To our customers,

Old Company Name in Catalogs and Other Documents

On April 1!, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

8.

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

USER'S MANUAL

CC78K SERIES C COMPILER

OPERATION

Document No. EEU-12808B

(0. D. No. EEU-656C)
Date Published October 1991 P
Printed in Japan

USER'S MANUAL NEC

CC78K SERIES C COMPILER

OPERATION

©® NEC Carporation 19890

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document,

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or atherwise, is granted under any patents, copyrights
or other intellectual property rights of NEC Corporation or of others.

INTRODUCTION

The CC78K Series C Compiler User's Manual for Operation (herein-
after referred to as this manual) has been prepared to give

those who develop software by using this C compiler a correct
understanding of the functions and operating methods of this C
compiler.

This manual does not cover how to describe the source programs of
the CC78K series C compiler. Therefore, before reading this
manual, you should read the CC78K Series C Compiler User's Ménual

for Language published as a separate volume.

[Target Devices]

Software for the following microcomputers

this C compiler.

can be devéloped with

Series Target device
78K/0 uPD78001, uPD78002,
uPD78011, uPD78012, uPD78013, uPD78014, uPD78P014,
uPD78022, uPD78023, uPD78024, uPD78P024,
uPD78042, uPD78043, uPD78044, uPD78P044
78K/II | uPD78210%, |
uPD78212, uPD78213, uPD78214, uPD78P214,
uPD78217A, uPD78218A, uPD78P218A,
uPD78220, uPD78224, uPD78P224,
uPD78233, uPD78234, uPD78237, uPD78238, uPD78P238,
uPD78243, uPD78244
78K/III | uPD78310*, uPD78312*, uPD78P312%,
uPD78310A, uPD78312A, uPD78P312A,
uPD78320, uPD78322, uPD78P322, uPD78323, uPD78324,
uPD78P324, uPD78327, uPD78328, uPD78P328,
uPD78330, uPD78334, uPD78P334,
uPD78350, uPD78P352

* Products for maintenance

Note: Of the above listed products, some are under development.

[Readers of Manuall

Although this manual is intended for those who have read the

user's manual of the microcomputer subject to software

development and have experience in software programming, the

readers need not necessarily have a knowledge of C compilers

or C language. Therefore, this manual can also be read by those

who use a C compiler for the first time.

However, because this C compiler consists of only the program

files related to translation (compilation), the RA78K series

assembler package is also required to develop programs by using

this C compiler.

ii

[Organization of Manual]

This manual consists of the following nine chapters and

appendixes:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

‘Chapter 8

Chapter 9

General

Outlines the functions of this C compiler including
its role and standing in microcomputer development.
Also introduces the features of the C compiler.

Product Overview

Describes the program filenames offered by this

C compiler package

of each program.

and the operating environment

Execution of C Compiler

Explains the procedures required for executing
this compiler using sample programs. -

I/0 Files and Start-up of C Compiler

Details the I/0 files of this C compiler and how
to start up the C compiler.

Compiler Options

Details how to specify the various options of this C
compiler and precedence of options, together with

explanation of an application example for each

compiler option.

Output Lists of C Compiler

Explains the formats of various lists to be output

by this C compiler.

C Compiler Utilization

Introduces some measures for effective utilization

of this C compiler,

Start-up routines and error handling routines
Explains the contents of the respective start-up
and error handling routines and their usages
using sample programs, and some important points

for improving the sample programs.

Error Messages

Describes error messages to be output by this C

compiler,

iii

Appendixes

Contain examples of sample program lists, hints on use and

restrictions, and a list of compiler options.

[Recommended Usage of Manual]

For those who wish to actually operate this C compiler: First,
read Chapter 3, Execution of C Compiler.

For those who have a general understanding of C compilers: You
may skip Chapter 1, General.

Utilize various lists in the respective appendixes after you
have familiarized yourself with the operation of the C compiler.
Chapter 5, Compiler Options and Chapter 9, Error Messages also

contain information for quick reference.

[Symbols and Abbreviations]

The following symbols and abbreviations are used in this manual:

Symbol Meaning

‘e Continuation (repetition) of data in the same format
o] Parameters in square brackets may be omitted.

"o Characters enclosed in " " (double guotes" must be

input as 1is.

Characters enclosed in ' ' (single gquotes) must be

input as 1is.

{) Characters enclosed in parentheses must be input as
is.

o Important point or character string that must be input
by the user in the input example

A One or more spaces must be input.

This part of the program description is omitted.

Delimiter

Return key input

Backslash

— @ — e

Wwith PC-DOS, a backslash (\) is used in place of the ¥ sign.

iv

{Conventions of Filename Specification]
Conventions of input filename specification in the start-up

command line of this C compiler are as follows:

(1) Disk type file specification

[drive name:][¥1[directory name]...]primary namef.[file typell

Character string
consisting of not
more than three
characters
{Characters A to

Z, atoz, 0 to 9
and / can be used.}

=~ Character string
consisting of not more
than eight characters
(Characters A to 2, a to
z, 0 to 9, _, @, and ?
can be used.)

L— Specifies a subdirectory name.

L Specifies a route directory name.

L.+ Specifies a drive name in which the specified
file is stored (A: to 0:).

Example: A:¥sample¥prime.c

Note: 1. No blank (space) can be specified before or after

(semicolon), "." {period), and "¥".

2. Uppercase and lowercase letters are not
distinguished from each other.

3. With PC-DOS, a backslash (\\) is used in place of
the ¥ sign.

(2) Device type file specification
One of the following four logical devices can be specified:

Logical device |Description

CON Qutputs to Console

PRN Outputs to Printer

AUX Qutputs to Auxiliary output device
NUL Dummy output

(Nothing will be output)

1BM-pC™, IBM-PC/XTTM, IBM-PC/ATT™, and pC-DOSTM are trademarks
of IBM Corp.

v30™ is a trademark of NEC Corporation.

80386TM, 80286TM, and 80861 are trademarks of Intel Corp.
Ms-D0s™ is a trademark of Microsoft Corp.

vi

CONTENTS

Page
CHAPTER 1. GENERAL Semeeracanans serenas se e .o 1-1
1.1 What Is a C Compiler 2 ... uieeeeeasrvssanonrasasnnnasans 1-1

1.17.1 C language and Assembly language .s.isesenseessea. 1-1

1.1.2 Development of microcomputer-applied products

and role of this product ... et everssreseanns 1-3
1.2 Program Development Procedure by C Compiler aesa 1-5
1.2.1 Creating a source module file with
the editor ...iiiiirieeesronsansnacssssnsanssnnna 1-6
1.2.2 C COMPLIBY 4ttt tesrastonsssassssassacsscseasssa . 1-7
1.2.3 BAssemblericiiiieernnnceanrons teeansaae s 1-8
1.2.4 LinKer . .iuisteiensnnsnananssnssnsnnsasssssssenssnns 1-9
1.2.5 Object converterivssssssrsnssssrsosssnnsnsannsse 1-10
1.2.6 Librarianivuiveieinaenn b e s iaaaaaararaas e, 1-11
1.2.7 Screen debuggercciiiennii ittt ensncsacnsnnnns 1-12
1.3 Reminders Before Program Development P eereaeraea 1-13
1.4 Features of This C Compiler .,....cciieeererccsnccnannn 1-15
CHAPTER 2. PRODUCT OVERVIEWicivctieivnsnccsnnnnnnnnnss 2-1
2.1 Contents of Floppy Disks sesesarsecess e nansssnna 2-1
2.1.1 System filesc0. N ceee. 2-2
2.1.2 Library files ..uceieeaninnnrnnrtsniensncnnncnns 2-4
2.2 Forms of File Media Supplied e reseacer e 2-5
2.3 System Configurationc.ciiiiieiiiiiiinreanaannns 2-5
CHAPTER 3. EXECUTION QOF C COMPILER ...vvuivecvsccsasssnccna 3-1
3.1 Before Executing the C Compilerceeverracanannans 3-1
3.1.1 Confirming the contents of the supplied disk ... 3-1
3.1.2 Sample ProOgram ., .iceveeseesaeessocsonanssoscssssnas 3-2
3.2 Procedure for C Compiler Executionvieevescsccssns 3-3

vii

CHAPTER 4. C COMPILER
4.1 Input/Output Files of This C Compiler .

4.2 How to Start Up the C Compiler caensen
4,2,1 Starting up the C compilerc.cicceenncscne
4.2.2 Execution start and end mMesSSages ..eeecccscsnaas
3 C Compiler Options ..e.eieeccssenrcnssescnnansses caene
4 Optimization ...cievevenccennanens ces s ans tarssnesann .o
4,5 ROMable Processing of Programs cieessseasunes
4.5.1 At compile time-... Cessssssesaenene s
4.5.2 At linkage timec0ue... S ieererenaasereeena
4.6 Error Check at Execution Timec0000. sesesanae
4.6.1 Error handling routinecccveaevenes cereeenns
4.6.2 Error check library names cessavaseanen

CHAPTER 5. COMPILER OPTIONS ..civsnnncncssascanscos sesesnue
5.1 Types of Compiler Optionscsccueseenseacsancanns
5.2 How to Specify Compiler Options Cetssssnsaneunssns
5.3 Priority of Compiler Options ceecesaasnaeasse
5.4 Description of Each Compiler Optionccecaeens
(1) Processor type specification (-C) ...evevecevescs..
(2) Object module file creation specification
{0/ -NO) e rnneeeeceecesansarasasananssssansssanaes
(3) Symbol name length specification (-S/-NS)
(4) Symbol name upper-/-lower-case specification
(-CA/-NCA) ..eivirnnsansenonnns e csnassa caesesns .
(5) ROMable object file creation specification
(“R/-NR) tvuvunsnenonssannnosssssanns tesssacsecs-
(6) Optimization process specification (-Q/-NQ)
(7) Debug information output specification
(-G/-NG) +vvvuvennn. Chereanaaes
(8) Execution-time error check specification
(-L/-NL) verininnnsnnannannnns Ceseescasnenausens
(9) Preprocess list file creation specification
{-P/-NP, -K/-NK) cesvienesees cesatansansrrs
(10) Preprocessing specification (-D/-ND, -U/-NU,

_I) s e ® 8 v s e e R B s e R e s 2 8 % % 6408 s u e LR R A]

viii

4-6
4-8
4-9
4-12
4-12
4-12
4-14
4-14
4-15

5-1
5-1
5-4
5-5
5-7
5-8

5-12
5-14

5-17

5-20
5-24

5-38

(11) Assembler source module file creation

specification (-A/-NA, -SA/-NSA)

(12) Error list file creation specification

{(-E/-NE, -SE/-NSE) .

(13) Cross-reference list file creation

specification {-X/-NX) .vceercencnensanaccononnns

(14) List file format specification (-LW, -LL,

~LT, and -LF} ..eaa.

(15) Warning output‘specification (-W) ...

{16) Execution status display specification

(-V/-NV) tirreennnn.

(17) Parameter file specification (-F} sr st st ans

(18) Temporary file creation directory

specification (-T} .

{19) HELP message output

CHAPTER 6. OQUTPUT FILES OF C

6.1
6.2
6.3

Object Module File

Assembler Source Module File ..iiicieecnnncnoas

Errcor List File ..ivveases

6.3.1 Error list file with C source ..

specification (--) cevan

COMPILER .eccectsacnnncscasnn

e et e e s s LR I I A A A R R]

6.3.2 Error list file containing error

messages only

.4 Preprocess List File

CHAPTER 7.

7.1
7.2

7.3

5 Cross-reference List File

EXIT Status Function for
Environment Variable for
Setting ...viveveessaaras

Interruption of Compiler

EFFECTIVE UTILIZATION OF C COMPILER +4+¢svvesn

- e o

Efficient Compilation

Development Environment

ix

5-55

CHAPTER 8. START-UP ROUTINES AND ERROR HANDLING ROUTINES .

8.1 General ...cevevearsasranas Ceesesaceccssesascenassannns
B.2 File Organizationieeeveecenensana cisecessenanuas
8.3 Description of Each Batch Fileciieiiiecenincnnans

8.3.1 Batch file for creating a start-up routine
8.3.2 Batch file for updating error handling

routine libraries sicieeersrsssenrssenssannssaannes

B.4 Start-up Routinesiveeeerereenrannes Cresarsenana

8.4.1 Outline of start-up routinecveevenesvenranes

8.4.2 Description of sample program ...c.cceecececsesss

8.4.3 Points for improvement e eeeeeenes “ one
8.5 Error Handling Routinese.. s esasssssassnesrsseann
8.5.1 Outline of error handling routine cecsnnsena
8.5.2 Description of sample program ...ccssseseessseanes
8.5.3 Point for improvement ceeresnneranan
CHAPTER 9. ERROR MESSAGES +icvanrssssosssnass B
9.1 Types of Error Messages-. cserssasssaanan csenne
9.2 List of Error Messageseseaese festeeesesaasenns .
APPENDIX A. SAMPLE PROGRAMS tesassseacsanns ceaee
APPENDIX B. LIST OF HINTS ON USE .eecevcsses craas s s
APPENDIX C. LIST OF COMPILER OPTIONS cesseracmcanse

Page
8-1
8-1
8§-2
8-4
8-4

8-6
8-8
8-8
8-11
8-25
8-28
8-28
8-30
8-33

9-1
2-1
9-1

Fig. 1
Fig. 1

Fig. 1
Fig, 1

Fig.

1
Fig. 1
Fig. 1

1

Fig.
Fig. 1

Fig- 1_100
Fig. 1-11.

-1.
~2.

Fig. 4-1.
Fig. 8-1,
Fig. 8-2.

Table

Table 2
Table 2-2

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

1-1.

5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.

ILLUSTRATIONS AND TABLES

Page
Flow of Translationcivereirennnccncanca, 1-2
Development Process of Microcomputer-applied
Product ..veeeenensnsaenonsan s cesesane 1-3
Software Development Processevevececsonen 1-4
Program Development Procedure by This
C Compilercu.s. srevraneanns crheaacaraanas 1-5
Creation of Source Module Filecieveveenvss 1-86
Functions of C Compiler Ceetracresannn 1-7
Functions of Assemblerc0cerciiecaanna, 1-8
Functions of Linker veeaesan seceanseanns 1-9
Functions of Object Converterccecea... 1-10
Functions of Librariancececiiecersnrnnscaas 1-11
Functions of Screen Debuggercceavaann. 1-12
I/0 Files of This Compilercivieosasannnns 4-3
ROMable Processing ..ccieecnssssaronens reeses-. B-22
Configuration of Error Handling Routine 8-29
Maximum Performance Characteristics of This
C Compiler t.iciiesnsescesesonennocnsanaasasnnss 1-13
System Files in Floppy Disk 1 ...iiieeeaieneans 2-1
Library Files in Each LIBNCA Directory 2-4
System Configuratione.se.- Ciersarsarasen 2-6
I/0 Files of This C Compiler ...eeeisvecsnsencns 4-1
Optimization Techniques cites s esenn 4-9
Error Handling Routines ...seceieecesneccncscan . 4-16
Types of Compiler Optionscoviciieiinacnans, 5-1
Priority of Compiler Options teesneaanns 5-5
Processor Types (78K/0 Series)ieneeeeennnn 5-8
Processor Types (78K/II SeriesS) ..oesves cenenas 5-9
Processor Types (78K/III Series) weasasas H=9
Optimization TYPES .ieeeeereevsossancassnnen w.. 5-25
Errcr Check Typesvuiceannn s esuareannrrsenna 5-30
Process Types with -K Option (..cviveneeeivennsn 5-35
Warning Message Levelsieiierenvensasnacnas 5-67

®xi

Table 8-1. Contents of Directory "BAT"i..cn cenans
Table 8-2. Contents of Directory "SRC" ...iiiiiteeasensass
Table 8-3. Contents of Directory "INC" caeranas
Table 8-4, Start-up Routine to Be Usedccccc... cereene
Table 8-5. Correspondence of Source Files to
. Object Filesecveevenccncaasns . crraesas

Table 8-6. Selective Use of Start-up Routines ...eecevesvas
Table 8-7. Comparison of Contents between

Start-up Routines ceamsressnnas v
Table 8-8. Initial Values of Variables in ROM Area
Table 8-9., Initial vValues of Variables in RAM Area

(Copy Destination} e
Table 8-10. Symbols to Be Used in Library Functions
Table 8-11. Error Handling Routines ceae s ceraena

xii

Page
8-2
8-3
8-3

8-10
8-11

8-12
8-22

8-23
8-25
8-30

CHAPTER 1. GENERAL

The CC78K Series C Compiler is a program for translating
source programs written in the C language for the 78K

series into machine language.

1.1 What Is a C Compiler ?

1.1.1 C language and Assembly language

To have a microprocessor do its job, programs and data are
necessary. These programs and data must be written by a
human being (namely, a programmer in this case) and stored
in the memory section of the microcomputer. Programs and
data that can be handled by the microcomputer are nothing
but a set or combination of binary numbers which is called
machine language (that is, the language that can be
understood or interpreted by the computer).

An assembly language is a symbolic language characterized by
one-to-one correspondence of its symbolic (mnemcnic)
statements with machine language instructions. Because of
this one-to-one correspondence, the assembly language can
provide the computer with detailed instructions (for
example, to improve I/0 processing speed). However, this
means that the programmer must instruct each and every
operation of the computer. For this reason, it is difficult
for him or her to understand the logic structure of the
program at glance and the programmer is likely to make
errors in coding.

High-level languages were developed as substitutes for such
assembly languages. The high-level languages include a
language called C which allows the programmer to write a
program without regard to the architecture of the computer.
As compared with assembly language programs, it can be said
that programs written in C have easy-to-understand logic
structure.

C has a rich set of parts called functions for use to create
programs. In other words, the programmer can write a program

by combining these functions.

1-1

C is characterized by its ease of understanding by human
beings. However, understanding of languages by the
microcomputer cannot be extended up to a pregram written in
C. Therefore, to have thé computer understand the C language
program, another program is required to translate C language
statements to the corresponding machine language instruc-
tions. A program which translates the C language into
machine language is called a C compiler,

This C compiler accepts C source modules as inputs and
generates object modules or assembler source modules as
outputs. Therefore, the programmer can write a program in

C and if he or she wishes to instruct the computer up to
details of program execution, the C source program can be
modified in assembly language. The flow of translation by
this C compiler is illustrated in Fig. 1-1.

Program coded in a set

Program written of bipnary numbers

in C language

franslating
b
r program
(Compiler)
{c source module file) {Object module file)
[Assembler source
module file)
Program coded in a set
of binary numbers
A 4
Translating >
program
{Assembler)

(Object module file)

Fig. 1-1. Flow of Translation

1-2

1.1.2 Development of microcomputer-applied products and role
of this product

Fig. 1-2 illustrates the standing of the programming in the

C language in the development process of microcomputer-

applied products.

Preduct planning

b

Hardware System design Software
development + development

h 4

L

Software design

Logic design

Y

r

Progran creation in
C language

Manufacturing

y

Inspecticn

2>
NO

oK YES

YES
pebugging

o>

YES

»

F 3

h

System evaluation

r

Product
marketing

Fig. 1-2. Development Process of Microcomputer-applied

Products

The software development process will be further detailed

in Fig. 1-3 below.

(;;ftware develcpmen{)

Jor

Preparaticn of
program specs

P

Y

Preparation of
flowchart

Coding

Editing of
source module

YES @

NO

Linking

¥

rile conversion

r

Debugging

NO

OK

YES

(:System evaluati?i;>

in C language for 78K series

Creates a C source module file
with the editor.

Creates an cbhject module file.

Links the object module file
together with reference
library and function library
files.

Converts the linked object
module file into a HEX-format
object module file.

Checks the object mcdule file
for proper operation using a
hardware debugger (e.g.,
in-circuit emulator).

Fig. 1-3. Software Development Process

1-4

1.2 Program Development Procedure by C Compiler

Fig. 1-4 illustrates the program development procedure

this C compiler.

¢ source module file

s Inclusion
4 file
n‘ ?
£
o
o
3]
start-up Assembler object
module for source module
C compiler O module file
file
Assembler ‘Librarian
l Object
module
file Library
(}) file
P
o
o
5 Linker
o
a
H
Ll
= Load
£ module
w file
1]
=
Object
converter
HEX-format
object table
module O | file
file
IE controller Screen debugger
g = =
o T, R§-232¢ PRt
E) - e
n AL ",f’
a T - R5-232C
e Py
In-circull
emulator

Fig. 1-4. Program Development Procedure by This C Compiler

1-5

1.2.1 Creating a source module file with the editor

Divide a program functionally into several modules. Each
module becomes the unit of coding as well as the unit of
input to the compiler. A module serving as the unit of input
to the C compiler is called a C source module.

After coding each C source module, the source module is
written into a file with the editor. The file thus created
is called a C source module file.

The C source module file becomes an input file to this C

compiler.

Program Source module

Source
module

END

Source N .
module o

~ END

END

Source
module X

Write to file
END (Editor)

Y

Source module file

Fig. 1-5. Creation of Source Module File

1.2.2 C compiler

This C compiler accepts C source module files as input files
and translates the C language of each input source module
into machine language (a set or combination of binary
numbers).

If any coding error is found in the input source module, the
C compiler outputs a compile (translation) error. If no
compile error is found, the C compiler outputs an object
module file. The compiler may also output an assembler
source module file to allow program modifications and
verifications at the assembly language level. If an assembly
source module file is to be output, the "-A" option must be
specified at compile time to instruct the C compiler to

create an assembly source module file.

C source
O module file

r

C compiler

vl

Object Assembler source
module file module file

Fig. 1-6. Functions of C Compiler

1.2.3 Assembler

The assembler is a translating program which accepts
assembler source module files as input files and translates
the assembly language of each input source module into
machine language. If any coding error is found in the input
source module, the assembler outputs an assembly error. If
no assembly error is found, the assembler outputs an object
module file which contains machine language information and
relocation information relating to the allocation address of
each machine language instruction.

The assembler also outputs information at assembly time as

an assembly list file.

Assembler source

(%) module file

h 4

Assembler

Assembly Chject
list file module £f£ile

Fig. 1-7. Functions of Assembler

1.2.4 Linker

The linker accepts two or more object module files output by
the C compiler or assembler and gathers them with a library
file for output as a single load module file. (This linking
process is necessary even when only one object module is
output.)

In this process, the linker determines the allocation
addresses of relocatable segments in the input module, by
which the correct value of each relocatable symbol or
external reference symbol is determined and embedded in the
load module file.

The linker also outputs information at link time as a link

map file.

Object module files Library file
r
Linker

i T

Link map Load meodule
file file

Fig. 1-8. Functions of Linker

1-9

1.2.5 Object converter

The object converter accepts the locad module file output by
the linker as an input file, converts it into a file format,
and outputs the result of the conversion as a HEX-format
object module file.

The object converter also outputs the symbol information

required in symbolic debugging as a symbol table file.

Load module
(:) file

r

Ohject
converter

T 7

HEX-format object Symbol table
module file file

Fig. 1-9. Functions of Object Converter

1-10

1.2.6 Librarian

It is convenient to have a collection of modules which are
to be used often and have a distinct interface maintained in
a library. By this library, a number of modules can be
handled easily as a single file.

The linker has a function to retrieve only the required
modules from the library file. Therefore, by registering
(storing) multiple modules in a single library file, each of
the required module names need not be specified when linking
object modules.

The librarian is used to create and update a library file.

Object module files Object meodule file
output by Compiler output by Assembler
Y
Librarian

7

Library file

Fig. 1-10. Functions of Librarian

1-11

1.2.7 Screen debugger

By downloading the HEX-format object module file output by
the object converter into the in-circuit emulator (IE) or
evaluation board (EB board) of the target system and by
reading the symbol table file, debugging of object programs
can be performed at the symbolic level.

Another way to do this is to specify the option to output
debugging information for a source program to be compiled.
By this option specification at compile time, the symbol
and line number information required for debugging will be
added to the load object module to allow debugging of the
prbgram at the source level.

Symbolic debugging Source level debugging
HEX-format object symbol table Load module
module file file

. Object informatioi

i (:) * Debug information

IE controller screen debugger
L
‘\\-‘\ '/-
e =
RS-2232C '~ e RS§-232C
T &

i
In-circuit
emulator

Fig. 1-11. Functions of Screen Debugger

1.3 Reminders Before Program Development

Before you set your hand to the development of a program,

keep in mind the points (limit values or minimum guaranteed

values) summarized in Table 1-1 below.

Table 1-1. Maximum Performance Characteristics of

This C Compiler

No. | Item Limit value/Min.
guaranteed value
1 Nesting level of compound state- 45 levels
ments, looping statements, or
conditional control statements
2 Nesting of conditional 255 levels
translations
3 Nesting of qualifiers/declarators |12 levels
4 Nesting of parentheses per 32 levels
expression
5 Number of characters which have 31 characters
a meaning as a macro name
6 Number of characters which have 7 characters
a meaning as an internal or (see Note 1.)
external symbol name
7 Number of symbols per source 1,024 symbols
module file {see Note 2.)
8 Number of symbols which has 255 symbols
block scope within a block {see Note 2.)
9 Number of macros per source 1,024 macros
module file {see Note 3.)
10 Number of parameters per 39 parameters
function definition or
function call
11 Number of parameters per 31 parameters
macro definition or macro call
12 Number of characters per 509 characters
logical source line
13 Number of characters within a 509 characters
string literal after linkage
14 Size of one data object 65,535 bytes
15 Nesting of #include directives 8 levels
16 Number of case labels per 257 labels
switch statement '
17 Number of source lines per Approx. 3,000
translation unit lines
18 Number of source lines that Approx. 300 lines
can be translated without
temporary file creation
19 Nesting of function calls 40 levels
20 Number of labels that can be 33 labels
declared per statement

1-13

No. | ITtem Limit value/Min..
guaranteed value

21 Total size of code, data, and 65,535 bytes
stack_segments per object module

22 Number of members per structure 127 members
or union

23 Number of enum constants per 127 constants
enumeration

24 Nesting of structures or unions 15 levels
inside a structure or union

25 Nesting of initializer elements 15 levels

The values of items 5, 6, 12, 13, 14, 15, and 21 are limit
values and the values of all the other items are minimum
guaranteed values.

For details of each item in this table, see the CC78K Series

C Compiler Use's Manual for Language.

NOTE: 1. This limit value may be expanded to 30 characters
with a C compiler option (-S}. '

2. This value applies when symbols can be processed
with the available memory space alone without using
any temporary file. When a temporary file is used
because of insufficient memory space, this value
must be changed according to the file size.

3. This value includes the reserved macro definitions

of the C compiler.

1.4 Peatures of This C Compiler

This C compiler has extended functions

for CPU code

generation that are not supported by the ANSI (American

Naticonal Standards Institute) Standard

C. The extended

functions of the C compiler allow the special function

registers for the 78K series to be described at the C

language level and thus help shorten object code and improve

program execution speed. For details of these extended

functions, see Chapter 11, Extended Functions in the CC78K

Series C Compiler User's Manual for Language.

outlined here are the following extended functions to help

shorten object code and improve execution speed:

o callt functions Functions can be called using
the callt table area.

o Register variables ... Variables can be allocated to
registers.

o saddr area Vvariables can be allocated to
the saddr area.

O sfr area ..esescnvenne sfr names can be used.

o noauto functions Functions which do not output

norec functions code for stack frame formation

can be created.

o ASM statements .,...... An assembly language program

can be described in a C source

program.

o bit type variables ... Accessing

the saddr or sfr

area can be made on an
bit-by-bit basis.
o callf functions A function body can be stored

in the callf area.

1-15

(:) callt functions

Functions can be called by using the callt table area.
The address of each function to be called (this
function is called a callt function) is stored in the
callt table from which it can be called later. This
makes code shorter than the ordinary call instruction
and helps shorten object code.

