
All information contained in these materials, including products and product specifications,

represents information on the product at the time of publication and is subject to change by

Renesas Electronics Corp. without notice. Please review the latest information published by

Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.

website (http://www.renesas.com).

Rev.1.00 Apr 2016

U
s
e

r's
 M

a
n

u
a

l

www.renesas.com

CcnvNC30
C Source Converter

User's Manual

Target Device

RL78 Family

Target Version

V1.00.00 or later

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you
or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of
third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No
license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of
Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration,
modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The
recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.
“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual

equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-

crime systems; and safety equipment etc.
Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property
damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas
Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any
application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred
by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas
Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas
Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and
malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation
of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by
you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility
of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and
regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.
Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws
and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use
Renesas Electronics products or technology described in this document for any purpose relating to military applications or use
by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas
Electronics products or technology described in this document, you should comply with the applicable export control laws and
regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise
places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this
document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of
unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document
or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(2012.4)

How to Use This Manual

This manual describes the C source converter (CcnvNC30) used for developing application systems for the RL78

family.

Readers This manual is intended for users who wish to use the CC-RL, which is a C
compiler for the RL78 family, to develop application systems.

Purpose This manual is intended to be used for reference in porting of the

development environment of the NC30, which is a C compiler for M16C

Series and R8C Family, to the CC-RL.

Organization This manual can be broadly divided into the following units.

1. GENERAL

2. COMMAND REFERENCE

3. CONVERSION SPECIFICATIONS

4. MESSAGES

5. POINTS FOR CAUTION

How to Read This Manual It is assumed that the readers of this manual have general knowledge of
electricity, logic circuits, and microcontrollers.

Data significance: Higher digits on the left and lower digits on the right

Note: Footnote for item marked with Note in the text

Caution: Information requiring particular attention

Remarks: Supplementary information

Numeric representation: Decimal ... XXXX

Hexadecimal ... 0xXXXX

Please refer to the following manuals about NC30 and CC-RL. Make sure to refer to the latest versions of these

documents. The newest versions of the documents listed may be obtained from the Renesas Electronics Web site.

Compiler Document Title Document No.

NC30 M3T-NC30WA V.6.00 C/C++ Compiler User's Manual

(C/C++ Compiler Package for M16C Series and R8C Family)

REJ10J2188-0100

CC-RL CC-RL Compiler User's Manual R20UT3123EJ0102

All trademarks or registered trademarks in this document are the property of their respective owners.

TABLE OF CONTENTS

1. GENERAL.. 5

2. COMMAND REFERENCE .. 6

2.1 Overview .. 6

2.2 I/O Files .. 7

2.3 Conversion Result ... 9

2.4 Method for Manipulating .. 11

2.5 Options .. 12

3. CONVERSION SPECIFICATIONS ... 22

3.1 Macro Names .. 23

3.2 Reserved Words .. 25

3.3 Default Parameters .. 26

3.4 Concatenation of Wide String and Character Constant .. 27

3.5 #pragma SPECIAL ... 28

3.6 #pragma SECTION... 29

3.7 ASM Statements ... 31

3.8 Interrupt Handler .. 34

3.9 Absolute Address Allocation Specification .. 35

3.10 Intrinsic Functions .. 36

3.11 Other #pragma Directives ... 37

3.12 Standard Library Functions .. 38

3.13 Difference from Conversion Specifications of -convert_cc Option of CC-RL ... 39

4. MESSAGES .. 40

4.1 Message Formats .. 40

4.2 Message Types .. 41

4.3 Information Types .. 41

4.4 Messages ... 41

4.4.1 Internal Errors .. 41

4.4.2 Fatal Errors .. 42

4.4.3 Warnings .. 43

4.4.4 Information .. 43

5. POINTS FOR CAUTION ... 45

Revision Record ... C-1

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 5 of 50

Apr 01, 2016

1. GENERAL

The CcnvNC30 is a C source converter that converts C source files created in a development environment using the

NC30 which is a C compiler for the M16C series and R8C family microcontrollers into C source files that can be

handled by the CC-RL which is a C compiler for the RL78 family microcontrollers. The extended functions for the

NC30 written in C source files are converted so that they can be handled by the CC-RL.

The CC-RL has the -convert_cc option which internally converts extended functions of the NC30 in C source files

into those of the CC-RL. The -convert_cc option of the CC-RL is useful when the files to be converted are the

target of maintenance and so the future changes are to be made on a small scale or when evaluating how porting of

code affects performance.

Use the CcnvNC30 in cases where C source code needs to be modified manually on a massive scale if the

-convert_cc option of the CC-RL is used or where C source files for the CC-RL are required because there will be

new features to be added.

CcnvNC30 supports the porting of C source files from the NC30 compiler to CC-RL.

Since we do not guarantee the correct operation of programs converted by CcnvNC30, be sure to check the

operation of the C source files after conversion.

Figure 1.1 Comparison between CcnvNC30 and -convert_cc (CC-RL Option)

When using CcnvNC30

CcnvNC30 CC-RL

When using the -convert_cc option

CC-RL

C source file and C header file

for NC30

(source files before conversion)
Load module file

C source file and C header file

for CC-RL

(source files after conversion)

C source file and C header file

for NC30 Load module file

Conversion of C source files Compilation

Compilation with the -convert_cc option

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 6 of 50

Apr 01, 2016

2. COMMAND REFERENCE

This section describes the processing flow in the CcnvNC30.

2.1 Overview

The CcnvNC30 converts extended language specifications (such as macro names, reserved words, #pragma

directives, and extended functions) in C source programs for the NC30 into extended language specifications for

the CC-RL. Then the CcnvNC30 generates C source files for the CC-RL.

Figure 2.1 Processing Flow in CcnvNC30

C source file and

C header file

for NC30

(source files before conversion)

or

List file

(file containing all input/output file names)

CcnvNC30

C source file and

C header file for CC-RL

(source files after conversion)

Conversion result file

(information regarding the

conversion process)

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 7 of 50

Apr 01, 2016

2.2 I/O Files

The I/O files of the CcnvNC30 are shown below.

Table 2.1 I/O Files

File Type I/O Extension Description

C source file

Header file

I/O (Input)

.c

.h

(Output)

free

A C source file or C header file for the NC30 is input and the

converted C source file or C header file for the CC-RL is output.

