

User's Manual

16

RL78/G22 Multiwavelength Smoke Detector Evaluation Board User's Manual: Software

RL78 Family

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

Renesas Electronics

Rev.1.00 Feb 2025

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <u>www.renesas.com/contact/</u>.

(Rev.5.0-1 October 2020)

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power reaches the level at which reseting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

How to Use This Manual

1. Purpose and Target Readers

This manual is designed to provide the user with an understanding of the hardware functions and electrical characteristics of the MCU. It is intended for users designing application systems incorporating the MCU. A basic knowledge of electric circuits, logical circuits, and MCUs is necessary in order to use this manual. The manual comprises an overview of the product; descriptions of the CPU, system control functions, peripheral functions, and electrical characteristics; and usage notes.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of the manual for details.

The following documents apply to the Multiwavelength Smoke Detector solution. Make sure to refer to the latest versions of these documents. The newest versions of the documents listed may be obtained from the Renesas Electronics Web site.

Document Type	Description	Document Title	Document No.
User's manual for Software	Description of CPU instruction set	RL78/G22 Multiwavelength Smoke Detector Evaluation Board User's Manual: Software	This User's manual
User's manual for Hardware	Hardware specifications (pin assignments, memory maps, peripheral function specifications, electrical characteristics, timing charts) and operation description Note: Refer to the application notes for details on using peripheral functions.	RL78/G22 Multiwavelength Smoke Detector Evaluation Board User's Manual: Hardware	R01UH1161EJ010 0
Application Note	Information on using peripheral functions and application examples Sample programs Information on writing programs in C language	Available from Re Web site.	enesas Electronics
Renesas Technical Update	Product specifications, updates on documents, etc.		

Table of Contents

1.	Introduction	1
1.1	Overview	1
1.2	Development environment	1
2.	Memory Resources and Timing Constraints	2
2.1	Memory Resources	2
2.2	Timing constraints	2
3.	Hardware Configuration	3
3.1	POC Board Overview	
3.2	System configuration	
3.3	User Interface	
3.4	RL78/G22 Block	5
3.5	Terminal Interface	6
4.	Software Layer	8
5.	Software Description	9
5.1	State Transitions	9
5.2	System Initialization	9
5.3	Interrupts	
6.	Process Flow	11
6.1	Main Process Flow	
6.2	Main Process Flow for Smoke Detection	
6.3	Easy Mode Processing	
6.4	Detail Mode Process Flow	
6.5	Alarm Mode Transition Judgment Process Flow	
6.5.1	1 Easy Mode Transition Judgment Process	
7.	Peripherals Configuration	19
7.1	Configuring Clock	
7.2	Configuring Ports	
7.2.1	1 Configuring Port 0	
7.2.2	2 Configuring Port 1	
7.2.3	3 Configuring Port 2	21
7.2.4	4 Configuring Port 3	21
7.2.5	5 Configuring Port 6	
7.2.6	6 Configuring Port 7	
7.2.7	7 Configuring Port 12	
7.2.8	8 Configuring Port 14	
7.3	Configuring Serial Array	24
7.3.1	1 Configuring SPI	24
7.3.2	2 Configuring UART0	
7.4	Configuring A/D Converter	
7.5	Configuring Timer Array Unit	27
7.6	Configuring 32-Bit Interval Timer	
7.6.1	1 Configuring ITL000 and ITL001	
7.6.2	2 Configuring ITL012 and ITL013	

8.	Software Processing	29
8.1	List of Functions	29
8.1.1	1 Initialization and Monitoring Related Functions	29
8.1.2	2 AFE Driver Related Functions	29
8.1.3	3 Functions Related to Generation of Measurement Timing	30
8.1.4	4 Functions Related to Serial Communication Transmission Processing	30
8.1.5	5 Parameter Management Related Functions	30
9.	POC Software Update	31
10.	Nomenclature	
11.	References	34

1. Introduction

1.1 Overview

The purpose of this User's Manual (Software) is to explain the architecture and features of the sample software for the Multiwavelength Smoke Detector. By using this sample software together with the Multiwavelength Smoke Detector POC substrate (hereinafter referred to as the POC substrate), Multiwavelength Smoke Detector can be easily developed.

The hardware and sample software in this case are for reference purposes only for development, and we do not guarantee that they will operate as products. When using hardware and sample software, please use it after thorough evaluation in an appropriate environment.

The development environment IDE used for this software project is the RL78 version of e²studio, which also includes the configurator tool.

1.2 Development environment

The sample software development environment is shown in Table 1-1 and Table 1-2.

