

Programming Manual

RRH46410
Digital Gas Sensor Module for Indoor Air Quality Applications

R36US0007EE0100 Rev.1.00
Nov 8, 2023

 Page 1
© 2023 Renesas Electronics

1. Introduction
The RRH46410 Gas Sensor Module is an easy to integrate sensor for measuring indoor pollutants with high
accuracy. This document describes the general program flow to set up RRH46410 Gas Sensor Modules for gas
measurements in a customer’s environment. It also describes the functionality of example code provided as
C code, which can be executed using the RRH46410 evaluation kit (EVK), Arduino® and Raspberry Pi®
hardware.

The corresponding firmware package is provided on the Renesas RRH46410 product page under the
Software Downloads section.

For instructions on assembly, connection, and installation of the EVK hardware and software, see the document
titled RRH46410 Evaluation Kit User Manual on the RRH46410 EVK product page.

The RRH46410 has three modes of operation:
■ IAQ 2nd Gen – This mode with embedded artificial intelligence (AI) algorithm (“iaq_2nd_gen”) derived from

machine learning, outputs total volatile organic compounds (TVOC), equivalent ethanol (EtOH) concentration,
estimated carbon dioxide level (eCO2), a rating for the indoor air quality (IAQ), and a relative IAQ index (Rel
IAQ) for threshold-based controls like air ventilation. This is the recommended operation mode for IAQ.

■ IAQ 2nd Gen Ultra Low Power – This mode with embedded artificial intelligence (AI) algorithm
(“iaq_2nd_gen_ulp”) derived from machine learning, outputs total volatile organic compounds (TVOC),
equivalent ethanol (EtOH) concentration, estimated carbon dioxide level (eCO2), a rating for the indoor air
quality (IAQ), and a relative IAQ index for threshold-based controls like air ventilation (Rel IAQ). This mode of
operation offers a much lower power consumption while keeping accurate and consistent sensor readings.

■ Public Building Air Quality (PBAQ) – This mode with embedded artificial intelligence (AI) algorithm derived
from machine learning, outputs total volatile organic compounds (TVOC) and equivalent ethanol (EtOH)
concentration. This mode of operation is for highly accurate and consistent sensor readings to fulfill public
building standards.

All operation modes can be adjusted in the firmware example.

Recommendation: Before using this document, read the RRH46410 Datasheet and corresponding
documentation on the RRH46410 product page.

http://www.renesas.com/RRH46410
http://www.renesas.com/RRH46410-evk
https://www.renesas.com/us/en/document/dst/rrh46410-datasheet

RRH46410 Programming Manual

R36US0007EE0100 Rev.1.00
Nov 8, 2023

 Page 2

Contents
1. Introduction .. 1

2. Structure of the RRH46410 Firmware .. 3

3. Description of the Firmware Example ... 3
3.1 RRH46410 Example for EVK .. 4
3.2 How to Compile for EVK Hardware ... 4
3.3 RRH46410 Example for Arduino ... 5
3.4 RRH46410 Example for Raspberry Pi ... 9
3.5 How to Compile for Raspberry Pi Hardware ... 10
3.6 Error Codes ... 10

4. Adapting the Firmware Example for Target Hardware .. 12
4.1 System Hierarchy and Implementation Steps ... 12
4.2 Interrupt Usage and Measurement Timing .. 12

5. Revision History .. 13

Figures
Figure 1. File Overview for RRH46410 Firmware... 3
Figure 2. System Hierarchy .. 12

Tables
Table 1. RRH46410 Example Program Flow ... 4
Table 2. Connection of Sensor Board to Raspberry Pi .. 9
Table 3. Error Codes .. 11

RRH46410 Programming Manual

R36US0007EE0100 Rev.1.00
Nov 8, 2023

 Page 3

2. Structure of the RRH46410 Firmware
The RRH46410 firmware contains four code blocks as displayed in Figure 1:

1. The “Target Specific I2C and Low-Level Functions” block is the hardware-specific implementation of the I²C
interface. This block contains read and write functions to communicate with the RRH46410 and a delay
function. If the Renesas EVK is used, files for the EVK ESCom Communication Board are provided with the
RRH46410 firmware package. Using the user’s own target hardware requires implementing the user’s
target-specific I²C and low-level functions (this is highlighted in light blue in Figure 1).

2. The “Hardware Abstraction Layer (HAL)” block contains hardware-specific initialization and de-initialization
functions and hardware error handling. Files for the EVK ESCom Communication Board are provided with
the RRH46410 firmware package, and need to be adjusted to the user’s target hardware. The HAL is
described in the documents RRH46410-Firmware-Documentation.pdf and .html, which are included in the
firmware package.