The version information of the CcnvNC30 is inserted at the

beginning of the converted file as a comment and the former

description of the converted code is left as a comment.

The extension of the input file is fixed. If a file with another

extension is specified, the input file is directly output without its

contents being converted.

The converted file can be specified with the -o option or -l option.

If a converted file is re-input, the file is directly output without

being converted, and the fact that the file was already converted is

notified.

List file I free Text file which includes the input file names and output file

names.

Specifying the list file with the -l option enables multiple source

files to be converted collectively. For the format of the list file,

see "-l option".

Conversion result file O free Messages in the conversion result that is output to the standard

output file can be output to a file specified by the -r option.

For details on the messages, see "MESSAGES".

Examples of an input file and an output file are shown below. For details on conversion specifications, see

"CONVERSION SPECIFICATIONS".

(Input file: input.c)

#pragma ADDRESS p0 00E0H /* Port P0 register */

char c;

void main(void)

{

 c = p0;

}

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 8 of 50

Apr 01, 2016

(Output file: output.c)

/* NC30 C Source Converter Vx.xx.xx.xx [dd Mmm yyyy] */

/***

 DISCLAIMER

 This software is supplied by Renesas Electronics Corporation and is only

 intended for use with Renesas products. No other uses are authorized. This

 software is owned by Renesas Electronics Corporation and is protected under

 all applicable laws, including copyright laws.

 THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES REGARDING

 THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT

 LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE

 AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY DISCLAIMED.

 TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS

 ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE

 FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES FOR

 ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS AFFILIATES HAVE

 BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

 Renesas reserves the right, without notice, to make changes to this software

 and to discontinue the availability of this software. By using this software,

 you agree to the additional terms and conditions found by accessing the

 following link:

 http://www.renesas.com/disclaimer

 Copyright (C) yyyy Renesas Electronics Corporation. All rights reserved.

**/

//[CcnvNC30] #pragma ADDRESS p0 00E0H /* Port P0 register */

#pragma address p0=0x00E0

char c;

void main(void)

{

 c = p0;

}

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 9 of 50

Apr 01, 2016

2.3 Conversion Result

The CcnvNC30 outputs the conversion result to the standard output. The output format is as follows.

Message

Input file name

Result

Number of messages

When the -l option is specified, the above output is repeated for the number of files in the list file.

"Message" is output when there is an error or warning. For the output format of a message, see "MESSAGES".

When the -r option is specified, the message is output not to the standard output file but to the specified file.

"Input file name" is the input file specified on the command line or in the list file.

"Result" displays any one of the following.

・ When there is converted code

Converted successfully.

・ When there is no converted code

Nothing converted.

・ When a converted file is re-input to CcnvNC30

Already converted.

・ When an error has occurred

Conversion failed.

"Number of messages" indicates how many messages were output by message type.

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 10 of 50

Apr 01, 2016

An example of the conversion result is shown below.

(Input file: input.c)

#pragma ADDRESS p0 00E0H /* Port P0 register */

char c;

void main(void)

{

 c = p0;

}

(Standard output)

NC30 C Source Converter Vx.xx.xx.xx [dd Mmm yyyy]

input.c(1):M0593113:[Change]#pragma address has been changed to syntax of CC-RL.

input.c(1):M0593146:[Info]The language specification dependent on R8C or M16C.

input.c

 Converted successfully.

 0 deleted, 0 inserted, 1 changed, 1 information

 Total warning(s) ： 0

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 11 of 50

Apr 01, 2016

2.4 Method for Manipulating

Input on the command line should be made as follows.

CcnvNC30[option]…[file] [option]…

file : File name

option : Option name

[] : Can be omitted

… : Pattern in proceeding [] can be repeated

{ } : Select from items delimited by the pipe symbol ("|")

 : One or more spaces

・ Any file names supported by Windows are allowed as input file names or file names to be specified for

options.

・ Input file names and file names to be specified for options can also be specified with an absolute path or

relative path. When specifying an input file name or a file name to be specified for an option without the

path or with a relative path, the reference point of the path is the current folder.

・ When a space is included in an input file name or a file name to be specified for an option (including the path

name), enclose the file name including the path name in a pair of double quotation marks (").

・ The maximum length of an input file name or a file name to be specified for an option depends on Windows

(up to 259 characters).

・ An error will occur when more than one input file name is specified. Use the -l option to specify multiple

input file names.

・ When an input file is specified, it is certainly necessary to specify an output file name. When an input file

has been specified on the command line, use the -o option to specify the output file.

・ An error will occur if the same option is specified for more than once.

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 12 of 50

Apr 01, 2016

2.5 Options

This section explains CcnvNC30 options.

・ Uppercase characters and lowercase characters are distinguished for options.

・ When a file name is specified as a parameter, it can include the path (absolute path or relative path). When a

file name without the path or a relative path is specified, the reference point of the path is the current folder.

・ When a parameter includes a space (such as a path name), enclose the parameter in a pair of double

quotation marks (").

Table 2.2 Options

Option Description

-V This option displays the version information of CcnvNC30.

-h This option displays the descriptions of CcnvNC30 options.

-c This option specifies the Japanese character code.

-l This option specifies the list file name.

-o This option specifies the output file name.

-r This option specifies where the message is to be output.

-A This option performs conversion with the functions related to the ANSI standard enabled.

-R8C This option performs conversion with C source files regarded as those for the R8C.

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 13 of 50

Apr 01, 2016

-V

This option displays the version information of CcnvNC30.

[Specification format]

-V

・Interpretation when omitted

The version information of CcnvNC30 is not displayed.

[Detailed description]

・ This option outputs the version information of CcnvNC30 to the standard error output.

・ Conversion is not performed when this option is specified.

・ When this option is specified simultaneously with another option, the other option is ignored.

[Example of use]

>CcnvNC30 -V

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 14 of 50

Apr 01, 2016

-h

This option displays the descriptions of CcnvNC30 options.

[Specification format]

-h

・Interpretation when omitted

The descriptions of CcnvNC30 options are not displayed.

[Detailed description]

・ This option outputs the descriptions of CcnvNC30 options to the standard error output.

・ Conversion is not performed when this option is specified.

・ When this option is specified simultaneously with another option, the other option is ignored.

・ When this option is specified simultaneously with the -V option, the -V option is given priority.

