is normally required.

- The CALLT table has been moved from [0040H to 007FH] to [0080H to 00BFH]. References to CALLT table

addresses must be changed.

- Assembler programs must be rewritten if they utilized the bank switching mechanisms of 78K0 microcontrollers.

- Addresses have changed when expansion RAM is used. Update these addresses.

- If your programs execute instructions from expansion RAM, they will be affected by changes in memory space addresses.

Change BR !addr16 statements to BR !!addr20, and change CALL !addr16 statements to CALL !!addr20.

- There are no IMS or IXS registers (used to set memory space). Unless external memory is used, code that uses

those registers must be deleted. If external memory is used, note that the specifications of the MM/MEM registers

(used to set memory space) have changed. For details, see to the user's manual of the target microcontroller.

- The following instructions have been deleted, and alternative code is output, resulting in code size increases.

These instructions can still be used by specifying the -compati option, but the assembler replaces them automati-

cally with the replacement code.

Control

instructions

COND, NOCOND, DEBUG, NODEBUG, DEBUGA [DG], NODEBUGA [NODG], EJECT [EJ], FORM-

FEED, NOFORMFEED, GEN, NOGEN, IF, _IF, ELSEIF, _ELSEIF, ELSE, ENDIF, INCLUDE [IC], KANJI-

CODE, LENGTH, LIST [LI], NOLIST [NOLI], PROCESSOR [PC], SET, RESET, SUBTITLE [ST],

SYMLIST, NOSYMLIST, TAB, TITLE [TT], WIDTH, XREF[XR], NOXREF [NOXR]

Other DGL, DGS, SFR, SFRP, TOL_INF

Instruction Operand Remarks

DIVUW C The alternative instructions divide while shifting, which increases execution

time.

A shift instruction has been added, so it is recommended that this instruction be

changed to the new shift instruction.

Type Reserved Word

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 416 of 853
Apr 01, 2011

ROR4 [HL] The alternative instructions take longer to execute.

A shift instruction has been added, so it is recommended that this instruction be

changed to the new shift instruction.

ROL4 [HL] The alternative instructions take longer to execute.

A shift instruction has been added, so it is recommended that this instruction be

changed to the new shift instruction.

ADJBA None The alternative instructions take longer to execute. There is no equivalent

additional instruction.

ADJBS None The alternative instructions take longer to execute. There is no equivalent

additional instruction.

CALLF !addr11 CALLF is changed automatically to a 3-byte CALL !addr16 instruction.

This instruction can still be used with no modifications required.

DBNZ B, $addr16

C, $addr16

saddr, $addr16

This instruction is split into the following instructions: DEC B / DEC C / DEC

saddr, and BNZ $addr20. This instruction can still be used with no modifica-

tions required.

Instruction Operand Remarks

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 417 of 853
Apr 01, 2011

4.6.2 Memory space

(1) Memory space

The memory space of 78K0 microcontrollers was limited to 64 KB, but this has been expanded to 1 MB in RL78

family, 78K0R microcontrollers.

Figure 4-8. Memory Maps of 78K0 and RL78 family, 78K0R Microcontrollers

(2) Internal program memory space

In RL78 family, 78K0R microcontrollers, the address range of program memory space is from 00000H to EFFFFH.

For information about the maximum size of internal ROM (flash memory), see to the user’s manual of the target

microcontroller.

FFFFH Special function registers

(SFR)

< 78K0 microcontrollers >

FF20H
FF1FH

FF00H
FEFFH

FEE0H
FEDFH

FE20H
FE1FH

FB00H
FAFFH

FA00H
F9FFH

F900H
F8FFH

256x8 bits

General registers
32x8 bits

1024x8 bits
Internal high-speed RAM

FFFFFH
Special function registers

(SFR)

Special function registers
 (2nd SFR)

< RL78 family, 78K0R microcontrollers >

FFF20H
FFF1FH

FFF00H
FFEFFH

FFEE0H
FFEDFH

FFE20H
FFE1FH

F0800H
F07FFH

F0000H
EFFFFH

EE000H
EDFFFH

256x8 bits

General registers
32x8 bits

61.75 Kx8 bits (max.)
RAM

F800H
F7FFH

Area 1

Area 2

Area 3

Internal expansion RAM
14 Kx8 bits (max.)

External memory

supported

Flash memory
960 Kx8 bits (max.)

External memory

supportedFlash memory
60 Kx8 bits (max.)

0000H 00000H

- Program memory space is 60 KB (max.).

- Internal high-speed RAM area is 1 KB (max.) (stacken-

abled).

Internal expansion RAM area is 14 KB (max.) (fetchen-

abled).

- Area 1, area 2, and area 3 are from F800H to

FAFFH (fixed).

- External expansion memory supported.

- Program memory space is 960 KB (max.).

- RAM space is 61.75 KB (max.) (stack enabled, fetchen-

abled).

- 2nd SFR area (name changed) is 2 KB (max.),from

F0000H to F07FFH.

- Supports external expansion memory.

The external expansion memory space can be allocated

from the product-mounted flash memory area to EDFFFH.

2 Kx8 bits (max.)

Short direct addressinShort direct addressin

SFR addressing SFR addressing

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 418 of 853
Apr 01, 2011

(a) Mirror area

In the RL78 family, 78K0R microcontrollers, the data flash areas from 00000H to 0FFFFH (when MAA = 0) and

from 10000H to 1FFFFH (when MAA = 1) are mirrored to the addresses from F0000H to FFFFFH. Data flash

contents can be read with shorter code by reading from F0000H to FFFFFH. However, data flash areas are

not mirrored to the SFR, second SFR, RAM, and use-prohibited areas.

Mirror areas can only be read, and instruction fetch is not possible.

The following figure shows two examples. Specifications vary for each product, so for details see to the user's

manual of the target microcontroller.

Figure 4-9. Mirror Area Examples

Remark MAA: Bit 0 of the processor mode control register (PMC). (For details, see "(a) Processor mode

control register (PMC)".)

FFF00H
FFEFFH

FFEE0H
FFEDFH

FFB00H
FFAFFH

F0800H
F07FFH

F0000H
EFFFFH

08000H
07FFFH

00000H

F8000H
F7FFFH

01000H
00FFFH

FFFFFH
Special function registers

(SFR)

Special function registers
 (2nd SFR)

Example 1 (Flash memory: 32 KB, RAM: 1 KB)

256 bytes

General registers

1KB
RAM

Flash memory

2 KB

Example 2 (Flash memory: 512 KB, RAM: 32 KB)

Setting MAA = 0 Setting MAA = 1

32 bytes

F1000H
F0FFFH

Flash memory
(same data as 01000H

to 07FFFH)

Use prohibited

FFFFFH Special function registers

(SFR)

FFF00H
FFEFFH

FFEE0H
FFEDFH

F0800H
F07FFH

F0000H
EFFFFH

80000H
7FFFFH

256 bytes

General registers

32 KB
RAM

Flash memory

00000H

32 bytes

F1000H
F0FFFH

F7F00H
F7EFFH

Use prohibited

Flash memory

Flash memory

17F00H
17EFFH

11000H
10FFFH

Flash memory

Mirror

Mirror

Flash memory
(same data as 11000H

to 17EFFH)

Special function registers
 (2nd SFR)

2 KB

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 419 of 853
Apr 01, 2011

(b) Vector table area

In the RL78 family, 78K0R microcontrollers, the 128-byte area from 0000H to 007FH is reserved as the vector

table area. The number of interrupts is 61 (maximum) + RESET vector + on-chip debugging vector + software

break vector. Since a vector is only 2 bytes of code, the interrupt branch destination address range is 64 KB

from 00000H to 0FFFFH. In the 78K0 microcontrollers, addresses from 0040H to 007FH are used for the

CALLT table, but in the RL78 family, 78K0R microcontrollers they have been changed to vector addresses.

(c) CALLT instruction table area

In the RL78 family, 78K0R microcontrollers, the 64-byte area from 0080H to 00BFH is reserved as the CALLT

instruction table area.

In 78K0 microcontrollers, the CALL instruction is 1 byte, but RL78 family, 78K0R microcontrollers have 2-byte

CALL instructions. Addresses have also changed.

Since address codes are only 2 bytes long, interrupt branch destination addresses are the 64 KB from 00000H

to 0FFFFH.

(3) Internal data memory (internal RAM) space

78K0 microcontrollers have internal high-speed RAM and internal expansion RAM. The internal high-speed RAM

can be used for stack, and the internal expansion RAM can be used for fetch. By contrast, RL78 family, 78K0R

microcontrollers have just one RAM area that can be used for both stack and fetch.

The upper address limit is fixed at FFEFFH, and the lower limit extends downward according to the amount of RAM

mounted on the product. The maximum size is 61.75 KB. For more information about the lower limit, see to the

user's manual of the target microcontroller.

The general register area and saddr space (from FFEE0H to FFEFFH) have the same addresses in the 78K0

microcontrollers and the RL78 family, 78K0R microcontrollers. The stack can be located anywhere within the

mounted RAM.

(4) Special function register (SFR) area

Unlike general registers, SFRs have special functions.

The SFR space is allocated to the area from FFF00H to FFFFFH.

Although SFR specifications are the same as for 78K0 microcontrollers, there have been changes that affect some

registers that had fixed addresses in the 78K0 series. For details, see to the user's manual of the target microcon-

troller.

(5) Extended SFR (2nd SFR) area

Unlike general registers, 2nd SFRs have special functions.

The, 2nd SFR space is from F0000H to F07FFH. SFRs outside of the SFR area (from FFF00H to FFFFFH) are

assigned to this extended SFR space. However, instructions to access the extended SFR area are 1 byte longer

than instructions to access the SFR area.

(6) External memory space

The external memory space is space that can be accessed by setting the memory expansion mode register. This

memory space is extends up from flash memory to EDFFFH.

In separate mode, 28 external pins (A19 to A0 and D7 to D0) are available. In multiplexed mode, 20 external pins

(A19 to A0,D7 to D0) area available.

For pin settings when using external memory, see to the chapter describing port functions in the user's manual of

the target device.

Caution To fetch instructions from the external memory area, start with a branch instruction (CALL or

BR) in flash or RAM memory and end with a return instruction (RET, RETB, or RETI) in the exter-

nal memory area.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 420 of 853
Apr 01, 2011

Although the flash memory area is adjacent to the external memory area, programs cannot be

located so as to straddle these two areas.

4.6.3 Registers

(1) Control registers

Control registers are registers with special functions for controlling the program sequence, program status, and

stack memory. They include the program counter, the program status word, and the stack pointer.

(a) Program counter (PC)

The program counter is a 20-bit register that holds the address of the next program to be executed.

Figure 4-10. Configuration of Program Counter

(b) Program status word (PSW)

The program status word is an 8-bit register consisting of flags that are set and reset by instruction execution.

The ISP1 flag is added as bit 2 in products that support 4 interrupt levels.

The program status word is automatically saved on the stack when an interrupt request occurs and a PUSH

PSW instruction is executed, and is automatically restored when an RETB or RETI instruction and a POP

PSW instruction are executed.

The PSW is set to 06H on reset signal input.

Figure 4-11. Configuration of Program Status Word

- Interrupt enable flag (IE)

This flag controls interrupt request acknowledgement by the CPU.

When IE = 0, interrupts are disabled (DI), and interrupts other than non-maskable interrupts are all dis-

abled.

When IE = 1, interrupts are enabled (EI), and interrupt request acknowledgement is controlled by the

interrupt mask flags for the various interrupt sources, and by the priority specification flags.

This flag is reset (0) by execution of the DI instruction or by interrupt request acknowledgment. It is set (1)

by execution of the EI instruction.

- Zero flag (Z)

This flag is set (1) when the result of an operation is zero. It is reset (0) in all other cases.

- Register bank selection flags (RBS0,RBS1)

These are two 1-bit flags used to select one of the 4 register banks.

The 2 bits of information in these flags indicate the bank selected by execution of an SBL RBn instruction.

- Auxiliary carry flag (AC)

This flag is set (1) if an operation has a carry from bit 3 or a borrow to bit 3. It is reset (0) in all other cases.

PC PC

19 0

PSW IE Z AC RBS0 ISP1 ISP0 CYRBS1

7 6 5 4 3 2 1 0

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 421 of 853
Apr 01, 2011

- In-service priority flags (ISP0 and ISP1)

These flags manage the priority of acknowledgeable maskable vectored interrupts. Acknowledgment is

disabled for vectored interrupt requests with priorities lower than the ISP0 and ISP1 values, as specified

by the priority specification flag registers (PR). Actual acknowledgment for interrupt requests is controlled

by the state of the interrupt enable flag (IE).

- Carry flag (CY)

This flag stores overflow or underflow on execution of an add/subtract instruction. It stores the shift-out

value on execution of a rotate instruction, and functions as a bit accumulator during execution of bit

manipulation instructions.

(c) Stack pointer (SP)

This is a 16-bit register that holds the start address of the stack. The stack can be located in internal RAM.

Figure 4-12. Configuration of Stack Pointer

SP is decremented before write (save) to the stack and is incremented after read (restored) from the stack.

RESET input leaves the contents of SP undefined, so be sure to initialize SP before instruction execution.

Always specify the SP address as an even address. If an odd address is specified, the LSB is set to fixed 0.

Because the memory space of RL78 family, 78K0R microcontrollers has been expanded, stack addresses

used for call instructions and interrupts are 1 byte longer. Due to the 16-bit width of stack RAM, the stack data

size is 2 bytes or 4 bytes. (See the following "Table 4-24. Stack Data Size Differences Between 78K0 and

RL78 family, 78K0R Microcontrollers".)

Table 4-24. Stack Data Size Differences Between 78K0 and RL78 family, 78K0R Microcontrollers

The following figure shows the data savedby stack operations in RL78 family, 78K0R microcontrollers.

Save

Instruction

Restore

Instruction

Stack Data Sizes of 78K0

Microcontrollers

Stack Data Sizes of RL78 family,

78K0R Microcontrollers

PUSH rp POP rp 2 bytes 2 bytes

PUSH PSW POP PSW 1 byte 2 bytes

CALL, CALLT RET 2 bytes 4 bytes

Interrupt RETI 3 bytes 4 bytes

BRK RETB 3 bytes 4 bytes

SP SP

15 0

0

1

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 422 of 853
Apr 01, 2011

Figure 4-13. Data Saved to Stack Memory

The stack pointer may point to internal RAM only. It is possible to specify addresses in the range F0000H to

FFFFFH, so be careful not to exceed the memory space of internal RAM. If an address outside the internal

RAM space is specified, write operations to that address are ignored and read operations return undefined val-

ues.

(2) General registers

On-chip general registers are mapped to RAM addresses FFEE0H to FFEFFH. There are 4 register banks, each

bank consisting of eight 8-bit registers (X, A, C, B, E, D, L and H). The CPU control instruction "SEL RBn" selects

the bank to be used in instruction execution.

Each register can be used as an 8-bit register, and register pairs of two 8-bit registers can be used as 16-bit regis-

ters.

Programs can specify registers by their function names (X, A, C, B, E, D, L, H, AX, BC, DE, HL) or by their absolute

names (R0 to R7, RP0 to RP3).

Caution Use of the general register space (FFEE0H to FFEFFH) as an instruction fetch area or stack area

is prohibited.

Lower half register pairs

PUSH rp instruction

(2-byte stack

SP <- SP-2

Upper half register pairs

SP-2

SP-1

SP->

00H

PUSH PSW instruction

(2-byte stack)

SP <- SP-2

PSW

SP-2

SP-1

SP->

PC7-PC0

CALL and CALLT instructions

(4-byte stack)

SP <- SP-4

PC15-PC8

SP-4

SP-3

SP-2 PC19-PC16

00HSP-1

SP->

PC7-PC0

Interrupt and BRK instructions

(4-byte stack)

SP <- SP-4

PC15-PC8

SP-4

SP-3

SP-2 PC19-PC16

PSWSP-1

SP->

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 423 of 853
Apr 01, 2011

Table 4-25. List of General-purpose Registers (78K0 Compatible)

Bank Name Register Absolute

Address
Function Name Absolute Name

16-bit 8-bit 16-bit 8-bit

BANK0 HL H RP3 R7 FFEFFH

L R6 FFEFEH

DE D RP2 R5 FFEFDH

E R4 FFEFCH

BC B RP1 R3 FFEFBH

C R2 FFEFAH

AX A RP0 R1 FFEF9H

X R0 FFEF8H

BANK1 HL H RP3 R7 FFEF7H

L R6 FFEF6H

DE D RP2 R5 FFEF5H

E R4 FFEF4H

BC B RP1 R3 FFEF3H

C R2 FFEF2H

AX A RP0 R1 FFEF1H

X R0 FFEF0H

BANK2 HL H RP3 R7 FFEEFH

L R6 FFEEEH

DE D RP2 R5 FFEEDH

E R4 FFEECH

BC B RP1 R3 FFEEBH

C R2 FFEEAH

AX A RP0 R1 FFEE9H

X R0 FFEF8H

BANK3 HL H RP3 R7 FFEE7H

L R6 FFEE6H

DE D RP2 R5 FFEE5H

E R4 FFEE4H

BC B RP1 R3 FFEE3H

C R2 FFEE2H

AX A RP0 R1 FFEE1H

X R0 FFEE0H

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 424 of 853
Apr 01, 2011

(3) ES and CS registers

The ES and CS registers were added for the RL78 family, 78K0R microcontrollers. The ES register specifies the

high-order address byte for data instructions, and the CS register specifies the high-order address byte for branch

instructions. See "(2) Addressing of data addresses" for more information about how to use the ES register, and

see "(1) Addressing of instruction addresses" for more information about how to use the CS register.

On reset, ES is set to 0FH and CS is set to 00H

Figure 4-14. Configurations of ES and CS Registers

(4) Special function registers (SFR)

The following table lists the fixed-address SFRs of RL78 family, 78K0R microcontrollers.

Table 4-26. List of Fixed-address SFRs

(a) Processor mode control register (PMC)

This is an 8-bit register for control of processor modes. For details, see "(2) Internal program memory space".

On reset, PMC is set to 00H.

Figure 4-15. Configuration of Processor Mode Control Register

Address Register Name

FFFF8H SPL

FFFF9H SPH

FFFFAH PSW

FFFFBH Reserve

FFFFCH CS

FFFFDH ES

FFFFEH PMC

FFFFFH MEM

ES 0 0 0 ES3 ES2 ES1 ES00

7 6 5 4 3 2 1 0

CS 0 0 0 CS3 CP2 CP1 CP00

7 6 5 4 3 2 1 0

PMC 0 0 0 0 0 0 MAA0

7 6 5 4 3 2 1 0Symbol

Address:FFFFEH On reset:00H R/W

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 425 of 853
Apr 01, 2011

Note SFR and RAM areas are also allocated to the range from F0000H to FFFFFH. In areas of overlap, they

take priority.

Cautions 1. The processor mode control should be set once only, when it is first initialized. After

initialization, writing to PMC is prohibited.

2. After setting PMC, wait for at least one instruction before accessing the mirror area.

4.6.4 Addressing

There are two types of addressing: addressing of data addresses, and addressing of program addresses. This section

describes the addressing modes of both types of addressing.

(1) Addressing of instruction addresses

(a) Relative addressing

Relative addressing adds a displacement value from the instruction word (signed complement data: -128 to

+127 or -32768 to +32767) to the value in the program counter (PC), and stores the sum in the program

counter. Execution branches to the specified program address.

Relative addressing is applied only to branch instructions.

Figure 4-16. How Relative Addressing Works

(b) Immediate addressing

Immediate addressing specifies a branch destination program address by storing immediate data from the pro-

gram word in the program counter.

There are two types of Immediate addressing: CALL !!addr20 or BR !!addr20 specifies 20-bit addresses, and

CALL !addr16 or BR !addr16 specifies 16-bit addresses. When a 16-bit address is specified, 0000 is set in the

high-order 4 bits.

Figure 4-17. Example of CALL !!addr20/BR !!addr20 Addressing

MAA Flash Memory Space Mirrored to Area F0000H to FFFFFH Note

0 00000H to 0FFFFH is mirrored to F0000H to FFFFFH

1 10000H to 1FFFFH is mirrored to F0000H to FFFFFH

DISPLACE

OP code

8/16 bits+

PC

Low Addr.

High Addr.

Seg Addr.

OP code
PC

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 426 of 853
Apr 01, 2011

Figure 4-18. Example of CALL !addr16/BR !addr16 Addressing

(c) Table indirect addressing

Table indirect addressing specifies an address in the CALLT table area (0080H to 00BFH) with 5 bits of imme-

diate data in the instruction word. Then it stores the contents of that CALLT table address, and the next CALLT

table address, as 16-bit data in the program counter. This specifies a program address to be called. Table

indirect addressing is applied only to the CALLT instruction.

In RL78 family, 78K0R microcontrollers, branching is enabled only to the 64 KB space from 00000H to

0FFFFH.

Figure 4-19. How Table Indirect Addressing Works

(d) Register direct addressing

In register direct addressing, the program instruction word specifies a general-purpose register pair (AX/BC/

DE/HL) in the current register bank. The content of that register pair and the current CS register is then stored

in the program counter as 20-bit data. This specifies a call or branch program address. Register direct

addressing is applied only to the CALL AX/BC/DE/HL instructions and the BR AX instruction.

Figure 4-20. How register Direct Addressing Works

OP code

Low Addr.

High Addr.

0000

PC PCS PCH PCL

Low Addr.

High Addr.

Memory

0 0 0 0 0 0 0 0 01 0

Table address

0000

PC PCS PCH PCL

OP code

rp

OP code

CS

PC PCS PCH PCL

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 427 of 853
Apr 01, 2011

(2) Addressing of data addresses

(a) Implied addressing

Implied addressing is used by instructions that access a register with a special function, such as the accumu-

lator. The instruction word contains no special field to specify a register. The register specification is implied

by the instruction word itself.

Because register specification is implied, the instruction has no operand.

In RL78 family, 78K0R microcontrollers, implied addressing is applied to the MULU X instruction only.

Figure 4-21. How Implied Addressing Works

(b) Register addressing

Register addresses accesses memory using a general register an operand. It uses 3 bits in the instruction

word to specify an 8-bit register, or 2 bits to specify a 16-bit register.

The operand format is shown below.

Figure 4-22. How Register Addressing Works

(c) Direct addressing

Direct addressing uses immediate data in the instruction word as the operand. It specifies the target address

directly.

The operand format is shown below.

Format Description

r X, A, C, B, E, D, L, H

rp AX, BC, DE, HL

Format Description

ADDR16 Label, or 16-bit immediate data (F0000H to FFFFFH only)

ES:ADDR16 Label, or 16-bit immediate data (high-order 4 bits specified by ES register)

A register

Memory

OP code

 register

Memory

OP code

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 428 of 853
Apr 01, 2011

Figure 4-23. Example of ADDR16 Addressing

Figure 4-24. Example of ES:ADDR16 Addressing

(d) Short direct addressing

Short direct addressing specifies the target address directly using 8 bits of data in the instruction word. This

type of addressing is applied only to the space from FFE20H to FFF1FH.

The operand format is shown below.

Format Description

SADDR Label, or immediate data for FFE20H to FFF1FH, or immediate data for

0FE20H to 0FF1FH

(Limited to space from FFE20H to FFF1FH)

SADDRP Label, or immediate data for FFE20H to FFF1FH, or immediate data for

0FE20H to 0FF1FH (even addresses only)

(Limited to space from FFE20H to FFF1FH)

Target memory

Memory

OP code

Low Addr.

High Addr.

FFFFFH

F0000H

Target memory

Memory

OP code

Low Addr.

High Addr.

FFFFFH

F0000H

ES

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 429 of 853
Apr 01, 2011

Figure 4-25. How Short Direct Addressing Works

Remark A SADDR or SADDRP specification (omitting the high-order 4 bits of the address) can specify the

values FE20H to FF1FH as 16 bits of immediate data or the values FFE20H to FFF1FH as 20 bits

of immediate data.

Regardless of which format is used, the specified addresses are those in the memory space

FFE20H to FFF1FH.

(e) SFR addressing

SFR addressing specifies a target SFR address directly using 8 bits of data in the instruction word. This type

of addressing is applied only to the space from FFF00H to FFFFFH.

The operand format is shown below.

Figure 4-26. How SFR Addressing Works

Format Description

SFR SFR register name

SFRP 16-bit SFR register name (even address only)

saddr

Memory

OP code

saddr
FFF1FH

FFE20H

SFR

Memory

OP code

SFR

FFFFFH

FFF00H

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 430 of 853
Apr 01, 2011

(f) Register indirect addressing

Register indirect addressing uses data in the instruction word to specify a register pair. The contents of the

specified register pair are then used as the operand to specify the target memory address.

The operand format is shown below.

Figure 4-27. Example of [DE] and [HL] Addressing

Figure 4-28. Example of ES:[DE] and ES:[HL] Addressing

Format Description

- [DE], [HL]

(F0000H to FFFFFH only)

- ES:[DE], ES:[HL]

(high-order 4 bits of address specified by ES register)

OP code Target memory

Memory

FFFFFH

F0000H

rp

OP code Target memory

Memory

rp

FFFFFH

F0000H

ES

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 431 of 853
Apr 01, 2011

(g) Based addressing

In based addressing, the instruction word specifies a register pair and an offset. The offset (8-bit or 16-bit

immediate data) is added to the contents of the base register pair to specify the target address.

The operand format is shown below.

Figure 4-29. Example of [SP+byte] Addressing

Figure 4-30. Example of [HL+byte] and [DE+byte] Addressing

Format Description

- [HL + byte], [DE + byte], [SP + byte]

(F0000H to FFFFFH only)

- word[B], word[C]

(F0000H to FFFFFH only)

- word[BC]

(F0000H to FFFFFH only)

- ES:[HL + byte], ES:[DE + byte]

(high-order 4 bits of address specified by ES register)

- ES:word[B], ES:word[C]

(high-order 4 bits of address specified by ES register)

- ES:word[BC]

(high-order 4 bits of address specified by ES register)

Target memory

Memory

FFFFFH

F0000H

SP

byte

OP code

+

Target memory

Memory

FFFFFH

F0000H

rp (HL/DE)

byte

OP code

+

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 432 of 853
Apr 01, 2011

Figure 4-31. Example of word[B] and word[C] Addressing

Figure 4-32. Example of word[BC] Addressing

Figure 4-33. Example of ES:[HL+byte] and ES:[DE+byte] Addressing

Target memory

Memory

FFFFFH

F0000H

r (B/C)

OP code

Low Addr.

High Addr.

+

Target memory

Memory

FFFFFH

F0000H

rp (BC)

OP code

Low Addr.

High Addr.

+

rp (HL/DE)

byte

OP code

Target memory

Memory

FFFFFH

F0000H

ES

+

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 433 of 853
Apr 01, 2011

Figure 4-34. Example of ES:word[B] and ES:word[C] Addressing

Figure 4-35. Example of ES:word[BC] Addressing

(h) Based indexed addressing

In based index addressing, the instruction word specifies a register pair as a base register and either the B or

C register as an offset register. The contents of the base register are added to the contents of the offset regis-

ter to specify the target address.

The operand format is shown below.

Format Description

- [HL + B], [HL + C]

(F0000H to FFFFFH only)

- ES:[HL + B], ES:[HL + C]

(high-order 4 bits of address specified by ES register)

Target memory

Memory

FFFFFH

F0000H

ES

r (B/C)

OP code

Low Addr.

High Addr.

+

Target memory

Memory

FFFFFH

F0000H

ES

rp (BC)

OP code

Low Addr.

High Addr.

+

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 434 of 853
Apr 01, 2011

Figure 4-36. Example of [HL+B] and [HL+C] Addressing

Figure 4-37. Example of ES:[HL+B] and ES:[HL+C] Addressing

(i) Stack addressing

Stack addressing accesses the stack indirectly using the contents of the stack pointer (SP). This type of

addressing is employed automatically when the PUSH and POP instructions are executed, when subroutine

call and return instructions are executed, and when registers are saved and restored upon generation of an

interrupt request.

Stack addressing is applied only to the internal RAM area.

The operand format is shown below.

Format Description

- PUSH AX/BC/DE/HL

POP AX/BC/DE/HL

CALL/CALLT

RET

BRK

RETB

(interrupt request generated)

RETI

Target memory

Memory

FFFFFH

F0000H

rp (HL)

r (B/C)

OP code

+

rp (HL)

r (B/C)

OP code
ES

Target memory

Memory

FFFFFH

F0000H

+

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 435 of 853
Apr 01, 2011

4.6.5 Instruction set

This chapter lists the instructions of the RL78 family, 78K0R microcontroller instruction set.

These instructions are common to all microcontrollers in the RL78 family, 78K0R microcontroller.

(1) Expressive form of the operand and description method

The operands in the "Operands" field of each instruction are shown in the representation for that type of operand.

(For details, see the assembler specifications.) When there are two or more ways to specify an operand in source

code, select one of them. Alphabetic characters written by a capital letter, the symbols #, !, !!, $, $!, [], and ES: are

keywords and should be written just as they appear. Symbols have the following meanings.

Specify immediate data with an appropriate value or label. When specifying a label, be sure to include the #, !, !!,

$, $!, [], or ES: symbol.

For register operands, r and rp can be replaced by register function names (X, A, C, etc.) or register absolute

names (R0, R1, R2, etc., as shown in parentheses in the following table).

Table 4-27. Operand Type Representations and Source Code Formats

Note Bit 0 = 0 when an odd address is specified.

Immediate data specification

! 16-bit absolute address specification

!! 20-bit absolute address specification

$ 8-bit relative address specification

$! 16-bit relative address specification

[] Indirect address specificatio

ES Extension address specification

Format Description

r X(R0), A(R1), C(R2), B(R3), E(R4), D(R5), L(R6), H(R7)

rp AX(RP0), BC(RP1), DE(RP2), HL(RP3)

sfr Special-function register name (SFR name)

sfrp Special-function register name (16-bit SFR, even addresses onlyNote)

saddr FFE20H to FFF1FH : Immediate data or label

saddrp FFE20H to FFF1FH : Immediate data or labels (even addresses onlyNote)

addr20 00000H to FFFFFH : Immediate data or label

addr16 0000H to 0FFFFH : Immediate data or label (even addresses only for 16-bit data transfer instruc-

tionsNote)

addr5 0080H to 00BFH : Immediate data or label (even addresses only)

word 16-bit immediate data or label

byte 8-bit immediate data or label

bit 3-bit immediate data or label

RBn RB0, RB1, RB2, RB3

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 436 of 853
Apr 01, 2011

(2) Operation field symbols

The "Operation" field uses the following symbols to designate the operation that occurs when the instruction is exe-

cuted.

Table 4-28. Operation Field Symbols

Symbol Function

A A register:8-bit accumulator

X X register

B B register

C C register

D D register

E E register

H H register

L L register

ES ES register

CS CS register

AX AX register pair:16-bit accumulator

BC BC register pair

DE DE register pair

HL HL register pair

PC Program counter

SP Stack pointer

PSW Program status word

CY Carry flag

AC Auxiliary carry flag

Z Zero flag

RBS Register bank selection flag

IE Interrupt request enable flag

() Memory contents indicated by address or register contents in parentheses

XH, XL

XS, XH, XL

16-bit registers: XH = high-order 8 bits, XL = low-order 8 bits

20-bit registers: XS = bits 19 to 16, XH = bits 15 to 8, XL = bits 7 to 0

^ Logical AND

v Logical OR

∀ Exclusive OR

⎯⎯ Inverted data

addr16 16-bit immediate data

addr20 20-bit immediate data

jdisp8 Signed 8-bit data (displacement value)

jdisp16 Signed 16-bit data (displacement value)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 437 of 853
Apr 01, 2011

(3) Flag field symbols

The "Flag" field uses the following symbols to designate flag changes that occur when the instruction is executed.

Table 4-29. Flag Field Symbols

(4) PREFIX instructions

Some instructions are shown with the ES: prefix. The addition of the prefix makes it possible to expand the acces-

sible data space from the 64 KB space [F0000H to FFFFFH] to the 1 MB space [00000H to FFFFFH]. This is done

by adding the value of the ES register to the address specification. When a PREFIX operation code is attached as

a prefix to the target instruction, only one instruction immediately after the PREFIX operation code is executed as

the addresses with the ES register value added.

Table 4-30. Examples of PREFIX Instructions in Use

Caution Before executing a PREFIX instruction, always set the correct value in the ES register, for exam-

ple with MOV ES, A.

Symbol Flag Change

(Blank) Unchanged

0 Cleared to 0

1 Set to 1

x Set or cleared according to the result

R Previously saved value is restored

Instruction Opcode

1 2 3 4 5

MOV !addr16, #byte CFH !addr16 #byte -

MOV ES:!addr16, #byte 11H CFH !addr16 #byte

MOV A, [HL] 8BH - - - -

MOV A, ES:[HL] 11H 8BH - - -

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 438 of 853
Apr 01, 2011

(5) Operation list

(a) 8-bit data transfer instructions

Table 4-31. Operation List (8-bit Data Transfer Instructions)

Mnemonic Operand Byte Clock Operation FlagNote 4

Note 1 Note 2 Z AC CY

MOV r, #byte 2 1 - r <- byte

saddr, #byte 3 1 - (saddr) <- byte

sfr, #byte 3 1 - sfr <- byte

!addr16, #byte 4 1 - (addr16) <- byte

A, r Note 3 1 1 - A <- r

r, A Note 3 1 1 - r <- A

A, saddr 2 1 - A <- (saddr)

saddr, A 2 1 - (saddr) <- A

A, sfr 2 1 - A <- sfr

sfr, A 2 1 - sfr <- A

A, !addr16 3 1 4 A <- (addr16)

!addr16, A 3 1 - (addr16) <- A

PSW, #byte 3 3 - PSW <- byte x x x

A, PSW 2 1 - A <- PSW

PSW, A 2 3 - PSW <- A x x x

ES, #byte 2 1 - ES <- byte

ES, saddr 3 1 - ES <- (saddr)

A, ES 2 1 - A <- ES

ES, A 2 1 - ES <- A

CS, #byte 3 1 - CS <- byte

A, CS 2 1 - A <- CS

CS, A 2 1 - CS <- A

A, [DE] 1 1 4 A <- (DE)

[DE], A 1 1 - (DE) <- A

[DE+byte], #byte 3 1 - (DE + byte) <- byte

A, [DE+byte] 2 1 4 A <- (DE + byte)

[DE+byte], A 2 1 - (DE + byte) <- A

A, [HL] 1 1 4 A <- (HL)

[HL], A 1 1 - (HL) <- A

[HL+byte], #byte 3 1 - (HL + byte) <- byte

A, [HL+byte] 2 1 4 A <- (HL + byte)

[HL+byte], A 2 1 - (HL + byte) <- A

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 439 of 853
Apr 01, 2011

A, [HL+B] 2 1 4 A <- (HL + B)

[HL+B], A 2 1 - (HL + B) <- A

A, [HL+C] 2 1 4 A <- (HL + C)

[HL+C], A 2 1 - (HL + C) <- A

word[B], #byte 4 1 - (B + word) <- byte

A, word[B] 3 1 4 A <- (B + word)

word[B], A 3 1 - (B + word) <- A

word[C], #byte 4 1 - (C + word) <- byte

A, word[C] 3 1 4 A <- (C + word)

word[C], A 3 1 - (C + word) <- A

word[BC], #byte 4 1 - (BC + word) <- byte

A, word[BC] 3 1 4 A <- (BC + word)

word[BC], A 3 1 - (BC + word) <- A

[SP+byte], #byte 3 1 - (SP + byte) <- byte

A, [SP+byte] 2 1 - A <- (SP + byte)

[SP+byte], A 2 1 - (SP + byte) <- A

B, saddr 2 1 - B <- (saddr)

B, !addr16 3 1 4 B <- (addr16)

C, saddr 2 1 - C <- (saddr)

C, !addr16 3 1 4 C <- (addr16)

X, saddr 2 1 - X <- (saddr)

X, !addr16 3 1 4 X <- (addr16)

ES:!addr16, #byte 5 2 - (ES, addr16) <- byte

A, ES:!addr16 4 2 5 A <- (ES, addr16)

ES:!addr16, A 4 2 - (ES, addr16) <- A

A, ES:[DE] 2 2 5 A <- (ES, DE)

ES:[DE], A 2 2 - (ES, DE) <- A

ES:[DE+byte], #byte 4 2 - ((ES, DE) + byte) <- byte

A, ES:[DE+byte] 3 2 5 A <- ((ES, DE) + byte)

ES:[DE+byte], A 3 2 - ((ES, DE) + byte) <- A

A, ES:[HL] 2 2 5 A <- (ES, HL)

ES:[HL], A 2 2 - (ES, HL) <- A

ES:[HL+byte], #byte 4 2 - ((ES, HL) + byte) <- byte

A, ES:[HL+byte] 3 2 5 A <- ((ES, HL) + byte)

ES:[HL+byte], A 3 2 - ((ES, HL) + byte) <- A

A, ES:[HL+B] 3 2 5 A <- ((ES, HL) + B)

Mnemonic Operand Byte Clock Operation FlagNote 4

Note 1 Note 2 Z AC CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 440 of 853
Apr 01, 2011

ES:[HL+B], A 3 2 - ((ES, HL) + B) <- A

A, ES:[HL+C] 3 2 5 A <- ((ES, HL) + C)

ES:[HL+C], A 3 2 - ((ES, HL) + C) <- A

ES:word[B], #byte 5 2 - ((ES, B) + word) <- byte

A, ES:word[B] 4 2 5 A <- ((ES, B) + word)

ES:word[B], A 4 2 - ((ES, B) + word) <- A

ES:word[C], #byte 5 2 - ((ES, C) + word) <- byte

A, ES:word[C] 4 2 5 A <- ((ES, C) + word)

ES:word[C], A 4 2 - ((ES, C) + word) <- A

ES:word[BC], #byte 5 2 - ((ES, BC) + word) <- byte

A, ES:word[BC] 4 2 5 A <- ((ES, BC) + word)

ES:word[BC], A 4 2 - ((ES, BC) + word) <- A

B, ES:!addr16 4 2 5 B <- (ES, addr16)

C, ES:!addr16 4 2 5 C <- (ES, addr16)

X, ES:!addr16 4 2 5 X <- (ES, addr16)

XCH A, r Note 3 1 (r = X)

2 (except

r = X)

1 - A <--> r

A, saddr 3 2 - A <--> (saddr)

A, sfr 3 2 - A <--> sfr

A, !addr16 4 2 - A <--> (addr16)

A, [DE] 2 2 - A <--> (DE)

A, [DE+byte] 3 2 - A <--> (DE + byte)

A, [HL] 2 2 - A <--> (HL)

A, [HL+byte] 3 2 - A <--> (HL + byte)

A, [HL+B] 2 2 - A <--> (HL + B)

A, [HL+C] 2 2 - A <--> (HL + C)

A, ES:!addr16 5 3 - A <--> (ES, addr16)

A, ES:[DE] 3 3 - A <--> (ES, DE)

A, ES:[DE+byte] 4 3 - A <--> ((ES, DE) + byte)

A, ES:[HL] 3 3 - A <--> (ES, HL)

A, ES:[HL+byte] 4 3 - A <--> ((ES, HL) + byte)

A, ES:[HL+B] 3 3 - A <--> ((ES, HL) + B)

A, ES:[HL+C] 3 3 - A <--> ((ES, HL) + C)

A 1 1 - A <- 01H

X 1 1 - X <- 01H

B 1 1 - B <- 01H

Mnemonic Operand Byte Clock Operation FlagNote 4

Note 1 Note 2 Z AC CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 441 of 853
Apr 01, 2011

Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.

2. When program memory area is accessed.

3. Except r = A.

4. The flag field symbol shows the flag change at the time the instruction is executed.

Blank : Unchanged

0 : Cleared to 0

1 : Set to 1

x : Set or cleared according to the result

R : Previously saved value is restored

Remarks 1. One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock

control register (PCC).

2. Clock number when there is a program in the internal ROM (Flash memory) area.

3. In products in which external memory area connects to internal flash area, when using external bus

interface function, wait number is added to the instruction execution clock number that is mapped to the

final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the

instruction code, flash space is exceeded and external memory space is accessed and so an external

memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-

bers.

C 1 1 - C <- 01H

saddr 2 1 - (saddr) <- 01H

!addr16 3 1 - (addr16) <- 01H

ES:!addr16 4 2 - (ES, addr16) <- 01H

CLRB A 1 1 - A <- 00H

X 1 1 - X <- 00H

B 1 1 - B <- 00H

C 1 1 - C <- 00H

saddr 2 1 - (saddr) <- 00H

!addr16 3 1 - (addr16) <- 00H

ES:!addr16 4 2 - (ES,addr16) <- 00H

MOVS [HL+byte], X 3 1 - (HL + byte) <- X x x

ES:[HL+byte], X 4 2 - (ES, HL + byte) <- X x x

Mnemonic Operand Byte Clock Operation FlagNote 4

Note 1 Note 2 Z AC CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 442 of 853
Apr 01, 2011

(b) 16-bit data transfer instructions

Table 4-32. Operation List (16-bit Data Transfer Instructions)

Mnemonic Operand Byte Clock Operation FlagNote 4

Note 1 Note 2 Z AC CY

MOVW rp, #word 3 1 - rp <- word

saddrp, #word 4 1 - (saddrp) <- word

sfrp, #word 4 1 - sfrp <- word

AX, saddrp 2 1 - AX <- (saddrp)

saddrp, AX 2 1 - (saddrp) <- AX

AX, sfrp 2 1 - AX <- sfrp

sfrp, AX 2 1 - sfrp <- AX

AX, rp Note 3 1 1 - AX <- rp

rp, AX Note 3 1 1 - rp <- AX

AX, !addr16 3 1 4 AX <- (addr16)

!addr16, AX 3 1 - (addr16) <- AX

AX, [DE] 1 1 4 AX <- (DE)

[DE], AX 1 1 - (DE) <- AX

AX, [DE+byte] 2 1 4 AX <- (DE + byte)

[DE+byte], AX 2 1 - (DE + byte) <- AX

AX, [HL] 1 1 4 AX <- (HL)

[HL], AX 1 1 - (HL) <- AX

AX, [HL+byte] 2 1 4 AX <- (HL + byte)

[HL+byte], AX 2 1 - (HL + byte) <- AX

AX, word[B] 3 1 4 AX <- (B + word)

word[B], AX 3 1 - (B + word) <- AX

AX, word[C] 3 1 4 AX <- (C + word)

word[C], AX 3 1 - (C + word) <- AX

AX, word[BC] 3 1 4 AX <- (BC + word)

word[BC], AX 3 1 - (BC + word) <- AX

AX, [SP+byte] 2 1 - AX <- (SP + byte)

[SP+byte], AX 2 1 - (SP + byte) <- AX

BC, saddrp 2 1 - BC <- (saddrp)

BC, !addr16 3 1 4 BC <- (addr16)

DE, saddrp 2 1 - DE <- (saddrp)

DE, !addr16 3 1 4 DE <- (addr16)

HL, saddrp 2 1 - HL <- (saddrp)

HL, !addr16 3 1 4 HL <- (addr16)

AX, ES:!addr16 4 2 5 AX <- (ES, addr16)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 443 of 853
Apr 01, 2011

Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.

2. When program memory area is accessed.

3. Except rp = AX

4. The flag field symbol shows the flag change at the time the instruction is executed.

Blank : Unchanged

0 : Cleared to 0

1 : Set to 1

x : Set or cleared according to the result

R : Previously saved value is restored

Remarks 1. One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock

control register (PCC).

2. Clock number when there is a program in the internal ROM (Flash memory) area.

3. In products in which external memory area connects to internal flash area, when using external bus

interface function, wait number is added to the instruction execution clock number that is mapped to the

final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the

ES:!addr16, AX 4 2 - (ES, addr16) <- AX

AX, ES:[DE] 2 2 5 AX <- (ES, DE)

ES:[DE], AX 2 2 - (ES, DE) <- AX

AX, ES:[DE+byte] 3 2 5 AX <- ((ES, DE) + byte)

ES:[DE+byte], AX 3 2 - ((ES, DE) + byte) <- AX

AX, ES:[HL] 2 2 5 AX <- (ES, HL)

ES:[HL], AX 2 2 - (ES, HL) <- AX

AX, ES:[HL+byte] 3 2 5 AX <- ((ES, HL) + byte)

ES:[HL+byte], AX 3 2 - ((ES, HL) + byte) <- AX

AX, ES:word[B] 4 2 5 AX <- ((ES, B) + word)

ES:word[B], AX 4 2 - ((ES, B) + word) <- AX

AX, ES:word[C] 4 2 5 AX <- ((ES, C) + word)

ES:word[C], AX 4 2 - ((ES, C) + word) <- AX

AX, ES:word[BC] 4 2 5 AX <- ((ES, BC) + word)

ES:word[BC], AX 4 2 - ((ES, BC) + word) <- AX

BC, ES:!addr16 4 2 5 BC <- (ES, addr16)

DE, ES:!addr16 4 2 5 DE <- (ES, addr16)

HL, ES:!addr16 4 2 5 HL <- (ES, addr16)

XCHW AX, rp Note 3 1 1 - AX <--> rp

ONEW AX 1 1 - AX <- 0001H

BC 1 1 - BC <- 0001H

CLRW AX 1 1 - AX <- 0000H

BC 1 1 - BC <- 0000H

Mnemonic Operand Byte Clock Operation FlagNote 4

Note 1 Note 2 Z AC CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 444 of 853
Apr 01, 2011

instruction code, flash space is exceeded and external memory space is accessed and so an external

memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-

bers.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 445 of 853
Apr 01, 2011

(c) 8-bit operation instructions

Table 4-33. Operation List (8-bit Operation Instructions)

Mnemonic Operand Byte Clock Operation FlagNote 4

Note 1 Note 2 Z AC CY

ADD A, #byte 2 1 - A, CY <- A + byte x x x

saddr, #byte 3 2 - (saddr), CY <- (saddr) + byte x x x

A, r Note 3 2 1 - A, CY <- A + r x x x

r, A 2 1 - r, CY <- r + A x x x

A, saddr 2 1 - A, CY <- A + (saddr) x x x

A, !addr16 3 1 4 A, CY <- A + (addr16) x x x

A, [HL] 1 1 4 A, CY <- A + (HL) x x x

A, [HL+byte] 2 1 4 A, CY <- A + (HL + byte) x x x

A, [HL+B] 2 1 4 A, CY <- A + (HL + B) x x x

A, [HL+C] 2 1 4 A, CY <- A + (HL + C) x x x

A, ES:!addr16 4 2 5 A, CY <- A + (ES, addr16) x x x

A, ES:[HL] 2 2 5 A,CY <- A + (ES, HL) x x x

A, ES:[HL+byte] 3 2 5 A,CY <- A + ((ES, HL) + byte) x x x

A, ES:[HL+B] 3 2 5 A,CY <- A + ((ES, HL) + B) x x x

A, ES:[HL+C] 3 2 5 A,CY <- A + ((ES, HL) + C) x x x

ADDC A, #byte 2 1 - A, CY <- A + byte + CY x x x

saddr, #byte 3 2 - (saddr), CY <- (saddr) + byte +

CY

x x x

A, r Note 3 2 1 - A, CY <- A + r + CY x x x

r, A 2 1 - r, CY <- r + A + CY x x x

A, saddr 2 1 - A, CY <- A + (saddr) + CY x x x

A, !addr16 3 1 4 A, CY <- A + (addr16) + CY x x x

A, [HL] 1 1 4 A, CY <- A + (HL) + CY x x x

A, [HL+byte] 2 1 4 A, CY <- A + (HL + byte) + CY x x x

A, [HL+B] 2 1 4 A, CY <- A + (HL + B) + CY x x x

A, [HL+C] 2 1 4 A, CY <- A + (HL + C) + CY x x x

A, ES:!addr16 4 2 5 A, CY <- A + (ES, addr16) +

CY

x x x

A, ES:[HL] 2 2 5 A, CY <- A + (ES, HL) + CY x x x

A, ES:[HL+byte] 3 2 5 A, CY <- A + ((ES, HL) + byte)

+ CY

x x x

A, ES:[HL+B] 3 2 5 A, CY <- A + ((ES, HL) + B) +

CY

x x x

A, ES:[HL+C] 3 2 5 A, CY <- A + ((ES, HL) + C) +

CY

x x x

SUB A, #byte 2 1 - A, CY <- A - byte x x x

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 446 of 853
Apr 01, 2011

saddr, #byte 3 2 - (saddr), CY <- (saddr) - byte x x x

A, r Note 3 2 1 - A, CY <- A - r x x x

r, A 2 1 - r, CY <- r - A x x x

A, saddr 2 1 - A, CY <- A - (saddr) x x x

A, !addr16 3 1 4 A, CY <- A - (addr16) x x x

A, [HL] 1 1 4 A, CY <- A - (HL) x x x

A, [HL+byte] 2 1 4 A, CY <- A - (HL + byte) x x x

A, [HL+B] 2 1 4 A, CY <- A - (HL + B) x x x

A, [HL+C] 2 1 4 A, CY <- A - (HL + C) x x x

A, ES:!addr16 4 2 5 A, CY <- A - (ES:addr16) x x x

A, ES:[HL] 2 2 5 A, CY <- A - (ES:HL) x x x

A, ES:[HL+byte] 3 2 5 A, CY <- A - ((ES:HL) + byte) x x x

A, ES:[HL+B] 3 2 5 A, CY <- A - ((ES:HL) + B) x x x

A, ES:[HL+C] 3 2 5 A, CY <- A - ((ES:HL) + C) x x x

SUBC A, #byte 2 1 - A, CY <- A - byte - CY x x x

saddr, #byte 3 2 - (saddr), CY <- (saddr) - byte -

CY

x x x

A, r Note 3 2 1 - A, CY <- A - r - CY x x x

r, A 2 1 - r, CY <- r - A - CY x x x

A, saddr 2 1 - A, CY <- A - (saddr) - CY x x x

A, !addr16 3 1 4 A, CY <- A - (addr16) - CY x x x

A, [HL] 1 1 4 A, CY <- A - (HL) - CY x x x

A, [HL+byte] 2 1 4 A, CY <- A - (HL + byte) - CY x x x

A, [HL+B] 2 1 4 A, CY <- A - (HL + B) - CY x x x

A, [HL+C] 2 1 4 A, CY <- A - (HL + C) - CY x x x

A, ES:!addr16 4 2 5 A, CY <- A - (ES:addr16) - CY x x x

A, ES:[HL] 2 2 5 A, CY <- A - (ES:HL) - CY x x x

A, ES:[HL+byte] 3 2 5 A, CY <- A - ((ES:HL) + byte) -

CY

x x x

A, ES:[HL+B] 3 2 5 A, CY <- A - ((ES:HL) + B) -

CY

x x x

A, ES:[HL+C] 3 2 5 A, CY <- A - ((ES:HL) + C) -

CY

x x x

AND A, #byte 2 1 - A <- A ^ byte x

saddr, #byte 3 2 - (saddr) <- (saddr) ^ byte x

A, r Note 3 2 1 - A <- A ^ r x

r, A 2 1 - r <- r ^ A x

A, saddr 2 1 - A <- A ^ (saddr) x

Mnemonic Operand Byte Clock Operation FlagNote 4

Note 1 Note 2 Z AC CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 447 of 853
Apr 01, 2011

A, !addr16 3 1 4 A <- A ^ (addr16) x

A, [HL] 1 1 4 A <- A ^ (HL) x

A, [HL+byte] 2 1 4 A <- A ^ (HL + byte) x

A, [HL+B] 2 1 4 A <- A ^ (HL + B) x

A, [HL+C] 2 1 4 A <- A ^ (HL + C) x

A, ES:!addr16 4 2 5 A <- A ^ (ES:addr16) x

A, ES:[HL] 2 2 5 A <- A ^ (ES:HL) x

A, ES:[HL+byte] 3 2 5 A <- A ^ ((ES:HL) + byte) x

A, ES:[HL+B] 3 2 5 A <- A ^ ((ES:HL) + B) x

A, ES:[HL+C] 3 2 5 A <- A ^ ((ES:HL) + C) x

OR A, #byte 2 1 - A <- A v byte x

saddr, #byte 3 2 - (saddr) <- (saddr) v byte x

A, r Note 3 2 1 - A <- A v r x

r, A 2 1 - r <- r v A x

A, saddr 2 1 - A <- A v (saddr) x

A, !addr16 3 1 4 A <- A v (addr16) x

A, [HL] 1 1 4 A <- A v (HL) x

A, [HL+byte] 2 1 4 A <- A v (HL + byte) x

A, [HL+B] 2 1 4 A <- A v (HL + B) x

A, [HL+C] 2 1 4 A <- A v (HL + C) x

A, ES:!addr16 4 2 5 A <- A v (ES:addr16) x

A, ES:[HL] 2 2 5 A <- A v (ES:HL) x

A, ES:[HL+byte] 3 2 5 A <- A v ((ES:HL) + byte) x

A, ES:[HL+B] 3 2 5 A <- A v ((ES:HL) + B) x

A, ES:[HL+C] 3 2 5 A <- A v ((ES:HL) + C) x

XOR A, #byte 2 1 - A <- A ∀ byte x

saddr, #byte 3 2 - (saddr) <- (saddr) ∀ byte x

A, r Note 3 2 1 - A <- A ∀ r x

r, A 2 1 - r <- r ∀ A x

A, saddr 2 1 - A <- A ∀ (saddr) x

A, !addr16 3 1 4 A <- A ∀ (addr16) x

A, [HL] 1 1 4 A <- A ∀ (HL) x

A, [HL+byte] 2 1 4 A <- A ∀ (HL + byte) x

A, [HL+B] 2 1 4 A <- A ∀ (HL + B) x

A, [HL+C] 2 1 4 A <- A ∀ (HL + C) x

A, ES:!addr16 4 2 5 A <- A ∀ (ES:addr16) x

Mnemonic Operand Byte Clock Operation FlagNote 4

Note 1 Note 2 Z AC CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 448 of 853
Apr 01, 2011

Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.

2. When program memory area is accessed.

3. Except r = A.

4. The flag field symbol shows the flag change at the time the instruction is executed.

Blank : Unchanged

0 : Cleared to 0

1 : Set to 1

A, ES:[HL] 2 2 5 A <- A ∀ (ES:HL) x

A, ES:[HL+byte] 3 2 5 A <- A ∀ ((ES:HL) + byte) x

A, ES:[HL+B] 3 2 5 A <- A ∀ ((ES:HL) + B) x

A, ES:[HL+C] 3 2 5 A <- A ∀ ((ES:HL) + C) x

CMP A, #byte 2 1 - A - byte x x x

saddr, #byte 3 1 - (saddr) - byte x x x

A, r Note 3 2 1 - A - r x x x

r, A 2 1 - r - A x x x

A, saddr 2 1 - A - (saddr) x x x

A, !addr16 3 1 4 A - (addr16) x x x

A, [HL] 1 1 4 A - (HL) x x x

A, [HL+byte] 2 1 4 A - (HL + byte) x x x

A, [HL+B] 2 1 4 A - (HL + B) x x x

A, [HL+C] 2 1 4 A - (HL + C) x x x

!addr16, #byte 4 1 4 (addr16) - byte x x x

A, ES:!addr16 4 2 5 A - (ES:addr16) x x x

A, ES:[HL] 2 2 5 A - (ES:HL) x x x

A, ES:[HL+byte] 3 2 5 A - ((ES:HL) + byte) x x x

A, ES:[HL+B] 3 2 5 A - ((ES:HL) + B) x x x

A, ES:[HL+C] 3 2 5 A - ((ES:HL) + C) x x x

ES:!addr16, #byte 5 2 5 (ES:addr16) - byte x x x

CMP0 A 1 1 - A - 00H x x x

X 1 1 - X - 00H x x x

B 1 1 - B - 00H x x x

C 1 1 - C - 00H x x x

saddr 2 1 - (saddr) - 00H x x x

!addr16 3 1 4 (addr16) - 00H x x x

ES:!addr16 4 2 5 (ES:addr16) - 00H x x x

CMPS X, [HL+byte] 3 1 4 X - (HL + byte) x x x

X, ES:[HL+byte] 4 2 5 X - ((ES:HL) + byte) x x x

Mnemonic Operand Byte Clock Operation FlagNote 4

Note 1 Note 2 Z AC CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 449 of 853
Apr 01, 2011

x : Set or cleared according to the result

R : Previously saved value is restored

Remarks 1. One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock

control register (PCC).

