
All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

CC-RL
C++

User’s Manual

Rev.1.02 Apr 2024

Applicable Revision
V1.14.00

U
ser's M

anual

www.renesas.com

© 2024 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of
these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or
other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims
any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is
inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not
limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products
are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury,
injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety
design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging
degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered trademarks
are the property of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

Table of Contents

1. OUTLINE .. 4
1.1 Feedback on the option -lang=cpp14 .. 4
1.2 Copyrights .. 4

2. OPTIONS .. 5
2.1 Existing options available under the C++14 specification ... 5

2.1.1 Compile options ... 5
2.1.2 Assemble options ... 8
2.1.3 Link options .. 8

3. COMPILER LANGUAGE SPECIFICATIONS ... 9
3.1 Basic language specifications .. 9

3.1.1 Unsupported C++ language specifications .. 9
3.1.2 Implementation-defined behavior of C++14 ... 9
3.1.3 Internal representation and allocation of data .. 11

3.2 Language extension specifications .. 13
3.2.1 Reserved words ... 13
3.2.2 Macros .. 14
3.2.3 #pragma directives ... 14
3.2.4 Intrinsic functions ... 14

4. SECTION SPECIFICATIONS ... 15
4.1 Section name ... 15

5. LIBRARY SPECITICATIONS .. 16
5.1 Outline .. 16
5.2 Supplied Libraries .. 16
5.3 Header Files ... 16

6. STARTUP ... 20
6.1 Startup Routine .. 20

6.1.1 Initialization of global objects of class type .. 20

7. MESSAGE .. 21
7.1 Message Formats .. 21

7.1.1 Format 1 ... 21
7.1.2 Format 2 ... 21

7.2 Message Types .. 21

8. NOTES ... 22
8.1 Missing information for source level debugging... 22
8.2 sbrk .. 22

CC-RL C++ User’s Manual 1.OUTLINE

R20UT5266EJ0102 Rev.1.02 Page 4 of 26
Apr.20.24

1. OUTLINE
This user's manual describes the specifications and notes when using the option -lang=cpp14, which allows

the compiler to compile the source program with C++14 standard and is a part of the C compiler package for
RL78 family CC-RL V1.14.00.

Please also refer to the CC-RL User’s Manual as well.

1.1 Feedback on the option -lang=cpp14
Please send your feedback on this feature from the URL below:

https://forms.office.com/r/wSGqp6BKic

1.2 Copyrights
This software uses the following softwares.
• LLVM and Clang are copyrights of University of Illinois at Urbana-Champaign.
• Protocol Buffers is copyright of Google Inc.

The libraries for C++ use the following softwares. Please refer to the license files included in the compiler

package for detail.
• compiler_rt
• libc++
• libc++abi
• newlib
Other software components are copyright of Renesas Electronics Corporation.

https://forms.office.com/r/wSGqp6BKic

CC-RL C++ User’s Manual 2.OPTIONS

R20UT5266EJ0102 Rev.1.02 Page 5 of 26
Apr.20.24

2. OPTIONS
Specify the following option for compiling a source program with C++14 standard.

-lang=cpp14

[Detailed description]
This option allows the compiler to compile a source program with C++14 standard (ISO/IEC 14882:2014).
• A compile error will occur when C source files are specified as input with this option. For details of the

kind of input/output files, please refer to “2.2 I/O Files” in CC-RL User's Manual.
• Please refer to the following section for the existing options that can be used with this option.

2.1 Existing options available under the C++14 specification

2.1.1 Compile options
This section shows the existing compile options allowed to combine with -lang=cpp14. "X" in the

"Combinable" column indicates that the option is just ignored, or an error message will be output.

Table 1 Compiler options available under the C++14 standard

Category Option Combinable Note
Version display
specification

-V ✓

Help display
specification

-help ✓

Output file
specification

-o ✓
-obj_path ✓
-asm_path ✓
-prep_path ✓

Source debugging
control

-g ✓ Some debug information of C++
standard specifications will be
discarded. Please refer to the section
“NOTES” below.