3. The “Application Programming Interface (API)” block contains the functions needed to operate the
RRH46410. Renesas recommends using this API. A detailed description of the API is located in the
documents RRH46410-Firmware-Documentation.pdf and .html, which are included in the firmware package.
As the usage of a humidity sensor is recommended, an API for Renesas HSxxxx sensors is also provided.

4. The “Example” block provides a code example as example.c file that is used to initialize the RRH46410, start
the cleaning mode, select the operation mode, perform measurements, and display the data output. More
information is provided in “Description of the Firmware Example”.

All these files are part of the downloadable firmware package.

To avoid naming conflicts, all API function names start with the prefix “RRH46410” in the RRH46410 code. The
Arduino library and Raspberry Pi example have a similar structure but have some other features that facilitate
operation with the corresponding hardware (see “RRH46410 Example for Arduino” and “RRH46410 example for
Raspberry Pi”).

Figure 1. File Overview for RRH46410 Firmware

3. Description of the Firmware Example
This section describes the structure of the firmware example and the steps needed to operate the sensor
module. The example is intended to work on a Windows® computer in combination with the Renesas Gas
Sensor EVK but can easily be adjusted to operate on other platforms (see “Adapting the Firmware Example for
Target Hardware”).

To run this example using the EVK without further configuration, start the file rrh46410-example.exe, which is
included in the firmware package. In addition, examples for Arduino and Raspberry Pi hardware are provided.

Application Programming
Interface (API)

Files:
rrh46410.c
rrh46410.h

ExampleHardware Abstraction Layer
(HAL)

General Files:

hal.h
hal.c

comboard.c
EVK specific files:

example.c
Files:

Documentation:
RRH46410-Firmware-
Documentation.pdf/.html

Target-Specific I2C and Low-
Level Functions

Customer-Specific
Microcontroller

EVK Low-Level and I2C

Files:
escom.c
escom.h

Renesas Evaluation Kit

Documentation:
RRH46410-Firmware-
Documentation.pdf/.html

template.c
Custom files:

https://www.renesas.com/products/sensor-products/environmental-sensors/humidity-sensors

RRH46410 Programming Manual

R36US0007EE0100 Rev.1.00
Nov 8, 2023

 Page 4

The RRH46410 can be operated in different modes. The precompiled example uses IAQ 2nd Gen mode. For
information on how to change the operating mode, see “RRH46410 Example for EVK”.

3.1 RRH46410 Example for EVK
The example.c file contains the main program flow. First, the target-specific initializations are performed. The
RRH46410 and humidity sensor is initialized and the RRH46410 operation mode is set. An endless
measurement loop continuously checks the status of the RRH46410 and reads its data. All values are printed in
the command line window. To stop the loop, press Ctrl + C, which releases the hardware and stops the program.
For more information, refer to the example code.

Note: The blue colored lines in the following table can be run in an endless loop.

Table 1. RRH46410 Example Program Flow

Line Program Actions Notes API and Algorithm Functions

1 Reset the sensor.
Before configuring the sensor, reset the
sensor by powering it off/on or toggling the
reset pin.

-

2 Check if all functions are available and
check if sensor is accessible.

Function tries to read sensors operation mode
for maximum 1 second. RRH46410_Init

3 Read the product ID, firmware version
and tracking number. This step is optional. RRH46410_GetSensorInfo

4 Run the cleaning cycle once. Cleaning runs during first sensor operation. It
takes 1 minute. RRH46410_PerformCleaning

5 Select the operation mode and start
measurement.

This function must be called after every
RRH46410 startup if the startup operation
mode was not adjusted permanently.

RRH46410_SetOperatingMode

6 Set the humidity default value. RRH46410_SetHumidity

7 Check for humidity data and pass them. RRH46410_SetHumidity

8 Read the results after the end of the
measurement.

The end of the measurement will also be
signaled on the interrupt pin with a falling
signal. First samples are used for minimal,
hard-coded sensor warm-up. Actual warm-up
can take longer (up to 48 hours).

RRH46410_ReadResults

To change the operating mode permanently, open example.c and change the line

define OP_MODE omIAQ2

to the desired operating mode defined in rrh46410.h. Alternatively, the operating mode can be changed during
compilation, by calling make:

make –DRRH46410_OP_MODE=<OP_MODE>

3.2 How to Compile for EVK Hardware
The EVK firmware example is designed to work with the EVK hardware. To evaluate the impact of code changes
on sensor performance, it is possible to use the EVK as reference. This section provides guidelines for compiling
the adapted source code into an executable file. This executable can be used with the EVK on a Windows
platform. For compiling, “skeeto/w64devkit” must be downloaded and unzipped. The firmware folder structure
should be identical to that in the download package.