2. Clock number when there is a program in the internal ROM (Flash memory) area.

3. In products in which external memory area connects to internal flash area, when using external bus

interface function, wait number is added to the instruction execution clock number that is mapped to the

final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the

instruction code, flash space is exceeded and external memory space is accessed and so an external

memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-

bers.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 450 of 853
Apr 01, 2011

(d) 16-bit operation instructions

Table 4-34. Operation List (16-bit Operation Instructions)

Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.

2. When program memory area is accessed.

3. The flag field symbol shows the flag change at the time the instruction is executed.

Blank : Unchanged

Mnemonic Operand Byte Clock Operation FlagNote 3

Note 1 Note 2 Z AC CY

ADDW AX, #word 3 1 - AX, CY <- AX + word x x x

AX, AX 1 1 - AX, CY <- AX + AX x x x

AX, BC 1 1 - AX, CY <- AX + BC x x x

AX, DE 1 1 - AX, CY <- AX + DE x x x

AX, HL 1 1 - AX, CY <- AX + HL x x x

AX, saddrp 2 1 - AX, CY <- AX + (saddrp) x x x

AX, !addr16 3 1 4 AX, CY <- AX + (addr16) x x x

AX, [HL+byte] 3 1 4 AX, CY <- AX + (HL + byte) x x x

AX, ES:!addr16 4 2 5 AX, CY <- AX + (ES:addr16) x x x

AX, ES:[HL+byte] 4 2 5 AX, CY <- AX + ((ES:HL) +

byte)

x x x

SUBW AX, #word 3 1 - AX, CY <- AX - word x x x

AX, BC 1 1 - AX, CY <- AX - BC x x x

AX, DE 1 1 - AX, CY <- AX - DE x x x

AX, HL 1 1 - AX, CY <- AX - HL x x x

AX, saddrp 2 1 - AX, CY <- AX - (saddrp) x x x

AX, !addr16 3 1 4 AX, CY <- AX - (addr16) x x x

AX, [HL+byte] 3 1 4 AX, CY <- AX - (HL - byte) x x x

AX, ES:!addr16 4 2 5 AX, CY <- AX - (ES:addr16) x x x

AX, ES:[HL+byte] 4 2 5 AX, CY <- AX - ((ES:HL) +

byte)

x x x

CMPW AX, #word 3 1 - AX - word x x x

AX, BC 1 1 - AX - BC x x x

AX, DE 1 1 - AX - DE x x x

AX, HL 1 1 - AX - HL x x x

AX, saddrp 2 1 - AX - (saddrp) x x x

AX, !addr16 3 1 4 AX - (addr16) x x x

AX, [HL+byte] 3 1 4 AX - (HL + byte) x x x

AX, ES:!addr16 4 2 5 AX - (ES:addr16) x x x

AX, ES:[HL+byte] 4 2 5 AX - ((ES:HL) + byte) x x x

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 451 of 853
Apr 01, 2011

0 : Cleared to 0

1 : Set to 1

x : Set or cleared according to the result

R : Previously saved value is restored

Remarks 1. One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock

control register (PCC).

2. Clock number when there is a program in the internal ROM (Flash memory) area.

3. In products in which external memory area connects to internal flash area, when using external bus

interface function, wait number is added to the instruction execution clock number that is mapped to the

final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the

instruction code, flash space is exceeded and external memory space is accessed and so an external

memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-

bers.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 452 of 853
Apr 01, 2011

(e) Multiply/Divide/Multiply & Accumulate instructions

Table 4-35. Operation List (Multiply/Divide/Multiply & Accumulate instructions)

Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.

2. When program memory area is accessed.

3. The flag field symbol shows the flag change at the time the instruction is executed.

Blank : Unchanged

0 : Cleared to 0

1 : Set to 1

x : Set or cleared according to the result

R : Previously saved value is restored

4. These instructions are expanded instructions and mounted or not mounted by product. For details, see to

user's manual of each product.

Remarks 1. One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock

control register (PCC).

2. Clock number when there is a program in the internal ROM (Flash memory) area.

3. In products in which external memory area connects to internal flash area, when using external bus

interface function, wait number is added to the instruction execution clock number that is mapped to the

final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the

instruction code, flash space is exceeded and external memory space is accessed and so an external

memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-

bers.

Mnemonic Operand Byte Clock Operation FlagNote 3

Note 1 Note 2 Z AC CY

MULU X 1 1 - AX <- A x X

MULHUNote

4
- 3 2 - BCAX <- AX x BC

MULHNote 4 - 3 2 - BCAX <- AX x BC

DIVHUNote 4 - 3 9 - AX (quotient), DE (remainder)

<- AX / DE

DIVWUNote 4 - 3 17 - BCAX (quotient), HLDE

(remainder) <- BCAX / HLDE

MACHUNote

4
- 3 3 - MACR <- MACR + AX x BC x x

MACHNote 4 - 3 3 - MACR <- MACR + AX x BC x x

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 453 of 853
Apr 01, 2011

(f) Increment/decrement instructions

Table 4-36. Operation List (Increment/Decrement Instructions)

Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.

2. When program memory area is accessed.

3. The flag field symbol shows the flag change at the time the instruction is executed.

Blank : Unchanged

Mnemonic Operand Byte Clock Operation FlagNote 3

Note 1 Note 2 Z AC CY

INC r 1 1 - r <- r + 1 x x

saddr 2 2 - (saddr) <- (saddr) + 1 x x

!addr16 3 2 - (addr16) <- (addr16) + 1 x x

[HL+byte] 3 2 - (HL + byte) <- (HL + byte) + 1 x x

ES:!addr16 4 3 - (ES, addr16) <- (ES, addr16)

+ 1

x x

ES: [HL+byte] 4 3 - ((ES:HL) + byte) <- ((ES:HL) +

byte) + 1

x x

DEC r 1 1 - r <- r - 1 x x

saddr 2 2 - (saddr) <- (saddr) - 1 x x

!addr16 3 2 - (addr16) <- (addr16) - 1 x x

[HL+byte] 3 2 - (HL + byte) <- (HL + byte) - 1 x x

ES:!addr16 4 3 - (ES, addr16) <- (ES, addr16) -

1

x x

ES: [HL+byte] 4 3 - ((ES:HL) + byte) <- ((ES:HL) +

byte) - 1

x x

INCW rp 1 1 - rp <- rp + 1

saddrp 2 2 - (saddrp) <- (saddrp) + 1

!addr16 3 2 - (addr16) <- (addr16) + 1

[HL+byte] 3 2 - (HL + byte) <- (HL + byte) + 1

ES:!addr16 4 3 - (ES, addr16) <- (ES, addr16)

+ 1

ES: [HL+byte] 4 3 - ((ES:HL) + byte) <- ((ES:HL) +

byte) + 1

DECW rp 1 1 - rp <- rp - 1

saddrp 2 2 - (saddrp) <- (saddrp) - 1

!addr16 3 2 - (addr16) <- (addr16) - 1

[HL+byte] 3 2 - (HL + byte) <- (HL + byte) - 1

ES:!addr16 4 3 - (ES, addr16) <- (ES, addr16) -

1

ES: [HL+byte] 4 3 - ((ES:HL) + byte) <- ((ES:HL) +

byte) - 1

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 454 of 853
Apr 01, 2011

0 : Cleared to 0

1 : Set to 1

x : Set or cleared according to the result

R : Previously saved value is restored

Remarks 1. One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock

control register (PCC).

2. Clock number when there is a program in the internal ROM (Flash memory) area.

3. In products in which external memory area connects to internal flash area, when using external bus

interface function, wait number is added to the instruction execution clock number that is mapped to the

final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the

instruction code, flash space is exceeded and external memory space is accessed and so an external

memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-

bers.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 455 of 853
Apr 01, 2011

(g) Shift instructions

Table 4-37. Operation List (Shift Instructions)

Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.

2. When program memory area is accessed.

3. The flag field symbol shows the flag change at the time the instruction is executed.

Blank : Unchanged

0 : Cleared to 0

1 : Set to 1

x : Set or cleared according to the result

R : Previously saved value is restored

Remarks 1. One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock

control register (PCC).

2. Clock number when there is a program in the internal ROM (Flash memory) area.

3. cnt is the number of bit shifts.

4. In products in which external memory area connects to internal flash area, when using external bus

interface function, wait number is added to the instruction execution clock number that is mapped to the

final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the

instruction code, flash space is exceeded and external memory space is accessed and so an external

memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-

bers.

Mnemonic Operand Byte Clock Operation FlagNote 3

Note 1 Note 2 Z AC CY

SHR A, cnt 2 1 - (CY <- A0, Am-1 <- Am, A7 <- 0)

x cnt

x

SHRW AX, cnt 2 1 - (CY <- AX0, AXm-1 <- AXm,

AX15 <- 0) x cnt

x

SHL A, cnt 2 1 - (CY <- A7, Am <- Am-1, A0 <- 0)

x cnt

x

B, cnt 2 1 - (CY <- B7, Bm <- Bm-1, B0 <- 0)

x cnt

x

C, cnt 2 1 - (CY <- C7, Cm <- Cm-1, C0 <- 0)

x cnt

x

SHLW AX, cnt 2 1 - (CY <- AX15, AXm <- AXm-1,

AX0 <- 0) x cnt

x

BC, cnt 2 1 - (CY <- BC15, BCm <- BCm-1,

BC0 <- 0) x cnt

x

SAR A, cnt 2 1 - (CY <- A0, Am-1 <- Am, A7 <- A7)

xcnt

x

SARW AX, cnt 2 1 - (CY <- AX0, AXm-1 <- AXm,

AX15 <- AX15) x cnt

x

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 456 of 853
Apr 01, 2011

(h) Rrotate instructions

Table 4-38. Operation List (Rotate Instructions)

Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.

2. When program memory area is accessed.

3. The flag field symbol shows the flag change at the time the instruction is executed.

Blank : Unchanged

0 : Cleared to 0

1 : Set to 1

x : Set or cleared according to the result

R : Previously saved value is restored

Remarks 1. One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock

control register (PCC).

2. Clock number when there is a program in the internal ROM (Flash memory) area.

3. In products in which external memory area connects to internal flash area, when using external bus

interface function, wait number is added to the instruction execution clock number that is mapped to the

final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the

instruction code, flash space is exceeded and external memory space is accessed and so an external

memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-

bers.

Mnemonic Operand Byte Clock Operation FlagNote 3

Note 1 Note 2 Z AC CY

ROR A, 1 2 1 - (CY, A7 <- A0, Am-1 <- Am)x1 x

ROL A, 1 2 1 - (CY, A0 <- A7, Am+1 <- Am)x1 x

RORC A, 1 2 1 - (CY <- A0, A7 <- CY, Am-1 <-

Am)x1

x

ROLC A, 1 2 1 - (CY <- A7, A0 <- CY, Am+1 <-

Am)x1

x

ROLWC AX, 1 2 1 - (CY <- AX15, AX0 <- CY, AXm+1

<- AXm)x1

x

BC, 1 2 1 - (CY <- BC15, BC0 <- CY, BCm+1

<- BCm)x1

x

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 457 of 853
Apr 01, 2011

(i) Bit manipulation instructions

Table 4-39. Operation List (Bit Manipulation Instructions)

Mnemonic Operand Byte Clock Operation FlagNote 3

Note 1 Note 2 Z AC CY

MOV1 CY, saddr.bit 3 1 - CY <- (saddr).bit x

CY, sfr.bit 3 1 - CY <- sfr.bit x

CY, A.bit 2 1 - CY <- A.bit x

CY, PSW.bit 3 1 - CY <- PSW.bit x

CY, [HL].bit 2 1 4 CY <- (HL).bit x

saddr.bit, CY 3 2 - (saddr).bit <- CY

sfr.bit, CY 3 2 - sfr.bit <- CY

A.bit, CY 2 1 - A.bit <- CY

PSW.bit, CY 3 4 - PSW.bit <- CY x x

[HL].bit, CY 2 2 - (HL).bit <- CY

CY, ES:[HL].bit 3 2 5 CY <- (ES, HL).bit x

ES:[HL].bit, CY 3 3 - (ES, HL).bit <- CY

AND1 CY, saddr.bit 3 1 - CY <- CY ^ (saddr).bit x

CY, sfr.bit 3 1 - CY <- CY ^ sfr.bit x

CY, A.bit 2 1 - CY <- CY ^ A.bit x

CY, PSW.bit 3 1 - CY <- CY ^ PSW.bit x

CY, [HL].bit 2 1 4 CY <- CY ^ (HL).bit x

CY, ES:[HL].bit 3 2 5 CY <- CY ^ (ES, HL).bit x

OR1 CY, saddr.bit 3 1 - CY <- CY v (saddr).bit x

CY, sfr.bit 3 1 - CY <- CY v sfr.bit x

CY, A.bit 2 1 - CY <- CY v A.bit x

CY, PSW.bit 3 1 - CY <- CY v PSW.bit x

CY, [HL].bit 2 1 4 CY <- CY v (HL).bit x

CY, ES:[HL].bit 3 2 5 CY <- CY v (ES, HL).bit x

XOR1 CY, saddr.bit 3 1 - CY <- CY ∀ (saddr).bit x

CY, sfr.bit 3 1 - CY <- CY ∀ sfr.bit x

CY, A.bit 2 1 - CY <- CY ∀ A.bit x

CY, PSW.bit 3 1 - CY <- CY ∀ PSW.bit x

CY, [HL].bit 2 1 4 CY <- CY ∀ (HL).bit x

CY, ES:[HL].bit 3 2 5 CY <- CY ∀ (ES, HL).bit x

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 458 of 853
Apr 01, 2011

Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.

2. When program memory area is accessed.

3. The flag field symbol shows the flag change at the time the instruction is executed.

Blank : Unchanged

0 : Cleared to 0

1 : Set to 1

x : Set or cleared according to the result

R : Previously saved value is restored

Remarks 1. One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock

control register (PCC).

2. Clock number when there is a program in the internal ROM (Flash memory) area.

3. In products in which external memory area connects to internal flash area, when using external bus

interface function, wait number is added to the instruction execution clock number that is mapped to the

final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the

instruction code, flash space is exceeded and external memory space is accessed and so an external

memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-

bers.

SET1 saddr.bit 3 2 - (saddr).bit <- 1

sfr.bit 3 2 - sfr.bit <- 1

A.bit 2 1 - A.bit <- 1

!addr16.bit 4 2 - (addr16).bit <- 1

PSW.bit 3 4 - PSW.bit <- 1 x x x

[HL].bit 2 2 - (HL).bit <- 1

ES:!addr16.bit 5 3 - (ES, addr16).bit <- 1

ES:[HL].bit 3 3 - (ES, HL).bit <- 1

CLR1 saddr.bit 3 2 - (saddr).bit <- 0

sfr.bit 3 2 - sfr.bit <- 0

A.bit 2 1 - A.bit <- 0

!addr16.bit 4 2 - (addr16).bit <- 0

PSW.bit 3 4 - PSW.bit <- 0 x x x

[HL].bit 2 2 - (HL).bit <- 0

ES:!addr16.bit 5 3 - (ES, addr16).bit <- 0

ES:[HL].bit 3 3 - (ES, HL).bit <- 0

SET1 CY 2 1 - CY <- 1 1

CLR1 CY 2 1 - CY <- 0 0

NOT1 CY 2 1 - CY <- CY x

Mnemonic Operand Byte Clock Operation FlagNote 3

Note 1 Note 2 Z AC CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 459 of 853
Apr 01, 2011

(j) Call return instructions

Table 4-40. Operations List (Call Return Instructions)

Mnemonic Operand Byte Clock Operation FlagNote 3

Note 1 Note 2 Z AC CY

CALL rp 2 3 - (SP - 2) <- (PC + 2)S,

(SP - 3) <- (PC + 2)H,

(SP - 4) <- (PC + 2)L,

PC <- CS, rp,

SP <- SP - 4

$!addr20 3 3 - (SP - 2) <- (PC + 3)S,

(SP - 3) <- (PC + 3)H,

(SP - 4) <- (PC + 3)L,

PC <- PC + 3 + jdisp16,

SP <- SP - 4

!addr16 3 3 - (SP - 2) <- (PC + 3)S,

(SP - 3) <- (PC + 3)H,

(SP - 4) <- (PC + 3)L,

PC <- 0000, addr16,

SP <- SP - 4

!!addr20 4 3 - (SP - 2) <- (PC + 4)S,

(SP - 3) <- (PC + 4)H,

(SP - 4) <- (PC + 4)L,

PC <- addr20,

SP <- SP - 4

CALLT [addr5] 2 5 - (SP - 2) <- (PC + 2)S,

(SP - 3) <- (PC + 2)H,

(SP - 4) <- (PC + 2)L,

PCS <- 0000,

PCH <- (000000000000, addr5

+ 1),

PCL <- (000000000000,

addr5),

SP <- SP - 4

BRK - 2 5 - (SP - 1) <- PSW,

(SP - 2) <- (PC + 2)S,

(SP - 3) <- (PC + 2)H,

(SP - 4) <- (PC + 2)L,

PCS <- 0000,

PCH <- (0007FH),

PCL <- (0007EH),

SP <- SP - 4,

IE <- 0

RET - 1 6 - PCL <- (SP),

PCH <- (SP + 1),

PCS <- (SP + 2),

SP <- SP + 4

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 460 of 853
Apr 01, 2011

Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.

2. When program memory area is accessed.

3. The flag field symbol shows the flag change at the time the instruction is executed.

Blank : Unchanged

0 : Cleared to 0

1 : Set to 1

x : Set or cleared according to the result

R : Previously saved value is restored

Remarks 1. One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock

control register (PCC).

2. Clock number when there is a program in the internal ROM (Flash memory) area.

3. In products in which external memory area connects to internal flash area, when using external bus

interface function, wait number is added to the instruction execution clock number that is mapped to the

final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the

instruction code, flash space is exceeded and external memory space is accessed and so an external

memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-

bers.

RETI - 2 6 - PCL <- (SP),

PCH <- (SP + 1),

PCS <- (SP + 2),

PSW <- (SP + 3),

SP <- SP + 4

R R R

RETB - 2 6 - PCL <- (SP),

PCH <- (SP + 1),

PCS <- (SP + 2),

PSW <- (SP + 3),

SP <- SP + 4

R R R

Mnemonic Operand Byte Clock Operation FlagNote 3

Note 1 Note 2 Z AC CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 461 of 853
Apr 01, 2011

(k) Stack manipulation instructions

Table 4-41. Operation List (Stack Manipulation Instructions)

Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.

2. When program memory area is accessed.

3. The flag field symbol shows the flag change at the time the instruction is executed.

Blank : Unchanged

0 : Cleared to 0

1 : Set to 1

x : Set or cleared according to the result

R : Previously saved value is restored

Remarks 1. One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock

control register (PCC).

2. Clock number when there is a program in the internal ROM (Flash memory) area.

3. In products in which external memory area connects to internal flash area, when using external bus

interface function, wait number is added to the instruction execution clock number that is mapped to the

final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the

instruction code, flash space is exceeded and external memory space is accessed and so an external

memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-

bers.

Mnemonic Operand Byte Clock Operation FlagNote 3

Note 1 Note 2 Z AC CY

PUSH PSW 2 1 - (SP - 1) <- PSW,

(SP - 2) <- 00H,

SP <- SP - 2

rp 1 1 - (SP - 1) <- rpH,

(SP - 2) <- rpL,

SP <- SP - 2

POP PSW 2 3 - PSW <- (SP + 1),

SP <- SP + 2

R R R

rp 1 1 - rpL <- (SP),

rpH <- (SP + 1),

SP <- SP + 2

MOVW SP, #word 4 1 - SP <- word

SP, AX 2 1 - SP <- AX

AX, SP 2 1 - AX <- SP

HL, SP 3 1 - HL <- SP

BC, SP 3 1 - BC <- SP

DE, SP 3 1 - DE <- SP

ADDW SP, #byte 2 1 - SP <- SP + byte

SUBW SP, #byte 2 1 - SP <- SP - byte

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 462 of 853
Apr 01, 2011

(l) Unconditional branch instructions

Table 4-42. Operation List (Unconditional Branch Instructions)

Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.

2. When program memory area is accessed.

3. The flag field symbol shows the flag change at the time the instruction is executed.

Blank : Unchanged

0 : Cleared to 0

1 : Set to 1

x : Set or cleared according to the result

R : Previously saved value is restored

Remarks 1. One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock

control register (PCC).

2. Clock number when there is a program in the internal ROM (Flash memory) area.

3. In products in which external memory area connects to internal flash area, when using external bus

interface function, wait number is added to the instruction execution clock number that is mapped to the

final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the

instruction code, flash space is exceeded and external memory space is accessed and so an external

memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-

bers.

Mnemonic Operand Byte Clock Operation FlagNote 3

Note 1 Note 2 Z AC CY

BR AX 2 3 - PC <- CS, AX

$addr20 2 3 - PC <- PC + 2 + jdisp8

$!addr20 3 3 - PC <- PC + 3 + jdisp16

!addr16 3 3 - PC <- 0000, addr16

!!addr20 4 3 - PC <- addr20

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 463 of 853
Apr 01, 2011

(m) Conditional branch instructions

Table 4-43. Operation List (Conditional Branch Instructions)

Mnemonic Operand Byte Clock Operation FlagNote 4

Note 1 Note 2 Z AC CY

BC $addr20 2 2/4Note 3 - PC <- PC + 2 + jdisp8 if CY =

1

BNC $addr20 2 2/4Note 3 - PC <- PC + 2 + jdisp8 if CY =

0

BZ $addr20 2 2/4Note 3 - PC <- PC + 2 + jdisp8 if Z = 1

BNZ $addr20 2 2/4Note 3 - PC <- PC + 2 + jdisp8 if Z = 0

BH $addr20 3 2/4Note 3 - PC <- PC + 3 + jdisp8 if (Z v

CY) = 0

BNH $addr20 3 2/4Note 3 - PC <- PC + 3 + jdisp8 if (Z v

CY) = 1

BT saddr.bit, $addr20 4 3/5Note 3 - PC <- PC + 4 + jdisp8 if

(saddr).bit = 1

sfr.bit, $addr20 4 3/5Note 3 - PC <- PC + 4 + jdisp8 if sfr.bit

= 1

A.bit, $addr20 3 3/5Note 3 - PC <- PC + 3 + jdisp8 if A.bit =

1

PSW.bit, $addr20 4 3/5Note 3 - PC <- PC + 4 + jdisp8 if

PSW.bit = 1

[HL].bit, $addr20 3 3/5Note 3 6/8 PC <- PC + 3 + jdisp8 if

(HL).bit = 1

ES:[HL].bit, $addr20 4 4/6Note 3 7/9 PC <- PC + 4 + jdisp8 if (ES,

HL).bit = 1

BF saddr.bit, $addr20 4 3/5Note 3 - PC <- PC + 4 + jdisp8 if

(saddr).bit = 0

sfr.bit, $addr20 4 3/5Note 3 - PC <- PC + 4 + jdisp8 if sfr.bit

= 0

A.bit, $addr20 3 3/5Note 3 - PC <- PC + 3 + jdisp8 if A.bit =

0

PSW.bit, $addr20 4 3/5Note 3 - PC <- PC + 4 + jdisp8 if

PSW.bit = 0

[HL].bit, $addr20 3 3/5Note 3 6/8 PC <- PC + 3 + jdisp8 if

(HL).bit = 0

ES:[HL].bit, $addr20 4 4/6Note 3 7/9 PC <- PC + 4 + jdisp8 if (ES,

HL).bit = 0

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 464 of 853
Apr 01, 2011

Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.

2. When program memory area is accessed.

3. The clock number shows the condition satisfied or condition unsatisfied.

4. The flag field symbol shows the flag change at the time the instruction is executed.

Blank : Unchanged

0 : Cleared to 0

1 : Set to 1

x : Set or cleared according to the result

R : Previously saved value is restored

Remarks 1. One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock

control register (PCC).

2. Clock number when there is a program in the internal ROM (Flash memory) area.

3. In products in which external memory area connects to internal flash area, when using external bus

interface function, wait number is added to the instruction execution clock number that is mapped to the

final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the

instruction code, flash space is exceeded and external memory space is accessed and so an external

memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-

bers.

BTCLR saddr.bit, $addr20 4 3/5Note 3 - PC <- PC + 4 + jdisp8 if

(saddr).bit = 1

then reset (saddr).bit

sfr.bit, $addr20 4 3/5Note 3 - PC <- PC + 4 + jdisp8 if sfr.bit

= 1

then reset sfr.bit

A.bit, $addr20 3 3/5Note 3 - PC <- PC + 3 + jdisp8 if A.bit =

1

then reset A.bit

PSW.bit, $addr20 4 5/7Note 3 - PC <- PC + 4 + jdisp8 if

PSW.bit = 1

then reset PSW.bit

x x x

[HL].bit, $addr20 3 3/5Note 3 - PC <- PC + 3 + jdisp8 if

(HL).bit = 1

then reset (HL).bit

ES:[HL].bit, $addr20 4 4/6Note 3 - PC <- PC + 4 + jdisp8 if (ES,

HL).bit = 1

then reset (ES, HL).bit

Mnemonic Operand Byte Clock Operation FlagNote 4

Note 1 Note 2 Z AC CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 465 of 853
Apr 01, 2011

(n) Conditional skip instructions

Table 4-44. Operation List (Conditional Skip Instructions)

Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.

2. When program memory area is accessed.

3. The flag field symbol shows the flag change at the time the instruction is executed.

Blank : Unchanged

0 : Cleared to 0

1 : Set to 1

x : Set or cleared according to the result

R : Previously saved value is restored

Remarks 1. One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock

control register (PCC).

2. Clock number when there is a program in the internal ROM (Flash memory) area.

3. In products in which external memory area connects to internal flash area, when using external bus

interface function, wait number is added to the instruction execution clock number that is mapped to the

final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the

instruction code, flash space is exceeded and external memory space is accessed and so an external

memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-

bers.

Mnemonic Operand Byte Clock Operation FlagNote 3

Note 1 Note 2 Z AC CY

SKC - 2 1 - Next instruction skip if CY = 1

SKNC - 2 1 - Next instruction skip if CY = 0

SKZ - 2 1 - Next instruction skip if Z = 1

SKNZ - 2 1 - Next instruction skip if Z = 0

SKH - 2 1 - Next instruction skip if (Z v

CY) = 0

SKNH - 2 1 - Next instruction skip if (Z v

CY) = 1

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 466 of 853
Apr 01, 2011

(o) CPU control instruction

Table 4-45. Operation List (CPU Control Instruction)

Notes 1. When internal RAM area or SFR area is accessed or using the instruction for no data access.

2. When program memory area is accessed.

3. The flag field symbol shows the flag change at the time the instruction is executed.

Blank : Unchanged

0 : Cleared to 0

1 : Set to 1

x : Set or cleared according to the result

R : Previously saved value is restored

Remarks 1. One clock of the instruction is one clock of the CPU clock (fCLK) that is selected by the processor clock

control register (PCC).

2. Clock number when there is a program in the internal ROM (Flash memory) area.

3. n is the number of register banks (n = 0 to 3).

4. In products in which external memory area connects to internal flash area, when using external bus

interface function, wait number is added to the instruction execution clock number that is mapped to the

final address of Flash (maximum 16 bytes). This is because when carrying out a prior read of the

instruction code, flash space is exceeded and external memory space is accessed and so an external

memory wait is entered. Please see "(b) Access to external memory contents as data" for wait num-

bers.

Mnemonic Operand Byte Clock Operation FlagNote 3

Note 1 Note 2 Z AC CY

SEL RBn 2 1 - RBS[1:0] <- n

NOP - 1 1 - No Operation

EI - 3 4 - IE <- 1 (Enable Interrupt)

DI - 3 4 - IE <- 0 (Disable Interrupt)

HALT - 2 3 - Set HALT Mode

STOP - 2 3 - Set STOP Mode

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 467 of 853
Apr 01, 2011

4.6.6 Explanation of instructions

This section explains the instructions of RL78 family, 78K0R microcontrollers.

Table 4-46. Assembly Language Instruction List

The following information explains the individual instructions.

 [Instruction format]

Shows the basic written format of the instruction.

[Operation]

The instruction operation is shown by using the code address.

[Operand]

The operand that can be specified with this instruction is shown. Please see "(2) Operation field symbols" for descrip-

tions of each operand.

Function Instruction

8-bit data transmission instruc-

tions

MOV, XCH, ONEB, CLRB, MOVS

16-bit data transmission instruc-

tions

MOVW, XCHW, ONEW, CLRW

8-bit operation instructions ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, CMP0, CMPS

16-bit operation instructions ADDW, SUBW, CMPW

Multiply/Divide/Multiply & Accu-

mulate instructions

MULU, MULHU, MULH, DIVHU, DIVWU, MACHU, MACH

Increment/decrement instruc-

tions

INC, DEC, INCW, DECW

Shift instructions SHR, SHRW, SHL, SHLW, SAR, SARW

Rotate instructions ROR, ROL, RORC, ROLC, ROLWC

Bit manipulation instructions MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1

Call return instructions CALL, CALLT, BRK, RET, RETI, RETB

Stack manipulation instructions PUSH, POP, MOVW, ADDW, SUBW

Unconditional branch instruction BR

Conditional branch instructions BC, BNC, BZ, BNZ, BH, BNH, BT, BF, BTCLR

Conditional skip instructions SKC, SKNC, SKZ, SKNZ, SKH, SKNH

CPU control instructions SEL, NOP, EI, DI, HALT, STOP

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 468 of 853
Apr 01, 2011

[Flag]

Indicates the flag operation that changes by instruction execution.

Each flag operation symbol is shown in the conventions.

[Description]

Describes the instruction operation in detail.

[Description example]

Description example of an instruction is indicated.

Symbol Description

Blank Unchanged

0 Cleared to 0

1 Set to 1

x Set or cleared according to the result

R Previously saved value is restored

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 469 of 853
Apr 01, 2011

(1) 8-bit data transmission instructions

The following 8-bit data transmission instructions are available.

Instruction Overview

MOV Byte data transfer

XCH Byte data exchange

ONEB Byte data 01H set

CLRB Byte data clear

MOVS Byte data transfer and PSW change

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 470 of 853
Apr 01, 2011

Byte data transfer

[Instruction format]

MOV dst, src

[Operation]

dst <- src

[Operand]

MOV

Operand (dst, src)

r, #byte

saddr, #byte

sfr, #byte

!addr16, #byte

A, rNote

r, ANote

A, saddr

saddr, A

A, sfr

sfr, A

A, !addr16

!addr16, A

PSW, #byte

A, PSW

PSW, A

ES, #byte

ES, saddr

A, ES

ES, A

CS, #byte

A, CS

CS, A

A, [DE]

[DE], A

[DE+byte], #byte

A, [DE+byte]

[DE+byte], A

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 471 of 853
Apr 01, 2011

A, [HL]

[HL], A

[HL+byte], #byte

A, [HL+byte]

[HL+byte], A

A, [HL+B]

[HL+B], A

A, [HL+C]

[HL+C], A

word[B], #byte

A, word[B]

word[B], A

word[C], #byte

A, word[C]

word[C], A

word[BC], #byte

A, word[BC]

word[BC], A

[SP+byte], #byte

A, [SP+byte]

[SP+byte], A

B, saddr

B, !addr16

C, saddr

C, !addr16

X, saddr

X, !addr16

ES:!addr16, #byte

A, ES:!addr16

ES:!addr16, A

A, ES:[DE]

ES:[DE], A

ES:[DE+byte], #byte

A, ES:[DE+byte]

ES:[DE+byte], A

A, ES:[HL]

ES:[HL], A

Operand (dst, src)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 472 of 853
Apr 01, 2011

Note Except r = A.

[Flag]

(1) PSW, #byte and PSW, A operands

x : Set or cleared according to the result

(2) All other operand combinations

Blank : Unchanged

ES:[HL+byte], #byte

A, ES:[HL+byte]

ES:[HL+byte], A

A, ES:[HL+B]

ES:[HL+B], A

A, ES:[HL+C]

ES:[HL+C], A

ES:word[B], #byte

A, ES:word[B]

ES:word[B], A

ES:word[C], #byte

A, ES:word[C]

ES:word[C], A

ES:word[BC], #byte

A, ES:word[BC]

ES:word[BC], A

B, ES:!addr16

C, ES:!addr16

X, ES:!addr16

Z AC CY

x x x

Z AC CY

Operand (dst, src)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 473 of 853
Apr 01, 2011

[Description]

- The contents of the source operand (src) specified by the 2nd operand are transferred to the destination operand

(dst) specified by the 1st operand.

- No interrupts are acknowledged between the MOV PSW, #byte instruction/MOV PSW, A instruction and the next

instruction.

[Description example]

(1) 4DH is transferred to the A register.

MOV A, #4DH ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 474 of 853
Apr 01, 2011

Byte data exchange

[Instruction format]

XCH dst, src

[Operation]

dst <--> src

[Operand]

Note Except r = A.

[Flag]

Blank : Unchanged

[Description]

- The 1st and 2nd operand contents are exchanged.

XCH

Operand (dst, src)

A, rNote

A, saddr

A, sfr

A, !addr16

A, [DE]

A, [DE+byte]

A, [HL]

A, [HL + byte]

A, [HL + B]

A, [HL + C]

A, ES:!addr16

A, ES:[DE]

A, ES:[DE+byte]

A, ES:[HL]

A, ES:[HL+byte]

A, ES:[HL+B]

A, ES:[HL+C]

Z AC CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 475 of 853
Apr 01, 2011

[Description example]

(1) The A register contents and address FFEBCH contents are exchanged.

XCH A, FFEBCH ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 476 of 853
Apr 01, 2011

Byte data 01H set

[Instruction format]

ONEB dst

[Operation]

dst <- 01H

[Operand]

[Flag]

Blank : Unchanged

[Description]

- 01H is transferred to the destination operand (dst) specified by the first operand.

[Description example]

(1) Transfers 01H to the A register.

ONEB

Operand (dst)

A

X

B

C

saddr

!addr16

ES:!addr16

Z AC CY

ONEB A ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 477 of 853
Apr 01, 2011

Byte data clear

[Instruction format]

CLRB dst

[Operation]

dst <- 00H

[Operand]

[Flag]

Blank : Unchanged

[Description]

- 00H is transferred to the destination operand (dst) specified by the first operand.

[Description example]

(1) Transfers 00H to the A register.

CLRB

Operand (dst)

A

X

B

C

saddr

!addr16

ES:!addr16

Z AC CY

CLRB A ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 478 of 853
Apr 01, 2011

Byte data transfer and PSW change

[Instruction format]

MOVS dst, src

[Operation]

dst <- src

[Operand]

[Flag]

Blank : Unchanged

x : Set or cleared according to the result

[Description]

- The contents of the source operand specified by the second operand is transferred to the destination operand (dst)

specified by the first operand.

- If the src value is 0, the Z flag is set (1). In all other cases, the Z flag is cleared (0).

- If the register A value is 0 or if the src value is 0, the CY flag is set (1). In all other cases, the CY flag is cleared (0).

[Description example]

(1) When HL = FE00H, X = 55H, A = 0H : “X = 55H” is stored at address FE02H.

Z flag = 0 CY flag = 1 (since A register = 0)

MOVS

Operand (dst, src)

[HL+byte], X

ES:[HL+byte], X

Z AC CY

x x

MOVS [HL+2H], X ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 479 of 853
Apr 01, 2011

(2) 16-bit data transmission instructions

The following 16-bit data transmission instructions are available.

Instruction Overview

MOVW Word data transfer

XCHW Word data exchange

ONEW Word data 0001H set

CLRW Word data clear

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 480 of 853
Apr 01, 2011

Word data transfer

[Instruction format]

MOVW dst, src

[Operation]

dst <- src

[Operand]

MOVW

Operand (dst, src)

rp, #word

saddrp, #word

sfrp, #word

AX, saddrp

saddrp, AX

AX, sfrp

sfrp, AX

AX, rpNote

rp, AXNote

AX, !addr16

!addr16, AX

AX, [DE]

[DE], AX

AX, [DE+byte]

[DE+byte], AX

AX, [HL]

[HL], AX

AX, [HL+byte]

[HL+byte], AX

AX, word[B]

word[B], AX

AX, word[C]

word[C], AX

AX, word[BC]

word[BC], AX

AX, [SP+byte]

[SP+byte], AX

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 481 of 853
Apr 01, 2011

Note Only when rp = BC, DE or HL

[Flag]

Blank : Unchanged

[Description]

- The contents of the source operand (src) specified by the 2nd operand are transferred to the destination operand

(dst) specified by the 1st operand.

BC, saddrp

BC, !addr16

DE, saddrp

DE, !addr16

HL, saddrp

HL, !addr16

AX, ES:!addr16

ES:!addr16, AX

AX, ES:[DE]

ES:[DE], AX

AX, ES:[DE+byte]

ES:[DE+byte], AX

AX, ES:[HL]

ES:[HL], AX

AX, ES:[HL+byte]

ES:[HL+byte], AX

AX, ES:word[B]

ES:word[B], AX

AX, ES:word[C]

ES:word[C], AX

AX, ES:word[BC]

ES:word[BC], AX

BC, ES:!addr16

DE, ES:!addr16

HL, ES:!addr16

Z AC CY

Operand (dst, src)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 482 of 853
Apr 01, 2011

[Description example]

(1) The HL register contents are transferred to the AX register.

[Cautions]

- Only an even address can be specified. An odd address cannot be specified.

MOVW AX, HL ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 483 of 853
Apr 01, 2011

Word data exchange

[Instruction format]

XCHW dst, src

[Operation]

dst <--> src

[Operand]

Note Only when rp = BC, DE or HL

[Flag]

Blank : Unchanged

[Description]

- The 1st and 2nd operand contents are exchanged.

[Description example]

(1) The memory contents of the AX register are exchanged with those of the BC register.

XCHW

Operand (dst, src)

AX, rpNote

Z AC CY

XCHW AX, BC ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 484 of 853
Apr 01, 2011

Word data 0001H set

[Instruction format]

ONEW dst

[Operation]

dst <- 0001H

[Operand]

[Flag]

Blank : Unchanged

[Description]

- 0001H is transferred to the destination operand (dst) specified by the first operand.

[Description example]

(1) 0001H is transferred to the AX register.

ONEW

Operand (dst)

AX

BC

Z AC CY

ONEW AX ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 485 of 853
Apr 01, 2011

Word data clear

[Instruction format]

CLRW dst

[Operation]

dst <- 0000H

[Operand]

[Flag]

Blank : Unchanged

[Description]

- 0000H is transferred to the destination operand (dst) specified by the first operand.

[Description example]

(1) 0000H is transferred to the AX register.

CLRW

Operand (dst)

AX

BC

Z AC CY

CLRW AX ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 486 of 853
Apr 01, 2011

(3) 8-bit operation instructions

The following 8-bit operation instructions are available.

Instruction Overview

ADD Byte data addition

ADDC Byte data addition including carry

SUB Byte data subtraction

SUBC Byte data subtraction including carry

AND Byte data AND operation

OR Byte data OR operation

XOR Byte data exclusive OR operation

CMP Byte data comparison

CMP0 Byte data zero comparison

CMPS Byte data comparison

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 487 of 853
Apr 01, 2011

Byte data addition

[Instruction format]

ADD dst, src

[Operation]

dst, CY <- dst + src

[Operand]

Note Except r = A.

[Flag]

x : Set or cleared according to the result

ADD

Operand (dst, src)

A, #byte

saddr, #byte

A, rNote

r, A

A, saddr

A, !addr16

A, [HL]

A, [HL+byte]

A, [HL+B]

A, [HL+C]

A, ES:!addr16

A, ES:[HL]

A, ES:[HL+byte]

A, ES:[HL+B]

A, ES:[HL+C]

Z AC CY

x x x

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 488 of 853
Apr 01, 2011

[Description]

- The destination operand (dst) specified by the 1st operand is added to the source operand (src) specified by the

2nd operand and the result is stored in the CY flag and the destination operand (dst).

- If the addition result shows that dst is 0, the Z flag is set (1). In all other cases, the Z flag is cleared (0).

- If the addition generates a carry out of bit 7, the CY flag is set (1). In all other cases, the CY flag is cleared (0).

- If the addition generates a carry for bit 4 out of bit 3, the AC flag is set (1). In all other cases, the AC flag is cleared

(0).

[Description example]

(1) 56H is added to the CR10 register and the result is stored in the CR10 register.

ADD CR10, #56H ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 489 of 853
Apr 01, 2011

Byte data addition including carry

[Instruction format]

ADDC dst, src

[Operation]

dst, CY <- dst + src + CY

[Operand]

Note Except r = A.

[Flag]

x : Set or cleared according to the result

ADDC

Operand (dst, src)

A, #byte

saddr, #byte

A, rNote

r, A

A, saddr

A, !addr16

A, [HL]

A, [HL+byte]

A, [HL+B]

A, [HL+C]

A, ES:!addr16

A, ES:[HL]

A, ES:[HL+byte]

A, ES:[HL+B]

A, ES:[HL+C]

Z AC CY

x x x

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 490 of 853
Apr 01, 2011

[Description]

- The destination operand (dst) specified by the 1st operand, the source operand (src) specified by the 2nd operand

and the CY flag are added and the result is stored in the destination operand (dst) and the CY flag.

The CY flag is added to the least significant bit. This instruction is mainly used to add two or more bytes.

- If the addition result shows that dst is 0, the Z flag is set (1). In all other cases, the Z flag is cleared (0).

- If the addition generates a carry out of bit 7, the CY flag is set (1). In all other cases, the CY flag is cleared (0).

- If the addition generates a carry for bit 4 out of bit 3, the AC flag is set (1). In all other cases, the AC flag is cleared

(0).

[Description example]

(1) The A register contents and the contents at address (HL register + (B register)) and the CY flag are added

and the result is stored in the A register.

ADDC A, [HL+B] ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 491 of 853
Apr 01, 2011

Byte data subtraction

[Instruction format]

SUB dst, src

[Operation]

dst, CY <- dst - src

[Operand]

Note Except r = A.

[Flag]

x : Set or cleared according to the result

SUB

Operand (dst, src)

A, #byte

saddr, #byte

A, rNote

r, A

A, saddr

A, !addr16

A, [HL]

A, [HL+byte]

A, [HL+B]

A, [HL+C]

A, ES:!addr16

A, ES:[HL]

A, ES:[HL+byte]

A, ES:[HL+B]

A, ES:[HL+C]

Z AC CY

x x x

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 492 of 853
Apr 01, 2011

[Description]

- The source operand (src) specified by the 2nd operand is subtracted from the destination operand (dst) specified

by the 1st operand and the result is stored in the destination operand (dst) and the CY flag.

The destination operand can be cleared to 0 by equalizing the source operand (src) and the destination operand

(dst).

- If the subtraction shows that dst is 0, the Z flag is set (1). In all other cases, the Z flag is cleared (0).

- If the subtraction generates a borrow out of bit 7, the CY flag is set (1). In all other cases, the CY flag is cleared

(0).

- If the subtraction generates a borrow for bit 3 out of bit 4, the AC flag is set (1). In all other cases, the AC flag is

cleared (0).

[Description example]

(1) The A register is subtracted from the D register and the result is stored in the D register.

SUB D, A ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 493 of 853
Apr 01, 2011

Byte data subtraction including carry

[Instruction format]

SUBC dst, src

[Operation]

dst, CY <- dst - src - CY

[Operand]

Note Except r = A.

[Flag]

x : Set or cleared according to the result

SUBC

Operand (dst, src)

A, #byte

saddr, #byte

A, rNote

r, A

A, saddr

A, !addr16

A, [HL]

A, [HL+byte]

A, [HL+B]

A, [HL+C]

A, ES:!addr16

A, ES:[HL]

A, ES:[HL+byte]

A, ES:[HL+B]

A, ES:[HL+C]

Z AC CY

x x x

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 494 of 853
Apr 01, 2011

[Description]

- The source operand (src) specified by the 2nd operand and the CY flag are subtracted from the destination oper-

and (dst) specified by the 1st operand and the result is stored in the destination operand (dst).

The CY flag is subtracted from the least significant bit. This instruction is mainly used for subtraction of two or

more bytes.

- If the subtraction shows that dst is 0, the Z flag is set (1). In all other cases, the Z flag is cleared (0).

- If the subtraction generates a borrow out of bit 7, the CY flag is set (1). In all other cases, the CY flag is cleared

(0).

- If the subtraction generates a borrow for bit 3 out of bit 4, the AC flag is set (1). In all other cases, the AC flag is

cleared (0).

[Description example]

(1) The (HL register) address contents and the CY flag are subtracted from the A register and the result is

stored in the A register.

SUBC A, [HL] ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 495 of 853
Apr 01, 2011

Byte data AND operation

[Instruction format]

AND dst, src

[Operation]

dst <- dst ^ src

[Operand]

Note Except r = A.

[Flag]

Blank : Unchanged

x : Set or cleared according to the result

AND

Operand (dst, src)

A, #byte

saddr, #byte

A, rNote

r, A

A, saddr

A, !addr16

A, [HL]

A, [HL+byte]

A, [HL+B]

A, [HL+C]

A, ES:!addr16

A, ES:[HL]

A, ES:[HL+byte]

A, ES:[HL+B]

A, ES:[HL+C]

Z AC CY

x

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 496 of 853
Apr 01, 2011

[Description]

- Bit-wise logical product is obtained from the destination operand (dst) specified by the 1st operand and the source

operand (src) specified by the 2nd operand and the result is stored in the destination operand (dst).

- If the logical product shows that all bits are 0, the Z flag is set (1). In all other cases, the Z flag is cleared (0).

[Description example]

(1) Bit-wise logical product of FFEBAH contents and 11011100B is obtained and the result is stored at FFE-

BAH.

AND FFEBAH, #11011100B ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 497 of 853
Apr 01, 2011

Byte data OR operation

[Instruction format]

OR dst, src

[Operation]

dst <- dst v src

[Operand]

Note Except r = A.

[Flag]

Blank : Unchanged

x : Set or cleared according to the result

OR

Operand (dst, src)

A, #byte

saddr, #byte

A, rNote

r, A

A, saddr

A, !addr16

A, [HL]

A, [HL+byte]

A, [HL+B]

A, [HL+C]

A, ES:!addr16

A, ES:[HL]

A, ES:[HL+byte]

A, ES:[HL+B]

A, ES:[HL+C]

Z AC CY

x

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 498 of 853
Apr 01, 2011

[Description]

- The bit-wise logical sum is obtained from the destination operand (dst) specified by the 1st operand and the source

operand (src) specified by the 2nd operand and the result is stored in the destination operand (dst).

- If the logical sum shows that all bits are 0, the Z flag is set (1). In all other cases, the Z flag is cleared (0).

[Description example]

(1) The bit-wise logical sum of the A register and FFE98H is obtained and the result is stored in the A register.

OR A, FFE98H ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 499 of 853
Apr 01, 2011

Byte data exclusive OR operation

[Instruction format]

XOR dst, src

[Operation]

dst <- dst ∀ src

[Operand]

Note Except r = A.

[Flag]

Blank : Unchanged

x : Set or cleared according to the result

XOR

Operand (dst, src)

A, #byte

saddr, #byte

A, rNote

r, A

A, saddr

A, !addr16

A, [HL]

A, [HL+byte]

A, [HL+B]

A, [HL+C]

A, ES:!addr16

A, ES:[HL]

A, ES:[HL+byte]

A, ES:[HL+B]

A, ES:[HL+C]

Z AC CY

x

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 500 of 853
Apr 01, 2011

[Description]

- The bit-wise exclusive logical sum is obtained from the destination operand (dst) specified by the 1st operand and

the source operand (src) specified by the 2nd operand and the result is stored in the destination operand (dst).

Logical negation of all bits of the destination operand (dst) is possible by selecting #0FFH for the source operand

(src) with this instruction.

- If the exclusive logical sum shows that all bits are 0, the Z flag is set (1). In all other cases, the Z flag is cleared (0).

[Description example]

(1) The bit-wise exclusive logical sum of the A and L registers is obtained and the result is stored in the A reg-

ister.

XOR A, L ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 501 of 853
Apr 01, 2011

Byte data comparison

[Instruction format]

CMP dst, src

[Operation]

dst - src

[Operand]

Note Except r = A.

[Flag]

x : Set or cleared according to the result

CMP

Operand (dst, src)

A, #byte

saddr, #byte

A, rNote

r, A

A, saddr

A, !addr16

A, [HL]

A, [HL+byte]

A, [HL+B]

A, [HL+C]

!addr16, #byte

A, ES:!addr16

A, ES:[HL]

A, ES:[HL+byte]

A, ES:[HL+B]

A, ES:[HL+C]

ES:!addr16, #byte

Z AC CY

x x x

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 502 of 853
Apr 01, 2011

[Description]

- The source operand (src) specified by the 2nd operand is subtracted from the destination operand (dst) specified

by the 1st operand.

The subtraction result is not stored anywhere and only the Z, AC and CY flags are changed.

- If the subtraction result is 0, the Z flag is set (1). In all other cases, the Z flag is cleared (0).

- If the subtraction generates a borrow out of bit 7, the CY flag is set (1). In all other cases, the CY flag is cleared

(0).

- If the subtraction generates a borrow for bit 3 out of bit 4, the AC flag is set (1). In all other cases, the AC flag is

cleared (0).

[Description example]

(1) 38H is subtracted from the contents at address FFE38H and only the flags are changed

(comparison of contents at address FFE38H and the immediate data).

CMP FFE38H, #38H ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 503 of 853
Apr 01, 2011

Byte data zero comparison

[Instruction format]

CMP0 dst

[Operation]

dst - 00H

[Operand]

[Flag]

x : Set or cleared according to the result

[Description]

- 00H is subtracted from the destination operand (dst) specified by the first operand.

- The subtraction result is not stored anywhere and only the Z, AC and CY flags are changed.

- If the dst value is already 00H, the Z flag is set (1). In all other cases, the Z flag is cleared (0).

- The AC and CY flags are always cleared (0).

[Description example]

(1) The Z flag is set if the A register value is 0.

CMP0

Operand (dst)

A

X

B

C

saddr

!addr16

ES:!addr16

Z AC CY

x x x

CMP0 A ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 504 of 853
Apr 01, 2011

Byte data comparison

[Instruction format]

CMPS dst, src

[Operation]

dst - src

[Operand]

[Flag]

x : Set or cleared according to the result

[Description]

- The source operand (src) specified by the 2nd operand is subtracted from the destination operand (dst) specified

by the 1st operand.

The subtraction result is not stored anywhere and only the Z, AC and CY flags are changed.

- If the subtraction result is 0, the Z flag is set (1). In all other cases, the Z flag is cleared (0).

- When the calculation result is not 0 or when the value of either register A or dst is 0, then the CY flag is set (1). In

all other cases, the CY flag is cleared (0).

- If the subtraction generates a borrow out of bit 4 to bit 3, the AC flag is set (1). In all other cases, the AC flag is

cleared (0).

[Description example]

(1) When HL = FD12H : The value of X is compared with the contents of address FFE02H, and the Z flag is set

if the two values match. The value of X is compared with the contents of address FFE02H, and the CY flag

is set if the two values do not match.

The CY flag is set when the value of register A is 0. The CY flag is set when the value of register X is 0.

The AC flag is set by borrowing from bit 4 to bit 3, similar to the CMP instruction.

CMPS

Operand (dst, src)

X, [HL+byte]

X, ES:[HL+byte]

Z AC CY

x x x

CMPS X, [HL+F0H] ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 505 of 853
Apr 01, 2011

(4) 16-bit operation instructions

The following 16-bit operation instructions are available.

Instruction Overview

ADDW Word data addition

SUBW Word data subtraction

CMPW Word data comparison

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 506 of 853
Apr 01, 2011

Word data addition

[Instruction format]

ADDW dst, src

[Operation]

dst, CY <- dst + src

[Operand]

[Flag]

x : Set or cleared according to the result

[Description]

- The destination operand (dst) specified by the 1st operand is added to the source operand (src) specified by the

2nd operand and the result is stored in the destination operand (dst).

- If the addition result shows that dst is 0, the Z flag is set (1). In all other cases, the Z flag is cleared (0).

- If the addition generates a carry out of bit 15, the CY flag is set (1). In all other cases, the CY flag is cleared (0).

- As a result of addition, the AC flag becomes undefined.

[Description example]

(1) ABCDH is added to the AX register and the result is stored in the AX register.

ADDW

Operand (dst, src)

AX, #word

AX, AX

AX, BC

AX, DE

AX, HL

AX, saddrp

AX, !addr16

AX, [HL+byte]

AX, ES:!addr16

AX, ES:[HL+byte]

Z AC CY

x x x

ADDW AX, #ABCDH ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 507 of 853
Apr 01, 2011

Word data subtraction

[Instruction format]

SUBW dst, src

[Operation]

dst, CY <- dst - src

[Operand]

[Flag]

x : Set or cleared according to the result

[Description]

- The source operand (src) specified by the 2nd operand is subtracted from the destination operand (dst) specified

by the 1st operand and the result is stored in the destination operand (dst) and the CY flag.

- If the subtraction shows that dst is 0, the Z flag is set (1). In all other cases, the Z flag is cleared (0).

- If the subtraction generates a borrow out of bit 15, the CY flag is set (1). In all other cases, the CY flag is cleared

(0).

- As a result of subtraction, the AC flag becomes undefined.

[Description example]

(1) ABCDH is subtracted from the AX register contents and the result is stored in the AX register.

SUBW

Operand (dst, src)

AX, #word

AX, BC

AX, DE

AX, HL

AX, saddrp

AX, !addr16

AX, [HL+byte]

AX, ES:!addr16

AX, ES:[HL+byte]

Z AC CY

x x x

SUBW AX, #ABCDH ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 508 of 853
Apr 01, 2011

Word data comparison

[Instruction format]

CMPW dst, src

[Operation]

dst - src

[Operand]

[Flag]

x : Set or cleared according to the result

[Description]

- The source operand (src) specified by the 2nd operand is subtracted from the destination operand (dst) specified

by the 1st operand.

The subtraction result is not stored anywhere and only the Z, AC and CY flags are changed.

- If the subtraction result is 0, the Z flag is set (1). In all other cases, the Z flag is cleared (0).

- If the subtraction generates a borrow out of bit 15, the CY flag is set (1). In all other cases, the CY flag is cleared

(0).

- As a result of subtraction, the AC flag becomes undefined.

CMPW

Operand (dst, src)

AX, #word

AX, BC

AX, DE

AX, HL

AX, saddrp

AX, !addr16

AX, [HL+byte]

AX, ES:!addr16

AX, ES:[HL+byte]

Z AC CY

x x x

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 509 of 853
Apr 01, 2011

[Description example]

(1) ABCDH is subtracted from the AX register and only the flags are changed.

(comparison of the AX register and the immediate data)

CMPW AX, #ABCDH ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 510 of 853
Apr 01, 2011

(5) Multiply/Divide/Multiply & Accumulate instructions

The following multiply/divide/multiply & accumulate instructions are avaialble.

Note These instructions are expanded instructions and mounted or not mounted by product. For details, see to

user’s manual of each product.

Instruction Overview

MULU Unsigned data multiplication

MULHUNote Unsigned data 16-bit multiplication

MULHNote Signed data 16-bit multiplication

DIVHUNote Unsigned 16-bit division

DIVWUNote Unsigned 32-bit division

MACHUNote Unsigned multiply and accumulation

MACHNote Signed multiply and accumulation

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 511 of 853
Apr 01, 2011

Unsigned data multiplication

[Instruction format]

MULU src

[Operation]

AX <- A x src

[Operand]

[Flag]

Blank : Unchanged

[Description]

- The A register contents and the source operand (src) data are multiplied as unsigned data and the result is stored

in the AX register.

[Description example]

(1) The A register contents and the X register contents are multiplied and the result is stored in the AX regis-

ter.

MULU

Operand (src)

X

Z AC CY

MULU X ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 512 of 853
Apr 01, 2011

Unsigned data 16-bit multiplication

[Instruction format]

MULHU

[Operation]

BCAX <- AX x BC

[Operand]

None

[Flag]

Blank : Unchanged

[Description]

- The content of AX register and the content of BC register are multiplied as unsigned data, upper 16 bits of the

result are stored in the BC register, and lower 16 bits of the result are stored in the AX register.

[Description example]

(1) C000H and 1000H are multiplied, and the result C000000H is stored in memory indicated by !addr16.

MULHU

Z AC CY

MOVW AX, #0C000H

MOVW BC, #1000H

MULHU

MOVW !addr16, AX

MOVW AX, BC

MOVW !addr16, AX ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 513 of 853
Apr 01, 2011

Signed data 16-bit multiplication

[Instruction format]

MULH

[Operation]

BCAX <- AX x BC

[Operand]

None

[Flag]

Blank : Unchanged

[Description]

- The content of AX register and the content of BC register are multiplied as signed data, upper 16 bits of the result

are stored in the BC register, and lower 16 bits of the result are stored in the AX register.