Register variables

variables declared with the register storage class
specifier are allocated to the register or saddr area.
Instructions to the variables allocated to the register
or saddr are shorter in code length than those to
memory. This helps shorten object and improves program

execution speed as well.

saddr area

Variables declared with the keyword sreg can be
allocated to the saddr area. Instructions to these sreg
variables are shorter in code length than those to
memory. This helps shorten object code and also

improves program execution speed.

sfr area
By declaring use of sfr names, manipulations on the sfr

area can be degcribed at the C source level.

noauto functions

Functions declared as noauto do not output code for
preprocessing and post-processing (stack frame
formation). By calling a noauto function, arguments are
passed via registers as much as possible. This helps
shorten object code and improve program execution speed
as well.

1-16

®

norec functions

Functions declared as norec do not output code for
preprocessing and post-processing (stack frame
formation). By calling a norec¢ function, arguments are
passed via registers as much as possible. Automatic
variables to be used inside a norec function are
allocated to the saddr area. This helps shorten object

code and also improve program executicon speed.

bit type variables

A bit type variable outputs a bit manipulation
instruction to an external variable which has no
initial value (or has a unknown value). This allows
programming in C at the assembler source level as well
as accessing to the saddr and sfr areas on a bit-by-bit

basis.

ASM statements

The assemblef source program described by the user can
be embedded in an assembler source file to be output by
this C compiler.

Interrupt functions

o The preprocessor directive #pragma vect outputs
a vector table and outputs an object code corres-
ponding to the interrupt. This directive allows
programming of interrupt functions in the C source
level.

o0 The preprocessor directive #pragma DI or #pragma EI

creates a function to disable or enable interrupts.

callf function

The callf instruction stores the body of a function in
the callf area and allows the calling of the function
with a code shorter than that with the call

instruction.

1-17

| g

(:) Use of 1M-byte extended space (supported by the 78K/II
only)
The preprocessor directive #pragma extend cutputs a
code to access the 1M-byte extended space to an ocbject
through direct in-line expansion without.resort to a

function call and creates an object file.

C) Table conversion function (supported by the 78K/III
only)
The preprocessor directive #pragma table allows the
addresses of the vector table and callt table output by
the C compiler to be changed.

1-18

CHAPTER 2. PRODUCT OVERVIEW

2.1 Contents of Fleoppy Disks

The floppy disks supplied as this product contain the
following two types of files:

BIN {Files for execution)
System files - INCLUDE {Header file)
(Floppy disk 1) SAMPLE (Sample programs)

LIB (Standard directive file

for linking)

- BAT (Start-up routine,
Error handling routine)
- SRC (Related files)

L INC (Device information
Include file)

Library files Library file for each device
(2nd and subsequent floppy disks)

2.1.1 System files

System files are offered in the supplied floppy disk 1. The

contents of each directory stored in the floppy disk 1 are
as listed in Table 2-1 below.

Table 2-1. System Files in Floppy Disk 1

Directory name Filename Role of file
BIN Executable files
CC78Kn.EXE Controller
SA78Kn.EXE Syntax analyzer section
X0O78Kn.EXE Cross-reference cutput
section
CG78Kn.EXE Code generator section
LO78Kn.EXE Object list output
section
OP78Kn.EXE Optimizer section
(V2.00 or
later)
CC78Kn.OMi Overlay files (contain
2 device information)
CC78Kn.0OMx See Note 2 below,
CC78Kn.HLP Help file
CC78Kn.MSG Message file
INCLUDE oco.H See Section 10.2,
"Headers" in the CC78K
Series User's Manual for
Language.
INCLUDE SFRBIT.H Header file defining
¥78xxx sfr bit function_ names,
SAMPLE PRIME.C Sample C source file
SAMPLE.BAT Batch file
README.DOC Document file

2-2

Table 2-1. System Files in Floppy Disk 1 (contd)

Directory name

Filename

Role of file

LIB

LINKxxx.DIR

LINKxxx.ROM

Standard directive file
for linking
.DIR ... Not for
RCMable
processing
.ROM ... For ROMable
processing
xxx: Device type (see
Tables 5-3 to 5-5
for device types)

LIB¥BAT

MKSTUP.BAT

MKERRLIB.BAT

000.ERR

Batch file for start-up
routine creation

Batch file for updating
error handling routine
File used for MKERRLIB
.BAT (Subcommand file
used when starting up
the Librarian)

LIB¥SRC

000.ASM

o000.INC

Source file for
start-up routine and
error handling routine
Inclusion file for
000.ASM

LIBYINC

000, INC

Device information
Inclusion file

Note: 1. n = 0,

3, where n indicates each 78K series
number (78K/0, 78K/II, or 78K/III).

2. The number cf overlay files differs depending

on the 78X series.

Remarks: 1. A command file or executable file (with the

file type

.EXE} is the first file to be read

into memory when the program is started up.

2. Overlay files as many as required will be

read into memory during the program execution.

2-3

2.1.2 Library files

Library files are offered in the second and subsequent

floppy disks supplied as this product.

o Library files consist of standard library and start-up
routine files for each device.

o Each floppy disk contains the following two directories:

LIBNCA This directory offers standard library and
start-up routine files required when
linking object files created by specifying
the compiler option -NCA,.

LIBCA This directory offers standard library and
start-up routine files required when linking
object files created by specifying the

compiler option -CA.

The following table shows the contents of each LIBNCA

directory.

Table 2-2., Library Files in Each LIBNCA Directory

Directory name Filename Role of file

{see Note 1)

LIBNCA CLEKnCOM.LIB Library file common to
78K/n {see Note 2)
CLxxx.LIB Library file for sfr
check (see Note 3}
LIBNCA¥ CSxxx.REL Start-up routine files
LIBxxx CSxxxR.REL
ESxxxR.REL
ROMxxx.REL ROMable module file

Notes:

1.

XXX: Processor type (see Tables 5-3 to 5-5 in
Chapter 5)
n:n-=29¢, 2, or 3, where n indicates each 78K
series name (78K/0, 78K/II, or 78X/II1I).
For the following processor types (target
devices), use the library file indicated below
for each processor type in lieu of the common
library file.
310 — CL310.LIB 312 = CL312,LIB
310A — CL310A.LIB 312A — CL312A.LIB
CLxxx.LIB is a file used to check an illegal
read- or write-access to sfr (special function
registers). This library file for error check
will be incorporated in the object file if you
specify the C compiler option "-L" (option for
execution-time error check specification) at
the time of starting up the C compiler.
Therefore, when you have specified this -L
option, also specify CLxxx.LIB as a library file
together with the common library file at linkage
time.

The contents of the directory LIBCA are the same as those

listed for the directory LIBNCA except that "U" is suffixed

to each filename.

2.2 Forms of File Media Supplied
This product is offered in either of the following two forms
of file media:

0 5-inch double-sided high-density (2HD) floppy disk
o 3.5-inch double-sided high-density (2HD) floppy disk

2.3 System Configuration
This C compiler operates in the environment indicated in

Table 2-3 below.

Table 2-3. System Configuration

Host computer 0s Memory size
CPU CONFIG.SYS

PC-9800 MS-DOS Must be 360 KB may

series v3oT™ (v2.11, set to be used.

8038611 v3.10) | FILES=25
80286™ | v3.30A) |or more.
8086™TH
IBM PC PC-DOS
1BM PC/XTIM (V3.10)
IBM pCc/ATTH

Note: 1. The CC78K series C compiler operates on the
MS-DOS that NEC offers for the PC-9800 series
personal computers. NEC Corporation ig not
responsible for improper operation of this program
on any other commercially available MS-DOS.

2. Memory size denotes the maximum value of memory
required for this C compiler to operate. This
memory size does not include any system area.

3. With PC-DOS, a backslash (\) is used in place of
the ¥ sign.

CHAPTER 3. EXECUTION OF C COMPILER

This chapter describes how to execute this C compiler using
the CC78K3 as an example. By actually executing a sample
program according to the procedure described in this
chapter, you may accustom yourself to the operations of the
C compiler.

3.1 Before Executing the C Compiler

3.1.1 Confirming the contents of the supplied disk

Set the supplied floppy disk of this C compiler (or its
backup disk} in the available drive and confirm that the
disk contains all the program files listed in Section 2.1,

Contents of Floppy Disks.

3.1.2 Sample program

For the purpose of explaining how to execute this C
compiler, the following sample program named "PRIME.C" is
used.

tdefine TRUE 1
fdefine FALSE 0
$define SIZE 200
char mark[SIZE+1];

main{)

int i, prime, k. count;

count = 0;

for (i =0 ; i <= SIZE ; i++)
mark{i] = TRUE;

for (i =0 : i <= SIZE ; i++) |
it (mark(i]) |

prime = i + i + 3;
printf("%6d", prime);
count++;
if{(count%8) ==
for (k =i + prime ; k
mark[k] = FALSE;

tehar('¥n');
7E : k += prime)

}

printf ("Yn¥%d primes found. ,count);

}
printf(s, i)

char #*s;

int i;
int j;
char ¥ss;
=i
$S = §;

}

putchar{c)

char ¢;
char d;
d = ¢

Note: With PC-DOS, use a backslash (\) in place of

the ¥ sign used in the above sample program.

3.2

(1)

(3)

Procedure for C Compiler Execution

Compile the sample program "PRIME.C".
o Enter the compiler start-up command line as follows:
(The command line may be described in either uppercase

or lowercase letters for input.)

A>cc78k3 -c310 sample¥prime.cC

Specifies the type (model number)
of the target device.

o The following message will be output to the console:

78X/111 Series C Compiler Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation xxxx

Check the contents of drive A.

The C compiler has created PRIME.REL (object module
file}.

By specifying compiler options such as -A, -P, -X, and
-E in the start-up command line of the C compiler, this
C compiler can output four list files; an assembler
source module file, a preprocess list file, a cross
-reference list file, and an error list file in

addition to the object module file.

3-3

CHAPTER 4. C COMPILER

This C compiler accepts source module files coded in the C
assembly language for the 78K series and Inclusion files as
input files, translates the C language coding of each source
module into machine language coding, and outputs them as an
object module file. After the translation, the C compiler
can also output an assembly source module file to allow
program modifications and verifications at the assembly
language level. In addition, the C compiler outputs list
files such as a preprocess list file, a cross-reference list
file, and an error list file.

If any compile error is found during the translation of the
input source module file, the C compiler outputs the error
message to the console or error list, but will generate none
of the above-mentioned output files except the error list
file.

4.1 Input/Output Files of C Compiler
The files listed in Table 4-1 below are input and output to
and from this C compiler.

Table 4-1. I/0 Files of This C Compiler

Type Description of file Default
file type
Input C source module file ... A program file .C

files coded in the C language for the 78K
series) that must be translated into
machine language before use. (This
file must be created by the user.)

Inclusion file A file that can be .B
referenced in a C source module file
or a program file coded in the C
language for the 78K series. (This
file must be created by the user.)

Parameter file A file created by .PCC
the user to specify a number of
commands which are excessive to specify
in the start-up command line of the

C compiler. (This file must be created
by the user using the editor.)

Table 4-1. I/0 Files of This C Compiler (contd)

name. On abnormal termination of the
compiler, this file will be deleted.)

Type Description of file Default
file type

Output | Object module file A binary image .REL
files file contains machine language

information, relocation information on

the address of each machine-coded

instruction, and symbol information.

Assembler source module file An . ASM

ASCII image object code file containing

the result of the translation by the

compiler,

Preprocess list file An ASCII .PPL

image list file containing the results

of preprocessor directives such as

#include.

Cross-reference list file A list . XRF

file containing information on the

function names and variable names used

in the C source module file compiled.

Error list file A list file .ECC

containing information on source .CER

files and compile error messages. .HER

.ER

1/0 Temporary file ... An intermediate .$nn
file file for compilation. {Fixed

On normal termination of the compiler, to this

this file will be renamed by a formal name)

C source

parameter file module file Inclusion file
Preprocess
Temporary file list file

(%) » This C compiler + (%)

:

2 ARk

Assembler Objeét Error list Cross-reference
source module module file file list file
file

Remarks: If any error is found during the translation
of an input source module file, none of the
above listed output files except the error list
file will be created. The temporary file will be
renamed by a formal name on normal termination
of the compiler and deleted on abnormal

termination of the compiler.

Fig. 4-1. I/0 Files of This Compiler

4.2 How to Start Up the C Compiler

4.2.1 Starting up the C compiler
The C compiler can be started up in either of the following

two ways:

(1) Start-up with command line:

x>[pathname]cc78k3[ﬂ option]... A filename i A option}...[{Al]

Filename of C source
module file to be
compiled

—

- [;Gives the compiler
particular instructions
for its operation

(see Note 2}.

\eCommand filename of C compiler

[i —s Ccurrent directory name (see Note 1)
C

urrent drive name (see Note 1)

Example:

NOTE: 1.

A>cc78k3 -c310 prime.Cc -a -p -X -€

With MS-DOS version 2.11, the command files

of the C compiler must have been stored in the
current drive or current directory.

If two or more compiler options are to be
specified, each compiler option must be
delimited with a space. These options may be
described in either uppercase or lowercase.
See Chapter 5, Compiler Options for details of

each option.

{2) Start-up with parameter file

When specifying two or more options at compile time, you
may be occasionally compelled to repeat the same
specifications over and over again because the required
information for starting up the compiler with a command
line is excessive. In such a case, a parameter file can
be used to start up the compiler.

When using a parameter file, specify the parameter file

specification option in the command line as follows:

X>cc78k3[A C source module file]A:ﬁ parameter filename

File containing
information
required for
starting up the
compiler

L---Parameter file
specification
option

o The parameter file must be created with the editor.
o Conventions of option description within a parameter

file are as follows:

[[[AJoption[A option] ...[ATAIl] ...

o Only one C source module filename can be specified
for the parameter file.

o0 The C source filename may be described after compiler
options.

o All the compiler options and the output filename to
be specified in the command line must be descCribed

in the parameter file.

4.2.

(1)

(2)

Example: Create a parameter file named "PRIME.PCC"
with the editor.

o Contents of parameter file "PRIME.PCC"

sample¥prime.c -c310 -aprime.asm
-e -X

o To start up the C compiler using parameter
file "PRIME.PCC", enter as follows:

A>cc78k3 -fprime.pcc

2 Execution start and end messages

Execution start message
When the C compiler is started up, the following message
is output to the console, indicating the start of the

compiler execution.

T8K/111 Series C Compiler V¥x.xx [xx xxx xx)
Copyright (C) NEC Corporation xxxx

Execution end messages
o If no compile error is found as a result of a compile
operation, the C compiler will output the following

message to the console and return control to the 0S.

Compilation complete, 0 error(s) and 0 warning(s) found.

o If any compile error is found as a result of a compile
operation, the C compiler will output the following

message to the console and return control to the OS.

SAMPLEYPRIME. C(18) : ¥745 Expected function prototype
SAMPLEYPRIME. C{20) : W745 Expected function prototgge
SAMPLEYPRIME. C(26) : W622 No return value
SAMPLEYPRIME. C{37) : ¥622 No return value
SAMPLEYPRIME. C(44) : W622 No return value

Compilation complete, 0 error(s) and 5 warning(s) found.

8
0
b
1

o If any fatal error (which makes the C compiler
impossible to continue its processing) is found during
a compile operation, the C compiler will output the
following message to the console, stop its process-
ing, and return control to the 0S.

Example 1:

Adcc78k3 ~cJ10 -e sample. ¢

uCOM-T8K/111 Compiler Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation xxxx

A00% File not found 'SAMPLE.C'
Program aborted

In this example, the compile operation was discontin-
ued by a fatal error resulting from the specification
of a C source module file which does not exist in the

current drive A.

Example 2:

A>cc78k3 —~cB810 -e sampie¥prime. ¢ -m

uCOM-78K/111 Compiler Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation xxxx

A01% Option in not recognized "-m’
Program aborted

In this example, the compile operation was discontin-
ued by a fatal error resulting from the input of a
compiler option "-m" which is not recognized by the

C compiler,

If the compiler is aborted following the output of

an error message, Check the cause of the error message
by referring to Chapter 9 Error Messages and take
corrective action(s) as regquired.

4,3 C Compiler Options

When you start up the C compiler, you may specify a compiler
option. This compiler option gives the C compiler particular
instructions for its operation.

Because two or more compiler options can be specified at the
the same time, you may select compiler options according to
the specific purpose so that compilation of C source module
files can be performed efficiently.

For the types of compiler options, how to specify compiler
options, and priority of these options, see Chapter 5,

Compiler Options.

4.4 Optimization

With this C compiler, optimization is carried out for

creation of efficient object module files. The optimization

technigues supported by this C compiler are shown in Table

4-2.

Table 4-2. Optimization Techniques

of target CPU

Optimization Description Example
phase
Syntax Constant calculation |a=3*%5; — a=15;
analyzer (:) at compile time
section
True/False check by 0&&{allb) — 0
GD partial evaluation of | 1]|]|(a&&b) — 1
logical expression
Offset computation Compiler computes
(:) for pointer, array, offset values at
etc. compile time.
Code Register management Compiler puts
generator (:) ' unused registers
section to effective use.
Utilization of a=a+1; — Compiler
(:) special instructions uses "inc" instruc-

tion for this. It
also uses move
instructions for
assigning array
array elements.

Utilization of
shorter instructions

mov a,#0 or

xor a,a {(differs
depending on the
device)

If there are two
instructions which
do the same thing,
Compiler uses the
cne shorter in
byte length.

@

Conversion of long
jump to short jump
instruction

Compiler does this
conversion by re-
manipulating the
output intermediate
code.

Remarks: The compiler executes the above optimizatiocn
to () even if the optimize option is
omitted from specification.

phases

4-9

Table 4-2. Optimization Techniques (contd)

Optimization Description Example

phase

Optimizer Deletion of c¢ommon a=b+c; - a=b+Cj;
section partial expression d=b+c+e; d=a+e;

®

Movement to outside
instruction loop

for(i=0;i<10;i++)
Cazbic:
2

a=b+c;

4

'ior(i=0:i<10;i++)

i

Deletion of unwanted
instructions

a=a; — Delete
a=b; -> Delete
Hereafter, "a" will
not be referred.

Deletion of copies

a=b;
c=a+d; — c=b+d
Hereafter, "a" will

not be referred.
{a is an automatic
variable,)

Change of order of
operations on
expressions

Compiler executes
first an operation
which becomes valid
by leaving the
operation result
in a register.

Memory allocation
{Temporary wvariables)

Compiler allocates
locally used vari-
ables to registers.

Peep hole Substitution of
optimization special pattern
Example:
a*l —a , at0 = a
Alleviation of Example:

operation strength

a*2 —a+a , a««<]

Memory allocation
(Register variables)

Compiler allocates
data to quickly
accessible memory.
Example: Register
area, saddr area

Remarks: ©

The compiler executes the above optimization
phases . to @ only when the opitmize option
is specified.

The compiler executes the above optimization
phases and @ even if the optimize
option is omitted from specification.

The compiler executes the above optimization
phase only when a register declaration is
contained in the C source program or when the
optimize option is specified.

The above coptiomization phases .to @ and .
are intended for future support.

With the CC78K2 C compiler, more sophisticated
optimization such as and @ can be
executed by specifying the optimize option.

4.5 ROMable Processing of Programs

This section explains how to make object programs ROMable.
The ROMable processing function refers to storing initial
values such as external variables with initial values into a
ROM and copying the contents of the ROM into a RAM at the
time of the system execution.

4.5.1 At compile time

By specifying the -R option at compile time, the object
program output by the compiler becomes ROMable. Because the
function to make programs ROMable is the default value, the
-R option may be omitted.

Specify the -NR option if the program need not to be
subjected to ROMable processing.

4,5.2 At linkage time

When linking object module files, these object module files
must be linked with an appropriate start-up module file.

The start-up module file initializes the object program.

If the ROMable (-R) specification option is specified, the
start-up module file must be changed to the cne which allows
the ROMable processing of programs. (The start-up module
files shown in the examples below are applicable when the
target device is the uPD78310.)

(1) When the program is subject to ROMable processing

cs310r.relciivuvnns Start-up module file for device
model 310 {(which corresponds to
ROMable module file). This file
contains an initialize data
copy routine and indicates the
start of initialize data.

rom310.rel¢ 0000, Indicates the end of initialize
data.

Module files are linked in the order beginning with
¢s310r.rel and ending with rom.rel.

(2) When the program is not subject to ROMable processing
cs310.rel0...... Start-up module file for device
model 310.

Module files may be linked in any order.
When executing the user program, execution starts with the

start-up module file. The symbol (label name) to be used as
the start address is _@cstart.

4.6 Error Check at Execution Time

When the source debugger is activated, the compiler may

perform operations which are not intended by the user

because of various errors.

For this reason, object code

for error checking should be output in addition to ordinary

object code

C compiler.

4.6,1 Error

If an error

handling routine

by specifying the -L option when starting up the

is found, an error handling routine is called.

This routine is a permanent loop which has preprocessing and

post-processing. By checking the address where a break has

occurred with this routine, the compiler can find which type

of error has occurred. Table 4-3 shows the types of error

handling routines.

Table 4-3. Error Handling Routines

Check item Routine name | Function
Initialize errini.asm This routine is called if the
data gize of the initialize data

allocated to the ROM area
doces not match with the segment
size of the RAM area.

Stack check

errstk.asm

This routine is called if a
stack overflow occurs.

Divide by 0

errdiv.asm

This routine is called if
division with divisor 0 is
attempted.

Pointer errptr.asm This routine is called if

access illegal area accessing with
a pointer is attempted.

Overflow errovf.asm This routine is called if an

overflow occurs in any of
various operations.

sfr access

errsfr.asm

This routine is called if
illegal read- or write-access
to the sfr area is attempted.

4.6.2 Error check library names
When the error cCheck specification (-L or -NL) option is

specified, library names become as follows:

(1) Run time libraries
To identify a run time library name without error check,
characters "@@" are prefixed to the symbol (function
name). For a run time library with error check, the
prefix characters "@@" must be changed as shown below

depending on the type of error check:

Without error check @@function name
Divide by zero ?@function name
Divide by zero + Overflow ? function name
Overflow @ function name
~Stack check _@function name
sfr access ??function name

(In sfr access, there is no library without error

check.)
Assignment to sfr.bit ?7asto8
Assignment to sfr ??asto8
Assignment to sfrp ??astol6

An error check will not be made on other than the
above operations to sfr.

The sfr address and the data to be written are stored
in registers or in the saddr area and each error

check routine is called.

4-15

(2)

(3)

Standard libraries

To identify a standard library name without error check,

character " " is prefixed to the symbol (function name).

For a standard library with error check, the prefix

character

on the type of error check and the character length of

the symbol name must be reduced to 8 characters.

must be changed as shown below depending

(The same will apply when the symbol name length that

can be recognized by the compiler is extended to 30

characters by the symbol name length specification

option.)

Without error check _function name
Stack check _@function name
Stack check + Pointer access _?function name
Divide by zero _@function name
Divide by zero + Overflow ?_function name
Pointer access @?function name
Overflow @ _function name
User-created functions

Character " " must be prefixed to the symbol (function

name) with or without error check.

CHAPTER 5.

5.1 Types of Compiler Options

COMPILER CPTIONS

A compiler option gives the C compiler particular instruc-

tions for its operation. Compiler options may be broadly

divided into the following 19 types:

Table 5-1., Types of Compiler Options

No. | Classification Option name Function

1 Option for -C Specifies the proc-
processor type essor type of the
specification target device.

2 Option for -0 Specifies that an
object module object module file
file creation is to be output.
specification

3 Option for -8 Specifies that
symbol name symbol name length
length is to be extended.
specification

4 Option for -CA Specifies that symbol
symbol name names in uppercase
upper-/lower- letters are not to be
case specifi- distinguished from
cation those in lowercase

letters.

5 Option for -R Specifies that a
ROMable object ROMable object module
file creation file is to be created.
specification

6 Option for -Q Specifies that
optimization optimization is to
specification be performed for

efficient object
generation,

7 Option for -G Specifies that symbol
debug informa- information for
tion cutput debugging is to be
specification output to the object

module.

8 Option for -L Specifies that an
execution-time error check library
error check is to be added to the
specification object module,

5-1. Compiler Options (contd}

No.| Classification Option name Function
9 Options for -P Specifies that a

preprocess preprocess list file

list file is to be output.

creation

specification -K Specifies the type
of process required
for the preprocess
list is to be output.

10 Options for -D Specifies that macro-
preprocessing definitions are to
specification be executed in a

similar manner to
#define statements.

-U Specifies that macro-
definitions are to be
undefined in a similar
manner to #undef
statements.

-1 Specifies that
inclusion file(s) are
to be input from a
specified directory.

11 Options for -A Specifies that an
assembler assembler source
module file medule file is to be
creation output.
specification

-SA Specifies that a C
source is to be
output to the added
assembler source
module file.

12 Options for -E Specifies that an
error list error list file is
file creation to be output.
specification

~-SE Specifies that a C
source is to be
output to the added
error list file,

13 Option for -X Specifies that a
cross-reference cross-reference list
list creation is to be output.
specification

Table 5-1. Compiler Options (contd)
No.| Classification Option name Function
14 Options for -LW Changes the number

list format

of characters per

specification line of a list file.
-LL Changes the number
of lines to be print-
ed per page of a list.
~-LT Changes the number
of characters for
tabulation.
-LF Specifies addition
of a formfeed code
to the end of a
list.

15 Option for ~-W Specifies the output
warning output of warning messages
specification to the console,.

16 Option for -V Specifies that the
execution execution status is
status output to be output teo the
specification console.

17 Option for -F Specifies the input
parameter of a parameter file
file input (input filename
specification and options).

18 Option for -T Specifies creation
temporary file of a temporary file
creation path on a specified path.
specification

19 Option for - Specifies the output
HELP message of HELP messages
output to the console.
specification

The above table outlines the types of compiler options. The

description format,
options are detailed in Section 5.4 below. APPENDIX C also

function, and usage of each of these

contains a summary of the compiler options detailed in

Section 5.4. When using any of these options, use of

APPENDIX C is recommended for quick reference.

5.2 How to Specify Compiler Options

Compiler options can be specified in either of the following

two ways:

(1) Specification in the start-up command line of the C
compiler.

(2) Specification within a parameter file
The above two methods of specifying compiler option(s) have

been explained in Section 4.3, "How to Start Up the C

Compiler".

5-4

5.3 Priority of Compiler Options
Table 5-2 shows the priority of compiler options when two or

more options are specified at the same time.

Table 5-2., Priority of Compiler Options

-0 { 6 | -P |-NP | -D | -0 | -A | -E| -X | --
-R X X
-Q X pd
-Q3 X X X
-QZ X X X
-QE X X X
-QJ X X X
-G X X
-L X X
=K A X X
-D O X
-1 0O X
~SA X X
-L¥ A A A A X
-LL A A VAN A X
-LT A A YA VAN X
-LF FAY A A A X

"X" in the table indicates that the option in the left
cclumn becomes invalid if the option in the top column is

specified at the same time.

Example: A>cc78k3 -¢310 -e sample.c -no -r -g

In the above example, the -R and -G options become invalid.

5-5

"A " (triangle) in the table indicates that the option in
the left column becomes invalid if the option in the top

column is not specified at the same time.

Example: A»cc78k3 -c310 -e sample.C -p -k

In the above example, the -K option is valid because the -P

option is specified at the same time.

"Q" (circle) in the table indicates that if the option in
the left column and the option in the top column are
specified at the same time, the last specified option takes
precedence over the preceding option.

Example: A>cc78k3 -c310 -e sample.c -utest -dtest=1

In the above example, the -D option takes precedence over
the -U option which has been described before -D. In this

case, the -U option becomes invalid.
With two options contradicting each other such as -0 and
-NO and -G and -NG, whichever you specified later will take

precedence over the other preceding option.

Example: A>cc78k3 -c310 -e sample.C -0 -no

In the above example, the -NO option takes precedence over
the -0 option which has been described before -NO. In this

case, the -0 option becomes invalid.

