

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

CB79SIM V.1.01
User’s Manual

U
ser’s M

anual

Rev.1.00 2003.05

Custom Builder for M3T-PD79SIM

• Microsoft, MS-DOS, Windows, and Windows NT are registered trademarks of Microsoft Corporation in the U.S. and other countries.
• IBM and AT are registered trademarks of International Business Machines Corporation.
• Intel and Pentium are registered trademarks of Intel Corporation.
• Adobe, Acrobat, and Acrobat Reader are trademarks of Adobe Systems Incorporated.
• All other brand and product names are trademarks, registered trademarks or service marks of their respective holders.

Keep safety first in your circuit designs!
 Renesas Technology Corporation and Renesas Solutions Corporation put the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to
personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with
appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention
against any malfunction or mishap.

Notes regarding these materials
 These materials are intended as a reference to assist our customers in the selection of the Renesas Technology product best suited to
the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corporation, Renesas Solutions Corporation or a third party.
 Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples
contained in these materials.
 All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information
on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation and Renesas
Solutions Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers
contact Renesas Technology Corporation, Renesas Solutions Corporation or an authorized Renesas Technology product distributor
for the latest product information before purchasing a product listed herein. The information described here may contain technical
inaccuracies or typographical errors. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility
for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by
Renesas Technology Corporation and Renesas Solutions Corporation by various means, including the Renesas home page
(http://www.renesas.com).
 When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and
algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the
information and products. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any
damage, liability or other loss resulting from the information contained herein.
 Renesas Technology semiconductors are not designed or manufactured for use in a device or system that is used under
circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation, Renesas Solutions
Corporation or an authorized Renesas Technology product distributor when considering the use of a product contained herein for any
specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
 The prior written approval of Renesas Technology Corporation and Renesas Solutions Corporation is necessary to reprint or reproduce
in whole or in part these materials.
 If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from
the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport
contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
 Please contact Renesas Technology Corporation or Renesas Solutions Corporation for further details on these materials or the
products contained therein.

For inquiries about the contents of this document or product, fill in the text file the installer generates in the following directory and email
to your local distributor.

¥SUPPORT¥Product-name¥SUPPORT.TXT

Renesas Tools Homepage http://www.renesas.com/en/tools

3

1. OVERVIEW ... 9

1.1. SETTING UP CB79SIM .. 9

1.2. FEATURES OF CB79SIM .. 9

1.2.1. Same user interface as available with PD79SIM... 9

1.2.2. Development environment where programming, building, and debugging all

are integrated.. 9

1.2.3. Creation of custom command and custom window programs.......................... 9

1.2.4. PD79SIM's Register, Memory, Dump, and Script Windows............................ 9

2. FUNCTION OF EACH WINDOW ... 10

2.1. CB79SIM WINDOW ... 11

2.1.1. Menu Bar .. 11

2.1.2. Tool Bar .. 12

2.2. PROJECT WINDOW ... 13

2.2.1. Menu Bar .. 13

2.3. MESSAGE WINDOW .. 13

2.3.1. Menu Bar .. 13

2.4. EDITOR WINDOW ... 14

2.4.1. Menu Bar .. 14

2.5. LOCAL WINDOW... 14

2.5.1. Menu Bar .. 14

2.6. GLOBAL WINDOW... 14

2.6.1. Menu Bar .. 14

3. METHOD FOR CREATING A PROGRAM .. 15

3.1. CREATING A CUSTOM COMMAND PROGRAM .. 15

3.1.1. Creating New Project for Custom Command Program.................................. 15

3.1.2. Creating New Source File... 17

3.1.3. Add Source File to Project .. 19

3.1.4. Building a Project ... 19

3.1.5. Execution Example of Custom Command Program....................................... 21

3.2. CREATING A CUSTOM WINDOW PROGRAM... 22

3.2.1. Creating New Project for Custom Window Program 22

3.2.2. Editing Automatically Created Framework Source File................................ 24

3.2.3. Execution Example of Custom Window Program .. 25

4

3.3. USING SETUP DIALOG BOX... 26

3.3.1. Project Setup Area.. 26

3.3.2. Source File Setup Area... 27

3.3.3. Include File and Library File Search Path Setup Area 28

3.3.4. Library Setup Area... 29

3.4. USING BREAKPOINT DIALOG BOX ... 31

3.4.1. File name setup/display area.. 31

3.4.2. Line number setup/display area... 31

3.4.3. Breakpoint list area.. 31

3.4.4. Enter button ... 31

3.4.5. Cancel button.. 31

3.4.6. Add button .. 31

3.4.7. Delete button .. 32

3.4.8. Enable button ... 32

3.4.9. Disable button... 32

3.4.10. Jump button.. 32

4. PROGRAMMING LANGUAGE SPECIFICATIONS 33

5. REFERENCE... 34

5.1. STANDARD FUNCTIONS (STDLIB.LIB)... 34

5.1.1. malloc: Allocate memory from heap area ... 34

5.1.2. free: Release the area allocated by malloc() function..................................... 34

5.1.3. strlen: Get the length of character string .. 35

5.1.4. strcat: Concatenate character strings .. 35

5.1.5. strcmp: Compare character strings.. 35

5.1.6. strcpy: Copy character string ... 35

5.1.7. strtoi: Convert character string into value .. 36

5.1.8. gets: Input character string (from Script Window).. 36

5.1.9. exit: Terminate program execution.. 36

5.1.10. fopen: Open a file .. 37

5.1.11. fclose: Close a file.. 37

5.1.12. fseek: Move file pointer ... 37

5.1.13. fgetc: Input character (from file)... 37

5.1.14. fputc: Output character (to file).. 37

5.1.15. fgets: Input character string (from file).. 38

5.1.16. fputs: Output character string (to file) ... 38

5

5.1.17. printf: Output characters with format (to Script Window) 38

5.1.18. sprintf: Output characters with format (to memory) 38

5.1.19. fprintf: Output characters with format (to file).. 39

5.2. SYSTEM CALL FUNCTIONS FOR DEBUGGER OPERATION (SYSTEM.LIB)........................ 40

5.2.1. _cpu_go: Execute program in free-run mode ... 42

5.2.2. _cpu_gb: Execute program with break... 42

5.2.3. _cpu_stop: Stop program execution.. 42

5.2.4. _cpu_reset: Reset the target CPU .. 43

5.2.5. _cpu_src_step: Execute program one source line at a time............................ 43

5.2.6. _cpu_step: Execute program one instruction at a time.................................. 43

5.2.7. _cpu_src_over: Execute program one source line at a time including

subroutines.. 43

5.2.8. _cpu_over: Execute program one instruction at a time including subroutines44

5.2.9. _cpu_src_return: Return from current to calling routine one source line at a

time .. 44

5.2.10. _cpu_return: Return from current to calling routine one instruction at a

time ... 44

5.2.11. _cpu_wait: Wait until program execution stops... 44

5.2.12. _reg_get_reg: Get register value... 45

5.2.13. _reg_put_reg: Set register value... 45

5.2.14. _reg_get_pc: Get program counter value.. 45

5.2.15. _reg_put_pc: Set program counter value .. 46

5.2.16. _reg_clear_cache: Clear register cache ... 46

5.2.17. _mem_get: Get memory value... 46

5.2.18. _mem_put: Set memory value... 46

5.2.19. _mem_get_endian: Get memory value with endian attached 47

5.2.20. _mem_put_endian: Set memory value with endian attached 47

5.2.21. _mem_fill: Fill memory ... 48

5.2.22. _mem_move: Transfer memory block ... 48

5.2.23. _mem_clear_cache: Clear memory cache.. 48

5.2.24. _break_set: Set/enable software break ... 49

5.2.25. _break_get: Get settings of software breaks... 49

5.2.26. _break_reset: Clear software break .. 49

5.2.27. _break_reset_all: Clear all software breaks.. 50

5.2.28. _break_disable: Disable software break.. 50

5.2.29. _break_disable_all: Disable all software breaks... 50

6

5.2.30. _break_enable_all: Enable all software breaks... 50

5.2.31. _break_search: Get attribute of software break settings 51

5.2.32. _rram_clear: Clear RAM monitor memory ... 51

5.2.33. _rram_get_area: Get RAM monitor area .. 51

5.2.34. _rram_set_area: Set RAM monitor area ... 51

5.2.35. _rram_get_size: Get size of RAM monitor area .. 52

5.2.36. _rram_get_data: Get RAM monitor data .. 52

5.2.37. _info_check_run: Check execution status... 52

5.2.38. _info_service: Get information on service contents 53

5.2.39. _info_cpu: Get CPU information... 53

5.2.40. _info_get_map: Get map information ... 54

5.2.41. _info_check_map: Check mapped area ... 54

5.2.42. _info_get_suffix: Get load file extension ... 54

5.2.43. _info_set_suffix: Set load file extension .. 55

5.2.44. _scope_set_obj: Set scope by object file name ... 55

5.2.45. _scope_set_addr: Set scope by address.. 55

5.2.46. _sym_add_sym: Enter symbols ... 56

5.2.47. _sym_val2sym: Get symbol for value.. 56

5.2.48. _sym_sym2val: Get value for symbol.. 57

5.2.49. _sym_add_bit: Enter Bit symbols.. 57

5.2.50. _sym_val2bit: Get bit symbol for address and bit number 57

5.2.51. _sym_bit2val: Get address and bit number for bit symbol 58

5.2.52. _line_addr2line: Get source line for address .. 58

5.2.53. _line_line2addr: Get address for source line .. 58

5.2.54. _src_get_name: Get list of source file names .. 59

5.2.55. _obj_get_name: Get list of object file names ... 59

5.2.56. _obj_addr2obj: Get object file name by address .. 59

5.2.57. _func_get_name: Get list of function names... 60

5.2.58. _exp_eval: Evaluate assembler expression... 61

5.2.59. _scri_echo_on: Turn on output to script window.. 62

5.2.60. _scri_echo_off: Turn off output to script window.. 62

5.2.61. _c_exp_eval: Evaluate C-language expression ... 63

5.2.62. _get_shared_mem: Get shared variable.. 64

5.2.63. _set_shared_mem: Set shared variable... 64

5.2.64. _delete_shared_mem: Delete shared variable .. 65

5.2.65. _get_err_msg: Get PD79SIM's error message statement........................... 65

7

5.2.66. _get_tick_count: Get elapsed time since Windows startup 65

5.2.67. _get_time: Get current system date and time .. 66

5.2.68. _disp_src_line: Change the contents displayed in program window.......... 66

5.2.69. _cv_get_data: Get coverage data... 67

5.2.70. _cv_set_data: Set coverage data.. 68

5.2.71. _cv_clear_data: Clear coverage data... 68

5.2.72. _cv_clear_cache: Clear coverage cache ... 68

5.2.73. _syscom: Execute PD79SIM's script command... 69

5.2.74. _doscom: Execute DOS command ... 69

5.2.75. List of Simulator Errors.. 70

5.3. SYSTEM CALL FUNCTIONS FOR WINDOW OPERATION (WINLIB.LIB) 71

5.3.1. _win_printf: Output text with format included ... 72

5.3.2. _win_puts: Output character string to custom window................................. 72

5.3.3. _win_set_cursor: Set cursor position .. 72

5.3.4. _win_set_color: Set text color ... 73

5.3.5. _win_set_bkcolor: Set background color... 74

5.3.6. _win_column2dot: Convert cursor coordinates into pixel coordinates........... 74

5.3.7. _draw_text_out: Output character string to custom window 75

5.3.8. _draw_set_color: Set text color ... 75

5.3.9. _draw_set_bkcolor: Set background color .. 76

5.3.10. _draw_set_bkmode: Set background mode ... 76

5.3.11. _draw_set_font: Set font ... 77

5.3.12. _draw_get_char_size: Get font size... 77

5.3.13. _draw_line: Draw line... 78

5.3.14. _draw_fill_rect: Fill rectangle ... 79

5.3.15. _draw_frame_rect: Draw rectangle .. 80

5.3.16. _draw_invert_rect: Reverse rectangle color.. 80

5.3.17. _draw_arc: Draw arc of ellipse.. 81

5.3.18. _draw_pie: Draw sector... 82

5.3.19. _win_redraw: Redraw custom window ... 83

5.3.20. _win_redraw_clear: Redraw custom window.. 83

5.3.21. _win_redraw_item: Redraw control item.. 83

5.3.22. _win_show_window: Show/hide control item ... 83

5.3.23. _win_set_window_title: Set title of custom window 83

5.3.24. _win_enable_window: Enable/disable control item 83

5.3.25. _win_button_create: Create button .. 84

8

5.3.26. _win_button_set_text: Change button text... 84

5.3.27. _win_hscroll_range: Set scroll range of horizontal scroll bar..................... 84

5.3.28. _win_hscroll_pos: Set position of horizontal scroll box............................... 84

5.3.29. _win_vscroll_range: Set scroll range of vertical scroll bar 85

5.3.30. _win_vscroll_pos: Set position of vertical scroll box 85

5.3.31. _win_statusbar_create: Create status bar .. 85

5.3.32. _win_statusbar_set_pane: Set items of status bar...................................... 86

5.3.33. _win_statusbar_set_text: Set text of status bar.. 86

5.3.34. _win_dialog: Create input dialog box.. 86

5.3.35. _win_message_box: Create message box .. 87

5.3.36. _win_filedialog: Create file selection dialog box ... 88

5.3.37. _win_set_window_pos: Set position of custom window 90

5.3.38. _win_set_window_size: Set size of custom window 90

5.3.39. _win_timer_set: Set system timer... 91

5.3.40. _win_timer_kill: Reset system timer .. 91

5.4. HANDLE FUNCTIONS FOR CUSTOM WINDOW... 92

5.4.1. Specifications of Data Passed to Handle Functions 93

5.4.2. OnChar Handle Function... 93

5.4.3. OnCommand Handle Function... 94

5.4.4. OnCreate Handle Function .. 94

5.4.5. OnDestroy Handle Function .. 94

5.4.6. OnDraw Handle Function .. 94

5.4.7. OnEvent Handle Function ... 95

5.4.8. OnHScroll Handle Function... 96

5.4.9. OnKeyDown Handle Function ... 97

5.4.10. OnKeyUp Handle Function ...100

5.4.11. OnLButtonDblClk Handle Function ...101

5.4.12. OnLButtonDown Handle Function ...101

5.4.13. OnLButtonUp Handle Function ..102

5.4.14. OnMouseMove Handle Function ...102

5.4.15. OnRButtonDblClk Handle Function ...103

5.4.16. OnRButtonDown Handle Function ...103

5.4.17. OnRButtonUp Handle Function..104

5.4.18. OnSize Handle Function..105

5.4.19. OnTimer Handle Function...105

5.4.20. OnVScroll Handle Function...106

9

1. Overview

1.1. Setting Up CB79SIM
 CB79SIM can be set up in the same way as for PD79SIM. The procedure for setting
up PD79SIM is detailed in the "Setup/Functional Outline" part of the PD79SIM V.2.00
User's Manual.

1.2. Features of CB79SIM
 CB79SIM provides an environment for using PD79SIM's customize function to create
exclusive script commands (hereafter called a "custom command program") or exclusive
windows (hereafter called a "custom window program"). The custom command and
custom window programs thus created by CB79SIM can be entered in PD79SIM to
expand its functions.

 The following shows the features of CB79SIM:

1. The same user interface as available with PD79SIM is supported.
2. A development environment where programming, building, and debugging all

are integrated is provided.
3. Creation of custom command and custom window programs is supported.
4. PD79SIM 's Register, Memory, Dump, and Script Windows are supported.

 Each feature is detailed in the sections below.

1.2.1. Same user interface as available with PD79SIM
 CB79SIM uses the same graphical interface design as PD79SIM, making it possible
to use CB79SIM easily in the same way as for PD79SIM.

1.2.2. Development environment where programming, building, and debugging
all are integrated
 CB79SIM allows you to control a series of operations from creating source files to
building and debugging them. The windows supported by CB79SIM include Project,
Message, Editor, Local, and Global Windows. Each of these windows allows you to
manage projects, display the build result or other status, edit a source file, and display
local and global symbols.

1.2.3. Creation of custom command and custom window programs
 CB79SIM allows the type of program you are going to create to be specified from the
dialog box that is opened when creating a project. In this way you can select the custom
command or custom window program to be created.

1.2.4. PD79SIM's Register, Memory, Dump, and Script Windows
 Among the windows available with PD79SIM, CB79SIM supports the Register,
Memory, Dump, and Script Windows. These windows can be used when creating
custom command and custom window programs.

Note: The macro script commands cannot be used in the Script Window.

10

2. Function of Each Window
 Figure 1 shows the window structure of CB79SIM.

1. CB79SIM Window 2. Project Window 5. Local Window

3. Message Window 4. Editor Window 6. Global Window

Figure 1. Window structure of CB79SIM

 The outline features and the functions of each window of CB79SIM are explained
below.

11

2.1. CB79SIM Window
 The CB79SIM Window is the main window of CB79SIM . This is what opens first
when you start up CB79SIM .

2.1.1. Menu Bar
 Tables 1 and 2 below show the menu bar structure of the CB79SIM Window.

Table 1. Structure of Menu Bar (CB79SIM Window) (1/2)
Menu item Items on pull-down menu Function
[F]ile [N]ew

[S]ource/Header...
[P]roject...

[O]pen...
[S]ave
Save [A]s...
[C]lose
[L]oad module...
[R]eload
E[x]it

Create new source/header file.
Create new project.
Open source/project.
Save source file.
Save file after assigning a name.
Close source file.
Download target program.
Reload target program.
Terminate CB79SIM.

[E]dit C[u]t
[C]opy
[P]aste
[F]ind

Delete specified range.
Copy specified range to clipboard.
Paste text from clipboard into position.
Search for specified character string.

[E]nviron [I]nit...
[P]ath...

Open Init dialog box.
Open Path dialog box.

[D]ebug [G]o
[C]ome
[S]tep
[O]ver
Retur[n]
[A]nimate
[B]reak Point...
Break Point

[S]et
[L]ist...

[R]eset
[S]top
B[u]ild
R[e]Build

Execute Go command.
Execute Come command.
Execute Step command.
Execute Over command.
Execute Return command.
Execute Animate command.
Open Break dialog box.

Set or clear breakpoint.
Open Break dialog box.
Reset program.
Stop program execution.
Built current project.
Rebuild current project.

[O]ption Changed by window that has
focus. (Refer to 3.2 and
sections that follow.)

12

Table 2. Structure of Menu Bar (CB79SIM Window) (2/2)
Menu item Items on pull-down menu Function
[W]indow [C]ascade

[T]ile
[A]rrange Icon
[R]egister Window
M[e]mory Window
[D]ump Window
Scr[i]pt Window

Display windows one on top of another.
Display windows side by side.
Line up icons.
Open PD79SIM 's Register Window.
Open PD79SIM 's Memory Window.
Open PD79SIM 's Dump Window.
Open PD79SIM 's Script Window.

