
All information contained in these materials, including products and product specifications,

represents information on the product at the time of publication and is subject to change by

Renesas Electronics Corp. without notice. Please review the latest information published by

Renesas Electronics Corp. through various means, including the Renesas Technology Corp.

website (http://www.renesas.com).

www.renesa s.com

RZ/N1 Linux

System-on-Chip

Target Device RZ/N1

R01US0297EG0110
August 30, 2019

U
s
e
rs

 M
a
n

u
a
l

RZ/N1 Linux Overview

R01US0297EG0110 2

User’s Manual

Notice

Trademarks
➢ Linux® is a registered trademark or a trademark of Linus Torvalds in the United States and/or other countries.
➢ Other company names and product names mentioned herein are registered trademarks or trademarks of their

respective owners.
➢ Registered trademark and trademark symbols (® and ™) are omitted in this document

Disclaimers
1. All information included in this document is current as of the date this document is issued. Such

information, however, is subject to change without any prior notice. Before purchasing or using any
Renesas Electronics products listed herein, please confirm the latest product information with a
Renesas Electronics sales office. Also, please pay regular and careful attention to additional and
different information to be disclosed by Renesas Electronics such as that disclosed through our
website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other
intellectual property rights of third parties by or arising from the use of Renesas Electronics products
or technical information described in this document. No license, express, implied or otherwise, is
granted hereby under any patents, copyrights or other intellectual property rights of Renesas
Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product,
whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to
illustrate the operation of semiconductor products and application examples. You are fully
responsible for the incorporation of these circuits, software, and information in the design of your
equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third
parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the
applicable export control laws and regulations and follow the procedures required by such laws and
regulations. You should not use Renesas Electronics products or the technology described in this
document for any purpose relating to military applications or use by the military, including but not
limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture,
use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document,
but Renesas Electronics does not warrant that such information is error free. Renesas Electronics
assumes no liability whatsoever for any damages incurred by you resulting from errors in or
omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades:
“Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas
Electronics product depends on the product’s quality grade, as indicated below. You must check the
quality grade of each Renesas Electronics product before using it in a particular application. You
may not use any Renesas Electronics product for any application categorized as “Specific” without
the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics
product for any application for which it is not intended without the prior written consent of Renesas
Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred
by you or third parties arising from the use of any Renesas Electronics product for an application
categorized as “Specific” or for which the product is not intended where you have failed to obtain the
prior written consent of Renesas Electronics.

RZ/N1 Linux Overview

R01US0297EG0110 3

User’s Manual

8. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly
specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement
 equipment; audio and visual equipment; home electronic appliances; machine
 tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control
 systems; anti-disaster systems; anti- crime systems; safety equipment; and
 medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control
 systems; medical equipment or systems for life support (e.g. artificial life support
 devices or systems), surgical implantations, or healthcare intervention (e.g.
 excision, etc.), and any other applications or purposes that pose a direct threat to
 human life.

9. You should use the Renesas Electronics products described in this document within the range
specified by Renesas Electronics, especially with respect to the maximum rating, operating supply
voltage range, movement power voltage range, heat radiation characteristics, installation and other
product characteristics. Renesas Electronics shall have no liability for malfunctions or damages
arising out of the use of Renesas Electronics products beyond such specified ranges.

10. Although Renesas Electronics endeavors to improve the quality and reliability of its products,
semiconductor products have specific characteristics such as the occurrence of failure at a certain
rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not
subject to radiation resistance design. Please be sure to implement safety measures to guard them
against the possibility of physical injury, and injury or damage caused by fire in the event of the failure
of a Renesas Electronics product, such as safety design for hardware and software including but not
limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging
degradation or any other appropriate measures. Because the evaluation of microcomputer software
alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. Please contact a Renesas Electronics sales office for details as to environmental matters such as the
environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics
products in compliance with all applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics
assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior
written consent of Renesas Electronics.

13. Please contact a Renesas Electronics sales office if you have any questions regarding the
information contained in this document or Renesas Electronics products, or if you have any other
inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics
Corporation and also includes its majority- owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by
or for Renesas Electronics.

RZ/N1 Linux Overview

R01US0297EG0110 4

User’s Manual

Table of CONTENTS

1 Overview .. 6

1.1 Overview .. 6
1.2 Functionality ... 6

2 Build Setup .. 7

2.1 Development Environment .. 7
2.2 Toolchain .. 7
2.3 Additional Tools .. 7
2.4 Yocto .. 8
2.5 Linux Kernel only ... 10

2.5.1 Setup .. 10
2.5.2 Build .. 10

3 Linux Kernel .. 11

3.1 Device Tree ... 11
3.2 SMP .. 11

3.2.1 Interrupts .. 11
3.3 Booting a zImage ... 12
3.4 Clock Controller ... 12
3.5 Dynamic Frequency Control .. 13

3.5.1 Userspace control ... 13
3.6 UART ... 13
3.7 I2C .. 14
3.8 SPI ... 14
3.9 QSPI Serial Flash .. 14
3.10 SDHC ... 14
3.11 NAND Flash ... 15
3.12 USB Host ... 15
3.13 USB Function ... 15
3.14 Ethernet MAC .. 16
3.15 RGMII/RMII Convertors ... 16
3.16 5-Port Switch .. 16
3.17 CAN .. 17
3.18 Timers .. 17
3.19 Watchdog ... 17
3.20 RTC .. 18
3.21 PinCtrl .. 18
3.22 DMAC... 19
3.23 LCD Controller ... 20

3.23.1 Pixel clock ... 20
3.23.2 Userspace control ... 20

3.24 DDR Controller ... 21

4 RZ/N1D-DB Board Specifics ... 22

4.1 Configurations .. 22
4.1.1 Normal Mode .. 22
4.1.2 Master Mode ... 23
4.1.3 No CM3 Mode .. 24

4.2 Starting Linux ... 26
4.3 GPIOs .. 26

4.3.1 GPIO Interrupts .. 26
4.4 Supported Features ... 27
4.5 Accessing the hardware .. 28

4.5.1 LEDs ... 28
4.5.2 Temperature Sensor ... 29
4.5.3 EEPROM .. 29

RZ/N1 Linux Overview

R01US0297EG0110 5

User’s Manual

4.5.4 FRAM .. 29
4.5.5 RNDIS ... 29

5 Acronyms ... 30

6 References ... 31

7 Change History .. 32

LIST OF TABLES
Table 1 – Boot Registers .. 12

RZ/N1 Linux Overview

R01US0297EG0110 6

User’s Manual

1 OVERVIEW

1.1 Overview

This manual describes the Linux software developed by Renesas for the RZ/N1 device. The
software consists of Yocto recipes, U-Boot and the Linux kernel ported to the RZ/N1 device. U-Boot
information is provided in a separate U-Boot User manual, as it is also used by other operating
systems.

The software supports the following boards:

• Renesas RZ/N1D-DB Board with the Extension Board.

1.2 Functionality

The software includes the following functionality:

• Yocto recipes to build

o Root file system

o U-Boot

o Linux Kernel

• Linux Kernel

o Drivers for:

▪ Clock Controller

▪ PinMux

▪ UART

▪ DDR ECC

▪ QSPI

▪ NAND Flash

▪ Ethernet MAC

▪ 5-port Switch

▪ RGMII/RMII Converters

▪ SDHC

▪ I2C

▪ USB Function

▪ USB Host

▪ LCD

▪ CAN

▪ DMAC

▪ SPI

▪ RTC

RZ/N1 Linux Build Setup

R01US0297EG0110 7

User’s Manual

2 BUILD SETUP

2.1 Development Environment

The software package requires a host PC with internet access in order to cross-compile the
software. The software package has been tested using a host PC running Ubuntu 16.04 LTS.

