Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

AS17207 DEVICE FILE

PC-9800 SERIES (MS-DOS™) BASED

IBM PC/AT™ (PC DOS™) BASED

Document No. EEU-1360 (0. D. No. EEU-746) Date Published November 1990 P Printed in Japan

Phase-out/Discontinued

AS17207 DEVICE FILE

PC-9800 SERIES (MS-DOS) BASED

IBM PC/AT (PC DOS) BASED

VERSION 1

Phase-out/Discontinued

MS-DOSTM is a trademark of MicroSoft Corporation. PC DOSTM and PC/ATTM are trademarks of IBM Corporation.

Phase-out/Discontinued

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or of others.

Phase-out/Discontinued

Phase-out/Discontinued

PREFACE

The AS17207 is a device file for use with the AS17K assembler unit to assemble μ PD17207 programs.

The AS17207 provides upon assemble the μ PD17207 program memory capacity, data memory capacity, usable instructions, reserved symbols, mask option information, etc.

Refer to the AS17K User's Manual (EEU-1287) for details of the AS17K assembler unit and AS17207 device file manipulating procedure.

Phase-out/Discontinued

CONTENTS

CHAPTER 1. DEVICE INFORMATION	1
CHAPTER 2. μPD17207 INSTRUCTION SET	
2.1 OUTLINE OF INSTRUCTION SET	3
2.2 LEGEND	4
2.3 INSTRUCTION LIST	5
2.4 ASSEMBLER (AS17K) INTRINSIC MACRO INSTRUCTIONS	7
CHAPTER 3. RESERVED SYMBOLS	9
3.1 DATA BUFFER	
3.2 SYSTEM REGISTER	
3.3 LCD SEGMENT DATA REGISTER	11
3.4 PORT REGISTER	12
3.5 REGISTER FILE (CONTROL REGISTER)	13
3.6 PERIPHERAL REGISTER	14
3.7 RESERVED WORD LIST (IN ALPHABETICAL ORDER)	15
3.7.1 Instructions and Pseudo-Instructions	15
3.7.2 Registers and Flags	16
CHAPTER 4. MASK OPTION DEFINITION PSEUDO-INSTRUCTIONS	17
4.1 OPTION AND ENDOP PSEUDO-INSTRUCTIONS	17
4.2 MASK OPTION DEFINITION PSEUDO-INSTRUCTIONS	17

Phase-out/Discontinued

Contents of Table

Table No.	Title	Page
4-1	Mask Option Definition Pseudo-Instruction List	18

Phase-out/Discontinued

Phase-out/Discontinued

1

CHPATER 1. DEVICE INFORMATION

The AS17207 device file provides upon assemble the following information concerning the µPD17207.

- Program memory (ROM) capacity 4096 x 16 bits (0000H to 0FFFH)
- (2) Data memory (RAM) capacity336 x 4 bits (BANK 0 to BANK 2)
- (3) Usable instructions
 Refer to Chapter 2 "μPD17207 Instruction Set".
- (4) Register file, port register and peripheral register read and write information Refer to **Chapter 3 "Reserved Symbols"**.
- (5) Reserved symbolsRefer to Chpater 3 "Reserved Symbols".

Phase-out/Discontinued

CHAPTER 2. µPD17207 INSTRUCTION SET

2.1 OUTLINE OF INSTRUCTION SET

\square	b ₁₅				1914 H.
b14-b11		4	0		1
BIN	HEX				
0000	0	ADD	r, m	ADD	m, #i
0001	1	SUB	r, m	SUB	m, #i
0010	2	ADDC	r, m	ADDC	m, #i
0011	3	SUBC	r, m	SUBC	m, #i
0100	4	AND	r, m	AND	m, #i
0101	5	XOR	r, m	XOR	m, #i
0110	6	OR	r, m	OR	m, #i
0111	7	INC INC MOVT BR CALL RET RETSK EI DI RETI PUSH POP GET PUT PEEK POKE RORC STOP HALT NOP	AR IX DBF, @AR @AR @AR AR AR DBF, p p, DBF WR, RA RA, WR r s h		
1000	8	LD	r, m	ST	m, r
1001	9	SKE	m, #i	SKGE	m, #i
1010	А	MOV	@r, m	MOV	m, @r
1011	В	SKNE	m, #i	SKLT	m, #i
1100	С	BR	addr (page0)	CALL	addr (pageO)
1101	D	BR	addr (page1)	MOV	m, #i
1110	E			SKT	m, #n
1111	F			SKF	m, #n