Microcomputer	AFE	Evaluation Board
R7F102GBE2DNP#YJ1	RAA23910X	RTK7RL22SMD00000BJ

Table 1-1. Hardware Development Environment

Table 1-2. Software Development Environment

e ² studio Version	Smart Configurator Version	Toolchain Version
V2025-01	V1.12.0	CC-RL V1.15.00

For purchase and technical support, please contact our sales and special agent.

2. Memory Resources and Timing Constraints

2.1 Memory Resources

This section describes the memory resources of the RL78/G22 microcontroller (R7F102GBE2DNP#YJ1), which is the core of the overall configuration of the Multiwavelength Smoke Detector.

- 64KB code Flash memory
- 2KB data flash memory
- 4KB RAM

2.2 Timing constraints

You must consider the timing constraints of the Table 2-1.

Item	Description	Constraints
AFE Ready pin	Latency from AFE EN signal	AFE EN and AFE Ready signals require a
		max 50 us latency
LED	LED light stabilization time	It is necessary to wait for the time for the LED emission to output stably.
A/D converter	Analog input and standard voltage stabilization time	It is necessary to wait for analog-to-digital conversion until the analog input and reference voltage stabilize.

Table 2-1. Timing Constraints

3. Hardware Configuration

3.1 POC Board Overview

The POC board has the following features:

- "OR" type power supply configuration (DC24V~40V main power supply, USB power supply, E2_Lite emulator power supply, user serial power supply, main unit debug power supply)
- Compact, low-power, high-performance microcontroller
- Analog front-end ICs provide smoke detection drivers and operational amplifiers
- Alarm LED (red) and external notification signal circuit
- Photoelectric smoke detection of multi-wavelength light with three types of LEDs

3.2 System configuration

Figure 3-1 shows the Multiwavelength Smoke Detector system configuration.

Figure 3-1. System Configuration Diagram

3.3 User Interface

Table 3-1 shows the POC board user interface.

ltem	Interface Components	Function
ERROR RESET	Push Switch (SW1)	User Switch
LED1	Green LED	User LED
LED2	Red LED	 When an error is detected: Turning-on
		 During normal operation: Light-off
LED3	LED	transmit light LED1
LED4	LED	transmit light LED2
LED5	LED	transmit light LED3
PD	PD	PD for light detection

Table 3-1. User Interface

3.4 RL78/G22 Block

Figure 3-2 shows the MCU block diagram. current configuration uses timer array unit, GPIOs, analog-todigital converters (channel 2 and internal reference), 32-bit interval timers (for cyclic triggering) ,SPI communication (for communication with AFE ICs),UART communication .

Notes: 1. SERIAL INTERFACE ICA is only available for 24~48-pin products (this manual uses 32-pin products).
2. SERIAL INTERFACE UARTA is only available for 36~48-pin products (not applicable in this document).

3. KEY RETURN is only available for 40~48 pin products (not applicable in this document).

Remarks: m: Unit number, n: Channel number, p: Simple SPI (CSI) number, q: UART number,

r: Simple I2C number, xx: Port number

3.5 Terminal Interface

Table 3-2 shows the terminal interfaces used in this system.

No.	Terminal Name	Peripheral Function Name	Connect to	Remarks
1	P40	TOOL0	E2Lite	
2	RESET_B	/RESET	E2Lite	
3	P137	-	TP32	(Unused)
4	P122	General-purpose I/O (output)	Red Rear LED (FET)	LED_RR_ON
5	P121	General-purpose I/O (output)	Blue Forward LED (FET)	LED_BF_ON
6	REGC	_	capacitor	
7	VSS	_	GND	
8	VDD	_	VDD_MCU	3.3V
9	P60	_	TP31	(Unused)
10	P61	-	TP29	(Unused)
11	P62	-	TP28	(Unused)
12	P31	General-purpose I/O (input)	AFE	AFE_READY
13	P70	General-purpose I/O (output)	AFE	SEN
14	P30	SCK11	AFE	SCLK
15	P50	SI11	AFE	SDO
16	P51	SO11	AFE	SDI
17	P17	General-purpose I/O (output)	AFE	LED1_EN
18	P16	General-purpose I/O (output)	AFE	LED2_EN
19	P15	General-purpose I/O (input)	USER button	
20	P14	General-purpose I/O (output)	LED green	LEDs on board
21	P13	General-purpose I/O (output)	LED red	LEDs on board
22	P12	TxD0	Serial⇒USB	RxD
23	P11	_	No connection	(Unused)
24	P10	_	TP27	(Unused)

	Table 3-2.	List of MCU	Terminals
--	------------	-------------	-----------

25	P147	General-purpose I/O (output)	AFE	AFE_EN
26	P23	General-purpose I/O (output)	AFE	PD_SEL
27	P22	ANI2	AFE	PHOTO_OUT
28	P21	AVREFM	GND	
29	P20	AVREFP	Reference voltage IC	OUT terminal (2.048V)
30	P01	-	TP30	(Unused)
31	P00	General-purpose I/O (output)	Reference voltage IC	SHDN_B
32	P120	General-purpose I/O (output)	SMOKE_DET	For communication signal generation circuits (alarm)

Once these settings are applied, no changes are allowed. Only when a new configuration is started.