-g_line ✓
Device specification
relation

-cpu ✓
-use_mda ✓

Processing interrupt
specification

-P ✓
-S ✓
-c ✓

CC-RL C++ User’s Manual 2.OPTIONS

R20UT5266EJ0102 Rev.1.02 Page 6 of 26
Apr.20.24

Table 1 Compiler options available under the C++14 standard (2)

Category Option Combinable Note
Preprocessor control -D ✓

-U ✓
-I ✓
-preinclude ✓
-preprocess X

Memory model -memory_model={small |
medium}

✓

-far_rom ✓ Internal error may occur in some
programs.

Optimization -O{ size | speed | default | lite |
nothing }

✓

-goptimize ✓
Optimization
(detailed)

-Oinline_level[=value] ✓
-Oinline_size[=value] ✓
-Opipeline[={on|off}] ✓
-Ounroll[=value] ✓
-Otail_call[={on|off}] ✓
-Odelete_static_func[={on|off}] ✓
-Omerge_files X
-Ointermodule X
-Owhile_program X
-Oalias={ansi|noansi} X
-Osame_code={on|off} ✓

Additional
information output

-cref X
-pass_source ✓

Error output control -no_warning_num ✓ Applicable to the messages ranged for
W0510000-W0519999 and
W0530000-W0559999
(W0520000-W0529999 are not output
when -lang=cpp14 is specified).

-change_message ✓ Applicable to the messages ranged for
W0510000-W0519999 and
W0530000-W0549999
(W0520000-W0529999 are not output
when -lang=cpp14 is specified)

-error_file ✓

CC-RL C++ User’s Manual 2.OPTIONS

R20UT5266EJ0102 Rev.1.02 Page 7 of 26
Apr.20.24

Table 1 Compiler options available under the C++14 standard (3)

Category Option Combinable Note
Code generation
changing

-dbl_size={4|8} ✓
-signed_char ✓
-signed_bitfield X This option has no effect when

-lang=cpp14 is specified: The bitfield
type for which neither “signed” nor
“unsigned” is specified as
“signed”. This is different from the
interpretation when -lang=c or
-lang=c99 is specified: those options
handle the bitfield type for which neither
“signed” nor “unsigned” is specified as
“unsigned”.

-switch ✓
-volatile X
-merge_string X
-pack ✓
-stuff X
-stack_protector
-stack_protector_all

X

-insert_nop_with_label X
-control_flow_integrity X

Extensions -strict_std X
-refs_without_declaration X
-large_variable X
-nest_comment X
-character_set X This option has no effect when

-lang=cpp14 is specified: The encoding
in the source file is always interpreted
as UTF-8.

MISRA check -misra2004 X
-misra2012 X
-ignore_files_misra X
-check_language_extension X
-misra_intermodule X

Subcommand file
specification

-subcommand ✓

Assembler and linker
control

-asmopt=arg ✓
-lnkopt=arg ✓
-asmcmd=filename ✓
-lnkcmd=filename ✓
-dev=filename ✓

Compiler transition
support

-convert_cc={ca78k0r|nc30|iar} X
-unaligned_pointer_for_ca78k0r X

CC-RL C++ User’s Manual 2.OPTIONS

R20UT5266EJ0102 Rev.1.02 Page 8 of 26
Apr.20.24

2.1.2 Assemble options
All existing assemble options are allowed to combine with -lang=cpp14.

2.1.3 Link options
The existing link option below is not allowed to combine with -lang=cpp14. The other options are allowed

to combine with -lang=cpp14.