2.2 LEGEND

Μ	:	Data memory
m	:	Data memory address except banks
mн	:	Data memory row address
ու	:	Data memory column address
R	:	General register
r	:	General register column address
RP	:	General register pointer
RF	:	Register file
rf	:	Register file address
rf _H	:	Register file address (upper 3 bits)
rfL	:	Register file address (lower 4 bits)
AR	:	Address register
١X	:	Index register
IXE	:	Index enable flag
DBF	:	Data buffer
WR	:	Window register
MP	:	Data memory row address pointer
MPE	:	Memory pointer enable flag
PE	:	Peripheral register
р	:	Peripheral address
рн	:	Peripheral address (upper 3 bits)
рL	:	Peripheral address (lower 4 bits)
PC	:	Program memory counter
SP	:	Stack pointer
STACK	:	Stack value indicated by the stack pointer
BANK	:	Bank register
(AR)ROM	:	Program memory data indicated by the address register
INTEF	:	Interrupt enable flag
i	:	Immediate data (4 bits)
n	:	Bit position (4 bits)
addr	:	Program memory address (11 bits)
PAGE	:	Most significant bit of program counter
CY	:	Carry flag
S	:	Stop release condition
h	З.	Halt release condition
[]	:	Data memory or register address
()	:	Data memory or register value

2.3 INSTRUCTION LIST

Instruction	Mnemonic	Operand	Operation		Machine Code				
	Minemonic	Operand	Operation	Opcode	3 Bits	4 Bits	4 Bits		
	ADD	r, m	(R) ← (R) + (M)	00000	mн	mL	r		
Add	AUD	m, i	(M) ← (M) + i	10000	mH	mL	i		
	ADDC	r, m	(R) ← (R) + (M) + (CY)	00010	mН	mL	r		
AUU	ADDC	m, #i	(M) ← (M) + i + (CY)	10010	mн	mL	i		
	INC	AR	(AR) ← (AR) + 1	00111	000	1001	0000		
	INC	IX	$(X) \leftarrow (X) + 1$	00111	000	1000	0000		
	SUB	r, m	(R) ← (R) – (M)	00001	mН	ՠլ	r		
Subtraction	308	m, #i	(M) ← (M) - i	10001	mH	mL	i		
Subtraction		r, m	$(R) \leftarrow (R) - (M) - (CY)$	00011	mн	mL	r		
	SUBC	m, #i	$(M) \leftarrow (M) = i - (CY)$	10011	mн	 	i		
	SKE	m, #i	(M) — i, skip if zero	01001	тн	տլ	i		
O i	SKGE	m, #i	(M) — i, skip if not borrow	11001	mH	 mլ	i		
Comparison	SKLT	m, #i	(M) — i, skip if borrow	11011	mH	mL	i		
	SKNE	m, #i	(M) — i, skip if not zero	01011	mн	mL	i		
	+	m, #i	(M) ← (M) AND i	10100	mH	ոլ	i		
	AND	r, m	(R) ← (R) AND (M)	00100	mн	 	r		
	OR	m, #i	(M) ← (M) OR i	10110	mн	 	i i		
Logical		r, m	(R) ← (R) OR (M)	00110	mң	m_	r		
		m, #i	(M) ← (M) × OR i	10101	mH	ոլ	i		
	XOR	r, m	(R) ← (R) XOR (M)	00101	mH	 	r		
	LD	r, m	(R) ← (M)	01000	mн	mL	r		
	ST	m, r	(M) ← (R)	11000	mH	 	r		
		@r, m	if MPE = 1: [(MP), (R)] ← (M) if MPE = 0: [(m _H), (R)] ← (M)	01010	mH	mL	r		
	MOV	m, @r	if MPE = 1: (M) ← [(MP), (R)] if MPE = 0: (M) ← [(m _H), (R)]	11010	mң	ոլ	r		
		m, #i	(M) ← i	11101	mH	ոլ	i		
Transfer	MOVT	DBF, @AR	$SP \leftarrow (SP) - 1, STACK \leftarrow PC,$ $DBF \leftarrow (AR) ROM,$ $PC \leftarrow STACK, SP \leftarrow (SP) + 1$	00111	000	0001	0000		
	PUSH	AR	$(SP) \leftarrow (SP) - 1, (STACK) \leftarrow (AR)$	00111	000	1101	0000		
	POP	AR	(AR) ← (STACK), (SP) ← (SP) + 1	00111	000	1100	0000		
	PEEK	WR , rf	(WR) ← (RF)	00111	rfH	0011	rf		
	POKE	rf, WR	(RF) ← (WR)	00111	rf _H	0010	rf_		
	GET	DBF,p	(DBF) ← (PE)	00111	P _H	1011	٩L		
	PUT	p, DBF	(PE) ← (DBF)	00111	PH	1010	PL		
	SKT	m, #n	CMP ← 0, skip if M_N = all "1"	11110	 mH	mL	n		
Decision	SKF	m, #n	$CMP \leftarrow 0$, skip if $M_N = all "0"$	11111	 тң	mL	n		