[Example of use]

>CcnvNC30 -h

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 15 of 50

Apr 01, 2016

-c

This option specifies the Japanese character code.

[Specification format]

-c={sjis｜euc_jp}

・Interpretation when omitted

sjis is assumed as the parameter for this option.

[Detailed description]

・ This option specifies the character code to be used for comments in the input file.

・ An error will occur if the parameter is omitted.

・ The parameters that can be specified are shown below. A warning is output and sjis is assumed if any other

item is specified. Operation is not guaranteed if the specified character code differs from the character code

of the input file.

sjis SJIS

euc_jp EUC (Japanese)

[Example of use]

>CcnvNC30 input.c -c=euc_jp -o=output.c

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 16 of 50

Apr 01, 2016

-l

This option specifies the list file name.

[Specification format]

-l=file

・Interpretation when omitted

The file specified on the command line is converted.

[Detailed description]

・ This option is to be specified when simultaneously converting multiple files.

・ An error will occur if the specified list file does not exist.

・ When this option is specified, a warning is output for the file name specified on the command line and it is

ignored.

・ When this option is specified simultaneously with the -o option, a warning is output and the -o option is

ignored.

・ An error will occur if the parameter is omitted.

・ The format of the list file is as follows.

[-c={sjis｜euc_jp}] [-A] input-file-name output-file-name

[-c={sjis｜euc_jp}] [-A] input-file-name output-file-name

(Omitted from here)

[] : Can be omitted

{ } : Select from items delimited by the pipe symbol ("|")

- The -c option, -A option, input file name, and output file name are to be specified in this order in one

line.

- The -c option and -A option can be omitted. The input and output file names cannot be omitted.

- The input and output file names that can be written are the same as those specifiable on the command

line.

- When a space is included in a file name, enclose the file name in a pair of double quotation marks (").

- If the -c option specification on the command line differs from that in the list file, a warning is output

and the list file specification is given priority.

- If the output file already exists, it will be overwritten and no warning is output.

- An error will occur if the output file name matches the input file name or the file name specified by the

-r option.

- For the list file, only UTF-8N (without BOM) is acceptable for the Japanese character code and only

CR+LF is acceptable for the new line code.

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 17 of 50

Apr 01, 2016

[Example of use]

>CcnvNC30 -l=listfile.txt

 Contents of list file (listfile.txt)

-c=sjis input\file1.c output\file1.c

-c=sjis input\file2.c output\file2.c

-c=sjis input\file.h output\file.h

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 18 of 50

Apr 01, 2016

-o

This option specifies the output file name.

[Specification format]

-o=file

・Interpretation when omitted

This option cannot be omitted except for when the -V, -h, or -l option is specified. An error will occur if this

option is omitted.

[Detailed description]

・ This option specifies the output file name after conversion.

・ If the specified file already exists, it will be overwritten and no warning is output.

・ An error will occur if the output file name matches the input file name or the file name specified by the -r

option.

・ When this option is specified simultaneously with the -l option, a warning is output and this -o option is

ignored.

・ An error will occur if the parameter is omitted.

[Example of use]

>CcnvNC30 input.c -o=output.c

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 19 of 50

Apr 01, 2016

-r

This option outputs messages to the specified file.

[Specification format]

-r=file

・Interpretation when omitted

Messages are output to the standard output file.

[Detailed description]

・ This option outputs messages to the specified file.

・ If the specified file already exists, it will be overwritten and no warning is output.

・ An error will occur if the specified file name matches the input or output file name of the C source file or C

header file.

・ An error will occur if the parameter is omitted.

[Example of use]

>CcnvNC30 input.c -o=output.c -r=input.txt

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 20 of 50

Apr 01, 2016

-A

This option performs conversion with the -fansi option (which is an ANSI-compliant option of NC30) enabled.

[Specification format]

-A

・Interpretation when omitted

Conversion is performed with the -fansi option disabled.

[Detailed description]

・ When this option is specified, the following words are not regarded as keywords and they will not be

converted.

far, near, inline, asm

・ Specify this option if the -fansi option is used in the NC30 development environment before conversion.

[Example of use]

>CcnvNC30 input.c -o=output.c -A

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 21 of 50

Apr 01, 2016

-R8C

This option performs conversion with C source files regarded as those for the R8C.

[Specification format]

-A

・Interpretation when omitted

Conversion is performed with C source files regarded as those for the M16C.

[Detailed description]

・ When this option is specified, the _far or far keyword is handled as the _near or near keyword.

・ When this option is specified, #pragma SPECIAL is disabled, a message is output and #pragma SPECIAL

is deleted.

・ Specify this option in accordance with the NC30 development environment before conversion.

[Example of use]

>CcnvNC30 input.c -o=output.c -R8C

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 22 of 50

Apr 01, 2016

3. CONVERSION SPECIFICATIONS

This section shows the conversion specifications of the CcnvNC30.

・ Correct operation is not guaranteed when a C source program that is syntactically incorrect for the NC30 is

input.

・ The contents included in comments, strings, and character constants are not converted.

・ Nesting of comments is not supported. A nested comment text is not recognized normally and the range of

the comment is invalid. Confirm that there are no nested comments before conversion.

・ When a keyword that is supposed to be converted cannot be found as a keyword due to some reasons, such

as it being generated by a ## operator, the keyword cannot be converted. If the C source program is directly

compiled by the CC-RL, a compile error will occur. Confirm that there is no #define, typedef, or ##

operator for a keyword to be converted.

・ Code that is dependent on the device should be manually modified after conversion.

・ Included files in a C source program are not converted. They have to be converted separately.

The following extended language specifications are converted.

- Macro Names

- Reserved Words

- Default Parameters

- Concatenation of Wide String and Character Constant

- #pragma SPECIAL

- #pragma SECTION

- ASM Statements

- Interrupt Handler

- Absolute Address Allocation Specification

- Intrinsic Functions

- Other #pragma Directives

- Standard Library Functions

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 23 of 50

Apr 01, 2016

3.1 Macro Names

The macros supported in the NC30 are converted as follows. If there is no corresponding macro in the CC-RL, the

CcnvNC30 outputs a message. Standard library macros that are supported only by the NC30 are not converted and

no message is output. They are handled as user-defined macros in the CC-RL.