Table 2 Link options available under the C++14 standard

Category Option Combinable Note
Output control -VFINFO X

CC-RL C++ User’s Manual 3.COMPILER LANGUAGE SPECIFICATIONS

R20UT5266EJ0102 Rev.1.02 Page 9 of 26
Apr.20.24

3. COMPILER LANGUAGE SPECIFICATIONS

3.1 Basic language specifications

3.1.1 Unsupported C++ language specifications
The following language specifications are not supported.
• Exception handling
• Runtime type identification
• Threads
• Atomic operations

3.1.2 Implementation-defined behavior of C++14
This section covers the implementation-defined behavior.

Table 3 Implementation-defined behavior

Section No. Item Description
1.3.6 diagnostic message Refer to "7. Message".
1.4 required libraries for freestanding implementation Refer to "5. Library Specifications".
1.7 bits in a byte 8 bits.
1.9 interactive device What constitutes an interactive device is not

specified.
1.10 number of threads in a program under a freestanding

implementation
Multi-threaded execution is not supported.

2.2 mapping physical source file characters to basic
source character set

Map as UTF-8 as-is.

2.2 physical source file characters UTF-8.
2.2 converting characters from source character set to

execution character set
The source character set and the execution
character set are the same.

2.2 whether source of translation units must be available
to locate template definitions

The source is not required.

2.9 mapping header name to header or external source
file

Interpreted as described and mapped to a
file name.

2.14.3 value of multicharacter literal the lower 4 bytes of the execution character
set.

2.14.3 value of wide-character literal containing multiple
characters

the last character in the execution character
set.

2.14.3 value of wide-character literal with single c-char that is
not in execution wide-character set

the value of the character.

2.14.3 encoding of universal character name not in execution
character set

the value of the character.

2.14.3 semantics of non-standard escape sequences ¥e and ¥E are valid. Both values are 0x1b.
2.14.3 value of character literal outside range of

corresponding type
An error occurs.

2.14.5 concatenation of some types of string literals An error occurs.

CC-RL C++ User’s Manual 3.COMPILER LANGUAGE SPECIFICATIONS

R20UT5266EJ0102 Rev.1.02 Page 10 of 26
Apr.20.24

Table 3 Implementation-defined behavior

Section No. Item Description
3.6.1 defining main in freestanding environment Not defined.
3.6.1 parameters to main Not defined.
3.6.1 start-up and termination in freestanding environment Not defined. Depends on the startup

routine.
3.6.1 linkage of main C linkage.
3.6.2 dynamic initialization of static objects before main Depends on the startup routine.
3.6.2 dynamic initialization of thread-local objects before

entry
Threads are not supported.

3.9.1 extended signed integer types Extended signed integer types are not
supported.

3.9.1 representation of char 1 byte.
3.9.1 signedness of char Unsigned char type. However, it can be

switched to signed char type by
-signed_char option.

3.9.1 value representation of floating-point types Compliant with IEEE754.
3.9.2 value representation of pointer types Refer to "3.1.3 Internal representation and

value area of data".
3.11 alignment Refer to "3.1.3 Internal representation and

value area of data".
4.13 rank of extended signed integer type Extended signed integer type is not

supported.
5.3.3 sizeof applied to fundamental types other than char,

signed char, and unsigned char
Refer to "3.1.3 Internal representation and
value area of data".

5.3.4 support for over-aligned types Over-aligned types are not supported.
5.8 result of right shift of negative value Arithmetic shift is performed.
7.2 underlying type for enumeration Refer to "3.1.3 Internal representation and

value area of data".
7.4 meaning of asm declaration The asm declaration is not supported.
8.4.1 string resulting from __func__ A function name is returned.
16.2 nesting limit for #include directives The nesting limit depends on the memory

available.
16.6 #pragma Refer to "Pragma directive".
16.8 text of __DATE__ when date of translation is not

available
The date is always available.

16.8 text of __TIME__ when time of translation is not
available

The time is always available.

16.8 definition and meaning of __STDC__ Defined as 1.
16.8 definition and meaning of __STDC_VERSION__ Not defined.
17.6.5.12 exceptions thrown by standard library functions that

do not have an exception specification
Exceptions are not supported.

18.2 type of size_t unsigned int.
18.5 exit status Not defined.

CC-RL C++ User’s Manual 3.COMPILER LANGUAGE SPECIFICATIONS

R20UT5266EJ0102 Rev.1.02 Page 11 of 26
Apr.20.24

3.1.3 Internal representation and allocation of data
This section describes the internal representation and value range for each data type in CC-RL.