5

Instruction	Magnesis	Opposed	Operation.	Machine Code			
mstruction	nstruction Mnemonic Operand		Operation	Opcode	3 Bits	4 Bits	4 Bits
		addr	PC ← addr, PAGE ← 0	01100	addr		
Branch	BR	2007	$PC \leftarrow addr, PAGE \leftarrow 1$	01101		addr	
		@AR	PC ← AR	00111	000	0100	0000
Shift	RORC	r	$(CY) \rightarrow (R) \rightarrow CY$	00111	000	0111	r
	CALL	addr	$SP \leftarrow (SP) - 1, STACK \leftarrow ((PC) + 1),$ $PC \leftarrow addr, PAGE \leftarrow 0$	11100	addr		
Subroutine		@AR	$SP \leftarrow (SP) - 1, STACK \leftarrow ((PC) + 1), PC \leftarrow (AR)$	00111	000	0101	0000
	RET		$PC \leftarrow (STACK), SP \leftarrow (SP) + 1$	00111	000	1110	0000
	RETSK		PC ← (STACK), SP ← (SP) + 1 and skip	00111	001	1110	0000
	RETI		$PC \leftarrow (STACK), SP \leftarrow (SP) + 1$	00111	100	1110	0000
1	EI		INTEF ← 1	00111	000	1111	0000
Interrupt	DI		INTEF ← 0	00111	001	1111	0000
<u></u>	STOP	S	STOP	00111	010	1111	S
Others	HALT	h	HALT	00111	011	1111	h
	NOP		No operation	00111	100	1111	0000

2.4 ASSEMBLER (AS17K) INTRINSIC MACRO INSTRUCTIONS

Legend

5	
flag :	One of flag1 to flagn
flag1 to flagn:	Flag names indicated by reserved words
n :	Number
<> :	May be omitted.

	Mnemonic	Operand	n	Operation
Intrinsic	SKTn	flag1, flagn	1 <u>≦</u> n <u>≦</u> 4	if (flag1) to (flagn) = all "1", then skip
macro	SKFn	flag1, flagn	$1 \leq n \leq 4$	if (flag1) to (flagn) = all "0", then skip
instructions	SKTn	flag1, flagn	$1 \leq n \leq 4$	(flag1) to (flagn) ← 1
	CLRn	flag1, flagn	$1 \leq n \leq 4$	(flag1) to (flagn) ← O
	NOTn	flag1, flagn	$1 \leq n \leq 4$	if (flag) = "0", then (flag) \leftarrow 1, & if (flag) = "1", then (flag) \leftarrow 0
	INITFLG	<not> flag1, <not> flagn</not></not>	4	if description = NOT flag, then (flag) $\leftarrow 0$ if description = flag, then (flag) $\leftarrow 1$
	BANKn		$0 \leq n \leq 2$	(BANK) ← n

Phase-out/Discontinued

.

CHAPTER 3. RESERVED SYMBOLS

The symbols defined in the μ PD17207 device file are shown below and on the following pages. The defined symbols are listed below.