4. Software Layer

This sample software process is divided into a driver section that controls the peripheral functions of the MCU, a middleware section that controls the Multiwavelength Smoke Detector, and a user application section that operates the middleware. The overall configuration of the sample software is shown in Figure 4-1.

5. Software Description

5.1 State Transitions

The state transitions are shown in Figure 5-1.

Figure 5-1. State Transition Diagram

5.2 System Initialization

Figure 5-2 shows the initialization sequence after a power-on reset.

Figure 5-2. System Initialization

The first step after a power-on reset is to initialize the basic controller. The clock tree and microcontroller hardware components are then initialized. The sequence ends with the initialization of the AFE IC port.

5.3 Interrupts

Table 5-1 lists all the interrupts used in the sample software.

Interrupt Vector	Interrupt Handling Functions	Priority	Interrupt Factors	Processing Contents
RESET	main	Level 0	Power-on or microcontroller reset	Main process
INTSMSE	r_Config_SMS_interrupt	Level 0	Exit SMS Mode	Exit SMS mode and return to normal process
INTSR0	r_Config_UART0_interrupt_send	Level 3	Completed transfer of UART0 transmission	Send the contents of the send buffer
INTCSI11	r_Config_CSI11_interrupt	Level 3	Completed serial transfer	SPI data transmission and reception processing
INTTM01	r_Config_TAU0_2_interrupt	Level 3	Specified counter elapsed	Waiting process for [usec] order
INTAD	r_Config_ADC_interrupt	Level 3	Completed AD conversion	Set AD conversion termination flag
INTITL	R_Config_ITL001_ITL002_Callback_ Shared_Interrupt	Level 3	Specified counter elapsed	Waiting process for [msec] order
INTITL	R_Config_ITL012_ITL013_Callback_ Shared_Interrupt	Level 3	Specified counter elapsed	Waiting process for [msec] order

Table 5-1. Interrupts

6. Process Flow

6. Process Flow

6.1 Main Process Flow

Figure 6-1 shows the main process flow.

Figure 6-1. Main Process Flow

6.2 Main Process Flow for Smoke Detection

Figure 6-2 shows the main process flow for smoke detection.

Figure 6-2. Smoke Detection Main Process Flow

6.3 Easy Mode Processing

Figure 6-3 shows the easy mode process flow.

Figure 6-3. Easy Mode Process Flow

6.4 Detail Mode Process Flow

Figure 6-4, Figure 6-5, and Figure 6-6 show the detail mode process flow.

Figure 6-4. Detail Mode Process Flow (1)

Figure 6-5. Detail Mode Process Flow (2)

Figure 6-6. Detail Mode Process Flow (3)

6.5 Alarm Mode Transition Judgment Process Flow

Figure 6-7 shows the alarm mode transition judgment process flow.

Figure 6-7. Alarm Mode Transition Judgment Process Flow

6.5.1 Easy Mode Transition Judgment Process

Figure 6-8 shows the judgment process flow for easy mode transition.

Figure 6-8. Easy Mode Transition Judgment Process Flow

7. Peripherals Configuration

7.1 Configuring Clock

Figure 7-1 shows the clock settings. The RL78/G22 clock tree contains a high-speed on-chip oscillator with an operating frequency of 32MHz. This frequency value reduces power consumption, but the main system clock can also be set to 1 MHz (medium main mode).