[H]elp [I]ndex
[A]bout...

Open table of contents of online help.
Display version of CB79SIM.

2.1.2. Tool Bar
 Table 3 shows the tool bar structure of the CB79SIM Window.

Table 3: Structure of Tool Bar (CB79SIM Window)
Button Function Corresponding menu

Execute Go command [Debug]-[Go]

Execute Come command [Debug]-[Come]

Execute Step command [Debug]-[Step]

Execute Over command [Debug]-[Over]

Execute Return command [Debug]-[Return]

Stop program execution [Debug]-[Stop]

Set/clear breakpoint [Debug]-[Break Point]-[Set]

Reset program [Debug]-[Reset]

Open Break dialog box [Debug]-[Break Point...]

Build project [Debug]-[Build]

Rebuild project [Debug]-[ReBuild]

13

2.2. Project Window
 This window is used to manage the source files of the custom command and custom
window programs created by CB79SIM . The source file displayed in this window can
be opened in the Editor Window by, for example, double-clicking the mouse button.

2.2.1. Menu Bar
 Table 4 shows the menu bar structure of the Option menu of the Project Window.

Table 4. Menu Bar Structure of Option Menu (Project Window)
Menu item Items on pull-down menu Function
[O]ption [S]et up...

[A]dd File...
[D]el File

Open Setup dialog box.
Add source file to project.
Delete source file from project.

2.3. Message Window
 This window is used to display a compile or link error when building a project or
other messages during debugging. These messages are initialized when you start
building a project. When a compile error is displayed, point to the line in error and
double- or single-click the mouse button to select it. Then choose [Option] -> [Jump]
from the menu bar to display the corresponding source file in the Editor Window, with
the cursor moved to the line in error.

2.3.1. Menu Bar
 Table 5 shows the menu bar structure of the Option menu of the Message Window.

Table 5. Menu Bar Structure of Option Menu (Message Window)
Menu item Items on pull-down menu Function
[O]ption [J]ump Display lines in error.

14

2.4. Editor Window
 This window is used to edit the source file. Multiple instances of this window can be
opened at a time, with the source file name displayed on the title bar of each window.
The Editor Window provides versatile editing functions, allowing you to input or delete
characters, cut and paste to and from the clipboard, and load or save a file. During
debugging, furthermore, a breakpoint line is shown in red and the next execution line is
shown in blue. If a breakpoint line and the next execution line overlap, they are
displayed in yellow.

2.4.1. Menu Bar
 The Option menu of the Editor Window does not have any submenu.

2.5. Local Window
 This window is used to display the local variables and their values of a function that
corresponds to the program counter during debugging. This window is opened when
you start debugging a program and is closed when you finish debugging.

2.5.1. Menu Bar
 The Option menu of the Local Window does not have any submenu.

2.6. Global Window
 This window is used to display global variables and their values during debugging.
This window is opened when you start debugging a program and is closed when you
finish debugging.

2.6.1. Menu Bar
 The Option menu of the Global Window does not have any submenu.

15

3. Method for Creating a Program
 This section explains how to use CB79SIM to create a custom command and a
custom window program by using a simple program as an example.

3.1. Creating a Custom Command Program
 The following shows the procedure for creating a custom command program by using
CB79SIM .

1. Create a new project for a custom command program.
2. Write a new source file.
3. Add the source file to the project.
4. Build the project.
5. Debug and correct the source file as necessary.
6. Repeat steps 5 and 6 until the program operates properly.

 The table below shows specifications of the custom command program to be created
in this section.

Program name m_reset
Parameter None
Function Display program counter value before reset.

Reset the target MCU.
Display program counter value after reset.

3.1.1. Creating New Project for Custom Command Program
 Choose [File]-[New]-[Project...] from the CB79SIM Window menu. The dialog box
shown below will appear.

Figure 2. Target Select dialog box

 Choose "Custom Command" and press the "OK" button.

 A file selection dialog box will open, so input a project name and press the "Save"
button. (A file name extension can be omitted.) The diagram below shows an example
where "m_reset" is input for the name of the sample custom command program to be
created in this section.

16

Figure 3. Dialog box for selecting a project name to be created

 A Project Window showing the created project file name and a project setup dialog box
are opened.

Figure 4. Setup dialog box

Figure 5. Project Window

 The Setup dialog box can be opened from the Option menu of the Project Window to
change its settings at any time you want. In this example, we only press the "Cancel"
button on the Setup dialog box and leave it intact. For details on how to use the Setup
dialog box, refer to Section 3.3, "Using Setup Dialog Box" on page 26.

 Thus, with the above, a project file named "m_reset.prj" is created.

17

3.1.2. Creating New Source File
 Choose [File]-[New]-[Source/Header...] from the CB79SIM Window menu. The Editor
Window shown below will appear.

Figure 6. Blank Editor Window

 Move focus to this Editor Window and choose [File]-[Save As...] from the CB79SIM
Window menu to bring up a Save As dialog box. When this dialog box opens, input a file
name and press the "Save" button. Specify ".m" for the source file name extension.

Figure 7. Save As dialog box

 The name you have input in the Save As dialog box is displayed on the title bar of the
Editor Window.

Figure 8. Editor Window with its name shown on title bar

18

 Write a custom command source program in this Editor Window.

Figure 9. Editor Window with a source program written in it

For details about programming language specifications, refer to Section 4,
"Programming Language Specifications" on page 33.

 For details about library function specifications, refer to Section 5, "Reference" on
page 34.

 The asterisk (*) at the end of the file name on the title bar indicates that changes
have been made to this file.

 Thus, with the above, a custom command source file named "m_reset.m" is created.

19

3.1.3. Add Source File to Project
 To build the source file created in the preceding section, we need to add it to a project.
Choose [Option]-[Add File...] from the Project Window menu to bring up an "Add in
source" dialog box. When this dialog box opens, choose the file name you want to be
added to a project and press the �Open� button. The source file name thus added is
displayed in the Project Window.

Figure 10. "Add Source" dialog box

Figure 11. Project Window with a source file added

 Thus, with the above, the source file "m_reset.m" is added to the project.

 You also can add source files to a project using the Setup dialog box. For details on
how to use the Setup dialog box, refer to Section 3.3, "Using Setup Dialog Box" on page
26.

3.1.4. Building a Project
 The operation to create a custom command program and a custom window program
file by processing the source files added to a project is referred to as "build" or "rebuild."
The difference between "build" and "rebuild" is that among the source files added to a
project, only those which have been modified since a program file was created
previously are processed in the former, whereas all of the source files added to a project
are processed in the latter.

 To execute Build, choose [Debug]-[Build] from the CB Window menu or press the
Build button on the tool bar.
 To execute Rebuild, choose [Debug]-[ReBuild] from the CB Window menu or press
the Rebuild button on the tool bar.

20

Figure 12. Message Window when succeeded in building

 Thus, with the above, a custom command program file is generated by CB79SIM
providing that no error is found in the source program and in settings of the Setup
dialog box.

 In this example, the include file and library file search paths remain set to the
default value (current directory) because we only pressed the "Cancel" button in the
Setup dialog box that opened when creating a project. Therefore, if the project was built
following the process described above, a message will be displayed in the Message
Window indicating that include files cannot be opened.

Figure 13. Message Window when an error occurred when building

 In this case, click on the error message line displayed in the Message Window and
then choose [Option]-[Jump] or double-click on the error message line. The
corresponding source line will be displayed in the Editor Window, with the cursor
moved to that line.

 In the example here, the Build operation can be successfully executed by setting the
include file and library file search paths properly.

 For details on how to use the Setup dialog box, refer to Section 3.3, "Using Setup
Dialog Box" on page 26.

21

3.1.5. Execution Example of Custom Command Program
 The following shows an execution example of the “m_reset” command program that
was created in the example above. To execute a command program, press the Go button
on the CB79SIM Window tool bar.

Figure 14. Execution example of custom command program "m_reset.p"

 In this example, you will see that the PC address before a reset is 40404H and the PC
address after a reset is F0000H.
 Output from custom command programs are fed into the Script Window. Therefore, if
the Script Window is not open, there is no means of verifying output from custom
command programs.

22

3.2. Creating a Custom Window Program
 The following shows the procedure for creating a custom window program by using
CB79SIM .

1. Create a new project for a custom window program.
2. Edit the framework source file generated by CB79SIM .
3. Build the project.
4. Debug and correct the source file as necessary.
5. Repeat steps 3 and 4 until the program operates properly.

 The table below shows specifications of the custom window program to be created in
this section.

Program name dump1000
Function Dump 128 bytes beginning with address 1000H.

3.2.1. Creating New Project for Custom Window Program
Choose [File]-[New]-[Project...] from the CB79SIM Window menu. The dialog box
shown below will appear.

Figure 15. Target Select dialog box

 Choose "Custom Window" and press the "OK" button.

 A file selection dialog box will open, so input a project name and press the "Save"
button. (A file name extension can be omitted.) The diagram below shows an example
where "dump1000" is input for the name of the sample custom window program to be
created in this section.

Figure 16. Dialog box for selecting a project name to be created

 When the dialog box prompting for your confirmation of whether or not to create
framework shown below appears, enter "Yes".

23

Figure 17. Dialog box for confirmation of framework generation

 If you enter "No" here, CB79SIM does not automatically create framework.

 A Project Window showing the created project file name and a project setup dialog box
are opened.

Figure 18. Setup dialog box

Figure 19. Project Window

 The Setup dialog box can be opened from the Option menu of the Project Window to
change its settings at any time you want. In this example, we only press the "Cancel"
button on the Setup dialog box and leave it intact. For details on how to use the Setup
dialog box, refer to Section 3.3, "Using Setup Dialog Box" on page 26.

 When creating a project for a custom window program, a framework source file is
automatically generated by CB79SIM. In this example, the file "dump1000.m" is
automatically generated. Programming of a custom window program is accomplished
by editing this framework source file.

 Thus, with the above, a project file "dump1000.prj" and a framework source file
"dump1000.m" are created.

24

3.2.2. Editing Automatically Created Framework Source File
 The framework source file automatically created by CB79SIM contains a description
of the handle functions that correspond to window events.

 For details about handle functions, refer to Section 5.4, "Handle Functions for
Custom Window" on page 92.

 Two handle functions are treated in the example here: OnDraw and OnEvent. The
OnDraw function is called when an area hidden in some other window need to be
displayed. The OnEvent function is called when a change in debugger status is required
such as when the target's memory value has been modified.

 When the OnDraw function is called, dump1000 gets 128 bytes of memory values
starting from address 1000H and convert them into character strings for display in
window. To write this series of processing, edit the internal statements of the OnDraw
function. Furthermore, when the OnEvent function is called, dump1000 calls the
OnDraw function to update the window display.

Note: Do not delete the functions written in the framework source file. Loss of
any function in this file makes it impossible to build a project correctly. There is
no limit to the functions that can be added to the file.

 The diagram below shows an Editor Window displaying the OnDraw function that
has been edited for the "dump1000" custom window program.

Figure 20. Editor Window displaying OnDraw function for dump1000

 The method for building a project for a custom window program is the same as used
for custom command programs. Refer to Section 3.1.4, "Building a Project" on page 19.

25

3.2.3. Execution Example of Custom Window Program
 The following shows an execution example of the dump1000 window program that
was created in the example above. To execute a window program, press the Go button
on the CB79SIM Window tool bar.

Figure 21. Execution example of custom window program "dump1000.p"

 In this example, you will see that 128 bytes beginning with address 1000H are
displayed in dump form.

 When an area hidden in some other window need to be displayed, a custom window
program calls the OnDraw function; when the debugger status need to be updated such
as when the target memory contents have been changed, it calls the OnEvent function.
Therefore, the dump1000 custom window program has its display automatically
updated when a hidden part is displayed or target memory contents are changed.

26

3.3. Using Setup Dialog Box
 The Setup dialog box is provided for setting up a project. This dialog box is opened by
choosing [Option]-[Set up...] from the CB79SIM Window menu or double-clicking on
the project file name displayed in the Project Window.

1. Project setup area

2. Source file setup area 3. Include file and library file search path setup area

4. Library setup area

Figure 22. Structure of Setup dialog box

3.3.1. Project Setup Area
 This area is comprised of the following three fields:

1. Project type setup/display field 2. Target file name setup/display field

3. Runtime parameter setup/display field

Figure 23. Structure of project setup field

27

3.3.1.1. Project Type Setup/Display Field
 One of the following two project types can be set here.

Custom Command Create custom command program.
Custom Window Create custom window program

 The project type you have set is displayed in this field
 The startup routines and libraries that will be combined during building are selected
depending on the project type you choose for the program to be created. A change of the
project type only affects the selection of the startup routines and libraries that will be
combined during building.

3.3.1.2. Target File Name Setup/Display Field
 Set the program file name here that you want to be created when building.
 The file name you have set is displayed in this field.

3.3.1.3. Runtime Parameter Setup/Display Field
 This field appears when you specified "Custom Command" for the project type. Set
the parameters in this field that you want to be passed when debugging a custom
command program. The parameters set here are passed to the arguments argc and argv
of the main() function in the following manner:

argc Number of parameters
argv Pointer array address that contains pointers to areas where character

strings specified in parameters are stored
 The parameters you have set are displayed in this field.

3.3.2. Source File Setup Area
 This area is comprised of the following five fields:

1. File name setup/display field

2. Add file display/delete file select field

3.Refer button

4.Add button

5.Delete button

Figure 24: Structure of source file setup area

28

3.3.2.1. File Name Setup/Display Field
 Set a source file name in this field that you want to be added to a project.
 The source file set here is added to a project as you press the "Add" button and the
source file name is displayed in the add file display/delete file select field.
 The source file names added to a project are listed as you press the "Add" button.

3.3.2.2. Add File Display/Delete File Select Field
 The source file names added to a project are listed in this field.
 An unnecessary source file can be deleted from a project by selecting its file name in
this field by clicking on it with the mouse and pressing the "Delete" button.

3.3.2.3. Refer Button
 The source file names added to a project are listed in this field.
 An unnecessary source file can be deleted from a project by selecting its file name in
this field by clicking on it with the mouse and pressing the "Delete" button.

3.3.2.4. Add Button
 This button adds the source file that is entered in the file name setup/display field to
a project.
 When you add a source file, CB79SIM checks to see if the file exists. If the specified
source file does not exist or has already been added to a project, no file is added.

3.3.2.5. Delete Button
 This button deletes the source file from a project that you have selected by clicking on
it with the mouse in the add file display/delete file select field.
 No file is deleted unless there is any source file selected.

3.3.3. Include File and Library File Search Path Setup Area
 This area is comprised of the following four fields:

1.Include file search path setup/display field

3. Library file search path setup/display field

2. Default include path setup button

4. Default library path setup button

Figure 25. Structure of include file and library file search path setup area

29

3.3.3.1. Include File Search Path Setup/Display Field
 Set the directory in this field that you want to be searched for a file when inclusion of
a file is specified by #include <filename> in the source file.
 Normally, specify a directory where system include files are stored.
 The system include files are installed in the �include� directory that is located below
the directory where CB79SIM is installed.
 The include file search path you have set is displayed in this field.

3.3.3.2. Default Include Path Setup Button
 This button sets the directory that is set in the include file search path setup/display
field as the default path to be used for CB79SIM when creating a new project.
 When you create a new project with CB79SIM after setting the default path with this
button, the directory you have set is used as the include file search path.

3.3.3.3. Library File Search Path Setup/Display Field
 Set the directory in this field that you want to be searched for a library file to be
linked when building a project.
 Normally, specify a directory where system library files are stored.
 The system library files are installed in the �lib� directory that is located below the
directory where CB79SIM is installed.
 The library file search path you have set is displayed in this field.

3.3.3.4. Default Library Path Setup Button
 This button sets the directory that is set in the library file search path setup/display
field as the default path to be used for CB79SIM when creating a new project.
 When you create a new project with CB79SIM after setting the default path with
this button, the directory you have set is used as the library file search path.

3.3.4. Library Setup Area
 This area is comprised of the following five fields:

1. Library name setup/display field

2. Add library display/delete library select field

3. Refer button

4.Add button

5.Delete button

Figure 26. Structure of library setup area

30

3.3.4.1. Library Name Setup/Display Field
 In this field, set a library file name that is added to a project and is not a system
library that you want to be linked when building the project.
 The library file set here is added to a project as you press the "Add" button and the
library file name is displayed in the add library display/delete library select field.
 The library file names added to a project are listed as you press the "Add" button.

3.3.4.2. Add Library Display/Delete Library Select Field
 The library file names added to a project are listed in this field.
 An unnecessary library file can be deleted from a project by selecting its file name in
this field by clicking on it with the mouse and pressing the "Delete" button.

3.3.4.3. Refer Button
 This button allows you to add a library file to a project without having to input the
file name from the keyboard.
 When you press the "Refer" button, a file selection dialog box opens. The library file
name you choose in this dialog box is input to the library name setup/display field. So
proceed and press the "Add" button to add it to a project.

3.3.4.4. Add Button
 This button adds the library file that is entered in the library name setup/display
field to a project.
 When you add a library file, CB79SIM checks to see if the file exists. If the specified
library file does not exist or has already been added to a project (including system
libraries), no file is added.

3.3.4.5. Delete Button
 This button deletes the library file from a project that you have selected by clicking
on it with the mouse in the add library display/delete library select field.
 No file is deleted unless there is any library file selected.

31

3.4. Using Breakpoint Dialog Box
 The breakpoint dialog box allows you to make various breakpoint settings. Choose
the CB79SIM menus [Debug] -> [Break Point...] or press the break dialog open button
on the tool bar.

1. File name setup/display area 2. Line number setup/display area

3. Breakpoint list display area

4. Enter button

5. Cancel button

6. Add button

7. Delete button

8. Enable button

9. Disable button

10. Jump button

Figure 27. Structure of breakpoint dialog box

3.4.1. File name setup/display area
 Specify the file name in which you want to set breakpoints by a full path.

3.4.2. Line number setup/display area
 Specify the line number in the file where you want to set a breakpoint.

3.4.3. Breakpoint list area
 This area lists the breakpoints that are currently set. When you choose a breakpoint
listed in this area, the file name of the selected breakpoint is set in the file name
setup/display area, and its line number is set in the line number setup/display area.
The +/- symbols in the list area indicate whether the breakpoints are enabled or
disabled, which are followed by the display of line numbers and then file names.

3.4.4. Enter button
 When you press this button, the breakpoint information you've changed from the
breakpoint dialog box is registered in the system before closing the dialog box.

