

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Note that the following URLs in this document are not available:
http://www.necel.com/
http://www2.renesas.com/

Please refer to the following instead:
Development Tools | http://www.renesas.com/tools
Download | http://www.renesas.com/tool_download

For any inquiries or feedback, please contact your region.
http://www.renesas.com/inquiry

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

User’s Manual

Target Devices

 78K0S Series

CC78K0S
C Compiler Ver. 1.50 or Later

Operation

Printed in Japan

Document No. U16654EJ1V0UM00 (1st edition)
Date Published June 2003 N CP(K)

©

User’s Manual U16654EJ1V0UM2

[MEMO]

User’s Manual U16654EJ1V0UM 3

MS-DOS, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation
in the United States and/or other countries.
PC/AT is a trademark of International Business Machines Corporation.
i386 is a trademark of Intel Corporation.
UNIX is a registered trademark licensed by X/Open Company Limited in the United States and/or other
countries.
SPARCstation is a trademark of SPARC International, Inc.
SunOS and Solaris are trademarks of Sun Microsystems, Inc.
HP9000 Series 700 and HP-UX are trademarks of Hewlett-Packard Company.

The information in this document is current as of March, 2003. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all
products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of
each NEC Electronics product before using it in a particular application.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

•

•

•

•

•

•

M8E 02. 11-1

(1)

(2)

"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).

Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.
Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).
Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

"Standard":

"Special":

"Specific":

User’s Manual U16654EJ1V0UM4

Regional Information

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

[GLOBAL SUPPORT]
 http://www.necel.com/en/support/support.html

NEC Electronics America, Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
 800-366-9782

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-558-3737

NEC Electronics Shanghai, Ltd.
Shanghai, P.R. China
Tel: 021-6841-1138

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 6253-8311

J03.4

NEC Electronics (Europe) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 01

• Sucursal en España
Madrid, Spain
Tel: 091-504 27 87

Vélizy-Villacoublay, France
Tel: 01-30-67 58 00

• Succursale Française

• Filiale Italiana
Milano, Italy
Tel: 02-66 75 41

• Branch The Netherlands
Eindhoven, The Netherlands
Tel: 040-244 58 45

• Tyskland Filial
Taeby, Sweden
Tel: 08-63 80 820

• United Kingdom Branch
Milton Keynes, UK
Tel: 01908-691-133

Some information contained in this document may vary from country to country. Before using any NEC
Electronics product in your application, pIease contact the NEC Electronics office in your country to
obtain a list of authorized representatives and distributors. They will verify:

User’s Manual U16654EJ1V0UM 5

INTRODUCTION

The purpose of this manual is to enable complete understanding of the functions and operation of the

CC78K0S (78K0S Series C Compiler).

This manual does not explain how to write CC78K0S source programs. Therefore, before reading this

manual, please read “CC78K0S C Compiler Language User’s Manual (U16655E)” (hereafter called the

“Language manual”).

[Target Devices]

Software for 78K0S Series microcontrollers can be developed by using the CC78K0S. To use this software,

the RA78K0S (78K0S Series Assembler Package) (sold separately) and the target model’s device file are

required.

[Target Readers]

This manual is written for users who have the knowledge gained from reading through the user’s manual for

the device once and have software programming experience. However, since knowledge about C compilers

and the C language is not particularly needed, first-time users of C compilers can use this manual.

[Organization]

The organization of this manual is described below.

CHAPTER 1 OVERVIEW

This chapter describes the role and position of the CC78K0S in microcontroller development.

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

This chapter describes how to install the CC78K0S, the file names of the supplied programs, and the

operating environment for programs.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

This chapter uses sample programs to describe how to run the CC78K0S and presents examples

showing the processes from compiling to linking.

CHAPTER 4 CC78K0S FUNCTIONS

This chapter describes optimization methods and ROMization functions in the CC78K0S.

CHAPTER 5 COMPILER OPTIONS

This chapter describes the functions of the compiler options, specification methods, and prioritization.

CHAPTER 6 C COMPILER OUTPUT FILES

This chapter describes the output of various list files output by the CC78K0S.

CHAPTER 7 USING C COMPILER

This chapter introduces techniques to aid in the skillful use of the CC78K0S.

User’s Manual U16654EJ1V0UM6

CHAPTER 8 STARTUP ROUTINES

The CC78K0S provides startup routines as samples. This chapter describes the uses of the startup

routines and provides suggestions on how to improve them.

CHAPTER 9 ERROR MESSAGES

This chapter describes the error messages output by the CC78K0S.

APPENDICES

The appendices provide and a sample program, a list of the cautions encountered during use, a list of

the restrictions related to the CC78K0S, and an index.

[How to Read This Manual]

First, those who want to see how to actually use CC78K0S, read CHAPTER 3 PROCEDURE FROM

COMPILING TO LINKING.

Users with a general knowledge of C compilers or users who have read the Language manual can skip

CHAPTER 1 OVERVIEW.

[Related Documents]

The table below shows the documents (such as user’s manuals) related to this manual. The related

documents indicated in this publication may include preliminary versions. However, preliminary versions are

not marked as such.

Documents related to development tools (user’s manuals)

Document Name Document No.

Operation This documentCC78K0S C Compiler Ver. 1.50 or Later

Language U16655E

Operation U16656E

Assembly language U16657E

RA78K0S Assembler Package Ver. 1.40 or Later

Structured assembly language U11623E

SM78K0S System Simulator Operation To be prepared

ID78K0S-NS Integrated Debugger Ver. 2.51 or Later Operation U16584E

PM plus Ver. 5.10 To be prepared

Caution The related documents listed above are subject to change without notice. Be sure to use

the latest version of each document for designing.

User’s Manual U16654EJ1V0UM 7

[Conventions]

The meanings of the symbols used in this manual are explained.

…: Repeat in the same format.

[]: Characters enclosed in these brackets can be omitted.

 : Characters enclosed in these brackets are as shown (character string).

“ ”: Characters enclosed in these brackets are as shown (character string).

‘ ’: Characters enclosed in these brackets are as shown (character string).

Boldface: Characters in bold face are as shown (character string).

_ : Underlining at important locations or in examples is the input character sequence.

∆ : At least one space

 : Indicates an omission in a program description

() : Characters between parentheses are as shown (character string).

/ : Delimiter

\: Backslash

[File Name Conventions]

The conventions for specifying the input files that are designated in the command line are shown below.

(1) Specifying disk file names

[drive-name] [\] [[path-name]...] primary-name [.[file-type]]

 <1> <2> <3> <4> <5>

<1> Specifies the name of the drive (A: to Z:) storing the file.

<2> Specifies the name of the root directory.

<3> Specify the subdirectory name.

Specify a character string of a length allowed by the OS.

Characters that can be used:

All the characters allowed by the OS, except parentheses (()), semicolons (:), and commas (,).

Note that a hyphen (-) cannot be used as the first character of a path name.

<4> Primary name

Specify a character string of a length allowed by the OS.

Characters that can be used:

All the characters allowed by the OS, except parentheses (()), semicolons (:), and commas (,).

Note that a hyphen (-) cannot be used as the first character of a path name.

<5> File type

Specify a character string of a length allowed by the OS.

Characters that can be used:

All the characters allowed by the OS, except parentheses (()), semicolons (:), and commas (,).

Example: C:\nectools32\smp78k0s\CC78k0s\prime.C

Remarks 1. A space cannot be specified before and after ‘:’, ‘.’, or ‘\’.

2. Uppercase and lowercase letters are not distinguished (not case-sensitive).

…

User’s Manual U16654EJ1V0UM8

(2) Specifying device file names

The following logical devices are available.

Logical Device Description

CON Output to the console.

PRN Output to the printer.

AUX Output to an auxiliary output device.

NUL Dummy output (nothing is output.)

User’s Manual U16654EJ1V0UM 9

CONTENTS

CHAPTER 1 OVERVIEW...13
1.1 Microcontroller Application Product Development and Role of CC78K0S..........................14
1.2 Development Procedure Using CC78K0S ...16

1.2.1 Using editor to create source module files...17

1.2.2 C compiler..18

1.2.3 Assembler..19

1.2.4 Linker...20

1.2.5 Object converter ..21

1.2.6 Librarian...22

1.2.7 Debugger...23

1.2.8 System simulator ...24

1.2.9 PM plus..25

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION ...26
2.1 Host Machines and Supply Media..26
2.2 Installation ..27

2.2.1 Installation of Windows version..27

2.2.2 Installation of UNIX version ...27

2.3 Installation of Device Files..28
2.3.1 Installation of Windows version..28

2.3.2 Installation of UNIX version ...28

2.4 Directory Configuration...29
2.4.1 Windows version directory configuration ...29

2.4.2 UNIX version directory configuration ...30

2.5 Uninstallation Procedure ..31
2.5.1 Uninstallation of Windows version ...31

2.5.2 Uninstallation of UNIX version ...31

2.6 Environment Settings..32
2.6.1 Host machine (for PC-9800 Series and IBM PC/AT compatibles) ...32

2.6.2 Environment variables ...32

2.6.3 File organization ..33

2.6.4 Library files ..34

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING..36
3.1 PM plus ...36

3.1.1 Position of CC78K0SP.DLL (tools DLL)...36

3.1.2 Execution environment ..36

3.1.3 CC78K0S option setting menu...37

(1) Option menu items ..37

(2) <Compiler Options> dialog box ...37

(3) <Browse for Folder> dialog box ..38

3.1.4 Description of each part of <Compiler Options> dialog box...40

(1) Screen when “Preprocessor” is selected...42

(2) Screen when “Memory Model” is selected ..43

(3) Setting screen when “Data Assign” is selected ...44

User’s Manual U16654EJ1V0UM10

(4) Screen when “Optimize” is selected ..45

(5) Screen when “Debug” is selected..49

(6) Screen when “Output” is selected..50

(7) Screen when “Extend” is selected ...55

(8) Screen when “Others” is selected..56

(9) Screen when “Startup Routine” is selected..58

3.2 Procedure from Compiling to Linking..60
3.2.1 MAKE from PM plus...60

3.2.2 Starting up PM plus..60

3.2.3 Creating project..60

3.2.4 Setting compiler and linker options ..60

3.2.5 Building project ..62

3.2.6 Compiling to linking in command line (for DOS prompt and EWS) ..62

(1) When parameter file is not used ..62

(2) When parameter file is used ..64

3.3 I/O Files of C Compiler...65
3.4 Execution Start and End Messages ...67

CHAPTER 4 CC78K0S FUNCTIONS ..69
4.1 Optimization Method..69
4.2 ROMization Function ...71

4.2.1 Linking..71

CHAPTER 5 COMPILER OPTIONS ..72
5.1 Specifying Compiler Options..72
5.2 Prioritization of Compiler Options..73
5.3 Descriptions of Compiler Options..75

(1) Device type specification (-C) ..76

(2) Object module file creation specification (-O/-NO)...79

(3) Memory assignment specification (-R/-NR, -RD/-NR, -RK/-NR, -RS/-NR, -RC/-NR)...............80

(4) Optimization specification (-Q/-NQ) ...84

(5) Debugging information output specification (-G/-NG) ..87

(6) Preprocess list file creation specification (-P, -K)...88

(7) Preprocess specification (-D, -U, -I)...91

(8) Assembler source module file creation specification (-A, -SA) ..94

(9) Error list file creation specification (-E, -SE) ..98

(10) Cross-reference list file creation specification (-X)...102

(11) List format specification (-LW, -LL, -LT, -LF, -LI) ...104

(12) Warning output specification (-W)..109

(13) Execution state display specification (-V/-NV) ...110

(14) Parameter file specification (-F)...111

(15) Temporary file creation directory specification (-T)..112

(16) Help specification (--/-?/-H)..113

(17) Function expansion specification (-Z/-NZ) ...114

(18) Device file search path (-Y) ...116

(19) Static model specification (-SM) ..117

User’s Manual U16654EJ1V0UM 11

CHAPTER 6 C COMPILER OUTPUT FILES ..119
6.1 Object Module File ...119
6.2 Assembler Source Module File...119
6.3 Error List File..123

6.3.1 Error list file with C source ...123

6.3.2 Error list file with error message only...125

6.4 Preprocess List File...126
6.5 Cross-Reference List File..128

CHAPTER 7 USING C COMPILER...131
7.1 Efficient Operation (EXIT Status Function) ...131
7.2 Setting Up Development Environment (Environment Variables)..132
7.3 Interrupting Compilation ...132

CHAPTER 8 STARTUP ROUTINES ...133
8.1 File Organization..134

8.1.1 BAT directory contents ..135

8.1.2 SRC directory contents..136

8.2 Batch File Description ...137
8.2.1 Batch files for creating startup routines..137

8.3 Startup Routines ..138
8.3.1 Overview of startup routines ..138

(1) Function ..138

(2) Configuration...139

(3) Uses of startup routines ..140

8.3.2 Description of sample program (cstart.asm) ..141

(1) Preprocessing ...141

(2) Initial settings...144

(3) ROMization processing ...145

(4) Starting main function and postprocessing..148

8.3.3 Revising startup routines ...150

(1) When revising startup routine..150

(2) Link directive file..152

CHAPTER 9 ERROR MESSAGES..153
9.1 Error Message Format...153
9.2 Types of Error Messages ..153
9.3 List of Error Messages ..154

(1) Error message for a command line <from 001> ..155

(2) Error message for an internal error and memory <from 101> ...158

(3) Error message for a character <from 201> ...159

(4) Error message for configuration element <from 301> ...159

(5) Error message for conversion <from 401> ..161

(6) Error message for an expression <from 501> ...162

(7) Error message for a statement <from 601>...165

(8) Error message for a declaration and function definition <from 701>166

(9) Error message for a preprocessing directive <from 801>..171

(10) Error message for fatal file I/O and running on an illegal operating system <from 901>175

User’s Manual U16654EJ1V0UM12

APPENDIX A SAMPLE PROGRAMS ...177
A.1 C Source Module File...177
A.2 Execution Example ..178
A.3 Output List ..179

(1) Assembler source module file..179

(2) Preprocess list file ...186

(3) Cross-reference list file ..188

(4) Error list file..189

APPENDIX B LIST OF USE-RELATED CAUTIONS ..190

APPENDIX C LIST OF RESTRICTIONS RELATED TO CC78K0S..201
C.1 Details About Restrictions and Prevention Methods ...202

APPENDIX D INDEX..207

User’s Manual U16654EJ1V0UM 13

CHAPTER 1 OVERVIEW

The CC78K0S C compiler program translates C source programs written in ANSI-CNote or the C language for the

78K0S Series into the machine language for the 78K0S Series.

The CC78K0S can be run on Windows™ 98/Me/2000/XP or Windows NT™ 4.0 when using PM plus included in

the assembler package for the 78K0S Series. If PM plus is not used, the compiler can be run from the DOS prompt

(Windows 98/Me) or command prompt (Windows NT 4.0/2000/XP) (for the Windows version).

Note ANSI-C is the C language that conforms to the standard set by the American National Standards Institute.

CHAPTER 1 OVERVIEW

User’s Manual U16654EJ1V0UM14

1.1 Microcontroller Application Product Development and Role of CC78K0S

The position of CC78K0S in product development is shown below.

Figure 1-1. Development Process for Microcontroller Application Products

Product planning

System design

Hardware design Software design

Production Coding

Compile/assemble

DebuggingInspection

System evaluation

Product creation

E
rr

or
s

B
ug

s

M
is

ta
ke

s CC78K0S

C Compiler

CHAPTER 1 OVERVIEW

User’s Manual U16654EJ1V0UM 15

The software development process is shown below.

Figure 1-2. Software Development Process

Software development

Write program specification

Create flow chart

Coding

Compile

Link

Edit source modules

File conversion

Debug

System evaluation

Errors?

OK

… Depends on 78K Series C language or ANSI-C

… Use the editor to create the C source module files.

… Link to the reference library and function library.

… Convert the file to the hexadecimal format.

… Use the hardware debugger (in-circuit emulator,
etc.) to verify the operation.

YES

YES

NO

NO

CHAPTER 1 OVERVIEW

User’s Manual U16654EJ1V0UM16

1.2 Development Procedure Using CC78K0S

The development procedure using CC78K0S is shown below.

Figure 1-3. Program Development Procedure Using CC78K0S

C source

Object converter

Include file

Assembler source

Object module file

Load module file

Hexadecimal
object

Absolute assemble list

List converter

Assemble list

Integrated debugger

In-circuit emulator

Dedicated parallel
interface

RS-232C

Assembler

Linker

Structured assembler

Structured
assembler
source

System
simulator

PROM programmer

Assembler source

Library file

C compiler

Librarian

CHAPTER 1 OVERVIEW

User’s Manual U16654EJ1V0UM 17

1.2.1 Using editor to create source module files

One program is divided into several functional modules.

One module is the coding unit and becomes the input unit to the compiler. A module that is the input unit to the C

compiler is called a C source module.

After each C source module is coded, use the editor to save the source module to a file. A file created in this way

is called a C source module file.

The C source module files become the CC78K0S input files.

Figure 1-4. Creating Source Module Files

Source module

 END

Source module

 END

Source module

 END

END

Program Source module

Write to file (editor)

Source module file

CHAPTER 1 OVERVIEW

User’s Manual U16654EJ1V0UM18

1.2.2 C compiler

The C compiler inputs the C source modules and converts the C language into machine language. If description

errors are detected in the C source module, compiling errors are output.

If there are no compiling errors, the object module files are output. To correct and check the programs at the

assembly language level, assembler source module files can be output. If you want to output assembler source

module files, specify the -A or -SA option in the specification for creating assembler module files when compiling (for

information about the options, see CHAPTER 5 COMPILER OPTIONS).

Figure 1-5. C Compiler Function

C source module file

Object module file Assembler source module file

C compiler

CHAPTER 1 OVERVIEW

User’s Manual U16654EJ1V0UM 19

1.2.3 Assembler

Assembling is performed by using the assembler included in the RA78K0S Assembler Package (sold separately).

The assembler is the program that inputs an assembler source module file and translates assembly language into

machine language. If description errors were discovered in the source module, the assemble errors are output.

If there are no assemble errors, the output is the object module file that includes machine language information

and location information such as at which address each machine language code should be placed in memory. In

addition, information during assembly is output as an assemble list file.

Figure 1-6. Assembler Function

Assembler source module file

Assemble list file Object module file

Assembler

CHAPTER 1 OVERVIEW

User’s Manual U16654EJ1V0UM20

1.2.4 Linker

Linking is performed by using the linker included in the RA78K0S Assembler Package (sold separately).

The linker inputs multiple object module files output by the compiler or object module files output by the

assembler, and links them to the library files (even if there is one object module, linking must be performed). One

load module file is output.

In this case, the linker determines the location addresses of relocatable segments in the input module. This

determines the values of relocatable symbols and external reference symbols, and embeds the correct values in the

load module file.

The linker outputs the linking information as a link map file.

Figure 1-7. Linker Function

Multiple object module files Library file

. . . .

Link map file Load module file

Linker

CHAPTER 1 OVERVIEW

User’s Manual U16654EJ1V0UM 21

1.2.5 Object converter

The object converter uses the converter included in the RA78K0S Assembler Package (sold separately).

The object converter inputs a load module file output by the linker and converts its file format. The result is output

as an intel-standard hexadecimal object module file.

Symbol information is output as a symbol table file.

Figure 1-8. Object Converter Function

Load module file

Hexadecimal object module file

Object converter

Symbol table file

CHAPTER 1 OVERVIEW

User’s Manual U16654EJ1V0UM22

1.2.6 Librarian

Clearly defined modules having a general interface are formed into a library for convenience. By creating the

library, many object modules form one file and become easy to handle.

The linker has functions to extract only the needed modules from the library file and link them. Therefore, if

multiple modules are registered in one library file, the names of the module files needed when linking no longer have

to be individually specified.

The librarian is used to create and update library files. The librarian uses the librarian included in the RA78K0S

Assembler Package (sold separately).

Figure 1-9. Librarian Function

Object module files output by compiler

. . .

Object module file output by assembler

Library file

Librarian

CHAPTER 1 OVERVIEW

User’s Manual U16654EJ1V0UM 23

1.2.7 Debugger

Source debugging using a graphical user interface becomes possible by loading the load module files output by

the linker into the IE (in-circuit emulator) by using the ID78K0S-NS (78K0S Series integrated debugger).

To debug, the -G option specifying the output of debugging information is specified when the target source

program is compiled (-G is the default option). By making this specification, the symbols and line numbers needed in

debugging are added to the object module. For information on the compiler options, see CHAPTER 5 COMPILER

OPTIONS.

Figure 1-10. Debugger Function

Parallel interface

• Object information

• Debugging information

In-circuit emulator

Integrated debugger

CHAPTER 1 OVERVIEW

User’s Manual U16654EJ1V0UM24

1.2.8 System simulator

Source debugging using a graphical user interface becomes possible by downloading the load module files output

from the linker by using the SM78K0S (78K0S Series system simulator).

SM78K0S is software that has the same operating image as the ID78K0S-NS and performs simulations on the

host machine. In addition to simulating machine instructions in the SM78K0S, the on-chip peripherals for the devices

and the interrupts can be simulated. Since external parts and procedures are provided to construct dummy target

systems, the programs including the operation of the target system are debugged at an early stage independent of

hardware development.

Figure 1-11. Simulator Function

• Object information

• Debugging information

Simulator

Load module file

CHAPTER 1 OVERVIEW

User’s Manual U16654EJ1V0UM 25

1.2.9 PM plus

PM plus is software that uses the DLL files added to CC78K0S and is able to start CC78K0S on Windows

98/Me/2000/XP or Windows NT 4.0. Editing the source, automatically creating the MAKEFILE, and compiling to

linking can be performed from the startup screen of PM plus. Thus, editing to debugging can be performed using

GUI images.

PM plus is included to the RA78K0S Assembler Package. The installer for the RA78K0S Assembler Package is

used to install and to make the settings. If CC78K0S will be started from PM plus, install the RA78K0S Assembler

Package before installing the compiler.

Figure 1-12. PM plus Function

Remark Build analyzes and executes the make file to create the executable file. The dependency relationships

described in the make file basically remove unused assembling, compiling, and linking and can create

efficient executable files.

User’s Manual U16654EJ1V0UM26

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

This chapter explains the procedure to install the files stored in the supply media of the CC78K0S to the user

development environment (host machine) and the procedure to uninstall them from the user development

environment.

2.1 Host Machines and Supply Media

This C compiler supports the development environments listed in Table 2-1.

Table 2-1. Supply Media and Recording Formats for C Compiler

Host Machine OS Supply Media Recording Format

PC-9800 Series Japanese Windows

(98/Me/2000/XP/NT 4.0)Note

IBM PC/ATTM and compatibles Japanese Windows

(98/Me/2000/XP/NT 4.0)Note

English Windows

(98/Me/2000/XP/NT 4.0)Note

CD-ROM Standard Windows installer

supported

HP9000 Series 700TM HP-UXTM (Rel. 10.10 and later)

SPARCstationTM Family SunOSTM (Rel. 4.1.4 and later)

SolarisTM (Rel. 2.5.1 and later)

CD-ROM cp command

Note PM plus is required if the C compiler is used on Windows. The C compiler can be started up from the DOS

prompt (Windows 98/Me) or command prompt (Windows NT 4.0/2000/XP) if PM plus is not used.

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

User’s Manual U16654EJ1V0UM 27

2.2 Installation

2.2.1 Installation of Windows version

The procedure for installing to the host machine the files provided in the CC78K0S’ supply media is described

below.

(1) Starting up Windows

Power on the host machine and peripherals and start Windows.

(2) Set supply media

Set the CC78K0S’ supply media in the appropriate drive (CD-ROM drive) of the host machine. The setup

programs will start automatically. Perform the installation by following the messages displayed in the monitor

screen.

Caution If the setup program does not start automatically, execute SETUP.EXE in the CC78K0S\DISK1

folder.

(3) Confirmation of files

Using Windows Explorer, etc., check that the files contained in the CC78K0S’ supply media have been installed

to the host machine.

For the details of each folder, refer to 2.4.1 Windows version directory configuration.

2.2.2 Installation of UNIX version

Install the UNIX version with the following procedure. Installation to /nectools is assumed here.

(1) Login

Log in to the host machine.

(2) Directory selection

Go to the install directory.

%cd /nectools

(3) Setting of supply media

Set the CD-ROM in the CD-ROM drive and close the tray.

(4) Execute the cp command for the files to copy the files from the CD-ROM (copy the files after checking

that the CD-ROM has been set in the CD-ROM drive).

(5) Add /nectools/bin to the environmental variable PATH.

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

User’s Manual U16654EJ1V0UM28

2.3 Installation of Device Files

2.3.1 Installation of Windows version

Use the device file installer to install the device files. The device file installer is installed at the same time as the

CC78K0S.

2.3.2 Installation of UNIX version

Either specify the directory for device files with the -y option (example: -y/nectools/dev), or copy the device files to

a directory with the compiler execution format (example: /nectools/bin).

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

User’s Manual U16654EJ1V0UM 29

2.4 Directory Configuration

2.4.1 Windows version directory configuration

The standard directory displayed during installation is “NECTools32” of the Windows system. The configuration

under the install directory is as follows. Note that the drive and install directory can be changed during installation.

When performing MAKE operation with PM plus, perform installation of tools (CC78K0S, RA78K0S) to the same drive

and directory.

The descriptions in this manual assume installation to the standard directory with “NECTools32”, which is the

default program name, according to the setup program default directions.

Figure 2-1. Directory Configuration

Notes 1. This batch file cannot be used in PM plus. To use the batch file, run it from the DOS prompt (Windows

98/Me) or command prompt (Windows NT 4.0/2000/XP).

2. The startup routines and libraries in the lib78k0s directory are identical to those in the src\cc78k0s

directory. If a startup routine is modified, change the source in the src\cc78k0s directory. Since

assembled files by the batch file are stored in src\cc78k0s\lib, copy lib78k0s directory and link.

bin\
 cc78k0s.exe,
 cc78k0sp.dll,etc.

inc78k0s\
 *.h

lib78k0s\Note 2 (For link)
 cl0s*.lib
 s0s*.rel

src\cc78k0s\

 bat\
 mkstup.bat
 *.bat

 src\
 cstart*.asm
 rom.asm
 *.asm

 lib\Note 2 (For modifications)
 cl0s*.lib
 s0s*.rel

smp78k0s\CC78K0s\
 prime.c
 sample.bat
 readme.doc
 lk78k0s.dr

hlp\
 cc78k0s*.hlp

Executable form of compiler
PM plus Tools DLL

Header files for standard library

Libraries (runtime and standard libraries)
Object files for startup routines

Assemble batch files for startup routinesNote 1

Source files for startup routines
Source files for ROMization routines
Source files for some standard functions

Libraries (runtime and standard libraries)
Object files for startup routines

Source program for verifying installation
Batch files for verifying installation

Link directive file for reference

On-line help files

NECTools32\

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

User’s Manual U16654EJ1V0UM30

2.4.2 UNIX version directory configuration

The file organization when the cp command was used for installation to /nectools is shown below.

bin/
 cc78k0s, etc.

inc78k0s/
 *.h

lib78k0s/Note (For link)
 cl0s*.lib
 s0s*.lib

src/cc78k0s/

 bat/
 mkstup.sh
 *.sh

 src/
 cstart*.asm
 rom.asm
 *.asm

 lib/Note (For modifications)
 cl0s*.lib
 s0s*.rel

smp78k0s/cc78k0s/
 prime.c
 sample.sh
 readme.doc
 lk78k0s.dr

Executable form of compiler

Header files for standard library

Libraries (runtime and standard libraries)
Object files for startup routines

Assemble batch files for startup routines

Source files for startup routines
Source files for ROMization routines
Source files for some standard functions

Libraries (runtime and standard libraries)
Object files for startup routines

Source program for verifying installation
Batch files for verifying installation

Link directive file for reference

nectools/

Note The startup routines and libraries in the lib78k0s directory are identical to those in the src/cc78k0s directory. If

a startup routine is modified, change the source in the src/cc78k0s directory. Since assembled files by the

batch file are stored in src/cc78k0s/lib, copy lib78k0s directory and link.

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

User’s Manual U16654EJ1V0UM 31

2.5 Uninstallation Procedure

2.5.1 Uninstallation of Windows version

The procedure for uninstalling the files installed to the host machine is described below.

(1) Windows startup

Power on the host machine and peripherals and start Windows.

(2) Opening <Control Panel> window

Press the Start button and select [Settings]-[Control Panel] to open the <Control Panel> window.

(3) Opening of <Add/Remove Programs Properties> window

Double-click the [Add/Remove Programs] icon in the <Control Panel> window to open the <Add/Remove

Programs Properties> window.

(4) Deletion of CC78K0S

After selecting "NEC CC78K0S 78K/0S C Compiler Vx.xx" from the list of installed software displayed in the

<<Install/Uninstall>> tab in the <Add/Remove Programs Properties> window, click the [Add/Remove...] button.

When the <System Settings Change> window is opened, click the [Yes] button.

(5) Confirmation of files

Using Windows Explorer, etc., check that the files installed to the host machine have been uninstalled. For the

details of each folder, refer to 2.4.1 Windows version directory configuration.

2.5.2 Uninstallation of UNIX version

Delete the files copied in 2.3.2 Installation of UNIX version with the rm command.

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

User’s Manual U16654EJ1V0UM32

2.6 Environment Settings

2.6.1 Host machine (for PC-9800 Series and IBM PC/AT compatibles)

The CC78K0S handles 32 bits and runs on models equipped with the i386™ CPU or later versions.

Since handling 32 bits is implemented by using DOS Extender, it is designed to run on the following operating

systems.

Windows 98/Me/2000/XP/NT 4.0

DOS prompt in Windows 98/Me

Command prompt in Windows 2000/XP/NT 4.0

2.6.2 Environment variables

Set the following environment variables for EWS and DOS prompt (Windows 98/Me) or command prompt

(Windows 2000/XP/NT 4.0) operation.

Table 2-2. Environment Variables

Environment Variable Description

PATH Specifies the directory where the executable form of the compiler is located.

TMP Specifies the directory where temporary files are created

(only valid for PC-9800 Series and IBM PC/AT compatibles).

