Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

USER'S MANUAL

AS17216 DEVICE FILE

VERSION V1

PC-9800 SERIES (MS-DOS™) BASED IBM PC/AT™ (PC DOS) BASED

AS17216 DEVICE FILE

VERSION V1

PC-9800 SERIES (MS-DOS™) BASED
IBM PC/AT™ (PC DOS) BASED

 MS-DOS^{TM} is a trademark of MicroSoft Corporation. PC DOS^{TM} and PC/AT TM are trademarks of IBM Corporation.

The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or of others.

Phase-out/Discontinued

PREFACE

AS17216 is a device file which is used with the AS17K assembler to assemble uPD17216 programs.

Device	File		Program Memo	ory Capacity	
			Data Memory	Capacity	
			Usable Instr	ructions	
			Reseved Symb	ools	
			Mask Option	Information,	etc.

For the AS17K assembler and AS17216 device file operating instructions, refer to the AS17K Assembler User's Manual(EEU-603).

CONTENTS

CHAPTER	1. DEVICE INFORMATION	1
CHAPTER	2. uPD17216 INSTRUCTION SET	3
2.1	Instruction Set Outline	3
2.2	Legend	5
2.3	Instruction Table	6
2.4	Assembler (AS17K) Built-In Macro Instructions	8
CHAPTER	3. RESERVED SYMBOLS	9
3.1	Data Buffers	9
3.2	System Registers	10
3.3	Port Registers	11
3.4	Register Files (Control Registers)	12
3.5	Peripheral Registers	14
3.6	Reserved Words Table (Alphabetical Order)	15
3.6.1	Instructions, Pseudo-Instructions	15
3.6.2	Registers, Flags	16
CHAPTER	4. MASK OPTION DEFINITION PSEUDO-INSTRUCTION	17
4.1	OPTION, ENDOP Pseudo-Instructions	17
4.2	Mask Option Definition Pseudo-Instruction	18
CHAPTER	5. LOAD MODULE FILE FORMAT	20

CHAPTER 1. DEVICE INFORMATION

The AS17216 device file supplies the following information related to the uPD17216 at assembly:

(1) Program memory (ROM) capacity

4096 x 16 bits (0000H to 0FFFH)

(2) Data memory (RAM) capacity

111 \times 4 bits (BANKO)

(3) Usable instructions

See Chapter 2 "uPD17216 Instruction Set".

(4) Register files, port registers, and peripheral registers read and write information

See Chapter 3 "Reserved Symbols".

(5) Reserved symbols

See Chapter 3 "Reserved Symbols".

(6) Device file and device number/SE board number

In the device file, the device number peculiar to each device and the SE board number which identifies the most suitable SE board for development of each product are registered. These are also output to the ICE file and the PRO flie which are output by the assembler (AS17K). They are used when checking the development environment with an in-circuit emulator and checking when a mask is ordered.

Table 1-1 Device File and Device Number/SE Board Number Correspondence Table

Device File (Version)	Device Name	Device Number	SE Board Number	SE Board
AS17216 (V1)	uPD17216	4A	34	SE-17215

CHAPTER 2. uPD17216 INSTRUCTION SET

2.1 Instruction Set Outline

b ₁₄ to b ₁	b ₁₅				
BIN	HEX		0		1
0000	0	ADD	r, m	ADD	m, #n4
0001	1	SUB	r, m	SUB	m, #n4
0010	2	ADDC	r, m	ADDC	m, #n4
0011	3	SUBC	r, m	SUBC	m, #n4
0100	4	AND	r, m	AND	m, #n4
0101	5	XOR	r, m	XOR	m, #n4
0110	6	OR	r, m	OR	m, #n4
0111	7	INC	AR		, 11-1-
		INC MOVT BR CALL RET RETSK EI DI RETI PUSH POP GET PUT PEEK POKE RORC STOP HALT NOP	IX DBF, @AR @AR @AR @AR AR AR DBF, p p, DBF WR, rf rf, WR r s h		
1000	8	LD	r, m	ST	m, r
1001	9	SKE	m, #n4	SKGE	m, #n4
1010	A	MOV	@r, m	MOV	m, @r
1011	В	SKNE	m, #n4	SKLT	m, #n4

(to be continued)