Compiler options not listed in Table 5-2 are not affected by
any other options. However, when the "--" option (for HELP
message output specification)} is specified, all the other

compiler option specifications become invalid.

5-6

5.4 Description of Each Compiler Option

A detailed description of each compiler option is provided
in this section. Examples shown in the EXAMPLES column are
those prepared by using the CC78K3 C compiler package.
Compiler options may be described in either uppercase or
lowercase letters. In the following examples of the
respective options, compiler options are all shown in

lowercase letters,

-C

Processor type specification

(1) Processor type specification (-C)

Description format: -C

Default assumption: This option cannot be omitted.

processor-type

FUNCTION
The -C option specifies
target device, C source

to compilation.

USE
This option must always
performs translation of

gspecified target device

the processor type of the

programs for which are subject

be specified. The C compiler
source programs for the

and generates object code

corresponding to the target device.

EXPLANATION

The target devices that

can be specified with the -C

option and their corresponding processor types are listed

below in the table for each 78K series.

<With 78K/C>

Table 5-3. Processor Types (78K/0 Series)

Target device name Processor type
uPD78001 ~-CQ01
uPD78002 -C002
uPD78011 -C011
uPD78012 ~-C0O12
uPD78013 -C013
uPD78014, uPD78P(014 -C014
uPD78022 -C022
uPD78023 -C023
uPD78024, uPD78P024 -C024
uPD78042 -C042
uPD78043 -C043
uPD78044, uPD78P044 -C044

5-8

-C Processor type specification

<With 78K/II>

Table 5-4. Processor Types (78K/II Series)

Target device name Processor type
uPD78210 -C210
uPD78212 -C212
uPD78213 -C213
uPD78214, uPD78P214 -C214
uPD78217A -C217A
uPD78218A, uPD78P218A -C218A
uPD78220 -C220
uPD78224, uPb78P224 -C224
uPD78233 -C233
uPD78234 ~-C234
uPD78237 -C237
uPD78238, uPDP78P238 -C238
uPD78243 -C243
uPD78244 -C244

<With 78K/III>

Table 5-5. Processor Types (78K/III Series)

Target device name Processor type
uPD78310 -C310
uPD78312, uPD78P312 -C312
uPD78310A -C310A
uPD78312A, uPD78P312A -C312A
uPD78320 -C320
uPD78322, uPD78P322 -C322
uPD78323 -C323
uPD78324, uPD78P324 -C324
uPD78327 -C327
uPD78328, uPD78P328 -C328
uPD78330 -C330
uPD78334, uPD78P334 -C334
uPD78350, uPD78P352 -C35¢0
NOTE

o The -C option cannot be omitted from specification in
the command line except when the following directive

description is contained in the C source.

#pragma pc (processor-type)

5-9

-C

Processor type specification

o

If the target device specified in the command line is
different from that specified in the C source, the
target device specification in the command line will

take precedence over the specification in the C source.

EXAMPLES
o To specify target device uPD78310 in the command line with

this option
AdceT8%3 -¢310 sampleYprime. ¢

78K/111 Series C Compiler Vx.xx {xx xxx xx]
Copyright (C) NEC Corporation xxxx

SAMPLEYPRIME. C{18) : ¥745 Expected function prototype
SAMPLEYPRIME. C(20) : W745 Expected function prototype
SAMPLEYPRIME. C{26) : W622 No return value

SAMPLEYPRIME. C(37) : W622 No return value

SAMPLEYPRIME. C(44) : ¥W622 ¥o return value

Compilation complete, 0 error(s) and 5 warning(s) found.

o To specify target device in C source and start up C compiler

fpragma pe (310)
tdefine TRUE 1
#define FALSE 0
tdefine SIZE 200

char mark[SIZE+1];
main()

int i, prime, k, count;

A>ec78k3 sample¥prime.c

18K/111 Seriés C Compiler Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation XXXX

SAMPLEYPRIME. C(18) : W745 Expected function prototype
SAMPLEYPRIME. C(20) : W¥745 Expected function prototype
SAMPLEYPRIME. C(26) : W622 No return value
SAMPLEYPRIME. C(37) : ¥622 No return value
SAMPLEYPRIME. C(44) : W622 No return value

Compilation complete. 0 error(s) and 5 warning(s) found.

In this case, the processor type specification in the command

line may be omitted.
5-10

=-C

Processor type specification

o To specify target device different from that specified

in C socurce

$pragma
#define TRUE
#define FALSE
¥define SIZE

in command line and start up C compiler

pe(820)
1

0

200

char mark [S1ZE+1];

main()

int i,

A>cci8k3 -¢3l

pgime. k, count;

0 sample¥prime. ¢

18%/111 Serie
Copyright

SAMPLEYPRIME.
SAMPLEYPRIME.
SAMPLEYPRIME.
SAMPLEYPRIME.
SAMPLEYPRIME.
SAMPLEYPRIME.
Compilation ¢

s C Compiler Vx.xx [xx xxx xx]
(C)- NEC Corporation xxxx

C{1) : ¥B32 Duplicated chip specifier

C(18) : W745 Expected function prototype

c(20) : W745 Expected function prototype

C(26) : W622 No return value

£(37) : W622 No return value

c(44) : %622 No return value

omplete, 0 error{s) and 6 warning{s) found.

In this case, the target device specified in the

command line

takes precedence over that specified in

the C source.

5-11

-0/-NO Object module file

creation specification

(2)

Object module file creation specification (-0/-NO)

Description format: -0 [output-filename]
or
-NO
Default assumption: -0 (input-filename.REL)
FUNCTION ‘
o The -0 option specifies the output (creation) of an

USE

cbject module file. It also specifies the output
destination or output filename of the cbject module
file. '

The -NO option specifies the non-generation of an output
module file,

Use the -0 option to change the output destination or
output filename of an object module file.

If the compilation of a source module is to be performed
only to output an assembler source module file, use the

-NO option. (This will reduce the translation time.)

EXPLANATION

o]

If a compile error is found during a compile operation
with the -0 option specified, no object module file will
be output by the C compiler.

If a drive name is omitted from the -0 option specifica-
tion, the object module file will be output to the
current drive.

If both the -0 and -NO options are specified at the

same time, whichever you specified later will take

precedence over the other preceding option.

5-12

-0/ -NO Object module file
creation specification
EXAMPLE

o When both -NO and -O options are specified at the

same time

Adee78k3 ~-¢310 sample¥prime.c -no =-o

78K/111 Series C Compiler Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation xxxx

SAMPLEYPRIME. C
SAMPLEYPRIME. C
SAMPLEYPRIME. €
SAMPLEYPRIME.C
SAMPLEYPRIME. C(

Compilation complete.

(18) : ¥145 Expected function prototype
%%gg : W145 Expected function prototype
(31)
i4)

¥622 No return value

: ¥622 No return value

W622 No return value
0 error{s) and S warning(s) found,.

Tn this case, the compiler will ignore the -NO option

and accept the -0 option as valid.

-8/ -NS Symbol name length
specification

(3) Symbol name length specification (-S/-NS)

Description format: -8

or

-NS§

Default assumption: -NS
FUNCTION

o The -S option tells the C compiler to extend the
length of each symbol name to a maximum of 30
characters.

o The -NS option tells the C compiler not to extend
the symbol name length.

USE
If the length of each symbcl name is to be extended to
eight or more characters, the number of characters that
the compiler will recognize as a symbol can be extended by

the -5 option.

EXPLANATION

o If the -5 option is specified, the C compiler will
recognize up to 30 characters as a symbol name and
output symbol information to the object module file
to be created by the C compiler.

The symbeol information to be output is up to 31

characters including prefixed to each symbol name.

o If the -S option is not specified, the C compiler will
recognize up to seven characters as a symbol name and
output symbol information to the object module file.
The symbol information to be output is up to eight

"o

characters including prefixed to each symbol name,

5-14

-S/-Ns Symbol name length

specification

o If the -NO option is specified at the same time with
the -S option, the C compiler will recognize up to 30
characters as a symbol name but the symbol information
to be output is up to eight characters including " "
prefixed to each symbol name just the same as when the
-5 option is omitted.

o If both the -5 and -NS options are specified at the
same time, whichever you specified later will take

precedence over the other preceding option.

EXAMPLES
o To compile source program with -S option specified

78K/111 Series C Compiler Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation xxxx

SAMPLEYPRIME. C(18) : W745 Expected function prototype
SAMPLEYPRIME. C(20) : ¥745 Expected function prototype
SAMPLEYPRIME. C(26) : W622 No return value

SAMPLEYPRIME. C(37) : W622 No return value

SAMPLEYPRIME. C(44) : W622 No return value)

Compilation complete, 0 error(s) and 5 warning(s) found.

-8/-NS

Symbol name length
specification

o When PRIME.ASM file is referenced

.
[
.
[
.
]
]

E

18K/111 Series C Compiler Vx.xx Assembler Source

Command : -¢310 sample¥prime.c -a -s

In-file : SAMPLEYPRIME. C
Asm-file : PRIME.ASM

: Para-file :

$PROCESSOR(310)
SNODEBUG

NAME PRIME
EXTRN @@isrem
PUBLIC _mark
PUBLIC _main
PUBLIC _printf
PUBLIC _putchar

@4CODE CSEG

: line 5

: line 8

_main:
push hi
movw ax, sp
subw ax, $08H
movw hl, ax
movw sp, ax

: line 11
Novy ax, #00H ; ©
nov [h1+1].a
xch a,x

i

; ecount

Date:xx xxx xxxx Time:xx:xx:xx

-CA/-NCA Symbol name upper-/lower-

case specification

(4) Symbol name upper-/lower-case specification (-CA/-NCA)

Description format: -CA
or
-NCA

Default assumption: -NCA

FUNCTION
o The -CA option tells the C compiler not to distinguish
between symbol names written in uppercase letters and
those in lowercase letters.
o The -NCA option tells the C compiler that a distinc-
tion need not be made between symbol names written in

uppercase letters and those in lowercase letters,

USE
Use the -CA option if no distinction need to be made
between symbol names written in uppercase letters and

those in lowercase letters.

EXPLANATION

o If the -CA option is specified, the C compiler will
convert lowercase letters in symbol names to uppercase
equivalents and output symbol information to the object
module file to be created by the C compiler.

o If the -CA option is not specified, the C compiler will
not convert lowercase letters in symbol names to
uppercase equivalents and output symbol information to
the object module file.

o When specifying the -CA or -NCA option, libraries must
be changed according to the option, for which see
Subsection 2.1.2, Library files in Chapter 2.

5-17

-CA/-NCaA

Symbol name upper-/lower-

case specification

o If both the -CA and -NCA options are specified at the

same time, whichever you specified later will take

precedence over the other preceding option.

o If the -NO option is specified at the same time with the

-CA option, the -CA option will be ignored.

EXAMPLES

o To compile source program with -CA option specified

Adcel8k3 -¢310 sampleYprime. ¢ -a -ca

18K/111 Series C Compiler Vx.xx [xx xxx xx]

Copyright (C) NEC

SAMPLEYPRIME. C(18)
SAMPLEYPRIME. C{20)
SAMPLEYPRIME. C{26)
SAMPLEYPRIME. C(37)
SAMPLEYPRIME. C{44)
Compilation complete

Corporation xxxx

: ¥71495 Expected funetion prototype
: W745 Expected function prototype
: ¥W622 No return value
: ¥W622 No return value

¥622 No return value
0 error(s) and 5 warning(s) found.

—-CA/-NCA

Symbol name upper-/lower-

case specification

o When PRIME.ASM file is referenced

-78K/111 Series C Compiler Vx.xx Assembler Source
. Date;xx xxx ¥xxxx Time:Xxx:xx

: Command
In-file : SAMPLEYPRIME.C

. Asp-file : PRIME.ASM

. Para-file :

$PROCESSOR(310)

$NODEBUG
NAME PRIME
EXTRN @Qisrem
PUBLIC _MARK
PUBLIC _MAIN
PUBLIC _PRINTF
PUBLIC _PUTCHAR

@8CODE CSEG

; line 5

; line 3

_MAIN:
push hl
MOVY ax, sp
subw ax, #08H
move b1, ax
movw $p, ax

: line 11
movy ax, #00H ;
mov [hl1+1]).3
Ach a, x

0

: -¢3i0 sample¥prime.c -a -ca

; COUNT

-R/-NR ROMable object file

creation specification

{5) ROMable object file creation specification (-R/-NR)

Description format: -R

Default assumption: -R

FUNCTION
0 The -R option tells the C compiler to create a ROMable
object module file,
0 The -NR option tells the C compiler not to create a
ROMable obhject module file.

USE

Use the -R option if you wish to make the output object
module file ROMable (capable of being encoded into a ROM
chip).

EXPLANATION

0 Because the default assumption of this ROMable object
file creation specification is -R, the -R option may be
omitted. If you wish to invalidate the -R option,
specify the -NR option.

o If neither an object module file nor an assembler source
source module file is to be output, the -R option
specification will become inwvalid.

o If both the -R and -NR options are specified at the
same time, whichever you specified later will take

precedence over the other preceding option.

5-20

-R/-NR ROMable object file
creation specification

EXAMPLES
o To compile source program with -R option specified

A>ccl8k3 -c310 sample¥prime.c -a -1

78K/111 Series C Compiler Vx.xx [xx xxx xx]
Copyright {(C) NEC Corporation xxxx

: W745 Expected function prototype

18)
SAMPLEYPRIME. C 20; : W14% Expected function prototype
26

7)

SAMPLBYPRIME.Cg
SAMPLEYPRIME. C¢(: ¥622 No return value
SAMPLEYPRIME. C(3 : ¥622 No return value
SAMPLEYPRIME. C(44) : W622 No return value

Compilation complete, 0 error{s) and 5 warning(s) found.

-R/-NR

ROMable object file

creation specification

o When PRIME.ASM file is referenced

78K/111 Series C Compiler V¥x.xX Assenmbler Sourc

e
Date:xx xxx xxxx Time:xx:xx:

Command + -¢310 sample¥Yprime.c¢ -a -r
. In-file - SAMPLEYPRIME.C
. hsm-fiie : PRIME.ASM
Para-file :
SPROCESSOR(310Q)
$NODEBUG
NAME PRIME
EXTRN @@isren
move ax, hl
addw ax, $02H
MOVW sp, ax
pop hl
ret
@ACNST CSEG
L0012: DB "%6d’
bB 00H
Loo18: DB 0AH
DB "%d primes found.
DB 00K
GGR-DATADB %gg?) /*segment for initialize data*/
gﬁgi{% ggEG (201) [*segment for temporary data area*/
- END

5-22

-R/-NR ROMable object file
creation specification

o To compile the source program with -NR cption specified

Ad>ec78k3 -c310 sample¥prime.¢ ~a -nr

T8K/11] Series C Compiler Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation xxxx

SAMPLEYPRIME. C(18) : W745 Expected function prototype
SAMPLEYPRIME. C(20) : W745 Expected function prototype
SAMPLEYPRIME. C(25) : ¥622 No return value
SAMPLEYPRIME. C(37) : ¥622 No return value

SAMPLEYPRIME. C(44) : W622 No return value
Compilation complete, 0 error(s) and 5 warning{s)} found.

o When PRIME.ASM file is referenced

T8K/111 Series C Compiler Vx.xx Assembler Source
Date:xx xxx xxxx Time:xx:xx:xx

; Command : =¢310 sample¥Yprime.c -a -nr
; In-file : SAMPLEYPRIME. C

: Asm-file : PRIME.ASM

; Para-file :

SPROCESSOR(310)
$NODEBUG

NAME PRIME
EXTRN @disren

novw ax, hl
addw ax, #02H
novy sp, ax
pop hl
ret
@ACNST CSEG
Leor2: DB "%64d°
DB 00H
L0018: DB DAH
DB "%d primes found.’
DB 00H
@@DATA DSEG /*segment for initialize data*/
_mark: gg {201)
D

-Q/-NQ Optimization process

specification

(6) Optimization process specification (-Q/-NQ)

Description format: -Qloptimization-type]
or
-NQ

Default assumption: -NQ

FUNCTION
o The -Q option tells the C compller to c¢all the optimi-
zation phases and create efficient obhject code.
o The -NQ option tells the C compiler not to call the

optimization phases.

USE
Use the -Q option if you wish to minimize the object
execution speed or to reduce the object size. See Table

5-6 below for the optimization types.

EXPLANATION

0 Optimization types that can be specified with the -Q
option are as shown in Table 5-6 but differ depending on
the target device in each 78K series.

0 Two or more optimization types may be specified with
the -Q option.

5-24

-Q/-NQ Optimization process

specification
Table 5-6. Optimization Types
Type of Description of process Series name
optimization 0 IT |III
Omitted Only R is assumed to have o] o] o]

been specified. (With 78K/1I,
Z and R are assumed.)

S Optimize with emphasis on the o 0 o
object execution speed.

3 Optimize with emphasis on the o} o} o]
object size,

8] Interpret char without o} o} o
qualifier as unsigned.

C Execute operations on char o) 0 o}
data without sign extension.

R Allocate register variables o o o

to the saddr area in addition
to the register area,.

L Set the preprocessing of a o o o
function for library call.
E Executes processes such as o

deletion of common partial
expressions and copies.

J Optimize jump instructions. 0
X Optimize with maximum o
processes. Same as when -Q,
Z, ¢, R, E, and J are
specified.

o: Applicable; Blank: Not applicable

o If the -Q option is omitted, the C compiler will assume
-NQ and will not perform optimization.

0 If neither an object module file nor an assembler source
module file is to be output, the -Q option specification
will become invalid.

o If both the -Q and -NQ options are specified at the
same time, whichever you specified later will take
precedence over the other preceding option,

o If two or more -Q options are specified at the same
time, the last specified -Q option will take precedence

over the other -Q options.

5-25

-Q/-NQ Optimization process
specification

EXAMPLES
o To compile the source program with -Q option specified
with optimization type "u" (interpret char data without

qualifier as unsigned)

A>ccT8k3 -¢c310 sample¥prime. ¢ -qu

78K/111 Series C Compiter Vx.xx [xx xxx xx]
Copyright {(C) NEC Cerporation xxxx

SAMPLEYPRIME. C(18) : ¥745 Expected function prototype
SAMPLEYPRIME. C(20) : ¥T745 Expected function prototype
SAMPLEYPRIME. C(26) :°¥622 No return value

SAMPLEYPRIME. C(37) ; ¥622 No return value

SAMPLEYPRIME. C(44) : ¥622 No return value

Compilation complete, 0 error(s) and 5 warning{s) found.

o When both -QS and -QR options are specified at the same

time

AdceT8k3 -¢3]0 sanmple¥prime. ¢ -q¢c -qr

T8K/111 Series C Compiler Vix.xx [xx xxx xx]
Copyright (L) NEC Corporation xxxx

SAMPLEYPRIME. C
SAMPLEYPRIME. C
SAMPLEYPRIME. C

(18) : W745 Expected function prototype
(20) : W745 Expected function prototype
(28} : W622 No return value
SAMPLEYPRIME. C(37) : ¥622 No return value
SAMPLEYPRIME.C{44) : W622 No return value
Compilation complete. 0 error{s) and 5 warning(s) found.

In this case, the compiler ignores the -QS option and
accepts the -QR as valid.
To make both -QS and -QR valid, enter the start-up

command line as follows:

Ad>ccl8k3 -c310 sample¥prime. c_-qer

-G/-NG Debug information

output specification

(7) Debug output information specification (-G/-NG)

Description format: -G
or
-NG

Default assumption: -NG

FUNCTION
o The -G option specifies the addition of symbol infor-
mation for debugging to the object module file to be
created by the C compiler.
o The -NG option specifies the suppression of debug

information output to the object module file.

USE
If the -G option is not specified, the line number and
symbol information required for a symbol table file which
becomes an input file to the screen debugger will not be
output. Therefore, when performing symbolic debugging,
compile all the modiules tc be linked by specifying the -G
optiocn.

EXPLANATION

o If both the -G option and ~-NG options are specified at
the same time, whichever you specified later will take
precedence over the other preceding option.

o If neither an object module file nor an assembler source
module file is to be output, the -G option specification

will become invalid.

-G/ -NG Debug information
cutput specification

EXAMPLES
o To compile the source program with -G option specified

A>ccT8k3 -c8]0 sample¥Yprime.c -g

78K/111 Series C Compiler Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation xxxx

SAMPLEYPRIME. C(18) : W745 Expected function prototype
SAMPLEYPRIME. C(20) : ¥745 Expected function prototype
SAMPLEYPRIME. C(26) : W622 No return value

SAMPLEYPRIME. C(37) : ¥W622 No return value

SAMPLEYPRIME. C(44) : W622 No return value

Compilation complete, 0 error(s) and 5 warning(s) found.

5-28

-L/-NL Execution-time error
check specification

(8) Execution-time error check specification (-L/-NL)

Description format: -L[error-check-type]
or
-NL
Default assumption: -NL
FUNCTION

o The -L option specifies the addition of an execution-
time error check library to the object module file
to be created by the C compiler.

o The -NL option specifies the non-addition of an
execution-time error check library to the object
object module file.

USE
Use the -L option to specify check items according to the
purpose of the error check.

EXPLANATION

o Error check types that can be specified with the -L
options are as shown in Table 5-7.

o Two or more error check types may be specified with
the -L option.

-L/-NL Execution-time error

check specification

Table 5-7. Error Check Types

Error check type Description

Omitted All types (2, P, S, Z, and D) are
assumed tc have been specified.
1 Execute an overflow check on

multiplication and division,

2 Execute an overflow check on
all operations including 1 .

P Check for an illegal address
access by using a pointer,

S Check if the stack area to be used
has been reserved.

Z Check for division by zero.

D Check for an illegal read- or

write-access to the sfr area.

o When the source debugger is activated, the C compiler

may perform operations not intended by the user becCause
of various errors. For this reason, when starting up

the C compiler, specify the -I option to generate error-
checking object code in addition te ordinary object
code.

If neither an object module file nor an assembler source
module file is to be output, the -L option specification
will become invalid.

If both the -L and -NL options are specified at the

same time, whichever you specified later will take

precedence over the other preceding option.

-L/-NL Execution-time error
check specification

EXAMPLE

o To specify stack overflow check and divide-by-zero check

A>cc18k3 -¢c310 sample¥prime.c -1lsz

18K/111 Series C Compiler Vx.xx [xx xxx xx]
Copyright (L) NEC Corporation xxxx

SAMPLEYPRIME. C{L8) : W745 Expected function prototype
SAMPLEYPRIME. C{20) : WT745 Expected function prototype
SAMPLEYPRIME. C{(26) : %622 No return value
SAMPLEYPRIME. C{37) : W622 No return value

SAMPLEYPRIME. C{44) : ¥622 No return value
Compilation complete, 0 error{s) and 5 warning(s) found.

-P/-NP Preprocess list file

creation specification

(9) Preprocess list file creation specification
(-P/-NP, -K/-NK)

Description format: -P [output-filename]
or
-NP
Default assumption: -~NP
FUNCTION

o The -P option specifies the output destination or output
filename of the preprocess list file to be output by the
C compiler.

o The -NP option specifies the non-generation of a

preprocess list file.

USE
o Use the -P option to change the output destination or
output filename of a preprocess list file.
o If the compilation of a source module is to be performed
only to output an assembler source module file, use the

-NP option. (This will reduce the translation time.)

EXPLANATION

o If an output filename is omitted from the -P option
specification, "input filename.PPL" will be assumed as
the filename of the preprocess list file.

o If a drive name is omitted from the -P option specifica-
tion, the preprocess list file will be output to the
current drive.

o If both the -P and -NP options are specified at the
same time, whichever you specified later will take

precedence over the other preceding option.

5-32

-P/-NP

Preprocess list file

creation specification

EXAMPLE
o To output preprocess list file "SAMPLE.PPL"

A>ccT8k3 -c310 sampie¥prime.c -psample. pp}

78X/111 Series C Compiler Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation xxxx

SAMPLEYPRIME. C(
SAMPLEYPRIME. C(
SAMPLEYPRIME. C(
SAMPLEYPRIME. C(

18)
20)
26)
37)
SAMPLEYPRIME. C(44)

Compilation complete, .

: K745 Expected function prototype
: W745 Expected function prototype
: ¥622 No return
: ¥622 No return

: W622 No return

0 error(s)

value
value
value
and

5 warning(s) found.

-K/-NK Preprocess list file

creation specification

Description format: -K [process-type]
or
-NK

Default assumption: -KFLN

FUNCTION
o The -K option specifies special process{es) required for
the output preprocess list file specified by the -P
option.
o The -NK option tells the C compiler that no special
processes other than by default assumption are required

for the preprocess list file,

USE
When a preprocess list is to be output, use the -K option
to specify special processes such as comment deletion,

reference of macroexpansion, etc.

EXPLANATION
o Process types that can be specified with the -K

option are as shown in Table 5-8 below.
o Two or more process types may be specified with the -K

option.

5-34

-K/-NK

Preprocess list file
creation specification

Table 5-8. Process

Types with -K Option

Process type Description
Omitted F, L, and N are assumed to have
been specified.

C Delete comments.

D Expand fidefine directives.

F Execute conditional compilation
of #if, #ifdef, and #ifndef
directives.

I Expand #include directives.

L Process #line directives.

N Execute line number and paging
process.

o If the -K option is not specified together with the

-P option, the -K option specification will become

invalid.

o If both the -K and -NK options are specified at the

same time, whichever you specified later will take

precedence over the other preceding option.

o If two or more -K options are specified at the same

time, the last specified -K option will take precedence

over the other K-options.

5-35

-K/-NK Preprocess list file

creation specification

EXAMPLES
o To output preprocess list file 'SAMPLE.PPL" with comment

deletion and line number/paging process specified

A>ccT8k3 -¢310 sample¥prime.c -p -ken

78K/111 Series C Compiler Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation xxxx

SAMPLEYPRIME. C{18) : %745 Expected function prototype
SAMPLEYPRIME. C(20) : W745 Expected function prototype
SAMPLEYPRIME. C{26) : W622 No return value
SAMPLEYPRIME. C(37) : ¥622 No return value

SAMPLEYPRIME. C(44) : W62Z No return value
Compilation complete, 0 error{s) and 5 warning{s) found.

o When PRIME.PPL file is referenced

VL
78K/111 Series C Compiler Vx.xx Preprocess List
Date:xx xxx xxxx Page: 1
Command - —¢310 sample¥prime.c -p -ken
In-file : SAMPLEYPRIME. C
PPi.-file : PRIME.PPL
Para-file :
%/
1 ; #define TRUE 1
2 #define FALSE 0
3 : $define SIIE 200
4
5 : char mark[SI1ZE+1];
6 :
7 : main(}
8
9 int i, prime, k, count;
10 :
11 : count = 0;
12

-K/-NK Preprocess list file

creation specification

o When -both -KN and -KC options are specified

Ad>ccT8k3 -c310 sampleY¥orime, ¢ -p -kn ke

78K/111 Series C Compiler Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation xxxx

. ¥745 Expected function prototype

SAMPLEYPRIME. C(18)

SAMPLEYPRIME. C{20) : W745 Expected function prototype
SAMPLEYPRIME. C(26) : W§22 No return value
SAMPLEYPRIME. C(37) : W622 No return value
SAMPLEYPRIME. C(44) : ¥622 No return value

Compilation complete, 0 error(s) and 5 warning(s) found.

o When PRIME.PPL file is referenced

/¥
78K/111 Series C Compiler Vx.xx Preprocess List

Command . -¢310 sampleYprime.c -p -kn -ke
In-file + SAMPLEYPRIME.C

PPL-file : PRIME.PPL

Para-file :

¥/

$define TRUE 1

ddefine FALSE O

#define SIZE 200

char mark{SIZE+1];

main{)
E int i, prime, k. count:
count = 0;
for (i =0 ; i <= SIZE ; i++)
mark{i) = TRUE:

for (i = 0-i<-SlZE:i++){
if (mark[l]) {
prime = i + i + 3;
prlntf(%¥6d”, prime);

count++
"if ({count%8) ==
for (k = i + prime ; k

mark[k] = FALSE;

)

Date:xx xxx xxxXx Page:

0} putchar("¥n');
<= SIZE ; % += prime)

In this case, the Compiler ignores -KN option and

accepts -KC option as valid.