LANG78K Specifies the kanji code (2-byte code) in the source files.

sjis Shift JIS (Default for PC-9800 Series, IBM PC/AT compatibles, and HP9000 Series 700)

euc EUC (Default for SPARCstation)

none No 2-byte codes

INC78K0S Specifies the directory where the standard header files of the compiler are located. (required only

for EWS)

LIB78K0S Specifies the directory where the compiler’s libraries are located. (required only for EWS)

Specification Example

For PC-9800 Series and IBM PC/AT compatibles

PATH = %PATH%;C:\NECTools32\bin
set TMP = C:\
set LANG78K = sjis

For HP9000 Series 700 and SPARCstation

 Example using csh
set path = ($path /nectools/bin)
setenv LANG78K euc
setenv INC78K0S /nectools/inc78k0s
setenv LIB78K0S /nectools/lib78k0s

 Example using sh
PATH = $PATH:/nectools/bin
LANG78K = euc
INC78K0S = /nectools/inc78k0s
LIB78K0S = /nectools/lib78k0s
export PATH LANG78K INC78K0S LIB78K0S

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

User’s Manual U16654EJ1V0UM 33

2.6.3 File organization

The table below lists the contents of each directory. The files for PC-9800 Series and IBM PC/AT compatibles are

described. The directory structure and file organization are the ones obtained when the installer was used.

Remark Some of the file extensions differ in UNIX.

Table 2-3. File Organization (* = Alphanumeric Symbols)

Directory Name File Name Description

cc78k0s.exe Compiler

cc78k0s.msg Message file

*.hlp Help files

BIN\

*.dll DLL files

INC78K0S\ *.hNote 1 Header files for standard library

mkstup.bat Assemble batch files for startup routines

reprom.bat For updating rom.asm

SRC\CC78K0S\BAT\Note 2

*.batNote 3 Batch files for updating standard functions (partial)

SRC\CC78K0S\SRC cstart*.asmNote 4

rom.asm

*.asmNote 5

Source files for startup routines

Source files for ROMization routine

Source files for standard functions (partial)

HLP *.hlp On-line help file

Notes 1. See 10.2 Header Files in the Language manual (U16655E).

2. The batch files in this directory cannot be used in PM plus. Use these batch files only when the source

must be revised.

3. Refer to the contents in Table 8-1 BAT Directory Contents.

4. * = B | E | N (B: when the boot area is specified, E: when the flash area is specified, N: when the standard

libraries are not used)

5. Refer to the contents in Table 8-2 SRC Directory Contents.

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

User’s Manual U16654EJ1V0UM34

2.6.4 Library files

• These files consist of standard libraries, runtime libraries, and startup routines.

Table 2-4 lists the directory contents.

Table 2-4. Library Files

Directory Name File Name File Role

cl0s.lib

cl0sr.lib

cl0ss.lib

cl0sf.lib

Library (runtime and standard

libraries)Note 1

LIB78K0S\

s0s.rel

s0sl.rel

s0ss.rel

s0ssl.rel

Object files for startup routines Note 2

CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION

User’s Manual U16654EJ1V0UM 35

Notes 1. The rule for naming libraries is given below.

<float>

None Standard library and runtime library (floating point library is not used)

f For floating point library

<pascal>

None When normal function interface is used

r When pascal function interface is used (when compile option -ZR is specified)

<model>

None Normal model

s Static model

Notes 2. The rule for naming startup routines is given below.

<model>

None Normal model

sm Static model

<lib>

None When standard library functions are not used

l When standard library functions are used

lib78k0s\cl0s<float><pascal><model>.lib

lib78k0s\s0s<model><lib>.rel

User’s Manual U16654EJ1V0UM36

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

This chapter uses the CC78K0S and the RA78K0S Assembler Package to describe the procedure from compiling

to linking.

By actually performing the processes from compiling to linking of the ‘prime.c’ sample program following the

execution procedure given in this chapter, you can become familiar with the operations of compiling, assembling, and

linking (see APPENDIX A SAMPLE PROGRAMS for information about the sample program).

How to execute on PM plus is described for the PC-9800 Series and IBM PC/AT compatibles. For other

machines, how to execute from the command line is described (for information on installation, see 2.2 Installation).

3.1 PM plus

This section describes the user interface when the CC78K0S is started in PM plus included in the RA78K0S

Assembler Package. If the CC78K0S is started from PM plus, CC78K0SP.DLL included in CC78K0S is referenced.

3.1.1 Position of CC78K0SP.DLL (tools DLL)

The tools DLL file, such as the CC78K0SP.DLL file, is needed to run the Windows version of the 78K0S Series C

compiler (CC78K0S) from PM plus in Windows 98/Me/2000/XP or Windows NT 4.0.

3.1.2 Execution environment

This environment conforms to PM plus.

The display mode switches between Japanese and English according to the operating system (Windows English

version/Japanese version).

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM 37

3.1.3 CC78K0S option setting menu

(1) Option menu items

The item “Compiler Options…” is added to the [Tools] menu in PM plus by the tools DLL file included in the

CC78K0S C Compiler Package.

(2) <Compiler Options> dialog box

Select the [Compiler Options…] menu under [Tools] in PM plus to call the option setting function for the tools

DLL.

The <Compiler Options> dialog box is shown below.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM38

(3) <Browse for Folder> dialog box

In the <Compiler Options> dialog box, when the Browse… button is clicked for the following path settings, the

following dialog box appears. Only the folders can be specified in this dialog box.

• Include file path

• Object module file output path

• Assembler module file output path

• Error list file output path

• Cross-reference list file output path

• Preprocessor list file output path

• Temporary file path

When the Browse… button is clicked in the parameter file specification, the following dialog box appears.

This dialog box is as follows.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM 39

Current directory: Project file directory

File type: Parameter file (*.pcc)

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM40

3.1.4 Description of each part of <Compiler Options> dialog box

Each part of the <Compiler Options> dialog box is described.

• [OK] button

The settings edited in this dialog box are set, and the <Compiler Options> dialog box closes. If a source file is

selected in this source list, the options are set for this file. If nothing is selected, the options are set for all of the

source files.

• [Cancel] button

The options are not set, and the dialog box closes. The ESC key has the same effect as the [Cancel] button no

matter where the focus is in the dialog box.

• [Apply] button

This button is effective only when option settings have been changed.

The edited contents in this dialog box are applied and the <Compiler Options> dialog box remains displayed.

• [Help] button

The help file for this dialog box opens.

Command line option OK button Cancel button Apply button Help button

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM 41

• Command Line Options:

The option character string currently set is displayed.

The option character string entered in [Other Options:] of <Others> dialog box is reflected and displayed in

real time.

Nothing can be input in this display area. Even though the default option of the CC78K0S is the “specified”

state (i.e., a check box is checked, etc.), nothing is displayed in this area by default.

Options that do not fit in the option character display area can be checked by scrolling with the button.

• Setting of compiler options

The compiler options are divided into the following nine options and set respectively. Each setting screen is

displayed by clicking the corresponding tab at the top of the dialog box.

Preprocessor (default)

Memory Model

Data Assign

Optimize

Debug

Output

Extend

Others

Startup Routine

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM42

(1) Screen when “Preprocessor” is selected

• Define Macro[-d]:

The macro name and definition name specified by the -D option is input to the combo box.

For the macro name, multiple macro definitions can be performed at once by delimiting with ‘,’.

• Undefine Macro[-u]:

The macro name specified by the -U option is input to the combo box.

For the macro name, multiple macro definitions can be invalidated at once by delimiting with ‘,’.

• Include Search Path[-i]:

The directory that contains include files specified by the -I option is input to the combo box.

Multiple directories can be specified at once by delimiting with ‘,’.

The [Browse..] button can also be used for specification.

Unexisted path cannot be specified.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM 43

(2) Screen when “Memory Model” is selected

• Static Model[-sm]:

Use a static model by checking the check box and specify a number of bytes of the common area.

• Extend a Static Model

If the -SM option is specified and you wish to extend a static model, select this check box.

Select the area to be used for arguments and auto variables by clicking the appropriate radio button.

The information of the selected radio button is saved even if the check box is left unchecked.

• Control Object

Regard All Function as _ _pascal Except Varargs[-zr]

Select this check box to enable the -ZR option.

Using Prologue/Epilogue Library[-zd]

Select this check box to enable the -ZD option.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM44

(3) Setting screen when “Data Assign” is selected

• Assign External Variable to SADDR Area

Check the check box to validate the -RD option.

The type of an external variable to be assigned to the saddr area is selected by checking the radio button.

• Assign Static Variable to SADDR Area

Check the check box to validate the -RS option.

The type of a static variable to be assigned to the saddr area is selected by checking the radio button.

• Assign Local Variable to SADDR Area[Static Model Only]

Check the check box to validate the -RK option.

The type of an automatic variable to be assigned to the saddr area is selected by checking the radio button.

• Assign Bit Field from MSB[-rb]

Check the check box to validate the -RB option.

• Packing structure members[-rc]

Check the check box to validate the -RC option.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM 45

(4) Screen when “Optimize” is selected

(a) When “Integrated Recommendable Optimizing Option” is selected in the [Group:] drop-down list box

• Integrated Recommendable Optimizing Option

The “Integrated Recommendable Optimizing Option” integrates optimization options according to purpose,

instead of specifying them individually. Accordingly this option makes the optimization option easier to set.

There are three settings: “Exec Time [-qx1]”, “Default [-qx2]”, and “Code Size [-qx3]”. Their meanings are as

follows.

Exec Time[-qx1]: -QX1 option. Select this option when the efficiency of executing speed is important.

Default[-qx2]: -QX2 option. Select this option when both the efficiency of executing speed and the

efficiency of object code size are equally important.

Code Size[-qx3]: -QX3 option. Select this option when the efficiency of object code size is important.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM46

(b) When “Char Expression Behavior, Automatic Allocation” is selected in the [Group:] drop-down list box

• Char Expression Behavior

Assign char without Sign Expand

Check this check box to validate the -QC option (do not execute integrate promotion).

The type of char-type operation that is not to be sign-expanded is selected by checking the radio button.

Change Plain char to unsigned char[-qu]

Check this check box to validate the -QU option.

• Automatic Allocation

Use SADDR Area for norec + Register Variable

Check this check box to validate the -QR option.

Use Register for Auto Variable[-qv]

Check this check box to validate the -QV option.

• Jump Optimization[-qj]

Check this check box to validate the -QJ option.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM 47

(c) When “Optimize Object Size by Calling Library” is selected in the [Group:] drop-down list box

• Optimize Object Size by Calling Libraries

Check this check box to validate the -QL option and specify the level of the object size priority optimization

by checking a radio button. When the number n of -QLn becomes greater, the object code size becomes

smaller, and accordingly the executing speed becomes slower.

• Pattern for 1 byte data (-ql3 Only) (-qq)

Check this check box to validate the -QQ option.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM48

(d) When “Others” is selected in the [Group:] drop-down list box

• Aggressive Optimization

Check this check box to validate the -QW option and check one of the four radio buttons to specify the

priority for either the speed or size.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM 49

(5) Screen when “Debug” is selected

• Output Debugging Information

Check this check box to validate the -G option and select a file that should output debug information by

checking a radio button. If [Debug] is disabled by a PM plus option, it is not possible to perform settings in the

<Debug> dialog box, and debug information is not output.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM50

(6) Screen when “Output” is selected

(a) When "Object Module File, Assembler Source Module File" is selected in the [Group:] drop-down list box

• Object Module File

To specify an object module file output path, input the path name in the combo box. Specification is also

possible using the [Browse…] button.

When universal options are specified in PM plus, processing is always performed assuming that the path

name is specified.

When the source file is specified, processing is performed as a path name if a path exists, and as a file name

if no path exists.

• Create Assembler Source Module File

To enable the -A/-SA/-LI options, select this check box, and select with/without C source to attach to the

assembler source module file and with/without include file contents by clicking the appropriate radio button.

To specify the output path of the assembler source module file, input the path name in the combo box.

Specification is also possible using the [Browse…] button.

When universal options are specified in PM plus, processing is always performed assuming that the path

name is specified.

When the source file is specified, processing is performed as a path name if a path exists, and as a file name

if no path exists.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM 51

• [Assembler Options[H]] button

Specify assembler options for the assembler source module file.

If no option is specified, processing is performed assuming that all assembler options have been specified.

• <Assembler Options> dialog box

When the [Assembler Options[H]] button under the <Output> tab in the <Compiler Options> dialog box is

clicked, the following dialog box appears.

• Use Assembler common option

Select this check box to enable all the options set in the <Assembler Options> dialog box.

• Assembler Source Options

To enable options for the output assembler source of the compiler, input a character string including the

option name in the combo box.

Past inputs can be selected by clicking the button at the right of the combo box.

Caution Do not describe chip type specification (-C), device file specification (-Y), and parameter file

specification (-F) because they are set separately with this tools DLL.

• Command Line Options:

This edit box is a read-only box.

The option character strings that are currently set are displayed.

If the character strings do not all fit in the box, they can be viewed by scrolling with the button.

All the character strings specified by setting a button or inputting in a box are immediately displayed in this

edit box.

Assembler common options and output assembler options are displayed as the option character strings.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM52

(b) When "Error List File, Cross-reference List File" is selected in the [Group:] drop-down list box

• Create Error List File

Select this check box to enable the -E/-SE option. Also select whether or not to attach the C source to the

error list by selecting the appropriate radio button.

To specify the error list file output path, input the path name in the combo box. Specification is also possible

using the [Browse…] button.

When universal options are specified, processing is always performed assuming that the path name is

specified.

When the source file is specified, processing is performed as a path name if a path exists, and as a file name

if no path exists.

• Create Cross Reference List File[-x]

Select this check box to enable the -X option. To specify the cross-reference list file output path, input the

path name in the combo box. Specification is also possible using the [Browse…] button.

When universal options are specified, processing is always performed assuming that the path name is

specified.

When the source file is specified, processing is performed as a path name if a path exists, and as a file name

if no path exists.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM 53

(c) When “Preprocess List File, List Format” is selected in the [Group:] drop-down list box

• Create Preprocess List File

Check this check box to validate the -P option and the specification for the following preprocess list files.

Delete Comment[-kc]

Check this check box to validate the -KC option.

Execute #define[-kd]

Check this check box to validate the -KD option.

Execute #if, #ifdef, #ifndef[-kf]

Check this check box to validate the -KF option.

Execute #include[-ki]

Check this check box to validate the -KI option.

Execute #line[-kl]

Check this check box to validate the -KL option.

Add Line No. and Paging[-kn]

Check this check box to validate the -KN option.

To specify the preprocess list file output path, input the path name in the combo box. Specification is also

possible using the [Browse…] button.

When universal options are specified, processing is always performed assuming that the path name is specified.

When the source file is specified, processing is performed as a path name if a path exists, and as a file name if

no path exists.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM54

• Add Form Feed at End of List File[-lf]

Check this check box to validate the -LF option.

• List setting

The list is output in the following format specified when the output option of each list is set.

Columns per Line[-lw]:

Specifies the number of characters in one line by using the -LW option. To increase/decrease the number of

characters in the box, click button.

Lines per Page[-ll]:

Specifies the number of lines in one page by using the -LL option. To increase/decrease the number of

characters in the box, click button.

Expand TAB Character[-lt]:

Specifies the length of tab character by using the -LT option. To increase/decrease the number of

characters in the box, click button.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM 55

(7) Screen when “Extend” is selected

• Change Source Regulation

Disable Extensions (ANSI Standard Only)[-za]

Check this check box to validate the -ZA option.

Treat int and short as char[-zi]

Check this check box to validate the -ZI option.

Treat long as int[-zl]

Check this check box to validate the -ZL option.

This option is default setting in a static model.

Enable C++ Comment, Ignore from // Till End of Line[-zp]

Check this check box to validate the -ZP option.

Comment Can Nest[-zc]

Check this check box to validate the -ZC option.

Not Expand Argument and Return Value[-zb]

Check this check box to validate the -ZB option.

Kanji Code of Source

Select the type (SJIS/EUC/None) of Kanji code used in the comment of the source by selecting the

appropriate radio button.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM56

(8) Screen when “Others” is selected

• Verbose Compile Messages[-v]

Select this check box to enable the -V option.

• Warning Level[-w]:

Use the button to change the -W option level.

• Temporary File Creation Directory[-t]:

Input the directory in which to store the temporary files specified with the -T option in the combo box.

• Parameterfile:

Input the parameter file name specified with the -F option in the combo box.

Past inputs can be selected by clicking the button at the right of the combo box.

• Other Options:

If a compiler option other than the various option specification items must be specified, input that option in the

combo box.

Past inputs can be selected by clicking the button at the right of the combo box.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM 57

• [Reset] button

Clicking this button sets the default option settings.

• [Option file read…] button

Clicking this button causes the option information file containing the option settings to be read.

• [Option file save…] button

This button is enabled only when information has been set with the [OK] button or the [Apply] button. Option

settings are saved as an option information file.

• Use Command File

By selecting this check box, the option character string is output to the command file, so awareness of

restrictions on the length of the option character string is not required. This check box is selected by default.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM58

(9) Screen when “Startup Routine” is selected

<Startup Routine> dialog box settings cannot be performed when a source is specified.

• Using Startup Routine

Select this check box to use the standard startup routine provided for this C compiler.

• Using Fixed Area of Standard Library

Select this check box to use the fixed area used by the standard library.

• Startup Routine:

Indicates the file name of the startup routine to be used.

• Using Library

Select this check box to use the standard library provided for this C compiler.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM 59

• Using Floating Point in sprintf,sscanf,printf,scanf,vprintf,vsprintf

Select this check box to use the sprintf, sscanf, printf, scanf, vprintf, and vsprintf functions supporting floating

points.

If the [Static Model[-sm]:] or [Regard All Function as _ _pascal Except Varargs[-zr]] option is specified, the

sprintf, sscanf, printf, scanf, vprintf, and vsprintf functions supporting floating points cannot be used.

• Library:

Displays the file name of the library to be used.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM60

3.2 Procedure from Compiling to Linking

3.2.1 MAKE from PM plus

The MAKE method using PM plus with a PC-9800 Series or IBM PC/AT compatible is described below.

PM plus is a software program used for the integrated management of tools as the core of the development

environment. Using PM plus enables handling application programs and environment settings as projects. Program

creation using an editor, source management, compilation, and debugging can be performed as a continuous series

of operations.

3.2.2 Starting up PM plus

When the development tool packages are correctly installed, the [NECTools32] menu is created in the Programs

folder displayed from the Start button, and PM plus and other programs are registered in this menu.

Click [PM plus] from the menu to start up PM plus.

3.2.3 Creating project

Register a project first to start a series of development operations using PM plus.

To register a project, first create the workspace in which that project is managed. For the procedure to create a

workspace, refer to the PM plus Ver. 5.10 User’s Manual (U16569E).

3.2.4 Setting compiler and linker options

A minimum number of options are set for build in the MAKE file created automatically upon completion of project

creation. Project-specific options are set in the [Tools] menu.

If the [Compiler Options…] in the [Tools] menu is selected, the <Compiler Options> dialog box appears.

An example changing the Optimize option from default [-QCJLW] to Code Size[-qx3] is shown below.

Figure 3-1. Selection of Optimize Options

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM 61

If “Using Startup Routine” is selected in the <<Startup Routine>> tab of the <Compiler Options> dialog box, the

standard startup routine for this compiler gets linked before all sources (not displayed to the <Linker Options> dialog

box).

When “Using Library” is selected, the standard library for this compiler gets linked behind all libraries.

If C source is included in the source file settings, stack symbol automatic generation option -S is automatically

specified to the linker.

The name of the startup routine file does not affect the load module file name.

Figure 3-2. Linker Options Dialog Box

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM62

3.2.5 Building project

Projects are built with the set options.

Building of an entire project is done by selecting [Build] from the [Build] menu, or by clicking the button on the

tool bar. PM plus MAKE is started up by the automatically created MAKE file.

Upon completion of build, a message dialog box appears. Check that build has been completed normally.

Caution The contents displayed in the <Output> window during build are saved as the “Project file name

+ .plg” file name to the project directory.

3.2.6 Compiling to linking in command line (for DOS prompt and EWS)

(1) When parameter file is not used

The command below is used to start the CC78K0S, assembler, and linker in a command line. Assembling is not

needed when there is no assembler description in C source. In this case, link the object module file output from

a C compiler (∆: space).

Caution To link libraries created by users, be sure to specify the libraries attached to the compiler

and the floating point libraries at the end of the library list.

To use the sprintf, sscanf, printf, scanf, vprintf, and vsprintf functions supporting floating

points, specify the floating point libraries attached to the compiler and the libraries

attached to the compiler, in this order.

To use the sprintf, sscanf, printf, scanf, vprintf, and vsprintf functions not supporting

floating points, specify the libraries attached to the compiler and the floating point libraries

attached to the compiler, in this order.

Also, specify the startup routine attached to the C compiler before the user programs.

The library and object module file specification order during linking is shown below.

(Library specification order)

When using sprintf, sscanf, printf, scanf, vprintf, and vsprintf functions not supporting

floating points

1. User program library file (specified with -B option)

2. Library file attached to C compiler (specified with -B option)

3. Floating point library file attached to C compiler (specified with -B option)

When using sprintf, sscanf, printf, scanf, vprintf, and vsprintf functions supporting floating

points

1. User program library file (specified with -B option)

2. Floating point library file attached to C compiler (specified with -B option)

3. Library file attached to C compiler (specified with -B option)

(Specification order of other files)

1. Object file of startup routine attached to CC78K0S

2. Object module file of user program

>[path name]CC78K0S[∆ option] ∆ C source name[∆ option]

>[path name]RA78K0S[∆ option] ∆ assembler source name[∆ option]

>[path name]LK78K0S object module name[∆ option]

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM 63

The following shows an example of linking C source s1.c and assembler source s2.asm (When the static model is

specified).

Remark When specifying multiple compiler options, delimit between compiler options by a space. It does not

matter whether a description is written in uppercase or lowercase (non case sensitive). For detailed

information, see CHAPTER 5 COMPILER OPTIONS.

The -i option specification, -b option path specification, and -y option specification can be omitted

depending on the condition. For details, see CHAPTER 5 COMPILER OPTIONS and RA78K0S

Assembler Package Operation User’s Manual (U16656E).

C>cc78k0s -c9024 s1.c -e -a -iC:\nectools32\inc78k0s –yC:\nectools32\dev -sm16

C>ra78k0s -c9024 s2.asm -e -yC:\nectools32\dev

C>lk78k0s s0ssl.rel s1.rel s2.rel -bC:\nectools32\lib78k0s\cl0ss.lib -s

-osample.lmf -yC:\nectools32\dev

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM64

(2) When parameter file is used

When multiple options are input in starting a compiler, assembler, or linker, the same specification may be

repeated several times if sufficient information for startup has not been specified in the command line. In such

cases, a parameter file should be used.

Specify the parameter file specification option in the command line when using a parameter file.

Caution Parameter files cannot be specified by means of the option setting of PM plus.

The following shows the startup method for a compiler, assembler, and linker by using a parameter file.

The following shows a usage example.

Parameter files are created by an editor. All options and output file names that should be specified in a command

line can be written.

The following shows examples of creating parameters by the editor.

The -i option specification, -b option path specification, and -y option specification can be omitted depending on the

condition. For details, see CHAPTER 5 COMPILER OPTIONS and RA78K0S Assembler Package Operation

User’s Manual (U16656E).

>[path name]CC78K0S ∆ -F parameter file name

>[path name]RA78K0S ∆ -F parameter file name

>[path name]LK78K0S ∆ -F parameter file name

Example C>cc78k0s -Fpara.pcc

C>ra78k0s -Fpara.pra

C>lk78k0s -Fpara.plk

-c9024 s1.c -e -a -iC:\nectools32\inc78k0s -yC:\nectools32\dev -sm16

-c9024 s2.asm -e -yC:\nectools32\dev

s0ss1.rel s1.rel s2.rel -bC:\nectools32\lib78k0s\cl0ss.lib -s -osample.lmf

-yC:\nectools32\dev

(Contents of para.pcc)

(Contents of para.pra)

(Contents of para.plk)

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM 65

3.3 I/O Files of C Compiler

The CC78K0S inputs the C source module files written in the C language. These are converted into machine

language and output as object module files.

After compiling, the assembler source module files are output so that the user can check and revise the contents

at the assembly language level. Based on the compiler options, the list files such as the preprocess list, cross-

reference list, and error list are output.

If there is a compiler error, the error message is output to the console and the error list file. If errors occur, various

files other than an error list file cannot be output.

The CC78K0S I/O files are shown below.

Table 3-1. C Compiler I/O Files

Type File Name Description Default File Type

C source module file • Source file written in the C language

• File created by the user

C

Include file • File referenced by a C source module file

• File written in the C language

• File created by the user

H

In
pu

t F
ile

s

Parameter file • File created by the user when the user wants to specify

multiple commands that cannot be specified in the

command line when the C compiler is run

PCC

Object module file • Binary image file containing machine language

information, relocatable information related to the location

address of the machine language, and symbol information

REL

Assembler source module file • ASCII image file of the object code output by the compiler ASM

Preprocess list file • List file output by the preprocess instructions such as

#include

• ASCII image file

PPL

Cross-reference list file • List file containing the function name and variable name

information used in the C source module file

XRFO
ut

pu
t F

ile
s

Error list file • List file containing the source file and compiler error

messages

ECC

CER

HER

ERNote

I/O
 F

ile

Temporary file • Intermediate file for compiling

• The file is renamed to an appropriate name when

compiling ends without error and is deleted when

compiling ends in error.

$nn

(file name fixed)

Note The following four file types are available for error list files.

CER: Error list files with C source corresponding to *.C’ files (output by specifying the -SE option)

HER: Error list files with C source corresponding to *.H’ files (output by specifying the -SE option)

ER: Error list files with C source corresponding to files other than the above (output by specifying the -SE

option)

ECC: Error list files without C source corresponding to all of the source files (output by specifying the -SE

option)

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM66

Figure 3-3. C Compiler I/O Files

Remark If there are compiling errors, a variety of files other than the error list and cross reference files cannot be

output.

A temporary file is renamed to an appropriate name when the compiling ends without error. If compiling

ends in error, the temporary files are deleted.

CC78K0S

Preprocess list files

Cross-reference list filesError list filesObject module filesAssembler source

module files

Temporary files

Parameter files C source module files
Include files

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM 67

3.4 Execution Start and End Messages

(1) Execution start message

When the CC78K0S starts, the execution start message is displayed on the console.

 78K/0S Series C Compiler Vx.xx [xx xxx xxxx]

 Copyright (C) NEC Electronics Corporation xxxx,xxxx

(2) Execution end message

If compiler errors were not detected in the compilation result, the compiler outputs the following message to the

console and returns control to the operating system.

 Target chip : uPD789xxx

 Device file : Vx.xx

 Compilation complete, 0 error(s) and 0 warning(s) found.

If compiler errors were detected in the compilation result, the compiler outputs the error messages and the

number of errors to the console and returns control to the operating system.

 PRIME.C(18) : W745 Expected function prototype

 PRIME.C(20) : W745 Expected function prototype

 PRIME.C(26) : W622 No return value

 PRIME.C(37) : W622 No return value

 PRIME.C(44) : W622 No return value

 Target chip : uPD789xxx

 Device file : Vx.xx

 Compilation complete, 0 error(s) and 5 warning(s) found.

If a fatal error was detected where the compiling process cannot continue during compilation, the compiler outputs

a message to the console, stops compilation, and returns control to the operating system.

CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING

User’s Manual U16654EJ1V0UM68

An example that outputs an error is shown below.

 C>cc78k0s –c9024 -e prime.c -m

 78K/0S Series C Compiler Vx.xx [xx xxx xxxx]

 Copyright (C) NEC Electronics Corporation xxxx,xxxx

 A018 Option is not recognized '-m'

 Please enter ‘ CC78K0S -- ‘ , if you want help messages.

 Program aborted.
 .
 .
 .

In this example, since a nonexistent compiler option was input, an error results and the compiler stops.

If the compiler outputs error messages and stops the compilation, find the sources of these error messages in

HAPTER 9 ERROR MESSAGES and correct.

User’s Manual U16654EJ1V0UM 69

CHAPTER 4 CC78K0S FUNCTIONS

4.1 Optimization Method

Optimization is performed to create efficient object module files in the CC78K0S. Table 4-1 Optimization

Methods lists the supported optimization methods.

Table 4-1. Optimization Methods (1/2)

Phase Contents Example

<1> Execute during constant computations

compilation.

a=3*5; → a=15;

<2> True or false decision based on partial

evaluation of a logical expression

0 && (a || b) → 0

1 || (a && b) → 1

S
yn

ta
x

A
na

ly
ze

r

<3> Offset calculations of pointers, arrays, etc. Calculate the offsets during compilation.

<4> Register management Effectively use unused registers.

<5> Use the special instructions of the target

CPU.

a=a+1; → Use the inc instruction.

Use the move instruction to substitute array elements.

<6> Use short instructions. If there is an instruction with the same operation, use the

instruction with fewer bytes.

mov a, #0 or xor a, a (differs depending on the device)

C
od

e
G

en
er

at
or

<7> Change long jump instructions to short jump

instructions.

The intermediate code that was output is reprocessed.

<8> Delete common partial expressions. a=b+c; → a=b+c;

d=b+c+e; d=a+e;

<9> Move outside an instruction loop. for (i=0; i<10; i++)

{

 ...

 a=b+c;

 ...

}

 ↓
a=b+c;

for (i=0; i<10; i++)

{

 ...

 ...

}

<10> Delete unused instructions. a=a; → Delete

After a=b;, a is not referenced → Delete

(a is an automatic variable)

<11> Delete copies. a=b;

c=a+d; → c=b+d;

a is not referenced any more (a is an automatic variable).

O
pt

im
iz

er

<12> Change the calculation order in an

expression.

The calculation whose result remains in the register as valid

before other calculations is executed.

CHAPTER 4 CC78K0S FUNCTIONS

User’s Manual U16654EJ1V0UM70

Table 4-1. Optimization Methods (2/2)

Phase Contents Example

<13> Memory device allocation (temporary

variables)

Variables used locally are allocated to registers.

<14> Peephole optimization Replacement of special patterns

Examples a*1 → a, a+0 → a

<15> Decrease the strength of the calculation. Examples a*2 → a+a, a<< 1

<16> Memory device allocation (register

variables)

Data is allocated to rapidly accessible memory.

Examples Registers, saddr (only when -QR is specified)

<17> Jump optimization (-QJ option) Consecutive jump instructions are combined into one instruction.

O
pt

im
iz

er

<18> Register allocation (-QV/-QR/-RD/-RK/-RS

options)

Variables are automatically allocated to registers.

Remark <1> to <7> are performed regardless of the optimization option specifications.

The optimizations in <8> to <13>, <17>, and <18> are performed when optimization options are specified.

Future support is planned for the optimizations in <8> to <13>.

<14> and <15> are performed regardless of the optimization option specifications.

<16> is performed when there are register declarations in the C source program. However, the saddr area

is only allocated when the -QR option is specified.

For information about the optimization options, see CHAPTER 5 COMPILER OPTIONS.

CHAPTER 4 CC78K0S FUNCTIONS

User’s Manual U16654EJ1V0UM 71

4.2 ROMization Function

ROMization means that the initial values, such as the initial values of external variables, are placed in the ROM.