(cont'd)

b ₁₄ to b ₁₁		0	1
BIN	HEX		
1100	С	BR addr	CALL addr
1101	D		MOV m, #4
1110	E		SKT m, #n
1111	F		SKF m, #n

2.2 LEGEND

AR Address register

(AR)_{ROM} Data of program memory represented by address

register

ASR Address stack register indicated by stack

pointer

Program memory address (lower 11 bits) addr

BANK Bank register

CY Carry flag DBF Data buffer :

h Halt release condition

INTEF Interrupt enable flag

INTR Automatically saved register during interrupt

INTSK Interrupt stack register :

Index register IX

IXE : Index enable flag

MPData memory row address pointer

: Memory pointer enable flag MPE

Data memory address represented by $m_{\rm R}$ and $m_{\rm C}$ m

Data memory row address (higher) m_{R} $m_{\mathbf{C}}$ Data memory column address (lower) :

Bit position (4 bits) n

Immediate data (4 bits) n4

PC Program counter

: Peripheral address p

 P_{H} : Peripheral address (upper 3 bits) : Peripheral address (lower 4 bits) $P_{T.}$: General register column address

r

Register file address rf

Register file address (higher 3 bits) rf_R Register file address (lower 4 bits) rf_{C}

SP Stack pointer

s Stop release condition

Window register WR

: Content addressed by x (x)

> x: direct address such as m, r, etc. or register such as ASR, ect.

2.3 INSTRUCTION TABLE

TE	Mnemonic Operands		Operation	Machine Code				
N L			operación	Op. Code		Operand	1	
	ADD	r, m	(r) ← (r) + (m)	00000	m_R	m _C	r	
۾	NDD	m, #n4	$(m) \leftarrow (m) + n4$	10000	mR	m _C	n4	
tio	ADDC	r, m	$(r) \leftarrow (r) + (m) + CY$	00010	m _R	m _C	r	
Addition	ADDC	m. = n4	$(m) \leftarrow (m) + n4 + CY$	10010	m _R	m _C	n4	
A	INC	AR	AR←AR+1	00111	000	1001	0000	
	1110	IX	IX←IX+1	00111	000	1000	0000	
-0	SUB	r, m	(r) ← (r) − (m)	00001	m _R	m_{C}	r	
Subtranc- tion	300	m. = n4	(m) ← (m) -n4	10001	m _R	m_{C}	n4	
ubt	SUBC	r, m	(r) ← (r) − (m) −CY	00011	m_R	п _С	r	
τΩ	3060	m, =n4	$(m) \leftarrow (m) - n4 - CY$	10011	m_R	щ _С	n4	
ű	OR	r, m	(r) ← (r) ∨ (m)	00110	m_R	m_{C}	r	
Operation	On	m. =n4	(m) ← (m) ∨n4	10110	m_{R}	m _C	n4	
per	AND	r, m	(r) ← (r) ∧(m)	00100	m_{R}	m _C	r	
1	AND	m. = n4	(m) ← (m) ∧n4	10100	m_R	щ _С	n4	
Logical	XOR	r, m	(r) ← (r) \ \ (m)	00101	m _R	m _C	r	
rog	AOR .	m, = n4	(m) ← (m) ∀ n4	10101	m_R	п _С	n4	
NOTE 2	SKT	m. ‡n	CMP \leftarrow 0, if (m) \wedge n=n, then skip	11110	m_R	Ę	n	
28	SKF	m, =n	CMP←0, if (m) \n=0, then skip	11111	m _R	т _С	n	
ď	SKE	m. = n4	(m) - n4, skip if zero	01001	m _R	тc	n4	
ris	SKNE	m. ‡n4	(m) -n4, skip if not zero	01011	m _R	m_{C}	n4	
Comparison	SKGE	m. = n4	(m) -n4, skip if not borrow	11001	m _R	m _C	n4	
8	SKLT	m. = n4	(m) -n4, skip if borrow	11011	ma	m _C	n4	
NOTE 3	RORC	r	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	00111	000	0111	r	
	LD	r, m	(r) ← (m)	01000	m _R	m _C	r	
	ST	m, r	(m) ← (r)	11000	mR	m _C	r	
		@r, m	if MPE=1: (MP, (r)) \leftarrow (m) if MPE=0: (BANK, m _R , (r)) \leftarrow (m)	01010	m _R	m _C	r	
Transfer	моч	m, @r	if MPE=1: $(m) \leftarrow (MP, (r))$ if MPE=0: $(m) \leftarrow (BANK, m_R, (r))$	11010	m _R	m _C	r	
ans	ans	m. = n4	(m) ←n4	11101	m_{R}	m _C	n4	
T.	MOVT	DBF. @AR	SP←SP-1, ASR←PC, PC←AR, DBF← (AR) _{ROM} , PC←ASR, SP←SP+1	00111	000	0001	0000	
	PUSH	AR	SP-SP-1. ASR-AR	00111	000	1101	0000	
	POP	AR	AR←ASR, SP←SP+1	00111	000	1100	0000	
	PEEK	WR, rf	WR- (rf)	00111	rf _R	0011	rf _C	
	L	L		L	<u></u>		 	