[Description example]

(1) C000H and 1000H are multiplied, and the result FC000000H is stored in memory indicated by !addr16.

MULH

Z AC CY

MOVW AX, #0C000H

MOVW BC, #1000H

MULH

MOVW !addr16, AX

MOVW AX, BC

MOVW !addr16, AX ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 514 of 853
Apr 01, 2011

Unsigned 16-bit division

[Instruction format]

DIVHU

[Operation]

AX (quotient), DE (remainder) <- AX / DE

[Operand]

None

[Flag]

Blank : Unchanged

[Description]

- The content of AX register is divided by the content of DE register, the quotient is stored in AX register, and the

remainder is stored in DE register. The division treats the content of AX register and DE register as unsigned data.

However, when the content of DE register is 0, the content of AX register is stored in DE register and then the con-

tent of AX register becomes 0FFFFH.

[Description example]

(1) 8081H is divided by 0002H, and the quotient in AX register (4040H) and the remainder (0001H) in DE

register are stored in memory indicated by !addr16.

DIVHU

Z AC CY

MOVW AX, #8081H

MOVW DE, #0002H

DIVHU

MOVW !addr16, AX

MOVW AX, DE

MOVW !addr16, AX ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 515 of 853
Apr 01, 2011

Unsigned 32-bit division

[Instruction format]

DIVWU

[Operation]

BCAX (quotient), HLDE (remainder) <- BCAX / HLDE

[Operand]

None

[Flag]

Blank : Unchanged

[Description]

- The content of BCAX register is divided by the content of HLDE register, the quotient is stored in BCAX register,

and the remainder is stored in HLDE register. The division treats the content of BCAX register and HLDE register

as unsigned data.

However, when the content of HLDE register is 0, the content of BCAX register is stored in HLDE register and then

the content of BCAX register becomes 0FFFFFFFFH.

[Description example]

(1) 80808081H is divided by 00000002H, and the quotient (40404040H) in BCAX register and the remainder

(00000001H) in HLDE register are stored in memory indicated by !addr16.

DIVWU

Z AC CY

MOVW AX, #8081H

MOVW BC, #8080H

MOVW DE, #0002H

MOVW HL, #0000H

DIVWU

MOVW !addr16, AX

MOVW AX, BC

MOVW !addr16, AX

MOVW AX, DE

MOVW !addr16, AX

MOVW AX, HL

MOVW !addr16, AX ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 516 of 853
Apr 01, 2011

Unsigned multiply and accumulation

[Instruction format]

MACHU

[Operation]

MACR <- MACR + AX x BC

[Operand]

None

[Flag]

Blank : Unchanged

x : Set or cleared according to the result

[Description]

- The content of AX register and the content of BC register are multiplied; the result and the content of MACR register

are accumulated and then stored in MACR register.

- As a result of accumulation, when overflow occurs, CY flag is set (1), and when not, CY flag is cleared (0).

- AC flag becomes 0.

- Before multiplication and accumulation, set an initial value in MACR register. In addition since MACR register is

fixed, if more than one result of multiplication and accumulation are needed, save the content of MACR register

first.

[Description example]

MACHU

Z AC CY

x x

MOVW AX, #00000H

MOVW !0FFF2H, AX

MOVW !0FFF0H, AX

MOVW AX, #0C000H

MOVW BC, #01000H

MACHU

MOVW AX, !0FFF2H

MOVW !addr16, AX

MOVW AX, !0FFF0H

MOVW !addr16, AX ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 517 of 853
Apr 01, 2011

(1) The content of AX register and the content of BC register are multiplied, the result and the content of

MACR register are accumulated and then stored in MACR register.

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 518 of 853
Apr 01, 2011

Signed multiply and accumulation

[Instruction format]

MACH

[Operation]

MACR <- MACR + AX x BC

[Operand]

None

[Flag]

Blank : Unchanged

x : Set or cleared according to the result

[Description]

- The content of AX register and the content of BC register are multiplied; the result and the content of MACR register

are accumulated and then stored in MACR register.

- As a result of accumulation, if overflow occurs, CY flag is set (1), and if not, CY flag is cleared (0). The overflow

means cases that an added result of a plus accumulated value and a plus multiplied value has exceeded

7FFFFFFFH and that an added result of a minus accumulated value and a minus multiplied value has exceeded

80000000H.

- As a result of operations, when MACR register has a plus value, AC flag is cleared (0), and when it has a minus

value, AC flag is set (1).

- Before multiplication and accumulation, set an initial value in MACR register. In addition since MACR register is

fixed, if more than one result of multiplication and accumulation are needed, save the content of MACR register

first.

MACH

Z AC CY

x x

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 519 of 853
Apr 01, 2011

[Description example]

(1) The content of AX register and that of BC register are multiplied, the result and the content of MACR regis-

ter are accumulated and then stored in MACR register.

MOVW AX, #00000H

MOVW !0FFF0H, AX

MOVW AX, #08000H

MOVW !0FFF2H, AX

MOVW AX, #00001H

MOVW !0FFF0H, AX

MOVW AX, #07FFFH

MOVW BC, #0FFFFH

MACH

MOVW AX, !0FFF2H

MOVW !addr16, AX

MOVW AX, !0FFF0H

MOVW !addr16, AX ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 520 of 853
Apr 01, 2011

(6) Increment/decrement instructions

The following increment/decrement instructions are available.

Instruction Overview

INC Byte adta increment

DEC Byte data decrement

INCW Word data increment

DECW Word data decrement

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 521 of 853
Apr 01, 2011

Byte adta increment

[Instruction format]

INC dst

[Operation]

dst <- dst + 1

[Operand]

[Flag]

Blank : Unchanged

x : Set or cleared according to the result

[Description]

- The destination operand (dst) contents are incremented by only one.

- If the increment result is 0, the Z flag is set (1). In all other cases, the Z flag is cleared (0).

- If the increment generates a carry for bit 4 out of bit 3, the AC flag is set (1). In all other cases, the AC flag is

cleared (0).

- Because this instruction is frequently used for increment of a counter for repeated operations and an indexed

addressing offset register, the CY flag contents are not changed (to hold the CY flag contents in multiple-byte oper-

ation).

[Description example]

(1) The B register is incremented.

INC

Operand (src)

r

saddr

!addr16

[HL+byte]

ES:!addr16

ES:[HL+byte]

Z AC CY

x x

INC B ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 522 of 853
Apr 01, 2011

Byte data decrement

[Instruction format]

DEC dst

[Operation]

dst <- dst - 1

[Operand]

[Flag]

Blank : Unchanged

x : Set or cleared according to the result

[Description]

- The destination operand (dst) contents are decremented by only one.

- If the decrement result is 0, the Z flag is set (1). In all other cases, the Z flag is cleared (0).

- If the decrement generates a carry for bit 3 out of bit 4, the AC flag is set (1). In all other cases, the AC flag is

cleared (0).

- Because this instruction is frequently used for a counter for repeated operations, the CY flag contents are not

changed (to hold the CY flag contents in multiple-byte operation).

- If dst is the B or C register or saddr, and it is not desired to change the AC and CY flag contents, the DBNZ instruc-

tion can be used.

[Description example]

(1) The contents at address FFE92H are decremented.

DEC

Operand (src)

r

saddr

!addr16

[HL+byte]

ES:!addr16

ES:[HL+byte]

Z AC CY

x x

DEC FFE92H ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 523 of 853
Apr 01, 2011

Word data increment

[Instruction format]

INCW dst

[Operation]

dst <- dst + 1

[Operand]

[Flag]

Blank : Unchanged

[Description]

- The destination operand (dst) contents are incremented by only one.

- Because this instruction is frequently used for increment of a register (pointer) used for addressing, the Z, AC and

CY flag contents are not changed.

[Description example]

(1) The HL register is incremented.

INCW

Operand (src)

rp

saddrp

!addr16

[HL+byte]

ES:!addr16

ES:[HL+byte]

Z AC CY

INCW HL ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 524 of 853
Apr 01, 2011

Word data decrement

[Instruction format]

DECW dst

[Operation]

dst <- dst - 1

[Operand]

[Flag]

Blank : Unchanged

[Description]

- The destination operand (dst) contents are decremented by only one.

- Because this instruction is frequently used for decrement of a register (pointer) used for addressing, the Z, AC and

CY flag contents are not changed.

[Description example]

(1) The DE register is decremented.

DECW

Operand (src)

rp

saddrp

!addr16

[HL+byte]

ES:!addr16

ES:[HL+byte]

Z AC CY

DECW DE ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 525 of 853
Apr 01, 2011

(7) Shift instructions

The following shift instructions are avaialable.

Instruction Overview

SHR Logical shift to the right

SHRW Logical shift to the right

SHL Logical shift to the left

SHLW Logical shift to the left

SAR Arithmetic shift to the right

SARW Arithmetic shift to the right

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 526 of 853
Apr 01, 2011

Logical shift to the right

[Instruction format]

SHR dst, cnt

[Operation]

(CY <- dst0, dstm-1 <- dstm, dst7 <- 0) x cnt

[Operand]

[Flag]

Blank : Unchanged

x : Set or cleared according to the result

[Description]

- The destination operand (dst) specified by the first operand is shifted to the right the number of times specified by

cnt.

- “0” is entered to the MSB (bit 7) and the value shifted last from bit 0 is entered to CY.

- cnt can be specified as any value from 1 to 7.

[Description example]

(1) When the A register's value is F5H, A = 1EH and CY = 1.

 A = F5H CY = 0

 A = 7AH CY = 1 1 time

 A = 3DH CY = 0 2 times

 A = 1EH CY = 1 3 times

SHR

Operand (dst, cnt)

A, cnt

Z AC CY

x

SHR A, 3 ; (1)

0

7 0 CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 527 of 853
Apr 01, 2011

Logical shift to the right

[Instruction format]

SHRW dst, cnt

[Operation]

(CY <- dst0, dstm-1 <- dstm, dst15 <- 0) x cnt

[Operand]

[Flag]

Blank : Unchanged

x : Set or cleared according to the result

[Description]

- The destination operand (dst) specified by the first operand is shifted to the right the number of times specified by

cnt.

- "0” is entered to the MSB (bit 15) and the value shifted last from bit 0 is entered to CY.

- cnt can be specified as any value from 1 to 15.

[Description example]

(1) When the AX register's value is AAF5H, AX = 155EH and CY = 1.

 AX = AAF5H CY = 0

 AX = 557AH CY = 1 1 time

 AX = 2ABDH CY = 0 2 times

 AX = 155EH CY = 1 3 times

SHRW

Operand (dst, cnt)

AX, cnt

Z AC CY

x

SHRW AX, 3 ; (1)

0

15 0 CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 528 of 853
Apr 01, 2011

Logical shift to the left

[Instruction format]

SHL dst, cnt

[Operation]

(CY <- dst7, dstm <- dstm-1, dst0 <- 0) x cnt

[Operand]

[Flag]

Blank : Unchanged

x : Set or cleared according to the result

[Description]

- The destination operand (dst) specified by the first operand is shifted to the left the number of times specified by

cnt.

- "0” is entered to the LSB (bit 0) and the value shifted last from bit 7 is entered to CY.

- cnt can be specified as any value from 1 to 7.

[Description example]

(1) When the A register's value is 5DH, A = E8H and CY = 0.

 A = 5DH CY = 0

 A = BAH CY = 0 1 time

 A = 74H CY = 1 2 times

 A = E8H CY = 0 3 times

SHL

Operand (dst, cnt)

A, cnt

B, cnt

C, cnt

Z AC CY

x

SHL A, 3 ; (1)

0

07CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 529 of 853
Apr 01, 2011

Logical shift to the left

[Instruction format]

SHLW dst, cnt

[Operation]

(CY <- dst15, dstm <- dstm-1, dst0 <- 0) x cnt

[Operand]

[Flag]

Blank : Unchanged

x : Set or cleared according to the result

[Description]

- The destination operand (dst) specified by the first operand is shifted to the left the number of times specified by

cnt.

- “0” is entered to the LSB (bit 0) and the value shifted last from bit 15 is entered to CY.

- cnt can be specified as any value from 1 to 15.

[Description example]

(1) When the BC register's value is C35DH, BC = 1AE8H and CY = 0.

 BC = C35DH CY = 0

 BC = 86BAH CY = 1 1 time

 BC = 0D74H CY = 1 2 times

 BC = 1AE8H CY = 0 3 times

SHLW

Operand (dst, cnt)

AX, cnt

BC, cnt

Z AC CY

x

SHLW BC, 3 ; (1)

0

015CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 530 of 853
Apr 01, 2011

Arithmetic shift to the right

[Instruction format]

SAR dst, cnt

[Operation]

(CY <- dst0, dstm-1 <- dstm, dst7 <- dst7) x cnt

[Operand]

[Flag]

Blank : Unchanged

x : Set or cleared according to the result

[Description]

- The destination operand (dst) specified by the first operand is shifted to the right the number of times specified by

cnt.

- The same value is retained in the MSB (bit 7), and the value shifted last from bit 0 is entered to CY.

- cnt can be specified as any value from 1 to 7.

[Description example]

(1) When the A register’s value is 8CH, A = F8H and CY = 1.

 A = 8CH CY = 0

 A = C6H CY = 0 1 time

 A = E3H CY = 0 2 times

 A = F1H CY = 1 3 times

 A = F8H CY = 1 4 times

SAR

Operand (dst, cnt)

A, cnt

Z AC CY

x

SAR A, 4 ; (1)

7 0 CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 531 of 853
Apr 01, 2011

Arithmetic shift to the right

[Instruction format]

SARW dst, cnt

[Operation]

(CY <- dst0, dstm-1 <- dstm, dst15 <- dst15) x cnt

[Operand]

[Flag]

Blank : Unchanged

x : Set or cleared according to the result

[Description]

- The destination operand (dst) specified by the first operand is shifted to the right the number of times specified by

cnt.

- The same value is retained in the MSB (bit 15), and the value shifted last from bit 0 is entered to CY.

- cnt can be specified as any value from 1 to 15.

[Description example]

(1) When the AX register’s value is A28CH, AX = FA28H and CY = 1.

 AX = A28CH CY = 0

 AX = D146H CY = 0 1 time

 AX = E8A3H CY = 0 2 times

 AX = F451H CY = 1 3 times

 AX = FA28H CY = 1 4 times

SARW

Operand (dst, cnt)

AX, cnt

Z AC CY

x

SAR AX, 4 ; (1)

15 0 CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 532 of 853
Apr 01, 2011

(8) Rotate instructions

The following rotation instructions are available.

Instruction Overview

ROR Byte data rotation to the right

ROL Byte data rotation to the left

RORC Byte data rotation to the right with carry

ROLC Byte data rotation to the left with carry

ROLWC Word data rotation to the left with carry

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 533 of 853
Apr 01, 2011

Byte data rotation to the right

[Instruction format]

ROR dst, cnt

[Operation]

(CY, dst7 <- dst0, dstm-1 <- dstm) x one time

[Operand]

[Flag]

Blank : Unchanged

x : Set or cleared according to the result

[Description]

- The destination operand (dst) contents specified by the 1st operand are rotated to the right just once.

- The LSB (bit 0) contents are simultaneously rotated to the MSB (bit 7) and transferred to the CY flag.

[Description example]

(1) The A register contents are rotated to the right by one bit.

ROR

Operand (dst, cnt)

A, 1

Z AC CY

x

ROR A, 1 ; (1)

7 0CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 534 of 853
Apr 01, 2011

Byte data rotation to the left

[Instruction format]

ROL dst, cnt

[Operation]

(CY, dst0 <- dst7, dstm+1 <- dstm) x one time

[Operand]

[Flag]

Blank : Unchanged

x : Set or cleared according to the result

[Description]

- The destination operand (dst) contents specified by the 1st operand are rotated to the left just once.

- The MSB (bit 7) contents are simultaneously rotated to the LSB (bit 0) and transferred to the CY flag.

[Description example]

(1) The A register contents are rotated to the left by one bit.

ROL

Operand (dst, cnt)

A, 1

Z AC CY

x

ROL A, 1 ; (1)

7 0CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 535 of 853
Apr 01, 2011

Byte data rotation to the right with carry

[Instruction format]

RORC dst, cnt

[Operation]

(CY <- dst0, dst7 <- CY, dstm-1 <- dstm) x one time

[Operand]

[Flag]

Blank : Unchanged

x : Set or cleared according to the result

[Description]

- The destination operand (dst) contents specified by the 1st operand are rotated just once to the right with carry.

[Description example]

(1) The A register contents are rotated to the right by one bit including the CY flag.

RORC

Operand (dst, cnt)

A, 1

Z AC CY

x

RORC A, 1 ; (1)

7 0CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 536 of 853
Apr 01, 2011

Byte data rotation to the left with carry

[Instruction format]

ROLC dst, cnt

[Operation]

(CY <- dst7, dst0 <- CY, dstm+1 <- dstm) x one time

[Operand]

[Flag]

Blank : Unchanged

x : Set or cleared according to the result

[Description]

- The destination operand (dst) contents specified by the 1st operand are rotated just once to the left with carry.

[Description example]

(1) The A register contents are rotated to the left by one bit including the CY flag.

ROLC

Operand (dst, cnt)

A, 1

Z AC CY

x

ROLC A, 1 ; (1)

7 0CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 537 of 853
Apr 01, 2011

Word data rotation to the left with carry

[Instruction format]

ROLWC dst, cnt

[Operation]

(CY <- dst15, dst0 <- CY, dstm+1 <- dstm) x one time

[Operand]

[Flag]

Blank : Unchanged

x : Set or cleared according to the result

[Description]

- The destination operand (dst) contents specified by the 1st operand are rotated just once to the left with carry.

[Description example]

(1) The BC register contents are rotated to the left by one bit including the CY flag.

ROLWC

Operand (dst, cnt)

AX, 1

BC, 1

Z AC CY

x

ROLWC BC, 1 ; (1)

15 0CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 538 of 853
Apr 01, 2011

(9) Bit manipulation instructions

The following bit manipulation instructions are available.

Instruction Overview

MOV1 1-bit data transfer

AND1 1-bit data AND operation

OR1 1-bit data OR operation

XOR1 1-bit data exclusive OR operation

SET1 1-bit data set

CLR1 1-bit data clear

NOT1 1-bit data logical negation

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 539 of 853
Apr 01, 2011

1-bit data transfer

[Instruction format]

MOV1 dst, src

[Operation]

dst <- src

[Operand]

[Flag]

(1) dst = CY

Blank : Unchanged

x : Set or cleared according to the result

(2) dst = PSW.bit

Blank : Unchanged

x : Set or cleared according to the result

MOV1

Operand (dst, src)

CY, saddr.bit

CY, sfr.bit

CY, A.bit

CY, PSW.bit

CY, [HL].bit

saddr.bit, CY

sfr.bit, CY

A.bit, CY

PSW.bit, CY

[HL].bit, CY

CY, ES:[HL].bit

ES:[HL].bit, CY

Z AC CY

x

Z AC CY

x x

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 540 of 853
Apr 01, 2011

(3) All other operand combinations

Blank : Unchanged

[Description]

- Bit data of the source operand (src) specified by the 2nd operand is transferred to the destination operand (dst)

specified by the 1st operand.

- When the destination operand (dst) is CY or PSW.bit, only the corresponding flag is changed.

[Description example]

(1) The CY flag contents are transferred to bit 4 of port 3.

Z AC CY

MOV1 P3.4, CY ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 541 of 853
Apr 01, 2011

1-bit data AND operation

[Instruction format]

AND1 dst, src

[Operation]

dst <- dst ^ src

[Operand]

[Flag]

Blank : Unchanged

x : Set or cleared according to the result

[Description]

- Logical product of bit data of the destination operand (dst) specified by the 1st operand and the source operand

(src) specified by the 2nd operand is obtained and the result is stored in the destination operand (dst).

- The operation result is stored in the CY flag (because of the destination operand (dst)).

[Description example]

(1) Logical product of FFE7FH bit 3 and the CY flag is obtained and the result is stored in the CY flag.

AND1

Operand (dst, src)

CY, saddr.bit

CY, sfr.bit

CY, A.bit

CY, PSW.bit

CY, [HL].bit

CY, ES:[HL].bit

Z AC CY

x

AND1 CY, FFE7FH.3 ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 542 of 853
Apr 01, 2011

1-bit data OR operation

[Instruction format]

OR1 dst, src

[Operation]

dst <- dst v src

[Operand]

[Flag]

Blank : Unchanged

x : Set or cleared according to the result

[Description]

- The logical sum of bit data of the destination operand (dst) specified by the 1st operand and the source operand

(src) specified by the 2nd operand is obtained and the result is stored in the destination operand (dst).

- The operation result is stored in the CY flag (because of the destination operand (dst)).

[Description example]

(1) The logical sum of port 2 bit 5 and the CY flag is obtained and the result is stored in the CY flag.

OR1

Operand (dst, src)

CY, saddr.bit

CY, sfr.bit

CY, A.bit

CY, PSW.bit

CY, [HL].bit

CY, ES:[HL].bit

Z AC CY

x

OR1 CY, P2.5 ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 543 of 853
Apr 01, 2011

1-bit data exclusive OR operation

[Instruction format]

XOR1 dst, src

[Operation]

dst <- dst ∀ src

[Operand]

[Flag]

Blank : Unchanged

x : Set or cleared according to the result

[Description]

- The exclusive logical sum of bit data of the destination operand (dst) specified by the 1st operand and the source

operand (src) specified by the 2nd operand is obtained and the result is stored in the destination operand (dst).

- The operation result is stored in the CY flag (because of the destination operand (dst)).

[Description example]

(1) The exclusive logical sum of the A register bit 7 and the CY flag is obtained and the result is stored in the

CY flag.

XOR1

Operand (dst, src)

CY, saddr.bit

CY, sfr.bit

CY, A.bit

CY, PSW.bit

CY, [HL].bit

CY, ES:[HL].bit

Z AC CY

x

XOR1 CY, A.7 ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 544 of 853
Apr 01, 2011

1-bit data set

[Instruction format]

SET1 dst

[Operation]

dst <- 1

[Operand]

[Flag]

(1) dst = PSW.bit

x : Set or cleared according to the result

(2) dst = CY

Blank : Unchanged

1 : Set to 1

SET1

Operand (dst)

saddr.bit

sfr.bit

A.bit

!addr16.bit

PSW.bit

[HL].bit

ES:!addr16.bit

ES:[HL].bit

CY

Z AC CY

x x x

Z AC CY

1

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 545 of 853
Apr 01, 2011

(3) All other operand combinations

Blank : Unchanged

[Description]

- The destination operand (dst) is set (1).

- When the destination operand (dst) is CY or PSW.bit, only the corresponding flag is set (1).

[Description example]

(1) Bit 1 of FFE55H is set (1).

Z AC CY

SET1 FFE55H.1 ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 546 of 853
Apr 01, 2011

1-bit data clear

[Instruction format]

CLR1 dst

[Operation]

dst <- 0

[Operand]

[Flag]

(1) dst = PSW.bit

x : Set or cleared according to the result

(2) dst = CY

Blank : Unchanged

0 : Cleared to 0

CLR1

Operand (dst)

saddr.bit

sfr.bit

A.bit

!addr16.bit

PSW.bit

[HL].bit

ES:!addr16.bit

ES:[HL].bit

CY

Z AC CY

x x x

Z AC CY

0

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 547 of 853
Apr 01, 2011

(3) All other operand combinations

Blank : Unchanged

[Description]

- The destination operand (dst) is cleared (0).

- When the destination operand (dst) is CY or PSW.bit, only the corresponding flag is cleared (0).

[Description example]

(1) Bit 7 of port 3 is cleared (0).

Z AC CY

CLR1 P3.7 ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 548 of 853
Apr 01, 2011

1-bit data logical negation

[Instruction format]

NOT1 dst

[Operation]

dst <- dst

[Operand]

[Flag]

Blank : Unchanged

x : Set or cleared according to the result

[Description]

- The CY flag is inverted.

[Description example]

(1) The CY flag is inverted.

NOT1

Operand (dst)

CY

Z AC CY

x

NOT1 CY ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 549 of 853
Apr 01, 2011

(10)Call return instructions

The following call return instructions are available.

Instruction Overview

CALL Subroutine call

CALLT Subroutine call (call table reference)

BRK Software vector interrupt

RET Return from subroutine

RETI Return from hardware vector interrupt

RETB Return from software interrupt

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 550 of 853
Apr 01, 2011

Subroutine call

[Instruction format]

CALL target

[Operation]

(SP - 2) <- (PC + n)S,

(SP - 3) <- (PC + n)H,

(SP - 4) <- (PC + n)L,

SP <- SP - 4,

PC <- target

Remark n is 4 when using !!addr20, 3 when using !addr16 or $!addr20, and 2 when using AX, BC, DE, or HL.

[Operand]

[Flag]

Blank : Unchanged

[Description]

- This is a subroutine call with a 20/16-bit absolute address or a register indirect address.

- The start address (PC+n) of the next instruction is saved in the stack and is branched to the address specified by

the target operand (target).

[Description example]

(1) Subroutine call to 3E000H.

CALL

Operand (target)

AX

BC

DE

HL

$!addr20

!addr16

!!addr20

Z AC CY

CALL !!3E000H ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 551 of 853
Apr 01, 2011

Subroutine call (call table reference)

[Instruction format]

CALLT [addr5]

[Operation]

(SP - 2) <- (PC + 2)S,

(SP - 3) <- (PC + 2)H,

(SP - 4) <- (PC + 2)L,

PCS <- 0000,

PCH <- (000000000000, addr5 + 1),

PCL <- (000000000000, addr5),

SP <- SP - 4

[Operand]

[Flag]

Blank : Unchanged

[Description]

- This is a subroutine call for call table reference.

- The start address (PC+2) of the next instruction is saved in the stack and is branched to the address indicated with

the word data of a call table (with the higher 12 bits of the address fixed to 000000000000B, and the lower 5 bits

out of 8 bits indicated with addr5).

[Description example]

(1) Subroutine call to the word data addresses 00080H and 00081H.

[Remark]

- Only even-numbered addresses can be specified (odd-numbered addresses cannot be specified).

addr5: Immediate data or label from 00080H to 000BEH (even-numbered addresses only)

CALLT

Operand ([addr5])

[addr5]

Z AC CY

CALLT [80H] ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 552 of 853
Apr 01, 2011

Software vector interrupt

[Instruction format]

BRK

[Operation]

(SP - 1) <- PSW,

(SP - 2) <- (PC + 2)S,

(SP - 3) <- (PC + 2)H,

(SP - 4) <- (PC + 2)L,

PCS <- 0000,

PCH <- (0007FH),

PCL <- (0007EH),

SP <- SP - 4,

IE<- 0

[Operand]

None

[Flag]

Blank : Unchanged

[Description]

- This is a software interrupt instruction.

- PSW and the next instruction address (PC+2) are saved to the stack. After that, the IE flag is cleared (0) and the

saved data is branched to the address indicated with the word data at the vector address (0007EH, 0007FH).

Because the IE flag is cleared (0), the subsequent maskable vectored interrupts are disabled.

- The RETB instruction is used to return from the software vectored interrupt generated with this instruction.

BRK

Z AC CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 553 of 853
Apr 01, 2011

Return from subroutine

[Instruction format]

RET

[Operation]

PCL <- (SP),

PCH <- (SP + 1),

PCS <- (SP + 2),

SP <- SP + 4,

[Operand]

None

[Flag]

Blank : Unchanged

[Description]

- This is a return instruction from the subroutine call made with the CALL and CALLT instructions.

- The word data saved to the stack returns to the PC, and the program returns from the subroutine.

RET

Z AC CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 554 of 853
Apr 01, 2011

Return from hardware vector interrupt

[Instruction format]

RETI

[Operation]

PCL <- (SP),

PCH <- (SP + 1),

PCS <- (SP + 2),

PSW <- (SP + 3),

SP <- SP + 4

[Operand]

None

[Flag]

R : Previously saved value is restored

[Description]

- This is a return instruction from the vectored interrupt.

- The data saved to the stack returns to the PC and the PSW, and the program returns from the interrupt servicing

routine.

- This instruction cannot be used for return from the software interrupt with the BRK instruction.

- None of interrupts are acknowledged between this instruction and the next instruction to be executed.

- The NMIS flag is set to 1 by the non-maskable interrupt acceptance, and cleared to 0 by the RETI instruction.

[Cautions]

- Any interrupt (including non-maskable interrupts) is not accepted because the NMIS flag is not cleared to 0 when

returning from the non-maskable interrupt processing by the instructions other than the RETI instruction.

RETI

Z AC CY

R R R

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 555 of 853
Apr 01, 2011

Return from software interrupt

[Instruction format]

RETB

[Operation]

PCL <- (SP),

PCH <- (SP + 1),

PCS <- (SP + 2),

PSW <- (SP + 3),

SP <- SP + 4

[Operand]

None

[Flag]

R : Previously saved value is restored

[Description]

- This is a return instruction from the software interrupt generated with the BRK instruction.

- The data saved in the stack returns to the PC and the PSW, and the program returns from the interrupt servicing

routine.

- None of interrupts are acknowledged between this instruction and the next instruction to be executed.

RETB

Z AC CY

R R R

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 556 of 853
Apr 01, 2011

(11) Stack manipulation instructions

The following stack manipulation instructions are available.

Instruction Overview

PUSH Push

POP Pop

MOVW Stck pointer and word data transfer

ADDW Stack pointer addition

SUBW Stack pointer subtraction

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 557 of 853
Apr 01, 2011

Push

[Instruction format]

PUSH src

[Operation]

(1) src = rp

(SP - 1) <- rpH,

(SP - 2) <- rpL,

SP <- SP - 2

(2) src = PSW

(SP - 1) <- PSW,

(SP - 2) <- 00H,

SP <- SP - 2

[Operand]

[Flag]

Blank : Unchanged

[Description]

- The data of the register specified by the source operand (src) is saved to the stack.

[Description example]

(1) AX register contents are saved to the stack.

PUSH

Operand (src)

PSW

rp

Z AC CY

PUSH AX ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 558 of 853
Apr 01, 2011

Pop

[Instruction format]

POP dst

[Operation]

(1) dst = rp

rpL <- (SP),

rpH <- (SP + 1),

SP <- SP + 2

(2) dst = PSW

PSW <- (SP + 1),

SP <- SP + 2

[Operand]

[Flag]

(1) dst = rp

Blank : Unchanged

(2) dst = PSW

R : Previously saved value is restored

[Description]

- Data is returned from the stack to the register specified by the destination operand (dst).

- When the operand is PSW, each flag is replaced with stack data.

- None of interrupts are acknowledged between the POP PSW instruction and the subsequent instruction.

POP

Operand (dst)

PSW

rp

Z AC CY

Z AC CY

R R R

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 559 of 853
Apr 01, 2011

[Description example]

(1) The stack data is returned to the AX register.

POP AX ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 560 of 853
Apr 01, 2011

Stck pointer and word data transfer

[Instruction format]

MOVW dst, src

[Operation]

dst <- src

[Operand]

[Flag]

Blank : Unchanged

[Description]

- This is an instruction to manipulate the stack pointer contents.

- The source operand (src) specified by the 2nd operand is stored in the destination operand (dst) specified by the

1st operand.

[Description example]

(1) FE1FH is stored in the stack pointer.

MOVW

Operand (dst, src)

SP, #word

SP, AX

AX, SP

HL, SP

BC, SP

DE, SP

Z AC CY

MOVW SP, #FE1FH ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 561 of 853
Apr 01, 2011

Stack pointer addition

[Instruction format]

ADDW SP, src

[Operation]

SP <- SP + src

[Operand]

[Flag]

Blank : Unchanged

[Description]

- The stack pointer specified by the first operand and the source operand (src) specified by the second operand are

added and the result is stored in the stack pointer.

[Description example]

(1) Stack pointer and 12H are added, and the result is stored in the stack pointer.

ADDW

Operand (SP, src)

SP, #byte

Z AC CY

ADDW SP, #12H ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 562 of 853
Apr 01, 2011

Stack pointer subtraction

[Instruction format]

SUBW SP, src

[Operation]

SP <- SP - src

[Operand]

[Flag]

Blank : Unchanged

[Description]

- Source operand (src) specified by the second operand is subtracted from the stack pointer specified by the first

operand, and the result is stored in the stack pointer.

[Description example]

(1) 12H is subtracted from the stack pointer, and the result is stored in the stack pointer.

SUBW

Operand (SP, src)

SP, #byte

Z AC CY

SUBW SP, #12H ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 563 of 853
Apr 01, 2011

(12)Unconditional branch instruction

The following unconditional branch instructions are available

Instruction Overview

BR Unconditional branch

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 564 of 853
Apr 01, 2011

Unconditional branch

[Instruction format]

BR target

[Operation]

PC <- target

[Operand]

[Flag]

Blank : Unchanged

[Description]

- This is an instruction to branch unconditionally.

- The word data of the target address operand (target) is transferred to PC and branched.

[Description example]

(1) Branch to address 12345H.

BR

Operand (target)

AX

$addr20

$!addr20

!addr16

!!addr20

Z AC CY

BR !!12345H ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 565 of 853
Apr 01, 2011

(13)Conditional branch instructions

The following conditional branch instructions are available.

Instruction Overview

BC Conditional branch with carry flag (CY = 1)

BNC Conditional branch with carry flag (CY = 0)

BZ Conditional branch with zero flag (Z = 1)

BNZ Conditional branch with zero flag (Z = 0)

BH Conditional branch by numerical size ((Z v CY) = 0)

BNH Conditional branch by numerical size ((Z v CY) = 1)

BT Conditional branch by bit test (byte date bit = 1)

BF Conditional branch by bit test (byte date bit = 0)

BTCLR Conditional branch and clear by bit test (byte date bit = 1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 566 of 853
Apr 01, 2011

Conditional branch with carry flag (CY = 1)

[Instruction format]

BC $addr20

[Operation]

PC <- PC + 2 + jdisp8 if CY = 1

[Operand]

[Flag]

Blank : Unchanged

[Description]

- When CY = 1, data is branched to the address specified by the operand.

When CY = 0, no processing is carried out and the subsequent instruction is executed.

[Description example]

(1) When CY = 1, data is branched to 00300H (with the start of this instruction set in the range of addresses

0027FH to 0037EH).

BC

Operand ($addr20)

$addr20

Z AC CY

BC $00300H ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 567 of 853
Apr 01, 2011

Conditional branch with carry flag (CY = 0)

[Instruction format]

BNC $addr20

[Operation]

PC <- PC + 2 + jdisp8 if CY = 0

[Operand]

[Flag]

Blank : Unchanged

[Description]

- When CY = 0, data is branched to the address specified by the operand.

When CY = 1, no processing is carried out and the subsequent instruction is executed.

[Description example]

(1) When CY = 0, data is branched to 00300H (with the start of this instruction set in the range of addresses

0027FH to 0037EH).

BNC

Operand ($addr20)

$addr20

Z AC CY

BNC $00300H ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 568 of 853
Apr 01, 2011

Conditional branch with zero flag (Z = 1)

[Instruction format]

BZ $addr20

[Operation]

PC <- PC + 2 + jdisp8 if Z = 1

[Operand]

[Flag]

Blank : Unchanged

[Description]

- When Z = 1, data is branched to the address specified by the operand.

When Z = 0, no processing is carried out and the subsequent instruction is executed.

[Description example]

(1) When the B register is 0, data is branched to 003C5H (with the start of this instruction set in the range of

addresses 00344H to 00443H).

BZ

Operand ($addr20)

$addr20

Z AC CY

DEC B

BZ $003C5H ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 569 of 853
Apr 01, 2011

Conditional branch with zero flag (Z = 0)

[Instruction format]

BNZ $addr20

[Operation]

PC <- PC + 2 + jdisp8 if Z = 0

[Operand]

[Flag]

Blank : Unchanged

[Description]

- When Z = 0, data is branched to the address specified by the operand.

When Z = 1, no processing is carried out and the subsequent instruction is executed.

[Description example]

(1) If the A register is not 55H, data is branched to 00A39H (with the start of this instruction set in the range of

addresses 009B8H to 00AB7H).

BNZ

Operand ($addr20)

$addr20

Z AC CY

CMP A, #55H

BNZ $00A39H ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 570 of 853
Apr 01, 2011

Conditional branch by numerical size ((Z v CY) = 0)

[Instruction format]

BH $addr20

[Operation]

PC <- PC + 3 + jdisp8 if (Z v CY) = 0

[Operand]

[Flag]

Blank : Unchanged

[Description]

- When (Z v CY) = 0, data is branched to the address specified by the operand.

When (Z v CY) = 1, no processing is carried out and the subsequent instruction is executed.

- This instruction is used to judge which of the unsigned data values is higher. It is detected whether the first oper-

and is higher than the second operand in the CMP instruction immediately before this instruction.

[Description example]

(1) Branch to address 00356H when the A register contents are greater than the C register contents (start of

the BH instruction, however, is in addresses 002D4H to 003D3H).

BH

Operand ($addr20)

$addr20

Z AC CY

CMP A, C

BH $00356H ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 571 of 853
Apr 01, 2011

Conditional branch by numerical size ((Z v CY) = 1)

[Instruction format]

BNH $addr20

[Operation]

PC <- PC + 3 + jdisp8 if (Z v CY) = 1

[Operand]

[Flag]

Blank : Unchanged

[Description]

- When (Z v CY) = 1, data is branched to the address specified by the operand.

When (Z v CY) = 0, no processing is carried out and the subsequent instruction is executed.

- This instruction is used to judge which of the unsigned data values is higher. It is detected whether the first oper-

and is not higher than the second operand (the first operand is equal to or lower than the second operand) in the

CMP instruction immediately before this instruction.

[Description example]

(1) Branch to address 00356H when the A register contents are equal to or lower than the C register contents

(start of the BNH instruction, however, is in addresses 002D4H to 003D3H).

BNH

Operand ($addr20)

$addr20

Z AC CY

CMP A, C

BNH $00356H ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 572 of 853
Apr 01, 2011

Conditional branch by bit test (byte date bit = 1)

[Instruction format]

BT bit, $addr20

[Operation]

PC <- PC + b + jdisp8 if bit = 1

[Operand]

[Flag]

Blank : Unchanged

[Description]

- If the 1st operand (bit) contents have been set (1), data is branched to the address specified by the 2nd operand

($addr20).

If the 1st operand (bit) contents have not been set (1), no processing is carried out and the subsequent instruction

is executed.

[Description example]

(1) When bit 3 at address FFE47H is 1, data is branched to 0055CH (with the start of this instruction set in the

range of addresses 004DAH to 005D9H).

BT

Operand (bit, $addr20) b (Number of Bytes)

saddr.bit, $addr20 4

sfr.bit, $addr20 4

A.bit, $addr20 3

PSW.bit, $addr20 4

[HL].bit, $addr20 3

ES:[HL].bit, $addr20 4

Z AC CY

BT FFE47H.3, $0055CH ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 573 of 853
Apr 01, 2011

Conditional branch by bit test (byte date bit = 0)

[Instruction format]

BF bit, $addr20

[Operation]

PC <- PC + b + jdisp8 if bit = 0

[Operand]

[Flag]

Blank : Unchanged

[Description]

- If the 1st operand (bit) contents have been cleared (0), data is branched to the address specified by the 2nd oper-

and ($addr20).

If the 1st operand (bit) contents have not been cleared (0), no processing is carried out and the subsequent

instruction is executed.

[Description example]

(1) When bit 2 of port 2 is 0, data is branched to address 01549H (with the start of this instruction set in the

range of addresses 014C6H to 015C5H).

BF

Operand (bit, $addr20) b (Number of Bytes)

saddr.bit, $addr20 4

sfr.bit, $addr20 4

A.bit, $addr20 3

PSW.bit, $addr20 4

[HL].bit, $addr20 3

ES:[HL].bit, $addr20 4

Z AC CY

BF P2.2, $01549H ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 574 of 853
Apr 01, 2011

Conditional branch and clear by bit test (byte date bit = 1)

[Instruction format]

BTCLR bit, $addr20

[Operation]

PC <- PC + b + jdisp8 if bit = 1, then bit <- 0

[Operand]

[Flag]

(1) bit = PSW.bit

x : Set or cleared according to the result

(2) All other operand combinations

Blank : Unchanged

[Description]

- If the 1st operand (bit) contents have been set (1), they are cleared (0) and branched to the address specified by

the 2nd operand.

If the 1st operand (bit) contents have not been set (1), no processing is carried out and the subsequent instruction

is executed.

- When the 1st operand (bit) is PSW.bit, the corresponding flag contents are cleared (0).

BTCLR

Operand (bit, $addr20) b (Number of Bytes)

saddr.bit, $addr20 4

sfr.bit, $addr20 4

A.bit, $addr20 3

PSW.bit, $addr20 4

[HL].bit, $addr20 3

ES:[HL].bit, $addr20 4

Z AC CY

x x x

Z AC CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 575 of 853
Apr 01, 2011

[Description example]

(1) When bit 0 (CY flag) of PSW is 1, the CY flag is cleared to 0 and branched to address 00356H (with the start

of this instruction set in the range of addresses 002D4H to 003D3H).

BTCLR PSW.0, $00356H ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 576 of 853
Apr 01, 2011

(14)Conditional skip instructions

The following conditional skip instructions are available.

Instruction Overview

SKC Skip with carry flag (CY = 1)

SKNC Skip with carry flag (CY = 0)

SKZ Skip with zero flag (Z = 1)

SKNZ Skip with zero flag (Z = 0)

SKH Skip by numerical size ((Z v CY) = 0)

SKNH Skip by numerical size ((Z v CY) =1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 577 of 853
Apr 01, 2011

Skip with carry flag (CY = 1)

[Instruction format]

SKC

[Operation]

Next instruction skip if CY = 1

[Operand]

None

[Flag]

Blank : Unchanged

[Description]

- When CY = 1, the next instruction is skipped. The subsequent instruction is a NOP and one clock of execution

time is consumed. However, if the next instruction is a PREFIX instruction (indicated by "ES:"), two clocks of exe-

cution time are consumed.

- When CY = 0, the next instruction is executed.

[Description example]

(1) The A register’s value = AAH when CY = 0, and 55H when CY = 1.

SKC

Z AC CY

MOV A, #55H

SKC

ADD A, #55H ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 578 of 853
Apr 01, 2011

Skip with carry flag (CY = 0)

[Instruction format]

SKNC

[Operation]

Next instruction skip if CY = 0

[Operand]

None

[Flag]

Blank : Unchanged

[Description]

- When CY = 0, the next instruction is skipped. The subsequent instruction is a NOP and one clock of execution

time is consumed. However, if the next instruction is a PREFIX instruction (indicated by "ES:"), two clocks of exe-

cution time are consumed.

- When CY = 1, the next instruction is executed.

[Description example]

(1) The A register’s value = AAH when CY = 1, and 55H when CY = 0.

SKNC

Z AC CY

MOV A, #55H

SKNC

ADD A, #55H ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 579 of 853
Apr 01, 2011

Skip with zero flag (Z = 1)

[Instruction format]

SKZ

[Operation]

Next instruction skip if Z = 1

[Operand]

None

[Flag]

Blank : Unchanged

[Description]

- When Z = 1, the next instruction is skipped. The subsequent instruction is a NOP and one clock of execution time

is consumed. However, if the next instruction is a PREFIX instruction (indicated by "ES:"), two clocks of execution

time are consumed.

- When Z = 0, the next instruction is executed.

[Description example]

(1) The A register’s value = AAH when Z = 0, and 55H when Z = 1.

SKZ

Z AC CY

MOV A, #55H

SKZ

ADD A, #55H ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 580 of 853
Apr 01, 2011

Skip with zero flag (Z = 0)

[Instruction format]

SKNZ

[Operation]

Next instruction skip if Z = 0

[Operand]

None

[Flag]

Blank : Unchanged

[Description]

- When Z = 0, the next instruction is skipped. The subsequent instruction is a NOP and one clock of execution time

is consumed. However, if the next instruction is a PREFIX instruction (indicated by “ES:”), two clocks of execution

time are consumed.

- When Z = 1, the next instruction is executed.

[Description example]

(1) The A register’s value = AAH when Z = 1, and 55H when Z = 0.

SKNZ

Z AC CY

MOV A, #55H

SKNZ

ADD A, #55H ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 581 of 853
Apr 01, 2011

Skip by numerical size ((Z v CY) = 0)

[Instruction format]

SKH

[Operation]

Next instruction skip if (Z v CY) = 0

[Operand]

None

[Flag]

Blank : Unchanged

[Description]

- When (Z v CY) = 0, the next instruction is skipped. The subsequent instruction is a NOP and one clock of execu-

tion time is consumed. However, if the next instruction is a PREFIX instruction (indicated by "ES:"), two clocks of

execution time are consumed.

- When (Z v CY) = 1, the next instruction is executed.

[Description example]

(1) When the A register contents are higher than 80H, the CALL instruction is skipped and the next instruction

is executed. When the A register contents are 80H or lower, the next CALL instruction is executed and

execution is branched to the target address.

SKH

Z AC CY

CMP A, #80H

SKH

CALL !!TARGET ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 582 of 853
Apr 01, 2011

Skip by numerical size ((Z v CY) =1)

[Instruction format]

SKNH

[Operation]

Next instruction skip if (Z v CY) = 1

[Operand]

None

[Flag]

Blank : Unchanged

[Description]

- When (Z v CY) = 1, the next instruction is skipped. The subsequent instruction is a NOP and one clock of execu-

tion time is consumed. However, if the next instruction is a PREFIX instruction (indicated by ES:), two clocks of

execution time are consumed.

- When (Z v CY) = 0, the next instruction is executed.

[Description example]

(1) When the A register contents are 80H or lower, the CALL instruction is skipped and the next instruction is

executed. When the A register contents are higher than 80H, the next CALL instruction is executed and

execution is branched to the target address.

SKNH

Z AC CY

CMP A, #80H

SKNH

CALL !!TARGET ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 583 of 853
Apr 01, 2011

(15)CPU control instructions

The following CPU control instructions are available.

Instruction Overview

SEL Register bank selection

NOP No operation

EI Interrupt enabled

DI Interrupt disabled

HALT Halt mode set

STOP Stop mode set

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 584 of 853
Apr 01, 2011

Register bank selection

[Instruction format]

SEL RBn

[Operation]

RBS0, RBS1 <- n ; (n = 0 to 3)

[Operand]

[Flag]

Blank : Unchanged

[Description]

- The register bank specified by the operand (RBn) is made a register bank for use by the next and subsequent

instructions.

- RBn ranges from RB0 to RB3.

[Description example]

(1) Register bank 2 is selected as the register bank for use by the next and subsequent instructions.

SEL

Operand (RBn)

RBn

Z AC CY

SEL RB2 ; (1)

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 585 of 853
Apr 01, 2011

No operation

[Instruction format]

NOP

[Operation]

no operation

[Operand]

None

[Flag]

Blank : Unchanged

[Description]

- Only the time is consumed without processing.

NOP

Z AC CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 586 of 853
Apr 01, 2011

Interrupt enabled

[Instruction format]

EI

[Operation]

IE <- 1

[Operand]

None

[Flag]

Blank : Unchanged

[Description]

- The maskable interrupt acknowledgeable status is set (by setting the interrupt enable flag (IE) to (1)).

- No interrupts are acknowledged between this instruction and the next instruction.

- If this instruction is executed, vectored interrupt acknowledgment from another source can be disabled. For

details, see the description of interrupt functions in the user’s manual for each product.

EI

Z AC CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 587 of 853
Apr 01, 2011

Interrupt disabled

[Instruction format]

DI

[Operation]

IE <- 0

[Operand]

None

[Flag]

Blank : Unchanged

[Description]

- Maskable interrupt acknowledgment by vectored interrupt is disabled (with the interrupt enable flag (IE) cleared (0)

).

- No interrupts are acknowledged between this instruction and the next instruction.

- For details of interrupt servicing, see the description of interrupt functions in the user’s manual for each product.

DI

Z AC CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 588 of 853
Apr 01, 2011

Halt mode set

[Instruction format]

HALT

[Operation]

Set HALT Mode

[Operand]

None

[Flag]

Blank : Unchanged

[Description]

- This instruction is used to set the HALT mode to stop the CPU operation clock. The total power consumption of

the system can be decreased with intermittent operation by combining this mode with the normal operation mode.

HALT

Z AC CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 589 of 853
Apr 01, 2011

Stop mode set

[Instruction format]

STOP

[Operation]

Set STOP Mode

[Operand]

None

[Flag]

Blank : Unchanged

[Description]

- This instruction is used to set the STOP mode to stop the main system clock oscillator and to stop the whole sys-

tem. Power consumption can be minimized to only leakage current.

STOP

Z AC CY

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 590 of 853
Apr 01, 2011

4.6.7 Pipeline

(1) Features

RL78 family, 78K0R microcontrollers use three-stage pipeline control to enable single-cycle execution of almost all

instructions. Instructions are executed in three stages: instruction fetch (IF), instruction decode (ID), and memory

access (MEM).

Figure 4-38. Pipeline Execution of Five Typical Instructions (Example)

(2) Number of operation clocks

An inherent problem in some microcontroller pipeline architectures is that it is impossible to predict the number of

clocks required for instruction execution. In the RL78 family, 78K0R microcontroller, this problem has been solved.

Instructions always execute in the same number of clocks, allowing stable program execution.

Except in the cases listed below, the number of execution clocks is as shown in "(5) Operation list".

(a) Access to flash memory contents as data

When the contents of flash memory are accessed as data, the pipeline stalls at the MEM stage. This adds a

certain number of clocks to the number shown in the operation list. For details, see "(5) Operation list".

(b) Access to external memory contents as data

A CPU wait occurs when the content of external memory is accessed as data. This adds a certain number of

clocks to the number shown in the operation list.

The following table lists the number of increased clocks.

IF (instruction fetch) Instruction is fetched and fetch pointer is incremented.

ID (instruction decode) Instruction is decoded and address is calculated.

MEM (memory access) Decoded instruction is executed and memory at target address is accessed.

External Expansion Clock Output (CLKOUT) Selection Clocks Wait Cycles

fCLK 3 clocks

fCLK/2 5 or 6 clocks

Elapsed time (state)

Internal system clock

Concurrent processing by CPU

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

<1> <2> <3> <4> <5> <6> <7>

MEM

ID

IF

IDIF

IF

MEMID

MEM

IF MEMID

IF MEMID

End of

Instruc-

tion 5

End of

Instruc-

tion 4

End of

Instruc-

tion 3

End of

Instruc-

tion 2

End of

Instruc-

tion 1

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 591 of 853
Apr 01, 2011

(c) Instruction fetch from RAM

When instructions are fetched from RAM, the instruction queue empties because reading from RAM is late.

The CPU must wait until instructions are ready in the queue. The CPU also waits if RAM is accessed during

instruction fetching from RAM.

(d) Instruction fetch from external memory

When instructions are fetched from external memory, the instruction queue empties because reading from

external memory is late. The CPU must wait until instructions are ready in the queue. The CPU also waits if

external memory is accessed during instruction fetching from external memory.

The following table lists the number of increased clocks

(e) Hazards related to instruction combinations

A 1-clock wait occurs when a register is used for indirect memory access immediately after data has been writ-

ten to that register.

fCLK/3 7 to 9 clocks

fCLK/4 9 to 12 clocks

External Expansion Clock Output (CLKOUT) Selection Clocks Wait Cycles

fCLK 3 clocks

fCLK/2 5 or 6 clocks

fCLK/3 7 to 9 clocks

fCLK/4 9 to 12 clocks

Register Previous Instruction Operand of Next Instruction, or Next Instruction

DE Write instruction to D registerNote

Write instruction to E registerNote

Write instruction to DE registerNote

SEL RBn

[DE], [DE+byte]

HL Write instruction to H registerNote

Write instruction to L registerNote

Write instruction to HL registerNote

SEL RBn

[HL], [HL+byte], [HL+B], [HL+C], [HL].bit

B Write instruction to B registerNote

SEL RBn

word[B], [HL+B]

C Write instruction to C registerNote

SEL RBn

word[C], [HL+C]

BC Write instruction to B registerNote

Write instruction to C registerNote

Write instruction to BC registerNote

SEL RBn

word[BC], [HL+B], [HL+C]

External Expansion Clock Output (CLKOUT) Selection Clocks Wait Cycles

CubeSuite+ Ver.1.00.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 592 of 853
Apr 01, 2011

Note Write instructions to register also require wait insertions when overwriting the target register values by

direct addressing, short direct addressing, register indirect addressing, based addressing, or based

indexed addressing.

SP MOVW SP, #word

MOVW SP, AX

ADDW SP, #byte

SUBW SP, #byte

[SP+byte]

CALL instruction, CALLT instruction, BRK instruc-

tion, SOFT instruction, RET instruction, RETI

instruction, RETB instruction, interrupt, PUSH

instruction, POP instruction

CS MOV CS, #byte

MOV CS, A

CALL rp

BR AX

AX Write instruction to A registerNote

Write instruction to X registerNote

Write instruction to AX registerNote

SEL RBn

BR AX

AX

BC

DE

HL

Write instruction to A registerNote

Write instruction to X registerNote

Write instruction to B registerNote

Write instruction to C registerNote

Write instruction to D registerNote

Write instruction to E registerNote

Write instruction to H registerNote

Write instruction to L registerNote

Write instruction to AX registerNote

Write instruction to BC registerNote

Write instruction to DE registerNote

Write instruction to HL registerNote

SEL RBn

CALL rp

Register Previous Instruction Operand of Next Instruction, or Next Instruction

CubeSuite+ Ver.1.00.00 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 593 of 853
Apr 01, 2011

CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

This chapter explains the necessary items for link directives and how to write a directive file.

5.1 Coding Method

This section explains coding method of link directives.

5.1.1 Link directives

Link directives (referred to as directives from here on) are a group of commands for performing various directions dur-

ing linking such as input files for the linker, useable memory areas, and segment location.

There are the following two kinds of directives.

Create a file (directive file) containing directives using a text editor and specify the -d option when starting the linker.

The linker will read the directive file and perform link processing while it interprets the file.

(1) Directive file

The format for specifying directives in the directive file is shown next.

- Memory directive

- Segment Allocation Directives

In addition, multiple directives can be specified in a single directive file.

For details about each directive, see "(2) Memory directive" and "(3) Segment location directive".

(a) Symbols

There is a distinction between uppercase and lowercase in the segment name, memory area name, and mem-

ory space name.

Directive Type Purpose

Memory directive - Declares a installed memory address.

- Divides memory into a number of areas and specifies the memory area.

CALLT area

Internal ROM

External ROM

SADDR

Internal RAM other than SADDR

Segment location directive - Specifies a segment location.

Specifies the following contents for each segment.

Absolute address

Specify only the memory area

MEMORY memory-area-name: (start-address-value, size) [/memory-space-name]

MERGE segment-name: [AT (start-address)] [=memory-area-name-specification] [/memory-
space-name]

MERGE segment-name: [merge-attribute] [=memory-area-name-specification] [/memory-
space-name]

CubeSuite+ Ver.1.00.00 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 594 of 853
Apr 01, 2011

(b) Numerical values

When specifying numerical constants for the items in each directive, they can be specified as decimal or hexa-

decimal numbers.

Specifying numbers is the same as in source code, for hexadecimal numbers attach an "H" to the end of the

number. Also, when the first digit is A - F, add a "0" to the beginning of the number.

Examples are shown below.

(c) Comments

When ";" or "#" is specified in a directive file, the text from that character to the line feed (LF) is treated as a

comment. In addition, if the directive file ends before a line feed appears, the text up to the end of the file is

treated as a comment.

Examples are shown below.

The underlined portions are comments.

(2) Memory directive

The memory directive is a directive to define a memory area (the address of memory to implement and its name).

The defined memory area can be referenced by the segment location directive using this name (memory area

name).

Up to 100 memory areas can be defined, including the memory area defined by default.

The syntax is shown below.

(a) Memory area name

Specifies the name of the memory area to define.

Conditions when specifying are as follows.

- Characters that can be used in the memory area name are A - Z, a - z, 0 - 9, _, ?, @.

However, 0 - 9 cannot be used as the first character of the memory area name.

- Uppercase and lowercase characters are distinguished as separate characters.

- Uppercase and lowercase characters can be mixed together.

- The length of the memory area name is a maximum of 256 characters.

257characters or more will result in an error.

- There must be a only a single memory area name for each one throughout all memory spaces.

Attaching the same memory area name to differing memory areas, when the memory space is the same

or when it is different, is not permitted.