Table 3.1 Conversion of Macro Names

NC30

Macro Name

After Conversion Remarks

__LINE__ Not converted Can be used in the CC-RL without any change.

__FILE__ Not converted Can be used in the CC-RL without any change.

__DATE__ Not converted Can be used in the CC-RL without any change.

__TIME__ Not converted Can be used in the CC-RL without any change.

__STDC__ Not converted Can be used in the CC-RL without any change.

NC30 Not converted A message is output.

Handled as a user-defined macro in the CC-RL.

M16C Not converted A message is output.

Handled as a user-defined macro in the CC-RL.

__R8C__ Not converted A message is output.

Handled as a user-defined macro in the CC-RL.

__cplusplus Not converted A message is output.

Handled as a user-defined macro in the CC-RL.

MB_LEN_MAX Not converted <limits.h>

A message is not output.

Handled as a user-defined macro in the CC-RL.

LC_ALL

LC_COLLATE

LC_CTYPE

LC_MONETARY

LC_NUMERIC

LC_TIME

Not converted <locale.h>

A message is not output.

Handled as a user-defined macro in the CC-RL.

SIGABRT

SIGFPE

SIGILL

SIGSEGV

SIG_DFL

SIG_ERR

SIG_IGN

Not converted <signal.h>

A message is not output.

Handled as a user-defined macro in the CC-RL.

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 24 of 50

Apr 01, 2016

NC30

Macro Name

After Conversion Remarks

_IOFBF

_IOLBF

_IONBF

BUFSIZ

FILENAME_MAX

FOPEN_MAX

SEEK_CUR

SEEK_END

SEEK_SET

TMP_MAX

stderr

stdin

stdout

Not converted <stdio.h>

A message is not output.

Handled as a user-defined macro in the CC-RL.

MB_CUR_MAX Not converted <stdlib.h>

A message is not output.

Handled as a user-defined macro in the CC-RL.

CLOCKS_PER_SEC Not converted <time.h>

A message is not output.

Handled as a user-defined macro in the CC-RL.

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 25 of 50

Apr 01, 2016

3.2 Reserved Words

The conversion specifications for reserved words are shown here.

Table 3.2 Conversion of Reserved Words

NC30

Reserved Word

After Conversion Remarks

wchar_t Not converted "typedef unsigned short wchar_t" is output at the

beginning of a file. A message is output for wchar_t that

was written first.

_inline __inline

inline __inline Converted only when the -A option is invalid.

restrict Deleted

_ext4mptr Deleted

_near __near

near __near Converted only when the -A option is invalid.

_far __far (without -R8C)

__near (with -R8C)

far __far (without -R8C)

__near (with -R8C)

Converted only when the -A option is invalid.

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 26 of 50

Apr 01, 2016

3.3 Default Parameters

Though default values can be defined for parameters of functions in the NC30 (similar to as the C++ facility),

default parameters cannot be specified in the CC-RL. The CcnvNC30 does not convert default parameters and

outputs a message. However, default parameters cannot be recognized correctly if no storage-class specifier, type

specifier, or type qualifier could be detected when a typedef name is used as the type name at the function

declaration.

[Examples]

Pattern Example Remarks

Pattern 1 int func1(int a, char b=1); A message is output.

Pattern 2

(variable name is

omitted)

int func2(int, int=2); A message is output.

Pattern 3

(type specifier is

omitted)

int func3(unsigned a=3); A message is output.

Pattern 4

(structure)

struct S {int i;} s;

int func4(struct S param=s);

A message is output.

Pattern 5

(typedef is used)

typedef int INT16;

int func5(INT16 param=2);

Cannot be recognized as a default

parameter.

No message is output.

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 27 of 50

Apr 01, 2016

3.4 Concatenation of Wide String and Character Constant

When a character string literal (e.g. "abc") and a wide string literal (e.g. L"def") are next to each other, the

constants are handled differently between the NC30 and CC-RL. Also, a character constant of two or more

characters (e.g. 'ab') or an integer character constant for a wide character is handled differently between the NC30

and CC-RL. In these cases, the CcnvNC30 outputs a message but does not perform conversion so the code has to be

manually modified at the locations where a message was output.

・ When a character string literal is next to a wide string literal

<NC30>

They are concatenated without their types being changed to match each other.

L"abc""def" 00H 61H 00H 62H 00H 63H 64H 65H 66H 00H

"abc"L"def" 61H 62H 63H 00H 64H 00H 65H 00H 66H 00H 00H

<CC-RL>

When a character string literal and a wide string literal are concatenated, it is handled as a wide string.

L"abc""def" 00H 61H 00H 62H 00H 63H 00H 64H 00H 65H 00H 66H 00H 00H

"abc"L"def" 00H 61H 00H 62H 00H 63H 00H 64H 00H 65H 00H 66H 00H 00H

・ Character constant of two or more characters

The character constant does not have the same value.

 NC30 CC-RL

'ab' 0x61 0x6162

L'ab' 0x6162 0x0061

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 28 of 50

Apr 01, 2016

3.5 #pragma SPECIAL

The functions for calling special page subroutines are replaced with the callt function.

The format of the NC30 is as follows.

#pragma SPECIAL number function-name

or

#pragma SPECIAL function-name(vect=number)

The format of the CC-RL is as follows.

#pragma callt [(] function-name [, …] [)]

・ When the -R8C option is specified, #pragma SPECIAL is deleted.

・ Up to 32 callt functions can be specified. If there are more than 32 specifications of #pragma SPECIAL, a

compile error will occur after conversion.

[Examples]

Pattern 1

(without -R8C)

Before conversion #pragma SPECIAL 20 func

After conversion #pragma callt func

Pattern 2

(without -R8C)

Before conversion #pragma SPECIAL func(vect=20)

After conversion #pragma callt func

Pattern 3

(with -R8C)

Before conversion #pragma SPECIAL func(vect=20)

After conversion //[CcnvNC30] #pragma SPECIAL func(vect=20)

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 29 of 50

Apr 01, 2016

3.6 #pragma SECTION

#pragma SECTION requires the section name to be converted because the section names differ between the NC30

and CC-RL. However, some sections cannot be converted because there are no corresponding sections on the

CC-RL side. Though conversion is possible, some sections have slightly different facilities. The CcnvNC30 outputs

a message to the standard error output upon conversion of some sections. For details, see "Correspondence Table of

Section Names".