These values are copied to RAM when the system is executed.

The CC78K0S provides startup routines with the processing of programs in ROM as samples. For ROMization,

using the startup routines in ROM eliminates the problem of describing ROMization processes for startup.

For information about the startup routines, see 8.3 Startup Routines.

How to store a program on ROM is described below.

The startup routine is described using the example of s0ss.rel (which is used when ROMization processing is

required and the standard libraries are used if the static model is specified).

4.2.1 Linking

During linking, the startup routine, object module files, and libraries are linked. The startup routine initializes the

object program.

(1) s0sl.rel: Startup routine (when stored on ROM)

The copy routine for the initialization data is included, and the beginning of the initial data is

indicated.

The label _@cstart (symbol) is added to the start address.

(2) cl0s*.lib: Library attached to CC78K0S. The library files of the CC78K0S include the following two libraries.

<1> Runtime library

@@ is added to the symbol head of the runtime library name. For the special library cstart, however, _@ is

added to the symbol head.

<2> Standard library

_ is added to the symbol head of the standard library name.

(3) *.lib: Library created by a user. _ is added to the symbol head.

Caution The CC78K0S provides various kinds of startup routines and libraries. For details of startup

routine, refer to CHAPTER 8 STARTUP ROUTINES. For details of libraries, refer to 2.6.4 Library

files.

User’s Manual U16654EJ1V0UM72

CHAPTER 5 COMPILER OPTIONS

When the C compiler is started, the compiler options can be specified. The compiler options provide instructions

for compiler operation and indicate the information required beforehand in program execution.

The compiler options are not only specified individually, but multiple options can also be simultaneously specified.

The user selects the compiler options to match the objectives and to perform the tasks efficiently.

5.1 Specifying Compiler Options

Compiler options can be specified in the following ways.

(1) Specified in the command line when the C compiler starts.

(2) Specified in the <Compiler Options> dialog box of PM plus.

(3) Specified in the parameter file.

For the specification methods for the compiler options described above, see CHAPTER 3 PROCEDURE FROM

COMPILING TO LINKING.

Specify the suboption or file name after a compiler option without inserting a blank, such as a space. Spaces are

required between the compiler options.

Example (∆: blanks such as spaces)

 CC78K0S∆-c9024∆prime.c∆-a∆-qx3

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM 73

5.2 Prioritization of Compiler Options

For the compiler options shown in the following table, the prioritization is explained in a case where two or more

options along the vertical axis and options along the horizontal axis are simultaneously specified.

Table 5-1. Prioritization of Compiler Options

-NO -G -P -NP -D -U -A -E -X -- -SA ← Horizontal axis

-R × ×

-Q × ×

-G × ×

-K ∆ × ×

-D Ο ×

-U Ο ×

-SA × ×

-LW ∆ ∆ ∆ ∆ ×

-LL ∆ ∆ ∆ ∆ ×

-LT ∆ ∆ ∆ ∆ ×

-LF ∆ ∆ ∆ ∆ ×

-LI × ∆

↑

Vertical axis

 [Location marked by ××××]

If an option in the horizontal axis is specified, the option in the vertical axis becomes invalid.

[Location marked by ∆∆∆∆]

If an option in the horizontal axis is not specified, the option in the vertical axis becomes invalid.

[Location marked by O]

The option specified last out of an option in the horizontal axis and an option in the vertical axis has priority.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM74

Example 1 C>cc78k0s –c9024 -e sample.c -no -g

The -G option becomes invalid.

Example 2 C>cc78k0s –c9024 -e sample.c -p -k

Since the -P option is specified, the -K option is valid.

Example 3 C>cc78k0s –c9024 -e sample.c -utest -dtest=1

Since the -D option is specified last, the -U option becomes invalid, and the -D option has priority.

As with the -O and -NO options, the option specified last has priority even if N can be added before the option

name.

Example 4 C>cc78k0s –c9024 -e sample.c -o -no

Since the -NO option is specified last, the -O option becomes invalid, and the -NO option has priority.

Options not described in Table 5-1 Prioritization of Compiler Options are not particularly affected by other

options. However, if the help specification option “- -” was specified, all of the option specifications become invalid.

The help specification option cannot be specified in PM plus. To reference help in PM plus, press the help button in

each option dialog box of PM plus.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM 75

5.3 Descriptions of Compiler Options

This section describes each compiler option in detail.

This example illustrates starting the CC78K0S in the command line. To start in PM plus, specify the command,

device type specification, and options left out of the C source in the <Compiler Options> dialog box.

Example In command line

C>cc78k0s -c9024 prime.c -g

Example When using PM plus

Figure 5-1. Compiler Options Dialog Box

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM76

(1) Device type specification (-C)

-C Device type specification

Description format -C device-type

Default interpretation None

[Function]

The -C option specifies the target device designated for compilation.

[Application]

Be sure to specify this option. The C compiler compiles for the specified target device and generates the object

code for it.

[Description]

Refer to the advice about use in the supplemental product materials of the device file for the target devices that

can be specified by the -C option and the corresponding device type.

When CC78K0S is used, device files are required. Use the device file by copying it to the BIN directory or to

the DEV directory.

[Caution]

The -C option cannot be omitted. However, if the following description is in the C source, the specification can

be omitted from the command line.

#pragma pc (device type)

If different devices were specified in the C source and the command line, the device in the command line has

priority.

It is not necessary for this option to be set by the compiler option when PM plus is used, because the setting of

this option is determined by the project setting.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM 77

-C Device type specification

[Use Example]

The specification is made in the command line. The target device is the µPD789024.

C>cc78k0s -c9024 prime.c

This specification is made in the C source and the compiler is started.

#pragma pc(9024)

#define TRUE 1

#define FALSE 0

#define SIZE 200

char mark[SIZE+1];

main() {

 int i, prime, k, count;

 M

Therefore, the target device specification can be omitted from the command line.

C>cc78k0s prime.c

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM78

-C Device type specification

Different devices are specified in the C source and the command line and the compiler is started.

C source

#pragma pc(9024)

#define TRUE 1

#define FALSE 0

#define SIZE 200

char mark[SIZE+1];

main() {

 int i, prime, k, count;

Command line

C>cc78k0s -c9014 prime.c

After the command line is executed, compiling is executed as follows.

78K/0S Series C Compiler Vx.xx [xx xxx xxxx]

 Copyright (C) NEC Electronics Corporation xxxx,xxxx

 SAMPLE\PRIME.C(1) : W832 Duplicated chip specifier

 sample\prime.c(18): W745 Expected function prototype

 sample\prime.c(20): W745 Expected function prototype

 sample\prime.c(26): W622 No return value

 sample\prime.c(37): W622 No return value

 sample\prime.c(44): W622 No return value

 Target chip : uPD789014

 Device file : Vx.xx

 Compilation complete, 0 error(s) and 6 warning(s) found.

The target device specification in the command line has priority.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM 79

(2) Object module file creation specification (-O/-NO)

-O/-NO Object module file creation specification

Description formats -O [output-file-name]

-NO

Default interpretation -O [input-file-name.rel]

[Function]

The -O option specifies the output of the object module file. In addition, the output destination or output file

name is specified.

The -NO option specifies not to output the object module file.

[Application]

If you want to change the output destination or the output file name of the object module file, specify the -O

option.

If only the output of the assembler source module file is the target for compilation, specify the -NO option.

Consequently, the compilation time is reduced.

[Description]

If there is a compilation error even when the -O option is specified, the object module file is not output.

If the drive name is omitted when the -O option is specified, the object module file is output to the current drive.

If both the -O and -NO options are simultaneously specified, the last specified one is valid.

[Cautions]
To change the output destination when using PM plus, specify the new output destination in the <<Output

Path>> combo box in the <<Object Module File>> area under the <<Output>> tab.

When individual options are specified, the output file name can also be changed.

Specify the file name or the output destination in the <<Output File>> combo box under the <<Output>> tab.

[Use Example]

Both the -NO and -O options are specified (-O has priority) in this example.

C>cc78k0s -c9024 prime.c -no -o

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM80

(3) Memory assignment specification (-R/-NR, -RD/-NR, -RK/-NR, -RS/-NR, -RC/-NR)

-R/-NR Memory assignment specification

Description formats -R [process-type] (Multiple specifications are possible)

-NR

Default interpretation -NR

[Function]
The -R option specifies how to assign a program to the memory.

The -NR option invalidates the -R option.

[Application]
If you want to specify how to assign a program to the memory, specify the -R option.

[Description]
The process types that can be specified by the -R option are shown below. Process type specification cannot

be omitted. Otherwise, an abort error (A012) occurs.

Process type Function

B Assigns a bit field from the most significant bit (MSB).

D[n] (n = 1, 2, 4) Assigns an external variable/external static variable (except for the const-type variable)

automatically to the saddr area, irrespective of whether there is an sreg declaration or not.

K[n] (n = 1, 2, 4) In a static model, assigns a function argument and auto variable (except for the static auto

variable) automatically to the saddr area, irrespective of whether there is an sreg declaration

or not.

S[n] (n = 1, 2, 4) Assigns a static auto variable automatically to the saddr area, irrespective of whether there

is an sreg declaration or not.

C Does not insert any align data to allocate a 2-byte or more structure member to an even

address (i.e., performs packing structure).

Remark Multiple process types can be specified.

When the -NR option is specified, the process types are interpreted as follows.

Process type Function

B Assigns a bit field from the least significant bit (LSB).

D Does not automatically assign any variable to the saddr area.

K Does not automatically assign any variable to the saddr area.

S Does not automatically assign any variable to the saddr area.

C Does not pack any structure members.

[Use Example]

C>cc78k0s -c9024 -rds

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM 81

-RD/-NR Memory assignment specification

Description formats -RD [n] (n = 1, 2, 4)

-NR

Default interpretation -NR

[Function]
The -RD option specifies the automatic assignment of an external variable/external static variable (except for

the const-type variable) to the saddr area.

The -NR option invalidates the -RD option.

[Application]
If you want to automatically assign an external variable/external static variable (except for the const-type

variable) to the saddr area irrespective of whether there is an sreg declaration or not, specify the -RD option.

[Description]
Variables to be assigned change depending on the value of n.

Value of n Variable types to be assigned

1 char, unsigned char

2 char, unsigned char, short, unsigned short, int, unsigned int, enum, pointer

4 char, unsigned char, short, unsigned short, int, unsigned int, enum, pointer, long, unsigned

long

Omitted All variables (including structure, union, and array)

The sreg-declared variable is automatically assigned to the saddr area irrespective of -RD option specification.

The variable that is referenced by means of an extern declaration is processed as are to be assigned to the

saddr area.

The variable assigned to the saddr area by specifying this option is handled in a similar way to an sreg variable.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM82

-RK/-NR Memory assignment specification

Description formats -RK [n] (n = 1, 2, 4)

-NR

Default interpretation -NR

[Function]
The -RK option specifies the automatic assignment of a function argument and auto variable (except for the

static auto variable) to the saddr area.

The -NR option invalidates the -RK option.

[Application]
With a static model, if you want to automatically assign a function argument and auto variable (except for the

static auto variable) to the saddr area irrespective of whether there is an sreg declaration or not, specify the

-RK option.

[Description]
Variables to be assigned change depending on the value of n.

Value of n Variable types to be assigned

1 char, unsigned char

2 char, unsigned char, short, unsigned short, int, unsigned int, enum, pointer

4 char, unsigned char, short, unsigned short, int, unsigned int, enum, pointer, long, unsigned

long

Omitted All variables (including structure, union, and array)

The register-declared variable is not assigned.

The sreg-declared variable is automatically assigned to the saddr area irrespective of -RK option specification.

The function argument and auto variable that are assigned to the saddr area by specifying this option are

handled in a similar way to an sreg-declared function argument and sreg-declared auto variable.

[Caution]
This option is valid only when the -SM option is specified. If the -SM option is not specified, a warning message

is output and the -RK option is ignored.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM 83

-RS/-NR Memory assignment specification

Description formats -RS [n] (n = 1, 2, 4)

-NR

Default interpretation -NR

[Function]
The -RS option specifies the automatic assignment of a static auto variable to the saddr area.

The -NR option invalidates the -RS option.

[Application]
If you want to automatically assign a static auto variable to the saddr area irrespective of whether there is an

sreg declaration or not, specify the -RS option.

[Description]
Variables to be assigned change depending on the value of n.

Value of n Variable types to be assigned

1 char, unsigned char

2 char, unsigned char, short, unsigned short, int, unsigned int, enum, pointer

4 char, unsigned char, short, unsigned short, int, unsigned int, enum, pointer, long, unsigned

long

Omitted All variables (including structure, union, and array)

The sreg-declared variable is automatically assigned to the saddr area irrespective of -RS option specification.

The static auto variable that is assigned to the saddr area by specifying this option is handled in a similar way to

an sreg-declared auto variable.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM84

(4) Optimization specification (-Q/-NQ)

-Q/-NQ Optimization specification

Description formats -Q [optimization-type] (If multiple types are specified, specify them consecutively)

-NQ

Default interpretation -QCJLW

[Function]

The -Q option specifies calling the optimization phase to generate efficient objects.

The -NQ option invalidates the -Q option.

[Application]

If you want to improve the execution speed of the objects and reduce the code size, specify the -Q option. If

the -Q option is specified and you want to perform multiple optimizations simultaneously, specify the

optimization types consecutively. For details, see Table 5-2 Optimization Types.

[Description]

Table 5-2 lists the optimization types that can be specified by the -Q option.

Table 5-2. Optimization Types (1/2)

Optimization Type Process Description

No specification Regarded as the -QCJLW specification.

U (-QU option) Regards the char with no qualifier as a unsigned char to improve code efficiency

C[n] (n = 1, 2)

(-QC option)

By executing char calculations without integral promotion, the code becomes more efficient. Integral

promotion indicates an ANSI-C rule that is set so that a calculation for a type smaller than an integer

(char, short) is converted to int Note.

The scope changes depending on the value of n as follows. If n is omitted, it is interpreted as n = 1.

1: Only variables are not integral-promoted

2: Neither variables nor constants are integral-promoted

J (-QJ option) Optimize jump instructions.

X[n] (n = 1 to 3)

(-QX option)

Assigns the optimization options automatically according to the priority of speed/code size.

The assigned option differs depending on the value of n as follows. If n is omitted, it is interpreted

as n = 2.

1: Speed precedence. Regarded as the -QCJW option specification.

2: Default. Regarded as the -Q option specification.

3: Code size precedence. Regarded as the -QCJL4W option specification.

Q Switches to the library set specialized for 1-byte data.

R Adds a register variable to the register and also assigns the register variable to the saddr area.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM 85

-Q/-NQ Optimization specification

Table 5-2. Optimization Types (2/2)

Optimization Type Process Description

W[n] (n = 1 to 5) Outputs an efficient code and design for the effective use of the registers by changing the

execution order in an expression (i.e., changing the execution order of the right subexpression

and the left subexpression in an expression with two terms).

However, if the option is not included (although within the scope of the standard, since the ANSI-C

standard omits some of the operators and does not set the execution order), the result of the

execution sometimes differs. According to the ANSI-C standard, this is not a problem in a properly

written source.

The scope changes depending on the value of n as follows. If n is omitted, it is interpreted as n =

1.

1: Changes the execution order in an expression

2: Changes the execution order in an expression. Assumed no carry occurs when the saddr-

aligned char/unsigned char/short/unsigned short/int/unsigned int array is referenced with an

unsigned char variable, performs speed-priority address calculation of lower 1 byte.

3: Applies the scope 2 to areas other than the saddr area

4: Changes the execution order in an expression. Assumed no carry occurs when the saddr-

aligned char/unsigned char/short/unsigned short/int/unsigned int array is referenced with an

unsigned char variable, performs code size-priority address calculation of lower 1 byte.

5: Applies the scope 4 to areas other than the saddr area

V (-QV option) Assigns an automatic variable automatically to a register or the saddr area

L[n] (n = 1 to 4)

(-QL option)

The constant code pattern is replaced with a library.

The scope changes depending on the value of n as follows. If n is omitted, it is interpreted as n =

3.

1: No replacement

2: Executes the only the processes before/after a function

3: Executes the processes before/after a function, loads/stores a long-type variable, and

DE/HL indirect reference code

4.: Executes the processes before/after a function, loads/stores a long-type variable, and

DE/HL indirect reference code and one instruction

Note When the -QC option is specified in the CC78K0S, the types of constants and character constants are

handled in the following way.

0 to 127, 0x00 to 0x7F, 00 to 0177 char type

128 to 255, 0x80 to 0xFF, 0200 to 0377 unsigned char type

0U to 255U unsigned char type

 ‘\0’ to ‘\377’ char type

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM86

-Q/-NQ Optimization specification

However, when the -QU option is specified, character constants in the range from ‘\200’ to ‘\377’ are handled as

unsigned char type constants and have the values from +128 to +255.

The constant added – (minus) is treated as follows.

–0 to 128 char type

From –129 int type

If the result of constant or variable calculation is overflow, cast either the constant or variable to a type capable of

representing the calculation result. By casting or specifying the -QI option, changing the data type can be avoided.

When the -QC1 option is specified, constant calculation is sign-extended.

(Example) When -QC2 option is specified

int i;

i = (int)20 * 20; /* 400 */

Multiple optimization types can be specified.

If the -Q option or optimization types are omitted, the optimization is identical to when the -QCJLW option is

specified.

To delete a portion of the default options specify the options other than the options you want to delete (Example

-QJ is specified → Deletes -QCLW).

If both the object module file and the assembler source module file are not output, the -Q option other than -QU

becomes invalid.

If both the -Q and -NQ options are simultaneously specified, the last specified one is valid.

If several -Q options are simultaneously specified, the last specified one is valid.

If both the -QR and the -SM are simultaneously specified, a warning message is output and -QR is ignored.

[Use Example]

Optimize so that a char without modifier is regarded as unsigned.

C>cc78k0s -c9024 prime.c -qu

If both the -QC and -QR options are specified as below, the -QC option becomes invalid, and the -QR option is

validated.

C>cc78k0s -c9024 prime.c -qc -qr

If you want to validate both the -QC and -QR options, input the following command.

C>cc78k0s -c9024 prime.c -qcr

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM 87

(5) Debugging information output specification (-G/-NG)

-G/-NG Debugging information output specification

Description formats -G [n] (n = 1, 2)

-NG

Default interpretation -G2

[Function]

The -G option specifies the addition of debugging information to the object module file.

The -NG option invalidates the -G option.

[Application]

If the -G option is not specified, the line numbers and symbol information needed in the object module file to be

input to the debugger are not output. Therefore, in source level debugging, all of the modules to be linked are

compiled by specifying the -G option.

[Description]

The operation differs depending on the value of n as follows.

Value of n Function

Omitted Regarded as n = 2.

1 Adds debug information (information starting with $DGS or $DGL) to the object module file only.

No debug information is added to the assembler source module file.

This option makes it easier to reference an assembler file.

Source debugging of object files is available since debug information is added to them.

2 Adds debug information to the object module file and the assembler source module file.

If both -G and -NG are simultaneously specified, the last specified one is valid.

If both the object module file and the assembler source module file are not output, the -G option becomes

invalid.

[Use Example]

The -G option is specified.

C>cc78k0s -c9024 prime.c -g

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM88

(6) Preprocess list file creation specification (-P, -K)

-P Preprocess list file creation specification

Description formats -P [output-file-name]

Default interpretation Nothing (no file is output)

[Function]

The -P option specifies the output of the preprocess list file. In addition, the output destination or output file

name is specified. If the -P option is omitted, no preprocess list file is output.

[Application]

If you want to output the source file after preprocess processing is executed according to the -K option process

type, or want to change the output destination or the output file name of the preprocess list file, specify the -P

option.

[Description]

If the output file name is omitted when the -P option is specified, the preprocess list file name becomes “input-

file-name.ppl”.

If the drive name is omitted when the -P option is specified, the preprocess list file is output to the current drive.

[Cautions]
To change the output destination when using PM plus, specify the new output destination in the <<Output

Path>> combo box in the <<Create Preprocess List File>> area under the <<Output>> tab.

When individual options are specified, the output file name can also be changed.

Specify the file name or the output destination in the <<Output File>> combo box under the <<Output>> tab.

[Use Example]

The preprocess list file sample.ppl is output.

C>cc78k0s -c9024 prime.c -psample.ppl

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM 89

-K Preprocess list file creation specification

Description formats -K [process-type] (Multiple specifications are possible)

Default interpretation -KFLN

[Function]

The -K option specifies the processing for the preprocess list.

[Application]

This option is specified when comments are deleted and definition expansions are referenced when the

preprocess list file is output.

[Description]

The process types that can be specified by the -K option are listed below.

Table 5-3. Process Types of -K Option

Process Type Description

Omitted Same as specifying FLN

C Delete comments

D #define expansion

F Conditional compilations of #if, #ifdef, and #ifndef

I #include expansion

L #line processing

N Line number and paging processing

Remark Multiple process types can be specified.

If the -P option is not specified, the -K option becomes invalid.

If several -K options are simultaneously specified, the last specified one is valid.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM90

-K Preprocess list file creation specification

[Use Example]

Comments are deleted from the preprocess list prime.ppl, and line number and paging processing are

performed.

C>cc78k0s -c9024 prime.c -p -kcn

prime.ppl is referenced.

/*

 78K/0S Series C Compiler VX.XX Preprocess List

 Date: XX XXX XXXX Page: 1

 Command : -c9024 prime.c –p -kcn

 In-file : prime.c

 PPL-file : prime.ppl

 Para-file :

 */

 1 : #define TRUE 1

 2 : #define FALSE 0

 3 : #define SIZE 200

 4 :

 5 : char mark[SIZE+1];

 6 :

 7 : main()

 8 : {

 M

/*

 Target chip : uPD789024

 Device file : VX.XX

*/

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM 91

(7) Preprocess specification (-D, -U, -I)

-D Preprocess specification

Description formats -D macro-name [=definition-name] [, macro-name [=definition-name]]...

(Multiple specifications are possible)

Default interpretation Only the macro definitions in a C source module file are valid.

[Function]

The -D option specifies the same macro definition as the #define statement in the C source.

[Application]

Specify this option when you want to replace all of the macro names for the specified constants.

[Description]

By delimiting each definition by a comma ‘,’, multiple macro definitions are made at one time.

Spaces are not allowed before and after ‘=’ and ‘,’.

If the definition name is omitted, the name is defined as ‘1’.

If the same macro name was specified in both the -D and -U options, the last specified one is valid.

[Use Example]

C>cc78k0s -c9024 prime.c -dTEST,TIME=10

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM92

-U Preprocess specification

Description formats -U macro-name [, macro-name]... (Multiple specifications are possible)

Default interpretation A macro definition specified with -D is valid.

[Function]

The -U option disables macro definitions similar to the #undef statement in the C source.

[Application]

Specify this option to invalidate the macro name defined by the -D option.

[Description]

By delimiting each macro name by a comma ‘,’, multiple macro definitions can be disabled at one time. Spaces

are not allowed before and after a comma ‘,’.

A macro definition that can be disabled by the -U option is one that has been defined by the -D option. A macro

name defined by #define in a C source module file or a system macro name of the compiler cannot be disabled

by the -U option.

If the same macro name is specified by both the -D and -U options, the last specified one is valid.

[Use Example]

The same macro name is specified by the -D and -U options. In this example, the TEST macro is disabled.

C>cc78k0s -c9024 prime.c -dTEST -uTEST

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM 93

-I Preprocess specification

Description format -I directory [, directory]... (Multiple specifications are possible)

Default interpretation Directory with source fileNote 1

Directory specified by environment variable INC78K0S

C:\NECTools32\INC78K0SNote 2

[Function]

The -I option specifies input of the include files specified by the #include statement in the C source from the

specified directory.

[Application]

Specify this option when you want to search for the include files from a certain directory.

[Description]

By using a comma ‘,’ to delimit, multiple directories can be specified at one time.

Spaces cannot be inserted before and after a comma ‘,’.

If multiple directories are specified after -I, or if the -I option is specified multiple times, the files specified by

#include are searched for in the specified order.

The search sequence is as follows.

• Directory with source fileNote 1

• Directory specified with -I option

• Directory specified with environment variable INC78K0S

• C:\NECTools32\INC78K0SNote 2

Notes 1. If the include file name is specified with “ ” (double quotation marks) in the #include statement,

directories with source files are searched first. If the include file name is specified with < >, search is

not performed.

2. This is an example of when the CC78K0S is installed to C:\NECTools32 (Windows version).

[Use Example]

The -I option is specified.

C>cc78k0s -c9024 prime.c -ib:, b:\sample

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM94

(8) Assembler source module file creation specification (-A, -SA)

-A Assembler source module file creation specification

Description formats -A [output-file-name]

Default interpretation No assembler source module file is output.

Output file *.asm (*: alphanumeric symbols)

[Function]

The -A option specifies the output of the assembler source module file. In addition, the output destination or

output file name is specified.

[Application]

If you want to change the output destination or the output file name of the assembler source module file, specify

the -A option.

[Description]

A disk file name or device file name can be specified as the file name.

If the output file name is omitted when the -A option is specified, the assembler source module file name

becomes “input-file-name.asm”.

If the drive name is omitted when the -A option is specified, the assembler source module file is output to the

current drive.

If both the -A and -SA options are simultaneously specified, the -SA option is ignored.

[Caution]
To change the output destination when using PM plus, specify the new output destination in the <<Output

Path>> combo box in the <<Create Assembler Source Module File>> area under the <<Output>> tab, and

select “without C Source[-a]”.

When individual options are specified, the output file name can also be changed.

Specify the file name or the output destination in the <<Output File>> combo box under the <<Output>> tab.

[Use Example]

The assembler source module file sample.asm is created.

C>cc78k0s -c9024 prime.c -asample.asm

The assembler source module file is output to the printer.

C>cc78k0s -c9024 prime.c -aprn

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM 95

-SA Assembler source module file creation specification

Description formats -SA [output-file-name]

Default interpretation No assembler source module file is output.

Output file *.asm (*: alphanumeric symbols)

[Function]

The -SA option adds the C source as a comment to the assembler source module file. In addition, the output

destination or output file name is specified.

[Application]

If you want to output the assembler source module file and the C source module file together, specify the -SA

option.

[Description]

A disk file name or device file name can be specified as the file name.

If the output file name is omitted when the -SA option is specified, the assembler source module file name

becomes “input-file-name.asm”.

If the drive name is omitted when the -SA option is specified, the assembler source module file is output to the

current drive.

If both the -SA and -A options are simultaneously specified, the -SA option is ignored.

The C source in an include file is not added to the comments in the output assembler source module.

However, if the -LI option is specified, the C source in the include file is also added to the comments.

[Caution]
To change the output destination when using PM plus, specify the new output destination in the <<Output

Path>> combo box in the <<Create Assembler Source Module File>> area under the <<Output>> tab, and

select either “with C Source[without Include][-sa]” or “with C Source[with Include][-sa -li]”.

When individual options are specified, the output file name can also be changed.

Specify the file name or the output destination in the <<Output File>> combo box under the <<Output>> tab.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM96

-SA Assembler source module file creation specification

[Use Example]

The -SA option is specified.

C>cc78k0s -c9024 prime.c -sa

prime.asm is referenced.

; 78K/0S Series C Compiler Vx.xx Assembler Source

; Date:xx xxx xxxx Time:xx:xx:xx

; Command : -c9024 prime.c -sa

; In-file : prime.c

; Asm-file : prime.asm

; Para-file :

$PROCESSOR(9024)

$DEBUG

$NODEBUGA

$KANJICODE SJIS

$TOL_INF 03FH, 0130H, 02H, 00H

$DGS FIL_NAM, .file, 033H, 0FFFEH, 03FH, 067H, 01H, 00H

$DGS AUX_FIL, prime.c

$DGS MOD_NAM, prime, 00H, 0FFFEH, 00H, 077H, 00H, 00H

EXTRN _@cprep

EXTRN _@RTARG0

EXTRN @@isrem

EXTRN _@cdisp

PUBLIC _mark

PUBLIC _main

PUBLIC _printf

PUBLIC _putchar

@@CODE CSEG

_main:

$DGL 1,13

push hl ;[INF] 1, 4

movw ax,#08H ;[INF] 3, 6

callt [_@cprep] ;[INF] 1, 8

??bf_main:

; line 9 : int i, prime, k, count;

; line 10 :

; line 11 : count = 0;

$DGL 0,4

xor a,a ;[INF] 2, 4

mov [hl],a ; count ;[INF] 1, 6

mov [hl+1],a ; count ;[INF] 2, 6

; line 12 :

; line 13 : for (i = 0 ; i <= SIZE ; i++)

…
…

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM 97

-SA Assembler source module file creation specification

$DGL 0,6

mov [hl+6],a ; i ;[INF] 2, 6

mov [hl+7],a ; i ;[INF] 2, 6

?L0003:

mov a,[hl+6] ; i ;[INF] 2, 6

xch a,x ;[INF] 1, 4

mov a,[hl+7] ; i ;[INF] 2, 6

xor a,#080H ; 128 ;[INF] 2, 4

cmpw ax,#080C8H ; -32568 ;[INF] 3, 6

bc $$+4 ;[INF] 2, 6

bnz $?L0004 ;[INF] 2, 6

END

; *** Code Information ***

;

; $FILE C:\NECTools32\SMP78K0S\CC78K0S\prime.c

;

; $FUNC main(8)

; bc=(void)

; CODE SIZE= 222 bytes, CLOCK_SIZE= 654 clocks, STACK_SIZE= 14 bytes

;

; $CALL printf(18)

; bc=(pointer:ax, int:[sp+2])

;

; $CALL putchar(20)

; bc=(int:ax)

;

; $CALL printf(25)

; bc=(pointer:ax, int:[sp+2])

;

; $FUNC printf(31)

; bc=(pointer s:ax, int i:[sp+2])

; CODE SIZE= 28 bytes, CLOCK_SIZE= 108 clocks, STACK_SIZE= 10 bytes

;

; $FUNC putchar(41)

; bc=(char c:x)

; CODE SIZE= 14 bytes, CLOCK_SIZE= 58 clocks, STACK_SIZE= 8 bytes

; Target chip : uPD789024

; Device file : Vx.xx

C source is added as a comment.

…

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM98

(9) Error list file creation specification (-E, -SE)

-E Error list file creation specification

Description formats -E [output-file-name]

Default interpretation No error list file is output.

Output file *.ecc (*: alphanumeric symbols)

[Function]

The -E option specifies the output of the error list file. In addition, the output destination or output file name is

specified.

[Application]

If you want to change the output destination or the output file name of the error list file, specify the -E option.

[Description]

A disk file name or device file name can be specified as the file name.

If the output file name is omitted when the -E option is specified, the error list file name becomes “input-file-

name.ecc”.

If the drive name is omitted when the -E option is specified, the error list file is output to the current drive.

