

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

CB32RSIM V.1.10
Programming Manual

U
ser’s M

anual

Rev.1.00 2003.05

Custom Builder for M3T-PD32RSIM

• Microsoft, MS-DOS, Windows, and Windows NT are registered trademarks of Microsoft Corporation in the U.S. and other countries.
• IBM and AT are registered trademarks of International Business Machines Corporation.
• Intel and Pentium are registered trademarks of Intel Corporation.
• Adobe, Acrobat, and Acrobat Reader are trademarks of Adobe Systems Incorporated.
• All other brand and product names are trademarks, registered trademarks or service marks of their respective holders.

Keep safety first in your circuit designs!
 Renesas Technology Corporation and Renesas Solutions Corporation put the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to
personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with
appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention
against any malfunction or mishap.

Notes regarding these materials
 These materials are intended as a reference to assist our customers in the selection of the Renesas Technology product best suited to
the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corporation, Renesas Solutions Corporation or a third party.
 Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples
contained in these materials.
 All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information
on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation and Renesas
Solutions Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers
contact Renesas Technology Corporation, Renesas Solutions Corporation or an authorized Renesas Technology product distributor
for the latest product information before purchasing a product listed herein. The information described here may contain technical
inaccuracies or typographical errors. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility
for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by
Renesas Technology Corporation and Renesas Solutions Corporation by various means, including the Renesas home page
(http://www.renesas.com).
 When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and
algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the
information and products. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any
damage, liability or other loss resulting from the information contained herein.
 Renesas Technology semiconductors are not designed or manufactured for use in a device or system that is used under
circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation, Renesas Solutions
Corporation or an authorized Renesas Technology product distributor when considering the use of a product contained herein for any
specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
 The prior written approval of Renesas Technology Corporation and Renesas Solutions Corporation is necessary to reprint or reproduce
in whole or in part these materials.
 If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from
the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport
contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
 Please contact Renesas Technology Corporation or Renesas Solutions Corporation for further details on these materials or the
products contained therein.

For inquiries about the contents of this document or product, fill in the text file the installer generates in the following directory and email
to your local distributor.

¥SUPPORT¥Product-name¥SUPPORT.TXT

Renesas Tools Homepage http://www.renesas.com/en/tools

3

1.1.1.1. OVERVIEWOVERVIEWOVERVIEWOVERVIEW.. 5555

1.1. OUTLINE OF THIS MANUAL ...5

1.2. WHAT IS CB32RSIM?...5

1.3. WHAT CAN BE DONE WITH CB32RSIM?...5

1.4. FEATURES OF CB32RSIM ..5

2.2.2.2. CUSTOM COMMAND PRCUSTOM COMMAND PRCUSTOM COMMAND PRCUSTOM COMMAND PROGRAMMINGOGRAMMINGOGRAMMINGOGRAMMING.. 6666

2.1. PROCEDURE FOR CREATING CUSTOM COMMANDS...6

2.2. EXAMPLE OF SOURCE PROGRAM FOR THE SIMPLEST CUSTOM COMMAND7

2.3. FUNCTIONS THAT CAN BE USED IN PROGRAMMING A CUSTOM COMMAND9

2.4. METHOD FOR USING THE STANDARD FUNCTIONS ...9

2.4.1. Using heap area manipulating functions...9

2.4.2. Using character string manipulating functions ..10

2.4.3. Using input/output functions..10

2.4.4. Using file manipulating functions..11

2.5. METHOD FOR USING THE DEBUGGER OPERATING FUNCTIONS12

2.5.1. Using execution controlling functions..12

2.5.2. Using register manipulating functions ..13

2.5.3. Using memory manipulating functions ...13

2.5.4. Using software break manipulating functions ..14

2.5.5. Using debug information manipulating functions ..15

2.5.6. Using scrip command executing functions ..16

2.5.7. Using DOS command executing functions...16

3.3.3.3. CUSTOM WINDOW PROCUSTOM WINDOW PROCUSTOM WINDOW PROCUSTOM WINDOW PROGRAMMINGGRAMMINGGRAMMINGGRAMMING .. 17171717

3.1. PROCEDURE FOR CREATING A CUSTOM WINDOW ..17

3.2. EXAMPLE OF SOURCE PROGRAM FOR THE SIMPLEST CUSTOM WINDOW........................18

3.3. ABOUT THE HANDLE FUNCTIONS..20

3.4. ABOUT FRAMEWORK SOURCE FILE..20

3.5. METHOD FOR USING HANDLE FUNCTIONS ..21

3.5.1. Using the OnCreate handle function (to start creating a window)..................21

3.5.2. Using OnDestroy handle function (to start destroying a window)...................21

3.5.3. Using the OnDraw handle function (to request redrawing a window)............22

3.5.4. Using the OnEvent handle function (for status change of PD32RSIM)23

4

3.5.5. Using the OnSize handle function (to change window size).............................26

3.5.6. Using the OnCommand handle function (to manipulate control items

(buttons)) ...27

3.5.7. Using the OnHScroll and other handle functions (to manipulate scroll bars) 28

3.5.8. Using the OnLButtonDblClk and other handle functions (to manipulate

mouse) 29

3.5.9. Using the OnChar and other handle functions (to manipulate keys)..............30

3.5.10. Using the OnTimer handle function...31

3.6. FUNCTIONS THAT CAN BE USED IN PROGRAMMING A CUSTOM WINDOW31

3.7. METHOD FOR USING WINDOW MANIPULATING FUNCTIONS ..32

3.7.1. Using drawing functions ...32

3.7.2. Using functions to manipulate control items (buttons)34

3.7.3. Using functions to manipulate the status bar ...36

3.7.4. Using functions to manipulate the scroll bar ..37

3.7.5. Using functions to manipulate dialog box ...39

3.7.6. Using functions to manipulate the window frame ..40

3.7.7. Using functions to operate the system timer...41

5

1.1.1.1. OverviewOverviewOverviewOverview
1.1.1.1.1.1.1.1. Outline of this manualOutline of this manualOutline of this manualOutline of this manual
 This manual describes how to write a program when creating custom command or
custom window programs using CB32RSIM. For details on how to use CB32RSIM,
please refer to the "CB32RSIM V.1.10 User's Manual."

1.2.1.2.1.2.1.2. What is What is What is What is CB32RSIMCB32RSIMCB32RSIMCB32RSIM????
 CB32RSIM is an entirely new development environment that allows you to create
your exclusive commands or windows that operate on PD32RSIM.

1.3.1.3.1.3.1.3. What can be done with What can be done with What can be done with What can be done with CB32RSIMCB32RSIMCB32RSIMCB32RSIM????
By using CB32RSIM you can easily create (program) custom commands and custom

windows for PD32RSIM.
 CB32RSIM provides an integrated support for all operations from programming
custom commands and windows to compiling and debugging them.
 The custom commands and windows thus created can be used readily on PD32RSIM.
 In short, CB32RSIM lets you upgrade the functions of PD32RSIM and customize it
easily for yourself.

Since the custom commands and windows created using CB32RSIM can control the
simulators directly, various debug functions you may wish to have such as those listed
below can easily be obtained.

� Reference and modify target memory contents
� Control target program execution by running and stopping program and

single-stepping source lines
� Build automatic target system testing environment

1.4.1.4.1.4.1.4. Features of Features of Features of Features of CB32RSIMCB32RSIMCB32RSIMCB32RSIM
1. A window design similar to that of PD32RSIM is adopted for operational

integrity with PD32RSIM.
2. An integrated development environment for programming, compiling, and

debugging is provided.
3. The commands and windows that operate on PD32RSIM can be created by

yourself.
4. The program description language supported for CB32RSIM is the C-language

subset.
5. Various libraries like those listed below are available for CB32RSIM:

� Standard function library (stdlib.lib)
� Simulator operating function library (system.lib)
� Window operating function library (winlib.lib)

6

2.2.2.2. Custom Command ProgrammingCustom Command ProgrammingCustom Command ProgrammingCustom Command Programming
 This chapter describes how to program the custom commands of PD32RSIM.

2.1.2.1.2.1.2.1. Procedure for creating custom commandsProcedure for creating custom commandsProcedure for creating custom commandsProcedure for creating custom commands
 To create a custom command using CB32RSIM, follow the procedure described
below.

1. Creating a project
 A project is a set of the source programs necessary to create custom
commands. Create one project for one custom command to be created. For
details on how to create a project, refer to the "CB32RSIM V.1.10 User's
Manual," Section 3.1.1, "Creating New Project for Custom Command
Program".

2. Creating source programs
Write the operation of a custom command in a source file. For details on

how to create a source file, refer to the "CB32RSIM V.1.10 User's Manual,"
Section 3.1.2, "Creating New Source File". For details on how to add the
source file to a project, refer to the "CB32RSIM V.1.10 User's Manual," Section
3.1.3, "Adding Source File to Project".

3. Building a command program
The term "build" refers to creating a custom command program by compiling

the source programs created above. For details about this operation, refer to
the "CB32RSIM V.1.10 User's Manual," Section 3.1.4, "Building a Program".

4. Debugging a command program
If the custom command program created does not work as intended, debug it.

For details on how to debug, refer to the "CB32RSIM V.1.10 User's Manual,"
Section 2.1, "CB32RSIM Window".

5. Adding custom command to PD32RSIM
To use the custom command thus completed, add it to PD32RSIM. For

details on how to add, refer to "Customize Functions" in the "PD32RSIM
V.2.00 User's Manual."

Described in this manual is the method for programming in 2, "Creating source
programs" outlined above. For other details, refer to the corresponding sections in the
"CB32RSIM V.1.10 User's Manual."

7

2.2.2.2.2.2.2.2. Example of source program for the simplest custom commandExample of source program for the simplest custom commandExample of source program for the simplest custom commandExample of source program for the simplest custom command
This section explains the method of programming with CB32RSIM by using a source

program for the simplest custom command as an example.

� Example of custom command
Command name hello
Format hello address <RET>
Content � Display a character string "Hello CB32RSIM World!" in the

script window.
� Then input the character string from the script window.
� After entering the character string, store it at the address

that is specified in the first parameter of the command.
� If any error occurs during processing, terminate the

command.

� Example of source program
#include <stdlib.h>#include <stdlib.h>#include <stdlib.h>#include <stdlib.h>
#include <system.h>#include <system.h>#include <system.h>#include <system.h>

int main(int argc, char **argv)int main(int argc, char **argv)int main(int argc, char **argv)int main(int argc, char **argv) /* 1. /* 1. /* 1. /* 1. Program is executed */Program is executed */Program is executed */Program is executed */
/* from main() function/* from main() function/* from main() function/* from main() function */ */ */ */

{{{{
charcharcharchar str[128];str[128];str[128];str[128];
intintintint val, i, len;val, i, len;val, i, len;val, i, len;

if(argc != 2){if(argc != 2){if(argc != 2){if(argc != 2){ /* 2. /* 2. /* 2. /* 2. Command is terminated */Command is terminated */Command is terminated */Command is terminated */
/* if one parameter is nonexistent/* if one parameter is nonexistent/* if one parameter is nonexistent/* if one parameter is nonexistent */ */ */ */

exit(0);exit(0);exit(0);exit(0);
}}}}
printf("Hello printf("Hello printf("Hello printf("Hello CB32RSIMCB32RSIMCB32RSIMCB32RSIM World!¥n"); World!¥n"); World!¥n"); World!¥n"); /* 3. /* 3. /* 3. /* 3. Character string is output */Character string is output */Character string is output */Character string is output */

/* to script window/* to script window/* to script window/* to script window */ */ */ */
if(gets(str) == NULL){if(gets(str) == NULL){if(gets(str) == NULL){if(gets(str) == NULL){ /* 4. /* 4. /* 4. /* 4. Character string is input */Character string is input */Character string is input */Character string is input */

/* from script window/* from script window/* from script window/* from script window */ */ */ */
exit(1);exit(1);exit(1);exit(1);

}}}}
if(_exp_eval(argv[1], EXP_DEFAULT, EXP_LABEL, &val) == FALSE){if(_exp_eval(argv[1], EXP_DEFAULT, EXP_LABEL, &val) == FALSE){if(_exp_eval(argv[1], EXP_DEFAULT, EXP_LABEL, &val) == FALSE){if(_exp_eval(argv[1], EXP_DEFAULT, EXP_LABEL, &val) == FALSE){

/* 5. /* 5. /* 5. /* 5. Assembler expression is */Assembler expression is */Assembler expression is */Assembler expression is */
/* analyzed to get value/* analyzed to get value/* analyzed to get value/* analyzed to get value */ */ */ */

exit(1);exit(1);exit(1);exit(1);
}}}}
len = strlen(str);len = strlen(str);len = strlen(str);len = strlen(str);
forforforfor(i = 0; i < len; i++){(i = 0; i < len; i++){(i = 0; i < len; i++){(i = 0; i < len; i++){

/* 6. /* 6. /* 6. /* 6. Memory contents are modifiedMemory contents are modifiedMemory contents are modifiedMemory contents are modified */ */ */ */
if(_mem_put(val + i, 1, &(str[i])) == FALSE){if(_mem_put(val + i, 1, &(str[i])) == FALSE){if(_mem_put(val + i, 1, &(str[i])) == FALSE){if(_mem_put(val + i, 1, &(str[i])) == FALSE){

exit(1);exit(1);exit(1);exit(1);
}}}}

}}}}
exit(0);exit(0);exit(0);exit(0);

}}}}

8

� Explanation
1. The source program of the custom command begins from the main()

function. The programming language used is the C-language subset
specifically designed for use in CB32RSIM. Specifications of this language
are detailed in the "CB32RSIM V.1.10 User's Manual," Section 4,
"Programming Language Specifications". The major differences with the C
language are as follows:

� Aggregates (structures and unions) are not supported.
� Real types (float and double) are not supported.