							Generate Code
_							
Operation mode:	ow-speed main mode	2.7(V)~5.5(V)	-				
High-speed on-chi	p oscillator						
Frequency:		~					
fHOCO start setting:		** (MHz)					
(There is setting for st	from STOP mode a	on-chip oscillator at				THP U	(MHz)
SNDOZE mode.)						(MAIN	
					•	- 1	(MHz)
						fCLK	
Middle-speed on-o	thip oscillator			Г		1000 fIMP	(8H2)
Frequency:	1	• (MHz)				1	(MHz)
V1 oscillator							
(X1 oscillator and XT1	oscillator cannot be us	sed at the					
same time)						IMXP 🚺	
Operation mode:		-				-	
Frequency:	5						
Stable time:		 ■ 52428.8(µs) 					
						fiL	
	-Watas					- 32 768	(2/949)
Low-speed on-chip os	cillator	(kHz)		1		32.768	(KPIZ)
Low-speed on-chip os Frequency: The fiL runs while WD	cillator 32.768 T is operating or fSXP f	(kHz) select Low-speed				= 32.768	(8242)
Low-speed on-chip os Frequency: The fiL runs while WD' on-chip oscillator	cillator 32.768 T is operating or fSXP s	(kHz) select Low-speed				+5XP 32.768	(kHz)
Low-speed on-chip os Frequency: The fiL runs while WD on-chip oscillator	32.768 T is operating or fSXP ((kHz) select Low-speed				- 32.768 	(kHz)
Low-speed on-chip os Frequency: The fit runs while WD on-chip oscillator	cillator 32.768 T is operating or fSXP s oscillator cannot be u	(kHz) select Low-speed				132.768 15XP 132.768 15XR	(kHz) (kHz)
Low-speed on-chip os Frequency: The fiL runs while WD on-chip oscillator	cillator 32.768 T is operating or ISXP : oscillator cannot be u	(kHz) select Low-speed				15XP 32.768 5XR	(kHz) (kHz)
Low-speed on-chip os Frequency: The fiL runs while WD on-chip oscillator XT1 oscillator XT1 oscillator and XT1 same time) Operation mode:	cillator 32.768 I is operating or ISXP : oscillator cannot be u	(kHz) select Low-speed sed at the				32.768 15XP 32.768 15XR	(kHz) (kHz)
Low-speed on-chip os Frequency: The fiL runs while WD on-chip oscillator XT1 oscillator XT1 oscillator and XT1 same time) Operation mode: Frequency:	cillator 32.768 1 is operating or FSXP t oscillator cannot be u X11 oscillator -	(kHz) select Low-speed sed at the				- 32.768 	(kHz) (kHz) (kHz)
Low-speed on-chip os Frequency: The fL runs while WD on-chip oscillator XT1 oscillator XT1 oscillator and XT1 same time; Operation mode: Frequency: XT1 oscillaton mode:	cillator 32.768 I is operating or FSXP t oscillator cannot be u X11 oscillator - Los poerf (officient	(04z) select Low-speed sed at the (kHz) (kHz) ~				32.768 15XP 32.768	(kHz) (kHz)

Figure 7-1. Configuring Clock

7.2 Configuring Ports

Figure 7-2 - Figure 7-9 shows the configuration for each port. The RL78/G22 R7F102GBE2DNP#YJ1 has 28 digital I/O pins that can control a variety of operations. In addition, these pins have some alternative features.

7.2.1 Configuring Port 0

t selection PC	ORTO	PORT1	PORT2	PORT3	PORT6	PORT7	PORT12	PORT14			
"Input buffer	OFF"	is effecti	ve when t	the pin is	used for	a port fun	ction or a	n alternative fu	nction, o	or the pin is	s not used. Please make sure that oth
peripherals a	re not	using th	e alternat	ive input	function	before sel	ecting "In	out buffer OFF			
Apply to	all										
Unused		In C	Out	Pull-	up	TTL buf	fer	Input buffer C)FF	N-ch	Output 1
P00											
⊖ Unused	0	In 🤇	Out	Pull-	up			Input buffer C)FF	N-ch	Output 1
P01											

Figure 7-2. Configuring Port 0Configuring Port 1

7.2.2 Configuring Port 1

rt selection PC	ORTO POI	RT1 PORT2	PORT3 PO	RT6 PORT7 POF	RT12 PORT14		
"Input buffer peripherals ar	OFF" is efi re not usin	fective when ig the alterna	the pin is used ative input funct	for a port functior tion before selectin	n or an alternative functio g "Input buffer OFF".	n, or the pin i	s not used. Please make sure that other
 Unused) In	Out	Pull-up	TTL buffer	Input buffer OFF	N-ch	Output 1
P10							
OUnused	\bigcirc In	 Out 	Pull-up	TTL buffer	Input buffer OFF	N-ch	Output 1
P11							
Unused	\bigcirc In	Out	Pull-up	TTL buffer	Input buffer OFF	N-ch	Output 1
P12							
Unused	◯In	Out	Pull-up		Input buffer OFF	N-ch	Output 1
P13							
○ Unused	OIn	Out	Pull-up	TTL buffer	Input buffer OFF	N-ch	✓ Output 1
P14	~	~			_		
() Unused	() In	 Out 	Pull-up	TTL buffer	Input buffer OFF	N-ch	✓ Output 1
P15	0.	0.0					
Ounused	• In	Out	Pull-up	IIL buffer	Input buffer OFF	N-ch	Output 1
P16	01						
Unused	() in	Out	Pull-up				
P17	0.			TT 1 4			
Unused	OIn	 Out 	Pull-up	IIL buffer	Input buffer OFF	∐ N-ch	