23H, 0FC80H

; DIRECTIVE FILE FOR 78F1166_A0

MEMORY MEM1 : (40000H, 10000H) #SECOND MEMORY AREA

MEMORY memory-area-name : (start-address , size)[/ memory-space-name]

CubeSuite+ Ver.1.00.00 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 595 of 853
Apr 01, 2011

Figure 5-1. Example of Memory Area Name that Cannot Be Specified

(b) Start address

Specifies the start address of the memory area to define.

Write as a numerical constant between 0H - 0FFFFFH.

(c) Size

Specifies the size of the memory area to define.

Conditions when specifying are as follows.

- A numerical constant 1 or greater.

- When re-specifying the size of the memory area the linker defines by default, there is a restriction in the

range that can be defined.

For the size of the memory area defined by default for each device and the range it can be redefined, see

each device file's "Notes on Use".

(d) Memory area name

The memory space name is indicated by one of the following 16 names.

REGULAR, EX1, EX2, EX3, EX4, EX5, EX6, EX7, EX8, EX9, EX10, EX11, EX12, EX13, EX14, EX15

When assigning memory segments, memory space names are used to specify where the segment should be

assigned.

Conditions when specifying are shown next.

- The memory space name is specified in all uppercase.

- When the memory space name is omitted, the linker will consider REGULAR to have been specified.

- If the memory space name is omitted after "/" is written, an error occurs.

The function is shown below.

- The memory area with the name specified by the memory area name is defined in the specified memory

space.

- 1 memory area can be defined with 1 memory directive.

- There can be multiple memory directives themselves. When there multiple definitions in the specified order an

error will result.

- The default memory area is valid so long as the same memory area is not redefined by a memory directive.

When memory directives are omitted, the linker specifies only the default memory area for each device.

< Example of identical memory areas >

REGULAR space REGULAR space EX1 space

< Example of different memory areas >

 NGNG
Memory area

 ROM

Memory area

 ROM

Memory area

 MEM1

Memory area

 MEM1

CubeSuite+ Ver.1.00.00 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 596 of 853
Apr 01, 2011

- When not using the default memory space and using it with a different area name, set the default area name's

size to "0".

A usage example is shown below.

- Defines memory space address 0H to 1FFH as memory area ROMA.

(3) Segment location directive

The segment location directive is a directive which places a specified segment in a specified memory area or

places it at specific address.

The syntax is shown below.

(a) Segment name

The segment name contained in the object module file input to the linker.

- A segment name other than the input segment cannot be specified.

- The segment name must be specified as specified in the assembler source.

(b) Start address

Allocates the segment at the area specified by the "start address".

- The reserved word AT must be specified in all uppercase or lowercase characters. It cannot mix upper-

case and lowercase characters.

- The start address is specified as a numerical constant.

Figure 5-2. Specified Start Address and Segment Location

Cautions 1. When locating a segment according to the specified start address, if the range of the

memory area where it is being located is exceeded, an error will result.

2. The start address cannot be specified by a link directive for segments specified a loca-

tion address by the segment directive AT assignment or the ORG directive.

MEMORY ROMA : (0H, 200H)

MERGE segment-name : [AT (start-address)][= memory-area-name][/ memory-space-name]

MERGE segment-name : [merge-attribute][= memory-area-name][/ memory-space-name]

Start Address
The segment is located to the speci-

fied start address.

Segment

CubeSuite+ Ver.1.00.00 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 597 of 853
Apr 01, 2011

(c) Merge attribute

When there are multiple segments with the same name in the source, specify in the directive "COMPLETE" to

error without merging or "SEQUENT (default)" to merge.

Examples are shown below.

(d) Memory area name

The memory space name specifies a memory space to locate a segment.

- Memory name specifications are limited to the following 16 memory space names.

REGULAR, EX1, EX2, EX3, EX4, EX5, EX6, EX7, EX8, EX9, EX10, EX11, EX12, EX13, EX14,

EX15

- The memory space name is specified in all uppercase.

- When the memory space name is omitted, the linker will consider REGULAR to have been specified.

Segment location is shown next.

This table emphasizes declaring the memory area which will be the target for the segment location. In addi-

tion, if "AT(start address)" is specified when the actual location address is decided, the segment will be located

from that address.

For example, for a segment with a relocation attribute of "CSEG FIXED", if memory name "EX1" is specified,

the segment will be located so that it takes up position within C0H to FFFFH.

Notes are shown below.

- Input segments that are not specified with the segment location directive have their location address

determined according to the relocation attribute specified with the segment definition directive during

assembly.

- If a segment doesn't exist that is specified as a segment name, an error will result.

- If multiple segment location directives are specified for the same segment, an error will result.

SEQUENT Merge sequentially in the order the segments appear so as to not leave free space.

BSEG is merged in bit units in the order the segments appear.

COMPLETE An error will occur if there are multiple segments with the same name.

MERGE DSEG1 : COMPLETE = RAM

Memory Area Memory Space Segment Location

Not specified Not specified The memory area located in REGULAR space at the default

No specification Memory space

name

Any area in the specified memory space

Memory Area Name Not specified The specified memory area in REGULAR space

Memory area

name

Memory space

name

The specified memory area in the specified memory space

CubeSuite+ Ver.1.00.00 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 598 of 853
Apr 01, 2011

5.2 Reserved Words

Reserved words for use in the directive file are shown next.

Reserved words in the directive file cannot be used for other purposes (segment names, memory area names, etc.).

Caution Reserved words can be specified in uppercase or lowercase. However, it cannot mix uppercase and

lowercase characters.

Example MEMORY : Acceptable

memory : Acceptable

Memory : Not acceptable

5.3 Coding Examples

Link directive coding examples are shown next.

5.3.1 When specifying link directive

- An address is allocated for segment SEG1 with a segment type, relocation attribute of "CSEG UNIT".

The declared memory area is as follows.

- When allocating input segment SEG1 to 500H inside area ROM (see the following diagram(1)).

- When allocating input segment SEG1 inside memory area MEM1 (see the following diagram(2)).

- When allocating input segment SEG1 to 1500H inside memory area MEM1 (see the following diagram(3)).

Reserved Words Explanation

MEMORY Specifies the memory directives

MERGE Specifies the segment location directive

AT Specifies the location attribute (start address) of the segment location directive

SEQUENT Specifies the merge attribute (merges a segment) of the segment location directive

COMPLETE Specifies the merge attribute (does not merge a segment) of the segment location directive

MEMORY ROM : (0000H, 1000H)

MEMORY MEM1 : (1000H, 2000H)

MERGE SEG1 : AT (500H)

MERGE SEG1 : = MEM1

MERGE SEG1 : AT (1500H)=MEM178

CubeSuite+ Ver.1.00.00 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 599 of 853
Apr 01, 2011

Figure 5-3. Example Allocations of Input Segment SEG1

5.3.2 When using the compiler

This section explains how to create a link directive file when using the compiler. Create the file matched to the actual

target system and specify the created file with the -d option when linking.

Additionally, be aware of the following cautions when creating the file.

- RL78,78K0R C compiler may use a portion of the short direct address area (saddr area) for specific purposes as

shown next.

Specifically, the 44 byte area FFEB4H to FFEDFH.

(a) When the -qr option is specified, register variables [FFEB4H to FFEC3H]

(b) norec function arguments, automatic variables [FFEC4H to FFED3H]

(c) Segment information [FFED4H to FFED7H]

(d) Runtime library arguments [FFED8H to FFEDFH]

(e) For standard library operation (a portion of areas (a) and (b))

Caution When the user is not using the standard library, area (e) is not used.

The following shows an example changing the RAM size with a link directive file (lk78k0r.dr).

When changing the memory size, be careful so that the memory does not overlap with other areas. When making

changes, see the memory map of the target device to use.

 (1)

FFFFH

2000H

0000H

1000H

 (2)

FFFFH

2000H

0000H

1000H

 (3)

FFFFH

2000H

0000H

1000H

0500H

1500H

0500H

SEG1

SEG1

SEG1

MEM1
MEM1

MEM1

ROM

ROM ROM

CubeSuite+ Ver.1.00.00 CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 600 of 853
Apr 01, 2011

When you want to change location of a segment, add the merge statement.. When the function to change the compiler

output section name is used, segments can be located individually (for details see "Changing compiler output section

name (#pragma section ...)").

The result of changing the segment location, when there is insufficient memory to locate the segment, change the cor-

responding memory statement.

 Start address size

memory RAM : (0fcf00H, 002f20H) -> Make this size bigger.

memory SDR : (0ffe20H, 000098H) (Also change the start address as necessary.)

merge @@INIS : = SDR -> Specifying the segment location.

merge @@DATS : = SDR -> Specifying the segment location.

merge @@BITS : = SDR -> Specifying the segment location.

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 601 of 853
Apr 01, 2011

CHAPTER 6 FUNCTION SPECIFICATIONS

In the C language there are no commands to perform input/output with external (peripheral) devices or equipment.

This is because the designers of the C language designed it to keep its functions to a minimum. However, input/output

operations are necessary in the development of actual systems. For this reason, library functions for performing input/

output operations have been prepared in RL78,78K0R C compiler.

This chapter explains the library functions that RL78,78K0R C compiler has and the functions that can be used with the

simulator.

6.1 Distribution Libraries

The libraries distributed with RL78,78K0R C compiler are described below.

When using the standard library inside an application, include the relevant header files and use the library functions.

The runtime library is a portion of the standard library, but the routines are called by RL78,78K0R C compiler automati-

cally, they are not functions described in C or assembly language source code.

Table 6-1. Distribution Libraries

Library Type Included Functions

Standard library - Character/String Functions

- Program Control Functions

- Special Functions

- Input and Output Functions

- Utility Functions

- String and Memory Functions

- Mathematical Functions

- Diagnostic Function

Runtime library - Increment

- Decrement

- Sign reverse

- 1's complement

- Logical negation

- Multiplication

- Division

- Remainder arithmetic

- Addition

- Subtraction

- Left shift

- Right shift

- Compare

- Bit AND

- Bit OR

- Bit XOR

- Conversion from floating point number

- Conversion to floating point number

- Conversion from bit

- Startup routine

- Flash startup routine

- Main for boot

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 602 of 853
Apr 01, 2011

6.1.1 Standard library

This section shows the functions included in the standard library.

The standard library is fully supported when the -zf option is specified.

(1) Character/String Functions

OK : Re-entrant

- Flash vector table

- Function pre- and post-processing

- BCD-type conversion

- Auxiliary

Function Name Purpose Header File Re-entrant

isalpha Judges if a character is an alphabetic character (A to Z, a to z) ctype.h OK

isupper Judges if a character is an uppercase alphabetic character (A to Z) ctype.h OK

islower Judges if a character is an lowercase alphabetic character (a to z) ctype.h OK

isdigit Judges if a character is a numeric (0 to 9) ctype.h OK

isalnum Judges if a character is an alphanumeric character (0 to 9, A to Z, a to

z)

ctype.h OK

isxdigit Judges if a character is a hexadecimal numbers (0 to 9, A to F, a to f) ctype.h OK

isspace Judges if a character is a whitespace character (whitespace, tab, car-

riage return, line feed, vertical, tab, form feed)

ctype.h OK

ispunct Judges if a character is a printable character other than a whitespace

character or alphanumeric character

ctype.h OK

isprint Judges if a character is a printable character ctype.h OK

isgraph Judges if a character is a printable character other than whitespace ctype.h OK

iscntrl Judges if a character is a control character ctype.h OK

isascii Judges if a character is an ASCII code ctype.h OK

toupper Converts a lowercase alphabetic character to uppercase ctype.h OK

tolower Converts an uppercase alphabetic character to lowercase ctype.h OK

toascii Converts the input to an ASCII code ctype.h OK

_toupper Subtracts "a" from the input character and adds "A" ctype.h OK

toup ctype.h OK

_tolower Subtracts "A" from the input character and adds "a" ctype.h OK

tolow ctype.h OK

Library Type Included Functions

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 603 of 853
Apr 01, 2011

(2) Program Control Functions

NG : Not re-entrant

(3) Special Functions

OK : Re-entrant

(4) Input and Output Functions

OK : Re-entrant

Δ : Functions that do not support floating point are re-entrant

Function Name Purpose Header File Re-entrant

setjmp Saves the environment at the time of the call setjmp.h NG

longjmp Restores the environment saved with setjmp setjmp.h NG

Function Name Purpose Header File Re-entrant

va_start Settings for processing variable arguments stdarg.h OK

va_starttop Settings for processing variable arguments stdarg.h OK

va_arg Processes variable arguments stdarg.h OK

va_end Indicates the end of processing variable arguments stdarg.h OK

Function Name Purpose Header File Re-entrant

sprintf Writes data to a string according to a format stdio.h Δ

sscanf Reads data from the input string according to a format stdio.h Δ

printf Outputs data to SFR according to a format stdio.h Δ

scanf Reads data from SFR according to a format stdio.h Δ

vprintf Outputs data to SFR according to a format stdio.h Δ

vsprintf Writes data to a string according to a format stdio.h Δ

getchar Reads one character from SFR stdio.h OK

gets Reads a string stdio.h OK

putchar Outputs one character to SFR stdio.h OK

puts Outputs a string stdio.h OK

__putc Outputs one character to opaque stdio.h OK

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 604 of 853
Apr 01, 2011

(5) Utility Functions

OK : Re-entrant

NG : Not re-entrant

Function Name Purpose Header File Re-entrant

atoi Converts a decimal integer string to int stdlib.h OK

atol Converts a decimal integer string to long stdlib.h OK

strtol Converts a string to long stdlib.h OK

strtoul Converts a string to unsigned long stdlib.h OK

calloc Allocates an array's region and initializes it to zero stdlib.h OK

free Releases a block of allocated memory stdlib.h OK

malloc Allocates a block stdlib.h OK

realloc Re-allocates a block stdlib.h OK

abort Abnormally terminates the program stdlib.h OK

atexit Registers a function to be called at normal termination stdlib.h NG

exit Terminates the program stdlib.h NG

abs Obtains the absolute value of an int type value stdlib.h OK

labs Obtains the absolute value of a long type value stdlib.h OK

div Performs int type division, obtains the quotient and remainder stdlib.h NG

ldiv Performs long type division, obtains the quotient and remainder stdlib.h NG

brk Sets the break value stdlib.h NG

sbrk Increases/decreases the break value stdlib.h NG

atof Converts a decimal integer string to double stdlib.h NG

strtod Converts a string to double stdlib.h NG

itoa Converts int to a string stdlib.h OK

ltoa Converts long to a string stdlib.h OK

ultoa Converts unsigned long to a string stdlib.h OK

rand Generates a pseudo-random number stdlib.h NG

srand Initializes the pseudo-random number generator state stdlib.h NG

bsearch Binary search stdlib.h OK

qsort Quick sort stdlib.h OK

strbrk Sets the break value stdlib.h OK

strsbrk Increases/decreases the break value stdlib.h OK

stritoa Converts int to a string stdlib.h OK

strltoa Converts long to a string stdlib.h OK

strultoa Converts unsigned long to a string stdlib.h OK

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 605 of 853
Apr 01, 2011

(6) String and Memory Functions

OK : Re-entrant

NG : Not re-entrant

Function Name Purpose Header File Re-entrant

memcpy Copies a buffer for the specified number of characters string.h OK

memmove Copies a buffer for the specified number of characters string.h OK

strcpy Copies a string string.h OK

strncpy Copies the specified number of characters from the start of a string string.h OK

strcat Appends a string to a string string.h OK

strncat Appends the specified number of characters of a string to a string string.h OK

memcmp Compares the specified number of characters of two buffers string.h OK

strcmp Compares two strings string.h OK

strncmp Compares the specified number of characters of two strings string.h OK

memchr Searches for the specified string in the specified number of characters

of a buffer

string.h OK

strchr Searches for the specified character from within a string and returns

the location of the first occurrence

string.h OK

strrchr Searches for the specified character from within a string and returns

the location of the last occurrence

string.h OK

strspn Obtains the length from the start of a segment composed of only the

characters included in the specified string within the string being

searched

string.h OK

strcspn Obtains the length from the start of a segment composed of characters

other than those included in the specified string within the string being

searched

string.h OK

strpbrk Obtains the position of the first occurrence of any character in the

specified string within the string being searched

string.h OK

strstr Obtains the position of the first occurrence of the specified string within

the string being searched

string.h OK

strtok Decomposing character string into a string consisting of characters

other than delimiters.

string.h NG

memset Initializes the specified number of characters of a buffer with the spec-

ified character

string.h OK

strerror Returns a pointer to the area that stores the error message string

which corresponds to the specified error number

string.h OK

strlen Obtains the length of a string string.h OK

strcoll Compares two strings based on region specific information string.h OK

strxfrm Transforms a string based on region specific information string.h OK

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 606 of 853
Apr 01, 2011

(7) Mathematical Functions

Function Name Purpose Header File Re-entrant

acos Finds acos math.h NG

asin Finds asin math.h NG

atan Finds atan math.h NG

atan2 Finds atan2 math.h NG

cos Finds cos math.h NG

sin Finds sin math.h NG

tan Finds tan math.h NG

cosh Finds cosh math.h NG

sinh Finds sinh math.h NG

tanh Finds tanh math.h NG

exp Finds the exponential function math.h NG

frexp Finds mantissa and exponent part math.h NG

ldexp Finds x * 2 ^ exp math.h NG

log Finds the natural logarithm math.h NG

log10 Finds the base 10 logarithm math.h NG

modf Finds the decimal and integer parts math.h NG

pow Finds yth power of x math.h NG

sqrt Finds the square root math.h NG

ceil Finds the smallest integer not smaller than x math.h NG

fabs Finds the absolute value of floating point number x math.h NG

floor Finds the largest integer not larger than x math.h NG

fmod Finds the remainder of x/y math.h NG

matherr Obtains the exception processing for the library handling floating point

numbers

math.h NG

acosf Finds acos math.h NG

asinf Finds asin math.h NG

atanf Finds atan math.h NG

atan2f Finds atan of y/x math.h NG

cosf Finds cos math.h NG

sinf Finds sin math.h NG

tanf Finds tan math.h NG

coshf Finds cosh math.h NG

sinhf Finds sinh math.h NG

tanhf Finds tanh math.h NG

expf Finds the exponential function math.h NG

frexpf Finds mantissa and exponent part math.h NG

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 607 of 853
Apr 01, 2011

NG : Not re-entrant

(8) Diagnostic Function

OK : Re-entrant

6.1.2 Runtime library

This section shows the functions included in the runtime library.

These operation instructions are called in a format with @@ attached to the beginning of the function name. However,

cstart, cstarte, cprep, and cdisp are called in a format with _@ attached to the beginning of the function name.

In addition, operations that do not appear in the tables below have no library support. The compiler performs inline

expansion.

long addition/subtraction, and/or/xor, and shift may also undergo inline expansion.

(1) Increment

(2) Decrement

ldexpf Finds x * 2 ^ exp math.h NG

logf Finds the natural logarithm math.h NG

log10f Finds the base 10 logarithm math.h NG

modff Finds the decimal and integer parts math.h NG

powf Finds yth power of x math.h NG

sqrtf Finds the square root math.h NG

ceilf Finds the smallest integer not smaller than x math.h NG

fabsf Finds the absolute value of floating point number x math.h NG

floorf Finds the largest integer not larger than x math.h NG

fmodf Finds the remainder of x/y math.h NG

Function Name Purpose Header File Re-entrant

__assertfail Supports the assert macro assert.h OK

Function Name Purpose

lsinc Increments signed long

luinc Increments unsigned long

finc Increments float

lsincr Increments signed long (for allocation to RAM)

luincr Increments unsigned long (for allocation to RAM)

fincr Increments float (for allocation to RAM)

Function Name Purpose

lsdec Decrements signed long

Function Name Purpose Header File Re-entrant

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 608 of 853
Apr 01, 2011

(3) Sign reverse

(4) 1's complement

(5) Logical negation

(6) Multiplication

ludec Decrements unsigned long

fdec Decrements float

lsdecr Decrements signed long (for allocation to RAM)

ludecr Decrements unsigned long (for allocation to RAM)

fdecr Decrements float (for allocation to RAM)

Function Name Purpose

lsrev Reverses the sign of signed long

lurev Reverses the sign of unsigned long

frev Reverses the sign of float

lsrevr Reverses the sign of signed long (for allocation to RAM)

lurevr Reverses the sign of unsigned long (for allocation to RAM)

frevr Reverses the sign of float (for allocation to RAM)

Function Name Purpose

lscom Obtains 1's complement of signed long

lucom Obtains 1's complement of unsigned long

lscomr Obtains 1's complement of signed long (for allocation to RAM)

lucomr Obtains 1's complement of unsigned long (for allocation to RAM)

Function Name Purpose

lsnot Negates signed long

lunot Negates unsigned long

Function Name Purpose

csmul Performs multiplication between signed char data

cumul Performs multiplication between unsigned char data

ismul Performs multiplication between signed int data

iumul Performs multiplication between unsigned int data

lsmul Performs multiplication between signed long data

lumul Performs multiplication between unsigned long data

fmul Performs multiplication between float data

Function Name Purpose

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 609 of 853
Apr 01, 2011

(7) Division

(8) Remainder arithmetic

iumulr Performs multiplication between unsigned int data (for allocation to RAM)

lsmulr Performs multiplication between signed long data (for allocation to RAM)

lumulr Performs multiplication between unsigned long data (for allocation to RAM)

fmulr Performs multiplication between float data (for allocation to RAM)

Function Name Purpose

csdiv Performs division between signed char data

cudiv Performs division between unsigned char data

isdiv Performs division between signed int data

iudiv Performs division between unsigned int data

lsdiv Performs division between signed long data

ludiv Performs division between unsigned long data

fdiv Performs division between float data

csdivr Performs division between signed char data (for allocation to RAM)

cudivr Performs division between unsigned char data (for allocation to RAM)

isdivr Performs division between signed int data (for allocation to RAM)

iudivr Performs division between unsigned int data (for allocation to RAM)

lsdivr Performs division between signed long data (for allocation to RAM)

ludivr Performs division between unsigned long data (for allocation to RAM)

fdivr Performs division between float data (for allocation to RAM)

Function Name Purpose

csrem Performs remainder arithmetic between signed char data

curem Performs remainder arithmetic between unsigned char data

isrem Performs remainder arithmetic between signed int data

iurem Performs remainder arithmetic between unsigned int data

lsrem Performs remainder arithmetic between signed long data

lurem Performs remainder arithmetic between unsigned long data

csremr Performs remainder arithmetic between signed char data (for allocation to RAM)

curemr Performs remainder arithmetic between unsigned char data (for allocation to RAM)

isremr Performs remainder arithmetic between signed int data (for allocation to RAM)

iuremr Performs remainder arithmetic between unsigned int data (for allocation to RAM)

lsremr Performs remainder arithmetic between signed long data (for allocation to RAM)

luremr Performs remainder arithmetic between unsigned long data (for allocation to RAM)

Function Name Purpose

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 610 of 853
Apr 01, 2011

(9) Addition

(10)Subtraction

(11) Left shift

(12)Right shift

(13)Compare

Function Name Purpose

lsadd Performs addition between signed long data

luadd Performs addition between unsigned long data

fadd Performs addition between float data

lsaddr Performs addition between signed long data (for allocation to RAM)

luaddr Performs addition between unsigned long data (for allocation to RAM)

faddr Performs addition between float data (for allocation to RAM)

Function Name Purpose

lssub Performs subtraction between signed long data

lusub Performs subtraction between unsigned long data

fsub Performs subtraction between float data

lssubr Performs subtraction between signed long data (for allocation to RAM)

lusubr Performs subtraction between unsigned long data (for allocation to RAM)

fsubr Performs subtraction between float data (for allocation to RAM)

Function Name Purpose

lslsh Performs left shift of signed long data

lulsh Performs left shift of unsigned long data

lslshr Performs left shift of signed long data (for allocation to RAM)

lulshr Performs left shift of unsigned long data (for allocation to RAM)

Function Name Purpose

lsrsh Performs right shift of signed long data

lursh Performs right shift of unsigned long data

lsrsh Performs right shift of signed long data (for allocation to RAM)

lursh Performs right shift of unsigned long data (for allocation to RAM)

Function Name Purpose

cscmp Compares signed char data

iscmp Compares signed int data

lscmp Compares signed long data

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 611 of 853
Apr 01, 2011

(14)Bit AND

(15)Bit OR

(16)Bit XOR

(17)Conversion from floating point number

lucmp Compares unsigned long data

fcmp Compares float data

cscmpr Compares signed char data (for allocation to RAM)

iscmpr Compares signed int data (for allocation to RAM)

lscmpr Compares signed long data (for allocation to RAM)

lucmpr Compares unsigned long data (for allocation to RAM)

fcmpr Compares float data (for allocation to RAM)

Function Name Purpose

lsband Performs AND operation between signed long data

luband Performs AND operation between unsigned long data

lsbandr Performs AND operation between signed long data (for allocation to RAM)

lubandr Performs AND operation between unsigned long data (for allocation to RAM)

Function Name Purpose

lsbor Performs OR operation between signed long data

lubor Performs OR operation between unsigned long data

lsborr Performs OR operation between signed long data (for allocation to RAM)

luborr Performs OR operation between unsigned long data (for allocation to RAM)

Function Name Purpose

lsbxor Performs XOR operation between signed long data

lubxor Performs XOR operation between unsigned long data

lsbxorr Performs XOR operation between signed long data (for allocation to RAM)

lubxorr Performs XOR operation between unsigned long data (for allocation to RAM)

Function Name Purpose

ftols Converts from float to signed long

ftolu Converts from float to unsigned long

ftolsr Converts from float to signed long (for allocation to RAM)

ftolur Converts from float to unsigned long (for allocation to RAM)

Function Name Purpose

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 612 of 853
Apr 01, 2011

(18)Conversion to floating point number

(19)Conversion from bit

(20)Startup routine

Function Name Purpose

lstof Converts from signed long to float

lutof Converts from unsigned long to float

lstofr Converts from signed long to float (for allocation to RAM)

lutofr Converts from unsigned long to float (for allocation to RAM)

Function Name Purpose

btol Converts a bit to long

btolr Converts a bit to long (for allocation to RAM)

Function Name Purpose

cstart Startup routine

- Acquires the area (4 * 32 bytes) to register functions with the atexit function and makes the

beginning label name _@FNCTBL

- Acquires the break area (32 bytes) and makes the beginning label name _@MEMTOP and the

area's next address label name _@MEMBTM

- Defines the reset vector table's segment in the following manner and specifies the startup

routine's beginning address

 @@VECT00 CSEG AT 0000H

 DW _@cstart

- Sets the mirror region

- Sets the SP register to the end address of the stack area + 1

- Calls the hdwinit function

- Sets the variable _errno, which inputs the error number, to 0

- Sets the variable _@FNCENT, which inputs the number of functions registered with the atexit

function, to 0

- Initializes the break value and sets _@MEMTOP's address to the variable _@BRKADR

- Set 1 as the initial value for the variable _@SEED, which is the source of pseudo random

numbers for the rand function

- Perform copy processing of initialized data and execute 0

- Clear of external data without an initial value.

- Calls the main function (user program)

- Calls the exit function with the argument 0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 613 of 853
Apr 01, 2011

(21)Flash startup routine

(22)Main for boot

(23)Flash vector table

(24)Function pre- and post-processing

(25)BCD-type conversion

Function Name Purpose

cstarte Flash startup routine

- Define the reset vector table segment as follows, and specify the start address of the startup

routine

- Define the flash area branch table as follows (ITBLTOR is the start address of the flash area

branch table)

 @EVECT00 CSEG AT ITBLTOP

 BR _@cstarte

- Sets the SP register to the end address of the stack area + 1

- Perform copy processing of initialized data and execute 0

- Calls the main function (user program)

- Calls the exit function with the argument 0

Function Name Purpose

boot_main Performs the boot area's main function processing

Function Name Purpose

vect00 - vect7e Configures the interrupt vector table when the -zf option is specified

Function Name Purpose

hdwinit Performs initialization of peripheral devices (sfr) immediately after a CPU reset

cprep3 Performs pre-processing for functions (includes the saddr area for register variables)

cdisp3 Performs post-processing for functions (includes the saddr area for register variables)

cpre3e Performs pre-processing for functions (includes the saddr area for register variables)

cdis3e Performs post-processing for functions (includes the saddr area for register variables)

Function Name Purpose

bcdtob Converts 1-byte bcd to 1-byte binary

btobcd Converts 1-byte binary to 2-byte bcd

bcdtow Converts 2-byte bcd to 2-byte binary

wtobcd Converts 2-byte binary to 2-byte bcd

bbcd Converts 1-byte binary to 2-byte bcd

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 614 of 853
Apr 01, 2011

(26)Auxiliary

Function Name Purpose

indao For replacing fixed instruction pattern

ifdao For replacing fixed instruction pattern

inado For replacing fixed instruction pattern

ifado For replacing fixed instruction pattern

lnd0 For replacing fixed instruction pattern

lfd0 For replacing fixed instruction pattern

ln0d For replacing fixed instruction pattern

lf0d For replacing fixed instruction pattern

lnd0o For replacing fixed instruction pattern

lfd0o For replacing fixed instruction pattern

ln0do For replacing fixed instruction pattern

lf0do For replacing fixed instruction pattern

df1in For replacing fixed instruction pattern

df1de For replacing fixed instruction pattern

dn4in For replacing fixed instruction pattern

dn4ip For replacing fixed instruction pattern

df4in For replacing fixed instruction pattern

df4ip For replacing fixed instruction pattern

dn4ino For replacing fixed instruction pattern

dn4ipo For replacing fixed instruction pattern

df4ino For replacing fixed instruction pattern

df4ipo For replacing fixed instruction pattern

dn4de For replacing fixed instruction pattern

dn4dp For replacing fixed instruction pattern

df4de For replacing fixed instruction pattern

df4dp For replacing fixed instruction pattern

dn4deo For replacing fixed instruction pattern

dn4dpo For replacing fixed instruction pattern

df4deo For replacing fixed instruction pattern

df4dpo For replacing fixed instruction pattern

divuw 78K0 divuw instruction compatibility

mulsw Signed int multiplication

muluw Unigned int multiplication

macsw Signed sum-of-products calculation

macuw Unigned sum-of-products calculation

divuwr 78K0 divuw instruction compatibility (for allocation to RAM)

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 615 of 853
Apr 01, 2011

6.2 Interface Between Functions

Library functions are used with function calls. Function calls are done with the call instruction. Arguments are passed

on the stack, return values are passed by registers.

However, if possible, the first argument is also passed by registers.

6.2.1 Arguments

The function interface (passing arguments, storing return values) for the standard library is the same as that of regular

functions.

For details see "3.3.2 Ordinary function call interface".

6.2.2 Return values

Return values are a minimum of 16 bits and are stored in 16-bit units from the low-order bits from register BC to DE.

When returning a structure, the structure's starting address is stored in BC, DE.

For details see "3.3.1 Return values".

6.2.3 Saving registers used by separate libraries

Libraries that use HL save registers that use those to the stack.

Libraries that use the saddr area save the saddr area to use to the stack.

The work area used by libraries also use the stack area.

An example (for small model, medium model) of the procedure for passing arguments and return values is shown next.

The following show the function to call.

(1) Push arguments on the stack (function call source)

The arguments are pushed onto the stack in the order c, b in the high-order 16 bits, b in the low-order 16 bits. a is

passed in the AX register.

(2) Call func with the call instruction (function call source)

After b in the low-order 16 bits, the return address is pushed onto the stack, control moves to the function func.

(3) Save the registers to use in the function (function call target)

When using HL, HL is pushed onto the stack.

(4) Push the first argument passed by the register onto the stack (function call target)

(5) Perform processing for the function func, store the return value in a register (function call target)

The low-order 16 bits of the return value "long" are stored in BC, the high-order 16 bits are stored in DE.

(6) Restore the stored first argument (function call target)

(7) Restore the saved registers (function call target)

(8) Return control to the calling function with the ret instruction (function call target)

(9) Clear the arguments off the stack (function call source)

The number of bytes (2-byte units) of the arguments is added to the stack pointer.

6 is added to the stack pointer.

"long func (int a, long b, char *c) ;"

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 616 of 853
Apr 01, 2011

Figure 6-1. Stack Area During Function Call

6.3 Header Files

There are 13 header files in RL78,78K0R C compiler and they define and declare the standard library functions, type

names, and macro names.

RL78,78K0R C compiler header files are shown next.

6.3.1 ctype.h

ctype.h defines character/string functions.

In ctype.h, the following functions are defined.

However, when compiler option -za (the option to turn off non-ANSI compliant functions and turn on a portion of ANSI

compliant functions) is specified, _toupper and _tolower are not defined, in their place tolow and toup are defined. When

-za is not specified, tolow and toup are not defined. The functions declared also vary depending on the options and spe-

cific model.

6.3.2 setjmp.h

setjmp.h defines program control functions.

In setjmp.h, the following functions are defined. In addition, the functions declared also vary depending on the options

and specific model.

In setjmp.h, the following object is declared.

- Declaration of the int array type "jmp_buf"

isalpha, isupper, islower, isdigit, isalnum, isxdigit, isspace, ispunct, isprint, isgraph,

iscntrl, isascii, toupper, tolower, toascii, _toupper/toup, _tolower/tolow

setjmp, longjmp

typedef int jmp_buf[12]

Stack pointer before

HL

High address

Stack pointer after (4)

Stack pointer after (3)

Stack pointer after (2)

Stack pointer after (1)

Stack pointer after (6)

Stack pointer after (7)

Stack pointer after (8)

Stack pointer after (9)

High-order 16 bits

(5) Store return value

Low-order 16 bits

DEBC

b high-order 16 bits

b low-order 16 bits

Return address high-order 16 bits

Return address low-order 16 bits

c

a

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 617 of 853
Apr 01, 2011

6.3.3 stdarg.h

stdarg.h defines special functions.

In stdarg.h, the following functions are defined.

In stdarg.h, the following object is defined.

- Declaration of the pointer type "va_list" to char

6.3.4 stdio.h

stdio.h defines input/output functions. In stdio.h, the following functions are defined.

However, the functions declared vary depending on the options and specific model

The following macro name is declared.

6.3.5 stdlib.h

stdlib.h defines character/string functions, memory functions, program control, math functions, and special functions.

In stdlib.h, the following functions are defined.

However, when compiler option -za (the option to turn off non-ANSI compliant functions and turn on a portion of ANSI

compliant functions) is specified, brk, sbrk, itoa, ltoa, and ultoa are not defined, in their place strbrk, strsbrk, stritoa, strl-

toa, and strultoa are defined. When -za is not specified, these functions are not defined.

In stdlib.h, the following objects are declared.

- Declaration of the structure type "div_t" with int members "quot" and "rem".

- Definition of the macro name "RAND_MAX"

va_start, va_starttop, va_arg, va_end

typedef char *va_list ;

sprintf, sscanf, printf, scanf, vprintf, vsprintf, getchar, gets, putchar, puts, __putc

#define EOF (-1)

atoi, atol, strtol, strtoul, calloc, free, malloc, realloc, abort, atexit, exit, abs, labs,

div, ldiv, brk, sbrk, atof, strtod, itoa, ltoa, ultoa, rand, srand, bsearch, qsort, strbrk,

strsbrk, stritoa, strltoa, strultoa

typedef struct {

 int quot ;

 int rem ;

} div_t ;

#define RAND_MAX 32767

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 618 of 853
Apr 01, 2011

- Macro name declarations

6.3.6 string.h

string.h defines character/string functions, memory functions, and special functions.

In string.h, the following functions are defined.

However, the functions declared vary depending on the options and specific model.

6.3.7 error.h

error.h includes errno.h.

6.3.8 errno.h

The following objects are declared or defined

- Definition of the macro names "EDOM", "ERANGE", "ENOMEM"

- eclaration of the external variable "errno" of the volatile int type

6.3.9 limits.h

In limits.h, the following macro names are defined.

#define EXIT_SUCCESS 0

#define EXIT_FAILURE 1

memcpy, memmove, strcpy, strncpy, strcat, strncat, memcmp, strcmp, strncmp, memchr, strchr,

strrchr, strspn, strcspn, strpbrk, strstr, strtok, memset, strerror, strlen, strcoll,

strxfrm

#define EDOM 1

#define ERANGE 2

#define ENOMEM 3

extern volatile int errno ;

#define CHAR_BIT 8

#define CHAR_MAX +127

#define CHAR_MIN -128

#define INT_MAX +32767

#define INT_MIN -32768

#define LONG_MAX +2147483647

#define LONG_MIN -2147483648

#define SCHAR_MAX +127

#define SCHAR_MIN -128

#define SHRT_MAX +32767

#define SHRT_MIN -32768

#define UCHAR_MAX 255U

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 619 of 853
Apr 01, 2011

However, when the -qu option is specified, which considers an unmodified char as an unsigned char, CHAR_MAX and

CHAR_MIN are declared in the following manner by the macro __CHAR_UNSIGNED__ declared by the compiler.

6.3.10 stddef.h

In stddef.h, the following objects are declared or defined.

- Declaration of the int type "ptrdiff_t

- Declaration of the unsigned int type "size_t"

- Definition of the macro name "NULL"

- Definition of the macro name "offsetof"

Remark offsetof (type, member-designator)
Expands to a general integer constant expression of type size_t, and that value is the offset value in

bytes from the start of the structure (specified by the type) to the structure member (specified by the

member designator).

When the member specifier has been declared as static type t;, the result of evaluating expression& (t.

member specifier) must be an address constant. When the specified member is a bit field, there is no

guarantee of the operation.

#define UINT_MAX 65535U

#define ULONG_MAX 4294967295U

#define USHRT_MAX 65535U

#define SINT_MAX +32767

#define SINT_MIN -32768

#define SSHRT_MAX +32767

#define SSHRT_MIN -32768

#define CHAR_MAX (255U)

#define CHAR_MIN (0)

typedef int ptrdiff_t ;

typedef unsigned int size_t ;

#define NULL (void *) 0 ;

#define offsetof (type, member) ((size_t) & (((type*)0) -> member))

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 620 of 853
Apr 01, 2011

6.3.11 math.h

In math.h, the following functions are defined

The following objects are defined.

- Definition of the macro name "HUGE_VAL"

6.3.12 float.h

In float.h, the following objects are defined.

The macros defined are split according to the macro __DOUBLE_IS_32BITS__ which is declared by the compiler

when the size of the double type is 32 bits.

acos, asin, atan, atan2, cos, sin, tan, cosh, sinh, tanh, exp, frexp, ldexp, log, log10,

modf, pow, sqrt, ceil, fabs, floor, fmod, matherr, acosf, asinf, atanf, atan2f, cosf, sinf,

tanf, coshf, sinhf, tanhf, expf, frexpf, ldexpf, logf, log10f, modff, powf, sqrtf, ceilf,

fabsf, floorf, fmodf

#define HUGE_VAL DBL_MAX

#ifndef _FLOAT_H

#define FLT_ROUNDS 1

#define FLT_RADIX 2

#ifdef __DOUBLE_IS_32BITS__

#define FLT_MANT_DIG 24

#define DBL_MANT_DIG 24

#define LDBL_MANT_DIG 24

#define FLT_DIG 6

#define DBL_DIG 6

#define LDBL_DIG 6

#define FLT_MIN_EXP -125

#define DBL_MIN_EXP -125

#define LDBL_MIN_EXP -125

#define FLT_MIN_10_EXP -37

#define DBL_MIN_10_EXP -37

#define LDBL_MIN_10_EXP -37

#define FLT_MAX_EXP +128

#define DBL_MAX_EXP +128

#define LDBL_MAX_EXP +128

#define FLT_MAX_10_EXP +38

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 621 of 853
Apr 01, 2011

#define DBL_MAX_10_EXP +38

#define LDBL_MAX_10_EXP +38

#define FLT_MAX 3.40282347E+38F

#define DBL_MAX 3.40282347E+38F

#define LDBL_MAX 3.40282347E+38F

#define FLT_EPSILON 1.19209290E-07F

#define DBL_EPSILON 1.19209290E-07F

#define LDBL_EPSILON 1.19209290E-07F

#define FLT_MIN 1.17549435E-38F

#define DBL_MIN 1.17549435E-38F

#define LDBL_MIN 1.17549435E-38F

#else /* __DOUBLE_IS_32BITS__ */

#define FLT_MANT_DIG 24

#define DBL_MANT_DIG 53

#define LDBL_MANT_DIG 53

#define FLT_DIG 6

#define DBL_DIG 15

#define LDBL_DIG 15

#define FLT_MIN_EXP -125

#define DBL_MIN_EXP -1021

#define LDBL_MIN_EXP -1021

#define FLT_MIN_10_EXP -37

#define DBL_MIN_10_EXP -307

#define LDBL_MIN_10_EXP -307

#define FLT_MAX_EXP +128

#define DBL_MAX_EXP +1024

#define LDBL_MAX_EXP +1024

#define FLT_MAX_10_EXP +38

#define DBL_MAX_10_EXP +308

#define LDBL_MAX_10_EXP +308

#define FLT_MAX 3.40282347E+38F

#define DBL_MAX 1.7976931348623157E+308

#define LDBL_MAX 1.7976931348623157E+308

#define FLT_EPSILON 1.19209290E-07F

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 622 of 853
Apr 01, 2011

6.3.13 assert.h

In assert.h, the following functions are defined.

In assert.h, the following objects are defined.

However, the assert.h header file references one more macro, NDEBUG, which is not defined in the assert.h header

file. If NDEBUG is defined as a macro when assert.h is included in the source file, the assert macro is simply defined as

shown next, and __assertfail is also not defined.

6.4 Re-entrant

Re-entrant is a state where it is possible for a function called by a program to be successively called by another pro-

gram.

The RL78,78K0R C compiler standard library takes re-entrantability into consideration and does not use static areas.

Therefore, the data in the memory area used by the function is not damaged by a call from another program.

However, be careful as the following functions are not re-entrant.

- Functions that cannot be made re-entrant

#define DBL_EPSILON 2.2204460492503131E-016

#define LDBL_EPSILON 2.2204460492503131E-016

#define FLT_MIN 1.17549435E-38F

#define DBL_MIN 2.225073858507201E-308

#define LDBL_MIN 2.225073858507201E-308

#endif /* __DOUBLE_IS_32BITS__ */

#define _FLOAT_H

#endif /* !_FLOAT_H */

__assertfail

#ifdef NDEBUG

#define assert (p) ((void) 0)

#else

extern int __assertfail (char *__msg, char *__cond, char *__file, int__line) ;

#define assert (p) ((p) ? (void) 0 : (void) __assertfail (

 "Assertion failed : %s, file %s, line %d\n",

 #p, __FILE__, __LINE__))

#endif /* NDEBUG */

#define assert (p) ((void) 0)

setjmp, longjmp, atexit, exit

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 623 of 853
Apr 01, 2011

- Functions that use the area acquired by the startup routine

- Functions that handle floating point numbers

Note Of sprintf, sscanf, printf, scanf, vprintf, and vsprintf, functions that do not support floating point are re-

entrant.

6.5 Use of Arguments/Return Values Suitable for Standard Library

Functions that specify pointers to arguments/return values of the standard library are linked to the appropriate library

according to the memory model.

To handle pointers that are not of the default memory model, it is possible to link to the appropriate library for that

pointer by calling the functions with the standard function names below.

<function name>_n: : always handles the pointer as near

<function nam>_f: : always handles the pointer as far

For example, when the small model is selected, the far pointers can be specified as an argument for the strcmp func-

tion.

An example is shown below.

Cautions are shown below.

- When the small model and medium model are specified, pointer arguments for the input/output functions sprintf/

printf/vprintf/vsprintf/sscanf/scanf, which handle variable arguments, are handled as near pointers. Function point-

ers cannot be used.

When using function pointers, or when using far pointers, use printf_f and it will be necessary to cast all of the vari-

able argument pointers to far pointers.

When the large model is specified, pointer arguments for the input/output functions sprintf/printf/vprintf/vsprintf/

sscanf/scanf, which handle variable arguments, are handled as far pointers.

- When the small model and medium model are specified, pointer arguments for the special functions va_start/

va_starttop/va_arg/va_end, which handle variable arguments, are handled as near pointers. Function pointers

cannot be used.

div, ldiv, brk, sbrk, rand, srand, strtok

sprintf, sscanf, printf, scanf, vprintf, vsprintfNote

atof, strtod, all math functions

#include <string.h>

__far char *sf1 ;

__far char *sf2 ;

void main (void) {

 :

 r = strcmp_f (sf1, sf2) ;

 :

}

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 624 of 853
Apr 01, 2011

6.6 Character/String Functions

The following functions are available as character/string functions.

Function Name Purpose

isalpha Judges if a character is an alphabetic character (A to Z, a to z)

isupper Judges if a character is an uppercase alphabetic character (A to Z)

islower Judges if a character is an lowercase alphabetic character (a to z)

isdigit Judges if a character is a numeric (0 to 9)

isalnum Judges if a character is an alphanumeric character (0 to 9, A to Z, a to z)

isxdigit Judges if a character is a hexadecimal numbers (0 to 9, A to F, a to f)

isspace Judges if a character is a whitespace character (whitespace, tab, carriage return,

line feed, vertical, tab, form feed)

ispunct Judges if a character is a printable character other than a whitespace character or

alphanumeric character

isprint Judges if a character is a printable character

isgraph Judges if a character is a printable character other than whitespace

iscntrl Judges if a character is a control character

isascii Judges if a character is an ASCII code

toupper Converts a lowercase alphabetic character to uppercase

tolower Converts an uppercase alphabetic character to lowercase

toascii Converts the input to an ASCII code

_toupper Subtracts "a" from the input character and adds "A"

toup

_tolower Subtracts "A" from the input character and adds "a"

tolow

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 625 of 853
Apr 01, 2011

Judges if c is an alphabetic character (A to Z, a to z)

[Syntax]

#include <ctype.h>

int isalpha (int c) ;

[Argument(s)/Return value]

[Description]

- If character c is included in alphabetic character (A to Z or a to z), 1 is returned.

In other cases, 0 is returned.

isalpha

Argument Return Value

c :

Character to be judged

If character c is included in alphabetic character (A to Z or a

to z) :

1

If character c is not included in alphabetic character (A to Z

or a to z) :

0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 626 of 853
Apr 01, 2011

Judges if c is an uppercase alphabetic character (A to Z)

[Syntax]

#include <ctype.h>

int isupper (int c) ;

[Argument(s)/Return value]

[Description]

- If character c is included in uppercase letters character (A to Z), 1 is returned.

In other cases, 0 is returned.

isupper

Argument Return Value

c :

Character to be judged

If character c is included in the uppercase letters (A to Z) :

1

If character c is not included in the uppercase letters (A to Z)

:

0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 627 of 853
Apr 01, 2011

Judges if c is an lowercase alphabetic character (a to z)

[Syntax]

#include <ctype.h>

int islower (int c) ;

[Argument(s)/Return value]

[Description]

- If character c is included in the lowercase letters (a to z), 1 is returned.

In other cases, 0 is returned.

islower

Argument Return Value

c :

Character to be judged

If character c is included in the lowercase letters (a to z) :

1

If character c is not included in the lowercase letters (a to z) :

0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 628 of 853
Apr 01, 2011

Judges if c is a numeric (0 to 9)

[Syntax]

#include <ctype.h>

int isdigit (int c) ;

[Argument(s)/Return value]

[Description]

- If character c is included in the numeric characters (0 to 9), 1 is returned.

In other cases, 0 is returned.

isdigit

Argument Return Value

c :

Character to be judged

If character c is included in the numeric characters (0 to 9) :

1

If character c is not included in the numeric characters (0 to

9) :

0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 629 of 853
Apr 01, 2011

Judges if c is an alphanumeric character (0 to 9, A to Z, a to z)

[Syntax]

#include <ctype.h>

int isalnum (int c) ;

[Argument(s)/Return value]

[Description]

- If character c is included in the alphanumeric characters (0 to 9 and A to Z or a to z), 1 is returned.

In other cases, 0 is returned.

isalnum

Argument Return Value

c :

Character to be judged

If character c is included in the alphanumeric characters (0

to 9 and A to Z or a to z) :

1

If character c is not included in the alphanumeric characters

(0 to 9 and A to Z or a to z) :

0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 630 of 853
Apr 01, 2011

Judges if c is a hexadecimal numbers (0 to 9, A to F, a to f)

[Syntax]

#include <ctype.h>

int isxdigit (int c) ;

[Argument(s)/Return value]

[Description]

- If character c is included in the hexadecimal numbers (0 to 9 and A to F or a to f), 1 is returned.

In other cases, 0 is returned.

isxdigit

Argument Return Value

c :

Character to be judged

If character c is included in the hexadecimal numbers (0 to 9

and A to F or a to f) :

1

If character c is not included in the hexadecimal numbers (0

to 9 and A to F or a to f) :

0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 631 of 853
Apr 01, 2011

Judges if c is a whitespace character (space, tab, carriage return, line feed, vertical, tab, form feed)

[Syntax]

#include <ctype.h>

int isspace (int c) ;

[Argument(s)/Return value]

[Description]

- If character c is included in the whitespace characters (space, tab, carriage return, line feed, vertical, tab, form

feed), 1 is returned.

In other cases, 0 is returned.

isspace

Argument Return Value

c :

Character to be judged

If character c is included in the whitespace characters :

1

If character c is not included in the whitespace characters :

0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 632 of 853
Apr 01, 2011

Judges if c is a printable character other than a whitespace character or alphanumeric character

[Syntax]

#include <ctype.h>

int ispunct (int c) ;

[Argument(s)/Return value]

[Description]

- If character c is included in the printable characters except whitespace and alphanumeric characters, 1 is returned.

In other cases, 0 is returned.

ispunct

Argument Return Value

c :

Character to be judged

If character c is included in the printable characters except

whitespace and alphanumeric characters :

1

If character c is not included in the printable characters

except whitespace and alphanumeric characters :

0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 633 of 853
Apr 01, 2011

Judges if c is a character is a printable character

[Syntax]

#include <ctype.h>

int isprint (int c) ;

[Argument(s)/Return value]

[Description]

- If character c is included in the printable characters, 1 is returned.

In other cases, 0 is returned.

isprint

Argument Return Value

c :

Character to be judged

If character c is included in the printable characters :

1

If character c is not included in the printable characters :

0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 634 of 853
Apr 01, 2011

Judges if c is a printable character other than whitespace

[Syntax]

#include <ctype.h>

int isgraph (int c) ;

[Argument(s)/Return value]

[Description]

- If character c is included in the printable nonblank character, 1 is returned.

In other cases, 0 is returned.

isgraph

Argument Return Value

c :

Character to be judged

If character c is included in the printable nonblank characters

:

1

If character c is not included in the printable nonblank char-

acters :

0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 635 of 853
Apr 01, 2011

Judges if c is a control character

[Syntax]

#include <ctype.h>

int iscntrl (int c) ;

[Argument(s)/Return value]

[Description]

- If character c is included in the control characters, 1 is returned.

In other cases, 0 is returned.

iscntrl

Argument Return Value

c :

Character to be judged

If character c is included in the control characters :

1

If character c is not included in the control characters :

0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 636 of 853
Apr 01, 2011

Judges if c is an ASCII code

[Syntax]

#include <ctype.h>

int isascii(int c) ;

[Argument(s)/Return value]

[Description]

- If character c is included in the ASCII code set, 1 is returned.

In other cases, 0 is returned.

isascii

Argument Return Value

c :

Character to be judged

If character c is included in the ASCII code set :

1

If character c is not included in the ASCII code set :

0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 637 of 853
Apr 01, 2011

Converts a lowercase alphabetic character to uppercase

[Syntax]

#include <ctype.h>

int toupper (int c) ;

[Argument(s)/Return value]

[Description]

- The toupper function checks to see if the argument is a lowercase letter and if so converts the letter to its upper-

case equivalent.

toupper

Argument Return Value

c :

Character to be converted

If c is a convertible character :

uppercase equivalent of c

If not convertible :

c

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 638 of 853
Apr 01, 2011

Converts an uppercase alphabetic character to lowercase

[Syntax]

#include <ctype.h>

int tolower (int c) ;

[Argument(s)/Return value]

[Description]

- The tolower function checks to see if the argument is a uppercase letter and if so converts the letter to its lower-

case equivalent.

tolower

Argument Return Value

c :

Character to be converted

If c is a convertible character :

lowercase equivalent of c

If not convertible :

c

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 639 of 853
Apr 01, 2011

Converts the input to an ASCII code

[Syntax]

#include <ctype.h>

int toascii (int c) ;

[Argument(s)/Return value]

[Description]

- The toascii function converts the bits (bits 7 to 15) of "c" outside the ASCII code range of "c" (bits 0 to 6) to "0" and

returns the converted bit value.

toascii

Argument Return Value

c :

Character to be converted

Value obtained by converting the bits outside the ASCII code

range of "c" to 0.

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 640 of 853
Apr 01, 2011

Subtracts "a" from "c" and adds "A" to the result

(_toupper is exactly the same as toup)

Remark a: Lowercase; A: Uppercase

[Syntax]

#include <ctype.h>

int _toupper (int c) ;

[Argument(s)/Return value]

Remark a: Lowercase; A: Uppercase

[Description]

- The _toupper function is similar to toup except that it does not test to see if the argument is a lowercase letter.

_toupper

Argument Return Value

c :

Character to be converted

Value obtained by adding "A" to the result of subtraction "c" -

"a"

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 641 of 853
Apr 01, 2011

Subtracts "a" from "c" and adds "A" to the result

(_toupper is exactly the same as toup)

Remark a: Lowercase; A: Uppercase

[Syntax]

#include <ctype.h>

int toup (int c) ;

[Argument(s)/Return value]

Remark a: Lowercase; A: Uppercase

[Description]

- The toup function is similar to _toupper except that it tests to see if the argument is a lowercase letter.

toup

Argument Return Value

c :

Character to be converted

Value obtained by adding "A" to the result of subtraction "c" -

"a"

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 642 of 853
Apr 01, 2011

Subtracts "A" from "c" and adds "a" to the result

(_tolower is exactly the same as the tolow)

Remark a: Lowercase; A: Uppercase

[Syntax]

#include <ctype.h>

int _tolower (int c) ;

[Argument(s)/Return value]

Remark a: Lowercase; A: Uppercase

[Description]

- The _tolower function is similar to tolow, except it does not test to see if the argument is an uppercase letter.

_tolower

Argument Return Value

c :

Character to be converted

Value obtained by adding "a" to the result of subtraction "c" -

"A"

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 643 of 853
Apr 01, 2011

Subtracts "A" from "c" and adds "a" to the result

(_tolower is exactly the same as the tolow)

Remark a: Lowercase; A: Uppercase

[Syntax]

#include <ctype.h>

int tolow (int c) ;

[Argument(s)/Return value]

Remark a: Lowercase; A: Uppercase

[Description]

- The tolow function is similar to _tolower, except it tests to see if the argument is an uppercase letter.

tolow

Argument Return Value

c :

Character to be converted

Value obtained by adding "a" to the result of subtraction "c" -

"A"

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 644 of 853
Apr 01, 2011

6.7 Program Control Functions

The following program control functions are available.

Function Name Purpose

setjmp Saves the environment at the time of the call

longjmp Restores the environment saved with setjmp

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 645 of 853
Apr 01, 2011

Saves the environment at the time of the call

[Syntax]

#include <setjmp.h>

int setjmp (jmp_buf env) ;

[Argument(s)/Return value]

[Description]

- The setjmp, when called directly, saves saddr area, SP, and the return address of the function that are used as HL

register or register variables to env and returns 0.

setjmp

Argument Return Value

env :

Array to which environment information is to be saved

If called directly :

0

If returning from the corresponding longjmp :

Value given by "val" or 1 if "val " is 0.

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 646 of 853
Apr 01, 2011

Restores the environment saved with setjmp

[Syntax]

#include <setjmp.h>

void longjmp (jmp_buf env, int val) ;

[Argument(s)/Return value]

[Description]

- The longjmp restores the saved environment to env (HL register, saddr area and SP that are used as register vari-

ables). Program execution continues as if the corresponding setjmp returns val (however, if val is 0, 1 is returned).

longjmp

Argument Return Value

env :

Array to which environment information was saved by set-

jmp

val :

Return value to setjmp

longjmp will not return because program execution resumes

at statement next to setjmp that saved environment to "env".

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 647 of 853
Apr 01, 2011

6.8 Special Functions

The following special functions are available.

Function Name Purpose

va_start Settings for processing variable arguments

va_starttop Settings for processing variable arguments

va_arg Processes variable arguments

va_end Indicates the end of processing variable arguments

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 648 of 853
Apr 01, 2011

Settings for processing variable arguments (macro)

[Syntax]

#include <stdarg.h>

void va_start (va_list ap, parmN) ;

Remark va_list is defined as typedef by stdarg.h.