3.4.5. Cancel button
 When you press this button, the breakpoint information you've changed from the
breakpoint dialog box is canceled and the dialog box is closed without saving anything.

3.4.6. Add button
 Use this button to register the breakpoint shown in the file name setup/display and
the line number setup/display areas in the breakpoint list area.

32

3.4.7. Delete button
 This button deletes the breakpoint you've selected in the breakpoint list area. Use the
ALL button when you want to delete all breakpoints collectively.

3.4.8. Enable button
 This button enables the breakpoint you've selected in the breakpoint list area. Use
the ALL button when you want to enable all breakpoints collectively.

3.4.9. Disable button
 This button disables the breakpoint you've selected in the breakpoint list area. Use
the ALL button when you want to disable all breakpoints collectively.

3.4.10. Jump button
 This button moves the editor window cursor to the position indicated by the
breakpoint you've selected in the breakpoint list area.

33

4. Programming Language Specifications
 The programming language in which programs can be written in CB79SIM is a
subset of the C language, and is subject to the following restrictions as compared to the
general C language.

l Types struct, union, and enum are nonexistent.
l Variables that involve initialization cannot be declared.

 Example:
 int a = 10;

l The static storage class is nonexistent.
l The storage class specifier that can be used is �extern� only.
l The types that can be used are char, int, pointer, and array only.

 Example:
 char a; /* 1Byte */
 int b; /* 4Byte */
 char *str; /* 4Byte */
 int *p; /* 4Byte */

l Types char and int are signed types (signed and unsigned specifiers
cannot be used).

l Parameter lists cannot be written in the prototype declaration of
functions.
Example:

int foo(int); /* Error */
int foo2(char *str); /* Error */

l Arguments of function definitions are written in the manner similar to
ANSI standards.
Example:

 int func(int a, int b)
 {

 ...
 }

 Although parameter types are not checked when calling a function, the
type of the function's return value is checked.

l Variables cannot be declared in a intra-function local block.
Example:

 int func()
 {

 ...
 {

 int x; /* Error */
 }

 }
l The preprocessor cannot expand macros accompanied by parameters. Nor

can it define expressions.
Example:

#define FUNC(A) A++ /* Error */
#define EXP label + 1/* Error */

l The preprocessor pseudo-instruction #if allows only 0 or 1 to be specified
in the operand.

34

5. Reference
5.1. Standard Functions (stdlib.lib)
 The stdlib.lib provides the standard functions that can be used in custom command
and custom window programs.
 The prototype declaration of each function is written in “stdlib.h”.

Function name Description
malloc Allocate memory from heap area.
free Release the area allocated by malloc.
strlen Get the length of character string.
strcat Concatenate character strings.
strcmp Compare character strings.
strcpy Copy character string.
strtoi Convert character string into value.
gets Input character string (from Script Window).
exit Terminate program execution.
fopen Open a file.
fclose Close a file.
fseek Move file pointer.
fgetc Input character (from file).
fputc Output character (to file).
fgets Input character string (from file).
fputs Output character string (to file).
printf Output characters with format (to Script Window).
sprintf Output characters with format (to memory).
fprintf Output characters with format (to file).

5.1.1. malloc: Allocate memory from heap area
Function name: char *malloc(int size)
Parameter: int size Number of allocated bytes
Returned value: char * Allocated area

NULL Error
Description: This function allocates an area of “size” bytes from the heap

area and returns the beginning address of the area. It
returns NULL if there is no area that can be allocated.

5.1.2. free: Release the area allocated by malloc() function
Function name: int free(char *p)
Parameter: char *p Area to be released
Returned value: 0 Succeeded

1 Error
Description: This function releases the area allocated by the malloc()

function.

35

5.1.3. strlen: Get the length of character string
Function name: int strlen(char *s)
Parameter: char *s Character string
Returned value: int Character string length of character string
Description: This function returns the length of “s”.

5.1.4. strcat: Concatenate character strings
Function name: char *strcat(char *s1, char *s2)
Parameter: char *s1 Character string to which s2 is added

char *s2 Character string to be added
Returned value: char * Character string to which s2 is added
Description: This function concatenates character string s2 to the end of

s1 and returns s1.

5.1.5. strcmp: Compare character strings
Function name: int strcmp(char *s1, char *s2)
Parameter: char *s1 Character string 1

char *s2 Character string 2
Returned value: Positive number s1 > s2

0 s1 == s2
Negative number s1 < s2

Description: This function compares character string “s1” and character
string s2. It returns a positive number if s1 > s2 or 0 if s1 ==
s2 or a negative number if s1 < s2.

5.1.6. strcpy: Copy character string
Function name: char *strcpy(char *s1, char *s2)
Parameter: char *s1 Destination

char *s2 Source
Returned value: char * Destination
Description: This function copies character string s2 to s1 including '¥0'

and returns s1.

36

5.1.7. strtoi: Convert character string into value
Function name: int strtoi(char *str, int radix, int *value)
Parameter: char *str Character string

int radix Conversion radix
int *value Converted value

Returned value: TURE Succeeded
FALSE Error

Description: This function converts the character string specified by “str”
into a numeric value as a value whose radix is specified by
“radix”. If the conversion succeeded, the converted value is
stored in *value. The values listed below can be specified for
“radix”.

Value of radix Description
0 If str begins with 0x, it is converted as a

hexadecimal value; if str begins with 0, it is
converted as an octal value. Otherwise, str
is converted as a decimal value.

8 str is converted as an octal value.
10 str is converted as an decimal value.
16 str is converted as an hexadecimal value.

5.1.8. gets: Input character string (from Script Window)
Function name: char *gets(char *s)
Parameter: char *s Destination in which stored
Returned value: char * Destination in which stored

NULL Error
Description: This function reads one line from the input area of the Script

Window and stores it in “s”. The new-line character at the
end of the line is replaced with '¥0.' The return value is
stored in “s”. NULL is returned if an error has occurred.

5.1.9. exit: Terminate program execution
Function name: int exit(int stat)
Parameter: int stat Program's return value
Returned value: 0 Always 0
Description: This function terminates program execution and returns

control to PD79SIM. If “stat” is 0, the operation is assumed to
have been processed normally. If “stat” is not 0, an error is
assumed and the error message bearing the number that is
set in “macro_err” is displayed in the Script Window.

37

5.1.10. fopen: Open a file
Function name: int fopen(char *filename, char *attr)
Parameter: char *filename File name

char *attr Open mode
Returned value: int File descpritor

NULL Error
Description: This function opens the file specified by “filename” in the

mode specified by “attr”. If succeeded, the return value is file
descpriptor.

5.1.11. fclose: Close a file
Function name: int fclose(int fd)
Parameter: int fd File descriptor
Returned value: TRUE Succeeded

FALSE Error
Description: This function closes the file specified by “fd”.

5.1.12. fseek: Move file pointer
Function name: int fseek(int fd, int pos, int org)
Parameter: int fd File descriptor

int pos Distance the file pointer is moved
int org Base point of pos

Returned value: TRUE Succeeded
FALSE Error

Description: This function moves the current position in the file specified
by “fd” at which the file is written or read. The distance of
movement “pos” is specified as an offset from the base point
“org” (0: Beginning of file; 1: Current position; 2: End of file).

5.1.13. fgetc: Input character (from file)
Function name: int fgetc(int fd)
Parameter: int fd File descriptor
Returned value: int read value

FALSE Error
Description: This function reads one byte from the file pointer's current

position of the file specified by “fd”.

5.1.14. fputc: Output character (to file)
Function name: int fputc(char c, int fd)
Parameter: char c Output character

int fd File descriptor
Returned value: TURE Succeeded

FALSE Error
Description: This function outputs one byte specified by “c” to the file

pointer's current position of the file specified by “fd”.

38

5.1.15. fgets: Input character string (from file)
Function name: int fgets (char *str, int n, int fd)
Parameter: char *str Area in which to store input character

string
int n Maximum number of characters input
int fd File descriptor

Returned value: char * Area in which to store input character string
NULL Error

Description: This function reads one line from the file pointer's current
position of the file specified by “fd” and stores it in the area
specified by “str”.

5.1.16. fputs: Output character string (to file)
Function name: int fputs (char *str, int fd)
Parameter: char *str Area in which to store output character string

int fd File descriptor
Returned value: TURE Succeeded

FALSE Error
Description: This function outputs the character string stored in the area

specified by “str” to the file pointer's current position of the
file specified by “fd”.

5.1.17. printf: Output characters with format (to Script Window)
Function name: int printf(char *format, ...)
Parameter: char *format Format

... Variable parameter
Returned value: Positive number Number of characters output

Negative number Error
Description: This function outputs characters to the Script Window after

converting them under control of “format”. The return value
indicates the number of characters written to the window. A
negative number is returned if an error has occurred.

5.1.18. sprintf: Output characters with format (to memory)
Function name: int sprintf(char *s, char *format, ...)
Parameter: char *s Output address

char *format Format
... Variable parameter

Returned value: Positive number Number of characters output
Negative number Error

Description: This function outputs characters to the address specified by
“s” after converting them under control of “format”. '¥0' is
added at the end of output. The return value indicates the
number of characters written to memory (not including '¥0').
A negative number is returned if an error has occurred.

39

5.1.19. fprintf: Output characters with format (to file)
Function name: int fprintf(int fd, char *format, ...)
Parameter: int fd File descriptor

char *format Format
... Variable parameter

Returned value: Positive number Number of characters output
Negative number Error

Description: This function outputs characters to the file specified by “fd”
after converting them under control of “format”. The return
value indicates the number of characters written to the file.
A negative number is returned if an error has occurred.

40

5.2. System Call Functions for Debugger Operation (system.lib)
 The “system.lib” provides the system call functions that can be used in custom
command and custom window programs.
 The prototype declaration of each function is written in “system.h”.

Function name Description
_cpu_go Execute program in free-run mode
_cpu_gb Execute program with break
_cpu_stop Stop program execution
_cpu_reset Reset the target MCU
_cpu_src_step Execute program one source line at a time
_cpu_step Execute program one instruction at a time
_cpu_src_over Execute program one source line at a time

including subroutines
_cpu_over Execute program one instruction at a time

including subroutines
_cpu_src_return Return from current to calling routine one source

line at a time
_cpu_return Return from current to calling routine one

instruction at a time
_cpu_wait Wait until program execution stops
_reg_get_reg Get register value
_reg_put_reg Set register value
_reg_get_pc Get program counter value
_reg_put_pc Set program counter value
_reg_clear_cache Clear register cache
_mem_get Get memory value
_mem_put Set memory value
_mem_get_endian Get memory value with endian attached
_mem_put_endian Set memory value with endian attached
_mem_fill Fill memory
_mem_move Transfer memory block
_mem_clear_cache Clear memory cache
_break_set Set/enable software break
_break_get Get settings of software breaks
_break_reset Clear software break
_break_reset_all Clear all software breaks
_break_disable Disable software break
_break_disable_all Disable all software breaks
_break_enable_all Enable all software breaks
_break_search Get attribute of software break settings
_rram_clear Clear RAM monitor memory
_rram_get_area Get RAM monitor area
_rram_set_area Set RAM monitor area
_rram_get_size Get size of RAM monitor area
_rram_get_data Get RAM monitor data
_info_check_run Check execution status

41

Function name Description
_info_service Get information on service contents
_info_cpu Get CPU information
_info_get_map Get map information
_info_check_map Check mapped area
_info_get_suffix Get load file extension
_info_set_suffix Set load file extension
_scope_set_obj Set scope by object file name
_scope_set_addr Set scope by address
_sym_add_sym Enter symbols
_sym_val2sym Get symbol for value
_sym_sym2val Get value for symbol
_sym_add_bit Enter bit symbols
_sym_val2bit Get bit symbol for address and bit number
_sym_bit2val Get address and bit number for bit symbol
_line_addr2line Get source line for address
_line_line2addr Get address for source line
_src_get_name Get list of source file names
_obj_get_name Get list of object file names
_obj_addr2obj Get object file name by address
_func_get_name Get list of function names
_exp_eval Evaluate assembler expression
_scri_echo_on Turn on output to script window
_scri_echo_off Turn off output to script window
_c_exp_eval Evaluate C-language expression
_get_shared_mem Get shared variable
_set_shared_mem Set shared variable
_delete_shared_mem Delete shared variable
_get_err_msg Get PD79SIM's error message statement
_get_tick_count Get elapsed time since Windows startup
_get_time Get current system date and time
_disp_src_line Change the contents displayed in program

window
_cv_get_data Get coverage data
_cv_set_data Set coverage data
_cv_clear_data Clear coverage data
_cv_clear_cache Clear coverage cache
_syscom Execute PD79SIM's script command
_doscom Execute DOS command

42

 If an error occurs, an error number written in the "Error" item is set in global
variable “macro_err”. For details about Simulator errors, refer to Section 5.2.75, "List of
Simulator Errors" on page 70. For custom command programs, if FALSE is returned
from the main() function, an error message corresponding to the error number that is
set in “macro_err” is displayed in the Script Window (for PD79SIM) or Error dialog box
(for CB79SIM).

5.2.1. _cpu_go: Execute program in free-run mode

Function name: int _cpu_go()
Parameter: None
Returned value: TRUE Succeeded

FALSE Error
Description: This function starts executing the target program from the

current PC in free-run mode.
Error: Simulator error

5.2.2. _cpu_gb: Execute program with break
Function name: int _cpu_gb()
Parameter: None
Returned value: TRUE Succeeded

FALSE Error
Description: This function starts executing the target program from the

current PC with breaks included.
Error: Simulator error

5.2.3. _cpu_stop: Stop program execution
Function name: int _cpu_stop()
Parameter: None
Returned value: TRUE Succeeded

FALSE Error
Description: This function stops execution of the target program.
Error: Simulator error

43

5.2.4. _cpu_reset: Reset the target CPU
Function name: int _cpu_reset()
Parameter: None
Returned value: TRUE Succeeded

FALSE Error
Description: This function reset the target CPU.
Error: ER_IN1_RUNNING Cannot be reset because it is

executing program.
Other Simulator error

5.2.5. _cpu_src_step: Execute program one source line at a time
Function name: int _cpu_src_step()
Parameter: None
Returned value: TRUE Succeeded

FALSE Error
Description: This function starts executing the target program, one source

line at a time, beginning with the current PC.
Error: Simulator error

5.2.6. _cpu_step: Execute program one instruction at a time
Function name: int _cpu_step()
Parameter: None
Returned value: TRUE Succeeded

FALSE Error
Description: This function starts executing the target program, one

instruction at a time, beginning with the current PC.
Error: Simulator error

5.2.7. _cpu_src_over: Execute program one source line at a time including
subroutines

Function name: int _cpu_src_over()
Parameter: None
Returned value: TRUE Succeeded

FALSE Error
Description: This function starts executing the target program, one source

line at a time including subroutines, beginning with the
current PC.

Error: Simulator error

44

5.2.8. _cpu_over: Execute program one instruction at a time including
subroutines

Function name: int _cpu_over()
Parameter: None
Returned value: TRUE Succeeded

FALSE Error
Description: This function starts executing the target program, one

instuction at a time including subroutines, beginning with
the current PC.

Error: Simulator error

5.2.9. _cpu_src_return: Return from current to calling routine one source line at a
time

Function name: int _cpu_src_return()
Parameter: None
Returned value: TRUE Succeeded

FALSE Error
Description: This function causes program execution to return from the

current PC to the calling routine, one source line at a time.
Error: Simulator error

5.2.10. _cpu_return: Return from current to calling routine one instruction at a
time

Function name: int _cpu_return()
Parameter: None
Returned value: TRUE Succeeded

FALSE Error
Description: This function causes program execution to return from the

current PC to the calling routine, one instruction at a time.
Error: Simulator error

5.2.11. _cpu_wait: Wait until program execution stops
Function name: int _cpu_wait()
Parameter: None
Returned value: TRUE Succeeded

FALSE Error
Description: This function stops execution of a custom command or

custom window program until the target program stops.
Error: Simulator error

45

5.2.12. _reg_get_reg: Get register value
Function name: int _reg_get_reg(int *reg, int regno)
Parameter: int *reg Register value

int regno Register number
Returned value: TRUE Succeeded

FALSE Error
Description: This function gets the value of the register specified by

“regno”. In CB79SIM, “regno” is defined as follows:
regno Register
IN1_REG_A A register
IN1_REG_B B register
IN1_REG_X X register
IN1_REG_Y Y register
IN1_REG_S S register
IN1_REG_DT DT register
IN1_REG_PG PG register
IN1_REG_PC Program counter

 (PG register + PC register)
IN1_REG_PC16 PC register
IN1_REG_DP0 DPR0 register
IN1_REG_DP1 DPR1 register
IN1_REG_DP2 DPR2 register
IN1_REG_DP3 DPR3 register
IN1_REG_PS PS register

Error: Simulator error

5.2.13. _reg_put_reg: Set register value
Function name: int _reg_put_reg(int reg, int regno)
Parameter: int reg Register value
Returned value: TRUE Succeeded

FALSE Error
Description: This function sets the value of the register specified by

“regno”. The definition of “regno” here is the same as for the
_reg_get_reg() function.

Error: ER_IN1_DATA_OUTRANGE Data range is invalid.
Other Simulator error

5.2.14. _reg_get_pc: Get program counter value
Function name: int _reg_get_pc(int *pc)
Parameter: int *pc Program counter

(PG register + PC register)
Returned value: TRUE Succeeded

FALSE Error
Description: This function gets the program counter (PG register +PC

register) value.
Error: Simulator error

46

5.2.15. _reg_put_pc: Set program counter value
Function name: int _reg_put_pc(int pc)
Parameter: int pc Program counter

(PG register + PC register)
Returned value: TRUE Succeeded

FALSE Error
Description: This function sets a program counter (PG register + PC

register) value.
Error: ER_IN1_ADDR_OUTRANGE Address range is invalid

Other Simulator error

5.2.16. _reg_clear_cache: Clear register cache
Function name: int _reg_clear_cache()
Parameter: None
Returned value: TRUE Return value is always TRUE.
Description: This function clears the register cache.

5.2.17. _mem_get: Get memory value
Function name: int _mem_get(int addr, int size, char *data)
Parameter: int addr Address

int size Number of bytes obtained
char *data Location where obtained data is stored

Returned value: TRUE Succeeded
FALSE Error

Description: This function stores “size” bytes of “data” from addr into
“data”.

Error: ER_IN1_ADDR_OUTRANGE Address range is invalid.
Other Simulator error

5.2.18. _mem_put: Set memory value
Function name: int _mem_put(int addr, int size, char *data)
Parameter: int addr Address

int size Number of bytes set
char *data Set data

Returned value: TRUE Succeeded
FALSE Error

Description: This function sets data “data” from “addr” into “size” bytes of
memory.