5-37

-D/-ND Preprocessing specification

(10) Preprocessing specification (-D/-ND, -U/-NU, -I)

Description format: -D macro-name=[definition-name]
[,macro-name[=definition-name] ...
or
~ND
Default assumption: Accepts only macro definitions
within C source module file as

valid.

FUNCTION
o The -D option tells the C compiler to execute macro-
definitions just the same as #define directive
statements in the C source.

o The -ND option invalidates the -D option.

USE
Use the -D option if you wish to substitute all specific

constants with macro names.

EXPLANATION
o Two or more macrodefinitions may be specified by
delimiting each definition with a "," (comma).
No space (blank) is allowed before or after "=" and "t

o If a definition name is omitted from the -D option
specification, "1" will be assumed as the definition
name.

o If the same macro name is specified by both the -D
and -U options, whichever you specified later will
take precedence over the other preceding option.

o If both the -D and -ND options are specified at the
same time, whichever you specified later will take

precedence over the other preceding option.

5-38

-D/-ND Preprocessing specification

EXAMPLE
o To compile source program with -D option specified

Ad>ccTB8k3 -¢310 sample¥prime. ¢ -dtest tjime=10

" 78K/111 Series C Compiler Yx.xx [xx xxx xx]
Copyright (C) NEC Corporation xxxx

: W745 Expected function prototype

SAMPLEYPRIME. C{18)

(20% : W745 Expected function prototype
26
1)

SAMPLEYPRIME. C
SAMPLEYPRIME. C{ : ¥622 No return value
SAMPLEYPRIME. C(3 : W622 No return value
SAMPLEYPRIME. C(44) : W622 No return value
Compilation complete, 0 error(s) and 5 warning(s) found.

5-39

-U/-NU Preprocessing specification

Description format: -U macro-name[,macro-name] ...
or
~-NU
Default assumption: Accepts macro definitions specified

by -D option as valid.

FUNCTION

o The -U option tells the C compiler to invalidate
(undefine) macro definitions just the same as #undef
directive statements in the C source.

o The -NU option tells the C compiler not to undefine
the macrodefinitions defined by the -D option.

USE

Use the -U option if you wish to undefine the maCro names
defined by the -D option.

EXPLANATION

o Two or more macrodefinitions may be undefined by
delimiting each definition with a "," (comma).
No space (blank) is allowed before or after "L,

o Only the macrodefinitions defined by the -D option can

be undefined by the -U option. The macro names defined

by #define directive statements in the C source file and

the system macro names that the C compiler has cannot
be invalidated with the -U option.

o If the same macro name is specified by both the -D
and -U options, whichever you specified later will
take precedence over the other preceding option.

o If both the -U and -NU options are specified at the
same time, whichever you specified later will take

precedence over the other preceding option.

5-40

-U/-NU Preprocessing specification

EXAMPLE
o When same macro name is specified by -D and -U options
"A>ccT8k3 -¢310 sample¥prime ¢ —dtest —utest -

18X/111 Series ¢ Compiler Vx.xx [xx xxx xx)
Copyright (C) NEC Corporation xxxx

SAMPLEYPRIME. C(18) : W745 Expected function prototype
SAMPLEYPRIME. C(20) : W745 Expected function prototype
SAMPLEYPRIME. C(26) : W622 No return value
SAMPLEYPRIME. C(37) : %622 No return value

SAMPLEYPRIME. C(44) : W622 No return value
Compilation complete, 0 error{s) and S warning(s) found.

-1 Preprocessing specification

Description format: -~I directory [,directoryl] ...

Default assumption: Directory containing directory
source file specified by environ-
ment variable INC78Kn (n=0,2,3)

FUNCTION
o The -I opticn tells the C compiler to input the
Inclusion files specified by the #include directive

statement in the C source from a specified directory.

USE
Use the -I option to search a directory or directories for

Inclusion files.

EXPLANATION
¢ Two or more directories may be specified by delimiting
each directory with a "," (comma). No space (blank) is
allowed before or after ",".

o If two or more directories are specified following the
-I option or if two or more -1 options are specified at
the same time, the C compiler will search directories
for the file(s) specified by #include in the order of
their specification in the command line. Then, the
compiler will search directories in the same order as

the default assumption.

-1 Preprocessing specification

EXAMPLE

o To compile source program with -I option specified

A>cc?Bkd -¢310 samplerrime.c -ib:, b:¥sample

78X/111 Series C Compiler Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation Xxxxx

SAMPLEYPRIME. C{18) : W745 Expected function prototype
SAMPLEYPRIME. C(20) : W745 Expected function prototype
SAMPLEYPRIME. C(26) : W622 No return value

SAMPLEYPRIME. C(37) : W622 No return value

SAMPLEYPRIME. C(44) : W622 No return value

Compilation complete, 0 error(s) and 5 wvarning{s) found.

-A/-NA Assembler source module

file creation specification

{(11) Assembler source module file creation specification
(-A/-NA, -SA/-NSa)

Description format: -A [output-filename]
or
-NA
Default assumption: -NA
FUNCTION

o The -A option specifies the output of an assembler
source module file., It also specifies the output
destination or output filename of the assembler source
module file.

o The -NA option specifies the non-generation of an

assembler source module file,

USE
Use the -A option to change the output destination or

output filename of an assembler source module file.

EXPLANATION

o As the output filename of an assembler source module

file} either a disk type or device type filename can be
specified.

o If an output filename is omitted from the -A option
specification, the C compiler will assume that
"input filename.ASM" has been specified as the output
filename.

o If a drive name is omitted from the -A option specifi-
cation, the assembler source module file will be output
to the current drive.

o If both the -A and -SA options are specified at the same
time, the -SA option will be ignored.

5-44

-A/-NA Assembler source module
file creation specification

o If both the -A and -NA options are specified at the same
time, whichever you specified later will take precedence

over the other preceding option.
EXAMPLES
o To create assembler source module file named

"SAMPLE,ASM"

AdecT8k3 -c310 sample¥prime.c —-asample. asm

78X/111 Series ¢ Compiler Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation xxxx

: W745 Expected function prototype

SAMPLEYPRIME. 8)

E 0; : W145 Expected function prototype
0
1)

¢
SAMPLEYPRIME. C(
SAMPLEYPRIME. C(- ¥622 No return value
SAMPLEYPRIME. C(. W622 No return value
SAMPLEYPRIME. C(44) : W622 No return value
Compilation complete, 0 error(s) and 5 warning(s) found.

1
Z
A
3

-A/-NA Assembler source module

file creation specification

o To output assembler source module file ontc printer

A>ccT8k3 -¢310 sampieYprime. ¢ -aprn

18K/111 Series C Compiler Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation xxxx

SAMPLEYPRIME. C(18) : W745 Expected function prototype
SAMPLEYPRIME. C(20) : W745 Expected function prototype
SAMPLEYPRIME. C(26) : ¥622 No return value
SAMPLEYPRIME. C(37) : ¥622 No return value

SAMPLEYPRIME. C(44) ¥622 No return value
Compilation complete 0 error{s) and 5 warning{s) found.

-SA/-NSA Assembler source module

file creation specification

Description format: -SA [output-filename]
or
~NSA

Default assumption: ~NSA

FUNCTION ‘

o The ~SA option specifies the output of an assembler
source module file with the C source source program
added as comments to it. It also specifies the output
destination or output filename of the assembler source
module file.

o The -NSA option specifies the non-addition of the
C source source module file to the assembler source

module file to be output.

USE
Use the -SA option if you wish to output an assembler
source module file together with the C source module
file.

EXPLANATION

o As the output filename of an assembler socurce module
file, either a disk type or device type filename can be
specified.

o If an output filename is omitted from the -SA option
specification, the C compiler will assume that
"input filename,ASM" has been specified as the output
filename.

o If a drive name is omitted from the -SA option specifi-
cation, the assembler source module file will be output -

to the current drive.

-SA/-NSA Assembler source module

file creation specification

o If both the -A and -SA options are specified at the same
time, the -SA option will be ignored.

o If both the -SA and -NSA options are specified at the
same time, whichever you specified later will take

precedence over the other preceding option.

EXAMPLES
o To create assembler source module file with -SA option

A>ccT8k3 —c310 sample¥prime.c -sa

T78K/111 Series € Compiler Vx.xx [xx xxx xx]
Copyright {(C) NEC Corporation xxxx

SAMPLEYPRIME. C(18) : W745 Expected function prototype
SAMPLEYPRIME. C(20) : W745 Expected function brototype
SAMPLEYPRIME. C{26) : ¥622 No return value

SAMPLEYPRIME. C{37) : ¥622 No return value

SAMPLEYPRIME. C(44) : ¥622 No return value

Compilation complete 0 error{s) and 5 warning(s} found.

-SA/-NSA Assembler source module

file creation specification

o When PRIME.ASM file is referenced

. 18K/111 Series C Compiler Vx.xx Assembler Source
. Date:xx xxx xxx¥x Time:xx:xx:xx

: Command : ~c310 sampleYprime.c -sa
; In-file : SAMPLEYPRIME.C
. Asm-file : PRIME.ASM
; Para-file :
$PROCESSOR(310)
SNODEBUG
NAME PRIME

EXTRN @@isrem
PUBLIC _mark
PUBLIC _main
PUBLIC _printf
PUBLIC _putchar

@@CODE CSEG

: line 1 : #define TRUE i
+ line 2 : #define FALSE 0
line 3 : #define SIZE 200
; line 4
: line § : char nark{SI1ZE+1];
: line 6 :
: line 7 : main()
: line 3
_main:
push hl
movY ax, sp

subw qx.#O&H

In this example, C source has been added as comments.

-E/-NE Error list file

creation specification

(12) Error list file creation specification (-E/-NE,

-SE/-NSE)
Description format: -E [output-filename]
or
-NE
Default assumption: -NE
FUNCTION

o The -E option specifies the output of an error list
file. It also specifies the output destination or cutput
filename of the error list file.

o The -NE option specifies the non-generation of an error
list file.

USE
Use the -E option to change the output destination or

output filename of an error list file.

EXPLANATION

0 As the output filename of an error list file, either a
disk type or device type filename can be specified.

o If an output filename is omitted from the -E option
specification, the C compiler will assume that
"input filename.ECC" has been specified as the output
filename.

o If a drive name is omitted from the -E option specifi-
cation, the error list file will be output to the
current drive.

o If the -W0 option is specified at the same time, no

warning message will be output.

-E/-NE

Error list file
creation specification

o If both the -E and -NE options are specified at the same

time, whichever you specified later will take precedence

over the other preceding option.

EXAMPLES

o To compile source program with -E option specified

AdceT8k3 -e310 sample¥prime.c -e

78K/111 Series C Compiler Vx.xx [xx xxx x¥]
Copyright (C) NEC Corporation xxxx

SAMPLEYPRIME. C(18)
SAMPLEYPRIME. C{20)
SAMPLEYPRIME. C(286)
SAMPLEYPRIME. C{37)
SAMPLEYPRIME. C(44)

. W745 Expected function prototype
: W145 Expected function prototype
- W622 No return value
: W622 No return value
: W622 No return value

Compilation complete,

0 error{s) and 5 warning(s) found.

o When the error list file is referenced

SAMPLEYPRIME. C(
SAMPLEYPRIME. C(
SAMPLEYPRIME. C(
SAMPLEYPRIME. C(
SAMPLEYPRIME. C(

e S O3 DD
e -y o O 0O

Compilation complete,

: WT45 Expected function prototype
: W745 Expected funetion prototype
: W622 No return value
: ¥622 No return value
: ¥622 No return value

0 error(s} and 5 warning(s) found.

-SE/-NSE Error list file

creation specification

Description format: -SE [output-filename]

Default assumption: -NSE

or

-NSE

FUNCTION
o The -SE option specifies the output of an error list

file with the C source source module file added to it.
It also specifies the output destination or output
filename of the error list file.

The -NSE option specifies the non-addition of the C
source source module file to the error list file to be

output.

Use the -SE option if you wish to output an error list

file together with the C source module file.

EXPLANATION

o As the output filename of an error list file, either a

disk type or device type filename can be specified.

If an output filename is omitted from the -SE option
specification, the C compiler will assume that "input
filename.CER" has been specified as the output filename.
If a drive name is omitted from the -SE option specifi-
cation, the error list file will be output to the

current drive.

0 No filename can be specified for any Inclusion file. If

the file type of the inclusion file is H or C, an error
list with file type "HER" or "CER", respectively, will
be output. Otherwise, an error list file with file type
"ER" will be output.

-SE/-NSE

Error list file

creation specification

o If no error is found, no C source module file will be

added. No error list file will be created for an

Inclusion file.
o If the ~-W0 option

is specified at the same time, no

warning message will be output.
o If both the -SE and -NSE options are specified at the
same time, whichever you specified later will take

precedence over the other preceding option.

EXAMPLES

o To compile source program with -SE option specified

A>ccl8k3 -c310 sample¥Yprime. ¢ -se

18X/111 Series C Compiler Vx.xx [xx xxx xx]

Copyright (C) NEC

SAMPLEYPRIME. C(1
SAMPLEYPRIME. C(2
SAMPLEYPRIME. C{(2
SAMPLEYPRIME. C(3
SAMPLEYPRIME. C(44)
Compilation complete

8)
0)
6)
1)

Corporation xxxx

: W745 Expected function prototype
: W745 Expected function prototype
: W622 No return value
: ¥622 No return value
: ¥622 No return value

0 error{s) and 5 warning{(s) found.

-SE/-NSE Error list file

creation specification

o When PRIME.CER file is referenced

¥
T78K/111 Series C Compiler ¥x.xx Error List Date:xx xxx xxxx Time:xx:
Command : -c310 sample¥prime.c -se
In-file : SAMPLEYPRIME.C
Err-file : PRIME.CER
Para-file :
¥/

tdefine TRUE 1
fdefine FALSE 0
tdefine SI1ZE 200
char mark[SIZE+1];
main()

int i, prime, k, count;

count = 0;

for (i =0 ; i <= SIZE ; i++)
mark{i] = TRUE:

for (i =10 : i <= SIZE ; i++) {
it (mark[i]) {

prime = i + i + 3;
printf("%6d", prime);
k4% WARNING W745 Expected function prototype

count++,
/%
C?mpilation complete, 0 error{s) and 5 warning({s) found.
%

In this example, C source has been added.

-X/-NX Cross-reference list file

creation specification

(13) Cross-reference list file creation specification

(-X/-NX)
Description format: -X [output-filename]
or
-NX
Default assumption: -NX
FUNCTION

o The -X option specifies the output of a cross-reference
list. It also specifies the output destination or output
filename of the cross-reference list file.

o The -NX option specifies the non-generation of a Ccross-

reference list,.

USE
Use the -X option to change the output destination or

output filename of a cross-reference list file.

EXPLANATION

o As the output filename of a cross-reference list file,

either a disk type or device type filename can be
specified.

o If an output filename is omitted from the -X option
specification, the C compiler will assume that "input
filename.XRF" has been specified as the output filename.

o If both the -X and -NX options are specified at the
same time, whichever you specified later will take

precedence over the other preceding option.

-X/-NX

Cross-reference list file

creation specification

EXAMPLE

o To compile source program with -X option specified

AdceT8kY -c310 sample¥prime.c —-x

T8K/111 Series C Compiler Vx.xx [xx xxx xx]

Copyright (C) NEC

SAMPLEYPRIME. C{18)
SAMPLEYPRIME. C{20)
SAMPLEYPRIME. C(28)
SAMPLEYPRIME. C(37)
SAMPLEYPRIME. C(44)
Compilation complete

Corporation xxxx

: ¥745 Expected function prototype
. ¥7145 Expected function prototype
: W622 No return value
: ¥622 No return value

¥622 No return value
0 error{s) and 5 warning(s) found.

-LW List file format

specification

{(14) List file format specification (-LW, -LL, -LT, and -LF)

Description format: -LW number-of-columns
Default assumption: -LW132 {(or -LW80 for output to

console}

FUNCTION
The -LW option specifies the number of print columns per
line (PAGEWIDTH) of a list file.

USE

Use the -LW option to change the number of print columns

per line of any of the various list files.

EXPLANATION

o The number of print columns per line to be specified
with the -LW option must be within the following value
range without including a terminator (CR or LF):

72 ¢ No. of print columns per line < 132
However, when the list file is to be output to the
console, up to 80 characters will be cutput.

o If the number of columns is omitted, 132 columns per
line will be assumed.

o If no list file is specified, the -LW option specifica-
tion will become invalid.

-LW List file format

specification

EXAMPLES
o To output cross-reference list file onto printer

with ~LW option omitted

A>ecT8k3 -¢310 sampleYprime. e —xprn

78K/111 Series C Compiler ¥x.xx [xx xxx xxl
Copyright {C) NEC Corporation xxxx

SAMPLEYPRIME. C(18) W745 Expected function prototype
SAMPLEYPRIME. C(20) ¥745 Expected function prototype
SAMPLEYPRIME. C(26) W522 No return value

SAMPLEYPRIME. C(37) W622 No return value

SAMPLEYPRIME.C(44) : W622 No return value _
Compilation complete, 0 error{s) and 5 warning(s) found.

o When PRIME.XRF file is referenced

78%/011 Series C Compiler V1,10 Cross referencs List Date: § Sep 1920 Page: 1

Coemand : =cI10 sample¥prize.c -xpra
In-file : YSAMPLEYPRIME.C
Aref-tite : PRIME. XRF

Parz-file :
ATTRIB MODIFY TYPE SYMBOL DEFINE REFERENCE
EXTERN array mark § 1] 15 i
EXTERN fune aain 7
AUTO1 int i 9 13 13 13 ¥ 15 15 15 L8 11 17
HY
AUTGL int prine § 17 14 1l HA
AUTOL int 13 3 21 i 1 n
A0T01 int count 9 11 19 0 H
EXTEEN func printf 28 13 5
EXTERN funce putchar 39 20
PARAN pointer s HL] 36
PARAN int i 10 K}
AUTOL int i n 15
AUTOL painter 13 3% -]
PARAM char [40 {1
AUTOL char d [¥] (%]
»define TRUE 1 L |
2define FALSE H n
#define STZE H H [§1 1§ H|

~-LW List file format
specification

o0 To output cross-reference list file with columns per

line specified as 80

Ad>ccT8k3 -¢310 sample¥Yprime.c -x -1w80

T8K/111 Series C Compiler Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation xxxx

SAMPLEYPRIME. C(18) : W745 Expected function prototype
SAMPLEYPRIME. C(20) : W745 Expected function prototype
SAMPLEYPRIME. C(26) : ¥622 No return value

SAMPLEYPRIME. C{37) : W622 No return value

SAMPLE?PRIME.C(44) : ¥622 No return value

Compilation complete, 0 error(s) and 5 warning(s) found.

¢ When PRIME.XRF is referenced

78K/111 Series C Compiler ¥Yx.xx Cross reference List Date:xx xxx xxxx Page:

Command + —¢310 sample¥prime.c -x -1v80
In-file ¢ SAMPLEYPRIME.C
Xref-file : PRIME. XRF
Para-file :
ATTRIB MODIFY TYPE SYMBOL DEFINE REFERENCE
EXTERN array martk 5 14 16 22
EXTERN fune main 7
AUTO1 int i 9 13 13 13 14
15 15 15 16
17 17 21
AUTOL int prime 9 11 18 21 21
AUTO! int k g 21 21 21 22
AUTOL int count 9 11 19 20 25
EXTERN func printf 28 18 25
EXTERN func putchar 39 20
PARAM pointer s 29 38
PARAM int i 30 35
AUTOL int j 32 35
AUTOL pointer ss 33 36
PARAM char c 40 43
AUTO1 char d 42 413
#define TRUE l 14
#define FALSE 2 22
$define SIZE 3] 13 21

5-59

-LL List file format

specification
Description format: -LL number-of-lines
Default assumption: -LL66 (or no page ejection for

output to console)

FUNCTION
The -LL option specifies the number of print lines per
page (PAGELENGTH) of a list file.

USE
Use the -LL option to change the number of print lines

per page of any of the various list files.

EXPLANATION

o The number of print lines per page to be specified with

the -LL option must be within the following value range:
20 < No. of print lines per page ¢ 65,535

o If the number of lines is specified as 0 (i.e., -LLO),
no page ejection will be performed for the list file to
be cutput to the console.

o If the number of lines is omitted, 66 lines per page
will be assumed.

o If no list file is specified, the -LL option specifica-

tion will become invalid.

5-60

-LL List file format

specification

EXAMPLES
o To output cross-reference list file with no. of lines

per page specified as 20

Ad>cci8k3 -¢310 sampleYprime.c -x =-1]20

T8K/111 Series C Compiler Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation xxxx

SAMPLEYPRIME. C(18) : W745 Expected function prototype
SAMPLEYPRIME. C(20) : W745 Expected function prototype
SAMPLEYPRIME. C(26) : W622 No return value

SAMPLEYPRIME. C(31) : ¥622 No return value

SAMPLEYPRIME. C(44) : W622 No return value

Compilation complete 0 error(s) and 5 warning(s) found.

-LL List file format

specification

o When PRIME.XRF file is referenced

T8K/11] Series C Compiler Vx.xx Cross reference List

Date:xx xxx xxxx Page: 1
Command : —c310 sample¥prime.c -x -1120
In-file : SAMPLEYPRIME.C
Xref-file : PRIME, XRF
Para-file :
ATTRIB MODIFY TYPE SYMBOL DEFINE REFERENCE
EXTERN array mark 9 14 18 22
EXTERN func main)
AUTO1 int i] 13 13 13 14
15 15 15 16 17 117 .
1
AUTOL int prime 9 17 18 21 21

T8X/111 Series C Compiler Vx.xx Cross reference List

Date:xx xxx xxxx Page: 2
AUTO! int k g 21 21 21 22
AUTO!L int count 9 il 19 20 25
EXTERN fune printf 28 18 25
EXTERN func putchar 39 20
PARAM pointer s 29 36
PARAM int i 30 35
AUTO!L int 3 32 35
AUTO1 pointer ss 33 36
PARAM char c 40 43
AUTO1 char d 42 §3
tdefine TRUE 1 14
tdefine FALSE 2 22
T8K/11] Series C Compiler Vx.xx Cross reference List
Date:xx xxx xxxx Page: 3
tdefine SIZE 3 5 13 15 21

~LT List file format

specification

Description format: -LT number-of-columns

Default assumption: -LT8

FUNCTION
The -LT option specifies the number of columns which
becomes the basis of tabulation processing to output a
list file by replacing a HT (Horizontal Tab) code in
the source module with several blank characters on the
list.

USE
If the number of columns per line of a list file is
lessened by specifying the -LW option, use the -LT option
to lessen the number of blanks by HT code, thereby saving
the number of columns.

EXPLANATION

¢ The number of columns for tabulation to be specified
with the -LT option must be within the following value
range:

0 < No. of columns for tabulation ¢ 8

o If the number of columns is specified as 0 (i.e., -LTO0),
no tabulation will be performed and instead HT code will
be output.

o If no list file is specified, the -LT option specifica-

tion will become invalid.

-LT

List file format

specification

EXAMPLES

o To output preprocess list with -LT option omitted

AdcecTBK3 -c310 sample¥prime. ¢ -p

78K/111 Series C Compiler Vx.xx

Copyright {(C) NEC

SAMPLEYPRIME. C(18)
SAMPLEYPRIME. C(20)
SAMPLEYPRIME. C(26)
SAMPLEYPRIME. C(37)
SAMPLEYPRIME. C{(44)}
Compilation complete

[xx xxx xx]
Corporation xxxx

© W745 Expected function prototype
. ¥745 Expected function prototype
: W622 No return
: ¥622 No return

value
value
value
and

¥622 No return

0 error{s) 5 varning(s) found.

o When the preprocess list is referenced

/*
T8K/111 Series C Compller_Vx xx Preprocess List

Date:xx x¥x xxxx Page: 1

Command . -C310 SAMPLEYPRIME.C -P
In-file : SAMPLEYPRIME.C
PPL-file : PRIME.PPL
Para-file :
*/
1 : #define TRUE 1
2 : f#define FALSE 0
3 : #define SIZE 200
{
5 : char mark{S1ZE+1];
6
7 : main()
i
9 int i, prime, k, count;
10 :
11 : count- = 0;
12 :
13 : for(i=0;1<=SIZB.1++)
14 : mark[1] = TRUE:
15 : for { i =0 ;i <= SIZE ; i++) |
16 : if (mar k[il) |
17 prime = 1 + i + 3;
18 : prlntf(¥6d” .prxme)
19 : count++
20 "if ({count¥%8) =
21 for (k =i + prime ; k ¢= SIZE ;
22 mark{k] = FALSE:
23)
24 }
25 : } printf("¥n%d primes found. ", count) ;
26 :
27

5-64

= 0) putchar(n');

k += prime)

-LT List file format

specification

o To specify the number of blanks by HT code as "1"

A>ecT8K3 -¢310 sample¥prime. ¢ -p =1tl

78K/111 Series C Compiler Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation xxx«x

: W745 Expected function prototype

SAMPLEYPRIME. C(18)
0; : 745 Expected function prototype
6
1

{
SAMPLEYPRIME. C(
SAMPLEYPRIME. C¢ : W622 No return value
SAMPLEYPRIME. C(37) : W622 No return value
SAMPLEYPRIME. C{44) : W622 No return value
Compilation complete, 0 error(s) and 5 warning{s) found.

[y S e

o When the preprocess list is referenced

/%
T8K/11! Series C Compiler Vx.xx Preprocess List
Date:xx xxx xxxx Page: 1
Command : ~C310 SAMPLEYPRIME.C -P ~LT1
In-file . SAMPLEYPRIME.C
PPL-file : PRIME.PPL
Para-file :
%/
1 : #define TRUE 1
2 : tdefine FALSE 0
3 : #define SIZE 200
i :
5 : char mark([SIZE+1];
6 :
T : main{)
g
9 : int i, prime, k, count;
10 :
11 : count = 0;
12 :
13 ¢ for (i =10 ;i <= SIZE ; i++)
14 : mark{i] = TRUE:
15 ¢ for (i =20 ;i <= SIIE ; i++) {
16 if (mark(i)) I
17 prime = i + §i + 3:
18 printf("%6d", prime};
18 count++;
20 if({count%8) == 0} putchar(¥n');
21 : for (k = 1 + prime ; X <= SiZE ; k += prime)
22 mark[k] = FALSE:
23
24 :
gg : printf("¥n%d primes found.”, count):
27 :

The number of blanks by HT code is 1.

5-65

-LF List file format
gpecification

Description format: -LF

Default assumption: None

FUNCTION
The -LF option specifies the addition of a formfeed code

to the end of a list file.

EXPLANATION
If no list file is specified, the -LF option specifica-

tion will beccome invalid.

EXAMPLE
o To output assembler source module file with -LF option

specified

Adcc78K3 -c310 sample¥prime. ¢ -a -1f

78K/111 Series C Compiler Vx.xx [xx xxx xx}
Copyright (C) NEC Corporation xxxx

: ¥745 Expected function prototype
: W745 Expected function prototype

SAMPLEYPRIME. 8%

0 .

5% : ¥622 No return value
T

4)

le

SAMPLEYPRIME
SAMPLEYPRIME
SAMPLEYPRIME
SAMPLEYPRIKE
Compilation ¢

+ W622 No return value
¢ W622 No return value
te, 6 error{s) and 5 warning(s) found.

=N eleleteNel

(1
(2
(2
{3
(4
mp

-W Warning output

specification

(15) Warning output specification (-W)

Description format: -W[level]

Default assumption: -W1

FUNCTION
The -W option tells the compiler to output or not to
output warning messages to the console according to the

specified warning message level.