(1) Basic type

Table 4 Basic types

Data Type Size
(byte)

Alignment
(byte)

Signed/
Unsigned

Data range Note
Minimum Value Maximum Value

char 1 1 Unsigned 0 +255 The value range
is the same as
that of signed
char when
-signed_char is
specified.

signed char 1 1 Signed -128 +127

unsigned char 1 1 Unsigned 0 +255

short 2 2 Signed -32768 +32767

signed short 2 2 Signed -32768 +32767
unsigned short 2 2 Unsigned 0 +65535

int 2 2 Signed -32768 +32767

signed int 2 2 Signed -32768 +32767

unsigned int 2 2 Unsigned 0 +65535
long 4 2 Signed -2147483648 +2147483647

singed long 4 2 Signed -2147483648 +2147483647

unsigned long 4 2 Unsigned 0 +4294967295

long long 8 2 Signed -9223372036
854775808

+9223372036
854775807

signed long long 8 2 Signed -9223372036
854775808

+92233720368
54775807

unsigned long
long

8 2 Unsigned 0 +1844674407
3709551615

CC-RL C++ User’s Manual 3.COMPILER LANGUAGE SPECIFICATIONS

R20UT5266EJ0102 Rev.1.02 Page 12 of 26
Apr.20.24

Table 4 Basic types (2)

Data Type Size
(byte)

Alignment
(byte)

Signed/
Unsigned

Data range Note

Minimum Value Maximum Value
wchar_t 2 2 Unsigned 0 +65535

char16_t 2 2 Unsigned 0 +65535
char32_t 4 2 Unsigned 0 +4294967295

bool 1 1 Unsigned - - Only the bit 0 is
meaningful.
The bits from 1
to 7 are
undefined.

float 4 2 Signed 1.17549435E-38F 3.40282347E+38F

double
(-double_size=4)

4 2 Signed 1.17549435E-38F 3.40282347E+38F

double
(-double_size=8)

8 2 Signed 2.2250738585072
014E-308

1.7976931348623
158E+308

long double
(-double_size=4)

4 2 Signed 1.17549435E-38F 3.40282347E+38F

long double
(-double_size=8)

8 2 Signed 2.2250738585072
014E-308

1.79769313486
23158E+308

(2) Derived types

• Pointer and array types

Table 5 Pointer and array types

Data Type Size(byte) Alignment(byte)
Pointer type near pointer 2 2

far pointer 4 2
Lvalue reference type near reference 2 2
Rvalue reference type far reference 4 2
Pointer to data member type 2 2
Pointer to member function type 4 2
Array type The size of the element

type * The number of the
elements

The alignment of the
element type

CC-RL C++ User’s Manual 3.COMPILER LANGUAGE SPECIFICATIONS

R20UT5266EJ0102 Rev.1.02 Page 13 of 26
Apr.20.24

• Enumeration type

Table 6 Enumeration type

The minimum value for
enumerator

The maximum value for
enumerator

Underlying type Note

-128 127 signed char -
0 255 unsigned char If all enumerators are in the range

0-255, this representation applies.
-32768 32767 signed short -
0 65535 unsigned short If all enumerators are in the range

0-65535, this representation
applies.

-2147483647 2147483647 signed long -
0 4294967295 unsigned long If all enumerators are in the range

0-4294967295, this representation
applies.

-9223372036854775808 9223372036854775807 signed long long -
0 18446744073709551615 unsigned long long If all enumerators are in the range

0-18446744073709551615, this
representation applies.

Otherwise signed long long A warning will be output.

3.2 Language extension specifications

3.2.1 Reserved words
Please refer to “4.2.1 Reserved words” in the CC-RL User’s Manual for detail of the keywords reserved by

CC-RL.
However, the following reserved words are not supported.
• __saddr
• __callt
• __sectop
• __secend

Some of the specifications for the following reserved word differ from those when the -lang=c99 option is

specified.
• __inline

When the -lang=cpp14 option is specified, the keyword __inline is an alias for the keyword inline; this is
for compliance with the specification of inline for C++.