If the -W0 option is specified, warning messages are not output.

[Cautions]
To change the output destination when using PM plus, specify the new output destination in the <<Output

Path>> combo box in the <<Create Error List File>> area under the <<Output>> tab and select “without C

Source[-e]”.

When individual options are specified, the output file name can also be changed.

Specify the file name or the output destination in the <<Output File>> combo box under the <<Output>> tab.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM 99

-E Error list file creation specification

[Use Example]

The -E option is specified.

C>cc78k0s -c9024 prime.c -e

The error list file is referenced.

prime.c(18) : W745 Expected function prototype

prime.c(20) : W745 Expected function prototype

prime.c(26) : W622 No return value

prime.c(37) : W622 No return value

prime.c(44) : W622 No return value

Target chip : uPD789024

Device file : Vx.xx

Compilation complete, 0 error(s) and 5 warning(s) found.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM100

-SE Error list file creation specification

Description formats -SE [output-file-name]

Default interpretation No error list file is output.

Output files *.cer : Error list for *.C files (*: alphanumeric symbols)

*.her : Error list for *.H files

*.er : Error list for files other than *.C and *.H files

[Function]

The -SE option adds the C source module file to the error list file. In addition, the output destination or output

file name is specified.

[Application]

If you want to output the error list file and the C source module file together, specify the -SE option.

[Description]

A disk file name or device file name can be specified as the file name.

If the output file name is omitted when the -SE option is specified, the error list file name becomes ‘input-file-

name.cer’.

If the drive name is omitted when the -SE option is specified, the error list file is output to the current drive.

The directory and the file name cannot be specified for include files. If the file type of the include file is ‘H,’ the

error list file with the file type of ‘her’ is output to the current drive. It the file type of the include file is ‘C,’ the

error list file with the file type of ‘cer’ is output. In all other cases, the error list file with the ‘er’ file type is output.

If there weren’t any errors, the C source is not added. In this case, the error list file is not created for the

include file.

If the -W0 option is specified, warning messages are not output.

[Cautions]
To change the output destination when using PM plus, specify the new output destination in the <<Output

Path>> combo box in the <<Create Error List File>> area under the <<Output>> tab and select “with C Source[-

se]”.

When individual options are specified, the output file name can also be changed.

Specify the file name or the output destination in the <<Output File>> combo box under the <<Output>> tab.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM 101

-SE Error list file creation specification

 [Use Example]

The -SE option is specified.

C>cc78k0s -c9024 prime.c -se

prime.cer is referenced.

 /*

 78K/0S Series C Compiler VX.XX Error List Date:XX XXX XXXX Time:XX:XX:XX

 Command : -c9024 prime.c -se

 In-file : prime.c

 Err-file : prime.cer

 Para-file :

 */

 #defineTRUE 1

 #defineFALSE 0

 #defineSIZE 200

 char mark[SIZE+1];

 main()

 {

 M

 prime = i + i + 3;

 printf("%6d",prime);

 *** WARNING W745 Expected function prototype

 count++;

 if((count%8) == 0) putchar('\n');

 *** WARNING W745 Expected function prototype

 for (k = i + prime ; k <= SIZE ; k += prime)

 M

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM102

(10)Cross-reference list file creation specification (-X)

-X Cross-reference list file creation specification

Description formats -X [output-file-name]

Default interpretation No cross-reference list file is output.

Output file *.xrf (*: alphanumeric symbols)

[Function]

The -X option specifies the output of the cross-reference list file. In addition, the output destination or output file

name is specified. The cross-reference list file is valuable for checking the referencing frequency, definition,

and referenced point of a symbol.

[Application]

If you want to output the cross-reference list file or want to change the output destination or the output file name

of the cross-reference list file, specify the -X option.

[Description]

A disk file name or a device file name can be specified as the file name.

If the output file name is omitted when the -X option is specified, the cross-reference list file name becomes

‘input-file-name.xrf’.

The cross-reference file is created even if a compile error except for fatal errors (F101, abort errors other than

A024) occurs. In such a case, however, the file contents are not guaranteed.

[Cautions]
To change the output destination when using PM plus, specify the new output destination in the <<Output

Path>> combo box in the <<Create Cross Reference List File[-x]>> area under the <<Output>> tab.

When individual options are specified, the output file name can also be changed.

Specify the file name or the output destination in the <<Output File>> combo box under the <<Output>> tab.

[Use Example]

The -X option is specified.

C> cc78k0s -c9024 prime.c -x

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM 103

-X Cross-reference list file creation specification

prime.xrf is referenced.

78K/0S Series C Compiler VX.XX Cross reference List Date:XX XXX XXXX Page: 1

Command : -c9024 prime -x

In-file : prime.c

Xref-file : prime.xrf

Para-file :

ATTRIB MODIFY TYPE SYMBOL DEFINE REFERENCE

EXTERN array mark 5 14 16 22

EXTERN func main 7

AUTO1 int i 9 13 13 13 14 15

15 15 16 17 17

 21

AUTO1 int prime 9 17 18 21 21

AUTO1 int k 9 21 21 21 22

AUTO1 int count 9 11 19 20 25

EXTERN func printf 28 18 25

EXTERN func putchar 39 20

PARAM pointer s 29 36

PARAM int i 30 35

AUTO1 int j 32 35

AUTO1 pointer ss 33 36

PARAM char c 40 43

AUTO1 char d 42 43

 #define TRUE 1 14

 #define FALSE 2 22

 #define SIZE 3 5 13 15 21

 Target chip : uPD789024

 Device file : Vx.xx

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM104

(11)List format specification (-LW, -LL, -LT, -LF, -LI)

-LW List format specification

Description format -LW [number-of-characters]

Default interpretation -LW132 (For console output, this becomes 80 characters)

[Function]

The -LW option specifies the number of characters in one line of each type of list file.

[Application]

If you want to change the number of characters in one line of each list file, specify the -LW option.

[Description]

The range of the number of characters that can be specified by the -LW option is as follows and does not

include terminators (CR, LF).

72 ≤ number of characters printed in one line ≤ 132

If the number of characters is omitted, the number of characters in one line becomes 132 characters (If output

to the console, there is a maximum of 80 characters).

If the list file specification specifies nothing, the -LW option is invalid.

[Use Example]

The cross-reference list file when the -LW option is omitted is output to “file-name.xrf”.

C> cc78k0s -c9024 prime.c -x

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM 105

-LL List format specification

Description format -LL [number-of-lines]

Default interpretation -LL66 (For console output, this becomes 65,535 lines)

[Function]

The -LL option specifies the number of lines on one page of each type of list file.

[Application]

If you want to change the number of lines in one page in each type of list file, specify the -LL option.

[Description]

The range of the number of lines that can be specified by the -LL option is as follows.

20 ≤ number of lines printed on one page ≤ 65535

If -LL0 is specified, there is no page break.

If the number of lines is omitted, the number of lines on one page becomes 66 lines (If output to the console,

this becomes 65,535).

If the list file specification specifies nothing, the -LL option is invalid.

[Use Example]

The number of lines on one page of the cross-reference list file is set to 20 lines.

C> cc78k0s -c9024 prime.c -x -ll20

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM106

-LT List format specification

Description format -LT [number-of-characters]

Default interpretation -LT8

[Function]

The -LT option indicates the basic number of characters for outputting a horizontal tabulation (HT) code in the

source module file, replacing it with several blanks (spaces) in each list (tabulation processing).

[Application]

If few characters are specified in one line in each list by the -LW option, few blanks will result from an HT code,

so specify the -LT option to reduce the number of characters.

[Description]

The range of the number of characters that can be specified by the -LT option is as follows.

0 ≤ number of specifiable characters ≤ 8

If the -LT0 is specified, the tabulation processing is not performed, and the tab codes are output.

If the number of characters is omitted, the number of expansion characters of a tab becomes 8 characters.

If the list file specification specifies nothing, the -LT option is invalid.

[Use Example]

The -LT option is omitted.

C> cc78k0s -c9024 prime.c -p

The blanks based on the HT code are set to one (1).

C> cc78k0s -c9024 prime.c -p -lt1

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM 107

-LF List format specification

Description format -LF

Default interpretation None

[Function]

The -LF option specifies adding the new page break code at the end of each list file.

[Description]

If the list file specification specifies nothing, the -LF option is invalid.

[Use Example]

The -LF option is specified.

C> cc78k0s -c9024 prime.c -a -lf

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM108

-LI List format specification

Description format -LI

Default interpretation None

[Function]

The -LI option adds the C source of the include file to the assembler source module file with C source

comments.

[Description]

If the -SA option is not specified, this option is ignored.

[Use Example]

The -LI option is specified.

C> cc78k0s -c9024 prime.c -sa -li

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM 109

(12)Warning output specification (-W)

-W Warning output specification

Description format -W [level]

Default interpretation -W1

[Function]

The -W option specifies the output of warning messages to the console.

[Application]

This option specifies whether to output warning messages to the console. Detailed messages can also be

output.

[Description]

The levels of the warning message are given below.

Table 5-4. Warning Message Levels

Level Description

0 Do not output warning messages.

1 Output normal warning messages.

2 Output detailed warning messages.

If the -E or -SE option is specified, the warning messages are output to the error list file.

Level 0 indicates not to output warning messages to the console and the error list file (when -E or -SE is

specified).

[Use Example]

The warning messages when the -W option is omitted are referenced.

C> cc78k0s -c9024 prime.c

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM110

(13)Execution state display specification (-V/-NV)

-V/-NV Execution state display specification

Description formats -V

-NV

Default interpretation -NV

[Function]

The -V option outputs the execution state of the current compilation to the console.

The -NV option invalidates the -V option.

[Application]

Specify this option to execute compiling while continuing to output the execution state of the compilation to the

console.

[Description]

The phase name and function names in the process are output.

If both the -V and -NV options are simultaneously specified, the last specified one is valid.

[Use Example]

The -V option is specified.

C> cc78k0s -c9024 prime.c -v

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM 111

(14)Parameter file specification (-F)

-F Parameter file specification

Description format -F file-name

Default interpretation The options and the input file name can be input only from the command line.

[Function]

The -F option specifies the input of the options or input file name from the specified file.

[Application]

When sufficient information for starting a compiler cannot be specified in a command line because multiple

options are input while compiling, specify the -F option.

When specifying options repeatedly for compilation, describe the options in the parameter file and specify the

-F option.

[Description]

Parameter file nesting is not allowed.

The number of characters that can be described in a parameter file is not limited.

Spaces and tabs delimit the options or input file names.

The options or input file names described in the parameter file are expanded at the location of the parameter

file specification in the command line.

The prioritization of the expanded options is that the last specified one is valid.

Characters described after the ‘;’ and ‘#’ are interpreted as comments until the end of the line.

[Caution]

This option cannot be used when using PM plus (an error occurs).

[Use Example]

Contents of parameter file prime.pcc

; parameter file

prime.c -c9024 -aprime.asm -e -x

prime.pcc is used in the compilation.

C> cc78k0s -fprime.pcc

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM112

(15)Temporary file creation directory specification (-T)

-T Temporary file creation directory specification

Description format -T directory

Default interpretation The files are created in the drive and directory specified by the environment

variable TMP. If not specified in a Windows-based system, the files are created

in the current drive and current directory. If UNIX-based, they are created in /tmp.

[Function]

The -T option specifies the drive and directory where the temporary files are created.

[Application]

The location for creating the temporary files can be specified.

[Description]

Even if there are temporary files that have been created previously, if a file is not protected, it is overwritten the

next time it is created.

A temporary file expands in memory to the required memory size. If the required memory size is no longer

available, the temporary file is created in the specified directory and the memory contents are written to the file.

Accesses to subsequent temporary files are to files not in memory.

The temporary files are deleted when compilation ends. By pressing CTRL-C, the files are deleted when

compilation stops.

[Use Example]

This specifies output of the temporary files to the TMP directory.

C> cc78k0s -c9024 prime.c -ttmp

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM 113

(16)Help specification (--/-?/-H)

--/-?/-H Help specification

Description formats --, -?, -H

Default interpretation Nothing is displayed

[Function]

The --, -?, and -H options display brief explanations of the options and the help messages such as the default

options on the console (valid only in the command lineNote).

Note Do not specify this option in PM plus. To reference help in PM plus, press the help button in the

<Compiler Options> dialog box.

[Application]

The option and its description are displayed. Refer to them when running the C compiler.

[Description]

If the --, -?, or -H option is specified, all of the other compiler options become invalid.

When viewing the continuation of a displayed help message, press the return key. To exit the display before

the end, press any character other than the return key, and then press the return key.

[Use Example]

The -H option is specified.

C> cc78k0s -H

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM114

(17)Function expansion specification (-Z/-NZ)

-Z/-NZ Function expansion specification

Description format -Z [type] (If multiple types are specified, specify them consecutively)

-NZ

Default interpretation -NZ

[Function]

The -Z option enables the processing for type specification.

The -NZ option invalidates the -Z option.

Types must not be omitted, otherwise, an abort error (A012) will occur.

[Application]

The functions for processing by the following type specifications are available for the 78K Series expansion

functions.

[Description]

The type specifications of the -Z option are as follows.

Table 5-5. Type Specifications of -Z Option (1/2)

Type Specification Description

Omitted Regarded as -NZ specification.

P The characters after “//” until the line return are interpreted as a comment.

C Nested comments “/* */” are allowed.

SNote Interprets the type of kanji in comments as SJIS code.

ENote Interprets the type of kanji in comments as EUC code.

NNote Interprets comments as not containing kanji codes.

B char-/unsigned char-type argument and return value are not int-extended.

Note S, E, and N cannot be specified simultaneously.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM 115

-Z/-NZ Function expansion specification

Table 5-5. Type Specifications of -Z Option (2/2)

Type Specification Description

A Functions not in the ANSI standard are illegal. The ANSI-compliant portion of the functions are

valid.

Specifically, the following tasks are performed.

The following are no longer reserved words.

callt, noauto, norec, sreg, bit, boolean, #asm, #endasm

The trigraph sequence (3-character representation) becomes valid.

The compiler-defined macro _ _STDC_ _ is 1.

The following warning is output for a char type bit field.

(W787 Bit field type is char)

If -W2 is specified, the following warnings are output for the -QC, -ZP, -ZC, -ZI, and -ZL options.

(W029 ‘-QC’ option is not portable)

(W031 ‘-ZP’ option is not portable)

(W032 ‘-ZC’ option is not portable)

(W036 ‘-ZI’ option is not portable)

(W037 ‘-ZL’ option is not portable)

If –W2 is specified, the following warning is output for each #pragma statement.

(W849 #pragma statement is not portable)

If –W2 is specified, the following warning is output for an _ _asm statement and the assemble

output is performed.

(W850 Asm statement is not portable)

If -W2 is specified, the following error is output for an #asm to #endasm block.

(F801 Undefined control, etc.)

M[n]

(n = 1, 2)

Enables use of extend specifications for static model.

Up to 6 arguments can be described in int size, and up to 9 arguments can be described in char size.

Enables description of structure/union return value for 1-, 2-byte structure/union arguments and

function return values.

The _@KREGxx utilization method is changed by the value of n. If n is omitted, n is considered to be

1.

1: Use _@KREGxx as the shared area only for leaf function.

2: Perform _@KREGxx save/restore and allocate argument and automatic variable to _@KREGxx.

D Place the processing routines before and after the function into a library.

Outputs warning for -QL4 and processes as -QL3.

R Automatically adds a pascal function modifier.

I Regards int and short descriptions as char. The compiler definition macro _ _FROM_INT_TO_CHAR_ _ is

regarded as 1.

L Regards long description as int. The compiler definition macro _ _FROM_LONG_TO_INT_ _ is

regarded as 1.

[Use Example]

The -ZC and -ZP options are specified.

C> cc78k0s -c9024 prime.c -zpc

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM116

(18)Device file search path (-Y)

-Y Device file search path

Description format -Y

Default interpretation Normal search path only

[Function]

The -Y option first searches the path specified as the search path for reading device files. If it does not exist,

the normal paths are searched.

The normal search paths are as follows.

(1) <..\dev> (for the path where cc78k0s.exe started)

(2) Path where CC78K0S started

(3) Current directory

(4) PATH environment variable

[Application]

If the device file is not installed in the normal search path, but in a special directory, the path is specified by this

option.

[Caution]

When using PM plus, a directory is determined when registering a device file at “Device Name:” in the <Project

Setup> dialog box. Therefore, it is not necessary to specify this option when setting an option with this

compiler.

[Use Example]

The -Y option is specified.

C> cc78k0s -c9024 -ya:\tmp\dev

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM 117

(19)Static model specification (-SM)

-SM Static model specification

Description formats -SM [n] (n = 1 to 16)

Default interpretation Normal model (n = 0)

[Function]

Specify the -SM option while compiling. The object when the -SM option is specified is called a static model,

and the object when the -SM option is not specified is called a normal model.

Normally, the instruction accessing a static area is shorter and can be executed faster than the instruction

accessing a stack frame. Therefore, an object code can be shortened and execution speed improved.

Interrupts can be serviced faster if the -SM option is specified. This is because the saving/returning of

arguments and variables that use the saddr area (i.e., register variables in the interrupt function,

arguments/automatic variables in the norec function, arguments of the run-time library, etc.) is not performed in

the static model, whereas it is performed in the normal model.

Memory capacitance is saved since data is shared with multiple leaf functions.

[Application]

If you want to improve the object execution speed or want to make interrupt servicing faster, specify the -SM

option to change a normal model to a static model.

[Description]

All function arguments are given via a register, and a function assigns function arguments and automatic

variables to a static area.

The leaf function assigns function arguments and automatic variables from higher addresses to the FEFFH and

lower area of the saddr in a description order. This saddr area is called the “common area”, since this area is

shared by the leaf functions of all modules.

The value of n indicates the size of the common area.

When n = 0 or n is omitted, there is no common area.

The compiler definition macro _ _STATIC_ _MODEL is assumed to be 1.

sreg/_ _sreg keyword can be added to function arguments and automatic variables. The function arguments

and automatic variables that have an sreg/_ _sreg keyword added are assigned to the saddr area, and can be

manipulated in 1-bit units.

Specifying the -RK option assigns the function argument and automatic variable (except for a static variable in a

function) to the saddr area and enables them to be manipulated in 1-bit units.

CHAPTER 5 COMPILER OPTIONS

User’s Manual U16654EJ1V0UM118

-SM Static model specification

[Caution]

Since arguments and automatic variables are secured statically, the contents of arguments and automatic

variables of a recursive function may be damaged. When a recursive function calls itself, an error occurs.

When a function is called to where another function has been called, however, no error occurs since the

compiler cannot detect it.

If a function that is processed during an interrupt is called by means of interrupt servicing (interrupt function or

function called by interrupt function), its argument/automatic variable may be damaged.

Even if a function that is processed during interrupt servicing uses a common area, saving/returning to/from a

common area is not performed.

[Use Example]

C> cc78k0s -c9024 test.c -sm16

User’s Manual U16654EJ1V0UM 119

CHAPTER 6 C COMPILER OUTPUT FILES

The CC78K0S outputs the following files.

• Object module file

• Assembler source module file

• Preprocess list file

• Cross-reference list file

• Error list file

6.1 Object Module File

The object module file is a binary image file containing C source program compilation results.

If the debug data output option (-G) has been specified, the object module file will also contain debug data.

6.2 Assembler Source Module File

The assembler source module file is an ASCII image list of C source program compilation results, and is a source

module file in assembly language that corresponds to the target C source program.

It can also include the C source program to this file as comments by setting the assembler source module file

creation specification option (-SA).

CHAPTER 6 C COMPILER OUTPUT FILES

User’s Manual U16654EJ1V0UM120

[Output format]

 ; 78K/0S Series C Compiler V(1)x.xx Assembler Source
 ; Date:(2)xxxxx Time:(3)xxxxx

 ; Command : (4)-c9024 prime.c -sa
 ; In-file : (5)prime.c
 ; Asm-file : (6)prime.asm
 ; Para-file : (7)

 $PROCESSOR((8)9024)
(9) $DEBUG
(10)$NODEBUGA
(11)$KANJICODE SJIS
(12)$TOL_INF 03FH, 0130H, 02H, 00H

(13)$DGS FIL_NAM, .file, 033H, 0FFFEH, 03FH, 067H, 01H, 00H

(14) EXTRN _@cprep

 ; line (15)1 : (16)#define TRUE 1
 ; line (15)2 : (16)#define FALSE 0
 ; line (15)3 : (16)#define SIZE 200

(14)_main:
(17)$DGL 1,13
(14) push hl ;(21)[INF] 1, 4
(14) movw ax,#08H ;(21)[INF] 3, 6
(14) callt [_@cprep] ;(21)[INF] 1, 8

(18)??bf_main:

 ;(22) *** Code Information ***
 ;
 ;(23) $FILE C:\NECTools32\Smp78k0s\CC78K0S\prime.c
 ;
 ;(24) $FUNC main(8)
 ;(25) bc=(void)
 ;(26) CODE SIZE= 222 bytes, CLOCK_SIZE= 654 clocks, STACK_SIZE= 14 bytes
 ;
 ;(27) $CALL printf(18)
 ;(28) bc=(pointer:ax, int:[sp+2])
 ;
 ;(27) $CALL putchar(20)
 ;(28) bc=(int:ax)
 ;
 ;(27) $CALL printf(25)
 ;(28) bc=(pointer:ax, int:[sp+2])
 ;
 ;(24) $FUNC printf(31)
 ;(25) bc=(pointer s:ax, int i:[sp+2])
 ;(26) CODE SIZE= 28 bytes, CLOCK_SIZE= 108 clocks, STACK_SIZE= 10 bytes
 ;
 ;(24) $FUNC putchar(41)
 ;(25) bc=(char c:x)
 ;(26) CODE SIZE= 14 bytes, CLOCK_SIZE= 58 clocks, STACK_SIZE= 8 bytes

 ; Target chip : (19)uPD789024
 ; Device file : (20)Vx.xx

…
…

…
…

…

 CHAPTER 6 C COMPILER OUTPUT FILES

User’s Manual U16654EJ1V0UM 121

[Description of output items] (1/2)

Item

Number
Description Number of Columns Format

(1) Version number 4 (fixed) Displayed in “x.yz” format

(2) Date 11 (fixed) System date (Displayed in “DD Mmm YYYY” format)

(3) Time 8 (fixed) System time (Displayed in “HH:MM:SS” format)

(4) Command line — Outputs the command line contents following “CC78K0S”. Contents after

column 80 are output beginning at column 15 on the next line. A

semicolon (;) is output to column 1. One or more white-space characters

or tabs are replaced by a single white-space character.

(5) C source

module file

name

Number of

characters

enabled by OS

Outputs the specified file name. If the file type is omitted, ‘.c’ is attached

as the file type (extension). Contents after column 80 are output beginning

at column 15 on the next line. A semicolon (;) is output to column 1.

(6) Assembler

source module

file name

Number of

characters

enabled by OS

Outputs the specified file name. If the file type is omitted, ‘.asm’ is

attached as the file type (extension). Contents after column 80 are output

beginning at column 15 on the next line. A semicolon (;) is output to

column 1.

(7) Parameter file

contents

— Outputs the parameter file contents. Contents after column 80 are output

beginning at column 15 on the next line. A semicolon (;) is output to

column 1. One or more white-space characters or tabs are replaced by a

single white-space character.

(8) Device type Maximum 6

(variable)

This character string is specified via the -C option. See the documentation

describing device files.

(9) Debug data Maximum 8

(variable)

Outputs DEBUG control. Output is either $DEBUG or $NODEBUG.

(10) Debug

information

control of

assembler

9 (fixed) Outputs NODEBUGA control. Output is $NODEBUGA.

(11) Kanji type

information

Maximum 15

(variable)

Outputs the Kanji code type. Output is $KANJICODE SJIS, $KANJICODE

EUC, or $KANJICODE NONE.

(12) Tool information 37 (fixed) Outputs tool information, version number, error information, specified

options, etc. (information starts with $TOL_INF).

(13) Symbol

information

— Outputs symbol information (information starts with $DGS). This

information is output only when the debug data output option has been

specified. Even then, it is not output if the –G1 option has been specified.

(14) Assembler

source

— Outputs an assembler source file containing the compilation results.

(15) Line number 4 (fixed) Outputs the C source module file’s line numbers as right-aligned decimal

value with zeros suppressed.

(16) C source — This is the input C source image. Contents after column 80 are output

beginning at column 16 on the next line. A semicolon (;) is output to

column 1.

(17) Line number

information

— Line number for line number entry (information starts with $DGL)

This information is output only when the debug data output option has

been specified. Even then, it is not output if the –G1 option has been

specified.

CHAPTER 6 C COMPILER OUTPUT FILES

User’s Manual U16654EJ1V0UM122

 [Description of output items] (2/2)

Item

Number
Description Number of Columns Format

(18) Labels for

symbol

information

creation

Maximum 34

(variable)

Outputs function label information (information starts with ??).

This information is output only when the debug data output option has

been specified.

(19) Target device

for this compiler

Maximum 15

(variable)

Displays the target device as specified via command line option -C or the

source file.

(20) Device file

version

6 (fixed) Displays the version number of the input device file.

(21) Size, clock — Outputs size and clock for output instructions. (Information starting with

;[INF]).

(22) Function

information

(start)

— Indicates start of function information.

(23) Function

information (file

name)

— Outputs target source file name with full path. (Information starting with

;$FILE).

(24) Function

information

(definition

function)

— Outputs function name and defined line number as decimal code.

(Information starting with ;$FUNC).

(25) Function

information

(return value,

argument of

definition

function)

— Outputs the definition function’s return value register and argument

information (register or stack position).

(26) Function

information

(definition

function’s size,

clock, stack)

— Outputs the size, clock, and maximum consumption stacks calculated

statically for the definition function.

(27) Function

information (call

function)

— Outputs the function name and function call line number as decimal code.

(Information starting with ;$CALL).

(28) Function

information (Call

function’s return

value,

argument)

— Outputs return value register and argument information during function call

(register or stack position).

 CHAPTER 6 C COMPILER OUTPUT FILES

User’s Manual U16654EJ1V0UM 123

6.3 Error List File

An error list file contains messages regarding any errors and warnings that occurred during compilation.

The C source program can be added to the error list by specifying a compiler option. An error list file that contains

a C source program can be used as a C source module file by revising the C source program and deleting

comments, such as the list header.

6.3.1 Error list file with C source

[Output format]

/*

78K/0S Series C Compiler V (1) x.xx Error List Date:(2) xxxxx Time:(3) xxxxx

Command : (4) -c9024 prime.c -se

C-file : (5) prime.c

Err-file : (6) prime.cer

Para-file : (7)

*/

(8)#define TRUE 1

(8)#define FALSE 0

(8)#define SIZE 200

(8) char mark[SIZE +1];

(8) main()

(8){

(8) int i, prime, k, count;

(8) cont = 0;

***ERROR (9) F711 (10) Undeclared ‘cont’ ; function ‘main’

(8) for (i = 0 ; i <= SIZE ; i++)

(8) mark[i] = TRUE;

(8) for (i = 0 ; i<= SIZE ; i++) {

(8) if (mark[i]) {

 prime = i + i + 3;

 printf ("%6d", prime);

***WARNING (9)W745 (10)Expected function prototype

M

/*

(11) Target chip: uPD789024

(12) Device file: Vx.xx

Compilation complete, (13) 1 error(s) and (14) 5 warning(s) found.

*/

CHAPTER 6 C COMPILER OUTPUT FILES

User’s Manual U16654EJ1V0UM124

[Description of output items]

Item

Number
Description Number of Columns Format

(1) Version number 4 (fixed) Displayed in “x.yz” format

(2) Date 11 (fixed) System date (Displayed in “DD Mmm YYYY” format)

(3) Time 8 (fixed) System time (Displayed in “HH:MM:SS” format)

(4) Command line — Outputs the command line contents following “CC78K0S”. Contents after

column 80 are output beginning at column 13 on the next line. One or

more white-space characters or tabs are replaced by a single white-space

character.

(5) C source

module file

name

Number of

characters

enabled by OS

(variable)

Outputs the specified file name. If the file type is omitted, ‘.c’ is attached

as the file type (extension). Contents after column 80 are output beginning

at column 13 on the next line.

(6) Error list file

name

Number of

characters

enabled by OS

(variable)

Outputs the specified file name.

If the file type is omitted, ‘.cer’ is attached.

Contents after column 80 are output beginning at column 13 on the next

line.

(7) Parameter file

contents

— Outputs the parameter file contents.

Contents after column 80 are output beginning at column 13 on the next

line. One or more white-space characters or tabs are replaced by a single

white-space character.

(8) C source — This is the input C source image. Contents after column 80 are not

wrapped to the next line.

(9) Error message

number

4 (fixed) Outputs error numbers in the “#nnn” format. “F” is output if "#" is an error

and “W” is output if it is a warning. "nnn" (the error number) is displayed

as a three-digit decimal number (No zero suppression).

(10) Error message — See CHAPTER 9 ERROR MESSAGES. Contents after column 80 are

not wrapped to the next line.

(11) Target device

for this compiler

Maximum 15

(variable)

Displays the target device as specified via command line option -C or the

source file.

(12) Device file

version

6 (fixed) Displays the version number of the input device file.

(13) Number of

errors

4 (fixed) Outputs a right-aligned decimal value with zeroes suppressed.

(14) Number of

warnings

4 (fixed) Outputs a right-aligned decimal value with zeroes suppressed.

 CHAPTER 6 C COMPILER OUTPUT FILES

User’s Manual U16654EJ1V0UM 125

6.3.2 Error list file with error message only

[Output format]

(1) PRIME.C((2) 18) : (3) W745 (4) Expected function prototype

(1) prime.c((2) 20) : (3) W745 (4) Expected function prototype

(1) prime.c((2) 26) : (3) W622 (4) No return value

(1) prime.c((2) 37) : (3) W622 (4) No return value

(1) prime.c((2) 44) : (3) W622 (4) No return value

Target chip :(7) uPD789024

Device file :(8) Vx.xx

Compilation complete, (5) 0 error(s) and (6) 5 warning(s) found.

[Description of output items]

Item

Number
Description Number of Columns Format

(1) C source

module file

name

Number of

characters

enabled by OS

Outputs the specified file name. If the file type is omitted, ‘.c’ is attached

as the file type (extension).

(2) Line number 5 (fixed) Outputs a right-aligned decimal value with zeros suppressed.

(3) Error message

number

4 (fixed) Outputs the error message number in “#nnn” format. “F” is output if "#" is

an error and “W” is output if it is a warning. "nnn" is the error number.

(4) Error message — See CHAPTER 9 ERROR MESSAGES.

(5) Number of

errors

4 (fixed) Outputs a right-aligned decimal value with zeroes suppressed.