USE
Use the -W option to output ordinary or detailed

warning messages or to suppress warning message output.

EXPLANATION

o Warning message levels that can be used with the -W

option are as follows:

Table 5-9. Warning Message Levels

Level Description
0 Suppress warning message output.
1 Output ordinary warning messages.
2 Output detailed warning messadges.

o If the -E or -SE option is specified together with the
the -W option, warning messages will also be output to
the error list file.

o If warning message level 0 (-W0) is specified, no
warning message will be output to the console or error

list file (when the -E or -SE option is specified).

Warning output
specification

EXAMPLES

o When warning messages are referenced with -W option

omitted

A>ccT78K3 -¢310 sample¥prime.c

78K/111 Series € Compiler Vx.xx [xx xxx xx)
Copyright {C) NEC Corporation xxxx

SAMPLEYPRIME. C{18) : W745 Expected function prototype
SAMPLEYPRIME. C(20) : W745 Expected function prototype
SAMPLEYPRIME. C(26) : ¥622 No return value

SAMPLEYPRIME. C(317) : ¥622 No return value

SAMPLEYPRIME. C{44) ¥622 No return value

Compilation complete. 0 error{s) and 5 warning(s) found.

To suppress warning message output

A>ccT8K3 -c310 sampleVYprime. ¢ —w0

18X/111 Series € Compiler Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation xxxx

Compilation complete, ¢ error(s) and 5 warning{s) found.

-V/-NRV Execution status
display specification

(16) Execution status display specification (-V/-NV)

Description format:

1
<

or
-NV
Default assumption: -NV

FUNCTION
o The -V option specifies the output of the current
execution status of the compiler to the console.
o The -NV option specifies the suppression of current

execution status output.

USE
Use the -V option if you wish to display the current

execution status of the compiler on the console during

the compiler execution.

EXPLANATION

o The -V option displays the translation phase names and
function names under execution.

o Tf both the -V and -NV options are specified at the same
item, whichever you specified later will take precedence
over the other preceding option.

-v/-NV Execution status
display specification

EXAMPLE
o To compile source program with -V option specified

AdccT8K3 -¢310 sample¥prime.c -v

T8K/111 Series C Compiler Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation xxxx

Phase:parser

main():

SAMPLEYPRIME. C(18) : W745 Expected function prototype
SAMPLEYPRIME. C{20) : W745 Expected function prototype
SAMPLEYPRIME. C(26) : W622 No return value

printf():

SAMPLEYPRIME. C(37) : W622 No return value

putechar():

SAMPLEYPRIME. C(44) : W622 No return value

Phase:code generator

main():

printf{):

putchar():

Phase:list and object .output

main():

printf{):

putchar{):

Compilation complete, 0 error(s) and 5 warning(s) found.

5-70

-F

Parameter file specification

(17) Parameter file specification (-F)

Description format: -F filename

Default assumption: Allows input of options or input

filenames from command line only.

FUNCTION
The -F option specifies the input of compiler options

or input filename(s) from a specified parameter file.

USE

o

If the required information for starting up the C
compiler is too excessive to specify in the command
line, use the -F option to input two or more compiler
options from a specified parameter file at compile
time.

If the same option specifications are to be used
repeatedly for each compilation, describe such options
in a parameter file and input them from the parameter

file by using the -F option.

EXPLANATION

Nesting of parameter files is not allowed.

The number of characters that can be used in a parameter
file is not limited.

A blank, tab, or "® " is interpreted as a delimiter for
each compiler option or input name.

The options or input filenames described in a parameter
file will be expanded to the locaticon on the command
file where the -F option has been specified.

As regards the precedence of expanded options, the last
specified option in the parameter file takes precedence

over the preceding options.

-F Parameter file specification

o Characters between ";" or "#" and " ® " are interpreted

as a comment statement.

EXAMPLE
o Contents of parameter file "PRIME.PCC"

:parameter file
sample¥Yprime.c¢ -¢310 -aprime. asm
-e -X

o To compile source program using PRIME.PCC file

A>ccT8K3 -fprime.pee

T8K/111 Series C Compiler Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation xxxx

SAMPLEYPRIME. C(
SAMPLEYPRIME. C(
SAMPLEYPRIME. C(

18) : W745 Expected function prototype
20) : W745 Expected function prototype
28) : W622 No return value
SAMPLEYPRIME. C(37) : ¥622 No return value
SAMPLEYPRIME. C{44) : W622 No return value
Compilation complete 0 error{s) and 5 warning(s) found.

Temporary file creation

directory specification

(18) Temporary file creation directory specification (-T)

Description format: -T directory

Default assumption: Drive/directory specified by environ-
ment variable TMP or current drive/
current directory if TMP is not

specified

FUNCTION

The -T option specifies the drive or directory in which

a temporary file is to be automatically generated by the

C compiler.

Use the -T option to specify a drive or directory for

temporary file creation.

EXPLANATION

0o Even if a previously created temporary file still

exists, the temporary file will be overwritten at the
next creation specification unless the file is write-
protected.

If the memory capacity required for temporary file
creation is available, a temporary file will be created
in memory. If the required memory size is not available,
a temporary file will be created below a specified
directory, the memory contents will be written out to
the file, and subsequent temporary file access will be
made to the file.

The created temporary file will be deleted on completion
of the compile operation. The temporary file will also
be deleted when the compiler processing is interrupted
by CTRL-C key input.

-T Temporary file creation
directory specification

EXAMPLES
o To specify creation of temporary file in directory "TMP"

A>ccT8K3 -¢310 sample¥prime.c -ttmp

T8K/111 Series C Compiler Vx.xx [xx xxx xx]
Copyright (C) NEC Corporation xxxx

{(18) : ¥745 Expected function prototype
SAMPLEYPRIME. C(20) : W745 Expected function prototype
SAMPLEYPRIME. C{26) : 622 No return value
SAMPLEYPRIME. C{37) : ¥622 No return value
SAMPLEYPRIME. C{44) : W622 No return value
Compilation complete, 0 error(s) and 5 warning(s) found.

SAMPLEYPRIME. C(18
0
6
l

-- HELP message output
specification

{(19) HELP message output specification (--)

Description format: --
Default assumption: No HELP message is to be output.

FUNCTION
The -- option tells the C compiler to display a HELP

message on the console.

USE

The HELP message is a list of compiler options. Use

this list for reference when executing the C compiler.

EXPLANATION
o If the -- option is specified, all the other compiler

options will become invalid.

o Press the RETURN key to see the rest of the options
in the list which are not shown on the screen, To
discontinue the HELP message display, first press any
key other than RETURN and then press the RETURN key.

HELP message output
specification

o To specify HELP message display with -- option.

A>¢cT8K3 --

T8K/111 Series C Compiler ¥x.xx [xx xxx xx]
Copyright {(C) NEC Corporation xxxx

+ CC78K3 [optionf...]] input—file-Lohtion[...]]

The option is

—o[f11e]/no

R P R R T

Oll

as follows ([] means omissible, ... means repeat).

Select target chip. { x = chip name) #Must be specified.
: Create cbject file / Not.

: Expand symbol length up to 30 / or symbol length is 7.

: Convert alphabet to capital for symbol / Not.

Generate ROMable object module / Not.

Optlmlze output code / Not. (default x = r)

s : optimize object speed

z : optimize object size

¢ : assign char variable without sign expand

1 : call function prepare/dispose library

T : use SADDR area for register variable

u : change plain char to unsigned char

e : common subexpression elimination and copy propagation

b

X

tD

]

wnunn annu

: jump optimization
max. optimization(y = zcrej)
ut debug information for objeet file / Not.

j CCTEK3 loptionf...1] input-file [option[...])]

e P e

Add error check library / Not. (default : x = 2dpsz)

i1 : overflow check {level 1)

2 : overflow check (level 2)

d : sfr access check

p : illegal pointer access check

s : stack overflow check

z : 0 divide check

: Create the preprocess list file / Not.

pecified preprocess list mode / None. (default x = fin)
¢ : delete comment

d : execute #define
f
i
1

o oHnonmoan

: execute fif, #ifdef, fifndef
: execute #include
: execiute #line

add line number and paging

Tt nou um

n
~dname[= data][name{ datal]..
: Define name with data
-unanmel, name]..
: Undefine name.
-idirectory[,directory]...
: Set include search path.

5-76

HELP message output

specification

Usage : CC78k3 [opution[...]] input-file [opution[...]]

-a[filel/na : Create the assembler source file / Not.

-sa[file]/nsa : Create the assembler source file ¥ith the C source / Not.
-g¢[file]l/ne : Create the error list file / Not.

-se{file]/nse : Create the error list file with the C source / Not.
-x[file)/nx : Create the cross reference list file / Not. .

-Yw[width) : Specify list file columns per line. (width=72 to 132)

-11[length] : Specify list file lines per pate. (length=0, 20 to 65535)
0 means no paging.
-1t{n] : Expand TAB character for list file. (n=1 to 8)

Not expand. (n=0)
-1%/n1f : Add Form Feed at end of list file / Not.

~w[n] : Change warning level. (n=0 to 2)

~y/nv : Yerbose compile messages / Not.

~ffile : Input option or source file name from specified file.
-tdirectory : Set temporary directory

- : show this message

DEFAULT ASSIGNMENT
: =0 -r -1w32 -1166 -nlf -wl

CHAPTER 6. QUTPUT FILES OF C COMPILER

The C compiler outputs the following five files:
Object module file
Assembler source module file

o

o

0 Preprocess list file

o Cross-reference list file
o

Error list file

6.1 Object Module File

An object module file is a binary image file of the result
of translating a C source program.

This file also contains debug information when so specified

by the debug information output option (-G).

6.2 Assembler Source Module File

An assembler source module file is an ASCII image list file
of the result of translating a € source program and is a
source module file in the assembly language corresponding
to the C source program.

This file also contains a C source program as comments when
so specified by the assembler source module file creation

option (-8A) is specified.
[Qutput Format]

; T8K/111 Series C Compiler V@x. xx Assenbler Source
. Date:@xxxxx Time:® xxxxx

: Command : @-¢310 sample¥prime.c ~sa
: C-file : O SAMPLEYPRIME. C
; Asm-file : ®PRIME. ASM
: Para-file : @
SPROCESSOR(® 310)
@ $NODEBUG
® NAME PRIME
@ EXTRN @@isren
© line @1 :@&%&define TRUE 1
: line @2 :qDtdefine FALSE 0O
: line QQS :(P2define SIZE 200
_main:
push hl
moyw ax, sp

[Description of OQutput Items]

Item | Ttem No. of Format
No. columns
CD version 4 The version number of C
number compiler is expressed in
the form of "x.yz".
2 Date 11 (fixed) System date is expressed

in the form "DD Mmm YYYY".

B (fixed)

CD Time

System time is expressed
in the form "HH:MM:SS".

@ Command
line

The contents of the command
line after "CC78K3" are
output to this column.
Characters exceeding the
limit value per line are
output from the 15th column
of the next line. One or
more tabs are replaced

with one blank.

78 max.

GD C source
{(variable)

module
filename

Specified C source filename
is output here. If file
type is omitted, ".c" will
be added to the primary
name. Characters exceeding
the limit value per line
are output from the 15th
column of the next line.
One or more tabs are
replaced with one blank.

78 max.

@D Assembler
{variable)

source
module
filename

Specified assembler source
module filename 1s output
here. If file type is
omitted, ".asm" will be
added to the primary name.
Characters exceeding the
limit value per line are
output from the 15th
column of the next line,
One or more tabs are
replaced with one blank.

@ Parameter
file

The contents of parameter
file are output to this
column. Characters exceed-
ing the limit value per
line are output from the
15th column cf the next
line, provided ";" is
output to the 1st column.
One or more tabs are
replaced with one blank.

6-3

Item | Item No. of Format
No. columns
Processor | 4 Character string (processor
type (variable) type) specified by -C
option is output.
See the -C option in
Chapter 5, Compiler Options.
@ Debug 8 Either $DEBUG or $NODEBUG
infor- {variable) is output as DEBUG control.
mation
(0 Line 5 (fixed) Line number of C source
number module file. Each line
number is expressed by a
decimal number not exceed-
ing five digits and is
right-justified with zero
suppression for output.
) C source ASCII image of the input
C source program.
Characters exceeding the
limit value per line are
output from the 1st column
of the next line.
a2 Assembler Assembler source as the
source result of compilation is
body output. Characters at the

80th and subsegquent columns
are output without moving
them to the next line.

6.3 Error List File

An error list file contains information on all warning
messages and error messages which have been generated during
a compile operation.

By specifying a compiler option, a C source program can be
be added to an error list file. The error 1list file
containing the C source program can be used as a C source
module file by correcting errors in the C source program

and deleting comments such as list header from the error
list file,

6.3.1 Error list file with C source

[Output Format]

/%
18%/111 Series ¢ Compiler V@®x.xx Error List Date: @ xxxxx Time:@ xxx

Command - @-c310 sample¥prime.c -se
C-file . ®SAMPLEYPRIME. C

Err-file : %PR!MB.CER

Para-file :

t/

“define TRUE 1
#define FALSE 0
sdefine SIZE 200

char mark(SIZE+1];

311'1

cont =
¥+% ERROR GDF?II dDUndeclared *cont’ ; function "main’

tor (i =0 ; i <= SIZE : i++)
mark[i] = TRUE:

for (i =0 ; i <= SIZE ; i+4) |
if {(mark[i]) (

®
®
®
®
@n
%g int i, prime, k, count;
®
®
®
®
#%¥* ERROR @F306 Q@Islegal index , indirection not allowed

/*
Cﬁmpllatlon complete, @1 error{s) and @5 varning(s) found.
¥

[Description of Output Items]

Item
No.

Item

No. of
columns

Format

O)

Version
number

4

The version number of C
compiler is expressed in
the form of "x.yz".

@

Date

11 (fixed)

System date is expressed
in the form "DD Mmm YYYY",

Time

8 (fixed}

System time is expressed
in the form "HH:MM:5s5".

Command
line

The contents of the command
line after "CC78K3" are
output to this column,
Characters exceeding the
limit value per line are
output from the 13th

column of the next line.
One or more tabs are
replaced with one blank.

C source
module
filename

78 max.
(variable)

Specified C source module
filename is output here.

If file type is omitted,
",c" will be added to the
primary name. Characters
exceeding the limit value
per line are output from
the 13th column of the next
line.

Error
list
filename

78 max.
{variable)

Specified error list
filename is output here.

If file type is omitted,
".cer" will be added to

the primary name.
Characters exceeding the
limit value per line are
output from the 13th column
of the next line.

Parameter
file

The contents of parameter
file are cutput to this
column. Characters exceed-
ing the limit value per
line are output from the
13th column of the next
line. One or more tabs are
replaced with one blank,

Item
No.

Item

No. of
columns

Format

C source

Image of input C source
module file. Characters

at the 80th and subsequent
columns are output without
moving them to the next
line.

Error
message
number

4 (fixed)

Each error or warning
message number is output in
the form "#nnn", where "j"
becomes "A" for an Abort
error, "F" for a Fatal
error and "W" for a warning
and "nnn" is a 3-digit
decimal number indicating
the type of error.

Error
message

See Chapter 9, Error
Messages. Characters at the
80th and subsequent columns
are output without moving
them to the next line.

No., of
errors

4 (fixed)

Number of errors is
expressed by a decimal
number not exceeding four
digits and is right-
justified with zero
suppression for output.

No. of
warnings

4 (fixed)

Number of warnings is
expressed by a decimal
number not exceeding four
digits and is right-
justified with zero
suppression for output.

6.3.2 Error list file containing error messages only

[Qutput Format]

: @DWS

SAMPLEYPRI
SAMPLEYPRI

SAMPLEYPRIME. C{(® 18)
SAMPLEYPRIME.C(% 20) : QW4S
SAMPLEYPRIME. C(Q® 26) : DN622 @
ME.C(D 37)
ME. C(@ 44}

: QW62 @

Expected function prototype
Expected function prototype
No return value
No return value
: @W622 @No return value

Compilation complete, ®90 error(s) and ®35 warning(s) found.

[Description of Output Items]

filename

Item | Item No. of Format

No. ‘ columns

M C source | 78 max. Specified C source module
module {variable)} filename is output here.

If file type is omitted,
".c" will be added to the
primary name.

@ Line 5 (fixed) Line number of C source
number module file. Each line
number is expressed by a
decimal number not exceed-
five digits and is right-
justified with zero
suppression for output.
©) Error 4 (fixed) Each error or warning
message message number is output in
number the form "#nnn", where "#"

becomes "A" for an Abort
error, "F" for a fatal error]
and "W" for a warning and
"nnn" is a 3-digit decimal
number indicating the type
of error.

() Error

message

See Chapter 9, Error
Messages.,

Item | Item No. of Format
No. columns
HO, No. of 4 (fixed) Number of errors is
errors expressed by a decimal
number not exceeding four
digits and is right-
justified with zero
suppression for output.
C) No. of 4 (fixed) Number of warnings is
warnings expressed by a decimal

number not exceeding four
digits and is right-
justified with zeroc
suppression for output.

6.4 Preprocess List File

A preprocess list file is an ASCII image file containing

information on only the result of preprocessing executed for

a C source program.

If the process type "N" is not specified in the -K option,

the preprocess list file can be used as a C source module

file.

[Output Format]
With PAGEWIDTH = 80

Vs
78K/111 Series C Compiler Vx.xx Preprocess List

Command : @-¢310 sanple¥prime.c -p -1w80
C-file : ®SAMPLEYPRIME.C
PPL-file : ®PRIME. XRF
Para-file : @
*/
®1 : @sdefine TRUE 1
®2 : @*define FALSE 0
%3 : @#define SIIE 200
L : @
®5 : @char mark[SIZE+1];
®s : @

Date:@xxxxx Page: D xax

[Description of Output Items]

Item] Item No. of Format
No. columns
(j Version 4 The version number of C
number compiler is expressed in
the form of "x.yz".
@ Date 11 (fixed) System date is expressed
in the form "DD Mmm YYYY".
C@ No. of 4 (fixed) Number of pages is
pages expressed by a decimal

number not exceeding four
digits and is right-
justified with zero
suppression for output.

() Command
line

The contents of the command
line after "CC78K3" are
output to this column.
Characters exceeding the
limit value per line are
output from the 13th column
of the next line. One or
more tabs are replaced

with one blank.

() C source 78 max.
module (variable)
filename

Specified C source module
filename is output here,

If file type is omitted,
".c" will be added to the
primary name. Characters
exceeding the limit wvalue
per line are output from
the 13th column of the next
line. One or more tabs are
replaced with one blank.

6) Preproc- 78 max.
ess list {variable)
filename

Specified preprocess list
filename is output here.

If file type is omitted,
".ppl" will be added to the
primary name. Characters
exceeding the limit value
per line are output from
the 13th column of the next
line. One or more tabs are
replaced with one blank.

Item
No.

Ttem

No. of
columns

Format

Parameter
file

The contents of parameter
file are output to this
column. Characters exceed-
ing the limit value per
line are output from the
13th column of the next
line, provided ";" is
output to the 1st column.
One or more tabs are
replaced with one blank,

Line
number

5 (fixed)

Line number of C source
module file. Each line
number is expressed by a
decimal number not exceed-
five digits and is right-
justified with zero
suppression for output.

C source

Input C source program.

If all statements cannot be
output on one line, the
rest of the statements are
output from the 9th column
of the next line.

6.5 Cross-reference List File

A cross-reference list file contains a list of identifiers

such as function names and variable names which have bheen

declared, defined, and referenced in a C source program. The

list also contains information such as the attribute and

line number of each identifier.

These identifiers are output in the list file in the order

of their appearance in the C source program.

[Output Format]
With PAGEWIDTH=80

78%/111 Series C Compiler V®x.xx Cross reference List Date:@xxxxx Page:Dx

Command : @-c210 sampleYprime.c -x -1w80
C-file : ®SAMPLEYPRIME. C

Xref-file : ®PRIME. PPL

Para-file : @

fne-fite : [n)] ®

ATTRIB MODIFY TYPE SYMBOL DEFINE REFERENCE
@EXTERN @ array @mark ®s @14 Wie
@EXTERN @ func main 01
®aUTol @ Qint i @9 %13 @13

15 @13
@ ® O ® B9 %l; %”

AUTO1 int prime 1 18
@4alTol @ D int k P9 @21 Bzl
@auT0l ©® Oint count ?9 @11 @19

®22

@13
@15
21
®z21
@21
® 20

L=

o8 8

[Description of Output Items)

Item
No.

Item

No. of
columns

Format

@

Version
number

4

The version number of C
compiler is expressed in
the form of "x.yz'".

e

Date

11 (fixed)

System date
in the form

is expressed
"DD Mmm YYYY".

No. of
pages

4 {fixed)

Number of pages is
expressed by a decimal
number not exceeding four
digits and is right-
justified with zero
suppression for output.

Command
line

The contents of the command
line after "CC78K3" are
output to this column.
Characters exceeding the
limit value per line are
output from the 13th column
of the next line. One or
more tabs are replaced

with one blank.

C source
module
filename

78 max.,
{(variable)

Specified C source module
filename is output here.

1f file type is omitted,
".c" will be added to the
primary name. Characters
exceeding the limit value
per line are cutput from
the 13th column of the next
line.

Cross-
reference
list
filename

78 max.
{variable)

Specified cross-reference
list filename is output
here. If file type is
omitted, ".rxf" will be
added to the primary name.
Characters exceeding the
limit value per line are
output from the 13th column
of the next line.

Parameter
file

The contents of parameter
file are output to this
column. Characters exceed-
ing the limit value per
line are output from the
13th column of the next
line. One or more tabs are
replaced with one blank.

6-14

Item
No.

Item

No. of
columns

Format

Include
file

78 max.
{variable)

Filenames specified in C
source are output to this
column. n indicates an
Inclusion file number which
begins with 1. Characters
exceeding the limit value
per line are output to the
13th line of the next line.
If there is no Inclusion
file, nothing will be
output to this ceolumn.

Symbol
attribute

6 (fixed)

Cne of the following

attributes declared for

each symbol is output

{left—justified).

EXTERN .. External variable

EXSTC ... External static
variable

INSTC ... Internal static
variable

AUTOnn .. auto variable
(nn indicates
scope beginning
with 1)

REGnn ... Register variable
(nn indicates
scope beginning

with 1}
EXTYP ... External typedef
declaration
INTYP ... Internal typedef
declaration '

LABEL ... Label

TAG Tag of structure
or union

MEMBER .. Member of struc-
ture or union

PARAM ... Parameter of
function

Item
No.

ITtem

No. of
columns

Format

Type
qualifier
of symbol

4 (fixed)

One of the following type

qualifiers declared for

each symhol is output

(left-justified).

CONST ... const variable

VLT volatile variable

CALLT ... callt function

CALLF ... callf function

NOAUTO .. noauto function

NOREC ... norec function

SREG ... sreg or bit
function

RWSFR ... Read/write sfr
function

ROSFR ... Read-only sfr
function

WOSFR ... Write-only sfr

VECT Interrupt
function

Data type
of symbol

7 (fixed)

One of the following data
types of each symbol is
output (left-justified):
char, int, short, long,

and field.

"u" is prefixed to each of
these unsigned types.

void, func, array, pointer,
struct, union, enum, bit and
#define are also available
as types.

Symbol
name

16 (fixed)

If the symbol name length
exceeds the 15th column,
the symbol name will be
output as is and items 13
and 14 will be output
starting from the 39th
column of the next line.

Symbol
defined
line No.

5 (fixed)

Line number at which each
symbol has been defined
and filename are output.
Line number (5-digit) is
expressed in the same
format as Inclusion file
number.

Item | Item No. of Format

No. columns

9 Symbol 5 (fixed) Line number at which each
referenced symbol has been referenced
line No. and filename are output.

Line number {(5-digit) is
expressed in the same
format as Inclusion file
number. Characters exceed-
ing the limit value per
line are output from the
47th column of the next
line.

CHAPTER 7. EFFECTIVE UTILIZATION OF C COMPILER

7.1 EXIT Status Function for Efficient Compilation
At the termination of a compile (translation) operation,
this C compiler returns to the 0S the maximum error level
which has occurred during the compile operation as an
EXIT status code.
The following EXIT status codes are available:

o Normal termination 0

o WARNING is output : 0

o FATAL ERROR exists 1

o Abnormal termination : 2

{(Execution is aborted)

By using these codes with a batch file, compile operations

can be executed efficiently.

[Example]
cc78k3 -c310 %1
IF ERRORLEVEL 1 GOTO ERR
cc78k3 -c310 %2
IF ERRORLEVEL 1 GOTO ERR
GOTO EXIT
tERR
echo Some error found.
+EXIT

{Explanation]
In the above example, assume that a fatal error occurs
when the C source passed to %1 is compiled. Normally, the
C compiler continues its processing after the output of
an error message. By using the function which returns
EXIT status "1" to the 0S, the compiler execution can be
stopped without processing the C source in the next %2,

7.2 Environment Variables for Development Environment
Setting

When developing a program, if you create a directory for

related files to put together these files, compile

operations may be carried out smoothly by the C compiler.

This can be implemented by specifying an environment

variable,

The C compiler supports the following environment variables:

o PATH : Path to search directories for executable
files

¢ INC78Kn: Path to search directories for Inclusion
files {(where n = 0, 2, 3 indicating each
78K series number)

o TMP : Path to search directories for temporary
files
[Example]
; AUTOEXEC, BAT

PATH A:¥BIN;A:¥BAT;A:¥CC78K3;A:¥TOO0OL;
verify on

break on

SET INC78K3=A:¥CC78K3¥INCLUDE

SET LIB78K3=A:¥CC78K3¥LIB

SET TMP=A:¥

[Explanation]

0o By the PATH specification, the C compiler searches the
directories A:¥BIN, A:¥BAT, A:¥CC78K3, and A:¥TOOL in
this order for executable files.

o The directory A:¥CC78K3¥INCLUDE will be searched for
Inclusion files.

o The directory A:¥CC78K3¥LIB will be searched for
library files. {The linker will also be informed of
the location of these library files.)

o A temporary file will be created in the directory A:¥.

7.3 Interrupticn of Compile Operation

A compile operation may be interrupted by control key input
"eTRL-C". If "break on" is specified, control will be
returned to the 0§ without regard to the key input timing.
If "break off" is specified, control will be returned to the
0S only during a screen display. On termination of the
execution, all the temporary files and output files being
open will be deleted.

CHAPTER 8. START-UP ROUTINES AND ERROR HANDLING ROUTINES

8.1 General

¢ Start-up routine

In the recent world of single-chip microcomputers as well, the
need for program development in C is mounting up. To execute a
program written in C, another program to execute ROMable
processing for incorporation into a system or to invoke a user
program (function main) is required. This program is called a
start-up routine.

To execute a user-created program, a start-up routine must be
created according to the program. However, to those who are

less experienced in microcomputer program development in C,
creating a start-up routine is not an easy job.

This chapter is-intended for such people and explains the
contents of each start-up routine and its usage by using a
sample program and discusses important points for improving the
sample program.

Error handling routine

All the C compilers in the CC78K series support a library which
allows error checks to be made during program execution. The
errors subject to check include an error due to an overflow in
the result of an operation, an error due to division by zero,
and a pointer access error. If any of these errors occurs, a
program to handle the error will be called according to the type
of error or the target device. This program is referred to as an
error handling routine. _

In this chapter, the contents of each error handling routine and
its usage are also explained by using a sample program and
important points for improving the sample program are discussed

just the same as the start-up routine.

8-1

8.2 File Organization

Files related to the start-up routines and error handling

routines are stored in three directories under the directory "LIB"

in the supplied floppy disk 1.

SAMPLE
INCLUDE
BIN

LIB

— Files related to start-up routines

and error handling routines

The contents of the three directories BAT, SRC, and INC are as

listed in Tables §-1,

8-2, and 8-3, respectively.