Error: ER_IN1_ADDR_OUTRANGE Address range is invalid.
Other Simulator error

47

5.2.19. _mem_get_endian: Get memory value with endian attached
Function name: int _mem_get_endian(int addr, int num, int size, int *data)
Parameter: int addr Address

int num Number of data entries
int size Size of one data entry
int *data Location where obtained data is stored

Returned value: TRUE Succeeded
FALSE Error

Description: This function stores “num” entries of data in data size of
“size” bytes from “addr” into data[] according to the CPU
endian. Numerals 1 to 4 can be specified for “size”.

Error: ER_IN1_ADDR_OUTRANGE Address range is invalid.
ER_IN1_DATA_RANGE size is not 1 to 4.
Other Simulator error

5.2.20. _mem_put_endian: Set memory value with endian attached
Function name: int _mem_put_endian(int addr, int num, int size, int *data)
Parameter: int addr Address

int num Number of data entries
int size Size of one data entry
int *data Set data

Returned value: TRUE Succeeded
FALSE Error

Description: This function sets “num” entries of data in data size of “size”
bytes from data[] into memory locations beginning with
“addr” according to the CPU endian

Error: ER_IN1_ADDR_OUTRANGE Address range is invalid.
ER_IN1_DATA_RANGE size is not 1 to 4.
Other Simulator error

48

5.2.21. _mem_fill: Fill memory
Function name: int _mem_fill(int start, int end, int data, int size)
Parameter: int start Start address

int end End address
int data Filled data
int size Size of one data entry

Returned value: TRUE Succeeded
FALSE Error

Description: This function fills a memory area from “start” to “end” with
data “data” in data size of “size” bytes.

Error: ER_IN1_ADDR_OUTRANGE Address range is invalid.
ER_IN1_DATA_RANGE “size” is not 1 to 4.
Other Simulator error

5.2.22. _mem_move: Transfer memory block
Function name: int _mem_move(int start, int end, int top)
Parameter: int start Start address

int end End address
int top Beginning address at destination of transfer

Returned value: TRUE Succeeded
FALSE Error

Description: This function transfers data at addresses from “start” to
“end” to an area beginning with “top”.

Error: ER_IN1_ADDR_OUTRANGE Address range is invalid.
ER_IN1_RUNNING Cannot be transferred

because program
is executing.

Other Simulator error

5.2.23. _mem_clear_cache: Clear memory cache
Function name: int _mem_clear_cache()
Parameter: None
Returned value: TRUE Return value is always TRUE.
Description: This function clears the cache buffer for a module that gets

cached memory.

49

5.2.24. _break_set: Set/enable software break
Function name: int _break_set(int addr)
Parameter: int addr Set address
Returned value: TRUE Succeeded

FALSE Error
Description: This function sets a software breakpoint at “addr”. This

function also is used to re-enable a breakpoint that has been
disabled by _break_disable() or _break_disable_all()

Error: ER_IN1_ADDR_OUTRANGE Address range is invalid.
ER_IN1_BP_FULL Breakpoints are full.
Other Simulator error

5.2.25. _break_get: Get settings of software breaks
Function name: int _break_get(int *addr, int *attr, int mode)
Parameter: int *addr Address

int *attr Setup attribute
int mode Search start mode

IN1_FIRST : First breakpoint
IN1_NEXT : Second and following breakpoints

Returned value: TRUE Succeeded
FALSE Error

Description: This function stores a breakpoint address in *addr. One of
the breakpoint setup attributes shown below is stored in
*attr.
IN1_ENABLE_SBRK Enabled
IN1_DISABLE_SBRK Disabled

Error: ER_IN1_BP_NOTFOUND No breakpoint can be
found.

Other Simulator error

5.2.26. _break_reset: Clear software break
Function name: int _break_reset(int addr)
Parameter: int addr Address
Returned value: TRUE Succeeded

FALSE Error
Description: This function clears a breakpoint at “addr”.
Error: ER_IN1_ADDR_OUTRANGE Address range is invalid.

ER_IN1_BP_NOTFOUND No breakpoint can be
found.

Other Simulator error

50

5.2.27. _break_reset_all: Clear all software breaks
Function name: int _break_reset_all()
Parameter: None
Returned value: TRUE Succeeded

FALSE Error
Description: This function clears all breakpoints.
Error: Other Simulator error

5.2.28. _break_disable: Disable software break
Function name: int _break_disable(int addr)
Parameter: int addr Address
Returned value: TRUE Succeeded

FALSE Error
Description: This function disables a breakpoint at “addr”.
Error: ER_IN1_ADDR_OUTRANGE Address range is invalid.

ER_IN1_BP_NOTFOUND No breakpoint can be
found.

Other Simulator error

5.2.29. _break_disable_all: Disable all software breaks
Function name: int _break_disable_all()
Parameter: None
Returned value: TRUE Succeeded

FALSE Error
Description: This function disables all breakpoints set.
Error: Other Simulator error

5.2.30. _break_enable_all: Enable all software breaks
Function name: int _break_enable_all()
Parameter: None
Returned value: TRUE Succeeded

FALSE Error
Description: This function enables all breakpoints set.
Error: Other Simulator error

51

5.2.31. _break_search: Get attribute of software break settings
Function name: int _break_search(int addr, int *attr)
Parameter: int addr Address

int *attr Setup attribute
Returned value: TRUE Succeeded

FALSE Error
Description: This function gets the setup attribute of a breakpoint at

“addr”. One of the following breakpoint setup attributes is
stored in *attr.
IN1_ENABLE_SBRK Enabled
IN1_DISABLE_SBRK Disabled

Error: ER_IN1_BP_NOTFOUND No breakpoint can be
found.

Other Simulator error

5.2.32. _rram_clear: Clear RAM monitor memory
Function name: int _rram_clear()
Parameter: None
Returned value: TRUE Succeeded

FALSE Error
Description: This function initializes access states of the RAM monitor

memory.
Error: ER_IN1_RUNNING Cannot be cleard because program

is executing.
Other Simulator error

5.2.33. _rram_get_area: Get RAM monitor area
Function name: int _rram_get_area(int *addr)
Parameter: int *addr Beginning address
Returned value: TRUE Succeeded

FALSE Error
Description: This function stores the beginning address of the RAM

monitor memory in *addr.
Error: Simulator error

5.2.34. _rram_set_area: Set RAM monitor area
Function name: int _rram_set_area(int addr)
Parameter: int addr Beginning address
Returned value: TRUE Succeeded

FALSE Error
Description: This function sets the beginning address of the RAM monitor

area at “addr”.
Error: ER_IN1_ADDR_OUTRANGE Address range is invalid.

Other Simulator error

52

5.2.35. _rram_get_size: Get size of RAM monitor area
Function name: int _rram_get_size(int *size)
Parameter: int *size size of RAM monitor area
Returned value: TRUE Return value is always TRUE.
Description: This function sets the size of the RAM monitor area in *size.

5.2.36. _rram_get_data: Get RAM monitor data
Function name: int _rram_get_data(int addr, int size, char *data,

char *attr)
Parameter: int addr Beginning address

int size Number of bytes
char *data Data
char *attr Access state

Returned value: TRUE Succeeded
FALSE Error

Description: This function gets “size” bytes of data (*data) beginning with
“addr” and access state (*attr) from the RAM monitor. One of
the access states shown below is stored in *attr.
IN1_RRAM_READ Read
IN1_RRAM_WRITE Write
IN1_RRAM_NONE No access

Error: ER_IN1_ADDR_OUTRANGE Address range is invalid.
Other Simulator error

5.2.37. _info_check_run: Check execution status
Function name: int _info_check_run(int *status)
Parameter: int *status Execution state
Returned value: TRUE Succeeded

FALSE Error
Description: This function stores the execution state of the target program

in *status. One of the following execution status is stored in
*status.
IN1_RUN_CPU Under execution
IN1_STOP_CPU Idle

Error: Simulator error

53

5.2.38. _info_service: Get information on service contents
Function name: int _info_service(int flag, int *status)
Parameter: int flag Service content

int *status Availability of support
TRUE Supported
FALSE Not supported

Returned value: TRUE Return value is always TRUE.
Description: This function gets information on service contents supported

by PD79SIM. For “flag”, specify one of the following service
contents.

IN1_SUPPORT_BITSYM Support for bit symbol
IN1_SUPPORT_C Support for C-language

debugging
IN1_SUPPORT_RAMMONITOR Support for real-time RAM

monitor function
IN1_SUPPORT_RTT Support for real-time trace
IN1_SUPPORT_CV Support for coverage

measurement
IN1_SUPPORT_PROTCT Support for protected break
IN1_SUPPORT_EVENT Support for hardware event

5.2.39. _info_cpu: Get CPU information
Function name: int _info_cpu(int flag, int *status)
Parameter: int flag Content of information

int *status CPU information
IN1_BIG_ENDIAN Big endian
IN1_LITTLE_ENDIAN Little endian
Other Value corresponding to

flag
Returned value: TRUE Return value is always TRUE.
Description: This function gets information on the target CPU. For “flag”,

specify one of the following information.
IN1_ADDRSIZE Number of bytes required for storing

address value
IN1_MAXADDR Maximum value of address
IN1_ADDRCOLM Number of digits with which address

values are displayed in hexadecimal
IN1_ENDIAN Endian of the target CPU
IN1_HWORD_SIZE Length in bytes of half-word
IN1_WORD_SIZE Length in bytes of word
IN1_DWORD_SIZE Length in bytes of double-word
IN1_LWORD_SIZE Length in bytes of long-word
IN1_MAXDATA Maximum value of data
IN1_MAXSTACK Maximum value of stack
IN1_MAX_OBJ Maximum length in bytes of one

instruction

54

5.2.40. _info_get_map: Get map information
Function name: int _info_get_map(int *start, int *end, int mode)
Parameter: int *start Start address

int *end End address
int mode Search start mode

IN1_FIRST : First map
IN1_NEXT : Second and following maps

Returned value: TRUE Succeeded
FALSE Error

Description: This function gets map information. The start and the end
addresses of a mapped area are stored in *start and *end,
respectively.

Error: IN1_MAP_END No more map

5.2.41. _info_check_map: Check mapped area
Function name: int _info_check_map(int start, int end, int *status,

int *erradr)
Parameter: int start Start address

int end End address
int *status Check result
int *erraddr Error address

Returned value: TRUE Succeeded
FALSE Error

Description: This function checks to see if the address range from “start”
to “end” is a mapped area. If the address range from “start” to
“end” entirely is a mapped area, TRUE is stored in *status. If
the address range from “start” to “end” contains any
unmapped area, FALSE is stored in *status and the address
of the first unmapped area found by searching from “start” is
stored in erraddr.

Error: ER_IN1_ADDR_OUTRANGE Address range is invalid.
Other Simulator error

5.2.42. _info_get_suffix: Get load file extension
Function name: int _info_get_suffix(char *suffix, int mode)
Parameter: char *suffix Obtained extension

int mode Mode
Returned value: TRUE Return value is always TRUE.
Description: This function gets a file suffix that is added in a file selection

dialog box when downloading the target program in the mode
specified by “mode”. For “mode”, specify one of the following
attributes.
IN1_LOAD Symbol and program files
IN1_SYM Symbol file
IN1_ROM Program file

55

5.2.43. _info_set_suffix: Set load file extension
Function name: int _info_set_suffix(char *suffix, int mode)
Parameter: char *suffix Extension to be set

int mode Mode
Returned value: TRUE Return value is always TRUE.
Description: This function sets a file suffix that is added in a file selection

dialog box when downloading the target program in the mode
specified by “mode”. For “mode”, specify one of the following
attributes.
IN1_LOAD Symbol and program files
IN1_SYM Symbol file
IN1_ROM Program file

5.2.44. _scope_set_obj: Set scope by object file name
Function name: int _scope_set_obj(char *name)
Parameter: char *name Object file name
Returned value: TRUE Succeeded

FALSE Error
Description: This function sets the current scope by an object file name.
Error: ER_SCOPE_NOTFOUND No scope is found that

corresponds to the
specified object file name.

5.2.45. _scope_set_addr: Set scope by address
Function name: int _scope_set_addr(int addr)
Parameter: int addr Address
Returned value: TRUE Succeeded

FALSE Error
Description: This function sets the current scope by an address.
Error: ER_IN1_ADDR_OUTRANGE Address range is invalid.

56

5.2.46. _sym_add_sym: Enter symbols
Function name: int _sym_add_sym(int mode, char *name, int value)
Parameter: int mode Search mode

char *name Symbol
int value Value

Returned value: TRUE Succeeded
FALSE Error

Description: This function enters the symbol (or label) “name” as a global
symbol (or label). For “mode”, specify one of the following
types.
LOAD_SYMBOL Symbol first
LOAD_LABEL Label first

Error: ER_LOAD_ILLEGAL_CHAR Character string contains
a character that cannot be
used for a symbol or label.

ER_LOAD_MULTIDEFINE A global symbol (or label)
of the same name already
exists.

5.2.47. _sym_val2sym: Get symbol for value
Function name: int _sym_val2sym(int mode, int value, char *symbol)
Parameter: int mode Search mode

int value Value
char *symbol Area in which symbol is stored

Returned value: TRUE Succeeded
FALSE Corresponding symbol could not be found.

Description: This function searches for a symbol character string that
corresponds to a value “value” and stores it in “symbol”. For
“mode”, specify one of the priorities of search shown below.
LOAD_SYMBOL Symbol first
LOAD_LABEL Label first

The table below shows the priorities of search in each mode.
Searched symbol first Searched label first

1 Local symbol
(within scope)

1 Local label
(within scope)

2 Global symbol 2 Global label
3 Local label

(within scope)
3 Local symbol

(within scope)
4 Global label 4 Global symbol
5 Local symbol

(outside scope)
5 Local label

(outside scope)
6 Local label

(outside scope)
6 Local symbol

(outside scope)

57

5.2.48. _sym_sym2val: Get value for symbol
Function name: int _sym_sym2val(int mode, char *symbol, int *value)
Parameter: int mode Search mode

char *symbol Symbol
int *value Value

Returned value: TRUE Succeeded
FALSE Symbol could not be found.

Description: This function searches for a value that corresponds to the
symbol character string “symbol” and stores it in *value. The
specified “mode” here is the same as for _sym_val2sym().

Error: ER_LOAD_SYMBOL_NOTFOUND Symbol cannot be
found.

5.2.49. _sym_add_bit: Enter Bit symbols
Function name: int _sym_add_bit(char *bitsym, int addr, int bit)
Parameter: char *bitsym Bit Symbol

int addr Address
int bit Bit number

Returned value: TRUE Succeeded
FALSE Error

Description: This function enters the bit symbol “bitsym” as a global bit
symbol.

Error: ER_LOAD_ILLEGAL_CHAR Character string contains
a character that cannot be
used for a bit symbol.

ER_LOAD_MULTIDEFINE A global bit symbol of the
same name already
exists.

ER_LOAD_ADDR_OUTRANGE Address range is invalid.
ER_LOAD_BIT_OUTRANGE Bit number range is

invalid.

5.2.50. _sym_val2bit: Get bit symbol for address and bit number
Function name: int _sym_val2bit(int addr, int bit, char *bitsym)
Parameter: int addr Address

int bit Bit number
char *bitsym Area in which bit symbol is stored

Returned value: TRUE Succeeded
FALSE Corresponding bit symbol could not be found.

Description: This function searches for a bit symbol character string that
corresponds to an “address” and a “bit” and stores it in
*bitsym.

58

5.2.51. _sym_bit2val: Get address and bit number for bit symbol
Function name: int _sym_bit2val(char *bitsym, int *addr, int *bit)
Parameter: char *bitsym Bit symbol

int *addr Address
int *bit Bit number

Returned value: TRUE Succeeded
FALSE Bit symbol could not be found.

Description: This function searches for an address and a bit number that
corresponds to the bit symbol character string “bitsym” and
stores it in *addr and *bit.

Error: ER_LOAD_SYMBOL_NOTFOUND Bit symbol
cannot be found.

5.2.52. _line_addr2line: Get source line for address
Function name: int _line_addr2line(int addr, int *line, char *filename)
Parameter: int addr Address

int *line Line number
char *filename Area where file name is stored

Returned value: TRUE Succeeded
FALSE Source line information cannot be found.

Description: This function gets the line number (*line) that corresponds to
the address “addr” and its file name (filename).

Error: ER_LOAD_FILE_NOTFOUND File cannot be found.
ER_LOAD_SRCINF_NOTFOUNDSource information

cannot be found.

5.2.53. _line_line2addr: Get address for source line
Function name: int _line_line2addr(char *filename, int line, int *addr)
Parameter: char *filename File name

int line Line number
int *addr Address

Returned value: TRUE Succeeded
FALSE Source line information cannot be found.

Description: This function gets the address (*addr) that corresponds to the
line (line) in the file (filename).

Error: ER_LOAD_LINE_NOTFOUND Line information cannot
be found.

59

5.2.54. _src_get_name: Get list of source file names
Function name: int _src_get_name(char *objname, char *srcname, int mode)
Parameter: char *objname Object file name

char *srcname Area where source file name is
stored

int mode Search start mode
LOAD_FIRST : First source file name
LOAD_NEXT : Second and following source file

names
Returned value: TRUE Succeeded

FALSE Source file name cannot be found.
Description: This function gets a list of source file names in the object file

“objname”. If NULL is specified for “objname”, a list of source
file names in all object files is obtained.

5.2.55. _obj_get_name: Get list of object file names
Function name: int _obj_get_name(char *objname, int mode)
Parameter: char *objname Area where object file name is

stored
int mode Search start mode

LOAD_FIRST : First source file name
LOAD_NEXT : Second and following source file

names
Returned value: TRUE Succeeded

FALSE Object file name cannot be found.
Description: This function gets a list of object file names.

5.2.56. _obj_addr2obj: Get object file name by address
Function name: int _obj_addr2obj(int addr, char *objname)
Parameter: int addr Address

char *objname Area where object file name is
stored

Returned value: TRUE Succeeded
FALSE Corresponding object file name cannot be found.

Description: This function gets the object file name “objname” that
contains the address “addr”.

60

5.2.57. _func_get_name: Get list of function names
Function name: int _func_get_name(char *objname, char *funcname, int
mode)
Parameter: char *objname Object file name

char *funcname Area where function name is
stored
int mode Search start mode

LOAD_FIRST : First function name
LOAD_NEXT : Second and following function

names
Returned value: TRUE Succeeded

FALSE Function name cannot be found.
Description: This function gets a list of function names in the object file

“objname”. If NULL is specified for “objname”, FALSE is
returned.