The instructions assume the RELEASE_DIR environment variable is set to a directory containing

this release installed on your host PC.

2.2 Toolchain
The software package has been tested with the 64-bit version of the Linaro 2017.02 (gcc 6.3)
toolchain. The following steps will download and install the toolchain:
wget

https://releases.linaro.org/components/toolchain/binaries/6.3-2017.02/

arm-linux-gnueabihf/gcc-linaro-6.3.1-2017.02-x86_64_arm-linux-gnueabih

f.tar.xz

sudo tar xf gcc-linaro-6.3.1-2017.02-x86_64_arm-linux-gnueabihf.tar.xz -C

/usr/share

export

PATH=/usr/share/gcc-linaro-6.3.1-2017.02-x86_64_arm-linux-gnueabihf/bi

n:$PATH

export CROSS_COMPILE="arm-linux-gnueabihf-"

export ARCH=arm

Note: Although untested, if using a 32-bit OS, please use the 32-bit version of the toolchain that can
be downloaded from:

https://releases.linaro.org/components/toolchain/binaries/6.3-2017.02/a

rm-linux-gnueabihf/gcc-linaro-6.3.1-2017.02-i686_arm-linux-gnueabihf.ta

r.xz

2.3 Additional Tools

The commands used to configure and build the software require several packages to be installed.
The following step will download and install the packages:

sudo apt-get install -y --force-yes --fix-missing build-essential

libncurses5-dev libssl-dev u-boot-tools gettext bison flex lzop

RZ/N1 Linux Build Setup

R01US0297EG0110 8

User’s Manual

2.4 Yocto

These instructions provide RZ/N1 specific information. For full details of setting up and using Yocto,
please see the Yocto project Quick Start guide at:
http://www.yoctoproject.org/docs/current/yocto-project-qs/yocto-project-qs.html.

The root file system built is based on the Yocto core-image-minimal recipe, but has a few extra

packages installed that are useful for development and testing.

1. RZ/N1 uses the Rocko (v2.4) release of Yocto, therefore after setting up prerequisites run:
git clone http://git.yoctoproject.org/git/poky

cd poky

git checkout -b rocko-rzn1 yocto-2.4.3

RZ/N1 requires patches to the Rocko release to support the VPFv4d16 floating-point coprocessor.
To apply them, run:
git am ${RELEASE_DIR}/yocto/rocko/0001-ARM-Add-Cortex-A7-vfpv4-d16*.patch

cd ..

2. Clone the OpenEmbedded recipes:
git clone -b rocko git://git.openembedded.org/meta-openembedded

3. Support for a read-only root file system, with an overlay read-write file system, is provided using
the meta-readonly-rootfs-overlay layer. Clone the layer:

git clone https://github.com/cmhe/meta-readonly-rootfs-overlay.git

cd meta-readonly-rootfs-overlay

git checkout -b rzn1 2a426495fe77330058bc0d6ef98e914649e7b415

cd ..

4. Support for RZ/N1 is provided using a meta-rzn1 layer. Clone the layer:
git clone -b rocko-v4.19 https://github.com/renesas-rz/meta-rzn1.git

5. To define the OpenEmbedded build environment settings needed to complete the build, run:
cd poky

source oe-init-build-env

6. Copy ${RELEASE_DIR}/yocto/bblayers.conf to build/conf/bblayers.conf. This file specifies what
layers are used for the build.

7. Copy ${RELEASE_DIR}/yocto/local.conf to build/conf/local.conf. This file specifies what you
want to build.

a. This file specifies 24 CPU cores for number of threads and parallel make. You may
wish to reduce this for typical PCs, see the definition of BB_NUMBER_THREADS and
PARALLEL_MAKE.

b. If you want to add or remove packages to/from the root file system, edit the definition of
IMAGE_INSTALL_append.

c. Optional: If you wish to build a kernel with initramfs, add:
INITRAMFS_IMAGE = "core-image-minimal"

INITRAMFS_IMAGE_BUNDLE = "1"

IMAGE_FSTYPES = "${INITRAMFS_FSTYPES}"

8. Finally, you can build the root file system that you want to use, and the kernel, using:
bitbake core-image-minimal

http://www.yoctoproject.org/docs/current/yocto-project-qs/yocto-project-qs.html
http://git.yoctoproject.org/git/poky
https://github.com/openembedded/meta-oe.git
https://github.com/cmhe/meta-readonly-rootfs-overlay.git
https://github.com/renesas-rz/meta-rzn1.git

RZ/N1 Linux Build Setup

R01US0297EG0110 9

User’s Manual

If you just want to build the kernel, use:
bitbake linux-rzn1

To build U-Boot, use:
bitbake u-boot-rzn1

The generated files are in the tmp/deploy/images/rzn1d400-db directory.

Note: The tarball root file systems do not have a link added from init to sbin/init. If you intend to
unpack the tarball and use this when building the kernel with an initramfs for kernel development
outside of Yocto, make sure you add this soft link.

RZ/N1 Linux Build Setup

R01US0297EG0110 10

User’s Manual

2.5 Linux Kernel only

These instructions are for building the Linux kernel directly, without using Yocto. It assumes you
already have a root file system available, for example built with BuildRoot or Yocto.

There are stable versions of Linux v4.19, e.g. v4.19.1, v4.19.2, etc, and we recommend that you
use the latest stable version. In addition, you may want to use the Real-Time Linux. RT-Linux is
available for most stable versions, however RT releases may lag the release of stable versions.

These instructions use the stable RT-Linux git repository.

2.5.1 Setup

The following steps on your host PC will download the RZ/N1 Linux kernel source code, including
all commit history. Note that it will result in a large download.

Clone the Linux stable RT repository:
git clone https://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-stable-rt.git

cd linux-stable-rt

Checkout a branch based on the latest v4.19 stable RT version:
git checkout -b rzn1 origin/v4.19-rt

Set the BSP version to according to the release, for example:
BSP_VERSION=v1.6.0

Fetch the RZ/N1 branch and merge it in:
git remote add renesas-rz https://github.com/renesas-rz/rzn1_linux.git

git fetch --tags renesas-rz

git merge rzn1-$BSP_VERSION

There may be merge conflicts that you have to resolve manually, see git documentation.

2.5.2 Build

The patches provided already enable the relevant kernel modules. To setup the default
configuration for RZ/N1 systems, run:
make rzn1_defconfig

If you wish to make any changes to the configuration, e.g. enable RT-Linux, run:
make menuconfig

To enable RT-Linux, select:
 General Setup --->

 Preemption Model --->

 (X) Fully Preemptible Kernel (RT)

To build the kernel, run:
make LOADADDR=80008000 uImage

Build the Device Tree blob (dtb), e.g. for the Renesas RZ/N1-DB board, run:
make rzn1d400-db.dtb

Once complete, the kernel uImage/zImage is stored in arch/arm/boot and the dtb is stored in
arch/arm/boot/dts.

RZ/N1 Linux Linux Kernel

R01US0297EG0110 11

User’s Manual

3 LINUX KERNEL

The kernel port is based on Linux v4.19 and consists of machine start up code, located in
arch/arm/mach-rzn1, device tree files, driver for the clock controller, and pin multiplexing.

Important Note: Throughout the software, the indexes used to enumerate hardware start at 0,
whereas the documentation for the RZ/N1 device starts at 1.