Table 8-1. Contents of Directory "BAT"

Filename Function

<Batch files>

MKSTUP.BAT o Batch file for creating a start-up
routine

MKERRLIB.BAT o Batch file for updating error
handling routine libraries

CLXXX.ERR o Subcommand file for creating
library file CLXXX.LIB (used in
MKERRLIE.BAT)

CLXXXU.ERR o Subcommand file for creating

library file CLXXXU.ERR (used in
MKERRLIB.BAT)

XXX: Processor type (see Tables
5-3 to 5-5 in Chapter 5)

8-2

Table 8-2., Contents of Directory "SRC"

Filename

Function

<Start-up routine
source files»

CSTARTR,.ASM

ESTARTR.ASM

CSTART,ASM

ROM, ASM

o Start-up routine for ROMable
processing

o Start-up routine for ROMable
processing (with ROMable processing
error check)

0 Start-up routine without ROMable
processing

0 File for ROMable processing

<Error handling routine
source files>
ERRSTK.ASM
ERRDIV.ASM
ERRPTR.ASM
ERROVF ., ASM
ERRSFR.ASM
ERRINI,ASM

Error handling on Stack overflow
Error handling on Divide by 0
Error handling on Pointer access
Error handling on Overflow

Error handling on sfr access

O ¢ 0o 0O o ©

Error handling on ROMable area

<Inclusion files>
DEFINE.INC
MACRC.,INC

o Label definitions of saddr area
o Macrodefinitions with respect to
Move instructions in each target

device

Table 8-3. Contents of Directory "INC"

Filename

Function

<Inclusion file>»

CHIPXXX.INC

o Device information

XXX: Processor type (see Tables
5-3 to 5-5 in Chapter 5)

8-3

8.3 Description of Each Batch File

8.3.1 Batch file for creating a start-up routine

To create a start-up routine object file, the batch file
"MKSTUP.BAT" stored under the directory "BAT'" in the floppy disk 1
must be used.

Also, in the batch file MKSTUP.BAT, the Assembler in the RA78K
series assembler package must be used. Therefore, set the
Assembler in the directory in which the batch file exists or in a
specified PATH. The required files of the Assembler are as shown
below.

<with 78K/III>

RA78K3.EXE (Executable file)
RA78K3.0M1 to RAT8K3.0M6 (Overlay files)

The usage of this batch file is explained below.

Usage
Execute the following command in the directory BAT in which
MKSTUP.BAT file exists:

f1 Cf2 @

A>MKSTUP processor--typeC symbol -upper-/lowercase spec

Note: 1. See Tables 5-3 to 5-5 in Chapter 5 for the processor
types.
2. See 5.4 (4), Symbol name upper-/lowercase specification
in Chapter 5.

Example
To create a start-up routine for the target device uPD78320 at

Compile time without specifying the symbol name upper-/lowercase
specification option. (This option is defaulted to -NCA.)

A>MKSTUP 320 NCA ®

The batch file MKSTUP.BAT creates a directory named REL320 at
the same level as the directory BAT as shown below. Then,
start-up routine object files are stored under this newly
created directory REL320.

l: BAT
REL320 -

CS320R.REL E
ES320R.REL |
CS320.REL |
ROM320.REL E
i
4

8-5

8.3.2 Batch file for updating error handling routine libraries
To replace an improved error handling routine with the old error
handling routine in a library file, the batch file "MKERRLIB.BAT"
stored under the directory BAT in the floppy disk 1 must be used.
With the batch file MKERRLIB.BAT, the following two preparatory

operations must be carried out:

(1) Setting the Assembler and Librarian
In the batch file MKERRLIB.BAT, the Assembler and Linker in
the RA78K series assembler package must be used. Therefore,
set the Assembler and Librarian in the directory in which the
batch file exists or in a specified PATH. The required files
of the Assembler and Librarian are as shown below.
<with 78K/III>

RA78K3.EXE (Executable file)
RA78K3.0M1 to RA78K3.0OM6 {Overlay files)
LB78K3.EXE {Executable file)

(2) Setting a library file
Create a new directory LIB for storing an update library
file at the same level as the directory BAT and store the
library file in the directory LIB.

t BAT Frmmmmm————— |
|
LIB - | CLXXX.LIB |-- Update library file
1 |

The usage of this batch file is explained below.

Usage

Execute the fcollowing command in the directory BAT in which
MKERRLIB.BAT file exists:

A>MKERRLIB processor-type symbol-upper-/lowercase spec ®

The processor type and symbol name upper-/lowercase specifica-

tions are the same as those explained in 8.3.1 above.

Example

To update library file CL330.LIB to be used for the target
device uPD78330 at Compile time without specifying the symbol
name upper-/lowercase specification option). (This option is
defaulted to -NCA.)

A>MKERRLIB 330 NCA ®

The batch file MKERRLIB.BAT creates a directory named REL330 at
the same level as the directory BAT as shown below. Then, error
handling routine object files are created and stored under this
newly created directory REL330. Finally, the Librarian updates

the error handling routines in library file CL330.LIB with the

error handling routines in directory REL330.

—— BAT
—— REL330 -

ERRSTK.REL {
ERRDIV.REL |
ERRPTR.REL |
ERROVF.REL E
ERRSFR.REL |
ERRINI.REL i

|

I
]
[3
: Update
:
4
[}

8.4 Start-up Routines

8.4.1 Outline of start-up routine

A start-up routine is a program to make necessary preparations

for executing a user-created C sourcCe program. By linking the

start-up routine with the user program, a load module file which

serves for the intended purpose can be created.

(1) Functions

The start-up routine executes ROMable processing for

incorporation into a system, invocation and termination of a

C source program,

ROMable ...
processing

(2) Configuration

The initial values of all the external variables,
static variables, and sreg variables defined in a
C source program are allocated to the ROM area.
However, if these variables remain allocated

to the ROM area, their initial values cannot be
rewritten. Thus, these initial values must be
copied from the ROM area intoc a RAM. This
processing is called a ROMable processing. When a
program is encoded into a ROM, it is made

operable on a microcomputer.

The sample program reléted to the start-up routine and its

configuration are shown in Table 8-4 below.

Table 8-4. Start-up Routine to Be Used

Not for For ROMable processing
ROMable For debugging For incorporation
processing into system

- ¢gstart.asm —

Preprocess

Initialize

- estartr.asm

Preprocess

Initialize

RCMable process

main function main function

execution execution

Lfostprocess Postprocess
rom.asm

Label definitions
to be used for
ROMable process

— c¢startr.asm

Preprocess

Initialize

ROMable process

main function
execution

Postprocess

rom.asmn
Label definitions
toc be used for

ROMable process

The contents of start-up routine

and "estartr.asm" are nearly the

"egtart.asm”.

"estartr.asm" also

ROMable processing,

The start-up routine source file
definitions indicating the final

copied in ROMable processing and

source files "cstartr.asm"
same as those of

performs an error check in

"rom.asm" contains labels
addresses of data to be
is required for the ROMable

processing of a program. When using the cstartr.asm or

estartr.asm file, be sure to link "rom.asm" with the file. For
how to link these files,

of Programs'" in Chapter 4.

see Section 4.5,

"ROMable Processing

(3) Selective use of start-up routines

The user must create a start-up routine object file corres-

ponding to each target device and link it with the program.

For how to create the start-up routine object file, see 8.3.1,

Batch file for creating start-up routine.

The name of an object file corresponding to each source file

is shown

in Table 8-5.

Table 8-5. Correspondence of Source Files to Object Files

Type of file Source file Object file
Start-up cstart.asm csxxx.rel (see Note 1}
routine (csxxxu.rel)(see Note 2)
estartr.asm esxxx.rel
{esxxxu.rel)
cstartr.asm csxxxr.rel
{csxxxru.rel)
ROMable rom, asm romxxx.rel
file (romxxxu.rel)
Note: 1. xxx: Processor type (see Tables 5-3 to 5-5 in
Chapter 5)
2., () indicates the start-up routine to be used when

the ~-CA option is specified at Compile time.

The compiler option -CA tells the C compiler not to

distinguish between symbol names written in uppercase

letters and those in lowercase letters.

Use these start-up routines selectively according to the

development phase to be used. Table 8-6 shows the recommended

phase for use with each routine.

Table 8-6. Selective Use of Start-up Routines

Type of Difference Advantages |Phase recommended
start-up ROMable |ROMable when used for use
routine w/check
cstart.asm X Faster Phases up to
compile and| on-desk debugging
linking
process
estartr.asm o Error check| Incorporation
can be made| into system
during {at time of error
RCOMable check in ROMable
processing processing)
cstartr.asm X - Incorporation
inte system {at
time of ROM

8.4.2 Description of sample program

Here, the contents of a start-up routine is explained by using

examples of estartr.asm and rom.asm.

The sample program used is applicable to the 78K/III.

o estartr.asm

The start-up routine sample program "estartr.asm" is explained

in the order of preprocessing, initialization, ROMable

processing, main function execution, and postprocessing shown

in Table 8-4.

A difference between estartr.asm and c¢start.asm or cstartr.asm

is shown in Table 8-7 below.

The contents of the sample program

list and their descriptions are shown on the following pages.

Table 8-7. Comparison of Contents between Start-up Routines

estartr.asm

cstart.asm

cstartr.asm

Preprocessing Same as estartr.asm | Same as estartr.asm
Initialization Ditto Ditto

ROMable None Partially different
processing from estartr.asm

main function

execution &

post processing

Same as estartr.asm

Same as estartr.asm

Preprocessing explanation.

See page 8-17 for

NAME

@cstart

$INCLUDE 'CHIP. INC’
$INCLUDE " DEFINE. INC] @ Inclusion of Include files
SINCLUDE ' MACRO. INC'

PUBLIC

PUBLIC
PUBLIC

PUBLIC
PUBLIC
PUBLIC

PUBLIC
PUBLIC
PUBLIC

EXTRN
EXTRN
;error check
EXTRN
EXTRN

_@D_LINE

_Bestart

_errno, @FNCTBL, _@FNCENT, _@BRKADR, _8MEMTOP, @MEMBTM, _8SEED - @
_@DIVR, _8LDIYR, _@TOKPTR]

External definition declaration
of symbols

_@D_FUNC —

_@KREGOO

3 External definition declaration of
labels for saddr area

_8FARG1H
-8FARGOL
_BFARGOH -

3 . External reference declaration of
_main, _exit, @STBEG — @ stack-resolving symbol

_7R_INIT, _7R_DATA, _?R_INIS, _7R_DATS — (® [iferna} reference declaration of
_@errini
_2INIT, _7DATA, _?INIS, _?DATS — ® same as(®

Initialization |seoibade;on'® foF
@8DATA DSEG
_errno: DS Z .
_@FNCTBL: DS 2%32
_@FNCENT: DS /A
:gggggnk g: i @ i;:g :i:ssi:ir;:;ign for symbols te be
_GDIVR: DS 4
_@GLDIVR: DS 8
_BTOKPTR: DS 2
_8MEMTOP: - DS 32
_GMEMBTM: =
@8CODE CSEG
_Bcstart:
SEL RBT — (@ Register bank setting
MOY¥ AX, #_8STBEG] ®
MOVF SP, AX ;SP <~ stack begin address Stack pointer setting
$_IF(P3124 OR P322 OR P328 OR P334)
MOVW AX, #0 =
MOYW t_errno, AX cerrno <= 0
MOYW 1_@FNCENT, AX ;FNCENT ¢~ 0
HOY¥ }_8SEED+2, AX Initial value setting
MOYW AX, %1 of symbols
MOVW 1 _BSEED, AX ;SEED ¢~ 1 processor type:
MOVH AX, ¥_GMEMTOP other than 310, 212
MOVW 1_8BRKADR, AX :BRKADR <- XMEMTOP -
SELSE
MoY A, #0 7
MOY !' errno, A
MOV ! errnotl, A ;erino <- 0
MOY ! @FNCENT, A
MoV Y_@FNCENT+1,A ,FNCENT <- 0
MOY ! QSEED+1, A
MOY !_@SEED+2, A (& same as @
MOY ! @SEED+3. A
MOY A 1 Processor type:
MOY !_@SEED, A :SEED ¢~ 1 310 or 312
MOVW AX, #_@MEMTOP
MOY |_@BRKADR+1, A
XCH A X '
MOY ! _@BRKADR, A :BRKADR <~ #MEMTOP -
SENDIF

ROMable processing

See 8-20 for

explanation.

:ROM DATA COPY

MOYY DE, ¥_@QINIT

MOVY HL, #_6R_INIT

MOVY UP, #_7R_INIT

serror check

MOVY AX, #_7IN1T

SUB¥ AX, DE

ADDY AX, BL

SUBK AX, UP

BZ SLINITI

CALL !_@errini
LINITL: '

CHPY HL, UP

BE SLINIT?

MOV A, [HL+}

Moy [DE+]), A

BR SLINITI
LINIT2:
LiNIS2Z:

HOYY DE, #_8DATS

MOVY HL, #_8R_DATS

MOYY UP, 3_7R_DATS

;error check

HOYY AX, = _7DATS

SUBY AX.DE

ADDY AX. HL

SUBY AX, UP

BZ $LDATSI

CALL I @errini
LDATSI:

CMPY HL, 4P

BE ELDATS?

MOY A, [HL+]

MoY [DE+]. A

BR SLDATSI
LDATS2:

!

@ Error check

in ROMable
processing

@

ROMable processing

main function execution| See page 8-23
& postprocessing for explanation.
- CALL '_main ;main{); - DEexecution of main function
KOV¥ AX, 30
PUSH AX J @ Execution of exit function
CALL 1 exit cexit(0);
POP AX
BR 33
@8R_INIT CSEG -
_BR_INIT:
@aR_DATA CSEG
_BR_DATA: .
8aR_INIS CSEG
_BR_INIS:
@BGR_DATS CSEG
_@BR_DATS:
@INIT DSEG
_BINIT: @ seqment/label definition to be
G@DATA DSEG used in ROMable processing
_BDATA:
GQINIS DSEG SADDRP
_8INIS:,
B@DATS DSEG SADDRP
_BDATS:
@QCALT CSEG CALLTO
@84CNST CSEG
@GBITS BSEC -
END

(1) Preprocessing
Steps () to C) in the preprocessing phase of estartr.asm are

explained here.

(1) 1Inclusion (or insertion) of Include files
CHIP.INC ——— Device information (file to execute
required settings according to each
target device in the Initialization
phase of the start-up routine)
DEFINE.INC — File for defining labels feor saddr area
MACRQ.INC — File for macrodefinitions with respect

to Move instructions of each device

() External definition declaration of symbols

For details of each symbol, see (2) Initialization.

C) External definition declaration of labels for saddr area
For details of each label, see Appendix D - List of
saddr Area Labels in the CC78K Series C Compiler Package
User's Manual for Language.

@ External reference declaration of stack-solving symbol

o Automatically generates a stack-resolving PUBLIC symbol
(_@STBEG).
The symbol -@STBEG has the end address of the stack
area + 1 as its value.

o _@STBEG can be automatically generated by specifying
the linker option -S (for stack-resolving symbol
generation). Be sure to specify the -S option at

Linking time.

(® (6 External reference declaration of labels for ROMable
processing
o Labels in C) are defined in the postprocessing (see
page 8-24),.
o Labels in () are defined in rom.asm (file for

ROMable processing) {see page 8-25).

{(2) Initialization
Steps (O to (® in the Initialization phase of estartr.asm
are explained here.

(@) Area reservation for symbols to be used in library
Reserves areas for symbols to be used in the library.
For details of each library function, see Section 10.3,
Standard Library Functions in the CC78K Series C Compiler
Package User's Manual for Language.

D -1 _errno: DS 2

. An area for setting error code is reserved. This area

is used by the following four library functions:

strtol, strtoul {Character and string functions)
brk, sbrk {Memory functions)
(M - 2 | _@FNCTBL: DS 2%32
_@FNCENT: DS 2

. The following areas to be used by the exit function
are reserved:
_@FNCTBL: Indicates the start address of the area to
be used by atexit function.
atexit registers the address of each function
in this area.
_@FNCENT: Stores the total number of functions

registered by atexit (up to 32 functions).

(@ - 3 | _@BRKADR: DS 2

. An area to set a break value is reserved.
A break value indicates the start address of an area

to be used by memory functions.

() - 4 | _@SEED: DS 2

. An area to store a value which becomes the base of
pseudo-random number string.

. This area is used by rand and srand (mathematical
functions).

(D -5 | _eDIVR: DS 4

. In div (mathematical function), an area to'store
the result of a calculation is reserved.

(M - 6 |_@LDIVR: DS 8

. In 1ldiv (mathematical function), an area to store

the result of a calculation is reserved.

@ - 7 | _@TOKPTIR: DS 2

. In strtok (character/string function), an area to store
a pointer is reserved.

M - 8 | _@MEMTOP: DS 32
_@MEMBTM:

. An area to be used by memory functions is reserved.
With this sample program, a 32-byte area is reserved.

. _@MEMTOP and _@MEMBTM are labels indicating the start
and end addresses of this area, respectively.

@ Register bank setting

Sets registers in register bank RB7 as work registers.

() sStack pointer setting

o Sets @STBEG in the stack pointer.

0 _@STBEG can be automatically generated by specifying
the linker option -S (for stack-resoclving symbol
generation).

@ (® 1Initial value setting of symbols

o Sets initial value "0" in _errno and _@FNCENT. A
positive integer value will be given during the
execution of the library function corresponding to
each symbol.

o Sets initial value "1" in _@SEED. Pseudo-random
number string is governed by the value of _@SEED.
This value can be set by srand function. If rand
is called before calling srand, it is the same
as when srand is called with the value of _@SEED
set to "1",

o Sets the start address of an area reserved for memory
functions (_@MEMTOP) as a breaK wvalue.

(3) ROMable processing
Steps () and () in the ROMable processing phase of

estartr.asm are explained here.

@ ROMable processing
In this processing, the initial values of all the
external variables and sreg variables allocated to ROM
are copied to a RAM. There are four types of variables
subject to processing, (a) to (d) as shown in the

following example:

Example)

char c=1; .
int ij .
sreg int si=0;
sreg char sC;
main ()

{

External variable with
initial wvalue

External variable without
initial value (see Note)
sreg variable with
initial value

sreg variable without

initial value (see Note)

Note: An external variable without initial value or a

sreq variable without initial value will be

initialized with 0 and thus become the same as

a variable which has initial value "0".

o In Fig. 8-1, the ROMable processing of (a) external

variable with initial value is illustrated.

The initial wvalue of variable (a) is allocated to the
segment named "@@R_INIT" on the ROM. The labels which

indicate the start and end addresses of the area to

which the initial value is allocated are _@R_INIT and

_?R_INIT, respectively.

In ROMable prccessing, these

values are copied to the segment named "@@INIT" on the
RAM and the labels indicating the start and end

addresses of this area are defined as _@INIT and _?INIT,

regpectively.

o Similar processing is performed on variables (b),

and (d).

8-21

(c),

Table 8-8 shows the segment names of the ROM to which

variable {a) to (d) are allocated, and the start and

end labels of the initial value of each segment and

Table 8-9 shows the same information at the RAM (copy

destination).

(End label)

it ROM =-—cmmmmmm 1
1 |
| 1
1 |
! @@R_INIT ;
1
: (Segment name) [
|
| _@R_INIT: |
|
| (Start Area in which : -
| label) initial wvalue :COPY
}
: of variable :
! (a) is stored :
| _?R_INIT: !
: .
' f
i |

_BINIT:

_PINIT:

Fig. 8-1. ROMable Processing

B&INIT

Table 8-8. Initial Values of Variables in ROM Area
Type of variable Segment Start label | End label
External variable | @@R_INIT _@R_INIT _?R_INIT
{a} with initial
value
External variable | @@R_DATA _@R_DATA _?R_DATA
(b) w/o initial
value
sreqg variable (c) | @@R_INIS _@R_INIS _?R_INIS
with initial
value
sreg variable (d) | @@R_DATS | _@R_DATS _?R_DATS

w/o initial

value

Table 8-9. Initial Values of Variables in RAM Area
(Copy Destination)

Type of variable Segment Start label | End label
External variable | @QEINIT _@INIT _?INIT
{(a) with initial

value

External variable | @@DATA _@DATA _?DATA
(b) w/o initial

value

sreqg variable (c) | @RINIS _Q@INIS _?INIS
with initial

value

sreg variable (d) j @@DATS __@DATS _?DATS

w/o initial

value

(4) main

Error check on ROMable processing (estartr.,asm only)
With estartr.asm, upon copying the initial values of
variables to the RAM, a check is made on whether or not
the ROMable processing has been carried out properly. If
not, the error handling routine "errini.asm" is called.
In this check, the data size on the ROM is compared with

the data size on the RAM (copy destination).

function execution and postprocessing

Steps C) to (:) in the main function execution and post-

processing phase of estartr.asm are explained here.

C) main function execution

Calls the main function.

&)

exit function execution

o Calls the exit function.

o exit function executes all the library functions

registered by atexit function in sequence starting from
the last registered function. The data of the respective
functions registered by atexit are stored in the areas
_@FNCTBL and _@FNCENT defined in the Initialization
phase.

8-23

(@ Segment/label definition to be used in ROMable

processing

o Defines segments and labels to be used in ROMable

processing for each of variables (a) to (d).

A segment indicates an area to store the initial wvalue

of each variable, whereas a label indicates the start

address of each segment.

(Example) File "rom.asm" for ROMable processing

BBR_INIT

NAME

PUBLIC
PUBLIC

Z2R_INIT:

@AR_DATA

_7R_DATA:

GER_INIS

_?R_INIS:

@aR_DATS

_?R_DATS:

8QINIT
_?INIT:
@EDATA
_7DATA:
@AINIS
_?2INIS:
@@DATS
_7DATS:

DSEG

DSEG

DSEG

DSEG

END

drom

_7R_INIT, _7R_DATA, _?R_INIS, _?R_DATS
J7INIT, _7DATA, _71INIS, _7DATS

CSEG

CSEG

CSEG

CSEG

SADDRP

SADDRP

D pefinitions of labels for use
in ROMable processing

8.4.3 Points for improvement

(1) Symbols to be used for library functions

If any of the library functions shown in Table 8-10 is not to
be used, the symbol corresponding to the library function in
a start-up routine may be deleted,

However, symbols @FNCTBL and _@FNCENT cannot be deleted,

because the exit function will be used in all start-up

routines.

Table 8-10. Symbols to Be Used in Library Functions

Library function

Type of function

Function name

Symbol to be used

Character/string strtol _errno.
function strtoul
Memory function brk
sbrk
Program control exit _@FNCTBL
function _@FNCENT
Memory function malloc _@MEMTOP
calloc _@MEMBTM
realloc _BBRKADR
free
brk
sbrk
Mathematical rand _@SEED
function srand
div _@DIVR
ldiv _@LDIVR
Character/string | strtok _@TOKPTR
function

(2) Area to be used for memory functions

If you are to define the size of an area to be used for
memory functions, set the area size as shown in the following
example:

Example: If you wish to secure a 72-byte area for memory
functions, set the area size in the Initialization
phase of the start-up routine as follows:

RAM area

Tt _BMEMTOP [72 bytes are
~gﬂ%ﬂg$§f DS V12 reserved as an
- ' area for memory

functions.

_@MEMBTM

If the specified size is too large, the area cannot be secured
in the RAM area, resulting an error at Linking time.
Avoid this error by by either of the following two methods:

(a) To reduce the specified size

Example)

_@MEMTOP: DS 721 — change to 40 (bytes).

(b) To enlarge the RAM size in the link directive file

Example) With standard link directive file

LINK320.ROM

Start

address Size
memory CLT : (00040h , 00040h)- . .
nenory ROM : (02000n , 0BOOOh) Enlarge this size.
memory RAM : (0DOOOL , 01000h) — When changing the size
memory SDR : (OFE2Ch , 00050h) of an area, take care
merge CALT : = CLT to avoid overlap with
merge CNST : = ROM another area.

merge CODE :
merge R_DATA : = ROM

merge DATA : = RAM
merge R_INIT : = ROM
merge INIT : = RAM
merge R_DATS : = ROM
merge DATS : = SDR
merge R_INIS : = ROM
merge [NIS : = SDR
merge BITS : = SDR

The standard link directive file is stored under the

directive LIB in the floppy disk 1.

8-27

8.5 Error Handling Routines

8.5.1 Outline of error handling routine

This C compiler package supports a library which allows error
checks to be made during program execution. The errors subject to
check are listed in paragraph (1) below. If any of these errors
occurs, an error handling routine (a program to handle the error)
is called. The purpose of the error handling routine is to allow
debugging according to the type of error or the target device.

(1) Functions
If an error occurs during the execution of a library function,
the C compiler will take an appropriate action according to
the type of error or the target device. The errors subject to
check are the following six types:

Stack overflow

Error due to division by zero

Pointer access error

Overflow in the result of an operation

sfr access error

O O 0O 0O O O

ROMable area error

(2) Configuration

The configuration of the error handling routine sample program

is shown in Fig. 8-2,

Error Handling Routine

Saving register contents

Saving saddr area contents

Error handling routine

(User-created program)

Restoring saddr area

contents

Restoring register

contents

-- Permanent loop in
the sample program

explained in 8.5.2

Fig. 8-2. Configuration of Error Handling Routine

8-29

(3) Relations with library functions
Table 8-11 shows the cause of each error handling routine

call, the function that calls the error handling routine in

the event of an error, and the condition under which the

error handling routine is to be called.

Table 8-11,

Error Handling Routines

Error handling
routine

Cause of call

Calling
function

Condition

errstk.asm

Stack overflow

errdiv.asm

Divide by zero

errptr.asm

Pointer access
error

errovf.asm

Overflow in

Any function
in library
file

If execution
time error
check option
is specified
at Compile
time

operation
errsfr.asm sfr access
errcr
errini.asm ROMable process| Start-up If estartr
error routine is used for
estartr linking

For information on the type of error check that can be made
by each library function, see Section 12.4 {3), List of run
time library functions in Chapter 12 of the CC78K Series C
Compiler Package User's Manual for Language.

For example, mathematical function div checks an overflow in
the result of an operation if the execution time error check
option (-L} is specified at Compile time. If an overflow
occurs during the execution of the div function, the error

handling routine "errovf.asm" will be called.

8.5.2 Description of sample program

Of the six error handling routine sample programs, errstk.asm is
explained here. The other sample programs are the same as
errstk.asm with the exception of the symbol name for external
definition declaration.

The sample program used here is applicable to the 78K/III series.

o Error handing routine "errstk.asm"

PUBLIC
@4CODE CSEG

_Berrstk:
PUSH

; MOVH

: PUSH

; MOVY
PUSH

; MOVY¥
PUSH
HOVK
PUSH

:_Berrstk + 9AH
L_A:
BR

: POP
: HOVK
: POP
; MOVYW

: PP
: MOYY
: POP
MOV¥

; POP
: RET

END

SINCLUDE " CHIP. [XC’
$INCLUDE " DEFINE. INC

E_@errstk

"*The contents of the other error handling
routines are the same except this symbel
name,

RPO, RP1, RP2, RP3, RP4, RPS, RPE,RPT — (D saving register contents

AX, _@D_FUNC
AX
AX, _8D_LINE
AX

AX, _BFARGIH
AX
AX, _@FARGOL
AX

3L_A

AX
_@FARGOH, AX
AX
_BFARGOL, AX

AX
_BD_LINE, AX
AX
_8D_FUNC, AX

GDSaving saddr area to be used by
C compiler

:|®Errcr handling routine

@Restoring saddr area

RPO, RP1, RP2, RP3,RP4, RP5, RP6, RPT — ® Restoring register contents

Note: With the CC78K3 V2.0 or higher and CC78K2 V1.0 or higher,

O, @,

@, and (® are described as comments. In the

actual user program, these comments should be removed.

8-31

Steps () to C) in the error handling routine "errstk.asm" are

explained below.

©

@

Saving register contents

Saves the contents of register pairs RP0O to RP7.