CC-RL C++ User’s Manual 3.COMPILER LANGUAGE SPECIFICATIONS

R20UT5266EJ0102 Rev.1.02 Page 14 of 26
Apr.20.24

3.2.2 Macros
The Table 6 shows the macros whose definitions differ along with the parameter given for the option -lang.

Please also refer to “4.2.2 Macros” in the CC-RL User’s Manual as well for detail of the other macros.
Note that the values in the table are in decimal.

Table 7 Macros

Name Definition when
-lang=cpp14 is specified

Definition when -lang=c or -lang=c99 is specified

__cplusplus 201402L Undefined
__clang__ 1 Undefined
__STDC_HOSTED__ 0 0 (when -lang=c99 is specified)
__STDC__ 1 1 (when -strict_std is specified)
__STDC_VERSION__ Undefined 199409L(when both -lang=c and -strict_std are specified)

199901L (when -lang=c99 is specified)
__STDC_IEC_559__ 1 1 (when -lang=c99 is specified)

3.2.3 #pragma directives
#pragma directives described in “4.2.4 #pragma directives” in the CC-RL User’s Manual are not supported.

3.2.4 Intrinsic functions
Intrinsic functions described in “4.2.7 Intrinsic functions” in the CC-RL User’s Manual are supported.

Please refer to the CC-RL User’s Manual for details.

CC-RL C++ User’s Manual 4.SECTION SPECIFICATIONS

R20UT5266EJ0102 Rev.1.02 Page 15 of 26
Apr.20.24

4. SECTION SPECIFICATIONS
This section describes the names and the relocation attributes of the reserved sections when compiling

under C++14 language specifications. Please refer to the CC-RL User’s Manual for the other sections.

4.1 Section name

Table 8 Reserved section names

Default Section Name Relocation Attribute Description
.init_array CONSTF Section for the global constructors
.callt0 CALLT0 Section for the table used when callt functions

called
.text TEXT Section for code (allocated to the near area)
.textf TEXTF Section for code (allocated to the far area)
.textf_unit64kp TEXTF_UNIT64KP Section for code (section is allocated so that the

start address is an even address and the section
does not exceed the (64 Kbytes - 1) boundary)

.const CONST ROM data (allocated to the near area) (within the
mirror area)

.constf CONSTF ROM data (allocated to the far area)

.data DATA Section for near initialized data (with initial value)

.dataf DATAF Section for far initialized data (with initial value)

.sdata SDATA Section for initialized data (with initial value,
allocated to saddr)

.bss BSS Section for data area (without initial value, allocated
to near area)

.bssf BSSF Section for data area (without initial value, allocated
to far area)

.sbss SBSS Section for data area (without initial value, allocated
to saddr)

.option_byte OPT_BYTE Section specific for user option byte and on-chip
debugging specification

.security_id SECUR_ID Section specific for security ID specification

.flash_security_id FLASH_SECUR_ID Section specific for flash programmer security ID
specification

.vect<vector table address> AT Interrupt vector table
If the -split_vect option is specified, a section is
generated based on “.vect<vector table address>”.
The vector table address is in hexadecimal notation

CC-RL C++ User’s Manual 5.LIBRARY SPECITICATIONS

R20UT5266EJ0102 Rev.1.02 Page 16 of 26
Apr.20.24

5. LIBRARY SPECITICATIONS

5.1 Outline
The CC-RL provides the dedicated libraries for compiling C++ source programs based on the software

below. Please refer to the source program included in the compiler package for detail.
• compiler_rt
• libc++
• libc++abi
• newlib

5.2 Supplied Libraries
The following 6 libraries are provided for each of the CPU core types S1, S2, and S3 specified by the option

-cpu. All these libraries are dedicated for uses with -lang=cpp14 specified, and does not supported uses with
-lang=c or -lang=c99.