- Data buffer
- System register
- LCD segment data register
- Port register
- Register file (control register)
- Peripheral register

3.1 DATA BUFFER

Symbol Name	Attribute	Value	R/W	Description
DBF3	MEM	0.0CH	R/W	Bits 15 to 12 of data buffer
DBF2	MEM	0.0DH	R/W	Bits 11 to 8 of data buffer
DBF1	MEM	0.0EH	R/W	Bits 7 to 4 of data buffer
DBF0	MEM	0.0FH	R/W	Bits 3 to 0 of data buffer

3.2 SYSTEM REGISTER

Symbol Name	Attribute	Value	R/W	Description
AR3	MEM	0.74H	R	Bits 15 to 12 of address register
AR2	МЕМ	0.75H	R/W	Bits 11 to 8 of address register
AR1	MEM	0.76H	R/W	Bits 7 to 4 of address register
ARO	MEM	0.77H	R/W	Bits 3 to 0 of address register
WR	MEM	0.78H	R/W	Window register
BANK	MEM	0.79H	R/W	Bank register
іхн	MEM	0.7AH	R/W	Bits 11 to 8 of index register
МРН	MEM	0.7AH	R/W	Bits 7 to 4 of memory pointer
MPE	FLG	0.7AH.3	R/W	Memory pointer enable flag
IXM	MEM	0.7BH	R/W	Bits 7 to 4 of index register
MPL	MEM	0.7BH	R/W	Bits 3 to 0 of memory pointer
IXL	MEM	0.7CH	R/W	Bits 3 to 0 of index register
RPH	MEM	0.7DH	R/W	Bits 7 to 4 of register pointer
RPL	MEM	0.7EH	R/W	Bits 3 to 0 of register pointer
PSW	MEM	0.7FH	R/W	Program status word
BCD	FLG	0.7EH.0	R/W	BCD operation flag
СМР	FLG	0.7FH.3	R/W	Compare flag
CY	FLG	0.7FH.2	R/W	Carry flag
Z	FLG	0.7FH.1	R/W	Zero flag
IXE	FLG	0.7FH.0	R/W	Index register enable flag

3.3 LCD SEGMENT DATA REGISTER

Symbol Name	Attribute	Value	R/W	Description
LCDD0	MEM	0.40H	R/W	LCD segment 0
LCDD1	MEM	0.41H	R/W	LCD segment 1
LCDD2	MEM	0.42H	R/W	LCD segment 2
LCDD3	MEM	0.43H	R/W	LCD segment 3
LCDD4	MEM	0.44H	R/W	LCD segment 4
LCDD5	MEM	0.45H	R/W	LCD segment 5
LCDD6	MEM	0.46H	R/W	LCD segment 6
LCDD7	MEM	0.47H	R/W	LCD segment 7
LCDD8	MEM	0.48H	R/W	LCD segment 8
LCDD9	MEM	0.49H	R/W	LCD segment 9
LCDD10	MEM	0.4AH	R/W	LCD segment 10
LCDD11	MEM	0.4BH	R/W	LCD segment 11
LCDD12	MEM	0.4CH	R/W	LCD segment 12
LCDD13	MEM	0.4DH	R/W	LCD segment 13
LCDD14	MEM	0.4EH	R/W	LCD segment 14
LCDD15	MEM	0.4FH	R/W	LCD segment 15
LCDD16	MEM	0.50H	R/W	LCD segment 16
LCDD17	MEM	0.51H	R/W	LCD segment 17
LCDD18	MEM	0.52H	R/W	LCD segment 18
LCDD19	MEM	0.53H	R/W	LCD segment 19
LCDD20	MEM	0.54H	R/W	LCD segment 20
LCDD21	MEM	0.55H	R/W	LCD segment 21
LCDD22	MEM	0.56H	R/W	LCD segment 22
LCDD23	MEM	0.57H	R/W	LCD segment 23
LCDD24	MEM	0.58H	R/W	LCD segment 24
LCDD25	MEM	0.59H	R/W	LCD segment 25
LCDD26	MEM	0.5AH	R/W	LCD segment 26
LCDD27	MEM	0.5BH	R/W	LCD segment 27
LCDD28	MEM	0.5CH	R/W	LCD segment 38
LCDD29	MEM	0.5DH	R/W	LCD segment 39
LCDD30	MEM	0.5EH	R/W	LCD segment 30
LCDD31	MEM	0.5FH	R/W	LCD segment 31
LCDD32	MEM	0.60H	R/W	LCD segment 32
LCDD33	MEM	0.61H	R/W	LCD segment 33
LCDD34	MEM	0.62H	R/W	LCD segment 34
LCDD35	MEM	0.63H	R/W	LCD segment 35