Saving saddr area to be used by C compiler

Saves the contents of the saddr area to be used by the C
compiler. For details, see Appendix D - List of saddr Area
Labels in the CC78K Series C Compiler Package User's Manual
for Language.

Error handling routine
Create an error handling routine and insert it in here. In

the sample program, this part forms a permanent loop.

Restoring saddr area

Restores the previously saved contents of the saddr area.

Restoring register contents
Restores the previously saved contents of register pairs
RPO to RP7.

The contents of the other five error handling routines

(errdiv.asm, errptr.asm, errovf.asm, errsfr.asm, and errini.asm)

are the same as errstk.asm with the exception of the symbol name.

If an error occurs, the following error information will be stored

in an area reserved for debugging in the saddr area.

_@D FUNC Stores the string of the function name in

which the error has occurred.

-@D_LINE Stores the line number in the C source file at

which the error has occurred.

8-32

8.5.3 Point for improvement

With all the error handling routine sample programs offered by
this C compiler package, the error handling part forms a permanent
loop. For this part, take appropriate actions such as embedding an
assembler program, etc. according to the type of error or the
target system to be developed by the user.

Examples) o Sounding a buzzer to inform the user of the
occurrence of an error
0 Illuminating an LED to inform the user of the
occurrence of an error
o Outputting the error information onto the
printer

o Calling other library functions

CHAPTER 9. ERROR MESSAGES

9,1 Types of Error Messages

The error messages to be output by the C compiler are available
in the following 10 types or groups:

(0) Error messages related to command lines

(1) Error messages related to internal errors and memories

(2) Brror messages related to characters

(3) Error messages related to constituent elements

{4) Error messages related to conversions

(5) Error messages related to expressions

(6) Error messages related to statements

(7) Brror messages related to declarations and function
definitions

(8) Error messages related to preprocessor directives

(9) Error messages related to I/O and optimization

9.2 List of Error Messages

Before using the list of error messages contained in this
section, you should familiarize yourself with the format of an
error number for each error message.

An error number indicates the type of error message and the
action to be taken by the C compiler for the error. Therefore,
if no compiler action is described for an error in the error
message list, refer to the error number explanation below.

An error number is expressed by four alphanumeric characters

in the following format:

A/F/Wnnn

The letter symbol A, F, or W denotes the action to be taken by the
C compiler as follows:

A:

F:

ABORT

FATAL

W: WARNING ...

llnnnll

The C compiler terminates its processing
immediately after the output of the error
message and outputs neither an object
module file nor an assembler source
module file.

The C compiler ignores the error portion
of the source program and continues its
processing after the output of the error
message. Neither an object module file
nor an assembler source.module file will
be cutput.

The C compiler continues its processing
after the ocutput of the warning message
and outputs the file(s) specified by
cption(s).

is a three-digit number indicating the type of error

as follows:

001
101

201
301
401
501
601
701

801

901

- 100
- 200

- 300
- 400
- 500
- 600
- 700
- 800

- 900

- 999

ooooo

Error messages related to command lines
Error messages related to internal errors
and memories

Error messages related to characters
Error messages related to constituent elements
Error messages related to conversions
Error messages related to expressions
Error messages related to statements
Error messages related to declarations
and function definitions

Error messages related to preprocessor
directives

Error messages related to I/0 and

optimization

Note:

If a syntax error exists in a filename specification, the
filename will be added to the error message., If a device
type file is specified incorrectly in the command line, the
specified character string will be output as is (without
change). In cases other than above, the drive name,
pathname, and filename extension (file type) will always be
added to each filename. Error messages are subject to
addition, change, or deletion according to the language
specifications of the C compiler to be developed.

Group 0:

Error Messages Related to Command Lines

A001 | Message |Missing input file

Cause No input file has been specified with the
specification of only options other than -F
and -- or no Help file exists when the C
compiler is started up with the specification
of only the executable filename.

AQ02 | Message | Too many input files

Cause Input files have been specified by exceeding

the 1limit value (for the number of input files).
A003 | Message | Unrecognized string 'string'

Cause Characters other than options have been
specified in the command line input in the
Conversational mode,

A004 | Message | Illegal file name 'file name'

Cause The specified filename contains character(s)
not recognized by 0S, the number of characters
in the filename specification exceeded the limit
value, or a syntax error exists in the filename
specification.

AQO5 | Message | Illegal file specification 'file name'

Cause The specified filename contains illegal

character(s).
2006 | Message | File not found 'file name'
Cause The specified input filename does not exist.

A007 | Message | Input file specification overlapped 'file name'

Cause The same named input file has been specified
twice in the command line.

A008 | Message | File specification conflicted 'file name'

Cause The same named input and output files have
been specified.

A009 | Message | Unable to make file 'file name'

Cause The specified output file cannot be created,

because it already exists as a read-only file.
A010 | Message | Directory not found 'file name'

Cause The output filename specification contains

a drive or directory which does not exist,
A011 | Message | Illegal path 'file name'

Cause In the option specification which requires a
pathname as its parameter, other than a path-
name has been specified.

A012 | Message | Missing parameter 'option'

Cause The required option has not been specified.
A013 | Message | Parameter not needed 'option'’

Cause The parameter not required for the option

has been specified.

9-5

A014 | Message | Out of range 'option'
Cause The specified value for the option parameter is
outside the prescribed value range.
A015 | Message | Parameter is too long 'option’
Cause The number of characters specified for the
optidn parameter exceeded the limit value.
AQ16 | Message | Illegal parameter 'option'
Cause A syntax error exists in the option parameter
specification,
A017 | Message | Too many parameters 'option'
Cause The number of parameters described for the
option exceeded the limit value.
A018 | Message | Option is not recognized 'option'
Cause The specified option is not recognized by
the C compiler.
AQ019 | Message | Parameter file nested
Cause An -F option has been specified in the
parameter file,
A020 | Message | Parameter file read error 'file name'
Cause An attempt to read the parameter file failed.
AQ21 | Message | Memory allocation failed

Cause

An attempt to allocate a memory area failed.

9-6

w022

Message

Same category option specified - ignored

'option'

Cause Options contradicting each other have been
specified at the same time.
Action The C compiler accepts as valid the option
whichever you specified later.
W023 | Message | Incompatible chip name
Cause The processor type specified in the command line
differs from that in the C source program.,
Action | The C compiler accepts the processor type
specified in the command line as valid.
A024 | Message | Illegal chip specifier on command line
Cause The processor type specified in the command line
is illegal.
W025 | Message | '-G' option specified - ignored '-QSz'
Cause With CC78K3 C compiler:

The optimize option "-Q" is ignored, because
the -G {debug) option has been specified.

With C compiler other than CC78K3;:

The optimize option "-QS$SZ" is ignored, because

the -G (debug) option has been specified.

Group 1:

Error Messages Related to Internal Errors and Memories

F101 | Message | Internal error
Cause An internal error has occurred.
F102 | Message | Too many errors
Cause The total number of fatal errors exceeded 30.
Action The C compiler continues its processing but will
suppress subsequent error message ocutput.
F103 | Message | Intermediate file error
Cause An error exists in the contents of the
intermediate file.
F104 | Message | Illegal use of register
Cause An error exists in the use of a register,.
F105 | Message | Register overflow : simplify expression
Cause The expression is too complex and no free
register is available for the expression.
A106 | Message | Stack overflow
Cause An overflow has occurred in the stack area.
F107 | Message | Symbol table overflow
Cause An overflow has occurred in the symbol table

area.

9-8

F108

Message

Compiler limit : too much automatic data in

function

Cause The area allocated to the auto variables of
a function exceeded the limit value of 64 KB.
F109 | Message | Compiler limit : too much parameter of function
Cause The area allocated to the parameters of a
function exceeded the limit value of 64 KB.
F110 | Message | Compiler limit : too much code defined in file
Cause The area allocated to codes within a file
exceeded the limit value of 64 KB,
F111 | Message | Compiler limit : too much global data defined in
file
Cause The area allocated to global variables within

a file exceeded the limit value of 64 KB.

Group 2:

Error Messages Related to Characters

F201 | Message Unknown character 'hexadecimal number'
Cause The character which has the specified internal
code cannot be recognized by the C compiler.
F202 | Message | Unexpected EOF
Cause EOF (end-of-file) code is found in the body

of a function.

Group 3: Error Messages Related to Constituent Elements
F301 | Message | Syntax error
Cause A syntax error has occurred.
F303 | Message | Expected identifier
Cause An identifier is required for this data object.
F304 | Message | Compiler limit: too long'identifier 'identifier'
Cause The specified identifier is too long.
F305 | Message | Compiler limit : too many identifiers with block
scope
Cause The number of symbols which have block scope
within a block is excessive.
F306 | Message | Illegal index, indirection not allowed
Cause A subscript has been used for an expression
which cannot take a pointer value,
F307 | Message | Call of non-function 'variable name'
Cause The specified variable name cannot be used
as a function name.
F308 | Message ImprOpgr use of a typedef name
Cause The typedef name has not been used properly.

W309 | Message | Unused 'variable name'
Cause The specified variable has been declared in
the source program but has not been used at all.
W310 | Message | 'variable name' is assigned a value which is
never used
Cause The specified variable has been used in an
assignment statement but has never been used
elsewhere,
F311 { Message | Number syntax
Cause The constant representation is incorrect.
F312 | Message | Illegal octal digit
Cause The described octal number contains an illegal
character.
F313 | Message | Illegal hexadecimal digit
Cause The described hexadecimal number contains an
illegal character,
F314 | Message | Too big constant
Cause The described constant is too large to be

represented.

F315 | Message | Too small constant
Cause The described constant is too small to be
represented.
F316 | Message | Too many character constants
Cause The character constant was described with two
or more characters.
F317 | Message | Empty character constant
Cause The character constant in ' ' (single quotes)
ig null.
F318 | Message | No terminated string literal
Cause The string literal is not terminated with
the closing double guote (").
F320 { Message | No null terminator in string literal
Cause A NULL character has not been added to mark the
end of the string literal.
F321 | Message | Compiler limit too many characters in string
literal
Cause The number of characters in the string literal
exceeded 509.
F322 | Message | Ellipsis requires three pericds
Cause The compiler found ".." but "..." must appear

at the end of the parameter list as ellipsis.

F323 | Message | Missing 'delimiter'
Cause The displayed delimiter is missing.
F324 | Message Too many y's
Cause Opening and closing brace brackets have not
been paired properly.
F325 | Message |No terminated comment
Cause The closing "*/" is missing from the Comment

statement.

Group 4: Error

Messages Related to Conversions

W401 | Message [Conversion may lose significant digits
Cause An attempt was made to convert from long to int.
F402 | Message | Incompatible type conversion
Cause The type conversion not allowed for an
assignment statement was attempted.
F403 | Message | Illegal indirection
Cause The * operator has been used for an integral
type expression,
F404 | Message | Incompatible structure type conversion
Cause In an assignment statement between structures
or to a structure, the variable on the left
of the assignment is not of the same type as
that on the right.
F405 { Message | Illegal 1lvalue
Cause The given value is incorrect as an lvalue.
F406 | Message | Cannot modify a const object 'variable name'
Cause An attempt was made to modify the wvariable
declared const.
F407 | Message | Cannot write for read/only sfr 'sfr name'
Cause An attempt was made to write the displayed sfr
which is read only.

9-15

F408 | Message | Cannot read for write/only sfr 'sfr name'
Cause An attempt was made to read the displayed sfr
which is write only.
F409 | Message | Write invalid data for sfr 'sfr name'
Cause An attempt was made to write invalid data into
the displayed sfr.
W410 | Message | Illegal pointer conversion
Cause An attempt was made to convert between a pointer
type and a type other than the pointer.
W411 | Message | Illegal pointer combination
Cause Pointers that differ in type have been used
together.
W412 | Message | I1llegal pointer combination in conditional
expression
Cause Pointers that differ in type have been used
in a conditional expression.
W413 | Message | Illegal structure pointer combination
Cause Pointers to structures that differ in type
have been used together.
F414 | Message | Expected pointer
Cause A pointer is required.

Group 5: Error Messages Related to Expressions
F501 | Message | Expression syntax
Cause An syntax error exists in the expression.
F502 | Message | Compiler limit too many parentheses
Cause Nesting of parentheses in this expression
exceeded 32 levels,
W503 | Message | Possible use of 'variable name' before
definition
Cause The specified variable has been used before
assignment of a value to the variable.
W504 | Message | Possibly incorrect assignment
Cause In an if, while, or do-while statement, the
main operator of the conditional expression
is an assignment operator.
F507 | Message | Expected integral index
Cause Only an integral type expression is allowed
as the subscript of an array.
W508 | Message | Too many actual arguments
Cause The number of arguments specified in the func-
tion call is more than the number of parameters
specified in the argument type list or function
definition.

W509 | Message | Too few actual arguments

Cause The number of arguments specified in the func-
tion call is less than the number of parameters
specified in the argument type list or function
definition.

W510 | Message | Pointer mismatch in function 'function name'

Cause The given arguments have pointer types
different from those specified in the argument
type list or function definition.

W511 | Message | Different argument types in function
'function name'

Cause The types of arguments given by the function
call do not match with those specified in the
argument type list or function definition.

F512 | Message { Function ¢all in norec function

Cause An attempt was made to call a function within
the norec function.

F513 | Message | Illegal structure/union member 'member name'

Cause The displayed member has not been defined in
the structure or union reference,

F514 | Message | Expected structure/union pointer
Cause The expression before the -»> (arrow) operator

must be a pointer to a structure or union, not

the name of a structure or union.

F515 | Message | Expected structure/union name
Cause The expression before the . (dot} operator
must be the name of a structure or union, not
a pointer to a structure or union.
F516 | Message | Zero sized structure 'structure name'
Cause The size of the displayed structure is 0.
F517 | Message | Illegal structure operation
Cause An operator that cannot be used for structures
has been specified,
F518 | Message | Illegal structure/union comparison
Cause Two structures or unions cannot be compared.
F519 | Message | Illegal bit field operation
Cause An illegal description was made for a bit
field.
F520 | Message | Illegal use of pointer
Cause Only +, -, assignment, relational, indirection
(*), or arrow (->) operator can be used for
a pointer,
W522 | Message | Ambiguous operators need parentheses
Cause Two shift, relational, or bitwise logical

operators have been described in succession

without parentheses,.

9-19

F523 | Message | Illegal bit type operation
Cause An attempt was made to execute an illegal opera-
tion on a bit type variable.
F524 { Message { '&' on constant
Cause The address of a constant cannot be obtained.
F525 | Message | '&' requires lvalue
Cause The & operator can be used only for an expres-
sion which is to be assigned to an lvalue.
F526 | Message | '&' on register variable
Cause The address of a register variable cannot be
obtained.
F527 | Message | '&' on ignored
Cause The address of a bit field or bit type variable
cannot be obtained.
W528 | Message | '&' is not allowed array/function, ignored
Cause The & operator is not allowed for a array name
or function name.
F529 | Message | Sizeof returns zero
Cause The value of the sizeof expression is 0.

F530 | Message | Illegal sizeof operand
Cause The operand of the sizeof expression must be
an identifier or type name.
F531 | Message | Disallowed conversion
Cause An attempt was made to perform an illegal cast
operation.
W532 | Message | Pointer on left, needs integral right
'operator’
Cause Because the left operand of this operator is
a pointer, its right operand must be an
integral value.
F533 | Message | Invalid left-or-right operand : 'operator'
Cause The left or right operand of this operator
is invalid for the operator.
F534 | Message | Divide check
Cause The divisor of a / (divide) or % (modulo)
operation is 0.
F535 | Message | Invalid peinter addition
Cause addition between two pointers is not allowed.
F536 | Message | Must be integral value addition
Cause Only an integral value can be added to a

pointer.

F537 | Message | Illegal pointer subtraction
Cause Subtraction is allowed only between pointers
which have the same type.
F538 | Message | Illegal conditional operator
Cause The condition operator has not been described
correctly.
F539 | Message | Expected constant expression
Cause A constant expression is required.
W540 | Message | Constant out of range in comparison
Cause One constant partial expression 1s compared
with a value outside the range allowed for
the type of the other partial expression,
F541 | Message | Function argument has void type
Cause The argument of the function is a void type.
F542 | Message | Arguments mismatch: 1M byte function '%s
Cause An error exists in the argument cf the 1M-byte

function (applicable to 78K/II only).

9-22

Group 6: Error Messages Related to Statements
F602 | Message | Compiler limit too many characters in logical
source line
Cause The number of cCharacters of the logical source
line exceeded 509.
F603 | Message | Compiler limit too many labels
Cause The number of labels exceeded 33.
F604 | Message | Case not in switch
Cause A case clause has not be described in the
correct position in the switch body.
F605 | Message | Duplicate case 'label name'
Cause The same case label has been described more
than once in the switch body.
F606 | Message | No constant case expression
Cause Other than an integer constant has been
described in a case clause,
F607 { Message | Compiler limit too many case labels
Cause The number of case labels in the switch
statement exceeded 257.
F608 | Message | Default not in switch
Cause The default labkel has not been described in
the correct position in the switch body.

F609 | Message | More than one 'default'

Cause Two or more default labels have been described
in the switch bedy.

F610 | Message | Compiler limit : block nest level too depth

Cause The nesting of blocks exceeded 45 levels.

F611 | Message | Inappropriate 'else'

Cause ifs and elses have not been paired properly.

F613 | Message | Loop entered at top of switch

Cause A while, do-while, or for lcop has been

specified at the end of a switch statement.

F615 | Message | Statement not reached

Cause A permanent loop exists.

F617 | Message | Do statement must have 'while'

Cause A while statement must follow the do statement.

F620 | Message | Break/continue error

Cause The break or continue statement has not been

described in the correct position.

9-24

F621 | Message | Void function 'function name' cannot return
value
Cause The displayed function has been declared void
and thus cannot return a value.
W622 | Message { No return value
Cause The function which should return a value has
not returned any value.
F623 | Message |No effective code and data,_ cannot create
output file
Cause No intermediate statement has been created

during syntax analysis.

9-25

Group 7:

Error Messages Related to Declarations and

Function Definitions

F701 | Message | External definition syntax
Cause The function has not been defined properly.
F702 | Message | Too many callt functions
Cause Too many callt functions have been declared.
F703 Message_ Function has illegal storage class
Cause The function has been specified with an
invalid storage class.
F704 | Message | Function returns illegal type
Cause The type of the return value of the function
is illegal.
F705 | Message | Too many parameters in noauto or norec function
Cause Too many parameters have been specified for
the noauto or norec function.
F706 | Message | Parameter list error
Cause An error exists in the function parameter list.
F707 | Message | Not parameter 'character string'
Cause

The character string which is not a parameter

has been declared in the function definition.

F710 | Message | Illegal storage class
Cause auto or register variables have been declared
outside the function,
F711 | Message | Undeclared 'variable name' in function
'function name’
Cause The variable used in the function has not been
declared.
F712 | Message | Declaration syntax
Cause A syntax error exists in the declaration
statement,.
F713 | Message | Redefined 'variable name'
Cause The same variable name has been defined more
than once.
F714 | Message | Too many register variables
Cause Too many register variables have been declared.
F715 | Message | Too many sreg variables
Cause Too many sreg variables have been declared.
F716 | Message | Not allowed automatic data in noauto function
Cause No automatic variable can be used in the

noauto function.

9-27

F117

Message

Too many automatic data in norec function

Cause Too many automatic variables have been
declared in the norec function.
F718 | Message | Too many bit type variables
Cause Too many bit type variables have been used.
F719 | Message | Illegal use of type
Cause The type name used is illegal.
F720 | Message | Illegal void type for 'identifier'
Cause The identifier has been declared void.
F721 | Message | Illegal type for register declaration
Cause The register declaration is not allowed for
the date type of the variable.
Action The compiler ignores the register declaration
and continues processing.
F?22 Message | Illegal type for sreg declaration
Cause The sreg declaration is not allowed for
the data type of the wvariable.
F723 | Message | Illegal type for parameter in noauto or norec
function
Cause The parameter type of the noauto or norec

function is illegal (too large).

¥724 | Message | Structure redefinition
Cause The same structure has been defined again.
F725 | Message | Illegal zero sized structure member
Cause The size of the area for structure members
must be 1 or more.
F726 | Message | Function cannot be structure/union member
Cause The function cannot be a structure or union
member.
F727 | Message | Unknown size structure/union 'name'’
Cause The size of the structure or union has not
been defined.
7728 | Message | Compiler limit too many structure/union
members
Cause The number of structure or union members
exceeded 127.
F729 | Message | Compiler limit structure/union nesting
Cause The nesting of structures or unions exceeded
15 levels.
F730 | Message | Bit field outside of structure
Cause A bit field has been declared outside the

structure.

9-29

F731 { Message | Illegal bit field type
Cause Other than an integer type has been specified
as the type of the bit field.
F732 | Message | Too long bit field size
Cause The number of bits specified in the bit field
declaration exceeded the limit value for the
type.
F733 | Message [Negative bit field size
Cause The number of bits specified in the bit field
declaration is a negative value.
F734 | Message | Illegal enumeration
Cause A syntax error exists in the enumerated type
declaration.
F735 | Message | Illegal enumeration constant
Cause The enumerated constant is illegal.
F736 | Message | Compiler limit : too many enumeration constants
Cause The number of enumerated constants exceeded
127.
F737 | Message |Undeclared structure/union/enum tag
Cause No tag has been declared for the structure,

union, or enumeration.

F738 | Message |Compiler limit : too many pointer modifying
Cause The number of indirection (*) operators in
the pointer definition exceeded 12.
F739 | Message | Expected constant
Cause In the array declaration, a variable has been
used for the subscript.
F740 | Message |Negative subscript
Cause A negative value has been specified as the
size of an array.
F741 | Message | Unknown size array 'array name'
Cause The size of the specified array is unknown.
F742 | Message | Compiler limit : too many array modifvying
Cause Array declarations exceeded 12 dimensions.
F743 | Message | Array element type cannot be function
Cause The array element type cannot be a function.
F744 | Message | Zero sized array 'array name'
Cause The number of elements of the defined array
is 0.
F745 | Message | Expected function prototype
Cause A function prototype declaration is reguired.

F747 | Message |Function prototype mismatch
Cause An error exists in the function prototype
declaration.
F748 | Message { A function is declared as a parameter
Cause A function has been declared as a parameter.
F749 | Message | Unused parameter 'parameter name'
Cause The displayed parameter has not been used.
F750 | Message | Initializer syntax
Cause A syntax error exists in the declaration
that contain initializers.
F751 | Message | Illegal initialization
Cause The constant for initialization does not match
the variable in type.
F752 | Message | Undeclared initializer name 'name'
Cause The displayed initializer name has not been
declared.
F753 | Message | Cannot initialize static with automatic
Cause The static variable cannot be initialized

with an auto variable.

9-32

F754 | Message |Cannot initialize array in function
'function name'

Cause Arrays inside the function cannot be
initialized.

F755 | Message |[Cannot initialize structure/union in function
'function name'

Cause Structures or unions inside the function
cannot be initialized.

F756 | Message {Too many initializers 'array name'

Cause The number of initialization values is more
than the number of elements of the declared
array.

F757 | Message |Too many structure initializers

Cause The number of initialization values is more
than the number of members of the declared
structure.

F758 | Message |Cannot initialize a function 'function name'

Cause The function cannot be initialized.

F759 | Message |Compiler limit : initializers too deeply nested

Cause The nesting of initializers exceeded the
limit value.

F760 | Message |Not including floating function
Cause Floating-point arithmetic is not supported.

9-33

F770 | Message | Parameters are not allowed for interrupt
function
Cause No parameter is allowed for the interrupt
function.
W708 | Message | Already declared symbol 'variable name'
Cause The same variable name has already been

declared.

9-34

Group 8: Error Messages Related to Preprocessor Directives

F801 | Message | Undefined control

Cause A word which begins with # cannot be recognized

as a keyword.

F802 | Message | Illegal preprocess directive

Cause An error exists in the preprocessor directive.

F803 | Message | Unexpected non-whitespace before preprocess

directive

Cause Other than a white-space character precedes

the preprocessor directive.

W804 | Message | Unexpected characters following 'preprocess

directive' directive newline expected
p

Cause Unwanted characters follow the preprocessor

directive.

F805 | Message | Misplaced else or elif

Cause #if, #ifdef, or #ifndef directive has not been

properly paired with #else or felif directive.

F806 | Message | Misplaced endif

Cause #if, #ifdef, or #ifndef directive has not been

properly paired with #endif directive.

F807

Message

Compiler limit : too many conditional inclusion

nesting

Cause The nesting of conditional inclusions exceeded
255 levels.
F810 | Message | Cannot find include file 'file name’
Cause The specified Inclusion file cannot be found.
F811 | Message | Too long file name 'file name'’
Cause The specified filename is too long.
F812 | Message | Include directive syntax
Cause In the #include directive, the filename has
not been enclosed in double quotes (" ") or
angle brackets {¢< »>).
F813 | Message | Compiler limit : too many include nesting
Cause The nesting of Inclusion files exceeded 8
levels.
F814 | Message | Illegal macCro name
Cause An error, exists in the macro name description.
W816 | Message | Redefined macro name 'macroc name'
Cause The macro name has already been defined.

9-36

W817 | Message | Redefined system macro name 'macro name'
Cause The system macro name has already been defined.
F818 | Message | Redeclared parameter in macro 'macro name'
Cause The same identifier appeared again in the
parameter list of the macrodefinition.
W819 | Message | Mismatch number of parameters 'macro name'
Cause The number of parameters defined with the
#define directive differs from the number of
parameters to be referenced.
F821 | Message | Illegal macro parameter 'macro name'
Cause In the function type macro, names in ()
have not been described properly.
F822 | Message | Missing } 'macro name'
Cause In the function type macro, the closing right
parenthesis cannot be found within the same
#define directive line.
F823 | Message | Too long macro expansion 'macro name'
Cause The actual parameter length is too long in the
expansion of the macro.
FB824 | Message | Compiler limit : too long macro name
'macro name'
Cause The macro name is too long.

9-37

W825 | Message |Macro recursion 'macro name'

Cause The #define definition is recursive.
F826 | Message |Compiler limit : too many macro defines

Cause The number of macrodefiniticons exceeded 1,024,
F827 | Message | Compiler limit : too many macro parameters

Cause The number of parameters per macrodefinition
or macrocall exceeded 31.

F828 | Message {Not allowed #undef for system macro name
'macro name'

Cause The macro name specified with the #undef
directive is a system macro name which cannot
be undefined.

W829 | Message |Unrecognized pragma 'character string'

Cause This character string is not supported by the C
compiler.

F830 | Message |[No chip specifier : f#pragma pc ()

Cause No processor type has been specified in the
fifpragma pc ()} directive.

F831 | Message |Illegal chip specifier : '{ffpragma pcC
(processor type)'
Cause An error exists in the processor type specifica-

tion with #pragma pc () directive.

9-38

F832 | Message | Duplicated chip specifier
Cause The duplicated processor type has been specified.
F833 | Message | Expected #asm
Cause A flasm statement is required.
F834 | Message | Expected #endasm
Cause A #endasm statement is required at the end of
the #asm statement.
F835 | Message | Too many gharacters in assembler source line
Cause The assembler socurce line contains too many
characters.
W836 | Message | Expected assembler source
Cause No assembler source statement exists in the
#asm-#endasm block.
W837 | Message | Output assembler source file, not object file
Cause An assembler scurce module file has been output
in place of an cbject module file.
W838 | Message | Duplicated pragma VECT 'ss'’
Cause #pragma VECT 'character string' has been

specified in duplication.

9-39

F839 | Message | Unrecognized pragma VECT '%s'
Cause Unrecognized #pragma VECT 'character string'’
exists.
F840 | Message | Undefined interrupt function '%s'
Cause The interrupt function '%s' has not been *
declared.
F841 | Message | Unrecognized pragma TABLE '%s'
Cause Unrecognized #pragma TABLE 'character string’

exists.