 Stored in argc is the number of arguments, and what is stored in argv is the
address that contains the pointer array that contains a pointer to the area at
which the character string specified in the argument is stored. This is the
same as the arguments of the main() function in the standard C language are
handled.
 Note that although the main() function is the only function used in this
example, multiple user-defining functions can be used in the same way as in
the C language.

2. To quit the command in the middle, use the exit() function. Specifications
of this function are detailed in the "CB32RSIM V.1.10 User's Manual,"
Section 5.1.9, "exit: Terminate program execution".

3. To display a character string in the script window, use the printf() function.
Specifications of this function are detailed in the "CB32RSIM V.1.10 User's
Manual," Section 5.1.17, "printf: Output characters with format (to Script
Window)".

4. To input a character string from the script window, use the gets() function.
This function is used in almost the same way as the gets() function in the C
language. Specifications of this function are detailed in the "CB32RSIM
V.1.10 User's Manual," Section 5.1.8, "gets: Input character string (from
Script Window)".

5. To analyze an assembler expression to get a value, use the _exp_eval()
function. Labels and symbols can be used in the expressions analyzed by
this function. Specifications of this function are detailed in the "CB32RSIM
V.1.10 User's Manual," Section 5.2.59, "_exp_eval: Analyze assembler
expression".

6. To set a value in the target CPU memory, use the _mem_put() function.
Specifications of this function are detailed in the "CB32RSIM V.1.10 User's
Manual," Section 5.2.189, "_mem_put: Set memory value".

9

2.3.2.3.2.3.2.3. Functions that can be used in programming a custom commandFunctions that can be used in programming a custom commandFunctions that can be used in programming a custom commandFunctions that can be used in programming a custom command
 The functions that can be used in programming a custom command can broadly be
classified into the following two groups.

1. Standard functions
 The functions similar to the standard C-language functions that are
assumed to be relatively frequently used are supported.

2. Debugger operating functions
 The functions necessary to operate the debugger are supported.

2.4.2.4.2.4.2.4. Method for using the standard functionsMethod for using the standard functionsMethod for using the standard functionsMethod for using the standard functions
 When using the standard functions, include the header file “stdlib.h” in the function
you are going to use. Specifications of the standard functions are detailed in the
"CB32RSIM V.1.10 User's Manual," Section 5.1, "Standard Functions (stdlib.lib)".

2.4.1.2.4.1.2.4.1.2.4.1. Using heap area manipulating functionsUsing heap area manipulating functionsUsing heap area manipulating functionsUsing heap area manipulating functions
 This section explains how to use the functions for manipulating the heap area by
using the function shown below as an example.

Function name Description
malloc Allocate memory from heap area

[Program example]
char *regist_name(char *name)char *regist_name(char *name)char *regist_name(char *name)char *regist_name(char *name)
{{{{

charcharcharchar *p;*p;*p;*p;
intintintint len;len;len;len;

if(name != NULL){if(name != NULL){if(name != NULL){if(name != NULL){ /* This line is processed only when _name_ is *//* This line is processed only when _name_ is *//* This line is processed only when _name_ is *//* This line is processed only when _name_ is */
/* not NULL *//* not NULL *//* not NULL *//* not NULL */

len = strlen(name);len = strlen(name);len = strlen(name);len = strlen(name); /* Get length of character string *//* Get length of character string *//* Get length of character string *//* Get length of character string */
p = malloc(len + 1);p = malloc(len + 1);p = malloc(len + 1);p = malloc(len + 1); /* Allocate area of len + 1 bytes *//* Allocate area of len + 1 bytes *//* Allocate area of len + 1 bytes *//* Allocate area of len + 1 bytes */
if(p == NULL){if(p == NULL){if(p == NULL){if(p == NULL){ /* Memory allocation failed if _p_ is NULL *//* Memory allocation failed if _p_ is NULL *//* Memory allocation failed if _p_ is NULL *//* Memory allocation failed if _p_ is NULL */

return NULL;return NULL;return NULL;return NULL; /* Error *//* Error *//* Error *//* Error */
}}}}
strcpy(p, name);strcpy(p, name);strcpy(p, name);strcpy(p, name); /* Duplicate character string *//* Duplicate character string *//* Duplicate character string *//* Duplicate character string */
return p;return p;return p;return p; /* Return stored area *//* Return stored area *//* Return stored area *//* Return stored area */

}}}}
return NULL;return NULL;return NULL;return NULL; /* Error *//* Error *//* Error *//* Error */

}}}}

 Shown above is a program example used to create a user-defined function that stores
the character string specified by the argument “name” in the heap area using the
malloc() function.

10

2.4.2.2.4.2.2.4.2.2.4.2. Using character string manipulating functionsUsing character string manipulating functionsUsing character string manipulating functionsUsing character string manipulating functions
 This section explains how to use the functions for manipulating character strings by
using the functions shown below as an example.

Function name Description
strcmp Compare character strings
strtoi Convert character string into value
sprintf Output character string with format (to memory)

[Program example]
int eval_str(char *str1, char *str2, char *str3)int eval_str(char *str1, char *str2, char *str3)int eval_str(char *str1, char *str2, char *str3)int eval_str(char *str1, char *str2, char *str3)
{{{{

intintintint value;value;value;value;

if(strcmp(str1, “go”) == 0){if(strcmp(str1, “go”) == 0){if(strcmp(str1, “go”) == 0){if(strcmp(str1, “go”) == 0){ /* When str1 is "go" *//* When str1 is "go" *//* When str1 is "go" *//* When str1 is "go" */
if(strtoi(str2, 0, &value) == TRUE){if(strtoi(str2, 0, &value) == TRUE){if(strtoi(str2, 0, &value) == TRUE){if(strtoi(str2, 0, &value) == TRUE){

/* When str2 was converted into value *//* When str2 was converted into value *//* When str2 was converted into value *//* When str2 was converted into value */
/* Output to str3 with format included *//* Output to str3 with format included *//* Output to str3 with format included *//* Output to str3 with format included */

sprintf(stsprintf(stsprintf(stsprintf(str3, “%X(%d)”, value, value);r3, “%X(%d)”, value, value);r3, “%X(%d)”, value, value);r3, “%X(%d)”, value, value);
return TRUE;return TRUE;return TRUE;return TRUE; /* Succeeded *//* Succeeded *//* Succeeded *//* Succeeded */

}}}}
}}}}
return FALSE;return FALSE;return FALSE;return FALSE; /* Error *//* Error *//* Error *//* Error */

}}}}
 Shown above is a program example used to create a user-defined function that when
the argument “str1” is "go," converts the numeral-representing character string
specified by the argument “str2” into a numeric value and outputs it to the area
specified by the argument “str3” with a format included.

2.4.3.2.4.3.2.4.3.2.4.3. Using input/output functionsUsing input/output functionsUsing input/output functionsUsing input/output functions
 This section explains how to use the input/output functions by using the functions
shown below as an example.

Function name Description
gets Input character string (from Script Window)
printf Output character string with format (to Script Window)

[Program example]
int echo_str()int echo_str()int echo_str()int echo_str()
{{{{

charcharcharchar str[1024];str[1024];str[1024];str[1024];

if(gets(str) != NULL){if(gets(str) != NULL){if(gets(str) != NULL){if(gets(str) != NULL){ /* Character string was obtained *//* Character string was obtained *//* Character string was obtained *//* Character string was obtained */
printf(“Your input is [%s].¥n”, str);printf(“Your input is [%s].¥n”, str);printf(“Your input is [%s].¥n”, str);printf(“Your input is [%s].¥n”, str); /* Output with format included *//* Output with format included *//* Output with format included *//* Output with format included */
return TRUE;return TRUE;return TRUE;return TRUE; /* Succeeded *//* Succeeded *//* Succeeded *//* Succeeded */

}}}}
return FALSE;return FALSE;return FALSE;return FALSE; /* Error *//* Error *//* Error *//* Error */

}}}}
 Shown above is a program example used to create a user-defined function that
outputs the character string entered in the input area of the Script Window to the
window's display area with a format included.

11

2.4.4.2.4.4.2.4.4.2.4.4. Using file manipulating functionsUsing file manipulating functionsUsing file manipulating functionsUsing file manipulating functions
 This section explains how to use the file manipulating functions by using the
functions shown below as an example.

Function name Description
fopen Open file
fclose Close file
fprintf Output data with format (to file)

[Program example]
int put_file(char *filename, int data1, int data2, int data3, int data4)int put_file(char *filename, int data1, int data2, int data3, int data4)int put_file(char *filename, int data1, int data2, int data3, int data4)int put_file(char *filename, int data1, int data2, int data3, int data4)
{{{{

intintintint fd;fd;fd;fd;

if((fd = fopen(filename, “w”)) == NULL){if((fd = fopen(filename, “w”)) == NULL){if((fd = fopen(filename, “w”)) == NULL){if((fd = fopen(filename, “w”)) == NULL){ /* Open file *//* Open file *//* Open file *//* Open file */
return FALSE;return FALSE;return FALSE;return FALSE; /* Error *//* Error *//* Error *//* Error */

}}}}
fprintf(fd, “Data1 = %d¥n”, data1);fprintf(fd, “Data1 = %d¥n”, data1);fprintf(fd, “Data1 = %d¥n”, data1);fprintf(fd, “Data1 = %d¥n”, data1); /* Output data1 *//* Output data1 *//* Output data1 *//* Output data1 */
fprintf(fd, “fprintf(fd, “fprintf(fd, “fprintf(fd, “Data2 = %d¥n”, data2);Data2 = %d¥n”, data2);Data2 = %d¥n”, data2);Data2 = %d¥n”, data2); /* Output data2 *//* Output data2 *//* Output data2 *//* Output data2 */
fprintf(fd, “Data3 = %d¥n”, data3);fprintf(fd, “Data3 = %d¥n”, data3);fprintf(fd, “Data3 = %d¥n”, data3);fprintf(fd, “Data3 = %d¥n”, data3); /* Output data3 *//* Output data3 *//* Output data3 *//* Output data3 */
fprintf(fd, “Data4 = %d¥n”, data4);fprintf(fd, “Data4 = %d¥n”, data4);fprintf(fd, “Data4 = %d¥n”, data4);fprintf(fd, “Data4 = %d¥n”, data4); /* Output data4 *//* Output data4 *//* Output data4 *//* Output data4 */
fclose(fd);fclose(fd);fclose(fd);fclose(fd); /* Close file *//* Close file *//* Close file *//* Close file */
return TRUE;return TRUE;return TRUE;return TRUE; /* Succeeded *//* Succeeded *//* Succeeded *//* Succeeded */

}}}}
 Shown above is a program example used to create a user-defined function that
creates the file specified by the argument “filename” and outputs the data specified by
arguments “data1” through “data4” to the file with a format included.

12

2.5.2.5.2.5.2.5. Method for using the debugger operating functionsMethod for using the debugger operating functionsMethod for using the debugger operating functionsMethod for using the debugger operating functions
 When using the debugger operating functions, include the header file “system.h” in
the function you are going to use. Specifications of the debugger operating functions
are detailed in the "CB32RSIM V.1.10 User's Manual," Section 5.2, "System Call
Functions for Debugger Operation (system.lib)".