The format of the NC30 is as follows.

#pragma SECTION section-name changed-section-name

The format of the CC-RL is as follows.

#pragma section [{text｜const｜data｜bss}] [changed-section-name]

・ In #pragma section of the CC-RL, the section name is "changed section name + _n" or "changed section name

+ _f", and the section name for the saddr area is "changed section name + _s". For details, see the user's

manual of the CC-RL.

・ If conversion is not possible because there is no corresponding section in the CC-RL, the CcnvNC30 outputs

a message and does not perform conversion. Then the CC-RL outputs a message and ignores the #pragma

directive. Modify the C source program in accordance with the Correspondence Table of Section Names

described later.

[Examples]

Pattern 1

(Replaced successfully)

Before

conversion

#pragma SECTION rom MY_DATA

After

conversion

#pragma section const MY_DATA

Pattern 2

(Replacement is not possible)

Before

conversion

#pragma SECTION interrupt MY_CODE

After

conversion

#pragma section interrupt MY_CODE

Corrective

action

Since there is no corresponding section in the CC-RL, the

program is output without being converted.

Correct the program according to the Correspondence Table

of Section Names.

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 30 of 50

Apr 01, 2016

Table 3.3 Correspondence Table of Section Names

NC30

Section Name

Description CC-RL

Section Type

CcnvNC30 Operation

Corrective Action after Conversion

program Segment for code portion text The section is changed to the corresponding

section type.

No action is required.

The section name in the CC-RL is "changed

section name + _n" or "changed section name +

_f".

data Segment for data area

(initialized)

data Conversion is not performed.

The section name in the CC-RL is "changed

section name + _n" or "changed section name +

_f".

Specify the section for mapping ROM to RAM

with the link option -ROm.

bss Segment for data area

(uninitialized)

bss Conversion is not performed.

No action is required.

The section name in the CC-RL is "changed

section name + _n" or "changed section name +

_f".

rom Segment for ROM data const The section is changed to the corresponding

section type.

No action is required.

The section name in the CC-RL is "changed

section name + _n" or "changed section name +

_f".

interrupt Segment for compatibility None Conversion is not performed.

Delete #pragma.

The section name cannot be changed in the

CC-RL.

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 31 of 50

Apr 01, 2016

3.7 ASM Statements

The _asm() or asm() function or #pragma asm-#pragma endasm is used to write assembly-language code within

functions in the NC30, whereas inline expansion is performed for the assembly-language functions declared in

#pragma inline_asm in the CC-RL. The CcnvNC30 creates the inline_asm function that executes assembly

instructions in the _asm() or asm() function or the range between #pragma asm and #pragma endasm at the

beginning of the file and converts the program so that this function is called at the position where an assembly

instruction is written.

The format of the NC30 is as follows.

#pragma asm

 : /* assembly-language code */

#pragma endasm

 or

_asm(/* comment */);

_asm("assembly-language code");

_asm("assembly-language code", parameter1);

_asm("assembly-language code", parameter1, parameter2);

The format of the CC-RL is as follows.

#pragma inline_asm [(] function-name [, …] [)]

function-declaration {

 : /* assembly-language code */

}

・ Since the instruction set or specifications of instructions are different between the RL78 and R8C or M16C,

the assembly-language code has to be manually modified. A message is output at conversion.

・ A tab is appended as an indent to the assembly-language code within the inline_asm function.

・ The function name to be created should be in the range between __inline_asm_func_00000 and

__inline_asm_func_99999, and an error will occur if the number of functions exceeds 100,000.

・ The _asm() function is always converted. The asm() function, on the other hand, is converted only when

the -A option is not specified.

・ If a label is in the range between #pragma asm and #pragma endasm or in the _asm(asm) function, the

CcnvNC30 outputs a message. If a label is written in a function for which #pragma inline_asm is specified

in the CC-RL, an error will occur at compilation. Therefore, if a label is in #pragma asm#pragma endasm

or the _asm(asm) function, the CcnvNC30 outputs a message. A label written in the assembly language

needs to be changed to a local label to avoid a compile error. For details, see the user's manual of the

CC-RL.

・ If double quotation marks (") are included in the target to be converted by the #define macro as shown in

the example below, the inline_asm function cannot be generated from the _asm() function. In such a case,

the CcnvNC30 outputs a message. The input file is directly output without its contents being converted.

Perform conversion after expanding the macro in advance.

Example) #define MAC "nop"

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 32 of 50

Apr 01, 2016

 _asm(MAC);

・ If control characters like '\n' or '\t' are included in a string in _asm() or asm(), an assembly error will occur

after conversion. Perform conversion after deleting the control characters in advance.

・ If a C-language comment ("/*") is included in the assembly-language comments (";") in the range between

#pragma asm and #pragma endasm, the range of the comment is invalid. Perform conversion after deleting

the comments in advance.

[Examples]

Pattern 1 Before

conversion

void func()

{

_asm("nop");

}

After

conversion

#pragma inline_asm __inline_asm_func_00000

static void __inline_asm_func_00000(void)

{

 nop

}

void func()

{

 __inline_asm_func_00000();

}

Pattern 2 Before

conversion

void func(void)

{

#pragma asm

 nop

#pragma endasm

}

After

conversion

#pragma inline_asm __inline_asm_func_00001

static void __inline_asm_func_00001(void)

{

 nop

}

void func()

{

 __inline_asm_func_00001();

}

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 33 of 50

Apr 01, 2016

Pattern 3 Before

conversion

#define ASM_NOP _asm("nop");

After

conversion

#pragma inline_asm __inline_asm_func_00002

static void __inline_asm_func_00002(void)

{

nop

}

#define ASM_NOP __inline_asm_func_00002();

Pattern 4

(Error after

conversion)

Before

conversion

void func()

{

_asm("\tnop");

}

After

conversion

#pragma inline_asm __inline_asm_func_00003

static void __inline_asm_func_00003(void)

{

 \tnop

}

void func()

{

 __inline_asm_func_00003();

}

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 34 of 50

Apr 01, 2016

3.8 Interrupt Handler

#pragma interrupt of the NC30 is converted into #pragma interrupt of the CC-RL.

The format of an interrupt function of the NC30 is as follows.

#pragma interrupt [/B | /E | /V] [interrupt-vector-number] function-name

or

#pragma interrupt [/B | /E] function-name [(vect=interrupt-vector-number)]

The format of an interrupt function of the CC-RL is as follows.