RRH46410 Programming Manual

R36US0007EE0100 Rev.1.00
Nov 8, 2023

 Page 5

Install skeeto/w64devkit:

1. Download the latest version of w64devkit and unzip it.
2. Add it to the system path in command line by using:

PATH=%PATH%;<PATH_TO_W64DEVKIT>\bin

Compiling:

1. Go to the Command Prompt and change to the following directory of the firmware folder:
[...]\Renesas-RRH46410-Firmware\src

2. Execute the following command:
make

An executable file called rrh46410-example.exe will be created in folder build.

3.3 RRH46410 Example for Arduino
To set up a firmware for an Arduino target, Renesas provides the above-mentioned EVK example also as an
Arduino example. This example is a high-level Arduino library and has a similar structure as shown in Figure 1
but with a HAL dedicated for Arduino, an Arduino-compatible structure, and Arduino-specific files. An
Arduino IDE with version 1.8.13 and higher is needed.

The program flow corresponds to the EVK example. To get the Arduino example started, complete the following
steps (example shown for SAMD 32-bit ARM Cortex-M0+ based Arduino-Hardware):

1. Connect the RRH46410 to the Arduino board. To connect the EVK Sensor Board, check the pin
configuration on connector “X1” in the RRH46410 EVK User Manual on the EVK product page.

2. Go to the Arduino example path (e.g., […]\Documents\Arduino\libraries) and check if a RRH46410 example
exists. Old example folders must be deleted.

3. Open Arduino IDE. Select “Sketch > Include Library > Add .ZIP library”.

https://github.com/skeeto/w64devkit

RRH46410 Programming Manual

R36US0007EE0100 Rev.1.00
Nov 8, 2023

 Page 6

4. Select the Renesas-RRH46410-Arduino.zip file.
5. Select “File > Examples > Renesas-RRH46410.” A new Arduino IDE window opens automatically with the

example file.

6. (This step may not be required for other Arduino hardware.) Install the “Arduino SAMD (32-bit ARM Cortex-
M0+)” Boards library under “Tools > Board > Board Manager”.

RRH46410 Programming Manual

R36US0007EE0100 Rev.1.00
Nov 8, 2023

 Page 7

If it already exists, skip this step. Type “Arduino SAMD Boards” in the search field and click “Install” button in
“Arduino SAMD (32-bit ARM Cortex-M0+)” field.

7. Select the target board under “Tools > Board > Arduino SAMD (32-bits ARM Cortex-M0+) > Arduino
MKRZERO”.

8. Compile the example with the “Verify” icon.

RRH46410 Programming Manual

R36US0007EE0100 Rev.1.00
Nov 8, 2023

 Page 8

9. Select the connected port with “Tools > Port > (Connected Port)”. The correct COM-Port should show your
Arduinos board name.

10. Load the program into the target hardware with the “Upload” icon.

11. Check the results with the Serial Monitor (Tools > Serial Monitor).

RRH46410 Programming Manual

R36US0007EE0100 Rev.1.00
Nov 8, 2023

 Page 9

3.4 RRH46410 Example for Raspberry Pi
To set up firmware for a Raspberry Pi based target, Renesas provides the above-mentioned EVK example also
as a Raspberry Pi example. This example has a similar structure as shown in Figure 1 but with a HAL dedicated
for Raspberry Pi and a Makefile to easily compile the code. The example is based on the pigpio library and
Raspberry Pi OS (previously called Raspbian).

The example is tested on the following Raspberry Pi models on Raspberry Pi OS (32-bit):
■ Raspberry Pi 3B, B+
■ Raspberry Pi 4B

The following table describes the connection of the Sensor Board connector “X1” and the Raspberry Pi GPIO
Connector. Documentation of “X1” can be found in the RRH46410 EVK User Manual. Documentation of
Raspberry Pi GPIO can be found on command line typing “pinout” or online.

Table 2. Connection of Sensor Board to Raspberry Pi

Sensor Board Pin (X1) Sensor Board Description Raspberry Pi Pin Raspberry Pi Description

1 VDD 1, 17 3V3 power

5 SDA 3 GPIO 2 (SDA)

7 SCL 5 GPIO 3 (SCL)

14 GND 6, 9, 14, 20, 25, 30, 34, 39 Ground

The program flows correspond to the EVK example. To get the Raspberry Pi example started, complete the
following steps.