3.1 Device Tree

When using a Device Tree Blob (dtb), the dtb provides platform identification, runtime configuration
and device population. The dtb is built from the Device Tree Source (dts) file. All ARM dts files are
located in the arch/arm/boot/dts directory.

Note: The IRQ numbers used in the dts are offset from those shown in the RZ/N1 User’s Manual.
This is because, as per other ARM dts files, the interrupt numbers start after the 16 SGI interrupts.

3.2 SMP

By default, the kernel is configured to use both cores in SMP mode.

Note: Normally, Linux uses individual power domain control for each CPU to bring additional CPUs
online. The RZ/N1 device does not have power domain control for individual cores, hence the need
for a holding pen. The holding pen is implemented in a way that allows booting in Secure and
Non-Secure modes.

When booting in Secure mode, Linux simply requires that the BootROM has started the 2nd core,
has executed WFI or WFE, and on exit will jump to the address in the System Controller’s
BOOTADDR register.

When booting in Non-Secure mode, the kernel requires the use of a secondary holding pen
because the BOOTADDR register can only be accessed in Secure mode. RZ/N1 Linux requires the
Device Tree to contain a property called “rzn1,bootaddr” that specifies the address of this

holding pen; this property must be in the “/chosen” node. The RZ/N1 version of U-Boot

automatically added this property when built with CONFIG_ARMV7_NONSEC.

To use only one core, add "maxcpus=1" to the kernel command line in the device tree.

From a console, you can make an application run on a specific CPU by using the taskset utility. For
example, the following command starts ‘top’ running on the 2nd CPU:
taskset 2 top

3.2.1 Interrupts

By default, the kernel handles all interrupts on the 1st CPU. Individual interrupts can be moved to
the 2nd CPU using simple command such as:
echo 2 > /proc/irq/352/smp_affinity

Note: Interrupts have only been tested on the 1st CPU by Renesas, as this is standard functionality
for ARM processors.

RZ/N1 Linux Linux Kernel

R01US0297EG0110 12

User’s Manual

3.3 Booting a zImage

The following table details the registers that are required to be setup by a boot loader. These are
common for all ARM v7 devices and provided here for information purposes only.

Register Function with DT Function prior to DT

R0 Always 0 Always 0

R1 Not used Machine ID
(arch/arm/tools/mach-types)

R2 Pointer to dtb Pointer to ATAGs

PC Start of kernel image Start of kernel image

Table 1 – Boot Registers

It is important to note that Renesas has implemented a complete system in U-Boot, SPL and the
Linux kernel that requires the use of device tree blob and does not support the old boot method
(ATAGS). In particular, SMP and NONSEC specifically require a device tree blob.

Since the kernel requires space to perform decompression, care must be taken to ensure that the
location of the dtb, and any other data such as an initramfs, are suitably placed. The most common
approach is to place the dtb at the start of DDR, and the zImage at start of DDR + 0x8000.
However, note that the address for a valid dtb must be 64-bit aligned and cannot be zero as this
indicates that a dtb is not present.

Further information about Device Trees and how they are used can be found in the kernel
documentation, for Device Tree bindings, please see Documentation/devicetree/usage-model.txt.

3.4 Clock Controller

This driver supports enabling and disabling clocks, and obtaining the clock rates. Note that this
driver does not modify any of the peripheral clock dividers that are set by writing to registers in the
RZ/N1’s System Controller (SYSCTRL) block. It is assumed that software that loads the Linux
kernel also sets these clock dividers to appropriate values.

The driver is always enabled for RZ/N1.

The complete clock tree description used by Linux and the clock driver group is in the file:
./arch/arm/boot/dts/rzn1-clocks.dtsi

That file was generated from device design files, and is meant to be included by any device tree
description files for specific boards.

It is possible to dump the state of the clock tree in Linux, including which clocks are used, and at
what frequency by using these commands:
mount -t debugfs / /sys/kernel/debug

cd /sys/kernel/debug/

cat /sys/kernel/debug/clk/clk_summary

It is also possible to change some of the clock dividers at runtime by using a clock driver system
special file located at:
/sys/kernel/rzn1/clk_set_rate

This file contains a short message explaining its usage:
Usage: echo <clock name> <rate in hz> >clk_set_rate

For example, when using the ‘performance’ CPUFreq governor, you can change the frequency of
the CPU clock by using this command:
echo div_ca7 250000000 >/sys/kernel/rzn1/clk_set_rate

Note: You can obviously hang the system very easily by doing the wrong thing with this file, there
are no checks of parameter sanity.

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/Documentation/devicetree/usage-model.txt?id=refs/tags/v4.9

RZ/N1 Linux Linux Kernel

R01US0297EG0110 13

User’s Manual

3.5 Dynamic Frequency Control

This driver supports changing the CPU clock divider.

To enable the driver, make the following settings using the kernel “make menuconfig” command.
CPU Power Management --->

 CPU Frequency scaling --->

 <*> Generic DT based cpufreq driver

The default CPUFreq governor for RZ/N1 is set to ‘ondemand’, this scales the CPU frequency
dynamically according to current load. It jumps to the highest frequency and then backs off as the
idle time increases. There are several other governors that can be enabled, for example
‘performance’ sets the CPU frequency to the maximum frequency that is supported.

3.5.1 Userspace control

Change the governor to ‘performance’
echo performance > /sys/devices/system/cpu/cpufreq/policy0/scaling_governor

Change the governor to ‘ondemand’
echo ondemand > /sys/devices/system/cpu/cpufreq/policy0/scaling_governor

Note: When using the ‘performance’ governor, you can program a fixed CPU frequency using the
Clock Controller; see chapter 3.4 for an example.

3.6 UART

This driver supports serial ports using the Synopsys DesignWare UARTs.

To enable the driver, make the following settings using the kernel “make menuconfig” command.
Device Drivers --->

 Character devices --->

 Serial drivers --->

 [*] 8250/16550 and compatible serial support

 [*] Console on 8250/16550 and compatible serial port

 [*] Support for Synopsys DesignWare 8250 quirks

For Device Tree bindings, see Documentation/devicetree/bindings/serial/snps-dw-apb-uart.txt.

An additional DT binding has been added to specify the Component Parameter Register (CPR)
value. The CPR register is not present on the RZ/N1 devices but provides the driver with
information about the FIFO depth, Auto Flow Control and DMA capabilities.

The driver has been modified to support DMA specifically for RZ/N1 where the UART is acting as
the flow controller. The driver uses the ‘character timeout’ interrupt to determine when to push data
up the stack to the user or another driver. This interrupt is only generated when there is at least one
byte in the receive FIFO. Therefore, care needs to be taken when setting the receive threshold, the
DMA source burst size, along with the DMA destination burst size and memory width setting. Once
the receive threshold is met, a DMA request to read data from the receive FIFO is made. To ensure
the FIFO is not entirely emptied, the DMA source burst size is set to a quarter of the FIFO depth.
However, when processing a ‘character timeout’ interrupt, we must ensure the DMA Controller has
written to memory all data read from the receive FIFO. When pausing DMA, the DMAC can only
write data to memory that is a multiple of the memory width setting, anything less than this is
discarded. Therefore, the UART driver also limits the memory width setting when reading data from
the receive FIFO.

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/Documentation/devicetree/bindings/serial/snps-dw-apb-uart.txt?id=refs/tags/v4.9

RZ/N1 Linux Linux Kernel

R01US0297EG0110 14

User’s Manual

3.7 I2C

This driver supports I2C using Synopsys DesignWare I2C.