2.5.1.2.5.1.2.5.1.2.5.1. Using execution controlling functionsUsing execution controlling functionsUsing execution controlling functionsUsing execution controlling functions
 This section explains how to use the functions or controlling program execution by
using the functions shown below as an example.

Function name Description
_cpu_go Execute program free-run
_cpu_stop Stop program execution
_cpu_reset Reset target system

[Program example]
int go_stop_10()int go_stop_10()int go_stop_10()int go_stop_10()
{{{{

intintintint i;i;i;i;

for(i = 0; i < 10; i++){for(i = 0; i < 10; i++){for(i = 0; i < 10; i++){for(i = 0; i < 10; i++){ /* Repeat 10 times *//* Repeat 10 times *//* Repeat 10 times *//* Repeat 10 times */
if(_cpu_go() == FALSE){if(_cpu_go() == FALSE){if(_cpu_go() == FALSE){if(_cpu_go() == FALSE){ /* Execute program in *//* Execute program in *//* Execute program in *//* Execute program in */

/* free-run mode *//* free-run mode *//* free-run mode *//* free-run mode */
return FALSE;return FALSE;return FALSE;return FALSE; /* Error in the above *//* Error in the above *//* Error in the above *//* Error in the above */

}}}}
if(_cpu_stop() == FALSE){if(_cpu_stop() == FALSE){if(_cpu_stop() == FALSE){if(_cpu_stop() == FALSE){ /* Stop program execution *//* Stop program execution *//* Stop program execution *//* Stop program execution */

return FALSE;return FALSE;return FALSE;return FALSE; /* Error in the above *//* Error in the above *//* Error in the above *//* Error in the above */
}}}}

}}}}
if(_cpu_reset() == FALSE){if(_cpu_reset() == FALSE){if(_cpu_reset() == FALSE){if(_cpu_reset() == FALSE){ /* Reset target system *//* Reset target system *//* Reset target system *//* Reset target system */

return FALSE;return FALSE;return FALSE;return FALSE; /* Error in the above *//* Error in the above *//* Error in the above *//* Error in the above */
}}}}
return TRUE;return TRUE;return TRUE;return TRUE; /* Succeeded *//* Succeeded *//* Succeeded *//* Succeeded */

}}}}
 Shown above is a program example used to create a user-defined function that
repeats program execution and stopping in free-run mode 10 times before resetting the
target system.

13

2.5.2.2.5.2.2.5.2.2.5.2. Using register manipulating functionsUsing register manipulating functionsUsing register manipulating functionsUsing register manipulating functions
 This section explains how to use the functions for manipulating registers by using
the functions shown below as an example.

Function name Description
_reg_get_pc Get program counter value
_reg_put_reg Set register value

[Program example]
int pc_inc_intb()int pc_inc_intb()int pc_inc_intb()int pc_inc_intb()
{{{{

intintintint reg;reg;reg;reg;

if(_reg_get_pc(®) == FALSE){if(_reg_get_pc(®) == FALSE){if(_reg_get_pc(®) == FALSE){if(_reg_get_pc(®) == FALSE){ /* Get PC value *//* Get PC value *//* Get PC value *//* Get PC value */
return FALSE;return FALSE;return FALSE;return FALSE; /* Error in the above *//* Error in the above *//* Error in the above *//* Error in the above */

}}}}
reg += 1;reg += 1;reg += 1;reg += 1; /* PC value + 1 *//* PC value + 1 *//* PC value + 1 *//* PC value + 1 */
if(_reg_put_reg(reg, Register number) == FALSE){if(_reg_put_reg(reg, Register number) == FALSE){if(_reg_put_reg(reg, Register number) == FALSE){if(_reg_put_reg(reg, Register number) == FALSE){ /* Set value in register *//* Set value in register *//* Set value in register *//* Set value in register */

return FAreturn FAreturn FAreturn FALSE;LSE;LSE;LSE; /* Error in the above *//* Error in the above *//* Error in the above *//* Error in the above */
}}}}
return TRUE;return TRUE;return TRUE;return TRUE; /* Succeeded *//* Succeeded *//* Succeeded *//* Succeeded */

}}}}
 Shown above is a program example used to create a user-defined function that sets
the current value of the program counter in the “Register number” register after
incrementing the value of it by 1. Specifications of the register number are detailed in
the "CB32RSIM V.1.10 User's Manual," Section 5.2.13, "_reg_put_reg: Set register
value".

2.5.3.2.5.3.2.5.3.2.5.3. Using memory manipulating functionsUsing memory manipulating functionsUsing memory manipulating functionsUsing memory manipulating functions
 This section explains how to use the memory manipulating functions by using the
functions shown below as an example.

Function name Description
_mem_get Get memory value
_mem_put Set memory value

[Program example]
int inc_1000H()int inc_1000H()int inc_1000H()int inc_1000H()
{{{{

charcharcharchar data[128];data[128];data[128];data[128];
intintintint i;i;i;i;

if(_mem_get(0x1000, 128, data) == FALSE){if(_mem_get(0x1000, 128, data) == FALSE){if(_mem_get(0x1000, 128, data) == FALSE){if(_mem_get(0x1000, 128, data) == FALSE){ /* Get 128 bytes beginning with *//* Get 128 bytes beginning with *//* Get 128 bytes beginning with *//* Get 128 bytes beginning with */
/* address 1000H *//* address 1000H *//* address 1000H *//* address 1000H */

return FALSE;return FALSE;return FALSE;return FALSE; /* Error in the above *//* Error in the above *//* Error in the above *//* Error in the above */
}}}}
for(i = 0; i < 128; i++){for(i = 0; i < 128; i++){for(i = 0; i < 128; i++){for(i = 0; i < 128; i++){ /* Repeat 128 times *//* Repeat 128 times *//* Repeat 128 times *//* Repeat 128 times */

(data[i])++;(data[i])++;(data[i])++;(data[i])++; /* Increment data *//* Increment data *//* Increment data *//* Increment data */
}}}}
if(_mem_put(0x1000, 128, data) == FALSE){if(_mem_put(0x1000, 128, data) == FALSE){if(_mem_put(0x1000, 128, data) == FALSE){if(_mem_put(0x1000, 128, data) == FALSE){ /* Set 128 bytes beginning with *//* Set 128 bytes beginning with *//* Set 128 bytes beginning with *//* Set 128 bytes beginning with */

/* address 1000H *//* address 1000H *//* address 1000H *//* address 1000H */
return FALSE;return FALSE;return FALSE;return FALSE; /* Error in the above *//* Error in the above *//* Error in the above *//* Error in the above */

}}}}
return TRUE;return TRUE;return TRUE;return TRUE; /* Succeeded *//* Succeeded *//* Succeeded *//* Succeeded */

}}}}
Shown above is a program example used to create a user-defined function that

14

increments 128 bytes of memory values beginning with address 1000H by 1.

2.5.4.2.5.4.2.5.4.2.5.4. Using software break manipulating functionsUsing software break manipulating functionsUsing software break manipulating functionsUsing software break manipulating functions
 This section explains how to use the functions for manipulating software breaks by
using the functions shown below as an example.

Function name Description
_break_set Set/enable software break
_break_reset Clear software break

[Program example]
int go_F000H()int go_F000H()int go_F000H()int go_F000H()
{{{{

if(_break_set(0xF000) == FALSE){if(_break_set(0xF000) == FALSE){if(_break_set(0xF000) == FALSE){if(_break_set(0xF000) == FALSE){ /* Set software break at address F000H *//* Set software break at address F000H *//* Set software break at address F000H *//* Set software break at address F000H */
return FALSE;return FALSE;return FALSE;return FALSE; /* Error in the above *//* Error in the above *//* Error in the above *//* Error in the above */

}}}}
if(_cpu_gb() == FALSE){if(_cpu_gb() == FALSE){if(_cpu_gb() == FALSE){if(_cpu_gb() == FALSE){ /* Execute program with break *//* Execute program with break *//* Execute program with break *//* Execute program with break */

return FALSE;return FALSE;return FALSE;return FALSE; /* Error in the above *//* Error in the above *//* Error in the above *//* Error in the above */
}}}}
_cpu_wait();_cpu_wait();_cpu_wait();_cpu_wait(); /* Wait until target execution is stopped *//* Wait until target execution is stopped *//* Wait until target execution is stopped *//* Wait until target execution is stopped */
if(if(if(if(_break_reset(0xF000) == FALSE){_break_reset(0xF000) == FALSE){_break_reset(0xF000) == FALSE){_break_reset(0xF000) == FALSE){ /* Clear software break at address F000H *//* Clear software break at address F000H *//* Clear software break at address F000H *//* Clear software break at address F000H */

return FALSE;return FALSE;return FALSE;return FALSE; /* Error in the above *//* Error in the above *//* Error in the above *//* Error in the above */
}}}}
return TRUE;return TRUE;return TRUE;return TRUE; /* Succeeded *//* Succeeded *//* Succeeded *//* Succeeded */

}}}}
 Shown above is a program example used to create a user-defined function that
executes a program until it is stopped at address F000H.

15

2.5.5.2.5.5.2.5.5.2.5.5. Using debug information manipulating functionsUsing debug information manipulating functionsUsing debug information manipulating functionsUsing debug information manipulating functions
 This section explains how to use the functions for manipulating debug information by
using the functions shown below as an example.

Function name Description
_line_addr2line Get source line of indicated address
_exp_eval Analyze assembler expression
_c_exp_eval Analyze C-language expression

[Program example]
int str_eval(char *str, int *is_c, char *filename, int *line, int *find_line)int str_eval(char *str, int *is_c, char *filename, int *line, int *find_line)int str_eval(char *str, int *is_c, char *filename, int *line, int *find_line)int str_eval(char *str, int *is_c, char *filename, int *line, int *find_line)
{{{{

intintintint value, val;value, val;value, val;value, val;
charcharcharchar s1[128], s2[128], s3[128];s1[128], s2[128], s3[128];s1[128], s2[128], s3[128];s1[128], s2[128], s3[128];

if(_exp_eval(str, EXP_DEFAULT, EXP_LABEL, &value) == TRUE){if(_exp_eval(str, EXP_DEFAULT, EXP_LABEL, &value) == TRUE){if(_exp_eval(str, EXP_DEFAULT, EXP_LABEL, &value) == TRUE){if(_exp_eval(str, EXP_DEFAULT, EXP_LABEL, &value) == TRUE){
*is_c = FALSE;*is_c = FALSE;*is_c = FALSE;*is_c = FALSE; /* Assembler expression *//* Assembler expression *//* Assembler expression *//* Assembler expression */

}else if(_c_exp_eval(str, &value, &val, s1, s2, s3) == TRUE){}else if(_c_exp_eval(str, &value, &val, s1, s2, s3) == TRUE){}else if(_c_exp_eval(str, &value, &val, s1, s2, s3) == TRUE){}else if(_c_exp_eval(str, &value, &val, s1, s2, s3) == TRUE){
*is_c = TRUE;*is_c = TRUE;*is_c = TRUE;*is_c = TRUE; /* C-language e/* C-language e/* C-language e/* C-language expression */xpression */xpression */xpression */

}else{}else{}else{}else{
return FALSE;return FALSE;return FALSE;return FALSE; /* Error in analyzing expression *//* Error in analyzing expression *//* Error in analyzing expression *//* Error in analyzing expression */

}}}}
if(_line_addr2line(value, line, filename) == TRUE){if(_line_addr2line(value, line, filename) == TRUE){if(_line_addr2line(value, line, filename) == TRUE){if(_line_addr2line(value, line, filename) == TRUE){

*find_line = TRUE;*find_line = TRUE;*find_line = TRUE;*find_line = TRUE; /* Source file name and line number *//* Source file name and line number *//* Source file name and line number *//* Source file name and line number */
/* found *//* found *//* found *//* found */

}else{}else{}else{}else{
*find_line = FALSE;*find_line = FALSE;*find_line = FALSE;*find_line = FALSE; /* Source file /* Source file /* Source file /* Source file name and line number */name and line number */name and line number */name and line number */

/* nonexistent *//* nonexistent *//* nonexistent *//* nonexistent */
}}}}
return TRUE;return TRUE;return TRUE;return TRUE;

}}}}
 Shown above is a program example used to create a user-defined function that
determines whether the character string specified by the argument “str” is an
assembler or a C-language expression and gets the source file name and line number
that corresponds to the address obtained by analyzing the expression.