(6) Number of

warnings

4 (fixed) Outputs a right-aligned decimal value with zeroes suppressed.

(7) Target device

for this compiler

Maximum 15

(variable)

Displays the target device as specified via command line option -C or the

source file.

(8) Device file

version

6 (fixed) Displays the version number of the input device file.

CHAPTER 6 C COMPILER OUTPUT FILES

User’s Manual U16654EJ1V0UM126

6.4 Preprocess List File

The preprocess list file is an ASCII image file that contains results of C source program preprocessing only.

When specifying the -K option, a preprocess list file can be used as a C source module file unless "N" has been

specified as the processing type. When the -KD option is specified, the list with #define expansion is output.

[Output format]

When PAGEWIDTH = 80

/*

78K/0S Series C Compiler V (1) x.xx Preprocess List Date:(2) xxxxx Page:(3) xxx

Command : (4) -c9024 prime.c -p -lw80

In-file : (5) prime.c

PPL-file : (6) prime.ppl

Para-file : (7)

*/

(8) 1 : (9)#define TRUE 1

(8) 2 : (9)#define FALSE 0

(8) 3 : (9)#define SIZE 200

(8) 4 : (9)

(8) 5 : (9) char mark[SIZE+1];

(8) 6 : (9)

/*

(10) Target chip: uPD789024

(11) Device file: Vx.xx

*/

 CHAPTER 6 C COMPILER OUTPUT FILES

User’s Manual U16654EJ1V0UM 127

[Description of output items]

Item

Number
Description Number of Columns Format

(1) Version number 4 (fixed) Displayed in “x.yz” format

(2) Date 11 (fixed) System date (Displayed in “DD Mmm YYYY” format)

(3) Number of

pages

4 (fixed) Outputs a right-aligned decimal number with zeros suppressed.

(4) Command line — Outputs the command line contents following “CC78K0S”. Contents that

exceed the line length are output beginning at column 13 on the next line.

One or more white-space characters or tabs are replaced by a single

white-space character.

(5) C source

module file

name

Number of

characters

enabled by OS

Outputs the specified file name. If the file type is omitted, ‘.c’ is attached

as the file type (extension). Contents that exceed the line length are output

beginning at column 13 on the next line.

(6) Preprocess list

file name

Number of

characters

enabled by OS

Outputs the specified file name. If the file type is omitted, “.ppl” is

attached. Contents that exceed the line length are output beginning at

column 13 on the next line.

(7) Parameter file

contents

— Outputs the parameter file contents. Contents that exceed the line length

are output beginning at column 13 on the next line. A semicolon (;) is

output to column 1. One or more white-space characters or tabs are

replaced by a single white-space character.

(8) Line number 5 (fixed) Outputs a right-aligned decimal value with zeros suppressed.

(9) C source — This is the input C source. Contents that exceed the line length are output

beginning at column 9 on the next line.

(10) Target device

for this compiler

Maximum 15

(variable)

Indicates the target device that is specified by a command line option or in

a source file

(11) Device file

version

6 (fixed) Displays the version number of the input device file.

CHAPTER 6 C COMPILER OUTPUT FILES

User’s Manual U16654EJ1V0UM128

6.5 Cross-Reference List File

Cross-reference list files contain lists of identifiers such as declarations, definitions, referenced functions, and

variables. They also include other information, such as attributes and line numbers. These are output in the order

they are found.

[Output format]

When PAGEWIDTH = 80

78K/0S Series C Compiler V (1) x.xx Cross reference List Date:(2) xxxxx Page:(3) xxx

Command : (4) -c9024 prime.c -x -lw80

In-file : (5) prime.c

Xref-file : (6) prime.xrf

Para-file : (7)

Inc-file : [n] (8)

ATTRIB MODIFY TYPE SYMBOL DEFINE REFERENCE

(9) EXTERN (10) (11) array (12) mark (13) 5 (14) 14 (14)16 (14) 22

(9) EXTERN (10) (11) func (12) main (13) 7

(9) AUTO1 (10) (11) int (12) i (13) 9 (14) 13 (14) 13 (14) 13 (14) 14

(14) 15 (14) 15 (14) 15 (14) 16

(14) 17 (14) 17 (14) 21

(9) AUTO1 (10) (11) int (12) prime (13) 9 (14) 17 (14) 18 (14) 21 (14) 21

(9) AUTO1 (10) (11) int (12) k (13) 9 (14) 21 (14) 21 (14) 21 (14) 22

(9) AUTO1 (10) (11) int (12) count (13) 9 (14) 11 (14) 19 (14) 20 (14) 25

/*

(15) Target chip: uPD789024

(16) Device file: Vx.xx

*/

…

 CHAPTER 6 C COMPILER OUTPUT FILES

User’s Manual U16654EJ1V0UM 129

[Description of output items] (1/2)

Item

Number
Description Number of Columns Format

(1) Version number 4 Displayed in “x.yz” format

(2) Date 11 (fixed) System date (Displayed in “DD Mmm YYYY” format)

(3) Number of

pages

4 (fixed) Outputs a right-aligned decimal number with zeros suppressed.

(4) Command line — Outputs the command line contents following “CC78K0S”. Contents that

exceed the line length are output beginning at column 13 on the next line.

One or more white-space characters or tabs are replaced by a single

white-space character.

(5) C source

module file

name

Number of

characters

enabled by OS

Outputs the specified file name. If the file type is omitted, ‘.c’ is attached

as the file type (extension). Contents that exceed the line length are output

beginning at column 13 on the next line.

(6) Cross-reference

list file name

Number of

characters

enabled by OS

Outputs the specified file name. If the file type is omitted, “.xrf” is

attached. Contents that exceed the line length are output beginning at

column 13 on the next line.

(7) Parameter file

contents

— Outputs the parameter file contents. Contents that exceed the line length

are output beginning at column 13 on the next line. One or more white-

space characters or tabs are replaced by a single white-space character.

(8) Include file Number of

characters

enabled by OS

Outputs the file name specified in the C source. “n” is a number starting

with “1” that indicates the include file number. Contents that exceed the

line length are output beginning at column 13 on the next line. This line is

not output when there is no include file.

(9) Symbol attribute 6 (fixed) Displays the symbol attributes.

An external variable is displayed as EXTERN, an external static variable

as EXSTC, an internal static variable as INSTC, an auto variable as

AUTOnn, a register variable as REGnn (where nn is the scope value, a

numerical value that begins with "1"), an external typedef declaration as

EXTYP, an internal typedef declaration as INTYP, a label as LABEL, a

structure or union tag as TAG, a member as MEMBER, and a function

parameter as PARAM.

(10) Symbol qualifier

attributes

6 (fixed) Displays the symbol qualifier attributes (left-aligned). A const variable is

displayed as CONST, a volatile variable as VLT, a callt function as

CALLT, a callf function as CALLF, a noauto function as NOAUTO, a norec

function as NOREC, an sreg-bit variable as SREG, an sfr variable as

RWSFR, a read-only sfr variable as ROSFR, a write-only sfr variable as

WOSFR, and an interrupt function as VECT.

(11) Symbol type 7 (fixed) Displays the symbol type. Types include char, int, short, long, and field.

“u” is added at the start for unsigned type. Additional types include void,

float, double, ldouble (long double), func, array, pointer, struct, union,

enum, bit, inter, and #define.

(12) Symbol name 15 (fixed) If the symbol name exceeds 15 characters and fit into a line, that name is

output as it is. If it exceeds 15 characters and one line, the excess is

output from column 23 on the next line and items 13 and 14 are output

from column 39 on the next line.

(13) Symbol

definition line

number

7 (fixed) This outputs the line number and file name defined for the symbol, and is

displayed as:

line number (five-digit): include file number

CHAPTER 6 C COMPILER OUTPUT FILES

User’s Manual U16654EJ1V0UM130

[Description of output items] (2/2)

Item

Number
Description Number of Columns Format

(14) Symbol

reference line

number

7 (fixed) This outputs the line number and file name that reference the symbol, and

is displayed as:

line number (five-digit): include file number

If the line contents exceed the line length, the remaining contents are

output beginning at column 47 of the next line.

(15) Target device

for this compiler

Maximum 15

(variable)

Displays the target device as specified via command line option -C or the

source file.

(16) Device file

version

6 (fixed) Displays the version number of the input device file.

User’s Manual U16654EJ1V0UM 131

CHAPTER 7 USING C COMPILER

7.1 Efficient Operation (EXIT Status Function)

When the compilation ends, the CC78K0S returns the top error level generated during compilation to the operating

system as the EXIT status.

The EXIT status is shown below.

• Ends normally: 0

• WARNING: 0

• FATAL ERROR: 1

• ABORT: 2

If PM plus is not used and the CC78K0S is started in the command line, efficient operation can be further

improved by using the status in a batch file.

[Use Example]

cc78k0s –c9024 %1

IF ERRORLEVEL 1 GOTO ERR

cc78k0s –c9024 %2

IF ERRORLEVEL 1 GOTO ERR

GOTO EXIT

:ERR

echo Some error found.

:EXIT

[Description]

• When the C source passed to %1 was compiled, a fatal error was generated. Essentially, the process

continues after an error message was output. But using the 1 returned in the EXIT status, execution can be

stopped without processing the next C source in %2.

CHAPTER 7 USING C COMPILER

User’s Manual U16654EJ1V0UM132

7.2 Setting Up Development Environment (Environment Variables)

The CC78K0S supports the following environment variables.

• PATH: Search path for executable forms

• INC78K0S: Search path for include files

• TMP: Search path for temporary files

• LANG78K: Type of kanji code (can be specified by -ZE, -ZS, or -ZN option)

(euc: EUC code, sjis: shift JIS code, none: no 2-byte codes)

• LIB78K0S: Search path for libraries

[Use Example] (When using DOS prompt)

;AUTOEXEC.BAT

PATH C:\nectools32\bin;c:\bat;c:\cc78k0s;c:\tool

VERIFY ON

BREAK ON

SET INC78K0S=c:\nectools32\inc78k0s

SET LIB78K0S=c:\nectools32\lib78k0s

SET TMP=c:\tmp

SET LANG78K=sjis

[Description]

• Executable files are searched in the sequence of c:\nectools32\bin, c:\bat, c:\cc78k0s, c:\tool by path

specification.

• Include files are searched from c:\nectools32\inc78k0s.

In the Windows version, if no setting is made, search is performed from C:\NECTools32\INC78K0S (if the

CC78K0S is installed to C:\NECTools32).

• Library files are searched from c:\nectools32\lib78k0s during linking.

In the Windows version, if no setting is made, search is performed from C:\NECTools32\LIB78K0S (if the

CC78K0S is installed to C:\NECTools32).

• Temporary files are created in c:\tmp.

• Shift JIS code is used as Kanji code.

[Caution]

Do not set environment variables when using PM plus.

7.3 Interrupting Compilation

If compiling was started from the command line, the compilation can be interrupted by the command key input

(CTRL-C). If ‘break on’ was specified, control returns to the operating system unrelated to the timing of the key input.

And for ‘break off,’ control returns to the operating system only when the screen is displayed. Then all of the open

temporary files and output files are deleted.

If you want to stop a build (MAKE) in PM plus, select “Stop build” in the [Run] menu in the PM plus window, or

click the button in the tool bar. When building in PM plus, command key input is not accepted.

User’s Manual U16654EJ1V0UM 133

CHAPTER 8 STARTUP ROUTINES

To execute a C language program, a program is needed to activate ROMization for inclusion in the system and

the user program (main function). This program is called the startup routine.

To execute a program written by a user, a startup routine must be created for that program. The CC78K0S

provides the object files of the startup routines that include the processing required before program execution and the

source files (assembly source) of the startup routines that the user can adapt to the system. By linking the object file

of the startup routine to the user program, an executable program can be created even if the user does not describe

the execution preprocess.

This chapter describes the contents, uses, and improvements of the startup routines.

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16654EJ1V0UM134

8.1 File Organization

The files related to a startup routine are stored in the directory SRC\CC78K0S of the compiler package.

→ Directories that contain files

related to startup routines

The contents of the directories under SRC\CC78K0S are shown next.

The LIB directory contains the object files of the startup routines and the assembled library sources. An object

file can be linked to a program for any target device in the 78K0S Series. If no particular revisions are needed,

link the unmodified object files that are already available. If mkstup.bat (mkstup.sh) offered by the CC78K0S is

executed, this object file can be overwritten.

For the file contents, see 2.6.4 Library files.

INC78K0S

BIN

SMP78K0S

SRC\CC78K0S

BAT

SRC

LIB

LIB78K0S

\

HLP

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16654EJ1V0UM 135

8.1.1 BAT directory contents

A batch file in this directory cannot be used in PM plus.

Use these batch files only when the source, such as for a startup routine, must be modified.

The device files (d9026.78k) in the BAT directory are not for development, and are used when a batch file for

updating library, etc., is started. Therefore, other optional device files are required for development.

Table 8-1. BAT Directory Contents

Batch File Name Description

mkstup.bat Assemble batch file for startup routine

reprom.bat Batch file for updating rom.asmNote 1

repgetc.bat Batch file for updating getchar.asm

repputc.bat Batch file for updating putchar.asm

repputcs.bat Batch file for updating _putchar.asm

repselo.bat Batch file for updating setjmp.asm and longjmp.asm

(the compiler reserved area is saved)Note 2

repselon.bat Batch file for updating setjmp.asm and longjmp.asm

(the compiler reserved area is not saved)Note 2

Notes 1. Since ROMization routines are in the library, the library is also updated by this batch file.

2. The setjmp and longjmp that save the compiler reserved area (saddr area secured for KREG××, etc.),

and the setjmp and longjmp that do not save the compiler reserved area (only the registers are saved)

are created.

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16654EJ1V0UM136

8.1.2 SRC directory contents

The SRC directory contains the assembler sources of the startup routines, ROM routines, and standard library

functions (a portion). If the source must be modified to conform to the system, the object files for linking can be

created by modifying this assembler source and using a batch file in the BAT directory to assemble.

Table 8-2. SRC Directory Contents

Startup Routine Source File Name Description

cstart.asmNote Source file for startup routine (when standard library is used)

cstartn.asmNote Source file for startup routine (when standard library is not used)

rom.asm Source file for ROMization routine

_putchar.asm _putchar function

putchar.asm putchar function

getchar.asm getchar function

longjmp.asm longjmp function

setjmp.asm setjmp function

def.inc For setting library according to type

macro.inc Macro definition for each typical pattern

stdio.inc Character code setting for EOF and LF

Note A file name with n added is a startup routine that does not have standard library processing. Use only if the

standard library will not be used.

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16654EJ1V0UM 137

8.2 Batch File Description

8.2.1 Batch files for creating startup routines

The mkstup.bat (mkstup.sh in UNIX) in the BAT directory is used to create the object file of a startup routine.

The assembler in the RA78K0S Assembler Package is required for mkstup.bat (mkstup.sh). Therefore, if PATH is

not specified, specify it and run.

How to use this file is described next.

[How To Use]

Execute the following command line in the src\cc78k0s\bat directory containing mkstup.bat (mkstup.sh).

mkstup device-typeNote

Note Refer to the document related to device files.

[Use Example]

The startup routine to be used is created when the target device is the µPD789024.

mkstup 9024

The mkstup.bat (mkstup.sh) batch file is stored in the form that overwrites the object file of the startup routine in

the LIB directory at the same level as the BAT directory as shown below.

The startup routine that is required to link the object file is output to each directory.

The names of the object files created in LIB are shown below.

s0s.rel

s0sl.rel

s0ss.rel

s0ssl.rel

LIB

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16654EJ1V0UM138

8.3 Startup Routines

8.3.1 Overview of startup routines

A startup routine makes the preparations needed to execute the C source program written by the user. By linking

to a user program, a load module file that achieves the objective can be created.

(1) Function

Memory initialization, ROMization for inclusion in the system, and the starting and ending processes for the C

source program are performed.

ROMization: The initial values of the external variables, static variables, and sreg variables defined in the C

source program are located in ROM. However, the variable values cannot be rewritten; only

placed in ROM as is. Therefore, the initial values located in ROM must be copied to RAM. This

process is called ROMization. When a program is written to ROM, it can be run by a

microcontroller.

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16654EJ1V0UM 139

(2) Configuration

Table 8-3 shows the programs related to the startup routines and their configurations.

Table 8-3. Startup Routine Overview

For system inclusion

Preprocess Note 1

Initial settings

(hdwinit function

call)Note 2

ROMization

Start main function

Postprocess

Definitions of labels used in

ROMization

Notes 1. If the standard library is used, the processing related to the library is performed first. Files that do not

have an ‘n’ appended at the end of the name in the startup routine source file are processed in relation

to the standard library. Files with the appended ‘n’ are not processed.

2. The hdwinit function is a function created when needed by the user as the function to initialize a

peripheral device (sfr). By creating the hdwinit function, the timing of the initial settings can be sped up

(the initial settings can be made in the main function). If the user does not create the hdwinit function,

the process returns without doing anything.

cstart.asm and cstartn.asm have nearly identical contents.

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16654EJ1V0UM140

Table 8-4 shows the differences between cstart.asm and cstartn.asm.

Table 8-4. Differences Between Startup Routine Sources

Type of Startup Routine Uses Library Processing

cstart.asm Yes

cstartn.asm No

(3) Uses of startup routines

Table 8-5 lists the names of the object files for the source files provided by the CC78K0S.

Table 8-5. Correspondence Between Source Files and Object Files

File Type Source File Object File

Startup routine cstart*.asmNote 1 s0s*.relNote 2

ROM file rom.asm Included in library

Notes 1. *: If the standard library is not used, ‘n’ is added. If used, the character is not added.

2. *: If a fixed area in the standard library is used, ‘l’ is added.

 If a static model is specified, ‘s’ is added.

rom.asm defines the label indicating the final address of the data copied by ROMization. The object of the

rom.asm is included in the library.

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16654EJ1V0UM 141

8.3.2 Description of sample program (cstart.asm)

This section uses cstart.asm and rom.asm as examples to describe the contents of the startup routines. A startup

routine consists of the preprocessing, initial settings, ROMization processing, starting the main function, and

postprocessing.

Remark cstart is called in the format added _@ to its head.

(1) Preprocessing

Preprocessing in cstart.asm is described in <1> to <6> (see below).

[cstart.asm preprocessing]

 NAME @cstart

$INCLUDE (def.inc) <1> Including include files

$INCLUDE (macro.inc)

<2> Library switch

<3> Symbol definitions

BRKSW EQU 1 ;brk,sbrk,calloc,free,malloc,realloc function use

EXITSW EQU 1 ;exit,atexit function use

$_IF (_STATIC)

RANDSW EQU 0 ;rand,srand function use

DIVSW EQU 0 ;div function use

LDIVSW EQU 0 ;ldiv function use

FLOATSW EQU 0 ;floating point variable use

$ELSE

RANDSW EQU 1 ;rand,srand function use

DIVSW EQU 1 ;div function use

LDIVSW EQU 1 ;ldiv function use

FLOATSW EQU 1 ;floating point variable use

$ENDIF

STRTOKSW EQU 1 ;strtok function use

 PUBLIC _@cstart,_@cend

$_IF(BRKSW)

 PUBLIC _@BRKADR,_@MEMTOP,_@MEMBTM

 M

$ENDIF

<4> External reference declaration of symbol for stack resolution

 EXTRN _main,_@STBEG,_hdwinit

$_IF(EXITSW)

 EXTRN _exit

$ENDIF

<5> External reference declaration of label for ROMization processing

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16654EJ1V0UM142

 EXTRN _?R_INIT,_?R_INIS,_?DATA,_?DATS

<6> Securing area for standard library

@@DATA DSEG

$_IF(EXITSW)

_@FNCTBL: DS 2*32

_@FNCENT: DS 2

 M

_@MEMTOP: DS 32

_@MEMBTM:

$ENDIF

<1> Including include files

def.inc → For setting library according to the type.

macro.inc → Macro definition for each typical pattern.

<2> Library switch

If standard libraries in comments are not used, by changing the EQU definition to 0, the space secured for the

processing of unused libraries and for use by the library can be conserved. The default is set to use everything

(In a startup routine without library processing, this processing is not performed).

<3> Symbol definitions

The symbols used when using the standard library are defined.

<4> External reference declaration of symbol for stack resolution

• The public symbol (_@STBEG) for stack resolution is an external reference declaration. _@STBEG has the

value of the last address in the stack area + 1.

• _@STBEG is automatically generated by specifying the symbol generation option (-S) for stack resolution in

the linker. Therefore, always specify the -S option when linking. In this case, specify the name of the area

used in the stack. If the name of the area is omitted, the RAM area is used, but the stack area can be located

anywhere by creating a link directive file. For memory mapping, refer to the user’s manual of the target

device.

• An example of a link directive file is shown below. The link directive file is a text file created by the user in an

ordinary editor (for details about the description method, refer to RA78K0S Assembler Package Operation

User’s Manual (U16656E)).

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16654EJ1V0UM 143

[Example when -sSTACK is specified in linking]

Create lk78k0s.dr (link directive file). Since ROM and RAM are allocated as default operations by referencing

the memory map of the target device, it is not necessary to specify ROM and RAM allocations unless they

should be changed. For link directive, refer to lk78k0s.dr in the smp78k0s\cc78k0s directory.

First address Size

memory SDR: (0FE20h, 00098h)

memory STACK: (xxxxh, xxxh)

merge @@INIS: = SDR

merge @@DATS: = SDR

merge @@BITS: = SDR

<5> External reference declaration of label for ROMization processing

The label for ROMization processing is defined in the postprocessing section.

<6> Securing area for standard library

The area used when using the standard library is secured.

Specify the first address and size here,

then specify lk78k0s.dr by the -d linker

option.

(Example -dlk78k0s.dr)

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16654EJ1V0UM144

(2) Initial settings

The initial settings in cstart.asm are described in <7> to <9>.

[Initial settings in cstart.asm]

<7> Reset vector setting

@@VECT00 CSEG AT 0

 DW _@cstart

@LCODE CSEG

_@cstart:

<8> SP (stack pointer) setting

 MOVW AX,#_@STBEG ;SP <- stack begin address

 MOVW SP,AX

 CALL !_hdwinit <9> Hardware initialization function call

$ENDIF

 M

$_IF(BRKSW OR EXITSW OR RANDSW OR FLOATSW)

 XOR A,A

$ENDIF

 M

<7> Reset vector setting

The segment of the reset vector table is defined as follows. The first address of the startup routine is set.

 @@VECT00 CSEG AT 0000H

 DW _@cstart

<8> Stack pointer (SP) setting

_@STBEG is set in the stack pointer.

_@STBEG is automatically generated by specifying the symbol generation option (-S) for stack resolution in the

linker.

<9> Hardware initialization function call

The hdwinit function is created when needed by the user as the function for initializing a peripheral device

(SFR). By creating this function, initial settings can be made to match the user’s objectives.

If the user does not create the hdwinit function, the process returns without doing anything.

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16654EJ1V0UM 145

(3) ROMization processing

The ROMization processing in cstart.asm is described.

[ROMization processing]

;*****************************

;ROM DATA COPY

;*****************************

;copy external variables having initial value

 MOVW HL,#_@R_INIT

 MOVW DE,#_@INIT

LINIT1:

 MOVW AX,HL

 CMPW AX,#_?R_INIT

 BZ $LINIT2

 MOV A,[HL]

 MOV [DE],A

 INCW HL

 INCW DE

 BR $LINIT1

LINIT2:

 MOVW HL,#_@DATA

;copy external variables which do not have initial value

LDATA1:

 M

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16654EJ1V0UM146

In ROMization processing, the initial values of the external variables and the sreg variables stored in ROM are

copied to RAM. The variables to be processed have the four types (a) to (d) shown in the following example.

(Example)

char c = 1; (a) External variable with initial value

int i; (b) External variable without initial valueNote

_ _sreg int si = 0; (c) sreg variable with initial value

_ _sreg char sc; (d) sreg variable without initial valueNote

main ()

{

 M

}

Note The external variables without initial value and sreg variables without initial value are not

copied, and zeros are written directly to RAM.

• Figure 8-1 shows the ROMization processing for (a) External variable with initial value.

The initial value of the variable (a) is placed in @@R_INIT segment in the ROM by the compiler. The

ROMization processing copies this value to the @@INIT segment in RAM (the same processes are performed

for the variable (c)).

• The first and last labels in the @@R_INIT segment are defined by _@R_INIT and _?R_INIT. The first and last

labels in the @@INIT segment are defined by _@INIT and _?INIT.

• The variables (b) and (d) are not copied, but zeros are directly placed in the segment determined by the RAM

(see Table 8-7 RAM Area for Initial Values (Copy Destination)). Tables 8-6 and 8-7 show the segment

names of the ROM and RAM areas where the variables (a) to (d) are placed, and the first and last labels of the

initial values in each segment.

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16654EJ1V0UM 147

Figure 8-1. ROMization Processing

@@R_INIT (segment name)

 _@R_INIT:

@@INIT

 _@INIT:

(first label)

 _?R_INIT:

Area storing initial

value of variable

(a)

→

Copy

 _?INIT:

(last label)

Table 8-6. ROM Area for Initial Values

Variable Type Segment First Label Last Label

External variable with initial value (a) @@R_INIT _@R_INIT _?R_INIT

sreg variable with initial value (c) @@R_INIS _@R_INIS _?R_INIS

Table 8-7. RAM Area for Initial Values (Copy Destination)

Variable Type Segment First Label Last Label

External variable with initial value (a) @@INIT _@INIT _?INIT

External variable without initial value (b) @@DATA _@DATA _?DATA

sreg variable with initial value (c) @@INIS _@INIS _?INIS

sreg variable without initial value (d) @@DATS _@DATS _?DATS

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16654EJ1V0UM148

(4) Starting main function and postprocessing

Starting the main function and postprocessing in cstart.asm are described.

[Starting main function and postprocessing]

 CALL !_main ;main(); ;<10> Starting main function

$_IF(EXITSW)

 MOVW AX,#0

 CALL !_exit ;exit(0); ;<11> Starting exit function

$ENDIF

 BR $$

;

_@cend:

;<12> Definitions of segments and labels

@@R_INIT CSEG ;used in ROMization processing

_@R_INIT:

@@R_INIS CSEG UNITP

_@R_INIS:

@@INIT DSEG

_@INIT:

@@DATA DSEG

_@DATA:

@@INIS DSEG SADDRP

_@INIS:

@@DATS DSEG SADDRP

_@DATS:

@@CALT CSEG CALLT0

@@CNST CSEG

@@BITS BSEG

;

 END

<10> Starting main function

The main function is called.

<11> Starting exit function

The exit function is called if needed.

<12> Definitions of segments and labels used in ROMization processing

The segments and labels used in each variable (a) to (d) (see 8.3.2 (3) ROMization processing) in

ROMization processing are defined. A segment indicates the area that stores the initial value of each variable.

A label indicates the first address in each segment.

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16654EJ1V0UM 149

The ROMization processing file rom.asm is described. The relocatable object file of rom.asm is in the library.

 NAME @rom

;

 PUBLIC _?R_INIT,_?R_INIS

 PUBLIC _?INIT,_?DATA,_?INIS,_?DATS

;

@@R_INIT CSEG ;<1> Definition of labels used in ROMization processing

_?R_INIT:

@@R_INIS CSEG UNITP

_?R_INIS:

@@INIT DSEG

_?INIT:

@@DATA DSEG

_?DATA:

@@INIS DSEG SADDRP

_?INIS:

@@DATS DSEG SADDRP

_?DATS:

;

 END

<1> Definition of labels used in ROMization processing

The labels used for each variable (a) to (d) (see 8.3.2 (3) ROMization processing) in ROMization processing,

are defined. These labels indicate the last address of the segment storing the initial value of each variable.

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16654EJ1V0UM150

8.3.3 Revising startup routines

The startup routines provided by the CC78K0S can be revised to match the target system actually being used.

The essential points about revising these files are explained in this section.

(1) When revising startup routine

The essential points about revising a startup routine source file are described. After revising, use the batch file

mkstup.bat (mkstup.sh) in the src\cc78k0s\bat directory to assemble the revised source file (cstart*.asm) (*:

alphanumeric symbols).

• Symbols used in standard library functions

If the library functions listed in Table 8-8 are not used, the symbols corresponding to each function in the

startup routine (cstart.asm) can be deleted. However, since the exit function is used in the startup routine,

_@FNCTBL and _@FNCENT cannot be deleted (if the exit function is deleted, these symbols can be deleted).

The symbols in the unused library functions can be deleted by changing the library switch.

Table 8-8. Symbols Used in Library Functions

Library Function Name Symbols Used

brk

sbrk

strtol

strtoul

malloc

calloc

realloc

free

_errno

_@MEMTOP

_@MEMBTM

_@BRKADR

exit _@FNCTBL

_@FNCENT

rand

srand

_@SEED

div _@DIVR

ldiv _@LDIVR

strtok _@TOKPTR

atof

strtod

Mathmatical function

Floating-point runtime library

_errno

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16654EJ1V0UM 151

• Area used in memory functions

If the size of the area used by a memory function is defined by the user, this is explained in the following

example.

Example) If you want to reserve 72 bytes for use by memory functions, make the following

changes to the initial settings of the startup routine.

 _@MEMTOP: DS

 _@MEMBTM:

72

_@MEMTOP →

_@MEMBTM →

72 bytes reserved

as area for

memory functions

If the specified size is too big to be stored in the RAM area, errors may occur when linking.

In this case, decrease the size specified as shown below, or avoid by correcting the link directive file. For

correction of the link directive file, see (2) Link directive file.

Example) To decrease the specified size

 _@MEMTOP: DS 72 → Change to 40

CHAPTER 8 STARTUP ROUTINES

User’s Manual U16654EJ1V0UM152

(2) Link directive file

How to create a link directive file is explained. Specify a file created using the -D option when linking to match

the actual target system. Heed the following cautions when creating the file (for the detailed description method

for a link directive, see RA78K0S Assembler Package Operation User’s Manual (U16656E)).

• The CC78K0S sometimes uses a portion of the short direct address area (saddr area) in the following compiler-

specific objectives. Specifically, this is the 40-byte area of FED8H to FEFFH for a normal model. When a

static model is specified with the -SM[n] option, the part of saddr area [FEF0H to FEFFH] is used as the

common area.

(Normal model)

(a) Arguments of runtime library [FEF8H to FEFFH]

(b) Arguments or automatic variables of norec function [FEE8H to FEF7H]

(c) register variable when the -qr option is specified [FED8H to FEE7H]

(d) Standard library task (part of the area (b) and (c)).

• If the user does not use the standard library, the area (d) is not used.

(Static model)

(a) Common area [FEF0H to FEFFH]

The following shows an example of changing RAM size with a link directive file (lk78k0s.dr). When changing

memory size, do not overlap another area. Refer to the memory map of the target device to be used when

changing memory size.