Figure 7-3. Configuring Port 1

7.2.3 Configuring Port 2

rt selection P	ORTO	PORT1	PORT2	PORT3	PORT6	PORT7	PORT12	PORT14	
Apply to	all								
Unused	01	n (Out						Output 1
P20									
Unused	01	n (Out						Output 1
P21									
 Unused 	01	n (Out						Output 1
P22									
Unused	01	n (Out						Output 1
P23									
⊖ Unused	01	n 🤅	Out						Output 1

Figure 7-4. Configuring Port 2

7.2.4 Configuring Port 3

t selection	PORTO	PORT	1 PORT2	PORT3	PORT6	PORT7	PORT12	PORT14	
Apply t	o all								
Unused		In	Out	Pull-	up				Output 1
P30									
Unused	0	In	Out	Pull-	up				Output 1
P31									
⊖ Unused	۲	In	Out	Pull-	up				Output 1

Figure 7-5. Configuring Port 3

7.2.5 Configuring Port 6

rt selection PC	ORTO PO	RT1 PORT2	PORT3 PORT	6 PORT7	PORT12	PORT14	
Apply to a	all						
Unused	\bigcirc In	Out					Output 1
P60							
⊖ Unused	◯In	 Out 					Output 1
P61							
⊖ Unused	◯In	 Out 					Output 1
P62							
⊖ Unused	◯In	 Out 					Output 1

Figure 7-6. Configuring Port 6

7.2.6 Configuring Port 7

ort selection	PORTO	PORT1	PORT2	PORT3	PORT6	PORT7	PORT12	PORT14	
Apply	to all								
Unused	0	In (Out	Pull-	up				Output 1
P70 O Unused	H ()	In (Out	Pull-	up				Output 1

Figure 7-7. Configuring Port 7

7.2.7 Configuring Port 12

t selection	PORTO	PORT1	PORT2	PORT3	PORT6	PORT7	PORT12	PORT14		
"Input buf peripherals	fer OFF" are not o all	is effecti using th	ve when t e alternat	the pin is tive input	used for function	a port fu before se	nction or a lecting "In	n alternative function put buffer OFF".	on, or the pin i	s not used. Please make sure that othe
Unused		In (Out	Pull-	up			Input buffer OFF	N-ch	Output 1
P120										
OUnused	0	In 🤅	Out	Pull-	up] Input buffer OFF	N-ch	Output 1
P121										
OUnused	0	In 🤅	Out	Pull-	up					Output 1
P122										
OUnused	0	In 🤅	Out	Pull-	up					Output 1

Figure 7-8. Configuring Port 12

7.2.8 Configuring Port 14

rt selection	PORTO	PORT1	PORT2	PORT3	PORT6	PORT7	PORT12	PORT14	
Apply to	o all								
Unused		In (Out	Pull-	up				Output 1
P147									
Unused	0	In (Out	Pull-	au				Output 1

Figure 7-9. Configuring Port 14

7.3 Configuring Serial Array

7.3.1 Configuring SPI

Figure 7-10 shows the SPI (CSI11) configuration.

Transfer clock setting			
Transfer clock mode	Internal clock (master)	~	
Operation clock	СК00	~	
Clock source	fCLK	 ✓ (Close 	ck frequency: 1000 kHz)
Transfer mode setting			
 Single transfer mode 	O Continuous transfer	node	
Data length setting			
8 bits	◯ 7 bits		
Transfer direction setting			
○ LSB	MSB		
OTest	OT 2		
Type 1 SCKp SOP XOF X OF	Type 2 SCKp	<u></u>	
Type 1 SCKp S0p X0r X0s X0s X0s X0s X0s X0r X0r X0r S1p t t Type 3	Type 2 SCKp SOP TOP	<u>0110100</u> t t t	
Type 1 SCKp	Type 2 SCKp SOp Yor Yoes Yoes Yoes Yoes Yoes Yoes Yoes Yoes		
Type 1 SCKp	Type 2 SCKp SOp Yor Yos	<u> </u>	
Type 1 SCKp S0p Yor Yos	Type 2 SCKp SOp Yor Yos	<u>→</u> (bps) (Actual value: 166666.667)
Type 1 SCKp S0p YOP YOS YOS YOS YOR	Type 2 SCKp SOp Yor Yos	<u>→</u> (bps) (Actual value: 166666.667)
 Type 1 SCKP	 ○ Type 2 SCKP	→ (bps) (Actual value: 166666.667)
 ○ Type 1 SCKP SUP Tor Yos Yos Yos Yos Yos Yos Yos Yos Yos Yos	 ○ Type 2 SCKp) (Actual value: 166666.667)