61

5.2.58. _exp_eval: Evaluate assembler expression
Function name: int _exp_eval(char *exp, int radix, int mode, int *value)
Parameter: char *exp Assembler expression

int radix Radix
int mode Priorities in which symbols (labels) are

evaluated
int *value Area where analysis result is stored

Returned value: TRUE Succeeded
FALSE Error

Description: This function evaluates the assembler expression (exp) and
stores the evaluation result in *value. For “radix”, specify one
of the radices of constants shown below.
EXP_DEC Decimal
EXP_HEX Hexadecimal
EXP_DEFAULT Value set by RADIX command is used

For mode, specify one of the priorities of symbol (label)
evaluation shown below.
EXP_SYMBOL Symbol first
EXP_LABEL Label first

Error: ER_EXP_SYNTAX Syntax error
ER_EXP_ZERO Divide-by-0 error
ER_EXP_LPAR Left parenthesis missing
ER_EXP_SIZE Incorrect size specifier
ER_EXP_STRING Character string not

terminated
ER_EXP_LINE Incorrect line number

specified
ER_EXP_VALUE Incorrect constant value

specified
ER_EXP_UNDEF_SYMBOL Symbol not defined
ER_EXP_PREFIX Incorrect radix of

constant specified
ER_EXP_OVER Constant value out of

range
ER_EXP_UNDEF_MACRO Macro constant not

defined
ER_EXP_ILLEGAL_MACRO Register name used for

macro variable name
ER_EXP_OUTOF_MACRO Limit number of macro

constants exceeded

62

5.2.59. _scri_echo_on: Turn on output to script window
Function name: int _scri_echo_on()
Parameter: None
Returned value: TRUE Return value is always TRUE.
Description: This function turns output to the Script Window on. By

default, the Script Window is enabled for output.

5.2.60. _scri_echo_off: Turn off output to script window
Function name: int _scri_echo_off()
Parameter: None
Returned value: TRUE Return value is always TRUE.
Description: This function turns output to the Script Window off.

63

5.2.61. _c_exp_eval: Evaluate C-language expression
Function name: int _c_exp_eval(char *exp, int *value1, int *value2,

char *type, char *str, char *misc)
Parameter: char *exp C-language expression

int *value1 Analysis result 1
int *value2 Analysis result 2
char *type Character string showing type of analysis

result
char *str Character string showing analysis result
char *misc Character string showing added

information of analysis result
Returned value: TRUE Succeeded

FALSE Error
Description: This function analyzes the C-language expression specified

by “exp” in the current scope. The analysis result is a 64-bit
value, with the 32 low-order bits stored in *value1 and the 32
high-order bits stored in *value2. The type name of the
analysis result is stored in “type” and the analysis result is
stored in “str” after being converted into a character string. If
the analysis result is not one that indicates an ordinary value
such as a function, addition information is stored in “misc”.
The information stored in “type”, “str”, and “misc” can be
output for display using the printf() function in the same way
as possible with a script command "print".

Error: ER_CEXP_NOT_FOUND Symbol cannot be found.
ER_CEXP_SYNTAX_ERROR Syntax error.
ER_CEXP_NO_SCOPE Scope cannot be found.
ER_CEXP_NO_SYMBOL Symbol cannot be found.
ER_CEXP_NO_FUNC Function cannot be found.
ER_CEXP_RIGHT_WRONG Right-side expression is

inappropriate.
ER_CEXP_DEF_TYPE Copying different type of structure

(union) is inhibited.
ER_CEXP_CANT_ASSIGN Cannot be substituted.
ER_CEXP_NO_TYPE Type cannot be found.
ER_CEXP_CANT_FLOAT Floating-point operation is not

supported.
ER_CEXP_CANT_P_TO_P Specified operation cannot be

performed between pointer types.
ER_CEXP_CANT_SUB_P Specified operation cannot be

performed on pointer type.
ER_CEXP_CANT_P Subtraction by pointer variable

cannot be performed.
ER_CEXP_0_DIV Divide-by-0 is attempted.
ER_CEXP_UNKNOWN_OP Invalid operator is used.
ER_CEXP_BROKEN_TYPE Type information is broken.
ER_CEXP_LEFT_POINT Left-side value must be a pointer

variable.

64

ER_CEXP_LEFT_STRUCT Left-side value must be a structure
(union) type.

ER_CEXP_NO_MEMBER Member cannot be found.
ER_CEXP_LEFT_STRUCT_REF Left-side value must be a refarence

of structure (union) type.
ER_CEXP_LEFT_WRONG Left-side value is inappropriate.
ER_CEXP_VAL_NUM Operand must be a numeric value.
ER_CEXP_CANT_MIN Specified operand cannot be sign-

inverted.
ER_CEXP_CANT_REF Address value cannot be obtained.
ER_CEXP_LEFT_ARRAY Array variable is inappropriate.
ER_CEXP_RIGHT_NUM Element numbers of the array is

inappropriate.
ER_CEXP_NOT_POINT Operand is not an address.
ER_CEXP_CANT_CAST_REG Cast operation on variables is not

supported.
ER_CEXP_CANT_CAST Specified type to be cast is

inappropriate.
ER_CEXP_CAST_NOT_SUPPORT Cast operation on

specified type is not
supported.

5.2.62. _get_shared_mem: Get shared variable
Function name: int _get_shared_mem(char *name, char *value)
Parameter: char *name Name of shared variable

char *value Value of shared variable
Returned value: TRUE Succeeded

FALSE Shared variable cannot be found.
Description: This function searches for the shared variable specified by

“name” and stores its value (character string) in “value”. A
shared variable means a variable that can be used in common
in all custom command and custom window programs. The
name and the value of a shared variable are a character
string and can be used in a similar manner as the
environment variables found in several operation systems.
The name and the value of a shared variable can be used in
up to 63 bytes.

5.2.63. _set_shared_mem: Set shared variable
Function name: int _set_shared_mem(char *name, char *value)
Parameter: char *name Name of shared variable

char *value Value of shared variable
Returned value: TRUE Return value is always TRUE.
Description: This function sets the shared variable specified by “name” in

the value specified by “value”. If a value is set for the shared
variable that has already been set, the previously set value is
changed to the value specified by “value”. If the shared
variable is not defined, a new variable area is allocated.

65

5.2.64. _delete_shared_mem: Delete shared variable
Function name: int _delete_shared_mem(char *name)
Parameter: char *name Name of shared variable
Returned value: TRUE Return value is always TRUE.
Description: This function deletes the shared variable that is specified by

“name”. If the shared variable is not defined, nothing is
performed.

5.2.65. _get_err_msg: Get PD79SIM's error message statement
Function name: int _get_err_msg(int err_no, char *msg)
Parameter: int err_no Error number

char *msg Error message statement
Returned value: TRUE Succeeded

FALSE Error Error message statement corresponding to
error number cannot be found.

Description: This function gets PD79SIM's error message statement that
corresponds to the error number specified by “err_no”.

5.2.66. _get_tick_count: Get elapsed time since Windows startup
Function name: int _get_tick_count()
Parameter: None
Returned value: Elapsed time since Windows startup (in ms)
Description: This function gets an elapsed time in ms since Windows has

started up.

66

5.2.67. _get_time: Get current system date and time
Function name: int _get_time(int *year, int *month, int *dayOfWeek,

int *day, int *hour, int *minute,
int *secont, int *milliseconds)

Parameter: int *year Location where current year is
stored

int *month Location where current month (1-
12) is stored

int *dayOfWeek Location where current day of the
week (e.g., Sunday = 0) is stored

int *day Location where current day (1-31)
is stored

int *hour Location where current time in
hours (1-24) is stored

int *minute Location where current time in
minutes (0-59) is stored

int *second Location where current time in
seconds (0-59) is stored

int *milliseconds Location where current time in
milliseconds (0-999) is stored

Returned value: TRUE Return value is always TRUE.
Description: This function gets the current date and time of the system

and stores them in the locations specified by each parameter.
If NULL is specified for a parameter, the information
corresponding to that parameter is not stored.

5.2.68. _disp_src_line: Change the contents displayed in program window
Function name: int disp_src_line(int lineno, char *filename, int addr)
Parameter: int lineno Line number

char *filename File name
int addr Address

Returned value: TRUE Succeeded
FALSE Error

Description: This function updates the contents displayed in PD79SIM's
program window. The selected line of the selected
(specified by “lineno” and “filename”) is displayed in the
program window in the source mode. If selected line of the
selected source file cannot be displayed, the file is displayed
in the disassemble mode beginning with the address specified
by “addr”.

67

5.2.69. _cv_get_data: Get coverage data
Function name: int _cv_get_data(int saddr, int eaddr, int *rsaddr,

int *readdr, char *data)
Parameter: int saddr Start address of data to be obtained

int eaddr End address of data to be obtained
int *rsaddr Start address of data actually obtained
int *readdr End address of data actually obtained
char *data Coverage data obtained

Returned value: TRUE Succeeded
FALSE Error

Description: This function stores the coverage data that includes an
address range specified by “s_addr” and “e_addr” in the area
specified by "data". However, since data for 8 bytes of
addresses from each 8-byte alignment is stored in one byte of
"data", it can happen that a greater range of data than
addresses specified by “s_addr” and “e_addr” actually is
stored. For example, if addresses from 3h to 19h are specified,
data at addresses from 0h to 1Fh actually are stored. The
start and end addresses of the actually obtained data are
stored in *rs_addr and *re_addr, respectively. Note that the
values stored in *rs_addr and *re_addr can be obtained by
calculation using the formula below.

*rs_addr = s_addr / 8 * 8
*re_addr = e_addr / 8 * 8 + 7

For "data", specify an array greater than e_addr - s_addr / 8 +
1. The format of the coverage data stored in one byte of "data"
is as follows:
(Upper row: Bit offset; Lower row: address offset)

7 6 5 4 3 2 1 0
+7 +6 +5 +4 +3 +2 +1 +0

For example, if “s_addr” is 0x400, the coverage results at the
addresses offset by the amount corresponding to each bit are
stored in "data[0]" as shown below.
(Upper row: Bit offset; Lower row: Address)

7 6 5 4 3 2 1 0
407 406 405 404 403 402 401 400

Consequently, if memory is accessed every other byte
beginning with “s_addr”, coverage data is stored as shown
below.
(Upper row: Bit offset; Lower row: Coverage measurement
result)

7 6 5 4 3 2 1 0
0 1 0 1 0 1 0 1

The data stored in data[0] is 01010101B, i.e., 0x55.

Error: ER_IN2_ADDR_OUTRANGE Specified address is out of
range.

ER_IN2_RUNNING Cannot be obtained

68

because program is
executing.

Other Simulator error

5.2.70. _cv_set_data: Set coverage data
Function name: int _cv_set_data(int s_addr, int e_addr, char *data)
Parameter: int s_addr Set start address

int e_addr Set end address
char *data Set coverage data

Returned value: TRUE Succeeded
FALSE Error

Description: This function sets the coverage data stored in the area
specified by "data" in a range of addresses specified by
“s_addr” and “e_addr”. However, since the coverage data
stored in one byte of "data" is for 8 bytes of addresses, specify
values for “s_addr” and “e_addr” in increments of 8 bytes.
The format of "data" is the same as for the _cv_get_data()
function described above.

Error: ER_IN2_ADDR_OUTRANGE Specified address is out of
range.

ER_IN2_RUNNING Cannot be set because
program is executing.

Other Simulator error

5.2.71. _cv_clear_data: Clear coverage data
Function name: int _cv_clear_data()
Parameter: None
Returned value: TRUE Succeeded

FALSE Error
Description: This function clears coverage data.
Error: ER_IN2_RUNNING Cannot be cleared because

program is executing.
Other Simulator error

5.2.72. _cv_clear_cache: Clear coverage cache
Function name: int _cv_clear_cache()
Parameter: None
Returned value: TRUE Return value is always TRUE.
Description: This function clears the coverage cache.

69

5.2.73. _syscom: Execute PD79SIM's script command
Function name: int _syscom(char *command)
Parameter: char *command Character string of PD79SIM
script

command
Returned value: TRUE Succeeded

FALSE Error
Description: This function executes the character string specified by

“command” as a script command of PD79SIM. For a script
command that dumps a range of addresses from 1000H to
1FFFH, for example, specify this function as follows:

_syscom(“DumpByte 1000, 1FFF”);

5.2.74. _doscom: Execute DOS command
Function name: int _doscom(char *command)
Parameter: char *command Character string of DOS command
Returned value: TRUE Succeeded

FALSE Error
Description: This function executes the character string specified by

“command” as a DOS command. For a command that
redirects the output result to a TMP file after specifying a /W
option for the DIR command of DOS, specify this function as
follows:

_doscom(“DIR /W > TMP”);

70

5.2.75. List of Simulator Errors
The table below lists the error numbers that are stored in global variable “macro_err”

when a system call function returns FALSE.

Error number Description
ER_IN2_MCU_RESET Target is reset.
ER_IN2_ERROR_2 Checksum error is found in received data
ER_IN2_ERROR_3 Specified data does not exist.
ER_IN2_ERROR_4 Target program is executing.
ER_IN2_ERROR_5 Target program is idle.
ER_IN2_ERROR_6 Measurement has already been stopped.
ER_IN2_ERROR_7 Measurement is already being executed.
ER_IN2_ARG_ERROR Argument error.
ER_IN2_ERROR_9 Measurement is not completed.
ER_IN2_ERROR_G Number of points exceeds valid range.
ER_IN2_ERROR_H No break is set.
ER_IN2_ERROR_I No source line information is loaded.
ER_IN2_ERROR_M Function range is out of setting.
ER_IN2_MCU_RUN Target MCU execution error.

71

5.3. System Call Functions for Window Operation (winlib.lib)
The winlib.lib provides window-operating functions that can be used in custom

window programs. The prototype declaration of each function is written in “winlib.h”.

Function name Description
_win_printf Output text with format included
_win_puts Output character string to custom window
_win_set_cursor Set cursor position
_win_set_color Set text color
_win_set_bkcolor Set background color
_win_column2dot Convert cursor coordinates into pixel coordinates
_draw_text_out Output character string to custom window
_draw_set_color Set text color
_draw_set_bkcolor Set background color
_draw_set_bkmode Set background mode
_draw_set_font Set font
_draw_get_char_size Get font size
_draw_line Draw line
_draw_fill_rect Fill rectangle
_draw_frame_rect Draw rectangle
_draw_invert_rect Reverse rectangle color
_draw_arc Draw arc of ellipse
_draw_pie Draw sector
_win_redraw Redraw custom window
_win_redraw_clear Redraw custom window
_win_redraw_item Redraw control item
_win_show_window Show/hide control item
_win_set_window_title Set title of custom window
_win_enable_window Enable/disable control item
_win_button_create Create button
_win_button_set_text Change button text
_win_hscroll_range Set scroll range of horizontal scroll bar
_win_hscroll_pos Set position of horizontal scroll box
_win_vscroll_range Set scroll range of vertical scroll bar
_win_vscroll_pos Set position of vertical scroll box
_win_statusbar_create Create status bar
_win_statusbar_set_pane Set items of status bar
_win_statusbar_set_text Set text of status bar
_win_dialog Create input dialog box
_win_message_box Create message box
_win_filedialog Create file selection dialog box
_win_set_window_pos Set position of custom window
_win_set_window_size Set size of custom window
_win_timer_set Set system timer
_win_timer_kill Reset system timer

72

5.3.1. _win_printf: Output text with format included
Function name: int _win_printf(char *format , ...);
Parameter: char *forma Format

... Variable parameter
Returned value: int Number of characters output
Description: This function outputs characters to the cursor position of the

custom window after converting them under control of
“format” using the text color specified by the _win_set_color()
function and the background color specified by the
_win_set_bkcolor() function. The cursor is set at a position
immediately following the last character that is output. The
cursor position can be set at any desired place using the
_win_set_cursor() function. Note that only the character font
FIXED_SYS can be used.

5.3.2. _win_puts: Output character string to custom window
Function name: int _win_puts(char *str)
Parameter: char *str Output character string
Returned value: TRUE Return value is always TRUE.
Description: This function outputs a character string specified by str to

the cursor position of the customer window using the text
color specified by the _win_set_color() function and the
background color specified by the _win_set_bkcolor() function.
The cursor is set at a position immediately following the last
character that is output. The cursor position can be set at any
desired place using the _win_set_cursor() function. Note that
only the character font FIXED_SYS can be used.

5.3.3. _win_set_cursor: Set cursor position
Function name: int _win_set_cursor(int x, int y)
Parameter: int x Specified x column of cursor

int y Specified y column of cursor
Returned value: TRUE Return value is always TRUE.
Description: This function moves the cursor to a position specified by “x”

and “y”. The cursor position is defined with the origin (0, 0) at
the upper left corner of the client area of the custom window,
the “x” columns increasing from there to the right and the “y”
columns increasing from there to the bottom. One character
is output in one column.

73

5.3.4. _win_set_color: Set text color
int _win_set_color(int color)
Parameter: int color Text color
Returned value: int Previous text color
Description: This function sets a color specified by “color” for text. The

text color specified by this function is used when a character
string is output using the _win_printf() and the _win_puts()
functions. For “color”, specify one of the color constants listed
below.
Color constant Color
COLOR_BLACK Black
COLOR_BLUE Blue
COLOR_GREEN Green
COLOR_CYAN Sky blue
COLOR_RED Red
COLOR_MAGENDA Purple
COLOR_YELLOW Yellow
COLOR_WHITE White
COLOR_GRAY Gray
COLOR_DKBLUE Dark blue
COLOR_DKGREEN Dark green
COLOR_DKCYAN Dark sky blue
COLOR_DKRED Dark red
COLOR_DKMAGENDA Dark purple
COLOR_DKYELLOW Dark yellow
COLOR_LTGRAY Light gray

74

5.3.5. _win_set_bkcolor: Set background color
Function name: int _win_set_bkcolor(int color)
Parameter: int color Background color of text
Returned value: int Previous background color
Description: This function sets a color specified by “color” for the current

background. The text color specified by this function is used
when a character string is output using the _win_printf() and
the _win_puts() functions. For “color”, specify one of the color
constants listed below.
Color constant Color
COLOR_BLACK Black
COLOR_BLUE Blue
COLOR_GREEN Green
COLOR_CYAN Sky blue
COLOR_RED Red
COLOR_MAGENDA Purple
COLOR_YELLOW Yellow
COLOR_WHITE White
COLOR_GRAY Gray
COLOR_DKBLUE Dark blue
COLOR_DKGREEN Dark green
COLOR_DKCYAN Dark sky blue
COLOR_DKRED Dark red
COLOR_DKMAGENDA Dark purple
COLOR_DKYELLOW Dark yellow
COLOR_LTGRAY Light gray

5.3.6. _win_column2dot: Convert cursor coordinates into pixel coordinates
Function name: int _win_column2dot(int xcol, int ycol,

int *xpix, int *ypix)
Parameter: int xcol X column

int ycol Y column
int *xpix X pixel coordinate of X column position
int *ypix Y pixel coordinate of Y column position

Returned value: TRUE Return value is always TRUE.
Description: This function converts the cursor coordinates specified by

“xcol” and “ycol” into pixel coordinates and stores them in
*xpix and *ypix.