Table 9 Supplied libraries

Library Name Outline
rl78_libc.lib The standard library (C99)
rl78_libm.lib The standard math library (C99)
rl78_libgloss.lib The low-level library
rl78_libcxx.lib The standard library (C++14)
rl78_libcxxabi.lib The runtime library for ABI support (C++14)
rl78_compiler-rt.lib The runtime library for the compiler

* The libraries corresponding for the S2 core are built with multiplier and divider/multiply-accumulator enabled
(-use_mda=mda).

* All the libraries assume single precision for the “double” and “long double” floating point type (-dbl_size=4).

5.3 Header Files
The header files required for using the C++ libraries are listed below.

Table 10 Header Files

Category File Name Description
The standard library (C99) <assert.h> Header file for program diagnostics

<complex.h> Header file for complex number
<ctype.h> Header file for character conversion

and classification
<errno.h> Header file for reporting error

condition

CC-RL C++ User’s Manual 5.LIBRARY SPECITICATIONS

R20UT5266EJ0102 Rev.1.02 Page 17 of 26
Apr.20.24

Table 10 Header Files (2)

Category File Name Description
The standard library (C99) <float.h> Header file for floating-point

representation and operation
<inttypes.h> Header file for the maximum-width

integer type
<iso646.h> Header file for alternative spellings

of macro names
<limits.h> Header file for quantitative limiting of

integers
<locale.h> Header file for localization
<math.h> Header file for mathematical

calculation
<setjmp.h> Header file for non-local jump
<signal.h> Header file for signal handling
<stdarg.h> Header file for supporting functions

having variable arguments
<stdbool.h> Header file for logical types and

values
<stddef.h> Header file for common definitions
<stdint.h> Header file for integer type of the

specified width
<stdio.h> Header file for standard I/O
<stdlib.h> Header file for general utilities
<string.h> Header file for manipulation of

sequential memory and character
string

<tgmath.h> Header file for type generic
mathematical calculation

<wchar.h> Header file for utilities related to
multibyte/wide character

<wctype.h> Header file for wide character
conversion and classification

The standard library (C++14) <algorithm> Header file for algorithmic operations
<array> Header file for fixed sized sequential

container
<bitset> Header file for fixed sized sequential

bit container
<chrono> Header file for date and time
<codecvt> Header file for character code

conversion
<complex> Header file for complex number
<condition_variable> Header file for synchronization

among the threads

CC-RL C++ User’s Manual 5.LIBRARY SPECITICATIONS

R20UT5266EJ0102 Rev.1.02 Page 18 of 26
Apr.20.24

Table 10 Header Files (3)

Category File Name Description
The standard library (C++14) <deque> Header file for double ended queue

<forward_list> Header file for singly-linked list
<fstream> Header file for file stream
<functional> Header file for function object
<future> Header file for providing “future”

pattern
<initializer_list> Header file for initializer list
<iomanip> Header file for I/O manipulator and

formatting
<ios> Header file for base classes of

iostream
<iosfwd> Header file for forward declaration of

iostream
<iostream> Header file for standard iostream

objects
<istream> Header file for input streams
<iterator> Header file for iterators
<limits> Header file for properties of the

implementation’s representation of
the arithmetic type

<list> Header file for doubly-linked list
<locale> Header file for the information

peculiar to a locale
<map> Header file for associative container

of unique keys and values
<memory> Header file for memory management
<mutex> Header file for mechanisms for

mutual exclusion
<new> Header file for dynamic storage

allocation
<numeric> Header file for generalized numeric

operations
<ostream> Header file for output streams
<queue> Header file for queue
<random> Header file for random number

generation
<ratio> Header file for compile time rational

arithmetic
<regex> Header file for regular expression

template
<scoped_allocator> Header file for scoped allocator
<set> Header file for associative container

of unique keys

CC-RL C++ User’s Manual 5.LIBRARY SPECITICATIONS

R20UT5266EJ0102 Rev.1.02 Page 19 of 26
Apr.20.24

Table 10 Header Files (4)

Category File Name Description
The standard library (C++14) <sstream> Header file for string stream