To enable the driver, make the following settings using the kernel “make menuconfig” command.
Device Drivers --->

 I2C support --->

 [*] I2C support

 I2C Hardware Bus support --->

 [*] Synopsys DesignWare Platform

For Device Tree bindings, see Documentation/devicetree/bindings/i2c/i2c-designware.txt.

For information on using i2c, see Documentation/i2c/dev-interface.

For basic read/write via i2c, we recommend using the i2c-utils package.

3.8 SPI

This driver supports SPI Master mode using the RZ/N1 SPI Controller that is based on the
Synopsys DesignWare SSI.

To enable the driver, make the following settings using the kernel “make menuconfig” command.
Device Drivers --->

 [*] SPI support --->

 [*] DesignWare SPI controller core support

 [*] Memory-mapped io interface driver for DW SPI core

The driver has been modified to support DMA and specifically for RZ/N1 where the SPI Controller is
acting as the flow controller. The driver has also been modified to add support for the modified CS
line toggling mode of operation.

For Device Tree bindings, see Documentation/devicetree/bindings/spi/snps,dw-apb-ssi.txt in the
provided Linux source code.

3.9 QSPI Serial Flash

This driver supports the Cadence QSPI Controller.

To enable the driver, make the following settings using the kernel “make menuconfig” command.
Device Drivers --->

 [*] Memory Technology Device (MTD) support --->

 [*] SPI-NOR device support --->

 [*] RZ/N1 Cadence Quad SPI controller

For Device Tree bindings, see Documentation/devicetree/bindings/mtd/renesas,rzn1-qspi.txt in the
provided Linux source code.

3.10 SDHC

This driver supports SD Host Controller using Arasan SD3.0/ SDIO3.0/ eMMC4.51 Host Controller.

To enable the driver, make the following settings using the kernel “make menuconfig” command.
Device Drivers --->

 [*] MMC/SD/SDIO card support --->

 [*] Secure Digital Host Controller Interface support

 [*] SDHCI platform and OF driver helper

 [*] SDHCI OF support for the Arasan SDHCI controllers

For Device Tree bindings, see Documentation/devicetree/bindings/mmc/arasan,sdhci.txt.

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/Documentation/devicetree/bindings/i2c/i2c-designware.txt?id=refs/tags/v4.9
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/Documentation/i2c/dev-interface?id=refs/tags/v4.9
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/Documentation/devicetree/bindings/mmc/arasan,sdhci.txt?id=refs/tags/v4.9

RZ/N1 Linux Linux Kernel

R01US0297EG0110 15

User’s Manual

3.11 NAND Flash

This driver supports the Cadence NAND Flash Controller.

To enable the driver, make the following settings using the kernel “make menuconfig” command.
Device Drivers --->

 [*] Memory Technology Device (MTD) support --->

 [*] Raw/Parallel NAND Device Support --->

 [*] Enable Evatronix NANDFLASH-CTRL driver

The driver is based on upstream patches to add a driver for the Evatronix NAND Flash controller.
Note: Evatronix were purchased by Cadence, but otherwise the IP is identical.

For Device Tree bindings, see Documentation/devicetree/bindings/mtd/evatronix-nand.txt in the
provided Linux source code.

3.12 USB Host

This driver supports USB Host using the Renesas USB TYPE-H2F2 hardware. The Host controller
sits behind a PCI bridge, so Linux sees the USB Controller as a PCI card. Since the Host Controller
uses the standard EHCI/OCHI register set, no driver is required other than the PCI bridge.

To enable the driver, make the following settings using the kernel “make menuconfig” command.
Bus support --->

 [*] PCI support

 PCI controller drivers --->

 [*] Renesas R-Car Gen2 Internal PCI controller

Device Drivers --->

 [*] USB support --->

 [*] Support for Host-side USB

 [*] EHCI HCD (USB 2.0) support

 [*] Generic EHCI driver for a platform device

 [*] OHCI HCD (USB 1.1) support

 [*] OHCI support for PCI-bus USB controllers

 [*] Generic OHCI driver for a platform device

The driver has been specifically written for the RZ/N1 device.

For Device Tree bindings, see Documentation/devicetree/bindings/pci/pci-rcar-gen2.txt in the
provided Linux source code.

3.13 USB Function

This driver supports USB Gadgets using the Renesas USB TYPE-H2F2 hardware.

To enable the driver, make the following settings using the kernel “make menuconfig” command.
Device Drivers --->

 [*] USB support --->

 [*] USB Gadget Support --->

 USB Peripheral Controller --->

 [*] Renesas USB Function Peripheral Block (RZ/N1)

 < Select appropriate USB Gadget Driver >

The driver supports DMA, all the endpoint modes, and internal SRAM partitioning profiles via a set
of device tree properties.

For Device Tree bindings, see Documentation/devicetree/bindings/usb/renesas,usbf.txt in the
provided Linux source code.

RZ/N1 Linux Linux Kernel

R01US0297EG0110 16

User’s Manual

3.14 Ethernet MAC

This driver supports the Synopsys Gb Ethernet MAC.

To enable the driver, make the following settings using the kernel “make menuconfig” command.
Device Drivers --->

 [*] Network device support --->

 [*] Ethernet driver support --->

 [*] STMicroelectronics devices

 <*> STMicroelectronics 10/100/1000 Ethernet driver

 <*> STMMAC Platform bus support

 <*> Generic driver for DWMAC

Device Drivers --->

 -*- PHY Device support and infrastructure --->

 < Select appropriate PHYs >

For Device Tree bindings, see Documentation/devicetree/bindings/net/stmmac.txt in the provided
Linux source code.

3.15 RGMII/RMII Convertors

This driver supports the RGMII/RMII Convertors found on the RZ/N1 device.

To enable the driver, make the following settings using the kernel “make menuconfig” command.
Device Drivers --->

 [*] Network device support --->

 [*] Ethernet driver support --->

 [*] Renesas devices

 <*> Renesas RZ/N1 RGMII/GMII Convertor

The driver has been specifically written for the RZ/N1 device. The RGMII/RMII Convertors driver
sets up the PHY interface type (RGMII, RMII or MII) accordingly and handles changes to the PHY
link speed and duplex.

3.16 5-Port Switch

This driver supports the MoreThanIP 5-Port Switch.

Note: this driver is only used in the “No CM3” mode, see section 4.1.3.

To enable the driver, make the following settings using the kernel “make menuconfig” command.
Device Drivers --->

 [*] Network device support --->

 [*] Ethernet driver support --->

 [*] MoreThanIP devices

 <*> Embedded MoreThanIP 5-port Ethernet switch

The driver has been specifically written for the RZ/N1 device. It implements an MDIO bus driver,
and registers Ethernet network devices for each downstream port that is connected to a PHY. If the
Device Tree node for the Switch does not contain PHY addresses for all the downstream ports, the
driver will automatically probe and add PHY addresses for any PHY that responds. This process
can take a long time and so can affect the boot time. Therefore, we recommend that if a
downstream port is unused on a board, the Device Tree contains a PHY address that is not in use.

The 5-port Switch driver handles changes to the PHY link speed and duplex. The driver supports
changing PHY settings using mii-info and ethtool.

RZ/N1 Linux Linux Kernel

R01US0297EG0110 17

User’s Manual

3.17 CAN

This driver supports the CAN Controller.