75

5.3.7. _draw_text_out: Output character string to custom window
Function name: int _draw_text_out(int x, int y, char *str)
Parameter: int x Logical x coordinate of start point of text

int y Logical y coordinate of start point of text
char *str Pointer to character string to be drawn

Returned value: TRUE Return value is always TRUE.
Description: Using the currently selected font, this function writes a

character string to a specified position using the text color
specified by the _draw_set_color() function and the
background color specified by the _draw_set_bkcolor()
function.

5.3.8. _draw_set_color: Set text color
Function name: int _draw_set_color(int color)
Parameter: int color Text color
Returned value: int Previous text color
Description: This function sets a color specified by “color” for text. The

text color specified by this function is used when a character
string is output using the _draw_text_out() function. For
“color”, specify one of the color constants listed below.
Color constant Color
COLOR_BLACK Black
COLOR_BLUE Blue
COLOR_GREEN Green
COLOR_CYAN Sky blue
COLOR_RED Red
COLOR_MAGENDA Purple
COLOR_YELLOW Yellow
COLOR_WHITE White
COLOR_GRAY Gray
COLOR_DKBLUE Dark blue
COLOR_DKGREEN Dark green
COLOR_DKCYAN Dark sky blue
COLOR_DKRED Dark red
COLOR_DKMAGENDA Dark purple
COLOR_DKYELLOW Dark yellow
COLOR_LTGRAY Light gray

76

5.3.9. _draw_set_bkcolor: Set background color
Function name: int _draw_set_bkcolor(int color)
Parameter: int color Background color of text
Returned value: int Previous background color
Description: This function sets a color specified by “color” for the current

background. The background color specified by this function
is used when a character string is output using the
_draw_text_out() function. For “color”, specify one of the color
constants listed below.
Color constant Color
COLOR_BLACK Black
COLOR_BLUE Blue
COLOR_GREEN Green
COLOR_CYAN Sky blue
COLOR_RED Red
COLOR_MAGENDA Purple
COLOR_YELLOW Yellow
COLOR_WHITE White
COLOR_GRAY Gray
COLOR_DKBLUE Dark blue
COLOR_DKGREEN Dark green
COLOR_DKCYAN Dark sky blue
COLOR_DKRED Dark red
COLOR_DKMAGENDA Dark purple
COLOR_DKYELLOW Dark yellow
COLOR_LTGRAY Light gray

If the background mode is a "Fill" mode, the system fills
space between style-specified lines, space between brushed
hatch lines, and the background of character cells with the
background color.

5.3.10. _draw_set_bkmode: Set background mode
Function name: int _draw_set_bkmode(int flag)
Parameter: int flag Set mode
Returned value: TRUE Return value is always TRUE.
Description: This function sets a background mode. Specify whether you

want the area to be filled with the background color before
drawing text. If TRUE is specified for “flag”, the background
is filled with the current background color (default). If
FALSE is specified for “flag”, the background is not changed
before drawing text.

77

5.3.11. _draw_set_font: Set font
Function name: int _draw_set_font(int size, int font)
Parameter: int size Font size

int font Font constant
Returned value: TRUE Return value is always TRUE.
Description: This function specifies the size and the style of the current

drawing font. For “font”, specify some of the following font
constants combined with a |.
Font constant Font style
FONT_FIXED_SYS "FixedSys"
FONT_MINTYO " MS mincho"
FONT_GOTHIC " MS Gothic""
FONT_TIMESNEWROMAN "Times New Roman"
FONT_CENTURY "Century"
FONT_ARIAL "Arial"
FONT_BOLD Bold
FONT_ITALIC Italic

5.3.12. _draw_get_char_size: Get font size
Function name: int _draw_get_char_size(int *pWidth, int *pHeight)
Parameter: int *pWidth Location where character width is

stored
int *pHeight Location where character height is

stored
Returned value: TRUE Return value is always TRUE.
Description: This function gets the size of the font character currently

being set.

78

5.3.13. _draw_line: Draw line
Function name: int _draw_line(int x1, int y1, int x2, int y2, int color)
Parameter: int x1 Starting x coordinate of line

int y1 Starting y coordinate of line
int x2 Ending x coordinate of line
int y2 End y coordinate of line
int color Color of line

Returned value: TRUE Return value is always TRUE.
Description: This function draws a line with a specified color between

specified coordinate points. For “color” specify one of the color
constants shown below.
Color constant Color
COLOR_BLACK Black
COLOR_BLUE Blue
COLOR_GREEN Green
COLOR_CYAN Sky blue
COLOR_RED Red
COLOR_MAGENDA Purple
COLOR_YELLOW Yellow
COLOR_WHITE White
COLOR_GRAY Gray
COLOR_DKBLUE Dark blue
COLOR_DKGREEN Dark green
COLOR_DKCYAN Dark sky blue
COLOR_DKRED Dark red
COLOR_DKMAGENDA Dark purple
COLOR_DKYELLOW Dark yellow
COLOR_LTGRAY Light gray

79

5.3.14. _draw_fill_rect: Fill rectangle
Function name: int _draw_fill_rect(int x1, int y1, int x2, int y2, int color)
Parameter: int x1 Upper left x coordinate of rectangle

int y1 Upper left y coordinate of rectangle
int x2 Lower right x coordinate of rectangle
int y2 Lower right y coordinate of rectangle
int color Color with which to fill

Returned value: TRUE Return value is always TRUE.
Description: This function draws a rectangle filled with a specified color

with its upper left and lower right corners at specified
coordinates. For “color” specify one of the color constants
shown below.
Color constant Color
COLOR_BLACK Black
COLOR_BLUE Blue
COLOR_GREEN Green
COLOR_CYAN Sky blue
COLOR_RED Red
COLOR_MAGENDA Purple
COLOR_YELLOW Yellow
COLOR_WHITE White
COLOR_GRAY Gray
COLOR_DKBLUE Dark blue
COLOR_DKGREEN Dark green
COLOR_DKCYAN Dark sky blue
COLOR_DKRED Dark red
COLOR_DKMAGENDA Dark purple
COLOR_DKYELLOW Dark yellow
COLOR_LTGRAY Light gray

80

5.3.15. _draw_frame_rect: Draw rectangle
Function name: int _draw_frame_rect(int x1, int y1, int x2, int y2, int color)
Parameter: int x1 Upper left x coordinate of rectangle

int y1 Upper left y coordinate of rectangle
int x2 Lower right x coordinate of rectangle
int y2 Lower right y coordinate of rectangle
int color Color of rectangle

Returned value: TRUE Return value is always TRUE.
Description: This function draws lines to form a rectangle filled with a

specified color with its upper left and lower right corners at
specified coordinates. For “color” specify one of the color
constants shown below.
Color constant Color
COLOR_BLACK Black
COLOR_BLUE Blue
COLOR_GREEN Green
COLOR_CYAN Sky blue
COLOR_RED Red
COLOR_MAGENDA Purple
COLOR_YELLOW Yellow
COLOR_WHITE White
COLOR_GRAY Gray
COLOR_DKBLUE Dark blue
COLOR_DKGREEN Dark green
COLOR_DKCYAN Dark sky blue
COLOR_DKRED Dark red
COLOR_DKMAGENDA Dark purple
COLOR_DKYELLOW Dark yellow
COLOR_LTGRAY Light gray

5.3.16. _draw_invert_rect: Reverse rectangle color
Function name: int _draw_invert_rect(int x1, int y1, int x2, int y2)
Parameter: int x1 Upper left x coordinate of rectangle

int y1 Upper left y coordinate of rectangle
int x2 Lower right x coordinate of rectangle
int y2 Lower right y coordinate of rectangle

Returned value: TRUE Return value is always TRUE.
Description: This function reverses the color of the rectangle with its

upper left and lower right corners at specified coordinates.

81

5.3.17. _draw_arc: Draw arc of ellipse
Function name: int _draw_arc(int x1, int y1, int x2, int y2,

int x3, int y3, int x4, int y4, int color)
Parameter: int x1 Upper left x coordinate of boundary

rectangle (logical unit)
int y1 Upper left y coordinate of boundary

rectangle (logical unit)
int x2 Lower right x coordinate of boundary

rectangle (logical unit)
int y2 Lower right y coordinate of boundary

rectangle (logical unit)
int x3 x coordinate of starting point to draw arc

(logical unit)
int y3 y coordinate of starting point to draw arc

(logical unit)
int x4 x coordinate of ending point to draw arc

(logical unit)
int y4 y coordinate of ending point to draw arc

(logical unit)
int color Color of arc

Returned value: TRUE Succeeded
FALSE Error

Description: This function draws an arc of a ellipse. Specify the
coordinates of a boundary rectangle (x1, y1) and (x2, y2) and
the starting point (x3, y3) and ending point (x4, y4) of an arc.
The starting and ending points of an arc do not need to be on
a line of arc. A line that links a specified starting point and
the center of a boundary rectangle is calculated and the
starting point of an arc is calculated from it. The ending
point is calculated in the same way. For “color” specify one of
the color constants shown below.
Color constant Color
COLOR_BLACK Black
COLOR_BLUE Blue
COLOR_GREEN Green
COLOR_CYAN Sky blue
COLOR_RED Red
COLOR_MAGENDA Purple
COLOR_YELLOW Yellow
COLOR_WHITE White
COLOR_GRAY Gray
COLOR_DKBLUE Dark blue
COLOR_DKGREEN Dark green
COLOR_DKCYAN Dark sky blue
COLOR_DKRED Dark red
COLOR_DKMAGENDA Dark purple
COLOR_DKYELLOW Dark yellow
COLOR_LTGRAY Light gray

82

5.3.18. _draw_pie: Draw sector
Function name: int _draw_pie(int x1, int y1, int x2, int y2, int x3, int y3,

int x4, int y4, int framecolor, int paintcolor)
Parameter: int x1 Upper left x coordinate of

boundary rectangle (logical unit)
int y1 Upper left y coordinate of

boundary rectangle (logical unit)
int x2 Lower right x coordinate of

boundary rectangle (logical unit)
int y2 Lower right y coordinate of

boundary rectangle (logical unit)
int x3 x coordinate of starting point to

draw sector (logical unit)
int y3 y coordinate of starting point to

draw sector (logical unit)
int x4 x coordinate of ending point to

draw sector (logical unit)
int y4 y coordinate of ending point to

draw sector (logical unit)
int framecolor Color of framing line of sector
int paintcolor Color with which to fill sector

Returned value: TRUE Succeeded
FALSE Error

Description: This function draws a sector. Define the circumferential
circle of a sector by the boundary rectangle of an ellipse (x1,
y1) and (x2, y2). For “framecolor” and “paintcolor”, specify
the following color constants.
Color constant Color
COLOR_BLACK Black
COLOR_BLUE Blue
COLOR_GREEN Green
COLOR_CYAN Sky blue
COLOR_RED Red
COLOR_MAGENDA Purple
COLOR_YELLOW Yellow
COLOR_WHITE White
COLOR_GRAY Gray
COLOR_DKBLUE Dark blue
COLOR_DKGREEN Dark green
COLOR_DKCYAN Dark sky blue
COLOR_DKRED Dark red
COLOR_DKMAGENDA Dark purple
COLOR_DKYELLOW Dark yellow
COLOR_LTGRAY Light gray

83

5.3.19. _win_redraw: Redraw custom window
Function name: int _win_redraw()
Parameter: None
Returned value: TRUE Return value is always TRUE.
Description: This function redraws a custom window without erasing its

display.

5.3.20. _win_redraw_clear: Redraw custom window
Function name: int _win_redraw_clear()
Parameter: None
Returned value: TRUE Return value is always TRUE.
Description: This function redraws a custom window after erasing its

display.

5.3.21. _win_redraw_item: Redraw control item
Function name: int _win_redraw_item(int handle)
Parameter: int handle Handle of control item
Returned value: TRUE Return value is always TRUE.
Description: This function redraws a control item specified by �handle�

(e.g., button).

5.3.22. _win_show_window: Show/hide control item
Function name: int _win_show_window(int handle, int flag)
Parameter: int handle Handle of control item

int flag TRUE: Displayed FALSE: Not displayed
Returned value: TRUE Return value is always TRUE.
Description: This function specifies whether or not to display a control

item specified by “handle” (e.g., button). The specified control
item is displayed when TRUE is specified for “flag” and is not
displayed when FALSE is specified.

5.3.23. _win_set_window_title: Set title of custom window
Function name: int _win_set_window_title(char *title)
Parameter: char *title Window title
Returned value: TRUE Return value is always TRUE.
Description: This function sets a character string specified by “title” in the

title of a custom window.

5.3.24. _win_enable_window: Enable/disable control item
Function name: int _win_enable_window(int handle, int flag)
Parameter: int handle Handle of control item

int flag TRUE: Enabled FALSE: Disabled
Returned value: TRUE Return value is always TRUE.
Description: This function specifies a state of the control item specified by

“handle” (e.g., button). The specified control item is enabled
when TRUE is specified for “flag” and is disabled when
FALSE is specified. When disabled, the control item is
displayed in gray.

84

5.3.25. _win_button_create: Create button
Function name: int _win_button_create(int x1,int y1,int x2,int y2,

char *str,int id)
Parameter: int x1 Upper left x coordinate of button

int y1 Upper left y coordinate of button
int x2 Lower right x coordinate of button
int y2 Lower right y coordinate of button
char *str Button control text
int id Button control ID

Returned value: int Handle of button
Description: This function creates a button in an area specified by “x1”,

“y1”, “x2”, and “y2” that displays the text specified by “str” on
its surface. The control ID specified by “id” is sent to message
handler as the argument nID of the OnCommand() handle
function when the button is clicked.

5.3.26. _win_button_set_text: Change button text
Function name: int _win_button_set_text(int handle. char *text)
Parameter: int handle Handle of button

char *text Button control text
Returned value: TRUE Succeeded

FALSE Error
Description: This function changes the text displayed on the button

specified by “handle” to one that is specified by “text”.

5.3.27. _win_hscroll_range: Set scroll range of horizontal scroll bar
Function name: int _win_hscroll_range(int min, int max)
Parameter: int min Minimum scroll position of horizontal scroll

bar
int max Maximum scroll position of horizontal

scroll bar
Returned value: TRUE Return value is always TRUE.
Description: This function specifies the minimum and maximum scroll

positions of the horizontal scroll bar of a custom window. If 0
is specified for both “min” and “max”, the horizontal scroll
bar is not displayed. By default, the horizontal scroll bar is
hidden, with both parameters set to 0. The recommended
scroll range is 0 to 100.

5.3.28. _win_hscroll_pos: Set position of horizontal scroll box
Function name: int _win_hscroll_pos(int pos)
Parameter: int pos New position of horizontal scroll box
Returned value: TRUE Return value is always TRUE.
Description: This function sets the current position of the horizontal scroll

box of a custom window and redraws the scroll bar to make it
fit the new position of the horizontal scroll box. The new
position must be within the scroll range.

85

5.3.29. _win_vscroll_range: Set scroll range of vertical scroll bar
Function name: int _win_vscroll_range(int min, int max)
Parameter: int min Minimum scroll position of vertical scroll

bar
int max Maximum scroll position of vertical scroll

bar
Returned value: TRUE Return value is always TRUE.
Description: This function specifies the minimum and maximum scroll

positions of the vertical scroll bar of a custom window. If 0 is
specified for both “min” and “max”, the vertical scroll bar is
not displayed. By default, the vertical scroll bar is hidden,
with both parameters set to 0. The recommended scroll range
is 0 to 100.

5.3.30. _win_vscroll_pos: Set position of vertical scroll box
Function name: int _win_vscroll_pos(int pos)
Parameter: int pos New position of vertical scroll box
Returned value: TRUE Return value is always TRUE.
Description: This function sets the current position of the vertical scroll

box of a custom window and redraws the scroll bar to make it
fit the new position of the vertical scroll box. The new
position must be within the scroll range.

5.3.31. _win_statusbar_create: Create status bar
Function name: int _win_statusbar_create(int cnt)
Parameter: int cnt Number of items on status bar
Returned value: TRUE Return value is always TRUE.
Description: This function creates a status bar at bottom of a custom

window. For “cnt”, set the number of items on this status bar.

86

5.3.32. _win_statusbar_set_pane: Set items of status bar
Function name: int _win_statusbar_set_pane(int index, int style, int size)
Parameter: int index Index number of status bar item

int style Style of item
int size Size of item (in pixels)

Returned value: TRUE Return value is always TRUE.
Description: This function sets the style specified by “style” and the size

specified by “size” for the item on the created status bar that
is specified by “index”. For “style”, specify one of the styles
shown below.
Style Description
SBPS_NOBORDERS Does not have 3D boundary line round

pane.
SBPS_POPOUT Has boundary line displayed in

inverse video with text raised to the
surface.

SBPS_DISABLED Does not draw text.
SBPS_NORMAL Neither stretched nor inverted. Does

not have boundary line either.
SBPS_STRETCH Stretches pane to fill unused space.

Only one pane of this style is allowed
for the status bar. This style can be
combined with some other style using
a |.

5.3.33. _win_statusbar_set_text: Set text of status bar
Function name: int _win_statusbar_set_text(tint index, char *text)
Parameter: int index Index number of status bar item

char *text Text displayed on status bar
Returned value: TRUE Return value is always TRUE.
Description: This function sets text to be displayed in a status bar item.

5.3.34. _win_dialog: Create input dialog box
Function name: int _win_dialog(char *str, char *buf)
Parameter: char *str Character string for message to be

displayed
char *buf Location where obtained character string is

stored
Returned value: TRUE OK button is pressed

FALSE Cancel button is pressed
Description: This function opens an input dialog box and gets one line of

character string.

87

5.3.35. _win_message_box: Create message box
Function name: int _win_message_box(char *str, char *title, int style)
Parameter: char *str Message to be displayed

char *title Title of message box
int style Operation and content of message box

Returned value: int Execution result of functions shown below
Value Meaning
0 No sufficient memory
IDABORT [Stop] button selected
IDCANCEL [Cancel] button selected
IDIGNORE [Ignore] button selected
IDNO [No] button selected
IDOK [OK] button selected
IDRETRY [Retry] button selected
IDYES [Yes] button selected

Description: This function creates a message box. For “style”, specify the
following styles combined with a |.