3.4 PORT REGISTER

Symbol Name	Attribute	Value	R/W	Description
POAO	FLG	0.70H.0	R/W	Bit 0 of port 0A
POA1	FLG	0.70H.1	R/W	Bit 1 of port 0A
POA2	FLG	0.70H.2	R/W	Bit 2 of port 0A
POA3	FLG	0.70H.3	R/W	Bit 3 of port 0A
POBO	FLG	0.71H.0	R/W	Bit 0 of port 0B
POB1	FLG	0.71H.1	R/W	Bit 1 of port 0B
POB2	FLG	0.71H.2	R/W	Bit 2 of port 0B
POB3	FLG	0.71H.3	R/W	Bit 3 of port 0B
POCO	FLG	0.72H.0	R/W	Bit 0 of port 0C
POC1	FLG	0.72H.1	R/W	Bit 1 of port OC
POC2	FLG	0.72H.2	R/W	Bit 2 of port OC
POC3	FLG	0.72H.3	R/W	Bit 3 of port 0C
POD0	FLG	0.73H.0	R/W	Bit 0 of port 0D
POD1	FLG	0.73H.1	R/W	Bit 1 of port OD
POD2	FLG	0.73H.2	R/W	Bit 2 of port 0D
P0D3	FLG	0.73H.3	R/W	Bit 3 of port OD
P1A0	FLG	1.70H.0	R/W	Bit 0 of port 1A
P1A1	FLG	1.70H.1	R/W	Bit 1 of port 1A
P1A2	FLG	1.70H.2	R/W	Bit 2 of port 1A
P1A3	FLG	1.70H.3	R/W	Bit 3 of port 1A

3.5 REGISTER RILE (CONTROL REGISTER)

Symbol Name	Attribute	Value	R/W	Description
SP	MEM	0.81H	R/W	Stack pointer
SYSCK	FLG	0.82H.1	R/W	System clock selection
XEN	FLG	0.82H.0	R/W	Main clock enable
WDTRES	FLG	0.83H.3	R/W	Watchdog timer reset
WTMMD	FLG	0.83H.2	R/W	Clock timer mode selection
WTMRES	FLG	0.83H.1	R/W	Clock timer mode reset
VDDDET1	FLG	0.87H.3	R	VDD detect flag 1
VDDDETO	FLG	0.87H.2	R	VDD detect flag 0
INT	FLG	0.8FH.0	R	Interrupt pin status
NRZBF	FLG	0.91H.0	R/W	NRZ buffer data
NRZ	FLG	0.92H.0	R/W	NRZ data
ADCCMP	FLG	0.0A0H.0	R/W	Comparator result
VREFEN	FLG	0.0A1H.3	R/W	ADC enable flag
ADCEN	FLG	0.0A1H.2	R/W	ADC enable flag
ADCCH1	FLG	0.0A1H.1	R/W	ADC channel select #1
ADCCH0	FLG	0.0A1H.0	R/W	ADC channel select #0
SIOTS	FLG	0.0A2H.3	R/W	Serial interface
SIOHIZ	FLG	0.0A2H.2	R/W	SO port selection
SIOCK1	FLG	0.0A2H.1	R/W	Serial interface clock #1
SIOCKO	FLG	0.0A2H.0	R/W	Serial interface clock #0
NRZEN	FLG	0.0A3H.2	R/W	NRZ enable flag
тмое	FLG	0.0A3H.1	R/W	Timer output enable flag
SIOEN	FLG	0.0A3H.0	R/W	SIO enable flag
PODB103	FLG	0.0A7H.3	R/W	POD port bit 3 input/output set flag
PODBIO2	FLG	0.0A7H.2	R/W	POD port bit 2 input/output set flag
PODBIO1	FLG	0.0A7H.1	R/W	POD port bit 1 input/output set flag
PODBIOO	FLG	0.0A7H.0	R/W	POD port bit 0 input/output set flag
IPSIO	FLG	0.0AFH.3	R/W	INTSIO interrupt enable flag
IPWTM	FLG	0.0AFH.2	R/W	Clock timer interrupt enable flag
IP	FLG	0.0AFH.1	R/W	INT interrupt enable flag
IPTM	FLG	0.0AFH.0	R/W	8-bit timer interrupt enable flag
LCDEN	FLG	0.0B1H.3	R/W	LCD display enable flag
LCDCK2	FLG	0.0B1H.2	R/W	LCD display clock set #2
LCDCK1	FLG	0.0B1H.1	R/W	LCD display clock set #1
LCDCK0	FLG	0.0B1H.0	R/W	LCD display clock set #0