Figure 7-10. Configuring SPI(CSI11)

7.3.2 Configuring UART0

Figure	7-11	shows	the	UART0	configuration	۱.

figure					
ransmission					
UARTO clock setting	9				
Operation clock		СКОО	~		
Clock source		fCLK	~	(Clock fre	quency: 1000 kHz)
Transfer mode setti	ng				
Single transfer n	node	O Continuous trans	sfer mode		
Data length setting					
○ 7 bits	8 bits	0 9 bits			
Transfer direction se	etting				
● LSB		◯ MSB			
Parity setting					
None	O parity	Odd parity	C	Even parity	У
Stop bit length sett	ing				
1 bit		◯ 2 bits			
Transfer data level s	etting				
Non-reverse		○ Reverse			
Transfer rate setting					
Transfer rate setting	1	38400	~	(bps)	(Current error: 0.16%)
Interrupt setting					
Transmit end interr	upt priority (INTST0)	Level 3 (low)	~		
Callback function se	etting				
Transmission en	d				

Figure 7-11. Configuring UART0

7.4 Configuring A/D Converter

Figure 7-12 shows A/D converter configuration.

onfigure		
Comparator operation setting		
 Stop 	Operation	
Resolution setting		
10 bits	○ 8 bits	
VREF(+) setting		
OVDD	AVREFP	 Internal reference voltage
VREF(-) setting		
⊖ vss	AVREFM	
Trigger mode setting		
 Software trigger mode 		
O Hardware trigger no wait mod	e	
◯ Hardware trigger wait mode		
INTTM01	~	
Operation mode setting		
O Continuous select mode	O Continuous scan mode	
 One-shot select mode 	One-shot scan mode	
A/D channel selection	ANI2	~
Conversion time setting		
Conversion time mode	Low voltage 1	~
Conversion time	38/fCLK	~ (38 μs)
Conversion result upper/lower bo	und value setting	
 Generates an interrupt request 	(INTAD) when ADLL \leq ADCR \leq AD	UL
O Generates an interrupt request	(INTAD) when ADUL < ADCR or AL	DLL > ADCR
Upper bound (ADUL) value	255	
Lower bound (ADLL) value	0	
Interrupt setting		
Use A/D interrupt (INTAD)		
Priority	Level 3 (low)	~

Figure 7-12. Configuring A/D Converter

7.5 Configuring Timer Array Unit

Figure 7-13 shows the TAU configuration. This setting generates the waiting time until the reference voltage is determined in detail mode. The default is 130ms.

Dearstion clock	CKOD	~	
operation clock	CROU		
Clock source	fCLK/2^5	~	(Clock frequency: 31.25 kHz)
nterval timer setting			
nterval value (16 bits)	130	µs ~	(Actual value: 128)
Generates INTTM01 when	counting is started		
nterrupt setting			

Figure 7-13. Configuring Timer Array Unit TAU0_1

7.6 Configuring 32-Bit Interval Timer

The 32-bit interval timer is used as a 16-bit, two channes, as shown in Figure 7-14, Figure 7-15.

7.6.1 Configuring ITL000 and ITL001

Figure 7-14 shows the ITL000 and ITL001 settings. This setting generates a measurement interval (SMS activation interval) for the easy mode. The default is 6000ms. In addition, the detail mode is changed to 2000 ms to generate the measurement interval. In alarm mode, it is changed to 500ms to generate a blinking interval for the red LED.

Clock setting			
Operation clock (fITL0)	fSXP	~	
Clock source	fITL0/128	~	(Clock frequency: 0.256 kHz)
nterval timer setting			
Interval value	6000	ms 🗸	(Actual value: 6000)
nterrupt setting			
Detection of compare mail	tch/capture completion (INTITL)		

Figure 7-14. Configuring Interval Timer ITL000 and ITL001

7.6.2 Configuring ITL012 and ITL013

Figure 7-15 shows the ITL012 and ITL013 settings. This setting generates the measurement interval for the three LEDs in detail mode. The default is 250ms. It is also changed to 25ms in alarm mode to generate a red LED illumination time. It is not used in easy mode.