To enable the driver, make the following settings using the kernel “make menuconfig” command.
[*] Networking support --->

 [*] CAN bus subsystem support --->

 [*] Raw CAN Protocol (raw access with CAN-ID filtering)

 [*] Broadcast Manager CAN Protocol (with content filtering)

 [*] CAN Gateway/Router (with netlink configuration)

 CAN Device Drivers --->

 [*] Platform CAN drivers with Netlink support

 [*] CAN bit-timing calculation

 [*] Philips/NXP SJA1000 devices --->

 [*] Generic Platform Bus based SJA1000 driver

The driver has been modified to support the RZ/N1. This IP does not have a Clock Divider Register
(CDR), and does not echo transmitted messages. Additionally, the driver has been modified to get
a clock for the IP and use this to get the clock rate.

The driver only supports the “CAN Reduce” functionality, it does not support transmitting periodic
“Sync frame”, or triggers connected to the Motor Control.

For Device Tree bindings, see Documentation/devicetree/bindings/net/can/sja1000.txt in the
provided Linux source code.

For information on how to configure the CAN driver, see section 6.5 “The CAN network device
driver interface” of Documentation/networking/can.txt.

3.18 Timers

This driver supports the RZ/N1 timers.

To enable the driver, make the following settings using the kernel “make menuconfig” command.
Device Drivers --->

 Clock Source drivers --->

 [*] Renesas RZ/N1 Timer

The driver has been specifically written for the RZ/N1 device.

3.19 Watchdog

This driver is capable of triggering a device reset in case the system fails to update its counter. To
enable the driver, make the following settings using the kernel “make menuconfig” command.
Device Drivers --->

 [*] Watchdog Timer Support --->

 [*] Renesas RZ/N1 watchdog

Enabling this driver will create device files /dev/watchdogX that can be used by for example

BusyBox watchdogd.

To enable or kick the Watchdog:
echo 'v' > /dev/watchdog

Note: The Watchdog will only reset the device if the SysCtrl RSTEN register has the
WDA7RST_EN bits set. This is not done by the Watchdog driver as the behaviour depends on use.

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/Documentation/networking/can.txt?id=refs/tags/v4.9

RZ/N1 Linux Linux Kernel

R01US0297EG0110 18

User’s Manual

3.20 RTC

This driver supports the real-time clock using Renesas RTC.

This clock will be read at boot time by the Linux kernel. To enable the driver, make the following
settings using the kernel “make menuconfig” command.
Device Drivers --->

 [*] Real Time Clock --->

 [*] Renesas RZN1

The driver has been specifically written for the RZ/N1 device.

You can read and update the hardware date using BusyBox hwclock command. For example, to

set the current date and time:
date -s "2019-08-28 16:21:00"

hwclock -w

To read the current date and time:
hwclock

3.21 PinCtrl

This driver supports the Renesas Port Multiplexer.

The driver is always enabled for RZ/N1.

Interaction with this driver is done exclusively via descriptions in the device tree files. The PinMux
App generates a device tree file that contains all the pin multiplexing, drive strength and pull
up/down information used by a board.

A typical peripheral pin group can be seen as:
pins_i2c1: pins_i2c1 {

 pinmux = <

 RZN1_PINMUX(115, RZN1_FUNC_I2C) /* I2C1_SCL */

 RZN1_PINMUX(116, RZN1_FUNC_I2C) /* I2C1_SDA */

 >;

 drive-strength = <12>;

};

This pin group describes the function of the two pins 115 and 116 which correspond to the
hardware pins PL_GPIO[115] and PL_GPIO[116] – these two pins will be configured as function
I2C. This corresponds to Level 2 hardware function 50.

Note: These pin mux specifications do not change the pullup/pulldown settings on any pins if any
have been set by the bootloader, unless the RZN1_MUX_PUP and RZN1_MUX_PDOWN macros
are used instead. Macros are defined to change the drive strength if necessary, see file
include/dt-bindings/pinctrl/pinctrl-rzn1.h for details.

RZ/N1 Linux Linux Kernel

R01US0297EG0110 19

User’s Manual

3.22 DMAC

This driver supports peripheral to memory and memory to peripheral DMA using the Synopsys
DesignWare DMAC.

To enable the driver, make the following settings using the kernel “make menuconfig” command.
Device Drivers --->

 [*] DMA Engine support --->

 [*] Synopsys DesignWare AHB DMA platform driver

The driver has been modified for the RZ/N1 to allow the SYSCTRL DMA request multiplexing to be
specified via Device Tree properties. Additionally, the driver has been modified to handle situations
where the peripheral is acting as the flow controller.

For Device Tree bindings, see Documentation/devicetree/bindings/dma/snps-dma.txt in the
provided Linux source code.

An example of the DMA properties for SPI0 is:
 dmas = <&dma0 8 0 0>, <&dma0 9 0 0>;

 dma-names = "rx", "tx";

Drivers usually request DMA channels by their names, i.e. “rx” or “tx” in the example above, and
then get the corresponding DMA channel information from the dmas DT property. For example, “rx”
corresponds to dma0, channel 8 and dma0 is the name of the DT node that corresponds to the
DMAC0 IP block. The channel numbers are fixed based in hardware, see the RZ/N1 User’s Manual
DMA Controller “DMA Channel Allocation” section.

Additional examples of DMA properties are shown below.

SPI1:
 dmas = <&dma0 10 0 0>, <&dma0 11 0 0>;

 dma-names = "rx", "tx";

SPI2:
 dmas = <&dma0 12 0 0>, <&dma0 13 0 0>;

 dma-names = "rx", "tx";

SPI3:
 dmas = <&dma0 14 0 0>, <&dma0 15 0 0>;

 dma-names = "rx", "tx";

UART3:
 dmas = <&dma0 0 0 0>, <&dma0 1 0 0>;

 dma-names = "rx", "tx";

UART4:
 dmas = <&dma0 2 0 0>, <&dma0 3 0 0>;

 dma-names = "rx", "tx";

UART5:
 dmas = <&dma0 4 0 0>, <&dma0 5 0 0>;

 dma-names = "rx", "tx";

UART6:
 dmas = <&dma0 6 0 0>, <&dma0 7 0 0>;

 dma-names = "rx", "tx";

UART7:
 dmas = <&dma1 4 0 0>, <&dma1 5 0 0>;

 dma-names = "rx", "tx";

Note: UART7 uses DMAC1, whereas the others use DMAC0.

Note: These DMA properties cannot be added to the rzn1.dtsi because the RZ/N1 multiplexes the
DMA handshaking signals with other IP blocks.

RZ/N1 Linux Linux Kernel

R01US0297EG0110 20

User’s Manual

3.23 LCD Controller

This driver supports the Digital Blocks DB9000 LCD Controller.

To enable the driver, make the following settings using the kernel “make menuconfig” command.
Device Drivers --->

 Graphics support --->

 Frame buffer Devices --->

 [*] DB9000 LCD framebuffer support

 [*] DB9000 LCD auto-blink support

 [*] Backlight & LCD device support --->

 [*] Lowlevel Backlight controls

 [*] Digital Block DB9000 LCDC Contrast-as-Backlight control

The driver is based on the out of tree ST Spear driver for the same IP block. The driver has been
modified with Device Tree support and to support the RZ/N1 special ‘blinking’ mode.

For Device Tree bindings, see Documentation/devicetree/bindings//fb/db9000fb.txt in the provided
Linux source code.

Note: If used as a module, you must load the "Framebuffer Console" module (fbcon) after loading
the db9000fb module.

3.23.1 Pixel clock

For the pixel clock source, the LCD controller hardware uses a dedicated clock source that is
controlled by the SYSCTRL clock divider (PWRCTRL_PG4_PR1DIV register. The SYSCTRL clock
divider provides a clock that is 1GHz divided down by any value between 12 and 200. This ensures
the achievable pixel clock is within 4% of any desired frequency range.