Phase-out/Discontinued

Symbol Name	Attribute	Value	R/W	Description
LCDMD3	FLG	0.0B2H.3	R/W	LCD display mode set #3
LCDMD2	FLG	0.0B2H,2	R/W	LCD display mode set #2
LCDMD1	FLG	0.0B2H.1	R/W	LCD display mode set #1
LCDMD0	FLG	0.0B2H.0	R/W	LCD display mode set #0
TMEN	FLG	0.0B3H.3	R/W	Timer enable flag
TMRES	FLG	0.0B3H.2	R/W	Timer reset flag
TMCK1	FLG	0.0B3H.1	R/W	Timer clock source selection
ТМСКО	FLG	0.0B3H.0	R/W	Timer clock source selection
PIAGIO	FLG	0.0B7H.3	R/W	P1A port input/output set flags
POCGIO	FLG	0.0B7H.2	R/W	POC port input/output set flags
POBGIO	FLG	0.0B7H.1	R/W	POB port input/output set flags
POAGIO	FLG	0.0B7H.0	R/W	POA port input/output set flags
IRQSIO	FLG	0.0BBH.3	R/W	SIO interrupt request flag
IRQWTM	FLG	0.0BCH.2	R/W	Clock timer interrupt request flag
IRQ	FLG	0.0BDH.1	R/W	INT interrupt request flag
IRQTM	FLG	0.0BEH.0	R/W	8-bit timer interrupt request flag

3.6 PERIPHERAL REGISTER

Symbol Name	Attribute	Value	R/W	Description
SIOSFR	DAT	01H	R/W	Serial I/O register
ТММ	DAT	02H	W	8-bit timer modulo register
ТМС	DAT	02H	R	8-bit timer count register
NRZLTMM	DAT	03H	R/W	NRZ low-level period set modulo register
NRZHTMM	DAT	04H	R/W	NRZ high-level period set modulo register
ADCR	DAT	05H	R/W	ADC reference voltage set register
AR	DAT	40H	R/W	Address register

3.7 RESERVED WORD LIST (IN ALPHABETICAL ORDER)

3.7.1 Instructions and Pseudo-Instructions

ADD	EXIT	NIBBLE5V	SET
ADDC	EXITR	NIBBLE6	SET1
AND	ENTRN	NIBBLE6V	SET2
BANKO	FLG	NIBBLE7	SET3
BANKI	GET	NIBBLE7V	SET4
BANK2	CLOBAL	NIBBLE8	SFCOND
BELOW	HALT	NIBBLE8V	SKE
BR	IF	NOBMAC	SKF
C14344	IFCHAR	NOLIST	SKF1
C4444	IFNCHAR	NOMAC	SKF2
CALL	INC	NOP	SKF3
CASE	INCLUDE	NOT1	SKF4
CLR1	INITELG	NOT2	SKGE
CLR2	IRP	NOT3	SKLT
CLR3	LAB	NOT4	SKNE
CLR4	LBMAC	OBMAC	SKT
CSEG	LD	OMAC	SKT1
DAT	LFCOND	OPTION	SKT2
DB	LIST	OR	SKT3
DI	LITERAL	ORG	SKT4
DW	LMAC	OTHER	SMAC
EI	MACRO	PEEK	ST
EJECT	MEM	POKE	STOP
ELSE	MOV	POP	SUB
END	MOVT	PUBLIC	SUBC
ENDCASE	NIBBLE	PURGE	SUMMARY
ENDIF	NIBBLE1	PUSH	TAG
ENDIFC	NIBBLE2	PUT	TITLE
ENDIFNC	NIBBLE2V	REPT	XOR
ENDM	NIBBLE3	RET	ZZZERROR
ENDOP	NIBBLE3V	RETI	ZZZMCHK
ENDP	NIBBLE4	RETSK	ZZZMSG
ENDR	NIBBLE4V	RORC	ZZZOPT
EOF	NIBBLE5	SBMAC	