<stack> Header file for stack
<streambuf> Header file for stream buffers
<string> Header file for string classes
<system_error> Header file for system error support
<tuple> Header file for tuples
<type_traits> Header file for type traits
<typeindex> Header file for type indexes
<unordered_map> Header file for unordered associative

containers of unique kyes and
values

<unordered_set> Header file for unordered associative
containers of unique keys

<utility> Header file for utility components
<valarray> Header file for numeric arrays
<vector> Header file for vector

The C compatible standard
libraries

<cassert> Header file compatible with assert.h
<ccomplex> Header file compatible with

complex.h
<cctype> Header file compatible with ctype.h
<cerrno> Header file compatible with errno.h
<cfloat> Header file compatible with float.h
<cinttypes> Header file compatible with

inttypes.h
<ciso646> Header file compatible with iso646.h
<climits> Header file compatible with limits.h
<clocale> Header file compatible with locale.h
<cmath> Header file compatible with math.h
<csetjmp> Header file compatible with setjmp.h
<csignal> Header file compatible with signal.h
<cstdarg> Header file compatible with stdarg.h
<cstdbool> Header file compatible with stdbool.h
<cstddef> Header file compatible with stddef.h
<cstdint> Header file compatible with stdint.h
<cstdio> Header file compatible with stdio.h
<cstdlib> Header file compatible with stdlib.h
<cstring> Header file compatible with string.h
<ctgmath> Header file compatible with tgmath.h
<cwchar> Header file compatible with wcchar.h
<cwctype> Header file compatible with wctype.h

CC-RL C++ User’s Manual 6.STARTUP

R20UT5266EJ0102 Rev.1.02 Page 20 of 26
Apr.20.24

6. STARTUP

6.1 Startup Routine
Before entering the main function, execute the following processes in addition to those described in 8.2

Startup Routine in CC-RL User’s Manual.

6.1.1 Initialization of global objects of class type
Call the constructor for each object of class type declared with static storage duration.

The addresses of those constructors are stored in the section named .init_array. Put the following

description in the startup routine for calling all of them.

 MOVW BC,#LOWW(SIZEOF(.init_array))

 BR $.L2_INIT

.L1_INIT:

 DECW BC

 DECW BC

 MOV ES,#HIGHW(STARTOF(.init_array))

 MOVW AX,ES:LOWW(STARTOF(.init_array))[BC]

 MOV CS,#0x00

 PUSH BC

 CALL AX

 POP BC

.L2_INIT:

 CLRW AX

 CMPW AX,BC

 BNZ $.L1_INIT

CC-RL C++ User’s Manual 7.MESSAGE

R20UT5266EJ0102 Rev.1.02 Page 21 of 26
Apr.20.24

7. MESSAGE

7.1 Message Formats
There are two formats of message when -lang=cpp14 is specified.

7.1.1 Format 1
This kind of format contains a message number as explained in “10 MESSAGE” in CC-RL User’s Manual.

Please refer to the manual for detail.

Those messages are numbered as:

0510000-0519999, 0530000-0539999, 0540000-0549999, 0550000-0559999, and
0560000-0569999.

(1) When the file name and line number are included

file-name (line-number) : message-type 05 message-number : message

(2) When the file name and line number aren’t included

message-type 05 message-number : message

7.1.2 Format 2
This kind of format is output as below.

(1) When the file name, line number, and column number are included

file-name : line-number : column-number : message-type : message

(2) When neither the file name, line number, nor column number are included

message-type : message

7.2 Message Types
The message types are as follows.

Table 11 Message Types

Message Type Description
 Format 1 Format 2

C - Internal error : Processing is aborted.
No object codes are generated.

E error Error : Processing is aborted if a set number of errors occur.
No object codes are generated.

F fatal Fatal error : Processing is aborted.
No object codes are generated.

M remark Information : Processing continues.
Object codes are generated.

W warning Warning : Processing continues.
Object codes are generated (They might not be what the user intended).

- note Additional information for the other types of messages.

CC-RL C++ User’s Manual 8.NOTES

R20UT5266EJ0102 Rev.1.02 Page 22 of 26
Apr.20.24

8. NOTES

8.1 Missing information for source level debugging
Information for source level debugging for the language specification listed below is not supported.