The driver reads the desired pixel clock from the device tree, i.e. the clock-frequency property

in the display-timings node. The driver calculates the nearest pixel clock that can be achieved

via the clock divider that is under or equal to the desired frequency. Therefore, it is advisable to set
the clock-frequency property to the maximum supported by the LCD panel used.

3.23.2 Userspace control

Blank the screen
echo 1 > /sys/class/graphics/fb0/blank

Un-blank the screen
echo 0 > /sys/class/graphics/fb0/blank

Set the PWM backlight brightness, where val is in the range 0 to 255
echo val > /sys/class/backlight/backlight/brightness

Turn off the blinking cursor
echo 0 > /sys/class/graphics/fbcon/cursor_blink

Change the frame buffer format to RGB565 (i.e. 16 bits per pixel)
fbset –depth 16

Change the frame buffer format to packed RGB888 (i.e. 24 bits per pixel)
fbset –depth 24

Change the frame buffer format to unpacked xRGB888 (i.e. 32 bits per pixel)
fbset –depth 32

RZ/N1 Linux Linux Kernel

R01US0297EG0110 21

User’s Manual

3.24 DDR Controller

This driver implements an Error Detection and Correction (EDAC) driver for the Cadence DDR
Controller.

To enable the driver, make the following settings using the kernel “make menuconfig” command.
Device Drivers --->

 [*] EDAC (Error Detection And Correction) reporting --->

 [*] Main Memory EDAC (Error Detection And Correction) reporting

 [*] Cadence Memory Controller

The driver has been specifically written for the RZ/N1 device. It will detect DDR errors and report
them via sysfs, e.g.:
cat /sys/devices/system/edac/mc/mc0/ce_count

cat /sys/devices/system/edac/mc/mc0/ue_count

You can inject an ECC error to check correct handling in the driver by writing a syndrome that
reflects the type of error to a sysfs entry, e.g.
echo 0x75 > /sys/devices/system/edac/mc/mc0/inject_ctrl

Please see the Cadence DDR Controller User Manual section 11.4 Syndromes for details of the
values that can be used. Note that there is no way to control the address that will suffer the ECC
error, so do not inject un-correctable multi-bit ECC errors.

RZ/N1 Linux RZ/N1D-DB Board Specifics

R01US0297EG0110 22

User’s Manual

4 RZ/N1D-DB BOARD SPECIFICS

Note that throughout the software, the indexes used to enumerate hardware start at 0, whereas the
documentation for the RZ/N1 device starts at 1.

4.1 Configurations

The BSP includes multiple Device Tree Source files for the RZ/N1D-DB board to support different
networking setups. In all cases, Linux controls all the hardware that is not related to networking.

4.1.1 Normal Mode

Device Tree Source: rzn1d400-db.dts

Linux runs on the Cortex A7s and controls GMAC1 and the external PHY connected via RGMII1
using MDIO1.

The Cortex M3 controls the HW-RTOS GMAC and/or GMAC2, the 5-Port Switch, and the
RGMII/RMII Convertors connected to the 5-Port Switch. The Cortex M3 controls the external PHYs
connected to the 5-Port Switch. The HW-RTOS GMAC or GMAC2 is connected to the 5-Port
Switch’s upstream (in) port. See Figure 1 for details.

Figure 1 Normal Mode Ethernet

Ethernet is only available when using the RZ/N1D-DB board with the Extension Board.

RZ/N1 Linux RZ/N1D-DB Board Specifics

R01US0297EG0110 23

User’s Manual

4.1.2 Master Mode

Device Tree Source: rzn1d400-db-both-gmacs.dts

Linux runs on the Cortex A7s and controls GMAC1, GMAC2, and the external PHYs connected via
RGMII1 and RGMII2 using MDIO1.

The Cortex M3 software controls the HW-RTOS GMAC, the 5-Port Switch, and the RGMII/RMII
Convertors used by the 5-Port Switch. The Cortex M3 controls the external PHYs connected to the
5-Port Switch. The HW-RTOS GMAC is connected to the 5-Port Switch’s upstream (in) port. See
Figure 2 for details.

Figure 2 Master Mode Ethernet

This mode requires different jumper settings on the Extension Board:

• CN15 PHY2/PHY3 MDC Connect pins 1 and 2 (MDC1)

• CN16 PHY2/PHY3 MDIO Connect pins 1 and 2 (MDIO1)

Note: PHY3 is not accessible via MDIO in this hardware configuration.

GMAC1 is accessed via eth0, GMAC2 is accessed via eth1. An example of initialising Ethernet is:
ifconfig eth0 192.168.1.50 up

ifconfig eth1 192.168.1.51 up

ping -I eth0 192.168.1.30

ping -I eth1 192.168.1.30

When using the RZ/N1D-DB board without the Extension Board, there is no PHY connected to
GMAC1 so eth0 is unusable.

RZ/N1 Linux RZ/N1D-DB Board Specifics

R01US0297EG0110 24

User’s Manual

4.1.3 No CM3 Mode

Device Tree Source: rzn1d400-db-no-cm3.dts

This configuration is the same as the Normal Mode, except Cortex M3 software must not use
Ethernet. Linux controls GMAC1, GMAC2, the 5-Port Switch, the RGMII/RMII Convertors and all
PHYs. This configuration is provided only as an example of how Linux could be used on its own.
See Figure 3 for details.

Figure 3 No CM3 Ethernet

If the RZ/N1D-DB board is used with the Extension board, GMAC1 is connected to RGMII1 to a
PHY on the Extension Board, GMAC2 is used with the 5-Port Switch. Linux creates Ethernet
network devices for the Synopsys GMACs and each of the Switch’s downstream ports. The
Synopsys GMAC devices are called eth0 and eth1, the Switch ports are sw0p0 through to sw0p3.

The network devices for the Switch ports must be enabled to use them, but cannot be used to
transmit or receive data, all data is sent and received via GMAC2. These Switch devices allow you
to talk to individual PHYs and set the MTU for each downstream port. You can use ifconfig to

enable and disable the downstream ports by bringing the network device up or down, e.g.:
ifconfig sw0p0 up

The rzn1d400-db-no-cm3.dts specifies that only the downstream Switch port associated with CN1
(sw0p1) is enabled during boot.

An example of initialising Ethernet is:
ifconfig eth0 192.168.1.50 up

ifconfig eth1 192.168.1.51 up

ifconfig sw0p0 up

ping -I eth0 192.168.1.30

ping -I eth1 192.168.1.30

When using the RZ/N1D-DB board without the Extension Board, there is no PHY connected to
GMAC1 so eth0 is unusable.

RZ/N1 Linux RZ/N1D-DB Board Specifics

R01US0297EG0110 25

User’s Manual

Both the Synopsys GMAC driver and the MoreThanIP 5-port Switch driver support changing the
PHY settings using mii-tool and ethtool.