Clock setting	(cvp		
Operation clock (ITLO)	ISAP	Ť	
Clock source	fITL0/128	~	(Clock frequency: 0.256 kHz)
Interval timer setting			
Interval value	250	ms ~	(Actual value: 250)
Interrupt setting			
Detection of compare mat	ch/capture completion (INTITL)		
Driatita	1 1 2 (1 2		

Figure 7-15. Configuring Interval Timer ITL012 and ITL013

8. Software Processing

8.1 List of Functions

This chapter describes the function of each function.

8.1.1 Initialization and Monitoring Related Functions

Table 8-1 shows the list of functions related to initialization and monitoring processing. It is responsible for communicating with the data flash (reading and writing data), reading the supply voltage, and implementing smoke circulation monitoring.

Table 8-1. List of Functions Related to Initialization and Monitoring Processing

File Name	Function Name	Function
APP.c	APP_vInit()	RL78 register, initializing variable
	APP_vCyclicMonitoring()	Getting AD value process
	APP_vInitMeasurement()	Initialization before starting PD value measurement
	APP_vDinitMeasurement()	Stopping PD value measurement
	APP_delay()	Wait for AFE to stabilize
	APP_vInitRegisterForSMS()	Setting AFE register for LED light emission
	APP_vGetMcuADValue()	Getting AD value
	APP_vReferenceIC_SHDN_B_Toggle()	Charging process

8.1.2 AFE Driver Related Functions

Table 8-2 shows the list of the functions of the AFE module. It has the function of direct access to AFE pins and hardware modules.

File Name	Function Name	Function
AFE_Driver.c	AFE_vInit()	Initializing AFE
	AFE_vEnableUnit()	Enable AFE Unit
	AFE_vDisableUnit()	Disable AFE unit
	AFE_vStartADC()	Requesting AD conversion start
	AFE_vSetLEDCurrent()	Setting the LED Current Value
	AFE_vSetTIA()	Setting the Amplification Degree
	AFE_vSetTIA_lcomp()	Setting the Offset Voltage
	AFE_vSetADCEnable()	Setting AD Conversion
	AFE_u16ReadADC()	Confirmation of completion of AD conversion
	AFE_WaitForTransferConfirmation()	Waiting for SPI transmission and reception completion
	AFE_enRead()	Reading AFE register values via SPI
	AFE_enwrite()	Writing AFE register value via SPI
	AFE_Driver_SPI_Error_Notification()	SPI Communication Error Notification
	AFE_Driver_SPI_RX_Confirmation()	SPI Communication Reception Completion Notification
	AFE_Driver_SPI_TX_Confirmation()	SPI Communication Transmission Completion Notification
	AFE_vSetADCEnableAndConfig()	Initial settings for AFE unit AD conversion

Table 8-2.	List of	AFE	Module	Functions

Functions Related to Generation of Measurement Timing

Table 8-3 shows the list of the functions for measurement timing generation.

File Name	Interface	Contents
MeasureCtrl.c	MC_Init()	Initializing variables
	MC_Main()	Generating measurement timing
	MC_Main_EasyMode()	Easy mode processing
	MC_Main_DetailMode() Detail mode processing	
	MC_Main_AlarmMode()	Alarm Mode Processing
	MC_CheckAD_EasyMode()	Transition judgment process from easy mode
	MC_CheckAD_DetailMode()	Transition judgment process from detail mode

Table 8-3.	List of Measurement	Timing	Generation	Functions
------------	---------------------	--------	------------	-----------

8.1.3 Functions Related to Serial Communication Transmission Processing

Table 8-4 shows the list of the serial communication transmit processing functions.

Table 8-4.	List of Serial	Communication	Transmission	Processing	Functions
	Elot of Goriar	oomnamouton	i i anonio o i o ii	riccoconig	i anotiono

File Name	Interface	Contents		
SerialComm.c	SC_TransmitParamInfo()	Full parameter setting output processing		
	SC_TransmitMeasurementResult()	AD conversion value output processing		
	SC_TransmitParam()	Parameter name and setting value output		
		processing		
	SC_TransmitParamName()	Parameter name output processing		
	SC_TransmitParamValue()	Parameter value output processing		
	SC_SetMeasureCounter()	Measurement counter value output processing		
	SC_AddMeasureTime()	Time Calculation Process		
	SC_SetMeasureValue()	Measured value ASCII conversion process		

8.1.4 Parameter Management Related Functions

Table 8-5 shows the list of the parameter management functions.