NOTE 1: Instruction Group 2: Decision 3: Rotation

(to be continued)

(cont'd)

[12]				1			
NOTE 1	Mnemonic	Operands	Operation	Machine Code			
ZH				Op. Code	. (Operand	
fer	POKE	rf, WR	(rf) ←WR	00111	rf _R	0010	rf_{C}
Transfer	GET	DBF, p	DBF← (p)	00111	PH	1011	P_L
Tr	PUT	p. DBF	(p) ←DBF	00111	PH	1010	P_L
r,		addr	PC ₁₀₋₀ ←addr, PAGE←0	01100		ما ماء	
Branch	BR	addr	PC ₁₀₋₀ ←addr, PAGE←1	01101	addr		
B		@AR	PC←AR	00111	000	0100	0000
		_ 1.1_	SP←SP-1, ASR←PC+1,	11100	addr		
	addr	addr	PC ₁₀₋₀ ←addr. PAGE←0	11100			
ine	CALL	@AR	SP←SP-1, ASR←PC+1,	00111	000	0101	0000
out		WAR	PC←AR		000	0101	0000
Subroutine	RET		PC←ASR, SP←SP+1	00111	000	1110	0000
"	RETSK		PC←ASR, SP←SP+1 and skip	00111	001	1110	0000
	RETI		PC←ASR, INTR←INTSK, SP←SP+1	00111	100	1110	0000 .
NOTE 2	EI		INTEF ← 1	00111	000	1111	0000
2 8	DI		INTEF-O	00111	001	1111	0000
S	STOP	s	STOP	∞111	010	1111	S
Others	HALT	h	HALT	00111	011	1111	h
5	NOP		No operation	00111	100	1111	0000

NOTE 1: Instruction Group 2: Interrupt

2.4 ASSEMBLER (AS17K) BUILT-IN MACRO INSTRUCTIONS

Legend

flag n

: FLG type symbols

< >

: Omission possible

	Mnemonic	Operands	Operation	n
Built-in macro	SKTn	flag 1, flag n	if (flag 1) to (flag n) = all "1", then skip	1 ≤ n ≤ 4
inst- ruction	SKFn	flag 1, flag n	<pre>if (flag 1) to (flag n) = all "0", then skip</pre>	1 ≤ n ≤ 4
	SETn	flag 1, flag n	(flag 1) to (flag n) - 1	1 ≤ n ≤ 4
	CLRn	flag 1, flag n	(flag 1) to (flag n) - 0	1 ≤ n ≤ 4
	NOTn	flag 1, flag n	if (flag n) = "0", then (flag n) - 1 if (flag n) = "1", then (flag n) - 0	1 ≤ n ≤ 4
	INITFLG	<not> flag 1,<<not> flag n></not></not>	if description = NOT flag n, then (flag n) - 0 if description = flag n, then (flag n) - 1	1 ≤ n ≤ 4

CHAPTER 3. RESERVED SYMBOLS

The symbols which are defined by the uPD17216 device file are shown on the following pages.