[Argument(s)/Return value]

[Description]

- In the va_start macro, its argument ap must be a va_list type (char * type) object.

- A pointer to the next argument of parmN is stored in ap.

- parmN is the name of the last (right-most) parameter specified in the function's prototype.

- If parmN has the register storage class, proper operation of this function is not guaranteed.

- If parmN is the first argument, this function may not operate normally (use va_starttop instead).

va_start

Argument Return Value

ap :

Variable to be initialized so as to be used in va_arg and

va_end

parmN :

The argument before variable argument

None

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 649 of 853
Apr 01, 2011

Settings for processing variable arguments (macro)

[Syntax]

#include <stdarg.h>

void va_starttop (va_list ap, parmN) ;

Remark va_list is defined as typedef by stdarg.h.

[Argument(s)/Return value]

[Description]

- ap must be a va_list type object.

- A pointer to the next argument of parmN is stored in ap.

- parmN is the name of the right-most and first parameter specified in the function's prototype.

- If parmN has the register storage class, this function may not operate normally.

- If parmN is an argument other than the first argument, this function may not operate normally.

va_starttop

Argument Return Value

ap :

Variable to be initialized so as to be used in va_arg and

va_end

parmN :

The argument before variable argument

None

Return address

HL

Arguments

:

paramN

:

Arguments

Argument placed before paramN (first argument)

Variable arguments placed after paramN

High address

Low address

ap

Stack area

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 650 of 853
Apr 01, 2011

Processes variable arguments (macro)

[Syntax]

#include <stdarg.h>

type va_arg (va_list ap, type) ;

Remark va_list is defined as typedef by stdarg.h.

[Argument(s)/Return value]

[Description]

- In the va_arg macro, its argument ap must be the same as the va_list type object initialized with va_start (no guar-

antee for the other normal operation).

- va_arg returns value in the relevant place of variable arguments as a type of type.

The relevant place is the first of variable arguments immediately after va_start and next proceeded in each va_arg.

- If the argument pointer ap is a null pointer, the va_arg returns 0 (of type type).

- With the RL78,78K0R C compiler, when specifying a pointer as an argument list, the near data pointers (2-byte

length) must be specified when the medium model is used, and the far data pointers (4-byte length) must be spec-

ified when the large model is used.

The function pointer length is fixed to 4 bytes in both models, but the pointer length in each model must be speci-

fied as a 2- or 4-byte length when specifying the pointer as an argument list.

va_arg

Argument Return Value

ap :

Variable to process an argument list

type :

Type to point the relevant place of variable argument (type

is a type of variable length; for example, int type if

described as va_arg (va_list ap, int) or long type if

described as va_arg (va_list ap, long))

Normal case :

Value in the relevant place of variable argument

If ap is a null pointer :

0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 651 of 853
Apr 01, 2011

Indicates the end of processing variable arguments (macro)

[Syntax]

#include <stdarg.h>

void va_end (va_list ap) ;

Remark va_list is defined as typedef by stdarg.h.

[Argument(s)/Return value]

[Description]

- The va_end macro sets a null pointer in the argument pointer ap to inform the macro processor that all the param-

eters in the variable argument list have been processed.

va_end

Argument Return Value

ap :

Variable to process the variable number of arguments

None

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 652 of 853
Apr 01, 2011

6.9 Input and Output Functions

The following input and output functions are available.

Function Name Purpose

sprintf Writes data to a string according to a format

sscanf Reads data from the input string according to a format

printf Outputs data to SFR according to a format

scanf Reads data from SFR according to a format

vprintf Outputs data to SFR according to a format

vsprintf Writes data to a string according to a format

getchar Reads one character from SFR

gets Reads a string

putchar Outputs one character to SFR

puts Outputs a string

__putc Outputs one character to opaque

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 653 of 853
Apr 01, 2011

Writes data to a string according to a format

[Syntax]

#include <stdio.h>

int sprintf (char *s, const char *format, ...) ;

[Argument(s)/Return value]

[Description]

- If there are fewer actual arguments than the formats, the proper operation is not guaranteed. In the case that the

formats are run out despite the actual arguments still remain, the excess actual arguments are only evaluated and

ignored.

- sprintf converts zero or more arguments that follow format according to the format command specified by format
and writes (copies) them into the string s.

- Zero or more format commands may be used. Ordinary characters (other than format commands that begin with a

% character) are output as is to the string s. Each format command takes zero or more arguments that follow for-
mat and outputs them to the string s.

- Each format command begins with a % character and is followed by these:

(1) Zero or more flags (to be explained later) that modify the meaning of the format command

(2) Optional decimal integer which specify a minimum field width

If the output width after the conversion is less than this minimum field width, this specifier pads the output with

blanks of zeros on its left. (If the left-justifying flag "-" (minus) sign follows %, zeros are padded out to the right of

the output.) The default padding is done with spaces. If the output is to be padded with 0s, place a 0 before the

field width specifier. If the number or string is greater than the minimum field width, it will be printed in full even by

overrunning the minimum.

- Optional precision (number of decimal places) specification (.integer)

With d, i, o, u, x, and X type specifiers, the minimum number of digits is specified.

With s type specifier, the maximum number of characters (maximum field width) is specified.

The number of digits to be output following the decimal point is specified for e, E, and f conversions. The number

of maximum effective digits is specified for g and G conversions.

This precision specification must be made in the form of (.integers). If the integer part is omitted, 0 is assumed to

have been specified.

The amount of padding resulting from this precision specification takes precedence over the padding by the field

width specification.

sprintf

Argument Return Value

s :

Pointer to the string into which the output is to be written

format :

Pointer to the string which indicates format commands

... :

Zero or more arguments to be converted

Number of characters written in s
(Terminating null character is not counted.)

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 654 of 853
Apr 01, 2011

- Optional h, l and L modifiers

The h modifier instructs the sprintf function to perform the d, i, o, u, x, or X type conversion that follows this modifier

on short int or unsigned short int type. The h modifier instructs the sprintf function to perform the n type conversion

that follows this modifier on a pointer to short int type.

The l modifier instructs the sprintf function to perform the d, i, o, u, x, or X type conversion that follows this modifier

on long int or unsigned long int type. The h modifier instructs the sprintf function to perform the n type conversion

that follows this modifier on a pointer to long int type.

For other type specifiers, the h, l or L modifier is ignored.

- Character that specifies the conversion (to be explained later)

In the minimum field width or precision (number of decimal places) specification, * may be used in place of an inte-

ger string. In this case, the integer value will be given by the int argument (before the argument to be converted).

Any negative field width resulting from this will be interpreted as a positive field that follows the - (minus) flag. All

negative precision will be ignored.

The following flags are used to modify a format command:

The format codes for output conversion specifications are as follows:

With d, i, o, u, x and X type specifiers, the minimum number of digits (minimum field width) of the result is specified. If

the output is shorter than the minimum field width, it is padded with zeros.

If no precision is specified, 1 is assumed to have been specified.

Nothing will appear if 0 is converted with 0 precision.

Flag Contents

- The result of a conversion is left-justified within the field.

+ The result of a signed conversion always begins with a + or - sign.

space If the result of a signed conversion has no sign, space is prefixed to the output.

If the + (plus) flag and space flag are specified at the same time, the space flag will be ignored.

The result is converted in the "assignment form".

In the o type conversion, precision is increased so that the first digit becomes 0.

In the x or X type conversion, 0x or 0X is prefixed to a nonzero result.

In the e, E, and f type conversions, a decimal point is forcibly inserted to all the output values (in the default

without #, a decimal point is displayed only when there is a value to follow).

In the g and G type conversions, a decimal point is forcibly inserted to all the output values, and truncation

of 0 to follow will not be allowed (in the default without #, a decimal point is displayed only when there is a

value to follow. The 0 to follow will be truncated).

In all the other conversions, the # flag is ignored.

0 The result is left padded with zeros instead of spaces.

The 0 flag is ignored when it is specified together with the "-" flag.

The 0 flag is ignored in d, i, o, u, x, and X conversions when the precision is specified.

Format Code Contents

d, i Converts int argument to signed decimal format.

o Converts int argument to signed decimal format.

u Converts int argument to unsigned octal format.

x Converts int argument to unsigned hexadecimal format (with lowercase letters abcdef).

X Converts int argument to unsigned hexadecimal format (with uppercase letters ABCDEF).

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 655 of 853
Apr 01, 2011

- Operations for invalid conversion specifiers are not guaranteed.

- When the actual argument is a union or a structure, or the pointer to indicate them (except the character type array

in % s conversion or the pointer in % p conversion), operations are not guaranteed.

- The conversion result will not be truncated even when there is no field width or the field width is small. In other

words, when the number of characters of the conversion result are larger than the field width, the field is extended

to the width that includes the conversion result.

- The formats of the special output character string in %f, %e, %E, %g, %G conversions are shown below.

non-numeric -> "(NaN)"

+∞ -> "(+INF)"

-∞ -> "(-INF)"

sprintf writes a null character at the end of the string s. (This character is included in the return value count.)

Precision

Code

Contents

f Converts double argument as a signed value with [-] dddd.dddd format.

dddd is one or more decimal number(s). The number of digits before the decimal point is determined by the

absolute value of the number, and the number of digits after the decimal point is determined by the required

precision.

When the precision is omitted, it is interpreted as 6.

e Converts double argument as a signed value with [-] d.dddd e [sign] ddd format.

d is 1 decimal number, and dddd is one or more decimal number(s). ddd is exactly a 3- digit decimal num-

ber, and the sign is + or -.

When the precision is omitted, it is interpreted as 6.

E The same format as that of e except E is added instead of e before the exponent.

g Uses whichever shorter method of f or e format when converting double argument based on the specified

precision.

e format is used only when the exponent of the value is smaller than -4 or larger than the specified number

by precision.

The following 0 are truncated, and the decimal point is displayed only when one or more numbers follow.

G The same format as that of g except E is added instead of e before the exponent.

c Converts int argument to unsigned char and writes the result as a single character.

s The associated argument is a pointer to a string of characters and the characters in the string are written up

to the terminating null character (but not included in the output).

If precision is specified, the characters exceeding the maximum field width will be truncated off the end.

When the precision is not specified or larger than the array, the array must include a null character.

p The associated argument is a pointer to void and the pointer value is displayed in unsigned hexadecimal 4

digits (with 0s prefixed to less than a 4-digit pointer value).

The large model is displayed in unsigned hexadecimal 8 digits (with 0 padded in dominance 2-digits and 0s

prefixed to less than a 6-digit pointer value).

The precision specification if any will be ignored.

n The associated argument is an integer pointer into which the number of characters written thus far in the

string "s" is placed.

No conversion is performed.

% Prints a % sign.

The associated argument is not converted (but the flag and minimum field width specifications are effec-

tive).

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 656 of 853
Apr 01, 2011

The syntax of format commands is illustrated below.

Figure 6-2. Syntax of format Commands

- With the RL78,78K0R C compiler,the near data pointers (2-byte length) must be specified when the medium model

is used, and the far data pointers (4-byte length) must be specified when the large model is used for conversion

specifiers s, p, and n that specify pointers as arguments.

The function pointer length is fixed to 4 bytes in both models, but the pointer length in each model must be speci-

fied as a 2- or 4-byte length when using the pointer as an argument.

.

%

Format command:

Ordinary characters:

format:

Characters

 except %

Ordinary char.

Format command

PrecisionMin. field widthFlags

Precision:

Minimum field width:

Flags:

Digits

Digits

Space

Format code

Format codes:

#

-

L

l

h%

-

u

o

i

d

*

*

p

s

c

X

x

G

g

E

e

f

n

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 657 of 853
Apr 01, 2011

Reads data from the input string according to a format

[Syntax]

#include <stdio.h>

int sscanf (const char *s, const char *format, ...) ;

[Argument(s)/Return value]

[Description]

- sscanf inputs data from the string pointed to by s. The string pointed to by format specifies the input string allowed

for input.

Zero or more arguments after format are used as pointers to an object. format specifies how data is to be con-

verted from the input string.

- If there are insufficient arguments to match the format commands pointed to by format, proper operation by the

compiler is not guaranteed. For excessive arguments, expression evaluation will be performed but no data will be

input.

- The control string pointed to by format consists of zero or more format commands which are classified into the fol-

lowing 3 types:

1 : Whitespace characters (one or more characters for which isspace becomes true)

2 : Non-whitespace characters (other than %)

3 : Format specifiers

- Each format specifier begins with the % character and is followed by these:

(1) Optional * character which suppresses assignment of data to the corresponding argument

(2) Optional decimal integer which specifies a maximum field width

(3) Optional h, l or L modifier which indicates the object size on the receiving side

If h precedes the d, i, o, or x format specifier, the argument is a pointer to not int but short int. If l precedes

any of these format specifiers, the argument is a pointer to long int.

Likewise, if h precedes the u format specifier, the argument is a pointer to unsigned short int. If l precedes

the u format specifier, the argument is a pointer to unsigned long int.

If l precedes the conversion specifier e, E, f, g, G, the argument is a pointer to double (a pointer to float in

default without l). If L precedes, it is ignored.

Remark Conversion specifier: character to indicate the type of corresponding conversion (to be mentioned later)

sscanf

Argument Return Value

s :

Pointer to the input string

format :

Pointer to the string which indicates the input format com-

mands

... :

Pointer to object in which converted values are to be

stored, and zero or more arguments

If the string s is empty:

-1

If the string s is not empty :

Number of assigned input data items

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 658 of 853
Apr 01, 2011

- sscanf executes the format commands in "format" in sequence and if any format command fails, the function will

terminate.

(1) A white-space character in the control string causes sscanf to read any number (including zero) of

whitespace character up to the first non-white-space character (which will not be read). This white-space

character command fails if it does not encounter any non-white-space character.

(2) A non-white-space character causes sscanf to read and discard a matching character. This command

fails if the specified character is not found.

(3) The format commands define a collection of input streams for each type specifier (to be detailed later).

The format commands are executed according to the following steps:

(a) The input white-space characters (specified by isspace) are skipped over, except when the type speci-

fier is [, c, or n.

(b) The input data items are read from the string "s", except when the type specifier is n.

The input data items are defined as the longest input stream of the first partial stream of the string indi-

cated by the type specifier (but up to the maximum field width if so specified). The character next to

the input data items is interpreted as not have been read.

If the length of the input data items is 0, the format command execution fails.

(c) The input data items (number of input characters with the type specifier n) are converted to the type

specified by the type specifier except the type specifier %.

If the input data items do not match with the specified type, the command execution fails.

Unless assignment is suppressed by *, the result of the conversion is stored in the object pointed to

by the first argument which follows "format" and has not yet received the result of the conversion.

The following type specifiers are available:

Conversion

Specifier

Contents

d Converts a decimal integer (which may be signed).

The corresponding argument must be a pointer to an integer.

I Converts an integer (which may be signed).

If a number is preceded by 0x or 0X, the number is interpreted as a hexadecimal integer. If a number

is preceded by 0, the number is interpreted as an octal integer. Other numbers are regarded as dec-

imal integers.

The corresponding argument must be a pointer to an integer.

o Converts an octal integer (which may be signed).

The corresponding argument must be a pointer to an integer.

u Converts an unsigned decimal integer.

The corresponding argument must be a pointer to an unsigned integer.

x Converts a hexadecimal integer (which may be signed).

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 659 of 853
Apr 01, 2011

If a format specification is invalid, the format command execution fails.

If a null terminator appears in the input stream, sscanf will terminate.

If an overflow occurs in an integer conversion (with the d, i, o, u, x, or p format specifier), high-order bits will be trun-

cated depending on the number of bits of the data type after the conversion.

e, E, f, g, G Floating point value consists of optional sign (+ or -), one or more consecutive decimal number(s)

including decimal point, optional exponent (e or E), and the following optional signed integer value.

When overflow occurs as a result of conversion, or when underflow occurs with the conversion result

+ ∞, non-normalized number or + 0 becomes the conversion result.

The corresponding argument is a pointer to float.

s Input a character string consisting of a non-blank character string.

The corresponding argument is a pointer to an integer. 0x or 0X can be allocated at the first hexadec-

imal integer.

The corresponding argument must be a pointer an array that has sufficient size to accommodate this

character string and a null terminator.

The null terminator will be automatically added.

[Inputs a character string consisting of expected character groups (called a scanset).

The corresponding argument must be a pointer to the first character of an array that has sufficient

size to accommodate this character string and a null terminator.

The null terminator will be automatically added.

The format commands continue from this character up to the closing square bracket ()). The char-

acter string (called a scanlist) enclosed in the square brackets constitutes a scanset except when the

character immediately after the opening square bracket is a circumflex (). When the character is a

circumflex, all the characters other than a scanlist between the circumflex and the closing square

bracket constitute a scanset. However, when a scanlist begins with [] or [^], this closing square

bracket is contained in the scanlist and the next closing square list becomes the end of the scanlist.

A hyphen (-) at other than the left or right end of a scanlist is interpreted as the punctuation mark for

hyphenation if the character at the left of the range specifying hyphen (-) is not smaller than the right-

hand character in ASCII code value.

c Inputs a character string consisting of the number of characters specified by the field width. (If the

field width specification is omitted, 1 is assumed.)

The corresponding argument must be a pointer to the first character of an array that has sufficient

size to accommodate this character string.

The null terminator will not be added.

p Reads an unsigned hexadecimal integer.

The corresponding argument must be a pointer to void pointer.

n Receives no input from the string s.

The corresponding argument must be a pointer to an integer. The number of characters that are read

thus far by this function from the string "s" is stored in the object that is pointed to by this pointer.

The %n format command is not included in the return value assignment count.

% Reads a % sign.

Neither conversion nor assignment takes place.

Conversion

Specifier

Contents

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 660 of 853
Apr 01, 2011

The syntax of format commands is illustrated below.

Figure 6-3. Syntax of format Commands

- With the RL78,78K0R C compiler, the near data pointers (2-byte length) must be specified when the medium

model is used, and the far data pointers (4-byte length) must be specified when the large model is used for conver-

sion specifiers s, p, and n that specify pointers as arguments.

The function pointer length is fixed to 4 bytes in both models, but the pointer length in each model must be speci-

fied as a 2- or 4-byte length when using the pointer as an argument.

%

Format specifiers :

Min. field width

Format command :

Ordinary characters :

Command :

format :

Characters

except %

Space

Format specifier

Ordinary char.

Whitespace char.

Command

Digits

Format

specifier
PrecisionMin. field width

scanlist :

Characters

except]

Characters

except]

scanlist
]

\v

\t

\r

\n

\f

^

%

L

l

hFlags

][

s

x

u

i

o

d

g

e

f

n

p

c

G

E

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 661 of 853
Apr 01, 2011

Outputs data to SFR according to a format

[Syntax]

#include <stdio.h>

int printf (const char *format, ...) ;

[Argument(s)/Return value]

[Description]

- (0 or more) arguments following the format are converted and output using the putchar function, according to the

output conversion specification specified in the format.
- The output conversion specification is 0 or more directives. Normal characters (other than the conversion specifi-

cation starting with %) are output as is using the putchar function. The conversion specification is output using the

putchar function by fetching and converting the following (0 or more) arguments.

- Each conversion specification is the same as that of the sprintf function.

printf

Argument Return Value

format :

Pointer to the character string that indicates the output

... :

0 or more arguments to be converted

Number of character output to s (the null character at the

end is not counted)

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 662 of 853
Apr 01, 2011

Reads data from SFR according to a format

[Syntax]

#include <stdio.h>

int scanf (const char *format, ...) ;

[Argument(s)/Return value]

[Description]

- Performs input using getchar function. Specifies input string permitted by the character string format indicates.

Uses the argument after the format as the pointer to an object. format specifies how the conversion is performed

by the input string.

- When there are not enough arguments for the format, normal operation is not guaranteed. When the argument is

excessive, the expression will be evaluated but not input.

- format consists of 0 or more directives. The directives are as follows.

1 : One or more null character (character that makes isspace true)

2 : Normal character (other than %)

3 : Conversion indication

- If a conversion ends with a input character which conflicts with the input character, the conflicting input character is

rounded down. The conversion indication is the same as that of the sscanf function.

scanf

Argument Return Value

format :

Pointer to the character string to indicate input conversion

specification

... :

Pointer (0 or more) argument to the object to assign the

converted value

When the character string s is not null :

Number of input items assigned

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 663 of 853
Apr 01, 2011

Outputs data to SFR according to a forma

[Syntax]

#include <stdio.h>

int vprintf (const char *format, va_list p) ;

[Argument(s)/Return value]

[Description]

- The argument that the pointer of the argument list indicates is converted and output using putchar function accord-

ing to the output conversion specification specified by the format.
- Each conversion specification is the same as that of sprintf function.

vprintf

Argument Return Value

format:

Pointer to the character string that indicates output con-

version specification

p :

Pointer to the argument list

Number of output characters (the null character at the end is

not counted)

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 664 of 853
Apr 01, 2011

Writes data to a string according to a format

[Syntax]

#include <stdio.h>

int vsprintf (char *s, const char *format, va_list p) ;

[Argument(s)/Return value]

[Description]

- Writes out the argument that the pointer of argument list indicates to the character strings which s indicates

according to the output conversion specification specified by format.
- The output specification is the same as that of sprintf function.

vsprintf

Argument Return Value

s :

Pointer to the character string that writes the output

format :

Pointer to the character string that indicates output con-

version specification

p :

Pointer to the argument list

Number of characters output to s (the null character at the

end is not counted)

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 665 of 853
Apr 01, 2011

Reads one character from SFR

[Syntax]

#include <stdio.h>

int getchar (void) ;

[Argument(s)/Return value]

[Description]

- Returns the value read from SFR symbol P0 (port 0).

- Error check related to reading is not performed.

- To change SFR to read, it is necessary either that the source be changed to be re-registered to the library or that

the user create a new getchar function.

getchar

Argument Return Value

None A character read from SFR

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 666 of 853
Apr 01, 2011

Reads a string

[Syntax]

#include <stdio.h>

char *gets (char *s) ;

[Argument(s)/Return value]

[Description]

- Reads a character string using the getchar function and stores in the array that s indicates.

- When the end of the file is detected (getchar function returns -1) or when a line feed character is read, the reading

of a character string ends. The line feed character read is abandoned, and a null character is written at the end of

the character stored in the array in the end.

- When the return value is normal, it returns s.

- When the end of the file is detected and no character is read in the array, the contents of the array remains

unchanged, and a null pointer is returned.

gets

Argument Return Value

s :

Pointer to input character string

Normal :

s

If the end of the file is detected without reading a character :

Null pointer

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 667 of 853
Apr 01, 2011

Outputs one character to SFR

[Syntax]

#include <stdio.h>

int putchar (int c) ;

[Argument(s)/Return value]

[Description]

- Writes the character specified by c to the SFR symbol P0 (port 0) (converted to unsigned char type).

- Error check related to writing is not performed.

- To change SFR to write, it is necessary either that the source is changed and re-registered to the library or the user

create a new putchar function.

putchar

Argument Return Value

c :

Character to be output

Character to have been output

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 668 of 853
Apr 01, 2011

Outputs a string

[Syntax]

#include <stdio.h>

int puts (const char *s) ;

[Argument(s)/Return value]

[Description]

- Writes the character string indicated by s using putchar function, a line feed character is added at the end of the

output.

- Writing of the null character at the end of the character string is not performed.

- When the return value is normal, 0 is returned, and when putchar function returns -1, -1 is returned.

puts

Argument Return Value

s :

Pointer to an output character string

Normal :

0

When putchar function returns -1 :

-1

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 669 of 853
Apr 01, 2011

Outputs one character to opaque

[Syntax]

#include <stdio.h>

int __putc (int c, void *opaque) ;

[Argument(s)/Return value]

[Description]

- The __putc function writes the character specified by c (by converting it into the unsigned char type) to the destina-

tion indicated by opaque. The destination indicated by opaque is incremented by 1 byte.

- If opaque is 0, the putchar function is called and the return value of the putchar function is returned.

__putc

Argument Return Value

c :

Character to be output

opaque :

Pointer to a character output destination

Character to have been output

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 670 of 853
Apr 01, 2011

6.10 Utility Functions

The following utility functions are available.

Function Name Purpose

atoi Converts a decimal integer string to int

atol Converts a decimal integer string to long

strtol Converts a string to long

strtoul Converts a string to unsigned long

calloc Allocates an array's region and initializes it to zero

free Releases a block of allocated memory

malloc Allocates a block

realloc Re-allocates a block

abort Abnormally terminates the program

atexit Registers a function to be called at normal termination

exit Terminates the program

abs Obtains the absolute value of an int type value

labs Obtains the absolute value of a long type value

div Performs int type division, obtains the quotient and remainder

ldiv Performs long type division, obtains the quotient and remainder

brk Sets the break value

sbrk Increases/decreases the break value

atof Converts a decimal integer string to double

strtod Converts a string to double

itoa Converts int to a string

ltoa Converts long to a string

ultoa Converts unsigned long to a string

rand Generates a pseudo-random number

srand Initializes the pseudo-random number generator state

bsearch Binary search

qsort Quick sort

strbrk Sets the break value

strsbrk Increases/decreases the break value

stritoa Converts int to a string

strltoa Converts long to a string

strultoa Converts unsigned long to a string

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 671 of 853
Apr 01, 2011

Converts a decimal integer string to int

[Syntax]

#include <stdlib.h>

int atoi (const char *nptr) ;

[Argument(s)/Return value]

[Description]

- The atoi function converts the first part of the string pointed to by pointer nptr to an int value.

The atoi function skips over zero or more white-space characters (for which isspace becomes true) from the begin-

ning of the string and converts the string from the character next to the skipped white-spaces to an integer (until

other than digits or a null character appears in the string). If no digits to convert is found in the string, the function

returns 0.

If an overflow occurs, the function returns INT_MAX (32,767) for positive overflow and INT_MIN (-32,768) for neg-

ative overflow.

atoi

Argument Return Value

nptr :

String to be converted

If converted properly :

int value

If positive overflow occurs :

INT_MAX (32,767)

If negative overflow occurs :

INT_MIN (-32,768)

IIf the string is invalid :

0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 672 of 853
Apr 01, 2011

Converts a decimal integer string to long

[Syntax]

#include <stdlib.h>

long int atol (const char *nptr) ;

[Argument(s)/Return value]

[Description]

- The atol function converts the first part of the string pointed to by pointer nptr to a long int value.

The atol function skips over zero or more white-space characters (for which isspace becomes true) from the begin-

ning of the string and converts the string from the character next to the skipped white-spaces to an integer (until

other than digits or null character appears in the string). If no digits to convert is found in the string, the function

returns 0.

If an overflow occurs, the function returns LONG_MAX (2,147,483,647) for positive overflow and LONG_MIN (-

2,147,483,648) for negative overflow.

atol

Argument Return Value

nptr :

String to be converted

If converted properly :

long int value

If positive overflow occurs :

LONG_MAX (2,147,483,647)

If negative overflow occurs :

LONG_MIN (-2,147,483,648)

IIf the string is invalid :

0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 673 of 853
Apr 01, 2011

Converts a string to long

[Syntax]

#include <stdlib.h>

long int strtol (const char *nptr, char **endptr, int base) ;

[Argument(s)/Return value]

[Description]

- The strtol function decomposes the string pointed by pointer nptr into the following 3 parts:

(1) String of whitespace characters that may be empty (to be specified by isspace)

(2) Integer representation by the base determined by the value of base

(3) String of one or more characters that cannot be recognized (including null terminators)

Remark The strtol function converts the part (2) of the string into an integer and returns this integer value.

- A base of 0 indicates that the base should be determined from the leading digits of the string. A leading 0x or 0X

indicates a hexadecimal number; a leading 0 indicates an octal number; otherwise, the number is interpreted as

decimal. (In this case, the number may be signed).

- If the base is 2 to 36, the set of letters from a to z or A to Z which can be part of a number (and which may be

signed) with any of these bases are taken to represent 10 to 35.

A leading 0x or 0X is ignored if the base is 16.

- If endptr is not a null pointer, a pointer to the part (3) of the string is stored in the object pointed to by endptr.
- If the correct value causes an overflow, the function returns LONG_MAX (2,147,483,647) for the positive overflow

or LONG_MIN (-2,147,483,648) for the negative overflow depending on the sign and sets errno to ERANGE (2).

- If the string (2) is empty or the first non-white-space character of the string (ii) is not appropriate for an integer with

the given base, the function performs no conversion and returns 0. In this case, the value of the string nptr is

stored in the object pointed to by endptr (if it is not a null string). This holds true with the bases 0 and 2 to 36.

strtol

Argument Return Value

nptr :

String to be converted

endptr :

Pointer storing pointer pointing to unrecognizable block

base :

Base for number represented in the string

If converted properly :

long int value

If positive overflow occurs :

LONG_MAX (2,147,483,647)

If negative overflow occurs :

LONG_MIN (-2,147,483,648)

If not converted :

0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 674 of 853
Apr 01, 2011

Converts a string to unsigned long

[Syntax]

#include <stdlib.h>

unsigned long int strtoul (const char *nptr, char **endptr, int base) ;

[Argument(s)/Return value]

[Description]

- The strtoul function decomposes the string pointed by pointer nptr into the following 3 parts:

(1) String of white-space characters that may be empty (to be specified by isspace)

(2) Integer representation by the base determined by the value of base

(3) String of one or more characters that cannot be recognized (including null terminators)

Remark The strtoul function converts the part (2) of the string into a unsigned integer and returns this unsigned

integer value.

- A base of 0 indicates that the base should be determined from the leading digits of the string. A leading 0x or 0X

indicates a hexadecimal number; a leading 0 indicates an octal number; otherwise, the number is interpreted as

decimal.

- If the base is 2 to 36, the set of letters from a to z or A to Z which can be part of a number (and which may be

signed) with any of these bases are taken to represent 10 to 35. A leading 0x or 0X is ignored if the base is 16.

- If endptr is not a null pointer, a pointer to the part (3) of the string is stored in the object pointed to by endptr.
- If the correct value causes an overflow, the function returns ULONG_MAX (4,294,967,295U) and sets errno to

ERANGE (2).

- If the string (2) is empty or the first non-white-space character of the string (2) is not appropriate for an integer with

the given base, the function performs no conversion and returns 0. In this case, the value of the string nptr is

stored in the object pointed to by endptr (if it is not a null string). This holds true with the bases 0 and 2 to 36.

strtoul

Argument Return Value

nptr :

String to be converted

endptr :

Pointer storing pointer pointing to unrecognizable block

base :

Base for number represented in the string

If converted properly :

unsigned long

If overflow occurs :

ULONG_MAX (4,294,967,295U)

If not converted :

0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 675 of 853
Apr 01, 2011

Allocates an array's region and initializes it to zero

[Syntax]

#include <stdlib.h>

void * calloc (size_t nmemb, size_t size) ;

[Argument(s)/Return value]

[Description]

- The calloc function allocates an area for an array consisting of n number of members (specified by nmemb), each

of which has the number of bytes specified by size and initializes the area (array members) to zero.

- Returns the pointer to the beginning of the allocated area if the requested size is allocated.

- Returns the null pointer if the requested size is not allocated.

- The memory allocation will start from a break value and the address next to the allocated space will become a new

break value. If the new break value is an odd number, the calloc function corrects it to be an even number. See "

brk" for break value setting with the memory function brk.

- Since the areas to be allocated by the RL78,78K0R C compiler exist in the internal RAM, argument ptr is always

the near pointer. Therefore, the calloc_n and calloc_f functions are not available.

calloc

Argument Return Value

nmemb :

Number of members in the array

size :

Size of each member

If the requested size is allocated :

Pointer to the beginning of the allocated area

If the requested size is not allocated :

Null pointer

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 676 of 853
Apr 01, 2011

Releases a block of allocated memory

[Syntax]

#include <stdlib.h>

void free (void *ptr) ;

[Argument(s)/Return value]

[Description]

- The free function releases the allocated space (before a break value) pointed to by ptr. (The malloc, calloc, or real-

loc called after the free will give you the space that was freed earlier.)

- If ptr does not point to the allocated space, the free will take no action. (Freeing the allocated space is performed

by setting ptr as a new break value.)

- Since the areas to be allocated by the RL78,78K0R C compiler exist in the internal RAM, argument ptr is always

the near pointer. Therefore, the free_n and free_f functions are not available.

free

Argument Return Value

ptr :

Pointer to the beginning of block to be released

None

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 677 of 853
Apr 01, 2011

Allocates a block

[Syntax]

#include <stdlib.h>

void *malloc (size_t size) ;

[Argument(s)/Return value]

[Description]

- The malloc function allocates a block of memory for the number of bytes specified by size and returns a pointer to

the first byte of the allocated area.

- If memory cannot be allocated, the function returns a null pointer.

- This memory allocation will start from a break value and the address next to the allocated area will become a new

break value. If the new break value is an odd number, the malloc function corrects it to be an even number. See

"brk" for break value setting with the memory function brk.

- Since the areas to be allocated by the RL78,78K0R C compiler exist in the internal RAM, argument ptr is always

the near pointer. Therefore, the malloc_n and malloc_f functions are not available.

malloc

Argument Return Value

size :

Size of memory block to be allocated

If the requested size is allocated :

Pointer to the beginning of the allocated area

If the requested size is not allocated :

Null pointer

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 678 of 853
Apr 01, 2011

Re-allocates a block

[Syntax]

#include <stdlib.h>

void * realloc (void *ptr, size_t size) ;

[Argument(s)/Return value]

[Description]

- The realloc function changes the size of the allocated space (before a break value) pointed to by ptr to that speci-

fied by size. If the value of size is greater than the size of the allocated space, the contents of the allocated space

up to the original size will remain unchanged. The realloc function allocates only for the increased space. If the

value of size is less than the size of the allocated space, the function will free the reduced space of the allocated

space.

- If ptr is a null pointer, the realloc function will newly allocate a block of memory of the specified size (same as mal-

loc).

- If ptr does not point to the block of memory previously allocated or if no memory can be allocated, the function exe-

cutes nothing and returns a null pointer.

- Reallocation will be performed by setting the address of ptr plus the number of bytes specified by size as a new

break value. If the new break value is an odd number, the realloc function corrects it to be an even number.

- Since the areas to be allocated by the RL78,78K0R C compiler exist in the internal RAM, argument ptr is always

the near pointer. Therefore, the realloc_n and realloc_f functions are not available.

realloc

Argument Return Value

ptr :

Pointer to the beginning of block previously allocated

size :

New size to be given to this block

If the requested size is reallocated :

Pointer to the beginning of the reallocated space

If ptr is a null pointer :

Pointer to the beginning of the allocated space

If the requested size is not reallocated or "ptr" is not a null

pointer :

Null pointer

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 679 of 853
Apr 01, 2011

Abnormally terminates the program

[Syntax]

#include <stdlib.h>

void abort (void) ;

[Argument(s)/Return value]

[Description]

- The abort function loops and can never return to its caller.

- The user must create the abort processing routine.

abort

Argument Return Value

None No return to its caller.

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 680 of 853
Apr 01, 2011

Registers a function to be called at normal termination

[Syntax]

#include <stdlib.h>

int atexit (void (*func) (void)) ;

[Argument(s)/Return value]

[Description]

- The atexit function registers the wrap-up function pointed to by func so that it is called without argument upon nor-

mal program termination by calling exit or returning from main.

- Up to 32 wrap-up functions may be established. If the warp-up function can be registered, atexit returns 0. If no

more wrap-up function can be registered because 32 wrap-up functions have already been registered, the function

returns 1.

atexit

Argument Return Value

func :

Pointer to function to be registered

If function is registered as wrap-up function :

0

If function cannot be registered :

1

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 681 of 853
Apr 01, 2011

Terminates the program

[Syntax]

#include <stdlib.h>

void exit (int status) ;

[Argument(s)/Return value]

[Description]

- The exit function causes immediate, normal termination of a program.

- This function calls the wrap-up functions in the reverse of the order in which they were registered with atexit.

- The exit function loops and can never return to its caller.

- The user must create the exit processing routine.

exit

Argument Return Value

status :

Status value indicating termination

exit can never return.

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 682 of 853
Apr 01, 2011

Obtains the absolute value of an int type value

[Syntax]

#include <stdlib.h>

int abs (int j) ;

[Argument(s)/Return value]

[Description]

- The abs returns the absolute value of its int type argument.

- If j is -32,768, the function returns -32,768.

abs

Argument Return Value

j :

Any signed integer for which absolute value is to be

obtained

If j falls within -32,767 <= j <= 32,767 :

Absolute value of j

If j is -32,768 :

-32,768 (0x8000)

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 683 of 853
Apr 01, 2011

Obtains the absolute value of a long type value

[Syntax]

#include <stdlib.h>

long int labs (long int j) ;

[Argument(s)/Return value]

[Description]

- The labs returns the absolute value of its long type argument.

- If the value of j is -2,147,483,648, the function returns -2,147,483,648.

labs

Argument Return Value

j :

Any signed integer for which absolute value is to be

obtained

If j falls within -2,147,483,647 <= j <= 2,147,483,647 :

Absolute value of j

If the value of j is -2,147,483,648 :

-2147483,648 (0x80000000)

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 684 of 853
Apr 01, 2011

Performs int type division, obtains the quotient and remainder

[Syntax]

#include <stdlib.h>

div_t div (int numer, int denom) ;

[Argument(s)/Return value]

[Description]

- The div function performs the integer division of numerator divided by denominator.

- The absolute value of quotient is defined as the largest integer not greater than the absolute value of numer
divided by the absolute value of denom. The remainder always has the same sign as the result of the division

(plus if numer and denom have the same sign; otherwise minus).

- The remainder is the value of numer - denom * quotient.

- If denom is 0, the quotient becomes 0 and the remainder becomes numer.
In case of RL78 mounted expansion instructions

- If denom is 0

- The quotient becomes -1 (FFFFH) at numer >= 0,

The quotient becomes 1 at number < 0 and the remainder becomes numer.

- If numer is -32,768 and denom is -1, the quotient becomes -32,768 and the remainder becomes 0.

div

Argument Return Value

numer :

Numerator of the division

denom :

Denominator of the division

Quotient to the quot element and the remainder to the rem

element of div_t type member

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 685 of 853
Apr 01, 2011

Performs long type division, obtains the quotient and remainder

[Syntax]

#include <stdlib.h>

ldiv_t ldiv (long int numer, long int denom) ;

[Argument(s)/Return value]

[Description]

- The ldiv function performs the long integer division of numerator divided by denominator.

- The absolute value of quotient is defined as the largest long int type integer not greater than the absolute value of

numer divided by the absolute value of denom. The remainder always has the same sign as the result of the divi-

sion (plus if numer and denom have the same sign; otherwise minus).

- The remainder is the value of numer - denom * quotient.

- If denom is 0, the quotient becomes 0 and the remainder becomes numer.
In case of RL78 mounted expansion instructions

- If denom is 0

- The quotient becomes -1 (FFFFFFFFH) at numer >= 0,

The quotient becomes 1 at number < 0 and the remainder becomes numer.

- If numer is -2,147,483,648 and denom is -1, the quotient becomes -2,147,483,648 and the remainder becomes 0.

ldiv

Argument Return Value

numer :

Numerator of the division

denom :

Denominator of the division

Quotient to the quot element and the remainder to the rem

element of ldiv_t type member

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 686 of 853
Apr 01, 2011

Sets the break value

[Syntax]

#include <stdlib.h>

int brk (char *endds) ;

[Argument(s)/Return value]

[Description]

- The brk function sets the value given by endds as a break value (the address next to the end address of an allo-

cated block of memory).

- If endds is outside the permissible address range, the function sets no break value and sets errno to ENOMEM (3).

- Since the areas to be allocated by the RL78,78K0R C compiler exist in the internal RAM, argument ptr is always

the near pointer. Therefore, the brk_n and brk_f functions are not available.

brk

Argument Return Value

endds :

Break value to be set block to be released

If converted properly :

0

If break value cannot be changed :

-1

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 687 of 853
Apr 01, 2011

Increases/decreases the break value

[Syntax]

#include <stdlib.h>

char *sbrk (int incr) ;

[Argument(s)/Return value]

[Description]

- The sbrk function increments or decrements the set break value by the number of bytes specified by incr. (Incre-

ment or decrement is determined by the plus or minus sign of incr.)
- If an odd number is specified for incr, the sbrk function corrects it to be an even number.

- If the incremented or decremented break value is outside the permissible address range, the function does not

change the original break value and sets errno to ENOMEM (3).

- Since the areas to be allocated by the RL78,78K0R C compiler exist in the internal RAM, argument ptr is always

the near pointer. Therefore, the sbrk_n and sbrk_f functions are not available.

sbrk

Argument Return Value

incr :

Value (bytes) by which set break value is to be incre-

mented/decremented.

If converted properly :

Old break value

If old break value cannot be incremented or decremented :

-1

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 688 of 853
Apr 01, 2011

Converts a decimal integer string to double

[Syntax]

#include <stdlib.h>

double atof (const char *nptr) ;

[Argument(s)/Return value]

[Description]

- The atof function converts the string pointed to by pointer nptr to a double value.

The atof function skips over zero or more whitespace characters (for which isspace becomes true) from the begin-

ning of the string and converts the string from the character next to the skipped whitespaces to a floating point

number (until other than digits or a null character appears in the string).

- A floating point number is returned when converted properly.

- If an overflow occurs on conversion, HUGE_VAL with the sign of the overflowed value is returned and ERANGE is

set to errno.

- If valid digits are deleted due to an underflow or an overflow, a non-normalized number and +0 are returned

respectively, and ERANGE is set to errno.

- If conversion cannot be performed, 0 is returned.

atof

Argument Return Value

nptr :

String to be converted

If converted properly :

Converted value

If positive overflow occurs :

HUGE_VAL (with sign of overflowed value)

If negative overflow occurs :

0

IIf the string is invalid :

0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 689 of 853
Apr 01, 2011

Converts a string to double

[Syntax]

#include <stdlib.h>

double strtod (const char *nptr, char **endptr) ;

[Argument(s)/Return value]

[Description]

- The strtod function converts the string pointed to by pointer nptr to a double value.

The strtod function skips over zero or more white-space characters (for which isspace becomes true) from the

beginning of the string and converts the string from the character next to the skipped white-spaces to a floating-

point number (until other than digits or null character appears in the string).

If a character string starts with a character that does not satisfy this format, scanning is terminated. If endptr is not

a null pointer, a pointer that starts with a character that may be a blank is stored in endptr.
- A floating-point number is returned when converted properly.

- If an overflow occurs on conversion, HUGE_VAL with the sign of the overflowed value is returned and ERANGE is

set to errno.

- If valid digits are deleted due to an underflow or an overflow, a non-normalized number and +0 are returned

respectively, and ERANGE is set to errno. In addition, endptr stores a pointer for next character string at that time.

- If conversion cannot be performed, 0 is returned.

strtod

Argument Return Value

nptr :

String to be converted

endptr :

Pointer storing pointer pointing to unrecognizable block

If converted properly :

Converted value

If positive overflow occurs :

HUGE_VAL (with sign of overflowed value)

If negative overflow occurs :

0

IIf the string is invalid :

0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 690 of 853
Apr 01, 2011

Converts int to a string

[Syntax]

#include <stdlib.h>

char *itoa (int value, char *string, int radix) ;

[Argument(s)/Return value]

[Description]

- The itoa, ltoa, and ultoa functions all convert the integer value specified by value to its string equivalent which is

terminated with a null character and store the result in the area pointed to by "string".

- The base of the output string is determined by radix, which must be in the range 2 through 36. Each function per-

forms conversion based on the specified radix and returns a pointer to the converted string. If the specified radix is

outside the range 2 through 36, the function performs no conversion and returns a null pointer.

itoa

Argument Return Value

value :

String to which integer is to be converted

string :

Pointer to the conversion result

radix :

Base of output string

If converted properly :

Pointer to the converted string

If not converted properly :

Null pointer

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 691 of 853
Apr 01, 2011

Converts long to a string

[Syntax]

#include <stdlib.h>

char *ltoa (long value, char *string, int radix) ;

[Argument(s)/Return value]

[Description]

- The itoa, ltoa, and ultoa functions all convert the integer value specified by value to its string equivalent which is

terminated with a null character and store the result in the area pointed to by "string".

- The base of the output string is determined by radix, which must be in the range 2 through 36. Each function per-

forms conversion based on the specified radix and returns a pointer to the converted string. If the specified radix is

outside the range 2 through 36, the function performs no conversion and returns a null pointer.

ltoa

Argument Return Value

value :

String to which integer is to be converted

string :

Pointer to the conversion result

radix :

Base of output string

If converted properly :

Pointer to the converted string

If not converted properly :

Null pointer

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 692 of 853
Apr 01, 2011

Converts unsigned long to a string

[Syntax]

#include <stdlib.h>

char *ultoa (unsigned long value, char *string, int radix) ;

[Argument(s)/Return value]

[Description]

- The itoa, ltoa, and ultoa functions all convert the integer value specified by value to its string equivalent which is

terminated with a null character and store the result in the area pointed to by "string".

- The base of the output string is determined by radix, which must be in the range 2 through 36. Each function per-

forms conversion based on the specified radix and returns a pointer to the converted string. If the specified radix is

outside the range 2 through 36, the function performs no conversion and returns a null pointer.

ultoa

Argument Return Value

value :

String to which integer is to be converted

string :

Pointer to the conversion result

radix :

Base of output string

If converted properly :

Pointer to the converted string

If not converted properly :

Null pointer

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 693 of 853
Apr 01, 2011

Generates a pseudo-random number

[Syntax]

#include <stdlib.h>

int rand (void) ;

[Argument(s)/Return value]

[Description]

- Each time the rand function is called, it returns a pseudorandom integer in the range of 0 to RAND_MAX.

rand

Argument Return Value

None Pseudorandom integer in the range of 0 to RAND_MAX

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 694 of 853
Apr 01, 2011

Initializes the pseudo-random number generator state

[Syntax]

#include <stdlib.h>

void srand (unsigned int seed) ;

[Argument(s)/Return value]

[Description]

- The srand function sets a starting value for a sequence of random numbers. seed is used to set a starting point for

a progression of random numbers that is a return value when rand is called. If the same seed value is used, the

sequence of pseudorandom numbers is the same when srand is called again.

- Calling rand before srand is used to set a seed is the same as calling rand after srand has been called with seed =

1. (The default seed is 1.)

srand

Argument Return Value

seed :

Starting value for pseudorandom number generator

None

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 695 of 853
Apr 01, 2011

Binary search

[Syntax]

#include <stdlib.h>

void *bsearch (const void *key, const void *base, size_t nmemb, size_t size,

int (*compare) (const void *, const void *)) ;

[Argument(s)/Return value]

[Description]

- The bsearch function performs a binary search on the sorted array pointed to by base and returns a pointer to the

first member that matches the key pointed to by key. The array pointed to by base must be an array which consists

of nmemb number of members each of which has the size specified by size and must have been sorted in ascend-

ing order.

- The function pointed to by compare takes 2 arguments (key as the 1st argument and array element as the 2nd

argument), compares the 2 arguments, and returns:

Negative value if the 1st argument is less than the 2nd argument

0 if both arguments are equal

Positive integer if the 1st argument is greater than the 2nd argument

bsearch

Argument Return Value

key :

Pointer to key for which search is made

base :

Pointer to sorted array which contains information to

search

nmemb :

Number of array elements

size :

Size of an array

compare :

Pointer to function used to compare 2 keys

If the array contains the key :

Pointer to the first member that matches "key"

If the key is not contained in the array :

Null pointer

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 696 of 853
Apr 01, 2011

Quick sort

[Syntax]

#include <stdlib.h>

void qsort (void *base, size_t nmemb, size_t size, int (*compare) (const void *, const void *)) ;

[Argument(s)/Return value]

[Description]

- The qsort function sorts the members of the array pointed to by base in ascending order.

The array pointed to by base consists of nmemb number of members each of that has the size specified by size.

- The function pointed to by compare takes 2 arguments (array elements 1 and 2), compares the 2 arguments, and

returns:

- The array element 1 as the 1st argument and array element 2 as the 2nd argument

Negative value if the 1st argument is less than the 2nd argument

0 if both arguments are equal

Positive integer if the 1st argument is greater than the 2nd argument

- If the 2 array elements are equal, the element nearest to the top of the array will be sorted first.

qsort

Argument Return Value

base :

Pointer to array to be sorted

nmemb :

Number of members in the array

size :

Size of an array member

compare :

Pointer to function used to compare 2 keys

None

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 697 of 853
Apr 01, 2011

Sets the break value

[Syntax]

#include <stdlib.h>

int strbrk (char *endds) ;

[Argument(s)/Return value]

[Description]

- Sets the value given by endds to the break value (the address following the address at the end of the area to be

allocated).

- When endds is out of the permissible range, the break value is not changed. ENOMEM(3) is set to errno and -1 is

returned.

- Since the areas to be allocated by the RL78,78K0R C compiler exist in the internal RAM, argument ptr is always

the near pointer. Therefore, the strbrk_n and strbrk_f functions are not available.

strbrk

Argument Return Value

endds :

Break value to set

Normal :

0

When a break value cannot be changed :

-1

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 698 of 853
Apr 01, 2011

Increases/decreases the break value

[Syntax]

#include <stdlib.h>

char *strsbrk (int incr) ;

[Argument(s)/Return value]

[Description]

- incr byte increases/decreases a break value (depending on the sign of incr).
- When the break value is out of the permissible range after increasing/decreasing, a break value is not changed.

ENOMEM(3) is set to errno, and -1 is returned.

- Since the areas to be allocated by the RL78,78K0R C compiler exist in the internal RAM, argument ptr is always

the near pointer. Therefore, the strsbrk_n and strsbrk_f functions are not available.

strsbrk

Argument Return Value

incr :

Amount to increase/decrease a break value

Normal :

Old break value

When a break value cannot be increased/decreased :

-1

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 699 of 853
Apr 01, 2011

Converts int to a string

[Syntax]

#include <stdlib.h>

char *stritoa (int value, char *string, int radix) ;

[Argument(s)/Return value]

[Description]

- Converts the specified numeric value value to the character string that ends with a null character, and the result will

be stored to the area specified with string. The conversion is performed by the radix specified, and the pointer to

the converted character string will be returned.

- radix must be the value range between 2 to 36. In other cases, the conversion is not performed and a null pointer

is returned.

stritoa

Argument Return Value

value :

String to be converted

string :

Pointer to the conversion result

radix :

Radix to specify

Normal :

Pointer to the converted character string

Others :

Null pointer

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 700 of 853
Apr 01, 2011

Converts long to a string

[Syntax]

#include <stdlib.h>

char *strltoa (long value, char *string, int radix) ;

[Argument(s)/Return value]

[Description]

- Converts the specified numeric value value to the character string that ends with a null character, and the result will

be stored to the area specified with string. The conversion is performed by the radix specified, and the pointer to

the converted character string will be returned.

- radix must be the value range between 2 to 36. In other cases, the conversion is not performed and a null pointer

is returned.

strltoa

Argument Return Value

value :

String to be converted

string :

Pointer to the conversion result

radix :

Radix to specify

Normal :

Pointer to the converted character string

Others :

Null pointer

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 701 of 853
Apr 01, 2011

Converts unsigned long to a string

[Syntax]

#include <stdlib.h>

char *strultoa (unsigned long value, char *string, int radix) ;

[Argument(s)/Return value]

[Description]

- Converts the specified numeric value value to the character string that ends with a null character, and the result will

be stored to the area specified with string. The conversion is performed by the radix specified, and the pointer to

the converted character string will be returned.

- radix must be the value range between 2 to 36. In other cases, the conversion is not performed and a null pointer

is returned.

strultoa

Argument Return Value

value :

String to be converted

string :

Pointer to the conversion result

radix :

Radix to specify

Normal :

Pointer to the converted character string

Others :

Null pointer

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 702 of 853
Apr 01, 2011

6.11 String and Memory Functions

The following character string and memory functions are available.

Function Name Purpose

memcpy Copies a buffer for the specified number of characters

memmove Copies a buffer for the specified number of characters

strcpy Copies a string

strncpy Copies the specified number of characters from the start of a string

strcat Appends a string to a string

strncat Appends the specified number of characters of a string to a string

memcmp Compares the specified number of characters of two buffers

strcmp Compares two strings

strncmp Compares the specified number of characters of two strings

memchr Searches for the specified string in the specified number of characters of a buffer

strchr Searches for the specified character from within a string and returns the location of

the first occurrence

strrchr Searches for the specified character from within a string and returns the location of

the last occurrence

strspn Obtains the length from the start of a segment composed of only the characters included in

the specified string within the string being searched

strcspn Obtains the length from the start of a segment composed of characters other than those

included in the specified string within the string being searched

strpbrk Obtains the position of the first occurrence of any character in the specified string

within the string being searched

strstr Obtains the position of the first occurrence of the specified string within the string

being searched

strtok Decomposing character string into a string consisting of characters other than

delimiters.

memset Initializes the specified number of characters of a buffer with the specified character

strerror Returns a pointer to the area that stores the error message string which corre-

sponds to the specified error number

strlen Obtains the length of a string

strcoll Compares two strings based on region specific information

strxfrm Transforms a string based on region specific information

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 703 of 853
Apr 01, 2011

Copies a buffer for the specified number of characters

[Syntax]

#include <string.h>

void *memcpy (void *s1, const void *s2, size_t n) ;

[Argument(s)/Return value]

[Description]

- The memcpy function copies n number of consecutive bytes from the object pointed to by s2 to the object pointed

to by s1.

- If s2 < s1 < s2 + n (s1 and s2 overlap), the memory copy operation by memcpy is not guaranteed (because copy-

ing starts in sequence from the beginning of the area).

memcpy

Argument Return Value

s1 :

Pointer to object into which data is to be copied

s2 :

Pointer to object containing data to be copied

n :

Number of characters to be copied

Value of s1

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 704 of 853
Apr 01, 2011

Copies a buffer for the specified number of characters (Even if the buffer overlaps, the function performs memory copy-

ing properly)

[Syntax]

#include <string.h>

void *memmove (void *s1, const void *s2, size_t n) ;

[Argument(s)/Return value]

[Description]

- The memmove function also copies n number of consecutive bytes from the object pointed to by s2 to the object

pointed to by s1.

- Even if s1 and s2 overlap, the function performs memory copying properly.

memmove

Argument Return Value

s1 :

Pointer to object into which data is to be copied

s2 :

Pointer to object containing data to be copied

n :

Number of characters to be copied

Value of s1

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 705 of 853
Apr 01, 2011

Copies a string

[Syntax]

#include <string.h>

char *strcpy (char *s1, const char *s2) ;

[Argument(s)/Return value]

[Description]

- The strcpy function copies the contents of the character string pointed to by s2 to the array pointed to by s1 (includ-

ing the terminating character).

- If s2 < s1 < (s2 + Character length to be copied), the behavior of strcpy is not guaranteed (as copying starts in

sequence from the beginning, not from the specified string).

strcpy

Argument Return Value

s1 :

Pointer to copy destination array

s2 :

Pointer to copy source array

Value of s1

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 706 of 853
Apr 01, 2011

Copies the specified number of characters from the start of a string

[Syntax]

#include <string.h>

char *strncpy (char *s1, const char *s2, size_t n) ;

[Argument(s)/Return value]

[Description]

- The strncpy function copies up to the characters specified by n from the string pointed to by s2 to the array pointed

to by s1.

- If s2 < s1 < (s2 + Character length to be copied or minimum value of s2 + n - 1), the behavior of strncpy is not guar-

anteed (as copying starts in sequence from the beginning, not from the specified string).

- If the character string pointed to by s2 is less than the number of characters specified by n, the strncpy function

copies characters up to the terminating null character, and appends null characters until the number of copied

characters reaches n.

strncpy

Argument Return Value

s1 :

Pointer to copy destination array

s2 :

Pointer to copy source array

n :

Number of characters to be copied

Value of s1

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 707 of 853
Apr 01, 2011

Appends a string to a string

[Syntax]

#include <string.h>

char *strcat (char *s1, const char *s2) ;

[Argument(s)/Return value]

[Description]

- The strcat function concatenates a copy of the string pointed to by s2 (including the null terminator) to the string

pointed to by s1. The null terminator originally ending s1 is overwritten by the first character of s2.

- When copying is performed between objects overlapping each other, the operation is not guaranteed.

strcat

Argument Return Value

s1 :

Pointer to a string to which a copy of another string (s2) is

to be concatenated

s2 :

Pointer to a string, copy of which is to be concatenated to

another string (s1)

Value of s1

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 708 of 853
Apr 01, 2011

Appends the specified number of characters of a string to a string

[Syntax]

#include <string.h>

char *strncat (char *s1, const char *s2, size_t n) ;

[Argument(s)/Return value]

[Description]

- The strncat function concatenates not more than the characters specified by n of the string pointed to by s2
(excluding the null terminator) to the string pointed to by s1. The null terminator originally ending s1 is overwritten

by the first character of s2.