#pragma interrupt [(] function-name [([vect=address][,bank=register-bank][,enable={true|false}])][)]

function-declaration

・ "/B" is converted into "bank=RB1" and "/E" is converted into "enable=true". When "/B" and "/E" are

specified simultaneously, #pragma interrupt is deleted.

・ When "/V" is specified, #pragma interrupt is deleted.

・ When an interrupt vector number is specified, it is converted into "(vect=address)" and #include

"iodefine.h" is output separately. The value of an interrupt vector number of the NC30 directly becomes an

address of the CC-RL. However, a message is output because operation cannot be performed correctly

because the device is changed. The value should be manually modified.

・ Though #pragma interrupt can be written more than once for the same function in the NC30, this causes a

compile error to occur in the CC-RL. Duplicate #pragma directives should be manually deleted.

[Examples]

Pattern 1 Before conversion #pragma interrupt /V func

After conversion //[CcnvNC30] #pragma interrupt /V func

Pattern 2 Before conversion #pragma interrupt /B /E 10 func

After conversion //[CcnvNC30] #pragma interrupt /B /E func(vect=10)

Pattern 3 Before conversion #pragma interrupt /E 10 func

void func(void) { }

After conversion #pragma interrupt func(vect=10, enable=true)

void func(void) { }

Pattern 4 Before conversion #pragma interrupt /B func(vect=10)

void func(void) { }

After conversion #pragma interrupt func(vect=10, bank=RB1)

void func(void) { }

Pattern 5 Before conversion #pragma interrupt func

After conversion #pragma interrupt func

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 35 of 50

Apr 01, 2016

3.9 Absolute Address Allocation Specification

#pragma address of the NC30 is converted into #pragma address of the CC-RL.

The format of the NC30 is as follows.

#pragma address variable-name location-address

The location address can be written in binary, octal, decimal, or hexadecimal notation.

'B' or 'b', 'O' or 'o', and 'H' or 'h' are appended at the end of the number for a binary number, an octal

number, and a hexadecimal number, respectively.

An expression such as "variable address + offset" can be written for the location address.

The format of the CC-RL is as follows.

#pragma address variable-name = location-address

The location address can be written as a binary, octal, decimal, or hexadecimal number in C-language

notation. An expression cannot be written.

・ The location address is converted into C-language notation with the same radix as before conversion.

・ When an expression is written as the location address, a message is output and conversion is not performed.

・ Since the memory map is different between the RL78 and R8C or M16C, a message is output. The code

should be manually modified in accordance with the memory map of the RL78.

・ Access to an SFR needs to be reviewed because the device is different. The code should be manually

modified.

[Examples]

Pattern 1 Before conversion #pragma address i 01010101b

After conversion #pragma address i= 0b01010101

Pattern 2 Before conversion #pragma address i 002000O

After conversion #pragma address i=02000

Pattern 3 Before conversion #pragma address i 500

After conversion #pragma address i=500

Pattern 4 Before conversion #pragma address i 400h

After conversion #pragma address i=0x400

Pattern 5 Before conversion #pragma address i 0400H + _OFFSET

After conversion #pragma address i 0400H + _OFFSET

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 36 of 50

Apr 01, 2016

3.10 Intrinsic Functions

Since intrinsic functions of the NC30 do not match the functionality of those of the CC-RL, a message is output and

they are not converted into intrinsic functions of the CC-RL. They are handled as user-defined functions in the

CC-RL.

Table 3.4 Conversion of Intrinsic Functions

NC30

Intrinsic Function

Remarks

abs_b, abs_w, dadc_b, dadc_w, dadd_b, dadd_w,

div_b, div_w, divu_b, divu_w, divx_b, divx_w,

mod_b, mod_w, modu_b, modu_w, not_b, not_w,

neg_b, neg_w, dsbb_b, dsbb_w, movll, movlh,

movhl, movhh, rmpa_b, rmpa_w, smovf_b, smovf_w,

sha_b, sha_w, sha_l, shl_b, shl_w, shl_l,

smovb_b, smovb_w, sstr_b, sstr_w, rolc_b, rolc_w,

rorc_b, rorc_w, rot_b, rot_w

A message is output and conversion is not

performed.

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 37 of 50

Apr 01, 2016

3.11 Other #pragma Directives

Conversion specifications for other #pragma directives are shown here.

Table 3.5 Conversion of Other #pragma Directives

NC30

#pragma Directive

After conversion Remarks

#pragma rom Deleted Not supported in the CC-RL.

#pragma struct Deleted Not supported in the CC-RL.

#pragma ext4mptr Deleted Not supported in the CC-RL.

#pragma bitaddress Deleted Not supported in the CC-RL.

#pragma intcall Deleted Not supported in the CC-RL.

#pragma parameter Deleted Not supported in the CC-RL.

#pragma __asmmacro Deleted Not supported in the CC-RL.

#pragma jsra Deleted Not supported in the CC-RL.

#pragma jsrw Deleted Not supported in the CC-RL.

#pragma page Deleted Not supported in the CC-RL.

#pragma stacksize Deleted Not supported in the CC-RL.

#pragma istacksize Deleted Not supported in the CC-RL.

#pragma creg Deleted Not supported in the CC-RL.

#pragma sectaddress Deleted Not supported in the CC-RL.

#pragma entry Deleted Not supported in the CC-RL.

#pragma almhandler Deleted Not supported in the CC-RL.

#pragma inthandler Deleted Not supported in the CC-RL.

#pragma handler Deleted Not supported in the CC-RL.

#pragma cychandler Deleted Not supported in the CC-RL.

#pragma task Deleted Not supported in the CC-RL.

#pragma bit Deleted Not supported in the CC-RL.

#pragma sbda Deleted Not supported in the CC-RL.

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 38 of 50

Apr 01, 2016

3.12 Standard Library Functions

The NC30 has standard library functions that are not supported by the CC-RL. For any of these functions, the

CcnvNC30 does not output a message and does not perform conversion. They are handled as user-defined functions

by the CC-RL.

・ Do not use the CcnvNC30 to convert the header file of the standard libraries for the NC30 and make the

CC-RL handle the converted header file. Use the header file of the standard libraries for the CC-RL.