For example, to force the link setting of Switch port 2 (C) on the RZ/N1D-DB board using mii-tool:
mii-tool -F 100baseTx-FD sw0p2

For example, to force the link setting of Switch port 2 (C) on the RZ/N1D-DB board using ethtool:
ethtool -s sw0p2 speed 100 duplex full autoneg off

RZ/N1 Linux RZ/N1D-DB Board Specifics

R01US0297EG0110 26

User’s Manual

4.2 Starting Linux

The following are examples of typical kernel command line options (set as the bootargs U-Boot
environment variable) used for NFS mounted, SD card, and QSPI rootfs respectively:
setenv rfs "root=/dev/nfs rw nfsroot=${serverip}:/tftpboot/rzn1,v3"

setenv rfs "root=/dev/mmcblk0p1 rootfstype=ext4 rw"

setenv rfs "root=/dev/mtdblock7 rootfstype=squashfs init=/init"

setenv bootargs "console=ttyS0,115200 ${rfs} rootwait"

The uImage and dtb can be downloaded from a TFTP server, for example:
tftp 0x80008000 uImage

tftp 0x8ffe0000 rzn1d400-db.dtb

bootm 0x80008000 - 0x8ffe0000

Note: Linux will automatically turn off any clocks on the RZ/N1 that are not used by the Linux
drivers. Therefore, if you are running software on the Cortex M3 core we recommend you disable
this feature by adding “clk_ignore_unused” to the bootargs variable.

4.3 GPIOs

One common problem is finding the Linux GPIO number associated with the GPIO hardware. Each
Synopsys GPIO Controller block has a driver that supports the multiple hardware ports. The Linux
GPIO number associated with each port can be obtained from the sysfs interface.

A handy one-liner to list all of the GPIO ranges is:
for f in `ls -d /sys/class/gpio/gpiochip*`; \

do echo $f `cat $f/label $f/base $f/ngpio` ; done

This gives output similar to:
/sys/class/gpio/gpiochip366 5000d000.gpio 366 10

/sys/class/gpio/gpiochip376 5000d000.gpio 376 32

/sys/class/gpio/gpiochip408 5000c000.gpio 408 32

/sys/class/gpio/gpiochip440 5000c000.gpio 440 32

The entries may change if a different set of GPIO nodes is enabled in your Device Tree file.
Similarly, if you use GPIO port expanders you may get additional entries. By looking up the address
of the GPIO IPs, this shows that:

• gpio2b uses GPIO numbers 366 to 375

• gpio2a uses GPIO numbers 376 to 407

• gpio1b uses GPIO numbers 408 to 439

• gpio1a uses GPIO numbers 440 to 471

You then must manually map the Synopsys GPIO Controller to the pin number. The GPIO numbers
will change if you have other sources of GPIOs on your board, like IO expanders – there is no way
to have static numbers in this version of the Linux kernel.

4.3.1 GPIO Interrupts

ON the RZ/N1 devices, the interrupts from the GPIO Controllers are passed to a “GPIO interrupt
multiplexer” block. This block then selects the interrupts that are passed to the GIC and NVIC
interrupt controllers. This means you cannot have more than 8 GPIO interrupts. The GPIO
interrupts must be added to the “gpioirq” node in your Device Tree file.

RZ/N1 Linux RZ/N1D-DB Board Specifics

R01US0297EG0110 27

User’s Manual

4.4 Supported Features

The following features are supported.

Hardware
Block

Linux device Interface/Device Details

UART1 /dev/ttyS0 UART (CN10) 9600 to 115200, 1Mbps

UART3 /dev/ttyS1 Extension board: UART (J7)
9600 to 115200 (RS-232 Line
Transceiver is limited to 250kbps).

UART4 /dev/ttyS2 Extension board: UART (J8)
9600 to 115200, 1Mbps, (RS-485
Line Transceiver is limited to
1Mbps).

QSPI /dev/mtd0..7 Macronix MX25L25635F
Single, dual and quad modes.

62.5MHz SPI clock.

SDHC /dev/mmcblk0*
Extension board: SD Card slot
(J4)

50MHz SD clock.

SD cards, SDIO Wi-Fi

I2C2 /dev/i2c1
Extension board: LM75
compatible Temp Sensor

At 400KHz I2C clock.

USB Host /dev/sd*
Extension board: USB Host
connecter (J20)

USB Mass Storage devices

USB
Function
(Device)

See network devices
below

USB Function connecter (CN9) RNDIS

GPIO /sys/class/gpio LEDs and switches See Section 4.5.1

RTC N/A N/A Accessed using hwclock command

SPI
FRAM

/sys/bus/spi/devices/
spi32766.0/eeprom

Extension board: FM25V10-G
Serial (SPI) F-RAM

Limited to 20.8MHz SPI clock due to
board design.

DDR
/sys/devices/system/
edac/mc/mc0

DDR3 ECC error reporting and injection

The software provides the following network devices.

Hardware
Block

Linux Network
device

Interface/Device Details

CAN1 can0
Extension board: CAN
connector (J16)

100Kbps, 500Kbps and 1Mbps
bitrates

USB
Function

usb0 USB Function connecter (CN9) RNDIS

In addition, the different Ethernet network devices are available depending on the mode of
operation.

Normal Mode

Hardware
Block

Linux Network
device

Interface/Device Details

GMAC1 eth0
Extension board: Marvell
88E1512 PHY (IC2) used with
connecter J22

10, 100 Mbps and 1Gbps at full and
half duplex.

RZ/N1 Linux RZ/N1D-DB Board Specifics

R01US0297EG0110 28

User’s Manual

Master Mode

Hardware
Block

Linux Network
device

Interface/Device Details

GMAC1 eth0
Extension board: Marvell
88E1512 PHY (IC2) used with
connecter J22

10, 100 Mbps and 1Gbps at full and
half duplex.

GMAC2 eth1
Extension board: Marvell
88E1512 PHY (IC4) used with
connector J23.

10, 100 Mbps and 1Gbps at full and
half duplex.

No CM3 Mode

Hardware
Block

Linux Network
device

Interface/Device Details

GMAC1 eth0
Extension board: Marvell
88E1512 PHY (IC2) used with
connecter J22

10, 100 Mbps and 1Gbps at full and
half duplex.

GMAC2 eth1 N/A
Fixed internal 1Gbps link to the
upstream port of the 5-port Switch.

5-port
Switch

sw0p0
5-port Switch port 0 (A) to
Micrel KSZ8041TL (U12) PHY
used with connector CN5.

100 Mbps full duplex only.

sw0p1
5-port Switch port 1 (B) to
Micrel KSZ8041TL (U8) PHY
used with connector CN4.

100 Mbps full duplex only.

sw0p2

5-port Switch port 2 (C) to
Extension board Marvell
88E1512 PHY (IC4) used with
connector J23.

10, 100 Mbps and 1Gbps at full and
half duplex.

sw0p3

5-port Switch port 3 (D) to
Extension board Marvell
88E1512 PHY (IC3) used with
connector J24.

10, 100 Mbps and 1Gbps at full and
half duplex.

4.5 Accessing the hardware

4.5.1 LEDs

The LEDs can be accessed from the LED sysfs interface. Each LED in Device Tree has a label,
and that label is a directory under /sys/class/leds. The supplied Device Tree uses the red and green
LEDs on the expansion board (D20 and D21) for CPU activity.

To control these LEDs yourself, first replace the default trigger with "None" to disconnect the LED
from the kernel use, for example:
echo none > /sys/class/leds/pl_gpio92/trigger

You can then set the LED on or off, for example:
echo 1 > /sys/class/leds/pl_gpio92/brightness

echo 0 > /sys/class/leds/pl_gpio92/brightness

If you want to re-attach the LED to a kernel trigger, you can show the available triggers by:
cat /sys/class/leds/pl_gpio92/trigger

Set the kernel trigger as heartbeat:
echo heartbeat > /sys/class/leds/pl_gpio92/trigger

RZ/N1 Linux RZ/N1D-DB Board Specifics

R01US0297EG0110 29

User’s Manual

4.5.2 Temperature Sensor

The LM75 device is connected via an I2C interface. This device is exposed to userspace via the
Hardware Monitoring interface.