- If the string pointed to by s2 has fewer characters than specified by n, the strncat function concatenates the string

including the null terminator. If there are more characters than specified by n, the n character section is concate-

nated starting from the top.

- The null terminator must always be concatenated.

- When copying is performed between objects overlapping each other, the operation is not guaranteed.

strncat

Argument Return Value

s1 :

Pointer to a string to which a copy of another string (s2) is

to be concatenated

s2 :

Pointer to a string, copy of which is to be concatenated to

another string (s1)

n :

Number of characters to be concatenated

Value of s1

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 709 of 853
Apr 01, 2011

Compares the specified number of characters of two buffers

[Syntax]

#include <string.h>

int memcmp (const void *s1, const void *s2, size_t n) ;

[Argument(s)/Return value]

[Description]

- The memcmp function uses the n characters to compare the objects indicated by both s1 and s2.

- The memcmp function returns 0, when the n characters of both s1 and s2 are compared and found to be the same.

- The memcmp function returns the value differences (s1 letters - s2 letters) that converted the initial differing char-

acters into int if, the n characters of both s1 and s2 are compared and found to be different.

memcmp

Argument Return Value

s1 :

Pointers to 2 data objects to be compared

s2 :

Pointers to 2 data objects to be compared

n :

Number of characters to compare

If the n characters of both s1 and s2 are compared and

found to be the same :

0

If the n characters of both s1 and s2 are compared and

found to be different :

Value differences that converted the initial differing char-

acters into int (s1 letters - s2 letters))

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 710 of 853
Apr 01, 2011

Compares two strings

[Syntax]

#include <string.h>

int strcmp (const char *s1, const char *s2) ;

[Argument(s)/Return value]

[Description]

- The strcmp function uses to compare the character strings indicated by both s1 and s2.

- If s1 is equal to s2, the function returns 0. If s1 is less than or greater than s2, the strcmp function returns the value

differences (s1 letters - s2 letters) that converted the initial diffrering characters into int.

strcmp

Argument Return Value

s1 :

Pointer to one string to be compared

s2 :

Pointer to the other string to be compared

If s1 is equal to s2 :

0

If s1 is less than or greater than s2 :

Value differences that converted the initial differing char-

acters into int (s1 letters - s2 letters)

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 711 of 853
Apr 01, 2011

Compares the specified number of characters of two strings

[Syntax]

#include <string.h>

int strncmp (const char *s1, const char *s2, size_t n) ;

[Argument(s)/Return value]

[Description]

- The strncmp function uses the n characters to compare the objects indicated by both s1 and s2.

- The strncmp function returns 0, when the n characters of both s1 and s2 are compared and found to be the same.

The strncmp function returns the value differences (s1 letters - s2 letters) that converted the initial differing charac-

ters into int if, the n characters of both s1 and s2 are compared and found to be different.

strncmp

Argument Return Value

s1 :

Pointer to one string to be compared

s2 :

Pointer to the other string to be compared

n :

Number of characters to compare

If the n characters of both s1 and s2 are compared and

found to be the same :

0

If the n characters of both s1 and s2 are compared and

found to be different :

Value differences that converted the initial differing char-

acters into int (s1 letters - s2 letters)

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 712 of 853
Apr 01, 2011

Searches for the specified string in the specified number of characters of a buffer

[Syntax]

#include <string.h>

void *memchr (const void *s, int c, size_t n) ;

[Argument(s)/Return value]

[Description]

- The memchr function first converts the character specified by c to unsigned char and then returns a pointer to the

first occurrence of this character within the n number of bytes from the beginning of the object pointed to by s.

- If the character is not found, the function returns a null pointer.

memchr

Argument Return Value

s :

Pointer to objects in memory subject to search

c :

Character to be searched

n :

Number of bytes to be searched

If c is found :

Pointer to the first occurrence of c

If c is not found :

Null pointer

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 713 of 853
Apr 01, 2011

Searches for the specified character from within a string and returns the location of the first occurrence

[Syntax]

#include <string.h>

char *strchr (const char *s, int c) ;

[Argument(s)/Return value]

[Description]

- The strchr function searches the string pointed to by s for the character specified by c and returns a pointer to the

first occurrence of c (converted to char type) in the string.

- The null terminator is regarded as part of the string.

- If the specified character is not found in the string, the function returns a null pointer.

strchr

Argument Return Value

s :

Pointer to string to be searched

c :

Character specified for search

If c is found in s :

Pointer indicating the first occurrence of c in string s

If c is not found in s :

Null pointer

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 714 of 853
Apr 01, 2011

Searches for the specified character from within a string and returns the location of the last occurrence

[Syntax]

#include <string.h>

char *strrchr (const char *s, int c) ;

[Argument(s)/Return value]

[Description]

- The strrchr function searches the string pointed to by s for the character specified by c and returns a pointer to the

last occurrence of c (converted to char type) in the string.

- The null terminator is regarded as part of the string.

- If no match is found, the function returns a null pointer.

strrchr

Argument Return Value

s :

Pointer to string to be searched

c :

Character specified for searchs

If c is found in s :

Pointer indicating the last occurrence of c in string s

If c is not found in s :

Null pointer

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 715 of 853
Apr 01, 2011

Obtains the length from the start of a segment composed of only the characters included in the specified string within

the string being searched

[Syntax]

#include <string.h>

size_t strspn (const char *s1, const char *s2) ;

[Argument(s)/Return value]

[Description]

- The strspn function returns the length of the substring of the string pointed to by s1 that is made up of only those

characters contained in the string pointed to by s2. In other words, this function returns the index of the first char-

acter in the string s1 that does not match any of the characters in the string s2.

- The null terminator of s2 is not regarded as part of s2.

strspn

Argument Return Value

s1 :

Pointer to string to be searched

s2 :

Pointer to string whose characters are specified for match

Length of substring of the string s1 that is made up of only

those characters contained in the string s2

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 716 of 853
Apr 01, 2011

Obtains the length from the start of a segment composed of characters other than those included in the specified string

within the string being searched

[Syntax]

#include <string.h>

size_t strcspn (const char *s1, const char *s2) ;

[Argument(s)/Return value]

[Description]

- The strcspn function returns the length of the substring of the string pointed to by s1 that is made up of only those

characters not contained in the string pointed to by s2. In other words, this function returns the index of the first

character in the string s1 that matches any of the characters in the string s2.

- The null terminator of s2 is not regarded as part of s2.

strcspn

Argument Return Value

s1 :

Pointer to string to be searched

s2 :

Pointer to string whose characters are specified for match

Length of substring of the string s1 that is made up of only

those characters not contained in the s2

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 717 of 853
Apr 01, 2011

Obtains the position of the first occurrence of any character in the specified string within the string being searched

[Syntax]

#include <string.h>

char *strpbrk (const char *s1, const char *s2) ;

[Argument(s)/Return value]

[Description]

- The strpbrk function returns a pointer to the first character in the string pointed to by s1 that matches any character

in the string pointed to by s2.

- If none of the characters in the string s2 is found in the string s1, the function returns a null pointer.

strpbrk

Argument Return Value

s1 :

 Pointer to string to be searched

s2 :

Pointer to string whose characters are specified for match

If any match is found :

Pointer to the first character in the string s1 that matches

any character in the string s2

If no match is found :

Null pointer

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 718 of 853
Apr 01, 2011

Obtains the position of the first occurrence of the specified string within the string being searched

[Syntax]

#include <string.h>

char *strstr (const char *s1, const char *s2) ;

[Argument(s)/Return value]

[Description]

- The strstr function returns a pointer to the first appearance in the string pointed to by s1 of the string pointed to by

s2 (except the null terminator of s2).

- If the string s2 is not found in the string s1, the function returns a null pointer.

- If the string s2 is a null string, the function returns the value of s1.

strstr

Argument Return Value

s1 :

Pointer to string to be searched

s2 :

Pointer to specified string

If s2 is found in s1 :

Pointer to the first appearance in the string s1 of the string

s2

If s2 is not found in s1 :

Null pointer

If s2 is a null string :

Value of s1

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 719 of 853
Apr 01, 2011

Obtains the length of a string

[Syntax]

#include <string.h>

char *strtok (char *s1, const char *s2) ;

[Argument(s)/Return value]

[Description]

- A token is a string consisting of characters other than delimiters in the string to be specified.

- If s1 is a null pointer, the string pointed to by the saved pointer in the previous strtok call will be decomposed.

However, if the saved pointer is a null pointer, the function returns a null pointer without doing anything.

- If s1 is not a null pointer, the string pointed to by s1 will be decomposed.

- The strtok function searches the string pointed to by s1 for any character not contained in the string pointed to by

s2. If no character is found, the function changes the saved pointer to a null pointer and returns it. If any character

is found, the character becomes the first character of a token.

- If the first character of a token is found, the function searches for any characters contained in the string s2 after the

first character of the token. If none of the characters is found, the function changes the saved pointer to a null

pointer. If any of the characters is found, the character is overwritten by a null character and a pointer to the next

character becomes a pointer to be saved.

- The function returns a pointer to the first character of the token.

strtok

Argument Return Value

s1 :

Pointer to string from which tokens are to be obtained or

null pointer

s2 :

Pointer to string containing delimiters of token

If it is found :

Pointer to the first character of a token

If there is no token to return :

Null pointer

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 720 of 853
Apr 01, 2011

Initializes the specified number of characters of a buffer with the specified character

[Syntax]

#include <string.h>

void *memset (void *s, int c, size_t n) ;

[Argument(s)/Return value]

[Description]

- The memset function first converts the character specified by c to unsigned char and then assigns the value of this

character to the n number of bytes from the beginning of the object pointed to by s.

memset

Argument Return Value

s :

Pointer to object in memory to be initialized

c :

Character whose value is to be assigned to each byte

n :

Number of bytes to be initialized

Value of s

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 721 of 853
Apr 01, 2011

Returns a pointer to the area that stores the error message string which corresponds to the specified error number

[Syntax]

#include <string.h>

char *strerror (int errnum) ;

[Argument(s)/Return value]

[Description]

- The strerror function returns the following values associated with the value of errnum.

- Error message strings are allocated in a far area, so the return value is always a far pointer. This is why there are

no strerror_n/strerror_f functions.

strerror

Argument Return Value

errnum :

Error number

If message associated with error number exists :

Pointer to string describing error message

If no message associated with error number exists :

Null pointer

Value of errnum Return Value

0 Pointer to the string "Error 0"

1 (EDOM) Pointer to the string "Argument too large"

2 (ERANGE) Pointer to the string "Result too large"

3 (ENOMEM) Pointer to the string "Not enough memory"

Others Null pointer

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 722 of 853
Apr 01, 2011

Obtains the length of a string

[Syntax]

#include <string.h>

size_t strlen (const char *s) ;

[Argument(s)/Return value]

[Description]

- The strlen function returns the length of the null terminated string pointed to by s.

strlen

Argument Return Value

s :

Pointer to character string

Length of string s

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 723 of 853
Apr 01, 2011

Compares two strings based on region specific information

[Syntax]

#include <string.h>

int strcoll (const char *s1, const char *s2) ;

[Argument(s)/Return value]

[Description]

- The RL78,78K0R C compiler does not support operations specific to cultural sphere.

The operations are the same as that of strcmp.

strcoll

Argument Return Value

s1 :

Pointer to comparison character string

s2 :

Pointer to comparison character string

When character strings s1 and s2 are equal :

0

When character strings s1 and s2 are different :

The difference between the values whose first different

characters are converted to int (character of s1 - character

of s2)

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 724 of 853
Apr 01, 2011

Transforms a string based on region specific information

[Syntax]

#include <string.h>

size_t strxfrm (char *s1, const char *s2, size_t n) ;

[Argument(s)/Return value]

[Description]

- The RL78,78K0R C compiler does not support operations specific to cultural sphere.

The operations are the same as those of the following functions.

strncpy (s1, s2, c) ;

return (strlen (s2)) ;

strxfrm

Argument Return Value

s1 :

Pointer to a compared character string

s2 :

Pointer to a compared character string

n :

Maximum number of characters to s1

Returns the length of the character string of the result of the

conversion (does not include a character string to indicate

the end).

If the returned value is n or more, the contents of the array

indicated by s1 is undefined.

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 725 of 853
Apr 01, 2011

6.12 Mathematical Functions

The following mathematical functions are available.

Function Name Purpose

acos Finds acos

asin Finds asin

atan Finds atan

atan2 Finds atan2

cos Finds cos

sin Finds sin

tan Finds tan

cosh Finds cosh

sinh Finds sinh

tanh Finds tanh

exp Finds the exponential function

frexp Finds mantissa and exponent part

ldexp Finds x * 2 ^ exp

log Finds the natural logarithm

log10 Finds the base 10 logarithm

modf Finds the decimal and integer parts

pow Finds yth power of x

sqrt Finds the square root

ceil Finds the smallest integer not smaller than x

fabs Finds the absolute value of floating point number x

floor Finds the largest integer not larger than x

fmod Finds the remainder of x/y

matherr Obtains the exception processing for the library handling floating point numbers

acosf Finds acos

asinf Finds asin

atanf Finds atan

atan2f Finds atan of y/x

cosf Finds cos

sinf Finds sin

tanf Finds tan

coshf Finds cosh

sinhf Finds sinh

tanhf Finds tanh

expf Finds the exponential function

frexpf Finds mantissa and exponent part

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 726 of 853
Apr 01, 2011

ldexpf Finds x * 2 ^ exp

logf Finds the natural logarithm

log10f Finds the base 10 logarithm

modff Finds the decimal and integer parts

powf Finds yth power of x

sqrtf Finds the square root

ceilf Finds the smallest integer not smaller than x

fabsf Finds the absolute value of floating point number x

floorf Finds the largest integer not larger than x

fmodf Finds the remainder of x/y

Function Name Purpose

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 727 of 853
Apr 01, 2011

Finds acos

[Syntax]

#include <math.h>

double acos (double x) ;

[Argument(s)/Return value]

[Description]

- Calculates acos of x (range between 0 and π).
- In the case of the definition area error of x < -1, 1 < x, NaN is returned and EDOM is set.

- When x is non-numeric, NaN is returned.

acos

Argument Return Value

x :

Numeric value to perform operation

When -1 <= x <= 1 :

acos of x

When x < -1, 1 < x, x = NaN :

NaN

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 728 of 853
Apr 01, 2011

Finds asin

[Syntax]

#include <math.h>

double asin (double x) ;

[Argument(s)/Return value]

[Description]

- Calculates asin (range between -π /2 and +π /2) of x.

- In the case of area error of x < -1, 1 < x, NaN is returned and EDOM is set to errno.

- When x is non-numeric, NaN is returned.

- When x is -0, -0 is returned.

- If underflow occurs as a result of conversion, a non-normalized number is returned.

asin

Argument Return Value

x :

Numeric value to perform operation

When -1 <= x <= 1 :

asin of x

When x < -1, 1 < x, x = NaN :

NaN

When x = -0 :

-0

When underflow occurs :

Non-normalized number

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 729 of 853
Apr 01, 2011

Finds atan

[Syntax]

#include <math.h>

double atan (double x) ;

[Argument(s)/Return value]

[Description]

- Calculates atan (range between -π /2 and +π /2) of x.

- When x is non-numeric, NaN is returned.

- When x is -0, -0 is returned.

- If underflow occurs as a result of conversion, a non-normalized number is returned.

atan

Argument Return Value

x :

Numeric value to perform operation

Normal :

atan of x

When x = NaN :

NaN

When x = -0 :

-0

When underflow occurs :

Non-normalized number

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 730 of 853
Apr 01, 2011

Finds atan of y/x

[Syntax]

#include <math.h>

double atan2 (double y, double x) ;

[Argument(s)/Return value]

[Description]

- atan (range between -π and +π) of y/x is calculated.

- When both x and y are 0 or y/x is the value that cannot be expressed, or when both x and y are infinite, NaN is

returned and EDOM is set to errno.

- If either x or y is non-numeric, NaN is returned.

- If underflow occurs as a result of operation, non-normalized number is returned.

atan2

Argument Return Value

x :

Numeric value to perform operation

y :

Numeric value to perform operation

Normal :

atan of y/x

When both x and y are 0 or y/x is the value that cannot be

expressed, or either x or y is NaN and both x and y are + ∞ :

NaN

When underflow occurs :

Non-normalized number

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 731 of 853
Apr 01, 2011

Finds cos

[Syntax]

#include <math.h>

double cos (double x) ;

[Argument(s)/Return value]

[Description]

- Calculates cos of x.

- If x is non-numeric, NaN is returned.

- If x is infinite, NaN is returned and EDOM is set to errno.

- If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless value.

cos

Argument Return Value

x :

Numeric value to perform operation

Normal :

cos of x

When x = NaN, when x is infinite :

NaN

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 732 of 853
Apr 01, 2011

Finds sin

[Syntax]

#include <math.h>

double sin (double x) ;

[Argument(s)/Return value]

[Description]

- Calculates sin of x.

- If x is non-numeric, NaN is returned.

- If x is infinite, NaN is returned and EDOM is set to errno.

- If underflow occurs as a result of operation, a non-normalized number is returned.

- If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless value.

sin

Argument Return Value

x :

Numeric value to perform operation

Normal :

sin of x

When x = NaN, when x is infinite :

NaN

When underflow occurs :

Non-normalized number

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 733 of 853
Apr 01, 2011

Finds tan

[Syntax]

#include <math.h>

double tan (double x) ;

[Argument(s)/Return value]

[Description]

- Calculates tan of x.

- If x is non-numeric, NaN is returned.

- If x is infinite, NaN is returned and EDOM is set to errno.

- If underflow occurs as a result of operation, a non-normalized number is returned.

- If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless value.

tan

Argument Return Value

x :

Numeric value to perform operation

Normal :

tan of x

When x = NaN, x = + ∞ :

NaN

When underflow occurs :

Non-normalized number

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 734 of 853
Apr 01, 2011

Finds cosh

[Syntax]

#include <math.h>

double cosh (double x) ;

[Argument(s)/Return value]

[Description]

- Calculates cosh of x.

- If x is non-numeric, NaN is returned.

- If x is infinite, a positive infinite value is returned.

- If overflow occurs as a result of operation, HUGE_VAL with a positive sign is returned, and ERANGE is set to

errno.

cosh

Argument Return Value

x :

Numeric value to perform operation

Normal :

cosh of x

When x = NaN :

NaN

When x = + ∞:

+∞

When overflow occurs

HUGE_VAL (with the sign of the overflown value)

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 735 of 853
Apr 01, 2011

Finds sinh

[Syntax]

#include <math.h>

double sinh (double x) ;

[Argument(s)/Return value]

[Description]

- Calculates sinh of x.

- If x is non-numeric, NaN is returned.

- If x is + ∞, + ∞ is returned.

- If overflow occurs as a result of operation, HUGE_VAL with the sign of the overflown value is returned, and

ERANGE is set to errno.

- If underflow occurs as a result of operation, +0 is returned.

sinh

Argument Return Value

x :

Numeric value to perform operation

Normal :

sinh of x

When x = NaN :

NaN

When x = + ∞ :

+ ∞

When overflow occurs :

HUGE_VAL (with the sign of the overflown value)

When underflow occurs :

+ 0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 736 of 853
Apr 01, 2011

Finds tanh

[Syntax]

#include <math.h>

double tanh (double x) ;

[Argument(s)/Return value]

[Description]

- Calculates tanh of x.

- If x is non-numeric, NaN is returned.

- If x is + ∞, + 1 is returned.

- If underflow occurs as a result of operation, + 0 is returned.

tanh

Argument Return Value

x :

Numeric value to perform operation

Normal :

tanh of x

When x = NaN :

NaN

When x = + ∞ :

+ 1

When underflow occurs :

+ 0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 737 of 853
Apr 01, 2011

Finds the exponential function

[Syntax]

#include <math.h>

double exp (double x) ;

[Argument(s)/Return value]

[Description]s

- Calculates exponent function of x.

- If x is non-numeric, NaN is returned.

- If x is +∞, +∞ is returned.

- If x is -∞, +0 is returned.

- If underflow occurs as a result of operation, non-normalized number is returned.

- If annihilation of valid digits due to underflow occurs as a result of operation, +0 is returned.

- If overflow occurs as a result of operation, HUGE_VAL with a positive sign is returned and ERANGE is set to errno.

exp

Argument Return Value

x :

Numeric value to perform operation

Normal :

Exponent function of x

When x = NaN :

NaN

When x = +∞ :

+∞

When x = -∞ :

+0

When underflow occurs :

Non-normalized number

When annihilation of valid digits occurs due to underflow :

+0

When overflow occurs :

HUGE_VAL (with positive sign)

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 738 of 853
Apr 01, 2011

Finds mantissa and exponent part

[Syntax]

#include <math.h>

double frexp (double x, int *exp) ;

[Argument(s)/Return value]

[Description]

- Divide a floating point number x to mantissa m and exponent n such as x = m * 2 ^ n and returns mantissa m.

- Exponent n is stored where the pointer exp indicates. The absolute value of m, however, is 0.5 or more and less

than 1.0.

- If x is non-numeric, NaN is returned and the value of *exp is 0.

- If x is infinite, NaN is returned, and EDOM is set to errno with the value of *exp as 0.

- If x is + 0, + 0 is returned and the value of *exp is 0.

frexp

Argument Return Value

x :

Numeric value to perform operation

exp :

Pointer to store exponent part

Normal :

Mantissa of x

When x = NaN, x = + ∞:

NaN

When x = + 0 :

+ 0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 739 of 853
Apr 01, 2011

Finds x * 2 ^ exp

[Syntax]

#include <math.h>

double ldexp (double x, int exp) ;

[Argument(s)/Return value]

[Description]

- Calculates x * 2 ^ exp.

- If x is non-numeric, NaN is returned.

- If x is + ∞, + ∞ is returned.

- If x is + 0, + 0 is returned.

- If overflow occurs as a result of operation, HUGE_VAL with the overflown value is returned and ERANGE is set to

errno.

- If underflow occurs as a result of operation, non-normalized number is returned.

- If annihilation of valid digits due to underflow occurs as a result of operation, + 0 is returned.

ldexp

Argument Return Value

x :

Numeric value to perform operation

exp :

Exponentiation

Normal :

x * 2 ^ exp

When x = NaN :

NaN

When x = + ∞ :

+ ∞

When x = + 0 :

+ 0

When overflow occurs :

HUGE_VAL (with the sign of the overflown value)

When underflow occurs :

Non-normalized number

When annihilation of valid digits occurs due to underflow :

+ 0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 740 of 853
Apr 01, 2011

Finds the natural logarithm

[Syntax]

#include <math.h>

double log (double x) ;

[Argument(s)/Return value]

[Description]

- Finds natural logarithm of x.

- In the case of area error of x < 0, NaN is returned, EDOM is set to errno.

- If x = 0, -∞ is returned, and ERANGE is set to errno.

- If x is non-numeric, NaN is returned.

- If x is +∞, +∞ is returned.

log

Argument Return Value

x :

Numeric value to perform operation

Normal :

Natural logarithm of x

When x < 0 :

NaN

When x = 0 :

-∞

When x = NaN :

NaN

When x is infinite :

+∞

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 741 of 853
Apr 01, 2011

Finds the base 10 logarithm

[Syntax]

#include <math.h>

double log10 (double x) ;

[Argument(s)/Return value]

[Description]

- Finds logarithm with 10 of x as the base.

- In the case of area error of x < 0, NaN is returned, EDOM is set to errno.

- If x = 0, -∞ is returned, and ERANGE is set to errno.

- If x is non-numeric, NaN is returned.

- If x is +∞, +∞ is returned.

log10

Argument Return Value

x :

Numeric value to perform operation

Normal :

ithm with 10 of x as the base

When x < 0 :

NaN

When x = 0 :

-∞

When x = NaN :

NaN

When x is infinite :

+∞

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 742 of 853
Apr 01, 2011

Finds the decimal and integer parts

[Syntax]

#include <math.h>

double modf (double x, double *iptr) ;

[Argument(s)/Return value]

[Description]

- Divides a floating point number x to fraction part and integer part

- Returns fraction part with the same sign as that of x, and stores the integer part to the location indicated by the

pointer iptr.
- If x is non-numeric, NaN is returned and stored to the location indicated by the pointer iptr.
- If x is infinite, NaN is returned and stored to the location indicated by the pointer iptr, and EDOM is set to errno.

- If x = + 0, + 0 is stored to the location indicated by the pointer iptr.

modf

Argument Return Value

x :

Numeric value to perform operation

iptr :

Pointer to integer part

Normal :

Fraction part of x

When x is non-numeric or infinite :

NaN

When x is + 0 :

+ 0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 743 of 853
Apr 01, 2011

Finds yth power of x

[Syntax]

#include <math.h>

double pow (double x, double y) ;

[Argument(s)/Return value]

[Description]

- Calculates x ^ y.

- When x = NaN or y = NaN, NaN is returned.

- Either when x = + ∞ and y = 0, x < 0 and y ≠ integer, x < 0 and y = + ∞ or x = 0 and y <= 0, NaN is returned and

EDOM is set to errno.

- If overflow occurs as a result of operation, HUGE_VAL with the sign of overflown value is returned, and ERANGE

is set to errno.

- If underflow occurs, a non-normalized number is returned.

- If annihilation of valid digits occurs due to underflow, + 0 is returned.

pow

Argument Return Value

x :

Numeric value to perform operation

y :

Multiplier

Normal :

x ^ y

Either when x = NaN or y = NaN,

x = +∞ and y = 0,

x < 0 and y ≠ integer,

x < 0 and y = + ∞,

x = 0 and y <= 0 :

NaN

When overflow occurs :

HUGE_VAL (with the sign of overflown value)

When underflow occurs :

Non-normalized number

When annihilation of valid digits occurs due to underflow :

+ 0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 744 of 853
Apr 01, 2011

Finds the square root

[Syntax]

#include <math.h>

double sqrt (double x) ;

[Argument(s)/Return value]

[Description]

- Calculates the square root of x.

- In the case of area error of x < 0, 0 is returned and EDOM is set to errno.

- If x is non-numeric, NaN is returned.

- If x is + 0, + 0 is returned.

sqrt

Argument Return Value

x :

Numeric value to perform operation

When x>=0 :

Square root of x

When x < 0 :

0

When x = NaN :

NaN

When x = + 0 :

+ 0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 745 of 853
Apr 01, 2011

Finds the smallest integer not smaller than x

[Syntax]

#include <math.h>

double ceil (double x) ;

[Argument(s)/Return value]

[Description]

- Finds the minimum integer no less than x.

- If x is non-numeric, NaN is returned.

- If x is infinite, NaN is returned and EDOM is set to errno.

- If x is -0, +0 is returned.

- If the minimum integer no less than x cannot be expressed, x is returned.

ceil

Argument Return Value

x :

Numeric value to perform operation

Normal :

The minimum integer no less than x

When x is non-numeric or when x is infinite :

NaN

When x = -0 :

+0

When the minimum integer no less than x cannot be

expressed :

x

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 746 of 853
Apr 01, 2011

Finds the absolute value of floating point number x

[Syntax]

#include <math.h>

double fabs (double x) ;

[Argument(s)/Return value]

[Description]

- Finds the absolute value of x.

- If x is non-numeric, NaN is returned.

- If x is -0, +0 is returned.

fabs

Argument Return Value

x :

Numeric value to find the absolute value

Normal :

Absolute value of x

When x = NaN :

NaN

When x = -0 :

+0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 747 of 853
Apr 01, 2011

Finds the largest integer not larger than x

[Syntax]

#include <math.h>

double floor (double x) ;

[Argument(s)/Return value]

[Description]

- Finds the maximum integer no more than x.

- If x is non-numeric, NaN is returned.

- If x is infinite, NaN is returned and EDOM is set to errno.

- If x is -0, +0 is returned.

- If the maximum integer no more than x cannot be expressed, x is returned.

floor

Argument Return Value

x :

Numeric value to perform operation

Normal :

The maximum integer no more than x

When x is non-numeric or when x is infinite :

NaN

When x = -0 :

+0

When the maximum integer no more than x cannot be

expressed :

x

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 748 of 853
Apr 01, 2011

Finds the remainder of x/y

[Syntax]

#include <math.h>

double fmod (double x, double y)

[Argument(s)/Return value]

[Description]

- Calculates the remainder of x/y expressed with x - i * y. i is an integer.

- If y ≠ 0, the return value has the same sign as that of x and the absolute value is less than that of y.

- If x is non-numeric or y is non-numeric, NaN is returned.

- If y is + 0 or x = + ∞, NaN is returned and EDOM is set to errno.

- If y is infinite, x is returned unless x is infinite.

fmod

Argument Return Value

x :

Numeric value to perform operation

y :

Numeric value to perform operation

Normal :

Remainder of x/y

When x is non-numeric or y is non-numeric,

when y is + 0, when x is + ∞ :

NaN

When x ≠ ∞ and y = + ∞ :

x

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 749 of 853
Apr 01, 2011

Obtains the exception processing for the library handling floating point numbers

[Syntax]

#include <math.h>

void matherr (struct exception *x) ;

[Argument(s)/Return value]

[Description]

- When an exception is generated, matherr is automatically called in the standard library and run-time library that

deal with floating-point numbers.

- When called from the standard library, EDOM and ERANGE are set to errno.

The following shows the relationship between the arithmetic exception type and errno.

Original error processing can be performed by changing or creating matherr.

- The argument is always a near pointer, because it points to an exception structure in internal RAM. This is why

there are no matherr_n/matherr_f functions.

matherr

Argument Return Value

struct exception {

 int type ;

 char *name ;

}

type :

Numeric value to indicate arithmetic exception

name :

Function name

None

Type Arithmetic Exception Value Set to errno

1 Underflow ERANGE

2 Annihilation ERANGE

3 Overflow ERANGE

4 Zero division EDOM

5 Inoperable EDOM

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 750 of 853
Apr 01, 2011

Finds acos

[Syntax]

#include <math.h>

float acosf (float x) ;

[Argument(s)/Return value]

[Description]

- Calculates acos (range between 0 and π) of x.

- In the case of definition area error of x < -1, 1 < x, NaN is returned and EDOM is set to errno.

- If x is non-numeric, NaN is returned.

acosf

Argument Return Value

x :

Numeric value to perform operation

When -1 <= x <= 1 :

acos of x

When x < -1, 1 < x, x = NaN :

NaN

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 751 of 853
Apr 01, 2011

Finds asin

[Syntax]

#include <math.h>

float asinf (float x) ;

[Argument(s)/Return value]

[Description]

- Calculates asin (range between -π /2 and +π /2) of x.

- In the case of definition area error of x < -1, 1 < x, NaN is returned and EDOM is set to errno.

- If x is non-numeric, NaN is returned.

- If x = -0, -0 is returned.

- If underflow occurs as a result of operation, a non-normalized number is returned.

asinf

Argument Return Value

x :

Numeric value to perform operation

When -1 <= x <= 1 :

asin of x

When x < -1, 1 < x, x = NaN :

NaN

When x = -0 :

-0

When underflow occurs :

Non-normalized number

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 752 of 853
Apr 01, 2011

Finds atan

[Syntax]

#include <math.h>

float atanf (float x) ;

[Argument(s)/Return value]

[Description]

- Calculates atan (range between -π /2 and + π /2) of x.

- If x is non-numeric, NaN is returned.

- If x = -0, -0 is returned.

- If underflow occurs as a result of operation, a non-normalized number is returned.

atanf

Argument Return Value

x :

Numeric value to perform operation

Normal :

atan of x

When x = NaN :

NaN

When x = -0 :

-0

When underflow occurs :

Non-normalized number

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 753 of 853
Apr 01, 2011

Finds atan of y/x

[Syntax]

#include <math.h>

float atan2f (float y, float x) ;

[Argument(s)/Return value]

[Description]

- Calculates atan (range between -π and +π) of y/x.

- When both x and y are 0 or the value whose y/x cannot be expressed, or when both x and y are infinite, NaN is

returned and EDOM is set to errno.

- When either x or y is non-numeric, NaN is returned.

- If underflow occurs as a result of operation, a non-normalized number is returned.

atan2f

Argument Return Value

x :

Numeric value to perform operation

y :

Numeric value to perform operation

Normal :

atan of y/x

When both x and y are 0 or a value whose y/ x cannot be

expressed, or either x or y is NaN, both x and y are infinite :

NaN

When underflow occurs :

Non-normalized number

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 754 of 853
Apr 01, 2011

Finds cos

[Syntax]

#include <math.h>

float cosf (float x) ;

[Argument(s)/Return value]

[Description]

- Calculates cos of x.

- If x is non-numeric, NaN is returned.

- If x is infinite, NaN is returned and EDOM is set to errno.

- If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless value.

cosf

Argument Return Value

x :

Numeric value to perform operation

Normal :

cos of x

When x = NaN, x is infinite :

NaN

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 755 of 853
Apr 01, 2011

Finds sin

[Syntax]

#include <math.h>

float sinf (float x) ;

[Argument(s)/Return value]

[Description]

- Calculates sin of x.

- If x is non-numeric, NaN is returned.

- If x is infinite, NaN is returned and EDOM is set to errno.

- If underflow occurs as a result of operation, a non-normalized number is returned.

- If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless value.

sinf

Argument Return Value

x :

Numeric value to perform operation

Normal :

sin of x

When x = NaN, x is infinite :

NaN

When underflow occurs :

Non-normalized number

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 756 of 853
Apr 01, 2011

Finds tan

[Syntax]

#include <math.h>

float tanf (float x) ;

[Argument(s)/Return value]

[Description]

- Calculates tan of x.

- If x is non-numeric, NaN is returned.

- If x is infinite, NaN is returned and EDOM is set to errno.

- If underflow occurs as a result of operation, a non-normalized number is returned.

- If the absolute value of x is extremely large, the result of an operation becomes an almost meaningless value.

tanf

Argument Return Value

x :

Numeric value to perform operation

Normal :

tan of x

When x = NaN, x is infinite :

NaN

When underflow occurs :

Non-normalized number

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 757 of 853
Apr 01, 2011

Finds cosh

[Syntax]

#include <math.h>

float coshf (float x) ;

[Argument(s)/Return value]

[Description]

- Calculates cosh of x.

- If x is non-numeric, NaN is returned.

- If x is infinite, positive infinite value is returned.

- If overflow occurs as a result of operation, HUGE_VAL with a positive sign is returned and ERANGE is set to errno.

coshf

Argument Return Value

x :

Numeric value to perform operation

Normal :

cosh of x

When x = NaN :

NaN

When x is infinite :

+∞

When overflow occurs :

HUGE_VAL (with positive sign)

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 758 of 853
Apr 01, 2011

Finds sinh

[Syntax]

#include <math.h>

float sinhf (float x) ;

[Argument(s)/Return value]

[Description]

- Calculates sinh of x.

- If x is non-numeric, NaN is returned.

- If x is + ∞, + ∞ is returned.

- If overflow occurs as a result of operation, HUGE_VAL with the sign of overflown value is returned and ERANGE is

set to errno.

- If underflow occurs as a result of operation, ++ 0 is returned.

sinhf

Argument Return Value

x :

Numeric value to perform operation

Normal :

sinh of x

When x = NaN :

NaN

When x = + ∞:

+ ∞

When overflow occurs :

HUGE_VAL (with a sign of the overflown value)

When underflow occurs :

+ 0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 759 of 853
Apr 01, 2011

Finds tanh

[Syntax]

#include <math.h>

float tanhf (float x) ;

[Argument(s)/Return value]

[Description]

- Calculates tanh of x.

- If x is non-numeric, NaN is returned.

- If x is + ∞, + 1 is returned.

- If underflow occurs as a result of operation, + 0 is returned.

tanhf

Argument Return Value

x :

Numeric value to perform operation

Normal :

tanh of x

When x = NaN :

NaN

When x = + ∞ :

+ 1

When underflow occurs :

+ 0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 760 of 853
Apr 01, 2011

Finds the exponential function

[Syntax]

#include <math.h>

float expf (float x) ;

[Argument(s)/Return value]

[Description]

- Calculates exponent function of x.

- If x is non-numeric, NaN is returned.

- If x is +∞, +∞ is returned.

- If x is -∞, +0 is returned.

- If overflow occurs as a result of operation, HUGE_VAL with a positive sign is returned and ERANGE is set to errno.

- If underflow occurs as a result of operation, non-normalized number is returned.

- If annihilation of effective digits occurs due to underflow as a result of operation, +0 is returned.

expf

Argument Return Value

x :

Numeric value to perform operation

Normal :

Exponent function of x

When x = NaN :

NaN

When x = +∞:

+∞

When x = -∞ :

+0

When overflow occurs :

HUGE_VAL (with positive sign)

When underflow occurs :

Non-normalized number

When annihilation of valid digits occurs due to underflow :

+0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 761 of 853
Apr 01, 2011

Finds mantissa and exponent part

[Syntax]

#include <math.h>

float frexpf (float x, int *exp) ;

[Argument(s)/Return value]

[Description]

- Divides a floating-point number x to mantissa m and exponent n such as x = m * 2 ^ n and returns mantissa m.

- Exponent n is stored in where the pointer exp indicates. The absolute value of m, however, is 0.5 or more and less

than 1.0.

- If x is non-numeric, NaN is returned and the value of *exp is 0.

- If x is + ∞, NaN is returned, and EDOM is set to errno with the value of *exp as 0.

- If x is + 0, + 0 is returned and the value of *exp is 0.

frexpf

Argument Return Value

x :

Numeric value to perform operation

exp :

Pointer to store exponent part

Normal :

Mantissa of x

When x = NaN, x = + ∞ :

NaN

When x = + 0 :

+ 0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 762 of 853
Apr 01, 2011

Finds x * 2 ^ exp

[Syntax]

#include <math.h>

float ldexpf (float x, int exp) ;

[Argument(s)/Return value]

[Description]

- Calculates x * 2 ^ exp.

- If x is non-numeric, NaN is returned. If x is + ∞, + ∞ is returned. If x is + 0, + 0 is returned.

- If overflow occurs as a result of operation, HUGE_VAL with the sign of overflown value is returned and ERANGE is

set to errno.

- If underflow occurs as a result of operation, non-normalized number is returned .

- If annihilation of valid digits due to underflow occurs as a result of operation, + 0 is returned.

ldexpf

Argument Return Value

x :

Numeric value to perform operation

exp :

Exponentiation

Normal :

x * 2 ^ exp

When x = NaN :

NaN

When x = + ∞ :

+ ∞

When x = + 0 :

+ 0

When overflow occurs :

HUGE_VAL (with the sign of overflown value)

When underflow occurs :

Non-normalized number

When annihilation of valid digits occurs due to underflow :

+ 0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 763 of 853
Apr 01, 2011

Finds the natural logarithm

[Syntax]

#include <math.h>

float logf (float x) ;

[Argument(s)/Return value]

[Description]

- Finds natural logarithm of x.

- In the case of area error of x < 0, NaN is returned, and EDOM is set to errno.

- If x = 0, -∞ is returned, and ERANGE is set to errno.

- If x is non-numeric, NaN is returned.

- If x is +∞, +∞ is returned.

logf

Argument Return Value

x :

Numeric value to perform operation

Normal :

Natural logarithm of x

When x < 0 :

NaN

When x = 0 :

-∞

When x = NaN :

NaN

When x is infinite :

+∞

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 764 of 853
Apr 01, 2011

Finds the base 10 logarithm

[Syntax]

#include <math.h>

float log10f (float x) ;

[Argument(s)/Return value]

[Description]

- Finds logarithm with 10 of x as the base.

- In the case of area error of x < 0, NaN is returned, and EDOM is set to errno.

- If x = 0, -∞ is returned, and ERANGE is set to errno.

- If x is non-numeric, NaN is returned.

- If x is +∞, +∞ is returned.

log10f

Argument Return Value

x :

Numeric value to perform operation

Normal :

Logarithm with 10 of x as the base

When x < 0 :

NaN

When x = 0 :

-∞

When x = NaN :

NaN

When x = +∞:

+∞

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 765 of 853
Apr 01, 2011

Finds the decimal and integer parts

[Syntax]

#include <math.h>

float modff (float x, float *iptr) ;

[Argument(s)/Return value]

[Description]

- Divides a floating point number x to fraction part and integer part.

- Returns fraction part with the same sign as that of x, and stores integer part to location indicated by the pointer iptr.
- If x is non-numeric, NaN is returned and stored location indicated by the pointer iptr.
- If x is infinite, NaN is returned and stored location indicated by the pointer iptr, and EDOM is set to errno.

- If x = + 0, + 0 is returned and stored location indicated by the pointer iptr.

modff

Argument Return Value

x :

Numeric value to perform operation

iptr :

Pointer to integer part

Normal :

 Fraction part of x

When x = NaN, x is infinite :

NaN

When x = + 0 :

+ 0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 766 of 853
Apr 01, 2011

Finds yth power of x

[Syntax]

#include <math.h>

float powf (float x, float y) ;

[Argument(s)/Return value]

[Description]

- Calculates x ^ y.

- When x = NaN or y = NaN, NaN is returned.

- Either when x = + ∞ and y = 0, x < 0 and y ≠ integer, x < 0 and y = + ∞, or x = 0 and y <= 0, NaN is returned and

EDOM is set to errno.

- If overflow occurs as a result of operation, HUGE_VAL with the sign of overflown value is returned, and ERANGE

is set to errno.

- If underflow occurs, a non-normalized number is returned.

- If annihilation of valid digits occurs due to underflow, + 0 is returned.

powf

Argument Return Value

x :

Numeric value to perform operation

y :

Multiplier

Normal :

x ^ y

Either when

x = NaN or y = NaN

x = +∞ and y = 0

x < 0 and y ≠ integer,

x < 0 and y = + ∞
x = 0 and y <= 0 :

NaN

When overflow occurs :

HUGE_VAL (with the sign of overflown value)

When underflow occurs :

Non-normalized number

When annihilation of valid digits occurs due to underflow :

+ 0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 767 of 853
Apr 01, 2011

Finds the square root

[Syntax]

#include <math.h>

float sqrtf (float x) ;

[Argument(s)/Return value]

[Description]

- Calculates the square root of x.

- In the case of area error of x < 0, 0 is returned and EDOM is set to errno.

- If x is non-numeric, NaN is returned.

- If x is + 0, + 0 is returned.

sqrtf

Argument Return Value

x :

Numeric value to perform operation

When x>=0 :

Square root of x

When x < 0 :

0

When x = NaN :

NaN

When x = + 0 :

+ 0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 768 of 853
Apr 01, 2011

Finds the smallest integer not smaller than x

[Syntax]

#include <math.h>

float ceilf (float x) ;

[Argument(s)/Return value]

[Description]

- Finds the minimum integer no less than x.

- If x is non-numeric, NaN is returned.

- If x is -0, +0 is returned.

- If x is infinite, NaN is returned and EDOM is set to errno.

- If the minimum integer no less than x cannot be expressed, x is returned.

ceilf

Argument Return Value

x :

Numeric value to perform operation

Normal :

The minimum integer no less than x

When x = NaN, x is infinite :

NaN

When x = -0 :

+0

When the minimum integer no less than x cannot be

expressed :

 x

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 769 of 853
Apr 01, 2011

Finds the absolute value of floating point number x

[Syntax]

#include <math.h>

float fabsf (float x) ;

[Argument(s)/Return value]

[Description]

- Finds the absolute value of x.

- If x is non-numeric, NaN is returned.

- If x is -0, +0 is returned.

fabsf

Argument Return Value

x :

Numeric value to find the absolute value

Normal :

Absolute value of x

When x is non-numeric :

NaN

When x = -0 :

+0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 770 of 853
Apr 01, 2011

Finds the largest integer not larger than x

[Syntax]

#include <math.h>

float floorf (float x) ;

[Argument(s)/Return value]

[Description]

- Finds the maximum integer no more than x.

- If x is non-numeric, NaN is returned.

- If x is infinite, NaN is returned and EDOM is set to errno.

- If x is -0, +0 is returned.

- If the maximum integer no more than x cannot be expressed, x is returned.

floorf

Argument Return Value

x :

Numeric value to perform operation

Normal :

The maximum integer no more than x

When x = NaN, x is infinite :

NaN

When x = -0 :

+0

When the maximum integer no more than x cannot be

expressed :

x

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 771 of 853
Apr 01, 2011

Finds the remainder of x/y

[Syntax]

#include <math.h>

float fmodf (float x, float y) ;

[Argument(s)/Return value]

[Description]

- Calculates the remainder of x/y expressed with x - i * y. i is an integer.

- If y ≠ 0, the return value has the same sign as that of x and the absolute value is less than y.

- If y is + 0 or x = + ∞, NaN is returned and EDOM is set to errno.

- If x is non-numeric or y is non-numeric, NaN is returned.

- If y is infinite, x is returned unless x is infinite.

fmodf

Argument Return Value

x :

Numeric value to perform operation

y :

 Numeric value to perform operation

Normal :

Remainder of x/y

When y is + 0 or x is + ∞,

When x is non-numeric or y is non-numeric :

NaN

When x ≠ ∞ and y = + ∞ :

x

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 772 of 853
Apr 01, 2011

6.13 Diagnostic Function

The following diagnostic function is available.

Function Name Purpose

__assertfail Supports the assert macro

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 773 of 853
Apr 01, 2011

Supports the assert macro

[Syntax]

#include <assert.h>

int __assertfail (char *__msg, char *__cond, char *__file, int __line) ;

[Argument(s)/Return value]

[Description]

- A __assertfail function receives information from assert macro (see 6.3.13 assert.h), calls printf function, outputs

information, and calls abort function.

- An assert macro adds diagnostic function to a program.

When an assert macro is executed, if p is false (equal to 0), an assert macro passes information related to the spe-

cific call that has brought the false value (actual argument text, source file name, and source line number are

included in the information. The other two are the values of macro __FILE__ and __LINE__, respectively) to

__assertfail function.

__assertfail

Argument Return Value

__msg :

Pointer to character string to indicate output conversion

specification to be passed to printf function

__cond :

Actual argument of assert macro

__file :

Source file name

__line :

Source line number

Undefined

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 774 of 853
Apr 01, 2011

6.14 Library Stack Consumption List

This section explains the number of stacks consumed for each function in the libraries.

6.14.1 Standard libraries

The number of stacks consumed for each standard library stack function is displayed in the tables below.

(1) ctype.h

(2) setjmp.h

(3) stdarg.h

Function Name Shared by Small Model

and Medium Model

Shared by Large Model

isalpha 0 0

isupper 0 0

islower 0 0

isdigit 0 0

isalnum 0 0

isxdigit 0 0

isspace 0 0

ispunct 0 0

isprint 0 0

isgraph 0 0

iscntrl 0 0

isascii 0 0

toupper 0 0

tolower 0 0

toascii 0 0

_toupper 0 0

toup 0 0

_tolower 0 0

tolow 0 0

Function Name Shared by Small Model

and Medium Model

Shared by Large Model

setjmp 4 4

longjmp 2 2

Function Name Shared by Small Model

and Medium Model

Shared by Large Model

va_arg 0 0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 775 of 853
Apr 01, 2011

(4) stdio.h

Notes 1. Values in parentheses are for when the version that supports floating-point numbers is used.

2. Values in parentheses are for when an operation exception occurs in the version that supports floating-

point numbers.

(5) stdlib.h

va_start 0 0

va_starttop 0 0

va_end 0 0

Function Name Shared by Small Model

and Medium Model

Shared by Large Model

sprintf 58 (130)Note 1 58 (140)Note 1

sscanf 294 (332)Note 1 (350)Note 2 294 (340)Note 1 (358)Note 2

printf 70 (128)Note 1 74 (138)Note 1

scanf 308 (330)Note 1 (348)Note 2 312 (338)Note 1 (356)Note 2

vprintf 70 (128)Note 1 76 (140)Note 1

vsprintf 58 (130)Note 1 58 (140)Note 1

getchar 0 0

gets 8 14

putchar 0 0

puts 6 10

__putc 4 4

Function Name Shared by Small Model

and Medium Model

Shared by Large Model

atoi 4 4

atol 10 10

strtol 20 20

strtoul 20 20

calloc 12 12

free 8 8

malloc 6 6

realloc 12 12

abort 0 0

atexit 0 0

exit 6 + nNote 1 6 + nNote 1

abs 0 0

Function Name Shared by Small Model

and Medium Model

Shared by Large Model

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 776 of 853
Apr 01, 2011

Notes 1. n is the total stack consumption among external functions registered by the atexit function.

2. Values in the parentheses are for when a multiplier/divider is used.

3. Values in the parentheses are for RL78 mounted expansion instructions.

4. Values in parentheses are for when an operation exception occurs in the version that supports floating-

point numbers.

5. Values in the parentheses are for when a multiplier, multiplier/divider is used.

6. n is the stack consumption of external functions called from bsearch.

7. n is (X+ (stack consumption of external functions called from qsort)) - (1 + (number of recursive calls)).

When using a library shared by small model and medium model : X = 38

When using a library shared by large model : X = 40

(6) string.h

labs 0 0

div 6 (2)Note 2 (0)Note 3 6 (2)Note 2 (0)Note 3

ldiv 18 (8)Note 2 (4)Note 3 18 (8)Note 2 (4)Note 3

brk 0 0

sbrk 2 2

atof 46 (64)Note 4 46 (64)Note 4

strtod 46 (64)Note 4 48 (66)Note 4

itoa 10 10

ltoa 16 16

ultoa 16 16

rand 18 (14)Note 5 (14)Note 3 18 (14)Note 5 (14)Note 3

srand 0 0

bsearch 36 + nNote 6 40 + nNote 6

qsort 16 + nNote 7 18 + nNote 7

strbrk 0 0

strsbrk 2 2

stritoa 10 10

strltoa 16 16

strultoa 16 16

Function Name Shared by Small Model

and Medium Model

Shared by Large Model

memcpy 4 8

memmove 4 6

strcpy 2 6

strncpy 4 10

strcat 2 6

Function Name Shared by Small Model

and Medium Model

Shared by Large Model

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 777 of 853
Apr 01, 2011

(7) math.h

strncat 4 8

memcmp 2 4

strcmp 2 2

strncmp 2 2

memchr 2 4

strchr 4 2

strrchr 4 6

strspn 4 6

strcspn 4 4

strpbrk 4 6

strstr 4 8

strtok 4 4

memset 4 6

strerror 0 0

strlen 0 0

strcoll 2 2

strxfrm 4 4

Function Name Shared by Small Model

and Medium Model

Shared by Large Model

acos 30 (48)Note 30 (48)Note

asin 30 (48)Note 30 (48)Note

atan 30 (48)Note 30 (48)Note

atan2 30 (48)Note 30 (48)Note

cos 28 (46)Note 28 (46)Note

sin 28 (46)Note 28 (46)Note

tan 34 (52)Note 34 (52)Note

cosh 34 (52)Note 34 (52)Note

sinh 34 (52)Note 34 (52)Note

tanh 40 (58)Note 40 (58)Note

exp 30 (48)Note 30 (48)Note

frexp 2 (16)Note 4 (16)Note

ldexp 0 (16)Note 0 (16)Note

log 30 (48)Note 30 (48)Note

log10 30 (48)Note 30 (48)Note

Function Name Shared by Small Model

and Medium Model

Shared by Large Model

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 778 of 853
Apr 01, 2011

Note Values in parentheses are for when an operation exception occurs.

(8) assert.h

modf 2 (16)Note 4 (16)Note

pow 30 (48)Note 30 (48)Note

sqrt 22 (40)Note 22 (40)Note

ceil 2 (16)Note 2 (16)Note

fabs 0 0

floor 2 (16)Note 2 (16)Note

fmod 2 (16)Note 2 (16)Note

matherr 0 0

acosf 30 (48)Note 30 (48)Note

asinf 30 (48)Note 30 (48)Note

atanf 30 (48)Note 30 (48)Note

atan2f 30 (48)Note 30 (48)Note

cosf 28 (46)Note 28 (46)Note

sinf 28 (46)Note 28 (46)Note

tanf 34 (52)Note 34 (52)Note

coshf 34 (52)Note 34 (52)Note

sinhf 34 (52)Note 34 (52)Note

tanhf 40 (58)Note 40 (58)Note

expf 30 (48)Note 30 (48)Note

frexpf 2 (16)Note 4 (16)Note

ldexpf 0 (16)Note 0 (16)Note

logf 30 (48)Note 30 (48)Note

log10f 30 (48)Note 30 (48)Note

modff 2 (16)Note 4 (16)Note

powf 30 (48)Note 30 (48)Note

sqrtf 22 (40)Note 22 (40)Note

ceilf 2 (16)Note 2 (16)Note

fabsf 0 0

floorf 2 (16)Note 2 (16)Note

fmodf 2 (16)Note 2 (16)Note

Function Name Shared by Small Model

and Medium Model

Shared by Large Model

__assertfail 82 (140)Note 92 (156)Note

Function Name Shared by Small Model

and Medium Model

Shared by Large Model

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 779 of 853
Apr 01, 2011

Note Values in parentheses are for when the printf version that supports floating-point numbers is used.

6.14.2 Runtime libraries

The number of stacks consumed for each runtime library function is shown in the tables below.

(1) Increment

Note Values in parentheses are for when an operation exception occurs.

(2) Decrement

Note Values in parentheses are for when an operation exception occurs.

(3) Sign reverse

(4) 1's complement

Function Name Stack Consumption

lsinc 0

luinc 0

finc 16 (34)Note

lsincr 0

luincr 0

fincr 16 (34)Note

Function Name Stack Consumption

lsdec 0

ludec 0

fdec 16 (34)Note

lsdecr 0

ludecr 0

fdecr 16 (34)Note

Function Name Stack Consumption

lsrev 2

lurev 2

frev 0

lsrevr 2

lurevr 2

frevr 0

Function Name Stack Consumption

lscom 0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 780 of 853
Apr 01, 2011

(5) Logical negation

(6) Multiplication

Notes 1. Values in the parentheses are for when a multiplier, multiplier/divider is used.

2. Values in the parentheses are for RL78 mounted expansion instructions.

3. Values in the parentheses are for when an operation exception occurs.

(7) Division

lucom 0

lscomr 0

lucomr 0

Function Name Stack Consumption

lsnot 0

lunot 0

Function Name Stack Consumption

csmul 0

cumul 0

ismul 4 (2)Note 1(2)Note 2

iumul 4 (2)Note 1(2)Note 2

lsmul 8 (4)Note 1(4)Note 2

lumul 8 (4)Note 1(4)Note 2

fmul 8 (26)Note 3

iumulr 4 (2)Note 1(2)Note 2

lsmulr 8 (4)Note 1(4)Note 2

lumulr 8 (4)Note 1(4)Note 2

fmulr 8 (26)Note 3

Function Name Stack Consumption

csdiv 8 (10)Note 1(10)Note 2

cudiv 2 (4)Note 1(4)Note 2

isdiv 12 (8)Note 1(8)Note 2

iudiv 6 (2)Note 1(2)Note 2

lsdiv 12 (8) Note 1(12)Note 2

ludiv 6 (2)Note 1(6)Note 2

fdiv 8 (26)Note 3

csdivr 8 (10)Note 1(10)Note 2

cudivr 2 (4)Note 1(4)Note 2

Function Name Stack Consumption

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 781 of 853
Apr 01, 2011

Notes 1. Values in the parentheses are for when a multiplier/divider is used.

2. Values in the parentheses are for RL78 mounted expansion instructions.

3. Values in parentheses are for when an operation exception occurs .

(8) Remainder arithmetic

Notes 1. Values in the parentheses are for when a multiplier/divider is used.

2. Values in the parentheses are for RL78 mounted expansion instructions.

(9) Addition

Note Values in parentheses are for when an operation exception occurs.

isdivr 12 (8)Note 1(8)Note 2

iudivr 6 (2)Note 1(2)Note 2

lsdivr 12 (8) Note 1(12)Note 2

ludivr 6 (2)Note 1(6)Note 2

fdivr 8 (26)Note 3

Function Name Stack Consumption

csrem 8 (10)Note 1(10)Note 2

curem 2 (4)Note 1(4)Note 2

isrem 12 (8)Note 1(8)Note 2

iurem 6 (2)Note 1(2)Note 2

lsrem 12 (8)Note 1(12)Note 2

lurem 6 (12) Note 1(6)Note 2

csremr 8 (10)Note 1(10)Note 2

curemr 2 (4)Note 1(4)Note 2

isremr 12 (8)Note 1(8)Note 2

iuremr 6 (2)Note 1(2)Note 2

lsremr 12 (8)Note 1(12)Note 2

luremr 6 (12) Note 1(6)Note 2

Function Name Stack Consumption

lsadd 0

luadd 0

fadd 8 (26)Note

lsaddr 0

luaddr 0

faddr 8 (26)Note

Function Name Stack Consumption

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 782 of 853
Apr 01, 2011

(10)Subtraction

Note Values in parentheses are for when an operation exception occurs.