・ Since __near/__far is specified for the type of parameters or return values in standard libraries of the

CC-RL, the type of parameters or return values may not match after conversion. Manually modify the code

after confirming the user's manual of the CC-RL.

Table 3.6 Conversion of Standard Library Functions

Function Name of NC30 After

Conversion

Remarks

<locale.h>

setlocale, localeconv

Not converted Not supported in the CC-RL.

Handled as a user function in the CC-RL.

<signal.h>

signal, raise

Not converted Not supported in the CC-RL.

Handled as a user function in the CC-RL.

<stdio.h>

fflush, fprintf, fscanf,

vfprintf, vsprintf,

fgetc, fgets, fputc, fputs,

getc, putc, ungetc,

fread, fwrite,

clearerr, feof, ferror

Not converted Not supported in the CC-RL.

Handled as a user function in the CC-RL.

<stdlib.h>

exit, mblen,

mbtowc, wctomb,

mbstowcs, wcstombs

Not converted Not supported in the CC-RL.

Handled as a user function in the CC-RL.

<string.h>

strcoll, strxfrm

Not converted Not supported in the CC-RL.

Handled as a user function in the CC-RL.

bcopy, bzero, memicmp,

stricmp, strnicmp

Not converted Handled as a user function in the CC-RL.

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 39 of 50

Apr 01, 2016

3.13 Difference from Conversion Specifications of -convert_cc Option of CC-RL

The difference of extended functions whose operations vary when the CC-RL's option -convert_cc is used and

when conversion is performed by the CcnvNC30 is shown here.

Table 3.7 Different Operation from -convert_cc=nc30 Option of CC-RL

NC30

Extended Function

Operation when -convert_cc=nc30 Option is

Used

Conversion by CcnvNC30

#pragma interrupt When a description is in a different format

from that of the CC-RL, the #pragma directive

is deleted and a warning message is output.

The interrupt vector number needs to be

manually modified to that for the RL78.

Converted to the format of the CC-RL. Since

specifications of the interrupt vector differ

between devices, a message is output.

The interrupt vector number needs to be

manually modified to that for the RL78.

#pragma asm

 :

#pragma endasm

The #pragma directives are deleted and a

warning message is output.

#pragma inline_asm and a function definition

are output, and #pragma asm#pragma

endasm is converted into a newly generated

function call.

Since the instruction set is different between

the RL78 and R8C or M16C, a message is

output. The assembly-language code needs to

be manually modified to that for the RL78.

_asm(), asm() Recognized as a normal function call.

It needs to be manually modified to the

inline_asm function.

The assembly-language code needs to be

manually modified to that for the RL78.

#pragma inline_asm and a function definition

are output for each _asm() and asm().

Calls for _asm() and asm() are converted

into newly generated function calls.

Since the instruction set is different between

the RL78 and R8C or M16C, a message is

output. The assembly-language code needs to

be manually modified to that for the RL78.

NC30

M16C

__R8C__

The macro is enabled (a space is defined). Conversion is not performed and a message is

output.

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 40 of 50

Apr 01, 2016

4. MESSAGES

This section describes messages that are output by the CC-RL.

4.1 Message Formats

The output formats of messages are as follows.

 When the file name and line number are included

- Message number type is information

file-name (line-number):message-number:[information-type] message

 The information type is change, insertion, deletion, or information.

- Message number type is other than information

file-name (line-number):message-number:message

 When the file name and line number are not included

message-number:message

The message number is output as a consecutive string consisting of one alphabetic character, 0593, and a

three-digit number.

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 41 of 50

Apr 01, 2016

4.2 Message Types

The message types are classified as follows.

Table 4.1 Message Types

Message Type First Letter Description

Internal error C Processing is aborted.

The C source program is not output after conversion.

Fatal Error E Processing is aborted.

The C source program is not output after conversion.

Warning W Processing continues.

The C source program is output after conversion.

Information M Processing continues.

The C source program is output after conversion.

4.3 Information Types

When the message number type is information, the information types are classified as follows.

Table 4.2 Information Types

Information Type Description

Change Changes were made in the program so that it can be handled by the CC-RL.

Insert Additions were made in the program so that it can be handled by the CC-RL.

Delete Some descriptions were deleted because they are not necessary in the CC-RL.

Info Conversion may not be sufficient in some cases because of the difference between the

NC30 and CC-RL specifications.

Each case should be confirmed individually.

4.4 Messages

The messages output by the CcnvNC30 are as follows.

4.4.1 Internal Errors

Table 4.3 Internal Errors

Number Message Description

C0593nnn Internal error Please contact your vendor or your Renesas

Electronics overseas representative.

nnn is a three-digit decimal number.

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 42 of 50

Apr 01, 2016

4.4.2 Fatal Errors

Table 4.4 Fatal Errors

Number Message Description

E0593001 Multiple input files are not allowed. Only one input file can be specified.

Use the list file to specify multiple input

files.

E0593002 The option option cannot have an argument. An argument was specified for an option

that should not have arguments.

E0593003 The option option requires an argument. No argument was specified in an option that

requires arguments.

E0593004 The option option is specified more than once. Only one option can be specified at one

time.

E0593005 Requires an output file. The output file corresponding to the input

file was not specified.

E0593006 Failed to read an input file file. The folder name or file name may be

incorrect. If the next file is specified in the

list file, conversion of that file will start.

E0593007 Failed to write a result of conversion file file. The folder name may be incorrect.

E0593008 Failed to write an output file file. The folder name may be incorrect.

E0593009 Failed to read a list file file. The folder name may be incorrect.

E0593010 Syntax errors in list file file. The description of the list file is not correct.

E0593011 File name is corrupted. There are duplicate file names among the

input file, output file, and conversion result

output file.

E0593012 Invalid file name. Either the input file name specified on the

command line or an input or output file

name specified in the list file has exceeded

260 characters.

E0593013 Invalid argument for the option option. The argument specification is invalid or the

specified file name has exceeded 260

characters.

E0593101 Illegal syntax in string. Conversion could not be performed because

there was a syntax that is not allowed in the

NC30. Modify the input file.

E0593102 Can not add inline function for assembly. The number of inline functions for assembly

has exceeded the upper limit. Modify the

input file.

E0593103 Failed to delete a temporary file. Deletion of a temporary file has failed.

Delete the temporary file.