Style Description
MB_ABORTRETRYIGNORE Message box contains three pushbuttons:

[Stop], [Retry], and [Ignore].
MB_APPLMODAL Operation of PD79SIM /CB79SIM is stopped

until message box is responded (default).
MB_DEFBUTTON1 First button is the default. The first button is

always the default unless
MB_DEFBUTTON2 or MB_DEBUTTON3 is
specified.

MB_DEFBUTTON2 Second button is the default.
MB_DEFBUTTON3 Third button is the default.
MB_ICONEXCLAMATION Exclamation mark icon is displayed in the

message box.
MB_ICONHAND Same as MB_ICONSTOP.
MB_ICONINFORMATION Icon with lowercase "i" in a circle is displayed

in the message box.
MB_ICONQUESTION Question mark (?) icon is displayed in the

message box.
MB_ICONSTOP [STOP] icon is displayed in the message box.
MB_OK Message box contains an [OK] pushbutton.
MB_OKCANCEL Message box contains [OK] and [Cancel]

pushbuttons.
MB_RETRYCANCEL Message box contains [Retry] and [Cancel]

pushbuttons
MB_SYSTEMMODAL All applications are suspended until the user

responds to the message box. Use this
message box to inform serious and potentially
dangerous errors (e.g., memory shortage)
that require immediate corrective action.

88

Style(continued from
preceding page)

Description

MB_YESNO Message box contains two pushbuttons: [Yes]
and [No].

MB_YESNOCANCEL Message box contains three pushbuttons:
[Yes], [No], and [Cancel].

5.3.36. _win_filedialog: Create file selection dialog box
Function name int _win_filedialog(char *title, int openFileDialog,

char *defExt, char *defFileName, int flags,
char *filter, char *fileName)

Parameter: char *title Title of dialog box
int openFileDialog Specification to open or save
char *defExt Default file name extension
char *defFileName Default file name
int flags Flag to customize dialog box
char *filter Specify a filter
char *fileName Destination where acquired file

name is store
Returned value: TRUE OK button was pressed.

FALSE Cancel button was pressed.
Description: This function creates a file selection dialog box and gets a

selected file name. For “title”, specify the title of the dialog
box. For “openFileDialog”, specify TRUE when building a
dialog box to "Open a file" and FALSE when building a dialog
box to "Save file after giving it a name." For “defExt”,
specify a file name extension you want to be automatically
added when a file name is input in the file name edit box
without adding an extension. No extension is added if you
specify NULL here. For “defFileName”, specify the file
name that is displayed first in the file name entering edit box.
No file name is displayed if you specify NULL here. For
“flags”, specify the styles shown below by combining them
with |.

Flag Description
OFN_ALLOWMULTISELECT This flag specifies that multiple choices

can be selected in the "File name" list box.
(When you create a dialog box using a
private template, the
LBS_EXTENDEDSEL value must be
specified in the definition of the "File
name" list box.)

89

Flag Description
OFN_CREATEPROMPT This flag specifies that if a specified file

cannot be found, the user be asked to
confirm whether a new file need be
created by the dialog box function. (This
flag sets the OFN_PATHMUSTEXIST and
OFN_FILEMUSTEXIST flags
automatically.)

OFN_FILEMUSTEXIST This flag specifies that the user can only
input an existing file name in the "File
name" entry field. If an invalid file name
is input in the "File name" entry field by
the user when this flag is set, the dialog
box function displays a warning in the
message box. When this flag is set, the
OFN_PATHMUSTEXIST is set also.

OFN_HIDEREADONLY This flag turns off (hides) the [Read-only]
check box.

OFN_NOCHANGEDIR This flag directs the dialog box to reset the
current directory to one that was selected
when calling the dialog box.

OFN_NONETWORKBUTTON This flag turns off the [Network] button to
disable it from being used.

OFN_NOREADONLYRETURN This flag specifies that the [Read-only]
check box of the returned file be not
checked, and that the file be not placed in
a write-protected directory.

OFN_NOTESTFILECREATE This flag specifies that a file be not created
before closing the dialog box. This flag
must be set if the application saves a file
in the network-shared point that is
"Created but not corrected." If the
application sets this flag, the library does
no longer check whether the file is write-
protected, disk capacity is available, the
drive door is open, and whether the
network is protected. Once the file is
closed while in this state, it cannot be
reopened. Therefore, applications that
use this flag must handle files with
caution.

OFN_OVERWRITEPROMPT If a selected file already exists, this flag
causes the dialog box for "Saving file after
giving it a name" to generate a message
box. The user must confirm whether the
file can be overwritten.

90

Flag Description
OFN_PATHMUSTEXIST This flag specifies that the user can only

input a valid path. If an invalid path is
input in the "File name" entry field by the
user when this flag is set, the dialog box
function displays a warning in the
message box.

OFN_READONLY When creating a dialog box, this flag
ensures that the [Read-only] check box by
default is checked. It also indicates the
status of the [Read-only] check box when
the dialog box is closed.

For “filter”, specify a pair of character strings to specify the filters
that identify a file by using the format shown below. In the example
below, filters (*.m;*.h) and (*.*) are specified.

"Files(*.m;*.h)|*.m;*.h|All Files(*.*)|*.*||"
Once filters are specified, the file list box displays only the selected
ones, with others gone. The selected file name is stored in
“FileName”. If multiple files are selected in cases when selection of
multiple files is allowed, the space character is stored as the delimiter.

5.3.37. _win_set_window_pos: Set position of custom window
Function name: int _win_set_window_pos(int x, int y)
Parameter: int x New left-side position of custom window

int y New upper-side position of custom window
Returned value: TRUE Succeeded

FALSE Error
Description: This function changes the position of a custom window.

5.3.38. _win_set_window_size: Set size of custom window
Function name: int _win_set_window_size(int cx, int cy)
Parameter: int cx New width of custom window

int cy New height of custom window
Returned value: TRUE Succeeded

FALSE Error
Description: This function changes the size of a custom window.

91

5.3.39. _win_timer_set: Set system timer
Function name: int _win_timer_set(int nId, int nElapse)
Parameter: int nId Timer identifier other than 0

int nElapse Time-out value (in ms)
Returned value: TRUE Succeeded

FALSE Error
Description: This function sets a system timer that has the timer

identifier specified by “nId”. A time-out value is specified, sot
that each time the timer times out, the system stores the
timer identifier value in parameter nIDEvent and calls the
OnTimer() handler function. To reset the timer, use the
_win_timer_kill() function.

5.3.40. _win_timer_kill: Reset system timer
Function name: int _win_timer_kill(int nId)
Parameter: int nId Timer identifier other than 0
Returned value: TRUE Succeeded

FALSE Error
Description: This function resets the system timer specified by “nId”.

92

5.4. Handle Functions for Custom Window
 Handle functions are written in a framework that is automatically generated by
CB79SIM when creating a new project in the custom window creation mode. These
functions are called when a custom window receives a message from Windows. The
table below lists the handle functions.

Handle function name Description
OnChar When a key that can be converted into ASCII character

code is pressed, this function is called following the
OnKeyDown() handle function.

OnCommand Called when command message is received.
OnCreate Called when window creation is requested.
OnDestroy Called when window destruction is requested.
OnDraw Called when window redrawing is requested.
OnEvent Called when PD79SIM event is received.
OnHScroll Called when horizontal scroll bar is clicked.
OnKeyDown Called when a key other than system keys is pressed.
OnKeyUp Called when a key other than system keys is released.
OnLButtonDblClk Called when left mouse button is double-clicked.
OnLButtonDown Called when left mouse button is pressed.
OnLButtonUp Called when left mouse button is released.
OnMouseMove Called when mouse cursor is moved.
OnRButtonDblClk Called when right mouse button is double-clicked.
OnRButtonDown Called when right mouse button is pressed.
OnRButtonUp Called when right mouse button is released.
OnSize Called when window size is changed.
OnTimer Called when time-out interval is informed due to elapsed

time of timer.
OnVScroll Called when vertical scroll bar is clicked.

93

5.4.1. Specifications of Data Passed to Handle Functions
 A handle function is called when the custom window receives a message from
Windows. When calling a handle function, the custom window stores the information
attached to the message in an area indicated by global variable “_HandleMsgBlock” to
make it referencible from the handle function.
 The following shows an example of how information is passed to a handle function via
global variable “_HandleMsgBlock”.

extern char _HandleMsgBlock[32];

OnSize()
{

int nType; /* Message data */
int cx:; /* Message data */
int cy; /* Message data */

/* Restore message data */
nType = ((int*)_HandleMsgBlock)[0];
cx = ((int*)_HandleMsgBlock)[1];
cy = ((int*)_HandleMsgBlock)[2];

/* Write message handler code hear, please. */

}

 At the beginning of a handle function, the information stored in “_HandleMsgBlock”
is stored in a local variable of the handle function. Once this processing is made, the
information passed to the handle function can be referenced as a variable.
The information passed to handle functions varies with each handle function. The
contents of these processing are written in framework by default.

5.4.2. OnChar Handle Function
Function name: OnChar
Description: When a key that can be converted into ASCII character code

is pressed, this function is called following the OnKeyDown()
handle function.

Data: The information stored in _HandleMsgBlock is shown below:
ASCII character code 4 bytes
Repeat count 4 bytes
Flag(unused) 4 bytes

Variables: The variables set by “_HandleMsgBlock” are shown below.
int nChar ASCII character code value
int nRepCnt Repeat count value indicating a

number of times a key stroke is
generated while the key is held
down.

int nFlags Not used in this version.

94

5.4.3. OnCommand Handle Function
Function name: OnCommand
Description: This function is called when a command message is received

from Windows.
Data: The information stored in _HandleMsgBlock is shown below:

Command ID 4 bytes
Advice message 4 bytes
Handle 4 bytes

Variables: The variables set by _HandleMsgBlock are shown below.
int nId Command ID of control item
int nMsg Advice message of control item
int nHandle Handle of control item

Supplement: This handle function is called mainly when an event occurs
in the control items set for the custom window. The ID
number to identify the control item is set in “nId”; the advice
message to identify the encountered event is set in “nMsg”;
and the handle of the control item is set in “nHandle”. The
values set in these variables differ with each control item.
For details, refer to specifications of the system call functions
that are used to manipulate the control items.

5.4.4. OnCreate Handle Function
Function name: OnCreate
Description: This function is called when a request to create a window is

received. This function performs such operations as to
generate control items, etc. and to initialize variables.

Data: None
Variables: None

5.4.5. OnDestroy Handle Function
Function name: OnDestroy
Description: This function is called when a request to destroy a window is

received. This function performs such operations as to free an
allocated heap area.

Data: None
Variables: None

5.4.6. OnDraw Handle Function
Function name: OnDraw
Description: This function is called when a request to redraw a window is

received. The cases where this function is called are when it
is necessary to display part of a window that is hidden by
some other window. This function performs such operations
as to redraw a custom window.

Data: None
Variables: None

95

5.4.7. OnEvent Handle Function
Function name: OnEvent
Description: This function is called when a PD79SIM event is received

from PD79SIM. The cases where this function is called are
when it is necessary to change the PD79SIM status. This
function performs such operations as to get memory values
and redraw a window as necessary.

Data: The information stored in _HandleMsgBlock is shown below:
PD79SIM event number 4 bytes

Variables: The variables set by _HandleMsgBlock are shown below.
int nEventID PD79SIM event numbers listed

below
PD79SIM event
number

Cases when event is received

EVENT_GO Start of execution
EVENT_STOP Stop of execution
EVENT_RESET Reset
EVENT_STEP Execution of Step command
EVENT_OVER Execution of Over command
EVENT_RETURN Execution of Return command
EVENT_PUT_REG Change of register value
EVENT_REG_PC Change of PC value
EVENT_PUT_MEM Change of memory value
EVENT_LOAD Program load
EVENT_ADD_SYMBOL Addition of assembler symbol
EVENT_DEL_SYMBOL Deletion of assembler symbol
EVENT_SBRK Change of software breakpoint
EVENT_TRACE_START Start of trace measurement
EVENT_TRACE_END End of trace measurement
EVENT_TRACE_PASS Passage of trace point
EVENT_FUNC Change of displayed function
EVENT_FILE Change of displayed file
EVENT_UP Change of scope to high-level function
EVENT_DOWN Change of scope to low-level function
EVENT_MAP Change of map
EVENT_PATH Change of search path
EVENT_RAMDISP Redrawing of real-time RAM monitor
EVENT_RAMINFO Redrawing of real-time RAM monitor
EVENT_HWBRK Change of hardware break settings
EVENT_EXIT Termination of PD79SIM
EVENT_FONT Change of font
EVENT_TAB Change of tabstop value
EVENT_CWATCH_UPDATE Redrawing of C watch window
EVENT_SCRIPT_INIT Initialization of script window
EVENT_TIME_10MS Timer interrupt at 10 ms intervals

96

5.4.8. OnHScroll Handle Function
Function name: OnHScroll
Description: This function is called when the horizontal scroll bar is

clicked.
Data: The information stored in _HandleMsgBlock is shown below:

Scroll bar code 4 bytes
Position of scroll box 4 bytes

Variables: The variables set by _HandleMsgBlock are shown below.
int nSBCode Scroll bar code indicating one of

the following scroll requests
Value Description
SB_LEFT Scroll to left edge
SB_ENDSCROLL End of scroll
SB_LINELEFT Scroll to left
SB_LINERIGHT Scroll to right
SB_PAGELEFT Scroll one page to left
SB_PAGERIGHT Scroll one page to right
SB_RIGHT Scroll to right edge
SB_THUMBPOSITION Scroll to absolute position (current

position specified by nPos)
SB_THUMBTRACK Drag scroll box to specified position

(current position specified by �nPos�)
int nPos Position when �nSBCode� is

SB_THUMBPOSITION or
SB_THUMBTRACK.

97

5.4.9. OnKeyDown Handle Function
Function name: OnKeyDown
Description: This function is called when a key is pressed. However, the

keys that belong to the "system keys" do not have any effect.
Although the "system keys" are defined differently
depending on the type of personal computer, they normally
consist of the Alt key and some other key that is entered
simultaneously with the Alt key.

Data: The information stored in _HandleMsgBlock is shown below:
Virtual key code 4 bytes
Repeat count 4 bytes
Flag 4 bytes

Variables: The variables set by _HandleMsgBlock are shown below.
int nChar Virtual key code value of key
int nRepCnt Repeat count value indicating a

number of times a key stroke is
generated while the key is held
down.

int nFlags One of the following status flags
Bit Description
0-7 Unused.
8 Extension key. Function keys and keys on

numeric keypad. (This bit is 1 for extended keys;
otherwise, 0.)

11-12 Unused.
13 Always 0.
14 Immediately preceding key status. (This bit is 1

when a key is pressed when called; otherwise, 0.)
15 Always 0.

For details about virtual key code, refer to "About virtual key
code" in the next page.

98

[About virtual key code]
To support all models available, Windows has virtual keys defined to the
actual keys on the keyboard. For example, when depression of the F1 key is
detected, Windows converts it into the virtual key code that corresponds to the
F1 key and informs depression of the F1 key to the application. Thanks to the
use of virtual keys, the application need not be concerned with the difference
in the keyboard.
In CB79SIM, the following virtual key codes can be used.

Virtual key code Corresponding key on keyboard
VK_CANCEL Ctrl + Break
VK_BACK Backspace
VK_TAB Tab
VK_CLEAR 5 on numeric keypad when Num Lock is off
VK_RETURN Enter
VK_SHIFT Shift
VK_CONTROL Ctrl
VK_MENU Alt
VK_PAUSE Pause
VK_CAPITAL Casp Lock
VK_ESCAPE Esc
VK_SPACE Spasebar
VK_PRIOR Page Up
VK_NEXT Page Down
VK_END End
VK_HOME Home
VK_LEFT Left
VK_UP Up
VK_RIGHT Right
VK_DOWN Down
VK_SNAPSHOT Print Screen
VK_INSERT Ins
VK_DELETE Del
VK_NUMPAD0 0 on numeric keypad when Num Lock is on
VK_NUMPAD1 1 on numeric keypad when Num Lock is on
VK_NUMPAD2 2 on numeric keypad when Num Lock is on
VK_NUMPAD3 3 on numeric keypad when Num Lock is on
VK_NUMPAD4 4 on numeric keypad when Num Lock is on
VK_NUMPAD5 5 on numeric keypad when Num Lock is on
VK_NUMPAD6 6 on numeric keypad when Num Lock is on
VK_NUMPAD7 7 on numeric keypad when Num Lock is on
VK_NUMPAD8 8 on numeric keypad when Num Lock is on
VK_NUMPAD9 9 on numeric keypad when Num Lock is on

99

Virtual key code Corresponding key on keyboard
VK_MULTIPLY * on numeric keypad (extended keyboard)
VK_ADD + on numeric keypad (extended keyboard)
VK_SUBTRACT - on numeric keypad (extended keyboard)
VK_DIVIDE / on numeric keypad (extended keyboard)
VK_F1 Function key F1
VK_F2 Function key F2
VK_F3 Function key F3
VK_F4 Function key F4
VK_F5 Function key F5
VK_F6 Function key F6
VK_F7 Function key F7
VK_F8 Function key F8
VK_F9 Function key F9
VK_F10 Function key F10
VK_F11 Function key F11 (extended keyboard)
VK_F12 Function key F12 (extended keyboard)¥
VK_NUMLOCK Num Lock
VK_SCROLL Scroll Lock

For keys 0 to 9 and keys A to Z , virtual key code values "0" to "9"
and values "A" to "Z" are used, respectively.

100

5.4.10. OnKeyUp Handle Function
Function name: OnKeyUp
Description: This function is called when a key is released. However, the

keys that belong to the "system keys" do not have any effect.
Although the "system keys" are defined differently
depending on the type of personal computer, they normally
consist of the Alt key and some other key that is entered
simultaneously with the Alt key.

Data: The information stored in _HandleMsgBlock is shown below:
Virtual key code 4 bytes
Repeat count 4 bytes
Flag 4 bytes

Variables: The variables set by _HandleMsgBlock are shown below.
int nChar Virtual key code value of key
int nRepCnt Repeat count value that indicates

the number of times the key stroke
is generated while the key is held
down. This value is 1 when the
OnKeyUp handle function is
called.

int nFlags One of the following status flags
Bit Description
0-7 Unused.
8 Extension key. Function keys and keys on

numeric keypad. (This bit is 1 for extended keys;
otherwise, 0.)

11-12 Unused.
13 Always 0.
14 Immediately preceding key status. (This bit is 1

when a key is pressed when called; otherwise, 0.)
15 Always 0.

For details about virtual key code, refer to "About virtual key
code" in the preceding page.