16

2.5.6.2.5.6.2.5.6.2.5.6. Using scrip command executing functionsUsing scrip command executing functionsUsing scrip command executing functionsUsing scrip command executing functions
 This section explains how to use the functions for executing script commands by
using the functions shown below as an example.

Function name Description
_syscom Execute PD32RSIM's script command

[Program example]
int DB(int addr)int DB(int addr)int DB(int addr)int DB(int addr)
{{{{

charcharcharchar str[128];str[128];str[128];str[128];

sprintf(str, “DumpByte %X”, addr);sprintf(str, “DumpByte %X”, addr);sprintf(str, “DumpByte %X”, addr);sprintf(str, “DumpByte %X”, addr); /* Create script command character *//* Create script command character *//* Create script command character *//* Create script command character */
/* string *//* string *//* string *//* string */

if(_syscom(str) == FALSE){if(_syscom(str) == FALSE){if(_syscom(str) == FALSE){if(_syscom(str) == FALSE){ /* Execute script command *//* Execute script command *//* Execute script command *//* Execute script command */
return FALSE;return FALSE;return FALSE;return FALSE; /* Error in the above *//* Error in the above *//* Error in the above *//* Error in the above */

}}}}
return TRUE;return TRUE;return TRUE;return TRUE; /* Succeeded *//* Succeeded *//* Succeeded *//* Succeeded */

}}}}
 Shown above is a program example used to create a user-defined function that
executes a “DumpByte” script command using the address specified by the argument
“addr” as the first argument.

2.5.7.2.5.7.2.5.7.2.5.7. Using DOS command executing functionsUsing DOS command executing functionsUsing DOS command executing functionsUsing DOS command executing functions
 This section explains how to use the functions for executing DOS commands by using
the functions shown below as an example.

Function name Description
_doscom Execute DOS command

[Program example]
int CP(char *src, char *dest)int CP(char *src, char *dest)int CP(char *src, char *dest)int CP(char *src, char *dest)
{{{{

charcharcharchar str[256];str[256];str[256];str[256];

sprintf(str, “copy %s¥¥*.* %s¥¥*.*”, src, dest);sprintf(str, “copy %s¥¥*.* %s¥¥*.*”, src, dest);sprintf(str, “copy %s¥¥*.* %s¥¥*.*”, src, dest);sprintf(str, “copy %s¥¥*.* %s¥¥*.*”, src, dest); /* Create DOS command character *//* Create DOS command character *//* Create DOS command character *//* Create DOS command character */
/* string *//* string *//* string *//* string */

if(_doscom(str) == FALSE){if(_doscom(str) == FALSE){if(_doscom(str) == FALSE){if(_doscom(str) == FALSE){ /* Execute DOS command *//* Execute DOS command *//* Execute DOS command *//* Execute DOS command */
return FALSE;return FALSE;return FALSE;return FALSE; /* Error in the above *//* Error in the above *//* Error in the above *//* Error in the above */

}}}}
return TRUE;return TRUE;return TRUE;return TRUE; /* Succeeded *//* Succeeded *//* Succeeded *//* Succeeded */

}}}}
 Shown above is a program example used to create a user-defined function that
executes a DOS command to copy a file from the directory specified by the argument
“src” to the directory specified by the argument “dest”.

17

3.3.3.3. Custom Window ProgrammingCustom Window ProgrammingCustom Window ProgrammingCustom Window Programming
 This chapter explains how to program the custom windows of PD32RSIM.

3.1.3.1.3.1.3.1. Procedure for creating a custom windowProcedure for creating a custom windowProcedure for creating a custom windowProcedure for creating a custom window
 To create a custom window using CB32RSIM, follow the procedure described below.

1. Creating a project
 A project is a set of the source programs necessary to create custom windows.
Create one project for one custom window to be created. For details on how to
create a project, refer to the "CB32RSIM V.1.10 User's Manual," Section 3.2.1,
"Creating New Project for Custom Window Program".

2. Creating source programs
 Write the operation of a custom window in the framework source file that is
automatically generated by CB32RSIM when creating a project. For details on
how to edit the framework source file, refer to the "CB32RSIM V.1.10 User's
Manual," Section 3.2.2, "Editing Automatically Created Framework Source
File".

3. Building a window program
 The term "build" refers to creating a custom window program by compiling
the source programs created above. For details about this operation, refer to
the "CB32RSIM V.1.10 User's Manual," Section 3.1.4, "Building a Program".

4. Debugging a window program
 If the custom window program created does not work as intended, debug it.
For details on how to debug, refer to the "CB32RSIM V.1.10 User's Manual,"
Section 2.1, "CB32RSIM Window".

5. Adding custom window to PD32RSIM
 To use the custom window thus completed, add it to PD32RSIM. For details
on how to add, refer to "Customize Functions" in the "PD32RSIM V.2.00 User's
Manual."

 Described in this manual is the method for programming in 2, "Creating source
programs" outlined above. For other details, refer to the corresponding sections in the
"CB32RSIM V.1.10 User's Manual."

18

3.2.3.2.3.2.3.2. Example of source program for the simplest custom windowExample of source program for the simplest custom windowExample of source program for the simplest custom windowExample of source program for the simplest custom window
 This section explains the method of programming with CB32RSIM by using a source
program for the simplest custom window as an example.

� Example of custom window
Window name Hello Window
Content � Display "Hello Window" in title

� Window size is 300 x 200 pixels
� Display characters "Hello World!" and start a new line

� Example of source program (excerpt from framework source file)
OnCreate() /* 1. OnCreate() function in framework source file *//* 1. OnCreate() function in framework source file *//* 1. OnCreate() function in framework source file *//* 1. OnCreate() function in framework source file */
{

/* Write message handler code here, please. */
/* 2. Display "Hello Window" in title *//* 2. Display "Hello Window" in title *//* 2. Display "Hello Window" in title *//* 2. Display "Hello Window" in title */

_win_set_window_title("Hello Window");_win_set_window_title("Hello Window");_win_set_window_title("Hello Window");_win_set_window_title("Hello Window");
/* 3. Set window size to 300 x 200 (pixels) *//* 3. Set window size to 300 x 200 (pixels) *//* 3. Set window size to 300 x 200 (pixels) *//* 3. Set window size to 300 x 200 (pixels) */

_win_set_windo_win_set_windo_win_set_windo_win_set_window_size(300, 200);w_size(300, 200);w_size(300, 200);w_size(300, 200);
}

OnDraw() /* 4. OnDraw() function in framework source file *//* 4. OnDraw() function in framework source file *//* 4. OnDraw() function in framework source file *//* 4. OnDraw() function in framework source file */
{

/* Write message handler code here, please. */
intintintint pc;pc;pc;pc;

/* 5. Set drawing start position at (0, 0) (cursor coordinates) *//* 5. Set drawing start position at (0, 0) (cursor coordinates) *//* 5. Set drawing start position at (0, 0) (cursor coordinates) *//* 5. Set drawing start position at (0, 0) (cursor coordinates) */
_win_set_cursor(0, 0);_win_set_cursor(0, 0);_win_set_cursor(0, 0);_win_set_cursor(0, 0);

/* 6. Displa/* 6. Displa/* 6. Displa/* 6. Display "Hello World!" in window */y "Hello World!" in window */y "Hello World!" in window */y "Hello World!" in window */
_win_printf("Hello World!¥n");_win_printf("Hello World!¥n");_win_printf("Hello World!¥n");_win_printf("Hello World!¥n");

}
 The lines printed in plain style are the codes automatically generated in the
framework source file by CB32RSIM. The lines printed in bold face are the codes added
by the user.

� Execution example

19

� Explanation
1. The source file (called the "framework source file") automatically generated

by CB32RSIM when creating a custom window project contains several
functions written in it beforehand. These functions are special ones that are
automatically called by PD32RSIM when any operation is performed on the
custom window. These functions are called the "handle functions."
 The OnCreate() handle function is called immediately before creating a
window in order to initialize the window frame size, title, and necessary
variables. This handle function is executed first of all functions when you
start up a custom window program. Specifications of this function are
detailed in the "CB32RSIM V.1.10 User's Manual," Section 5.4.4, "OnCreate
Handle Function".

2. To set the title of a custom window, use the _win_set_window_title() function.
Specifications of this function are detailed in the "CB32RSIM V.1.10 User's
Manual," Section 5.3.23, "_win_set_window_title: Set custom window title".

3. To set the size of a custom window, use the _win_set_window_size() function.
Specifications of this function are detailed in the "CB32RSIM V.1.10 User's
Manual," Section 5.3.38, "_win_set_window_size: Set custom window size".

4. The OnDraw() handle function is called when, for example, displaying part
(or the whole) of a window that is hidden behind some other window in order
to redraw the window. Specifications of this function are detailed in the
"CB32RSIM V.1.10 User's Manual," Section 5.4.6, "OnDraw Handle Function".

5. To set the cursor position, use the _win_set_cursor() function.
Specifications of this function are detailed in the "CB32RSIM V.1.10 User's
Manual," Section 5.3.3, "_win_set_cursor: Set cursor position".

6. To output a character string at the current cursor position of the window,
use the _win_printf() function. In this case, the cursor is moved to a position
next to the last character that is output. Specifications of this function are
detailed in the "CB32RSIM V.1.10 User's Manual," Section 5.3.1, "_win_printf:
Output character string with format (to Custom Window)".

20

3.3.3.3.3.3.3.3. About the handle functionsAbout the handle functionsAbout the handle functionsAbout the handle functions
 A custom window functions as one of PD32RSIM windows. Therefore, a custom
window exchanges information with PD32RSIM and the OS as it goes on operating.

 When an operation is performed on the custom window or an elapsed time is notified
by the system timer, PD32RSIM calls the corresponding handle function of the custom
window program for the operation performed or the notification received. The
processing written in a handle function is executed when such an operation is
performed on the custom window that requires calling the handle function.
 All handle functions do not have an argument. Nor are their returned values
evaluated by PD32RSIM.
 For the OnMouseMove() handle function that is called when the mouse is moved, and
the OnSize() handle function that is called when the window size is changed, for
example, the data showing the current mouse position and the window size before the
change are stored in the area indicated by a global variable “_HandleMsgBlock” located
in a library immediately before calling the handle function.
 By referencing the data stored in “_HandleMsgBlock” within the handle function, it
is possible to get the information associated with the operation performed or the
notification received. The procedure for getting such information is automatically
written in the framework source file.
 For details about the handle functions, refer to the "CB32RSIM V.1.10 User's
Manual," Section 5.4, "Handle Functions for Custom Window".

[Precaution] Since the handle functions are special functions called by [Precaution] Since the handle functions are special functions called by [Precaution] Since the handle functions are special functions called by [Precaution] Since the handle functions are special functions called by PD32RSIMPD32RSIMPD32RSIMPD32RSIM,,,,
do not try to call them freely like a user-defined function. This is because such ando not try to call them freely like a user-defined function. This is because such ando not try to call them freely like a user-defined function. This is because such ando not try to call them freely like a user-defined function. This is because such an
operation could make it impossible for operation could make it impossible for operation could make it impossible for operation could make it impossible for PD32RSIMPD32RSIMPD32RSIMPD32RSIM to call them correctly. to call them correctly. to call them correctly. to call them correctly.

3.4.3.4.3.4.3.4. About framework source fileAbout framework source fileAbout framework source fileAbout framework source file
 CB32RSIM automatically generates a source file (i.e., the framework source file)
when creating a project. All of the handle functions called by PD32RSIM and the
procedures for acquiring data are written in this file.
 Among such procedures written in the framework source file are the codes to get the
information associated with the operation performed on the custom window or the
received notification from “_HandleMsgBlock” and copy it to the local variable(s) of the
handle function.
 If processing for the operations performed on the custom window is wanted, write it
in each corresponding handle function in the framework source file after the comment
shown below.