The symbols which are defined are:

- Data buffers
- System registers
- Port registers
- Register files (control registers)
- Peripheral registers

3.1 DATA BUFFERS

Symbol	At- trib- ute	Value	R/W	Description
DBF3	MEM	O.OCH	R/W	Data buffer bit 15 to bit 12
DBF2	MEM	O.ODH	R/W	Data buffer bit 11 to bit 8
DBF1	MEM	O.OEH	R/W	Data buffer bit 7 to bit 4
DBFO	MEM	O.OFH	R/W	Data buffer bit 3 to bit 0

3.2 SYSTEM REGISTERS

Symbol	At- trib- ute	Value	R/W	Description
AR3	MEM	0.74н	R	Address register bit 15 to bit 12 (fixed to 0)
AR2	MEM	0.75Н	R/W	Address register bit 11 to bit 8
AR1	MEM	0.76н	R/W	Address register bit 7 to bit 4
ARO	MEM	0.77Н	R/W	Address register bit 3 to bit 0
WR	MEM	0.78н	R/W	Window register
BANK	MEM	0.79н	R	Bank register (fixed to 0)
IXH	MEM	0.7АН	R	Index register high (bits 2, 1, 0: fixed to 0)
MPH	MEM	0.7АН	R	Memory pointer high (bits 2, 1, 0: fixed to 0)
MPE	FLG	0.7AH.3	R/W	Memory pointer enable flag
IXM	MEM	0.7ВН	R/W	Index register middle (bit 3: fixed to 0)
MPL	MEM	0.7ВН	R/W	Memory pointer low (bit 3: fixed to 0)
IXL	MEM	0.7СН	R/W	Index register low
RPH	MEM	O.7DH	R	General register pointer high
RPL	MEM	0.7ЕН	R/W	General register pointer low
PSW	MEM	0.7FH	R'/W	Program status word
BCD	FLG	0.7EH.0	R/W	BCD flag
CMP	FLG	0.7FH.3	R/W	Compare flag
CY	FLG	0.7FH.2	R/W	Carry flag
Z	FLG	0.7FH.1	R/W	Zero flag
IXE	FLG	0.7FH.0	R/W	Index enable flag

3.3 PORT REGISTERS

Symbol	At- trib- ute	Value	R/W	Description
POAO	FLG	0.70н.0	R/W	Port OA bit O
POA1	FLG	0.70Н.1	R/W	Port OA bit 1
POA2	FLG	0.70н.2	R/W	Port OA bit 2
POA3	FLG	0.70н.3	R/W	Port OA bit 3
РОВО	FLG	0.71H.O	R/W	Port OB bit O
POB1	FLG	0.71H.1	R/W	Port OB bit 1
POB2	FLG	0.71H.2	R/W	Port OB bit 2
POB3	FLG	0.71Н.3	R/W	Port OB bit 3
POCO	FLG	0.72н.0	R/W	Port OC bit O
POC1	FLG	0.72Н.1	R/W	Port OC bit 1
POC2	FLG	0.72Н.2	R/W	Port OC bit 2
POC3	FLG	0.72Н.3	R/W	Port OC bit 3
PODO	FLG	0.73н.0	R/W	Port OD bit O
POD1	FLG	0.73н.1	R/W	Port OD bit 1
POD2	FLG	0.73н.2	R/W	Port OD bit 2
POD3	FLG	0.73н.3	R/W	Port OD bit 3
POEO	FLG	0.6FH.0	R/W	Port OE bit O
POE1	FLG	0.6FH.1	R/W	Port OE bit 1
POE2	FLG	0.6FH.2	R/W	Port OE bit 2
POE3	FLG	0.6FH.3	R/W	Port OE bit 3