(11) Left shift

(12)Right shift

(13)Compare

Function Name Stack Consumption

lssub 2

lusub 2

fsub 8 (26)Note

lssubr 2

lusubr 2

fsubr 8 (26)Note

Function Name Stack Consumption

lslsh 4

lulsh 4

lslshr 4

lulshr 4

Function Name Stack Consumption

lsrsh 4

lursh 4

lsrshr 4

lurshr 4

Function Name Stack Consumption

cscmp 0

iscmp 0

lscmp 2

lucmp 2

fcmp 4 (24)Note

cscmpr 0

iscmpr 0

lscmpr 2

lucmpr 2

fcmpr 4 (24)Note

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 783 of 853
Apr 01, 2011

Note Values in parentheses are for when an operation exception occurs.

(14)Bit AND

(15)Bit OR

(16)Bit XOR

(17)Conversion from floating point number

(18)Conversion to floating point number

Function Name Stack Consumption

lsband 0

luband 0

lsbandr 0

lubandr 0

Function Name Stack Consumption

lsbor 0

lubor 0

lsborr 0

luborr 0

Function Name Stack Consumption

lsbxor 0

lubxor 0

lsbxorr 0

lubxorr 0

Function Name Stack Consumption

ftols 6

ftolu 6

ftolsr 6

ftolur 6

Function Name Stack Consumption

lstof 6

lutof 6

lstofr 6

lutofr 6

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 784 of 853
Apr 01, 2011

(19)Conversion from bit

(20)Startup routine

(21)Flash startup routine

(22)Main for boot

(23)Pre- and post-processing of function

(24)BCD-type conversion

(25)Auxiliary

Function Name Stack Consumption

btol 0

btolr 0

Function Name Stack Consumption

cstart 4

Function Name Stack Consumption

cstarte 4

Function Name Stack Consumption

boot_main 0

Function Name Stack Consumption

hdwinit 0

cprep3 Size of base pointer + first argument + register variables + automatic variables

cdisp3 0

cpre3e Size of base pointer + first argument + register variables + automatic variables

cdis3e 0

Function Name Purpose

bcdtob 6

btobcd 6

bcdtow 6

wtobcd 8

bbcd 6

Function Name Stack Consumption

indao 0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 785 of 853
Apr 01, 2011

Notes 1. Values in the parentheses are for when a multiplier/divider is used.

ifdao 0

inado 0

ifado 0

lnd0 2

lfd0 2

ln0d 0

lf0d 0

lnd0o 2

lfd0o 2

ln0do 0

lf0do 0

df1in 0

df1de 0

dn4in 0

dn4ip 4

df4in 0

df4ip 4

dn4ino 0

dn4ipo 4

df4ino 0

df4ipo 4

dn4de 0

dn4dp 4

df4de 0

df4dp 4

dn4deo 0

dn4dpo 4

df4deo 0

df4dpo 4

divuw 6 (2)Note 1 (4)Note 2

divuwr 6 (2)Note 1 (4)Note 2

mulsw 14 (10)Note 3 (2)Note 4 (2)Note 2

muluw 14 (10)Note 3 (2)Note 4 (2)Note 2

macsw 22 (18)Note 3 (2)Note 4 (6)Note 2

macuw 22 (18)Note 3 (2)Note 4 (6)Note 2

Function Name Stack Consumption

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 786 of 853
Apr 01, 2011

2. Values in the parentheses are for RL78 mounted expansion instructions.

3. Values in the parentheses are for when a multiplier, multiplier/divider is used.

4. Values in the parentheses are for when a sum-of-products calculator is used.

6.15 List of Maximum Interrupt Disabled Times for Libraries

For libraries that use a multiplier, multiplier/divider, sum-of-products calculator, a period of time during which an inter-

rupt is disabled is provided in order that the contents of the operation are not destroyed during an interrupt.

The maximum interrupt disabled times for libraries that use a multiplier, multiplier/divider, sum-of-products calculator

are shown below.

No periods during which an interrupt is disabled are provided for libraries that do not use a multiplier, multiplier/divider,

sum-of-products calculator.

In case of RL78 mounted expansion instructions : The interrupt disabled time of library function @@macuw and

@@macsw is 17 clocks. No periods during which an interrupt is disabled are provided about other library functions.

Table 6-2. Maximum Interrupt Disabled Time (Number of Clocks) for Libraries

Classification Function

Name

Maximum Interrupt Disabled Time Remark

 When a

multiplier is used

 When a

multiplier/divider

is used

When a sum-of-

products

calculator is used

Multiplication @@iumul 12 12 12 Performs multiplication between

unsigned int data

@@ismul 12 12 12 Performs multiplication between

signed int data

@@lumul 24 24 24 Performs multiplication between

unsigned long data

@@lsmul 24 24 24 Performs multiplication between

signed long data

@@iumulr 12 12 12 Performs multiplication between

unsigned int data (for allocation

to RAM)

@@lumulr 24 24 24 Performs multiplication between

unsigned long data (for

allocation to RAM)

@@lsmulr 24 24 24 Performs multiplication between

signed long data (for allocation

to RAM)

@@muluw 24 24 14 Performs multiplication between

unsigned int data (A result,

unsigned long)

@@mulsw 24 24 16 Performs multiplication between

signed int data (A result, signed

long)

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 787 of 853
Apr 01, 2011

Division @@cudiv - 40 40 Performs division between

unsigned char data

@@csdiv - 40 40 Performs division between

signed char data

@@iudiv - 39 39 Performs division between

unsigned int data

@@isdiv - 39 39 Performs division between

signed int data

@@ludiv - 43 43 Performs division between

unsigned long data

@@lsdiv - 43 43 Performs division between

signed long data

@@cudivr - 40 40 Performs division between

unsigned char data (for

allocation to RAM)

@@csdivr - 40 40 Performs division between

signed char data (for allocation

to RAM)

@@iudivr - 39 39 Performs division between

unsigned int data (for allocation

to RAM)

@@isdivr - 39 39 Performs division between

signed int data (for allocation to

RAM)

@@ludivr - 43 43 Performs division between

unsigned long data (for

allocation to RAM)

@@lsdivr - 43 43 Performs division between

signed long data (for allocation

to RAM)

Classification Function

Name

Maximum Interrupt Disabled Time Remark

 When a

multiplier is used

 When a

multiplier/divider

is used

When a sum-of-

products

calculator is used

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 788 of 853
Apr 01, 2011

Remainder

arithmetic

@@curem - 40 40 Performs remainder arithmetic

between unsigned char data

@@csrem - 40 40 Performs remainder arithmetic

between signed char data

@@iurem - 39 39 Performs remainder arithmetic

between unsigned int data

@@isrem - 39 39 Performs remainder arithmetic

between signed int data

@@lurem - 43 43 Performs remainder arithmetic

between unsigned long data

@@lsrem - 43 43 Performs remainder arithmetic

between signed long data

@@curemr - 40 40 Performs remainder arithmetic

between unsigned char data (for

allocation to RAM)

@@csremr - 40 40 Performs remainder arithmetic

between signed char data (for

allocation to RAM)

@@iuremr - 39 39 Performs remainder arithmetic

between unsigned int data (for

allocation to RAM)

@@isremr - 39 39 Performs remainder arithmetic

between signed int data (for

allocation to RAM)

@@luremr - 43 43 Performs remainder arithmetic

between unsigned long data (for

allocation to RAM)

@@lsremr - 43 43 Performs remainder arithmetic

between signed long data (for

allocation to RAM)

Sum-of-prod-

ucts calcula-

tion

@@macuw

Note 1

24 24 21 unsigned int x unsigned int +

unsigned long

@@macsw

Note 1

24 24 21 signed int x signed int + signed

long

Auxiliary @@divuw - 43 43 divuw instruction compatibility

@@divuwr - 43 43 divuw instruction compatibility

(for allocation to RAM)

stdio.h printf - 43Note 2 43Note 2 Outputs data to SFR

sprintf - 43Note 2 43Note 2 Writes data to a string

vprintf - 43Note 2 43Note 2 Outputs data to SFR

vsprintf - 43Note 2 43Note 2 Writes data to a string

Classification Function

Name

Maximum Interrupt Disabled Time Remark

 When a

multiplier is used

 When a

multiplier/divider

is used

When a sum-of-

products

calculator is used

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 789 of 853
Apr 01, 2011

Notes 1. The maximum interrupt disabled time in case of RL78 mounted expansion instructions is 17 clocks.

2. Values in parentheses are for when the version that supports floating-point numbers is used.

6.16 Batch Files for Update of Startup Routine and Library Functions

The RL78,78K0R C compiler provides batch files for updating a portion of the standard library functions and the startup

routine. The batch files in the bat folder are shown in the table below.

Table 6-3. Batch Files for Updating Library Functions

stdlib.h div - 41 41 Performs int type division

ldiv - 46 46 Performs long type division

rand 24 24 24 Uses @@lumul

qsort 12 12 12 Uses @@iumul

Batch File Application

mkstup.bat Updates the startup routine (cstart*.asm).

When changing the startup routine, perform assembly using this batch file.

reprom.bat Updates the firmware ROMization termination routine (rom.asm).

When changing rom.asm, update the library using this batch file.

repgetc.bat Updates the getchar function.

The default assumption sets P0 of the SFR to the input port. When it is necessary to change this

setting, change the defined value of EQU of PORT in getchar.asm and update the library using this

batch file.

repputc.bat Updates the putchar function.

The default assumption sets P0 of the SFR to the output port. When it is necessary to change this

setting, change the defined value of EQU of PORT in getchar.asm and update the library using this

batch file.

repputcs.bat Updates the putchar function to SM+ for 78K0R for C compiler-compatibility.

When it is necessary to check the output of the putchar function using the SM+ for 78K0R for C

compiler, update the library using this batch file.

repselo.bat Saves/restores the reserved area of the compiler (_@KREGxx) as part of the save/restore process-

ing of the setjmp and longjmp functions (the default assumption is to not save/restore).

Update the library using this batch file when the -qr option is specified.

repselon.bat Does not save/restore the reserved area of the compiler (_@KREGxx) as part of the save/ restore

processing of the setjmp and longjmp functions (the default assumption is to not save/ restore).

Update the library using this batch file when the -qr option is not specified.

repvect.bat Updates the address value setting processing of the branch table of the interrupt vector table allo-

cated in the flash area (vect*.asm).

The default assumption sets the top address of the flash area branch table to 2000H. When it is

necessary to change this setting, change the defined value of EQU of ITBLTOP in vect.inc and

update the library using this batch file.

repmul.bat Updates the multiplier library.

Classification Function

Name

Maximum Interrupt Disabled Time Remark

 When a

multiplier is used

 When a

multiplier/divider

is used

When a sum-of-

products

calculator is used

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 790 of 853
Apr 01, 2011

6.16.1 Using batch files

Use the batch files in the subfolder bat.

Because these files are the batch files used to activate the assembler and librarian, the assembler etc. bundled to

CubeSuite+ are necessary. Before using the batch files, set the folder that contains the RL78,78K0R assembler execu-

tion format file using the environment variable PATH.

Create a subfolder (lib) of the same level as bat for the batch files and put the post-assembly files in this subfolder.

When a C startup routine or library is installed in a subfolder lib that is the same level as bat, these files are overwritten

Files assembled with the batch files are output to Src\cc78k0r\lib. Copy these files to the lib78k0r directory before link-

ing.

To use the batch files, move the current folder to the subfolder bat and execute each batch file. To perform execution,

the following parameters are necessary.

Product type = chiptype (classification of target chip)

f1166a0 : uPD78F1166_A0etc.

Specify it as follows when change pass of the device file.

The following is an illustration of how to use each batch file.

(1) Startup routine

Example below.

(2) Firmware ROMization routine update

Example below.

repmuldiv.bat Updates the multiplier/divider library.

repmac.bat Updates the sum-of-products calculator library.

repmac_rl78.bat Updates the multiply/divide/multiply & accumulate instructions use library (RL78 mounted expan-

sion instructions).

Batch-file-name device-type -ypass-name

mkstup chiptype

mkstup f1166a0

reprom chiptype

reprom f1166a0

Batch File Application

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 791 of 853
Apr 01, 2011

(3) getchar function updat

Example below.

(4) putcharfunction update

Example below.

(5) putchar function (SM78K0R-supporting) update

Example below.

(6) setjmp/longjmp function update (with restore/save processing)

Example below.

(7) setjmp/longjmp function update (without restore/save processing)

Example below.

regetc chiptype

repgetc f1166a0

repputc chiptype

repputc f1166a0

repputcs chiptype

repputcs f1166a0

repselo chiptype

repselo f1166a0

repselon chiptype

repselon f1166a0

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 792 of 853
Apr 01, 2011

(8) Interrupt vector table update

Example below.

(9) Multiplier use library update

The example updated for UPD78F1235_64 is shown below.

Below is updated.

src\cc78k0r\lib\cl0rxm.lib

 cl0rxme.lib

 cl0rxl.lib

 cl0rxle.lib

(10)Multiplier/divider use library update

 The example updated for UPD78F1235_64 is shown below.

Below is updated.

src\cc78k0r\lib\cl0rdm.lib

 cl0rdme.lib

 cl0rdl.lib

 cl0rdle.lib

(11) Sum-of-products calculator use library update

 The example updated for UPD78F1070_64 is shown below.

Below is updated.

src\cc78k0r\lib\cl0ram.lib

 cl0rame.lib

 cl0ral.lib

 cl0rale.lib

repvect chiptype

repvect f1166a0

repmul.bat chiptype

repmul.bat f123564

repmuldiv.bat chiptype

repmuldiv.bat f123564

repmac.bat chiptype

repmac.bat f107064

CubeSuite+ Ver.1.00.00 CHAPTER 6 FUNCTION SPECIFICATIONS

R20UT0552EJ0100 Rev.1.00 Page 793 of 853
Apr 01, 2011

(12)Multiply/Divide/Multiply & Accumulate instructions use library update

 The example updated for R5F104LE is shown below.

Below is updated.

src\cc78k0r\lib\cl78m.lib

 cl78me.lib

 cl78l.lib

 cl78le.lib

repmac_rl78.bat chiptype

repmac_rl78.bat f104le

CubeSuite+ Ver.1.00.00 CHAPTER 7 STARTUP

R20UT0552EJ0100 Rev.1.00 Page 794 of 853
Apr 01, 2011

CHAPTER 7 STARTUP

This chapter explains the startup routine.

7.1 Function Overview

To execute a C language program, a program is needed to handle ROMization for inclusion in the system and to start

the user program (main function). This program is called the startup routine.

To execute a user program, a startup routine must be created for that program. The CA78K0R provides standard star-

tup routine object files, which carry out the processing required before program execution, and the startup routine source

files (assembly source), which the user can adapt to the system. By linking the startup routine object file to the user pro-

gram, an executable program can be created without requiring the user to write an original execution preprocessing rou-

tine.

This chapter describes the contents and uses of the startup routine and explains how to adapt it for your system.

7.2 File Organization

The files related to a startup routine are stored in the folder Src\cc78k0r of the C compiler package.

The contents of the folders under Src\cc78k0r are shown next.

Renesas Electronics\CubeSuite+\

CA78K0R\Vx.xx\Bin\

CA78K0R\Vx.xx\Smp78k0r\cc78k0r\

CA78K0R\Vx.xx\Inc78k0r\

CA78K0R\Vx.xx\Lib78k0r\

CA78K0R\Vx.xx\Src\cc78k0r\

bat\

lib\

src\

CA78K0R\Vx.xx\Doc\

CA78K0R\Vx.xx\Hlp\

olders that contain files related to startup routines

CubeSuite+ Ver.1.00.00 CHAPTER 7 STARTUP

R20UT0552EJ0100 Rev.1.00 Page 795 of 853
Apr 01, 2011

7.2.1 "bat" folder contents

Batch file in this folder cannot be used in the IDE.

Use these batch files only when a source file, such as for the startup routine, must be modified.

Table 7-1. "bat" Folder Contents

Notes 1. Since ROMization routines are in the library, the library is also updated by this batch file.

2. setjmp and longjmp functions that save the compiler reserved area (saddr area secured for KREGxx, etc.),

and setjmp and longjmp functions that do not save the compiler reserved area (only registers are saved) are

created.

Batch File Name Explanation

mkstup.bat Assemble batch file for startup routine

reprom.bat Batch file for updating rom.asmNote 1

repgetc.bat Batch file for updating getchar.asm

repputc.bat Batch file for updating putchar.asm

repputcs.bat Batch file for updating _putchar.asm

repselo.bat Batch file for updating setjmp.asm and longjmp.asm

(the compiler reserved area is saved) Note 2

repselon.bat Batch file for updating setjmp.asm, longjmp.asm

(the compiler reserved area is not saved))Note 2

repvect.bat Batch file for updating vect*.asm

repmul.bat Batch file for updating multiplier library

repmuldiv.bat Batch file for updating multiplier/divider library

repmac.bat Batch file for updating sum-of-products calculator library

repmac_rl78.bat Batch file for updating multiply/divide/multiply & accumulate instructions use library

CubeSuite+ Ver.1.00.00 CHAPTER 7 STARTUP

R20UT0552EJ0100 Rev.1.00 Page 796 of 853
Apr 01, 2011

7.2.2 "lib" folder contents

The lib folder contains the object files that were assembled from the source files of the startup routine and libraries.

These object files can be linked with programs for any RL78,78K0R target device. If code modifications are not espe-

cially needed, link the default object files as is. The object files are overwritten when batch file mkstup.bat, which is pro-

vided by the CA78K0R, is executed.

Table 7-2. "lib" folder Contents

Notes 1. The rule for naming libraries is given below.

<line>

0r : RL78 non-mounted expansion instructions/78K0R

78 : RL78 mounted expansion instructions

<mul>
None : Standard library

x : Multiplier used

d : Multiplier/divider used

a : Sum-of-products calculator used

<model>
m : Small model or medium model

l : Large model

File Name File Role

Normal Boot Area Flash Area

cl0rm.lib

cl0rl.lib

cl0rmf.lib

cl0rlf.lib

cl0rxm.lib

cl0rdm.lib

cl0ram.lib

cl0rxl.lib

cl0rdl.lib

cl0ral.lib

cl78m.lib

cl78l.lib

cl78mf.lib

cl78lf.lib

cl0rm.lib

cl0rl.lib

cl0rmf.lib

cl0rlf.lib

cl0rxm.lib

cl0rdm.lib

cl0ram.lib

cl0rxl.lib

cl0rdl.lib

cl0ral.lib

cl78m.lib

cl78l.lib

cl78mf.lib

cl78lf.lib

cl0rme.lib

cl0rle.lib

cl0rmfe.lib

cl0rlfe.lib

cl0rxme.lib

cl0rdme.lib

cl0rame.lib

cl0rxle.lib

cl0rdle.lib

cl0rale.lib

cl78me.lib

cl78le.lib

cl78mfe.lib

cl78lfe.lib

Library (runtime and standard libraries)Note 1

s0rm.rel

s0rml.rel

s0rl.rel

s0rll.rel

s0rmb.rel

s0rmlb.rel

s0rlb.rel

s0rllb.rel

s0rme.rel

s0rmle.rel

s0rle.rel

s0rlle.rel

Object files for startup routinesNote 2

lib78k0r\cl<line><mul><model><float><flash>.lib

CubeSuite+ Ver.1.00.00 CHAPTER 7 STARTUP

R20UT0552EJ0100 Rev.1.00 Page 797 of 853
Apr 01, 2011

<float>
None : Standard library and runtime library (floating point library is not used)

f : For floating point library

<flash>

None : For normal/boot area

e : For flash memory area

2. The rule for naming startup routines is given below.

<model>
m : Medium model (can also be used for specifying the small model)

l : Large model

<lib>

None : When standard library functions are not used

l : When standard library functions are used

<flash>

None : Normal

b : For boot area

e : For flash memory area

The RL78,78K0R C compiler libraries are compatible with the following multiplier, multiplier/divider devices.

Library for RL78 mounted expansion instructions support RL78 expansion instructions.

Library for RL78 non-mounted expansion instructions/78K0R support multiplier, multiplier/divider, sum-of-products cal-

culator.

m being interrupted so that they are not corrupted.

See "6.15 List of Maximum Interrupt Disabled Times for Libraries" regarding library functions and interrupt disable

times.

For multiplier, multiplier/divider, sum-of-products calculator and RL78 expanded instructions are mounted or not

mounted , see to user's manual of each product or “Device File Operating Precautions”.

lib78k0r\s0r<model><lib><flash>.rel

CubeSuite+ Ver.1.00.00 CHAPTER 7 STARTUP

R20UT0552EJ0100 Rev.1.00 Page 798 of 853
Apr 01, 2011

7.2.3 "src" folder contents

The src folder contains the assembler source files of the startup routines, ROM routines, error processing routines, and

standard library functions (a portion). If the source must be modified to conform to the system, the object files for linking

can be created by modifying this assembler source and using a batch file in the bat folder to assemble.

Table 7-3. "src" Folder Contents

Note A file name with "n" added is a startup routine that does not have standard library processing. Use only if the

standard library will not be used. Additionally, boot area startup routines are named cstartb*.asm, and flash area

startup routines are named cstarte*.asm.

Startup Routine Source File Name Explanation

cstart.asmNote Source file for startup routine

(when standard library is used)

cstartn.asmNote Source file for startup routine

(when standard library is not used)

rom.asm Source file for ROMization routine

_putchar.asm _putchar function

putchar.asm putchar function

getchar.asm getchar function

longjmp.asm longjmp function

setjmp.asm setjmp function

vectxx.asm Vector source for each interrupt (xx : vector address)

def.inc For setting library according to type

macro.inc Macro definition for each typical pattern

vect.inc Start address of flash memory area branch table

library.inc Selection of library assigned to boot area explicitly

imul.asm, lmul.asm, mulsw.asm, muluw.asm Function for multiplier, multiplier/divider libraries

csdiv.asm, cudiv.asm, csrem.asm, curem.asm, isdiv.asm,

iudiv.asm, isrem.asm, iurem.asm, lsdiv.asm, ludiv.asm,

lsrem.asm, lurem.asm, divuw.asm, div.asm, ldiv.asm

Function for multiplier/divider libraries

macsw.asm, macuw.asm Function for sum-of-products calculation, sum-of-products

instructions libraries

CubeSuite+ Ver.1.00.00 CHAPTER 7 STARTUP

R20UT0552EJ0100 Rev.1.00 Page 799 of 853
Apr 01, 2011

7.3 Batch File Description

This section explains batch file.

7.3.1 Batch files for creating startup routines

The mkstup.bat in the bat folder is used to create the object file of a startup routine.

The assembler in the CA78K0R is required for mkstup.bat. Therefore, if PATH is not specified, specify it before running

the batch file.

How to use this file is described next.

- Execute the following command line in the Src\cc78k0r\bat folder containing mkstup.bat.

Note See the user's manual of the target device or "Device File Operating Precautions".

An example of use is described next.

- This example creates a startup routine to use when the target device is the uPD78F1166_A0.

The mkstup.bat batch file stores the new startup routine so as to overwrite the object files of the startup routine in

the lib folder at the same level as the bat folder.

The startup routine that is required to link object files is output to each folder.

The names of the object files created in lib are shown below.

mkstup device-typeNote

mkstup f1166a0

lib s0rm.rel

s0rmb.rel

s0rme.rel

s0rml.rel

s0rmlb.rel

s0rmle.rel

s0rl.rel

s0rlb.rel

s0rle.rel

s0rll.rel

s0rllb.rel

s0rlle.rel

CubeSuite+ Ver.1.00.00 CHAPTER 7 STARTUP

R20UT0552EJ0100 Rev.1.00 Page 800 of 853
Apr 01, 2011

7.4 Startup Routines

This section explains startup routines.

7.4.1 Overview of startup routines

A startup routine makes the preparations needed to execute the C source program written by the user. By linking it to

a user program, a load module file that achieves the objective of the program can be created.

(1) Function

Memory initialization, ROMization for inclusion in a system, and the entry and exit processes for the C source pro-

gram are performed.

- ROMization

The initial values of the external variables, static variables, and sreg variables defined in the C source program

are located in ROM. However, the variable values cannot be rewritten; only placed in ROM as is. Therefore,

the initial values located in ROM must be copied to RAM. This process is called ROMization. When a pro-

gram is written to ROM, it can be run by a microcontroller.

(2) Configuration

The figure below shows the programs related to the startup routines and their configurations.

Figure 7-1. Programs Related to Startup Routines and Their Configurations

Notes 1. If the standard library is used, the processing related to the library is performed first. Startup routine

source files that do not have an "n" appended at the end of their file names are processed in relation to

the standard library. Files with the appended "n" are not processed.

2. The hdwinit function is a function created as necessary by the user as a function to initialize peripheral

devices (sfr). By creating the hdwinit function, the timing of the initial settings can be accelerated (the

For system inclusion

PreprocessNote 1

 Initial settings

 (hdwinit function call)Note 2

ROMization

Start main function

Postprocess

Definitions of labels used in

ROMization processing

CubeSuite+ Ver.1.00.00 CHAPTER 7 STARTUP

R20UT0552EJ0100 Rev.1.00 Page 801 of 853
Apr 01, 2011

initial settings can be made in the main function). If the user does not create the hdwinit function, the

process returns without doing anything.

cstart.asm and cstartn.asm have nearly identical contents.

The table below shows the differences between cstart.asm and cstartn.asm.

(3) Uses of startup routines

The table below lists the names of the object files for the source files provided by the CA78K0R.

Notes 1. *: If the standard library is not used, "n" is added. If the standard library is used, "n" is not added.

2. *: "b" is added for boot area startup routines, and "e" for flash area startup routines.

3. *: If a fixed area in the standard library is used, "l" is added.

4. *: If the small model or medium model is specified, "m" is added. If the large model is specified, "l" is

added.

Even when using the small model or medium model, use the startup routine to which "l" is added if vari-

ables are allocated in the far area.

Remark rom.asm defines the label indicating the final address of the data copied by ROMization.

The object file generated from rom.asm is included in the library.

7.4.2 Startup routine preprocessing

Sample program (cstart.asm) preprocessing will now be explained.

Remark cstart is called in the format with _@ added to its head.

Type of Startup Routine Uses Library Processing

cstart.asm Yes

cstartn.asm No

File Type Source File Object File

Startup routine cstart*.asmNote 1, 2 s0r*.relNote 2, 3, 4

ROMization file rom.asm Included in library

 NAME @cstart

$INCLUDE (def.inc) ; (1)

$INCLUDE (macro.inc)

 ; (2)

BRKSW EQU 1 ; brk, sbrk, calloc, free, malloc, realloc function use

EXITSW EQU 1 ; exit, atexit function use

RANDSW EQU 1 ; rand, srand function use

DIVSW EQU 1 ; div function use

LDIVSW EQU 1 ; 1div function use

FLOATSW EQU 1 ; floating point variables use

STRTOKSW EQU 1 ; strtok function use

CubeSuite+ Ver.1.00.00 CHAPTER 7 STARTUP

R20UT0552EJ0100 Rev.1.00 Page 802 of 853
Apr 01, 2011

(1) Including include files

def.inc -> For settings according to the library type.

macro.inc -> Macro definitions for typical patterns.

(2) Library switch

If the standard libraries listed in the comments are not used, by changing the EQU definition to 0, the space

secured for the processing of unused libraries and for use by the library can be conserved. The default is set to

use everything (In a startup routine without library processing, this processing is not performed).

(3) Symbol definitions

The symbols used when using the standard library are defined.

(4) External reference declaration of symbol for stack resolution

The public symbol (_@STBEG) for stack resolution is an external reference declaration.

_@STBEG has the value of the last address in the stack area + 1.

_@STBEG is automatically generated by specifying the symbol generation option (-s) for stack resolution in the

linker. Therefore, always specify the -s option when linking. In this case, specify the name of the area used in the

stack. If the name of the area is omitted, the RAM area is used, but the stack area can be located anywhere by

creating a link directive file. For memory mapping, see the user's manual of the target device.

An example of a link directive file is shown below. The link directive file is a text file created by the user in an ordi-

nary editor (for details about the description method, see "7.6 Coding Examples").

 PUBLIC _@cstart, _@cend ; (3)

$_IF (BRKSW)

 PUBLIC _@BRKADR, _@MEMTOP, _@MEMBTM

 :

$ENDIF

 EXTRN _main, _@STBEG, _hdwinit, _@MAA ; (4)

$_IF (EXITSW)

 EXTRN _exit

$ENDIF

 ; (5)

 EXTRN _?R_INIT, _?RLINIT, _?R_INIS, _?DATA, _?DATAL, _?DATS

@@DATA DSEG BASEP ; near ; (6)

$_IF (EXITSW)

_@FNCTBL : DS 4 * 32

_@FNCENT : DS 2

 :

_@MEMTOP : DS 32

_@MEMBTM :

$ENDIF

CubeSuite+ Ver.1.00.00 CHAPTER 7 STARTUP

R20UT0552EJ0100 Rev.1.00 Page 803 of 853
Apr 01, 2011

Example When -sSTACK is specified in linking

Create lk78k0r.dr (link directive file). Since ROM and RAM are allocated by default operations by refer-

encing the memory map of the target device, it is not necessary to specify ROM and RAM allocations

unless they need to be changed.

For link directives, see lk78k0r.dr in the Smp78k0r\CA78K0R folder.

(5) External reference declaration of labels for ROMization processing

The labels for ROMization processing are defined in the postprocessing section.

(6) Securing area for standard library

The area used when using the standard library is secured.

7.4.3 Startup routine initial settings

The initial settings for a sample program (cstart.asm) will now be explained.

 First address Size

 | |

memory SDR : (0xFFE20h, 0000098h)

memory STACK : (0xxxxxxh, 0xxxxxxh) <- Specify the first address and size here,

 then specify lk78k0r.dr with the -d

 linker option.78k0r

 (Example: -dlk78k0r.dr)

merge @@INIS : = SDR

merge @@DATS : = SDR

merge @@BITS : = SDR

@@VECT00 CSEG AT 0 ; (1)

 DW _@cstart

@@LCODE CSEG BASE

_@cstart :

 SEL RB0 ; (2)

 MOV A, #_@MAA ; (3)

 MOV1 CY, A.0

 MOV1 MAA, CY

 MOVW SP, #LOWW _@STBEG ; SP <-stack begin address ; (4)

 CALL !!_hdwinit ; (5)

 :

$_IF (BRKSW OR EXITSW OR RANDSW OR FLOATSW)

 CLRW AX

$ENDIF

 :

CubeSuite+ Ver.1.00.00 CHAPTER 7 STARTUP

R20UT0552EJ0100 Rev.1.00 Page 804 of 853
Apr 01, 2011

(1) Reset vector setting

The segment of the reset vector table is defined as follows. The first entry address of the startup routine is set.

(2) Register bank setting

Register bank RB0 is set as the work register bank.

(3) Mirror area setting

The mirror area is set.

Regarding the mirror area, see to the user's manual of the target device.

(4) Stack pointer (SP) setting

 _@STBEG is set in the stack pointer.

_@STBEG is automatically generated by specifying the symbol generation option (-s) for stack resolution in the

linker.

(5) Hardware initialization function call

The hdwinit function is created when needed by the user as the function for initializing peripheral devices (SFR).

By creating this function, initial settings can be made to match the user's objectives.

If the user does not create the hdwinit function, the process returns without doing anything.

(6) ROMization processing

The ROMization processing in cstart.asm will now be described.

@@VECT00 CSEG AT 0000H

 DW _@cstart

; copy external variables having initial value

$_IF (_ESCOPY)

 MOV ES, #HIGHW _@R_INIT

$ENDIF

 MOVW HL, #LOWW _@R_INIT

 MOVW DE, #LOWW _@INIT

 BR $LINIT2

LINIT1 :

$_IF (_ESCOPY)

 MOV A, ES : [HL]

$ELSE

 MOV A, [HL]

$ENDIF

 MOV [DE], A

 INCW HL

 INCW DE

LINIT2 :

 MOVW AX, HL

 CMPW AX, #LOWW _?R_INIT

 BNZ $LINIT1

CubeSuite+ Ver.1.00.00 CHAPTER 7 STARTUP

R20UT0552EJ0100 Rev.1.00 Page 805 of 853
Apr 01, 2011

In ROMization processing, the initial values of the external variables and the sreg variables stored in ROM are cop-

ied to RAM. The variables to be processed have the 4 types (a) to (d) shown in the following example.

Note External variables without initial value and sreg variables without initial value are not copied, and zeros are

written directly to RAM.

- The figure below shows ROMization processing for external variable (a) with an initial value.

The initial value of the variable (a) is placed in the @@R_INIT segment of ROM by the RL78,78K0R C com-

piler.

The ROMization processing copies this value to the @@INIT segment in RAM (the same processes are per-

formed for the variable (c)).

Figure 7-2. ROMization Processing for External Variable with Initial Value

- The first and end labels in the @@R_INIT segment are defined by _@R_INIT and _?R_INIT. The first and

end labels in the @@INIT segment are defined by _@INIT and _?INIT.

- The variables (b) and (d) are not copied, but zeros are written directly in the predetermined segment in RAM.

The table below shows the segment names of the ROM areas where the variables (a) to (c) are placed, and

the first and end labels of the initial values in each segment.

char c = 1 ; (a)External variable with initial value

int i ; (b)External variable without initial valueNote

__sreg int si = 0 ; (c)sreg variable with initial value

__sreg char sc ; (d)sreg variable without initial valueNote

void main (void) {

 :

}

Variable Type Segment First Label End Label

External variable with initial value (a)

(when allocated to near area)

@@R_INIT _@R_INIT _?R_INIT

@@R_INIT (Segment name)

_@R_INIT :

(First label)

_?R_INIT :

(End label)

Area storing initial

value of variable (a)

@@INIT

_@INIT :

_?INIT :

Copy

CubeSuite+ Ver.1.00.00 CHAPTER 7 STARTUP

R20UT0552EJ0100 Rev.1.00 Page 806 of 853
Apr 01, 2011

The table below shows the segment names of the RAM areas where the variables (a) to (d) are placed, and

the first and end labels of the initial values in each segment.

External variable with initial value (a)

(when allocated to far area)

@@RLINIT _@RLINIT _?RLINIT

sreg variable with initial value(c) @@R_INIS _@R_INIS _?R_INIS

Variable Type Segment First Label End Label

External variable with initial value (a)

(when allocated to near area)

@@INIT _@INIT _?INIT

External variable with initial value (a)

(when allocated to far area)

@@INITL _@INITL _?INITL

External variable without initial value (b)

(when allocated to near area)

@@DATA _@DATA _?DATA

External variable without initial value (b)

(when allocated to far area)

@@DATAL _@DATAL _?DATAL

sreg variable with initial value (c) @@INIS _@INIS _?INIS

sreg variable without initial value (d) @@DATS _@DATS _?DATS

Variable Type Segment First Label End Label

CubeSuite+ Ver.1.00.00 CHAPTER 7 STARTUP

R20UT0552EJ0100 Rev.1.00 Page 807 of 853
Apr 01, 2011

7.4.4 Startup routine main function startup and postprocessing

Starting the main function and postprocessing in a sample program (cstart.asm) will now be described.

(1) Starting the main function

The main function is called.

(2) Starting the exit function

When exit processing is needed, the exit function is called.

(3) Definitions of segments and labels used in ROMization processing

The segments and labels used for each variable (1) to (4) (see "(6) ROMization processing") in ROMization pro-

cessing are defined. A segment indicates the area that stores the initial value of each variable. A label indicates

the first address in each segment.

 CALL !!_main ; main () ; ; (1)

$_IF (EXITSW)

 CLRW AX

 CALL !!_exit ; exit (0) ; ; (2)

$ENDIF

 BR $$

;

_@cend :

 ; (3)

@@R_INIT CSEG UNIT64KP

_@R_INIT :

@@RLINIT CSEG UNIT64KP

_@RLINIT :

@@R_INIS CSEG UNIT64KP

_@R_INIS :

@@INIT DSEG BASEP

_@INIT :

@@INITL DSEG UNIT64KP

_@INITL :

@@DATA DSEG BASEP

_@DATA :

@@DATAL DSEG UNIT64KP

_@DATAL :

@@INIS DSEG SADDRP

_@INIS :

@@DATS DSEG SADDRP

_@DATS :

@@CALT CSEG CALLT0

@@CNST CSEG MIRRORP

@@CNSTL CSEG PAGE64KP

@@BITS BSEG

;

 END

CubeSuite+ Ver.1.00.00 CHAPTER 7 STARTUP

R20UT0552EJ0100 Rev.1.00 Page 808 of 853
Apr 01, 2011

The ROMization processing file rom.asm will now be described. The rom.asm relocatable object file is in the library.

(4) Definition of labels used in ROMization processing

The labels used for each variable (1) to (4) (see "(6) ROMization processing) in ROMization processing are

defined. These labels indicate the last address of the segment storing the initial value of each variable.

If multiple user libraries exist and mutual references exist between the object module files belonging to these libraries,

do not change the module names "@rom" and "@rome" of the CA78K0R terminal module.

If the terminal module name is changed, it may not link in the end.

 NAME @rom

;

 PUBLIC _?R_INIT, _?RLINIT, _?R_INIS

 PUBLIC _?INIT, _?INITL, _?DATA, _?DATAL, _?INIS, _?DATS

;

@@R_INIT CSEG UNIT64KP ; (4)

_?R_INIT :

@@RLINIT CSEG UNIT64KP

_?RLINIT :

@@R_INIS CSEG UNIT64KP

_?R_INIS :

@@INIT DSEG BASEP

_?INIT :

@@INITL DSEG UNIT64KP

_?INITL :

@@DATA DSEG BASEP

_?DATA :

@@DATAL DSEG UNIT64KP

_?DATAL :

@@INIS DSEG SADDRP

_?INIS :

@@DATS DSEG SADDRP

_?DATS :

;

 END

CubeSuite+ Ver.1.00.00 CHAPTER 7 STARTUP

R20UT0552EJ0100 Rev.1.00 Page 809 of 853
Apr 01, 2011

7.5 ROMization Processing in Startup Routine for Flash Area

The startup routines for flash differ with the ordinary startup routines as follows.

Table 7-4. ROM Area Section for Initialization Data

Table 7-5. RAM Area Section of Copy Destination

- In the startup routine, the following labels are added at the head of each segment in ROM area and RAM area.

E@R_INIT, E@R_INIS, E@INIT, E@DATA, E@INIS, E@DATS, E@INITL, E@DATAL

Furthermore, the following labels are added if the large model is specified or variables are allocated in the far area.

E@RLINIT, E@INITL, E@DATAL

- In the terminal module, the following labels are added at the terminal of each segment in ROM area and RAM

area.

E?R_INIT, E?R_INIS, E?INIT, E?DATA, E?INIS, E?DATS, E?RLINIT, E?INITL, E?DATAL

- The startup routine copies the contents from the first label address of each segment in ROM area to the end label

address -1, to the area from the first label address of each segment in RAM area

- Zeros are embedded from E@DATA to E?DATA, and from E@DATS to E?DATS.

- Furthermore, zeros are embedded from E@DATAL to E?DATAL if the large model is specified or variables are allo-

cated to the far area

Variable Type Segment First Label End Label

External variable with initial value (a)

(when allocated to near area)

@ER_INIT CSEG UNIT64KP E@R_INIT E?R_INIT

External variable with initial value (a)

(when allocated to far area)

@ERLINIT CSEG UNIT64KP E@RLINIT E?RLINIT

sreg variable with initial value(c) @ER_INIS CSEG UNIT64KP E@R_INIS E?R_INIS

Variable Type Segment First Label End Label

External variable with initial value (a)

(when allocated to near area)

@EINIT DSEG BASEP E@INIT E?INIT

External variable with initial value (a)

(when allocated to far area)

@EINITL DSEG UNIT64KP E@INITL E?INITL

External variable without initial value (b)

(when allocated to near area)

@EDATA DSEG BASEP E@DATA E?DATA

External variable without initial value (b)

(when allocated to far area)

@EDATAL DSEG UNIT64KP E@DATAL E?DATAL

sreg variable with initial value (c) @EINIS DSEG SADDRP E@INIS E?INIS

sreg variable without initial value (d) @EDATS DSEG SADDRP E@DATS E?DATS

CubeSuite+ Ver.1.00.00 CHAPTER 7 STARTUP

R20UT0552EJ0100 Rev.1.00 Page 810 of 853
Apr 01, 2011

7.6 Coding Examples

The startup routines provided by the CA78K0R can be revised to match the target system actually being used. The

essential points about revising these files are explained in this section.

7.6.1 When revising startup routine

The essential points about revising a startup routine source file will now be explained. After revising, use the batch file

mkstup.bat in the Src\cc78k0r\bat folder to assemble the revised source file (cstart*.asm) (*:alphanumeric symbols).

(1) Symbols used in library functions

If the library functions listed in the table below are not used, the symbols corresponding to each function in the star-

tup routine (cstart.asm) can be deleted. However, since the exit function is used in the startup routine, _@FNCTBL

and _@FNCENT cannot be deleted (if the exit function is deleted, these symbols can be deleted). The symbols in

the unused library functions can be deleted by changing the corresponding library switch.

(2) Areas that are used for utility functions (block assignments/releases)

If the size of the area used by a utility function (block assignment/release) is defined by the user, this is set as in the

following example.

Example If you want to reserve 72 bytes for use by utility functions (block assignments/releases), make the fol-

lowing changes to the initial settings of the startup routine.

Library Function Name Symbols Used

brk

sbrk

malloc

calloc

realloc

free

_errno

_@MEMTOP

_@MEMBTM

_@BRKADR

exit _@FNCTBL

_@FNCENT

rand

srand

_@SEED

div _@DIVR

ldiv _@LDIVR

strtok _@TOKPTR

atof

strtod

Mathematical function

Floating-point runtime library

_errno

CubeSuite+ Ver.1.00.00 CHAPTER 7 STARTUP

R20UT0552EJ0100 Rev.1.00 Page 811 of 853
Apr 01, 2011

Figure 7-3. Startup Routine Initial Settings Example

Add one byte to the area size to be secured and then specify the value in the startup routine. In the above

example, 73 bytes are secured in the startup routine, but up to 72 bytes can actually be secured for utility func-

tions.

If the specified size is too big to be stored in the RAM area, errors may occur when linking.

In this case, decrease the size specified as shown below, or avoid by correcting the link directive file. For cor-

rection of the link directive file, see "5.3.2 When using the compiler".

Example To decrease the specified size

7.6.2 When using RTOS

The RI78V4 and RL78,78K0R C compiler provide sample programs for initialization routines (assembler format).

When using the RI78V4 and RL78,78K0R C compiler in combination, initialization routines for both tools must therefore

be modified.

_@MEMTOP : DS 73

_@MEMBTM :

72 bytes reserved

 as area for utility

functions (block

assignments/releases)

_@MEMTOP

_@MEMBTM

_@MEMTOP : DS 72 Change to 40

CubeSuite+ Ver.1.00.00 CHAPTER 8 ROMIZATION

R20UT0552EJ0100 Rev.1.00 Page 812 of 853
Apr 01, 2011

CHAPTER 8 ROMIZATION

ROMization refers to the process of placing initial values, such as those for initialized external variables, into ROM and

then copying them to RAM when the system is executed.

The CA78K0R provides startup routines with built-in program ROMization processing, saving the trouble of writing a

routine for romization processing at startup.

For information about the startup routines, see "7.4 Startup Routines".

The method for performing program ROMization is as follows.

During ROMization the startup routine, object module files and libraries are linked. The startup routine initializes the

object program.

(1) s0r*.rel

Startup routine (ROMization compatible).

The copy routine for the initialization data is included, and the beginning of the initial data is indicated. The label

"_@cstart" (symbol) is added to the start address.

(2) cl0r*.lib

Library included with the CA78K0R

The library files of the C compiler include the following library types.

- Runtime library

"@@" is added to the beginning of the symbol for runtime library names. For special libraries cprep and

cdisp, however, "_@" is added to the beginning of the symbol.

- Standard library

"_" is added to the beginning of the symbol for standard library names.

(3) *.lib

User-created library

"_" is added to the beginning of the symbol.

Caution The CA78K0R provides several types of startup routines and libraries. See "CHAPTER 7 STAR-

TUP" regarding startup routines. See "7.2.2 "lib" folder contents" regarding libraries.

CubeSuite+ Ver.1.00.00 CHAPTER 9 REFERENCING COMPILER AND ASSEMBLER

R20UT0552EJ0100 Rev.1.00 Page 813 of 853
Apr 01, 2011

CHAPTER 9 REFERENCING COMPILER AND ASSEMBLER

This chapter describes how to link a program written in assembly language.

If a function called from a C source program is written in another language, both object modules are linked by the linker.

This chapter describes the procedure for calling a program written in another language from a program written in the C

language, and the procedure for calling a program written in the C language from a program written in another language.

Using the CA78K0R to interface with another language is described in the following order:

- Accessing Arguments and Automatic Variables

- Storing Return Values

- Calling Assembly Language Routines from C Language

- Calling C Language Routines from Assembly Language

- Referencing Variables Defined in C Language

- Referencing Variables Definted in Assembly Language from C Language

- Points of Caution for Calling Between C Language Functions and Assembler Functions

9.1 Accessing Arguments and Automatic Variables

For details on the assignment of argument and automatic variables, see "3.3.2 Ordinary function call interface".

Register HL is used as a base pointer for accessing arguments and automatic variables stored in a stack.

9.2 Storing Return Values

See "3.3.1 Return values".

9.3 Calling Assembly Language Routines from C Language

This section shows examples ofdefault procedures.

Calling an assembly language routine from the C language is described as follows.

- C language function calling procedure

- Saving data from assembly language routine and returning

9.3.1 C language function calling procedure

The following is a C language program example that calls an assembly language routine.

In this program example, the interface and control flow with the program that is executing are as follows.

extern int FUNC (int, long) ; /* Function prototype */

void main (void) {

 int i, j ;

 long l ;

 l = 0x54321 ;

 i = 1 ;

 j = FUNC (i, l) ; /* Function call */

}

CubeSuite+ Ver.1.00.00 CHAPTER 9 REFERENCING COMPILER AND ASSEMBLER

R20UT0552EJ0100 Rev.1.00 Page 814 of 853
Apr 01, 2011

(a) Placing the first argument passed from the main function to the FUNC function in the register, and the

second and subsequent arguments on the stack.

(b) Passing control to the FUNC function by using the CALL instruction.

The next figure shows the stack immediately after control moves to the FUNC function in the above program example.

Figure 9-1. Stack Immediately After Function Is Called

9.3.2 Saving data from assembly language routine and returning

The following processing steps are performed in the FUNC function called by the main function.

(1) Save the base pointer, saddr area for register variable.

(2) Copy the stack pointer (SP) to the base pointer (HL).

(3) Perform the processing in the FUNC function.

(4) Set the return value.

(5) Restore the saved register.

(6) Return to the main function

An example of an assembly language program is explained next.

$PROCESSOR (F1166A0)

 PUBLIC _FUNC

 PUBLIC _DT1

 PUBLIC _DT2

@@DATA DSEG BASEP

_DT1 : DS (2)

_DT2 : DS (4)

@@CODE CSEG

_FUNC :

i

Stack area

Stack pointer

Low address

High address

Arguments passed to the

FUNC function AX register

Return address to main

I (low-order word)

I (high-order word)

CubeSuite+ Ver.1.00.00 CHAPTER 9 REFERENCING COMPILER AND ASSEMBLER

R20UT0552EJ0100 Rev.1.00 Page 815 of 853
Apr 01, 2011

(1) Saving base pointer and work register

A label with "_" is prefixed to the function name written in the C source. Base pointers and work registers are

saved with the same name as function names written inside the C source.

After the label is specified, the HL register (base pointer) is saved.

In the case of programs generated by the C compiler, other functions are called without saving the saddr area for

register variables. Therefore, if changing the values of these registers for functions that are called, be sure to save

the values beforehand. However, if register variables are not used on the call side, saving the saddr area for reg-

ister variables is not required.

(2) Copying to base pointer (HL) of stack pointer (SP)

The stack pointer (SP) changes due to "PUSH, POP" inside functions. Therefore, the stack pointer is copied to

register "HL" and used as the base pointer of arguments.

(3) Basic processing of FUNC function

After processing steps (1) and (2) are performed, the basic processing of called functions is performed.

(4) Setting the return value

If there is a return value, it is set in the "BC" and "DE" registers. If there is no return value, setting is unnecessary.

Figure 9-2. Setting Return Value

(5) Restoring the registers

Restore the saved base pointer and work register.

 PUSH HL ; save base pointer (1)

 PUSH AX

 MOVW HL, SP ; copy stack pointer (2)

 MOVW AX, [HL] ; arg1

 MOVW !_DT1, AX ; move 1st argument (i)

 MOVW AX, [HL + 10] ; arg2

 MOVW !_DT2 + 2, AX

 MOVW AX, [HL + 8] ; arg2

 MOVW !_DT2, AX ; move 2nd argument (l)

 MOVW BC, #0AH ; set return value (4)

 POP AX

 POP HL ; restore base pointer (5)

 RET ; (6)

 END

DE register

Return value of 17 or more bits :

word

high-order word low-order word

BC register

BC register

Return value of 16 or fewer bits :

CubeSuite+ Ver.1.00.00 CHAPTER 9 REFERENCING COMPILER AND ASSEMBLER

R20UT0552EJ0100 Rev.1.00 Page 816 of 853
Apr 01, 2011

(6) Returning to the main function

Figure 9-3. Returning to Main Function

9.4 Calling C Language Routines from Assembly Language

This section describes the procedure for calling functions written in C language from assembly language routines.

9.4.1 Calling C language function from assembly language program

The procedure for calling a function written in the C language from an assembly language routine is as follows.

(a) Save the C work registers (AX, BC, and DE).

(b) Place the arguments on the stack.

(c) Call the C language function.

(d) Increment the value of the stack pointer (SP) by the number of bytes of arguments.

(e) Reference the return value of the C language function (in BC or DE and BC).

- This is an example of an assembly language program.

$PROCESSOR (F1166A0)

 NAME FUNC2

 EXTRN _CSUB

 PUBLIC _FUNC2

@@CODE CSEG

_FUNC2 :

 movw ax, #20H ; set 2nd argument (j)

 push ax ;

 movw ax, #21H ; set 1st argument (i)

 call !_CSUB ; call "CSUB (i, j)"

 pop ax ;

 ret

 END

Low address

Stack pointer

High address

I (low-order word)

I (high-order word)

Stack area

Return Value

BC register

Or

word

DE register BC register

high-order word low-order word

CubeSuite+ Ver.1.00.00 CHAPTER 9 REFERENCING COMPILER AND ASSEMBLER

R20UT0552EJ0100 Rev.1.00 Page 817 of 853
Apr 01, 2011

(1) Saving the work registers (AX, BC, and DE)

The 3 register pairs of AX, BC, and DE are used in the C language. Their values are not restored when returning.

Therefore, if the values in registers are needed, they are saved on the calling side.

Save or restore the registers before or after an argument pass code.

The HL register is always saved on the side of the C language when it is used in the C language.

(2) Stacking arguments

Any arguments are placed on the stack.

The following figure shows argument passing.

Figure 9-4. Argument Passing

(3) Calling a C language function

A CALL instruction calls a C language function. If the C language function is a "callt" function, the callt instruction

performs the call, and if it is a "callf" function, the callf instruction performs it.

(4) Restoring the stack pointer (SP)

The stack pointer is restored by the number of bytes that hold the arguments.

(5) Referencing the return value (BC and DE)

The return value from the C language is returned as follows.

Figure 9-5. Referencing Return Values

Figure 9-6. Argument Passing

Figure 9-7. Referencing Return Values

Low address

High address

2nd arg

Stack area

CSUB (i, j)

Return value

AX register

Return value of 17 or more bits :

DE register

high-order word low-order word

BC register

word

BC register

Return value of 16 or fewer bits :

CubeSuite+ Ver.1.00.00 CHAPTER 9 REFERENCING COMPILER AND ASSEMBLER

R20UT0552EJ0100 Rev.1.00 Page 818 of 853
Apr 01, 2011

9.5 Referencing Variables Defined in C Language

If external variables defined in a C language program are referenced in an assembly language routine, the extern dec-

laration is used.

Underscores "_" are added to the beginning of the variables defined in the assembly language routine.

A C language program example is shown below.

The following occurs in the assembler.

9.6 Referencing Variables Definted in Assembly Language from C Language

Variables defined in assembly language are referenced from the C language in this way.

A C language program example is shown below.

The following occurs in the RL78,78K0R assembler.

extern void subf (void) ;

char c = 0 ;

int i = 0 ;

void main (void) {

 subf () ;

}

$PROCESSOR (F1166A0)

 PUBLIC _subf

 EXTRN _c

 EXTRN _i

@@CODE CSEG

_subf :

 MOV !_c, #04H

 MOVW AX, #07H

 MOVW !_i, AX

 RET

 END

extern char c ;

extern int i ;

void subf (void) {

 c = ' A ' ;

 i = 4 ;

}

CubeSuite+ Ver.1.00.00 CHAPTER 9 REFERENCING COMPILER AND ASSEMBLER

R20UT0552EJ0100 Rev.1.00 Page 819 of 853
Apr 01, 2011

9.7 Points of Caution for Calling Between C Language Functions and Assembler Functions

- "_"(underscore)

The RL78,78K0R C compiler adds an underscore "_" (ASCII code "5FH") to external definitions and reference

names of the object modules to be output.

In the next C program example, "j = FUNC(i, l);" is taken as "a reference to the external name _FUNC".

The routine name is written as "_FUNC" in RL78,78K0R assembler.

- Argument positions on the stack

The arguments placed on the stack are placed from the postfix argument to the prefix argument in the direction

from the High address to the Low address.

Figure 9-8. Argument Positions on Stack

 NAME ASMSUB

 PUBLIC _i

 PUBLIC _c

ABC DSEG BASEP

_i : DW 0

_c : DB 0

 END

extern int FUNC (int, long) ; /* Function prototype */

void main (void) {

 int i, j ;

 long l ;

 l = 0x54321 ;

 i = 1 ;

 j = FUNC (i, l) ; /* Function call */

}

j = FUNC (i, l) ;

Stack pointer

Low address

High address

Return address to main

l (low-order word)

l (high-order word)

Stack area

AX register

i

CubeSuite+ Ver.1.00.00 CHAPTER 10 CAUTIONS

R20UT0552EJ0100 Rev.1.00 Page 820 of 853
Apr 01, 2011

CHAPTER 10 CAUTIONS

This chapter explains points of caution when coding.

(1) Kanji code (2-byte code) classification

To use a source containing SJIS or EUC code, specify sjis or euc for the environmental variable LANG78K, or

select SJIS or EUC for the "Kanji Code of Source" option.

If the specified Japanese character encoding scheme differs from the encoding scheme used in the source, an

error might occur during building, or some of the code might be incorrectly processed as comments.

(2) Include files

Functions (except declarations) defined within include files cannot be expanded in the C source.

If definitions are made within an include file, unwanted effects such as definition lines not being displayed correctly

may occur at the time of debugging.

(3) When outputting assembler source

When there are assembly language descriptors such as #asm blocks or __asm statements within the C source

program, the load module file creation sequence occurs in the order of: compile, assemble, link.

As in cases where there are assembly language descriptors, when assembling by outputting the assembler source

first without outputting objects directly with the RL78,78K0R C compiler, observe the following points of caution.

- If it is necessary to define symbols within #asm blocks (the area between #asm and #endasm), or within

__asm statements, use symbols of eight characters or less beginning with ?L@ (e.g. ?L@01, ?L@sym, etc.).

However, do not define these symbols externally (via PUBLIC declaration). Furthermore, segments cannot be

defined within #asm blocks or __asm statements. If symbols beginning with the ?L@ character sequence are

not used, a fatal error (F2114) will be output during assembly.

- When using variables set to extern in the C source inside of #asm blocks, if there is no reference within other

parts written in C then the EXTRN is not generated and a link error occurs. Therefore, the EXTRN should be

done within the #asm block when not referencing with C.

- When modifying a segment name with a #pragma section command, do not designate the segment name to

be the same as the primary name of the source file name. An error (F2106) will be output during assembly.

(4) Link directive file creation

When linking objects generated by the RL78,78K0R C compiler, if using a region other than the ROM or RAM

memory of the target device, or if you want to specify any address to allocate code or data, create a link directive

file and specify linker option-d when linking.