/* Write message handler code here, please. */

[Precaution] Do not delete the handle functions written in the framework source[Precaution] Do not delete the handle functions written in the framework source[Precaution] Do not delete the handle functions written in the framework source[Precaution] Do not delete the handle functions written in the framework source
file. file. file. file. CB32RSIMCB32RSIMCB32RSIMCB32RSIM will become unable to build correctly. Do not modify the local will become unable to build correctly. Do not modify the local will become unable to build correctly. Do not modify the local will become unable to build correctly. Do not modify the local
variable setup procedures written in the handle functions either. The customvariable setup procedures written in the handle functions either. The customvariable setup procedures written in the handle functions either. The customvariable setup procedures written in the handle functions either. The custom
window program may become unable to operate correctly.window program may become unable to operate correctly.window program may become unable to operate correctly.window program may become unable to operate correctly.

21

3.5.3.5.3.5.3.5. Method for using handle functionsMethod for using handle functionsMethod for using handle functionsMethod for using handle functions
 This section describes how to use the handle functions written in the framework
source file.
[Precaution] Since the handle functions are special functions called by [Precaution] Since the handle functions are special functions called by [Precaution] Since the handle functions are special functions called by [Precaution] Since the handle functions are special functions called by PD32RSIMPD32RSIMPD32RSIMPD32RSIM,,,,
do not try to call them freely like a user-defined function. This is because such ando not try to call them freely like a user-defined function. This is because such ando not try to call them freely like a user-defined function. This is because such ando not try to call them freely like a user-defined function. This is because such an
operation could make it impossible for operation could make it impossible for operation could make it impossible for operation could make it impossible for PD32RSIMPD32RSIMPD32RSIMPD32RSIM to call them correctly. to call them correctly. to call them correctly. to call them correctly.

3.5.1.3.5.1.3.5.1.3.5.1. Using the OnCreate handle function (to start creating a window)Using the OnCreate handle function (to start creating a window)Using the OnCreate handle function (to start creating a window)Using the OnCreate handle function (to start creating a window)
When PD32RSIM starts executing a custom window program, the OnCreate()

function is called only once immediately before creating a custom window. In this
function, set the position at which a window opens, the window size when opened, and
the window title, as well as generate control items (e.g., buttons).

The OnCreate handle function that is automatically created is shown below.
(There is no information associated with it.)

OnCreate()
{

/* Write message handler code here, please. */

}

The OnCreate() handle function is the first function executed among all functions in
the custom window program source file.

When creating a window, the handle functions are called in order of OnCreate ->
OnSize -> OnDraw.

3.5.2.3.5.2.3.5.2.3.5.2. Using OnDestroy handle function (to start destroying a window)Using OnDestroy handle function (to start destroying a window)Using OnDestroy handle function (to start destroying a window)Using OnDestroy handle function (to start destroying a window)
When a system menu is selected to close a custom window that is open, the

OnDestroy() handle function is called only once immediately before destroying the
custom window. In this function, free the heap area and system timer and perform
related other operations. The control items are automatically destroyed after this
function is executed.

The OnDestroy handle function that is automatically created is shown below.
(There is no information associated with it.)

OnDestroy()
{

/* Write message handler code here, please. */

}

The OnDestroy() handle function is the last function executed among all functions in
the custom window program source file.

After processing of the OnDestroy() handle function is terminated, PD32RSIM frees
the control items used and destroys the custom window before it finishes executing the
custom window program.

22

3.5.3.3.5.3.3.5.3.3.5.3. Using the OnDraw handle function (to request redrawing a window)Using the OnDraw handle function (to request redrawing a window)Using the OnDraw handle function (to request redrawing a window)Using the OnDraw handle function (to request redrawing a window)
The OnDraw() handle function is called in the cases described below. In this function,

PD32RSIM draws a window in the window drawing area.
� When part (or the whole) of a custom window is hidden behind some other

window and the hidden part is exposed
 In this case, the window drawing area is cleared immediately before
calling the OnDraw() handle function.

� When one of the window manipulating functions to redraw a window is
calledThere are following two redraw functions:

1. _win_redraw_clear()
 If this function is called, the window drawing area is cleared
immediately before calling the OnDraw() handle function.

2. _win_redraw()
 If this function is called, the window drawing area is not cleared
immediately before calling the OnDraw() handle function.

The OnDraw handle function that is automatically created is shown below.
(There is no information associated with it.)

OnDraw()
{

/* Write message handler code here, please. */

}

Since the OnDraw() handle function is called rather frequently, Mitsubishi
recommends that this function be used for only drawing a window, and that the
OnEvent() handle function, etc. be used to get or process the data required for drawing
(e.g., memory and register values) that takes time.

23

3.5.4.3.5.4.3.5.4.3.5.4. Using the OnEvent handle function (for status change of Using the OnEvent handle function (for status change of Using the OnEvent handle function (for status change of Using the OnEvent handle function (for status change of PD32RSIMPD32RSIMPD32RSIMPD32RSIM))))
The OnEvent() handle function is called when the status of PD32RSIM has changed.

In this function, processing is performed that corresponds to a change of the
PD32RSIM status.

A change of the PD32RSIM status refers to one of the following events:
1. When a new target program is downloaded
2. When the target program is single-stepped
3. When a register value is modified
4. When the information to be displayed by PD32RSIM is modified

The type of change that has occurred to the status of PD32RSIM is passed to the local
variable “nEventID”. Types of status are detailed in the "CB32RSIM V.1.10 User's
Manual," Section 5.4.7, "OnEvent Handle Function".

Since processing need to be performed for multiple status changes by one handle
function, a procedure that is taken normally is that a switch statement, etc. is used at
the beginning of the function to determine the type of change indicated by the local
variable “nEventID” and control is made to branch off to processing that corresponds to
the status change that has occurred.

The OnEvent handle function that is automatically created is shown below.
(The information associated with it is “nEventID”.)

OnEvent()
{

int nEventID;

nEventID = ((int *)_HandleMsgBlock)[0];

/* Write message handler code here, please. */

}

If the target memory value is modified in PD32RSIM's dump window, etc., the
OnEvent() handle function is called for nEventID == EVT_PUT_MEM. For a custom
window where memory values are displayed, the memory values are reacquired to
update the display.

Note that when the target program is executing, the OnEvent() handle function is
periodically called for nEventID == EVT_TIME_10MS. It is recommended that
processing which need to be performed periodically only when the target program is
executing (e.g., processing based on sampling) be written at a place to which control
branches for nEventID == EVT_TIME_10MS.

24

[About window drawing processing][About window drawing processing][About window drawing processing][About window drawing processing]
 The following explains how processing is performed to draw a window using the
OnDraw() and OnEvent() handle functions described above.

There are following two ways in which the OnDraw() handle function normally is used:
1. Drawing processing is not performed in this function; instead, some other

function that performs the entire drawing processing is called.
(The OnDraw() handle function works merely as one that receives a redrawing
request. All drawing processing is performed by calling some other function.)

2. Drawing processing is performed in this function. (In some cases, a
"subcontract" function may be called.)
(The OnDraw() function must always be executed to perform the processing to
draw a window.)

 The following explains the difference between these two methods and how each
method is used.

 Drawing processing need to be performed at times other than when the OnDraw()
function is called. For example, assume a window (e.g., PD32RSIM's memory window)
in which a specific memory content is displayed successively. For such a window,
every time the target memory value is modified, the window display must be updated
with a new memory value.
 In such a case, the OnEvent() handle function may be used to get the target memory
value which is then stored in a global variable and drawn to the window by a drawing
function.
 If method 1 is used for drawing to a window, get a memory value in the OnEvent()
handle function and then call a function directly from it that performs drawing
processing. Thus, method 1 is that when drawing is required, a function to perform
drawing processing is called directly after acquiring the data necessary for the drawing.
This procedure is schematically shown below.

OnDraw()
{

draw();
}

OnEvent()
{

Get and process data;
Set data in global variable;
draw();

}

draw()
{

Update window display using global variable;
}

25

 If method 2 is used for drawing to a window, get a memory value in the OnEvent()
handle function and then call the _win_redraw() or _win_redraw_clear() function in
order to request PD32RSIM to call the OnDraw() handle function. Thus, method 2 is
that when drawing is required, the OnDraw() function is called indirectly by requesting
it from PD32RSIM after acquiring the data necessary to perform drawing processing.
This procedure is schematically shown below.

OnDraw()
{

Update window display using global variable;
}

OnEvent()
{

Get and process data;
Set data in global variable;
_win_redraw();

}

PD38SIM is requested to
call the OnDraw() handle
function.

 The OnDraw() handle function is frequently called, even on an unintended occasion
such as when some other window crosses in front of a window. Therefore, it is
desirable that the OnDraw() handle function be used for only drawing, and that time-
consuming processing (e.g., acquiring and processing data) be performed at other
timing.

26

3.5.5.3.5.5.3.5.5.3.5.5. Using the OnSize handle function (to change window size)Using the OnSize handle function (to change window size)Using the OnSize handle function (to change window size)Using the OnSize handle function (to change window size)
The OnSize() handle function is called when the size of a custom window is changed.

In this function, PD32RSIM performs processing that corresponds to a change of the
customer window size.

The type of size change (e.g., maximize or iconify) and the new width and height of
the client area are passed to local variables “nType”, “cx”, and “cy”, respectively.
Types of size changes are detailed in the "CB32RSIM V.1.10 User's Manual," Section
5.4.18, "OnSize Handle Function".

The OnSize handle function that is automatically created is shown below.
(The information associated with it are “nType”, “cx”, and “cy”.)

OnSize()
{

int nType;
int cx;
int cy;

nType = ((int *)_HandleMsgBlock)[0];
cx = ((int *)_HandleMsgBlock)[1];
cy = ((int *)_HandleMsgBlock)[2];

/* Write message handler code here, please. */

}

For custom window programs that change drawing, etc. by using a window's size
information, use global variables to hold the window sizes (cx, cy) acquired by the
OnSize() handle function.

Since the OnSize() handle function is called following the OnCreate() handle function
when creating a window, it can also be used to get the window size when created.

27

3.5.6.3.5.6.3.5.6.3.5.6. Using the OnCommand handle function (to manipulate control items (buttons))Using the OnCommand handle function (to manipulate control items (buttons))Using the OnCommand handle function (to manipulate control items (buttons))Using the OnCommand handle function (to manipulate control items (buttons))
The OnCommand() handle function is called when one of the generated control items

(buttons) is operated on. In this function, perform the processing that corresponds to
the control item that is operated on.

The control item's command ID, notification code, and handle respectively are passed
to local variables “nID”, “nMsg”, and “nHandle”. The OnCommand() handle function
is detailed in the "CB32RSIM V.1.10 User's Manual," Section 5.4.3, "OnCommand
Handle Function".

The OnSize handle function that is automatically created is shown below.
(The information associated with it are “nId”, “nMsg”, and “nHandle”.)

OnCommand()
{

int nId;
int nMsg;
int nHandle;

nId = ((int *)_HandleMsgBlock)[0];
nMsg = ((int *)_HandleMsgBlock)[1];
nHandle = ((int *)_HandleMsgBlock)[2];

/* Write message handler code here, please. */

}

Buttons are the only control item supported by CB32RSIM V.1.10.
The local variable “nMsg” is not used for buttons; “nMsg” is reserved for use in future

versions of CB32RSIM.

28

3.5.7.3.5.7.3.5.7.3.5.7. Using the OnHScroll and other handle functions (to manipulate scroll bars)Using the OnHScroll and other handle functions (to manipulate scroll bars)Using the OnHScroll and other handle functions (to manipulate scroll bars)Using the OnHScroll and other handle functions (to manipulate scroll bars)
The OnHScroll() handle function is called when the horizontal scroll bar is operated

on.
Similarly, the OnVScroll() handle function is called when the vertical scroll bar is

operated on. In these functions, perform the processing that corresponds to the scroll
bar that is operated on.

The operation code for the scroll bar (e.g., drag, page scroll) and the scroll thumb
(slider) position respectively are passed to local variables “nSBCode” and “nPos”. The
operation code and scroll thumb position detailed in the "CB32RSIM V.1.10 User's
Manual," Section 5.4.8, "OnHScroll Handle Function".

The OnHScroll handle function that is automatically created is shown below.
(The information associated with it are nSBCode and nPos.)

OnHScroll()
{

int nSBCode;
int nPos;

nSBCode = ((int *)_HandleMsgBlock)[0];
nPos = ((int *)_HandleMsgBlock)[1];

/* Write message handler code here, please. */

}

The local variable “nPos” is used only when “nSBCode” is SB_THUMBPOSITION or
SB_THUMBTRACK.

When the scroll operation is completed, these functions are called for nSBCode ==
SB_ENDSCROLL to notify the end of scroll operation to window.