3.4 REGISTER FILES (CONTROL REGISTERS)

Symbol	At- trib- ute	Value	R/W	Description
SP	MEM	0.81Н	R/W	Stack pointer
SYSCK	FLG	0.82н.0	R/W	System clock select flag
WDTRES	FLG	0.83н.3	R/W	Watchdog timer reset flag
втмск	FLG	0.83н.2	R/W	Basic interval timer mode selct flag
BTMRES	FLG	0.83н.1	R	Basic interval timer reset flag
INT	FLG	0.8FH.O	R	INT pin status flag
NRZBF	FLG	0.91н.0	R/W	NRZ buffer data flag
NRZ	FLG	0.92н.0	R/W	NRZ data flag
POEBPU3	FLG	0.97н.3	R/W	POE ₃ pull-up setting flag
POEBPU2	FLG	0.97н.2	R/W	POE ₂ pull-up setting flag
POEBPU1	FLG	0.97H.1	R/W	POE ₁ pull-up setting flag
POEBPUO	FLG	0.97н.0	R/W	POE _O pull-up setting flag
IEG	FLG	0.9FH.0	R/W	INT pin interrupt edge select flag
POEBIO3	FLG	0.0A7H.3	R/W	POE3 input/output setting flag
POEBIO2	FLG	0.0A7H.2	R/W	POE ₂ input/output setting flag
POEBIO1	FLG	0.0A7H.1	R/W	POE ₁ input/output setting flag
POEBIOO	FLG	0.0A7H.0	 R/W	POE _O input/output setting flag
IPBTM	FLG	0.0AFH.2	R/W	Basic interval timer interrupt enable flag
IP	FLG	0.0AFH.1	R/W	INT pin interrupt enable flag
IPTM	FLG	0.0AFH.0	 R/W	Timer interrupt enable flag

(to be continued)

(cont'd)

Symbol	At- trib- ute	Value	R/W	Description	
TMEN	FLG	0.0В3Н.3	R/W	Timer enable flag	
TMRES	FLG	0.0В3Н.2	R/W	Timer reset flag	
TMCK1	FLG	0.0В3Н.1	R/W	Timer clock select flag	
ТМСКО	FLG	0.0B3H.0	R/W	Timer clock select flag	
IRQBTM	FLG	O.OBDH.O	R/W	Basic interval timer interrupt request flag	
IRQ	FLG	O.OBEH.O	R/W	INT pin interrupt request flag	
IRQTM	FLG	O.OBFH.O	R/W	Timer interrupt request flag	

3.5 PERIPHERAL REGISTERS

Symbol	At- trib- ute	Value	R/W	Description
NRZLTMM	DAT	03Н	R/W	NRZ low level timer modulo register
NRZHTMM	DAT	04н	R/W	NRZ high level timer modulo register
TMC	DAT	05Н	R	Timer count register
TMM	DAT	06н	W	Timer modulo register
AR	DAT	40н	R/W	Address register

3.6 RESERVED WORDS TABLE (ALPHABETICAL ORDER)

3.6.1 INSTRUCTIONS, PSEUDO-INSTRUCTIONS

ADD	EXTRN	NIBBLE6V	SET2
ADDC	FLG	NIBBLE7	SET3
AND	GET	NIBBLE7V	SET4
BANKO	GLOBAL	NIBBLE8	SFCOND
BELOW	HALT	NIBBLE8V	SKE
BR	IF	NOBMAC	SKF
C14344	IFCHAR	NOLIST	SKF1
C4444	IFNCHAR	NOMAC	SKF2
CALL	INC	NOP	SKF3
CASE	INCLUDE	NOT1	SKF4
CLR1	INITFLG	NOT2	SKGE
CLR2	IRP	NOT3	SKLT
CLR3	LAB	NOT4	SKNE
CLR4	LBMAC	OBMAC	SKT
CSEG	LD	OMAC	SKT1
DAT	LFCOND	OPTION	SKT2
DB	LIST	OR	SKT3
DI	LITERAL	ORG	SKT4
DW	LMAC	OTHER	SMAC
EI	MACRO	PEEK	ST
EJECT	MEM	POKE	STOP
ELSE	MOV	POP	SUB
END	MOVT	PUBLIC	SUBC
ENDCASE	NIBBLE	PURGE	SUMMARY
ENDIF	NIBBLE1	PUSH	TAG
ENDIFC	NIBBLE2	PUT	TITLE
ENDIFNC	NIBBLE2V	REPT	XOR
ENDM	NIBBLE3	RET	ZZZERROR
ENDOP	NIBBLE3V	RETI	ZZZMCHK
ENDP	NIBBLE4	RETSK	ZZZMSG
ENDR	NIBBLE4V	RORC	ZZZOPT
EOF	NIBBLE5	SBMAC	
EXIT	NIBBLE5V	SET	
EXITR	NIBBLE6	SET1	