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 43 of 50

Apr 01, 2016

4.4.3 Warnings

Table 4.5 Warnings

Number Message Description

W0593051 Input file specified on the command line is

ignored when the "-l" option is specified.

When the list file is specified, an input file

cannot be specified on the command line at

the same time. The list file specified by the

"-l" option is converted and the input file is

ignored.

W0593052 The "-c" option specified on the command line is

ignored when it does not match the specification

in list file (file).

The "-c" option specification corresponding

to the input file "file" specified in the list

file differs between the list file and

command line. Conversion is performed in

accordance with the specification in the list

file.

W0593053 Invalid option option. An invalid option was specified.

Ignore the option.

W0593054 Invalid argument for the option option. The argument specified in the "option"

option is invalid.

If the argument of the "-c" option is invalid,

processing is performed with the default

specification.

W0593055 Requires an input file. The list file specified by the "-l" option is

missing an input file specification.

W0593151 String cannot be changed to syntax of CC-RL. string could not be changed to the CC-RL

format. Modify the input file.

4.4.4 Information

Table 4.6 Information

Number Information

Type

Message Description

M0593111 Change String1 was converted into

string2.

The token was converted.

M0593113 Change 'String' has been changed to

syntax of CC-RL.

Since the description format differs between

the NC30 and CC-RL, the description

format is changed to that of the CC-RL.

M0593123 Insert Inserted string. A description in accordance with the

CC-RL format was added.

M0593124 Insert Add inline function string for

assembly.

An inline function for assembly was

generated.

M0593131 Delete String was deleted. The description format is not available in

the CC-RL. The description was deleted.

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 44 of 50

Apr 01, 2016

Number Information

Type

Message Description

M0593142 Info The section can not be converted.

Because there is no matched

section.

The section could not be converted because

there is no corresponding section in the

CC-RL.

M0593144 Info The MACRO cannot be converted.

Because there is no matched

macro.

The macro could not be converted because

there is no corresponding macro in the

CC-RL.

M0593145 Info The label detected in the assembly

code. Please correct label to

appropriate content.

Only local labels can be written in an

assembly-language function in the CC-RL.

Modify the label to have suitable contents.

M0593146 Info The language specification is

dependent on R8C or M16C.

The code needs to be reviewed when the

device is changed from R8C or M16C to

RL78. The code should be manually

modified.

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 45 of 50

Apr 01, 2016

5. POINTS FOR CAUTION

If the C source program falls under any of the following items, it may not be possible for the CC-RL to correctly

compile the converted C source program.

Table 5.1 Points for caution

No. Item CcnvNC30 Operation CC-RL Operation in

Response to

Conversion Result

Reference

Destination

1 When there is nested

comment text

Conversion may not be

performed successfully.

The range of the

comment is invalid.

Macro Names

2 When a keyword cannot

be detected because a ##

operator is being used

No message is output

and conversion is not

performed.

Error E0520065 or

another error will

occur.

CONVERSION

SPECIFICATIONS

3 When a section name

that does not exist in the

CC-RL is specified for

the section name of

#pragma SECTION

No message is output

and conversion is not

performed.

Warning W0523037

is output and the

#pragma directive is

ignored. There is a

possibility that

section allocation will

fail and operation is

not as expected.

#pragma SECTION

4 When \n or \t is used in

a string in

_asm("string") or

asm("string")

A control character is

output without any

change.

Error E0550249 will

occur.

ASM Statements

5 When "/*" is included in

an assembly-language

comment (description

after ";") within the

range of #pragma asm 

#pragma endasm

The assembly-language

comment is output

without any change.

A C-language

comment ("/*") is

given priority over an

assembly-language

comment (";") and the

range of the comment

is invalid.

ASM Statements

6 When a label is included

in _asm(), asm(), or the

assembly-language code

within #pragma asm 

#pragma endasm

A message is output. Error E0550213 will

occur.

ASM Statements

[Restrictions] of

#pragma inline_asm

in the CC-RL user's

manual

7 When an ASM

statement is written

A message is output.

The statement is output

without change to the

#pragma inline_asm

function.

An assembly error

will occur because the

instruction set is

different.

ASM Statements

CcnvNC30

R20UT3685EJ0100 Rev.1.00 Page 46 of 50

Apr 01, 2016

No. Item CcnvNC30 Operation CC-RL Operation in

Response to

Conversion Result

Reference

Destination

8 When an interrupt

vector number is

specified in an interrupt

function

A message is output

and the interrupt vector

number is converted

into "(vect=address)".

Since the

specifications of

interrupts are

different between the

RL78 and R8C or

M16C, operation may

not be as expected.

Interrupt Handler

9 When #pragma address

is used

A message is output

and it is converted into

the format for the

CC-RL.

Since the memory

map is different

between the RL78

and R8C or M16C,

operation may not be

as expected.

Absolute Address

Allocation

Specification

C - 1

Revision Record

Rev. Date Description

Page Summary

1.00 Apr 01, 2016 － First Edition issued

CcnvNC30 C Source Converter User's Manual

Publication Date: Rev.1.00 Apr 01, 2016

Published by: Renesas Electronics Corporation

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2016 Renesas Electronics Corporation. All rights reserved.
Colophon 4.0

CcnvNC30

R20UT3685EJ0100

	1. GENERAL
	2. COMMAND REFERENCE
	2.1 Overview
	2.2 I/O Files
	2.3 Conversion Result
	2.4 Method for Manipulating
	2.5 Options

	3. CONVERSION SPECIFICATIONS
	3.1 Macro Names
	3.2 Reserved Words
	3.3 Default Parameters
	3.4 Concatenation of Wide String and Character Constant
	3.5 #pragma SPECIAL
	3.6 #pragma SECTION
	3.7 ASM Statements
	3.8 Interrupt Handler
	3.9 Absolute Address Allocation Specification
	3.10 Intrinsic Functions
	3.11 Other #pragma Directives
	3.12 Standard Library Functions
	3.13 Difference from Conversion Specifications of -convert_cc Option of CC-RL

	4. MESSAGES
	4.1 Message Formats
	4.2 Message Types
	4.3 Information Types
	4.4 Messages
	4.4.1 Internal Errors
	4.4.2 Fatal Errors
	4.4.3 Warnings
	4.4.4 Information

	5. POINTS FOR CAUTION
	Revision Record