<lk78k0s.dr>

First address Size

memory RAM: (0FB00h, 00320h) → Make this size larger.

memory SDR: (0FE20h, 00098h) (also change the first address if necessary)

merge @@INIS: =SDR

merge @@DATS: =SDR Specifies the location of the segment.

merge @@BITS: =SDR

If you want to change the location of the segment, add a merge statement. If the function to revise the compiler

output section name was used, the segment can be independently located (refer to CHAPTER 11 in CC78K0S

Language User’s Manual (U16655E)).

If the result of changing the location of a segment does not provide enough memory for the location, change the

corresponding memory statement.

User’s Manual U16654EJ1V0UM 153

CHAPTER 9 ERROR MESSAGES

9.1 Error Message Format

The error message format is as follows.

Source-file-name (line-number) : Error-message

Examples

prime.c(8) : F712 Declaration syntax

prime.c(8) : F301 Syntax error

prime.c(8) : F701 External definition syntax

prime.c(19) : W745 Expected function prototype

However, the following output format is used only for the internal errors F101, F103, and F104.

[xxx.c <yyy> zzz] F101 Internal error

[xxx.c <yyy> zzz] F103 Intermediate file error

[xxx.c <yyy> zzz] F104 Illegal use of register

xxx.c: source file name, yyy: line number, zzz: message

9.2 Types of Error Messages

The following ten types of error messages are output by the compiler.

(1) Error message for a command line

(2) Error message for an internal error or memory

(3) Error message for a character

(4) Error message for a configuration element

(5) Error message for conversion

(6) Error message for an expression

(7) Error message for a statement

(8) Error message for a declaration or function definition

(9) Error message for a preprocessing directive

(10) Error message for fatal file I/O and running on an illegal operating system

CHAPTER 9 ERROR MESSAGES

User’s Manual U16654EJ1V0UM154

9.3 List of Error Messages

It is necessary to understand the format of an error number before using the list of error messages. The error

number indicates the type of error message and the compiler processing for the error.

The error number format is as follows.

A/F/Wnnn

A : ABORT

After the error message is output, the compile processing ends immediately. The object module file

and the assembler source module file are not output.

F : FATAL

After the error message is output, the error portion is ignored and processing continues. The object

module file and the assembler source module file are not output.

W : WARNING

After the warning message is output, processing continues. The file specified by the option is output.

nnn (3-digit number)

From 001 Error message for a command line

From 101 Error message for an internal error or memory

From 201 Error message for a character

From 301 Error message for a configuration element

From 401 Error message for conversion

From 501 Error message for an expression

From 601 Error message for a statement

From 701 Error message for a declaration or a function definition

From 801 Error message for a preprocessing directive

From 901 Error message for fatal file I/O or running on an illegal operating system

Caution If the file name contains a syntax error, the file name is added to the message. An error

message is added, changed, and deleted according to the language specification of the C

compiler being developed.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16654EJ1V0UM 155

(1) Error message for a command line <from 001> (1/3)

Message Missing input file

Cause The input source file name was not specified.

A001

Response “Please enter ‘cc78k0s--’ if you want help message” is output.

Use the --, -?, or -H option to reference the help file and input the file name correctly.

Message Too many input files

Cause Multiple input source file names are specified.

A002

Response “Please enter ‘cc78k0s--’ if you want help message” is output.

Use the --, -?, or -H option to reference the help file and input the file name correctly.

Message Unrecognized stringA003

Cause An item other than an option was specified on the interactive command line.

Message Illegal file name file nameA004

Cause Either the format, characters, or number of characters in the specified file name are incorrect.

Message Illegal file specificationA005

Cause An illegal file name was specified.

Message File not foundA006

Cause The specified input file does not exist.

Message Input file specification overlapped file nameA007

Cause Duplicate input file names were specified.

Message File specification conflicted file nameA008

Cause Duplicate I/O file names were specified.

Message Unable to make file file nameA009

Cause Since the specified output file already exists as a read-only file, it cannot be created.

Message Directory not foundA010

Cause A drive or directory not existed is included in the output file name.

Message Illegal pathA011

Cause An illegal path name was specified in the option setting the path name in the parameter.

Message Missing parameter ‘option’

Cause A required parameter is not specified.

A012

Response “Please enter ‘cc78k0s--’ if you want help message” is output.

Use the --, -?, or -H option to reference the help file and input the parameter correctly.

Message Parameter not needed ‘option’

Cause An unnecessary option parameter was specified.

A013

Response “Please enter ‘cc78k0s--’ if you want help message” is output.

Use the --, -?, or -H option to reference the help file and input the parameter correctly.

Message Out of range ‘option’

Cause The specified value of the option parameter is out of range.

A014

Response “Please enter ‘cc78k0s--’ if you want help message” is output.

Use the --, -?, or -H option to reference the help file and input the value correctly.

Message Parameter is too longA015

Cause The number of characters in the option parameter exceeded the limit.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16654EJ1V0UM156

(1) Error message for a command line <from 001> (2/3)

Message Illegal parameter ‘option’

Cause There is a syntax error in the option parameter.

A016

Response “Please enter ‘cc78k0s--’ if you want help message” is output.

Use the --, -?, or -H option to reference the help file and input the option correctly.

Message Too many parametersA017

Cause The total number of option parameters exceeds the limit.

Message Option is not recognized ‘option’

Cause An incorrect option was specified.

A018

Response “Please enter ‘cc78k0s--’ if you want help message” is output.

Use the --, -?, or -H option to reference the help file and input the option correctly.

Message Parameter file nested

Cause The -F option was specified in the parameter file.

A019

Response Since a parameter file cannot be specified in a parameter file, correct them so that there is no

nesting.

Message Parameter file read errorA020

Cause The parameter file read failed.

Message Memory allocation failedA021

Cause Memory allocation failed.

Message Same category option specified – ignored ‘option’

Cause Conflicting options had duplicate specifications.

W022

Compiler The option specified later is validated and processing continues.

Message Incompatible chip name

Cause The device type in the command line and the device type in the source differ.

W023

Compiler The device type in the command line has priority.

Message Illegal chip specifier on command lineA024

Cause The device type in the command line is incorrect.

Message ‘-QC’ option is not portableW029

Cause The -QC option does not conform to the ANSI standard (For details about -QC, see CHAPTER 5

COMPILER OPTIONS).

Message ‘-ZP’ option is not portableW031

Cause The -ZP option does not conform to the ANSI standard (For details about -ZP, see CHAPTER 5

COMPILER OPTIONS).

Message ‘-ZC’ option is not portableW032

Cause The -ZC option does not conform to the ANSI standard (For details about -ZC, see CHAPTER 5

COMPILER OPTIONS).

Message Same category option specified ‘option’

Cause Conflicting options had duplicate specifications.

A033

Response “Please enter ‘cc78k0s--’ if you want help message” is output.

Use the --, -?, or -H option to reference the help file and correct the input.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16654EJ1V0UM 157

(1) Error message for a command line <from 001> (3/3)

Message ‘-ZI’ option is not portableW036

Cause The -ZI option does not conform to the ANSI standard (For details about -ZI, see CHAPTER 5

COMPILER OPTIONS).

Message ‘-ZL’ option is not portableW037

Cause The -ZL option does not conform to the ANSI standard (For details about -ZL, see CHAPTER 5

COMPILER OPTIONS).

Message ‘-ZI’ option specified - regarded as ‘-QC’W038

Cause Since the -ZI that regards int and short as char is specified, the int extension control optimization

option -QC becomes valid.

Message ‘-SM’ option specified - regarded as ‘-ZL’W039

Cause Since the static model specification option -SM is specified, the option -ZL that regards long as int

becomes valid.

Message ‘-RK’ option required ‘-SM’ - ignored ‘-RK’W040

Cause The local variable optimization option -RK is valid only when the static model specification option -

SM is specified. The option -RK is ignored.

Message ‘-SM’ option specified - ignored ‘-QR’W041

Cause Since the static model specification option -SM is specified, the register optimization option -QR is

ignored.

Message ‘-SM’ option specified - ignored ‘-ZR’W045

Cause Since the static model specification option -SM is specified, the pascal function interface

specification option -ZR is ignored.

Message '-ZD' option specified - regarded as '-QL3'W052

Cause Option (-ZD) using library supporting prologue/epilogue is specified, so that -QL4 is treated as -QL3

for standard code pattern library conversion option (-QL).

Message '-ZM' option required '-SM' - ignored '-ZM'W055

Cause Static model extension specification option (-ZM) is enabled only when static model specification

option (-SM) is specified. -ZM option is ignored.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16654EJ1V0UM158

(2) Error message for an internal error and memory <from 101>

Message Internal error

Cause An internal error occurred.

F101

Response Contact support.

Message Too many errors

Cause The total number of FATAL errors exceeded 30.

F102

Compiler Processing continues, but subsequent error messages are not output. The previous errors may

have caused many errors. First, remove these previous errors.

Message Intermediate file error

Cause The intermediate file contains errors.

F103

Response Contact support.

Message Illegal use of registerF104

Cause The register is incorrectly used.

Message Register overflow : simplify expression

Cause The expression is too complex and no more usable registers remain.

F105

Response Simplify the complex expression causing the error.

Message Stack overflow ‘overflow cause’

Cause The stack overflowed. The cause of the overflow is the stack or heap.

A106

Response Contact support.

Message Compiler limit : too much automatic data in function

Cause The area allocated for the automatic variables of the function exceeded the limit of 64 KB.

F108

Response Decrease the variables so that 64 KB is not exceeded.

Message Compiler limit : too much parameter of function

Cause The area allocated for the parameters of the function exceeded the limit of 64 KB.

F109

Response Decrease the parameters so that 64 KB is not exceeded.

Message Compiler limit : too much code defined in fileF110

Cause The area allocated for the code in the file exceeded the limit of 64 KB.

Message Compiler limit : too much global data defined in fileF111

Cause The area allocated for the global variables in the file exceeded the limit of 64 KB.

Message Compiler limit: too many local labels

Cause Number of local labels in one function exceeds the process limit.

F113

Response The function itself is too large. Divide it.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16654EJ1V0UM 159

(3) Error message for a character <from 201>

Message Unknown character ‘hexadecimal number’F201

Cause Characters having the specified internal code cannot be recognized.

Message Unexpected EOFF202

Cause The file ended while the function was operating.

Message Trigraph encountered

Cause A trigraph sequence (3-character representation) appeared.

W203

Response If the -ZA option was specified, since trigraph sequences are valid, this warning is not output.

(4) Error message for configuration element <from 301> (1/3)

Message Syntax error

Cause A syntax error occurred.

F301

Response Make sure there are no description errors in the source.

Message Expected identifier

Cause An identifier for the goto statement is required.

F303

Response Correctly describe the identifier to be specified for the goto statement.

Message Identifier truncate to ‘identifier’

Cause The specified identifier is too long. The character number of the identifier (including ‘_’) exceeds 250.

W304

Response Shorten the length of the identifier.

Message Compiler limit : too many identifiers with block scopeF305

Cause There are too many symbols having block scope in one block.

Message Illegal index , indirection not allowedF306

Cause An index is used in an expression that does not take a pointer value.

Message Call of non-function ‘variable name’F307

Cause The variable name is used as a function name.

Message Improper use of a typedef nameF308

Cause The typedef name is improperly used.

Message Unused ‘variable name’W309

Cause The specified variable is declared in the source, but is never used.

Message ‘Variable name’ is assigned a value which is never usedW310

Cause The specified variable is used in an assignment statement, but is never used otherwise.

Message Number syntaxF311

Cause The constant expression is illegal.

Message Illegal octal digitF312

Cause This is illegal as an octal digit.

Message Illegal hexadecimal digitF313

Cause This is illegal as a hexadecimal digit.

Message Too big constantF314

Cause The constant is too large and cannot be represented.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16654EJ1V0UM160

(4) Error message for configuration element <from 301> (2/3)

Message Too small constantF315

Cause The constant is too small and cannot be represented.

Message Too many character constantsF316

Cause The character constant exceeds two characters.

Message Empty character constantF317

Cause The character constant ‘ ’ is empty.

Message No terminated string literalF318

Cause There is no double quote “ ” at the end of the string.

Message Changing string literalF319

Cause A character string literal is rewritten.

Message No null terminator in string literalW320

Cause The null character is not added to the character string literal.

Message Compiler limit : too many characters in string literalF321

Cause The number of characters in the character string literal exceeded 509.

Message Ellipsis requires three periodsF322

Cause The compiler detected “..”, but “...” is required.

Message Missing ‘delimiter’F323

Cause The delimiter is incorrect.

Message Too many }’sF324

Cause The ‘{’ and ‘}’ are incorrectly paired.

Message No terminated commentF325

Cause The comment is not terminated by “*/”.

Message Illegal binary digitF326

Cause This is illegal as a binary digit.

Message Hex constants must have at least one hex digitF327

Cause At least one hexadecimal digit is required in a hexadecimal constant representation.

Message Unrecognized character escape sequence ‘character’W328

Cause The escape sequence cannot be correctly recognized.

Message Compiler limit : too many comment nestingF329

Cause The number of nesting levels of comments exceeded the limit of 255.

Message ‘-ZI’ option specified – int & short are treated as char in this fileW330

Cause The -ZI option is specified. int and short in this file are treated as char.

Message ‘-ZL’ option specified – long is treated as int in this fileW331

Cause The -ZL option is specified. long in this file is treated as int.

Message Non-supported keyword found – ignored ‘function attributes’ in this fileW332

Cause A keyword not supported is detected. Function attributes in this file are ignored.

Message ‘-SM’ option specified – ignored ‘function attributes’ keyword in this fileW333

Cause The static model specification option -SM is specified. Function attributes in this file are ignored.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16654EJ1V0UM 161

(4) Error message for configuration element <from 301> (3/3)

Message ‘-SM’ option specified – float & double keywords are not allowedF334

Cause The static model specification option -SM is specified. float and double keywords are not allowed.

Message ‘-SM’ option specified - long constant is treated as int constantW335

Cause The static model specification option -SM is specified. long constant is treated as int constant.

Message '_ _temp' required '-SM -ZM' - ignored '_ _temp' in this fileW339

Cause Temporary variable specification keyword _ _temp is enabled only when static model specification

option (-SM) and static model extension specification option (-ZM) are specified.

The _ _ temp keyword is ignored in this file.

Message Unreferenced label 'label name'W340

Cause The specified label has been defined, but has not been referenced even once.

(5) Error message for conversion <from 401>

Message Conversion may lose significant digitsW401

Cause A long was converted into int. Be careful the value may be lost.

Message Incompatible type conversionF402

Cause An illegal type conversion took place in the assignment statement.

Message Illegal indirectionF403

Cause The * operator is used in an integer type expression.

Message Incompatible structure type conversionF404

Cause The types on both sides of an assignment statement to a structure or structure pair differ.

Message Illegal lvalueF405

Cause This is an illegal left value.

Message Cannot modify a const object ‘variable name’F406

Cause A variable with the const attribute is rewritten.

Message Cannot write for read / only sfr ‘SFR name’F407

Cause Tried to write to a read-only sfr.

Message Cannot read for write/only sfr ‘SFR name’F408

Cause Tried to read a write-only sfr.

Message Illegal SFR access ‘sfr name’F409

Cause Illegal data was read from or written to an sfr.

Message Illegal pointer conversionW410

Cause A pointer and an object other than a pointer are converted.

Message Illegal pointer combinationW411

Cause Different types are mixed in the same pointer combination.

Message Illegal pointer combination in conditional expressionW412

Cause Different types in a pointer combination are used in a conditional expression.

Message Illegal structure pointer combinationF413

Cause Pointers to structures with different types are mixed.

Message Expected pointerF414

Cause A pointer is required.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16654EJ1V0UM162

(6) Error message for an expression <from 501> (1/3)

Message Expression syntaxF501

Cause The expression contained a syntax error.

Message Compiler limit : too many parenthesesF502

Cause The nesting of parentheses in the expression exceeded 32.

Message Possible use of ‘variable name’ before definitionW503

Cause The variable is used before a value is assigned to it.

Message Possibly incorrect assignmentW504

Cause The main operators in conditional expressions, such as if, while, and do statements, are assignment

operators.

Message Operator ‘operator’ has no effectW505

Cause The operator has no effect in the program. This is probably due to a description error.

Message Expected integral indexF507

Cause Only an integer type expression is allowed in the index of an array.

Message Too many actual argumentsW508

Cause The number of arguments specified in a function call is more than the number of parameters

specified in the list of argument types or the function definition.

Message Too few actual argumentsW509

Cause The number of arguments specified in a function call is fewer than the number of parameters

specified in the list of argument types or the function definition.

Message Pointer mismatch in function ‘function name’W510

Cause The given arguments have different pointer types than the arguments specified in the list of

argument types or the function definition.

Message Different argument types in function ‘function name’W511

Cause The argument types given in the function call do not match the list of argument types or the function

definition.

Message Cannot call function in norec functionF512

Cause A function is called in the norec function. A function cannot be called in a norec function.

Message Illegal structure / union member ‘member name’F513

Cause A member that is referenced in the structure and not defined is indicated.

Message Expected structure / union pointer

Cause The expression before the ‘→’ operator is not a pointer to a structure or a union, but is the name of

a structure or a union.

F514

Response Make the expression before the ‘→’ operator a pointer to a structure or a union.

Message Expected structure / union name

Cause The expression before the ‘.’ operator is not the name of a structure or a union, but is a pointer to a

structure or a union.

F515

Response Make the expression before the ‘.’ operator a structure or a union variable.

Message Zero sized structure ‘structure name’F516

Cause The size of the structure is zero.

Message Illegal structure operationF517

Cause An operator that cannot be used in a structure is used.

Message Illegal structure / union comparisonF518

Cause Two structures or unions cannot be compared.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16654EJ1V0UM 163

(6) Error message for an expression <from 501> (2/3)

Message Illegal bit field operationF519

Cause There is an illegal description for a bit field.

Message Illegal use of pointerF520

Cause The only operators that can be used on pointers are addition, subtraction, assignment, relational,

indirection (*), and member reference (->).

Message Illegal use of floatingF521

Cause An operator that cannot be used on floating-point variables is used.

Message Ambiguous operators need parenthesesW522

Cause Two shift, relational, and bit logical operators appear continuously without parentheses.

Message Illegal bit, boolean type operationF523

Cause An illegal operation is performed on bit or boolean type variables.

Message ‘&’ on constantF524

Cause A constant address is not obtained.

Message ‘&’ requires lvalueF525

Cause The ‘&’ operator can only be used in an expression assigned to the left value.

Message ‘&’ on register variableF526

Cause The address of a register variable is not obtained.

Message ‘&’ on bit, boolean ignoredF527

Cause The address of a bit field, or bit or boolean type variable is not obtained.

Message ‘&’ is not allowed array / function, ignoredW528

Cause The & operator does not have to be applied to an array name or function name.

Message Sizeof returns zeroF529

Cause The value of the sizeof expression becomes zero.

Message Illegal sizeof operandF530

Cause The operand of the sizeof expression must be an identifier or a type name.

Message Disallowed conversion

Cause Illegal casting occurred.

F531

Response Check for illegal casting.

This error occurs when a constant is cast to a pointer, or when an address is outside the range of

the memory model.

Message Pointer on left, needs integral right : ‘operator’F532

Cause Since the left operand is a pointer, the right operand must be an integral value.

Message Invalid left-or-right operand : ‘operator’F533

Cause The left or right operand is illegal for the operator.

Message Divide checkF534

Cause The divisor of the / operation or % operation is zero.

Message Invalid pointer additionF535

Cause Two pointers are not added.

Message Must be integral value additionF536

Cause Only integral values can be added to a pointer.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16654EJ1V0UM164

(6) Error message for an expression <from 501> (3/3)

Message Illegal pointer subtractionF537

Cause The subtraction between pointers must be for pointers having the same type.

Message Illegal conditional operatorF538

Cause The conditional operator is not correctly described.

Message Expected constant expressionF539

Cause A constant expression is required.

Message Constant out of range in comparisonW540

Cause The constant partial expression is compared to a value outside of the range permitted by the type of

the other partial expression.

Message Function argument has void typeF541

Cause The argument of the function has the void type.

Message Undeclared parameter in noauto or norec function prototypeW543

Cause The parameter declarations are not in the prototype declarations of the noauto or norec function.

Message Illegal type for parameter in noauto or norec function prototypeF544

Cause Parameters with illegal types are declared in the prototype declarations of the noauto or norec

function.

Message Too few actual argument for inline function ‘function name’F546

Cause The number of arguments specified in the function call of a function expanded inline is less than the

number of parameters provided in the specifications.

Message ‘-SM’ option specified - recursive function is not allowedF549

Cause The static model specification option -SM is specified. Recursive call is not allowed.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16654EJ1V0UM 165

(7) Error message for a statement <from 601>

Message Compiler limit : too many characters in logical source lineF602

Cause The number of characters in a logical source line exceeded 2048.

Message Compiler limit : too many labelsF603

Cause The number of labels exceeded 33.

Message Case not in switchF604

Cause The case statement is not described in the correct position.

Message Duplicate case ‘label name’F605

Cause The same case label is described two or more times in a switch statement.

Message Non constant case expressionF606

Cause Something other than an integral constant is specified in a case statement.

Message Compiler limit : too many case labelsF607

Cause The number of case labels in the switch statement exceeded 257.

Message Default not in switchF608

Cause The default statement is not described in the correct position.

Message More than one ‘default’F609

Cause The default statement is described multiple times in the switch statement.

Message Compiler limit : block nest level too depthF610

Cause The block nesting exceeded 45.

Message Inappropriate ‘else’F611

Cause There is no correspondence between if and else.

Message Loop entered at top of switchW613

Cause A while, do, or for is specified immediately after the switch statement.

Message Statement not reachedW615

Cause The statement is never reached.

Message Do statement must have ‘while’F617

Cause A while is required at the end of a do.

Message Break / continue errorF620

Cause The positions of the break and continue statements are incorrect.

Message Void function ‘function name’ cannot return valueF621

Cause A function declared as void returns a value.

Message No return value

Cause A function that should return a value does not return a value.

W622

Response If a value must be returned, add a return statement. If a value does not have to be returned, give

the function the void type.

Message No effective code and data, cannot create output fileF623

Cause Since the code and data are not valid, the output file cannot be created.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16654EJ1V0UM166

(8) Error message for a declaration and function definition <from 701> (1/5)

Message External definition syntaxF701

Cause The function is not correctly defined.

Message Too many callt functions

Cause There are too many declarations of the callt function. A maximum of 32 callt functions can be

declared.

F702

Response Decrease the number of callt function declarations.

Message Function has illegal storage classF703

Cause The function is specified with an illegal storage class.

Message Function returns illegal typeF704

Cause The return value of the function is an illegal type.

Message Too many parameters in noauto or norec function

Cause A noauto or norec function has too many parameters.

F705

Response Decrease the number of parameters.

Message Parameter list errorF706

Cause The function parameter list contains errors.

Message Not parameter ‘character string’F707

Cause Something other than a parameter is declared in a function definition.

Message Already declared symbol ‘variable name’W708

Cause The same variable has already been declared.

Message Illegal storage classF710

Cause The auto and register declarations are outside the function or a boolean variable is defined inside

the function.

Message Undeclared ‘variable name’; function ‘function name’F711

Cause An undeclared variable is used.

Message Declaration syntaxF712

Cause The declaration statement does not match the syntax.

Message Redefined ‘variable name’

Cause Two or more of the same variables are defined.

F713

Response Set the variable definition once.

Message Too many register variables

Cause There are too many declarations of register variables.

W714

Response Decrease the number of register variables. For the number that can be used, see CHAPTER 11 in

the Language (U16655E) manual.

Message Too many sreg variablesF715

Cause There are too many declarations of sreg variables.

Message Not allowed automatic data in noauto functionF716

Cause Automatic variables cannot be used in the noauto function.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16654EJ1V0UM 167

(8) Error message for a declaration and function definition <from 701> (2/5)

Message Too many automatic data in noauto or norec function

Cause There are too many automatic variables in a noauto or norec function.

F717

Response Decrease the number of automatic variables in a noauto or norec function. For the number that can

be used, see CHAPTER 11 in the Language (U16655E) manual.

Message Too many bit, boolean type variables

Cause There are too many bit and boolean type variables.

F718

Response Decrease the number of bit, boolean, and _ _boolean type variables. For the number that can be

used, see CHAPTER 11 in the Language (U16655E) manual.

Message Illegal use of typeF719

Cause An illegal type name is used.

Message Illegal void type for ‘identifier’F720

Cause The identifier is declared by void.

Message Illegal type for register declaration

Cause A register declaration is specified with an illegal type.

W721

Compiler The register declaration is ignored and processing continues.

Message Illegal type for parameter in noauto or norec functionF723

Cause The type of a parameter in a noauto or norec function is too big.

Message Structure redefinitionF724

Cause The same structure is redefined.

Message Illegal zero sized structure member

Cause The area taken as a structure member is not secured.

W725

Response When an array is used in the member of a structure and the index is given by a constant

computation, sometimes there is overflow by the -QC2 action and the area is not secured. In this

case, specify -QC1 as in -QC. -QC is included in the default options.

Message Function cannot be structure / union memberF726

Cause A function cannot be a member of a structure or a union.

Message Unknown size structure / union ‘name’F727

Cause Structures or unions have undefined sizes.

Message Compiler limit : too many structure / union membersF728

Cause The members in a structure or union exceeded 256.

Message Compiler limit : structure / union nestingF729

Cause The nesting of structures or unions exceeded 15.

Message Bit field outside of structureF730

Cause A bit field is declared outside of the structure.

Message Illegal bit field typeF731

Cause A type other than an integral type is specified in a bit field type.

Message Too long bit field sizeF732

Cause The number of bit specifications in a bit field declaration exceeds the number of bits in that type.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16654EJ1V0UM168

(8) Error message for a declaration and function definition <from 701> (3/5)

Message Negative bit field sizeF733

Cause The number of bit specifications in a bit field declaration is negative.

Message Illegal enumerationF734

Cause The enumeration type declaration does not match the syntax.

Message Illegal enumeration constantF735

Cause The enumeration constant is illegal.

Message Compiler limit : too many enumeration constantsF736

Cause The number of enumeration constants exceeded 255.

Message Undeclared structure / union / enum tagF737

Cause A tag is not declared.

Message Compiler limit : too many pointer modifyingF738

Cause The number of indirection operators (*) exceeded 12 in a pointer definition.

Message Expected constantF739

Cause A variable is used in the index in an array declaration.

Message Negative subscriptF740

Cause The specification of the size of an array is negative.

Message Unknown size array ‘array name’

Cause The size of an array is undefined.

F741

Response Specify the size of the array.

Message Compiler limit : too many array modifyingF742

Cause The array declaration exceeds 12 dimensions.

Message Array element type cannot be functionF743

Cause An array of functions is not allowed.

Message Zero sized array ‘array name’W744

Cause The number of elements of the defined array is zero.

Message Expected function prototypeW745

Cause The function prototype is not declared.

Message Function prototype mismatch

Cause The function prototype declaration contains errors.

F747

Response Check whether the parameter and return value types match the function.

Message A function is declared as a parameterW748

Cause A function is declared as an argument.

Message Unused parameter ‘parameter name’W749

Cause The parameter is not used.

Message Initializer syntaxF750

Cause The initialization does not match the syntax.

Message Illegal initializationF751

Cause The constant of an initial value setting does not match the type of the variable.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16654EJ1V0UM 169

(8) Error message for a declaration and function definition <from 701> (4/5)

Message Undeclared initializer name ‘name’W752

Cause The initializer name is not declared.

Message Cannot initialize static with automaticF753

Cause The static variable cannot be initialized using an automatic variable.

Message Too many initializers ‘array name’F756

Cause There are more initial values than elements in the declared array.

Message Too many structure initializersF757

Cause There are more initial values than members in the declared structure.

Message Cannot initialize a function ‘function name’F758

Cause The function cannot be initialized.

Message Compiler limit : initializers too deeply nestedF759

Cause The depth of the nesting of initialized elements exceeded the limit.

Message Double and long double are treated as IEEE 754 single formatW760

Cause double and long double are handled as IEEE 754 single-precision formats.

Message Cannot declare sreg with const or function

Cause sreg cannot be declared with a const declaration or function.

W761

Compiler An sreg declaration is ignored.

Message Overlapped memory area ‘variable name 1’ and ‘variable name 2’W762

Cause The variable name 1 and variable name 2 areas for which absolute address allocation specification

is performed overlap.

Message Cannot declare const with bit, boolean

Cause bit and boolean type variables cannot have const declarations.

W763

Compiler A const declaration is ignored.

Message ‘Variable name’ initialized and declared extern-ignored extern

Cause An externally referenced variable without a body was initialized.

W764

Compiler The extern declaration is ignored.

Message Undefined static function ‘function name’F765

Cause There was a reference to a function whose body is not in the same file and was declared static.

Message Illegal type for automatic data in noauto or norec functionF766

Cause The type of the automatic variable in a noauto or norec function is large.

Message Parameters are not allowed for interrupt functionF770

Cause An interrupt function cannot have arguments.

Message Interrupt function must be void typeF771

Cause An interrupt function must have the void type.

Message Callt / noauto / norec / _ _pascal are not allowed for interrupt functionF772

Cause An interrupt function cannot be declared callt, noauto, norec, or _ _pascal.

Message Cannot call interrupt functionF773

Cause An interrupt function cannot be called.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16654EJ1V0UM170

(8) Error message for a declaration and function definition <from 701> (5/5)

Message Interrupt function can’t use with the other kind interruptsF774

Cause An interrupt function cannot be used in other types of interrupts.

Message Zero width for bit field ‘member name’F780

Cause Member name is specified to the member whose bit specification number of bit field declaration is 0.

Message ‘-SM’ option specified - variable parameters are not allowedF781

Cause The static model specification option -SM is specified. Variable parameters are not allowed.

Message ‘-SM’ option specified – structure & union parameter is not allowedF782

Cause The static model specification option -SM is specified. Structure and union parameters are not

allowed.

Message ‘-SM’ option specified – structure & union return value is not allowedF783

Cause The static model specification option -SM is specified. Structure and union return values are not

allowed.

Message ‘-SM’ option specified - too many parameters of functionF784

Cause The static model specification option -SM is specified. Function arguments exceed the limit of 3

arguments/6 bytes.

Message ‘-SM’ option specified - expected function prototypeF785

Cause The static model specification option -SM is specified. Function prototype declaration is absent.

Message ‘-SM’ option specified - undeclared parameter in function prototypeW786

Cause The static model specification option -SM is specified. Parameters are not declared in function

prototype declaration.

Message Bit field type is charW787

Cause char type is specified as bit field type.

Message Undeclared parameter in _ _pascal function definition or prototypeW792

Cause Parameters are not declared in _ _pascal function definition or prototype declaration. void must be

described if there is no parameter.