101

5.4.11. OnLButtonDblClk Handle Function
Function name: OnLButtonDblClk
Description: This function is called when the left mouse button is double-

clicked.
Data: The information stored in _HandleMsgBlock is shown below:

Type of virtual key 4 bytes
x coordinate of cursor 4 bytes
y coordinate of cursor 4 bytes

Variables: The variables set by _HandleMsgBlock are shown below.
int nFlags Virtual key that is pressed

The stored value is a logical sum of
the following values representing
a virtual key.

Value Description
MK_CONTROL Ctrl key pressed
MK_LBUTTON Left mouse button pressed
MK_MBUTTON Middle mouse button pressed
MK_RBUTTON Right mouse button pressed
MK_SHIFT Shift key pressed

int x x coordinate of mouse cursor
int y y coordinate of mouse cursor
Coordinates are always a relative position referenced to the
upper left corner of the window.

5.4.12. OnLButtonDown Handle Function
Function name: OnLButtonDown
Description: This function is called when the left mouse button is pressed.
Data: The information stored in _HandleMsgBlock is shown below:

Type of virtual key 4 bytes
x coordinate of cursor 4 bytes
y coordinate of cursor 4 bytes

Variables: The variables set by _HandleMsgBlock are shown below.
int nFlags Virtual key that is pressed

The stored value is a logical sum of
the following values representing
a virtual key.

Value Description
MK_CONTROL Ctrl key pressed
MK_LBUTTON Left mouse button pressed
MK_MBUTTON Middle mouse button pressed
MK_RBUTTON Right mouse button pressed
MK_SHIFT Shift key pressed

int x x coordinate of mouse cursor
int y y coordinate of mouse cursor
Coordinates are always a relative position referenced to the
upper left corner of the window.

102

5.4.13. OnLButtonUp Handle Function
Function name: OnLButtonUp
Description: This function is called when the left mouse button is

released.
Data: The information stored in _HandleMsgBlock is shown below:

Type of virtual key 4 bytes
x coordinate of cursor 4 bytes
y coordinate of cursor 4 bytes

Variables: The variables set by _HandleMsgBlock are shown below.
int nFlags Virtual key that is pressed

The stored value is a logical sum of
the following values representing
a virtual key.

Value Description
MK_CONTROL Ctrl key pressed
MK_LBUTTON Left mouse button pressed
MK_MBUTTON Middle mouse button pressed
MK_RBUTTON Right mouse button pressed
MK_SHIFT Shift key pressed

int x x coordinate of mouse cursor
int y y coordinate of mouse cursor
Coordinates are always a relative position referenced to the
upper left corner of the window.

5.4.14. OnMouseMove Handle Function
Function name: OnMouseMove
Description: This function is called when the mouse cursor is moved.
Data: The information stored in _HandleMsgBlock is shown below:

Type of virtual key 4 bytes
x coordinate of cursor 4 bytes
y coordinate of cursor 4 bytes

Variables: The variables set by _HandleMsgBlock are shown below.
int nFlags Virtual key that is pressed

The stored value is a logical sum of
the following values representing
a virtual key.

Value Description
MK_CONTROL Ctrl key pressed
MK_LBUTTON Left mouse button pressed
MK_MBUTTON Middle mouse button pressed
MK_RBUTTON Right mouse button pressed
MK_SHIFT Shift key pressed

int x x coordinate of mouse cursor
int y y coordinate of mouse cursor
Coordinates are always a relative position referenced to the
upper left corner of the window.

103

5.4.15. OnRButtonDblClk Handle Function
Function name: OnRButtonDblClk
Description: This function is called when the right mouse button is

double-clicked
Data: The information stored in _HandleMsgBlock is shown below:

Type of virtual key 4 bytes
x coordinate of cursor 4 bytes
y coordinate of cursor 4 bytes

Variables: The variables set by _HandleMsgBlock are shown below.
int nFlags Virtual key that is pressed

The stored value is a logical sum of
the following values representing
a virtual key.

Value Description
MK_CONTROL Ctrl key pressed
MK_LBUTTON Left mouse button pressed
MK_MBUTTON Middle mouse button pressed
MK_RBUTTON Right mouse button pressed
MK_SHIFT Shift key pressed

int x x coordinate of mouse cursor
int y y coordinate of mouse cursor
Coordinates are always a relative position referenced to the
upper left corner of the window.

5.4.16. OnRButtonDown Handle Function
Function name: OnRButtonDown
Description: This function is called when the right mouse button is

pressed.
Data: The information stored in _HandleMsgBlock is shown below:

Type of virtual key 4 bytes
x coordinate of cursor 4 bytes
y coordinate of cursor 4 bytes

Variables: The variables set by _HandleMsgBlock are shown below.
int nFlags Virtual key that is pressed

The stored value is a logical sum of
the following values representing
a virtual key.

Value Description
MK_CONTROL Ctrl key pressed
MK_LBUTTON Left mouse button pressed
MK_MBUTTON Middle mouse button pressed
MK_RBUTTON Right mouse button pressed
MK_SHIFT Shift key pressed

int x x coordinate of mouse cursor
int y y coordinate of mouse cursor
Coordinates are always a relative position referenced to the
upper left corner of the window.

104

5.4.17. OnRButtonUp Handle Function
Function name: OnRButtonUp
Description: This function is called when the right mouse button is

released.
Data: The information stored in _HandleMsgBlock is shown below:

Type of virtual key 4 bytes
x coordinate of cursor 4 bytes
y coordinate of cursor 4 bytes

Variables: The variables set by _HandleMsgBlock are shown below.
int nFlags Virtual key that is pressed

The stored value is a logical sum of
the following values representing
a virtual key.

Value Description
MK_CONTROL Ctrl key pressed
MK_LBUTTON Left mouse button pressed
MK_MBUTTON Middle mouse button pressed
MK_RBUTTON Right mouse button pressed
MK_SHIFT Shift key pressed

int x x coordinate of mouse cursor
int y y coordinate of mouse cursor
Coordinates are always a relative position referenced to the
upper left corner of the window.

105

5.4.18. OnSize Handle Function
Function name: OnSize
Description: This function is called when the window size is changed.
Data: The information stored in _HandleMsgBlock is shown below:

Type of size change 4 bytes
New width 4 bytes
New height 4 bytes

Variables: The variables set by _HandleMsgBlock are shown below.
int nType One of the following types of size

changes that is requested
Value Description
SIZE_MAXIMIZED Maximized display
SIZE_MINIMIZED Iconification
SIZE_RESTORED Size changed, but SIZE_MINIMIZED

and SIZE_MAXIMIZED are not
applied.

SIZE_MAXHIDE Message is sent to all pup-up windows
when several other windows are
maximized in size.

SIZE_MAXSHOW Message is sent to all pup-up windows
when several other windows are
restored to previous size.

int cx New width of client area
int cy New height of client area

5.4.19. OnTimer Handle Function
Function name: OnTimer
Description: This function is called when a time-out interval is informed

due to an elapsed time of the timer.
Data: The information stored in _HandleMsgBlock is shown below:

Timer identifier 4 bytes
Variables: The variables set by _HandleMsgBlock are shown below.

int nIDEvent Identification number of timer

106

5.4.20. OnVScroll Handle Function
Function name: OnVScroll
Description: This function is called when the vertical scroll bar is clicked.
Data: The information stored in _HandleMsgBlock is shown below:

Scroll bar code 4 bytes
Position of scroll box 4 bytes

Variables: The variables set by _HandleMsgBlock are shown below.
int nSBCode Scroll bar code indicating one of

the following scroll requests
Value Description
SB_BOTTOM Scroll to bottom
SB_ENDSCROLL End of scroll
SB_LINEDOWN Scroll one line down
SB_LINEUP Scroll one line up
SB_PAGEDOWN Scroll one page down
SB_PAGEUP Scroll one page up
SB_THUMBPOSITION Scroll to absolute position (current

position specified by nPos)
SB_THUMBTRACK Drag scroll box to specified position

(current position specified by nPos)
SB_TOP Scroll to top

int nPos Position when �nSBCode� is
SB_THUMBPOSITION or
SB_THUMBTRACK.

CB79SIM V.1.01 User’s Manual

Rev. 1.00
May 1, 2003
REJ10J0052-0100Z

COPYRIGHT ©2003 RENESAS TECHNOLOGY CORPORATION
AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

CB79SIM V.1.01

REJ10J0052-0100Z

User’s Manual

	1. Overview
	1.1. Setting Up CB79SIM
	1.2. Features of CB79SIM
	1.2.1. Same user interface as available with PD79SIM
	1.2.2. Development environment where programming, building, and debugging all are integrated
	1.2.3. Creation of custom command and custom window programs
	1.2.4. PD79SIM's Register, Memory, Dump, and Script Windows

	2. Function of Each Window
	2.1. CB79SIM Window
	2.2. Project Window
	2.2.1. Menu Bar

	2.3. Message Window
	2.3.1. Menu Bar

	2.4. Editor Window
	2.4.1. Menu Bar

	2.5. Local Window
	2.5.1. Menu Bar

	2.6. Global Window
	2.6.1. Menu Bar

	3. Method for Creating a Program
	3.1. Creating a Custom Command Program
	3.1.1. Creating New Project for Custom Command Program
	3.1.2. Creating New Source File
	3.1.3. Add Source File to Project
	3.1.4. Building a Project
	3.1.5. Execution Example of Custom Command Program

	3.2. Creating a Custom Window Program
	3.2.1. Creating New Project for Custom Window Program
	3.2.2. Editing Automatically Created Framework Source File
	3.2.3. Execution Example of Custom Window Program

	3.3. Using Setup Dialog Box
	3.3.1. Project Setup Area
	3.3.2. Source File Setup Area
	3.3.3. Include File and Library File Search Path Setup Area
	3.3.4. Library Setup Area

	3.4. Using Breakpoint Dialog Box
	3.4.1. File name setup/display area
	3.4.2. Line number setup/display area
	3.4.3. Breakpoint list area
	3.4.4. Enter button
	3.4.5. Cancel button
	3.4.6. Add button
	3.4.7. Delete button
	3.4.8. Enable button
	3.4.9. Disable button
	3.4.10. Jump button

	4. Programming Language Specifications
	5. Reference
	5.1. Standard Functions (stdlib.lib)
	5.1.1. malloc: Allocate memory from heap area
	5.1.2. free: Release the area allocated by malloc() function
	5.1.3. strlen: Get the length of character string
	5.1.4. strcat: Concatenate character strings
	5.1.5. strcmp: Compare character strings
	5.1.6. strcpy: Copy character string
	5.1.7. strtoi: Convert character string into value
	5.1.8. gets: Input character string (from Script Window)
	5.1.9. exit: Terminate program execution
	5.1.10. fopen: Open a file
	5.1.11. fclose: Close a file
	5.1.12. fseek: Move file pointer
	5.1.13. fgetc: Input character (from file)
	5.1.14. fputc: Output character (to file)
	5.1.15. fgets: Input character string (from file)
	5.1.16. fputs: Output character string (to file)
	5.1.17. printf: Output characters with format (to Script Window)
	5.1.18. sprintf: Output characters with format (to memory)
	5.1.19. fprintf: Output characters with format (to file)

	5.2. System Call Functions for Debugger Operation (system.lib)
	5.2.1. _cpu_go: Execute program in free-run mode
	5.2.2. _cpu_gb: Execute program with break
	5.2.3. _cpu_stop: Stop program execution
	5.2.4. _cpu_reset: Reset the target CPU
	5.2.5. _cpu_src_step: Execute program one source line at a time
	5.2.6. _cpu_step: Execute program one instruction at a time
	5.2.7. _cpu_src_over: Execute program one source line at a time including subroutines
	5.2.8. _cpu_over: Execute program one instruction at a time including subroutines
	5.2.9. _cpu_src_return: Return from current to calling routine one source line at a time
	5.2.10. _cpu_return: Return from current to calling routine one instruction at a time
	5.2.11. _cpu_wait: Wait until program execution stops
	5.2.12. _reg_get_reg: Get register value
	5.2.13. _reg_put_reg: Set register value
	5.2.14. _reg_get_pc: Get program counter value
	5.2.15. _reg_put_pc: Set program counter value
	5.2.16. _reg_clear_cache: Clear register cache
	5.2.17. _mem_get: Get memory value
	5.2.18. _mem_put: Set memory value
	5.2.19. _mem_get_endian: Get memory value with endian attached
	5.2.20. _mem_put_endian: Set memory value with endian attached
	5.2.21. _mem_fill: Fill memory
	5.2.22. _mem_move: Transfer memory block
	5.2.23. _mem_clear_cache: Clear memory cache
	5.2.24. _break_set: Set/enable software break
	5.2.25. _break_get: Get settings of software breaks
	5.2.26. _break_reset: Clear software break
	5.2.27. _break_reset_all: Clear all software breaks
	5.2.28. _break_disable: Disable software break
	5.2.29. _break_disable_all: Disable all software breaks
	5.2.30. _break_enable_all: Enable all software breaks
	5.2.31. _break_search: Get attribute of software break settings
	5.2.32. _rram_clear: Clear RAM monitor memory
	5.2.33. _rram_get_area: Get RAM monitor area
	5.2.34. _rram_set_area: Set RAM monitor area
	5.2.35. _rram_get_size: Get size of RAM monitor area
	5.2.36. _rram_get_data: Get RAM monitor data
	5.2.37. _info_check_run: Check execution status
	5.2.38. _info_service: Get information on service contents
	5.2.39. _info_cpu: Get CPU information
	5.2.40. _info_get_map: Get map information
	5.2.41. _info_check_map: Check mapped area
	5.2.42. _info_get_suffix: Get load file extension
	5.2.43. _info_set_suffix: Set load file extension
	5.2.44. _scope_set_obj: Set scope by object file name
	5.2.45. _scope_set_addr: Set scope by address
	5.2.46._sym_add_sym: Enter symbols
	5.2.47._sym_val2sym: Get symbol for value
	5.2.48. _sym_sym2val: Get value for symbol
	5.2.49. _sym_add_bit: Enter Bit symbols
	5.2.50. _sym_val2bit: Get bit symbol for address and bit number
	5.2.51. _sym_bit2val: Get address and bit number for bit symbol
	5.2.52. _line_addr2line: Get source line for address
	5.2.53. _line_line2addr: Get address for source line
	5.2.54. _src_get_name: Get list of source file names
	5.2.55. _obj_get_name: Get list of object file names
	5.2.56. _obj_addr2obj: Get object file name by address
	5.2.57. _func_get_name: Get list of function names
	5.2.58. _exp_eval: Evaluate assembler expression
	5.2.59. _scri_echo_on: Turn on output to script window
	5.2.60. _scri_echo_off: Turn off output to script window
	5.2.61. _c_exp_eval: Evaluate C-language expression
	5.2.62. _get_shared_mem: Get shared variable
	5.2.63. _set_shared_mem: Set shared variable
	5.2.64. _delete_shared_mem: Delete shared variable
	5.2.65. _get_err_msg: Get PD79SIM's error message statement
	5.2.66. _get_tick_count: Get elapsed time since Windows startup
	5.2.67. _get_time: Get current system date and time
	5.2.68. _disp_src_line: Change the contents displayed in program window
	5.2.69. _cv_get_data: Get coverage data
	5.2.70. _cv_set_data: Set coverage data
	5.2.71. _cv_clear_data: Clear coverage data
	5.2.72. _cv_clear_cache: Clear coverage cache
	5.2.73. _syscom: Execute PD79SIM's script command
	5.2.74. _doscom: Execute DOS command
	5.2.75. List of Simulator Errors

	5.3. System Call Functions for Window Operation (winlib.lib)
	5.3.1. _win_printf: Output text with format included
	5.3.2. _win_puts: Output character string to custom window
	5.3.3. _win_set_cursor: Set cursor position
	5.3.4. _win_set_color: Set text color
	5.3.5. _win_set_bkcolor: Set background color
	5.3.6. _win_column2dot: Convert cursor coordinates into pixel coordinates
	5.3.7. _draw_text_out: Output character string to custom window
	5.3.8. _draw_set_color: Set text color
	5.3.9. _draw_set_bkcolor: Set background color
	5.3.10. _draw_set_bkmode: Set background mode
	5.3.11. _draw_set_font: Set font
	5.3.12. _draw_get_char_size: Get font size
	5.3.13. _draw_line: Draw line
	5.3.14. _draw_fill_rect: Fill rectangle
	5.3.15. _draw_frame_rect: Draw rectangle
	5.3.16. _draw_invert_rect: Reverse rectangle color
	5.3.17. _draw_arc: Draw arc of ellipse
	5.3.18. _draw_pie: Draw sector
	5.3.19. _win_redraw: Redraw custom window
	5.3.20. _win_redraw_clear: Redraw custom window
	5.3.21. _win_redraw_item: Redraw control item
	5.3.22. _win_show_window: Show/hide control item
	5.3.23. _win_set_window_title: Set title of custom window
	5.3.24. _win_enable_window: Enable/disable control item
	5.3.25. _win_button_create: Create button
	5.3.26. _win_button_set_text: Change button text
	5.3.27. _win_hscroll_range: Set scroll range of horizontal scroll bar
	5.3.28. _win_hscroll_pos: Set position of horizontal scroll box
	5.3.29. _win_vscroll_range: Set scroll range of vertical scroll bar
	5.3.30. _win_vscroll_pos: Set position of vertical scroll box
	5.3.31. _win_statusbar_create: Create status bar
	5.3.32. _win_statusbar_set_pane: Set items of status bar
	5.3.33. _win_statusbar_set_text: Set text of status bar
	5.3.34. _win_dialog: Create input dialog box
	5.3.35. _win_message_box: Create message box
	5.3.36. _win_filedialog: Create file selection dialog box
	5.3.37. _win_set_window_pos: Set position of custom window
	5.3.38. _win_set_window_size: Set size of custom window
	5.3.39. _win_timer_set: Set system timer
	5.3.40. _win_timer_kill: Reset system timer

	5.4. Handle Functions for Custom Window
	5.4.1. Specifications of Data Passed to Handle Functions
	5.4.2. OnChar Handle Function
	5.4.3. OnCommand Handle Function
	5.4.4. OnCreate Handle Function
	5.4.5. OnDestroy Handle Function
	5.4.6. OnDraw Handle Function
	5.4.7. OnEvent Handle Function
	5.4.8. OnHScroll Handle Function
	5.4.9. OnKeyDown Handle Function
	5.4.10. OnKeyUp Handle Function
	5.4.11. OnLButtonDblClk Handle Function
	5.4.12. OnLButtonDown Handle Function
	5.4.13. OnLButtonUp Handle Function
	5.4.14. OnMouseMove Handle Function
	5.4.15. OnRButtonDblClk Handle Function
	5.4.16. OnRButtonDown Handle Function
	5.4.17. OnRButtonUp Handle Function
	5.4.18. OnSize Handle Function
	5.4.19. OnTimer Handle Function
	5.4.20. OnVScroll Handle Function