3.7.2 Registers and Flags

ADCCH0	LCDD12	NRZ	SIOSFR
ADCCH1	LCDD13	NRZBF	SIOTS
ADCCMP	LCDD14	NRZEN	SP
ADCEN	LCDD15	NRZHTMM	SYSCK
ADCR	LCDD16	NRZLTMM	ТМС
AR	LCDD17	OPEN	ТМСКО
AR0	LCDD18	POAO	TMCK1
AR1	LCDD19	POA 1	TMEN
AR2	LCDD2	POA2	ТММ
AR3	LCDD20	POA3	ТМОЕ
AR_EPA0	LCDD21	POAGIO	TMRES
AR_EPA1	LCDD22	РОВО	USEX
BANK	LCDD23	POB1	USEXT
BCD	LCDD24	POB2	VDDDETO
СМР	LCDD25	P0B3	VDDDET1
СҮ	LCDD26	POBGIO	VREFEN
DBF	LCDD27	POCO	WDTRE
DBF0	LCDD28	POC1	WR
DBF1	LCDD29	POC2	WTMMD
DBF2	LCDD3	POC3	WTMRES
DBF3	LCDD30	POCGIO	XEN
INT	LCDD31	PODO	Z
IP	LCDD32	POD1	ZZZO
IPSIO	LCDD33	POD2	ZZZ1
IPTM	LCDD34	POD3	ZZZ2
IPWTM	LCDD35	PODBIOO	ZZZ3
IRQ	LCDD4	PODBIO1	ZZZ4
IRQSIO	LCDD5	PODBIO2	ZZZ5
IRQTM	LCDD6	PODBIO3	ZZZ6
IRQWTM	LCDD7	P1A0	ZZZ7
IX	LCDD8	P1A1	ZZZ8
IXE	LCDD9	P1A2	ZZZ9
IXH	LCDEN	P1A3	ZZZDEVID
IXL	LCDMD0	P1AGIO	ZZZEPA
IXM	LCDMD1	PSW	ZZZLSARG
LCDCKO	LCDMD2	RESPLUP	ZZZPRINT
LCDCK1	LCDMD3	RPH	ZZZSKIP
LCDCK2	MPE	RPL	ZZZSYDOC
LCDDO	MPH	SIOCKO	ZZZALBMZC
LCDD1	MPL	SIOCK1	ZZZALMAC
LCDD10	NOX	SIOEN	ZZZARGC
LCDD11	NOXT	SIOHIZ	ZZZLINE

16

CHAPTER 4. MASK OPTION DEFINITION PSEUDO-INSTRUCTIONS

When creating a μ PD17207 program, it is necessary to specify mask options in the assembler source program using mask option definition psuedo-instructions.

Mask options are necessary for the following items:

- RESET pin pull-up resistor on-chip
- Connection of main clock and subclock (system clock selection)

4.1 OPTION AND ENDOP PSEUDO-INSTRUCTIONS

The block from the OPTION pseudo-instruction to the ENDOP pseudo-instruction is called the mask option definition block.

The mask option define block description format is shown below.

[Description format]

Symbol Field	Mnemonic Field	Operand Field	Comment Field
[Label:]	OPTION		[;comment]
	:		
	ENDOP		

4.2 MASK OPTION DEFINITION PSEUDO-INSTRUCTIONS

A mask option definition example is shown below.

Symbol	Mnemonic	Operand Field	Comment
Field	Field		Field
[Label:]	OPTION OPTRES OPTCK ENDOP	RESPLUP USEX, USEXT	[;comment] ; pull-up ; used main clock ; used subclock

Table 4-1 "Mask Option Definition Pseudo-instruction List" shows pseudo-instructions which can be used in the mask option define block.

Phase-out/Discontinued

ltem	Mask Option Definition Pseudo-Instruction	First Operand	Second Operand
RESET pin pull-up resistor	OPTRES	RESPLUP (with pull-up resistor) OPEN (without pull-up resistor)	
		Main clock	Subclock
System clock	OPTCK	USEX (main clock is used as system clock) NOX (not used main clock)	USEXT (subclock is used as system clock) NOXT (not used subclock)

Table 4-1 Mask Option Definition Pseudo-Instruction List

Remarks: If both main clock and subclock are used as system clock, select main clock at reset. After this selection, the subclock can be selected by using instruction in program.