Message Variable parameters are not allowed for _ _pascal function - ignored _ _pascalW793

Cause Variable parameters cannot be specified for _ _pascal function. _ _pascal keyword is ignored.

Message Cannot allocate ‘variable name’ out of ‘address range’F799

Cause Address specification for variable names for which absolute address allocation specification is

performed exceed the specifiable address range.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16654EJ1V0UM 171

(9) Error message for a preprocessing directive <from 801> (1/4)

Message Undefined controlF801

Cause A symbol starting with # cannot be recognized as a keyword.

Message Illegal preprocess directive

Cause The preprocess directive is illegal.

F802

Response Check if the preprocess directive (such as #pragma) is written in front of the header of the file and if

there is any error.

Message Unexpected non-whitespace before preprocess directiveF803

Cause A character other than a whitespace character precedes the preprocess directive.

Message Unexpected characters following ‘preprocess directive’ directive - newline expectedW804

Cause Extra characters follow the preprocess directive.

Message Misplaced else or elifF805

Cause The #if, #ifdef, and #ifndef do not correspond to #else and #elif.

Message Misplaced endifF806

Cause The #if, #ifdef, and #ifndef do not correspond to #endif.

Message Compiler limit : too many conditional inclusion nestingF807

Cause The nesting of conditional compiling exceeded 255.

Message Cannot find include file ‘file name’

Cause The include file was not found.

F810

Response Specify the path in which an include file exists or specify a path using -i option for the environmental

variable INC78K0S.

Message Too long file name ‘file name’F811

Cause The file name is too long.

Message Include directive syntaxF812

Cause The file name in the definition of the #include statement is not correctly enclosed by “ ” or < >.

Message Compiler limit : too many include nestingF813

Cause The nesting of the include files exceeded 8.

Message Illegal macro nameF814

Cause The macro name is illegal.

Message Compiler limit: too many macro nestingF815

Cause The number of nesting macros exceeds 200.

Message Redefined macro name ‘macro name’W816

Cause The macro name is redefined.

Message Redefined system macro name ‘macro name’W817

Cause The system macro name is redefined.

Message Redeclared parameter in macro ‘macro name’F818

Cause The same identifier appears in the parameter list in the macro definition.

Message Mismatch number of parameter ‘macro name’W819

Cause The number of parameters when referencing differs from the number of parameters defined by

#define.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16654EJ1V0UM172

(9) Error message for a preprocessing directive <from 801> (2/4)

Message Illegal macro parameter ‘macro name’F821

Cause The description enclosed by parentheses () in the function format macro is illegal.

Message Missing) ‘macro name’F822

Cause The right parenthesis ‘)’ was not found in the same line as the #define definition in the function

format macro.

Message Too long macro expansion ‘macro name’F823

Cause The actual argument during macro expansion is too long.

Message Identifier truncate to ‘macro name’

Cause The macro name is too long.

W824

Compiler It is shortened to the displayed ‘macro name’.

Message Macro recursion ‘macro name’W825

Cause The #define definition becomes recursive.

Message Compiler limit : too many macro definesF826

Cause The number of macro definitions exceeded 10,000.

Message Compiler limit : too many macro parametersF827

Cause One macro definition had over 31 calling parameters.

Message Not allowed #undef for system macro nameF828

Cause The system macro name is specified by #undef.

Message Unrecognized pragma ‘character string’

Cause This character string is not supported.

W829

Response Check that the keywords are correct.

This warning occurs if an incorrect segment was specified in the #pragma section.

Message No chip specifier : #pragma pc ()F830

Cause There is no device specifier.

Message Illegal chip specifier : #pragma pc (device type)F831

Cause The device specifier is illegal.

Message Duplicated chip specifierW832

Cause The device specifier is duplicated.

Message Expected #asmF833

Cause There is no #asm.

Message Expected #endasmF834

Cause There is no #endasm.

Message Too many characters in assembler source lineW835

Cause A line in the assembler source is too long.

Message Expected assembler sourceW836

Cause There is no assembler source between #asm and #endasm.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16654EJ1V0UM 173

(9) Error message for a preprocessing directive <from 801> (3/4)

Message Output assembler source file, not object file

Cause There is a #asm block or _ _asm statement. Assembler source file is output instead of the object

file.

W837

Response Specify the -a or -sa compiler option in order to output the #asm and _ _asm statement description

to the object file, and then assemble the output assembler file.

Message Duplicated pragma VECT or INTERRUPT ‘character string’F838

Cause The #pragma VECT ‘character string’ or INTERRUPT ‘character string’ is duplicated.

Message Unrecognized pragma VECT or INTERRUPT ‘character string’F839

Cause There is an unrecognized #pragma VECT ‘character string’ or INTERRUPT ‘character string’.

Message Undefined interrupt function ‘function name’ -ignored NOBANK or LEAFWORK specified

Cause The save destination is specified for an undefined interrupt function.

W840

Compiler NOBANK specifications or LEAFWORK specifications are ignored.

Message Unrecognized pragma SECTION ‘character string’F842

Cause There is an unrecognized #pragma SECTION ‘character string’.

Message Unspecified start address of ‘section name’F843

Cause The correct starting address is not specified after AT in the #pragma section.

Message Cannot allocate ‘section name’ out of ‘address range’F845

Cause The specified section cannot be placed at the specified starting address.

Message Rechanged section name ‘section name’

Cause The same section name is duplicated and its specification is changed.

W846

Compiler The section name specified last is valid and processing continues.

Message Different NOBANK or LEAFWORK specified on same interrupt function ‘function name’F847

Cause A different NOBANK specification or LEAFWORK specification is specified for an interrupt function

with the same name.

Message #pragma statement is not portableW849

Cause The #pragma statement does not conform to ANSI.

Message Asm statement is not portableW850

Cause The ASM statement does not conform to ANSI.

Message Data aligned in ‘area name’W851

Cause The segment area or structure tag is data aligned. The area name is a segment name or a

structure tag.

Message Module name truncate to ‘module name’

Cause The specified module name is too long.

W852

Compiler It is shortened to the displayed ‘module name’.

Message Unrecognized pragma NAME ‘module name’F853

Cause Unrecognizable characters are in the ‘module name’.

Message Rechanged module name ‘module name’W856

Cause Duplicate module names are specified.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16654EJ1V0UM174

(9) Error message for a preprocessing directive <from 801> (4/4)

Message Section name truncate to ‘section name’

Cause The specified section name is too long.

W857

Compiler It is shortened to the displayed ‘section name’. Make the section name 8 or fewer characters.

Message #pragma section found after C body. cannot include file containing #pragma section and without C

body at the line

F866

Cause There is #pragma section syntax after C body description. Subsequent files that contain #pragma

section syntax and no C body (including external reference declarations of variables and functions)

cannot be included.

Message #pragma section found after C body. cannot specify #include after #pragma section in this fileF867

Cause There is #pragma section syntax after C body description. Hereafter, #include syntax cannot be

described.

Message #include found after C body. cannot specify #pragma section after #include directiveF868

Cause There is #include syntax after C body description. Hereafter, #pragma section syntax cannot be

described.

Message ‘section name’ section cannot change after C bodyW869

Cause Specified section cannot be changed after C body description.

Message Data aligned before ‘variable name’ in ‘section name’W870

Cause Data alignment is done before ‘variable name’ is allocated in ‘section name’.

Message Data aligned after ‘variable name’ in ‘section name’W871

Cause Data alignment is done after ‘variable name’ is allocated in ‘section name’.

Message Character string specified by #error is outputF899

Cause An #error character string was specified.

CHAPTER 9 ERROR MESSAGES

User’s Manual U16654EJ1V0UM 175

(10)Error message for fatal file I/O and running on an illegal operating system <from 901> (1/2)

Message File I/O error

Cause A physical I/O error was generated during file input/output.

A901

Response If an intermediate file is the cause, increase the conventional memory, or use EMS or XMS

memory.

Message Cannot open ‘file name’

Cause The file cannot be opened.

A902

Response Check if a device file is installed in an ordinary search path. The path can be specified by the -Y

option. Refer to the description about the search path in 5.3 (18) Device file.

Message Cannot open overlay file ‘file name’A903

Cause The overlay file cannot be opened.

Message Cannot open tempA904

Cause The input temporary file cannot be opened.

Message Cannot create ‘file name’A905

Cause A file create error was generated.

Message Cannot create temp

Cause A create error was generated in an output temporary file.

A906

Response Check if the environmental variable TMP is specified.

Message No available data blockA907

Cause A temporary file cannot be created because the drive file does not have sufficient capacity.

Message No available directory spaceA908

Cause A temporary file cannot be created because of insufficient directory area on the drive.

Message R/O : read / only diskA909

Cause A temporary file cannot be created because the drive is read only.

Message R/O file : read / only , file opened read / only modeA910

Cause A write error was generated by a temporary file for the following reasons.

1. A file with the same name as a temporary file already exists on the drive and it has the read-

only attribute.

2. The output temporary file is opened with the read-only attribute because of internal conflicts.

Message Reading unwritten data, no available directory spaceA911

Cause An I/O error was generated for the following reasons.

1. EOF was passed and input proceeded.

2. The temporary file cannot be created because of insufficient directory area on the drive.

Message Write error on temp

Cause A write error was generated to the output temporary file.

A912

Response A complex source expression (such as too deep nesting) may be the cause. Contact support.

Message Requires MS-DOS V2.11 or greaterA913

Cause The operating system is not MS-DOS (Ver. 2.11 or later).

CHAPTER 9 ERROR MESSAGES

User’s Manual U16654EJ1V0UM176

(10)Error message for fatal file I/O and running on an illegal operating system <from 901> (2/2)

Message Insufficient memory in hostmachine

Cause The compiler cannot start because of insufficient memory.

A914

Response Increase the free area in the conventional memory.

Message Asm statement found. skip to jump optimize this function ‘function name’W915

Cause #asm block or _ _ asm statement was detected. This function does not have jump optimization.

Perform the W837 response.

Message Heap overflow : please retry compile without -QJF922

Cause A memory overflow was generated in jump optimization. Recompile without specifying -QJ.

Message Illegal device file formatA923

Cause A device file in an old format was referenced.

User’s Manual U16654EJ1V0UM 177

APPENDIX A SAMPLE PROGRAMS

A.1 C Source Module File

#define TRUE 1

#define FALSE 0

#define SIZE 200

char mark[SIZE+1];

main()

{

 int i, prime, k, count;

 count = 0;

 for (i = 0 ; i <= SIZE ; i++)

 mark[i] = TRUE;

 for (i = 0 ; i <= SIZE ; i++) {

 if (mark[i]) {

 prime = i + i + 3;

 printf("%6d",prime);

 count++;

 if((count%8) == 0) putchar('\n');

 for (k = i + prime ; k <= SIZE ; k += prime)

 mark[k] = FALSE;

 }

 }

 printf("\n%d primes found.",count);

}

printf(s,i)

char *s;

int i;

{

 int j;

 char *ss;

 j = i;

 ss = s;

}

APPENDIX A SAMPLE PROGRAMS

User’s Manual U16654EJ1V0UM178

putchar(c)

char c;

{

 char d;

 d = c;

}

A.2 Execution Example

C>cc78K0S –c9024 prime.c -a -p -x -e -ng

 78K/0S Series C Compiler Vx.xx [xx xxx xxxx]

 Copyright (C) NEC Electronics Corporation xxxx,xxxx

 sample\prime.c(18) : W745 Expected function prototype

 sample\prime.c(20) : W745 Expected function prototype

 sample\prime.c(26) : W622 No return value

 sample\prime.c(37) : W622 No return value

 sample\prime.c(44) : W622 No return value

 Target chip : uPD789024

 Device file : Vx.xx

 Compilation complete, 0 error(s) and 5 warning(s) found.

APPENDIX A SAMPLE PROGRAMS

User’s Manual U16654EJ1V0UM 179

A.3 Output List

(1) Assembler source module file

; 78K/0S Series C Compiler Vx.xx Assembler Source

; Date:xx xxx xxxx Time:xx:xx:xx

; Command : -c9024 prime.c -a -p -x -e -ng

; In-file : prime.c

; Asm-file : prime.asm

; Para-file :

$PROCESSOR(9024)

$NODEBUG

$NODEBUGA

$KANJICODE SJIS

$TOL_INF 03FH, 0130H, 02H, 00H

EXTRN _@cprep

EXTRN _@RTARG0

EXTRN @@isrem

EXTRN _@cdisp

PUBLIC _mark

PUBLIC _main

PUBLIC _printf

PUBLIC _putchar

@@CNST CSEG

L0011: DB '%6d'

DB 00H

L0017: DB 0AH

DB '%d primes found.'

DB 00H

@@DATA DSEG

_mark: DS (201)

; line 5

; line 8

APPENDIX A SAMPLE PROGRAMS

User’s Manual U16654EJ1V0UM180

@@CODE CSEG

_main:

push hl ;[INF] 1, 4

movw ax,#08H ;[INF] 3, 6

callt [_@cprep] ;[INF] 1, 8

; line 11

xor a,a ;[INF] 2, 4

mov [hl],a ; count ;[INF] 1, 6

mov [hl+1],a ; count ;[INF] 2, 6

; line 13

mov [hl+6],a ; i ;[INF] 2, 6

mov [hl+7],a ; i ;[INF] 2, 6

L0003:

mov a,[hl+6] ; i ;[INF] 2, 6

xch a,x ;[INF] 1, 4

mov a,[hl+7] ; i ;[INF] 2, 6

xor a,#080H ; 128 ;[INF] 2, 4

cmpw ax,#080C8H ; -32568 ;[INF] 3, 6

bc $$+4 ;[INF] 2, 6

bnz $L0004 ;[INF] 2, 6

; line 14

xor a,#080H ; 128 ;[INF] 2, 4

addw ax,#_mark ;[INF] 3, 6

movw de,ax ;[INF] 1, 4

mov a,#01H ; 1 ;[INF] 3, 6

mov [de],a ;[INF] 1, 6

mov a,[hl+6] ; i ;[INF] 2, 6

xch a,x ;[INF] 1, 4

mov a,[hl+7] ; i ;[INF] 2, 6

incw ax ;[INF] 1, 4

mov [hl+7],a ; i ;[INF] 2, 6

xch a,x ;[INF] 1, 4

mov [hl+6],a ; i ;[INF] 2, 6

br $L0003 ;[INF] 2, 6

L0004:

; line 15

xor a,a ;[INF] 2, 4

mov [hl+6],a ; i ;[INF] 2, 6

mov [hl+7],a ; i ;[INF] 2, 6

APPENDIX A SAMPLE PROGRAMS

User’s Manual U16654EJ1V0UM 181

L0006:

mov a,[hl+6] ; i ;[INF] 2, 6

xch a,x ;[INF] 1, 4

mov a,[hl+7] ; i ;[INF] 2, 6

xor a,#080H ; 128 ;[INF] 2, 4

cmpw ax,#080C8H ; -32568 ;[INF] 3, 6

bc $$+7 ;[INF] 2, 6

bz $$+5 ;[INF] 2, 6

br !L0007 ;[INF] 3, 6

; line 16

xor a,#080H ; 128 ;[INF] 2, 4

addw ax,#_mark ;[INF] 3, 6

movw de,ax ;[INF] 1, 4

mov a,[de] ;[INF] 1, 6

cmp a,#00H ; 0 ;[INF] 2, 4

bz $L0015 ;[INF] 2, 6

; line 17

mov a,[hl+6] ; i ;[INF] 2, 6

rolc a,1 ;[INF] 1, 2

xch a,x ;[INF] 1, 4

mov a,[hl+7] ; i ;[INF] 2, 6

rolc a,1 ;[INF] 1, 2

addw ax,#03H ; 3 ;[INF] 3, 6

mov [hl+5],a ; prime ;[INF] 2, 6

xch a,x ;[INF] 1, 4

mov [hl+4],a ; prime ;[INF] 2, 6

; line 18

xch a,x ;[INF] 1, 4

push ax ;[INF] 1, 4

movw ax,#L0011 ;[INF] 3, 6

call !_printf ;[INF] 3, 6

pop ax ;[INF] 1, 6

; line 19

mov a,[hl] ; count ;[INF] 1, 6

xch a,x ;[INF] 1, 4

mov a,[hl+1] ; count ;[INF] 2, 6

incw ax ;[INF] 1, 4

mov [hl+1],a ; count ;[INF] 2, 6

xch a,x ;[INF] 1, 4

APPENDIX A SAMPLE PROGRAMS

User’s Manual U16654EJ1V0UM182

mov [hl],a ; count ;[INF] 1, 6

; line 20

xch a,x ;[INF] 1, 4

movw _@RTARG0,ax ;[INF] 2, 8

movw ax,#08H ; 8 ;[INF] 3, 6

call !@@isrem ;[INF] 3, 6

or a,x ;[INF] 2, 4

bnz $L0012 ;[INF] 2, 6

movw ax,#0AH ; 10 ;[INF] 3, 6

call !_putchar ;[INF] 3, 6

L0012:

; line 21

mov a,[hl+6] ; i ;[INF] 2, 6

add a,[hl+4] ; prime ;[INF] 2, 6

xch a,x ;[INF] 1, 4

mov a,[hl+7] ; i ;[INF] 2, 6

addc a,[hl+5] ; prime ;[INF] 2, 6

mov [hl+3],a ; k ;[INF] 2, 6

xch a,x ;[INF] 1, 4

mov [hl+2],a ; k ;[INF] 2, 6

L0014:

mov a,[hl+2] ; k ;[INF] 2, 6

xch a,x ;[INF] 1, 4

mov a,[hl+3] ; k ;[INF] 2, 6

xor a,#080H ; 128 ;[INF] 2, 4

cmpw ax,#080C8H ; -32568 ;[INF] 3, 6

bc $$+4 ;[INF] 2, 6

bnz $L0015 ;[INF] 2, 6

; line 22

xor a,#080H ; 128 ;[INF] 2, 4

addw ax,#_mark ;[INF] 3, 6

movw de,ax ;[INF] 1, 4

xor a,a ;[INF] 2, 4

mov [de],a ;[INF] 1, 6

mov a,[hl+2] ; k ;[INF] 2, 6

add a,[hl+4] ; prime ;[INF] 2, 6

xch a,x ;[INF] 1, 4

mov a,[hl+3] ; k ;[INF] 2, 6

addc a,[hl+5] ; prime ;[INF] 2, 6

APPENDIX A SAMPLE PROGRAMS

User’s Manual U16654EJ1V0UM 183

mov [hl+3],a ; k ;[INF] 2, 6

xch a,x ;[INF] 1, 4

mov [hl+2],a ; k ;[INF] 2, 6

br $L0014 ;[INF] 2, 6

L0015:

; line 24

mov a,[hl+6] ; i ;[INF] 2, 6

xch a,x ;[INF] 1, 4

mov a,[hl+7] ; i ;[INF] 2, 6

incw ax ;[INF] 1, 4

mov [hl+7],a ; i ;[INF] 2, 6

xch a,x ;[INF] 1, 4

mov [hl+6],a ; i ;[INF] 2, 6

br !L0006 ;[INF] 3, 6

L0007:

; line 25

mov a,[hl] ; count ;[INF] 1, 6

xch a,x ;[INF] 1, 4

mov a,[hl+1] ; count ;[INF] 2, 6

push ax ;[INF] 1, 4

movw ax,#L0017 ;[INF] 3, 6

call !_printf ;[INF] 3, 6

pop ax ;[INF] 1, 6

; line 26

movw ax,#08H ;[INF] 3, 6

callt [_@cdisp] ;[INF] 1, 8

pop hl ;[INF] 1, 6

ret ;[INF] 1, 6

; line 31

_printf:

push hl ;[INF] 1, 4

push ax ;[INF] 1, 4

movw ax,#04H ;[INF] 3, 6

callt [_@cprep] ;[INF] 1, 8

; line 35

mov a,[hl+10] ; i ;[INF] 2, 6

mov [hl+2],a ; j ;[INF] 2, 6

xch a,x ;[INF] 1, 4

mov a,[hl+11] ; i ;[INF] 2, 6

APPENDIX A SAMPLE PROGRAMS

User’s Manual U16654EJ1V0UM184

mov [hl+3],a ; j ;[INF] 2, 6

; line 36

mov a,[hl+4] ; s ;[INF] 2, 6

mov [hl],a ; ss ;[INF] 1, 6

xch a,x ;[INF] 1, 4

mov a,[hl+5] ; s ;[INF] 2, 6

mov [hl+1],a ; ss ;[INF] 2, 6

; line 37

pop ax ;[INF] 1, 6

pop ax ;[INF] 1, 6

pop ax ;[INF] 1, 6

pop hl ;[INF] 1, 6

ret ;[INF] 1, 6

; line 41

_putchar:

push hl ;[INF] 1, 4

push ax ;[INF] 1, 4

movw ax,#02H ;[INF] 3, 6

callt [_@cprep] ;[INF] 1, 8

; line 43

mov a,[hl+2] ; c ;[INF] 2, 6

mov [hl+1],a ; d ;[INF] 2, 6

; line 44

pop ax ;[INF] 1, 6

pop ax ;[INF] 1, 6

pop hl ;[INF] 1, 6

ret ;[INF] 1, 6

END

; *** Code Information ***

;

; $FILE C:\NECTools32\sample\prime.c

;

; $FUNC main(8)

; bc=(void)

; CODE SIZE= 222 bytes, CLOCK_SIZE= 654 clocks, STACK_SIZE= 14 bytes

;

; $CALL printf(18)

APPENDIX A SAMPLE PROGRAMS

User’s Manual U16654EJ1V0UM 185

; bc=(pointer:ax, int:[sp+2])

;

; $CALL putchar(20)

; bc=(int:ax)

;

; $CALL printf(25)

; bc=(pointer:ax, int:[sp+2])

;

; $FUNC printf(31)

; bc=(pointer s:ax, int i:[sp+2])

; CODE SIZE= 28 bytes, CLOCK_SIZE= 108 clocks, STACK_SIZE= 10 bytes

;

; $FUNC putchar(41)

; bc=(char c:x)

; CODE SIZE= 14 bytes, CLOCK_SIZE= 58 clocks, STACK_SIZE= 8 bytes

; Target chip : uPD789024

; Device file : Vx.xx

APPENDIX A SAMPLE PROGRAMS

User’s Manual U16654EJ1V0UM186

(2) Preprocess list file

/*

78K/0S Series C Compiler Vx.xx Preprocess List Date:xx xxx xxxx Page: 1

Command : -c9024 prime.c -a -p -x -e -ng

In-file : prime.c

PPL-file : prime.ppl

Para-file :

*/

 1 : #define TRUE 1

 2 : #define FALSE 0

 3 : #define SIZE 200

 4 :

 5 : char mark[SIZE+1];

 6 :

 7 : main()

 8 : {

 9 : int i, prime, k, count;

 10 :

 11 : count = 0;

 12 :

 13 : for (i = 0 ; i <= SIZE ; i++)

 14 : mark[i] = TRUE;

 15 : for (i = 0 ; i <= SIZE ; i++) {

 16 : if (mark[i]) {

 17 : prime = i + i + 3;

 18 : printf("%6d",prime);

 19 : count++;

 20 : if((count%8) == 0) putchar('\n');

 21 : for (k = i + prime ; k <= SIZE ; k += prime)

 22 : mark[k] = FALSE;

 23 : }

 24 : }

 25 : printf("\n%d primes found.",count);

 26 : }

 27 :

 28 : printf(s,i)

 29 : char *s;

 30 : int i;

 31 : {

 32 : int j;

 33 : char *ss;

 34 :

 35 : j = i;

APPENDIX A SAMPLE PROGRAMS

User’s Manual U16654EJ1V0UM 187

 36 : ss = s;

 37 : }

 38 :

 39 : putchar(c)

 40 : char c;

 41 : {

 42 : char d;

 43 : d = c;

 44 : }

/*

 Target chip : uPD789024

 Device file : Vx.xx

*/

APPENDIX A SAMPLE PROGRAMS

User’s Manual U16654EJ1V0UM188

(3) Cross-reference list file

78K/0S Series C Compiler VX.XX Cross reference List Date:XX XXX XXXX Page: 1

Command : -c9024 prime -x

In-file : prime.c

Xref-file : prime.xrf

Para-file :

ATTRIB MODIFY TYPE SYMBOL DEFINE REFERENCE

EXTERN array mark 5 14 16 22

EXTERN func main 7

AUTO1 int i 9 13 13 13 14 15

15 15 16 17 17

 21

AUTO1 int prime 9 17 18 21 21

AUTO1 int k 9 21 21 21 22

AUTO1 int count 9 11 19 20 25

EXTERN func printf 28 18 25

EXTERN func putchar 39 20

PARAM pointer s 29 36

PARAM int i 30 35

AUTO1 int j 32 35

AUTO1 pointer ss 33 36

PARAM char c 40 43

AUTO1 char d 42 43

 #define TRUE 1 14

 #define FALSE 2 22

 #define SIZE 3 5 13 15 21

 Target chip : uPD789024

 Device file : Vx.xx

APPENDIX A SAMPLE PROGRAMS

User’s Manual U16654EJ1V0UM 189

(4) Error list file

PRIME.C(18) : W745 Expected function prototype

PRIME.C(20) : W745 Expected function prototype

PRIME.C(26) : W622 No return value

PRIME.C(37) : W622 No return value

PRIME.C(44) : W622 No return value

 Target chip : uPD789024

 Device file : VX.XX

Compilation complete, 0 error(s) and 5 warning(s) found.

User’s Manual U16654EJ1V0UM190

APPENDIX B LIST OF USE-RELATED CAUTIONS

Number Cautions

1 [Cautions related to specification of options]

(a) When several specifications have been made for an option that does not allow multiple specifications, the last

specification takes priority (is valid).

(b) The type specification following the -C option must not be omitted. If it is omitted, an abort error occurs. If the -

C option is not specified, be sure to enter #pragma pc (type) in the C source module file instead. During

compilation, if the specified option is different from the option in the C source, the specified option takes priority.

A warning message is output at that time.

(c) If the help option has been specified, all other options are ignored.

2 [Cautions related to file output destinations]

Only disk-type files can be specified as the output destination for object module files.

3 [Cautions related to error messages]

When a syntax error has been found in a file, an error message is attached to the file name. If a device file has

been specified at a prohibited location, the specified character string is output by itself. In all other cases, the drive,

path, and file extension must be attached.

4 [Cautions related to source file names]

In the CC78K0S, the part except the source file name extension (primary name) is used as the module name by

default. Therefore, some restrictions apply to the source file names that can be used.

(a) Regarding the length of the file name, configure the file name with a primary name and extension within the

range allowed by the OS, and separate the primary name and the extension with a dot (.). When using PM plus,

separate the primary name and extension with a dot (.), and use “.c”, “.C” as the C source extension.

(b) The characters that can be used for the primary name and the extension consist of the characters allowed by

the OS, except parentheses (()), semicolons (;), and commas (,). Note that a hyphen (-) cannot be used as the

first character of a file name or path name. When PM plus is used, do not specify file names or path names that

include a space or square brackets ([]), or path names that include 2-byte characters, such as Chinese

characters.

(c) Sharp symbol (#) cannot be used for file names and path names in parameter files.

(d) An error is output during linking for files that have the same name as the first 8 characters of the primary name.

(e) If using the ID78K0S-NS or SM78K0S, the characters that can be used for the file name are lowercase letters (a

to z), uppercase letters (A to Z), numbers (0 to 9), underscores (_), and dots (.)

5 [Cautions related to include files]

It is not possible to define functions (excluding declarations) in an include file and then expand the file within the C

source.

When definitions are made within an include file, problems such as incorrect display of definition lines during source

debugging may occur.

 APPENDIX B LIST OF USE-RELATED CAUTIONS

User’s Manual U16654EJ1V0UM 191

Number Cautions

6 [Cautions related to use of output assembler source]

When a C source program contains descriptions that use assembly language such as #asm blocks or _ _ asm

statements, the load module file creation procedure sequence is compile, assemble, and then link. Be careful about

the following points when using the assembler by outputting the assembler source to perform assembly without

outputting direct objects, such as when descriptions using assembly language are used.

(a) If symbols need to be defined in the #asm block (part between #asm and #endasm) and the _ _asm statement,

use a symbol of 8 or less characters beginning with the strings ?L@ (for example, ?L@01, ?L@sym, etc.).

However, these symbols cannot be defined externally (PUBLIC declaration). It is not possible to define

segments in the #asm block and the _ _asm statement. If a symbol of 8 or less characters beginning with the

strings ?L@ is not used, the abort message A114 is output during assembly.

(b) When using variables that are extern-ed in the #asm block in C source, EXTRN is not generated if there are no

references in other C descriptions, and a link error is output. Therefore, perform EXTRN in the #asm block if no

referencing is done in C.

(c) If the C source contains #asm blocks and _ _ asm statements, specify the -A or -SA compiler option to enable

assembly descriptions, and assemble the output assembler source.

When using PM plus, either specify the -A/-SA options through individual option specification for sources for

which only assembler source files are output, or specify the -A/-SA options through universal option

specification.

(d) When using PM plus, the RA78K0S is started regardless of compiler options -O/-NO when compiler option -A or

-SA is specified.

(e) When changing the segment name using the #pragma section directive, do not specify a segment having the

same name as the primary name of the source file name. Otherwise, abort error A106 is output during

assembly.

7 [Cautions when specifying compiler option -QC2]

If the -QC2 option is specified in the CC78K0S, the ranges of the types of constants and character constants that

can be represented are handled as follows.

–128 to +127 char type

128 to 255 unsigned char type

0U to 255U unsigned char type

From 256 int type

To –129 int type

‘\0’ to ‘\377’ char type

When specifying the -QC2 option, the calculation results of a pair of char type constants and a pair of unsigned char

type constants are handled as char types and unsigned char types, respectively. The calculation result of a char

type constant and an unsigned char type constant is handled as unsigned char type.

If the calculation result overflows, cast either of the constants to a type that can represent it or specify the -QC1 or

-QC (default) option simultaneously. Casting prevents the data type from changing.

 APPENDIX B LIST OF USE-RELATED CAUTIONS

User’s Manual U16654EJ1V0UM192

Number Cautions

7 Example) When -QC2 option is specified

int i;

i = 20*20 /*Negative value*/

i = (int)20*20 /*400*/

Remark However, when specifying the -QU option, all char type data are handled as unsigned char type.

Character constants in the range from ‘\200’ to ‘\377’ are handled as unsigned char type and have values

from +128 to +255.

8 [Usable assembler package]

Use the CC78K0S Ver. 1.50 together with assembler package Ver. 1.30 or later.

Since long file names are supported, use of an RA78K0S earlier than Ver. 1.30 may result in errors.