29

3.5.8.3.5.8.3.5.8.3.5.8. Using the OnLButtonDblClk and other handle functions (to manipulate mouse)Using the OnLButtonDblClk and other handle functions (to manipulate mouse)Using the OnLButtonDblClk and other handle functions (to manipulate mouse)Using the OnLButtonDblClk and other handle functions (to manipulate mouse)
Following handle functions are called when the mouse is operated on.

Handle function Cases where the function is called
OnLButtonDblClk When the left mouse button is double-clicked.
OnLButtonDown When the left mouse button is pressed.
OnLButtonUp When the left mouse button is released.
OnMouseMove When the mouse cursor is moved.
OnRButtonDblClk When the right mouse button is double-clicked.
OnRButtonDown When the right mouse button is pressed.
OnRButtonUp When the right mouse button is released.
In these functions, perform the processing that corresponds to the kind of operation

performed on the mouse.
The key code that is pressed at the same time the mouse is operated on and the

mouse cursor's x and y coordinates respectively are passed to local variables “nFlags”,
“x”, and “y”. The key code is detailed in the "CB32RSIM V.1.10 User's Manual,"
Section 5.4.11, "OnLButtonDblClk Handle Function".

The OnHScroll handle function that is automatically created is shown below.
(The information associated with it are nFlags, x, and y.)

OnLButtonDblClk()
{

int nFlags;
int x;
int y;

nFlags = ((int *)_HandleMsgBlock)[0];
x = ((int *)_HandleMsgBlock)[1];
y = ((int *)_HandleMsgBlock)[2];

/* Write message handler code here, please. */

}

When the mouse button is double-clicked, the above handle functions are called in
order of OnXButtonDown -> OnXButtonUp -> OnXButtonDblClik -> OnXButtonUp.
(X is L when the left button is concerned or R when the right button is concerned.)

30

3.5.9.3.5.9.3.5.9.3.5.9. Using the OnChar and other handle functions (to manipulate keys)Using the OnChar and other handle functions (to manipulate keys)Using the OnChar and other handle functions (to manipulate keys)Using the OnChar and other handle functions (to manipulate keys)
 Following handle functions are called when a key is operated on the keyboard.
Handle function Cases where the function is called
OnChar When a WM_KEYDOWN message is converted into character code.

Stored in the key code is the converted ASCII code.
OnKeyDown When any key other than the system key is pressed. Stored in the

key code is the virtual key code of the pressed key.
OnKeyUp When any key other than the system key is released. Stored in the

key code is the virtual key code of the released key.
In these functions, perform the processing that corresponds to the kind of operation

performed on the keyboard.
The key code, repeat count value, and scan code value of the pressed key are passed

to local variables “nChar”, “nRepCnt”, and “nFlags”, respectively. The key code and
the repeat count and scan code values are detailed in the "CB32RSIM V.1.10 User's
Manual," Section 5.4.9, "OnKeyDown Handle Function".

The OnChar handle function that is automatically created is shown below.
(The information associated with it are nChar, nRepCnt, and nFlags.)
OnChar()
{

int nChar;
int nRepCnt;
int nFlags;

nChar = ((int *)_HandleMsgBlock)[0];
nRepCnt = ((int *)_HandleMsgBlock)[1];
nFlags = ((int *)_HandleMsgBlock)[2];

/* Write message handler code here, please. */

}

When a key that can be converted into character code is pressed, the above handle
functions are called in order of OnKeyDown -> OnChar -> OnKeyUp. If a key is held
down, the handle functions are called in order of OnKeyDown -> (OnChar) ->
OnKeyDown (OnChar) -> ... -> OnKeyUp. (The OnChar handle function is called only
when a key is pressed that can be converted into character code.)

If the pressed key corresponds to one of ASCII characters, the corresponding ASCII
code is stored in “nChar”. For keys that do not correspond to ASCII characters such as
in the case of function keys, a corresponding virtual key code value is stored in nChar.
For details about virtual key code, refer to the "CB32RSIM V.1.10 User's Manual,"
Section 5.4.9, "OnKeyDown Handle Function".

31

3.5.10.3.5.10.3.5.10.3.5.10. Using the OnTimer handle functionUsing the OnTimer handle functionUsing the OnTimer handle functionUsing the OnTimer handle function
The OnTimer() handle function is called at preset intervals when the system timer

provided by Windows is used. In this function, write the processing that is executed at
preset intervals.

The timer's identification number is passed to local variable “nIDEvent”. This
identification number can be set as desired by the user when using Windows' system
timer.

Since processing need to be performed for multiple timer-related processing by one
handle function, a procedure that is taken normally is that a switch statement, etc. is
used at the beginning of the function to determine the type of timer indicated by the
local variable “nIDEvent” and control is made to branch off to processing that
corresponds to the timer concerned.

The OnTimer handle function that is automatically created is shown below.
(The information associated with it is nIDEvent.)

OnTimer()
{

int nIDEvent;

nIDEvent = ((int *)_HandleMsgBlock)[0];

/* Write message handler code here, please. */

}

Note that when the target program is executing, the OnEvent() handle function is
periodically called for nEventID == EVT_TIME_10MS. It is recommended that
processing which need to be performed periodically only when the target program is
executing (e.g., processing based on sampling) be serviced by the OnEvent() handle
function.
[Precaution] The total number of system timers is limited by the OS used. Use of[Precaution] The total number of system timers is limited by the OS used. Use of[Precaution] The total number of system timers is limited by the OS used. Use of[Precaution] The total number of system timers is limited by the OS used. Use of
too many system timers than necessary could affect the operation of othertoo many system timers than necessary could affect the operation of othertoo many system timers than necessary could affect the operation of othertoo many system timers than necessary could affect the operation of other
applications.applications.applications.applications.
3.6.3.6.3.6.3.6. Functions that can be used in programming a custom windowFunctions that can be used in programming a custom windowFunctions that can be used in programming a custom windowFunctions that can be used in programming a custom window
 The functions that can be used in programming a custom window are broadly
classified into the following three groups:

1. Standard functions
 The functions similar to the standard C-language functions that are
assumed to be relatively frequently used are supported.

2. Debugger operating functions
 The functions necessary to operate the debugger are supported.

3. Window manipulating functions
 The functions necessary to manipulate a window are supported.

32

3.7.3.7.3.7.3.7. Method for using window manipulating functionsMethod for using window manipulating functionsMethod for using window manipulating functionsMethod for using window manipulating functions
 When using the window manipulating functions, include the header file “winlib.h” in
the function you are going to use.
 Specifications of the window manipulating functions are detailed in the "CB32RSIM
V.1.10 User's Manual," Section 5.3, "System Call Functions for Window Operation
(winlib.lib)".
3.7.1.3.7.1.3.7.1.3.7.1. Using drawing functionsUsing drawing functionsUsing drawing functionsUsing drawing functions
 This section explains how to use the drawing functions by using the functions shown
below as an example.

Function name Description
_win_printf Output text with format
_win_set_cursor Set cursor position
_win_set_color Set text color
_win_set_bkcolor Set background color
_draw_frame_rect Draw rectangle

 The functions whose name begins with “_win” draw an object on cursor coordinates
(the coordinate system specified by row and column). One character of system font is
output to one column of cursor coordinate.
 The functions whose name begins with “_draw” draw an object on pixel coordinates
(the coordinate system specified by a dot position).

 The following shows an example where character strings "Hello world" are output to
a custom window.

OnDraw()
{

/* Write message handler code here, please. */
_win_set_cursor(3, 1);_win_set_cursor(3, 1);_win_set_cursor(3, 1);_win_set_cursor(3, 1); /* /* /* /* Set cursor position to (3, 1)Set cursor position to (3, 1)Set cursor position to (3, 1)Set cursor position to (3, 1) */ */ */ */
_w_w_w_win_printf("Hello World.");in_printf("Hello World.");in_printf("Hello World.");in_printf("Hello World."); /* /* /* /* Output character stringOutput character stringOutput character stringOutput character string */ */ */ */

}

 The lines printed in plain style are the codes automatically generated in the
framework source file by CB32RSIM. The lines printed in bold face are the codes to be
added by the user. (The same applies in the examples that may follow.)

 Display example

33

The following shows an example where "Hello world" is output in inverse video.

OnDraw()
{

/* Write message handler code here, please. */
intintintint old_color;old_color;old_color;old_color; /* /* /* /* Variable used to save text color before changeVariable used to save text color before changeVariable used to save text color before changeVariable used to save text color before change */ */ */ */
intintintint old_bkcolor;old_bkcolor;old_bkcolor;old_bkcolor; /* /* /* /* Variable used to save background color before changeVariable used to save background color before changeVariable used to save background color before changeVariable used to save background color before change */ */ */ */

_win_set_cursor(3, 1);_win_set_cursor(3, 1);_win_set_cursor(3, 1);_win_set_cursor(3, 1); /* /* /* /* Set cursor position to (3, 1)Set cursor position to (3, 1)Set cursor position to (3, 1)Set cursor position to (3, 1) */ */ */ */
/* /* /* /* Set text color to whiteSet text color to whiteSet text color to whiteSet text color to white */ */ */ */

old_color = _win_set_color(COLOR_WHITE);old_color = _win_set_color(COLOR_WHITE);old_color = _win_set_color(COLOR_WHITE);old_color = _win_set_color(COLOR_WHITE);
/* /* /* /* Set background color to blackSet background color to blackSet background color to blackSet background color to black */ */ */ */

old_bkcolor = _win_set_bkcolor(COLOR_BLACK);old_bkcolor = _win_set_bkcolor(COLOR_BLACK);old_bkcolor = _win_set_bkcolor(COLOR_BLACK);old_bkcolor = _win_set_bkcolor(COLOR_BLACK);
_win_printf("Hello World.");_win_printf("Hello World.");_win_printf("Hello World.");_win_printf("Hello World."); /* /* /* /* Output character stringOutput character stringOutput character stringOutput character string */ */ */ */
_win_set_color(old_color);_win_set_color(old_color);_win_set_color(old_color);_win_set_color(old_color); /* /* /* /* Restore text colorRestore text colorRestore text colorRestore text color */ */ */ */
_win_set_bkcolor(old_bkcolor);_win_set_bkcolor(old_bkcolor);_win_set_bkcolor(old_bkcolor);_win_set_bkcolor(old_bkcolor); /* /* /* /* Restore background colorRestore background colorRestore background colorRestore background color */ */ */ */

}

 Display example

 The following shows an example where a red rectangular area is drawn.
OnDraw()
{

/* Write message handler code here, please. */
/* /* /* /* Draw a red rectangle whose upper left */Draw a red rectangle whose upper left */Draw a red rectangle whose upper left */Draw a red rectangle whose upper left */
/* /* /* /* coordinate is (10, 10) and lower right */coordinate is (10, 10) and lower right */coordinate is (10, 10) and lower right */coordinate is (10, 10) and lower right */
/* /* /* /* coordinate is (150, 40)coordinate is (150, 40)coordinate is (150, 40)coordinate is (150, 40) */ */ */ */

_draw_frame_rect(10, 10, 150, 40, COLOR_RED);_draw_frame_rect(10, 10, 150, 40, COLOR_RED);_draw_frame_rect(10, 10, 150, 40, COLOR_RED);_draw_frame_rect(10, 10, 150, 40, COLOR_RED);
}

 Display example

34

3.7.2.3.7.2.3.7.2.3.7.2. Using functions to manipulate control items (buttons)Using functions to manipulate control items (buttons)Using functions to manipulate control items (buttons)Using functions to manipulate control items (buttons)
 Buttons are supported as the control item that can be attached to a custom window
created by CB32RSIM. This section explains how to use the control item
manipulating functions by using the functions shown below as an example.

Function name Description
_win_button_create Create button
_win_button_set_text Change button text

The following shows an example where the button is assigned a label "button" when
created and the label is changed between uppercase and lowercase each time the
button is entered.