Using this interface, you can read the temperature in hundredths of degrees by running:
cat /sys/class/hwmon/hwmon0/temp1_input

4.5.3 EEPROM

The EEPROM device is connected via an I2C interface. You can read and write data to EEPROM
using the /sys/bus/i2c/devices/1-0050/eeprom file. This file is a block device, so the

maximum block size that can be used to access it is 4096 bytes. Here are some handy ways to
access EEPROM. The following examples assume that this env variable is set:
EEPROM=/sys/bus/i2c/devices/1-0050/eeprom

Read the entire contents and display it:
cat ${EEPROM} | od -x

Clear the entire contents:
cat /dev/zero > ${EEPROM}

Read an exact amount of data:
dd if=${EEPROM} bs=64 count=1 | od -x

Write an exact amount of random data:
dd if=/dev/urandom of=${EEPROM} bs=64 count=1

4.5.4 FRAM

The FRAM device is connected via a SPI interface. You can read and write data to FRAM using the
/sys/bus/spi/devices/spi1.0/eeprom file. Here are some handy ways to access FRAM.

The following examples assume that this env variable is set:
FRAM=/sys/bus/spi/devices/spi1.0/eeprom

Read the entire contents and display it:
cat ${FRAM} | od -x

Clear the entire contents:
cat /dev/zero > ${FRAM}

Read an exact amount of data:
dd if=${FRAM} bs=64 count=1 | od -x

Write an exact amount of random data:
dd if=/dev/urandom of=${FRAM} bs=64 count=1

4.5.5 RNDIS

By default, the RZ/N1 kernel is configured such that it implements an RNDIS USB Device.

The information for assigning a static IP address to the RNDIS device can be found in
/etc/network/interfaces, e.g.
iface usb0 inet static
 address 192.168.7.2

 netmask 255.255.255.0

 network 192.168.7.0

 gateway 192.168.7.1

To bring the interface up, run:
ifup usb0

You can now connect to the board from a Windows PC, e.g. if the RNDIS Adapter is assigned IP
address 192.168.7.10, you can ping the board:
ping –S 192.168.7.10 192.168.7.2

RZ/N1 Linux Acronyms

R01US0297EG0110 30

User’s Manual

5 ACRONYMS

AXI Advanced eXtensible Interface (ARM bus)
CAN Controller Area Network
CPU Central Processing Unit
DDR Double Data Rate (memory)
DFU Device Firmware Upgrade
DMA Direct Memory Access
DMAC DMA Controller
DT Device Tree
DTB Device Tree Blob
DTS Device Tree Source
eMMC embedded Multi-Media Controller
ECC Error Correction Code
FIFO First In First Out (buffer)
FRAM Ferroelectric RAM
Gb Gigabit
GIC ARM Generic Interrupt Control
GMII Gigabit MII
IRQ Interrupt ReQuest
I2C Inter-Integrated Circuit
ISR Interrupt Service Routine
MAC Media Access Controller
MII Media Independent Interface
MMC Multi-Media Card
NFC NAND Flash Controller
NFS Network File System
OOB Out Of Band
OTP One Time Programmable
PLL Phase Locked Loop
QSPI Quad SPI
RGMII Reduced GMII
RTC Real Timer Clock
Rx Receive
SD Secure Digital
SDHC Secure Digital Host Controller
SDIO Secure Digital IO
SMP Symmetric Multi-Processing
SPI Serial Peripheral Interface
SPL Secondary Program Loader
TFTP Trivial File Transfer Protocol
Tx Transmit
UART Universal Asynchronous Receiver Transmitter
USB Universal Serial Bus
XiP Execute in Place

RZ/N1 Linux References

R01US0297EG0110 31

User’s Manual

6 REFERENCES

Renesas RZ/N1 Group User’s Manual, R18UZ0049EJ0000

Renesas RZ/N1 U-Boot User Manual, R01US0296EG

U-Boot, http://www.denx.de/wiki/U-Boot

Linux, https://www.kernel.org

Yocto, https://www.yoctoproject.org

BuildRoot, https://buildroot.org

http://www.denx.de/wiki/U-Boot
https://www.kernel.org/
https://www.yoctoproject.org/
https://buildroot.org/

RZ/N1 Linux Change History

R01US0297EG0110 32

User’s Manual

7 CHANGE HISTORY

Version Description Date

1.0 First public release 13th Apr 2017

1.01 Minor corrections 11th July 2017

1.02 Yocto instructions updated.

Replaced initramfs with SquashFS.

DTB address moved to top of DDR.

Minor corrections

18th Oct 2017

1.03 Moved to external git repo.

I2C bus number changed due to use of alias in DT.

Added RT-Linux instructions.

Updated comment regarding RGMII/GMII Convertor handling.

26th Jan 2018

1.04 Corrected build instructions.

Added details on DMAC bindings.

Added detail on UART DMA.

Updated Watchdog driver information.

Fix SysCtrl register name.

Removed MSEBI driver.

Corrected menuconfig information for networking drivers.

Removed redundant acronyms.

Added Master Mode (2xGMACs) information.

Changed Dynamic Frequency Control menu selection.

Changed 5-Port Switch network device names.

Yocto updated from Morty v2.2 to Rocko v2.4.

Corrected GMII to RMII.

Added note about GPIO interrupts.

27th Jun 2018

1.05 Changed build setup instructions to refer to exact version.

When used with NFS root file system, specify NFSv3

11th Oct 2018

1.06 Fix filename for patch that allows Qt to be built without OpenGL.

Improve description of different Ethernet configurations.

6th Nov 2018

1.07 Fix Yocto initramfs instructions. 12th Feb 2019

1.08 Fix Yocto build error by specifying the exact version of repos 20th Feb 2019

1.09 Removed NetDisp Yocto image.

Add information about git merge conflicts

15th Jul 2019

1.10 Updated for Linux kernel v4.19 30th Aug 2019

R01US0297EG0110

RZ/N1 Linux

	1 Overview
	1.1 Overview
	1.2 Functionality

	2 Build Setup
	2.1 Development Environment
	2.2 Toolchain
	2.3 Additional Tools
	2.4 Yocto
	2.5 Linux Kernel only
	2.5.1 Setup
	2.5.2 Build

	3 Linux Kernel
	3.1 Device Tree
	3.2 SMP
	3.2.1 Interrupts

	3.3 Booting a zImage
	3.4 Clock Controller
	3.5 Dynamic Frequency Control
	3.5.1 Userspace control

	3.6 UART
	3.7 I2C
	3.8 SPI
	3.9 QSPI Serial Flash
	3.10 SDHC
	3.11 NAND Flash
	3.12 USB Host
	3.13 USB Function
	3.14 Ethernet MAC
	3.15 RGMII/RMII Convertors
	3.16 5-Port Switch
	3.17 CAN
	3.18 Timers
	3.19 Watchdog
	3.20 RTC
	3.21 PinCtrl
	3.22 DMAC
	3.23 LCD Controller
	3.23.1 Pixel clock
	3.23.2 Userspace control

	3.24 DDR Controller

	4 RZ/N1D-DB Board Specifics
	4.1 Configurations
	4.1.1 Normal Mode
	4.1.2 Master Mode
	4.1.3 No CM3 Mode

	4.2 Starting Linux
	4.3 GPIOs
	4.3.1 GPIO Interrupts

	4.4 Supported Features
	4.5 Accessing the hardware
	4.5.1 LEDs
	4.5.2 Temperature Sensor
	4.5.3 EEPROM
	4.5.4 FRAM
	4.5.5 RNDIS

	5 Acronyms
	6 References
	7 Change History