9 [Cautions when using network]

When the directory where the temporary files are created is placed in a file system shared on a network, file

contention may arise, depending on the type of network software being used, and abnormal operation may result.

Avoid such contention by setting the options and the environment variables.

Do not use the CC78K0S in the network environment when using PM plus.

10 [Creating link directive file]

When an area outside of the ROM or RAM area of the target device is used when linking the objects created by the

compiler, or when you want to place the code or data at any specified address, create a link directive file and specify

the -D option when linking.

For information about creating link directive files, see RA78K0S Assembler Package Operation User’s Manual

(U16656E) and lk78k0s.dr (in the SMP78K0S directory) equipped with the compiler.

Example) When you want to place external variables without initial values (except sreg variables) from a certain C

source file to the external memory.

1. Change the section name for the external variables without initial value at the beginning of the C source.

#pragma section @@DATA EXTDATA

M

Caution Initialization of the changed segment and ROMization should be performed by changing the

startup routine.

2. Create a link directive file.

<lk78k0s.dr>

memory EXTRAM : (0F000h, 00200h)

merge EXTDATA := EXTRAM

Heed the following points when creating a link directive file.

 APPENDIX B LIST OF USE-RELATED CAUTIONS

User’s Manual U16654EJ1V0UM 193

Number Cautions

10 1. When using the -S automatic generation option for stack symbols while linking, it is recommended to secure the

stack area by the memory directive of the link directive file and specify its name explicitly. If the area name is

omitted, it is used as the stack area in the RAM (except for the SFR area).

Example) When added to the link directive file lk78k0s.dr

memory EXTRAM : (0F000h, 00200h)

memory STK : (0FB00H, 20H)

merge EXTDATA := EXTRAM

(Command line)

> lk78k0s s0s.rel prime.rel -bcl0s.lib -SSTK –Dlk78k0s.dr

2. The following error may be output when linking in the defined memory area.

“*** ERROR F206 Segment ‘xxx’ can’t allocate to memory-ignored.”

[Cause]

Because of insufficient space in the defined memory area, the indicated segment cannot be located.

[Response]

The response action is roughly divided into the following three steps.

1. Examine the size of a segment that cannot be located (refer to the .map file).

2. Based on the size of the segment examined in step 1, increase the size of the area where the segment is

located in the directive file.

3. Specify the directive file specification option -D and link.

However, based on the type of the segment marked by an error in step 1, the method used to examine the

segment size differs in the following way.

(1) When the segment is automatically generated during compilation

Examine the size of the segment by the map file that is linked and created.

(2) When the segment is created by the user

Examine the size of the segment that is not located by the assemble list file (.prn).

11 [Cautions when using va_start macro]

The operation of va_start macro defined in stdarg.h is not guaranteed (because the offset of the first argument

differs depending on the function).

• When the first argument is specified, use the va_starttop

• When the second and subsequent arguments are specified, use the va_start macro.

 APPENDIX B LIST OF USE-RELATED CAUTIONS

User’s Manual U16654EJ1V0UM194

Number Cautions

12 [Cautions when referencing special function register (SFR) constant address]

If the 16-bit SFR is referenced by a constant address reference, use the SFR name to reference it since an illegal

code is generated to access in 8-bit units.

13 [Startup routines and libraries]

(a) Use the provided startup routines and libraries with the same versions as the files in the executable form

(cc78k0s.exe or cc78k0s).

(b) For the floating point support functions sprintf, vprintf, and vsprintf, if the result value of a conversion that is

specified with the conversion specifiers “%f”, “%e”, “%E”, “%g” or “%G” is smaller than the precision, the value

is rounded down. “%f” conversion is executed even if the result value of conversion that is specified with

“%g”/“%G” is greater than the precision.

For functions sscanf and scanf, if no effective character is read during conversion that is specified with the

conversion specifiers “%f”, “%e”, “%E”, “%g”, or “%G”, +0 is regarded as the conversion result. If the

conversion result is “±”, ±0 is regarded as the conversion result.

[Prevention method] None

14 [Cautions when source debugging with ID78K0S-NS]

When calling a pascal function, the Next command operates as the same as the Step command. Return to the

calling side of the function with the Return command, etc. When the compile option -ZR is specified, all functions

become pascal functions. Therefore, never execute the Next command.

15 [Cautions when source debugging with SM78K0S]

Do not execute the Next command when calling a pascal function. Otherwise, a runaway will occur. When the

compile option -ZR is specified, all functions become pascal functions. Therefore, be sure not to execute the Next

command when the -ZR is specified.

16 [When performing ROMization]

ROMization consists in placing initial values such as those of external variables that have an initial value in ROM,

and then copying these values to RAM during system operation. In CC78K0S Ver. 1.50, a code is generated by

default for ROMization. Therefore, it is necessary to perform linking with the startup routine including ROMization

during linking.

The following startup routines, all including ROMization processing, are provided by the C compiler.

Startup routines:

(1) When not using C standard library area: S0S.REL

(2) When using C standard library area: S0SL.REL

 APPENDIX B LIST OF USE-RELATED CAUTIONS

User’s Manual U16654EJ1V0UM 195

Number Cautions

16 [Usage example]

C:> LK78K0S S0S.REL SAMPLE.REL -S -BCL0S.LIB -OSAMPLE.LMF

SAMPLE.REL: Object module file of user program

S0S.REL: Startup routine

CL0S.LIB: Runtime library, standard library

The -S option is a stack symbol (_@STBEG, _@STEND) automatic generation option.

Cautions

•••• Be sure to link the startup routine at the beginning.

•••• When creating a library, create it separately from the library provided by the CC78K0S, and specify it prior

to the compiler library during linking.

•••• Do not add user functions to the CC78K0S library.

•••• When using a floating point library (CL0SF.LIB), it is necessary to link the startup routine including the

ROMization processing to both the standard library and the floating point library.

When using sprintf, sscanf, printf, scanf, vprintf, and vsprintf functions supporting floating points

Example) -BMYLIB.LIB -BCL0SF.LIB -BCL0S.LIB

When using sprintf, sscanf, printf, scanf, vprintf, and vsprintf functions not supporting floating points

Example) -BMYLIB.LIB -BCL0S.LIB -BCL0SF.LIB

17 [Stack area symbol generation (-S)]

In CC78K0S, the user cannot secure a stack area.

To secure a stack area, specify the -S option during linking.

When using PM plus, the -S option is automatically attached when the source file specification includes the C

source.

18 [ROM code]

When ordering ROM code, specify the -R or -U object converter options , such as –r, -u0FFH.

-R: Sort HEX file contents by order of addresses.

-U fill value: Fill empty space in ROM code with the specified fill value.

19 [Help specification option]

In PM plus, compiler options --, -?, and -H, which display option descriptions, are ignored.

For help, click the help button in the <Option Setup> dialog box of each tool.

20 [-LL option specification]

When using PM plus, the maximum number that can be specified for the -LL option is 32767. If a number that

exceeds 32767 is specified, specify -LL with another option.

21 [Cautions regarding symbol name length]

When using ID78K0S-NS V1.01 and SM78K0S V1.42 or earlier versions, do not use symbol names with more than

127 characters.

 APPENDIX B LIST OF USE-RELATED CAUTIONS

User’s Manual U16654EJ1V0UM196

Number Cautions

22 [Cautions when using PM plus]

(a) Parameter file created by user

When PM plus is specified for the parameter file created by the user, those contents are loaded to the parameter

file created by PM plus. When creating a parameter file, be careful about the following points. Otherwise, an

error will occur during build execution.

• Specify a file with the same name as the parameter file created by PM plus.

• Do not describe the device type specification option (-c), device file search path specification option (-y), and

source file.

• No validity check is performed for the options described in the parameter file created by the user.

(b) <Assembler Options> dialog box

Do not specify the -C, -F, and -Y options and the source file, or an error will occur during build execution.

No validity check is performed for the options specified in the <Assembler Options> dialog box, so an error will

occur during build execution in case of description errors.

(c) Include file dependence relationship

During checking of dependence relationships of include files during MAKE file creation with PM plus, condition

statements such as #if are ignored. Therefore, include files not required for build are mistaken as required files.

If described as comments or character strings, they are correctly judged as without dependence relationship.

Example)

#if 0

#include "header1.h" /* Dependence relationship judged to exist */

#else / * ! zero */

#include "header2.h"

#endif

/*

#include "header3.h"

*/

header1.h is judged as required for build during the dependence relationship check. If the header1.h file exists,

header1.h gets registered to "ProjectWindow" of PM plus.

[Prevention method] None. However, this has no effect on the build processing.

(d) Project file

When the [OK] or [Apply] button in the <Compiler Options> dialog box is not pressed, the [Using Startup

Routine] and [Using Fixed Area of Standard Library] check boxes in the <<Startup Routine>> tab in the

<Compiler Options> dialog box are selected, but they are not actually enabled.

[Prevention method] Reflect the settings on PM plus with the following procedure.

<1> Open the <Compiler Options> dialog box.

<2> Select the <<Startup Routine>> tab.

<3> Check the [Using Startup Routine] and [Using Fixed Area of Standard Library] settings.

<4> Press the [OK] or [Apply] button (the correct settings are reflected when these buttons are pressed).

(e) Project-related file settings

Compiler attribute startup routines and standard libraries can be added and deleted from the [Project] menu of

PM plus or from "Add Project-Related File" displayed by right-clicking in the Project window.

Perform compiler attribute startup routine and standard library settings from the <<Startup Routine>> tab in the

<Compiler Options> dialog box.

(f) File names and path names enclosed in square brackets ([]) cannot be handled.

 APPENDIX B LIST OF USE-RELATED CAUTIONS

User’s Manual U16654EJ1V0UM 197

Number Cautions

23 [Cautions related to prototype declaration]

If a function prototype declaration does not contain a function type specification, an error (F301, F701) results.

Example)

f (void) ; /* F301 : Syntax error */

/* F701 : External definition syntax */

[Prevention method] Describe the function type.

Example)

int f (void) ;

24 [Cautions related to error message output]

If there is a spelling error in the keyword at the beginning of a line outside the function, the display position of the

error line may be offset and an inappropriate error output.

Example)

extren int i ; /* extern spelling error. No error results here. */

/* comment */

void f (void) ;

[EOF] /* Error such as F712 */

[Prevention method] None

25 [Cautions related to description of comments in preprocessing directive]

In the description of preprocessing directives, when a comment is described at the same line as a function type

macro either before or within a preprocessing directive, an error (F803, F814, F821, etc.) results.

Example)

/* com1 */ #pragma sfr /* F803 */

/* com2 */ #define ONE 1 /* F803 */

#define /* com3 */ TWO 2 /* F814 */

#ifdef /* com4 */ ANSI_C /* F814 */

/* com5 */ #endif

#define SUB(p1, /* com6 */ p2) p2 = p1 /* F821 */

[Prevention method] Describe the comment after the preprocessing directive.

Example)

#pragma sfr /* com1 */

#define ONE 1 /* com2 */

#define TWO 2 /* com3 */

#ifdef ANSI_C /* com4 */

#endif /* com5 */

#define SUB(p1, p2) p2 = p1 /* com6 */

 APPENDIX B LIST OF USE-RELATED CAUTIONS

User’s Manual U16654EJ1V0UM198

Number Cautions

26 [Cautions related to use of tag for structure, union, or enum]

If the tag (for a structure, union, or enum) is used before defining it in a function prototype declaration, a warning

results if condition (1) below is fulfilled, and an error results if condition (2) below is fulfilled.

(1) If the tag is used in an argument declaration and a pointer to a structure or union is defined, warning W510

results when a function is called.

Example)

void func (int , struct st) ;

struct st {

char memb1;

char memb2;

} st [] = {

{ 1, ’a’ } , { 2, ’b’ }

} ;

void caller (void) {

func (sizeof (st) / sizeof (st[0]) , st); /* W510 Pointer mismatch */

}

(2) If the tag is used in a return value type declaration of an argument declaration, and a structure, union, or

enum type is specified, error F737 results.

Example)

void func1(int , struct st) ; /* F737 Undeclared structure/union/enum tag */

struct st func2 (int) ; /* F737 Undeclared structure/union/enum tag */

struct st {

char memb1;

char memb2;

} ;

[Prevention method] Define the tag of the structure, union, or enum beforehand.

 APPENDIX B LIST OF USE-RELATED CAUTIONS

User’s Manual U16654EJ1V0UM 199

Number Cautions

27 [Cautions related to initialization of array, structure, or union in function]

Arrays, structures, and unions using something other than a static variable address, constant, or character string

cannot be initialized.

Example)

void f (void) ;

void f (void) {

char *p, *p1, *p2 ;

char *ca[3] = { p , p1 , p2 } ; /* Error(F750) */

}

[Prevention method] Describe an assignment statement and use it instead of initialization.

Example)

void f (void) ;

void f (void) {

char *ca[3] ;

char *p, *p1, *p2 ;

ca[0] = p ; ca[1] = p1 ; ca[2] = p2 ;

}

28 [Cautions related to extern callt function]

If the address of an extern callt function is referenced by initializing the function table, etc., and the callt function is

called by the same module, the assemble list is illegal and an error results during assembly.

Example)

callt extern void funca (void) ;

callt extern void funcb (void) ;

callt extern void funcc (void) ;

static void (* const func []) () = {

funca , funcb , funcc

} ;

callf void func2 (void) {

funcc () ;

funcb () ;

funca () ;

}

[Prevention method] Separate the function table and function call module.

 APPENDIX B LIST OF USE-RELATED CAUTIONS

User’s Manual U16654EJ1V0UM200

Number Cautions

29 [Cautions related to functions returning a structure]

When a function returns a structure, an interrupt is generated in the process of returning a return value. If there is a

call of the same function during interrupt servicing, the return value is illegal after the interrupt servicing ends.

Example)

struct str {

char c ;

int i ;

long l ;

} st ;

struct str func () {

/* Interrupt occurrence */

 :

}

void main () {

st = func () ; /* Interrupt occurrence */

}

If the func function is called at the interrupt destination during the above servicing, st may be corrupted.

[Prevention method] None

30 [Cautions related to union initialization]

When, during initialization of unions having structures, unions, or arrays as members, the initializer syntax is

specified with nesting, error F750 results.

Example)

struct Ss {

int d1, d2 ;

} ;

union Au {

struct Ss t1;

} u = { { 1, 2 } } ; /* F750 Initializer syntax */

[Prevention method] Do not specify the initializer of a union with nesting.

Example)

struct Ss {

int d1, d2 ;

} ;

union Au {

struct Ss t1;

} u = { 1, 2 } ;

User’s Manual U16613EJ1V0UM 201

APPENDIX C LIST OF RESTRICTIONS RELATED TO CC78K0S

This chapter describes in detail the restrictions on the CC78K0S and how to avoid them.

Number Overview of Restrictions

1 The initialization of an external variable declared extern within a block does not become an error. In addition, the

debugging information in the assembler source is incorrect.

2 Binding a variable with the same name to a variable declared extern in the block is sometimes illegal.

3 If a type defined by typedef (typedef name) is used in a function prototype declaration or a declaration using a const or

volatile type modifier, the typedef expansion is illegal, and an error results.

4 Sometimes a multidimensional array with an undefined size does not operate properly.

5 In a function returning the address of a function with arguments, those arguments cannot be referenced. There is no

error when referenced, but illegal code is output.

6 The signed type bit field is handled as an unsigned bit field.

APPENDIX C LIST OF RESTRICTIONS RELATED TO CC78K0S

User’s Manual U16654EJ1V0UM202

C.1 Details About Restrictions and Prevention Methods

Restriction 1
The initialization of an external variable declared extern within a block does not become an error. In addition, the

debugging information in the assembler source is incorrect.

[Description]

Since it is not compliant with the ANSI C language specifications, the initialization of an external variable declared

extern within a block should produce an error, but the description does not become an error. The object defined as

an external variable with initial value is interpreted and the code is output by the compiler.

The debugging information in the object output by the compiler is correct, but the debugging information in the

assembler source is incorrect.

[Reproduced example]

int i;

void f(void) {

 extern int i = 2;

}

[Prevention method] None

[Generation] All versions from Ver. 1.00 to Ver. 1.50

Restriction 2
Binding a variable with the same name to a variable declared extern in the block is sometimes illegal.

[Description]

Binding a variable with the same name to a variable declared extern in the block is illegal in either of the following

cases.

(1) When a variable declared with extern in a block and a variable declared with static after outside the block have

the same name

Since no error occurs and there is no binding, illegal code is output when this variable is referenced.

[Reproduced example]

void f(void) {

 extern int i;

 i = 1; /* Illegal code output */

}

static int i;

APPENDIX C LIST OF RESTRICTIONS RELATED TO CC78K0S

User’s Manual U16654EJ1V0UM 203

(2) When a variable declared with extern in a block and a variable not declared with static outside the block after a

variable declared with extern have the same name

There is no binding, and illegal code is output.

[Reproduced example]

void f(void) {

 extern int i;

 i = 1; /* Illegal code output */

}

int i;

(3) When a variable declared with extern in a block and a variable not declared with extern outside the block before a

variable declared with extern have the same name, and an automatic variable declared in a block containing the

block with the variable declared with extern has the same name

The variable outside the block and the variable declared with extern in the block are not bound, and illegal code is

output.

[Reproduced example]

int i = 1;

void f(void) {

 int i;

 {

 extern int i;

 i = 1; /* Illegal code output */

 }

}

(4) A variable declared with extern in a block and a variable declared with extern in another block have the same

name

There is no binding, and illegal code is output.

[Reproduced example]

void f1(void) {

 extern int i;

 i = 2;

}

void f2(void){

 extern int i;

 i = 3;

}

[Prevention method] None

[Generation] All versions from Ver. 1.00 to Ver. 1.50

APPENDIX C LIST OF RESTRICTIONS RELATED TO CC78K0S

User’s Manual U16654EJ1V0UM204

Restriction 3
If a type defined by typedef (typedef name) is used in a function prototype declaration or a declaration using a

const or volatile type modifier, the typedef expansion is illegal, and an error results.

[Description]

If a type defined by typedef (typedef name) is used in a function prototype declaration or a declaration using a

const or volatile type modifier, the typedef expansion is illegal, and an error may result.

[Reproduced example 1]

typedef int FTYPE();

FTYPE func;

int func(void); /* F713 Redefined 'func' */

[Reproduced example 2]

typedef int VTYPE[2];

typedef int *VPTYPE[3];

const VTYPE *a;

const int (*a)[2]; /* F713 Redefined 'a' */

volatile VPTYPE b[2];

volatile int *volatile b[2][3]; /* F713 Redefined 'b' */

[Prevention method] None

[Generation] All versions from Ver. 1.00 to Ver. 1.50

Restriction 4
Sometimes a multidimensional array with an undefined size does not operate properly.

[Description]

Sometimes a multidimensional array with an undefined size does not operate properly.

[Reproduced example 1]

char c[][3]={{1},2,3,4,5}; /* Illegal code */

[Reproduced example 2]

char c[][2][3]={"ab","cd","ef"}; /* Error (F756) */

[Prevention method]

Define the size of the multidimensional array.

[Generation] All versions from Ver. 1.00 to Ver. 1.50

APPENDIX C LIST OF RESTRICTIONS RELATED TO CC78K0S

User’s Manual U16654EJ1V0UM 205

Restriction 5
In a function returning the address of a function with arguments, those arguments cannot be referenced. There is

no error when referenced, but illegal code is output.

[Description]

In a function returning the address of a function with arguments, those arguments cannot be referenced. There is

no error when referenced, but an illegal code is output.

[Reproduced example]

char *c;

int *i;

void (*f1(int *))(char *);

void (*f2(void))(char *);

void (*f3(int *))(void);

void main() {

 (*f1(i))(c); /* Correct description (W510) */

 (*f1(i))(i); /* Incorrect description */

 (*f2())(c); /* Correct description (W509) */

 (*f2())(); /* Incorrect description (W509) */

 (*f3(i))(); /* Correct description (W509) */

 (*f3(i))(i); /* Incorrect description */

}

W509 or W510 is output for a correct description. Nothing is output for a description that should produce a

warning. However, the output code is normal.

void (*f4())(int p) {

 p++; /* Incorrect description */

}

An error is not output for a description that should cause an error. An illegal code is generated.

[Prevention method] None

[Generation] All versions from Ver. 1.00 to Ver. 1.50

APPENDIX C LIST OF RESTRICTIONS RELATED TO CC78K0S

User’s Manual U16654EJ1V0UM206

Restriction 6
The signed type bit field is handled as an unsigned bit field.

[Description]

The signed type bit field is handled as an unsigned bit field.

[Prevention method] None

[Generation] All versions from Ver. 1.00 to Ver. 1.50

User’s Manual U16654EJ1V0UM 207

APPENDIX D INDEX

#

#pragma pc.. 76

$

$DGL ... 87

$DGS ... 87

*

*.asm.. 33

*.dll... 33

*.h .. 33

*.hlp.. 33

_

_@BRKADR .. 150

_@DIVR... 150

_@FNCENT... 150

_@FNCTBL ... 150

_@LDIVR... 150

_@MEMBTM ... 150, 151

_@MEMTOP.. 150, 151

_@SEED ... 150

_@STBEG ... 142, 144

_@TOKPTR... 150

_errno .. 150

_putchar.asm... 135, 136

A

-A option .. 94

ABORT .. 131, 154

ANSI-C... 13

Assembler.. 19

Assembler source .. 191

Assembler source module file.................. 65, 121, 179

B

Build... 25, 62

C

C compiler ..18, 131

-C option...76

C source module file...17, 177

cc78k0s.exe ...33

cc78k0s.msg ..33

CC78K0SP.DLL ...36

CER..65

<Compiler Options> dialog box61

Constant address reference194

Cross-reference list file.............................65, 128, 188

cstart*.asm ...33, 150

cstart.asm...145, 148, 150

cstartn.asm...136, 140

D

-D option...91

Debugger..23

E

-E option ...98

ECC..65

Environment variable..32

ER ..65

Error level ...131

Error list file ..65, 98, 123

euc..32

EXIT status...131

F

-F option ...111

FATAL ..154

FATAL ERROR ..131

G

-G option...23, 87

getchar.asm..135, 136

APPENDIX D INDEX

User’s Manual U16654EJ1V0UM208

H

--/-?/-H options ... 113

Hardware initialization function 144

hdwinit function .. 139, 144

HER ... 65

I

-I option .. 93

INC78K0S .. 32, 33, 93, 132

Include file.. 65, 124, 132, 190

K

-K option... 88

L

LANG78K... 32, 132

-LF option... 107

-LI option .. 108

LIB78K0S... 32, 132

Librarian ... 22

Library .. 34, 194

Library file .. 34

Library function .. 150

Library naming rule .. 35

Link directive file .. 152, 192

Linker ... 20

-LL option ... 105

longjmp.asm... 135, 136

-LT option... 106

-LW option.. 104

M

mkstup.bat ... 33, 135, 137

mkstup.sh... 134, 137

N

-NG option.. 87

-NO option.. 79

-NQ option.. 84

-NR option.. 80, 81, 82, 83

-NV option .. 110

-NZ option .. 114

O

-O option.. 79

Object converter .. 21

Object module file...................................... 65, 79, 119

On-line help file.. 33

Optimization... 69

P

-P option .. 88

Parameter file 38, 56, 62, 65, 111, 191, 196

PATH ... 32, 132

PM plus.. 25

Preprocess list file 65, 88, 126, 186

putchar.asm... 135, 136

Q

-Q option.. 84

-QC option ... 46, 85

-QU option ... 46, 86

R

-R option .. 80

-RD option ... 81

repgetc.bat... 135

repputc.bat... 135

repputcs.bat... 135

reprom.bat ... 33, 135

repselo.bat... 135

repselon.bat... 135

Reset vector .. 144

-RK option.. 82

rom.asm... 33, 135, 136, 140

ROMization.. 71

ROMization processing 138, 145, 146, 194

ROMization routine.. 135

-RS option.. 83

Runtime library .. 34, 71

S

s0s*.rel... 140

s0sl.rel ... 71

-SA option.. 95

-SE option.. 100

setjmp.asm .. 135, 136

setup.exe ... 27

APPENDIX D INDEX

User’s Manual U16654EJ1V0UM 209

sjis.. 32

-SM option ... 117

Source debugging.. 194

Source file name.. 190

Stack pointer.. 144

Standard library ... 34, 71

Startup routine 34, 58, 133, 194

Startup routine naming rule 35

System simulator ... 24

T

-T option... 112

Temporary file.. 65

TMP ... 32, 132

U

-U option .. 92

V

-V option .. 110

W

-W option ... 109

WARNING.. 131, 154

X

-X option .. 102

Y

-Y option .. 116

Z

-Z option... 114

	COVER
	INTRODUCTION
	CHAPTER 1 OVERVIEW
	1.1 Microcontroller Application Product Development and Role of CC78K0S
	1.2 Development Procedure Using CC78K0S
	1.2.1 Using editor to create source module files
	1.2.2 C compiler
	1.2.3 Assembler
	1.2.4 Linker
	1.2.5 Object converter
	1.2.6 Librarian
	1.2.7 Debugger
	1.2.8 System simulator
	1.2.9 PM plus

	CHAPTER 2 PRODUCT OVERVIEW AND INSTALLATION
	2.1 Host Machines and Supply Media
	2.2 Installation
	2.2.1 Installation of Windows version
	2.2.2 Installation of UNIX version

	2.3 Installation of Device Files
	2.3.1 Installation of Windows version
	2.3.2 Installation of UNIX version

	2.4 Directory Configuration
	2.4.1 Windows version directory configuration
	2.4.2 UNIX version directory configuration

	2.5 Uninstallation Procedure
	2.5.1 Uninstallation of Windows version
	2.5.2 Uninstallation of UNIX version

	2.6 Environment Settings
	2.6.1 Host machine (for PC-9800 Series and IBM PC/AT compatibles)
	2.6.2 Environment variables
	2.6.3 File organization
	2.6.4 Library files

	CHAPTER 3 PROCEDURE FROM COMPILING TO LINKING
	3.1 PM plus
	3.1.1 Position of CC78K0SP.DLL (tools DLL)
	3.1.2 Execution environment
	3.1.3 CC78K0S option setting menu
	(1) Option menu items
	(2) <Compiler Options> dialog box
	(3) <Browse for Folder> dialog box

	3.1.4 Description of each part of <Compiler Options> dialog box
	(1) Screen when “Preprocessor” is selected
	(2) Screen when “Memory Model” is selected
	(3) Setting screen when “Data Assign” is selected
	(4) Screen when “Optimize” is selected
	(5) Screen when “Debug” is selected
	(6) Screen when “Output” is selected
	(7) Screen when “Extend” is selected
	(8) Screen when “Others” is selected
	(9) Screen when “Startup Routine” is selected

	3.2 Procedure from Compiling to Linking
	3.2.1 MAKE from PM plus
	3.2.2 Starting up PM plus
	3.2.3 Creating project
	3.2.4 Setting compiler and linker options
	3.2.5 Building project
	3.2.6 Compiling to linking in command line (for DOS prompt and EWS)
	(1) When parameter file is not used
	(2) When parameter file is used

	3.3 I/O Files of C Compiler
	3.4 Execution Start and End Messages

	CHAPTER 4 CC78K0S FUNCTIONS
	4.1 Optimization Method
	4.2 ROMization Function
	4.2.1 Linking

	CHAPTER 5 COMPILER OPTIONS
	5.1 Specifying Compiler Options
	5.2 Prioritization of Compiler Options
	5.3 Descriptions of Compiler Options
	(1) Device type specification (-C)
	(2) Object module file creation specification (-O/-NO)
	(3) Memory assignment specification (-R/-NR, -RD/-NR, -RK/-NR, -RS/-NR, -RC/-NR)
	(4) Optimization specification (-Q/-NQ)
	(5) Debugging information output specification (-G/-NG)
	(6) Preprocess list file creation specification (-P, -K)
	(7) Preprocess specification (-D, -U, -I)
	(8) Assembler source module file creation specification (-A, -SA)
	(9) Error list file creation specification (-E, -SE)
	(10)Cross-reference list file creation specification (-X)
	(11)List format specification (-LW, -LL, -LT, -LF, -LI)
	(12)Warning output specification (-W)
	(13)Execution state display specification (-V/-NV)
	(14)Parameter file specification (-F)
	(15)Temporary file creation directory specification (-T)
	(16)Help specification (--/-?/-H)
	(17)Function expansion specification (-Z/-NZ)
	(18)Device file search path (-Y)
	(19)Static model specification (-SM)

	CHAPTER 6 C COMPILER OUTPUT FILES
	6.1 Object Module File
	6.2 Assembler Source Module File
	6.3 Error List File
	6.3.1 Error list file with C source
	6.3.2 Error list file with error message only

	6.4 Preprocess List File
	6.5 Cross-Reference List File

	CHAPTER 6 C COMPILER 6.5 Cross-Reference List File …
	CHAPTER 7 USING C COMPILER
	7.1 Efficient Operation (EXIT Status Function)
	7.2 Setting Up Development Environment (Environment Variables)
	7.3 Interrupting Compilation

	CHAPTER 8 STARTUP ROUTINES
	8.1 File Organization
	8.1.1 BAT directory contents
	8.1.2 SRC directory contents

	8.2 Batch File Description
	8.2.1 Batch files for creating startup routines

	8.3 Startup Routines
	8.3.1 Overview of startup routines
	(1) Function
	(2) Configuration
	(3) Uses of startup routines

	8.3.2 Description of sample program (cstart.asm)
	(1) Preprocessing
	(2) Initial settings
	(3) ROMization processing
	(4) Starting main function and postprocessing

	8.3.3 Revising startup routines
	(1) When revising startup routine
	(2) Link directive file

	CHAPTER 9 ERROR MESSAGES
	9.1 Error Message Format
	9.2 Types of Error Messages
	9.3 List of Error Messages
	(1) Error message for a command line <from 001>
	(2) Error message for an internal error and memory <from 101>
	(3) Error message for a character <from 201>
	(4) Error message for configuration element <from 301>
	(5) Error message for conversion <from 401>
	(6) Error message for an expression <from 501> (1/3)
	(7) Error message for a statement <from 601>
	(8) Error message for a declaration and function definition <from 701> (1/5)
	(9) Error message for a preprocessing directive <from 801>
	(10)Error message for fatal file I/O and running on an illegal operating system <from 901> (1/2)

	APPENDIX A SAMPLE PROGRAMS
	A.1 C Source Module File
	A.2 Execution Example
	A.3 Output List
	(1) Assembler source module file
	(2) Preprocess list file
	(3) Cross-reference list file
	(4) Error list file

	APPENDIX B LIST OF USE-RELATED CAUTIONS
	APPENDIX C LIST OF RESTRICTIONS RELATED TO CC78K0S
	C.1 Details About Restrictions and Prevention Methods

	APPENDIX D INDEX