#define#define#define#define IDB_BUTTONIDB_BUTTONIDB_BUTTONIDB_BUTTON (1000)(1000)(1000)(1000) /* /* /* /* Define button ID numberDefine button ID numberDefine button ID numberDefine button ID number */ */ */ */
intintintint hButton;hButton;hButton;hButton; /* /* /* /* Variable to store button handleVariable to store button handleVariable to store button handleVariable to store button handle */ */ */ */
intintintint count;count;count;count; /* /* /* /* Variable to store button-pressed countVariable to store button-pressed countVariable to store button-pressed countVariable to store button-pressed count */ */ */ */

OnCommand()
{

int nId;
int nMsg;
int nHandle;

nId = ((int *)_HandleMsgBlock)[0];
nMsg = ((int *)_HandleMsgBlock)[1];
nHandle = ((int *)_HandleMsgBlock)[2];

/* Write message handler code here, please. */
switch(nId){switch(nId){switch(nId){switch(nId){
case IDB_BUTTON:case IDB_BUTTON:case IDB_BUTTON:case IDB_BUTTON: /* /* /* /* If button ID is IDB_BUTTONIf button ID is IDB_BUTTONIf button ID is IDB_BUTTONIf button ID is IDB_BUTTON */ */ */ */

if(++count % 2){if(++count % 2){if(++count % 2){if(++count % 2){ /* /* /* /* If button-pressed count is odd numberIf button-pressed count is odd numberIf button-pressed count is odd numberIf button-pressed count is odd number */ */ */ */
/* /* /* /* Change label to "BUTTON"Change label to "BUTTON"Change label to "BUTTON"Change label to "BUTTON" */ */ */ */

_win_button_set_text(hButton, "BUTTON");_win_button_set_text(hButton, "BUTTON");_win_button_set_text(hButton, "BUTTON");_win_button_set_text(hButton, "BUTTON");
}else{}else{}else{}else{ /* /* /* /* If button-pressed count is even numberIf button-pressed count is even numberIf button-pressed count is even numberIf button-pressed count is even number */ */ */ */

/* /* /* /* Change label to "button"Change label to "button"Change label to "button"Change label to "button" */ */ */ */
_win_button_set_text(hButton, "button");_win_button_set_text(hButton, "button");_win_button_set_text(hButton, "button");_win_button_set_text(hButton, "button");

}}}}
break;break;break;break;

}}}}
}

OnCreate()
{

/* Write message handler code here, please. */
count = 0;count = 0;count = 0;count = 0; /* /* /* /* Initialize button-pressed count to 0Initialize button-pressed count to 0Initialize button-pressed count to 0Initialize button-pressed count to 0 */ */ */ */

/* /* /* /* Create button whose upper left coordinate */Create button whose upper left coordinate */Create button whose upper left coordinate */Create button whose upper left coordinate */
/* is (10, 10) and lower right coordinate is *//* is (10, 10) and lower right coordinate is *//* is (10, 10) and lower right coordinate is *//* is (10, 10) and lower right coordinate is */
/* (100, 4) that has a label "button" and *//* (100, 4) that has a label "button" and *//* (100, 4) that has a label "button" and *//* (100, 4) that has a label "button" and */
/* IDB_BUTTON as its ID and hold but/* IDB_BUTTON as its ID and hold but/* IDB_BUTTON as its ID and hold but/* IDB_BUTTON as its ID and hold button's */ton's */ton's */ton's */
/* handle in hButton/* handle in hButton/* handle in hButton/* handle in hButton */ */ */ */

hButton = _win_button_create(10, 10, 100, 40, "button", IDB_BUTTON);hButton = _win_button_create(10, 10, 100, 40, "button", IDB_BUTTON);hButton = _win_button_create(10, 10, 100, 40, "button", IDB_BUTTON);hButton = _win_button_create(10, 10, 100, 40, "button", IDB_BUTTON);
}

35

 Display example (when created)

 Display example (when button is entered)

36

3.7.3.3.7.3.3.7.3.3.7.3. Using functions to manipulate the status barUsing functions to manipulate the status barUsing functions to manipulate the status barUsing functions to manipulate the status bar
 This section explains how to use the status bar manipulating functions by using the
functions shown below as an example.

Function name Description
_win_statusbar_create Create status bar
_win_statusbar_set_pane Set items of status bar
_win_statusbar_set_text Set text of status bar

 The following shows an example for a status bar that has five items.
OnCreate()
{

/* Write message handler code here, please. */
_win_statusbar_create(5);_win_statusbar_create(5);_win_statusbar_create(5);_win_statusbar_create(5);/* Create status bar that has five items *//* Create status bar that has five items *//* Create status bar that has five items *//* Create status bar that has five items */

/* /* /* /* et 0th item (leftmost item) in SBPS_NOBORDER */et 0th item (leftmost item) in SBPS_NOBORDER */et 0th item (leftmost item) in SBPS_NOBORDER */et 0th item (leftmost item) in SBPS_NOBORDER */
/* /* /* /* style and in size of 20 pixelsstyle and in size of 20 pixelsstyle and in size of 20 pixelsstyle and in size of 20 pixels */ */ */ */

_win_statusbar_set_pane(0, SBPS_NOBORDERS,_win_statusbar_set_pane(0, SBPS_NOBORDERS,_win_statusbar_set_pane(0, SBPS_NOBORDERS,_win_statusbar_set_pane(0, SBPS_NOBORDERS, 20); 20); 20); 20);
/* /* /* /* Draw "0" in 0th itemDraw "0" in 0th itemDraw "0" in 0th itemDraw "0" in 0th item */ */ */ */

_win_statusbar_set_text(0, "0");_win_statusbar_set_text(0, "0");_win_statusbar_set_text(0, "0");_win_statusbar_set_text(0, "0");
/* /* /* /* Set 1st item in SBPS_POPOUT style andSet 1st item in SBPS_POPOUT style andSet 1st item in SBPS_POPOUT style andSet 1st item in SBPS_POPOUT style and in size of */in size of */in size of */in size of */
/* /* /* /* 20 pixels20 pixels20 pixels20 pixels */ */ */ */

_win_statusbar_set_pane(1, SBPS_POPOUT, 20);_win_statusbar_set_pane(1, SBPS_POPOUT, 20);_win_statusbar_set_pane(1, SBPS_POPOUT, 20);_win_statusbar_set_pane(1, SBPS_POPOUT, 20);
/* /* /* /* Draw "1" in 1st itemDraw "1" in 1st itemDraw "1" in 1st itemDraw "1" in 1st item */ */ */ */

_win_statusbar_set_text(1, "1");_win_statusbar_set_text(1, "1");_win_statusbar_set_text(1, "1");_win_statusbar_set_text(1, "1");
/* /* /* /* Set 2nd item in SBPS_DISABLED style and in size of */Set 2nd item in SBPS_DISABLED style and in size of */Set 2nd item in SBPS_DISABLED style and in size of */Set 2nd item in SBPS_DISABLED style and in size of */
/* /* /* /* 20 pixels20 pixels20 pixels20 pixels */ */ */ */

_win_statusbar_set_pane(2, SBPS_DISABLED, 20);_win_statusbar_set_pane(2, SBPS_DISABLED, 20);_win_statusbar_set_pane(2, SBPS_DISABLED, 20);_win_statusbar_set_pane(2, SBPS_DISABLED, 20);
/* /* /* /* Set 3rd item in SBPS_NORMAL style and in size of */Set 3rd item in SBPS_NORMAL style and in size of */Set 3rd item in SBPS_NORMAL style and in size of */Set 3rd item in SBPS_NORMAL style and in size of */
/* /* /* /* 20 pixels20 pixels20 pixels20 pixels */ */ */ */

_win_statusbar_win_statusbar_win_statusbar_win_statusbar_set_pane(3, SBPS_NORMAL, 20);_set_pane(3, SBPS_NORMAL, 20);_set_pane(3, SBPS_NORMAL, 20);_set_pane(3, SBPS_NORMAL, 20);
/* /* /* /* Draw "3" in 3rd itemDraw "3" in 3rd itemDraw "3" in 3rd itemDraw "3" in 3rd item */ */ */ */

_win_statusbar_set_text(3, "3");_win_statusbar_set_text(3, "3");_win_statusbar_set_text(3, "3");_win_statusbar_set_text(3, "3");
/* /* /* /* Set 4th item in SBPS_STRETCH | SBPS_NORMAL */Set 4th item in SBPS_STRETCH | SBPS_NORMAL */Set 4th item in SBPS_STRETCH | SBPS_NORMAL */Set 4th item in SBPS_STRETCH | SBPS_NORMAL */
/* /* /* /* style Since SBPS_STRETCH style is set, 4th item */style Since SBPS_STRETCH style is set, 4th item */style Since SBPS_STRETCH style is set, 4th item */style Since SBPS_STRETCH style is set, 4th item */
/* /* /* /* stretches as window is expanded or reducedstretches as window is expanded or reducedstretches as window is expanded or reducedstretches as window is expanded or reduced */ */ */ */

_win_statusbar_set_pane(4, SBPS_STRETCH | SBPS_NORMAL, 0);_win_statusbar_set_pane(4, SBPS_STRETCH | SBPS_NORMAL, 0);_win_statusbar_set_pane(4, SBPS_STRETCH | SBPS_NORMAL, 0);_win_statusbar_set_pane(4, SBPS_STRETCH | SBPS_NORMAL, 0);
/* /* /* /* Draw "4" in 4th itemDraw "4" in 4th itemDraw "4" in 4th itemDraw "4" in 4th item */ */ */ */

_win_statusbar_set_text(4, "4");_win_statusbar_set_text(4, "4");_win_statusbar_set_text(4, "4");_win_statusbar_set_text(4, "4");
}

 Specify the style of the status bar item in the third argument of the
_win_statusbar_set_pane() function. Styles are detailed in the "CB32RSIM V.1.10
User's Manual," Section 5.3.32, "_win_statusbar_set_pane: Set status bar items".

 Display example

37

3.7.4.3.7.4.3.7.4.3.7.4. Using functions to manipulate the scroll barUsing functions to manipulate the scroll barUsing functions to manipulate the scroll barUsing functions to manipulate the scroll bar
 This section explains how to use the scroll bar manipulating functions by using the
functions shown below as an example.

Function name Description
_win_vscroll_range Set scroll range of vertical scroll bar
_win_vscroll_pos Set position of vertical scroll box

The following shows an example for displaying a vertical scroll bar in the window.

OnCreate()
{

/* Write message handler code here, please. */
_win_vscroll_range(0, 100);_win_vscroll_range(0, 100);_win_vscroll_range(0, 100);_win_vscroll_range(0, 100); /* /* /* /* Set scroll range to 0 through 100Set scroll range to 0 through 100Set scroll range to 0 through 100Set scroll range to 0 through 100 */ */ */ */

}

 Display example

38

Shown below is an example of the OnVScroll() handle function in which processing is
written that corresponds to the up/down operation of the scroll bar.

intintintint VScrollPageSize;VScrollPageSize;VScrollPageSize;VScrollPageSize; /* /* /* /* Contain number of lines per pageContain number of lines per pageContain number of lines per pageContain number of lines per page */ */ */ */
intintintint VScrollPos;VScrollPos;VScrollPos;VScrollPos; /* /* /* /* Store thumb positionStore thumb positionStore thumb positionStore thumb position */ */ */ */

OnVScroll()
{

int nSBCode;
int nPos;

nSBCode = ((int *)_HandleMsgBlock)[0];
nPos = ((int *)_HandleMsgBlock)[1];

/* Write message handler code here, please. */
switch(nSBCode){switch(nSBCode){switch(nSBCode){switch(nSBCode){
case SB_BOTTOM:case SB_BOTTOM:case SB_BOTTOM:case SB_BOTTOM: /* /* /* /* Scroll to the bottomScroll to the bottomScroll to the bottomScroll to the bottom */ */ */ */