3.6.2 REGISTERS, FLAGS

AR	NRZ	RPH
ARO	NRZBF	RPL
AR1	NRZHTMM	SP
AR2	NRZLTMM	SYSCK
AR3	OPEN	TMC
AR_EPAO	POAO	TMCKO
AR_EPA1	POA1	TMCK1
BANK	POA2	TMEN
BCD	POA3	TMM
BTMCK	POBO	TMRES
BTMRES	POB1	USEPOC
CMP	POB2	WDTRES
CY	POB3	WR
DBF	POC0	Z
DBFO	POC1	ZZZO
DBF1	POC2	ZZZ1
DBF2	POC3	ZZZ2
DBF3	PODO	ZZZ3
IEG	POD1	ZZZ4
INT	POD2	ZZZ5
ΙΡ	POD3	ZZZ6
IPBTM	POEO	ZZZ7
IPTM	POE1	2228
IRQ	POE2	ZZZ9
IRQBTM	POE3	ZZZALBMAC
IRQTM	POEBIO0	ZZZALMAC
IX	POEBIO 1	ZZZARGC
IXE	POEBIO2	ZZZDEVID
IXH	POEBIO3	ZZZEPA
IXL	POEBPUO	ZZZLINE
IXM	POEBPU1	ZZZLSARG
MPE	POEBPU2	ZZZPRINT
МРН	POEBPU3	ZZZSKIP
MPL	PSW	ZZZSYDOC
NOUSEPOC	PULLUP	

CHAPTER 4. MASK OPTION DEFINITION PSEUDO-INSTRUCTION

For uPD17216 programming, mask options must be specified using mask option definition pseudo-instructions in assembly source program.

Mask option should be specified for RESET pin pull-up resistor and low-voltage detection circuit.

4.1 OPTION, ENDOP PSEUDO-INSTRUCTIONS

The area from the OPTION pseudo-instruction to the ENDOP pseudo-instruction is called "mask option definition block".

The description of mask option definition block is shown below.

[Description format]

Symbol field	Mnemonic field	Operand field	Comment field
[label:]	OPTION : : ENDOP		[; comment]

4.2 MASK OPTION DEFINITION PSEUDO-INSTRUCTION

An example of the mask option definition is shown below.

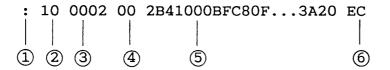
Symbol field	Mnemonic field	Operand field	Comment field
[label:]	OPTION OPTRES OPTPOC ENDOP	PULLUP NOUSEPOC	[; comment] ; Pull up ; No low-voltage detection circuit

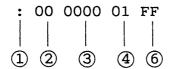
Pseudo-instructions which can be used in a mask option definition block are shown in Table 4-1 "List of Mask Option Definition Pseudo-Instructions".

Table 4-1 List of Mask Option Definition Pseudo-Instructions

Item	Mask Option Definition Pseudo- Instruction	Number of Operands	1st Operand	2nd Operand
RESET pin pull-up resistor	OPTRES	1	RESET mask option	
resistor		`	PULLUP (built-in pull-up resistor) OPEN (no pull-up resistor)	
Low-voltage detection circuit	OPTPOC	1	Low-voltage detection circuit mask option	
			USEPOC (built-in low-voltage detection circuit) NOUSEPOC (no low- voltage detection circuit)	

CHAPTER 5. LOAD MODULE FILE FORMAT


There are two types of output formats of the HEX format load module files output by the assembler (AS17K), ICE file and PRO file.


These two files should be used in accordance with their purposes, respectively. They contain the assembly environment information area, the in-circuit emulator operating environment information area, etc., in addition to the user program area.

(1) HEX format load module file formatting

Each data in the HEX format load module files output by the assembler is output as shown in the format examples below.

[HEX format load module file formatting examples]

(1) Record mark

Indicates the start of a record.

(2) Number of codes (two digits)

Indicates the number of codes (byte data) contained in the record. The maximum of 10H (for 16 codes) is represented in hexadecimal numbers. For the last record, the value is 00H.

Address (4 digits)

Indicates the start address of the code represented by the record. At the final record, it becomes 0000H, which has no relation to the address.

(4) Record type (2 digits)

00H indicates that the record is a data record, and 01H means that it is the final record.