See "CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS" or the lk.dr (under the smp folder) included with the C

compiler regarding the method for creating link directive files.

Example Allocating an initial value null external variable (other than an sreg variable) to external memory in a C

source file.

(a) Modify the section name used for initial value null external variable at the head of the C source.

Caution To initialize or ROMize the modified segment, do so by modifying the startup routine.

#pragma section @@DATAL EXTDATA

 :

CubeSuite+ Ver.1.00.00 CHAPTER 10 CAUTIONS

R20UT0552EJ0100 Rev.1.00 Page 821 of 853
Apr 01, 2011

(b) Create the lk78k0r.dr link directive file.

Pay attention to the following points when creating link directive files.

- When linking, if using stack resolution symbol creation designation option -s, it is recommended to secure

the stack region with the link directive file's memory directive, and explicitly define the name of the

secured stack region. If the region name is excluded, RAM memory (except for SFR memory) will be

used as the stack region.

Example When the link directive file lk78k0r.dr has been added to.

The command line is as follows.

- When linking to the defined memory region, the following link error may be output.

This means that the specified segment cannot be allocated due to insufficient space in the specified mem-

ory region.

The method for dealing with this is divided broadly into the following 3 steps.

<1> Investigate the size of the segment that cannot be allocated (see the .map file).

However, depending on the type of segment specified by the error, the method for investigating

the segment size differs as follows.

- For segments automatically generated at time of compiling

Investigate the segment size in the map file created from linking.

- For user-created segments

Investigate the size of the segment which was not allocated in the assembly list file (.prn).

<2> Based on the segment size found above, increase the memory size where the segment will be

allocated with the directive file.

<3> Specify option -d for the directive file specification and link.

(5) When using the va_start macro

Because the offset of the first argument differs depending on the function, operation of the va_start macro defined

in stdarg.h is not guaranteed.

Use the macro accordingly as follows.

- When specifying the first argument, use the va_starttop macro.

memory EXTRAM : (040000H, 1000H)

merge EXTDATA : = EXTRAM

memory EXTRAM : (040000H, 1000H)

memory STK : (0FB000H, 100H)

merge EXTDATA : = EXTRAM

C>lk78k0r s0rml.rel prime.rel -bcl0rm.lib -sSTK -dlk78k0r.dr

RA78K0R error E3206 : Segment 'xxx' can't allocate to memory-ignored.

CubeSuite+ Ver.1.00.00 CHAPTER 10 CAUTIONS

R20UT0552EJ0100 Rev.1.00 Page 822 of 853
Apr 01, 2011

(6) Regarding the startup routines and libraries

- Use the same startup routine and library version offered as the version of the execute form file (cc78k0r.exe)

being used.

- In floating-point compatible sprintf, vprintf and vsprintf for the, values below the accuracy level of the "%f",

"%e", "%E", "%g" and "%G" specified conversion results are rounded down. Additionally, "%f" conversion

occurs even if the "%g" and "%G" specified conversion results are above the accuracy level.

In floating-point compatible sscanf and scanf, if no valid character is read at "%f", "%e", "%E", "%g" and "%G"

specification then the conversion result will be +0, and if "+" is the only character recognized then the conver-

sion result will be + 0.

(7) When ROMization is performed

ROMization is the process of allocating an initial value such as an external variable with an initial value to ROM

then copying it to RAM when the system is executed. The RL78,78K0R C compiler by default generates code to

be ROMized. Therefore it is necessary to link to a start-up routine that includes ROMization processing when link-

ing.

ROMization processing of far memory is not included in the startup routines for small and medium models. When

a variable has been allocated to far memory using the __far modifier, use a large model startup routine.

The CA78K0R offers the following startup routines, all of which include ROMization processing.

If using flash memory self overwrite mode, please see "(3) Uses of startup routines".

A usage example is shown below.

The -s option is a stack symbol (_@STBEG, _@STEND) automatically generated option.

Cautions 1. Be sure to link the startup routine first.

2. When creating user-generated libraries, separate them from the libraries provided by

CA78K0R, and specify them ahead of the CA78K0R libraries when linking.

3. Do not add user functions to the CA78K0R libraries

4. When a floating-point library (cl0r*f.lib) is used, it is also necessary to link to the normal

library (cl0r*.lib).

Example When using floating-point compatible sprintf, sscanf, printf, scanf, vprintf and vsprintf.

When not using C standard library memory s0rm.rel, s0rl.rel

When using C standard library memory s0rml.rel, s0rll.rel

C>lk78k0r s0rl.rel sample.rel -s -bcl0rxm.lib -bcl0rm.lib -osample.lmf

sample.rel User programmed object module file

s0rl.rel Startup routine

cl0rxm.lib Multiplier library

cl0rdm.lib Multiplier/divider library

cl0rm.lib Runtime library, standard library

-bmylib.lib -bcl0rmf.lib -bcl0rm.lib

CubeSuite+ Ver.1.00.00 CHAPTER 10 CAUTIONS

R20UT0552EJ0100 Rev.1.00 Page 823 of 853
Apr 01, 2011

Example When using sprintf, sscanf, printf, scanf, vprintf and vsprintf not compatible with floating point.

(8) Prototype declaration

In a function prototype declaration, if the function type is not specified, an error (E0301, E0701) results.

In such a case, specify the function type.

(9) Error message output

Outside the function, if there is a spelling error in the keyword at the beginning of a line, the display position of the

error line may be shifted or an improper error may be output.

(10) Comment input in the preprocessor directive

If a comment is inserted at the beginning or in the middle of a preprocessor directive in the function form macro

row, an error occurs (E0803, E0814, E0821, etc.).

In such a case, insert the comment after the preprocessor directive.

-bmylib.lib -bcl0rm.lib -bcl0rmf.lib

f (void) ; /* E0301 : Syntax error */

 /* E0701 : External definition syntax */

int f (void) ;

extren int i ; /* extern is misspelled. An error does not occur here.*/

/* comment */

void f (void) ;

[EOF] /* Error such as E0712 */

/* com1 */ #pragma sfr /* E0803 */

/* com2 */ #define ONE 1 /* E0803 */

#define /* com3 */ TWO 2 /* E0814 */

#ifdef /* com4 */ ANSI_C /* E0814 */

/* com5 */ #endif

#define SUB (p1, /* com6 */ p2) p2 = p1 /* E0821 */

#pragma sfr /* com1 */

#define ONE 1 /* com2 */

#define TWO 2 /* com3 */

#ifdef ANSI_C /* com4 */

#endif /* com5 */

#define SUB (p1, p2) p2 = p1 /* com6 */

CubeSuite+ Ver.1.00.00 CHAPTER 10 CAUTIONS

R20UT0552EJ0100 Rev.1.00 Page 824 of 853
Apr 01, 2011

(11) Tag usage for structure, union and enum

In the function prototype declaration, if (structure, union and enum) tags are used before they are defined, a warn-

ing occurs if conditions (a) below are met, and an error occurs if conditions (b) below are met.

(a) If the tag is used to define the pointers to structure and union in the argument declaration, a warning

(W0510) occurs when the function is called.

(b) If the tag is used to designate structure, union and enum types for the return value declaration and

argument statement, an error (E0737) will occur.

In such a case, first define the structure, union and enum tags.

void func (int, struct st) ;

struct st {

 char memb1 ;

 char memb2 ;

} st[] = {

 { 1, ' a ' }, { 2, ' b ' }

} ;

void caller (void) {

 /* W0510 Pointer mismatch */

 func (sizeof (st) / sizeof (st[0]), st) ;

}

 /* E0737 Undeclared structure/union/enum tag */

void func1 (int, struct st) ;

 /* E0737 Undeclared structure/union/enum tag */

struct st func2 (int) ;

struct st {

 char memb1 ;

 char memb2 ;

} ;

CubeSuite+ Ver.1.00.00 CHAPTER 10 CAUTIONS

R20UT0552EJ0100 Rev.1.00 Page 825 of 853
Apr 01, 2011

(12) Initializing arrays, structures and unions within a function

Within a function, array, structure and union initialization cannot be performed using other than a static variable

address, constant, and character string

In such a case, enter an assignment statement and substitute it in place of initialization.

void f (void) ;

void f (void) {

 char *p, *p1, *p2 ;

 char *ca[3] = { p, p1, p2 } ; /* Error(E0750) */

}

void f (void) ;

void f (void) {

 char *ca[3] ;

 char *p, *p1, *p2 ;

 ca[0] = p ; ca[1] = p1 ; ca[2] = p2 ;

}

CubeSuite+ Ver.1.00.00 CHAPTER 10 CAUTIONS

R20UT0552EJ0100 Rev.1.00 Page 826 of 853
Apr 01, 2011

(13)Structure-returning functions

When a function returns the structure itself, if an interrupt occurs during return processing of the return value and

during interrupt processing the same function is called, the return value after completion of interrupt processing will

be invalid.

During the processing excerpt above, if the func function is called at the interrupt destination, st may break down.

struct str {

 char c ;

 int i ;

 long l ;

} st ;

struct str func () {

 /* Interrupt occurrence */

 :

}

void main () {

 st = func () ; /* Interrupt occurrence */

}

CubeSuite+ Ver.1.00.00 CHAPTER 10 CAUTIONS

R20UT0552EJ0100 Rev.1.00 Page 827 of 853
Apr 01, 2011

(14)Memory initialization directives

If memory initialization directives DB, DW and DG are input with the data segment (DSEG), the object code will be

output, but a warning (W4301) will occur at the object converter. This is because code exists at an address other

than the ROM region (the coding region).

If ROM code is called (operations called across processing and tape-out) in this state, an error occurs.

(15)Memory directives

The default memory region name of each device cannot be erased.

Set the memory size for default memory names not being used to 0.

However, some segments may be assigned to the default regions, so be careful when modifying region names.

See the user manual of each device regarding default memory region names.

(16)Segment names

When inputting a segment name, do not give a segment a name that is the same as the primary name of the

source file name. Abort error F2106 will occur at assembly.

(17)EQU definition of SFR name

An SFR name can be designated in the operand of an EQU directive, but if the name of an SFR outside the saddr

area is designated an assemble error will occur.

(18)Specifying section start addresses

The size of a section that specifies a start address with a #pragma section directive is always an even number.

(19)Bit fields

Bit fields with type signed are handled as unsigned bit fields.

(20)Output conversion on I/O functions in the standard libraries

When output conversion is performed for the printf, sprintf, vprintf, and vsprintf functions, operation will become ille-

gal under the following conditions.

(a) If precision is specified as ".2" for the d, i, o, u, x or X conversion specifier, the 0 flag will not be

ignored.

Example

Illegal operation: "0077"

Correct operation: " 77"

#include <stdio.h>

void func ()

{

 printf("%04.2d\n", 77);

}

CubeSuite+ Ver.1.00.00 CHAPTER 10 CAUTIONS

R20UT0552EJ0100 Rev.1.00 Page 828 of 853
Apr 01, 2011

(b) For the the g, and G conversion specifiers, the result is "specified precision + 1".

Example

Illegal operation: "12.3"

Correct operation: "12"

(21)The size minimum value (-32768) of types int/short

The size of the minimum value (-32768) of types int/short is 4. Write as (-32767-1).

Example

Illegal operation: The value of x is 4

Correct operation: The value of x is 2

(22)The type of the identifier in a function definition

Because argument promotion is not performed for the type of an identifier in a function definition, the parameter

type and the type of the identifier in the function definition do not match, thus causing the E0747 error.

Make sure that the types of the parameter and of the identifier in the function definition match.

Example

#include <stdio.h>

void func ()

{

 printf("%.2g", 12.3456789);

}

int x;

void func ()

{

 x = sizeof(-32768);

}

int fn_char (int);

int fn_char (c)

char c;

{

 return 98;

}

CubeSuite+ Ver.1.00.00 CHAPTER 10 CAUTIONS

R20UT0552EJ0100 Rev.1.00 Page 829 of 853
Apr 01, 2011

(23) In an identifier list in a function definition

In an identifier list in a function definition, a parameter that is not declared is not handled as type int, thus causing

the E0706 error.

Declare all parameters in a function definition.

Example

(24)The “#” operater

Expansion will not be performed correctly under either of the following conditions.

(a) ['"'] cannot be expanded correctly with the # operator, causing a compile-time error.

Example for condition 1:

Example for condition 1:

Illegal operation: Compile-time error

Correct operation: if (strcmp(("'\"'") , "'\"'") == 0) x++;

(b) Macros that contain a # operator and a nested structure cannot be expanded correctly.

Example for condition 2:

Illegal operation: "p = ("12E1");"

Correct operation: "p = ("12EEXP");"

void func (x1, x2, f, x3, lp, fp)

int (*fp)();

long *lp;

float f;

{

 :

}

#include <string.h>

#define str (a) (# a)

int x;

void func ()

{
 if (strcmp(str('"'), "'\"'") == 0) x++;
}

#define str (a) #a

#define xstr (a) str (a)

#define EXP 1

char *p;

void func ()

{

 p = xstr(12EEXP);

}

CubeSuite+ Ver.1.00.00 CHAPTER 10 CAUTIONS

R20UT0552EJ0100 Rev.1.00 Page 830 of 853
Apr 01, 2011

(25)The preprossing directive #line

When the #line preprocessor directive is used, debugging information in the assembler source will be invalid.

Assembling this assembler source will cause an error (E2201).

Example

You can avoid this by doing either of the following:

- Use the object module file.

- Use assembler source without outputting debugging information.

(26)The variable/function information file generator

By substituting the callt function for certain functions, the functions are excluded the optimization subroutine pat-

tern. As a result, the code volume may increase.

Comment-out the functions subject to callt function substitution in the variable/function information file.

(27)System call for RTOS

If #pragma rtos_task is not described in the C source, ext_tsk is not recognized as a system call for RTOS. There-

fore, the error message “E0778: Cannot call ext_tsk in interrupt function” is not output even if ext_tsk is called from

an interrupt handler for RTOS.

You can avoid this by doing either of the following:

- Describe #pragma rtos_task in the C source to clearly specify using a task function.

- Do not describe calling ext_tsk from an interrupt handler for RTOS.

#include <stdio.h>

void main (void)

{

 int a;

 #line 1 "test_line"

 a = 3;

 printf("__FILE__ = %s, __LINE__ = %d\n",__FILE__,__LINE__);

}

CubeSuite+ Ver.1.00.00 CHAPTER 10 CAUTIONS

R20UT0552EJ0100 Rev.1.00 Page 831 of 853
Apr 01, 2011

(28)Prototype declaration of a variables/functions information file

When the -ma option is specified, if a function whose arguments lack type declarations for formal arguments is

called, and the arguments have function addresses for which callt allocation is specified in the variables/functions

information file, then the program may behave incorrectly due to inconsistent function interfaces.

Example

If the above conditions are met, then the compiler outputs warning W0553. Include type declarations for formal

arguments in the function-call prototype declaration. Alternatively, comment out the callt specification in the vari-

ables/functions information file for function names in the function-parameter code.

int func_c () /* callt in .vfi */

{

 return 0;

}

void func ()

{

 func2 (func_c) ; /* W0553 */

}

int func2 (int (*p) (void))

{

 return 1;

}

- Variables/functions information file

[callt]

 func_c,,,,

CubeSuite+ Ver.1.00.00 CHAPTER 10 CAUTIONS

R20UT0552EJ0100 Rev.1.00 Page 832 of 853
Apr 01, 2011

(29)#pragma section directive of a variables/functions information file

When the -ma option is specified, allocating variables and functions to the callt table area or saddr area in a section

defined by a #pragma section directive specified with an AT start address may cause incorrect behavior.

Example

VF78KOR does not specify sreg/callt for variables and functions in sections defined by #pragma section directives

with AT start addresses specified. When editing the variables/functions information file, do not specify allocation to

the callt table area or saddr area for the above functions and variables.

#pragma section @@DATA @FCDATA AT 0FCF00H

#define dni1 (* (int *) 0xfcf00)

int __near ni1; /* sreg in .vfi */

__sreg int x1, x2;

void func ()

{

 x1 = ni1;

 x2 = dni1;

}

void main ()

{

 ni1 = 0x10;

 func ();

}

- Variables/functions information file

[sreg]

 ni1,,,

CubeSuite+ Ver.1.00.00 CHAPTER 10 CAUTIONS

R20UT0552EJ0100 Rev.1.00 Page 833 of 853
Apr 01, 2011

(30)Outout warnings of a variable/functions information file

When specifying the -ma option, a warning may be output when the address of a function allocated to the callt table

area via a variables/functions information file is handled.

Example when the memory model is the medium or large model

This will not cause any problems with program behavior.

If you wish to suppress this warning, perform a cast in code that handles function pointers.

(31) -ma option specification

If a comma (“,”) is included in the folder name or file name of the file specified by the -ma option, the compiler can-

not recognize the file appropriately because it regards a comma as a delimiter.

Do not include a comma in a folder name or file name.

void f1 (void (*fp) ())

{

}

void f2 (void)

{

}

void (*fp1) (void) ;

void (*fp2) (void) ;

void func (void)

{

 f1 (f2) ; /* W0510: Pointer mismatch in function */

 f1 ((void (*) ()) f2) ; /* Cast OK */

 fp1 = f2; /* W0416: Illegal type and size (far/near)

 pointer combination */

 fp2 = (void (*) ()) f2; /* Cast OK */

}

- Variables/functions information file
[callt]

 f2,,,,

CubeSuite+ Ver.1.00.00 CHAPTER 10 CAUTIONS

R20UT0552EJ0100 Rev.1.00 Page 834 of 853
Apr 01, 2011

(32)Strtod function library

If a floating-point number having three or more digit characteristic is described in a character string to be passed to

the strtod function, then no overflow processing will be performed because of an operation error in the abnormality

processing system.

Example

Although values in the range from 1.17549435E-38F to 3.40282347E+38F can be described by CA78K0R for both

the float type and the double type, the system reads the above description as “-5E+20” because CA78K0R has

read the characteristic for only two digits.

For the character string to be passed to the strtod function, describe a value that can be represented.

(33)A highest-order address of the function pointer + offset

If, in passing to the pointer the address of the function pointer + offset with the function pointer casted to the data

pointer, the address goes beyond the 64 KB boundary due to the addition/subtraction of the offset, carry/borrow

may not be taken into account upon setting the highest-order address.

Example

No data can be allocated beyond the 64 KB boundary.

(34)_rcopy function

Do not call _ rcopy function in the hdwinit function called by the start-up routine.

(35)@EBASE segment

Specify to arrange the @EBASE segment in ROM area on the flash side with the directive file when the E3206

error is output to the @EBASE segment by the linker.

char *endptr;

double result;

result = strtod ("-5E+2000", &endptr); /* Casts the characteristic on its own */

extern void vg (), void ng ();

void func (void)

{

 :

}

void main ()

{

 unsigned long *p = (unsigned long *) func - 1;

 if (p == ((unsigned long *) func -1))

 vg ();

 else

 ng ();

}

CubeSuite+ Ver.1.00.00 APPENDIX A ROMIZATION PROCESSOR

R20UT0552EJ0100 Rev.1.00 Page 835 of 853
Apr 01, 2011

APPENDIX A ROMIZATION PROCESSOR

This section describes ROMization using the ROMization processor.

A.1 Overview

The ROMization processor can specify RAM allocation without changing the C source, in order to allocate a portion of

a program to the RAM area for execution.

The overall sequence is as follows.

Figure A-1. Creating a ROMization Object

.lmf

Object converter

ROMization processor

Debugger

Assembler

.lmf

.hex

Linker

C compiler

Possible to debug

Enables RAM-allocation specification and adds runtime libraries for each source file with

option specification

Can specify RAM allocation for each source file with #pragma section directives and direc-

tive specifications

(Can make RAM-allocation specification for each segment with specification of control

instruction)

Can make RAM-allocation specification for each segment with specification of AT or direc-

tive

(Automatically allocates to RAM segments allocated to RAM in CC/RA) + Automatically gen-

erates symbols for calling the copy routine

Can make RAM-allocation specification for each segment with specification of directive

The copy routine which generate a code is expanded into RAM from ROM and it's allocated

to the address of the symbol a linker generated

RAM-allocation specification code is relocated to after the copy routine

There is no code in the RAM area

Output HEX including copy routine

CubeSuite+ Ver.1.00.00 APPENDIX A ROMIZATION PROCESSOR

R20UT0552EJ0100 Rev.1.00 Page 836 of 853
Apr 01, 2011

A.2 Procedure for Creating ROMization Load Module

This section describes the procedure for creating a ROMization load module.

(1) Call the copy function

In the program, perform prototype declaration as follows:

and calling the copy function as follows:

expands the segment of ROMized segment number n into RAM.

(2) Specify the ROMization target segment/ allocation of the copy function

The ROMization target functionNote 1 and address at which to allocate the copy functionNote 2 are determined auto-

matically.

When linking, if there is a ROMization target segment, then the address to which to allocate the copy function is

determined automatically, and the symbol "__rcopy" is defined at that address.

(a) Directly specify address to which to allocate the copy function

When linking, if there is a ROMization target segment, and there is the necessary free space for ROMization

processing at the address specified by the address-specification option for the copy function (-rc), then the

symbol "__rcopy" is defined at that address.

(b) Specify the ROMization target directly

When linking, if there is a ROMization target segment within the range specified by the ROMization area spec-

ification option (-ra), then the address to which to allocate the copy function is determined automatically, and

the symbol "__rcopy" is defined at that address.

Notes 1. The target area is the internal RAM area defined in the device file.

2. The copy function is read from the "_rcopy.rel" file, and linked to the output file.

int _rcopy(int) ;

_rcopy(n) ;

CubeSuite+ Ver.1.00.00 APPENDIX B EDITOR

R20UT0552EJ0100 Rev.1.00 Page 837 of 853
Apr 01, 2011

APPENDIX B EDITOR

This appendix describes the Editor panel which is used to display and edit text files and source files.

CubeSuite+ Ver.1.00.00 APPENDIX B EDITOR

R20UT0552EJ0100 Rev.1.00 Page 838 of 853
Apr 01, 2011

This panel is used to display and edit text files and source files.

The file is opened by automatically distinguishing the encoding (Shift_JIS/EUC-JP/UTF-8) and line feed code of the file

and the encoding is retained when it is saved.

If the encoding and newline code is specified in the File Save Settings dialog box, however, then the file is saved in

accordance with those settings.

This panel can be multiply opened (max:100 panels).

Remark A message is shown when the downloaded load module file is older than the source file to be opened.

Figure B-1. Editor Panel

The following items are explained here.

- [How to open]

- [Description of each area]

- [[File] menu (only available for the Editor panel)]

- [[Edit] menu (only available for the Editor panel)]

- [Context menu]

[How to open]

- On the Project Tree panel, double click a file.

- On the Project Tree panel, select a source file, and then select [Open] from the context menu.

- On the Project Tree panel, select a file and then select [Open with Internal Editor...] from the context menu.

- On the Project Tree panel, select [Add] >> [Add New File...] from the context menu, and then create a text file or

source file.

Editor panel

(1)

(3)(2)

CubeSuite+ Ver.1.00.00 APPENDIX B EDITOR

R20UT0552EJ0100 Rev.1.00 Page 839 of 853
Apr 01, 2011

[Description of each area]

(1) Title bar

The name of the open text file or source file is displayed.

Marks that are displayed at the end of the file name indicate as follows.

(2) Line number area

This area displays the line number of the opened text file or source file.

(3) Characters area

This area displays character strings of text files and source files and you can edit it.

This area has the following functions.

(a) Character editing

Characters can be entered from the keyboard.

Various shortcut keys can be used to enhance the edit function.

(b) File monitor

The following function for monitoring is provided to manage source files.

- If the contents of the currently displayed file are changed not with CubeSuite+, a message is displayed to

indicate whether to save the file. You can either select yes or no.

Remark The following items can be customized by setting the Option dialog box.

- Display fonts

- Tab interval

- Display, hide, and colors of control characters (control codes including a blank symbol)

- Colors of reserved words and comments

[[File] menu (only available for the Editor panel)]

The following items are exclusive for the [File] menu in the Editor panel (other items are common to all the panels).

Mark Description

* The contents of the editing file is changed.

(Uneditable) The opened text file is write disabled.

ID number The same text file is multiply opened.

Close file name Closes the currently editing the Editor panel.

When the contents of the panel have not been saved, a confirmation message is shown.

Save file name Overwrites the contents of the currently editing the Editor panel.

Note that when the file has never been saved or the file is write disabled, the same

operation is applied as the selection in [Save file name As...].

file name Save Settings... This dialog box is used to open the File Save Settings dialog box to set the encoding and

newline code of the file that is editing on this panel.

CubeSuite+ Ver.1.00.00 APPENDIX B EDITOR

R20UT0552EJ0100 Rev.1.00 Page 840 of 853
Apr 01, 2011

[[Edit] menu (only available for the Editor panel)]

The following items are exclusive for the [Edit] menu in the Editor panel (other items are all invalid).

[Context menu]

[Characters area/Line number area]

Save file name As... Opens the Save As dialog box to newly save the contents of the currently editing the Editor

panel.

Page Setup... Opens the Page Setup dialog box of Windows.

Print... Opens the Print dialog box of Windows for printing the contents of the currently editing the

Editor panel.

Undo Cancels the previous operation on the Editor panel and restores the characters and the

caret position (max 100 times).

Redo Cancels the previous [Undo] operation on the Editor panel and restores the characters and

the caret position.

Cut Cuts the selected characters and copies them to the clip board.

Copy Copies the selected characters to the clipboard.

Paste Insert (insert mode) or overwrite (overwrite mode) the characters that are copied on the clip

board into the caret position.

When the contents of the clipboard are not recognized as characters, the operation is invalid.

Delete Deletes one character at the caret position.

When there is a selection area, all the characters in the area are deleted.

Select All Selects all the characters from the beginning to the end in the currently editing text file.

Find... Opens the Find and Replace dialog box with the [Quick Find] tab target.

When there is a selection area, search is only taken place in the selection area.

Replace... Opens the Find and Replace dialog box with the [Quick Replace] tab target.

When there is a selection area, replace is only taken place in the selection area.

Go To... Opens the Go to the Location dialog box to move the caret to the designated line.

Jump To Function Jumps to the function regarding the selected characters and the words at the caret position

as a function

Note that this is valid only when the load module file with the symbol information is down-

loaded.

The jump to the static function cannot be performed.

If a single line contains multiple statements, then it may not be possible to jump to the cor-

rect location.

Note that this menu is enabled when the project is the active project and other than library

project.

Back To Last Cursor Position Goes back to the position before the cursor is jumped.

Forward To Next Cursor Position Forwards to the position before operating [Back To Last Cursor Position].

Tag Jump Jumps to the caret line in the editor indicated by the message (file, line, and column).

Cut Cuts the selected characters and copies them to the clip board.

Copy Copies the selected characters to the clip board.

Paste Inserts the contents of the clipboard into the caret position.

CubeSuite+ Ver.1.00.00 APPENDIX B EDITOR

R20UT0552EJ0100 Rev.1.00 Page 841 of 853
Apr 01, 2011

Open in New Panel Opens a new Editor panel with the same contents as the current Editor panel (the title bar of

the newly opened Editor panel displays the file name and ID number).

The Editor panel can be opened up to 100 panels.

CubeSuite+ Ver.1.00.00 APPENDIX C INDEX

R20UT0552EJ0100 Rev.1.00 Page 842 of 853
Apr 01, 2011

APPENDIX C INDEX

Symbols

#asm - #endasm ... 86

#pragma bcd ... 134

#pragma BRK ... 102

#pragma DI ... 99

#pragma directive ... 68

#pragma div ... 129

#pragma EI ... 99

#pragma ext_func ... 155

#pragma HALT ... 102

#pragma inline ... 164

#pragma interrupt ... 91

#pragma mac ... 131

#pragma mul ... 127

#pragma name ... 124

#pragma NOP ... 102

#pragma opc ... 137

#pragma rot ... 125

#pragma rtos_interrupt ... 139

#pragma rtos_task ... 144

#pragma section ... 111

#pragma sfr ... 81

#pragma STOP ... 102

#pragma vect ... 91

?A0nnnnn ... 209

?BSEG ... 210

?CSEG ... 210

?CSEGB ... 210

?CSEGFX ... 210

?CSEGMIP ... 210

?CSEGOB0 ... 210

?CSEGP64 ... 210

?CSEGSI ... 210

?CSEGT0 ... 210

?CSEGU64 ... 210

?CSEGUP ... 210

?DSEG ... 210

?DSEGBP ... 210

?DSEGP64 ... 210

?DSEGS ... 210

?DSEGSP ... 210

?DSEGU64 ... 210

?DSEGUP ... 210

_@BRKADR ... 810

_@DIVR ... 810

_@FNCENT ... 810

_@FNCTBL ... 810

_@LDIVR ... 810

_@MEMBTM ... 810

_@MEMTOP ... 810

_@SEED ... 810

_@STBEG ... 802, 804

_@TOKPTR ... 810

A

abort ... 679

abs ... 682

absolute address allocation specification ... 72, 166

absolute assembler ... 14

absolute segment ... 201, 270

absolute term ... 254

acos ... 727

acosf ... 750

ADDRESS ... 210

ADDRESS term ... 256

aggregate type ... 65

allocating ROM data specification ... 72

alphabetic characters ... 207

alphanumeric characters ... 206

AND operator ... 229

ANSI ... 66

area reservation directives ... 295

arithmetic operator ... 219

array type ... 65

asin ... 728

asinf ... 751

CubeSuite+ Ver.1.00.00 APPENDIX C INDEX

R20UT0552EJ0100 Rev.1.00 Page 843 of 853
Apr 01, 2011

__asm ... 86

ASM statement ... 70, 86

assemble target type specification control instruction ...

338

assemble termination directive ... 334

assembler options ... 336

assembly language ... 13

assembly list control instructions ... 354

assert ... 622

assert.h ... 778

__assertfail ... 773

AT ... 598

AT relocation attribute ... 273, 277, 282

atan ... 729

atan2 ... 730

atan2f ... 753

atanf ... 752

atexit ... 680

atof ... 688

atoi ... 671

atol ... 672

B

backward reference ... 267

BASE relocation attribute ... 273

BASEP relocation attribute ... 277

BCD operation function ... 71, 134

binary ... 212

binary constant ... 71, 122

BIT ... 210

bit field ... 104

bit field declaration ... 71, 104, 106

bit segment ... 201, 270

bit symbol ... 259

bit type variable ... 70, 83

BITPOS operator ... 250

__boolean ... 83

boolean type variable ... 70, 83

BR directive ... 315

branch instruction automatic selection directives ... 314

BRK ... 102

brk ... 686

bsearch ... 695

BSEG directive ... 281

byte separation operator ... 242

C

C language ... 13

CALL directive ... 317

calloc ... 675

__callt ... 73

callt ... 73

callt function ... 70, 73

CALLT0 relocation attribute ... 273

ceil ... 745

ceilf ... 768

changing compiler output section name ... 71

char type ... 61

character set ... 206

character string constant ... 212

character type ... 64

CLRB ... 477

CLRW ... 485

code segment ... 201, 270

comment field ... 214, 414

compiler output section name is changed ... 111

COMPLETE ... 598

concatenation ... 413

COND control instruction ... 365

conditional assembly control instructions ... 377

constant ... 212

control instructions ... 336

cos ... 731

cosf ... 754

cosh ... 734

coshf ... 757

CPU control instruction ... 70, 102

cross-reference list output specification control

instructions ... 345

CSEG directive ... 272

cstart*.asm ... 801

cstart.asm ... 798, 801

CubeSuite+ Ver.1.00.00 APPENDIX C INDEX

R20UT0552EJ0100 Rev.1.00 Page 844 of 853
Apr 01, 2011

cstartn.asm ... 798, 801

ctype.h ... 616, 774

D

data insertion function ... 71, 137

data segment ... 201, 270

DATAPOS operator ... 249

DB directive ... 296

DBIT directive ... 304

DEBUG control instruction ... 341

debug information output control instructions ... 340

DEBUGA control instruction ... 343

decimal ... 212

DG directive ... 300

DGL control instruction ... 407

DGS control instruction ... 407

DI ... 99

directive file ... 593

directives ... 269

__directmap ... 166

div ... 684

division function ... 71, 129

DS directive ... 302

DSEG directive ... 276

DW directive ... 298

E

Editor panel ... 838

EI ... 99

EJECT control instruction ... 355

ELSE control instruction ... 391

_ELSEIF control instruction ... 388

ELSEIF control instruction ... 385

END directive ... 335

ENDIF control instruction ... 395

ENDM directive ... 332

enumeration type ... 61

EQ operator ... 233

EQU directive ... 289

_errno ... 810

errno.h ... 618

error.h ... 618

EUC ... 89

exit ... 681

EXITM directive ... 329

exp ... 737

expf ... 760

EXTBIT directive ... 308

external reference term ... 254

EXTRN directive ... 306

ext_tsk ... 144

F

fabs ... 746

fabsf ... 769

FIXED relocation attribute ... 273

flash area allocation method ... 71, 148

flash area branch table and flash area allocation ... 71,

149

float.h ... 620

floating point type ... 62

floor ... 747

floorf ... 770

fmod ... 748

fmodf ... 771

FORMFEED control instruction ... 372

forward reference ... 267

free ... 676

frexp ... 738

frexpf ... 761

function of function call from boot area to flash area ... 71,

155

function type ... 65

G

GE operator ... 236

GEN control instruction ... 361

general register ... 213

general register pairs ... 213

getchar ... 665

gets ... 666

global symbol ... 411

CubeSuite+ Ver.1.00.00 APPENDIX C INDEX

R20UT0552EJ0100 Rev.1.00 Page 845 of 853
Apr 01, 2011

GT operator ... 235

H

HALT ... 102

hardware initialization function ... 804

hdwinit function ... 800, 804

header File ... 616

hexadecimal ... 212

HIGH operator ... 243

HIGHW operators ... 246

how to use the saddr area ... 70, 77

how to use the sfr area ... 70, 81

I

_IF control instruction ... 382

IF control instruction ... 378

INCLUDE control instruction ... 351

include control instruction ... 350

incomplete type ... 64

integer type ... 61

__interrupt ... 97

interrupt function ... 70, 91, 99

interrupt function qualifier ... 70, 97

interrupt handler for RTOS ... 71, 139

interrupt handler qualifier for RTOS ... 71, 142

__interrupt_brk ... 97

IRP directive ... 327

IRP-ENDM block ... 327

isalnum ... 629

isalpha ... 625

isascii ... 636

iscntrl ... 635

isgraph ... 634

islower ... 627

isprint ... 633

ispunct ... 632

isspace ... 631

isupper ... 626

isxdigit ... 630

itoa ... 690

IXRAM relocation attribute ... 273

K

Kanji (2-byte character) ... 70, 89

Kanji code control instruction ... 403

KANJICODE control instruction ... 404

L

label ... 208

labs ... 683

LANG78K ... 89

ldexp ... 739

ldexpf ... 762

ldiv ... 685

LE operator ... 238

LENGTH control instruction ... 375

limits.h ... 618

link directive ... 593, 599, 802

linkage directives ... 305

LIST control instruction ... 357

LOCAL directive ... 322

local symbol ... 411

log ... 740

log10 ... 741

log10f ... 764

logf ... 763

logic operator ... 227

longjmp ... 646

LOW operator ... 244

LOWW operators ... 247

LT operator ... 237

ltoa ... 691

M

macro ... 408

macro definition ... 408

MACRO directive ... 320

macro directives ... 319

macro expansion ... 410

macro name ... 208

macro operator ... 413

malloc ... 677

MASK operator ... 251

CubeSuite+ Ver.1.00.00 APPENDIX C INDEX

R20UT0552EJ0100 Rev.1.00 Page 846 of 853
Apr 01, 2011

math.h ... 620, 777

matherr ... 749

memchr ... 712

memcmp ... 709

memcpy ... 703

memmove ... 704

MEMORY ... 598

memory directive ... 594

memory initialization directives ... 295

memory manipulation function ... 72, 164

memory model ... 65

Memory model specification ... 175

memory model specification ... 72

memory space ... 66

memset ... 720

MERGE ... 598

method of int expansion limitation of argument/return

value ... 72, 161

mirror source area specification ... 71

MIRRORP relocation attribute ... 273

mkstup.bat ... 795, 799

mnemonic field ... 211, 414

MOD operator ... 224

modf ... 742

modff ... 765

modular programming ... 14

module header ... 200

module name ... 208

module name changing function ... 71, 124

module tail ... 201

MOV ... 470

MOVS ... 478

MOVW ... 480

multiplication function ... 71, 127

N

name ... 208

NAME directive ... 313

NE operator ... 234

near/far area specification ... 72, 170

NOCOND control instruction ... 366

NODEBUG control instruction ... 342

NODEBUGA control instruction ... 344

NOFORMFEED control instruction ... 373

NOGEN control instruction ... 363

NOLIST control instruction ... 359

NONE ... 89

NOP ... 102

NOSYMLIST control instruction ... 349

NOT operator ... 228

NOXREF control instruction ... 347

NUMBER ... 210

NUMBER term ... 256

numeric constant ... 212

O

object module name declaration directive ... 312

octal ... 212

ONEW ... 484

__OPC ... 137

operand ... 261, 266

operand field ... 211, 414

operator ... 216

OPT_BYTE relocation attribute ... 273

optimized branching directive ... 21

OR operator ... 230

ORG directive ... 285

other operator ... 252

P

PAGE64KP relocation attribute ... 273, 277

pow ... 743

powf ... 766

printf ... 661

PROCESSOR control instruction ... 339

PUBLIC directive ... 310

__putc ... 669

putchar ... 667

puts ... 668

Q

-ql ... 73

qsort ... 696

CubeSuite+ Ver.1.00.00 APPENDIX C INDEX

R20UT0552EJ0100 Rev.1.00 Page 847 of 853
Apr 01, 2011

R

RAM area allocation-specification control instruction ...

405

RAM_ALLOCATE control instruction ... 406

rand ... 693

realloc ... 678

re-entrant ... 622

referencing macro ... 409

register ... 75

register bank ... 65

register bank is specified ... 91

register variable ... 70, 75

REGULAR ... 595, 597

relocatable assembler ... 14

relocatable term ... 254

relocation attribute ... 254, 273, 277, 282

repgetc.bat ... 795

repmac.bat ... 795

repmac_rl78.bat ... 795

repmul.bat ... 795

repmuldiv.bat ... 795

repputc.bat ... 795

repputcs.bat ... 795

reprom.bat ... 795

repselo.bat ... 795

repselon.bat ... 795

REPT directive ... 325

REPT-ENDM block ... 325

repvect.bat ... 795

RESET control instruction ... 401

reset vector ... 804

rolb ... 125

rolw ... 125

rom.asm ... 801

ROMization ... 794, 812

ROMization processing ... 804, 809

ROMization routine ... 795

rorb ... 125

rorw ... 125

rotate function ... 71, 125

RTOS ... 66

__rtos_interrupt ... 142

runtime library ... 812

S

s0r*.rel ... 801

SADDR relocation attribute ... 277

SADDRP relocation attribute ... 277

sbrk ... 687

scanf ... 662

section name related to ROMization ... 118

SECUR_ID relocation attribute ... 273

segment ... 201

segment definition directive ... 270

segment location directive ... 596

SEQUENT ... 598

SET control instruction ... 399

SET directive ... 293

setjmp ... 645

setjmp.h ... 616, 774

sfr area ... 81

sfr variable ... 81

shift operator ... 239

SHL operator ... 241

SHR operator ... 240

signed integer type ... 61

sin ... 732

sinf ... 755

sinh ... 735

sinhf ... 758

SJIS ... 89

source module ... 200

special characters ... 207, 213

special function register ... 213

special operator ... 248

sprintf ... 653

sqrt ... 744

sqrtf ... 767

srand ... 694

__sreg ... 77

sreg ... 77

sscanf ... 657

CubeSuite+ Ver.1.00.00 APPENDIX C INDEX

R20UT0552EJ0100 Rev.1.00 Page 848 of 853
Apr 01, 2011

stack change specification ... 92

stack pointer ... 804

standard library ... 812

startup ... 794

startup routine ... 118, 789, 809, 820

statement ... 206

stdarg.h ... 617, 774

stddef.h ... 619

stdio.h ... 617, 775

stdlib.h ... 617, 775

STOP ... 102

strbrk ... 697

strcat ... 707

strchr ... 713

strcmp ... 710

strcoll ... 723

strcpy ... 705

strcspn ... 716

strerror ... 721

string.h ... 618, 776

stritoa ... 699

strlen ... 722

strltoa ... 700

strncat ... 708

strncmp ... 711

strncpy ... 706

strpbrk ... 717

strrchr ... 714

strsbrk ... 698

strspn ... 715

strstr ... 718

strtod ... 689

strtok ... 719

strtol ... 673

strtoul ... 674

structure type ... 65

strultoa ... 701

strxfrm ... 724

subroutine ... 408

SUBTITLE control instruction ... 369

sum-of-products calculation function ... 131

symbol ... 411

symbol attribute ... 210

symbol definition directives ... 288

symbol field ... 414

SYMLIST control instruction ... 348

T

TAB control instruction ... 376

tan ... 733

tanf ... 756

tanh ... 736

tanhf ... 759

task ... 144

task function for RTOS ... 71, 144

TITLE control instruction ... 367

toascii ... 639

TOL_INF control instruction ... 407

tolow ... 643

_tolower ... 642

tolower ... 638

toup ... 641

toupper ... 637

U

ultoa ... 692

union type ... 65

UNIT relocation attribute ... 273, 277, 282

UNIT64KP relocation attribute ... 273, 277

UNITP relocation attribute ... 273, 277

unsigned integer type ... 61

usage with saddr automatic allocation option of external

variables/external static variables ... 70, 80

usage with saddr automatic allocation option of internal

static variables ... 70, 79

V

va_arg ... 650

va_end ... 651

va_start ... 648

va_starttop ... 649

vprintf ... 663

vsprintf ... 664

CubeSuite+ Ver.1.00.00 APPENDIX C INDEX

R20UT0552EJ0100 Rev.1.00 Page 849 of 853
Apr 01, 2011

W

WIDTH control instruction ... 374

word separation operators ... 245

X

XCH ... 474

XCHW ... 483

XOR operator ... 231

XREF control instruction ... 346

Z

-zb ... 161

-zf ... 148

Revision Record

Rev. Date
Description

Page Summary

1.00 Apr 01, 2011 - First Edition issued

CubeSuite+ V1.00.00
User’s Manual: RL78,78K0R Coding

Publication Date: Rev.1.00 Apr 01, 2011

Published by: Renesas Electronics Corporation

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2011 Renesas Electronics Corporation. All rights reserved.

Colophon 1.0

CubeSuite+ V1.00.00

R20UT0552EJ0100

	COVER
	How to Use This Manual
	CHAPTER 1 GENERAL
	1.1 Overview
	1.1.1 C compiler and assembler
	1.1.2 Position of compiler and assembler
	1.1.3 Processing flow
	1.1.4 Basic structure of C source program

	1.2 Features
	1.2.1 Features of C compiler
	1.2.2 Features of assembler
	1.2.3 Limits

	CHAPTER 2 FUNCTIONS
	2.1 Variables (Assembly Language)
	2.1.1 Defining variables with no initial values
	2.1.2 Defining const constants with initial values
	2.1.3 Defining 1-bit variables
	2.1.4 1/8 bit access of variable
	2.1.5 Allocating to sections accessible with short instructions

	2.2 Variables (C Language)
	2.2.1 Allocating data only of reference in ROM
	2.2.2 Allocating to sections accessible with short instructions
	2.2.3 Allocating in near areas
	2.2.4 Allocating in far areas
	2.2.5 Allocating addresses directly
	2.2.6 Defining 1-bit variables
	2.2.7 Empty area of the structure is stuffed

	2.3 Functions
	2.3.1 Allocating to sections accessible with short instructions
	2.3.2 Allocating in near areas
	2.3.3 Allocating in far areas
	2.3.4 Allocating addresses directly
	2.3.5 Inline expansion of function
	2.3.6 Embedding assembly instructions

	2.4 Using Microcontroller Functions
	2.4.1 Accessing special function registers (SFR) from C
	2.4.2 Interrupt functions in C
	2.4.3 Using CPU control instructions in C

	2.5 Startup Routine
	2.5.1 Deleting unused functions and areas from startup routine
	2.5.2 Allocating stack area
	2.5.3 Initializing RAM

	2.6 Link Directives
	2.6.1 Partitioning default areas
	2.6.2 Specifying section allocation

	2.7 Reducing Code Size
	2.7.1 Using extended functions to generate efficient object code
	2.7.2 Calculating complex expressions

	2.8 Compiler and Assembler Mutual References
	2.8.1 Mutually referencing variables
	2.8.2 Mutually referencing functions

	CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS
	3.1 Basic Language Specifications
	3.1.1 Processing system dependent items
	3.1.2 Internal representation and value area of data
	3.1.3 Memory

	3.2 Extended Language Specifications
	3.2.1 Macro names
	3.2.2 Keywords
	3.2.3 #pragma directives
	3.2.4 Using extended functions
	callt functions (callt/__callt)
	Register variables (register)
	How to use the saddr area (sreg/__sreg)
	Usage with saddr automatic allocation option of internal static variables (-rs)
	Usage with saddr automatic allocation option of external variables/external static variables (-rd)
	How to use the sfr area (sfr)
	bit type variables (bit), boolean type variables (boolean/__boolean)
	ASM statements (#asm - #endasm/__asm)
	Kanji (2-byte character) (/* kanji */, // kanji)
	Interrupt functions (#pragma vect/#pragma interrupt)
	Interrupt function qualifier (__interrupt, __interrupt_brk)
	Interrupt functions (#pragma DI, #pragma EI)
	CPU control instruction(#pragma HALT/STOP/BRK/NOP)
	Bit field declaration (Extension of type specifier)
	Bit field declaration (Allocation direction of bit field)
	Changing compiler output section name (#pragma section ...)
	Binary constant (0bxxx)
	Module name changing function (#pragma name)
	Rotate function (#pragma rot)
	Multiplication function (#pragma mul)
	Division function (#pragma div)
	Sum-of-products calculation function (#pragma mac)
	BCD operation function (#pragma bcd)
	Data insertion function (#pragma opc)
	Interrupt handler for RTOS (#pragma rtos_interrupt ...)
	Interrupt handler qualifier for RTOS (__rtos_interrupt)
	Task function for RTOS (#pragma rtos_task)
	Flash area allocation method (-zf)
	Flash area branch table and flash area allocation
	Function of function call from boot area to flash area (#pragma ext_func)
	Mirror source area specification
	Method of int expansion limitation of argument/return value (-zb)
	Memory manipulation function (#pragma inline)
	Absolute address allocation specification (__directmap)
	near/far area specification
	Memory model specification
	Allocating ROM data specification
	Specifying RAM allocation destinations with self-programming

	3.2.5 C source modifications

	3.3 Function Call Interface
	3.3.1 Return values
	3.3.2 Ordinary function call interface

	3.4 List of saddr Area Labels
	3.5 List of Segment Names
	3.5.1 List of segment names
	3.5.2 Segment allocation
	3.5.3 C source example
	3.5.4 Example of output assembler module

	CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS
	4.1 Description Methods of Source Program
	4.1.1 Basic configuration
	4.1.2 Description method
	4.1.3 Expressions and operators
	4.1.4 Arithmetic operators
	+
	-
	*
	/
	MOD
	+sign
	-sign

	4.1.5 Logic operators
	NOT
	AND
	OR
	XOR

	4.1.6 Relational operators
	EQ (=)
	NE (<>)
	GT (>)
	GE (>=)
	LT (<)
	LE (<=)

	4.1.7 Shift operators
	SHR
	SHL

	4.1.8 Byte separation operators
	HIGH
	LOW

	4.1.9 Word separation operators
	HIGHW
	LOWW

	4.1.10 Special operators
	DATAPOS
	BITPOS
	MASK

	4.1.11 Other operator
	()

	4.1.12 Restrictions on operations
	4.1.13 Absolute expression definitions
	4.1.14 Bit position specifier
	4.1.15 Identifiers
	4.1.16 Operand characteristics

	4.2 Directives
	4.2.1 Overview
	4.2.2 Segment definition directives
	CSEG
	DSEG
	BSEG
	ORG

	4.2.3 Symbol definition directives
	EQU
	SET

	4.2.4 Memory initialization, area reservation directives
	DB
	DW
	DG
	DS
	DBIT

	4.2.5 Linkage directives
	EXTRN
	EXTBIT
	PUBLIC

	4.2.6 Object module name declaration directive
	NAME

	4.2.7 Branch instruction automatic selection directives
	BR
	CALL

	4.2.8 Macro directives
	MACRO
	LOCAL
	REPT
	IRP
	EXITM
	ENDM

	4.2.9 Assemble termination directive
	END

	4.3 Control Instructions
	4.3.1 Overview
	4.3.2 Assemble target type specification control instruction
	PROCESSOR

	4.3.3 Debug information output control instructions
	DEBUG
	NODEBUG
	DEBUGA
	NODEBUGA

	4.3.4 Cross-reference list output specification control instructions
	XREF
	NOXREF
	SYMLIST
	NOSYMLIST

	4.3.5 Include control instruction
	INCLUDE

	4.3.6 Assembly list control instructions
	EJECT
	LIST
	NOLIST
	GEN
	NOGEN
	COND
	NOCOND
	TITLE
	SUBTITLE
	FORMFEED
	NOFORMFEED
	WIDTH
	LENGTH
	TAB

	4.3.7 Conditional assembly control instructions
	IF
	_IF
	ELSEIF
	_ELSEIF
	ELSE
	ENDIF
	SET
	RESET

	4.3.8 Kanji code control instruction
	KANJICODE

	4.3.9 RAM area allocation-specification control instruction
	RAM_ALLOCATE

	4.3.10 Other control instructions

	4.4 Macros
	4.4.1 Overview
	4.4.2 Using macros
	4.4.3 Symbols in macros
	4.4.4 Macro operators

	4.5 Reserved Words
	4.6 Instructions
	4.6.1 Differences from 78K0 microcontrollers (for assembler users)
	4.6.2 Memory space
	4.6.3 Registers
	4.6.4 Addressing
	4.6.5 Instruction set
	4.6.6 Explanation of instructions
	(1) 8-bit data transmission instructions
	MOV
	XCH
	ONEB
	CLRB
	MOVS

	(2) 16-bit data transmission instructions
	MOVW
	XCHW
	ONEW
	CLRW

	(3) 8-bit operation instructions
	ADD
	ADDC
	SUB
	SUBC
	AND
	OR
	XOR
	CMP
	CMP0
	CMPS

	(4) 16-bit operation instructions
	ADDW
	SUBW
	CMPW

	(5) Multiply/Divide/Multiply & Accumulate instructions
	MULU
	MULHU
	MULH
	DIVHU
	DIVWU
	MACHU
	MACH

	(6) Increment/decrement instructions
	INC
	DEC
	INCW
	DECW

	(7) Shift instructions
	SHR
	SHRW
	SHL
	SHLW
	SAR
	SARW

	(8) Rotate instructions
	ROR
	ROL
	RORC
	ROLC
	ROLWC

	(9) Bit manipulation instructions
	MOV1
	AND1
	OR1
	XOR1
	SET1
	CLR1
	NOT1

	(10) Call return instructions
	CALL
	CALLT
	BRK
	RET
	RETI
	RETB

	(11) Stack manipulation instructions
	PUSH
	POP
	MOVW
	ADDW
	SUBW

	(12) Unconditional branch instruction
	BR

	(13) Conditional branch instructions
	BC
	BNC
	BZ
	BNZ
	BH
	BNH
	BT
	BF
	BTCLR

	(14) Conditional skip instructions
	SKC
	SKNC
	SKZ
	SKNZ
	SKH
	SKNH

	(15) CPU control instructions
	SEL
	NOP
	EI
	DI
	HALT
	STOP

	4.6.7 Pipeline

	CHAPTER 5 LINK DIRECTIVE SPECIFICATIONS
	5.1 Coding Method
	5.1.1 Link directives

	5.2 Reserved Words
	5.3 Coding Examples
	5.3.1 When specifying link directive
	5.3.2 When using the compiler

	CHAPTER 6 FUNCTION SPECIFICATIONS
	6.1 Distribution Libraries
	6.1.1 Standard library
	6.1.2 Runtime library

	6.2 Interface Between Functions
	6.2.1 Arguments
	6.2.2 Return values
	6.2.3 Saving registers used by separate libraries

	6.3 Header Files
	6.3.1 ctype.h
	6.3.2 setjmp.h
	6.3.3 stdarg.h
	6.3.4 stdio.h
	6.3.5 stdlib.h
	6.3.6 string.h
	6.3.7 error.h
	6.3.8 errno.h
	6.3.9 limits.h
	6.3.10 stddef.h
	6.3.11 math.h
	6.3.12 float.h
	6.3.13 assert.h

	6.4 Re-entrant
	6.5 Use of Arguments/Return Values Suitable for Standard Library
	6.6 Character/String Functions
	isalpha
	isupper
	islower
	isdigit
	isalnum
	isxdigit
	isspace
	ispunct
	isprint
	isgraph
	iscntrl
	isascii
	toupper
	tolower
	toascii
	_toupper
	toup
	_tolower
	tolow

	6.7 Program Control Functions
	setjmp
	longjmp

	6.8 Special Functions
	va_start
	va_starttop
	va_arg
	va_end

	6.9 Input and Output Functions
	sprintf
	sscanf
	printf
	scanf
	vprintf
	vsprintf
	getchar
	gets
	putchar
	puts
	__putc

	6.10 Utility Functions
	atoi
	atol
	strtol
	strtoul
	calloc
	free
	malloc
	realloc
	abort
	atexit
	exit
	abs
	labs
	div
	ldiv
	brk
	sbrk
	atof
	strtod
	itoa
	ltoa
	ultoa
	rand
	srand
	bsearch
	qsort
	strbrk
	strsbrk
	stritoa
	strltoa
	strultoa

	6.11 String and Memory Functions
	memcpy
	memmove
	strcpy
	strncpy
	strcat
	strncat
	memcmp
	strcmp
	strncmp
	memchr
	strchr
	strrchr
	strspn
	strcspn
	strpbrk
	strstr
	strtok
	memset
	strerror
	strlen
	strcoll
	strxfrm

	6.12 Mathematical Functions
	acos
	asin
	atan
	atan2
	cos
	sin
	tan
	cosh
	sinh
	tanh
	exp
	frexp
	ldexp
	log
	log10
	modf
	pow
	sqrt
	ceil
	fabs
	floor
	fmod
	matherr
	acosf
	asinf
	atanf
	atan2f
	cosf
	sinf
	tanf
	coshf
	sinhf
	tanhf
	expf
	frexpf
	ldexpf
	logf
	log10f
	modff
	powf
	sqrtf
	ceilf
	fabsf
	floorf
	fmodf

	6.13 Diagnostic Function
	__assertfail

	6.14 Library Stack Consumption List
	6.14.1 Standard libraries
	6.14.2 Runtime libraries

	6.15 List of Maximum Interrupt Disabled Times for Libraries
	6.16 Batch Files for Update of Startup Routine and Library Functions
	6.16.1 Using batch files

	CHAPTER 7 STARTUP
	7.1 Function Overview
	7.2 File Organization
	7.2.1 "bat" folder contents
	7.2.2 "lib" folder contents
	7.2.3 "src" folder contents

	7.3 Batch File Description
	7.3.1 Batch files for creating startup routines

	7.4 Startup Routines
	7.4.1 Overview of startup routines
	7.4.2 Startup routine preprocessing
	7.4.3 Startup routine initial settings
	7.4.4 Startup routine main function startup and postprocessing

	7.5 ROMization Processing in Startup Routine for Flash Area
	7.6 Coding Examples
	7.6.1 When revising startup routine
	7.6.2 When using RTOS

	CHAPTER 8 ROMIZATION
	CHAPTER 9 REFERENCING COMPILER AND ASSEMBLER
	9.1 Accessing Arguments and Automatic Variables
	9.2 Storing Return Values
	9.3 Calling Assembly Language Routines from C Language
	9.3.1 C language function calling procedure
	9.3.2 Saving data from assembly language routine and returning

	9.4 Calling C Language Routines from Assembly Language
	9.4.1 Calling C language function from assembly language program

	9.5 Referencing Variables Defined in C Language
	9.6 Referencing Variables Definted in Assembly Language from C Language
	9.7 Points of Caution for Calling Between C Language Functions and Assembler Functions

	CHAPTER 10 CAUTIONS
	APPENDIX A ROMIZATION PROCESSOR
	A.1 Overview
	A.2 Procedure for Creating ROMization Load Module

	APPENDIX B EDITOR
	Editor panel

	APPENDIX C INDEX