Table 8-5. List of Parameter Management Functions

File Name	Interface	Contents
UserParam.c	APP_InitMeasureParameter()	Measurement parameter initialization
		processing
	APP_CheckMeasureParameter()	Measurement parameter matching processing

9. POC Software Update

The application software can be updated using Renesas E2_Lite debugger and Renesas Flash programmer tools. This feature can be used for both data flash and code flash rewriting. The update requires a *.hex file that contains the data flash parameter values or the new version of the firmware. Also, you just have to follow the following steps:

📓 Create New Project	:	_		×
Project Information				
Microcontroller:	RL78 ~			
Project Name:	SmokeDetectorUpdate			
Project Folder:	C:\Users\Dell\Documents\Renesas Flash Pro	grai	Browse	
Communication				
Tool: E1	✓ Interface: 1 wire UART ✓	N	/ide Voltag	e
Tool Details	Num: AutoSelect Power: None			
	Connec	ct	Can	cel

Figure 9-1. Create a New Project with the Renesas Flash Programmer Tool

Connect each tool to your development board. Load the .hex file using the Browse button shown in Figure 9-2 and start the update by pressing the Start button at the end.

📕 Renes	sas Flash Program	mer V3.05.01 (Fr	ee-of-charge l	Edition)		_		×
File D	evice Information	Help						
Operation	Operation Settings	Block Settings	Flash Options	Connect Settings	Unique Code			
Projec Cum Micr Progra	ct Information ent Project: S rocontroller: F am File	SmokeDetectorUpo R5F10267	late.rpj					
Flash	Operation					E	Browse]
Era	se >> Program >> V	enfy						
		Sta	art					
Tool: E1 (f Emulator's Emulator's Connecting Query the o Device Nar Device Coo	GCS093562C), Inter supply power : 3.3 firmware version : to the target devi device information me : RSF10267 de : 10 00 00 fersion : \/2.02	rface : 1 wire UAI V 3.00.00.004 ice	RT					^
Code Flash Data Flash) (Address : 0x000 (Address : 0x000 (Address : 0x000)	00000, Size:4 K F1000, Size:2 K,	, Erase Size : Erase Size :	1 K) 1 K)				
Disconnect Operation	ing the tool completed.							
					Clear	etatue a	nd message	~
					Cical	status a	ina messag	-

Figure 9-2. Use the Renesas Flash Programmer Tool to Connect to Boards and Flash .hex Files

10. Nomenclature

- IC Integrated Circuit
- POC Proof Of Concept
- SW SoftWare
- HW HardWare
- MCU Micro Controller Unit
- CPU Central Processing Unit
- AFE Analog Front End
- LED Light-Emitting Diode
- PD PhotoDiode
- IR Infrared Radiation
- TIA Transimpedance Input Amplifier
- PGA Programmable Gain Amplifiers
- DAC D/A converter or digital-to-analog Converter
- ADC A/D converter or analog-to-digital Converter
- SPI Serial Peripheral Interface
- UART Universal Acsynchronous Receiver Transmitter
- ROM Read-Only Memory
- RAM Random Access Memory
- DC Direct Current
- AC Alternating Current
- LDO Low-DropOut voltage regulator
- GPIO General-Purpose Input and Output
- TX Transmission
- RX Reception
- USB Universal Serial Bus
- PCB PolyChlorinated Biphenyl
- PC Personal Computer
- SINI System INItialization
- APP APPlication
- IDE Integrated Development Environment
- UL Underwriters Laboratories

11. References

- [1] RL78/G22 User's Manual: Hardware (r01uh0978ej0110-rl78g22.pdf)
- [2] SCHEMATIC DIAGRAM SMOKE DETECTOR (RENESAS_SMOKEDETECTOR_R1_20230309.pdf)
- [3] MCP1501 High-Precision Buffered Voltage Reference (Datasheet) (MCP1501_Data_Sheet_DS20005474-3499863.pdf)
- [4] Sunhayato USB Serial Conversion Module MM-FT232 Instruction Manual (manual-mm-ft232-ja.pd

Povicion History	RL78/G22 Multiwavelength Smoke Detector Evaluation Board			
Revision history	User's Manual: Software			

Rev.	Date	Description		
		Page	Summary	
1.00	Feb.20.25		First Edition issued	

RL78/G22 Multiwavelength Smoke Detector Evaluation Board User's Manual: Software

Publication Date:Rev.1.00Feb.20.25Published by:Renesas Electronics Corporation

RL78 Family