1. Install the Raspberry Pi operating system on the Raspberry Pi. An imager tool is available to easily flash the
operating system to SD card.

2. Establish an internet connection via Wi-Fi or LAN and install updates on the Raspberry Pi using the
command sudo apt update && sudo apt upgrade -y on the Terminal.

Note: The updates may take some time to finish.
3. To configure the I2C interface go to /boot directory and open the configuration file:

sudo nano config.txt

4. Enable the I2C interface and change the baud rate by uncommenting the line #dtparam=i2c_arm=on and
changing it to:
dtparam=i2c_arm=on,i2c_arm_baudrate=200000

5. Reboot the Raspberry Pi to complete the initial setup. When done, the example code can be started.
6. Copy the whole Renesas firmware package to your Raspberry Pi and extract it to your preferred location

(e.g., Downloads).
7. Open the Terminal and go to the directory containing the executable, e.g.:

cd ~/Downloads/Renesas-RRH46410-Firmware/raspberrypi/

8. Start the example with the following command (sudo is required for pigpio package):
sudo ./rrh46410-example

https://abyz.me.uk/rpi/pigpio/
https://pinout.xyz/
https://www.raspberrypi.com/software/

RRH46410 Programming Manual

R36US0007EE0100 Rev.1.00
Nov 8, 2023

 Page 10

Note: You may have to give yourself execute permissions with chmod 544 rrh46410-example. If
you get an error “Can't lock /var/run/pigpio.pid”, run the command, sudo killall pigpiod.

3.5 How to Compile for Raspberry Pi Hardware
This section provides guidelines for compiling the adapted source code into an executable file. This executable
can be used on the Raspberry Pi like the original provided executable file. For compiling, make must be
installed, which is a standard package in Raspberry Pi OS. The folder structure should be identical to that in the
downloaded package.

1. Complete your code changes in the source code of the firmware package.

2. Open the Terminal and go to the directory containing the example code. For example,
cd ~/Downloads/Renesas-RRH46410-Firmware/src

3. Type “make”, and a file called rr46410-example will be generated in the folder named build.

4. Go to the folder /build and start the example with the following command (sudo is required for pigpio
package). Make sure to have the I²C interface enabled (for instructions, see “RRH46410 Example for
Raspberry Pi”).

sudo ./rrh46410-example

3.6 Error Codes
All API functions return a code to indicate the success of the operation. If no error occurred, the return code is
zero. If an error occurs, a number is returned. The API has predefined symbols RRH46410_ErrorCodes_t for the
error codes defined in rrh46410.h. If an error occurs, check the following table for solutions.

RRH46410 Programming Manual

R36US0007EE0100 Rev.1.00
Nov 8, 2023

 Page 11

Table 3. Error Codes

Error
Code Return value Description Solution

RRH46410 sensor module related errors

0 ecSuccess No error.

1 ecWarmup
Sensor is in stabilization
phase, results may be
inaccurate.

Wait for the amount of warm-up samples before checking
results. Amount of warm-up samples depend on operation
mode, see table “Sample Rates and Warm-Up Samples for
RRH46410 Operation Modes” in the RRH46410
Datasheet.

8 ecCleaningCountExceeded

The maximum numbers of
cleaning cycles ran on this
sensor.
RRH46410_PerformCleaning
function has no effect
anymore.

To protect from damage the cleaning cannot be used
anymore on this sensor module. This error informs that
execution has already taken place and can be ignored
after first run.

9 ecPOR
An unexpected reset of the
sensor occurred. Power or
pin reset.

Check stability and noise sources of power supply and
power/reset lines (e.g., for cross-talk). After a power-on
reset the sensor module may have lost its configuration of
operation mode. To avoid this, change the operation mode
after startup. For more information, see the “Data Flash”
section in the RRH46410 Datasheet.

10 ecDamage Sensor may be damaged.
1. For information on how to handle sensor damage error,

see the “Conditioning, Sensor Self-Check Status, and
Stability” section in the RRH46410 Datasheet.

16 ecDataNotReady Trying to read-out data before
first sample is available.

1. Check the implementation of the timing function (delay).
2. Check if operation mode is set.

32 ecInternalComm
Internal communication error
between module’s MCU and
ASIC.

Check stability and noise sources on power supply line
(e.g., for cross-talk).

64 ecHostToSensorCheckusm
Checksum error when
sending command to sensor
module.

1. Check the low-level I2C implementation. It is best to
analyze the voltage levels of the SDA/SCL line and
check if they match the pattern described in figure “I2C
Interface” in the RRH46410 Datasheet. Check your
implementation also with multiple data bytes.