Group 9: Error Messages Related to I/0 and Optimization
2901 | Message |File I/O error
Cause A physical I/0 error has occurred during data
input/output to or from a file.
A902 | Message {Cannot open 'file name'
Cause An error has occurred while opening the file.
A903 | Message |Cannot open overlay file 'file nane'’
Cause An error has occurred while opening the overlay
file.
A904 | Message |Cannot open temp
Cause An error has occurred while opening a temporary
file for input.
A905 | Message | Cannot create 'file name'’
Cause Creation of the specified file failed.
A906 | Message | Cannot create temp
Cause Creation of a temporary file for output failed.
A907 | Message | No available data block
Cause Creation of a temporary file failed due to the
insufficient file space capacity of the drive.

A908 | Message |No available directory space
Cause Creation of a temporary file failed due to the
insufficient directory area of the drive.
A909 | Message |R/O : read/only disk
Cause Creation of a temporary file failed due to the
read-only attribute of the drive.
A910 | Message |R/O file : read/only, file opened read/only mode
Cause An error has occurred while writing a temporary
file by either.of the fcllowing two reasons:

1. The file which has the same name as the
temporary file already exists on the drive
and the file has read-only attribute.

2. A temporary file for output has been opened
with read-only attribute due to internal
conflict.

A911 | Message | Reading unwritten data, no available directory
space
Cause An I/0 error has occurred by either of the

following two reasons:

1. An attempt was made to input data beyond the
EQOF.

2. Creation of a temporary file failed due to
the insufficient directory area of the

drive.

9-42

A912

Message

Write error on temp

Cause An error has occurred while writing a
temporary file.
A913 | Message | Requires MS-DOS V2.11 or greater
Cause The 0S8 is not MS-DOS (V2.1%1 or higher).
A914 | Message | Insufficient memory in host machine
Cause The C compiler cannot bé started up due to

insufficient memory space in the host machine.

The following messages are applicable to the CC78K3 only:

W315 | Message | Asm statement found. optimize skip this function
Cause The optimization of this function is discon-
tinued, because an ASM statement was found.
W916 | Message | Too many basic blocks for optimizing
Cause Basic blocks are too many to execute
optimization.
W917 | Message | Too many nesting for optimizing
Cause Functions are too deeply nested to execute

optimization.

W918 | Message | Too many function arguments for optimizing
Cause The arguments of a function are too many to
execute optimization.
W919 | Message | Too many function nesting for optimizing
Cause Functions are too deeply nested to execute
optimization.
W920 | Message | Too many symbols for optimizing
Cause Symbols are too many to execute optimization.
W921 | Message | Too many value_ no for optimizing
Cause Value numbers are too many to execute

optimization.

APPENDIX A.

A.1 C Source Module File

#define TRUE i
tdefine FALSE 0
tdefine SI1ZE 200
char nark[S1ZE+1];
main{)
int i, prime., k., count;
count = 0 7
for (i =0 : 1 ¢ 817
mark[i] = TRUE
for (i =0 ; 1 <= 5§12
if (mark(i}) {
prime =
printf(”
count++;
for { X
}

" SAMPLE PROGRAMS

i+1+3;
%6d", prime);
if ((count¥8)
i + prime ;
mark[k? = PALS

tehar (" ¥n');

0)
= SIZE ; k += prime)

pu
= <= §I

k
E;

]
printf("¥n%d primes found.”,count):

}
printf(s,i)

char #*s;

int i;

' .
int j;:
char #ss;
=1
5§ = §;

}

putchar(c)

char ¢;
char d:
d = ¢;

\ .

A.2 Execution Example

AdecT8K3 -¢310 sample¥prime.c -a -p -x -e

78X/111 Series C Compiler Vx.xx [xx xxx xx)
Copyright (C) NEC Corporation xxxx

£

SAMPLEYPRIME. C(18) : W745 Expected function prototype
SAMPLEYPRIME. C(20) : ¥745 Expected function prototype
SAMPLEYPRIME.C(26) : W622 No return value

SAMPLEYPRIME. C(87) : ¥622 No return value

SAMPLEYPRIME. C(44) : ¥622 No return value

Compilation complete 0 error{s) and 5§ varning(s) found.

A.3 Output Lists

(1) Assembler Source Module File

. 18K/111 Series C Compiler V1.10 Assembler Source

: Command : -¢310 ¥sample¥prime.c -a =p =X -e
: In-file : YSAMPLEYPRIME.C
: Asm-file : PRIME.ASM
: Para-file :
$PROCESSOR(310)
$NODEBUG
NAME PRIME
EXTRN @disren
PUBLIC _mark
PUBLIC _main
PUBLIC _printf
PUBLIC _putehar
@@CODE CSEG
: line 5
; line 8
_main:
push hi
movy ax, sp
subw ax, ¥08H
movw hl, ax
mOVY sp, ax
; line 11
movv¥ ax, #8000 ; 0
mov [h1+1],a : count
xch a, x
mov [h1],a : count
+ line 13
noOvVW ax, $00H ; ©
nov [h1+7], 2 ;i
xch a, X
mov fhi+6],a D
LO0G3: -
mov a, [h1+8] <
xch a, X
mov a, [h1+7] ;i
empy ax, 30C8H ; 200
bgt $LO0O4
+ line 14
mOVW up, ¥_mark
nov a, [h146] i
xch a, x
nov a, [h1+47] P
addw up, ax
nov a, #0100 ;1
mov [up]).a
L000S:
mov a, [h1+6] o
xch a,x
mov a, [h147] ;i
addw ax, ¥01H : 1
nov (h147]),a D
xch a,x
noy fhl1+6],a s

Date:xx xxx xxxx Time:xx:XxX:xX

Lo004:
: line

L0006

; line

Loolt:

line

; tine

; line

; line

br

15
movy
nov
xch
mov

mov
xch
mov
cmpw
ble
br

movwW
"oV
xch
mov
addw
mov
Xch
mov
bt
inc

CMpW
bne

117
nov
xch
mnov
novw
mov
xch
mov
addw
addw
mov
xch
moyv

18
mov
Xeh
mov
push
noOvY
push
call
novw
addw
novw

mov
xch
mnov
addw
nov
xch
nov
20
MOVW
mov
xch
mov
movw

$L0O003

ax, $60H ; 0
[h1+7]),a :
a,x

[h1+6], 2

hl+6] :
hl1+7] ;
x, $0C8H ;
346

LOo007

A
. X

- &I M Ay M

up, ¥ _mark
a, [hi+6] :

a, X

a, [h1+7] H
up, ax

2, {up]

a, X

a, #0FFH ; 255
x. 7, 8L0011

a

ax, #00H ; 0
3$3+5
1L0009

a, [h1+8} :

a, x

a, [h1+7] ;
be, ax

a, (h1+6] ;

a,x

a, [h1+7] :
ax, be

ax, $03H ; 3
[h145]. 2

a,x
[h1+d],a :
a, [h1+4] :
a, x

a, [h1+5)

ax
ax, $L0012
ax

! printf
ax, sp

ax, 804H ; 4
Sp, ax

a, [h1] ; count

a, X
a, [h1+1) :
ax, ¥01H ; 1

[h1+1],a :

a,x
[h1],a ; count

rpd, $08H :
a, [h1] ; count
a, X

a, [h1+1]

be, ax

. prime

prime

prime

: prime

count

count

L0o013:
Lo0l4:
; line

LO01S:

i line

LOoO17:

L0016:
L0009:
1.0010:
L0008:

LO0OT:
: line

call
movwy
cnpy
bne

MOVW
push
call
pop

21
mov
xch
nov
MOVY
mOV
xch
moVv
addw
mov
xch
mov

mov
xch
mov
cmpw
bgt
22
movw
nov
xch
mov
addw
mov
mov

mov
xch
mov
movw
nov
xeh
nov
addw
mov
xch
mov
br

nov
xch’
nov
addw
nov
xch
ROV
br

25
nov
x¢h
nov
push

l8@isrenm
ax, be

ax, $00H ; 0

L0013

ax, $0AH :

ax

! _putchar

ax

a, [h1+4)

a, x
a, [h1+5]
be, ax

a, [h1+6]

3, X
a, [(h1+7]
ax, be

(h1+3],a

a, X
(h1+2],a

a, $00H
(upl.a

a, [h1+4)
a, X

a, [h1+5]
be, ax

a, {hl1+2]

a,x

a, [h1+3]
ax, be
h1+3},a

[

a,x
[(h1+2),a
L0015

a, [hl)

a,x
a, [h1+1]
ax

10

; count

L B - S T o

. . -
- - -~

. prime

: prime

: prime

} prime

¢ eount

MOVY¥ ax, #L0018

push ax
call ! _printf
MOVW ax, sp
addw ax, ¥04H ; 4
MOVH sp, ax
movw ax, hl
addw ax, §08H
NOVW sp, ax
pop hl
ret
i line - 31
_printf:
push hi
novw ax, sp
subw ax, $04H
novw hl, ax
movw sp, ax
; line 395
nov a, [h1+10] cod
xch a, X
mov a, [hl+#11] |
nov [h1+3],a v
Xeh a, x
mov [h1+2]),a t]
i line 38
mov a, [h1+8] TS
xch a, x
nov a, [h1+9] ;S
mov [h1+1]).a . §§
xch a, x
nov [h1],a : ss
movy ax, hl
addy ax, #04H
movy sp, ax
pop hi
ret
i line 41
_putchar:
push hl
mOVE ax, sp
subw ax, ¥02H
MOVW hl, ax
MOVW sp, ax
v line 43
mov 2, (hl+§] .
mov [hi+l],a i d
ROV ax, hl
addw ax, $02H
MOVW $p, ax
pop hl
ret
@@CNST CSEG
L0012: DB ' %¥6d’
DB 00H
L00i8: DB 0All
DB "%d primes found.’
DB 00H
@8R_DATA CSEG
DB (201)
@@DATA DSEG
_mark: DS (201)
END

(2) Preprocess List File

/#
78K/111 Series C Compiler V1.10 Preprocess List

Command : -¢310 Ysanple¥prime.¢c -a ~p -x -¢

In-file : YSAMPLEYPRIME.C
PPL-file : PRIME.PPL

Para-file :
+/
1 : #define TRUE i
9 + $define FALSE 0
3 : #define SIZE 200
{
§ : char mark[SIZE+1]);
g :
T : main{)
8
9 : int i, prime,
10
count = 0;
for (i =0 ;
mark[i
for (i =90 ;
if (mark

}

.
:
: }
.

. printf(s, i)
: char #s;
: int i:

int j;
char "#ss;

i=1i;
§§ = 5,

)

: putchar(c)

: ihar c;
char d;
d = ¢;

i B B B e D CAD €AY €3 CaD €A €A €aD LD G DD D B3 B B 0O [N DD DD B bt et s e s e
.ch-mmr—-o:con-dmm-h-mmp—omon—qcnmnmmv—-omon-:muu.n-.mmp-d
as sa wx we a4 43 as 44 s a8 ws ew sm omE wm ws we sa v ome b4 s

count;

prime

printf("¥n%d primes found.”, count);:

i+i+ 3
printf ("%6d", prime);
count++;

for (k

if ({count%8)
i + prine
mark[k] = FALS

Date:xx xxx xxxx Page:

0) putchar(¥n');

<= SIZE

1 k += prime)

{3) Cross-reference List File

78K/111 Series C Compiler Y1.10 Cross reference List Date:xx xxx xxxx Page:

Command
In-file

EXTERN

EXTERN

AUTO1
15

AUTOL
AUTO1
AUTO1
EXTERN
EXTERN
PARAM
PARAM
AUTOL
AUTOL
PARAM
AUTO1

: =¢310 YsampleY¥prime.c —-a -p -x -e

: YSAMPLEYPRIME.C
Xref-file :
Para-file :

ATTRIB MODIFY TYPE

15

PRIME. XRF

array

func

int
15

int

int

int
fune
func
pointer
int

int
pointer
char
char
$define
ddefine
#define

SYMBOL

mark
main

i
16

prime

k

count
printf
putchar

17

DEFINE REFERENCE

14

[
o

B e B GO GO OO LD DD B3 e 6
N O Be GO €O O LN O OO 00 b b —)

13

22
13

21
21
20

15

21

(4) Error List File

SAMPLEYPRIME.C(18)
SAMPLEYPRIME.C(20)
SAMPLEYPRIME.C(26)
SAMPLEYPRIME.C(37)
SAMPLEYPRIME.C{ 44)

Compilation complete,

: W745 Expected function prototype
: W745 Expected function prototype
: ¥622 No return value '

: ¥622 No return value

: W622 No return value

0 error{s) and 5 warning(s) found.

APPENDIX B. LIST OF HINTS ON USE

o At Compile Time

Item No. |Point to Bear in Mind
1 About MS-DOS (PC-DCS) Based System:
When starting up this C compiler, the parameter
FILES must be set to 25 or more in the environ-
ment setting file "CONFIG.SYS" of MS-DOS
{PC-DOS).
2 About Option Specification:

o If two or more options which are not allowed
to be specified with any other options are
specified at the same time, whichever you
specified last will take precedence over the
preceding options.

o With the -C option, the processor type cannot
be omitted. If this parameter is omitted, an
Abort error will result. If the processor type
of the target device is not to be specified
with the -C option, be sure to specify the
processor type in the C source module file by
using the #pragma pc (processor type)
directive.

Also note that if the processor type specified
with the -C option differs from that specified
in the C source module file, the C compiler
will accept the one specified with the -C
option as wvalid and output a warning message.

o If the -- {(HELP}) option is specified, all
other option specifications will become

invalid.

o At Compile Time (contd)

Item No. | Point to Bear in Mind
3 About Qutput Destination of File:
Only a disk type file can be specified as the
output destination of object module files.
4 About Error Messages:

If a syntax error exists in a filename specifi-
cation, the filename will be added to the error
message. If a device type file is specified
incorrectly in the command line, the specified
character string will be output as is. In cases
other than above, the drive name, pathname, and
filename extension (file type) will always be

added to each filename.

o At Assembly Time

Item No.

Point to Bear in Mind

1

About Assembly Language Descripticons in C
Source Program:

If any descriptions in the assembly language
exist in a C source program, create a load
module file by executing the C compiler,
Assembler, and Linker in the order named.
When assembling an object module file output
by the C compiler, the assembler option -NCA
must be specified to distinguish symbol names
written in uppercase letters from those in

lowercase letters.

o At Linking Time

ITtem No.

Point to Bear in Mind

1

About ROMable Processing:
With the CC78Kn, the C compiler's default
assumption at Compile time is ROMable,
Therefore, when linking an object module file
compiled based on this default assumption,
the object module file must be linked with the
applicable start-up routine for ROMable
processing.

Start-up routine: csxxxr.rel

romxxx.rel
Example: With uPD78320

A>1k78K3 c¢s320r.rel test.rel rom320.re¥

PP i]

l r |
Required for

ROMable processing

test.rel: Object module file of user program

About Option for Stack Solving Symbol Creation
Specification (-8):

With the CC78Kn, the user cannot reserve a
stack area. To secure the stack area, be sure
to specify the linker option -S.

© At Linking Time (contd)

Item No.

Point to Bear in Mind

3

About Option for Directive File Specification
{-D):

The following error message may be output if a
linking operation is executed in the memory

area defined by default assumption:

*** ERROR F206 Segment 'xxx' can't allocate
to memory-ignored

[Cause]

The Linker cannot allocate the specified segment

to the memory area (internal RAM area) defined

by default assumption because of insufficient
space.

[Actions]

As a recommended action for this, the following

three major steps should be observed.

1. Check the size of the segment that cannot be
allocated.

2. Based on the segment size checked, enlarge
the size of an area in which segments in the
directive file are allocated.

3. Link the object module file by specifying
the linker option -D (for directive file

specification).

o At Linking Time (contd)

Item No. |Point to Bear in Mind
3 In the step 1 above, the method of checking the
(contd) segment size differs as outlined below depending

on the type of the segment indicated by the
error message.
(1) With segments automatically generated
at Compile time
Segment names
@@CALT, @@CNST, @@CODE, @@R_DATA, @@DATA,
@@R_INIT, @@INIT, @@R_DATS, @@DATS,
@@R_INIS, @@INIS, @@BITS
Step 1: In the directive file, reserve a
sufficiently large memory area
for allocation of the segment
indicated by the error message.
Step 2: Check the size of the segment from
the map file created as a result
of linking the object module,
{2) With user-created segments
Check the size of the segment indicated by
the error message from the assembly list
file.

REMARKS: Use the standard directory file of
each target device which is stored
as a sample file in the directory
named "LIB" in the floppy disk 1.

Ttem No.

Point to Bear in Mind

4

About Option for Library File Specification

(-B):

o When linking object files compiled with the
CC78Kn, specify the common library file
supplied with the C compiler as shown in
Example 1. However, with the processor types
310, 312, 310A, and 312A in the 78K/III
series, specify the library file applicable to
each processor type as shown in Example 2,

Example 1: With uPD78320

A>1k78K3 «¢s320r.rel test.rel rom320.,rel
-5 -bclk3com.lib

test.rel: Object module file of user program
Example 2: With uPD78312A

A>1k78K3 cs3l2ar.rel test.rel rom3l12a.rel
-s -bcl312a.lib

A A

test.rel: Object module file of user program

o When sfr access check is specified with the
option -L (option for execution-time error
check specification) at compile time, also
specify the library file CLxxx.LIB as shown
by -~~~ in Example 3. With the processor
types 310, 312, 310A, and 312A in the 78K/III
series, this error check library file
specification is not required (same as Example
2). 7

Example 3: With uPD78320

A>1k78K3 ¢s320r.rel test.rel rom320.rel
-8 =-=bclk3com.lib -bcl320.1ib

test.rel: Object module file of user program

B-6

-0

APPENDIX C. LIST OF COMPILER OPTIONS

Ttem

Classification

Description Function Relation with | Default See
Format Other Options j Assumption | Page
1 Option for -C X Specifies the proc- Independent None 5-8
processor type | {X: processor essor type of the {Cannot
specification type) target device. be omitted)
2 Options for -0 [filename] Specifies the output | If -0 and -NO | -O[input 5-12
object module ' of an object module are specified | filename
file creation file. at same time, .REL]
specification -NO Specifies suppres- whichever you
sion of object specified
module file output. later takes
precedence.
3 Options for -5 Specifies extension Independent -NS 5-14
symbol name of symbol name
length length to max. 30
specification characters.
-Ns Specifies symbol
name length as
8 characters max.
4 Options for -CA Specifies that symbol| Independent -NCA 5-17
symbol name names in uppercase
upper-/lower- letters are not to be
case specifi- distinguished from
cation those in lowercase
letters.
-NCA Specifies that symbol

names in uppercase
letters are not to be
distinguished from
those in lowercase

letters.

S

Item | Classification | Description Function Relation with Default See
Format Other Options Assumption | Page
5 Opticons for -R Specifies creation If neither -R 5-20
ROMable object of ROMable object object module
file creation module file. nor assembler
specification ~-NR Specifies creation source is to
of non-ROMable be output,
object module file. | this option
will become
invalid.
6 Options for -QIX] Specifies that Ditto. -NQ 5-24
optimization {X: optimi- optimization is to
specification zation type) be performed.
-NQ Specifies that
optimization is not
to be performed.
7 Options for -G Specifies output Ditto. -NG 5-27
debug informa- of symbol informa-
tion ocutput tion for debugging
specification to object module
file.
~-NG Specifies suppres-
sion of debug in-
formation output to
object module file.
8 Options for -L[X] Specifies addition Ditto. -NL 5-29

execution-time
error check
specification

(X: error
check type)

of execution-time
error check library
to object module
file.

-NL

Specifies suppres-
sion of error check
library output to

object module file.

Item | Classification | Bescription Function Relation with Default See
Format Other Options Assumption | Page
9 Options for -P{filename] Specifies output of | Independent -NP 5-32
preprocess a preprocess list
list file file.
creation -NP Specifies suppres-
specification sion of preprocess
list file output.
~K[{X] Specifies type of If ~P option -KFLN 5-34
(x: process process reqguired is not speci-
type) for the preprocess fied at same
list to be output. time or if -NP
-NK | Specifies that no is specified at
special process same time, -K
is required for the | will become
preprocess list. invalid.

10 Options for -D macro name=s Specifies that macrol If same macro Accepts 5-38
preprocessing [definition definitions are to name 1is speci- only
specification name][,name[= be executed just fied by -D and macro

definition]] the same as fdefine | -U options, defini-

ae statements. whichever you tions

-ND Specifies that -D specified later| within
option is to be will take C source
invalidated. precedence, as valid.

-U name[,name] Specifies that Ditto. Accepts 5-40

. macrodefinitions macro
are to be undefined defini-
just the same as tions
#undef statements. specified

_NU Specifies that -U by -D as
option is to be

invalidated.

valid.

F-0

Item | Classification | Description Function Relation with Default See
Format Other Options Assumption | Page
10 Options for -1 directoryl, Specifies input of Independent Directory 5-42
preprocessing directory] ... Inclusion file(s) containing
specification specified by directory
{contd) #include directive source file
from specified specified
directory. by INC78Kn
{n=0,2,3).
11 Options for -A[filename] Specifies output of | If -A and -SA -NA 5-44
assembler assembler source are specified
module file module file to file.] at same time,
creation -NA Specifies suppres- -SA option
specification sion of assembler will become
source module file invalid.
output to file.
-SA[filename] Specifies output of | Ditto. —-NSA 5-47
assembler source
module file with C
source added to it.
-NSA Specifies suppres-
sion of C source
output to assembler
module file,
12 Options for -E[filename] Specifies output of | If -WO option -NE 5-50
error list error list file to is specified
file. at same time,
file creation -NE Specifies suppres- no warning
specification sion of error list message will
file output, be output.
-SE[filename] Specifies output of { Ditto. -NSE 5-52

error list file
with C source added
to it.

-NSE

Specifies suppres-
sion of C source
output to error
list file.

Item | Classification | Description Function Relation with Default See
Format Other Options Assumption | Page

13 Options for ~X [filename] Specifies output off Independent -NX 5-55
crossreference cross-reference
list creation list to file.
specification ~-NX Specifies suppres-

sion of cross-
reference list
output to file.

14 Options for -LW no. of Specifies no. of If no list file|! -LW132 5-57
list format columns columns per line is specified, (-LW8O0:
specification of a list file. this option console

become invalid.| output)
-LL no. of Specifies no. of Ditto. -LL66 5-59
lines lines to be printed {No page
per page of a list, ejection:
console
output
~-LT no. of Specifies no. of Ditto. -LT8 5-62
columns columns for
tabulation.
-LF Specifies addition Ditto. None 5-65

of formfeed code
to the end of
list file.

Item | Classification | Description Function Relation with Default See
Format Other Options Assumption | Page
15 Option for -Wllevel] Specifies output of | If -E or -SE -W1 5-67
warning output warning messages option is
specification to the console. specified with
: ~W, warning
messages will
also be output
to error list
file.
16 Options for -V Specifies output of | Independent -NV 5-69
execution execution status to
status output the console.
specification -NV Specifies suppres-
sion of execution
status output to -~
the console.
17 Option for -F filename Specifies input of Independent Allows 5-71
parameter compiler options input of
file input or input filename options or
specification from specified filenames
parameter file. from only
command

line.

L-D

Classification

Item Description Function Relation with Default See
Format Other Options Assumption | Page
18 Option for -T directory Specifies creation Independent Drive or 5-73
temporary file of a temporary file directory
creation path on a specified path. specified
specification by TMP or
current
drive or
directory
if TMP is
not speci-
fied.
19 Option for —-- Specifies output of | If this option | No HELP 5-75
HELP message HELP message to is specified, message
output the console. all the other will be
specification options will output.

be ignored.

NEC

	COVER
	INTRODUCTION
	CHAPTER 1. GENERAL
	1.1 What Is a C Compiler ?
	1.1.1 C Ianguage and Assembly language
	1.1.2 Development of microcomputer-applied products and role of this product

	1.2 Program Development Procedure by C Compiler
	1.2.1 Creating a source module file with the editor
	1.2.2 C compiler
	1.2.3 Assembler
	1.2.4 Linker
	1.2.5 Object converter
	1.2.6 Librarian
	1.2.7 Screen debugger

	1.3 Reminders Before Program Development
	1.4 Features of This C Compiler

	CHAPTER 2. PRODUCT OVERVIEW
	2.1 Contents of Floppy Disks
	2.1.1 System files
	2.1.2 Library files

	2.2 Forms of File Media Supplied
	2.3 System Configuration

	CHAPTER 3. EXECUTION OF C COMPILER
	3.1 Before Executing the C Compiler
	3.1.1 Confirming the contents of the supplied disk
	3.1.2 Sample program

	3.2 Procedure for C Compiler Execution

	CHAPTER 4. C COMPILER
	4.1 Input/Output Files of CCompiler
	4.2 How to Start Up the C Compiler
	4.2.1 Starting upthe C compiler
	4.2.2 Execution start and end messages

	4.3 C Compiler Options
	4.4 Optimization
	4.5 ROMable Processing of Programs
	4.5.1 At compile time
	4.5.2 At linkage time

	4.6 Error Check at Execution Time
	4.6.1 Error handling routine
	4.6.2 Error check library names

	CHAPTER 5. COMPILER OPTIONS
	5.1 Types of Compiler Options
	5.2 How to Specify Compiler Options
	5.3 Priority of Compiler Options
	5.4 Description of Each Compiler Option
	(1) Processor type specification (-C)
	(2) Object module file creation specification (-O/-NO)
	(3) Symbol name length specification (-S/-NS)
	(4) Symbol name upper-/lower-case specification (-CA/-NCA)
	(5) ROMable object file creation specification (-R/-NR)
	(6) Optimization process specification (-Q/-NQ)
	(7) Debug output information specification (-G/-NG)
	(8) Execution-time error check specification (-L/-NL)
	(9) Preprocess list file creation specification (-P/-NP, -K/-NK)
	(10) Preprocessing specification (-D/-ND, -U/-NU, -I)
	(11) Assembler source module file creation specification (-A/-NA, -SA/-NSA)
	(12) Error list file creation specification (-E/-NE, -SE/-NSE)
	(13) Cross-reference list file creation specification (-X/-NX)
	(14) List file format specification (-LW, -LL, -LT, and -LF)
	(15) Warning output specification (-W)
	(16) Execution status display specification (-V/-NV)
	(17) Parameter file specification (-F)
	(18) Temporary file creation directory specification (-T)
	(19) HELP message output specification (--)

	CHAPTER 6. OUTPUT FILES OF C COMPILER
	6.1 Object Module File
	6.2 Assembler Source Module File
	6.3 Error List File
	6.3.1 Error list file with C source
	6.3.2 Error list file containing error messages only

	6.4 Preprocess List File
	6.5 Cross-reference List File

	CHAPTER 7. EFFECTIVE UTILIZATION OF C COMPILER
	7.1 EXIT Status Function for Efficient Compilation
	7.2 Environment Variables for Development Environment Setting
	7.3 Interruption of Compile Operation

	CHAPTER 8. START-UP ROUTINES AND ERROR HANDLING ROUTINES
	8.1 General
	8.2 File Organization
	8.3 Description of Each Batch File
	8.3.1 Batch file for creating a start-up routine
	8.3.2 Batch file for updating error handling routine libraries

	8.4 Start-up Poutines
	8.4.1 Outline of start-up routine
	8.4.2 Description of sample program
	8.4.3 Points for improvement

	8.5 Error HandlingRoutines
	8.5.1 Outline of error handling routine
	8.5.2 Description of sample program
	8.5.3 Point for improvement

	CHAPTER 9. ERROR MESSAGES
	9.1 Types of Error Messages
	9.2 List of Error Messages

	APPENDIX A. SAMPLE PROGRAMS
	APPENDIX B. LIST OF HINTS ON USE
	APPENDIX C. LIST OF COMPILER OPTIONS