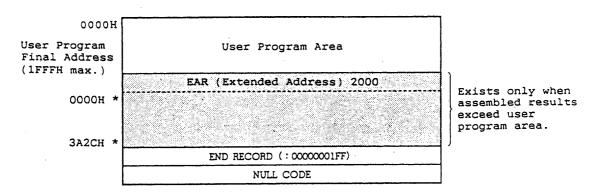
(5) Code (maximum 32 digits (16 bytes))

Up to 16 bytes are output to this field byte-wise.

6 Check sum (2 digits)

Byte data is output to 6 so that the least significant byte of the sum of data 2, 3, 4, 5 and 6 totaled in 1-byte units is 00H (even parity).

(2) ICE file


This file is output in the HEX format dedicated to the in-circuit emulator (IE-17K or IE-17K-ET) to which the AS17K outputs. The output format in the case of assembly using the uSxxxxAS17216 is shown in Figure 5-1.

The ICE file comprises 2 files. One is the program area which is divided into a user program area and patch area.

The patch area exists only when patches are used on the in-circuit emulator. The other consists of an in-circuit emulator operating environment information area, assembly environment information area and SE board environment information area. These areas contain various kinds of information which specifies in-circuit emulator operations.

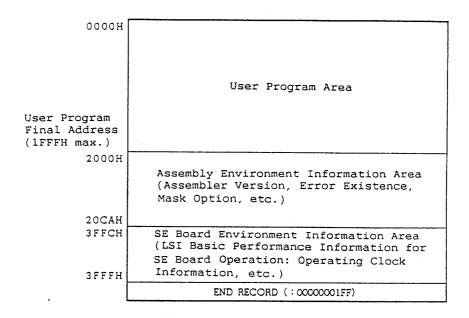
Figure 5-1 ICE File Format

1st ... Program area

*: 10000H to 13A2CH in case of in-circuit emulator

2nd ... In-circuit emulator operating environment information area + assembly environment information area

3A2DH 3E2EH	In-Circuit Emulator Operating Environment Information Area (1) (Patch Information)
3E2FH 3F30H	In-Circuit Emulator Operating Environment Information Area ② (RAM Map)
3F31H 3FFBH	Assembly Environment Information Area (Assembler Version, Error Existence, Mask Option, etc.)
3FFCH	SE Board Environment Information Area (LSI Basic Performance Information for SE Board Operation: Operating Clock Information, etc.)
	END RECORD (:00000001FF)


(3) PRO file

This is the HEX data dedicated PROM/one-time PROM products (uPD17P218) which are used for mask ordering or evaluation in a standalone SE board. During assembly, the PRO file is output by specifying it as /PRO by the assembly option. The output format in the case of assembly using the usxxxxAS17216 is shown in Figure 5-2.

The PRO file comprises one file which consists of a user program area, assembly environment information area, and SE board environment information area.

Figure 5-2 PRO File Format

- Remarks 1: The assembly environment information area also contains the mask option information which is used for the LSI mask creation. Thus, documents related to the mask option is not required at the mask ordering.
 - 2: The area 20CBH to 3FFBH does not exist in the PRO file.
- (4) File comparison of load module files

Even when there is no change in source files, the contents of assembler output results (assembly environment information area) may differ. This is because the assembly environment information area includes dates in which source files are created, etc.

Table 5-1 Items which may differ in assembler output results even when source file is not changed.

Item	Address		
ı cem	ICE File	PRO File	
Program name (Maximum of 64 bytes of character string specified by assembly option (/'PROG='))	3F31H to 3F50H	2000H to 201FH	
Mask option data	3F71H, 3F72H	2040н, 2041н	
SIMPLEHOST information	3FADH	207СН	
Existence of error or warning	3FBOH	207FH	
Date of source file creation (year/month/date/hour/minute*)	3FBEH to 3FC7H	208DH to 2096H	
Device name	3FC8H to 3FD7H	2097H to 20A6H	
Device file version	3FDCH, 3FDDH	20ABH, 20ACH	
Assembler version	3FDEH to 3FE1H	20ADH to 20BOH	

*: When a source file is devided into two or more modules, the latest date of creation (year/month/date/hour/minute) in the module is written.

NOTE: Do not modifiy the load module file only.

The load module file should be modified by changing a source file or reassembling the file.

If only the load module file is changed, it will have a different history from that of other files, causing bugs to occur.

Phase-out/Discontinued

Phase-out/Discontinued