2. Check stability and noise sources on SDA/SCL line
(e.g., for cross-talk).

128 ecInvalidCommand An invalid command was sent
to the sensor module. Check your API implementation.

API related errors

256 ecSampleNotNew The sample ID was not
updated Check the implementation of the timing function (delay).

257 ecSensorToHostChecksum
Checksum error when
receiving data from sensor
module.

1. Check the low-level I2C implementation. It is best to
analyze the voltage levels of the SDA/SCL line and
check if they match the pattern described in figure “I2C
Interface” in the RRH46410 Datasheet. Check your
implementation also with multiple data bytes.

2. Check stability and noise sources on SDA/SCL line
(e.g., for cross-talk).

258 ecCleaningTimeout Timeout while cleaning is
executed. Check the implementation of the timing function (delay).

RRH46410 Programming Manual

R36US0007EE0100 Rev.1.00
Nov 8, 2023

 Page 12

Error
Code Return value Description Solution

259 ecGPIOConfigInvalid Wrong GPIO configuration.

Not all GPIOs can be configured as input and output.
Check your bitmask used for GPIO configuration. For more
information, see “Config GPIO” section in the RRH46410
Datasheet.

4. Adapting the Firmware Example for Target Hardware

4.1 System Hierarchy and Implementation Steps
The Renesas RRH46410 C API is located between the application and the hardware level.

Customer Application

Application-Specific Configuration of the Firmware Example

RRH46410 API

Hardware Abstraction Layer (HAL)

Hardware Level (RRH46410 and Target)

Figure 2. System Hierarchy

The RRH46410 example code uses a Hardware Abstraction Layer to separate target hardware implementation
details from the actual sensor interface. To transfer the example to a different hardware platform, the following
steps are recommended:

1. Establish I²C communication and conduct a register test. For more information, see the “Data Transmission
Protocols” section in the RRH46410 Datasheet.

2. Use the file template.c in folder \src\hal\custom to implement hardware-specific functions and to adjust the
HAL. A detailed description of the HAL interface is provided in the RRH46410-Firmware-Documentation.pdf
and .html. For the _I2CRead should point to the I²C implementation of the hardware used (see example in
comboard.c and escom.c files). HSxxx sensors will also need _I2CWrite. Define the _Sleep and optional
_Reset function (see example in comboard.c file) and test them with a scope plot.

3. Copy the filled template and all unmodified RRH46410 API files into your project. Copy and adapt content of
the example.c into your code and use the example code. Test if the adapted example runs and outputs
changing values in your main measurement loop.
Note: It is necessary to wait the amount of warm-up samples, see section “Sample Rates and Warm-Up
Samples for RRH46410 Operation Modes” in RRH46410 Datasheet.

4.2 Interrupt Usage and Measurement Timing
The firmware example is written with delays. The microcontroller is blocked during these time periods.
Depending on target hardware and the application, this can be avoided by using interrupts. The measurement
intervals (sample rates) for each operation mode are described in the “Sample Rates and Warm-Up Samples for
RRH46410 Operation Modes” section in the RRH46410 Datasheet.

The following interrupt usages are possible to detect the end of an active measurement:
■ Using RRH46410s Interrupt pin (INT) – This pin is high when data is available and low when data was read

out.
■ Using Timer-based interrupts – As an alternative a timer interrupt can be used to wait until the end of the

active measurement phase. The variable measurementInterval of the rrh46410 structure contains the right
time.

RRH46410 Programming Manual

R36US0007EE0100 Rev.1.00
Nov 8, 2023

 Page 13

5. Revision History

Revision Date Description

1.00 Nov 8, 2023 Initial release.

© 202 Renesas Electronics Corporation. All rights reserved.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only for
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters Contact Information
TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most
Koto-ku, Tokyo 135-0061, Japan up-to-date version of a document, or your nearest sales
www.renesas.com office, please visit:

www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

	1. Introduction
	2. Structure of the RRH46410 Firmware
	3. Description of the Firmware Example
	3.1 RRH46410 Example for EVK
	3.2 How to Compile for EVK Hardware
	3.3 RRH46410 Example for Arduino
	3.4 RRH46410 Example for Raspberry Pi
	3.5 How to Compile for Raspberry Pi Hardware
	3.6 Error Codes

	4. Adapting the Firmware Example for Target Hardware
	4.1 System Hierarchy and Implementation Steps
	4.2 Interrupt Usage and Measurement Timing

	5. Revision History