• Anonymous unions
• Namespaces
• Derived classes
 Virtual base classes
 Virtual functions

• Templates

8.2 sbrk
The standard library calls the function sbrk in processing such as dynamic memory management. The

function is included in low level support library rl78_libgloss.lib and defined as below. If you prefer sbrk to work
differently, please implement your own sbrk and link it to your application.

#define HEAPSIZE 0x400

union HEAP_TYPE {

 signed long dummy;

 signed char heap[HEAPSIZE];

};

static union HEAP_TYPE heap_area ;

static signed char *brk=(void *)&heap_area;

void *sbrk(int size)

{

 void *p = 0;

 if (brk + size > heap_area.heap + HEAPSIZE) {

 return (void *)-1;

 }

 p = brk;

 brk += size;

 return p;

}

The copyright of the program above is reserved by Renesas Electronics Corporation. Please note the

dislaimer below as well.

DISCLAIMER

This software is supplied by Renesas Electronics Corporation and is only intended for use with Renesas

products. No other uses are authorized. This software is owned by Renesas Electronics Corporation and

is protected under all applicable laws, including copyright laws.

CC-RL C++ User’s Manual 8.NOTES

R20UT5266EJ0102 Rev.1.02 Page 23 of 26
Apr.20.24

THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES REGARDING THIS SOFTWARE, WHETHER

EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS

FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY DISCLAIMED. TO THE

MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS ELECTRONICS CORPORATION NOR ANY OF

ITS AFFILIATED COMPANIES SHALL BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL

DAMAGES FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS AFFILIATES HAVE BEEN ADVISED

OF THE POSSIBILITY OF SUCH DAMAGES.

Renesas reserves the right, without notice, to make changes to this software and to discontinue the

availability of this software. By using this software, you agree to the additional terms and conditions

found by accessing the following link: http://www.renesas.com/disclaimer

Copyright (C) 2024 Renesas Electronics Corporation. All rights reserved.

C - 1

Revision History CC-RL C++ User’s Manual

Rev. Date Description

Page Summary
1.00 Jan.20.23  First Edition issued

1.01 Jul.20.23 4 Feedback on the Technical Preview Edition is added.

13 Table 6 is changed.

13 Unsupported reserved words are added.

14 Value of __STDC_IEC_559__ is changed.

1.02 Apr.20.24  Removed the descriptions “Technical Preview Edition” from the entire document as
we update it for CC-RL V1.14.00.

16 Unsupported header files(time.h, ctime, exception, stdexcept) are deleted.

22 “8.2 sbrk” is added.

CC-RL
C++ User’s Manual

Publication Date: Rev.1.02 Apr.20.24

Published by: Renesas Electronics Corporation

CC-RL
C++

User's Manual

R20UT5266EJ0102

	1. OUTLINE
	1.1 Feedback on the option -lang=cpp14
	1.2 Copyrights

	2. OPTIONS
	2.1 Existing options available under the C++14 specification
	2.1.1 Compile options
	2.1.2 Assemble options
	2.1.3 Link options

	3. COMPILER LANGUAGE SPECIFICATIONS
	3.1 Basic language specifications
	3.1.1 Unsupported C++ language specifications
	3.1.2 Implementation-defined behavior of C++14
	3.1.3 Internal representation and allocation of data

	3.2 Language extension specifications
	3.2.1 Reserved words
	3.2.2 Macros
	3.2.3 #pragma directives
	3.2.4 Intrinsic functions

	4. SECTION SPECIFICATIONS
	4.1 Section name

	5. LIBRARY SPECITICATIONS
	5.1 Outline
	5.2 Supplied Libraries
	5.3 Header Files

	6. STARTUP
	6.1 Startup Routine
	6.1.1 Initialization of global objects of class type

	7. MESSAGE
	7.1 Message Formats
	7.1.1 Format 1
	7.1.2 Format 2

	7.2 Message Types

	8. NOTES
	8.1 Missing information for source level debugging
	8.2 sbrk

	Revision History