VScrollPos = 100;VScrollPos = 100;VScrollPos = 100;VScrollPos = 100;
break;break;break;break;

case SB_ENDSCROLL:case SB_ENDSCROLL:case SB_ENDSCROLL:case SB_ENDSCROLL: /* /* /* /* Finish scrollingFinish scrollingFinish scrollingFinish scrolling */ */ */ */
break;break;break;break;

case SB_LINEDOWN:case SB_LINEDOWN:case SB_LINEDOWN:case SB_LINEDOWN: /* /* /* /* Scroll one line downScroll one line downScroll one line downScroll one line down */ */ */ */
VScrollPos++;VScrollPos++;VScrollPos++;VScrollPos++;
break;break;break;break;

case SB_LINEUP:case SB_LINEUP:case SB_LINEUP:case SB_LINEUP: /* /* /* /* Scroll one line upScroll one line upScroll one line upScroll one line up */ */ */ */
VScrollPos--;VScrollPos--;VScrollPos--;VScrollPos--;
break;break;break;break;

case SB_PAGEDOWN:case SB_PAGEDOWN:case SB_PAGEDOWN:case SB_PAGEDOWN: /* /* /* /* Scroll one page downScroll one page downScroll one page downScroll one page down */ */ */ */
VScrollPos += VScrollPageSize;VScrollPos += VScrollPageSize;VScrollPos += VScrollPageSize;VScrollPos += VScrollPageSize;
break;break;break;break;

case SB_PAGEUP:case SB_PAGEUP:case SB_PAGEUP:case SB_PAGEUP: /* /* /* /* Scroll one page upScroll one page upScroll one page upScroll one page up */ */ */ */
VScrollPos -= VScrollPageSizeVScrollPos -= VScrollPageSizeVScrollPos -= VScrollPageSizeVScrollPos -= VScrollPageSize;;;;
break;break;break;break;

case SB_THUMBPOSITION:case SB_THUMBPOSITION:case SB_THUMBPOSITION:case SB_THUMBPOSITION: /* /* /* /* Scroll to absolute positionScroll to absolute positionScroll to absolute positionScroll to absolute position */ */ */ */
/* /* /* /* (Current position is specified by nPos)(Current position is specified by nPos)(Current position is specified by nPos)(Current position is specified by nPos)*/*/*/*/

case SB_THUMBTRACK:case SB_THUMBTRACK:case SB_THUMBTRACK:case SB_THUMBTRACK: /* /* /* /* Drag scroll box to specified positionDrag scroll box to specified positionDrag scroll box to specified positionDrag scroll box to specified position */ */ */ */
/* /* /* /* (Current position is specified by nPos)(Current position is specified by nPos)(Current position is specified by nPos)(Current position is specified by nPos) */ */ */ */

VScrollPos = nPos;VScrollPos = nPos;VScrollPos = nPos;VScrollPos = nPos;
break;break;break;break;

case SB_TOP:case SB_TOP:case SB_TOP:case SB_TOP: /* /* /* /* Scroll to the topScroll to the topScroll to the topScroll to the top */ */ */ */
default:default:default:default:

VScrollPos = 0;VScrollPos = 0;VScrollPos = 0;VScrollPos = 0;
}}}}
if(VScrollPos < 0)if(VScrollPos < 0)if(VScrollPos < 0)if(VScrollPos < 0) /* /* /* /* Processing performed when output of scroll */Processing performed when output of scroll */Processing performed when output of scroll */Processing performed when output of scroll */

/* /* /* /* rangerangerangerange */ */ */ */
VScrollPos = 0;VScrollPos = 0;VScrollPos = 0;VScrollPos = 0;

if(VScrollPos > 100)if(VScrollPos > 100)if(VScrollPos > 100)if(VScrollPos > 100)
VScrollPos = 100;VScrollPos = 100;VScrollPos = 100;VScrollPos = 100;

_win_vscroll_pos(VScrollPos);_win_vscroll_pos(VScrollPos);_win_vscroll_pos(VScrollPos);_win_vscroll_pos(VScrollPos);/* /* /* /* Set scroll thumb positionSet scroll thumb positionSet scroll thumb positionSet scroll thumb position */ */ */ */
_win_redraw_clear();_win_redraw_clear();_win_redraw_clear();_win_redraw_clear(); /* /* /* /* Redraw custom windowRedraw custom windowRedraw custom windowRedraw custom window */ */ */ */

}

39

3.7.5.3.7.5.3.7.5.3.7.5. Using functions to manipulate dialog boxUsing functions to manipulate dialog boxUsing functions to manipulate dialog boxUsing functions to manipulate dialog box
 This section explains how to use the dialog box manipulating functions by using the
functions shown below as an example.

Function name Description
_win_dialog Create input dialog box
_win_message_box Create message box

The following shows an example where an input dialog box is used to get a value.
This function opens the input dialog box, asking the user to input a value, and when
"eisuke" is input, returns TRUE; otherwise, it returns FALSE after displaying an error
in the message box.

int check_name()int check_name()int check_name()int check_name()
{{{{

charcharcharchar name[100];name[100];name[100];name[100];

/* Open input dialog box, asking for input *//* Open input dialog box, asking for input *//* Open input dialog box, asking for input *//* Open input dialog box, asking for input */
if(_win_dialog("Please input your name.", name) == TRUE){if(_win_dialog("Please input your name.", name) == TRUE){if(_win_dialog("Please input your name.", name) == TRUE){if(_win_dialog("Please input your name.", name) == TRUE){

/* OK button is input *//* OK button is input *//* OK button is input *//* OK button is input */
if(strcmp(name, "eisuke") == 0){if(strcmp(name, "eisuke") == 0){if(strcmp(name, "eisuke") == 0){if(strcmp(name, "eisuke") == 0){

/* Character string is "ei/* Character string is "ei/* Character string is "ei/* Character string is "eisuke" */suke" */suke" */suke" */
return TRUE;return TRUE;return TRUE;return TRUE;

}}}}
}}}}

/* Display error in message box *//* Display error in message box *//* Display error in message box *//* Display error in message box */
_win_message_box(" Name is incorrect ", "Error!",_win_message_box(" Name is incorrect ", "Error!",_win_message_box(" Name is incorrect ", "Error!",_win_message_box(" Name is incorrect ", "Error!",

MB_ICONEXCLAMATION | MB_OK);MB_ICONEXCLAMATION | MB_OK);MB_ICONEXCLAMATION | MB_OK);MB_ICONEXCLAMATION | MB_OK);
return FALSE;return FALSE;return FALSE;return FALSE;

}}}}

 Display example

Input dialog box

Message box

40

3.7.6.3.7.6.3.7.6.3.7.6. Using functions to manipulate the window frameUsing functions to manipulate the window frameUsing functions to manipulate the window frameUsing functions to manipulate the window frame
 This section explains how to use the window frame manipulating functions by using
the functions shown below as an example.

Function name Description
_win_redraw Redraw custom window
_win_redraw_clear Redraw custom window (with area clear)
_win_set_window_title Set title of custom window
_win_set_window_pos Set position of custom window
_win_set_window_size Set size of custom window

The following shows an example where the custom window is titled "My Window"
and its size when opened is (300 x 200) pixels and the window is opened at a position (0,
0). The window position is referenced to the upper left corner of the PD32RSIM
window's client area as its origin (0, 0), with pixels in the rightward direction defined
by _x_ and those in the downward direction defined by y.

OnCreate()
{

/* Write message handler code here, please. */
_win_set_window_title("My Window");_win_set_window_title("My Window");_win_set_window_title("My Window");_win_set_window_title("My Window"); /* /* /* /* Set window titleSet window titleSet window titleSet window title */ */ */ */
_win_set_window_size(300, 200);_win_set_window_size(300, 200);_win_set_window_size(300, 200);_win_set_window_size(300, 200); /* /* /* /* Set window sizeSet window sizeSet window sizeSet window size */ */ */ */
_win_set_window_pos(0, 0);_win_set_window_pos(0, 0);_win_set_window_pos(0, 0);_win_set_window_pos(0, 0); /* /* /* /* Set window positionSet window positionSet window positionSet window position */ */ */ */

}

 Display example

41

3.7.7.3.7.7.3.7.7.3.7.7. Using functions to operate the system timerUsing functions to operate the system timerUsing functions to operate the system timerUsing functions to operate the system timer
 This section explains how to use the system timer operating functions by using the
functions shown below as an example.

Function name Description
_win_timer_set Set system timer
_win_timer_kill Clear system timer

 The following shows an example where the system timer is used to increment a
counter every 200 ms.

#define#define#define#define IDT_1IDT_1IDT_1IDT_1 (10)(10)(10)(10) /* /* /* /* Define timer ID numberDefine timer ID numberDefine timer ID numberDefine timer ID number */ */ */ */
intintintint count;count;count;count; /* /* /* /* CounterCounterCounterCounter */ */ */ */

OnCreate()
{

/* Write message handler code here, please. */
_win_timer_set(IDT_1, 200);_win_timer_set(IDT_1, 200);_win_timer_set(IDT_1, 200);_win_timer_set(IDT_1, 200); /* /* /* /* Set system timerSet system timerSet system timerSet system timer */ */ */ */
count = 0;count = 0;count = 0;count = 0; /* /* /* /* Initialize counter to 0Initialize counter to 0Initialize counter to 0Initialize counter to 0 */ */ */ */

}

OnDestroy()
{

/* Write message handler code here, please. */
_win_timer_kill(IDT_1);_win_timer_kill(IDT_1);_win_timer_kill(IDT_1);_win_timer_kill(IDT_1); /* /* /* /* Clear system timerClear system timerClear system timerClear system timer */ */ */ */

}

OnTimer()
{

int nIDEvent;

nIDEvent = ((int *)_HandleMsgBlock)[0];

/* Write message handler code here, please. */
if(nIDEvent == IDT_1){if(nIDEvent == IDT_1){if(nIDEvent == IDT_1){if(nIDEvent == IDT_1){ /* /* /* /* If system timer is IDT_1If system timer is IDT_1If system timer is IDT_1If system timer is IDT_1 */ */ */ */

count++;count++;count++;count++; /* /* /* /* Increment counter by 1Increment counter by 1Increment counter by 1Increment counter by 1 */ */ */ */
}}}}

}

Note that when the target program is executing, the OnEvent() handle function is
periodically called for nEventID == EVT_TIME_10MS. It is recommended that
processing which need to be performed periodically only when the target program is
executing (e.g., processing based on sampling) be serviced by the OnEvent() handle
function.

[Precaution] The total number of system timers is limited by the OS used. Use of[Precaution] The total number of system timers is limited by the OS used. Use of[Precaution] The total number of system timers is limited by the OS used. Use of[Precaution] The total number of system timers is limited by the OS used. Use of
too many system timers than necessary could affect the operation of othertoo many system timers than necessary could affect the operation of othertoo many system timers than necessary could affect the operation of othertoo many system timers than necessary could affect the operation of other
applications.applications.applications.applications.

[MEMO]

CB32RSIM V.1.10 Programming Manual

Rev. 1.00
May 1, 2003
REJ10J0089-0100Z

COPYRIGHT ©2003 RENESAS TECHNOLOGY CORPORATION
AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

CB32RSIM V.1.10

REJ10J0089-0100Z

Programming Manual

	1.Overview
	1.1.Outline of this manual
	1.2.What is CB32RSIM?
	1.3.What can be done with CB32RSIM?
	1.4.Features of CB32RSIM

	2.Custom Command Programming
	2.1.Procedure for creating custom commands
	2.2.Example of source program for the simplest custom command
	2.3.Functions that can be used in programming a custom command
	2.4.Method for using the standard functions
	2.4.1.Using heap area manipulating functions
	2.4.2.Using character string manipulating functions
	2.4.3.Using input/output functions
	2.4.4.Using file manipulating functions

	2.5.Method for using the debugger operating functions
	2.5.1.Using execution controlling functions
	2.5.2.Using register manipulating functions
	2.5.3.Using memory manipulating functions
	2.5.4.Using software break manipulating functions
	2.5.5.Using debug information manipulating functions
	2.5.6.Using scrip command executing functions
	2.5.7.Using DOS command executing functions

	3.Custom Window Programming
	3.1.Procedure for creating a custom window
	3.2.Example of source program for the simplest custom window
	3.3.About the handle functions
	3.4.About framework source file
	3.5.Method for using handle functions
	3.5.1.Using the OnCreate handle function (to start creating a window...
	3.5.2.Using OnDestroy handle function (to start destroying a window)
	3.5.3.Using the OnDraw handle function (to request redrawing a windo...
	3.5.4.Using the OnEvent handle function (for status change of PD32RS...
	3.5.5.Using the OnSize handle function (to change window size)
	3.5.6.Using the OnCommand handle function (to manipulate control ite...
	3.5.7.Using the OnHScroll and other handle functions (to manipulate ...
	3.5.8.Using the OnLButtonDblClk and other handle functions (to manip...
	3.5.9.Using the OnChar and other handle functions (to manipulate key...
	3.5.10.Using the OnTimer handle function

	3.6.Functions that can be used in programming a custom window
	3.7.Method for using window manipulating functions
	3.7.1.Using drawing functions
	3.7.2.Using functions to manipulate control items (buttons)
	3.7.3.Using functions to manipulate the status bar
	3.7.4.Using functions to manipulate the scroll bar
	3.7.5.Using functions to manipulate dialog box
	3.7.6.Using functions to manipulate the window frame
	3.7.7.Using functions to operate the system timer

